
Parallel Processing for
Dynamic Multi-objective

Optimization

Mario Cámara Sola

DISSERTATION SUBMITTED FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

Supervisors: Dr. Julio Ortega Lopera
Dr. Francisco de Toro Negro

Dept. of Computer Architecture and Computer Technology
GRANADA, APRIL 2010



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

      Editor: Editorial de la Universidad de Granada 
     Autor: Mario Cámara Sola 
     D.L.: GR 3232-2010 
     ISBN: 978-84-693-4423-1 





D. Julio Ortega Lopera, catedrático de la Universidad de Grana-
da, y D. Francisco Jesús de Toro Negro, profesor contratado doctor
de la Universidad de Granada

CERTIFICAN

Que la memoria titulada

Parallel Processing for Dynamic
Multi-objective Optimization

ha sido realizada por D. Mario Cámara Sola bajo nuestra dirección
en el departamento de Arquitectura y Tecnología de Computado-
res de la Universidad de Granada, para optar al grado de Doctor.

En Granada, a 6 de abril de 2010.

Fdo. Julio Ortega Lopera Fdo. Francisco J. de Toro Negro





PROCESAMIENTO PARALELO
PARA OPTIMIZACIÓN

DINÁMICA MULTIOBJETIVO

MEMORIA PRESENTADA POR

MARIO CÁMARA SOLA

PARA OPTAR AL GRADO DE

DOCTOR EN INFORMÁTICA
CON MENCIÓN EUROPEA

POR LA UNIVERSIDAD DE GRANADA

Fdo. Mario Cámara Sola





Ïîñâÿùàåòñÿ ìîåé ëþáèìîé Þëå çà å¼
ïîíèìàíèå, òåðïåíèå è ïîääåðæêó





“The real voyage of discovery consists not in
seeking new landscapes but in having new eyes”

Marcel Proust

Ó÷èòüñÿ, ó÷èòüñÿ è åù¼ ðàç ó÷èòüñÿ

Â. È. Ëåíèí

“Learn, learn and once more learn”
V. I. Lenin

“The greatest challenge to any thinker is stating the
problem in a way that will allow a solution.”

Bertrand Russell





Acknowledgements

It is common belief that embarking upon a PhD is a lonely task where the
PhD candidate will have to carry on a wide range of activities but most
of them without external help.

Hopefully, my personal experience when I am finishing this PhD the-
sis is that I have not been alone in any moment throughout this long way.

Julio Ortega and Francisco de Toro, my two supervisors, were al-
ways there: ready and zealous but, above all, they were always willing to
point me out the next step to follow in my research. To them my warmest
thanks for spending and sharing their time with me during these years.

Moreover, this PhD could not have come to life without the support
of the Computer Architecture and Technology Department and its staff,
among them Alberto Prieto, Manuel Rodríguez, JJ Merelo, José Luis
Bernier, Ignacio Rojas, Francisco Illeras and Encarnación Redondo de-
serve special mention.

I was also very lucky to meet very wonderful workmates and I want
to thank you all for your interesting views on all kind of issues that
opened my eyes many times: Pablo Cascón, José Miguel Urquiza, Juan
Luis Jiménez, Pablo García, Ginés Rubio, Antonio Mora, Luis Javier
Herrera, Alberto Guillén and Richard Carrillo.

I am very grateful to my whole family for supporting me in this long
journey, and specially to Yulia, who suffered my absolute lack of free
time to spend with her during the last nine months.

Last but not least I am very grateful to the excellent researchers who
agreed to host me in their research labs in order to learn from them and
their colleagues: Ben Paechter at Napier University (Edinburgh) and
Eckart Zitzler at Zurich ETH.

This PhD has been developed with the economic support provided
by a research fellowship given by the Andalusian Regional Ministry of

i



Innovation, Science and Enterprise (Consejería de Innovación, Ciencia y
Empresa), currently Regional Ministry of Economy, Innovation and Sci-
ence (Consejería de Economía, Innovación y Ciencia) of the Junta de An-
dalucía. Moreover, my research visit to Edinburgh was funded by the
HPC-Europa2 programme.



Contents

Acknowledgements i

Contents iii

List of Abbreviations vii

Abstract ix

Resumen 1

Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Estructura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Publicaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Preface 1

Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1� Introduction and Field Review 7

1.1 Multi-objective Optimization Problems . . . . . . . . . . . . . . . . . . . 8

1.1.1 Further Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Evolutionary Algorithms and Metaheuristics . . . . . . . . . . . . . 13

1.2.1 Multi-objective Metaheuristics. . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Parallelization of MOEAs. . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



CONTENTS

1.2.4 The No Free Lunch Theorems. . . . . . . . . . . . . . . . . . . . . 21

1.2.5 Further Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Dynamic Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Classification of Problems. . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Evolutionary Algorithms and DMO. . . . . . . . . . . . . . . . 25

1.3.3 Further Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2� Performance Evaluation 31

2.1 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 Classification of the Performance Measures. . . . . . . . . 33

2.1.2 A Note on the Terminology. . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 The Need for New Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Review of the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Measures for Single Objective Problems. . . . . . . . . . . . 41

2.3.2 Multi-objective Performance Measures . . . . . . . . . . . . . 49

2.4 Proposed Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 Measures When the Fronts are Known. . . . . . . . . . . . . 53

2.4.2 Measures When the Fronts are Unknown. . . . . . . . . . . 57

2.5 Test Cases for DMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.1 FDA1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.2 FDA2-mod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.3 FDA3-mod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.4 FDA4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5.5 FDA5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iv



CONTENTS

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3� SFGA2: An improved version of SFGA 73

3.1 Previous Existing MOEAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.1 SFGA (Single Front Genetic Algorithm). . . . . . . . . . . . 74

3.1.2 NSGA-II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.3 SPEA2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 SFGA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 The Evolutionary Algorithm SFGA2. . . . . . . . . . . . . . . 85

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.1 Stationary FDA1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.2 Stationary FDA4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.3 Conclusion from the Results. . . . . . . . . . . . . . . . . . . . . . . 98

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4� Parallel Procedures for DMO 103

4.1 Approaches to Parallelism for MOEAs . . . . . . . . . . . . . . . . . . . . 104

4.2 A Model for Speedup Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 A Generic Parallel Procedure for DMO . . . . . . . . . . . . . . . . . . . 111

4.4 A Fully Distributed Procedure for DMO . . . . . . . . . . . . . . . . . . 112

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5.1 Results with pdMOEA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.2 Analysis of the pdMOEA approach. . . . . . . . . . . . . . . . 129

4.5.3 Results with the Fully Distributed Procedure. . . . . . . 131

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

v



CONTENTS

5� Summary Conclusions and Contributions 135

5.1 Conclusions and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A� Conclusiones Finales y Aportaciones 143

A.1 Conclusiones y Aportaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 Principales Aportaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.3 Trabajo Futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

List of Figures 151

List of Tables 153

List of Algorithms 155

Bibliography 171

Glossary 173

Index 177

vi



List of Abbreviations

List of abbreviations used in this thesis

• OP - (Single-objective) Optimization Problem

• MOP - Multi-objective Optimization Problem

• DOP - Dynamic Optimization Problem

• DMO - Dynamic Multi-objective Optimization

• EA - Evolutionary Algorithm

• MOEA - Multi-objective Evolutionary Algorithm

• GP - Genetic Programming

• NFL - No Free Lunch theorems

• TSP - Traveling Salesman Problem

• pdMOEA - Parallel Dynamic MOEA

• pdMOEA+ - Improved Parallel Dynamic MOEA

vii





Abstract

The main objective of this PhD thesis is to advance the field of parallel
multi-objective evolutionary algorithms to solve dynamic multi-objective
optimization problems. Thus, the research presented in this thesis in-
volves three different, although related, fields:

• Multi-objective evolutionary algorithms (MOEA),

• Dynamic multi-objective optimization (DMO) problems, and

• Parallelization of MOEAs to solve DMO problems.

The degree of advancement of the research varies for each of the afore-
mentioned topics, from a full-fledged research field as it is the MOEA
topic to a new emerging subject as it happens with dynamic multi-
objective optimization.

Nevertheless, proposals to improve further the three afore-mentioned
subjects have been made in this thesis.

First of all, this thesis introduces a low-cost MOEA able to deal with
multi-objective problems within more restrictive time limits than other
state-of-the-art can do.

Secondly, the field of dynamic optimization is reviewed and some
additions are made so that the field moves forward to tackle dynamic
multi-objective problems. This has been facilitated by the introduction
of performance measures for problems that are both dynamic and multi-
objective. Moreover, modifications are proposed for two of the five de
facto standard test cases for DMO problems.

Thirdly, the parallelization of MOEAs to solve DMO problems is ad-
dressed with two different proposed approaches:

• A hybrid master-worker and island approach called pdMOEA, and

ix



Abstract

• A fully distributed approach called pdMOEA+.

These two approaches are compared side-by-side with the test cases
already mentioned.

Finally, future work to follow upon the achievements of this thesis is
outlined.
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“La verdadera ciencia enseña,
por encima de todo, a dudar y
a ser ignorante.”

Miguel de Unamuno

Resumen

ESTA memoria representa el resultado de más de cuatro años de
investigación llevada a cabo en el Departamento de Arquitectura
y Tecnología de Computadores de la Universidad de Granada.

El objetivo principal de esta tesis doctoral es producir un avance en el
campo de los algoritmos evolutivos multiobjetivo y paralelos para resol-
ver problemas dinámicos multiobjetivo. Para ello, la investigación pre-
sentada en esta tesis trata con tres campos que, aunque diferentes, están
relacionados entre sí:

• Algoritmos evolutivos de optimización multiobjetivo (MOEA, por
sus siglas en inglés)

• Optimización dinámica multiobjetivo (DMO, por sus siglas en in-
glés), y

• La paralelización de algoritmos que resuelven problemas DMO con
el uso de MOEAs.

Estos tres temas se entremezclan en toda la tesis para dar como re-
sultado un enfoque unificado que sea capaz de afrontar problemas DMO
mediante el uso de MOEAs.

El grado de desarrollo de la investigación varía para cada uno de los
tópicos mencionados con anterioridad, desde un campo de investigación
muy bien nutrido como es el tema de los algoritmos multiobjetivo hasta
un tema nuevo y emergente como la optimización dinámica multiobjeti-
vo.

No obstante lo anterior, en esta tesis se incluyen propuestas para desa-
rrollar aún más las tres materias ya citadas.
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Objetivos

Primero, se introduce un algoritmo evolutivo multiobjetivo de bajo
coste que es capaz de encarar problemas multiobjetivo con limitaciones
de tiempo más restrictivas que las que pueden afrontar otros algoritmos
punteros.

Segundo, se revisa el campo de la optimización dinámica y se reali-
zan algunos añadidos para que el campo evolucione hacía la posibilidad
de resolver problemas dinámicos multiobjetivo. Esto se basa en la intro-
ducción de medidas de rendimiento para problemas que son, a la vez, di-
námicos y multiobjetivo. Además, se proponen modificaciones para dos
de los cinco casos de prueba estándar para problemas de optimización
dinámica multiobjetivo.

En tercer lugar, se afronta la paralelización de algoritmos evolutivos
multiobjetivo para resolver problemas dinámicos multiobjetivo con dos
enfoques diferentes propuestos:

• Un enfoque híbrido entre maestro-trabajador e isla que se ha llama-
do pdMOEA, y

• Un enfoque completamente distribuido que ha sido llamado pd-
MOEA+.

Estos dos enfoques son comparados exhaustivamente con los casos
de prueba ya mencionados.

Objetivos

Como se ha dicho en el epigrafe anterior, el objetivo principal de esta tesis
es ofrecer un enfoque paralelo fiable, preciso, rápido y escalable que sea capaz de
tratar problemas de optimización dinámica multiobjetivo bajo restricciones de
tiempo.

La idea subyacente en este objetivo es poder resolver aquellos proble-
mas que son a la vez dinámicos y multiobjetivo mediante el uso de pro-
cedimientos paralelos escalables. De tal forma que si un problema crece
añadiéndole nuevas instancias, se pueda resolver requiriendo el mismo
tiempo que al comienzo mediante la adición de más procesadores al en-
torno de computación.
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Resumen

Esto podría suceder en entornos reales (Gupta and Sivakumar, 2006;
Lee, Teng, Chew, Karimi, Lye, Lendermann, Chen, and Koh, 2005) tales
como una fábrica donde un proceso de fabricación conlleva seis máqui-
nas, y nuestro algoritmo es usado para planificar las diferentes tareas que
hay que acabar cada hora. Si la fábrica es ampliada con cuatro máquinas
nuevas, el algoritmo debe poder mantener los límites temporales anti-
guos mientras permite planificar las diez máquinas en lugar de solo seis.
Esto demandaría al algoritmo ejecutarse de una manera más rápida y, en
caso de un entorno y algoritmo secuenciales, solo podría conseguirse esto
cambiando el computador actual por alguno otro mucho más caro.

No obstante, si se usara un enfoque paralelo, como un sistema clus-
ter, el algoritmo podría mantener los límites de tiempo anteriores si se
ejecutara en unos cuantos procesadores más. Este enfoque se ha demos-
trado ser más económico y confiable porque es más fácil y barato añadir
un nuevo procesador a un entorno paralelo que encontrar un procesador
más potente para reemplazar otro en un entorno secuencial. Esto se ha
hecho más patente aún con la proliferación de las soluciones ya listas de
chips con múltiples núcleos.

Como se ha dicho antes, para diseñar dicho algoritmo paralelo es ne-
cesario trabajar en colaboración con las áreas de investigación anterior-
mente citadas porque todas ellas tienen algún impacto en el resultado
final. Además, el nivel de desarrollo de cualquiera de estas áreas varía, lo
que complica el alcanzar el objetivo de esta tesis. Esto se traduce en que
algunas de estas áreas requerían algún desarrollo más, que se ha realiza-
do en esta tesis.

El campo de los algoritmos MOEA es el área más desarrollada de las
tres. En ella, los investigadores pueden encontrar múltiples algoritmos
que mejoran y solventan las debilidades que presentaban los algoritmos
que se habían propuesto con anterioridad. Teniendo esto en cuenta, esta
tesis no intenta dar otro algoritmo multiobjetivo más que entre a rivalizar
con los algoritmos que ya se encuentran disponibles. En su lugar, en esta
tesis se describe un nuevo algoritmo MOEA que es muy rápido pero que
ha sido diseñado con el claro objeto de proporcionar un algoritmo de bajo
coste que se comporte mucho más rápido que los algoritmos existentes.

En esta tesis, la locución algoritmo de bajo coste proviene de las lí-
neas aéreas de bajo coste y de su modelo de negocio comparado con el

3



Objetivos

de las líneas aéreas regulares. Esto es así porque el algoritmo propuesto
es capaz de dar soluciones cuya calidad es prácticamente la misma que
la calidad de las soluciones obtenidas con los algoritmos más punteros
como SPEA2 y NSGA-II. Este algoritmo propuesto emula la idea de los
vuelos de bajo coste que permiten volar a aeropuertos que están locali-
zados casi tan cercanos del centro de las ciudades como los aeropuertos
utilizados por las líneas regulares. Pero al igual que sucede con los vuelos
de bajo coste, el algoritmo aquí propuesto proporciona estas soluciones
de una manera que es más eficiente en términos de tiempo que la manera
en que lo hacen los algoritmos tradicionales.

Si un vuelo de bajo coste ofrece una reducción en el precio del billete
de avión a cambio de aumentar la distancia hasta el centro de la ciudad,
el algoritmo de bajo coste mejora el número de soluciones que produce
por unidad de tiempo a costa de la distancia de esas soluciones al frente
real de Pareto. Lógicamente, este compromiso en la distancia al frente de
Pareto se hace de tal forma que se mantengan dentro de un cierto nivel
de calidad mínimo.

El interés de tener un algoritmo MOEA que proporciona más solu-
ciones por unidad de tiempo mientras que no compromete demasiado la
calidad de las soluciones recae en el hecho de que tales algoritmos serán
más adecuados para resolver problemas DMO dentro de límites tempo-
rales restrictivos, y así, adaptarse a nuevas restricciones de tiempo más
pequeñas.

Una vez que se tiene un algoritmo MOEA o un conjunto de ellos,
es importante proporcionar un entorno adecuado para resolver proble-
mas dinámicos. Este entorno debería estar compuesto por teoría y prác-
tica. Desafortunadamente, en el caso de los problemas dinámicos, no ha
habido prácticamente desarrollos para los problemas dinámicos multi-
objetivo. Debido a esto, se debe dar un armazón teórico para tratar los
problemas DMO.

Este entorno debería dar medidas de rendimiento y criterios para este
tipo de problemas que son dinámicos y multiobjetivo a la vez. Además,
debería proporcionar casos de prueba que pudieran ser usados por los in-
vestigadores en el campo. Es esencial que este entorno teórico pueda ser
usado no ya para casos de prueba simples sino también para problemas
DMO tomados de situaciones del mundo real.
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Resumen

Por último, se debería dar una paralelización de estos algoritmos
MOEA para la resolución de problemas DMO. Este enfoque paralelo de-
bería, al menos, mantener la calidad de las soluciones dadas por los al-
goritmos secuenciales, a la vez que redujera el tiempo de ejecución re-
querido. También debería mostrar que es escalable, para permitir que se
añadieran más nodos para afrontar problemas con instancias más gran-
des.

De forma adicional, este esquema paralelo debería implementar cua-
lidades deseadas como la habilidad de ejecutar diferentes algoritmos
MOEA, ser completamente independiente del problema y no depender
de parámetros introducidos por el usuario.

De forma resumida, los objetivos que persigue esta tesis son:

• Ofrecer un análisis y un repaso de las medidas de rendimiento dis-
ponibles para problemas DMO, con especial interés en aquellas des-
tinadas a la parte dinámica de estos problemas.

• Extender el armazón teórico para la optimización dinámica multi-
objetivo añadiendo medidas de rendimiento para los casos que ya
estuvieran cubiertos y establecer las bases para futuros estudios en
dicha área.

• Implementar un algoritmo MOEA de bajo tiempo de ejecución que
sea adecuado para paralelizar problemas DMO.

• Incrementar el número de soluciones por unidad de tiempo produ-
cidas por el algoritmo anterior.

• Realizar una comparación de este nuevo algoritmo MOEA con
otros algoritmos ampliamente conocidos.

• Proponer un procedimiento paralelo capaz de resolver problemas
DMO con buenas ganancias en velocidad y que permita ejecutar
diferentes algoritmos MOEA. Este procedimiento deberá ser capaz
de resolver problemas DMO con restricciones de tiempo sin com-
prometer la calidad de las soluciones obtenidas.

• Estudiar otras mejoras realizables a este enfoque paralelo.
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Estructura

• Comparar el procedimiento paralelo propuesto con el enfoque se-
cuencial a través de resultados experimentales.

• Recopilar las preguntas que surjan como consecuencia de esta tesis
y que deberían ser respondidas en investigaciones futuras.

Estructura

Después de esta introducción, la estructura de esta tesis se describe a
continuación:

• El Capítulo 1. Introduction and Field Review se dedica a la revi-
sión de los tres temas principales que dan forma a esta tesis antes
de entrar en detalles en ellos en el resto de los capítulos.

• El Capítulo 2. Performance Evaluation trata sobre medidas de ren-
dimiento para problemas de optimización multiobjetivo dinámica.
Primero comienza con una recopilación de las medidas propuestas
para problemas dinámicos de un solo objetivo y para problemas
multiobjetivo estacionarios. Después, se proponen algunas medi-
das para problemas que son dinámicos y multiobjetivo. Por último,
se introducen los casos de prueba usados para problemas DMO jun-
to con algunas modificaciones que se proponen.

• El Capítulo 3. SFGA2: An improved version of SFGA comienza
con una revisión detallada de tres algoritmos MOEA usados actual-
mente: SFGA, SPEA2 y NSGA-II. A continuación, se describe pro-
fusamente el algoritmo Single Front Genetic Algorithm 2 (SFGA2) y
se da una justificación para su uso. Finalmente, se realiza una com-
paración en términos de calidad de las soluciones y tiempo de eje-
cución de estos cuatros algoritmos MOEA: SFGA, SFGA2, SPEA2 y
NSGA-II.

• El Capítulo 4. Parallel Procedures for DMO explora las posi-
bles maneras que disponen los investigadores para producir en-
foques paralelos para resolver problemas dinámicos multiobjetivo
mediante el uso de algoritmos MOEA. En esta tesis se proponen
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dos procedimientos para paralelizar algoritmos MOEA para resol-
ver problemas DMO. El primero, llamado pdMOEA, es un enfoque
híbrido que puede variar entre un paradigma maestro-trabajador a
un paradigma de islas. Un segundo procedimiento completamente
distribuido se propone con el fin de mejorar más aún el enfoque hí-
brido. Una vez se describen dichos procedimientos se dan resulta-
dos experimentales para los dos con el fin de evaluar el rendimiento
de ambos enfoques paralelos.

• El Capítulo 5. Summary Conclusions and Contributions es el úl-
timo capítulo y ofrece un resumen de las conclusiones de esta tesis
además de recoger las principales aportaciones hechas y las publi-
caciones que se han realizado.

• Conclusiones Finales y Aportaciones es un apéndice redactado en
español que resume las conclusiones y principales aportaciones que
han surgido de esta tesis. Incluye también las publicaciones que se
han realizado y las líneas de trabajo futuro que se pueden seguir a
partir de esta tesis.

Publicaciones

El trabajo realizado en esta tesis doctoral se ha materializado en el si-
guiente número de publicaciones: dos revistas internacionales, un capítu-
lo de libro por invitación, cinco congresos internacionales, tres congresos
nacionales y dos de otro tipo.
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”The wise man doesn’t give the
right answers, he poses the right
questions.”

Claude Levi-Strauss

Preface

THIS dissertation is the result of more than four years of research
held at the Department of Computer Architecture and Computer
Technology of the University of Granada. The research that is

presented in this thesis has been focused on three main topics:

• Multi-objective optimization evolutionary algorithms (MOEA),

• Dynamic multi-objective optimization (DMO), and

• The parallelization of algorithms that solve DMO problems by us-
ing MOEAs

These three topics intersperse along all the thesis to provide a uni-
fied approach that is able to tackle DMO problems by means of parallel
MOEAs.

Objectives

The main goal of this thesis is to provide a reliable, accurate, fast and scal-
able parallel approach able to deal with dynamic multi-objective optimization
problems within time constraints.

The idea behind this objective is to be able to solve problems that
are both dynamic and multi-objective by means of scalable parallel pro-
cedures so that if a problem becomes bigger by the addition of new in-
stances, it can be solved requiring the same time as before by adding
more processors to the computing environment.

This could happen in a real world setting (Gupta and Sivakumar,
2006; Lee et al., 2005) such as a factory where a manufacturing process
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involves six machines, and our algorithm is used to schedule the differ-
ent tasks to be done on a hourly basis. If the factory is expanded with
for new machines, the algorithm must be able to keep up with the older
time limits but providing schedules for ten machines instead of only six.
This would demand the algorithm to run faster and, given a sequen-
tial environment and a sequential algorithm, this could only be provided
by changing the underlying computer by another much more expensive
computer.

But if a parallel approach is used, such as a cluster system, the algo-
rithm will be able to keep up with the older time limits by running in
a few more processors. This approach has been shown to be more cost-
effective and reliable because it is easier and cheaper to add a new pro-
cessor to a parallel environment than to find a faster processor to replace
another one in a sequential environment. This has become even clearer
with the proliferation of off-the-shelf multi-core solutions.

As it has been said before, in order to come up with such a parallel
algorithm it is necessary to work with the afore-mentioned research areas
because all of them have an impact on the final result. In addition, the
level of development of any of these areas varies, which is a complication
to reach the goal of this thesis. This means that some further development
was needed, and consequently done on this thesis, on some of the areas.

The MOEA field is the more developed area of the three ones. In it,
researchers can find multiple algorithms that improve upon the weak-
nesses of the previously proposed ones. Bearing this in mind, this thesis
does not try to provide just another MOEA to enter in direct competi-
tion with those algorithms that are already available. Nonetheless, in
this thesis a new very fast MOEA is given but with a clear aim of pro-
viding a low-cost algorithm that behaves much faster than the available
algorithms.

In this thesis, the term low-cost algorithm comes from the low-cost
airlines and from their business model in comparison with the regular
airlines. This is because, it is provided a MOEA that is able to produce
solutions whose quality is almost the same as the quality of the solutions
provided by state-of-the-art algorithms such as SPEA2 and NSGA-II. This
proposed algorithm mimics the idea of low-cost flights that allow the
traveller to fly to airports which are located almost so near to the city
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centres as the airports to which regular airlines fly. But as it happens
with low-cost flights, our proposed algorithm provides these solutions in
a way that is more time efficient than the way standard algorithms do.

If a low-cost flight offers a reduction in the price of a plane ticket on
the expense of the distance to a city centre, a low-cost algorithm improves
in the number of solutions it produces per time unit, on the expense of
the distance of those solutions to the real Pareto front. Logically, this
compromise on the distance to the Pareto front keeps the solutions within
some minimum of acceptable quality.

The interest of having a MOEA that provides more solutions per time
unit while not compromising too much the quality of the solutions relies
on the fact that such algorithms will be more adequate to solve DMO
problems within restrictive time limits, and in turn, to adapt seamlessly
to new shorter time restrictions.

Once a MOEA or a set of them is available, it is important to provide
an adequate framework to solve dynamic problems. This framework
should be comprised of theoretical and practical issues. Unfortunately,
in the case of dynamic problems, there were almost not development for
dynamic and multi-objective problems. Due to this, it must be provided
a theoretical framework to deal with DMO problems.

This framework should give performance measures and criteria for
these kind of problems that are dynamic and multi-objective at the same
time. In addition, it should provide test cases to be used by the re-
searchers on the field. It is essential that this theoretical framework can
be used not only for toy test cases but also for real-world DMO problems.

Finally, a parallelization of these MOEAs should be provided in order
to solve DMO problems. This parallel approach should, at least, maintain
the quality of the solutions provided by a sequential approach, while de-
creasing the required running time. It should also show that it is scalable
in order to allow more nodes to be added when dealing with bigger in-
stances of the problems.

Additionally, this parallel scheme should implement desired features
such as the ability to run different MOEAs, to be fully independent of the
problem and not to depend on many user parameters.

In summary, the objectives that this thesis pursues are:

• To provide an analysis and review of the available performance
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measures for DMO, specifically aimed at the dynamic part of these
problems.

• To extend the theoretical framework for DMO by adding perfor-
mance measures for cases that were not covered and to establish
the grounds for further study in this area.

• To implement a low running-time MOEA that is suitable to paral-
lelize DMO problems.

• To increase the number of solutions per time unit produced by the
earlier algorithm.

• To provide a comparison of this new MOEA with other widely
known MOEAs.

• To propose a parallel procedure able to solve DMO problems with
good speedups and that allows to run different MOEAs. This pro-
cedure must be able to solve DMO problems within time restric-
tions without compromising the quality of the given solutions.

• To study further improvements to this parallel procedure.

• To compare the proposed parallel procedures with the sequential
approach through experimental results.

• To list the questions that have arisen from this thesis and that
should be addressed in further research.

Structure

After this introduction, the structure of this thesis is described in what
follows:

• Chapter 1. Introduction and Field Review is devoted to review the
three main topics that give form to this thesis before delving deeply
into them in the rest of the chapters.
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• Chapter 2. Performance Evaluation deals with performance mea-
sures for dynamic multi-objective optimization problems. First,
it begins with a compilation of proposed measures for single-
objective dynamic problems and for stationary multi-objective
problems. Afterwards, some measures are proposed for problems
that are both dynamic and multi-objective. Finally, the test cases
used for DMO problems are introduced and some modifications
for them are proposed.

• Chapter 3. SFGA2: An improved version of SFGA begins with
a detailed review of three currently used MOEAs: SPEA2, NSGA-
II and SFGA. Then, the Single Front Genetic Algorithm 2 (SFGA2)
is thoroughly described with a justification for its introduction.
Lastly, a comparison with respect to quality of the solutions and
execution time of these four MOEAs, SFGA, SFGA2, NSGA-II and
SPEA2, is done.

• Chapter 4. Parallel Procedures for DMO explores the possible
ways that researchers have to produce parallel approaches to solve
dynamic multi-objective problems by using MOEAs. Two proce-
dures to parallelize MOEAs for DMO are proposed in this thesis.
The first one, called pdMOEA, is a hybrid approach that can vary
from a master-worker paradigm to an island paradigm. A second
fully distributed procedure is proposed to improve further the hy-
brid approach. After describing both procedures, experimental re-
sults are provided to assess the performance of both parallel ap-
proaches.

