
AN EMPIRICAL STUDY OF EVOLUTIONARY

TECHNIQUES FOR MULTIOBJECTIVE

OPTIMIZATION IN ENGINEERING DESIGN

an abstract

submitted on the 4th day of april 1996

to the department of computer science

of the graduate school of

tulane university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

by

carlos artemio coello coello

approved:

alan d. christiansen, ph.d.

chair

bill p. buckles, ph.d.

frederick e. petry, ph.d.

Most real-world engineering optimization problems are multiobjective in

nature, since they normally have several (possibly conicting) objectives that must

be satis�ed at the same time. The word \optimum" has several interpretations

within this context, and it is up to the designer to decide which �ts better to

his/her application. Currently, there are more than 20 mathematical program-

ming multiobjective optimization techniques, each one corresponding to a di�er-

ent understanding of the term \optimum". On the other hand, genetic algorithms

(GAs) have been viewed to be, since their early days, well suited for multiobjec-

tive optimization problems. Consequently, several GA-based techniques have been

developed since then.

The purpose of this research has been to develop a platform that allows

the testing and comparison of existing and future multiobjective optimization

techniques. Two new multiobjective optimization GA-based methods based on

the notion of min-max optimum are proposed, showing that at least one of them is

able to produce better results than any other technique tested. Also, a method for

adjusting the parameters of the GA for single-objective numerical optimization is

proposed, showing the suitability of the GA as a numerical optimization technique

when used properly. Then, a brief study of the importance of population policies

and proper niching parameters is included. This work tries to narrow the gap

between theory and practice in the context of engineering optimization. Finally,

some insights on the importance of choosing a good chromosomic representation

and the use of a proper �tness function are provided, derived from the analysis of

a more general design problem.

AN EMPIRICAL STUDY OF EVOLUTIONARY

TECHNIQUES FOR MULTIOBJECTIVE

OPTIMIZATION IN ENGINEERING DESIGN

a dissertation

submitted on the 4th day of april 1996

to the department of computer science

of the graduate school of

tulane university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

by

carlos artemio coello coello

approved:

alan d. christiansen, ph.d.

chair

bill p. buckles, ph.d.

frederick e. petry, ph.d.

c

 Copyright 1996

by

Carlos Artemio Coello Coello

All rights reserved.

Acknowledgement

I would like to thank my parents, Carlos A. Coello Blanco and Victoria

Coello de Coello for their support and encouragement to pursue graduate studies

in the United States. Also, thanks to Alan D. Christiansen, my thesis advisor.

His sharp mind and clear ideas always gave me the insights necessary to get into

the right track. He went beyond his duties as an advisor and became a good

friend, always willing to help and talk about my work and my ideas on practically

any �eld. Thanks, Alan, for all your knowledge and your wise advice.

I also want to thank Dr. Bill P. Buckles and Dr. Fred Petry for their help

and ideas, to Dr. Mike Rudnick for awakening on me an early interest on genetic

algorithms and to Dr. Johnette Hassell for giving me the opportunity to pursue

graduate studies in Computer Science regardless of my unsuitable background.

Finally, I also want to thank my �anc�ee Ma. Guadalupe Castillo Tapia for

bringing light to my life in the moment of greatest darkness. Her love and support

were one of my main sources of strength in some of the crucial moments during

the writing of this thesis. I also want to thank Arturo Hern�andez Aguirre, one of

major inuences and most authentic friendships that I have ever had in my life.

Thanks also to my sister, Delia Concepci�on Coello Coello, to my grandmother

Consuelo Trujillo, to my deceased aunt Concepci�on Coello Blanco, to my aunt

Flor de Mar��a Coello de Espinosa, to my aunt Elvia Coello Blanco, to my uncle

ii

Oscar Coello Blanco, to my cousins and friends in New Orleans and M�exico, and

to all the people who gave me their moral support during all these long years.

I want to dedicate this dissertation to the four most important characters

in my life:

� To my father Carlos, whom I have always admired for his multiple talents

and honest way of living.

� To my mother Victoria, who is the maximum example of hard work that I

have seen during my entire life.

� To my �anc�ee Lupita, who made me recover my faith in love when I had

almost lost it.

� To my sister Delia, who will always be in my memory although time passes

by and we remain far away from each other.

iii

Contents

1 Basic Concepts 3

2 Mathematical Programming Techniques 28

2.1 The Sequential Optimization Method : : : : : : : : : : : : : : : : 29

2.2 The Weighting Objectives Method : : : : : : : : : : : : : : : : : : 30

2.3 The "-constraint Method : 33

2.4 Global Criterion Method : 35

2.5 Goal Programming : 39

2.6 Game Theory Approach : 43

2.7 Metagames and Hypergames : 48

2.8 Multiattribute Utility Theory : 54

2.9 Surrogate Worth Trade-O� : 56

2.10 ELECTRE I and II : 58

2.11 Multicriterion Polyhedral Dynamics or Q-Analysis : : : : : : : : : 61

2.12 PROMETHEE : 62

2.13 Dynamic Compromise Programming : : : : : : : : : : : : : : : : 64

2.14 PROTRADE : 65

2.15 STEP Method (STEM) : 66

2.16 The Method of Zionts-Wallenius : : : : : : : : : : : : : : : : : : : 68

iv

2.17 Sequential Multiobjective Problem Solving Method (SEMOPS) : : 71

2.18 Local Multiattribute Utility Functions : : : : : : : : : : : : : : : 74

2.19 The Method of Nijkamp and Vos : : : : : : : : : : : : : : : : : : 76

2.20 The Nested Lagrangian Multiplier Method (NLM) : : : : : : : : : 78

2.21 Rao's Method for Fuzzy Systems : : : : : : : : : : : : : : : : : : 79

2.22 Displaced Ideal : 84

2.23 Lexicographic Method : 87

2.24 Goal-Attainment Method : 88

3 Multiobjective Optimization using Genetic Algorithms 92

3.1 A Gentle Introduction to Genetic Algorithms : : : : : : : : : : : : 92

3.2 Multiobjective Optimization using GAs : : : : : : : : : : : : : : : 104

3.3 Use of aggregating functions : 105

3.3.1 Weighted sum approach : : : : : : : : : : : : : : : : : : : 105

3.3.2 Reduction to a single objective : : : : : : : : : : : : : : : 105

3.3.3 Goal attainment : 106

3.3.4 Use of Penalty Functions : : : : : : : : : : : : : : : : : : : 106

3.4 Non-Pareto approaches : 107

3.4.1 VEGA : 107

3.4.2 Lexicographic ordering : 109

3.4.3 Evolutionary Strategies : 110

3.4.4 Weighted Sum : 110

3.5 Pareto-based approaches : 111

3.5.1 Pareto-based �tness assignment : : : : : : : : : : : : : : : 111

3.5.2 Multiple Objective Genetic Algorithm : : : : : : : : : : : 112

v

3.5.3 Non-dominated Sorting Genetic Algorithm : : : : : : : : : 113

3.5.4 Niched Pareto GA : 115

3.6 Summary of Methods : 118

4 Implementation of MOSES 122

4.1 Generating Pareto Optimal Solutions : : : : : : : : : : : : : : : : 123

4.2 The min-max algorithm : 126

4.3 Monte Carlo Methods : 128

4.3.1 Monte Carlo method 1 : 129

4.3.2 Monte Carlo method 2 : 129

4.4 Osyczka's Multicriterion Optimization System : : : : : : : : : : : 131

4.5 Implementing GA-based approaches : : : : : : : : : : : : : : : : : 132

4.5.1 Lexicographic Method : 134

4.5.2 Scha�er's VEGA : 135

4.5.3 Hajela's Approach : 135

4.5.4 The Niched Pareto Genetic Algorithm : : : : : : : : : : : 136

4.5.5 The Nondominated Sorting Genetic Algorithm : : : : : : : 137

4.5.6 The Multiple Objective Genetic Algorithm : : : : : : : : : 138

4.5.7 An Approach Based on a Weighted Min-Max Strategy : : 139

4.5.8 An Approach Based on Min-Max Selection with Sharing : 140

4.5.9 The GA optimizer for single-objective problems : : : : : : 141

5 Some Engineering Design Examples 144

5.1 Example 1 : Design of an I-beam : : : : : : : : : : : : : : : : : : 145

5.2 Example 2 : Machining recommendations : : : : : : : : : : : : : : 148

5.3 Example 3 : Design of a machine tool spindle : : : : : : : : : : : 151

vi

5.4 Example 4 : Design of a 10-bar plane truss : : : : : : : : : : : : : 155

5.5 Example 5 : Design of a 25-bar space truss : : : : : : : : : : : : : 155

5.6 Example 6 : Design of a 200-bar plane truss : : : : : : : : : : : : 158

5.7 Example 7 : Design of a robot arm : : : : : : : : : : : : : : : : : 158

5.8 Example 8 : Design of a combinatorial circuit : : : : : : : : : : : 173

5.9 Summary and additional comments : : : : : : : : : : : : : : : : : 174

6 Analysis of Results 177

6.1 Measuring the Complexity of each Algorithm : : : : : : : : : : : : 178

6.1.1 Monte Carlo Methods : 181

6.1.2 Osyczka's Multiobjective Optimization System : : : : : : : 182

6.1.3 Lexicographic Method and Linear Combination : : : : : : 186

6.1.4 VEGA : 187

6.1.5 NSGA : 187

6.1.6 MOGA : 189

6.1.7 NPGA : 190

6.1.8 Hajela's Method : 190

6.1.9 My Weighted Min-Max Method : : : : : : : : : : : : : : : 191

6.1.10 My Min-Max Strategy with Sharing : : : : : : : : : : : : : 192

6.2 Example 1 : Design of an I-Beam : : : : : : : : : : : : : : : : : : 192

6.3 Example 2 : Machining Recommendations : : : : : : : : : : : : : 225

6.4 Example 3 : Design of a Machine Tool Spindle : : : : : : : : : : : 230

6.5 Example 4 : Design of a 10-bar Plane Truss : : : : : : : : : : : : 258

6.6 Example 5 : Design of a 25-bar Space Truss : : : : : : : : : : : : 295

6.7 Example 6 : Design of a 200-bar Plane Truss : : : : : : : : : : : : 327

vii

6.8 Example 7 : Design of a Robot Arm : : : : : : : : : : : : : : : : 367

6.9 Example 8 : Design of a Combinatorial Circuit : : : : : : : : : : : 372

6.10 Critique of each Method : 377

6.10.1 Monte Carlo Method 1 : 377

6.10.2 Monte Carlo Method 2 : 378

6.10.3 Osyczka's Multiobjective Optimization System : : : : : : : 379

6.10.4 GA-based Linear Combination of Objectives : : : : : : : : 380

6.10.5 Lexicographic Method : 380

6.10.6 VEGA : 381

6.10.7 NSGA : 381

6.10.8 MOGA : 382

6.10.9 NPGA : 383

6.10.10Hajela's Method : 384

6.10.11GA with a Weighted Min-Max Technique : : : : : : : : : : 385

6.10.12GA with Min-Max Binary Tournament Selection and Sharing386

7 Discussion 388

7.1 Population Policies : 389

7.2 Niching Parameters : 395

7.3 Incorporating Knowledge About the Domain : : : : : : : : : : : : 405

7.4 An Expert System to Select a Multiobjective Optimization Method 408

8 Conclusions 411

8.1 Contributions : 411

8.2 Future Work : 416

viii

Bibliography 417

ix

List of Tables

5.1 Machinability data for 390 die cast/carbonide/wet. : : : : : : : : 148

5.2 Loading conditions for the 25-bar space truss shown in Figure 5.5. 156

5.3 Group membership for the 25-bar space truss shown in Figure 5.5. 157

5.4 Coordinates of the joints of the 25-bar space truss shown in Figure

5.5. : 157

5.5 Group membership for the 200-bar plane truss shown in Figure 5.6. 159

6.1 Comparison of results computing the ideal vector of example 1

from Chapter 5 (design of an I-beam). For each method the best

results for optimum f

1

and f

2

are shown in boldface. OS stands

for Osyczka's Multiobjective Optimization System. : : : : : : : : 193

x

6.2 Comparison of the best overall solution found by each one of the

methods included in MOSES for the �rst example. GA-based

methods were tried with binary (B) and oating point (FP) rep-

resentations. The following abbreviations were used: OS = Osy-

czka's System, GCM = Global Criterion Method (exponent=2.0),

WMM (Weighting Min-max), PWM (Pure Weighting Method),

NWM (Normalized Weighting Method), GALC = Genetic Algo-

rithm with a linear combination of objectives using scaling. In all

cases, weights were assumed equal to 0.5 (equal weight for both

objectives). : 198

6.3 Comparison of results computing the ideal vector of example 2

from Chapter 5 (machining recommendations). For each method

the best results for each objective function are shown in boldface.