• Chapter 5. Summary Conclusions and Contributions is the last
chapter and it offers a summary of the conclusions brought in this
thesis along with the main contributions made and the publica-
tions that have been produced. It also includes the future work
that opens from this thesis.

In order to help the reader to navigate through this thesis there are
some lists that reference and compile certain kinds of information. They
are the following ones:
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• A List of Abbreviations, available at the beginning, where the
reader can find the most frequent abbreviations used in this thesis
with a description of what they stand for.

• A List of Figures, at the end of the thesis, compiles all the Figures
that are part of this thesis.

• A List of Tables is found after the List of Figures. It provides the
reader with an easy way to find any Table that have appeared in the
thesis.

• A List of Algorithms is given also to help the reader to search for
the different algorithms and procedures of this thesis.

• A Glossary is provided after the List of Algorithms. It offers de-
scriptions for those new or difficult terms that are scattered along
this dissertation.

• Finally, an Index gathers together the concepts and terms that have
been used in this thesis with an indication of the pages where they
have appeared.

The next and first chapter reviews the current state of research in
the three fields that play a central role in this thesis. Multi-objective
evolutionary algorithms, dynamic problem optimization and parallel ap-
proaches for MOEAs are considered. Chapter 1 provides a suitable intro-
duction of the current state of the different fields that will be discussed in
the rest of the thesis.
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“Knowing is not enough; we must
apply. Willing is not enough; we
must do.”

Johann Wolfgang von Goethe

1
Introduction and Field Review

IN this chapter it is given an introduction to the main topics that this
thesis addresses. In addition, it offers a detailed review of the current
state-of-the-art in those research areas along with the main achieve-

ments that have happened in any of these areas.
Therefore, this chapter enables any reader with less experience in any

of the areas covered by this thesis to understand this PhD thesis com-
pletely.

First of all, in Section 1.1 the concepts and definitions around multi-
objective optimization are provided. Secondly, the reader can find in Sec-
tion 1.2 enough material about evolutionary algorithms, including those
aimed at multi-objective optimization problems. The Section begins with
a review of alternative metaheuristic optimization methods (Sub-section
1.2.1). Then, attention is paid to the parallelization of multi-objective evo-
lutionary algorithms (Sub-section 1.2.3). In Sub-section 1.2.4 the No Free
Lunch theorems are introduced in order to have a basis to make compar-
isons with other metaheuristics. Finally, in Section 1.3 the concepts and
ideas behind Dynamic Problem Optimization, the central topic of this
thesis, are exposed.
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1.1. Multi-objective Optimization Problems

1.1 Multi-objective Optimization Problems

An optimization problem occurs when you have to select the best solu-
tion from all feasible ones to a given problem. There are many examples
of optimization problems, but two are very popular among researchers:

• The traveling salesman problem (TSP), where a salesman has to visit
different cities and the total distance that he travels after visiting all
the cities and returning to the origin must be minimized by choos-
ing the most efficient or best route to follow. This means that an
ordering of the cities must be chosen so that the total distance is
minimized.

• The knapsack problem, where there is a container, typically a bag,
with a certain maximum capacity and some items that could be
placed inside that container. Then, the optimization problem is to
find which items can be placed in the bag so that they occupy the
maximum possible space, or in other words, that leave the least free
space.

In both problems, we do not know the best solution, or simply the so-
lution, to any instance of the problem and what algorithms do is to choose
solutions that are better than the solutions found so far until a stopping
criterion is reached. Instead of knowing the best solution, we know that
there must be at least one solution that is not worse than the rest of so-
lutions. This is so because the solutions are evaluated with a fitness or
cost function whose range lies in R. In the above-mentioned problems,
the fitness functions are, respectively, the total distance that the salesman
has to travel to visit all the cities and the volume of the container that is
occupied. Both, distance and volume, are values inside R and so they
both obey the total order binary relation that exists in R.

An optimization problem is defined mathematically in Definition 1.1.

Definition 1.1 An optimization problem is a function f (x) : R → R such
that ∃ r ∈ R | f (r) ≤ f (x) ∀x ∈ R.

Without loss of generality we assume that f (x) is a minimization op-
timization problem in the rest of this chapter. Also we have assumed that
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the optimization problem is defined in the total order binary relation de-
fined over R but f (x) could also be defined over a partial order binary
relation over R. The function f (x) is called the fitness or cost function for
that optimization problem.

Definition 1.2 The search space or decision space is the dominion of the
variables of the optimization problem function.

Definition 1.3 The objective space is the set of values that an optimization
problem fitness function takes or the values that we are looking to optimize for
the problem.

It is important to point out that in all this PhD thesis the objective and
decision spaces equal R or are some vector space derivated from R. It is
possible to have optimization problems defined for sub-spaces of R such
as Z or N but we are not going to consider them in this thesis.

Definition 1.4 The set of solutions for f (x) is the set {s1, s2, . . . , sn} such
that f (s1) = f (r) ∧ f (s2) = f (r) ∧ · · · ∧ f (sn) = f (r)1 and it is represented
by S .

It has been said that there is at least one solution to these optimiza-
tion problems and so |S| ≥ 1. In many problems there will be only one
solution (|S| = 1) but in some others there could be more than one. In
that case, any of the solutions from S will be the best solution and valid
for the person interested in solving the problem.

The same reasoning applies to multi-evaluated problems, defined in
what follows, whose fitness functions lies in R.

Definition 1.5 A multi-evaluated optimization problem is defined by a
function f (x) : Rn → R where x = {x1, x2, . . . , xn}.

In other words, these multi-evaluated problems optimize more than
one parameter at a time ({x1, x2, . . . , xn}) but their fitness function always
returns a real value, and so there always be at least one solution that is
the best one, mathematically |S| ≥ 1.

1We remind the reader that a ∧ b is the way of expressing a and b in logic.
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In this work we are not interested in this kind of problems because
they usually contain a reduction of the multiple variables in the deci-
sion space to the sole variable in the objective space. This is because the
variables in the decision space do not conflict each other, and so the im-
provement of one of them does not worsen the rest of decision variables.

The interest of these multi-evaluated optimization problems is that
they are the intermediate step among simple optimization problems and
another sort of problems: multi-objective optimization problems.

The main characteristic of multi-objective optimization problems is
that their decision and objective space are vector spaces. Multi-objective
optimization problems are very important because most of the problems
that engineers face every day are multi-objective. Some examples are:

• The optimization of the design of a cylindrical piece of a mechani-
cal system where the decision variables are the three dimensions of
the piece and the objective variables are the size and the strength
of it. Here, the size of the piece should minimized in order to min-
imize the cost of its production, but in doing so, the strength of
the piece decreases, while obviously, the designers want to max-
imize the strength of the pieces (Laumanns and Laumanns, 2005;
Benedetti, Farina, and Gobbi, 2006).

• When designing a new tire, many decision variables are taken into
account: softness of the material, width of the tire, depth and de-
sign of the patterns, etc. At the same time, the tire should maximize
different objective variables including duration of the tire under dif-
ferent weather conditions, evacuation of water, stability on differ-
ent roads, resistance to punctures while minimizing the effect of the
weather on its performance (Cho, Jeong, and Yoo, 2002; Koishi and
Shida, 2006).

These examples show clearly why multi-objective problems are so
difficult to solve: multi-objective optimization problems have to opti-
mize different objective functions that conflict with each other. For ex-
ample, when minimizing the size of the mechanical piece, the strength
of the piece is accordingly worsen. In the case of the tire, the situation
is considerably worse for the designers because they have more decision
variables to choose from and more objective variables to optimize.
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In both cases the designers must choose a compromise or trade-off
among all the different objectives that guarantees that the chosen solution
will serve well if not excellently for its purpose. In a simplification of the
tire problem this could mean that one tire can be produced for less than
20 € while on average it can run for more than 40.000 km.

A formal definition of multi-objective optimization problems is given
in Def. 1.6.

Definition 1.6 A multi-objective optimization problem (MOP) is a
quadruple (X, Z, f , rel) where X denotes the search or decision space, Z repre-
sents the objective space, f : X → Z is a function that assigns to each solution
or decision vector x ∈ X a corresponding objective vector z = f (x) ∈ Z,
and rel is a binary relation over Z that defines a partial order of the objective
space.

Without loss of generality in the rest of this PhD thesis we will as-
sume that X = Rn and Z = Rm and that the f function must be min-
imized for all objectives in Z. Therefore, from definition 1.6, it follows
that x = {x1, x2, . . . , xn} and f (x) = { f1(x), f2(x), . . . , fm(x)} and our
optimization problem becomes the quadruple (Rn, Rm, f ,�).

The binary relation �, presented in what follows, is a natural exten-
sion of the total order relation ≤.

Definition 1.7 The binary relation � is defined by z1, z2 ∈ Z : z1 � z2 ⇐⇒
∀i ∈ {1, . . . , m} : z1

i ≤ z2
i . This relation is called weak Pareto dominance2.

Definition 1.8 The binary relation ≺ is defined by z1, z2 ∈ Z : z1 ≺ z2 ⇐⇒
∀i ∈ {1, . . . , m} : z1

i < z2
i . This relation is called strict Pareto dominance.

When z1 ≺ z2, it is said that z1 dominates z2 or that z2 is dominated
by z1. The increase in dimensions of the objective space means that there
will be probably multiple minimal elements of f (X), where each one will
represent a different trade-off between the objectives.

In addition, if z1 6� z2 and z2 6� z1, they are said to be incomparable
and it is denoted by z1 ‖ z2. This happens when z1 is strictly better than

2Named after the italian economist and sociologist Vilfredo Pareto.
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z2 in at least one objective value and z2 is strictly better than z1 in at least
another different objective value.

Those elements in X that are minimal, i.e. that are not dominated in
Z by any other element in X, are called Pareto optimal decision vectors,
and their images in Z are called Pareto optimal objective vectors. All those
Pareto optimal vectors define the Pareto optimal front (definition 1.10)
and the Pareto optimal set (definition 1.9):

Definition 1.9 The Pareto set is the set of solutions or decision vectors that are
minimal: {xi ∈ X | 6 ∃xj ∈ X : f (xj) ≺ f (xi)} and is denoted by Sp.

Definition 1.10 The Pareto front is the set of objective vectors of the Pareto
set: { f (xi) ∈ Z | 6 ∃xj ∈ X : f (xj) ≺ f (xi)} and is denoted by Fp.

One more definition will be useful, the Pareto set and front approxima-
tions are described in Def. 1.11.

Definition 1.11 Pareto set approximations are sets of mutually incompara-
ble solutions. Accordingly, Pareto front approximations are sets of mutually
incomparable objective vectors.

It is common practice to denote Ψ as the set of all Pareto set approxi-
mations over X and Ω as the set of all Pareto front approximations over
Z.

In Figure 1.1 the two sets for a two-objective optimization problem
are shown. At the left, it is shown the search or decision space, and at
the right it is shown the objective space. Four solutions {x1, x2, x3, x4}
are shown with their corresponding location at the objective space after
applying them the function f (x).

It can be seen in Figure 1.1 that the location of the vectors at the search
space does not hold any correspondence with their location at the objec-
tive space.

1.1.1 Further Reading.

There are a few sources that extend the short introduction to multi-
objective optimization problems that has been presented in this section.
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Figure 1.1: Representation of the search and objective spaces in a multi-
objective optimization problem.

Good and thorough descriptions are given in Zitzler, Deb, and Thiele
(2000); Zitzler, Laumanns, Thiele, Fonseca, and da Fonseca (2002) and
Knowles, Thiele, and Zitzler (2006).

Moreover, for a complete and thorough review of the theory behind
multi-objective optimization the interested reader is referred to Chapter
6 in Coello, Lamont, and van Veldhuizen (2007).

1.2 Evolutionary Algorithms and Metaheuristics

Evolutionary algorithms are part of a class of algorithms known as meta-
heuristics. A metaheuristic should be a heuristic that is about heuristics,
but here it is used in the sense of a heuristic method used to solve a prob-
lem by using other heuristic methods. Sean Luke (Luke, 2009) says that

“A metaheuristic is a rather unfortunate term often used to describe
a major subfield, indeed the primary subfield, of stochastic optimiza-
tion.”

or stated in plain words:
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“[metaheuristics are] algorithms used to find answers to problems
when you have very little to help you: you don’t know what the
optimal solution looks like, you don’t know how to go about finding
it in a principled way, you have very little heuristic information
to go on, and brute-force search is out of the question because the
space is too large. But if you’re given a candidate solution to your
problem, you can test it and assess how good it is. That is, you know
a good one when you see it.“

In this way, stochastic optimization is comprised of algorithms used
to solve problems by using some degree of randomness. Metaheuristics
are also known as black-box optimization or weak methods. Nonetheless, the
most widely accepted term among researchers is metaheuristics.

In this section multi-objective evolutionary algorithms are introduced
because they are a central part of this thesis but before delving into details
about them, other metaheuristics are reviewed in the next subsection.

1.2.1 Multi-objective Metaheuristics.

Apart from evolutionary algorithms there are other algorithms consid-
ered also metaheuristics that could be used to solve Dynamic Multi-
objective Optimization (DMO) problems. The most common metaheuris-
tics are:

• Simulated Annealing (Dowsland, 1993), is a stochastic search algo-
rithm that simulates the concept of annealing which is that after
a solid temperature is raised to a point where its atoms can freely
move, the temperature is gradually lowered in order to force the
atoms to crystallize. The crystallization usually becomes when the
atoms are in a state of low energy. In this metaheuristic, the energy
of the annealing process imitates the fitness of the optimization pro-
cess, and so a low energy means a low value of fitness which is
desired when solving minimization problems.

• Tabu Search (Glover, 1989), where potential solutions are marked
as taboo after being found in order to avoid them in the future it-
erations of the algorithm. In this case, the metaheuristic tries to

14



1. Introduction and Field Review

avoid repetition of local optima. To find new solution local search
algorithms are usually employed.

• Scatter Search (Glover and Laguna, 2000) that operates on a set
of solutions known as reference set by combining these solutions
to create new ones by using rules such as the linear combination
of two solutions. Thus, Scatter Search creates new solutions from
older ones. In contrast to the big populations used in Genetic Al-
gorithms, in Scatter Search the reference set of solutions tends to
be small, usually below 20 solutions. Another difference between
Scatter Search and Genetic Algorithms is that in Scatter Search solu-
tions that are to be combined are chosen in a systematic way while
in Genetic Algorithms they are chosen randomly.

• Ant Colony Optimization (Dorigo and Stützle, 2004) is inspired by
colonies of real ants and how they discover paths to food. They
work incrementally to construct a solution by adding solution com-
ponents to a partial constructed solution.

• Particle Swarm Optimization (Kennedy and Eberhart, 1995). In this
case the algorithm try to simulate a flock of birds that are looking
for food. In Particle Swarm Optimization each particle (solution)
keeps track of its coordinates in the problem space. At each itera-
tion, the algorithm updates the coordinates of the particle by using
a acceleration term and the location of the best solutions found so
far. Randomness is applied along with the acceleration term used
with each particle.

• Differential Evolution (Storn and Price, 1997) that uses a scheme
for generating trial parameter vectors without relying in a separate
probability function as other metaheuristics do. Differential Evolu-
tion optimizes a problem by maintaining a population of candidate
solutions and creating new candidate solutions by combining exist-
ing ones according to its simple formulas of vector-crossover and
-mutation, and then keeping whichever candidate solution has the
best score or fitness on the optimization problem at hand.

• Artificial Immune Systems (DasGupta, 1998) are intelligent system
that are able to learn and retrieve previous knowledge. Artificial
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Immune Systems (AIS) are concerned with abstracting the struc-
ture and function of the immune system to computational systems,
and investigating the application of these systems towards solving
computational problems.

1.2.2 Evolutionary Algorithms

Evolutionary algorithms is a family of algorithms that share a common
feature, all of them mimic in some way the natural evolution process as
it was described by Darwin (Darwin, 1995). This collective name of evo-
lutionary algorithms is comprised of the following kinds of algorithms:

• Genetic algorithms (Mitchell, 1996), where the solutions to a prob-
lem are coded as genes. These solutions may then be crossed among
themselves or be mutated. Moreover, these algorithms use the con-
cept of selection to choose the best solutions among all the available
ones. In genetic algorithms, a set of solutions, called population, is
optimized in every generation. If the whole population changes
completely in one iteration or generation, the Genetic Algorithm is
generational whilst it is steady-state if only a part of the population
is changed. Genetic Algorithms are probably the most popular one
within the family of evolutionary algorithms.

• Evolution strategies (Beyer and Schwefel, 2002) is mainly differen-
tiated from the genetic algorithms, in that it employs a simple pro-
cedure for selecting individuals (Truncation) and usually only uses
mutation. In addition, the size of the population is usually smaller
than it is for Genetic Algorithms, even it can be comprised of only
one parent and one child. These algorithms are termed ES(µ, λ)
where µ represents the number of parents that survive and λ is the
the number of offspring solutions.

• Genetic programming (GP) (Koza, 1992) is a specialization of Ge-
netic Algorithms where the algorithm evolves computer programs,
which are usually represented in tree structures, instead of solu-
tions to an optimization problem. It is used to optimize a popu-
lation of computer programs according to a fitness function. The
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programs are intended to solve a computational task. Genetic pro-
gramming also uses the concepts of mutation and crossover that
can be applied to any node of the tree, which implies changes in
the nodes that stem from it. In Genetic Programming is widely
accepted to represent the programs in Lisp-style tree-structured
expressions (Graham, 1993; Seibel, 2004). Grammatical Evolution
(O’Neill and Ryan, 2003) is a variant where the programs are rep-
resented as strings of integers that can be mapped to programs by
means of a grammar.

• Evolutionary programming (Fogel, 1999) also evolves a computer
program, but contrary to what happens in GP, in evolutionary pro-
gramming the program structure is fixed and only the actual va-
lues inside the nodes are allowed to be evolved, i.e. to change.
Its main variation operator is mutation. In Evolutionary Program-
ming, members of the population are viewed as part of a specific
species rather than members of the same species therefore each par-
ent produces one child.

The origins of the evolutionary algorithms approach dates back from
the 50’s when Nils Aall Barricelli first used evolutionary algorithms to
carry on simulations inspired in the natural evolution (Barricelli, 1957,
1963a,b). But it was in the 60’s and 70’s when this family of algorithms
saw important breakthroughs with researchers such as Fogel, Rechen-
berg and Holland. In the 80’s, more powerful computers made possible
to extend the application of these algorithms and the field attracted major
attention from researchers from other areas.

The use of evolutionary algorithms to solve multi-objective optimiza-
tion problems comes in a natural way because of the use of a population
of solutions within the evolutionary algorithms, which is similar to the
set of solutions to the multi-objective optimization problem.

In this thesis, we will use only genetic algorithms, however the ap-
proach and procedures used could be applied to any evolutionary algo-
rithm from the four afore-mentioned ones.

The first implementation of a multi-objective evolutionary algorithm
(MOEA) was made by David Schaffer (Schaffer, 1984) in 1984, when he
proposed the Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985).
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In VEGA, the algorithm optimizes an objective for each solution at a time,
avoiding the problem of optimizing all the objectives at the same time.

Almost a decade later, a new approach to solve MOP was initiated
with the MOGA algorithm (Fonseca and Fleming, 1993). In it, the concept
of dominance rank was introduced in order to optimize all the objectives
at the same time. This was a major breakthrough in the field of MOEAs.

Later, other researchers published their proposals for MOEAs. There
are two MOEAs that have become the most used algorithms and they still
remain today as the reference MOEAs to compare with when developing
new ones. Both of them are second improved versions of the original
algorithms proposed by their authors.

The first of them is the improved Non-Dominated Sorting Algorithm
II (NSGA-II) (Deb, Agrawal, Pratap, and Meyarivan, 2000). The second
one is the Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler, Lau-
manns, and Thiele, 2002).

Both algorithms share the point that they usually obtain very good
sets of solutions while they differ in the way they select the solutions to
carry to the next generation. More details about NSGA-II and SPEA2 can
be found in Sections 3.1.2 and 3.1.3, respectively.

Another MOEA is the Single Front Genetic Algorithm (SFGA) (de Toro,
Vidal, Mota, and Ortega, 2002). The interest of this algorithm lies in its
simplicity that stems from using only a single front of non-dominated
solutions along with a crowding method. The result is a very fast algo-
rithm, that can compete with the afore-mentioned NSGA-II and SPEA2
in the quality of solutions, while it is much faster than they are. This al-
gorithm is fully described in Section 3.1.1. An improved version of SFGA
has been developed to deal with DMO problems. This new version is
introduced in Chapter 3 of this thesis.

1.2.3 Parallelization of MOEAs.

One important topic related to MOEAs is to parallelize them (Cantu-Paz,
2000). Due to the population that share all the MOEAs, parallelism arises
naturally as a way to improve both the performance of the algorithm
and the quality of the solutions found. Unfortunately, it is not a straight-
forward task. Because of the importance of improving the performance
and the quality of the solutions, researchers have proposed different ap-
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proaches to parallelize MOEAs. The goal is that by using parallelism
more processes could run the same algorithm at different parts of the
search space, or at least, to produce a better set of solutions for the prob-
lems. However this is not always achieved, because it is usually quite dif-
ficult to guide different instances of a MOEA to search at different parts
of the search space.

Two decomposition alternatives are usually implemented in parallel
evolutionary algorithms: functional decomposition and data decomposi-
tion.

The functional decomposition techniques identify tasks that may be
run separately in a concurrent way. The data decomposition techniques
divide the sequential algorithm in different tasks that are run on different
data (i.e. the individuals of the population). Moreover, hybrids methods
are also possible.

In an evolutionary algorithm, the evaluation of the objective func-
tion and the application of operators to the individuals of the population
can be independently done for each individual. This allows data paral-
lelization without modifying the convergence behavior of the sequential
algorithm. The fitness evaluation for each individual in the population is
usually the part with the highest computational cost. This is mainly true
in non-trivial optimization problems, with big sized populations and/or
individuals codified with complex data structures that require big com-
putation times.

As a consequence, the most usual parallelization scheme is to eva-
luate concurrently the individuals, usually with a master-worker im-
plementation in which every worker process evaluates a different and
unique group of individuals, returning the fitness values to the master
process which continues with the rest of the algorithm steps.

The parallelism of MOEAs and, more concretely, parallelism applied
to DMO, is one of the main topics of this thesis.

Parallel MOEAs are usually classified into three different kinds
of paradigm according to the structure adopted by the processes
(Tomassini, 1999; Alba, 1999; Cantu-Paz, 2000):

• Master-worker or master-slave paradigm, when one process is the
master because it controls the execution of the other processes which
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are the workers. The master process uses a population that it is the
sum of the populations of the worker processes.

• Island paradigm, where there is not a master process and all the
workers work independently. Again, the workers can search in dif-
ferent areas or share the same area.

• Cellular or diffusion paradigm, where only one individual of the
population is allocated to each process. This is a very fine-grained
parallel approach. Grid structures are designed to allow the pro-
cesses to exchange their solution with their neighbours.

Several authors include a fourth kind which is a combination or hy-
brid approach of the other three (Coello et al., 2007).

Returning back to the master-worker model, if the individuals are dis-
tributed in a balanced way there could be linear speedups, but unless the
evaluation of the solutions require a high computation time, the costs
associated with the distribution of the data structures between the pro-
cessors and the communication of the results may considerably decrease
the efficiency of this kind of parallel procedures.

The selection of individuals and the diversity maintenance operations
require comparisons that imply the whole population or a big part of it.
This means that data parallelization at this level, specially in the case
where there is not any mechanism to share information among the pro-
cesses about the fitness of the individuals, modifies the behaviour of the
algorithm with regard to the sequential version.

Usually, it is difficult to predict the behaviour of this kind of paral-
lelization and must be evaluated for each particular implementation. The
initial population is divided into sub-populations associated to different
search spaces which are evolved separately.

Sometimes, individuals can be exchanged between the sub-
populations (migration). This kind of parallelization could improve the
diversity of the population during the algorithm convergence and lead
to algorithms with better performance than the sequential versions.

So, together with the advantages due to the bigger availability of
memory and CPU, the evidences of bigger efficiency and diversity in the
population justify the use of parallelism in the field of evolutionary algo-
rithms.
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After the evaluation of the objective functions, the algorithms with
Pareto front-based selection usually calculate dominance and the corre-
sponding distances as part of the mechanism for keeping diversity. This
mechanism is implemented in each case, as a previous step to assign fit-
ness values to each individual and to select the parents. The paralleliza-
tion of these tasks is not easy. For example, problems appear in algo-
rithms that usually work with small populations, PAES (Knowles and
Corne, 1999), in algorithms where the calculation of distances must be
done sequentially after the determination of dominance relations, PSFGA
(de Toro, Ortega, Ros, Mota, Paechter, and Martín, 2004), or in those algo-
rithms where the calculation of dominance relations and distances, and
the selection take place at the same time, NPGA (Horn and Nafpliotis,
1993).

Some approaches to parallelize MOEAs have been proposed in the
past but they are all for multi-objective stationary problems (de Toro
et al., 2002; Alba, 2005).

Chapter 4 of this thesis is devoted to parallelism aimed at Dynamic
Multi-objective Optimization by using MOEAs in the processes.

1.2.4 The No Free Lunch Theorems.

One important issue about evolutionary algorithms is that they are meta-
heuristic methods to search for a solution to a given problem. This poses
the question about how reliable they can be and how they compare to
other algorithms.

To answer this question two researchers provided the No Free Lunch
(NFL) theorems (Wolpert and Macready, 1995, 1997; Köppen, 2004).

Broadly speaking, the NFL theorems states that given two meta-
heuristics A and B, if A performs better than B on some problems, then B
performs better than A in other problems in such a way that both perform
average over the set of all problems or put in Wolpert’s and Macready’s
plain language ”any two algorithms are equivalent when their performance is
averaged across all possible problems.“(Wolpert and Macready, 2005).

David Corne and Joshua Knowles have proposed an extension of the
NFL theorems for multi-objective optimization problems in Corne and
Knowles (2003). The outcome of this extension for DMO is what we al-
ready know, that one MOEA can outperform some other MOEAs for an
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instance of a problem, while in the next run the first MOEA is outper-
formed by any of the losers from the first round.

This is a reminder that any result about performance shown in
this thesis, even after carefully designing the experiments followed by
thoughtful statistical analysis, will be just an indicator about an algorithm
performing better than others with respect to a given problem.

After seeing all those different metaheuristics in subsection 1.2.1 a
question arises naturally from the NFL theorems and their extensions.
We have said that MOEAs are very good to solve DMO problems, but is
there any other metaheuristic that performs on average better than MOEAs do?.
The short answer is that probably there are. But if we draw from the ex-
perience of the last two decades of development of MOEAs, we can state
that MOEAs are one of the best metaheuristic for solving multi-objective
problems up-to-date.

In this thesis, MOEAs are used also for dynamic problems and it is
shown that their behaviour is also satisfactory.

1.2.5 Further Reading.

There are two reference books in the field of multi-objective evolution-
ary optimization: Coello et al. (2007) and Deb (2001). Moreover, Coello
also maintains a website where he compiles literature related to multi-
objective optimization with evolutionary algorithms (Coello, 2008).

More information about parallelization of MOEAs can be found in
Cantu-Paz (2000); van Veldhuizen, Zydallis, and Lamont (2003). In Luna,
Nebro, and Alba (2006), a complete review of parallel evolutionary al-
gorithms can be found. Additional topics can be consulted in Nedjah,
de Macedo Mourelle, and Alba (2006).

Parallel implementations of other kind of metaheuristics are found in
Alba (2005); Talbi (2006) and Talbi (2009).

Specific proposed procedures are PSFGA (de Toro et al., 2002, 2004),
MOSATS (Baños, Gil, Paechter, and Ortega, 2006, 2007; Baños, Gil, Reca,
and Ortega, 2010) and pdMOEA, the procedure proposed in this thesis
(Cámara, Ortega, and de Toro, 2007a, 2008b, 2010).

Researchers can make use of the ParadisEO library (Cahon and Talbi,
2004) to develop programs with off-the-shelf implementations of paral-
lel and sequential metaheuristics. This is an extension of the Evolving
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Objects (EO) library (Keijzer, Merelo, Romero, and Schoenauer, 2002).
A current update on the NFL theorems and their implications is given

in Rowe, Vose, and Wright (2009).
The interested reader in other metaheuristics presented in Sub-section

1.2.1 is referred to a freely available book (Luke, 2009) and again to Talbi
(2009). Additional information on certain topics can be found in Glover
and Kochenberger (2003).

1.3 Dynamic Optimization Problems

In this section dynamic problems are introduced together with some no-
tation regarding to them.