OS stands for Osyczka's Multiobjective Optimization System. : : 226

6.4 (Part I) Comparison of the best overall solution found by each

one of the methods included in MOSES for the second example

(machining recommendations). GA-based methods were tried with

binary (B) and oating point (FP) representations. The following

abbreviations were used: OS = Osyczka's System, GCM = Global

Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting

Method), GALC = Genetic Algorithm with a linear combination

of objectives using scaling. In all cases, weights were assumed equal

to 0.25 (equal weight for every objective). (Continued in Table 6.5) 227

xi

6.5 (Part II) Comparison of the best overall solution found by each

one of the methods included in MOSES for the second example

(machining recommendations). GA-based methods were tried with

binary (B) and oating point (FP) representations. The following

abbreviations were used: OS = Osyczka's System, GCM = Global

Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting

Method), GALC = Genetic Algorithm with a linear combination

of objectives using scaling. In all cases, weights were assumed equal

to 0.25 (equal weight for every objective). : : : : : : : : : : : : : 228

6.6 Comparison of results computing the ideal vector of example 3 from

Chapter 5 (design of a machine tool spindle). For each method the

best results for optimum f

1

and f

2

are shown in boldface. : : : : 230

6.7 Comparison of the best overall solution found by each one of the

methods included in MOSES for the third example (design of a

machine tool spindle). GA-based methods were tried with binary

(B) and oating point (FP) representations. The following abbre-

viations were used: GALC = Genetic Algorithm with a linear

combination of objectives using scaling. In all cases, weights were

assumed equal to 0.5 (equal weight for every objective). : : : : : : 237

6.8 (Part I) Comparison of results computing the ideal vector of exam-

ple 4 from Chapter 5 (design of a 10-bar plane truss). For each

method the best results for optimum f

1

, f

2

and f

3

are shown in

boldface. OS stands for Osyczka's Multiobjective Optimization

System. (Continued in Tables 6.9, 6.10 and 6.11) : : : : : : : : : 259

xii

6.9 (Part II) Comparison of results computing the ideal vector of exam-

ple 4 from Chapter 5 (design of a 10-bar plane truss). OS stands

for Osyczka's Multiobjective Optimization System. (Continued in

Tables 6.10 and 6.11) : 259

6.10 (Part III) Comparison of results computing the ideal vector of

example 4 from Chapter 5 (design of a 10-bar plane truss). OS

stands for Osyczka's Multiobjective Optimization System. (Con-

tinued in Table 6.11) : 260

6.11 (Part IV) Comparison of results computing the ideal vector of

example 4 from Chapter 5 (design of a 10-bar plane truss). OS

stands for Osyczka's Multiobjective Optimization System. : : : : 260

6.12 (Part I) Comparison of the best overall solution found by each

one of the methods included in MOSES for the fourth example

(design of a 10-bar plane truss). GA-based methods were tried with

binary (B) and oating point (FP) representations. The following

abbreviations were used: OS = Osyczka's System, GCM = Global

Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting

Method), GALC = Genetic Algorithm with a linear combination of

objectives using scaling. In all cases, weights were assumed equal to

0.33 (equal weight for every objective). (Continued in Tables 6.13,

6.14 and 6.15) : 269

xiii

6.13 (Part II) Comparison of the best overall solution found by each

one of the methods included in MOSES for the fourth example

(design of a 10-bar plane truss). GA-based methods were tried with

binary (B) and oating point (FP) representations. The following

abbreviations were used: OS = Osyczka's System, GCM = Global

Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting

Method), GALC = Genetic Algorithm with a linear combination of

objectives using scaling. In all cases, weights were assumed equal to

0.33 (equal weight for every objective). (Continued in Tables 6.14

and 6.15) : 270

6.14 (Part III) Comparison of the best overall solution found by each

one of the methods included in MOSES for the fourth example

(design of a 10-bar plane truss). GA-based methods were tried with

binary (B) and oating point (FP) representations. The following

abbreviations were used: OS = Osyczka's System, GCM = Global

Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting

Method), GALC = Genetic Algorithm with a linear combination

of objectives using scaling. In all cases, weights were assumed equal

to 0.33 (equal weight for every objective). (Continued in Table 6.15)271

xiv

6.15 (Part IV) Comparison of the best overall solution found by each

one of the methods included in MOSES for the fourth example

(design of a 10-bar plane truss). GA-based methods were tried with

binary (B) and oating point (FP) representations. The following

abbreviations were used: OS = Osyczka's System, GCM = Global

Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting

Method), GALC = Genetic Algorithm with a linear combination

of objectives using scaling. In all cases, weights were assumed equal

to 0.33 (equal weight for every objective). : : : : : : : : : : : : : 272

6.16 (Part I) Comparison of results computing the ideal vector of exam-

ple 5 from Chapter 5 (design of a 25-bar space truss). For each

method the best results for optimum f

1

, f

2

and f

3

are shown in

boldface. OS stands for Osyczka's Multiobjective Optimization

System. (Continued in Table 6.17) : : : : : : : : : : : : : : : : : 296

6.17 (Part II) Comparison of results computing the ideal vector of exam-

ple 5 from Chapter 5 (design of a 25-bar space truss). OS stands

for Osyczka's Multiobjective Optimization System. : : : : : : : : 296

xv

6.18 (Part I) Comparison of the best overall solution found by each one

of the methods included in MOSES for the �fth example (design of

a 25-bar space truss). GA-based methods were tried with binary

(B) and oating point (FP) representations. The following abbre-

viations were used: OS = Osyczka's System, GCM = Global Crite-

rion Method (exponent=2.0), WMM (Weighting Min-max), PWM

(Pure Weighting Method), NWM (NormalizedWeighting Method),

GALC = Genetic Algorithm with a linear combination of objec-

tives using scaling. In all cases, weights were assumed equal to

0.33 (equal weight for every objective). (Continued in Table 6.19) 304

6.19 (Part II) Comparison of the best overall solution found by each one

of the methods included in MOSES for the �fth example (design of

a 25-bar space truss). GA-based methods were tried with binary

(B) and oating point (FP) representations. The following abbre-

viations were used: OS = Osyczka's System, GCM = Global Crite-

rion Method (exponent=2.0), WMM (Weighting Min-max), PWM

(Pure Weighting Method), NWM (NormalizedWeighting Method),

GALC = Genetic Algorithm with a linear combination of objec-

tives using scaling. In all cases, weights were assumed equal to

0.33 (equal weight for every objective). : : : : : : : : : : : : : : : 305

6.20 (Part I) Comparison of results computing the ideal vector of exam-

ple 6 from Chapter 5 (design of a 200-bar plane truss). For each

method the best results for optimum f

1

, f

2

and f

3

are shown in

boldface. OS stands for Osyczka's Multiobjective Optimization

System. (Continued in Tables 6.21, 6.22, 6.23 and 6.24) : : : : : : 328

xvi

6.21 (Part II) Comparison of results computing the ideal vector of exam-

ple 6 from Chapter 5 (design of a 200-bar plane truss). OS stands

for Osyczka's Multiobjective Optimization System. (Continued in

Tables 6.22, 6.23 and 6.24) : 329

6.22 (Part III) Comparison of results computing the ideal vector of

example 6 from Chapter 5 (design of a 200-bar plane truss). OS

stands for Osyczka's Multiobjective Optimization System. (Con-

tinued in Tables 6.23 and 6.24) : : : : : : : : : : : : : : : : : : : 329

6.23 (Part IV) Comparison of results computing the ideal vector of

example 6 from Chapter 5 (design of a 200-bar plane truss). OS

stands for Osyczka's Multiobjective Optimization System. (Con-

tinued in Table 6.24) : 330

6.24 (Part V) Comparison of results computing the ideal vector of exam-

ple 6 from Chapter 5 (design of a 200-bar plane truss). OS stands

for Osyczka's Multiobjective Optimization System. : : : : : : : : 330

xvii

6.25 (Part I) Comparison of the best overall solution found by each one

of the methods included in MOSES for the sixth example (design of

a 200-bar plane truss). GA-based methods were tried with binary

(B) and oating point (FP) representations. The following abbre-

viations were used: OS = Osyczka's System, GCM = Global Crite-

rion Method (exponent=2.0), WMM (Weighting Min-max), PWM

(Pure Weighting Method), NWM (NormalizedWeighting Method),

GALC = Genetic Algorithm with a linear combination of objec-

tives using scaling. In all cases, weights were assumed equal to

0.33 (equal weight for every objective). (Continued in Tables 6.26,

6.27, 6.28 and 6.29) : 339

6.26 (Part II) Comparison of the best overall solution found by each one

of the methods included in MOSES for the sixth example (design of

a 200-bar plane truss). GA-based methods were tried with binary

(B) and oating point (FP) representations. The following abbre-

viations were used: OS = Osyczka's System, GCM = Global Crite-

rion Method (exponent=2.0), WMM (Weighting Min-max), PWM

(Pure Weighting Method), NWM (NormalizedWeighting Method),

GALC = Genetic Algorithm with a linear combination of objec-

tives using scaling. In all cases, weights were assumed equal to

0.33 (equal weight for every objective). (Continued in Tables 6.27,

6.28 and 6.29) : 340

xviii

6.27 (Part III) Comparison of the best overall solution found by each one

of the methods included in MOSES for the sixth example (design of

a 200-bar plane truss). GA-based methods were tried with binary

(B) and oating point (FP) representations. The following abbre-

viations were used: OS = Osyczka's System, GCM = Global Crite-

rion Method (exponent=2.0), WMM (Weighting Min-max), PWM

(Pure Weighting Method), NWM (NormalizedWeighting Method),

GALC = Genetic Algorithm with a linear combination of objec-

tives using scaling. In all cases, weights were assumed equal to

0.33 (equal weight for every objective). (Continued in Tables 6.28

and 6.29) : 341

6.28 (Part IV) Comparison of the best overall solution found by each one

of the methods included in MOSES for the sixth example (design of

a 200-bar plane truss). GA-based methods were tried with binary

(B) and oating point (FP) representations. The following abbre-

viations were used: OS = Osyczka's System, GCM = Global Crite-

rion Method (exponent=2.0), WMM (Weighting Min-max), PWM

(Pure Weighting Method), NWM (NormalizedWeighting Method),

GALC = Genetic Algorithm with a linear combination of objec-

tives using scaling. In all cases, weights were assumed equal to

0.33 (equal weight for every objective). (Continued in Table 6.29) 342

xix

6.29 (Part V) Comparison of the best overall solution found by each one

of the methods included in MOSES for the sixth example (design of

a 200-bar plane truss). GA-based methods were tried with binary

(B) and oating point (FP) representations. The following abbre-

viations were used: OS = Osyczka's System, GCM = Global Crite-

rion Method (exponent=2.0), WMM (Weighting Min-max), PWM

(Pure Weighting Method), NWM (NormalizedWeighting Method),

GALC = Genetic Algorithm with a linear combination of objec-

tives using scaling. In all cases, weights were assumed equal to

0.33 (equal weight for every objective). : : : : : : : : : : : : : : : 343

6.30 (Part I) Comparison of results computing the ideal vector of exam-

ple 7 from Chapter 5 (design of a robot arm). For each method

the best results for optimum f

1

, f

2

, f

3

and f

4

are shown in bold-

face. OS stands for Osyczka's Multiobjective Optimization Sys-

tem. (Continued in Table 6.31) : : : : : : : : : : : : : : : : : : : 367

6.31 (Part II) Comparison of results computing the ideal vector of exam-

ple 7 from Chapter 5 (design of a robot arm). OS stands for Osy-

czka's Multiobjective Optimization System. : : : : : : : : : : : : 368

xx

6.32 (Part I) Comparison of the best overall solution found by each

one of the methods included in MOSES for the seventh exam-

ple (design of a robot arm). GA-based methods were tried with

binary (B) and oating point (FP) representations. The following

abbreviations were used: OS = Osyczka's System, GCM = Global

Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting

Method), GALC = Genetic Algorithm with a linear combination

of objectives using scaling. In all cases, weights were assumed equal

to 0.25 (equal weight for every objective). (Continued in Table 6.33)370

6.33 (Part II) Comparison of the best overall solution found by each

one of the methods included in MOSES for the seventh exam-

ple (design of a robot arm). GA-based methods were tried with

binary (B) and oating point (FP) representations. The following

abbreviations were used: OS = Osyczka's System, GCM = Global

Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting

Method), GALC = Genetic Algorithm with a linear combination

of objectives using scaling. In all cases, weights were assumed equal

to 0.25 (equal weight for every objective). : : : : : : : : : : : : : 371

xxi

7.1 Comparison of results using di�erent population sizes with mymin-

max method that uses sharing. M is the population size, L

p

(f) is

the maximumdeviation with respect to the ideal vector and E is the

number of function evaluations required. These results correspond

to example 1 from Chapter 5 using binary (B) and oating point

(FP) representations. : 390

7.2 Comparison of results using di�erent population sizes with mymin-

max method that uses sharing. M is the population size, L

p

(f) is

the maximumdeviation with respect to the ideal vector and E is the

number of function evaluations required. These results correspond

to example 2 from Chapter 5 using binary (B) and oating point

(FP) representations. : 392

7.3 Comparison of results using di�erent population sizes with mymin-

max method that uses sharing. M is the population size, L

p

(f) is

the maximumdeviation with respect to the ideal vector and E is the

number of function evaluations required. These results correspond

to example 3 from Chapter 5 using binary (B) and oating point

(FP) representations. : 393

7.4 Comparison of results using di�erent values of �

share

with my min-

max method that uses sharing. L

p

(f) is the maximum deviation

with respect to the ideal vector. These results correspond to exam-

ple 1 from Chapter 5 using binary (B) and oating point (FP)

representations. : 396

xxii

7.5 Comparison of results using di�erent values of �

share

with my min-

max method that uses sharing. L

p

(f) is the maximum deviation

with respect to the ideal vector. These results correspond to exam-

ple 2 from Chapter 5 using binary (B) and oating point (FP)

representations. The asterisk (*) indicates total convergence of the

population to a unique solution. : : : : : : : : : : : : : : : : : : : 396

7.6 Comparison of results using di�erent values of �

share

with my min-

max method that uses sharing. L

p

(f) is the maximum deviation

with respect to the ideal vector. These results correspond to exam-

ple 3 from Chapter 5 using binary (B) and oating point (FP)

representations. : 397

7.7 Comparison of results using estimated values of �

share

with mymin-

max method. L

p

(f) is the maximum deviation with respect to the

ideal vector. The value of q indicated the number of desired peaks

to which we want the population to converge. : : : : : : : : : : : 402

xxiii

List of Figures

1.1 Ideal solution in which all our functions have their minimum at a

common point. : 9

1.2 Two examples of convex sets. : 10

1.3 Two examples of non-convex sets. : : : : : : : : : : : : : : : : : : 10

1.4 Graphical representation of the t-directional shadow for the range F . 11

1.5 Weakly and strongly non-dominated curves on the biobjective case. 12

1.6 An example of a problem with two variables and two objective

functions. The pareto optimal solutions are indicated by the shaded

boundaries of the design region. : : : : : : : : : : : : : : : : : : : 17

1.7 A three-bar plane truss used to illustrate the basic concepts covered

in this chapter. : 18

1.8 Euclidean space of the decision variables for the three-bar truss of

Figure 1.7. The curve g

1

limits the feasible region. : : : : : : : : : 20

1.9 Design region for the three-bar plane truss of Figure 1.7. : : : : : 22

1.10 The solution region for the three-bar plane truss of Figure 1.7 is

delimited by points F (x

a

), F (x

b

), F (x

c

), F (x

d

) and F (x

e

). The

point F (x

f

) corresponds to the solution adopted. : : : : : : : : : 25

xxiv

1.11 The normalized solution region for the three-bar plane truss of Fig-

ure 1.7 is delimited by points F (x

a

), F (x

b

), F (x

c

), F (x

d

) and F (x

e

).

The point F (Gamma) corresponds to the solution adopted. : : : : 26

2.1 The weighting objectives method for a maximizing problem. : : : 31

2.2 The "-constraint method for a maximizing problem. : : : : : : : : 34

2.3 Sketch of a compromise solution. The basic idea is to take the point

which is closest, by some distance measure, to the ideal point, which

in this case is the origin. : 37

2.4 Example of cooperative and non-cooperative game solutions. : : : 42

2.5 Preferences for player A. : 49

2.6 Generalized preferences for player A. : : : : : : : : : : : : : : : : 50

2.7 Stability analysis of a particular outcome s for a particular player i. 51

2.8 Example of an ELECTRE graph. Each node corresponds to a non-

dominated alternative. The arrows indicate preferences. Therefore

we can say that alternative 1 is preferred to alternative 5, alterna-

tive 4 is preferred to alternative 6, etc. : : : : : : : : : : : : : : : 60

2.9 An example of a case where reaching the ideal point (M) is an

unrealistic goal, and we search, instead, an alternative point (I). : 85

2.10 Goal-attainment method with two objective functions. : : : : : : 90

3.1 Use of a single-point crossover between two chromosomes. Notice

that each pair of chromosomes produces two descendants for the

next generation. The cross-point may be located at the string

boundaries, in which case the crossover has no e�ect and the par-

ents remain intact for the next generation. : : : : : : : : : : : : : 100

xxv

3.2 Use of a two-point crossover between two chromosomes. In this

case the genes at the extremes are kept, and those in the middle

part are exchanged. If one of the two cross-points happens to be at

the string boundaries, a single-point crossover will be performed,

and if both are at the string boundaries, the parents remain intact

for the next generation. : 100

3.3 Representing the same number using binary and oating point

encodings. : 102

3.4 Schematic of VEGA selection. : 107

3.5 Flowchart of the Nondominated Sorting Genetic Algorithm (NSGA).114

4.1 Graphical illustration of the contact theorem. : : : : : : : : : : : 124

4.2 Graphical illustration of equations (4.3) and (4.4). : : : : : : : : : 125

5.1 The simply supported I-beam of Example 1. : : : : : : : : : : : : 145

5.2 Sketch of the machine tool spindle used for Example 3. : : : : : : 151

5.3 10-bar plane truss used for Example No. 4. : : : : : : : : : : : : : 154

5.4 Cross-section used for Example No. 4. : : : : : : : : : : : : : : : 154

5.5 25-bar space truss used for example No. 5. : : : : : : : : : : : : : 156

5.6 200-bar plane truss used for example No. 6. : : : : : : : : : : : : 160

5.7 PUMA-560 robot arm and schematic representation of coordinate

angles �

i

. : 161

5.8 Mechanical model of the robot arm used for optimization. : : : : 163

5.9 Free-body diagrams of the robot arm. : : : : : : : : : : : : : : : : 166

5.10 Angular velocities and corresponding angular accelerations of the

robot arm used for Example No. 8. : : : : : : : : : : : : : : : : : 170

xxvi

5.11 A gate in a two-dimensional template, gets its second input from

either one of two gates in the previous column. : : : : : : : : : : : 173

6.1 Example 1: Distribution of points using the Lexicographic Method

with a binary representation at generation zero. Only points within

the feasible region are displayed. : : : : : : : : : : : : : : : : : : : 193

6.2 Example 1: Initial feasible region for Monte Carlo method. : : : : 194

6.3 Example 1: Initial feasible region. : : : : : : : : : : : : : : : : : : 194

6.4 Example 1: The GA using a linear combination of the objectives

with scaling, after 50 generations. : : : : : : : : : : : : : : : : : : 196

6.5 Example 1: Distribution of points using VEGA with a binary rep-

resentation at generation twenty. : : : : : : : : : : : : : : : : : : 199

6.6 Example 1: Distribution of points using VEGA with a binary rep-

resentation at generation �fty. : 199

6.7 Example 1: Distribution of points using VEGA with oating point

representation at generation twenty. : : : : : : : : : : : : : : : : : 200

6.8 Example 1: Distribution of points using VEGA with oating point

representation at generation �fty. : : : : : : : : : : : : : : : : : : 200

6.9 Example 1: Distribution of points using VEGA with binary repre-

sentation at generation 100. : 201

6.10 Example 1: Distribution of points using NSGA with binary repre-

sentation at generation �fty. : 202

6.11 Example 1: Distribution of points using NSGA with binary repre-

sentation at generation twenty. : 203

6.12 Example 1: Distribution of points using NSGA with binary repre-

sentation at generation 500. : 203

xxvii

6.13 Example 1: Distribution of points using NSGA with oating point

representation at generation 50. : : : : : : : : : : : : : : : : : : : 204

6.14 Example 1: Distribution of points using MOGA with binary rep-

resentation at generation 20. : 205

6.15 Example 1: Distribution of points using MOGA with binary rep-

resentation at generation 50. : 206

6.16 Example 1: Distribution of points using MOGA with binary rep-

resentation at generation 100. : 206

6.17 Example 1: Distribution of points using MOGA with oating point

representation at generation 50. : : : : : : : : : : : : : : : : : : : 207

6.18 Example 1: Distribution of points using NPGA with binary repre-

sentation at generation 20. : 208

6.19 Example 1: Distribution of points using NPGA with binary repre-

sentation at generation 50. : 209

6.20 Example 1: Distribution of points using NPGA with binary repre-

sentation at generation 100. : 209

6.21 Example 1: Distribution of points using NPGA with binary repre-

sentation at generation 500. : 210

6.22 Example 1: Distribution of points using NPGA with binary repre-

sentation at generation 50 with �

share

= 1:0. : : : : : : : : : : : : 210

6.23 Example 1: Distribution of points using NPGA with oating point

representation at generation 50. : : : : : : : : : : : : : : : : : : : 211

6.24 Example 1: Distribution of points using NPGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 211

xxviii

6.25 Example 1: Distribution of points using Hajela's method with

binary representation at generation 20. : : : : : : : : : : : : : : : 213

6.26 Example 1: Distribution of points using Hajela's method with

binary representation at generation 50. : : : : : : : : : : : : : : : 214

6.27 Example 1: Distribution of points using Hajela's method with

binary representation at generation 50 using 500 individuals. : : : 214

6.28 Example 1: Distribution of points using Hajela's method with oat-

ing point representation at generation 50. : : : : : : : : : : : : : : 215

6.29 Example 1: Distribution of points using my method based on the

min-max algorithm with binary representation at generation zero. 216

6.30 Example 1: Distribution of points using my method based on the

min-max algorithm with binary representation at generation 50. : 217

6.31 Example 1: Distribution of points using my method based on the

min-max algorithm with oating point representation at generation

50. : 217

6.32 Example 1: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 20. : 219

6.33 Example 1: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 50. : 219

6.34 Example 1: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 100. : 220

xxix

6.35 Example 1: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 500. : 220

6.36 Example 1: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 20. : 221

6.37 Example 1: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 50. : 221

6.38 Example 1: Distribution of points using the Lexicographic Method

with a binary representation at generation twenty. : : : : : : : : : 223

6.39 Example 1: Distribution of points using the Lexicographic Method

with a oating point representation at generation twenty. : : : : : 224

6.40 Example 1: Distribution of points using the Lexicographic Method

with a binary representation at generation �fty. : : : : : : : : : : 224

6.41 Example 1: Distribution of points using the Lexicographic Method

with a oating point representation at generation �fty. : : : : : : 225

6.42 Example 3: Initial feasible region for example 3. : : : : : : : : : : 231

6.43 Example 3: Initial feasible region for Monte Carlo method solving

the third example. : 231

6.44 Example 3: The GA using a linear combination of the objectives

with scaling, after 50 generations using binary representation. : : 232

6.45 Example 3: The GA using a linear combination of the objectives

with scaling, after 50 generations using oating point representation.233

xxx

6.46 Example 3: Distribution of points using the Lexicographic Method

with a binary representation at generation zero. Only points within

the feasible region are displayed. : : : : : : : : : : : : : : : : : : : 234

6.47 Example 3: Distribution of points using the Lexicographic Method

with a binary representation at generation twenty. Only points

within the feasible region are displayed. : : : : : : : : : : : : : : : 234

6.48 Example 3: Distribution of points using the Lexicographic Method

with a oating point representation at generation twenty. Only

points within the feasible region are displayed. : : : : : : : : : : : 235

6.49 Example 3: Distribution of points using the Lexicographic Method

with a binary representation at generation �fty. Only points within

the feasible region are displayed. : : : : : : : : : : : : : : : : : : : 235

6.50 Example 3: Distribution of points using the Lexicographic Method

with a oating point representation at generation �fty. Only points

within the feasible region are displayed. : : : : : : : : : : : : : : : 236

6.51 Example 3: Distribution of points using VEGA with a binary rep-

resentation at generation twenty. : : : : : : : : : : : : : : : : : : 238

6.52 Example 3: Distribution of points using VEGA with a binary rep-

resentation at generation �fty. : 238

6.53 Example 3: Distribution of points using VEGA with oating point

representation at generation twenty. : : : : : : : : : : : : : : : : : 239

6.54 Example 3: Distribution of points using VEGA with oating point

representation at generation �fty. : : : : : : : : : : : : : : : : : : 239

6.55 Example 3: Distribution of points using VEGA with binary repre-

sentation at generation 100. : 240

xxxi

6.56 Example 3: Distribution of points using NSGA with binary repre-

sentation at generation �fty. : 241

6.57 Example 3: Distribution of points using NSGA with binary repre-

sentation at generation twenty. : 242

6.58 Example 3: Distribution of points using NSGA with binary repre-

sentation at generation 500. : 242

6.59 Example 3: Distribution of points using NSGA with oating point

representation at generation 50. : : : : : : : : : : : : : : : : : : : 243

6.60 Example 3: Distribution of points using MOGA with binary rep-

resentation at generation 20. : 244

6.61 Example 3: Distribution of points using MOGA with binary rep-

resentation at generation 50. : 244

6.62 Example 3: Distribution of points using MOGA with binary rep-

resentation at generation 100. : 245

6.63 Example 3: Distribution of points using MOGA with oating point

representation at generation 50. : : : : : : : : : : : : : : : : : : : 245

6.64 Example 3: Distribution of points using NPGA with binary repre-

sentation at generation 20. : 246

6.65 Example 3: Distribution of points using NPGA with binary repre-

sentation at generation 50. : 247

6.66 Example 3: Distribution of points using NPGA with binary repre-

sentation at generation 100. : 247

6.67 Example 3: Distribution of points using NPGA with binary repre-

sentation at generation 500. : 248

xxxii

6.68 Example 3: Distribution of points using NPGA with binary repre-

sentation at generation 50 with �

share

= 1:0. : : : : : : : : : : : : 248

6.69 Example 3: Distribution of points using NPGA with oating point

representation at generation 50. : : : : : : : : : : : : : : : : : : : 249

6.70 Example 3: Distribution of points using NPGA with oating point

representation at generation 20. : : : : : : : : : : : : : : : : : : : 249

6.71 Example 3: Distribution of points using Hajela's method with

binary representation at generation 20. : : : : : : : : : : : : : : : 250

6.72 Example 3: Distribution of points using Hajela's method with

binary representation at generation 50. : : : : : : : : : : : : : : : 251

6.73 Example 3: Distribution of points using Hajela's method with

binary representation at generation 50 using 500 individuals. : : : 251

6.74 Example 3: Distribution of points using Hajela's method with oat-

ing point representation at generation 50. : : : : : : : : : : : : : : 252

6.75 Example 3: Distribution of points using my method based on the

min-max algorithm with binary representation at generation zero. 253

6.76 Example 3: Distribution of points using my method based on the

min-max algorithm with binary representation at generation 50. : 253

6.77 Example 3: Distribution of points using my method based on the

min-max algorithm with oating point representation at generation

50. : 254

6.78 Example 3: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 20. : 255

xxxiii

6.79 Example 3: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 50. : 255

6.80 Example 3: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 100. : 256

6.81 Example 3: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 500. : 256

6.82 Example 3: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 20. : 257

6.83 Example 3: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 50. : 257

6.84 Initial feasible region for Monte Carlo method solving the fourth

example. : 261

6.85 Example 4: The GA using a linear combination of the objectives

with scaling, after 100 generations using binary representation. : : 263

6.86 Example 4: The GA using a linear combination of the objectives

with scaling, after 100 generations using oating point representation.263

6.87 Example 4: Distribution of points using the Lexicographic Method

with a binary representation at generation zero. Only points within

the feasible region are displayed. : : : : : : : : : : : : : : : : : : : 264

xxxiv

6.88 Example 4: Distribution of points using the Lexicographic Method

with a binary representation at generation twenty. Only points

within the feasible region are displayed. : : : : : : : : : : : : : : : 265

6.89 Example 4: Distribution of points using the Lexicographic Method

with a oating point representation at generation twenty. Only

points within the feasible region are displayed. : : : : : : : : : : : 265

6.90 Example 4: Distribution of points using the Lexicographic Method

with a binary representation at generation 100. Only points within

the feasible region are displayed. : : : : : : : : : : : : : : : : : : : 266

6.91 Example 4: Distribution of points using the Lexicographic Method

with a oating point representation at generation 100. Only points

within the feasible region are displayed. : : : : : : : : : : : : : : : 266

6.92 Example 4: Distribution of points using VEGA with a binary rep-

resentation at generation twenty. : : : : : : : : : : : : : : : : : : 268

6.93 Example 4: Distribution of points using VEGA with a binary rep-

resentation at generation �fty. : 273

6.94 Example 4: Distribution of points using VEGA with oating point

representation at generation twenty. : : : : : : : : : : : : : : : : : 273

6.95 Example 4: Distribution of points using VEGA with oating point

representation at generation �fty. : : : : : : : : : : : : : : : : : : 274

6.96 Example 4: Distribution of points using VEGA with binary repre-

sentation at generation 100. : 274

6.97 Example 4: Distribution of points using VEGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 275

xxxv

6.98 Example 4: Distribution of points using NSGA with binary repre-

sentation at generation 100. : 276

6.99 Example 4: Distribution of points using NSGA with binary repre-

sentation at generation twenty. : 276

6.100Example 4: Distribution of points using NSGA with binary repre-

sentation at generation 500. : 277

6.101Example 4: Distribution of points using NSGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 277

6.102Example 4: Distribution of points using MOGA with binary rep-

resentation at generation 20. : 279

6.103Example 4: Distribution of points using MOGA with binary rep-

resentation at generation 100. : 279

6.104Example 4: Distribution of points using MOGA with binary rep-

resentation at generation 500. : 280

6.105Example 4: Distribution of points using MOGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 280

6.106Example 4: Distribution of points using NPGA with binary repre-

sentation at generation 20. : 281

6.107Example 4: Distribution of points using NPGA with binary repre-

sentation at generation 50. : 282

6.108Example 4: Distribution of points using NPGA with binary repre-

sentation at generation 100. : 282

6.109Example 4: Distribution of points using NPGA with binary repre-

sentation at generation 500. : 283

xxxvi

6.110Example 4: Distribution of points using NPGA with binary repre-

sentation at generation 100 with �

share

= 1:0. : : : : : : : : : : : 283

6.111Example 4: Distribution of points using NPGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 284

6.112Example 4: Distribution of points using NPGA with oating point

representation at generation 20. : : : : : : : : : : : : : : : : : : : 284

6.113Example 4: Distribution of points using Hajela's method with

binary representation at generation 20. : : : : : : : : : : : : : : : 286

6.114Example 4: Distribution of points using Hajela's method with

binary representation at generation 50. : : : : : : : : : : : : : : : 286

6.115Example 4: Distribution of points using Hajela's method with

binary representation at generation 100. : : : : : : : : : : : : : : 287

6.116Example 4: Distribution of points using Hajela's method with

binary representation at generation 500 : : : : : : : : : : : : : : : 287

6.117Example 4: Distribution of points using Hajela's method with oat-

ing point representation at generation 20. : : : : : : : : : : : : : : 288

6.118Example 4: Distribution of points using Hajela's method with oat-

ing point representation at generation 100. : : : : : : : : : : : : : 288

6.119Example 4: Distribution of points using my method based on the

min-max algorithm with binary representation at generation zero. 290

6.120Example 4: Distribution of points using my method based on the

min-max algorithm with binary representation at generation 100. 290

6.121Example 4: Distribution of points using my method based on the

min-max algorithm with oating point representation at generation

100. : 291

xxxvii

6.122Example 4: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 20. : 292

6.123Example 4: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 50. : 292

6.124Example 4: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 100. : 293

6.125Example 4: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 20. : 293

6.126Example 4: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 100. : 294

6.127Initial feasible region for Monte Carlo method solving the �fth

example. : 297

6.128Example 5: The GA using a linear combination of the objectives

with scaling, after 100 generations using binary representation. : : 298

6.129Example 5: The GA using a linear combination of the objectives

with scaling, after 100 generations using oating point representation.299

6.130Example 5: Distribution of points using the Lexicographic Method

with a binary representation at generation zero. Only points within

the feasible region are displayed. : : : : : : : : : : : : : : : : : : : 300

xxxviii

6.131Example 5: Distribution of points using the Lexicographic Method

with a binary representation at generation twenty. Only points

within the feasible region are displayed. : : : : : : : : : : : : : : : 300

6.132Example 5: Distribution of points using the Lexicographic Method

with a oating point representation at generation twenty. Only

points within the feasible region are displayed. : : : : : : : : : : : 301

6.133Example 5: Distribution of points using the Lexicographic Method

with a binary representation at generation 100. Only points within

the feasible region are displayed. : : : : : : : : : : : : : : : : : : : 301

6.134Example 5: Distribution of points using the Lexicographic Method

with a oating point representation at generation 100. Only points

within the feasible region are displayed. : : : : : : : : : : : : : : : 302

6.135Example 5: Distribution of points using VEGA with a binary rep-

resentation at generation twenty. : : : : : : : : : : : : : : : : : : 303

6.136Example 5: Distribution of points using VEGA with a binary rep-

resentation at generation �fty. : 306

6.137Example 5: Distribution of points using VEGA with oating point

representation at generation twenty. : : : : : : : : : : : : : : : : : 306

6.138Example 5: Distribution of points using VEGA with oating point

representation at generation �fty. : : : : : : : : : : : : : : : : : : 307

6.139Example 5: Distribution of points using VEGA with binary repre-

sentation at generation 100. : 307

6.140Example 5: Distribution of points using VEGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 308

xxxix

6.141Example 5: Distribution of points using NSGA with binary repre-

sentation at generation 100. : 309

6.142Example 5: Distribution of points using NSGA with binary repre-

sentation at generation twenty. : 310

6.143Example 5: Distribution of points using NSGA with binary repre-

sentation at generation 500. : 310

6.144Example 5: Distribution of points using NSGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 311

6.145Example 5: Distribution of points using MOGA with binary rep-

resentation at generation 20. : 312

6.146Example 5: Distribution of points using MOGA with binary rep-

resentation at generation 100. : 312

6.147Example 5: Distribution of points using MOGA with binary rep-

resentation at generation 500. : 313

6.148Example 5: Distribution of points using MOGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 313

6.149Example 5: Distribution of points using NPGA with binary repre-

sentation at generation 20. : 315

6.150Example 5: Distribution of points using NPGA with binary repre-

sentation at generation 50. : 315

6.151Example 5: Distribution of points using NPGA with binary repre-

sentation at generation 100. : 316

6.152Example 5: Distribution of points using NPGA with binary repre-

sentation at generation 500. : 316

xl

6.153Example 5: Distribution of points using NPGA with binary repre-

sentation at generation 100 with �

share

= 1:0. : : : : : : : : : : : 317

6.154Example 5: Distribution of points using NPGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 317

6.155Example 5: Distribution of points using NPGA with oating point

representation at generation 20. : : : : : : : : : : : : : : : : : : : 318

6.156Example 5: Distribution of points using Hajela's method with

binary representation at generation 20. : : : : : : : : : : : : : : : 319

6.157Example 5: Distribution of points using Hajela's method with

binary representation at generation 50. : : : : : : : : : : : : : : : 320

6.158Example 5: Distribution of points using Hajela's method with

binary representation at generation 100. : : : : : : : : : : : : : : 320

6.159Example 5: Distribution of points using Hajela's method with

binary representation at generation 500 : : : : : : : : : : : : : : : 321

6.160Example 5: Distribution of points using Hajela's method with oat-

ing point representation at generation 20. : : : : : : : : : : : : : : 321

6.161Example 5: Distribution of points using Hajela's method with oat-

ing point representation at generation 100. : : : : : : : : : : : : : 322

6.162Example 5: Distribution of points using my method based on the

min-max algorithm with binary representation at generation zero. 323

6.163Example 5: Distribution of points using my method based on the

min-max algorithm with binary representation at generation 100. 323

6.164Example 5: Distribution of points using my method based on the

min-max algorithm with oating point representation at generation

100. : 324

xli

6.165Example 5: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 20. : 325

6.166Example 5: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 20. : 326

6.167Example 5: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 50. : 326

6.168Example 5: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 100. : 327

6.169Initial feasible region for Monte Carlo method solving the sixth

example. : 331

6.170Example 6: The GA using a linear combination of the objectives

with scaling, after 100 generations using binary representation. : : 333

6.171Example 6: The GA using a linear combination of the objectives

with scaling, after 100 generations using oating point representation.334

6.172Example 6: Distribution of points using the Lexicographic Method

with a binary representation at generation zero. Only points within

the feasible region are displayed. : : : : : : : : : : : : : : : : : : : 335

6.173Example 6: Distribution of points using the Lexicographic Method

with a binary representation at generation twenty. Only points

within the feasible region are displayed. : : : : : : : : : : : : : : : 335

xlii

6.174Example 6: Distribution of points using the Lexicographic Method

with a oating point representation at generation twenty. Only

points within the feasible region are displayed. : : : : : : : : : : : 336

6.175Example 6: Distribution of points using the Lexicographic Method

with a binary representation at generation 100. Only points within

the feasible region are displayed. : : : : : : : : : : : : : : : : : : : 336

6.176Example 6: Distribution of points using the Lexicographic Method

with a oating point representation at generation 100. Only points

within the feasible region are displayed. : : : : : : : : : : : : : : : 337

6.177Example 6: Distribution of points using VEGA with a binary rep-

resentation at generation twenty. : : : : : : : : : : : : : : : : : : 344

6.178Example 6: Distribution of points using VEGA with a binary rep-

resentation at generation �fty. : 344

6.179Example 6: Distribution of points using VEGA with oating point

representation at generation twenty. : : : : : : : : : : : : : : : : : 345

6.180Example 6: Distribution of points using VEGA with oating point

representation at generation �fty. : : : : : : : : : : : : : : : : : : 345

6.181Example 6: Distribution of points using VEGA with binary repre-

sentation at generation 100. : 346

6.182Example 6: Distribution of points using VEGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 346

6.183Example 6: Distribution of points using NSGA with binary repre-

sentation at generation twenty. : 347

6.184Example 6: Distribution of points using NSGA with binary repre-

sentation at generation 50. : 348

xliii

6.185Example 6: Distribution of points using NSGA with binary repre-

sentation at generation 100. : 348

6.186Example 6: Distribution of points using NSGA with oating point

representation at generation 20. : : : : : : : : : : : : : : : : : : : 349

6.187Example 6: Distribution of points using NSGA with oating point

representation at generation 50. : : : : : : : : : : : : : : : : : : : 349

6.188Example 6: Distribution of points using NSGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 350

6.189Example 6: Distribution of points using MOGA with binary rep-

resentation at generation 20. : 351

6.190Example 6: Distribution of points using MOGA with binary rep-

resentation at generation 100. : 352

6.191Example 6: Distribution of points using MOGA with oating point

representation at generation 20. : : : : : : : : : : : : : : : : : : : 352

6.192Example 6: Distribution of points using MOGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 353

6.193Example 6: Distribution of points using NPGA with binary repre-

sentation at generation 20. : 354

6.194Example 6: Distribution of points using NPGA with binary repre-

sentation at generation 50. : 354

6.195Example 6: Distribution of points using NPGA with binary repre-

sentation at generation 100. : 355

6.196Example 6: Distribution of points using NPGA with binary repre-

sentation at generation 100 with �

share

= 1:0. : : : : : : : : : : : 355

xliv

6.197Example 6: Distribution of points using NPGA with oating point

representation at generation 100. : : : : : : : : : : : : : : : : : : 356

6.198Example 6: Distribution of points using NPGA with oating point

representation at generation 20. : : : : : : : : : : : : : : : : : : : 356

6.199Example 6: Distribution of points using NPGA with oating point

representation at generation 50. : : : : : : : : : : : : : : : : : : : 357

6.200Example 6: Distribution of points using Hajela's method with

binary representation at generation 20. : : : : : : : : : : : : : : : 358

6.201Example 6: Distribution of points using Hajela's method with

binary representation at generation 50. : : : : : : : : : : : : : : : 359

6.202Example 6: Distribution of points using Hajela's method with

binary representation at generation 100. : : : : : : : : : : : : : : 359

6.203Example 6: Distribution of points using Hajela's method with oat-

ing point representation at generation 20. : : : : : : : : : : : : : : 360

6.204Example 6: Distribution of points using Hajela's method with oat-

ing point representation at generation 20. : : : : : : : : : : : : : : 360

6.205Example 6: Distribution of points using Hajela's method with oat-

ing point representation at generation 100. : : : : : : : : : : : : : 361

6.206Example 6: Distribution of points using my method based on the

min-max algorithm with binary representation at generation zero. 362

6.207Example 6: Distribution of points using my method based on the

min-max algorithm with binary representation at generation 100. 363

6.208Example 6: Distribution of points using my method based on the

min-max algorithm with oating point representation at generation

100. : 363

xlv

6.209Example 6: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 20. : 364

6.210Example 6: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at gen-

eration 100. : 365

6.211Example 6: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 20. : 365

6.212Example 6: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at

generation 100. : 366

6.213Convergence history of the GA solving problem No. 8 (binary

representation). The evolution of the maximum�tness is displayed

through 100 generations. : 374

6.214Convergence history of the GA solving problem No. 8 (binary

representation). The evolution of the average �tness is displayed

through 100 generations. : 375

6.215Example 8: A sample circuit design produced by MOSES using

binary representation. : 376

6.216Example 8: A sample circuit design produced by MOSES using

binary representation. : 376

6.217Example 8: A sample circuit design produced by the classical

genetic algorithm with an elitist selection strategy used by Sushil

Louis. : 377

xlvi

7.1 Relation between population size and maximum �tness for the

example No. 8 : 389

7.2 Distribution of points in the objective function domain for example

1 using my min-max strategy with a sharing factor of 0.0001 under

binary representation. : 397

7.3 Distribution of points in the objective function domain for example

1 using my min-max strategy with a sharing factor of 0.0001 under

oating point representation. : 398

7.4 Distribution of points in the objective function domain for example

1 using my min-max strategy with a sharing factor of 100.0 under

binary representation. : 398

7.5 Distribution of points in the objective function domain for example

1 using my min-max strategy with a sharing factor of 100.0 under

oating point representation. : 399

7.6 Distribution of points in the objective function domain for example

3 using my min-max strategy with a sharing factor of 0.0001 under

binary representation. : 399

7.7 Distribution of points in the objective function domain for example

3 using my min-max strategy with a sharing factor of 0.0001 under

oating point representation. : 400

7.8 Distribution of points in the objective function domain for example

3 using my min-max strategy with a sharing factor of 100.0 under

binary representation. : 400

xlvii

7.9 Distribution of points in the objective function domain for example

3 using my min-max strategy with a sharing factor of 100.0 under

oating point representation. : 401

xlviii

1

Introduction

Although much research has been done in engineering optimization recently,

the trend has been to deal with ideal and unrealistic problems, rather than than

real-world applications. One of the reasons for this has been that for many years,

engineering optimization considered only single-objective functions. This is nor-

mally not a realistic assumption, given the fact that most real-world engineering

problems have several (possibly conicting) objectives. For example, if we refer

to the optimization of a certain structure, we will normally want to minimize its

weight and volume of material used, but at the same time, we will want to max-

imize its frequency, so that it can provide the maximum possible safety. These

objectives are, however, conicting, since a maximum frequency value will require

a higher volume of material and, consequently, a higher weight. Currently, much

work has been done in this area, and there are more than 20 mathematical opti-

mization methods to deal with multiple objectives. In an early stage of their

development, it was recognized that genetic algorithms (GAs) were well suited for

multiobjective optimization problems, and several approaches were suggested.

This dissertation provides a general view of several mathematical program-

ming approaches which can be useful in engineering design, and a comparison of

these methods to GA approaches in several engineering design problems. Also,

some hybrid techniques are proposed, and an empirical study of their behavior

2

is presented, in order to better understand when to use each one in real-world

situations. With this goal in mind, a system has been developed to include all

techniques of interest, and a complete analysis of their behavior under several

engineering design optimization problems is provided here. Finally, some guide-

lines are given to suggest possible future paths of research.