Roughly speaking, dynamic optimization problems (Cámara et al., 2007a;
Farina, Deb, and Amato, 2004; Jin and Branke, 2005) are those problems
where the restrictions or the objective functions of the problem change
with time, and so the solutions obtained at time t could not be the correct
solutions for time t + δ.

Definition 1.12 A dynamic multi-objective optimization problem (DMO)
is defined as the quintuple (X, Z, T, f , rel) where X denotes the search or
decision space, Z represents the objective space, T is the time domain,
f : T ∪ X → Z is a function that assigns to each solution or decision vec-
tor x ∈ X and each value of time t ∈ T a corresponding objective vector
z = f (x) ∈ Z, and rel is a binary relation over Z that defines a partial order of
the objective space.

Therefore, the main difference with respect to MOP (definition 1.6) is
that time has been added to the optimization process. Thus, we have to
find a decision vector x∗(t) = {x∗1(t), x∗2(t), . . . , x∗n(t)} that optimizes the
function vector: f (x, t) = { fi(x, t) : 1 ≤ i ≤ m} where t represents the
time or the dynamic nature of the problem.

Accordingly, definitions 1.9 and 1.10 are modified to include the no-
tion of time.

Definition 1.13 The Pareto set at time t of a DMO is the set of solutions or
decision vectors that are minimal at time t: {xi ∈ X | 6 ∃xj ∈ X : f (xj, t) ≺
f (xi, t)} and is denoted by Sp(t).
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Definition 1.14 The Pareto front at time t of a DMO is the set of objective
vectors of the Pareto set at time t: { f (xi) ∈ Z | 6 ∃xj ∈ X : f (xj, t) ≺ f (xi, t)}
and is denoted by Fp(t).

In other words, for a DMO problem, Sp(t) and Fp(t) are the sets of
Pareto optimal solutions at time t, respectively, in the decision and ob-
jective spaces. A classification of DMO problems (Farina et al., 2004) de-
pending on whether the sets Sp(t) and Fp(t) change with time or not is
given in Table 1.1.

Table 1.1: Types of dynamic problems depending on time

Pareto set Sp
Pareto front Fp Changes with t No changes with t

No changes with t Type I Type IV
Changes with t Type II Type III

It can be seen from Table 1.1 that Type IV problems are those where
there is not any change along the time. They are known as plain multi-
objective optimization problems or stationary problems.

In this thesis we are interested in solving the problems that fall under
the Type I, II and III categories. When designing and testing algorithms
there are not differences whether the problem is of Type I, II or III, be-
cause all of them imply a change of the solutions and the Pareto front
whenever the underlying problem says to do so. Because of this, in this
thesis, when referring to DMO problems, it means any Type I, II or III
problem.

1.3.1 Classification of Problems.

We have already seen the differences between stationary or static opti-
mization and non-stationary or dynamic optimization. Along with that
characteristic, we have seen in Section 1.1, that optimization problems
can also be divided as being single-objective or multi-objective.

Table 1.2 shows another classification of the problems that unifies the
two features seen earlier. In this way, problems are classified depending
on whether they are single or multi-objective and stationary or dynamic.
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Each combination gives a type of problem identified by a letter. In brack-
ets it is shown the usual abbreviation that is used to refer to this kind of
problems.

Table 1.2: Classification of a problem according to its nature

Single objective Multi-objective

Stationary Type A (OP) Type B (MOP)
Dynamic Type C (DOP) Type D (DMO)

1.3.2 Evolutionary Algorithms and DMO.

The use of evolutionary algorithms to solve dynamic or non-stationary
problems was pioneered in Goldberg and Smith (1987) twenty years ago.
Since then, this topic slowly drew some attention and it was in the sec-
ond half of the nineties when multiple works about this subject saw
the light like those in Vavak, Fogarty, and Jukes (1996); Mori, Kita, and
Nishikawa (1998); Grefenstette (1999) and Trojanowski and Michalewicz
(1999), among many others.

Due to this, the field has grown with many ramifications, depending
on the particular approach taken by the researchers. In what follows, it
is presented a summary of the main approaches to dynamic problems
published in the last years.

Jürgen Branke, a prolific researcher in this topic, has produced some
important publications in the subject of dynamic optimization. The most
important ones are:

• He maintains an online bibliography (Branke, 2008) on the subject.

• In Branke and Schmeck (2003), the authors give a fair introduction
on how to design evolutionary algorithms to deal with dynamic
problems.

• Branke has proposed approaches to dynamic problems based in
memory enhancing (Branke, 1999b).
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• Moreover, he has discussed the use of multiple populations
(Branke, Kauler, Schmidt, and Schmeck, 2000) in order to improve
the solutions found for dynamic problems.

• Branke and Mattfeld (Branke and Mattfeld, 2005) introduce the con-
cept of flexibility as a desirable feature for dynamic scheduling and
the way to deal with it by using an evolutionary algorithm.

• An analysis of some theoretical issues concerning dynamic prob-
lems is given in Branke, Salihoğlu, and Şima Uyar (2005).

• Finally, Yin and Branke have given an overview of uncertainty in
dynamic problems using evolutionary algorithms (Jin and Branke,
2005).

Peter Bosman (Bosman, 2005; Bosman and Poutré, 2007) has studied
the presence of the time-linkage problem in dynamic optimization both
in theoretical and practical ways.

The time-linkage problem appears when decisions taken at the
present affect the reachable solutions in the future. The cause of this situ-
ation is that time-linkage may deceive an algorithm making it to find only
suboptimal solution trajectories. Bosman has addressed this problem by
trying to learn from the past in order to predict the future.

Following a similar reasoning to Bossman in Rossi, Abderrahim, and
Díaz (2008) is proposed the use of Kalman filters in order to bias the
search for tracking a changing optimum in dynamical optimization prob-
lems making use of the information provided by a prediction mechanism.
Again, the prediction mechanism is based on the assumption that in real
world applications changes are not random and can be learned.

In Bui, Nguyen, Branke, and Abbass (2007), the authors propose to
create a multi-objective optimization problem from a single objective dy-
namic problem and solve it with a state-of-the-art MOEA (more specif-
ically, NSGA-II (Deb et al., 2000) was used) with the aim of maintain-
ing greater population diversity and adaptability. This is one of the first
encounters of multi-objectivity and dynamic problems, although in this
case, the problem remains single-objective and the multi-objectivity is in-
troduced as a mean to solve the single-objective dynamic problem.
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Another prolific author on dynamic optimization problems is Yang,
who has multiple publications on this issue. The most relevant publica-
tions are:

• Tinós and Yang (2007) where random immigrants are introduced
into a genetic algorithm to tackle dynamic problems;

• Yang (2008) where the immigrant approach is improved by means
elitism and memory techniques; and

• Wang, Wang, and Yang (2009), where dynamic problems are solved
with a memetic algorithm which is composed of an adaptative hill
climbing algorithm and an evolutionary algorithm.

Despite a large quantity of literature can be found on the issue of dy-
namic problem optimization as it has been previously shown, most of it
is only addressed to problems with only one objective functions. How-
ever, the optimization problems in real world applications rarely depend
on only one objective.

In addition, stationary multi-objective optimization is a topic which
has reached an astonishing level of maturity and development through
complex theoretical and practical breakthroughs. Similar findings and
supporting theories, such as available performance measures, test cases
and other theoretical concepts, are missing in the current literature on
DMO. In this thesis, the gap is bridged partially by bringing in some
analysis, theory and performance measures for DMO. The work done
in this thesis has contributed at the beginnings of this field with some
publications (Cámara et al., 2007a; Cámara, Ortega, and de Toro, 2007b).

Hatzakis’s paper (Hatzakis and Wallace, 2006) is one of the few pa-
pers explicitly dedicated to DMO. It shows the use of a prediction mech-
anism to improve the quality of the solutions found.

Another paper about the subject is Deb, Udaya Bhaskara Rao N, and
Karthik (2007) where the authors make slight modifications to the state-
of-the-art NSGA-II in order to use it to solve DMO problems.

1.3.3 Further Reading.

There are some sources to look for more information on the subject.
Firstly, however a somewhat outdated publication, Branke’s PhD the-
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sis (Branke, 2001) is still a good and comprehensive source for dynamic
single-objective optimization problems.

In Blackwell and Branke (2006), the authors explain how to use parti-
cle swarm optimization to solve dynamic problems. Yang, Ong, and Jin
(2007) is a compilation book that offers in a single volume a snapshot of
the state-of-the-art research in the subject.

Additional sources aimed only at DMO problems are Farina et al.
(2004); Cámara et al. (2007a); Cámara, Ortega, and de Toro (2008c) and
Cámara et al. (2010).

Grammatical Evolution was introduced in Sub-section 1.2.2 as a vari-
ant of Genetic Programming. In Dempsey, O’Neill, and Brabazon (2009),
the reader can find how to tackle dynamic problems with Grammatical
Evolution techniques.

Finally, a book (Goh and Tan, 2009) fully dedicated to a slightly differ-
ent subject, multi-objective optimization in uncertain environments, has
been recently published. Even though, the book is recommended for any
interested reader on the subject of dynamic optimization, and certainly
it may become an important book within the DMO field in the years to
come.

1.4 Summary

In this chapter, the current state of research in the three most important
topics upon which this PhD thesis is built have been reviewed. In addi-
tion, references for further reading have been given for any reader want-
ing to broaden his/her knowledge on the subject.

It is interesting to note the time frameworks in which have happened
the evolution of the main topics of this thesis. They are summarized in
what follows:

• Multi-objective evolutionary algorithms. This is the subject with
a longer research trajectory. Indeed, VEGA, the first MOEA, was
published in 1984 by Schaffer (Schaffer, 1984). Moreover, the most
widely used MOEAs NSGA-II (Deb et al., 2000) and SPEA2 (Zitzler,
Laumanns, and Thiele, 2001) were first published, respectively, in
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2000 and in 2001. In addition, SFGA (de Toro et al., 2002), the basis
to the work published in this thesis, was published in 2002.

• The field of dynamic problems has also been studied since the late
eighties, starting with single-objective dynamic problems. Nev-
ertheless, it has been only in the last five years that interest has
emerged into the study of dynamic optimization problems that are
not only dynamic but also multi-objective. Thus, this field is still
young and, consequently, it offers many open questions to explore.

• The parallelization of evolutionary algorithms has been attracting
the interest of researchers since the end of the nineties (Alba, 1999;
Tomassini, 1999; van Veldhuizen, 1999). In addition, it is a subject
that has seen many publications in the ten-years gap until nowa-
days (de Toro et al., 2002; van Veldhuizen et al., 2003; Cahon and
Talbi, 2004; Alba, 2005; Luna et al., 2006; Talbi, 2006; Alba, Dor-
ronsoro, Luna, Nebro, Bouvry, and Hogie, 2007; Cámara et al.,
2007a; Luna, Nebro, Alba, and Durillo, 2008; Bui, Abbass, and Es-
sam, 2009).

As it can be seen the main topics of this thesis have different ma-
turity levels ranging from just a few years as it is the case for DMO to
more than twenty years as it happens with the field of MOEAs. This has
been taken into account when working in this thesis in order to provide
a framework that unifies the achievements from any of the three fields
and that will allow further development both for the combined field of
parallel processing for solving DMO problems by using MOEAs along
with development of any of the independent fields.

It has been seen that the main issue of this PhD thesis is to develop a
complete and accurate algorithm to solve dynamic multi-objective opti-
mization problems.

Nevertheless, in order to assess if that goal is accomplished, perfor-
mance measures must be used to compare the new designed algorithms
with older ones and to see, and probably to quantify, the differences
among the solutions obtained by the various algorithms. That raises the
idea that adequate performance measures must be provided if new al-
gorithms are sought. Because of this, the next chapter is entirely dedi-
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cated to performance measures aimed at algorithms for dynamic multi-
objective optimization.
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“He who seeks for methods without
having a definite problem in mind
seeks in the most part in vain.”

David Hilbert

2
Performance Evaluation

IT is a natural condition in we, humans, to look around our envi-
ronment and to compare the people that surrounds us by attribut-
ing them tags or oversimplifying their achievements to something

that can be expressed with only a few words: “He is better paid than I am
paid/Her new car is more awesome than mine”.

Because we, researchers, are also humans, we also have that same
need of comparing those things in which we are working. Fortunately,
we do this in the sake of further development of science. Indeed, we do
not only content ourselves with just a simple comparison between algo-
rithms to know which one of them is the fastest one, but also we demand
a precise description of how much faster is an algorithm in comparison
to another, or how better the solutions found by our cutting edge new
algorithm are in comparison to all other algorithms published until date.

It has passed very much time since the inceptions of mathematics by
those Greeks who started to study the relations between geometrical ob-
jects such as points, lines and polygons, and devised a system to compare
them. Nowadays, the measurement theory is a fully developed mature
subfield of mathematics and even their basic axioms demand a high-level
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of knowledge.
Seen from that point of view, current-day researchers on metaheuris-

tics and bio-inspired algorithms are yet in a position which seems closer
to the rudimentary achievements of those Greek pioneers than to the in-
sight available in current mathematics.

One of the most respected books on MOEA includes a chapter wholly
dedicated to theory for this kind of algorithms (Coello et al., 2007, Chap.
6). In it, the authors state that even though there is already some the-
ory developed for MOEAs, more advances should be done in order to
allow the researchers to better exploit these algorithms. When working
on MOEAs for dynamic problems, researchers have even less available
theory. Trying to solve partially this lack, this chapter contributes to the
development of some theory for MOEAs used with DMO problems.

A very important topic when improving or developing new algo-
rithms is to have a suite of performance measures that can be used to
assess whether an algorithm behaves better than another. Despite of the
fact that in static multi-objective optimization is not feasible to have a
definitive set of such performance measures (Zitzler et al., 2002), some
quality measures serving the same purpose have been created.

However, in addition to performance indicators like those for statio-
nary multi-objective algorithms, dynamic problem optimizers need an-
other type of performance measures. These other measures must allow
algorithm designers to pick one algorithm from a set of them when de-
ploying an evolutionary computation system to solve a real world prob-
lem by pointing out which algorithm of the available ones best suits the
current needs, and if it would be able to cope on time with the problem
at hand. This preliminary study should take place before the commer-
cial exploitation of the system begins. Because of that, it would allow the
designer to use offline measures instead of online or on-the-fly measures.

First, a definition of what performance measures are it is given in Sec-
tion 2.1. Then, in Subsection 2.1.1, a compilation of the different classi-
fications that can be applied to performance measures is offered, which
is followed by a call to researchers to use a common and correct termi-
nology in the literature. After that, in Section 2.2, the author justifies his
proposal for new performance measures. Section 2.3 is dedicated to a
thorough review of the state of the current literature with regard to per-
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formance measures for single and multi-objective dynamic optimization
problems. Section 2.4 contains the main contribution made in this chap-
ter: an adaptation of performance measures for single objective dynamic
problems to multi-objective ones, where special attention has been paid
to those multi-objective dynamic optimization problems with unknown
Pareto fronts. Finally, in Section 2.5 the standard test cases for DMO are
presented along with modifications for them in order to solve some prob-
lems that they had.

2.1 Performance Measures

Measures, as defined mathematically, are systematic ways to assign a sin-
gle value to a set of N-dimensional vectors. In measure theory, this is in-
terpreted to be the size of the set, and it can be the length of a segment,
the area of a surface or the integral of a curve. But in order to assess the
performance of optimization algorithms, our interest is that this value
can give valuable insight into which algorithm has performed better and
by how much.

Definition 2.1 A measure is a function µ defined over a domain Σ on R, that
assigns a real value to a set X ⊂ Σ.

Definition 2.2 A performance measure is a measure (Def. 2.1) that takes as
its input a set of solutions to a problem obtained by using one or more algorithms
and gives as output a real-valued quantification of the quality of those solutions
to the solved problem.

2.1.1 Classification of the Performance Measures.

Since researchers are interested in different aspects of dynamic multi-
objective optimization algorithms, at least one performance measure
should be available for any of those features that have to be studied,
i.e. characteristics of approximation sets, . . . . Hence, measures should
be specifically designed to address the suitability of the algorithm by fo-
cusing on only one of the different questions. From that it follows that a
first classification of the performance measures can be done with respect
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to the feature on which they are focused or to the main question that they
are trying to answer. Such classification is:

• Diversity in the distribution of the solutions in the Pareto front.
Thus, this kind of measure gives researchers an idea of how good
the solutions are distributed over the search space. A well dis-
tributed set of solutions is that one where there are solutions repre-
senting the whole Pareto front not only some parts of it.

• Accuracy or Closeness of the solutions found to real Pareto fronts.
On the contrary to diversity, accuracy tells the researcher how close
the found solutions are to the real Pareto front, while ignoring how
much of the Pareto front is covered. However, a good value for
accuracy will imply a good diversity of the approximation set to the
real Pareto front in most cases.

• Stability of the algorithm. This measure indicates to the researcher
how well an algorithm has recovered after a change has happened
in the conditions.

• Speed is the time spent by the algorithm to solve a problem for
a given stopping criterion. In spite of its apparent simplicity, we
should not forget it in any classification of performance measures.

• Reaction time of the algorithm refers to the number of time units
or iterations needed by the algorithm to recover the solutions with
a certain level of quality after a change in the problem has taken
place.

• Throughput or Yield of the solutions produced by the algorithm. This
is a new measure category that is being proposed in this work for
the first time in the literature. Throughput indicates the number of
solutions that the algorithm produces for each unit of time. Thus, it
addresses a very important concern that arises when dealing with
dynamic problems, namely, to obtain a sufficiently large number of
available solutions per unit of time.

As it can be seen, any of the afore-mentioned fundamental measures is
focused only on one characteristic of the algorithm and the solutions that
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it produces. In addition, some measures can be defined in terms of the
rest of the measures. For example, throughput is defined by the number
of solutions found and by the time taken to find them.

Another way to classify the performance measures is done with re-
gard to the moment when they are calculated. Thus, those performance
measures that can be calculated during the execution of the algorithm
are called online measures, whereas those ones that can be only calcu-
lated when the algorithm has finished are called offline measures. Thus, if
a measure as the accuracy is calculated after the completion of every itera-
tion of the algorithm, it is online, but if it is calculated when the algorithm
has completed all the iterations, it is offline. However, there are subsets of
measures that can be only offline because they always require information
from the following steps of the optimization algorithm. Therefore, those
measures can be only computed after the completion of the whole run of
the algorithm.

A third way to classify performance measures is done according to
the need of additional further knowledge not provided exclusively by
the results from the execution of the algorithm. Thus, the measures are
either dependent, if they need further information to be calculated, or in-
dependent, if they can be calculated directly from the results gathered by
the algorithm.

This last classification resembles another one found in Weicker (2002).
This was done by classifying the performance measures by the know-
ledge needed about the current optima and it is as follows:

• Full-knowledge whether information on the current optima must be
available at any time during the running of the algorithm,

• Partial-knowledge whether the global optima (best fitness value) has
to be known only at certain time instants during the running of the
algorithm, and

• Zero-knowledge whether it is not necessary any knowledge of the
best fitness values from other time instants or executions of the al-
gorithm.

To conclude, Figure 2.1 shows a tree-structure which summarizes the
possible classifications for performance measures that have been proposed
up-to-date.
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Figure 2.1: Proposed classification of the performance measures.

2.1.2 A Note on the Terminology.

There is not a general consensus among researchers on how to refer to the
performance measures. Some prefer to call them just (performance) measures
while others prefer to call them quality indicators or quality measures. In
Zitzler, Thiele, Laumanns, Fonseca, and Grunert da Fonseca (2003), it is
proposed the term quality measure because quality measures are indeed
able not only to indicate whether an approximation set is better than an-
other one but also to quantify that difference.

They can be indeed termed as performance, or quality, measures or just
measures. The important point is that all researchers agree in what term to
use. Moreover, independently of the term used, these measures should
allow researchers to evaluate just a basic or fundamental part or nature
of an optimization problem.

Nevertheless, it is important to remark that the term metric is incorrect
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and should be avoided in the literature because these measures do not
represent a metric in its mathematical meaning (Sierpinski, 2000).

Definition 2.3 A metric, also called a distance function, on a set X is a func-
tion d : X× X → R, where ∀x, y, z ∈ X, d must satisfy:

1. d(x, y) ≥ 0

2. d(x, y) = 0 iff x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z).

The reason that researchers are confused with what a metric is stems
from the fact that they use it with approximation sets. For example, given
two approximation sets AAlg1 and BAlg2 , obtained with algorithms Alg1
and Alg2 respectively, it is customary to use a so-called metric z such that
z(AAlg1 , BAlg2) gives a real value indicating if AAlg1 is better, worse or
equal than BAlg2 . As it has seen in Def. 2.3 this is incorrect for two reasons:

1. a metric only works with elements within a set, and

2. a metric cannot give negative values.

This use of z could be valid if the following circumstance would al-
ways hold, namely that researchers would reach an agreement that using
an authentic metric on two input sets would have the meaning of un-
equivocally selecting one element of each set and applying the metric on
these two elements. This unequivocal selection could produce the maxi-
mum or minimum element within each set, but it relies on a partial order
inside the set. It is obvious that this agreement can not be reached for
multi-objective problems where an approximation set is meant to contain
elements which are not ordered between themselves.

What researchers are really meaning when using z(AAlg1 , BAlg2) is to
omit one step from the calculation. This omission gives origin to the in-
correct use of the word metric. It can be seen in the following:
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z(AAlg1 , BAlg2) should be

z(pm(AAlg1), pm(BAlg2))

where pm is a performance measure (Def. 2.1).

Researchers obtain the desired result using performance measures,
but this use of performance measures and not metrics should be eluci-
dated in the literature. In sum, these measures can be referred to in any
of the different proposed forms except for metric because it is misleading
and wrong. In this thesis, the preferred form is performance measure.

2.2 The Need for New Measures

The main contribution of this chapter is the introduction of new perfor-
mance measures for algorithms aimed at dynamic and multi-objective
problems. But before seeing them in detail, it should be justified why
they are necessary.

In Table 2.1 there is a summarized reproduction of Table 1.2, where
the optimization problems are divided into four different groups.

Table 2.1: Classification of the problems according to their nature

Single objective Multi-objective

Stationary I II
Dynamic III IV

With respect to stationary multi-objective optimization problems,
group II, there is a very comprehensive literature that can be looked up
(Fonseca and Fleming, 1996; Knowles and Corne, 2002; Knowles et al.,
2006; van Veldhuizen and Lamont, 2000; Zitzler et al., 2003). Albeit, there
is not such an equivalent development of corresponding measures for
problems of the group IV, namely dynamic multi-objective optimization
problems.

Indeed, the measures that are lacking are only those which can be
classified as related to the dynamic nature of the problem, since the multi-
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objective part makes use of the already developed performance measures
for problems of group II.

Taking into account the dual nature of the dynamic and multi-
objective problems, the performance measures classes given in Sect. 2.1.1
can be further divided into three groups, depending on which part of the
algorithm they are more related to. This division is made according to
the following criteria:

• Dynamic nature of the algorithm. Stability, for example, is focused
only on the dynamic side of a problem.

• Multi-objective part of the algorithm. On the contrary to stability, di-
versity is only interested in the multi-objective feature of a problem.

• Both at the same time. For example, since algorithms should be fast,
speed is a performance measure that is important to any of the two
faces of the problem.

In Table 2.2 the classes of performance measures seen earlier are as-
signed to their corresponding category.

Table 2.2: Performance measures according to their fundamental nature

Multi-objective Dynamic Both

Diversity X
Accuracy X
Speed X
Stability X
Reaction Time X
Throughput X

It has been noted previously in this chapter that the literature lacks an
in-depth treatment of measures specifically aimed at group VI problems
and their dynamic essence. It can be drawn from Table 2.2 that the mea-
sures stability, reaction time and throughput, are important only when solv-
ing dynamic problems. Moreover, the measure accuracy is also of enor-
mous importance not only when dealing with stationary multi-objective

39



2.3. Review of the Literature

problems, but also with dynamic ones. Hence, the main contribution of
this chapter is to provide new measures that will cover those needs as
it has been outlined in Table 2.2, namely measures for accuracy, stabil-
ity, reaction time and throughput for multi-objective dynamic optimization
problems.

It is worth noting that these new measures just supplement those
which were available earlier. In fact, these new measures are new tools
added to the researcher’s swiss army knife, in such a way that his tool-
kit is empowered, enabling him to study properly those algorithms used
with dynamic multi-objective optimization problems.

2.3 Review of the Literature

Despite the large quantity of literature that can be found on the issue of
dynamic problem optimization, most of it only addresses problems with
only one objective functions (group III problems). However, the opti-
mization problems in real world applications rarely depend on only one
objective. In addition, stationary multi-objective optimization (group II
problems) is a topic which has reached a certain level of maturity and
development through complex theoretical and practical breakthroughs
(Coello et al., 2007; Deb, 2001; Knowles and Corne, 2002; van Veldhuizen,
1999; Zitzler et al., 2000; Auger, Bader, Brockhoff, and Zitzler, 2009). Sim-
ilar findings and supporting theories are missing in the current literature
on DMO. This lack of literature is especially noteworthy for DMO perfor-
mance measures, even though they are the founding bricks on which the
rest of the research has to be settled.

The author of this thesis has tried to respect to the maximum the ter-
minology used by every author. Because of this the same concept can be
named differently or the same letter can be used to name very different
concepts. For example, Morrison (2003) uses G to indicate the number
of generations completed by the algorithm, while it is customary in the
multi-objective literature to use G to denote the generational distance (van
Veldhuizen, 1999).
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2.3.1 Measures for Single Objective Problems.

As it has been said, measures for dynamic problems, independently of
being addressed to single objective or multi-objective problems, have re-
ceived little attention in literature. The few proposals in this topic are
reviewed in the rest of this section, beginning with an account of mea-
sures for single objective dynamic problems (group I) which is followed
by the measures that have been proposed for multi-objective dynamic
problems (group IV) so far.

Morrison’s Measures.

Ronald Morrison offers a review (Morrison, 2003) where he suggests
which measures taken from stationary algorithms should not be used for
dynamic problems. Furthermore, he points out which of those suitable
measures have been used for single objective dynamic problems so far.
These measures can be summarized as follows:

• the difference between the current solution and the best solution
just in the previous time step of the problem (Trojanowski and
Michalewicz, 1999),

• an offline performance measure, where the best-so-far value is reset
at each fitness landscape change (Branke, 2001),

• the average Euclidean distance to the optimum at each generation
(Weicker and Weicker, 1999),

• best-of-generation1 averages for many runs of the same problem
(Bäck, 1998; Gaspar, 1999; Grefenstette, 1999), and

• the best-of-generation minus the worst one within a small window
of recent generations, compared to the best within the window mi-
nus the worst within the window (Weicker, 2002).

Morrison ranks the fourth, “the best-of-generation averages, as the most
reported measure but it does not provide a convenient method for comparing

1Morrison uses this expression to refer to the averaged value of the best solutions
found in each generation.
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performance across the full range of landscape dynamics, nor measuring the sta-
tistical significance of the results”.

He also states that “a good performance measurement method for EAs in
dynamic environments should, at a minimum, have: (1) intuitive meaning; (2)
straightforward methods for statistical significance testing of comparative re-
sults; and (3) a measurement over a sufficiently large exposure to the landscape
dynamics so as to reduce the potential of misleading results caused by examina-
tion of only small portions of the possible problem dynamics”.

Finally, he introduces two new measures. The first one is the Total
Mean Fitness FT, which is the average best-of-generation values over an
infinite number of generations, further averaged over multiple runs, or:

FT =

M
∑

m=1


G
∑

g=1
(FBG)

G


M

with FT = constant when G → inf

(2.1)

where:

• FT is the total average fitness of the algorithm over its exposure to
all the possible landscape dynamics,

• FBG is the best-of-generation fitness,

• M is the number of runs of the algorithm, and

• G is the number of generations.

Because G tends to infinity, Morrison says that FT will not be affected
by variation in the best–of-generation fitness values at any given genera-
tion of the algorithm.

Additionally, he says that large experiments are not required in order
to use this performance measure because the FT value for evolutionary
algorithms approaches a constant after a small representation of the dy-
namic environment provided that the following conditions hold:
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• the algorithm is given a reasonable recovery time so that all types of
changes in the problem may appear. This means that the algorithm
is able to recover after any change, even if it needs a long time for
it, and

• the global maximum fitness is restricted to a small range of values.