The organization of this thesis is the following: Chapter 1 contains the

basic concepts from operations research that are necessary to understand the

material of the further chapters. Chapter 2 gives a classi�cation and brief descrip-

tion of the main mathematical programming techniques for multiobjective opti-

mization, together with some comments on their advantages and disadvantages,

and where to �nd more information on them. Chapter 3 provides a historical

review of the di�erent approaches taken in the GA community to deal with mul-

tiple objectives. Chapter 4 describes MOSES (Multiobjective Optimization of

Systems in the Engineering Sciences), its capabilities, limitations, and implemen-

tation details. Chapter 5 includes complete descriptions of several optimization

engineering design problems used to test the system. Chapter 6 contains a com-

parison of the various methods available in terms of computational e�ciency, lim-

itations and ease of use, together with a brief theoretical analysis of the behavior

of each technique in terms of the eight problems studied. Chapter 7 provides

some of my experiences regarding population policies and sharing parameters,

in an attempt to clarify the search for better ways to adjust the parameters of

the genetic algorithm in numerical optimization problems with several objectives.

Also, a brief description of an expert system that was developed to be used as a

front end for MOSES is provided. Finally, the conclusions derived from this work

and some possible future paths of research are given.

3

Chapter 1

Basic Concepts

Multiobjective optimization (also called multicriteria optimization, mul-

tiperformance or vector optimization) can be de�ned as the problem of �nding

[1]:

a vector of decision variables which satis�es constraints and optimizes

a vector function whose elements represent the objective functions.

These functions form a mathematical description of performance cri-

teria which are usually in conict with each other. Hence, the term

\optimize" means �nding such a solution which would give the values

of all the objective functions acceptable to the designer.

Most of the de�nitions and notation introduced in this chapter, follow that

of Osyczka [2].

We will call decision variables the numerical quantities for which values

are to be chosen in an optimization problem. These quantities will be denoted as

x

j

, j = 1; 2; : : : ; n.

4

The vector of n decision variables �x will be represented by:

�x =

2

6

6

6

6

6

6

6

6

6

6

4

x

1

x

2

.

.

.

x

n

3

7

7

7

7

7

7

7

7

7

7

5

(1.1)

Also, it can be written in a more convenient way as:

�x = [x

1

; x

2

; : : : ; x

n

]

T

; (1.2)

where T indicates the transposition of the column vector to the row vector.

In every engineering problem there are always restrictions imposed by the

particular characteristics of the environment or resources available. These restric-

tions must be satis�ed in order to consider that a certain solution is acceptable.

We will call constraints all these restrictions in general, which describe depen-

dences among decision variables and constants (or parameters) involved in the

problem. These constraints will be expressed in form of mathematical inequali-

ties:

g

i

� 0 i = 1; : : : ;m (1.3)

or equalities:

h

i

= 0 i = 1; : : : ; p (1.4)

Note that p, the number of equality constraints, must be less than n,

the number of decision variables, because if p � n the problem is said to be

overconstrained, since there are no degrees of freedom left for optimizing. The

5

number of degrees of freedom is given by n� p. Also, constraints can be explicit

or implicit, in which case the algorithm to compute g

i

(�x) for any given vector �x

must be known.

In order to know how \good" a certain solution is, we need to have some

criteria to evaluate it. These criteria are expressed as computable functions of the

decision variables, that are called objective functions. In our case, some of them

will be in conict with others, and some will have to be minimized while others

are maximized. These objective functions may be commensurable (measured

in the same units) or non-commensurable (measured in di�erent units). In

general, the objective functions with which we deal in engineering optimization

are non-commensurable.

We will designate the objective functions as: f

1

(�x); f

2

(�x); : : : ; f

k

(�x). There-

fore, our objective functions will form a vector function

�

f(�x) which will be de�ned

by:

�

f(�x) =

2

6

6

6

6

6

6

6

6

6

6

4

f

1

(�x)

f

2

(�x)

.

.

.

f

k

(�x)

3

7

7

7

7

7

7

7

7

7

7

5

(1.5)

Also, it can be written in a more convenient way as:

�

f(�x) = [f

1

(�x); f

2

(�x); : : : ; f

k

(�x)]

T

(1.6)

The set of all n-tuples of real numbers denoted by R

n

is called Euclidean

n-space. We will consider two Euclidean spaces:

� The n-dimensional space of the decision variables in which each coordinate

axis corresponds to a component of vector �x.

6

� The k-dimensional space of the objective functions in which each coordinate

axis corresponds to a component vector

�

f(�x).

Every point in the �rst space represents a solution and gives a certain point

in the second space, which determines a quality of this solution in terms of the

values of the objective functions.

The multiobjective optimization problem can now be de�ned as fol-

lows:

Find the vector �x

�

= [x

�

1

; x

�

2

; : : : ; x

�

n

]

T

which will satisfy the m inequality

constraints:

g

i

(�x) � 0 i = 1; 2; : : : ;m (1.7)

the p equality constraints

h

i

(�x) = 0 i = 1; 2; : : : ; p (1.8)

and optimize the vector function

�

f(�x) = [f

1

(�x); f

2

(�x); : : : ; f

k

(�x)]

T

(1.9)

where �x = [x

1

; x

2

; : : : ; x

n

]

T

is the vector of decision variables.

In other words, we wish to determine from among the set of all numbers

which satisfy (1.7) and (1.8) the particular set x

�

1

; x

�

2

; : : : ; x

�

k

which yields the

optimum values of all the objective functions.

The constraints given by (1.7) and (1.8) de�ne the feasible region X and

any point �x in X de�nes a feasible solution. The vector function

�

f (�x) is a

function which maps the set X in the set F which represents all possible values

of the objective functions. The k components of the vector

�

f (�x) represent the

7

non-commensurable criteria which must be considered. The constraints g

i

(�x) and

h

i

(�x) represent the restriction imposed on the decision variables. The vector �x

�

will be reserved to denote the optimal solutions (normally there will be more than

one).

In multiobjective optimization problems, we may have to either

� Minimize all the objective functions

� Maximize all the objective functions

� Minimize some and maximize others

For simplicity reasons, normally all the functions are converted to a maxi-

mization or minimization form. For example, the following identity may be used

to convert all the functions which are to be maximized into a form which allows

their minimization:

max f

i

(�x) = �min(�f

i

(�x)) (1.10)

Similarly, the inequality constraints of the form

g

i

(�x) � 0 i = 1; 2; : : : ;m (1.11)

can be converted to (1.7) form by multiplying by �1 and changing the sign

of the inequality. Thus (1.11) is equivalent to

�g

i

(�x) � 0 i = 1; 2; : : : ;m (1.12)

8

A multiobjective optimization problem can be written in a shortened form

as

�

f(�x

�

) =

opt

x 2 X

�

f(�x) (1.13)

where

�

f : X �! R

k

(1.14)

X = f�x 2 R

n

j �g(�x) � 0;

�

h(�x) = 0g (1.15)

Here \opt" is used to indicate the optimum of the vector function. The

problem is that the meaning of optimum is not well de�ned in this context, since

we rarely have an �x

�

such that for all i = 1; 2; : : : ; k

^

x 2 X

(f

i

(�x

�

) � f

i

(�x)) (1.16)

If this was the case, then �x

�

would be a desirable solution, but we normally

never have a situation, like this, in which all the f

i

(�x) have a minimum in X at

a common point x

�

. An example of this ideal situation is shown in Figure 1.1

(taken from Osyczka [2]). However, since this situation rarely happens in real-

world problems, then we have to establish a certain criteria to determine what

would be considered an \optimal" solution. There are two main standard criteria

for this, but before reviewing them, we need a few more de�nitions.

Let us assume that we �nd separately the minimum (or maximum) of all

the objective functions. Assuming that they can be found, let

�x

0(i)

= [x

0(i)

1

; x

0(i)

2

; : : : ; x

0(i)

n

]

T

(1.17)

9

 F

f

f

f f(x (x

(x

(x

1
*)1

*)2

)

2)

Figure 1.1: Ideal solution in which all our functions have their minimum at a

common point.

be a vector of variables which optimizes (either minimizes or maximizes)

the ith objective function f

i

(x). In other words, the vector �x

0(i)

2 X is such that

f

i

(�x

0(i)

) =

opt

x 2 X

f

i

(�x) (1.18)

In general, there will be a uni�ed criteria with respect to \opt". Most

authors prefer to treat it as a minimum. In that case, f

0

i

will denote the minimum

value of the ith function. Hence, the vector

�

f

0

= [f

0

1

; f

0

2

; : : : ; f

0

k

]

T

is ideal for a

multiobjective optimization problem, and the point in R

n

which determined this

vector is the ideal (utopical) solution, and is called the ideal vector. Although

this solution is generally not feasible, this is an important de�nition that will be

used later.

Also, we have to de�ne convexity. The set F is convex if for every �a

1

,

�a

2

2 F and every � 2 [0; 1]

�

f(��a

1

+ (1 � �)�a

2

) � �

�

f (�a

1

) + (1 � �)

�

f (�a

2

) (1.19)

10

F

F

Figure 1.2: Two examples of convex sets.

F F

Figure 1.3: Two examples of non-convex sets.

In other words, the F is convex if for any points �a

1

and �a

2

in the set, the

line segment joining these points is also in the set. So, for example, the sets shown

in Figure 1.2 are convex, and the sets shown in Figure 1.3 are not.

We now need to de�ne the t-directional shadow for the range F . This

shadow is denoted by F

t

and is de�ned as:

F

t

= fy 2 R

k

j y =

�

f + �

�

t;

�

f 2 F

p

; � 2 R

1

; � � 0g (1.20)

11

F

f + tα

F t

F

t

2
f

f1

Figure 1.4: Graphical representation of the t-directional shadow for the range F .

A graphical representation of F

t

is shown in Figure 1.4 (taken fromOsyczka

[2]).

From now on, we will call the multiobjective optimization problem convex

if F

t

is convex for all

�

t > 0. Some mathematical programming techniques that

require the problem to be convex. The main issue is that there is no analytical

method to classify a problem as being convex or non-convex.

Since, as we said before, there is no clear notion of optimum in multiob-

jective optimization, there are two main interpretations of this term:

� Pareto optimum

� Min-max optimum

The concept of Pareto optimum was formulated by Vilfredo Pareto in

1896 [3], and constitutes by itself the origin of research in this area. We say that

a point �x

�

2 X is Pareto optimal if for every �x 2 X either,

^

i 2 I

(f

i

(�x) = f

i

(�x

�

)) (1.21)

12

H(Strongly)

Minimal Curve

Weakly Minimal

 Curve

f

f (x)

1

2

(x)

Figure 1.5: Weakly and strongly non-dominated curves on the biobjective case.

or, there is at least one i 2 I such that

f

i

(�x) > f

i

(�x

�

) (1.22)

In words, this de�nition says that �x

�

is Pareto optimal if there exists no

feasible vector �x which would decrease some criterion without causing a simul-

taneous increase in at least one criterion. Unfortunately, the Pareto optimum

almost always gives not a single solution, but a set of solutions called non-inferior

or non-dominated solutions.

A point �x

�

2 X is a weakly non-dominated solution if there is no

�x 2 X such that f

i

(�x) < f

i

(�x

�

), for i = 1; : : : ; n.

A point �x

�

2 X is a strongly non-dominated solution if there is no

�x 2 X such that f

i

(�x) � f

i

(�x

�

), for i = 1; : : : ; n and for at least one value of i,

f(�x) < f(�x

�

).

Thus, if �x

�

is strongly non-dominated, it is also weakly non-dominated, but

the converse is not necessarily true. Non-dominated solutions for the biobjective

13

case can readily be represented graphically by passing into the objective function

space ff

1

(�x); f

2

(�x)g. To the locus of strongly non-dominated points corresponds

the so-called minimal curve, and to the local of weakly non-dominated points,

the weakly minimal curve [4]. These two curves are sketched in Figure 1.5

(taken from Duckstein [5]). We will use X

p

to denote the set of noninferior

or nondominated solutions, and F

p

to denote the map of X

p

in the space of

objectives. The set X

p

is, of course, determined from the set F

p

which satis�es

(1.21) and (1.22).

In engineering optimization, strongly non-dominated solutions are sought,

and the quali�cative \strongly" is generally omitted [5]. Let H be the set, called

the pay-o� set and shown in Figure 1.5, be de�ned by:

H = (�aj�a = (a

i

) 2 R

n

; �x 2 X such that a

i

= f

i

(�x) for every i) (1.23)

Then, as proved by Szidarovszky and Duckstein [6], if H is non-empty

closed and for every i

max fa

i

j(a

i

) 2 Hg <1; (1.24)

then H has at least one strongly non-dominated solution. Thus, a large

class of multiobjective optimization problems in engineering design may be expected

to possess at least one non-dominated solution, and usually the problem is, as we

mentioned before, that there is great number of possible solutions to choose from,

and this may cause di�culties both in generating the solution set and in handling

the results [7] [8].

14

The idea of stating themin-max optimum and applying it to multiobjec-

tive optimization problems, was taken from game theory, which deals with solving

conicting situations. The min-max approach to a linear model was proposed by

Jutler [9] and Solich [10]. It has been further developed by Osyczka [11] [12], Rao

[13] and Tseng and Lu [14].

The min-max optimum compares relative deviations from the separately

attainable minima. Consider the ith objective function for which the relative

deviation can be calculated from

z

0

i

(�x) =

jf

i

(�x) � f

0

i

j

jf

0

i

j

(1.25)

or from

z

00

i

(�x) =

jf

i

(�x)� f

0

i

)j

jf

i

(�x)j

(1.26)

It should be clear that for (1.25) and (1.26) we have to assume that for

every i 2 I and for every �x 2 X, f

i

(�x) 6= 0.

If all the objective functions are going to be minimized, then equation

(1.25) de�nes function relative increments, whereas if all of them are going to be

maximized, it de�nes relative decrements. Equation (1.26) works conversely.

Let �z(�x) = [z

1

(�x); : : : ; z

i

(�x); : : : ; z

k

(�x)]

T

be a vector of the relative incre-

ments which are de�ned in R

k

. The components of the vector z(�x) will be evalu-

ated from the formula

^

i 2 I

(z

i

(�x) = max fz

0

i

(�x); z

00

i

(�x)g (1.27)

15

Now we de�ne the min-max optimum as follows [2]:

A point �x

�

2 X is min-max optimal, if for every �x 2 X the following

recurrence formula is satis�ed:

Step 1:

v

1

(�x

�

) =

min

x 2 X

max

i 2 I

fz

i

(�x)g (1.28)

and then I

i

= fi

1

g, where i

1

is the index for which the value of z

1

(�x) is

maximal.

If there is a set of solutions X

1

� X which satis�es Step 1, then

Step 2:

v

2

(�x

�

) =

min

x 2 X

1

max

i 2 I; i 62 I

1

fz

i

(�x)g (1.29)

and then I

2

= fi

1

; i

2

g, where i

2

is the index for which the value of z

i

(x) in

this step is maximal.

If there is a set of solutions X

r�1

� X which satis�es step r � 1 then

Step r:

v

r

(�x

�

) =

min

x 2 X

r�1

max

i 2 I; i 62 I

r�1

fz

i

(�x)g (1.30)

and then I

r

= fI

r�1

; i

r

g, where i

r

is the index for which the value of z

i

(�x)

in the rth step is maximal.

If there is a set of solutions X

k�1

� X which satis�es Step k � 1, then

Step k:

v

k

(�x

�

) =

min

�x 2 X

k�1

z

i

(�x) for i 2 I and i 62 I

k�1

(1.31)

16

where v

1

(�x

�

); : : : ; v

k

(�x) is the set of optimal values of fractional deviations

ordered non-increasingly.

This optimum can be described in words as follows. Knowing the extremes

of the objective functions which can be obtained by solving the optimization

problems for each criterion separately, the desirable solution is the one which

gives the smallest values of the relative increments of all the objective functions.

The point �x

�

2 X which satis�es the equations of Steps 1 and 2 may be

called the best compromise solution considering all the criteria simultaneously

and on equal terms of importance. It should be noticed that even when these

equations look quite complicated, in many optimization models, only the �rst

Step of this process will be necessary to determine the optimum.

In most cases, there will be several optimal solutions in the Pareto sense,

and the designer will have to look to the values of the objective functions corre-

sponding to F (X

p

) in order to decide which value seems the most appropriate.

This process in which a solution is accepted is called the decision making pro-

cess.

It is easier to �nd the desirable solution from X

p

if we know in advance

the relative importance of each criteria, and in fact, some methods require this

information. However, as in many cases we will not be able to provide this infor-

mation because it will be incomplete or can not be expressed in a fully formalized

way, then these methods are normally not used in practice.

The minima in the Pareto sense are going to be in the boundary of the

design region, or in the locus of the tangent points of the objective functions.

Figure 1.6 (taken fromHern�andez [15]) shows these boundaries shaded. In general,

it is not easy to �nd an analytical expression of the line or surface that contains

these points, and the normal procedure is to compute the points X

p

and their

17

2X

X1

f

f1

2

Figure 1.6: An example of a problem with two variables and two objective func-

tions. The pareto optimal solutions are indicated by the shaded boundaries of the

design region.

corresponding F (X

p

). When we have a su�cient amount of these, we may proceed

to take the �nal decision.

In general, we can say that if all the criteria are equally important in a

problem, then the optimum in the min-max sense may give us a desirable solution.

In all other cases a solution from the set of optimal solutions in the Pareto sense

should be chosen.

The following example, taken from Hern�andez [15] should help to better

understand the concepts covered in this chapter:

Consider the plane truss shown in Figure 1.7 (taken from Hern�andez [15]).

The following data are assumed: P = 2:1t, �

i

= 2:1 t/cm

2

(i=1,2 and 3), E = 2100

t/cm

2

, x

1

� 1:414 cm

2

, and x

2

� 2:828 cm

2

. Where P is the load applied to

the structure, � the maximum allowed stress of the material, E the modulus of

elasticity of the material, and x

1

and x

2

the cross-sectional areas of the truss.

18

 100 100

A

1

X

u

P
u

2 3

X
12

1

2

X
1

B C D

100

Figure 1.7: A three-bar plane truss used to illustrate the basic concepts covered

in this chapter.

We want to minimize the following objective functions:

V = 100

�

2

p

2x

1

+ x

2

�

(1.32)

u

2

=

100P

E

�

x

1

+

p

2x

2

�

(1.33)

subject to:

g

1

� �

1

=

x

2

+

p

2 x

1

2x

1

x

2

+

p

2 x

2

1

P � 2:1 (1.34)

g

2

� �

2

=

p

2 x

1

2x

1

x

2

+

p

2 x

2

1

P � 2:1 (1.35)

g

3

� �

3

=

x

2

2x

1

x

2

+

p

2 x

2

1

� 2:1 (1.36)

19

0 � x

1

� 1:414 (1.37)

0 � x

2

� 2:828 (1.38)

where V stands for the total volume of the structure, and u

2

refers to the

vertical displacement of node A. Similarly u

1

in Figure 1.7 refers to the horizontal

displacement of node A. So, what we want is to minimize the total volume of the

truss, at the same time that we want minimum vertical displacement of Node A.

The only constraints are those imposed by the stress and allowed cross-sectional

areas of the structural elements. As we can see, what we really are going to

optimize is a function of the cross-sectional areas, so the decision variables are

x

1

and x

2

. Equations (1.34), (1.35), (1.36), (1.37) and (1.38) are all inequality

constraints. We do not have equality constraints in this case, but we could

be required, for example, to satisfy x

1

+ x

2

= 4:5. This would be an equality

constraint. Equations (1.32) and (1.33) are the objective functions.

Each one of the constraints g

i

(�x) � 0 determines a portion of the search

space where we can �nd a solution. The intersection of all of them determines

the design region. A point �x that belongs to this region is a valid design, and

it will be an invalid design if it is outside. Points inside the region are called

unconstrained designs, and are called constrained designs when they are on

the line g

i

(�x) = 0, or in the intersection of several of them. Constraints in which

g

i

(�x) = 0 are called active, and are called passive otherwise. We may have

constraints that are placed outside the design region, in which case they will not

be relevant to the optimization process, and we can ignore them. In this example,

g

2

(�x) � 0 only has one point in the design region: (1; 0). However, this fact is not

always easy to identify in problems with many variables.

20

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x2

x1

g1
g2
g3

Figure 1.8: Euclidean space of the decision variables for the three-bar truss of

Figure 1.7. The curve g

1

limits the feasible region.

Figure 1.8 shows the Euclidean space of the decision variables. The shaded

area is called the feasible region or design region, and it is normally denoted

by X. Any point �x 2 X de�nes a feasible solution|i.e., a solution that satis�es

all the constraints. Figure 1.8 was generated by rewriting equations (1.34), (1.35)

and (1.36) into the following forms:

g

1

� x

2

=

p

2 x

2

1

�

p

2 x

1

1� 2x

1

(1.39)

g

2

� x

2

=

p

2 (1� x

1

)

2

(1.40)

g

3

� x

2

=

p

2 x

2

1

1� 2x

1

(1.41)

which was possible by making g

i

= 0; i = 1; 2; 3.

To be able to de�ne the Pareto minima, we need to �nd the geometrical

loci that form the tangent points of the objective functions [15]. We will �rst

21

determine the coordinates of point x

e

, which corresponds to the minimumvolume.

According to equation (1.32), the slope of equal volume equals (�2

p

2). We can

�nd the coordinates of x

e

by drawing a straight line having (�2

p

2) as a slope and

meeting the curve g

1

without entering the feasible region. This can be achieved

by making the tangent to g

1

equal to (�2

p

2), that is

2

p

2 x

1

� 2

p

2 x

2

1

�

p

2

(1 � 2x

1

)

2

= �2

p

2 (1.42)

Then, x

1

= 0:788675 and x

2

= 0:408249.

Now we need to �nd the coordinates of point x

b

, which corresponds to the

minimumvertical displacement. By observing equation (1.33), we can easily infer

that the minimum will occur at the maximum values of x

1

and x

2

, which are

p

2

and 2

p

2, respectively.

We also need to de�ne three additional points: x

a

,x

c

and x

d

. The �rst

corresponds to the point where the straight horizontal line passing by x

b

cuts g

1

,

the second to the point where a vertical line passing by x

b

cuts the abscissas axis,

and the last corresponds to the point where g

1

cuts the abscissas axis. Then, x

a

has the same vertical coordinate than x

b

(2

p

2). To �nd its horizontal coordinate,

we need to make equation(1.39) equals to 2

p

2:

x

2

=

p

2 x

2

1

�

p

2 x

1

1� 2x

1

= 2

p

2 (1.43)

from which

x

2

1

+ 3x

1

� 2 = 0 (1.44)

is derived, and �nally, we have: x

1

= 0:561553.

22

0

0.5

1

1.5

2

2.5

3

0.6 0.8 1 1.2 1.4

x2

x1

Xb

XcXd

Xa

Xe

Figure 1.9: Design region for the three-bar plane truss of Figure 1.7.

The coordinates of x

c

are trivial to �nd, since x

2

= 0 and x

1

=

p

2. Finally,

to �nd the horizontal coordinate of x

d

, we use:

x

2

=

p

2 x

2

1

�

p

2 x

1

1� 2x

1

= 0 (1.45)

from which x

1

= 1.

The Pareto minima are in the boundary region de�ned by x

a

, x

b

and x

e

.

The feasible region is bounded by x

a

, x

b

, x

c

and x

d

. These boundaries are shown

in Figure 1.9.

The boundary of the feasible region in the objective functions space is

found by eliminating x

1

and x

2

between equations (1.32) and (1.33), and each one

of the constraints. The equations found in each case are the following:

1. For the line x

a

,x

b

, we have:

x

2

= 2

p

2 (1.46)

23

By using equation (1.33) and (1.46), we have:

u

2

=

0:1

x

1

+ 4

(1.47)

Therefore: x

1

=

0:1

u

2

� 4.

Using this result and equation (1.32), we have:

V = 200

p

2

�

0:1� 3u

2

u

2

�

(1.48)

2. For the line x

b

, x

c

, we have:

x

1

=

p

2 (1.49)

By using equation (1.33) and (1.49), we have:

u

2

=

0:1

p

2(1 + x

2

)

(1.50)

Therefore: x

2

=

0:1

p

2 u

2

� 1.

Using this result and equation (1.32), we have:

V =

300

p

2 u

2

+ 10

p

2 u

2

(1.51)

3. For the line x

c

, x

d

, we have:

x

2

= 0 (1.52)

By using equation (1.33) and (1.52), we have:

u

2

=

0:1

x

1

(1.53)

24

Therefore: x

1

=

0:1

u

2

.

Using this result and equation (1.32), we have:

V =

20

p

2

u

2

(1.54)

4. For the line x

a

, x

d

, we have:

x

2

=

p

2 x

2

1

�

p

2 x

1

1� 2x

1

(1.55)

By using equation (1.33) and (1.55), we have:

u

2

= 0:2�

0:1

x

1

(1.56)

Therefore: x

1

=

0:1

0:2�u

2

.

Using this result and equation (1.32), we have:

V =

10

p

2 u

2

+

p

2

0:2u

2

� u

2

2

(1.57)

Figure 1.10 shows the solution region. The values corresponding to the

Pareto minima are between F (x

b

) and F (x

e

). Looking at this graph, the decision

maker can think about the evolution of each objective function, and then decide

on the most appropriate combination. For example, for this case, the point F (x

f

)

with coordinates (0:05; 282:8427125) seems a very good choice, since it provides

greater rigidity with a slight increment of volume. The design variables corre-

sponding to this point are: x

1

=

2

3

and x

2

= 0:9428090416.

25

200

250

300

350

400

450

500

550

600

650

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

V

u2

F(Xa)

F(Xb)

F(Xc)

F(Xd)

F(Xe)

F(Xf)

Figure 1.10: The solution region for the three-bar plane truss of Figure 1.7 is

delimited by points F (x

a

), F (x

b

), F (x

c

), F (x

d

) and F (x

e

). The point F (x

f

)

corresponds to the solution adopted.

If we want to use the min-max method to solve this problem, a common

approach would be to normalize the objective functions within the range [0; 1] by

using the expression [15]:

�

f

k

=

f

k

�min f

k

max f

k

�min f

k

k = 1; : : : ; n (1.58)

This means that we need to know the minima and maxima of all the

objective functions. In this case, that can be easily determined by looking at

Figure 1.10. From there, we have:

Min V = 263:8958434 (1.59)

Max V = 682:8427125 (1.60)

26

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

V
 n

or
m

al
iz

ed

u2 normalized

F(Xa)

F(Xb)

F(Xc)

F(Xd)

F(Xe)

F(Gamma)

Figure 1.11: The normalized solution region for the three-bar plane truss of Figure

1.7 is delimited by points F (x

a

), F (x

b

), F (x

c

), F (x

d

) and F (x

e

). The point

F (Gamma) corresponds to the solution adopted.

Then,

�

V can be de�ned as:

�

V =

200

p

2 x

1

+ 100x

2

� 263:8958434

418:9468691

(1.61)

Similarly, for the vertical displacement, we have:

Min u

2

= 0:01846990313 (1.62)

Max u

2

= 0:1 (1.63)

And �u

2

can be de�ned as:

�u

2

=

0:1

x

1

+

p

2 x

2

� 0:01846990313

0:08153009687

(1.64)

27

The (normalized) solution region is shown in Figure 1.11.

The formulation of the min-max problem is:

Min (1.65)

subject to:

200

p

2 x

1

+ 100x

2

� 263:8958434

418:9468691

� (1.66)

0:1

x

1

+

p

2 x

2

� 0:01846990313

0:08153009687

� (1.67)

and constraints (1.34) to (1.38).

The solution is: =

�

V = �u

2

= 0:1813243496.

This corresponds to the decision variables: x

1

= 0:599712 and x

2

=

1:702365795. The corresponding values of the objective functions at this point

are: V = 339:8607483 and u

2

= 0:03325329492.

28

Chapter 2

Mathematical Programming

Techniques

Multiobjective optimization theory is not as recent as we might think, since

Kuhn and Tucker [16] and Koopmans [17] must be credited with its discovery in

1951. However, multiobjective optimization theory remained relatively undevel-

oped from 1951 until the 1960's when multiobjective public investment problems

became more common and \trade-o�" became a favorite word of managers, plan-

ners, and decision makers. So, this area arose in a natural fashion in mathe-

matical economics, and many techniques were developed by systems analysts and

decision theorists for private and public sector problems, by control theorists for

engineering (guidance and design) problems, and by water resource economists

and systems analysts for water resource planning problems. Good reviews of

the mathematical programming techniques for multiobjective optimization can

be found in Terry [18], Kapur [19], Roy [20], Loucks [21], Cohon and Marks [22],

Wierzbicki [23], Hwang and Masud [8], Hwang et al. [24], Ignizio [25], Osyczka

and Koski [26], Stadler [27], Starr and Zeleny [28], Lieberman [29], Evans [30] and

Fishburn [31]. These papers provide a very rich bibliography on the subject.

29

I will try to cover the main methods found in the literature, giving a brief

description of each one, and the main references where more speci�c informa-

tion may be found. The initial arrangement of these techniques was taken from

Duckstein [5].

2.1 The Sequential Optimization Method

This method can be applied only if a preference order can be assigned on

the k objectives. Assume that the �rst objective function is the most important

for the decision maker, and the objective functions have been ranked according

to the priority list f

1

; f

2

; : : : ; f

k

. One �rst solves the problem

min f

1

(�x)

subject to �x 2 X

(2.1)

If �

1

denotes the optimal value of f

1

, then in the second step one solves

the problem:

min f

2

(�x)

subject to f

1

(�x) = �

1

�x 2 X

(2.2)

If �

2

denotes the optimal value of f

2

, then the third step consists of solving

the problem:

min f

3

(�x)

subject to f

i

(�x) = �

i

(i = 1; 2)

�x 2 X

(2.3)

and so on.

30

In general, one solves the following problem at the vth step:

min f

v

(�x)

subject to f

i

(�x) = �

i

(i = 1; : : : ; v � 1)

�x 2 X

(2.4)

If problem (2.4) is unbounded, then we say that there is no solution. If

part of problem (2.4) has a unique optimum or v = k, then this solution is selected

as a pre-emptive optimal solution; otherwise, one proceeds to the (v + 1)st step.

In other words, if problem (2.2) has a unique solution �x

�

, which would be the case

in many convex programming problems, that solution is also the one selected for

the multiobjective problem. This technique, therefore, may not be appropriate for

engineering optimization problems where unique solutions are frequent and where

a real trade-o� between conicting objectives is desired. Readers interested in

this method should refer to Benayoun et al. [32] for more information.

2.2 The Weighting Objectives Method

This method consists of adding all the objective functions together using

di�erent weighting coe�cients for each one of them. This means that our multi-

objective optimization problem is transformed into a scalar optimization problem:

min

k

X

i=1

w

i

f

i

(�x) (2.5)

where w

i

� 0 are the weighting coe�cients representing the relative impor-

tance of the objectives. It is usually assumed that

k

X

i=1

w

i

= 1 (2.6)

31

u = f (x)

u = f (x)

2 2

1 1

c u + c u = c1 1 2 2

OPTIMAL
SOLUTION

H

Figure 2.1: The weighting objectives method for a maximizing problem.

Since the results of solving an optimization model using (2.5) can vary

signi�cantly as the weighting coe�cients change, and since very little is usually

known about how to choose these coe�cients, a necessary approach is to solve the

same problem for many di�erent values of w

i

. But in this case, the designer is still,

of course, confronted with the decision of having to choose the most appropriate

solution based on his intuition.

Note that the weighting coe�cients do not reect proportionally the rela-

tive importance of the objectives, but are only factors which, when varied, locate

points in the Pareto set. For the numerical methods that can be used to seek the

minimum of (2.5), this location depends not only on w

i

values, but also on the

units in which the functions are expressed. The solution of the single objective

programming problem (2.5) (in a maximizing case) is shown in Figure 2.1 (taken

32

from Duckstein [5]), where H denotes the feasible pay-o� set and the linear func-

tion

P

k

i=1

c

i

u

i

is maximized subject to �u being in the feasible set H. Note that

max y = min (�y).

If we want w

i

to reect closely the importance of the objectives, all func-

tions should be expressed in units of approximately the same numerical values.

We can also transform (2.5) to the form:

min

k

X

i=1

w

i

f

i

(�x)c

i

(2.7)

where c

i

are constant multipliers.

The best results are usually obtained if c

i

= 1=f

0

i

. In this case, the vector

function is normalized to the form

�

f (�x) = [

�

f

1

(�x);

�

f

2

(�x); : : : ;

�

f

k

(�x)]

T

, where

�

f

i

(�x) =

f

i

(�x)=f

0

i

.

A condition f

0

i

6= 0 is assumed and if it is not satis�ed, which rarely

happens [2], the value of c

i

must be chosen by the decision maker.

Szidarovszky and Duckstein [6] proved that:

� If �x

�

is an optimal solution of (2.5), then �x

�

is weakly non-dominated; if �x

�

is a unique solution, then it is also strongly non-dominated.

� If w

i

> 0 for all i = 1; : : : ; k, then any optimal solution �x of (2.5) is strongly

non-dominated.

The weighting objectives method was the �rst technique developed for the

generation of non-inferior solutions for multiobjective optimization. This is an

obvious consequence of the fact that it was implied by Kuhn and Tucker [16].

This method is very e�cient computationally speaking, and can be applied to

generate a strongly non-dominated solution to be used as an initial solution in

other techniques. If it is relatively easy to obtain the feasible pay-o� set H, then

33

this method can be quite appropriate. For more information on this method, refer

to Cohon [33].

2.3 The "-constraint Method

This method is based on minimization of one (the most preferred or pri-

mary) objective function, and considering the other objectives as constraints

bound by some allowable levels "

i

. Hence, a single objective minimization is

carried out for the most relevant objective function f

1

subject to additional con-

straints on the other objective functions. The levels "

i

are then altered to generate

the entire Pareto optima set. The method may be formulated as follows:

(1) Find the minimum of the rth objective function, i.e., �nd �x

�

such that

f

r

(�x

�

) =

min

x 2 X

f

r

(�x) (2.8)

subject to additional constraints of the form

f

i

(�x) � "

i

for i = 1; 2; : : : ; k and i 6= r (2.9)

where "

i

are assumed values of the objective functions which we wish not

to exceed.

(2) Repeat (1) for di�erent values of "

i

. The information derived from a

well chosen set of "

i

can be useful in making the decision. The search is stopped

when the decision maker �nds a satisfactory solution.

It may be necessary to repeat the above procedure for di�erent indices r.

To get adequate "

i

values, single-objective optimizations are normally car-

ried out for each objective function in turn by using mathematical programming

techniques. For each objective function f

i

(i = 1; 2; : : : ; k), there is an optimal

34

H1

H

u = f (x)

u = f (x)

ε 2

1 1

2 2

SOLUTION
OPTIMAL

Figure 2.2: The "-constraint method for a maximizing problem.

design vector �x

�

i

for which f

i

(�x

�

i

) is a minimum. Let f

i

(�x

�

i

) be the lower bound on

"

i

, i.e.

"

i

� f

i

(�x

�

i

) i = 1; 2; : : : ; r � 1; r + 1; : : : ; k (2.10)

and f

i

(�x

�

r

) be the upper bound on "

i

, i.e.

"

i

� f

i

(�x

�

r

) i = 1; 2; : : : ; r � 1; r + 1; : : : ; k (2.11)

When the bounds "

i

are too low, there is no solution and at least one of

these bounds must be relaxed.

Figure 2.2 (taken from Duckstein [5]) illustrates the "-constraint method

for a maximizing problem where H is the payo� set of the original problem,

restricted to the shadowed area H

1

by the further constraint f

2

(�x) � "

2

) (we are

35

maximizing), and the objective function f

1

is maximized subject to the assumption

that �x belongs to H

1

. Thus, the most important objective (in this case, f

1

)

has been optimized, and the others, as I said before, are handled as additional

constraints.

Szidarovszky and Duckstein [6] showed that the "-constraint method usu-

ally leads to weakly non-dominated solutions; however, if the optimal solution is

unique, then it is strongly non-dominated.

This method, also known as trade-o� method, because of its main con-

cept of trading a value of one objective function for a value of another function,

is further explained in Osyczka [2], Lounis and Cohn [34], Carmichael [35], and

Hwang et al. [24].

2.4 Global Criterion Method

In this method, we try to minimize a function which de�nes a global cri-

terion which is a measure of how close the decision maker can get to the ideal

vector

�

f

0

. The most common form of this function is [2]

f(�x) =

k

X

i=1

f

0

i

� f

i

(�x)

f

0

i

!

p

(2.12)

For this formula Boychuk and Ovchinnikov [36] have suggested p = 1,

and Salukvadze [37] has suggested p = 2, but other values of p can also be used.

Obviously, the results will di�er greatly depending on the value of p chosen. Thus,

the selection of the best p is an issue in this method, and it could also be the case

that any p could produce an unacceptable solution.

36

Another possible measure of `closeness to the ideal solution' is a family of

L

p

-metrics de�ned as follows

L

p

(f) =

"

k

X

i=1

�

�

�f

0

i

� f

i

(x)

�

�

�

p

#

1=p

; 1 � p � 1 (2.13)

In general, relative deviations of the form

f

0

i

� f

i

(x)

f

0

i

(2.14)

are preferred over absolute deviations, because they have a substantive

meaning in any context. The relevant L

p

metrics are

L

p

(f) =

"

k

X

i=1

�

�

�

�

�

f

0

i

� f

i

(�x)

f

0

i

�

�

�

�

�

p

#

1=p

; 1 � p � 1 (2.15)

The value of p indicates the type of distance: for p = 1, all deviations

from f

�

i

are taken into account in direct proportion to their magnitudes, which

corresponds to `group utility' [38] [39]. For 2 � p <1, the larger deviations carry

greater weight in L

p

; for p =1, the largest deviation is the only one taken into

consideration, which leads to a purely `individual utility' (min-max criterion), in

which all weighted deviations are equal.

Koski [40] [7] has suggested L

p

-metrics with a normalized vector objective

function of the form

�

f

i

(x) =

f

i

(�x)�

min

x 2 X

f

i

(�x)

max

x 2 X

f

i

(�x)�

min

x 2 X

f

i

(�x)

(2.16)

In this case, the values of every normalized function are limited to the

range [0,1].