Taking into account those conditions Morrison proposes another new
measure that he called the Collective Mean Fitness FC, which is “a single
value that is designed to provide an aggregate picture of an EA’s performance,
where the performance information has been collected over a representative sam-
ple of the fitness landscape dynamics. Collective fitness is defined as the mean
best-of-generation values, averaged over a sufficient number of generations, G′,
required to expose the EA to a representative sample of all possible landscape
dynamics, further averaged over multiple runs”. Mathematically this can be
expressed as:

FC =

M
∑

m=1


G′
∑

g=1
(FBG)

G′


M

(2.2)

The collective mean fitness FC will approach the total mean fitness FT
whenever the optimization process has a sufficient large exposure to the
dynamics of changes. Sufficient means large enough to provide a repre-
sentative sample of the fitness dynamics and to allow the algorithm to
stabilize the running average best-of-generation fitness value.

Therefore, to be able to use FC, the number of runs of the algorithm
has to be large enough to provide a representative sample of the problem
dynamics. Finding the necessary number of runs can be a difficult task
in problems with unknown dynamics. In those cases, the number of runs
has to be guessed by experimenting with the given problem.

Weicker’s Measures.

Karsten Weicker proposes (Weicker, 2002) measures for what he describes
as the three different aspects that have to be taken into account when
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analysing and comparing algorithms for dynamic problems. First of
all, there is an accuracy measure, first introduced in Feng, Brune, Chan,
Chowdhury, Kuek, and Li (1997) as a performance measure for statio-
nary problems. accuracy should measure the closeness of the current best
found solution to the actual best solution. It takes values between 0 and
1, where 1 is the best accuracy value. It is defined as:

accuracy(t)
F,EA =

F(best(t)
EA)−min(t)

F

max(t)
F −min(t)

F

(2.3)

where best(t)
EA is the best solution found by an evolutionary algorithm (EA)

in the population at time t. The maximum and minimum fitness values
in the search space are represented by max(t)

F and min(t)
F , respectively. F

is the fitness function of the problem.

Weicker also stated that stability is an important issue in the context of
dynamic optimization. A dynamic algorithm is called stable if changes in
the environment do not affect the optimization accuracy severely. Hence,
a definition for a stability measure was given as:

stab(t)
F,EA = max

{
0, accuracy(t)

F,EA − accuracy(t−1)
F,EA

}
(2.4)

and takes values from 0 to 1. In this case, a value close to 0 means high
stability.

A third aspect of interest in dynamic problems is the ability of an
algorithm to react to changes. Weicker proposes to check whether an
algorithm has ε-reactivity at time t using the next equation:
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react(t)
F,EA,ε =

min


t′ − t|t < t′ ≤ maxgen, t′ ∈N,

accuracy(t′)
F,EA

accuracy(t)
F,EA

≥ (1− ε)


⋃
{maxgen− t}


(2.5)

where maxgen is the number of generations. The measure react(t)
F,EA,ε eval-

uates how much time ∆t took the algorithm to achieve a desired accuracy
threshold.

Different Proposals for Accuracy.

Since it is difficult to know which is the best achievable value in a dy-
namic problem, Weicker points out that an average of several genera-
tions should be used instead. This approach was already proposed in
Mori, Kita, and Nishikawa (1996). That averaged measure turns out to be
very similar to that proposed in Trojanowski and Michalewicz (1999) but
the normalization of the average does not depend on the worst fitness
value. Additionally, in Mori et al. (1998) more emphasis was put on the
detection of the optimum by proposing a different mechanism to weight
the fitness values. Another proposal was made by Hadad and Eick (1997)
where they include the squared error of the best fitness value.

Weicker also summarizes different proposals for accuracy in problems
where the global optimum is unknown, offering the following options to
be used instead of the best(t)

EA value in (2.3):
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currentBest(t)
F,EA = max

{
F(ω) | ω ∈ P(t)

EA

}
(2.6)

currentBestOf f line(t)
F,EA = max

1≤t′≤t

{
currentBest(t′)

F,EA

}
(2.7)

currentAverage(t)
F,EA =

∑
ω∈P(t)

EA

(F(ω))

|P(t)
EA |

(2.8)

where P(t)
EA is the population of the algorithm at time t.

However these measures could be applied to any algorithm used to
solve a single objective dynamic problem, Weicker uses the EA subscript
to indicate that they are applied to evolutionary algorithms. The author
of this thesis has tried to respect to the maximum the terminology used
by every author. Because of this, the EA subscript has been kept in all the
definitions that have been taken from Weicker (2002).

According to Weicker (2002), most researchers use the best fitness
value currentBest(t)

F,EA, while the measure currentBestOf f line(t)
F,EA is not

suitable because it compares values from different generations where the
problem may behave in a very different way (Grefenstette, 1999). Ad-
ditionally, Branke (1999a) uses a mixed approach where only those va-
lues from generations without changes in the environment are compared.
This means that the measure can be only obtained offline because it re-
quires a global knowledge of the problem.

Another approach, based on the assumption that the best fitness value
will not change much within a small number of generations, is employed
to measure the accuracy without actually knowing the best fitness. Hence,
a window is defined inside the time span of the problem. Therefore, a
proposal is given to substitute the expression accuracy(t)

F,EA (2.3) with a
suitable version of the accuracy measure whenever it should be defined
inside a window of length W:
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windowAcc(t)
F,EA,W = max

{
F(ω)− windowWorst

windowBest− windowWorst
| ω ∈ P(t)

EA

}
with windowBest = max

{
F(ω) | ω ∈ P(t′)

EA , t−W ≤ t′ ≤ t
}

,

and windowWorst = min
{

F(ω) | ω ∈ P(t′)
EA , t−W ≤ t′ ≤ t

}
.

(2.9)

Finally, as an alternative to the fitness based performance measures,
genotype or phenotype based measures can also be used to give an approx-
imated value of the accuracy. Weicker notes that these measures require
full global knowledge of the position of the current optimum and gives
two variants. The first proposal (Weicker and Weicker, 1999) uses the
minimal distance of the individuals in the population to the current op-
timum ω∗ ∈ Ω (where Ω represents the search space) giving the expres-
sion:

bestDist(t)
F,EA = max

{
maxdist− d(ω∗, ω)

maxdist
| ω ∈ P(t)

EA

}
(2.10)

where maxdist is the maximum distance between two solutions in Ω.
On the other hand, the second approach (Salomon and Eggenberger,

1998) is based on the distance from ω∗ to the mass centre or centroid of
the population ωcenter and is obtained by:

centerDist(t)
F,EA =

maxdist− d(ω∗, ωcenter)
maxdist

. (2.11)

Yu’s Measures.

We end the review of performance measures for single objective prob-
lems with the proposed measures found in Yu, Tang, Chen, and Yao
(2009). In it, the authors suggest using three kinds of measures. The first
one is Performance that measures how well the system can do. In order
to define their Performance measure, they use the Collective Mean Fitness
(2.2). In addition, they introduce the overall Average performance of an
algorithm defined as:
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FAvg =

G
∑

i=1

(
1
N

N
∑

j=1
FAvgi,j

)
G

, (2.12)

where G is the total number of generations for a run, N is the total num-
ber of runs, and FAvgi,j is the average fitness of the population of genera-
tion i of run j.

They also propose a measure for the Robustness of the solutions. It
features the persistence of the solutions’ fitness while taking into account
the system and control influences (Bosman, 2005). System influence is
the response of the dynamic system to the changes that it experiences
over time, while the control influence is the response of the system at a
given time to the decision made by the algorithm in the past. Hence, Yu
et al define two new measures: the best robustness of generation i and the
average robustness of generation i. They are defined as:

RBesti =

N
∑

j=1
RBesti,j

N
, (2.13)

and

RAvgi =

N
∑

j=1
RAvgi,j

N
, (2.14)

respectively. RBesti,j and RAvgi,j are the best robustness and average robustness
of generation i of run j, respectively, which are defined as:

RBesti,j =


1, if

FBOGi,j
FBOGi−1,j

> 1
FBOGi,j

FBOGi−1,j
, otherwise

(2.15)

and

RAvgi,j =


1, if

FAvgi,j
FAvgi−1,j

> 1
FAvgi,j

FAvgi−1,j
, otherwise

, (2.16)
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respectively, where BOG means best of generation. According to the au-
thors, higher Robustness levels indicate more persistent fitness levels. This
measure is quite similar to the way that stability will be defined for multi-
objective problems in the next section.

Finally, the authors give a diversity measure of how different are the
individuals of the population but we must remember that it is used for
single objective problems where diversity is not an essential desired fea-
ture of the optimization algorithm as it happens to be for multi-objective
optimization algorithms. Hence, the diversity measure of generation i is
defined as

Divi =
1
N

N

∑
j=1

Divi,j (2.17)

where Divi,j is the diversity of generation i of run j. Divi,j must be defined
specifically for the problem which is under study (Yu et al., 2009).

2.3.2 Multi-objective Performance Measures

Unlike performance measures for single objective problems, performance
measures for multi-objective problems have drawn little attention in the
literature. Indeed, very few proposals, which are discussed in the rest of
this section, can be found in it.

The problem shown by all the measures proposed until now and
the corresponding literature about them is that these measures were
designed only for dynamic single objective problems. As it has been
shown in the previous section, the main difficulty to design good per-
formance measures lies in dealing with those problems which have un-
known Pareto fronts.

In addition to that hurdle, the fundamental difference between single
and multi-objective dynamic problems, where there is a set of Pareto op-
timal solutions, makes necessary to define and adapt those measures for
those problems. Then, the researcher, trying to find suitable performance
measures for dynamic multi-objective problems, faces two obstacles that
are essentially orthogonal or independent:

• the multi-objective character of the problem, meaning that perfor-
mance measures have to evaluate the algorithm after finding a set
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which has to contain a large enough number of different solutions,
and

• the fact that the location of the real Pareto front is very unlikely to be
known at any given instant time of the execution of the algorithm.

In Li, Branke, and Kirley (2007), some measures have been proposed.
The first one, called reverse generational distance or rGD(t), is an adapta-
tion of the generational distance G proposed in van Veldhuizen (1999).
For completeness’ sake, G is reproduced here:

G =

(
n
∑

i=1
dp

i

)1/p

n
, (2.18)

where n is the population size of the found approximation set, p = 2, and
di is the Euclidean distance from the i-th found solution to the nearest
solution in the real Pareto front. Thus, G is the average distance of the
solutions in the approximation set to those solutions representing the real
Pareto front of the algorithm.

rGD(t) is called reversed generational distance because the matching
of the solutions from the current approximate Pareto front to the real
Pareto front is done from the latter to the former, in contrast to the defi-
nition of G (van Veldhuizen, 1999). Moreover, time is taken into consid-
eration as the measure depends on it. G was intended only for stationary
multi-objective problems, while rGD(t), defined in what follows, is for
dynamic ones:

rGD(t) =

|P∗(t)|
∑

i=1
di

|P∗(t)|

where di =
|Q(t)|
min
i=1


√√√√ M

∑
j=1

(
f ∗(i)
j − f (k)

j

)2

 ,

(2.19)

withP∗(t) being the real Pareto front,Q(t) an approximation set at time t
and f (k)

j the j-th objective function value of the k-th member of Q(t). The

50



2. Performance Evaluation

smaller the rGD(t), the better the approximation set represents the real
Pareto front. Thus, rGD(t) lies in the category of accuracy performance
measures.

The drawback of rGD(t) is that the location of the real Pareto front
P∗(t) must be known at any time. Nevertheless, it could represent a
good adaptation to multi-objective problems of Weicker’s accuracy (2.3).

In Li et al. (2007), it is pointed out that there is a similar measure, D1R
(Czyzak and Jaszkiewicz, 1998), that also measures the average distance
from sampling points on P∗(t) to the nearest point on Q(t). It is defined
as follows:

D1R(A, Λ) =
∑

r∈R
min
z∈A
{d(r, z)}

|R| , (2.20)

where A and R are sets equivalent to Q(t) and P∗(t), respectively,
d(r, z) = max

{
λj(rj − zj)

}
and Λ = |λ1, . . . , λJ |, λj = 1/Rj, j = 1, . . . , J

with Rj being the range of objective j in set R.
Li et al demonstrate in their paper that the measure D1R behaves un-

expectedly with respect to some cases, while rGD(t) does not.
Another drawback of rGD(t) is that not only a distribution of the real

Pareto front P∗(t) must be known beforehand, but it also must have an
adequate distribution of sampling points of the whole Pareto front.

They also propose to use the hypervolume ratio HVR(t), first intro-
duced in Deb (2001), for dynamic multi-objective problems. This mea-
sure is identical to our accuracy measure (Cámara et al., 2007a) which is
introduced in the next section.

Finally, they introduce a measure called Collective Mean Error CME. It
is quite similar to the collective mean fitness proposed by Morrison (2.2).
This CME measure is calculated by averaging the rGD(t) values over a
full run of the algorithm and it is expressed by:

CMErGD =

T
∑

t=1
rGD(t)

T
, (2.21)

where T is the total number of iterations of a run. They also give a similar
definition of the CME measure (2.21) but in terms of HVR(t):
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CMEHVR(t) =

T
∑

t=1
HVR(t)

T
, (2.22)

it is impossible that the whole dynamic behaviour of one full run of
the problem can be collected in only just one measure. This resembles
the idea that it is not possible to represent a random data set with only
a representative datum as the mean or the standard deviation without
knowing the distribution which follow the data from the set. Because of
this, the author of this dissertation greatly discourages the use of such
collective measures since a dynamic problem is meant to change over the
time, and every generation involves a set with many solutions. Therefore,
such collective information for these problems must be gathered in every
instant of time of the whole run of the algorithm.

Table 2.3, found at the end of this chapter due to space limitations,
summarizes all the reviewed measures and the corresponding features
they are related with according to the classifications seen in Section 2.1.1
and summed up in Figure 2.1. It can be seen that almost all the mea-
sures are offline and only two of them can be calculated online. It also
shows that most of the measures are for diversity, accuracy and stability,
and there is only one more measure which is for the reaction time. This
also means that no measures have been offered for the throughput and
the time feature. The latter is understandable because a measure for time
is just a count of the number of seconds that took the algorithm to com-
plete its assigned number of iterations. Moreover, it should be pointed
out that all the measures require either partial or full information in order
to be calculated.

2.4 Proposed Measures

When taking into account measures for dynamic multi-objective prob-
lems it is important to make a clear difference between those problems
in which the current real Pareto front is known at every time of the al-
gorithm execution and those in which the real Pareto front is rather un-
known. The latter is the usual case in real world problems, even in many
of the test cases suggested for researching purposes (Farina et al., 2004).
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All of the already indicated measures that have been previously pro-
posed are only applicable either to single objective problems or to those
multi-objective problems in which the real Pareto fronts, Freal(t), are
known at any time. In this section, we contribute to solve this problem
with a set of new measures aimed at the dynamic character of DMO prob-
lems.

Before describing our proposed measures there is a notation issue that
has to be considered, because there is not a common and unified way to
describe the problems in the field of multi-objective optimization. In the
rest of this thesis, we will use a notation to designate the different aspects
of each problem that is strongly influenced from that found in Farina
et al. (2004). The terms decision space and objective space refer, respectively,
to the spaces of the search variables and of the objective functions of that
search variables. Also, we call the set of non-dominated solutions found
at time t as approximate Pareto optimal solutions at time t, which is divided
into the approximate decision space at time t, SP(t), and the approximate ob-
jective space or approximate Pareto front at time t, FP(t). The real Pareto
front, that could be known or not at time t, is denoted as Freal(t) and is al-
ways in the objective space. Finally, V(t) is the hypervolume value of the
approximation set at time t. If different approximation sets are available,
a subscript will be used to indicate the one used.

2.4.1 Measures When the Fronts are Known.

Figure 2.2 describes a possible scenario for a dynamic multi-objective
minimization problem. In this scenario, solutions from the current ap-
proximation to the Pareto front are represented by black dots. This front
has a hypervolume value calculated from the darker shaded area. This
hypervolume value of the current approximation is between the hypervo-
lume values corresponding to the minimum and maximum approximate
Pareto fronts found so far (in dotted lines), which are represented by
Vmin(t) and Vmax(t), respectively. Finally, as the problem is dynamic,
the real Pareto front, which is shown in the Figure by the solid line, has
moved and thus the current maximum hypervolume value found Vmax(t)
is bigger than the current hypervolume value V(t) which corresponds
to the current approximation set found. Moreover, if the real Pareto
fronts were unknown in the previous steps of the algorithm, Vmin(t) and
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Reference Point

f1(x)

f2(x)

Vmin(t)

Solution found at time t

Pareto front at time t, FP(t)

Vmax(t)

Figure 2.2: Description of approximations to the Pareto front at different
times.

Vmax(t) are only guesses based on the approximation set found earlier
in the run of the algorithm and represent the maximum and minimum
values found for the hypervolume measure.

The dynamic nature of the real Pareto fronts makes necessary to come
up with new performance measures able to cope with the changing char-
acteristics of these problems.
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Accuracy. We proposed a modification of accuracy (2.3) (Cámara et al.,
2007a) to make it calculable from the hypervolume values of the current ap-
proximation set and the real Pareto front. This proposed measure proved
to be identical to HVR(t) (Li et al., 2007).

Due to the dynamic nature of the problem, we require to elaborate
the accuracy concept a little bit more in order to define a suitable mea-
sure for these dynamic applications. The difficulty appears because there
are minimizing and maximizing problems. In other words, a minimiz-
ing problem will have hypervolume values that grow provided that the
problem conditions have not changed and the algorithm is improving the
solutions found. On the other hand, given that we have a maximization
problem in a stationary state, the hypervolume values will decrease. In
those cases where some of the objective functions are minimizing and
others are maximizing at the same time, the functions have to be con-
verted to either all minimizing or either all maximizing. Therefore, an
accuracy measure that is computed as the rate between the hypervolume
of the current approximate Pareto front and the current real Pareto front
could lead to values above one.

Consequently, we have to define a dual accuracy measure that allows
different ways to calculate the accuracy values according to the nature of
the problem. Thus, we propose the following:

accminimizing(t) =
HV(Fp(t))

HV(Freal(t))
=

V(t)
Vreal(t)

(2.23)

accmaximizing(t) =
HV(Freal(t))
HV(Fp(t))

=
Vreal(t)

V(t)
(2.24)

acc(t) =

{
accmaximizing(t) for a maximization problem
accminimizing(t) for a minimization problem

(2.25)

An alternative accuracy measure could be used instead of the above
acc(t) (2.25) by replacing the rate between the current approximate Pareto
front and the real one with a subtraction between them:

accalternative(t) = |Vreal(t)−V(t)|. (2.26)
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One of the advantages of (2.26) is that it is independent of the di-
chotomy of the maximizing/minimizing nature of the problem at time t.
On the other hand, it takes unbounded positive real values with 0 as the
best accuracy.

A more specific accuracy measure could be elaborated to be used with
problems where a detailed knowledge of the underlying structure of the
decision and objective space could make possible to replace the hyper-
volume value measures with any of the quality indicators or attainment
functions compiled in Knowles et al. (2006).

Given a suitable accuracy measure for multi-objective problems, the
other two measures are easy to define.

Stability. In this case, we have modified Weicker’s stability measure so
that it produces the value 1 when the current accuracy has worsened in
comparison to the previous one. Thus, we define it as:

stb(t) =

{
stb0(t) if stb0(t) ≥ 0
1 otherwise

with stb0(t) = acc(t)− acc(t− 1).

(2.27)
With this new definition stb(t) takes values between 0 and 1, being 0

the best stability and 1 the worst one. Sometimes, Weicker’s stability mea-
sure (2.4) is useless, because it represents the best and the worst values
achieved by an algorithm by the value 0 at the same time. Although it is
arguable that a null value for the best stability is very difficult to obtain, it
is not impossible to achieve it. This way, it is not possible to tell whether
a null value in (2.4) is indicating that the algorithm performed really well
or badly.

Reaction Time. This measure allows us to know how much time takes
the algorithm to recover its accuracy level when a change occurs in the
problem. It is based on Weicker’s react measure (2.5) but we have up-
dated it by using our accuracy measure (2.25). After doing so, the new
reaction time is expressed as:
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reacε(t) = min


{

t′ − t | t < t′ ≤ maxgen, t′ ∈N,
acc(t′)
acc(t)

≥ (1− ε)
}

⋃
{maxgen− t}

 .

(2.28)

In (2.28), ε is a small positive real number used as a threshold for
comparing different accuracy values. An alternative way to define the
reaction time, reactalt,ε, is given by the following expression:

reacalt,ε(t) = min
{{

t′ − t | t < t′ ≤ maxgen, t′ ∈N, acc(t′)− acc(t) ≥ −ε
}

⋃
{maxgen− t}

}
.

(2.29)

As it can be seen, the difference between (2.28) and (2.29) lies in the
way the accuracy, acc(t), and the ε values are employed.

2.4.2 Measures When the Fronts are Unknown.

As stated before, all the proposed measures given so far for dynamic
problems rely on the knowledge of where the real Pareto fronts lie (Li
et al., 2007; Cámara et al., 2007a). This occurs only in test cases specifi-
cally devised for evaluating algorithms. Because of this, it is mandatory
to pay attention to new ways of redefining the measures described in the
previous subsection in order to deal with real problems where the loca-
tion of the real Pareto fronts is unknown. However, the only measure
that has to be adapted is acc(t) (2.25) as the other two, stb(t) (2.27) and
reacε(t) (2.28), rely on the knowledge of Pareto fronts only through acc(t)
(2.25).

Nevertheless, we note again that as we are interested in an offline
measure we can exploit the knowledge of all the approximate Pareto
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fronts, not only the past ones, but also those who came after the time
instant which we are studying.

Thus, in order to improve our accuracy definition for those cases in
which the real Pareto fronts are unknown we need to replace the hyper-
volume value of the real Pareto fronts by other suitable quantities. These
quantities could be the maximum and minimum hypervolume values over
the time. However, if the Pareto fronts of the problem objective space
change, those absolute maximum and minimum measures could be far
from the current real Pareto front. Because of this, accuracy is considered
a measure of the current approximation set in comparison only with the
nearby approximation set found, both in the past and in the future. This
is the concept of accuracy within a window or offset which was already
mentioned in Weicker (2002).

A window is a period of time in which the problem becomes stationary,
or put in other words, a span of time in which the problem does not show
clear signals of changes in the approximation sets that have been found
for those times. A window marks a phase of the problem. Each phase
is characterized by the moment in which a change has been made, the
phase starting point, and by the duration or length of the phase which is
given in time units.

The window length should not be a constant given by the researcher
but a variable that it is calculated before applying the performance mea-
sures to the collected data. If the problem at hand changes with a fixed
frequency, this window length would turn out to be equal to the inverse
of that frequency. But in order to widen the set of problems to be able
to analyse, the measure under study must be able to cope with variable
frequencies.

To calculate the lengths of all the phases we propose a procedure de-
scribed in Algorithm 2.1, where the if in line 6 can be changed to other
conditions which may be useful to detect changes in the fronts.

Therefore, this improved measure has two parts. Firstly, the windows
or phases are detected and the lengths corresponding to each phase are
calculated with Algorithm 2.1. Afterwards, accuracy values are calculated
at every time step using the relative minimal or maximal hypervolume
values within that phase.

Once the lengths have been obtained the accuracy is calculated for
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Algorithm 2.1: Calculation of lengths.
Input: A set of N hypervolume values for the approximate Pareto

fronts.
Output: A set S of the lengths of each of the phases.

begin1

for i = 2 to N do2

∆HVi = HVi − HVi−13

length = 14

for i = 2 to N do5

if ∆HVi ≥ |∆HVi−1 + ∆HVi+1| then6

S←− S ∪ length7

length = 18

else9

length = length + 110

end11

every approximate Pareto front found with accunk(t) (2.30), where unk
makes emphasis on the fact that the measure is applied to problems with
unknown real Pareto fronts. Thus, accunk(t) is defined with the help of
(2.31) and (2.32), giving:

accunk(t) =

{
accmaximizing

unk (t) if the problem is maximizing
accminimizing

unk (t) if the problem is minimizing
(2.30)

accmaximizing
unk (t) =

HVmin(Q(t))
HV(Fp(t))

=
HV(Fp(min{Q(t)}))

HV(Fp(t))
=

VQ(t)
min

V(t)

(2.31)

accminimizing
unk (t) =

HV(Fp(t))
HVmax(Q(t))

=
HV(Fp(t))

HV(Fp(max{Q(t)})) =
V(t)

VQ(t)
max

(2.32)
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where Q(t) is a set containing the time values for the window in which t
takes place, i.e., the surrounding past and future values of t in which the
approximate Pareto fronts have not suffered a noticeable change in its
hypervolume values, according to algorithm 2.1. The cardinality of each
set Q(t) equals the duration of the phase that Q(t) represents.

In Algorithm 2.1, and in (2.31) and (2.32), the hypervolume measures
of the approximate Pareto fronts that evaluate accunk(t) may be changed
to other equivalent measures such as those described in subsection 2.4.1.

Figure 2.3 shows how Algorithm 2.1 can be used to detect a change in
the problem. In Figure 2.3, the optimal Pareto fronts for FDA3-mod (Eq.
2.35) are shown when τ equals 4, 5 and 10. It can be seen that the change
in the hypervolume values of the fronts is big enough to allow Algorithm
2.1 to detect a new phase in the problem. In this example, the optimal
Pareto fronts are shown in three different values of τ.

Because we are showing the inner workings with this example, the
optimal Pareto front is found in only one step of τ, instead of needing
some more steps before the algorithm converges to the new Pareto front,
which would be the usual procedure for real problems.

It is important to note that even when the Pareto fronts are obtained
by an optimization algorithm, if a change has been produced, the new
Pareto front will be farther than the earlier front was. Thus, the detection
of a change would be even easier to perform. Moreover, as Algorithm 2.1
uses the absolute value of ∆HVi, the detection mechanism works even
when the new Pareto front is going towards the origin after a change
instead of going outwards from the origin. It can be seen in the plot that
when τ changes from 4 to 5, the problem conditions also change, and the
Pareto front is shifted. This happens only in the moment that τ becomes
5 and not for any of the values between 0 ≤ τ < 5.

Although Figure 2.3 represents only optimal Pareto fronts, the pro-
posed procedure is able to track problems with unknown Pareto fronts,
and results on this will be shown in Section 4.5.
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f1(x)

f2(x)

1

0.5

10.5

Reference Point

τ = 4
HV = 0.819

τ = 5
HV = 0.765

τ = 10
HV = 0.710

|∆HV5| = 0.054

Figure 2.3: Illustrative use of the length detection.

2.5 Test Cases for Dynamic Multi-objective Opti-
mization

This section reviews the five test cases for DMO that are used along this
thesis. They stem from those proposed by Farina et al (Farina et al.,
2004), because these five functions have become the standard test suite
for researchers in the field of DMO. Nevertheless, we propose modified
versions of the FDA2 and FDA3 original functions in order to overcome
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some underlying problems in the original functions. Other modifications
for FDA2 have been proposed in Deb et al. (2007) and Mehnen, Wag-
ner, and Rudolph (2006). See Cámara, Ortega, and de Toro (2008a) and
Cámara (2007) for further details about our decision to bring a third alter-
native for FDA2. For FDA3 no modification apart from the one suggested
by us has been proposed in the literature.

In order to create a set of functions that reflect the dynamic nature of
DMO, the five FDA test cases depend on a periodic function that affects
the overall output of the test case as the time advances. This periodic
function simulates the concept of time by using sinus or cosine functions
together with some parameters that adapt the periodic function to the
test case where it is being used.

The parameters that control this periodic function are four:

• τ is the generation counter. It is the time value at which the FDA
test case is being evaluated, and it is a input parameter to the test
case together with the decision variables vector x.

• τT defines the number of discrete time intervals where the test case
remains non-stationary. In other words, for τT values of τ the test
case does not change.

• t is an internal time function that depends on the current values of
nt, τ and τT.

• nt is the number of distinct steps in t.

In this thesis, as it has been suggested in Farina et al. (2004), the values
used are always the following:

• τT = 5.

• nt = 10.

There are three two-dimensional functions: FDA1, FDA2-mod and
FDA3-mod, and two many-dimensional functions: FDA4 and FDA5.