37

FEASIBLE

SOLUTIONS
SET OF NON-DOMINATED

FEASIBLE REGION

Ideal Point

Distance

f
2

1
f

Solution
Compromise

Minimum

REGION

NON

Figure 2.3: Sketch of a compromise solution. The basic idea is to take the point

which is closest, by some distance measure, to the ideal point, which in this case

is the origin.

38

Using the global criterion method one non-inferior solution is obtained. If

certain parameters w

i

are used as weights for the criteria, a required set of non-

inferior solutions can be found. Duckstein [5] calls this method Compromise

Programming, and his L

p

-metrics is

L

p

(�x) =

"

k

X

i=1

w

p

i

�

�

�

�

�

f

i

(�x)� f

0

i

f

i max

� f

0

i

�

�

�

�

�

p

#

1=p

(2.17)

where w

i

are the weights, f

i max

is the worst value obtainable for criterion

i; f

i

(�x) is the result of implementing decision �x with respect to the ith crite-

rion. Figure 2.3 (taken from Duckstein and Opricovic [39]) shows an sketch of a

compromise solution.

The `displaced ideal' technique [41] which proceeds to de�ne an ideal point,

a solution point, another ideal point, etc. is an extension of compromise program-

ming.

Another variation of this technique is the method suggested by Wierzbicki

[42] [43] in which the global function has a form such that it penalizes the devi-

ations from the so-called reference objective. Any reasonable or desirable point

in the space of objectives chosen by the decision maker can be considered as the

reference objective.

Let

�

f

r

= [f

r

1

; f

r

2

; : : : ; f

r

k

]

T

be a vector which de�nes this point. Then the

function which is minimized has the form

P (�x;

�

f

r

) = �

X

i = 1

k

(f

i

(�x� f

r

i

)

2

+ %

k

X

i=1

(max(0; f

i

(�x)� f

r

i

)

2

) (2.18)

where % > 0 is a penalty coe�cient which in this method can be chosen as

constant.

39

Minimizing (2.18) for the assumed point

�

f

r

we obtain the non-inferior

solution, which is close to this point. If for di�erent points

�

f

r

the procedure is

carried out, some representation of non-inferior solutions can be found.

More information on this method can be found in Osyczka [2] and Zeleny

[44] [45].

2.5 Goal Programming

Charnes and Cooper [46] and Ijiri [47] are credited with the development

of the goal programming method for a linear model, and have played a key role in

applying it to industrial problems. Although initially the method was developed

for multiobjective optimization, its subsequent use justi�es the credit given to

Charnes and Cooper for their work in this area.

In this method, the decision maker has to assign targets or goals that he

wishes to achieve for each objective. These values are incorporated into the prob-

lem as additional constraints. The objective function will then try to minimize

the absolute deviations from the targets to the objectives. The simplest form of

this method may be formulated as follows [5]:

min

k

X

i=1

jf

i

(�x)� T

i

j ; subject to �x 2 X (2.19)

where T

i

denotes the target or goal set by the decision maker for the

ith objective function f

i

(�x), and X represents the feasible region. The criterion,

then, is to minimize the sum of the absolute values of the di�erences between

target values and actually achieved values. A more general formulation of the

goal programming objective function is a weighted sum of the pth power of the

40

deviation jf

i

(�x)� T

i

j [48]. Such a formulation has been called generalized goal

programming [49] [50].

Looking again to equation (2.19), the objective function is non-linear and

the simplex method can be applied only after transforming this equation into

a linear form, thus reducing goal programming to a special type of linear pro-

gramming. In this transformation [46] new variables d

+

i

and d

�

i

are de�ned such

that:

d

+

i

=

1

2

fjf

i

(�x)� T

i

j+ [f

i

(�x� T

i

]g; (2.20)

d

�

i

=

1

2

fjf

i

(�x)� T

i

j � [f

i

(�x� T

i

]g; (2.21)

Adding and subtracting these equations, the following equivalent linear

formulation may be found:

min Z

0

=

k

X

i=1

(d

+

i

+ d

�

i

); (2.22)

subject to

�x 2 X

f

i

(�x)� d

+

i

+ d

�

i

= T

i

d

+

i

; d

�

i

� 0; i = 1; : : : ; k

(2.23)

Since we can not have both under- and overachievements of the goal simul-

taneously, then at least one of the deviational variables must be zero. In other

words:

d

+

i

� d

�

i

= 0 (2.24)

41

Fortunately, this constraint is automatically ful�lled by the simplexmethod

because the objective function will drive either d

+

i

or d

�

i

or both variables simul-

taneously to zero for all i.

Sometimes it may be desirable to express preference for over- or under-

achievement of a goal. Thus, it may be more desirable to overachieve a targeted

reliability �gure than to underachieve it. To express preference for deviations, the

decision maker can assign relative weights w

+

i

and w

�

i

to positive and negative

deviations, respectively, for each target T

i

. If a minimization problem is consid-

ered, choosing the w

+

i

to be larger than w

�

i

would be expressing preference for

underachievement of a goal.

In addition, Goal programming provides the exibility to deal with cases

with conicting multiple goals. Essentially, the goals may be ranked in order of

importance to the problem solver. That is, a priority factor, p

i

(i = 1; : : : ; k) is

assigned to the deviational variables associated with the goals. These factors p

i

are

conceptually di�erent from weights, as it is explained, for example, in Goicoechea

et al. [51]. The resulting optimization model becomes

min S

0

=

k

X

i=1

p

i

(w

+

i

d

+

i

+ w

�

i

d

�

i

); (2.25)

subject to

�x 2 X

f

i

(�x)� d

+

i

+ d

�

i

= T

i

d

+

i

; d

�

i

� 0; i = 1; : : : ; k

(2.26)

Note that this technique will yield a dominated solution if the goal point

is chosen in the feasible domain [5]. This technique has been applied in a few

structural optimization applications [52] [14], because of the inherently non-linear

42

N

A C D

O

B

O

Q

P

S Shaded Region

Constant

Increasing

f

f

Increa-

Constant
contours

f

sing f

f

contours
f

x1*x1

x*
2

2x

2

2

1

1

2P

1P

1

2

Figure 2.4: Example of cooperative and non-cooperative game solutions.

nature of structural problems. However, it can be very useful in those cases in

which a linear or piecewise-linear approximation can be made, because of the

availability of excellent computer programs, and the possibility of eliminating

dominated goal points easily. On the other hand, in non-linear cases, other tech-

niques guaranteeing a non-dominated solution may be preferable. Also, we can

say that this technique is very e�cient, computationally speaking, but it has as

another drawback the fact that when using priorities, these have to be devised by

the decision maker without prior knowledge of the alternatives.

More information on this method can be found in Charnes [53], Lee and

Jaaskelainen [54], Lee [55] and Ignizio [49].

43

2.6 Game Theory Approach

We can analyze this technique with reference to a two objective, two design

variable optimization problem whose graphical representation is shown in Fig-

ure 2.4 (taken from Rao [56]). Let f

1

(x

1

; x

2

) and f

2

(x

1

; x

2

) represent two scalar

objectives and x

1

and x

2

two scalar design variables. It is assumed that one player

is associated with each objective. The �rst player wants to select a design variable

x

1

which will minimize his objective function f

1

, and similarly the second player

seeks a variable x

2

which will minimize his objective function f

2

. If f

1

and f

2

are

continuous, then the contours of constant values of f

1

and f

2

appear as shown

in Figure 2.4. The dotted lines passing through O

1

and O

2

represent the loci

of rational (minimizing) choices for the �rst and second player for a �xed value

of x

2

and x

1

, respectively. The intersection of these two lines, if it exists, is a

candidate for the two objective minimization problem, assuming that the players

do not cooperate with each other (non-cooperative game). In Figure 2.4, the

point N(x

�

1

; x

�

2

) represents such a point. This point, known as a Nash equilibrium

solution, represents a stable equilibrium condition in the sense that no player can

deviate unilaterally from this point for further improvement of his own criterion

[57].

This point has the characteristic that

f

1

(x

�

1

; x

�

2

) � f

1

(x

1

; x

�

2

) (2.27)

and

f

2

(x

�

1

; x

�

2

) � f

2

(x

�

1

; x

2

) (2.28)

44

where x

1

may be to the left or right of x

�

1

in Equation (2.27) and x

2

may

lie above or below x

�

2

in Equation (2.28).

Extension of the idea to a k-player non-cooperative game gives the math-

ematical de�nition of a Nash equilibrium solution as

f

1

(x

�

1

; x

�

2

; : : : ; x

�

k

) � f

1

(x

1

; x

�

2

; : : : ; x

�

k

)

f

2

(x

�

1

; x

�

2

; : : : ; x

�

k

) � f

2

(x

�

1

; x

2

; : : : ; x

�

k

)

.

.

.

f

k

(x

�

1

; x

�

2

; : : : ; x

�

k

) � f

k

(x

�

1

; x

�

2

; : : : ; x

k

)

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(2.29)

The problem becomes more interesting when there is more than one Nash

equilibrium point. In that case, since the values of f

1

and f

2

are di�erent Nash

equilibrium points, any player can have the advantage of declaring his/her move

�rst thereby forcing the other players to play at the equilibrium point of his/her

own choice.

In a cooperative game, the two players agree to cooperate with each

other and hence any point in the shaded region S of Figure 2.4 will provide both

of them with a better solution than their respective Nash equilibrium solutions

[58]. Since the region S does not provide a unique solution, the concept of Pareto

optimality may be introduced to reduce the number of solutions. It can be seen

that all points in the region S can be eliminated except those on the continuous line

O

1

ACQDBO

2

which represents the loci of tangent points between the contours

of f

1

and f

2

.

45

Every point on this line has the property that it is not dominated by any

other point in its neighborhood, i.e.

f

1

(Q) � f

1

(P) (2.30)

and

f

2

(Q) � f

2

(P); (2.31)

where Q is a point lying on the line O

1

O

2

and P is a neighboring point.

Thus all points of S that do not lie on the line O

1

O

2

need not be considered during

cooperative play. The set of all points lying on AB is the Pareto-optimal set, and

can be denoted as S

p

.

The cooperative game theory approach of solving the multiobjective opti-

mization problem can be stated as follows:

The k players are assumed to correspond to the k objectives; one for each

objective. While playing the game, each player will try to improve his/her own

conditions (i.e., to decrease the value of his/her own objective function). The

players will start bargaining from their respective reference (starting) values and

put a join e�ort in maximizing a subjective criterion (supercriterion) formed by

themselves. It is assumed that each player has analyzed his/her own criterion

before starting the game to �nd the maximumpossible bene�t he/she can obtain.

This will also help him/her in guaranteeing against the worst value. This analysis

is necessary since each player should know the extreme conditions of his/her own

and others so that none of them begins bargaining from a reference value which

is unrealistic (i.e., unacceptable to the other players).

46

The extreme values for each player are determined as follows:

At any starting feasible design vector �x

s

, the objective function values are

found and positive constant multipliers m

1

;m

2

; : : : ;m

k

are chosen such that

m

1

f

1

(�x

s

) = m

2

f

2

(�x

s

) = � � � = m

k

f

k

(�x

s

) =M; (2.32)

where M is a constant. By rede�ning the objective functions as

F

i

(�x) = m

i

f

i

(�x); i = 1; 2; : : : ; k; (2.33)

one can notice that any design vector which minimizes the function f

i

(�x)

will also minimize the function F

i

(�x). This scaling is done to make all the objec-

tive functions numerically equal at a particular design �x

s

. Hereafter, it will be

assumed that the k players correspond to the k scaled objective functions given

by Equation (2.33).

Starting from the design vector �x

s

, each objective function F

i

(�x); i =

1; 2; : : : ; k is minimized subject to the constraints

g

i

(�x) � 0; i = 1; 2; : : : ;m (2.34)

Then a matrix [P] is constructed as

[P] =

2

6

6

6

6

6

6

6

6

6

6

4

F

1

(�x

�

1

) F

2

(�x

�

1

) F

k

(�x

�

1

)

F

1

(�x

�

2

) F

2

(�x

�

2

) F

k

(�x

�

2

)

.

.

.

F

1

(�x

�

k

) F

2

(�x

�

k

) F

k

(�x

�

k

)

3

7

7

7

7

7

7

7

7

7

7

5

(2.35)

It can be seen that the diagonal elements in the matrix [P] are the minima

in their respective columns.

47

De�ning F

iu

as

F

iu

= max F

i

(�x

�

j

); j = 1; 2; : : : ; k; i = 1; 2; : : : ; k; (2.36)

a rectangular matrix [R] is constructed as

[R] =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

F

1

(�x

�

1

) F

1u

F

2

(�x

�

2

) F

2u

.

.

.

.

.

.

F

i

(�x

�

i

) F

iu

.

.

.

.

.

.

F

k

(�x

�

k

) F

ku

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(2.37)

This matrix gives the extreme values of all the players. For example, the

ith row, which corresponds to the ith player, indicates that during the cooperative

play, he/she should not expect a value for his/her objective better than F

i

(�x

�

i

)

but is guaranteed that his/her objective will never be worse than F

iu

.

Assuming that all the players start negotiation by taking their worst values

as reference values, a supercriterion S can be constructed as:

S =

k

Y

i=1

fF

iu

� F

i

(�x

�

)g; (2.38)

where �x

�

c

, a Pareto-optimal solution, minimizes a combined objective func-

tion F

c

(�c; �x) de�ned by

F

c

(�c; �x) =

k

X

i

c

i

F

i

(�x) (2.39)

48

subject to the constraints of Equation (2.34), and c

i

satis�es the conditions

c

i

� 0; i = 1; 2; : : : ; k (2.40)

and

k

X

i=1

c

i

= 1 (2.41)

From Equation (2.38) it can be seen that all the players will be interested

in maximizing the criterion S. As �x

�

c

is implicitly independent on the values of c

i

,

the problem is now to determine the optimumvalues of c

i

for which S is maximum.

The procedure of obtaining the optimum vector

�c

�

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

c

�

1

.

.

.

c

�

k

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(2.42)

begins by assuming any vector �c and improving it in the subsequent iter-

ations by moving along the steepest ascent directions of S through appropriate

step lengths.

For more information on this method, refer to Rao [56] [52], Szidarovszky

et al. [59], and Gershon et al. [60].

2.7 Metagames and Hypergames

Metagame analysis, or the analysis of options, is a game-theoretic technique

which was originally suggested to analyze real-world political problems. When

using this kind of analysis, a conict is considered as a game in which the major

decision-making parties, or players, have countable options. A possible selection

49

0

011

00

10

11Option A1

Option A2

Option B2

Option B1

preferred by A particular outcome

0

1

0

1

not preferred by A infeasible

0 0 1 0 1

0 0 1 1

10110101

01100011

0 1 1 1 1

0 0 0 0

00001111

00011111

Player B

Player A

Figure 2.5: Preferences for player A.

of options for one particular player is referred to as a strategy, and the situation

where each player chooses a strategy is called an outcome.

Figure 2.5 shows a game in tabular form where there are two players and

each player has two options. A number one in front of an option indicates the

inclusion of the option in a player's strategy, while a zero indicates that the option

is not taken. A strategy for a player is formed by a combination of ones and zeros

against all of the players' options in Figure 2.5 (taken from Hipel and Fraser

[61]). The farthest left outcome in the same �gure is the situation where player A

incorporates option A1 into his/her strategy while player B uses option B2. This

outcome is written horizontally as [1 0 0 1].

The particular outcome is examined from the point of view of a particular

player who is player A in Figure 2.5 (taken from Hipel and Fraser [61]). There are

3 categories into which outcomes may fall with respect to the preferences of the

particular player. They may be preferred to the particular outcome, they may

be not preferred to the particular outcome, or they may be infeasible (the set

of infeasible outcomes is often common to all players). Within these categories,

outcomes can be more economically displayed by combining the outcomes in a

50

- -

preferred by A infeasibleby A
not preferred

1 - -

0 -

- 1 -

- - 0

particular outcome

0

1

0

1

- 1 1 -

1 - 0

0 0 - 1

0 0 1 1

1

-

Option A1

Option A2

Option B1

Option B2

0

1

Player A

Player B

unilateral improvement

inescapable sanction

Figure 2.6: Generalized preferences for player A.

speci�ed manner to obtain columns containing dashes. The dashes represent both

a `0' and a `1' for the option opposite to the dash. Thus, a column containing

n dashes represents 2

n

outcomes. Columns containing dashes can be generated

from Figure 2.5 by employing a technique called generalization [62]. Infeasible

outcomes are generalized separately with both the preferred and nonpreferred

outcomes to enhance the interpretation of the tabular form of the game. The

outcomes from Figure 2.5 can be generalized to obtain Figure 2.6.

For this particular example, player A can unilaterally move to a preferred

position if the options of the other players remain the same. This is called a

unilateral improvement and is indicated by the arrow pointing to the left at the

bottom of Figure 2.6 (taken from Hipel and Fraser [61]). Because there is a

unilateral improvement, the particular outcome is not rational for the particular

player.

However, in the example given, player B can select the strategy [1 0] so

that no matter what A does, he will be in a less preferred position relative to the

51

improvement?
Is there unilateral

sanction?
Is there an inescapable

Is there an inescapable
improvement?

s is not stable.

stable for i
s is rational and

s is symmetric
metarational for i.
s is stable for i if
sanction is credible.

on credibility.
and stability depends
for i. There is a cycle
s is general metarational

No

Yes

No

Yes

No

Yes

Figure 2.7: Stability analysis of a particular outcome s for a particular player i.

52

particular outcome. This is called an inescapable sanction, and if credible to

A, he will be deterred from moving away from the particular outcome. This is

indicated by the arrow pointing to the right in Figure 2.6. The particular outcome

is then called symmetric metarational and thus is stable for A.

If there were a column on the preferred side for player A such that dashes

were entered against all options of player B (in general all the other players), then

A could make an inescapable improvement. A unilateral improvement which is not

inescapable and does not have an inescapable sanction is general metarational,

and stability depends on credibility. Neither of these situations are shown in

Figure 2.6.

The analysis of a particular outcome for a particular player is outlined in

Figure 2.7. Starting in the upper left hand box, the particular outcome is checked

for the characteristics listed. When the bottom or a right-hand box is encountered,

the stability of the particular outcome for the particular player is determined. If a

particular outcome is stable for all players, it is a possible resolution or equilibrium

to the conict.

More information on metagame theory and analysis may be found in

Howard [63] and Hipel et al. [62] [64]. Fraser and Hipel developed a conict

analysis method [65] [66] [67] that is an extension of metagame analysis.

AHypergame is what classical game theorists refer to as a game of incom-

plete information. In a hypergame, one or more of the players may possess a

mistaken view of the actual conict where misunderstandings can be built upon

others' misperceptions in order to form di�erent levels of perception [68]. The

players in a hypergame may have a false understanding of the preferences of the

other players, have an incorrect comprehension of the options available to the

53

other players, not be aware of all the players in the game, or have any combina-

tion of the foregoing faulty interpretations. Indeed, the de�nition of a hypergame

should also include the situation where a given player is not certain about his/her

own preferences and options. This event could arise when a player consists of a

set of individuals or organizations for which there is not unanimous agreement

among the group members about the group's preferences and options.

A hypergame constitutes a hierarchy of games, whereby each participant's

idea about what is happening is properly modeled, since the approach models

individual games according to the way each player interprets the dispute. The

level of a hypergame depends on expectation and equals the highest order of

expectation involved. If all the players are playing the same game, the conict is

a simple game or a hypergame of level zero. If the players are playing di�erent

games and no one knows that, it is a hypergame of level one. In a second-level

hypergame, at least one of the players knows that they are playing di�erent games.

Therefore, this player is trying to perceive what the other players' games are. This

can be interpreted as the players playing di�erent �rst-level hypergames. A third-

level hypergame has to be employed if at least one of the players knows that they

are playing di�erent �rst-level hypergames. Thus, he tries to perceive the other

players' �rst-level hypergames which forms his/her second-level perceptual game.

The more sophisticated the players are, the higher the level of the hypergame is.

The hypergame structure allows the combination of di�erent forms of

games. The individual games are connected by a set of mappings which are

functions transferring other players' viewpoints into a given player's perceptual

games. The idea is that each game may be interpreted as the expression of the

particular idea of a certain player of what is happening.

54

More information on hypergames may be found in Takahashi et al. [68],

Hipel et al. [67], Okada et al. [69] and Wang et al. [70].

2.8 Multiattribute Utility Theory

Von Neumann and Morgenstern [71] developed an axiomatic utility theory

to measure individual or group preferences. Utility theory assumes that an indi-

vidual can choose among the alternatives available to him in such a manner that

the satisfaction derived from his choice is as large as possible. This, of course,

implies the individual is aware of his alternatives and is capable of evaluating

them. Moreover, relative to a vector of objectives it is assumed all information

pertaining to the various levels of the objectives can be captured by an indi-

vidual's utility function. In e�ect, an individual's utility function is a formal,

mathematical representation of his preference structure. Multiattribute utility

functions, which may be assessed as �rst proposed in Keeney [72] and Rai�a [73],

and then in Berger [74] and Keeney and Rai�a [75], integrate the objective func-

tions into the preference structure. The highest degree of utility with respect to

all the objectives is obtained by maximizing the utility function.

Oppenheimer [76] distinguishes two approaches to utility maximization:

the global and the local approaches.

The global approach [77] means the above expected utility maximiza-

tion, and `may force the decision maker to �t a function not truly representing'

the preference function. Nevertheless, the global approach is taken in most mul-

tiattribute utility models.

In the local approach [78], the above-mentioned problem of locking the

decision maker into a given risk attitude is avoided by using a sequence of local

linear approximations to the utility function. To each step pertains a trial solution

55

representing an improvement over its predecessor, so that eventually, the sequence

reaches its optimum.

The main drawback of this approach is that the decision maker has to

spend a lot of time building single-attribute utility functions, and then, he/she

has to make sure that the `corner utilities' are assessed; the latter make it possible

to combine the single attribute utilities u

i

(x

i

) into one function u(�x).

To illustrate the assessment task, let four attributes, x

1

; x

2

; x

3

; and x

4

,

be, respectively, the weight W , probabilities of failure (1 � r) = p

f

, cost k, and

deection � of a structure. The �rst task is to assess the function u

i

(x

i

); i =

1; 2; 3; 4; this can be best done by means of lotteries of the type:

~ke

0.5

0.5

k

kmin

max

In words, given a lottery in which maximum cost k

max

and minimum cost

k

min

may be obtained with equal probability 0:5 (for example), which value k

e

would the decision maker accept as a `certainty equivalent'? Furthermore, if the

axioms of Von Neuman and Morgenstern are satis�ed, it can be proved [71] that

a utility function u(�) exists, leading to the equation:

u(k

e

) = 0:5u(k

max

) + 0:5u(k

min

) (2.43)

Utility functions are de�ned within a positive linear transformation and

one usually sets u(k

max

) = 0 and u(k

min

) = 1 so that u(k

e

) = 0:5. This procedure

is continued in the intervals (k

max

; k

e

); (k

e

; k

min

), and overlapping intervals, until

a satisfactory piecewise-linear approximation of the utility function is obtained.

56

If the attributes W , 1 � r, k and � are mutually utility independent, the

function u(�x) is given by [75]:

1 + ku(�x) =

k

Y

i=1

[1 + kk

i

u

i

(x

i

)] (2.44)

Veri�cation of the utility independence hypothesis, assessment of the k

i

(i =

1; 2; 3; 4), and consistency check require a further series of lotteries. However, even

when a lot of e�ort is required to construct u(�x), it may be worth it in large and

costly engineering systems [5].

For more information on this method, refer to Gershon et al. [60] and

Krzysztofowicz and Duckstein [79].

2.9 Surrogate Worth Trade-O�

This method, proposed by Haimes and Hall [80], is a variant of the trade-

o� method in which objective trade-o�s are used as the information carrier and

the decision maker responds by expressing his/her degree of preference over the

prescribed trade-o�s by assigning numerical values to each surrogate worth func-

tion. These functions are used to construct a single objective problem. First,

the set of strictly non-dominated or e�cient solutions is generated, say by the "-

constraint method. Then a search along the e�cient boundary is performed using

a surrogate worth function. Note the di�erence between this method, which stays

on the Pareto-optimum boundary, and compromise programming or game theory,

in which the Pareto-optimum set is approached, respectively, from the infeasible

and the feasible regions.

57

The trade-o� function for any two objectives evaluated at a given e�cient

solution �x is:

T

ij

(�x) =

@f

i

(�x)

@f

j

(�x)

(2.45)

As we can see from Equation (2.45), this method can only be applied when

all the objective functions are di�erentiable.

The surrogate worth function, W

ij

, i 6= j; j = 1; 2; : : : ; n, is de�ned as a

function of the desirability of the trade-o� �

ij

on a scale. For example, if we use a

scale ranging from �10 to +10, a (�10) would indicate that �

ij

marginal units of

objective i are worth very much less than one marginal unit of objective j, a (+10)

means the opposite, and a zero indicates an even trade-o�. The best solution is

found when all surrogate worth functions are equal to zero. A complete description

of this technique can be found in Haimes et al. [48], and an abbreviated version,

in Goicoechea et al. [51].

The main advantage of this technique resides in its sound theoretical basis

and it is possible to �nd good set of published applications [81] [82] [83] [84]. On

the other hand, computational requirements are non-trivial, and much input is

required from the decision maker.

In general, we can say that the trade-o� methods have two main disadvan-

tages [2]:

� They cannot be used to solve non-convex problems, and

� they allow a satisfactory solution to be found only in a certain region of

Pareto optimal solutions, but do not provide a general outlook on the pos-

sible range of objectives, and thus the �nal decision is inuenced by the

starting point chosen.

58

2.10 ELECTRE I and II

These two techniques are applicable to problems that have a discrete

prede�ned set of alternatives in which some of the evaluation criteria are non-

quanti�able, i.e., the criteria can only be ranked ordinally or, with additional

information, on a ratio or interval scale.

ELECTRE I (elimination and (et) choice translating algorithm) was

developed by Benayoun et al. [32], was improved by Roy [20] and it has been

applied, for example, to water-related problems [85] [39] [86]. The idea is to

choose those systems which are preferred for at least a plurality of the criteria

and yet do not cause an unacceptable level of discontent for any one criterion.

This methodology leans on three concepts: concordance, discordance, and thresh-

old values.

The concordance between any two systems i and j is a weighted measure

of the number of criteria for which action i is preferred to action j (denoted i � j)

or for which action i is equal to action j (denoted i � j) and is given as:

C(i; j) =

P

k2A(i;j)

w(k)

P

k

w(k)

; (2.46)

where w(k) is the weight of criterion k, k = 1; : : : ;K, and A(i; j) = fkji �

jg. The weights, which are given by the decision maker, reect his/her preferences.

Concordance may be considered as the weighted percentage of criteria for which

one action is preferred to another. Note that, by construction, 0 � C(i; j) � 1.

Determination of the discordance between i and j requires that an inter-

val scale common to each criterion be de�ned. The scale is used to compare the

discomfort caused between the `worst' and the `best' criterion value for each pair

of alternatives. A range may be chosen where the `best' rating would be assigned

59

the highest value of the range and the `worst' rating would receive the lowest

value of the range. Each criterion, however, can have a di�erent range to reect

the `leeway' available for that criterion [5]. The problem of applying a ratio scale

to an ordinal criterion presents theoretical di�culties which are fully addressed in

Zeleny [45] and Rietveld [87]. Essentially, evaluations of the type (a, b, c, d) may

be assigned in an analogous way in which grades are assigned to students. The

discordance index is de�ned as:

D(i; j) =

max

k = 1; K

(Z(j; k)� Z(i; k))

R

�

; (2.47)

where Z(j; k) is the evaluation of alternative j with respect to criterion

k, and R

�

is the largest of the K criterion scales. Again, by construction, 0 �

D(i; j) � 1.

To synthesize both, the concordance and discordance matrices, threshold

values (p; q) between zero and one, are de�ned by the problem solver. Using

a geometric representation, the preference relationships de�ne a transitive and

complete graph (G) for each criterion, in which nodes are alternatives and arcs

are directed as the preference sign �. In the case of i � j, one arc is drawn from

i to j and another from j to i. The arc set A of the composite graph (�) which

synthesizes both concordance and discordance relationships, is given by:

a(i; j) 2 A, (C(i; j) > p) \ (D(i; j) < q) (2.48)

Figure 2.8 (taken from Goicoechea et al [51]) shows an example of the

type of graph that ELECTRE I uses. In choosing the value of p, the problem

solver speci�es how much `concordance' is wanted: p = 1 corresponds to full

concordance, which means that i should be preferred or equivalent to j in terms

60

7

8

6

4

5

1

3

2

Figure 2.8: Example of an ELECTRE graph. Each node corresponds to a non-

dominated alternative. The arrows indicate preferences. Therefore we can say

that alternative 1 is preferred to alternative 5, alternative 4 is preferred to alter-

native 6, etc.

of all criteria. By choosing q, the amount of tolerable `discordance' is speci�ed:

q = 0 means no discordance. It is possible that some choices of p and q may

eliminate all alternative systems. If this is the case, the values of p and/or q must

be restated. It is also possible for cycles to occur in the composite graph (�) of

ELECTRE I. In such cases the nodes along the cycle are collapsed into one new

node, which is equivalent to assigning the same ranking to those systems.

The preference graph (�) of ELECTRE I thus yields a partial ordering of

the alternative systems. On the other hand, ELECTRE II [20] [86], may be used

to obtain a complete ordering, as in Duckstein et al. [88]. Briey, ELECTRE II

is based on two preference graphs representing the strong preferences (high p and

low q) and the weak preferences (lower p and higher q). The weak preferences

can be viewed as lower bounds on system performance that the decision maker is

61

willing to accept. Recently, versions III and IV of ELECTRE have been devel-

oped, but apparently the only references available on them are in French [89] [90],

considerably limiting their audience.

ELECTRE has been applied to a substantial amount of practical prob-

lems with a predetermined �nite set of alternatives evaluated in terms of ordinal

(quantitative or qualitative) criteria, and could be most useful to solve multiob-

jective optimization problems that have those characteristics, since the technique

is robust, simple, requires little input from the decision maker, and usually leads

to plausible results.

More information on this method can be found in Roy [91] [20], Roy and

Bertier [92] and Goicoechea et al. [51].

2.11 Multicriterion Polyhedral Dynamics or Q-

Analysis

This method (also known as MCPD for its acronym) is similar to ELEC-

TRE in the sense that it can also be applied only when there is available a discrete

set of alternatives with respect to a set of criteria, and it can incorporate quali-

tative data into the analysis [93] [94]. The mathematical tool used in Q-analysis

is algebraic topology, also called the polyhedral dynamics; hence, the name mul-

ticriterion polyhedral dynamics (MCPD) given to a new version of the technique

[95]. In this technique the geometric structure at a multidimensional object called

simplicial complex is considered. A relationship called the q-connection is de�ned

on the elements (or simplices) of the complex, leading to an ordering imposed

over that set of simplices [96].

62

The alternatives, which are found to have high q-levels, i.e., which satisfy

a high proportion of criteria to an adequate level, are preferred to those having

lower q-levels. In other words, systems are ranked according to the strength or

`tightness' of the multidimensional relationship between the set of criteria and

the set of alternative systems. The MCPD technique is extremely e�cient com-

putationally speaking, and could certainly be substituted for ELECTRE provided

an index which measures the discordance aspects of the problem is introduced.

However, the technique is not always easy to visualize, because all non-trivial

geometrical representations occur in n-dimensional Euclidean spaces with n > 3.

For more information on this method refer to Duckstein and Kempf [94]

and Pfa� and Duckstein [95].

2.12 PROMETHEE

The PROMETHEE methods (Preference Ranking Organization METHod

for Enrichment Evaluations) belong to the family of outranking methods (i.e.,

ELECTRE) introduced by B. Roy. These methods include two phases [97]:

� The construction of an outranking relation on the di�erent criteria or objec-

tives of the problem.

� The exploitation of this relation in order to give an answer to the multicri-

teria optimization problem.

In the �rst phase, a valued outranking relation based on a generalization

of the notion of criterion is considered: a preference index is de�ned and a valued

outranking graph, representing the preferences of the decision maker, is obtained.

The exploitation of the outranking relation is realized by considering for

each action a leaving and an entering ow in the valued outranking graph: a

63

partial preorder (PROMETHEE I) or a complete preorder (PROMETHEE II)

on the set of possible actions can be proposed to the decision maker in order to

achieve the decision problem.

Brans criticizes the ELECTRE methods because they require too many

parameters, the values of which are to be �xed by the decision maker and the

analyst. They argue that even though some of these parameters have a real

economic meaning and can, therefore, be �xed clearly, some others (such as con-

cordance discrepancies and discrimination thresholds) playing an essential role in

the procedures only have a technical character and their inuence on the results

is not always well understood. Moreover, in some of the ELECTRE methods, the

notion of \degree of credibility" is rather di�cult for practitioners [98].

In the PROMETHEE methods, Brans proposes an approach that is \very

simple and easy to understand by the decision maker" according to him. These

methods are based on extensions of the notion of criterion. These extended criteria

can be easily built by the decision maker because they represent the natural notion

of intensity of preference, and the parameters to be �xed (maximum 2) have a

real economic meaning.

More information on this method may be found in Brans and Vincke [98],

D'Avignon et al. [99], Dujardin [100], Mareschal and Brans and Brans [101] et al.

[97].

More recently, Huylenbroeck [102] proposed the so-called Conict Anal-

ysis Model, that combines the preference function approach of ELECTRE and

PROMETHEE with the conict analysis test of a method called ORESTE [103].

64

2.13 Dynamic Compromise Programming

The previous techniques are intended for static multiobjective problems in

which the parameters do not change over time. However, in real-world applications

is sometimes the case that variables such as cost, reliability, weight of a certain

element, etc. change over time. Thus, the problem is said to be dynamic, and

a new formulation of the multiobjective optimization problem has to be made,

namely:

min

X

t

�z(�x(t); �s(t)); (2.49)

subject to

�x(t) 2 X; �s(t) 2 S

�s(t+ 1) =

�

H(�x(t); �s(t));

(2.50)

where �x(t) t = 1; 2; : : : ; T is a time policy, T is the number of stages in

which the system is divided, �s(t) is the state variable, and the function

�

H(�) giving

the state at time (t + 1) as a function of the decision �x(t) or state �s(t) is called

the state transition function.

It may be noted that t represents the construction stage rather than,

strictly speaking, time.

There are several approaches to deal with the problem formulated in Equa-

tion (2.50): We can use classical dynamic programming [104] [105] and, by the use

of the "-constraint method, arrive at a set of e�cient solutions [106] [107] [108]

[109]. Other approaches are the consideration of utility functions over time [110]

[111], preference order dynamic programming [112], and the nested Lagrangian

multiplier method [113]. In the latter approach, elements of mathematical pro-

gramming and decision analysis are integrated in a two-layer analysis. First, a

65

utility function is assessed subjectively at each stage of the process, and secondly,

a subset of non-dominated solutions is found by mathematical programming.

An extension of compromise programming to dynamic problems seems to

provide a promising dynamic multiobjective technique. Two algorithms which

have been developed for this purpose [114] [115] lead to dynamic compromise

solutions.

The idea of the method is to transform the original dynamic multiobjective

problem into a classical dynamic programming problem with, however, a higher

dimensional state vector. More generally, in Szidarovszky and Duckstein [116] a

framework labelled RHOD has been developed to include generalized distance-

based multiobjective approaches, compromise programming, goal programming,

and cooperative game theory, as well as some non-distance based techniques, in

particular the "-constraint and the weighting methods. There is also a dynamic

version of this framework, called DYRHOD. By transformation of variables, a

dynamic program with k objectives is transformed into a single objective dynamic

program with, however k � 1 or at most k additional state variables. In the case

when numerical di�culties occur because of the dimensionality problem, the use

of di�erential dynamic programming [117] [118] turns out to be helpful [119].

2.14 PROTRADE

In this case, it is assumed that our multiobjective optimization problem

has a probabilistic objective function and probabilistic constraints [120]. Accord-

ing to a 12-step algorithm, an initial solution is found using a surrogate objective

function, then a multiattribute utility function is formed leading to a new surro-

gate objective function and a new solution. The solution is checked to see if it

66

is satisfactory to the decision maker. The process is repeated until a satisfactory

solution is reached, as described in Goicoechea et al. [121] [51].

The results of the multiobjective optimization provide not only levels of

attainment of the objective function elements, but also the probabilities of reach-

ing those levels. The technique is interactive, which means that the decision maker

formulates a preference function in a progressive manner, after a trial process [5].

Other stochastic methods are the expected utility maximization [122],

and the so-calledmultiobjective statistical method [123] which is an extension

of the surrogate trade-o� method.

More information on this method may be found in Goicoechea et al. [124]

[51].

2.15 STEP Method (STEM)

This is an iterative technique based on the progressive articulation of pref-

erences. The basic idea is to converge toward the `best' solution in the min-max

sense, in no more than k steps, being k the number of objectives. This technique,

which is mostly useful for linear problems, starts from an ideal point and proceeds

in six steps, as summarized by Cohon [33]:

1. Construct a table of marginal solutions (strictly non-dominated if unique),

by optimizing each objective function separately.

2. Compute, for each objective:

�(i) =

M(i)�m(i)

M(i)

2

4

J

X

j=1

c(i; j)

3

5

2

; (2.51)

67

where

M(i) = max f

i

(�x), m(i) = min f

i

(�x), and c(i; j) = cost coe�cient of ith

linear objective.

Let the iteration index k = 0

3. Compute

Q

(i) = �(i)=

P

�(i) and solve the min-max problem. Call the

solution x(k).

4. Show the solution to the decision maker:

(a) if satis�ed, STOP;

(b) if not satis�ed and k < p � 1, go to Step 5;

(c) if not satis�ed and k > p � 1, STOP. A di�erent procedure or at least

a rede�nition of the problem is required.

5. The decision maker selects an objective satis�ed by the solution and deter-

mines the amount by which it can be decreased in order to improve the other

objectives. If this cannot be done, some other approach is again required.

6. De�ne a new constraint relaxing the objective selected in Step 5. Set �(i) =

0 for that objective, increment k by one, and go to Step 3.