In what follows, every FDA test case used in this thesis is described.
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f1(x)

f2(x)

0 0.5 1
0

0.5

1

Figure 2.4: Pareto solutions for FDA1 for any value of τ

2.5.1 FDA1.

In the first test function, FDA1 (Eq. 2.33), the Pareto front, Fp(τ), remains
equal for all values of τ, while the values of the decision variables to the
corresponding front, Sp(τ), do change. The solution sets for FDA1 are
|XI | = 1 and |XI I | = 19. In Figure 2.4 it can be seen the plot of the FDA1
function for the any value of τ.
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FDA1 =



f1(xI) = x1
f2(x) = g(xI I)h( f1, g)

g(xI I) = 1 + ∑
xi∈xI I

(
xi − G(t)

)2

h( f1, g) = 1−
√

f1
g

G(t) = sin(0.5πt) , t = 1
nt
b τ

τT
c

xI = (x1) ∈ [0, 1], xI I = (x2, . . . , xn) ∈ [−1, 1]

(2.33)

2.5.2 FDA2-mod.

We call our modified versions of the original FDA2 and FDA3 FDA2-
mod and FDA3-mod, respectively. In FDA2-mod (Eq. 2.34), together with
the values of the solutions, Sp(τ), also the corresponding Pareto front,
Fp(τ), changes. For FDA2-mod, the solution sets are |XI | = 1 and |XI I | =
|XI I I | = 15. We suggest a value of z = 5 in H(t).

FDA2-mod =



f1(xI) = x1
f2(x) = g(xI I)h( f1, g)
g(xI I) = 1 + ∑

xi∈xI I

x2
i

h(xI I I , f1, g) = 1−
(

f1
g

)(H(t)+ ∑
xi∈xI I I

(xi−H(t)/2)2

)

H(t) = z− cos(πt/4) ; t = 1
nt
b τ

τT
c

xI = (x1) ∈ [0, 1], xI I , xI I I ∈ [−1, 1]
(2.34)

With respect to FDA2-mod, Figure 2.5 shows the Pareto fronts that
presents the function from τ = 5 to τ = 200. These solutions reflect
all the Pareto fronts. In FDA2-mod, when the generation τ crosses a τT
generation border, the current Pareto front advances to the next one, and
the values of the solution space change accordingly.

2.5.3 FDA3-mod.

The definition of FDA3-mod is given in Eq. 2.35 and it uses the sets |XI | =
1 and |XI I | = 29.
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f1(x)

f2(x)
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Figure 2.5: Pareto solutions for FDA2-mod for some values of τ ranging
from 5 to 200.

FDA3-mod =



f1(xI) = xF(t)
1

f2(x) = g(xI I)h( f1, g)
g(xI I) = 1 + G(t) + ∑

xi∈xI I

(xi − G(t))2

h( f1, g) = 1−
√

f1
g

G(t) = | sin(0.5πt)|
F(t) = 102 sin(0.5πt) t = 1

nt
b τ

τT
c

xI = (x1) ∈ [0, 1], xI I = (x2, . . . , xn) ∈ [−1, 1]
(2.35)

In Figure 2.6, FDA3-mod it is plotted with the Pareto fronts obtained
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f1(x)

f2(x)

0 0.5 1
0

0.5

1

Figure 2.6: Pareto solutions for FDA3-mod from τ = 5 to τ = 50.

with τ ranging from 5 till 50.

2.5.4 FDA4.

FDA4 is a many dimensional function whose definition is given in 2.36.
As it happened with FDA1, in FDA4 the Pareto front, Fp(τ), remains
equal for all values of τ, while the values of the decision variables to
the corresponding front, Sp(τ), do change with τ.

In order to get a three objective function, the value M is fixed to 3.
In this case, the Pareto front is always an octave of the sphere of radius

one. A plot of the part of the sphere that represents the Pareto front is
shown in Figure 2.7. In this thesis, n = M + 9 or n = 12.
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Figure 2.7: The spherical surface of radius one where the Pareto front lies
for FDA4.

FDA4 =



f1(x) = (1 + g(xI I))
M−1
∏
i=1

cos( xiπ
2 )

fk(x) = (1 + g(xI I))(
M−k
∏
i=1

cos( xiπ
2 )) sin( xM−k+1π

2 ) for 2 ≤ k ≤ M− 1

fM(x) = (1 + g(xI I)) sin( x1π
2 )

g(xI I) = ∑
xi∈XI I

(xi − G(t))2

G(t) = | sin( tπ
2 )|, t = 1

nt
b τ

τT
c

xI I = {xM, . . . , xn}, xi ∈ [0, 1] for 1 ≤ i ≤ n
(2.36)
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2.5.5 FDA5.

FDA5 is another many dimensional function. Once again, M is fixed to 3
to get a three objective function. The definition of FDA5 is given in 2.37.
Contrary to what it happens for FDA4, the Pareto front, Fp(τ), for FDA5
changes with τ.

Although the Pareto front is still the spherical surface of an octave
part of a sphere, the radius is not always one but it ranges from one to
two. Figure 2.8 plots a cross section of different spherical surfaces of some
FDA5 Pareto fronts. For the sake of simplicity, the plot shows only a small
section of the whole surface for each Pareto front. Again, n = 12.
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Figure 2.8: Cross section of the spherical surfaces for the Pareto fronts for
FDA5 when τ = {10, 20, 30, 40, 50}.
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FDA5 =



f1(x) = (1 + g(xI I))
M−1
∏
i=1

cos( yiπ
2 )

fk(x) = (1 + g(xI I))(
M−k
∏
i=1

cos( yiπ
2 )) sin( yM−k+1π

2 )

for 2 ≤ k ≤ M− 1
fM(x) = (1 + g(xI I)) sin( y1π

2 )
g(xI I) = G(t) + ∑

xi∈XI I

(xi − G(t))2

yi = xF(t)
i for 1 ≤ i ≤ M− 1

F(t) = 1 + 100 sin4( tπ
2 )

G(t) = | sin( tπ
2 )|, t = 1

nt
b τ

τT
c

xI I = {xM, . . . , xn}, xi ∈ [0, 1] for 1 ≤ i ≤ n

(2.37)

2.6 Summary

In this chapter, it has been shown how important it is for researchers to be
able to use a good and complete suite of performance measures that can
address the different aspects of any multi-objective dynamic optimiza-
tion problem.

The main contributions of this chapter have been a classification of the
performance measures and the introduction of new performance mea-
sures specifically proposed for multi-objective dynamic problems with or
without known Pareto fronts. These contributions have been published
in Cámara, Ortega, and de Toro (2009a,b); Cámara et al. (2010). Also
the modifications proposed to the FDA test cases are important and they
have been published in Cámara et al. (2010, 2008c,b).

Hopefully, these contributions get us, researchers, and our field of
dynamic multi-objective optimization algorithms closer to the state that
enjoy current-day mathematics after the findings made by Lebesgue,
Hilbert and many other brilliant mathematicians of the past century, that
made possible the development of most fields of mathematics (Doxiadis
and Papadimitriou, 2009; Katz, 1998).

Fortunately, researchers are already paying more attention to these
theoretical issues (Auger et al., 2009).
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2.6. Summary

In the next chapter, it will be shown the modifications made to the
algorithm SFGA (de Toro et al., 2004) that gave as a result a new evo-
lutionary algorithm called SFGA2 (Cámara et al., 2008a,c). Results con-
cerning the suitability of the new proposed algorithm SFGA2 will also be
provided.
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“There is nothing either good or
bad, but thinking makes it so.”

Hamlet, William Shakespeare

3
SFGA2: An improved version of

SFGA

ONE of the main issues that is addressed in this thesis is the use
of evolutionary algorithms (EAs) to solve dynamic multi-objective
optimization problems. They are used within a framework, that

is proposed in a later chapter, to solve DMO problems by using parallel
processing. In order to obtain consistent results, the framework should
be able to run different EAs so that a comparison between them could
be done and conclusions about which algorithms behave better could be
inferred.

Albeit some very well known multi-objective optimization evolutionary
algorithms (MOEAs) were available, the author of this thesis wanted to
compare our algorithm SFGA (de Toro et al., 2004) with those state-of-the-
art MOEAs, namely with SPEA2 (Zitzler et al., 2002) and with NSGA-II
(Deb et al., 2000). After introducing some improvements to SFGA, we
proposed a new MOEA called SFGA2 (Cámara et al., 2008a). The aim of
this chapter is to examine these four MOEAs, paying special attention to
the new SFGA2, and to offer a comparison among them.
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3.1. Previous Existing MOEAs

Hence, this chapter is structured in the following way. Firstly, in Sub-
section 3.1.1 the SFGA algorithm is reviewed. Then, the state-of-the-art
NSGA-II and SPEA2 are briefly described in Subsections 3.1.2 and 3.1.3,
respectively. Section 3.2 is devoted to the proposed SFGA2. Finally, the
results of comparing these algorithms can be found in Section 3.3.

3.1 Previous Existing MOEAs

In this section, the algorithm SFGA is shown along with two state-of-
the-art MOEAs, NSGA-II and SPEA2. Because the two latter algorithms
are widely known among researchers, they will be briefly described, and
more attention is paid to SFGA, which is reviewed in first place, because
it is the basis of SFGA2.

3.1.1 SFGA (Single Front Genetic Algorithm).

Before delving into details about the SFGA algorithm, we need a defini-
tion of what is a front.

Definition 3.1 A front or rank is a subset of the population where all the con-
tained solutions are mutually non-dominated.

In Figure 3.1 there is an example of solutions divided into the two
fronts to which they belong. The fronts are found in an iterative process
where the first front is the subset of the non-dominated solutions from the
whole population. Then, this first front is removed from the population,
and a second subset of non-dominated solutions is found. This second
subset is the second front. Afterwards, this second front is removed from
the subpopulation and the process is repeated in the new subpopulation
until all solutions have been assigned to a front.

By sorting the population into different fronts we obtain a primitive
but powerful way to divide the solutions in classes. These fronts or
classes are used by some algorithms to choose which solutions should
be kept and carried onto the next generation.

The Single Front Genetic Algorithm, SFGA, is a generational MOEA that
was designed to be used inside the so-called Parallel SFGA (de Toro et al.,
2004), an algorithm to solve multi-objective optimization problems by
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3. SFGA2: An improved version of SFGA

f1(x)

f2(x)

First front

Second front

Figure 3.1: Example of fronts in a small population of solutions.

means of parallel processing. The most salient characteristic of SFGA is
that it is single-front oriented. This means that only the non-dominated
solutions belonging to the first front are taken into account to create the
population for the next generation of the algorithm.

Another characteristic of SFGA is that the population size is not fixed.
The algorithm has the commonly found parameter that controls the size
of the population, but, in this case, it indicates the maximum number of
solutions that can be kept in the population. Because only those solu-
tions from the first front are chosen to form the new population, the new
generation could have less solutions than this maximum number. In this
case, the algorithm does nothing, and the next generation population has
a size which is smaller than this population size parameter. On the other
hand, if there are more solutions in the new generation than the allowed
number, then a crowding method takes place to reduce the number of so-
lutions within the population. An outline of SFGA is shown in Algorithm
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3.1. Previous Existing MOEAs

3.1.

Algorithm 3.1: SFGA
Input:

Nmax - The maximum number of solutions in the population
δcr - The crowding distance

Output:
NDout - A set of non-dominated solutions

Initialize population P11

i = 12

repeat3

Mate Pi4

Evaluate Pi5

NDtemp ← non-dominated solutions from Pi6

ND filtered ← Filter NDtemp with the crowding procedure (3.2)7

and δcr8

if |ND filtered| > Nmax then9

truncate ND filtered to Nmax10

end11

Pi+1 ← ND filtered12

i = i + 113

until stopping criterion is reached14

NDout ← ND filtered15

One of the most important parts of SFGA is the crowding mechanism
used to downsize the population. This procedure is described in detail
in Algorithm 3.2. The crowding method used inside SFGA, intended to
maintain diversity throughout all the generations, depends on a crowding
distance parameter, δcr.

It can be seen that once the crowding method is run on the popu-
lation, the number of solutions of the resulting population Nout can be
quite inferior to the maximum number of solutions Nmax. The described
crowding procedure shows two drawbacks:

1. It works by removing solutions that are sorted along only one of
the m objective functions. This way, it removes those solutions
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3. SFGA2: An improved version of SFGA

Algorithm 3.2: Crowding
Input:

Pin - A set of, at least two, non-dominated solutions, sorted
according to one of the m objective functions: f1, . . . , fm

Nin - The number of solutions in Pin
δcr - The crowding distance

Output:
Pout - The output set
Nout - The number of solutions in Pout

Let Si be the i-th solution from sorted Pin1

begin2

Pout = {S1, SNin}3

Nout = 24

Scomp = S15

for i=2 to Nin do6

if distance(Si, Scomp) ≥ δcr then7

Pout = Pout ∪ Si8

Nout = Nout + 19

end10

Scomp = Si11

end12

end13

which are closer between themselves on a given dimension than
the crowding distance. This procedure works quite well on two-
dimensional problems but when the number of objective functions
increases, the procedure it is not able to detect all the solutions that
are close enough.

2. Due to this dependency on the sorting along one dimension the re-
sulting output population could have solutions which should have
been removed or, on the other hand, too much solutions were re-
moved.

It is clear that due to these potential problems shown by SFGA, this
algorithm had much room for improvement that could be done. Some
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3.1. Previous Existing MOEAs

improvements to overcome these troubles have been proposed and a new
version has been developed. This version, described in Section 3.2, has
been called SFGA2.

3.1.2 NSGA-II.

NSGA-II (Deb et al., 2000) is one of the best known MOEAs. The algo-
rithm is a improved version of the former NSGA algorithm (Srinivas and
Deb, 1994). NSGA-II, briefly described in this subsection, is based in the
non-dominated sorting approach. This means that all the solutions in
the population are sorted into the fronts to which each solution belongs.
Then, the algorithm fills the next generation population with solutions
from the first fronts until there is not enough space to allocate all the
solutions in the current front. At that moment, a crowding procedure
is used to select which solutions should be chosen according to the dis-
tances among them. This procedure is described later in this subsection.
For completeness’ sake, NSGA-II can be found in Algorithm 3.3.

The way in which the fast non-dominated sorting (Line 7) is done can
be consulted in Deb et al. (2000). In order to maintain diversity, NSGA-II
employs two mechanisms:

1. Density estimation. The algorithm specifies a way to calculate the
distance from each solution to their two nearest solutions in each
dimension. Figure 3.2 illustrates this idea. In the figure, it is shown
how to calculate the distance from c to its nearest neighbours in
each dimension inside its front: b and d. Because this is a two-
dimensional problem the nearest neighbours are usually the same
for the first and second objective, but that is not always the rule. For
example, if Figure 3.2 represents all the non-dominated solutions in
the first front for a three-dimensional problem projected onto the X-
Y plane, then the closest neighbours to c along the X axis are b and
d but along the Y axis the closest neighbours are d and h, instead
of b. When the closest solutions have been found, the distances for
all the dimensions are reduced to give only the crowding distance,
tdistance, for this solution.

2. Crowded comparison operator. This operator guides the selection
process at the various stages of the algorithm. Assuming that every
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3. SFGA2: An improved version of SFGA

Algorithm 3.3: NSGA-II
Input:

N - Maximum number of solutions
Output:

NDout - Set of non-dominated solutions

Initialize randomly population P1 and offspring population Q11

i = 12

repeat3

Evaluate Pi4

Qi ←mating of Pi5

Ri ← Pi ∪Qi6

F ← fast non-dominated sorting of Ri7

// F = {F1,F2, . . . } contains the non-dominated fronts
of Ri

Pi+1 = ∅8

t = 19

repeat10

Assign crowding distance to Ft11

Pi+1 ← Pi+1 ∪ |Ft|12

t = t + 113

until |Pi+1|+ |Ft| < N14

Sort Ft with ≺n15

Pi+1 ← Pi+1 ∪ Ft[1 : (N − |Pi+1|)]16

Qi+1 ← create new population from Pi+117

i = i + 118

until stopping criterion is reached19

NDout ← Pi20

solution t in the population has two attributes: (1) trank, the front it
belongs to; and (2) tdistance, its crowding distance. A partial order
relation ≺n among the solutions is defined the following way:

a ≺n b iff (arank < brank) OR ((arank == brank) AND (adistance >
bdistance)).

This means that a solution c is better than a solution d if c belongs
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3.1. Previous Existing MOEAs

f1(x)

f2(x)

a

b
c

d

e

f

g

h

i

Cuboid for c

Figure 3.2: Calculation of the crowding distance for the first front.

to a better rank than d or if they belong to the same rank but the
crowding distance of c is better (bigger) than that one of d.

The crowding distance of every solution is used to select the solutions
that should be kept from a certain front that is too big to be copied en-
tirely to the next generation population Pi+1 (Line 16). Furthermore, the
distance calculated for every solution in the next generation population
Pi+1 is used to guide the mating process to create the next generation off-
spring population Qi+1. This is so because the binary tournament selec-
tion chooses the winning solution according to the ≺n ordering between
the contending solutions. Thus, those solutions with bigger crowding
distance are more likely to be selected for the next offspring generation
Qi+1.
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3. SFGA2: An improved version of SFGA

3.1.3 SPEA2.

SPEA2 (Zitzler et al., 2002), the second version of the Strength Pareto Evo-
lutionary Algorithm, is another MOEA very well known to researchers.

Algorithm 3.4: SPEA2
Input:

N - Maximum number of solutions in the population P
N - Maximum number of solutions in the archive P

Output:
NDout - Set of non-dominated solutions

Initialize randomly population P11

P1 ← ∅2

i = 13

repeat4

Evaluate the solutions in Pt and Pt5

Copy all non-dominated solutions in Pt and Pt to Pt+16

if |Pt+1| > Narchive then7

Reduce Pt+1 by using the truncation operator8

else if |Pt+1| < Narchive then9

Fill Pt+1 with dominated solutions from Pt and Pt10

end11

t = t + 112

if stopping criterion is met then13

NDout ← non-dominated solutions from Pt14

else15

Mate Pt16

end17

until stopping criterion is reached18

SPEA2 has a complex way to assign fitness to each solution. The com-
plexity of this process is derived from the fact that SPEA2 is not front-
oriented, and so it evaluates all the solutions as possible candidates in
every generation. Thus, each solution i in the archive Pt and in the pop-
ulation Pt is assigned a strength value S(i) that represents the number of
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3.1. Previous Existing MOEAs

solutions that it dominates. This is defined as:

S(i) = |
{

j such that j ∈ Pt ∪ Pt ∧ i � j
}
| (3.1)

where i � j means that j is strictly dominated by i.
Additionally, a raw fitness R(i) is defined for every solution based on

the strength S(i) value:

R(i) = ∑
j∈Pt∪Pt∧i�j

S(j) (3.2)

It can be easily seen that R(i) is a sum of the strength values of all the
solutions that dominate i. Thus, R(i) is to be minimized and a non-
dominated solution has a R(i) value of 0. Furthermore, SPEA2 uses an
estimation of the density information of the solutions. This information
is used to choose between solutions that could have the same raw fitness
values. The estimation of this density information is an adaptation of the
k-th nearest neighbour method (Silverman, 1986), where the density of a
solution is a function of the distance to the k-th nearest solution. In more
detail, for each solution i the distances to all other solutions in archive
and population are stored in a list. Then, the list is sorted in increasing
order, and the k-th element in the list contains the distance sought and de-
noted as σk

i . It is suggested to use a value of k equal to the square root of
the sample size1, i.e. k =

√
N + N (Zitzler et al., 2002; Silverman, 1986).

Therefore, the corresponding density for solution i is defined as:

D(i) =
1

σk
i + 2

(3.3)

A value of 2 in the denominator is added to make sure that it is always
greater than the numerator and so the resulting D(i) < 1. Finally, a fitness
value F(i) for a solution i is defined as:

F(i) = R(i) + D(i) (3.4)

1Although, Zitzler et all recommend to use a value of k =
√

N + N, in the implemen-
tations that they keep online (Laumanns, 2001) they use k = 1
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3. SFGA2: An improved version of SFGA

Environmental Selection.

Another characteristic in SPEA2 that should be explained is the environ-
mental selection. It takes place when non-dominated solutions are copied
to the next generation archive Pt+1 in Line 6 of Algorithm 3.4. Since the
archive size is fixed in every generation (i.e. there should be exactly N so-
lutions in it) three situations are possible, as it is shown in the algorithm:

1. Pt+1 = N. The size of the new generated archive equals its maxi-
mum size, and then nothing is done.

2. Pt+1 < N. There is still space for more solutions in the archive.
Then, the best non-dominated solutions in Pt and Pt are copied
to the next generation archive. This is done by choosing those
N− |Pt+1| solutions from Pt ∪ Pt with the smallest F(i) values such
that F(i) ≥ 1 (because we already know that the solutions are do-
minated).

3. Pt+1 > N. In this case, |Pt+1| − N solutions must be removed from
the archive. In order to do so, an archive truncation procedure takes
place in the archive. It does so by iteratively removing one solu-
tion from Pt+1 until no more solutions have to be removed. At
every iteration the truncation operator chooses for removing that
solution i which has the minimum density distance σk

i to its k-th
nearest neighbour in Pt+1. If there are more than one solution with
minimum distance, then the second smallest distance, (k-1)-th, is
checked and so forth, until the tie is broken. Mathematically, this is
expressed as finding the solution i that satisfies:

∀j ∈ Pt+1

i ≤d j :⇔ ∀k : 0 < k < |Pt+1| : σk
i = σk

j ∨

∃k : 0 < k < |Pt+1| :
[(
∀l : 0 < l < k : σl

i = σl
j

)
∧ σk

i < σk
j

]
.

This truncation procedure is run only when there are more solutions
in the archive Pt than its maximum size N.
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3.2. SFGA2

3.2 SFGA2

Drawing from the experience acquired with NSGA-II (Deb et al., 2000)
and, especially, with SPEA2 (Zitzler et al., 2002), SFGA has been adapted
to use fitness values to guide the selection of solutions from the current
population that should be carried onto the next generation. SFGA explic-
itly includes only non-dominated solutions in the next generation pop-
ulation and so the modifications introduced to it should adhere to that
principle. Thus, the fitness value for any solution cannot be based on the
rank of that solution or the number of solutions it dominates but only on
a measure of the solutions lying near to it, or in other words, the crowd-
edness of its neighbourhood.

In this way, a fitness value has been defined using a crowding dis-
tance already present in the SFGA algorithm. The fitness, λi, of a solution
Si, is the average distance to that solution from all other solution which
lie inside that crowding distance, δcr, but with a little modification. In or-
der to give more importance to solutions which lie in less crowded areas,
the number of surrounding solutions is included in the denominator of
the expression. Doing so, the average distance to other solutions is fur-
ther divided by the number of such solutions which makes that value to
decrease when the number of surrounding solutions increases. Hence, λi
is given by:

λi =
∑

Sk∈Ci

distance(Si, Sk)

|Ci|2
(3.5)

where distance(Si, Sj) is the Euclidean distance from solution i to solution
j and Ci = {Sj : distance(Si, Sj) < δcr ∀j 1 ≤ j ≤ n ∧ i 6= j}.

However, after using this proposed fitness value on some test data we
obtained unexpected and undesirable sets of non-dominated solutions
where diversity was not maintained.

The reason that the set of selected solutions with the latter approach
does not maintain the diversity is that only following the crowding crite-
rion is not enough. We have introduced some randomness in this proce-
dure in order to avoid this situation of getting stuck with solutions which
are not showing any diversity. Randomness has been added to the fitness
value by reducing the fitness value of every m-th solution, being m the
number of objectives. This reduced fitness value is calculated with Eq.
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3. SFGA2: An improved version of SFGA

(3.5) by multiplying it by a random value between α and (1− α), with
α < 0.5.

The Diversity Maintenance Procedure Outlined.

Contrary to SFGA, in SFGA2 the population size is kept constant among
generations. In order to choose which solutions should be removed or
added to the next generation population the new defined fitness value
(3.5) will be used. The diversity procedure is described in Algorithm 3.5.

This procedure can be greatly optimized by combining together some
steps. Nevertheless, in this thesis they are shown separately in order to
be understandable.

Differences with SPEA2. As it was said earlier, this procedure bears a
strong resemblance to the procedure implemented in SPEA2, but there
are a few differences. First, this procedure calculates a fitness value only
from the distances of the neighbour solutions. Second, these neighbour
solutions are chosen based solely on the crowding distance whilst in
SPEA2 a fixed set of the nearest K solutions is used.

3.2.1 The Evolutionary Algorithm SFGA2.

SFGA had to be changed accordingly to take into account the new pro-
cedure for maintaining the diversity. In its new version, the size of the
population (N) is kept constant among generations. At the end of each
generation, from this population, only the best N solutions according to
the fitness value, will be selected to survive to the next generation. As the
original SFGA, only the non-dominated solutions are taken into account
to generate the offspring or to be taken onto the next generation. The new
SFGA2 can be found in Algorithm 3.6:

However, the description of SFGA has required more space than the
descriptions of NSGA-II and SPEA2, SFGA-2 runs much faster then they
do, as it will be seen in the next section.
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Algorithm 3.5: Procedure for maintaining diversity
Input:

C - Set of input solutions
N - Number of input solutions in C
Nout - Number of output solutions
δcr - Crowding distance
α - The random factor

Output:
Cout - Set of output solutions

Let m be the number of objective functions to optimize.1

begin2

Build ZNxN : Zi,j = Zj,i = distance(Si, Sj)3

foreach solution Si ∈ C do4

H(Si) =
{

Sj : distance(Si, Sj) < δcr ∀j, 1 ≤ j ≤ N ∧ j 6= i
}

5

D(Si) =
∑

Sj∈H(Si)
distance(Si ,Sj)

|H(Si)|6

λi = D(Si)
|H(Si)|7

if i mod m = 0 then8

λi = λi ∗ random(α, 1− α)9

end10

end11

Sort C in descending order according to fitness values.12

Cout ← Nout first solutions of C13

Select the Nout first solutions as the output set.14

end15

3.3 Results

In order to compare the performance of the new algorithm along with the
other MOEAs, two multi-objective functions will be used: the first test
function has two objective functions whereas the second one has three
objectives to optimize. As we are interested only in the multi-objective
part of the optimization process, the test functions are not required to
show any dynamical behaviour. Thus, the chosen test functions are just

86



3. SFGA2: An improved version of SFGA

Algorithm 3.6: SFGA2
Input:

CN
in - Input population

N - Number of solutions in the population P
Output:

CN
out - Output population

begin1

PN
temp ← CN

in2

while stop criterion is not reached do3

PN
of fspring ← PN

temp after applying the crossover and4

mutation operators5

Evaluate PN
temp and PN

of fspring6

|ND2N
t | ← non-dominated{PN

temp ∪ PN
o f fspring}7

if |ND2N
t | > N then8

foreach s ∈ ND2N
t do9

Calculate fitness for s with (Eq. 3.5)10

end11

PN
temp ← best N solutions according to λi12

else13

PN
temp ← ND2N

t14

Fill PN
temp with N − |ND2N

t | random solutions from15

PN
temp ∪ PN

of fspring

end16

end17

CN
out ← PN

temp18

end19

stationary versions of the dynamic functions FDA1 and FDA4 that can be
seen in further detail in Section 2.5.

The parameters used for all the MOEAs are compiled in Table 3.1. The
measures that will be used here are those which treat mainly with the
multi-objective nature of optimization algorithms. Namely, hypervolume
indicator, spacing, IGD and closeness will be used. They are explained in
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3.3. Results

Table 3.1: Parameters used in the tests
FDA1 FDA4

Population size 100 500
Number of generations 500 1000
Number of independent runs 30 30
Mutation rate 0.015 0.002
Crossover rate 0.8 0.8
Crowding distance 0.015 0.075

more detail in what follows:

• The hypervolume indicator (Zitzler et al., 2000) is a measure which
gives the area covered by a given approximation set from a refer-
ence point.

• Spacing (Coello et al., 2007) gives a measure of how well the solu-
tions from the approximation set are spaced.

• IGD, Inverted Generational Distance, gives the distance to every so-
lution from a subset of the real Pareto front to the nearest solution
in the approximation set. IGD is used only for the two-dimensional
test function.

For the three-dimensional test function instead of using IGD, a more
straightforward measure will be used. Due to the fact that the FDA4
function corresponds to one octave of the sphere of radius one with center
in the origin, there is a simple way to calculate how close are the solutions
from the approximation set to the real Pareto front. The real Pareto front
is comprised of all points whose Euclidean distance to the origin equals
one. Thus, closeness is obtained in the following way:

Closeness =
|A|

∑
i=1
{||Si|| − 1} (3.6)

where A is the approximation set and Si is the i-th solution from A and
||Si|| is the norm of Si.
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To have a significant level of statistical confidence on the obtained re-
sults, the algorithms are run thirty times, and each time the population
is randomly created and a new random seed is set. Once the algorithms
have been run, the afore-mentioned performance measures are calculated
for each approximation set. For every performance measure a boxplot is
used to summarize the statistical indicators for every algorithm. Then,
the analysis of variance (ANOVA) procedure is run on the data for the
four algorithms in order to check if it is possible to reject the null hy-
pothesis, which means that the data from the four groups come from the
same source. If the ANOVA p-value on the four data groups allows us
to reject the null hypothesis with a certain confidence level (smaller than
0, 05) then we have to differ which groups show also statistical significant
difference but compared in pairs.

In order to do these pairwise comparisons, the Tukey’s HSD (Hon-
estly significant difference) post-hoc test (Scheffé, 1999) is the most com-
monly used test. HSD test is preferred over other pairwise statistics (such
as Bonferroni tests) because it produces less type I errors (Scheffé, 1999).
If the ANOVA is negative (the p-value is above our desired confidence
level of 0,05), then further inference on the data will not be possible.
ANOVA can be used because after thirty independent runs the results
gathered from the algorithms are supposed to follow a normal distribu-
tion (Demšar, 2006). If the results distribution would not be normal, then
other kind of statistics should have to be used instead of ANOVA. De-
tailed discussion for those cases is offered in Demšar (2006) and García
and Herrera (2008).

3.3.1 Stationary FDA1.

Firstly, the algorithms are tested on a two-dimensional problem which is
the stationary version of the FDA1 problem. The first performance mea-
sure used in the results for FDA1 is the hypervolume indicator (Zitzler
et al., 2000). Figure 3.3 shows the boxplots for the four different algo-
rithms.

ANOVA tells us that the obtained results for hypervolume are signif-
icant enough to discard the null hypothesis that all the data come from
the same source.

Then, six pairwise Tukey’s HSD post-hoc tests are carried out on the
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Figure 3.3: Hypervolume for stationary FDA1 problem. Bigger is better.

data. The results from these tests are compiled in Table 3.2. It can be seen
that all the results are significant among themselves.

Therefore, conclusions from the observed results can be inferred for
all the pairwise combinations of the four algorithms. Hence, we can say
that SPEA2 is the algorithm that performed best for stationary FDA1.
The other algorithms followed SPEA2 closely, and the difference between
them is quite small. Namely, SPEA2 was better than SFGA2 by only 2%.

Next, the spacing measure is employed to know how well spaced the
distributions of the solutions are. A summary of the main statistical
measures for these data is shown in the boxplots in Figure 3.4. Again,
ANOVA is run over the four data groups, and it allows us to reject the
null hypothesis with p << 0.001.

In this case, the post-hoc tests (Table 3.3) found significant differences
between all the possible pair combinations except for the pair between
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Table 3.2: HSD post-hoc tests for hypervolume for FDA1

Pair compared Difference HSD0.05 Significant

SFGA - SFGA2 0.00122540 0.00109259 YES
SFGA - SPEA2 0.00914753 0.00109259 YES
SFGA - NSGA-II 0.00495563 0.00109259 YES
SFGA2 - SPEA2 0.01037290 0.00109259 YES
SFGA2 - NSGA-II 0.00618103 0.00109259 YES
SPEA2 - NSGA-II 0.00419190 0.00109259 YES

Figure 3.4: Spacing measure for stationary FDA1 problem. Bigger is bet-
ter.

SFGA2-SPEA2. On the light of these Tukey’s HSD results, we could not
state that SPEA2 did better than SFGA2 did and further study should
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have to be done with other statistics or more runs should be added to
our study. But even with the result for that pairwise comparison, we
can conclude that SFGA performed better than the other three algorithms
and NSGA-II was the algorithm that did worst. Again, the differences
between the algorithms are very small and other factors should be taken
into account before choosing which algorithm to use.

Table 3.3: HSD post-hoc tests for spacing for FDA1

Pair compared Difference HSD0.05 Significant

SFGA - SFGA2 0.00736523 0.00325957 YES
SFGA - SPEA2 0.00504176 0.00325957 YES
SFGA - NSGA-II 0.01178540 0.00325957 YES
SFGA2 - SPEA2 0.00232347 0.00325957 NO
SFGA2 - NSGA-II 0.00442014 0.00325957 YES
SPEA2 - NSGA-II 0.00674361 0.00325957 YES

The last performance measure used with FDA1 is IGD. The obtained
results are summarized in the boxplots shown in Figure 3.5.

The result of ANOVA indicates that there is enough significance to
reject the null hypothesis. Because the null hypothesis can been rejected,
the Tukey’s HSD post-hoc tests are run for the IGD results and the HSD
outcomes are shown in Table 3.4.

Table 3.4: HSD post-hoc tests for IGD for FDA1

Pair compared Difference HSD0.05 Significant

SFGA - SFGA2 0.000896259 0.000835398 YES
SFGA - SPEA2 0.003289890 0.000835398 YES
SFGA - NSGA-II 0.002767660 0.000835398 YES
SFGA2 - SPEA2 0.004186150 0.000835398 YES
SFGA2 - NSGA-II 0.003663920 0.000835398 YES
SPEA2 - NSGA-II 0.000522230 0.000835398 NO

It can be seen that the pair SPEA2 and NSGA-II is not comparable and
no conclusion can be drawn between themselves. In spite of that we can
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Figure 3.5: IGD measure for stationary FDA1 problem. Smaller is better.

state that SPEA2 and NSGA-II behaved better than SFGA and SFGA2.
Also, it can be said that although SPEA2 did better than SFGA and SFGA2
even though the boxplots show that the SPEA2 results suffered from a
high standard deviation. Again, the results did not differ greatly from
one algorithm to the other ones. These results for hypervolume, spacing
and IGD will be evaluated as a whole along with the time employed by
each algorithm at the end of this chapter, after seeing some performance
measures on the stationary FDA4 problem.

3.3.2 Stationary FDA4.

In this case, the test function is the three-dimensional function FDA4
fixed to a stationary state where τ = 0 for all the generations and all
runs.
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The hypervolume indicator gave the results summarized in the box-
plots shown in Figure 3.6.

Figure 3.6: Hypervolume for stationary FDA4 problem. Bigger is better.

Once more, ANOVA allows us to reject the null hypothesis. There-
fore, the pairwise post-hoc tests are calculated for the hypervolume indica-
tor and their corresponding results are shown in Table 3.5.

These results tell us that with a confidence level of p << 0.05 we can
infer conclusions for all the pairwise comparisons from the data groups
available to us. Hence, we can conclude that SFGA2 was the algorithm
that performed best of all. In addition, SPEA2 and NSGA-II also per-
formed well and their results are located close to the SFGA2 results. On
the other hand, SFGA did poorly on FDA4 with regard to the hypervolume
indicator.

The following measure used with FDA4 is closeness. In this case, close-
ness is calculated in a very straightforward way because the Pareto front
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Table 3.5: HSD post-hoc tests for hypervolume for FDA4

Pair compared Difference HSD0.05 Significant

SFGA - SFGA2 0.1476520 0.0159358 YES
SFGA - SPEA2 0.0978277 0.0159358 YES
SFGA - NSGA-II 0.1263000 0.0159358 YES
SFGA2 - SPEA2 0.0498246 0.0159358 YES
SFGA2 - NSGA-II 0.0213525 0.0159358 YES
SPEA2 - NSGA-II 0.0284721 0.0159358 YES

is one octave of the sphere with radius one. The closeness values obtained
for the different runs of each algorithm are summarized in the statistical
indicators shown in the boxplots from Figure 3.7.

Figure 3.7: Closeness for stationary FDA4 problem. Smaller is better.
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After applying ANOVA the null hypothesis that all the means for the
closeness performance measure are equal can be rejected. Now, it is turn
for the Tukey’s HSD post-hoc tests for pairwise comparisons among all
the algorithms. The results of these post-hoc tests are gathered in Table
3.6.

Table 3.6: HSD post-hoc tests for closeness for FDA4

Pair compared Difference HSD0.05 Significant

SFGA - SFGA2 0.00375564 0.0019481 YES
SFGA - SPEA2 0.00198469 0.0019481 YES
SFGA - NSGA-II 0.00886471 0.0019481 YES
SFGA2 - SPEA2 0.00574033 0.0019481 YES
SFGA2 - NSGA-II 0.00510906 0.0019481 YES
SPEA2 - NSGA-II 0.01084940 0.0019481 YES

From the results contained in Table 3.6 we can freely infer conclusions
for any pair of algorithms, because all passed the Tukey’s HSD tests. Con-
sequently, it can be said that SPEA2 was the algorithm that performed
best among all the analysed algorithms. In addition, SPEA2 was a clear
winner with respect to the closeness performance measure for FDA4.

The last performance measure used with the stationary FDA4 func-
tion is spacing. For spacing the statistical summaries are provided by the
boxplots from Figure 3.8.

Once more ANOVA rejects the null hypothesis and Tukey’s HSD
post-hoc tests are carried out on the data. The results of these post-hoc
tests can be found in Table 3.7.

In this case an interesting situation arises. Firstly, we can conclude
that, according to the spacing measure, SFGA was the best algorithm with
a clear distance to the other three competing algorithms. But this is only
according to the spacing measure. The reason behind this result is that
SFGA did so bad with the three-dimensional problem, as seen in the hy-
pervolume indicator in Figure 3.6, that the solutions provided by SFGA
were so far from the real Pareto front that they are also far among them-
selves and so the spacing measure gives a higher value.

Then we can turn our attention to the other three algorithms. From
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Figure 3.8: Spacing for stationary FDA4 problem. Bigger is better.

Table 3.7: HSD post-hoc tests for spacing for FDA4

Pair compared Difference HSD0.05 Significant

SFGA - SFGA2 0.01581230 0.00206973 YES
SFGA - SPEA2 0.01729440 0.00206973 YES
SFGA - NSGA-II 0.01893350 0.00206973 YES
SFGA2 - SPEA2 0.00148203 0.00206973 NO
SFGA2 - NSGA-II 0.00312120 0.00206973 YES
SPEA2 - NSGA-II 0.00163916 0.00206973 NO

Table 3.7 we know that conclusions cannot be extracted for the pair-
wise comparisons between SFGA2 and SPEA2, and between SPEA2 and
NSGA-II, respectively. Fortunately, the pair SFGA2 - NSGA-II has passed
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the HSD post-hoc test. Hence, a conclusion can be made stating that
SFGA2 performed better than NSGA-II with respect to the spacing per-
formance measure.

Run-time of the algorithms

On the light of the results shown above it could be said that the best per-
forming algorithm for FDA1 is SPEA2. But we should take into account
one more factor before stating a firm conclusion.

Due to the fact that the algorithms are to be used to optimize dynamic
problems, it seems reasonable to look at how much time was employed
by each algorithm to complete the same task, namely to optimize the
given problem with a fixed population and a fixed number of iterations
for thirty independent runs. Figure 3.9 shows the amount of time, in
minutes, that each algorithm employed for the afore-mentioned assigned
task.

On the contrary, it could not be said that one of the shown algorithms
is better than the others according to most of the performance measures
used. While SFGA2, was the best for spacing2, it was SPEA2 the algo-
rithm that got the best closeness values. But for hypervolume the best re-
sults were obtained by SFGA2 and NSGA-II. At this moment, we proceed
to take into account the time, shown in Figure 3.10, that each algorithm
needed to complete the same task.

From Figure 3.9 it can be seen that the runtime shown by SFGA and
SFGA2 is certainly smaller than the time that SPEA2 or NSGA-II needed
to complete the same task. This difference in runtime is even more clear
in Figure 3.10 where NSGA-II has a much longer runtime than SPEA2.
At the same time, SPEA2 is considerably slower than SFGA2.

3.3.3 Conclusion from the Results.

From the results that have been offered in the previous subsection it is
possible to claim that SFGA2 is a better algorithm than SFGA for prob-
lems with more than two objective functions. This has been shown by the

2It is has been noted already that SFGA was the best for spacing but that this result
was not relevant due to problems that SFGA showed with the other measures.
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Figure 3.9: Times for stationary FDA1 problem.

results for the stationary FDA4 problem. In addition, SFGA2 did not per-
form worse than SFGA for the two objective problem. Hence, we have
succeed in designing an improved version of SFGA to deal with three or
more objective problems while not worsening the results for two dimen-
sional problems.

Furthermore, taking into account our goal to use these algorithms in
a dynamic optimization scenario SFGA2 has proved itself a decent com-
petitor for the state-of-the art algorithms SPEA2 and NSGA-II. The rea-
son behind this is that although SPEA2 and NSGA-II together got slightly
better performance results than SFGA2, the latter did not so badly in the
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Figure 3.10: Times for stationary FDA4 problem.

performance measures. On the other hand, SFGA2 employed much less
time than SPEA2 and NSGA-II did to complete the runs. This means that
in dynamic environments where the algorithms usually need to deal with
tight time restrictions, SFGA2 is a better option because it could produce
quite good solutions while it would be expected to fulfil the most restric-
tive time limits.
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3.4 Summary

In this chapter, a new improved version of the SFGA algorithm has been
proposed. This new version, called SFGA2, has been improved to deal
better with problems with more than two objective functions. Both al-
gorithms, SFGA and SFGA2, have been tested for two test cases along
with two state-of-the-art multi-objective optimization algorithms: SPEA2
and NSGA-II. The results from these tests have shown that even though
SFGA2 was not the best performing algorithm, it showed a quite good
behaviour with regard to the performance measures used while complet-
ing all the tests in much less time that the two state-of-the-art algorithms.

Due to the importance that time plays in dynamic optimization prob-
lems, we believe that SFGA2 is a serious alternative to SPEA2 and NSGA-
II for those kind of problems.

Contributions

The improvements to SFGA that led to the development of the new
SFGA2 and that have been shown throughout this chapter have been al-
ready published in the literature (Cámara et al., 2008a, 2007a).

Next Chapter

The next chapter is dedicated to analyse the different ways of paralleliz-
ing the processing of MOEAs. Moreover, two procedures are proposed.
Afterwards, these two procedures are compared side-by-side.
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“Learning without thinking
is useless; thinking without
learning is dangerous.”

Confucius

4
Parallel Procedures for Dynamic

Multi-objective Optimization

IN this chapter two parallel processing approaches for MOEA are in-
troduced and reviewed. The first one is called pdMOEA and it is
a hybrid procedure where some processes behave like workers but

others behave as master processes. The second approach is a fully dis-
tributed procedure where all the optimization is carried by independent
workers. In our work, data decomposition has been applied as we con-
sider this alternative more attractive.

An introduction to parallel procedures used for solving multi-
objective optimization problems by means of evolutionary algorithms
can be found in Section 4.1. Afterwards, some theory to analyze the
speedup provided by multi-objective parallel procedures is given in Sec-
tion 4.2. In Section 4.3, the details about the pdMOEA procedure are
provided. Then, the fully distributed method, pdMOEA+, is outlined in
Section 4.4. Finally, results about the features and performance of these
two procedures can be found in Section 4.5.
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4.1 Approaches to Parallelism for MOEAs

Parallel processing can be useful to efficiently solve dynamic optimiza-
tion problems with evolutionary algorithms (van Veldhuizen et al., 2003;
Luna et al., 2006), not only by improving the quality of the solutions
found but also by speeding up the execution times. Here, we explore
the benefits of parallel processing in multi-objective dynamic problems.

Two decomposition alternatives are usually implemented in parallel
evolutionary algorithms: functional decomposition and data decomposi-
tion.

The functional decomposition techniques identify tasks that may be
run separately in a concurrent way. The data decomposition techniques
divide the sequential algorithm in different tasks that are run on different
data (i.e. the individuals of the population). Moreover, hybrids methods
are also possible.

In an evolutionary algorithm, the evaluation of the objective func-
tion and the application of operators to the individuals of the population
can be independently done for each individual. This allows data paral-
lelization without modifying the convergence behavior of the sequential
algorithm. The fitness evaluation for each individual in the population is
usually the part with the highest computational cost. This is mainly true
in non-trivial optimization problems, with big sized populations and/or
individuals codified with complex data structures that require big com-
putation times.

As a consequence, the most usual parallelization scheme is to eva-
luate concurrently the individuals, usually with a master-worker im-
plementation in which every worker process evaluates a different and
unique group of individuals, returning the fitness values to the master
process which continues with the rest of the algorithm steps.

It is useful to review the different types of parallelization available for
MOEAs (Alba, 1999; Tomassini, 1999; Cantu-Paz, 2000).

• Master-worker. As it has been said, in this approach there is a master
process which is in charge of performing some or all the operations
on the whole population. In addition, the worker processes carry
some or all operations but only on a fraction of the population. In
Figure 4.1 this scheme is outlined.
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• Island. This is a coarse-grained distributed model, where all the pro-
cesses carry all the operations but only on some part of the whole
population. In this model, the processes can interchange some of
their solutions with the neighbour processes. Figure 4.2 depicts the
island approach.

• Cellular or diffusion. This is a fine-grained distributed model, in
which every process hold only one solution of the population.
Again, it is a common practice that cellular processes swap their
solution with the solution in one of their neighbours.

  

Master

Population = N*P

Worker 1

Population = N

Worker 2

Population = N

Worker P

Population = N

Send/Receive sub-population P

Send/Receive sub-population 2

Send/Receive sub-population 1

.

.

.

.

.

.

Figure 4.1: Scheme of master-worker processing for MOEAs.

In addition to these models, it is possible to develop algorithms that
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Worker 1

Population = N

Worker 2

Population = N

Worker P - 1

Population = N
.   .   .

.

.

.

Worker P

Population = N

Worker s
2 < s < P - 1

Population = N

Figure 4.2: Scheme of island processing for MOEAs.

show a hybrid behaviour, where the parallelization changes between
master-worker and island during the execution of the program.

Returning back to the master-worker model, if the individuals are dis-
tributed in a balanced way there could be linear speedups, but unless the
evaluation of the solutions require a high computation time, the costs
associated with the distribution of the data structures between the pro-
cessors and the communication of the results may considerably decrease
the efficiency of this kind of parallel procedures.

The selection of individuals and the diversity maintenance operations
require comparisons that imply the whole population or a big part of it.
This means that data parallelization at this level, specially in the case
where there is not any mechanism to share information among the pro-
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cesses about the fitness of the individuals, modifies the behaviour of the
algorithm with regard to the sequential version. Usually, it is difficult
to predict the behaviour of this kind of parallelization and must be eval-
uated for each particular implementation. The initial population is di-
vided into sub-populations associated to different search spaces which
are evolved separately. Sometimes, individuals can be exchanged be-
tween the sub-populations (migration). This kind of parallelization could
improve the diversity of the population during the algorithm conver-
gence and lead to algorithms with better performance than the sequential
versions. So, together with the advantages due to the bigger availability
of memory and CPU, the evidences of bigger efficiency and diversity in
the population justify the use of parallelism in the field of evolutionary
algorithms.

Moreover, in multi-objective optimization the different objectives and
the Pareto dominance relations have to be evaluated (de Toro et al., 2004;
van Veldhuizen et al., 2003). As it has been said, the calculation of the
Pareto dominance relations requires, most of the time, statistics of the
whole population. Besides, the computational bottleneck in most of the
applications is the evaluation of the set of objective functions, which may
be parallelized by means of distributing the objective functions among
processors, or with a hybrid approach in which each processor evaluates
a subset of functions for a subset of the population.

After the evaluation of the objective functions, the algorithms with
Pareto front-based selection usually calculate dominance and the corre-
sponding distances as part of the mechanism for keeping diversity. This
mechanism is implemented in each case, as a previous step to assign fit-
ness values to each individual and to select the parents. The paralleliza-
tion of these tasks is not easy. For example, problems appear in algo-
rithms that usually work with small populations, PAES (Knowles and
Corne, 1999), in algorithms where the calculation of distances must be
done sequentially after the determination of dominance relations, PSFGA
(de Toro et al., 2004), or in those algorithms where the calculation of dom-
inance relations and distances, and the selection take place at the same
time, NPGA (Horn and Nafpliotis, 1993).
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4.2 A Model for Speedup Analysis

Roughly speaking, dynamic multi-objective optimization can take ad-
vantage of parallel processing in a similar way that stationary multi-
objective optimization does. This includes the possibility of speeding up
the capacity of the algorithm reaction. This, parallel processing reduces
the time required to provide a set of non-dominated solutions near to the
Pareto front earlier. Thus, dynamic optimization could also cope with
problems with faster change rates.

In what follows, a model is proposed to understand these benefits.
The time that a sequential evolutionary algorithm for multi-objective op-
timization requires is:

Ts = gen× ((AMt0) + (BMrt1))

and the time for a given parallel version executed on P processors is given
by:

Tp = genser× ((AMt0) + (BMrt1)) +
genpar× ((A(M/P)t0) + (B(M/P)rt1)) + O(M, P)

In these expressions, M is the number of individuals in the popula-
tion, t0 is the time required by the genetic operators (crossover, mutation,
etc.), and t1 is the time required by the multi-objective algorithm to deter-
mine the Pareto front and maintain an adequate distribution of individ-
uals across it. The complexity of these operations is taken into account
through the parameter r.

The parameters A and B determine the relative weight of terms de-
pending on M and Mr, respectively. In Ts, parameter gen is the num-
ber of generations executed by the sequential algorithm. The parameters
genser and genpar in Tp correspond, respectively, to the number of gen-
erations executed in a master processor and in each of the worker pro-
cessors where the population has been divided into (M/P) individuals.
If genser = 0, an island model is used to parallelize the algorithm, while
if genser > 1, we have a master-worker procedure. For example, we can
set different values for genser and genpar in our parallel procedure to
implement an island model that allows the communication among the
sub-populations through a master. The term O(M, P) corresponds to the
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communication cost: it depends on the amount of individuals that pro-
cessors exchange (a function of M) and on the number (and communi-
cation topology) of processors that have to communicate themselves (a
function of P).

Figure 4.3: Different speedups behaviours.

This simple model allows us to explain different speedup (S = Ts/Tp)
behaviours (Alba, 2002). Thus, if genser + genpar < gen it is possible
to observe super-linear speedups (as in curves 1 and 2 of Figure 4.3).
This situation could appear whenever the parallel evolutionary algo-
rithm provides, for example, better diversity conditions than the sequen-
tial implementation and a lower number of iterations is required by the
parallel algorithm to get a solution with similar quality that the one ob-
tained by the sequential algorithm.

Moreover, the effect of the communication cost can be also taken into
account. Thus, in Figure 4.3, as the number of processors P increases, the
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speedup is lower in curve 2 than in curve 1, the communication cost is
higher for curve 2, although in this curve genpar is higher and genser +
genpar is lower than in curve 1. In Figure 4.3, curve 3 corresponds to a
case where genser + genpar > gen.

In Alba (2002), the following taxonomy is proposed for speedup mea-
surements in evolutionary algorithms:

• Class I. Strong speedup.

• Class II. Weak speedup:

A. Speedup with solution-stop.

(a) Versus panmixia.
(b) Orthodox.

B. Speedup with predefined effort.

This taxonomy distinguishes between the Class I or strong speedup
measurements, which compare the execution times of the parallel evo-
lutionary algorithms and the better known sequential algorithm for the
problem at hand; and the Class II measurements that compare the paral-
lel algorithm with its own sequential version executed in only one pro-
cessor. Inside the Class II measurements, it is also possible to distinguish
between other two types of measurements according to the way the algo-
rithm finishes. The group A includes the measurements obtained if the
algorithms finish when solutions of similar qualities are found by both,
the parallel and sequential algorithms.

Whenever the measures are obtained by setting a similar number of it-
erations for the sequential and the parallel algorithms we have the group
B of measurements. As it can be seen, in the performance model de-
scribed in this section the speedup measurement considered belong to
the class II and group B because the number of iterations to complete
was the same for the sequential and parallel algorithms. Although in
Alba (2002), the author does not recommend using that kind of speedup
measurement, we have observed in our experiments that the quality of
the solutions does not worsen significantly when the stopping criterion
is a fixed number of iterations whilst, on the other hand, the speedup
achieved is easy to calculate.
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4.3 A Generic Parallel Procedure for Dynamic Multi-
objective Optimization

The parallel procedure here described is shown in Algorithms 4.1 and
4.2, master and worker, respectively. It is a parallel algorithm for multi-
objective optimization that applies an island model along with a master
process that divides the population to send sub-populations of the same
size to each worker process. For comparison purposes, the parallel algo-
rithm has been generalized in order to be able to run and test different
multi-objective evolutionary algorithms.

In this generalized version, every worker searches with the chosen
multi-objective evolutionary algorithm (MOEA) the optimal solutions in
the search space that has been assigned to it and keeps only those solu-
tions that are not dominated by the others. In this first version, workers
share the same search space.

After a fixed number of iterations (genpar), the workers send the so-
lutions found to the master, who after gathering all the solutions into a
new population, runs an instance of the MOEA (along genser iterations)
over the whole population before sending new sub-populations again to
the worker processes. The scheme of Figure 4.4 summarizes the way the
parallel procedure works.

The use of this generalized parallel dynamic MOEA (pdMOEA) in
DMO allows either the execution of more optimization iterations (genser
or genpar) for a given amount of time (thus exploring more search space
and improving the quality of the solutions found), or to speed up the con-
vergence (thus allowing the approach to dynamic problems with higher
rates of change).

The EAs are implemented with all the required initialization code out-
side the main function in order to offer a continuous model of execution,
where the population used in the last generation will be intact for the
next generation. Furthermore, each MOEA implementation may differ
in which sub-population is sent; for example, depending on the imple-
mented algorithm it can be an exact copy of the current population or
a copy of the algorithm archive, but for simplicity in Algorithm 4.1 it is
represented just as SPi.
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Algorithm 4.1: Master process

begin
Initialize Population of size N
for i = 1 to P workers do

Send the i-th sub-population, SPi of size Population/N,
from Population to the i-th worker

end
t = 1
repeat

for i = 1 to P workers do
Receive the sub-population SPi from the i-th worker
Insert SPi into Population

end
Execute the chosen MOEA on Population for

genser iterations
if (t mod τt) = 0 then

Gather statistics of the current time span
end
Divide Population among sub-populations SPi

for each worker Pi
for i = 1 to P workers do

Send the sub-population SPi to the i-th worker
end
t = t + 1

until stop criterion is reached
end

4.4 A Fully Distributed Procedure for Dynamic
Multi-objective Optimization

It has been seen that the master-worker paradigm provides reasonable
levels of speedup, even super-linear ones, but that it suffers from a bot-
tleneck in the communication and processing costs at the master process.
Due to this, researchers have tried to develop a fully distributed algo-
rithm for multi-objective optimization.
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Algorithm 4.2: Worker process

begin
while true do

Receive the sub-population from the master process
Execute the chosen MOEA on sub-population for

genpar iterations
Send the sub-population to the master process

end
end

But this task is not as easy to achieve as it could be in other kind of
optimization algorithms. The reason is that multi-objective optimization
behaves better when the underlying algorithm is searching in a set of
tentative solutions at the same time. But due to the fact that in a fully
distributed algorithm the processes should work independently, an is-
sue arises on how to redistribute the search space. There are two basic
options:

1. Every process uses the whole search space. This option is similar to
run the sequential algorithm a number of times equal to the number
of workers.

2. Every process explores a given part of the search space.

The second option is the ideal one, because it would allow the best use
of the resources avoiding that more than one process is searching on the
same area. However, it is also very hard to develop a working procedure
that enforces that each process is searching only on a specifically limited
and independent area.

There is also a hybrid approach where every process tries to focus on
an area while overlapping between processes is allowed but somehow
discouraged.

The second approach is fairly possible when a cellular algorithm is
employed (Alba et al., 2007), because every process is working on only
one solution at any time. But even in this case it is difficult to restrict the
search area of every process.
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Figure 4.4: Scheme of the pdMOEA operation.

Some researchers have tried to find an elegant and practical way to
deal with that mixed approach where processes focus on some part of
the search space but some overlapping may occur. Although the overlap
should be minimum.

In Deb, Zope, and Jain (2003), the authors propose an island model
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where while the worker processes search in the decision space, each
worker is limited to a different part of the Pareto front. This restriction
of the objective space is done implicitly by using a guided domination
technique. The main drawback of this approach is that to work properly
it requires to know the shape of the multi-objective problem that is to be
solved.

Another proposal that provides a MOEA able to search at different
space areas is given in Branke, Schmeck, Deb, and Reddy (2004). In it,
the authors proposed to divide geometrically the objective search space
for every process. The problem behind this solution is that this approach
is not good for objective spaces with more than two dimensions.

In Streichert, Ulmer, and Zell (2005), the authors use a similar ap-
proach to the one we will show later. They use a clustering algo-
rithm where after a number of generations the MOEA combines the sub-
populations and clusters them with the K-means algorithm. Then, the
new sub-populations are partitioned and sent to the worker processes.
This framework is also similar to the pdMOEA described earlier in Sec-
tion 4.3 because there is a process where some global computation must
be done.

Finally, Lam T. Bui (Bui, 2007; Bui et al., 2009) proposed to distribute
the load among the processes by using one adaptative sphere inside ev-
ery process. The main difference from this framework and the one we
will propose later is that in Bui’s approach the partition takes place in
the decision space whereas in our approach it is done in the objective
space. In addition, Bui et al use particle swarm optimization algorithms
to guide the spheres in the search space while we use K-means to cluster
the solutions.

As it has been said earlier, we tried to find a framework that allowed
the processes to work wholly independent from a central master process.
This approach can be considered a hybrid of Streichert’s and Bui’s pro-
posals.

The reason to use a cluster algorithm is that we feel that in this way
we could respond to any shape that a problem could have, including
discontinuous fronts. This is so important that some researchers even
relied on the knowledge of the Pareto front (Deb et al., 2003). Moreover,
K-means is a very common clustering algorithm, and its usefulness has
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been proved in many applications (Navarro and Allen, 1997; Chen, Luo,
and Parker, 1998; Kövesi, Boucher, and Saoudi, 2001).

Our proposed distributed algorithm uses a centroid in every process.
The centroids are intended to keep distant enough among themselves.
Firstly, these centroids must be calculated. In order not to depend on the
shape of the Pareto front, a simple calculation is made to place the initial
centroid along the axis of the objective space. Examples of these initial
centroid locations can be found in Figures 4.5 and 4.6. The calculation of
the centroids takes into account objective spaces where the dimensions
can differ in range, for example, f1(x) ∈ [0, 1] and f2(x) ∈ [0, 2].

f1(x)

f2(x)

Figure 4.5: Initial location of the centroids for a 2D problem with 6 pro-
cesses.

Once the initial centroids are calculated, every process allocates a
sphere of the same radius. The goal is to evolve these spheres from those
shown in Figure 4.5 to those shown in Figure 4.7. Firstly, the radius of the
spheres must be adjusted so that every sphere contains some solutions
within it. In order to do this, every process runs the selected MOEA for
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f1(x)

f2(x)

f3(x)

Figure 4.6: Initial location of the centroids for a 3D problem with 7 pro-
cesses.

a small number of iterations, for example 50, and with the solutions ob-
tained after these 50 iterations have been run, the process is able to adapt
the centroid to the nearest solutions with an appropriate radius.

After that, the algorithm is run and the centroid is updated subse-
quently. This is best illustrated in Algorithm 4.3.

In Line 7, the Output ND sentence is meant so that every process
provides the current solutions they have found at that time instant. This
could be done by sending the solutions found to one process that would
gather the solutions from all the running processes and later would print
them into a file. However, with the advanced capabilities found in MPI 2,
such as distributed I/O it is possible that every process outputs directly
their solutions into a file. Certainly, this could determine that some solu-
tions could be dominated by others, but on the other hand, the processes
would run at their fastest pace.

4.5 Results

In this section, both proposed procedures are analysed with regard to
their results in different test cases.
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Algorithm 4.3: Distributed MOEA with K-means
Input:

Iterinitial - The number of initial iterations
Output:

NDout - A set of non-dominated solutions

Initialize the centroid location1

Run chosen MOEA for Iterinitial iterations and obtain ND2

Calculate the centroid radius according to ND3

repeat4

Run the chosen MOEA with the current centroid5

Update the centroid with the last ND6

Output ND7

until stopping criterion is reached8

4.5.1 Results with pdMOEA.

For the sake of the evaluation of DMO algorithms, the FDA set of func-
tions (Farina et al., 2004) has gained the highest relevance among the re-
searchers in this field. In this section, our results are focused only on
FDA1 to FDA5. For full details about the FDA functions and the values
used in this thesis, please see Section 2.5 in Chapter 2.

The experiments were carried out on an 8-node cluster with two 2
GHz AMD Athlon processors and 2 Gbytes RAM by node, connected
via Gigabit Ethernet. The code is implemented in C++ with MPI. SPEA2
and NSGA-II were added anew from the implementations kept in the au-
thors’ sites. Experiments that were run in other platforms showed simi-
lar results to the ones that are shown in this section (Cámara and Ortega,
2007).

The data shown in the tables has been gathered after running the par-
allel procedure in 1, 2, 4 and 8 worker processors for each of the MOEAs:
SFGA, SFGA2, SPEA2 and NSGA-II; see Chapter 3 for more details about
these algorithms. The MOEA parameters were set to the following va-
lues:

• master population = 800 individuals
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f1(x)

f2(x)

Figure 4.7: Locations of the centroids after some iterations for a 2D prob-
lem with 6 processes.

• crowding distance (SFGA and SFGA2), 0.0075

• ηc = 15

• ηm = 20

• Mutation probability = 1/(number of decision variables)

• Crossover probability = 0,75

• MOEA iterations: in the workers genpar = 150 and in the master
genser = 50

• Five runs were made for each algorithm and number of workers

Due to the long running time of some of the MOEAs, only data from
τi = 1 to τi = 20 has been taken into account. τi is the parameter for the
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FDA functions that says the time instant where the function evaluation
takes place. In addition, there is the τT parameter which sets the time
period in that a function remains stationary. In all our examples, we use
τT = 5. Thus, every five time instants, there is a change in the current
Pareto set (Farina et al., 2004) and the solutions should be recalculated.

Table 4.1: Cumulative time and speedup for FDA1 (pdMOEA)

Algorithm Workers Time when τi equals Speedup
10 15 20 (τi = 20)

SFGA

1 23,9±0,1 36,6±0,3 49,3 ± 0,3 1
2 22,9±0,6 34,4±0,7 46,3 ± 0,8 1,1
4 14,1±0,2 21,3±0,2 28,5 ± 0,3 1,7
8 8,4±0,2 12,7±0,1 17,0 ± 0,1 2,9

SFGA2

1 16,1 ± 0,5 28,8 ± 0,6 44,9 ± 0,8 1
2 11,9 ± 0,4 22,4 ± 0,7 35,2 ± 0,7 1,3
4 11,2 ± 0,2 18,7 ± 0,2 26,3 ± 0,3 1,7
8 7,4 ± 0,1 11,4 ± 0,1 15,5 ± 0,1 2,9

SPEA2

1 657,4 ± 4,6 987,6 ± 6,5 1318,3 ± 9,4 1
2 190,2 ± 6,6 285,8 ± 9,9 381,3 ± 13,1 3,5
4 114,8 ± 1,1 172,9 ± 1,7 230,6 ± 2,1 5,7
8 92,7 ± 0,4 139,6 ± 0,6 186,3 ± 0,9 7,1

NSGA-II

1 500,9 ± 28,8 742,9 ± 33,1 987,1 ± 52,3 1
2 183,0 ± 12,3 273,1 ± 19,3 364,4 ± 27,6 2,7
4 103,2 ± 3,0 155,1 ± 4,6 208,0 ± 7,6 4,6
8 65,8 ± 1,2 90,9 ± 1,5 121,5 ± 2,2 8,1

Table 4.1 shows the cumulative time of the execution of the algo-
rithms for different number of worker processes. The resulting speedups
reached by the parallel algorithm is shown in the last column. In order to
allow the biggest stability in the algorithms, Table 4.1 reflects the speedup
achieved by each algorithm after completing 20 time instants of the func-
tion, i.e. τi = 20. It can be seen in Table 4.1 that super-linear speedup was
achieved for some runs of SPEA2 and NSGA-II.

This behaviour can be explained by the model proposed in Section
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4.2. The communication cost modelled in this case is linear with the
number of processors, P. As the parallel algorithm allows more diver-
sified populations, it has much to do with the achieved improvement in
the performance, particularly with the observed super-linear behaviour.

2 4 6 8
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SFGA
SFGA2
SPEA2
NSGA-II

Figure 4.8: Speedup of the different MOEAs.

As it can be seen from Figure 4.8, the speedup curves seem to grow
constantly as the number of processors grows. From the speedup model
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Figure 4.9: Cumulative times of the different MOEAs in semi-log scale.

presented in Section 4.2,

S =
Ts

Tp
=

Ts

Tp,master + Tp,workers + O(M, P)

=
gen× Ts0(

genser× Ts0 + genpar× Tp0
)
+ O(M, P)

,

where Ts0 = AMt0 + BMrt1

and Tp0 = A× M
P
× t0 + B×

(
M
P

)r

× t1.

It is clear that, if the speedup tends to a constant as P grows, the function
O(P, M) also should tend to a constant. This situation agrees with the
communication patterns of our parallel procedure, because although the
number of messages between the master and the workers is proportional
to the number of processors, P, the size of each message tends to 1/P
because the master divides the population among the processors.

Figure 4.8 also shows how the speedups for SFGA and SFGA2, which
are indeed very close to each other, are not as good as the speedups
shown by SPEA2 and NSGA-II. But it should be kept in mind that the
cumulative time needed for the execution of NSGA-II and, especially,
SPEA2 are, by far, bigger than the time needed by SFGA and SFGA2. This
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is best seen in Figure 4.9, where a semi-log scale has been used to rep-
resent the run times employed by the afore-mentioned algorithms until
they fulfilled the execution for τi = 20. It shows that the SFGA family al-
gorithms differ in more than one order of magnitude to the times needed
by the SPEA2 and NSGA-II algorithms.

Table 4.2 shows the number of non-dominated solutions found by
each algorithm. Furthermore, in Table 4.3 there is a compilation of mea-
sures consisting of the number of non-dominated solutions found by each
algorithm divided by the time needed for that algorithm. In Figure 4.10
there is a plot of these values. This measure cannot be used to indicate
whether a certain algorithm is better in terms of quality of the solutions to
a multi-objective problem, be it in diversity of the solutions or closeness
to the actual Pareto set, but on the other hand, this measure can be useful
in DMO. This is because it can indicate a certain advantage of one algo-
rithm over another. The advantage relies on that the superior algorithm
could be able to find more solutions per time unit in comparison with the
other algorithm. Although this advantage does not imply directly that
solutions found by that algorithm had to be better than those found by
other algorithms, having more solutions per time unit is a desired feature
of any algorithm meant to be used in DMO.

From the Figure 4.10 it is clear that our algorithms SFGA and SFGA2
do not expose super-linear speedups when adding more processors.
However, they gave more non-dominated solutions per time unit, which
can be seen as an improvement in data throughput instead of time
speedup (See Table 2.3). It is worth reminding that in DMO it is com-
mon that the algorithm has to meet strict time restrictions, and so, the
possibility of having more solutions in less time it is seen as a preferred
feature and trade-off over that of having more accurate solutions but at
the cost of employing much more time.

Therefore, it is expected that SFGA and SFGA2 can cope with more
restrictive time limits without having to reduce the population because
they have a smaller runtime and produce more solutions per time unit in
comparison to NSGA-II and SPEA2,

In Table 4.4 the quality in terms of the hypervolume (Deb, 2001) of
the solutions found by the different algorithms is shown. Hypervolume
measures the covered area from a given reference point by the solutions
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Table 4.2: Non-dominated solutions for FDA1 (pdMOEA)

Algorithm Workers Non-dominated solutions when τi equals
10 15 20

SFGA

1 118,4 ± 3,9 118,0 ± 4,4 114,8 ± 4,3
2 144,8 ± 5,5 144,4 ± 6,8 142,2 ± 4,3
4 142,0 ± 5,2 144,6 ± 2,8 143,4 ± 1,8
8 138,4 ± 2,5 137,0 ± 2,9 135,6 ± 2,3

SFGA2

1 147,6 ± 4,6 235,4 ± 11,4 310,0 ± 12,1
2 280,6 ± 13,8 385,6 ± 19,1 436,4 ± 3,4
4 290,2 ± 9,2 322,8 ± 7,5 320,8 ± 12,7
8 225,0 ± 15.0 231,2 ± 21.0 230,4 ± 12,4

SPEA2

1 800,0 ± 0,0 800,0 ± 0,0 800,0 ± 0,0
2 800,0 ± 0,0 800,0 ± 0,0 800,0 ± 0,0
4 800,0 ± 0,0 800,0 ± 0,0 800,0 ± 0,0
8 800,0 ± 0,0 800,0 ± 0,0 800,0 ± 0,0

NSGA-II

1 384,8 ± 15,8 374,8 ± 12,6 369,8 ± 15,1
2 366,8 ± 7,5 376,2 ± 11,2 370,0 ± 16,7
4 297,2 ± 11,1 298,8 ± 10,4 300,4 ± 7,2
8 234,2 ± 8,6 234,2 ± 8,1 240,6 ± 5,4

Table 4.3: Number of non-dominated solutions for each unit of time for
FDA1 (pdMOEA)

Workers SFGA SFGA2 SPEA2 NSGA-II

1 2,33 6,91 0,61 0,37
2 3,07 12,41 2,10 1,02
4 5,03 12,20 3,47 1,44
8 8,00 14,91 4,30 1,98

found, so in minimizations problems, like the FDA family are, the hy-
pervolume is to be maximized. It can be seen that the best quality was
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Figure 4.10: Non-dominated solutions per unit of computation time.

attained by the SPEA2 algorithm. This is explained by the fact that this al-
gorithm kept the biggest number of non-dominated solutions, doubling
the number of solutions kept by any other algorithm of this study at any
moment. Anyway, the four algorithms show very good results in terms
of quality, according to the hypervolume indicator. It is important to note
that when more worker processes were added the quality did not worse
and it even improved for the SFGA and SFGA2 algorithms. However, it
cannot be stated that the more workers used, the better the hypervolume.

In what follows Tables 4.5, 4.6, 4.7 and 4.8 are given. Each Table col-
lects, respectively, the Hypervolume, Time, Speedup and number of solu-
tions for each problem, FDA1, FDA2-mod, FDA3-mod, FDA4 and FDA5,
and algorithm, SFGA, SFGA2, SPEA2 and NSGA-II.

As it can be seen from Table 4.5 the hypervolume values obtained by
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the four algorithms for FDA2-mod and FDA3-mod are quite similar with
differences smaller than a 3%. However the best values are attained again
by SPEA2.

It is more important for our research to have a close look to Table
4.6 where it is shown the time until τi for FDA2-mod, FDA3-mod, FDA4
and FDA5 using the four different MOEAs. As it happened earlier for
the FDA1 function, the running times of the SFGA family of algorithms
is always much smaller than the running times of SPEA2 and NSGA-II
algorithms. Two different behaviours can be outlined:

• First of all, for the FDA2-mod and FDA3-mod functions, the SFGA
algorithms are at least one order of magnitude faster than SPEA2
and NSGA-II. This is a very important advantage for the SFGA al-
gorithms in comparison to those state-of-the-art MOEAs. In addi-

Table 4.4: Hypervolume for FDA1 (pdMOEA)

Algorithm Workers Minimum Maximum Average

SFGA

1 0,64 0,64 0,64 ± 0,00
2 0,65 0,65 0,65 ± 0,00
4 0,65 0,65 0,65 ± 0,00
8 0,65 0,65 0,65 ± 0,00

SFGA2

1 0,60 0,65 0,63 ± 0,02
2 0,63 0,66 0,65 ± 0,01
4 0,64 0,66 0,65 ± 0,01
8 0,65 0,65 0,65 ± 0,00

SPEA2

1 0,66 0,67 0,66 ± 0,01
2 0,66 0,66 0,66 ± 0,00
4 0,66 0,66 0,66 ± 0,00
8 0,66 0,66 0,66 ± 0,00

NSGA-II

1 0,65 0,65 0,65 ± 0,00
2 0,65 0,65 0,65 ± 0,00
4 0,65 0,65 0,65 ± 0,00
8 0,65 0,65 0,65 ± 0,00

126



4. Parallel Procedures for DMO

Table 4.5: Hypervolume for FDA2-mod, FDA3-mod, FDA4 and FDA5
(pdMOEA)

Pr
ob

le
m

W
or

ke
rs

SFGA SFGA2 SPEA2 NSGA-II

FD
A

2-
m

od 1 0,77 ± 0,04 0,74 ± 0,04 0,83 ± 0,00 0,81 ± 0,01
2 0,79 ± 0,03 0,77 ± 0,04 0,83 ± 0,00 0,80 ± 0.01
4 0,80 ± 0,01 0,77 ± 0,05 0,83 ± 0,01 0,80 ± 0,02
8 0,80 ± 0,02 0,79 ± 0,03 0,83 ± 0,00 0,80 ± 0,02

FD
A

3-
m

od 1 3,72 ± 0,02 3,70 ± 0,03 3,75 ± 0,00 3,74 ± 0,01
2 3,73 ± 0,01 3,70 ± 0,05 3,75 ± 0,00 3,74 ± 0,01
4 3,73 ± 0,02 3,72 ± 0,02 3,75 ± 0,00 3,74 ± 0,01
8 3,73 ± 0,01 3,73 ± 0,01 3,75 ± 0,00 3,74 ± 0,01

FD
A

4

1 1,09 ± 0,08 1,37 ± 0,00 1,37 ± 0,00 1,38 ± 0,00
2 1,03 ± 0,10 1,37 ± 0,01 1,36 ± 0,01 1,38 ± 0,00
4 1,08 ± 0,08 1,37 ± 0,00 1,36 ± 0,01 1,38 ± 0,00
8 1,13 ± 0,03 1,37 ± 0,00 1,36 ± 0,01 1,38 ± 0,00

FD
A

5

1 5,85 ± 0,09 6,77 ± 0,00 6,03 ± 0,07 6,25 ± 0,00
2 5,93 ± 0,05 6,77 ± 0,00 5,94 ± 0,13 6,25 ± 0,00
4 5,85 ± 0,12 6,75 ± 0,01 5,96 ± 0,12 6,25 ± 0,00
8 5,98 ± 0,03 6,75 ± 0,01 6,07 ± 0,05 6,25 ± 0,00

tion, for these two functions, SPEA2 and NSGA-II are on a par with
respect to the running times.

• Moreover, for the three-objective functions FDA4 and FDA5, the
SFGA algorithms prove themselves as the fastest algorithms. How-
ever, in this case they are only four times faster than SPEA2. It is
important to note that NSGA-II behaves very bad in terms of the
running time for these functions, and once more it is one order of
magnitude slower than the family of SFGA algorithms.

With regard to the speedup, shown in Table 4.7, it can be seen that
the results are similar to those that were obtained for the FDA1 function
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Table 4.6: Running time in seconds until τi = 20 for FDA2-mod, FDA3-
mod, FDA4 and FDA5 (pdMOEA)

Pr
ob

le
m

W
or

ke
rs

SFGA SFGA2 SPEA2 NSGA-II

FD
A

2-
m

od 1 138,3 ± 2,7 64,67 ± 2,3 3087 ± 36 2351 ± 46
2 162,0 ± 3,6 46,18 ± 4,1 931,8 ± 31,9 756,1 ± 32,1
4 79,75 ± 1,2 40,64 ± 2,7 683,7 ± 13,8 422,7 ± 11,3
8 60,71 ± 1,0 34,25 ± 1,4 629,5± 12,1 455,1 ± 20,1

FD
A

3-
m

od 1 125,9 ± 3,6 68,3 ± 2,0 2477 ± 34 2534 ± 50
2 93,5 ± 1,1 45,9 ± 1,3 888,0 ± 21,0 757,3 ± 31,5
4 74,9 ± 0,9 38,8 ± 1,6 831,2 ± 15,7 493,7 ± 5,3
8 58,9 ± 1,0 34,6 ± 0,5 683,9 ± 8,3 631,0 ± 13,5

FD
A

4

1 641,9 ± 15.1 776,1 ± 7.5 2733 ± 37 23774 ± 89
2 291,2 ± 8.1 353,1 ± 4.7 1089 ± 13 3793 ± 73
4 198,7 ± 6.9 238,5 ± 3.1 805,3 ± 9.9 2285 ± 40
8 169,9 ± 6.2 208,5 ± 3.2 689,6 ± 8.6 2439 ± 53

FD
A

5

1 746,6 ± 13.8 921,7 ± 8.5 2721 ± 43 22446 ± 71
2 329,6 ± 9.1 411,0 ± 6.3 1102 ± 17 4001 ± 69
4 216,7 ± 4.6 285,7 ± 5.2 760,8 ± 8.6 2371 ± 46
8 189,2 ± 4.3 246,8 ± 4.9 728,0 ± 9.1 2390 ± 44

(Table 4.1). The main differences for these results are:

• The SFGA and SFGA2 algorithms achieve slightly better speedup
results than those obtained for FDA1.

• SPEA2 results for FDA4 and FDA5 are almost the same that the
ones obtained by SFGA and SFGA2.

• NSGA-II shows super linear speedups for four workers. These are
also the maximum peaks of its speedup for all the functions.

• All the algorithms but NSGA-II show increasing linear speedup va-
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Table 4.7: Speedup with τi = 20 for FDA2-mod, FDA3-mod, FDA4 and
FDA5 (pdMOEA)

Problem Workers SFGA SFGA2 SPEA2 NSGA-II

FDA2-mod
2 0,85 1,40 3,31 3,11
4 1,73 1,59 4,52 5,56
8 2,28 1,89 4,91 5,17

FDA3-mod
2 1,35 1,49 2,79 3,35
4 1,68 1,76 2,98 5,13
8 2,14 1,97 3,62 4,02

FDA4
2 2,20 2,20 2,51 6,27
4 3,23 3,25 3,39 10,40
8 3,78 3,72 3,96 9,74

FDA5
2 2,26 2,24 2,47 5,61
4 3,44 3,23 3,58 9,47
8 3,95 3,73 3,74 9,39

lues as the number of workers increases.

4.5.2 Analysis of the pdMOEA approach.

After seeing in detail the pdMOEA approach and the results obtained
with it, we enumerate the main features that it offers to the researcher
with respect to the sequential and other approaches. Among the features
of pdMOEA we can see the following:

• It has shown speedup gains, sometimes super linear speedup rates.

• It has obtained better solutions in terms of the hypervolume indi-
cator.

• It offers the possibility of creating hybrid distributed MOEAs where
every worker process could run a different MOEA.

• It shows a good level of scalability.
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Table 4.8: Number of solutions with τi = 20 for FDA2-mod, FDA3-mod,
FDA4 and FDA5 (pdMOEA)

Problem Workers SFGA SFGA2 SPEA2 NSGA-II

FDA2-mod

1 105 77 800 268
2 138 149 800 280
4 136 197 800 250
8 125 175 800 185

FDA3-mod

1 77 61 800 252
2 93 83 799 248
4 99 144 799 221
8 106 172 800 212

FDA4

1 800 800 800 981
2 800 800 800 968
4 800 800 800 995
8 800 800 800 993

FDA5

1 800 800 800 1077
2 800 800 800 1091
4 800 800 800 1084
8 800 800 800 1123

• Usually, it provides more solutions per time unit, throughput, as
more workers are employed.

As it has been said earlier in this thesis, the last of the previously enu-
merated features is the most important when tackling dynamic problems,
because it allows to tackle problems in which the time to solve them is re-
duced by using more worker processes or choosing a different MOEA to
solve them. Of course the last option should be thoroughly studied on a
case-by-case way before choosing which algorithm to employ on a given
real-world problem.

Unfortunately, this pdMOEA method presents an important disad-
vantage. This stems from the fact that the workers are using the whole
search space at the same time, and a master process is necessary to main-
tain the global population updated, or put in other way, a master process
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is required to ensure that all the worker processes have the most up-to-
date information about the best global solutions found so far.

Because of this overhead of keeping the constant communication of a
master process and its processing times with a global population, a fully
distributed procedure has been developed. The next section describes
this proposed procedure.

4.5.3 Results with the Fully Distributed Procedure.

The fully distributed procedure described in section 4.4 has been tested
with the same MOEAs and test functions as it was tested the pdMOEA
approach (Sub-section 4.5.1).

Nevertheless, in the case of a fully distributed procedure, the tests
have been carried out only for four and eight workers processes. The
reason behind this is that the pdMOEA+ procedure must show an excel-
lent behaviour when many workers are involved and so, it is not relevant
the performance of the algorithm with only two workers. Because of that
only results for 4 and 8 workers are reproduced in Tables 4.9 and 4.10.

The tests were made with the same values as the the pdMOEA pro-
cedure but the new parameter radius of the sphere was added. For com-
pleteness sake, they are reproduced here again:

• master population = 800 individuals

• crowding distance (SFGA and SFGA2), 0.0075

• ηc = 15

• ηm = 20

• Mutation probability = 1/(number of decision variables)

• Crossover probability = 0,75

• MOEA iterations: in the workers genpar = 150 and in the master
genser = 50

• Radius = 0,35

• Five runs were made for each algorithm and number of workers

131



4.5. Results

Unfortunately, the obtained results were not as good as expected. In
terms of the quality of the obtained solutions, the pdMOEA+ results have
been clearly worse than those results given by pdMOEA. pdMOEA+ also
produces less number of solutions for some combinations of algorithms
and number of workers, while it provides more solutions for other com-
binations. The numbers of solutions for each problem and MOEA are
collected in Table 4.9.

With respect to the speedup (see Table 4.10), the pdMOEA+ approach
shows better results than the pdMOEA approach showed (Table 4.6).
Nonetheless, the improvement shown by these results should be taken
into account with care. The reason is that, as it has been said before, for
some of the tests, the number of solutions has decreased with respect
to the pdMOEA and to the sequential run of the algorithms. Thus, if
the MOEAs are producing less solutions, they need less time to compute
them.

Therefore, it can be said that these results do not show enough im-
provement in the quality of the solutions nor in speedup. The reason
behind these awkward results is that the processes tend towards very

Table 4.9: Number of non-dominated solutions when τi = 20 for FDA1,
FDA2-mod, FDA3-mod, FDA4 and FDA5 (pdMOEA+)

Problem Workers SFGA SFGA2 SPEA2 NSGA-II

FDA1
4 138 ± 5 226 ± 7 30 ± 1 251 ± 4
8 313 ± 6 289 ± 6 27 ± 1 308 ± 4

FDA2-mod
4 111 ± 6 122 ± 3 21 ± 1 203 ± 3
8 120 ± 3 109 ± 3 42 ± 1 270 ± 4

FDA3-mod
4 96 ± 3 105 ± 5 36 ± 2 192 ± 3
8 257 ± 5 292 ± 6 41 ± 2 311 ± 4

FDA4
4 540 ± 8 67 ± 3 64 ± 2 73 ± 3
8 288 ± 4 107 ± 3 91 ± 2 68 ± 3

FDA5
4 153 ± 4 126 ± 3 55 ± 2 166 ± 4
8 216 ± 5 222 ± 4 73 ± 2 164 ± 4
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narrow areas. This suggests that some more knowledge should be added
to the algorithm in order to acquire a more generic behaviour, as that
shown in Bui’s results (Bui et al., 2009).

4.6 Summary

The main conclusions extracted from this chapter are the following ones:

1. A generic parallel procedure, pdMOEA, has been proposed and
tested. Results with pdMOEA have shown that some MOEAs ob-
tain almost super-linear speedups, while different MOEAs provide
different speedup figures and solutions per time unit, throughput.
As it has been said multiple times along this thesis and this chap-
ter, these two features are desired when dealing with real-world
dynamic optimization problems because the practitioner and the
researcher are both interested in getting the best possible solutions

Table 4.10: Time to reach τi = 20 for FDA1, FDA2-mod, FDA3-mod,
FDA4 and FDA5 (pdMOEA+)

Pr
ob

le
m

W
or

ke
rs

SFGA SFGA2 SPEA2 NSGA-II

FDA1
4 14,1 ± 0,7 8,7 ± 0,5 39,2 ± 1,3 67,6 ± 1,7
8 4,9 ± 0,3 4,8 ± 0,3 9,4 ± 0.4 24,4 ± 0.9

FDA2-mod
4 18,3 ± 0,6 9,0 ± 0,5 38,9 ± 1,1 53,8 ± 1,2
8 12,8 ± 0,5 6,9 ± 0,4 27,5 ± 0,8 42,0 ± 0.9

FDA3-mod
4 15,7 ± 0,4 9,0 ± 0,4 91,7 ± 1,3 59,1 ± 1,0
8 16,1 ± 0,5 12,8 ± 0,4 27,0 ± 0,7 45,9 ± 0,6

FDA4
4 18,6 ± 0,5 27,8 ± 0,5 42,6 ± 0,8 195,2 ± 2,1
8 16,3 ± 0,5 21,6 ± 0,8 29,8 ± 0,9 120,9 ± 1,4

FDA5
4 20,5 ± 0,9 31,3 ± 1,0 36,9 ± 0,7 177,6 ± 1,8
8 17,2 ± 0,6 23,3 ± 0,8 30,8 ± 0,5 45,7 ± 0,9
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within restrictive time limits. SFGA and SFGA2 have proven to
be able to accomplish these objectives, whilst other MOEAs such
as SPEA2 and NSGA-II require considerable more time to improve
slightly the quality of the obtained solutions. The most salient fea-
ture of pdMOEA when used with SFGA2 is that gives very fast
results with a quality not much worse than the obtained quality
with SPEA2 or NSGA-II, and in addition, it produces many solu-
tions per time unit, allowing to solve a DMO problem with a very
good representation of the Pareto front. Specifically, pdMOEA has
shown super-linear speedup when used with SPEA2 and NSGA-
II, and a smaller speedup for SFGA and SFGA2. In addition, the
quality of the solutions has improved when more than one process
were employed to solve the problems. Finally, all the algorithms
have shown increases in the number of solutions per time unit or
throughput as the number of processes grew.

2. In addition, pdMOEA+, a procedure aimed at fully distributed
computation, has been proposed and tested. The first results with
this new approach have shown a promising future while it has also
shown that more development should be done in order to achieve
better results that can rival with those provided by the pdMOEA
approach or sequential MOEAs. Concretely, pdMOEA+ has shown
faster execution than pdMOEA. Moreover, it offers linear speedup
and produces a good number of solutions per unit time. On the
other hand, the quality of the solutions given has been clearly
worse than the quality obtained by pdMOEA. Future research for
pdMOEA+ should look for a way to keep, and even to improve,
the time responses that it has shown while not sacrificing the qual-
ity nor the number of the solutions.

The research shown in this Chapter has been published, partly or
fully, in Cámara et al. (2007a,b, 2009b, 2008c,b, 2010).

The next, and last chapter, summarizes the whole thesis and its main
conclusions. In addition, it lists the contributions that have arisen from
this thesis.
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”Science never solves a problem
without creating ten more.”

George Bernard Shaw

5
Summary Conclusions and

Contributions

THE conclusions from this PhD thesis are collected in this chapter,
along with the main contributions that were produced while re-
searching on this thesis. Moreover, different lines of future work

that could extend on what this thesis presents are summarized in the last
part of the chapter.

5.1 Conclusions and Contributions

The main aim of this PhD thesis has been to study the usefulness of par-
allel processing methods to solve dynamic multi-objective optimization
problems by using multi-objective evolutionary algorithms. From the re-
search work done on such parallel processing topics some contributions
have been made to different research areas, that although related are in-
dependent among themselves. These research areas are:

• Multi-objective evolutionary algorithms,
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• Dynamic multi-objective optimization, and

• The use of parallel processing of MOEAs to solve DMO problems.

The contributions that stem from the work presented in this PhD the-
sis are enumerated and commented in what follows:

• An analysis and a detailed description of the performance mea-
sures that should be used with DMO problems have been given.

• Performance measures for dynamic and multi-objective optimiza-
tion problems when the Pareto fronts are known have been
adapted and proposed from performance measures for dynamic
single-objective optimization problems. These measures are in-
tended to assess the accuracy, stability and reaction time of a given
algorithm when solving a DMO problem. But these measures
present a serious practical shortcoming, because they can only be
used with those problems for which we know the Pareto front be-
forehand.

• Performance measures for dynamic and multi-objective optimiza-
tion problems when the Pareto fronts are unknown have been also
introduced. These measures are also aimed at the accuracy, stabil-
ity and reaction time of an algorithm, but contrary to the earlier
ones, these new measures work with any algorithm that is used for
solving any problem for which we do not know its Pareto fronts.
Thus, it overcomes the drawback of the first measures, enabling
researchers to use these performance measures with complex test
cases and real world problems.

• Improvements for two of the five standard test cases for DMO
problems (Farina et al., 2004) have been given. FDA2-mod and
FDA3-mod functions are modified versions of the original FDA2
and FDA3 ones. The modifications solve some underlying prob-
lems in the original functions and allow the use of these two new
test cases in the development of algorithms for DMO problems.

• SFGA2, a low-cost MOEA has been introduced. It is a very fast
MOEA which works only with a single front of non-dominated
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solutions. It shows a very fast running time while providing sets
of solutions whose average quality is comparable to the quality of
those solutions obtained by state-of-the-art MOEAs such as SPEA2
and NSGA-II.

• Due to the SFGA2 very low running time in comparison with other
MOEAs, SFGA2 is an ideal option to cope with dynamic prob-
lems, while they also have to meet demanding time restrictions.

• SFGA2 improves the performance of SFGA in problems with more
than two objectives.

• SFGA2 produces a big number of solutions per time unit or
throughput, which is a must-have feature for MOEAs that are to
be used to solve DMO problems.

• An analysis theory to study parallel procedures for MOEAs has
also been described.

• pdMOEA, a parallel procedure has been introduced in order to
solve DMO problems by using MOEAs. It is a hybrid between
master-worker and island approaches.

• pdMOEA shows very good results in comparison with the sequen-
tial approach, specifically, it provides super-linear speedup with
those MOEAs that required a longer execution time such as SPEA2
and NSGA-II.

• pdMOEA improves the quality of the solutions obtained by the
different MOEAs when more than one process is employed.

• In addition, for the algorithms SFGA and SFGA2 where the ob-
tained speedup is below super-linearity, pdMOEA increases the
number of solutions per time unit, throughput, which is a desired
feature for algorithms solving DMO problems.

• The combination of pdMOEA and SFGA2 rival with the results
given by NSGA-II and SPEA2 while requiring only a fraction of
their execution time. Nevertheless, it presents some shortcomings
that arise from the inner working of multi-objective optimization
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that requires a global knowledge of the population in order to avoid
the repetition of the same calculations in different workers.

• A island pure model has been proposed. This model limits the
search area of each worker process by using a K-means clustering
algorithm. Although the experimental results obtained so far have
not shown its superiority to pdMOEA, there are signs that this is-
land K-means based procedure could improve further the good re-
sults obtained so far with pdMOEA.

5.2 Publications

The results of the research work presented in this PhD thesis have been
published. In what follows these publications are listed, grouped by type
of publication and sorted chronologically within each group:

1. Journals

• High performance computing for dynamic multi-objective optimi-
sation, High Performance Systems Architecture 1 (2008), no.
4, pp 241–250, Mario Cámara, Julio Ortega and Francisco de
Toro.

• A single front genetic algorithm for parallel multi-objective opti-
mization in dynamic environments, Neurocomputing 72 (2009),
3570–3579, Mario Cámara, Julio Ortega and Francisco de Toro.

2. Chapters

• Approaching Dynamic Multi-objective Optimization Problems by
Using Parallel Evolutionary Algorithms in Advances in multi-
objective nature inspired computing, Studies in Computa-
tional Intelligence, vol. 272, pp. 59–80, Springer, 2010, Mario
Cámara, Julio Ortega and Francisco de Toro. This is a chapter
by-invitation only.

3. International Conferences
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• Parallel processing for multi-objective optimization in dynamic en-
vironments, Proceedings of the 21st International Parallel and
Distributed Processing Symposium (IPDPS ’07), 2007, pp. 1–8,
Mario Cámara, Julio Ortega and Francisco de Toro.

• The parallel single front genetic algorithm (PSFGA) for dy-
namic multi-objective optimization, Proceedings Of The 9th In-
ternational Work-Conference on Artificial Neural Networks
(IWANN ’07) (F. Sandoval et al., eds.), LNCS, no. 4507,
Springer-Verlag, 2007, pp. 300–307, Mario Cámara, Julio Or-
tega and Francisco de Toro.

• A diversity enhanced single front multiobjective algorithm for
dynamic optimization problems, Proceedings of the 1st Inter-
national Conference on Metaheuristics and Nature Inspired
Computing (META’08), 2008, Mario Cámara, Julio Ortega and
Francisco de Toro.

• Parallel multi-objective optimization evolutionary algorithms in dy-
namic environments, Proceedings of The First International
Workshop on Parallel Architectures and Bioinspired Algo-
rithms (Juan Lanchares, Francisco Fernández, and José L.
Risco-Martín eds.), vol. 1, 2008, pp. 13–20, Mario Cámara,
Julio Ortega and Francisco de Toro.

• Performance measures for dynamic multi-objective optimization,
Proceedings of the 10th International Work-Conference on Ar-
tificial Neural Networks (IWANN ’09) (J. Cabestany, Alberto
Prieto and Francisco Sandoval, eds.), Lecture Notes in Com-
puter Science, vol. 5517, Springer-Verlag, June 2009, pp. 760 –
767, Mario Cámara, Julio Ortega and Francisco de Toro.

4. National Conferences

• Procesamiento paralelo para optimización multiobjetivo en entornos
dinámicos, XVII Jornadas De Paralelismo, 2006, Mario Cámara,
Julio Ortega and Francisco de Toro.

• Un algoritmo paralelo de frente único para optimización multiob-
jetivo dinámica, I Jornadas de Algoritmos Evolutivos y Meta-
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heurísticas, 2007, pp. 113–120, Mario Cámara, Julio Ortega
and Francisco de Toro.

• Medidas de rendimiento para optimización dinámica multiobjetivo,
Actas del VI Congreso Español sobre Metaheurísticas, Algo-
ritmos Evolutivos y Bioinspirados (MAEB’09), 2009, pp. 357 –
364, Mario Cámara, Julio Ortega and Francisco de Toro.

5. Other

• Optimización multiobjetivo paralela en entornos dinámicos, Tech.
report, Dept. de Arquitectura y Tecnología de Computadores,
Universidad de Granada, June 2007. Mario Cámara.

• Parallel evolutionary algorithms for dynamic multiobjective opti-
mization, HPC-Europa report 2007 (Paola Alberigo, Giovanni
Erbacci, Francesca Garofalo, and Silvia Monfardini, eds.), vol.
1, CINECA, 2007, pp. 334–337. Mario Cámara and Julio Or-
tega.

5.3 Future Work

While working on this PhD thesis, some areas to improve further have
arisen. They form the basis for future work and are listed in what follows:

• Improvements to SFGA2. The algorithm has still room for im-
provements such as finding even better solutions without compro-
mising its main feature of being a very fast approach. This could
be achieved by fine tuning how the algorithm selects the solutions
to carry onto the next generation. In addition to improvements in
the quality of the solutions, changes could also be introduced to
produce an even faster algorithm.

• Improvements to pdMOEA. The pdMOEA approach could be
used to run parallel MOEA processes, where each process could
be able to run a different MOEA. This is a straightforward addition
to the pdMOEA procedure but it would require some dynamical
adjustments in order to work seamlessly with MOEAs that have
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different run times. For example, if we want to run two processes
with SFGA2 and other two with NSGA-II, the number of iterations
for each one should be different. The correct number for each pro-
cess should be calculated dynamically every time the algorithm is
run.

• Improvements to pdMOEA+. Obviously, the results shown by
pdMOEA+ have not been so positive as expected. As it has
been noted at the end of Chapter 4, changes should be done to
pdMOEA+ so that it can produce solutions as good as the ones
provided by pdMOEA. After achieving this improvement on the
quality of the solutions, pdMOEA+ could be easily transformed
into a procedure that would allow to run different MOEAs in ev-
ery process. In contrast to pdMOEA, this is easier to accomplish by
pdMOEA+ because it does not require any communication across a
central master process. Moreover, some considerations, from those
that appear in Bui, Essam, and Hussein A. Abbass (2010), should
also be taken into account when improving the pdMOEA+ ap-
proach.

• Comparison with the cellular approach. It would be interesting to
implement a cellular approach to solve DMO problems. Once it is
implemented it could be used to compare this new approach with
both pdMOEA and pdMOEA+. From the results obtained in this
comparison, it would be easy to infer which of the three approaches
is the most suitable one to use with DMO problems.

• Comparisons with parallel approaches based on other meta-
heuristics. Another useful task to accomplish in the future it
is to carry a series of side-by-side comparisons of pdMOEA and
pdMOEA+ using SFGA2, SPEA2 and NSGA-II with other parallel
approaches that use other kind of metaheuristics such as Particle
Swarm Optimization, Ant Colony Optimization, Artificial Immune
Systems, etc.

This chapter has been dedicated to review the main contributions that
have been produced as a result of the work done for this thesis about pro-
viding an effective parallel procedure to solve DMO problems by using
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multi-objective evolutionary algorithms. In addition, it has been shown
the different lines of future work that can extend further the work here
presented. In this way, this chapter brings this thesis to an end.
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”La ciencia puede imponer
límites al conocimiento, pero
no debería imponerlos a la
imaginación”

Bertrand Russell

A
Conclusiones Finales y Aportaciones

LAS conclusiones de esta memoria se resumen en este apéndice,
conjuntamente con las principales contribuciones que se han pro-
ducido como fruto de la investigación objeto de esta tesis. Ade-

más, en la última parte del apéndice, se ofrecen diferentes líneas de inves-
tigación de trabajo futuro que podrían extender lo que se ha presentado
en los capítulos anteriores.

A.1 Conclusiones y Aportaciones

El objetivo principal de esta tesis doctoral ha sido el desarrollo de un mé-
todo de procesamiento paralelo para la resolución de problemas de opti-
mización dinámica multiobjetivo mediante el uso de algoritmos evoluti-
vos multiobjetivo. Durante la investigación realizada con el fin de conse-
guir tal procedimiento paralelo se han realizado algunas contribuciones
a diferentes áreas de investigación que, aunque están relacionadas, son
independientes entre sí. Estas áreas de investigación son:

• Los algoritmos evolutivos multiobjetivo (MOEA),
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• La optimización dinámica multiobjetivo (DMO), y

• El uso del paralelismo junto a algoritmos evolutivos multiobjetivo
para resolver problemas de optimización dinámica multiobjetivo.

Las contribuciones más relevantes que han surgido del trabajo pre-
sentado en esta tesis doctoral son:

• Se han propuesto un análisis y una descripción detallada de las
medidas de rendimiento que se deberían usar con problemas DMO.

• Se han adaptado y propuesto medidas de rendimiento para pro-
blemas de optimización dinámica multiobjetivo cuando los frentes
de Pareto son conocidos. El propósito de estas medidas es conocer
la precisión, estabilidad y el tiempo de reacción de un algoritmo
dado al resolver un problema dinámico multiobjetivo. Estas medi-
das presentan un grave problema práctico, ya que solo se pueden
utilizar con aquellos problemas en los que se conocen los frentes de
Pareto por adelantado.

• Se han introducido también medidas de rendimiento para proble-
mas de optimización dinámica multiobjetivo cuando los frentes de
Pareto son desconocidos. Estas medidas están orientadas también
a la precisión, estabilidad y el tiempo de reacción de un algoritmo,
pero al contrario de las medidas anteriores, estas nuevas medidas
funcionan con cualquier algoritmo que resuelva un problema para
el que no se conozcan sus frentes de Pareto. De este modo, solu-
ciona el inconveniente de las primeras medidas, permitiendo a las
investigadores usar estas nuevas medidas con problemas de prueba
complejos y otros tomados del mundo real.

• Se han realizado mejoras a dos de los cinco casos de prueba es-
tándar para problemas DMO (Farina et~al., 2004). Las funciones
FDA2-mod y FDA3-mod son versiones modificadas de las origi-
nales FDA2 y FDA3. Estas modificaciones resuelven algunos pro-
blemas subyacentes en las funciones originales. Esto permite usar
estos dos casos de prueba en el desarrollo de algoritmos para pro-
blemas DMO.
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• Se ha introducido SFGA2, un algoritmo de bajo coste. SFGA2 me-
jora el rendimiento de SFGA en problemas con más de dos objeti-
vos. Además, mantiene un tiempo de ejecución muy rápido a la par
que produce conjuntos de soluciones cuya calidad media es compa-
rable a la de las soluciones obtenidas con algoritmos punteros como
SPEA2 y NSGA-II.

• SFGA2 mejora el rendimiento obtenido con SFGA para problemas
con más de dos objetivos.

• A causa de su reducido tiempo de ejecución en comparación con
otros algoritmos evolutivos multiobjetivo, SFGA2 es una opción
ideal para afrontar problemas dinámicos, a la vez que se cumplen
exigentes restricciones de tiempo.

• Además, SFGA2 produce un gran número de soluciones por uni-
dad de tiempo, lo que es una cualidad necesaria para los algorit-
mos evolutivos multiobjetivo que se vayan a usar en la resolución
de problemas DMO.

• Se ha descrito una herramienta teórica para estudiar procedimien-
tos paralelos para algoritmos evolutivos multiobjetivo.

• Se ha introducido pdMOEA, un procedimiento paralelo que es un
híbrido entre los enfoques maestro-trabajador y el modelo de is-
las, para resolver problemas por medio de algoritmos evolutivos
multiobjetivo.

• pdMOEA ha mostrado muy buenos resultados en comparación con
el enfoque secuencial. Concretamente, ha dado ganancias suprali-
neales con aquellos MOEA que requirieron mayor tiempo de ejecu-
ción como fueron SPEA2 y NSGA-II.

• pdMOEA mejora la calidad de las soluciones encontradas cuando
se utiliza para resolver el problema más de un proceso.

• Además, para los algoritmos SFGA y SFGA2 donde la ganancia ob-
tenida está por debajo de la supralinealidad, pdMOEA aumenta
el número de soluciones por unidad de tiempo o rendimiento,
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throughput en inglés, lo que es una cualidad deseada para los algo-
ritmos que resuelven problemas dinámicos.

• La combinación de pdMOEA con SFGA2 compite con los resul-
tados obtenidos por NSGA-II y SPEA2 a la vez que requiere solo
una fracción del tiempo de ejecución de los otros. No obstante, pd-
MOEA presenta algunas deficiencias que provienen del funciona-
miento interno de los algoritmos evolutivos multiobjetivo que re-
quieren un conocimiento global de la población para evitar la repe-
tición del mismo trabajo en diferentes trabajadores.

• Se ha propuesto un modelo basado en islas llamado pdMOEA+.
Este modelo limita el área de búsqueda de cada proceso trabajador
usando un algoritmo de K-medias. Aunque los resultados experi-
mentales obtenidos de momento no han mostrado su superioridad
a pdMOEA, existen signos de que el procedimiento basado en islas
y K-medias podrá mejorar más aún los buenos resultados obteni-
dos hasta ahora por pdMOEA.

A.2 Principales Aportaciones

Los resultados de la investigación presentada en esta memoria han da-
do lugar a diferentes publicaciones. Dichas publicaciones se muestran a
continuación, agrupadas por tipo y ordenadas cronológicamente dentro
de cada grupo:

1. Revistas internacionales

• High performance computing for dynamic multi-objective optimisa-
tion, High Performance Systems Architecture 1 (2008), no. 4,
pp 241–250, Mario Cámara, Julio Ortega y Francisco de Toro.

• A single front genetic algorithm for parallel multi-objective opti-
mization in dynamic environments, Neurocomputing 72 (2009),
3570–3579, Mario Cámara, Julio Ortega y Francisco de Toro.

2. Capítulos de libros
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• Approaching Dynamic Multi-objective Optimization Problems by
Using Parallel Evolutionary Algorithms in Advances in multi-
objective nature inspired computing, Studies in Computatio-
nal Intelligence, vol. 272, pp. 59–80, Springer, 2010, Mario Cá-
mara, Julio Ortega y Francisco de Toro. Capítulo publicado so-
lo por invitación para participar en el libro.

3. Congresos internacionales

• Parallel processing for multi-objective optimization in dynamic en-
vironments, Proceedings of the 21st International Parallel and
Distributed Processing Symposium (IPDPS ’07), 2007, pp. 1–8,
Mario Cámara, Julio Ortega y Francisco de Toro.

• The parallel single front genetic algorithm (PSFGA) for dynamic
multi-objective optimization, Proceedings Of The 9th Internatio-
nal Work-Conference on Artificial Neural Networks (IWANN
’07) (F. Sandoval et al., eds.), LNCS, no. 4507, Springer-Verlag,
2007, pp. 300–307, Mario Cámara, Julio Ortega y Francisco de
Toro.

• A diversity enhanced single front multiobjective algorithm for dyna-
mic optimization problems, Proceedings of the 1st International
Conference on Metaheuristics and Nature Inspired Compu-
ting (META’08), 2008, Mario Cámara, Julio Ortega y Francisco
de Toro.

• Parallel multi-objective optimization evolutionary algorithms in
dynamic environments, Proceedings of The First International
Workshop on Parallel Architectures and Bioinspired Algo-
rithms (Juan Lanchares, Francisco Fernández y José L. Risco-
Martín eds.), vol. 1, 2008, pp. 13–20, Mario Cámara, Julio Orte-
ga y Francisco de Toro.

• Performance measures for dynamic multi-objective optimization,
Proceedings of the 10th International Work-Conference on Ar-
tificial Neural Networks (IWANN ’09) (J. Cabestany, Alberto
Prieto y Francisco Sandoval, eds.), Lecture Notes in Computer
Science, vol. 5517, Springer-Verlag, June 2009, pp. 760 – 767,
Mario Cámara, Julio Ortega y Francisco de Toro.
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4. Congresos nacionales

• Procesamiento paralelo para optimización multiobjetivo en entornos
dinámicos, XVII Jornadas De Paralelismo, 2006, Mario Cámara,
Julio Ortega y Francisco de Toro.

• Un algoritmo paralelo de frente único para optimización multiobje-
tivo dinámica, I Jornadas de Algoritmos Evolutivos y Metaheu-
rísticas, 2007, pp. 113–120, Mario Cámara, Julio Ortega y Fran-
cisco de Toro.

• Medidas de rendimiento para optimización dinámica multiobjetivo,
Actas del VI Congreso Español sobre Metaheurísticas, Algo-
ritmos Evolutivos y Bioinspirados (MAEB’09), 2009, pp. 357 –
364, Mario Cámara, Julio Ortega y Francisco de Toro.

5. Otros

• Optimización multiobjetivo paralela en entornos dinámicos, Memo-
ria del Diploma de Estudios Avanzados, Dept. de Arquitectu-
ra y Tecnología de Computadores, Universidad de Granada,
June 2007. Mario Cámara.
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NECA, 2007, pp. 334–337. Mario Cámara y Julio Ortega.

A.3 Trabajo Futuro

Durante la realización de esta tesis doctoral, han surgido algunas áreas
de mejora. En ellas se basan las líneas de trabajo futuro, que se listan a
continuación:

• Mejoras a SFGA2. El algoritmo aún tiene lugar para mejoras tales
como encontrar aún mejores soluciones sin comprometer su prin-
cipal cualidad de ser un enfoque muy rápido. Esto se podría con-
seguir ajustando la manera en que el algoritmo selecciona las solu-
ciones que llevará a la siguiente generación. Además, a las mejoras
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en la calidad de las soluciones, se podrían introducir cambios para
producir un algoritmo todavía más rápido.

• Mejoras a pdMOEA. El enfoque de pdMOEA podría usado para
procesos MOEA paralelos, donde cada proceso podría ejecutar un
MOEA diferente. Esta es una adición sencilla al procedimiento pd-
MOEA que sin embargo requeriría algunos ajustes dinámicos para
trabajar sin variaciones apreciables en los MOEA que poseen tiem-
pos de ejecución diferentes. Por ejemplo, si queremos ejecutar dos
procesos con SFGA2 y otros dos con NSGA-II, el número de itera-
ciones para cada uno debería ser diferente. El número correcto para
cada proceso debería calcularse dinámicamente cada vez que el al-
goritmo se ejecuta.

• Mejoras a pdMOEA+. Obviamente, los resultados ofrecidos por
pdMOEA+ no han sido tan buenos como se esperaban. Como se
ha dicho al final del Capítulo 4, habría que realizar cambios a pd-
MOEA+ para que pueda producir soluciones tan buenas como las
producidas por pdMOEA. Después de conseguir esta mejora en
la calidad de las soluciones, se podría transformar fácilmente pd-
MOEA+ en un procedimiento que permitiera ejecutar diferentes
MOEA en cada proceso. Al contrario que pdMOEA, es más fácil
para pdMOEA+ porque no requiere comunicación a través del pro-
ceso maestro. Además, deberían tenerse en cuenta algunas consi-
deraciones de las que aparecen en Bui et~al. (2010), al realizar las
mejoras sobre el enfoque pdMOEA+.

• Comparación con el enfoque celular. Sería interesante implemen-
tar un enfoque celular para resolver problemas DMO. Una vez sea
implementado, podría usarse para comparar este enfoque celular
con pdMOEA y pdMOEA+. De los resultados obtenidos en esta
comparación, sería fácil inferir cuales de los tres enfoques es el más
adecuado para usar con problemas DMO.

• Comparación con enfoques paralelos basados en otras metaheu-
rísticas. Otra tarea útil para afrontar en el futuro consiste en realizar
una serie de comparaciones de pdMOEA y pdMOEA+ usando SF-
GA2, SPEA2 y NSGA-II con enfoques paralelos que usen otro tipo
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de metaheurísticas tales como optimización de enjambres de par-
tículas, optimización de colonias de hormigas, sistemas inmunes
artificiales, etc.
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Glossary

Boxplot

A way of graphically depicting groups of numerical data through
their five-number summaries: the smallest observation (sample
minimum), lower quartile (Q1), median (Q2), upper quartile (Q3),
and largest observation (sample maximum). A boxplot may also
indicate which observations, if any, might be considered outliers

Crowding distance

A parameter used by some MOEA to promote the diversity within
the population. It refers to a minimum distance that should be kept
among all the solutions in the population.

Decision space

It is the range of the variables that an optimization problem func-
tion can take or the values that we can change when looking for a
better solution.

Dynamic Optimization Problem (DMO)

A problem where the restrictions or the objective functions change
with time.

Fitness function

The function that evaluates the possible values that an optimization
problem can take in order to choose the best from them.

Front or Rank

A front or rank is a subset of the population where all the contained
solutions are mutually non-dominated.
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Glossary

Measure

A function that assigns a real value to a given input set.

Metaheuristic

A heuristic method used to solve a problem by using other heuristic
methods.

Metrics

Mathematical concept for distances.

Multi-evaluated problem

A kind of problem where the decision variables are in a space vector
but the objective space is R.

Multi-objective optimization problem

A problem where there are more than one decision and objective
variables to optimize.

Non-dominated sorting

A procedure in which all the multi-objective solutions from a pop-
ulation are classified into different fronts or ranks. Every front i-th
contain all the solutions that are dominated by at least one solution
from the fronts before i but that dominate all the solutions in the
fronts after i.

Objective space

It is the domain of the values that an optimization problem function
can take or the values that we are looking to optimize for the fitness
function.

Optimization problem

A function f (x) in R that represents a process where at least one
value of f (x) is less or equal to the rest of values of f (x). There can
be maximization optimization problems, where at least one value
of f (x) is above or equal to the rest of values.
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Glossary

Pareto dominance

The (strict) Pareto dominance is the binary relation that represents
a strict partial order of the objective space of an optimization prob-
lem.

Pareto front approximation

The set of mutually incomparable objective vectors.

Pareto optimal

The decision or objective vector that is not dominated by any other
vector in the objective space.

Pareto set approximation

The set of mutually incomparable solutions.

Performance measure

A specific measure that assigns a real value to a given input set of
solutions for a given problem. The output value evaluates the set
of the solutions for the problem.

Post-hoc test

A test used a posteriori on a group of data after the null hypothesis
has been rejected. A post-hoc test is expected to tell which data
groups significantly differ from the other ones.

Search space

See Decision space.

Set of solutions

The set of solutions for an optimization problem is the set of values
for the decision variables that make the objective values not worse
than any other objective value.

Weak Pareto dominance

The weak Pareto dominance is the binary relation that represents a
partial order of the objective space of an optimization problem.
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Set of solutions, 9
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Parallel MOEA, 103
Pareto Front, 12

Approximation, 12
Dynamic Optimization, 24

Pareto Optimal Vectors, 12
Pareto Set, 12

Approximation, 12
Dynamic Optimization, 24

pdMOEA, 111
Analysis, 129
Results, 118
Theory, 108

pdMOEA+, 112
Results, 131

Performance Measure, 33
Accuracy, 34, 44–46, 55, 59

Window, 58
Classification, 33
Closeness, 34
Dependent, 35
Diversity, 34
Full Knowledge, 35
Independent, 35
Known Fronts, 53
Offline, 35
Online, 35
Partial Knowledge, 35
Reaction Time, 34, 44, 56
Speed, 34
Stability, 34, 44, 48, 56
Throughput, 34, 130
Unknown Fronts, 57
Yield, 34
Zero Knowledge, 35

Rank, 74
Reversed Generational Distance, 50

Search space, 9
SFGA, 74

Crowding Distance δcr, 76
Crowding Procedure, 76

SFGA2, 84
Fitness, 84

SPEA2, 81
Density information, 82
Raw Fitness, 82
Strength, 81

Stochastic Optimization, 14

Test Cases, 61
FDA1, 63
FDA2-mod, 64
FDA3-mod, 64
FDA4, 66
FDA5, 68

Window, 58
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