One criticism to this technique is the fact that it assumes that a best-

compromise solution does not exist if it is not found after the k steps that the

iterative process above described was executed. This does not give any clue to the

decision maker of what to do [22]. Another problem is that it does not explicitly

capture the trade-o�s between the objectives. The weights in no way reect a

value judgment on the part of the decision maker. They are arti�cial quantities,

generated by the analyst to reect deviations from an ideal solution, which is itself

68

an arti�cial quantity. This de�nition of the weights serves to obscure rather than

capture the normative nature of the multiobjective optimization problems [22].

More details of this technique may be found in Cohon and Marks [22],

Szidarovszky and Duckstein [6], Ignizio [25] and Benayound et al. [125]. Other

methods that also rely on the progressive articulation of preferences have been

proposed by Klahr [126], Savir [127], Maier-Rothe and Stankard [128], Belenson

and Kapur [129] and Monarchi et al. [130].

2.16 The Method of Zionts-Wallenius

Zionts and Wallenius [131] proposed a method which makes use of an

implicit utility function on an interactive basis. Concavity of the objective func-

tions and convexity of the constraint set are assumed. Nonlinear objective func-

tions and constraints are �rst linearized. Thus, the method is dependent on the

feasibility of using linear approximations to represent the constraint set and objec-

tive functions. The method assumes that the implicit utility function is a linear

function of the objective functions.

Under this assumption, the best-compromise solution will be one of the

extreme points solutions of the linearized constraint set. To start, a linear com-

posite objective function is formed from a set of arbitrarily chosen positive weights.

Optimization of this objective function identi�es a nondominated extreme point

solution. As this extreme point may not be the best compromise solution, adja-

cent nondominated points are presented to the decision maker for consideration.

This is accomplished by identifying those nonbasic variables which would lead

to nondominated solutions if brought into the basis. For each such variable, its

introduction would simultaneously increase some objectives while reducing oth-

ers. The tradeo�s for each nonbasic variable are presented to the decision maker.

69

The decision maker determines whether the tradeo�s are desirable, undesirable,

or neither. Based on these responses, a new set of consistent weights is a nonzero

amount and the current extreme solution would dominate the new one. Hence,

nonbasic variables of this type can be discarded.

To decide whether the remaining nonbasic variables qualify for considera-

tion, the following approach is used. First, solve the following sequence of linear

programming problems for each remaining nonbasic variable:

min f

r

=

p

X

i=1

w

ir

�

i

(2.52)

subject to

p

X

i=1

w

ij

�

i

� 0; j 2 N; j 6= r (2.53)

p

X

i=1

�

i

= 1; �

i

� 0; i = 1; 2; : : : ; p (2.54)

where N = the set of nonbasic variables that have not been declared dom-

inated.

Next, these tests are applied:

� Test 1 : If f

r

< 0, then nonbasic variable x

r

leads to a nondominated

solution.

� Test 2 : If f

r

� 0, then x

r

does not lead to a nondominated solution.

The next step in the algorithm involves interaction with the decision maker.

Let N

1

represent the set of nonbasic variables satisfying Test 1. For each x

j

2 N

1

the decision maker is asked whether the tradeo� vector �w

j

is desirable, undesirable,

or neither. The decision maker responds, in e�ect, yes, no, or indi�erent to the

70

trade. For positive, negative, and indi�erent responses, we construct, respectively,

constraints of the form

p

X

i=1

w

ij

�

i

� �" (2.55)

p

X

i=1

w

ij

�

i

� " (2.56)

p

X

i=1

w

ij

�

i

= 0 (2.57)

where " is a su�ciently small positive number.

The �nal step of the algorithm consists of �nding a set of weights, �

k

that

are consistent with the decision maker's tradeo� preferences. Then the process

is repeated. The new set of weights is calculated by �nding a feasible solution

to constraints (2.54),(2.55),(2.56) and (2.57) by using linear programming. Each

iteration uses the constraints (2.55) to (2.57) de�ned in the previous iteration plus

the new ones added in the current iteration. The algorithm terminates when N

1

is empty or when all x

j

2 N

1

represent an unattractive tradeo� by the decision

maker. Since there is a �nite number of extreme points and at least one extreme

point is eliminated in each iteration, convergence occurs eventually.

More information on this method can be found in Goicoechea et al. [51].

71

2.17 Sequential Multiobjective Problem Solving

Method (SEMOPS)

This method was proposed by Monarchi, Kisiel and Duckstein [130], and

it basically involves the decision maker in an interactive fashion in the search for

a satisfactory course of action.

A surrogate objective function is used based on the goal and aspiration

levels of the decision maker. The goal levels are conditions imposed on the decision

maker by external forces, and the aspiration levels are attainment levels of the

objectives which the decision maker personally desires to achieve. One would say,

then, that goals do not change once they are stated, but that the aspiration levels

may change during the iteration process. The development of the algorithm will

now be summarized [51]:

The decision problem consists of p goals, n decision variables, and a con-

straint set

�

X. Associated with each of the goals is an objective function which

can be used to predict goal attainment or nonattainment. We write the set of all

p objective functions as �z = (z

1

; z

2

; : : : ; z

p

), and we use them to judge how well

we have achieved our p goals. The range of the ith element of �z will be denoted

by �z

i

= [z

iL

; z

iu

], which is not necessarily de�ned by the maximum and mini-

mum values of the ith objective function. It is required that

�

X be continuous and

that all objective and constraint functions be at least �rst-order di�erentiable.

Thus the constraint or objective functions may be nonlinear. Nondimensionality

is achieved by transforming z

i

(�x) into y

i

(�x) with a range of values in the interval

[0; 1] such that

y

i

(�x) =

z

i

(�x)� z

iL

z

iu

� z

iL

(2.58)

72

Similarly, if we let AL = (AL

1

; AL

2

; : : : ; AL

p

) denote the vector of aspira-

tion levels, the transformation

A

i

=

AL

i

� z

iL

z

iu

� z

iL

(2.59)

can be used to de�ne A

i

with values in the range [0; 1].

Monarchi [132] suggests the use of the following transformations:

1. At most

z

i

(�x) � AL

i

; d

i

=

z

i

(�x)

AL

i

=

y

i

(�x)

A

i

(2.60)

2. At least

z

i

(�x) � AL

i

; d

i

=

AL

i

z

i

(�x)

=

A

i

y

i

(�x)

(2.61)

3. Equals

z

i

(�x) = AL

i

; d

i

=

1

2

"

AL

i

z

i

(�x)

+

z

i

(�x)

AL

i

#

=

1

2

"

A

i

y

i

(�x)

+

y

i

(�x)

A

i

#

(2.62)

4. Within an interval

AL

iL

� z

i

(�x) � AL

iU

; d

i

=

�

AL

iU

AL

iL

+AL

iU

�

"

AL

iL

z

i

(�x)

+

z

i

(�x)

AL

iU

#

(2.63)

In each instance, values of d

i

� 1 imply that the ith objective is satis�ed.

We note also that, except for the �rst type, the d

i

are nonlinear functions of the

ith objective.

Operationally, SEMOPS is a three-step procedure involving setup, itera-

tion, and termination. Setup involves structuring a principal problem and a set of

73

auxiliary problems with surrogate objective function. The iteration step involves

cycling between an optimization phase (by the analyst), and an evaluation phase

(by the decision maker) until a satisfactory solution is reached, if it exists. The

procedure terminates when either a satisfactory solution is found, or the decision

maker concludes that none of the nondominated solutions obtained are satisfac-

tory and gives up in the search.

For the �rst iteration, then, the principal problem and set of P auxiliary

problems shown below are solved:

Principal problem

min s

1

=

P

X

i=1

d

i

(2.64)

subject to

�x 2

�

X (2.65)

and the set of auxiliary problems, l = 1; 2; : : : ; P .

min s

1l

=

P

X

i=1;i 6=l

d

i

(2.66)

subject to

�x 2

�

X (2.67)

z

l

(�x) � AL

l

(2.68)

The resulting solutions are used in the evaluation process to assist the

decision maker to determine the \direction of change" for the next iteration.

74

More information on this method can be found in Goicoechea et al. [51].

2.18 Local Multiattribute Utility Functions

When I talked before about multiattribute utility theory, I mentioned that

we can distinguish two di�erent approaches for utility maximization: the global

and the local. The �rst approach uses assumptions that limit the form of the

utility function to speci�c families of curves. Once the family is selected, a few

assessments determine the free parameters. The resulting utility function applies

over the entire decision region. The main drawback of this approach is that the

additional assumptions that are required to derive these functions are reasonable

in local regions, in the small, but when assumed globally, in the large, they are

very restrictive. This implies that the decision maker will be forced sometimes to

�t a function not truly representing his/her preferences.

On the other hand, local utility maximization provides an alternative

approach that avoids restrictive assumptions. Instead of specifying the utility

function in the large, a sequence of local linear approximations of the utility func-

tion are built in the small. Each linear approximation yields a trial solution.

Under appropriate conditions each trial solution is preferred to its predecessor, so

the trial sequence eventually reaches the optimum. This iterative technique avoids

the strong restrictions, but usually requires a large number of assessments. Since

each assessment requires a time-consuming interaction with the decision maker,

the local procedures are normally not used in practice.

Oppenheimer [76] introduced a method which merges the global and local

procedures into an algorithm that tries to incorporate the best of both approaches.

He calls his/her technique the proxy approach, considering that a proxy attribute

is one that reects the degree to which an associated objective is met but does

75

not directly measure the objective. In other words, a proxy attribute indirectly

measures the achievement of a certain objective.

The basic idea of Oppenheimer is to use the sum-of-exponentials and the

sum-of-powers utility functions as local proxies in an interactive feasible directions

algorithms. As a �rst step, he uses the global assessment procedure to encode the

utility function; but instead of using this function as a global model, it is used

only as a local proxy. At each iteration, a new tradeo� vector is assessed to update

the proxy. Since the utility function is a very good model in the small, the new

proxy algorithm converges at a much higher rate. Oppenheimer never assumes

that the proxy is the true utility function, even in the small, but he only uses it as

a mechanism to guide the search for the optimal decision. To ensure convergence

of this algorithm the utility function must be concave, the feasible region must be

convex, and a feasible directions methods must be used.

At �rst sight, this method seems to be much more expensive than nor-

mal local procedures, since the information requirements of the proxy seems to

add a considerable assessment burden. However, the extra information required

is already available, since tradeo�s are assessed at each iteration, and the past

information generated by the global method is not discarded, but instead it is

used. Therefore, there is no additional information cost involved.

Also, since the conventional linear approximations used in the local approach

are replaced by a nonlinear proxy, one could expect each maximization to be more

complicated, since each iteration would require a nonlinear rather than a linear

program. However, the sum-of-exponentials and sum-of-powers utility functions

developed by Oppenheimer have a special mathematical structure that simpli�es

the task. Both are concave and separable, so the maximization with linear con-

straints is a concave programming problem. Concave separable techniques, using

76

a series of linear programs, make this problem relatively easy to solve. This makes

this technique also very e�cient, computationally speaking.

In summary, we can say that Oppenheimer's algorithm uses the advan-

tages of one technique to overcome the disadvantages of the other, and the result

is a powerful combined technique that yields rapid convergence without restric-

tive assumptions. The technique seems very suitable for decision making under

certainty, but there seem to be major obstacles to handle decision problems under

uncertainty [133].

For more information on this method, refer to Oppenheimer [133] [76].

2.19 The Method of Nijkamp and Vos

This method is a variant of the concordance analysis, or ELECTRE method

that I mentioned before, which is based on a pairwise comparison of (weighted)

project outcomes, and it can be used both as an elimination method for less

desirable projects and as a selection method of good projects. This new variant,

developed by Nijkamp and Vos [134] is based on the idea of satis�cing (or norm)

project outcomes, which may serve as a frame of reference for the evaluation

techniques. The use of norm outcomes allows the evaluation analysis to be carried

out in terms of relative deviations between the actual and the norm outcomes,

so that the problems caused by di�erent scales (dimensions) can be attacked

simultaneously.

The necessary and su�cient condition for an optimal plan to exist in this

method, is that this plan is not dominated by any other plan. If there is not a

single non-dominated alternative, then two possibilities with which to arrive at a

more de�nite conclusion can be distinguished:

77

� Change the threshold values of the concordance and discordance index.

These indexes reex the relative importance of each plan with respect to

each other, and in this technique, they have to be adapted in order to be

able to use the norm outcomes.

� Add a new selection criterion (for example, a maximal average concordance

index and a minimal discordance index for a certain plan).

In this way a unique consistent solution can always be found, although

the robustness of this solution is lower as more relaxations of threshold values are

carried out.

The main advantage of concordance analysis is that decisions can be taken

on the basis of multidimensional criteria. A drawback is the determination of the

weights, although the weighting schemes o�er more opportunities for interactive

communication with decision makers.

The stability of an optimal plan can be analyzed by calculating critical

values for the weights or project outcomes. Beyond these critical values the orig-

inal optimal plan will be replaced by an alternative plan. Another possibility for

checking the stability of an optimal plan is stochastic analysis, in which a proba-

bility distribution function for the weights and (some uncertain) project outcomes

is speci�ed. This stochastic analysis is particularly useful if decision makers are

not able to specify the weights accurately.

For more information on this method, refer to Nijkamp and Vos [134].

78

2.20 The Nested Lagrangian Multiplier Method

(NLM)

The main idea in this method is to be able to solve multidimensional

optimization problems without comprehensively deriving the Pareto frontier. The

core of this method, developed by Seo and Sakawa [113] is to form a hierarchical

modeling of the multilevel systems, and use Lagrangian multipliers to derive utility

functions.

The original multicriteria optimization problem is divided into two layers.

In the �rst one, we have a set of scalar optimization problems, and we apply

mathematical programming to each one. Therefore, we will be optimizing single-

objective functions. At the second layer, these scalar optimization problems are

coordinated into an overall system: optimal solutions obtained from the �rst layer

optimization processes are combined with a weighting method. The main problem

then, becomes to �nd a more sophisticated weighting method. With that in mind,

Seo and Sakawa proposed the use of a nesting algorithm that uses Lagrangian

multipliers, or a dual optimal solution obtained from mathematical programming

as a medium to derive component utility functions, so that multiattribute utility

theory may be used.

Mathematical programming is also considered in a hierarchical structure

for each subsystem or scalar optimization problem. Namely, an objective function

of mathematical programming represents a \lower level" objective peculiar to

each subsystem. Constraint constants are regarded as \upper level" objectives

which are sent from the \upper-level" decision maker. Decision variables are a

normative instrument for achieving these objectives and regarded as the lowest

level objectives. Thus, formulations of mathematical programming are considered

79

in the framework of a hierarchical systems structure. It is precisely this the main

distinction between NLM and the surrogate worth trade-o� method, since whereas

in the �rst the worth assessment is directly given to the Lagrangian multipliers

in optimal, the second the Lagrangian multipliers are interpreted as the trade-o�

rate functions between the objectives, and the worth assessment is indirectly given

to the trade-o� rate functions instead of to the objective functions.

The e�ectiveness of this method depends on computational e�ciency in

solving problems of mathematical programming. In the case of large-scale prob-

lems, this could be an issue, mainly when convexity cannot be insured, since con-

vergence of nonlinear programming will be di�cult in such cases. Nevertheless,

it is an interesting proposal which combines decision making with mathematical

programming in a very rational way.

For more information on this method, refer to Seo and Sakawa [113].

2.21 Rao's Method for Fuzzy Systems

Rao [135] considers the case in which we have a multi-objective optimiza-

tion system in which there is a vast amount of fuzzy information in both the

objective and the constraint functions. He proposes a methodology with which

a multi-objective fuzzy structural optimization problem is transformed into an

ordinary single-objective optimization problem.

In the multi-objective optimization problem, we need the satisfaction of

the objective function `and' the constraints; therefore a decision or selection of

a set of design variables in a fuzzy environment can be made by assuming that

the constraints are `non-interactive' and that the logical `and' corresponds to

the intersection. The decision in a fuzzy environment can therefore be viewed

as the intersection of the fuzzy constraints and the fuzzy objective function. An

80

important feature of fuzzy set theory is the symmetry between objective functions

and constraints [135].

The fuzzy optimization problem is stated by Rao [135] as:

find

�

X which minimizes f(

�

X)

subject to g

i

(

�

X)

2

�

G

i

�

; i = 1; 2; : : : ;m

9

>

>

>

=

>

>

>

;

(2.69)

where the wave symbols denote that the variables or operations contain

fuzzy information, and G

i

indicates the allowable interval for the constraint func-

tion g

i

. If d

i

denotes the permissible variation of g

i

, then

G

i

�

= [�1; b

i

+ d

i

].

The constraint g

i

2

�

G

i

�

means that g

i

is a member of the fuzzy set

G

i

�

in the

sense of �

g

i

> 0, where �

g

i

is the membership function (or degree of satisfaction),

and it is de�ned according to the constraints of the problem such that it has a

value between 0 and 1. For example, when applied to structural optimization, �

g

i

could be de�ned as:

�

g

i

(

�

X) =

8

>

>

<

>

>

:

1; if� � �

(u)

� 0

0; if� � �

(u)

> d

i

(2.70)

being � the stress of the structure, and �

(u)

its upper bound.

If � � �

(u)

lies between 0 and d

i

, �

g

i

(

�

X) can be de�ned to have a value

varying between 1 and 0.

The fuzzy feasible region is de�ned by considering all the constraints as

S

�

m

\

i=1

G

i

�

(2.71)

81

and the membership degree of any design vector

�

X to fuzzy feasible region

S

�

is given by

�

s

�

(

�

X) =

min

i

f�

g

i

(

�

X)g (2.72)

that is the minimum degree of satisfaction of the design vector

�

X to all of

the constraints. A design vector

�

X can be considered feasible if �

s

�

(

�

X) > 0 and

the objective function de�nes a fuzzy domain D in

S

�

as

D = f�

f

(

�

X)g \

(

m

\

i=1

�

g

i

(

�

X)

)

(2.73)

From the fuzzy domain D, and optimum solution

�

X

�

can be selected as

the design for which the membership function is maximum:

�

D

(

�

X

�

) = max �

D

(

�

X) (2.74)

where

�

D

= min f�

f

(

�

X); �

g

1

(

�

X); : : : ; �

g

m

(

�

X)g (2.75)

The fuzzy single-objective optimization approach can be generalized to

fuzzy multi-objective optimization problems by de�ning the fuzzy domain corre-

sponding to the objective functions and the constraints as

D =

8

<

:

k

\

j=1

�

f

j

(

�

X)

9

=

;

\

(

m

\

i=1

�

g

i

(

�

X)

)

(2.76)

with

�

D

=

min

j; i

f�

f

j

(

�

X); �

g

i

(

�

X)g (2.77)

82

where �

f

j

(

�

X) and �

g

i

(

�

X) denote the membership functions of the jth

objective and ith constraint functions, respectively. The optimum solution

�

X

�

is

selected such that

�

D

(

�

X

�

) = max �

D

(

�

X) (2.78)

Computationally, the solution of the multi-objective fuzzy optimization

problem indicated in equation(2.78) can be found by (i) �nding the solutions of

the individual single-objective optimization problems, (ii) determining the best

and worst solutions possible for each of the objective functions, (iii) using these

solutions as boundaries of the fuzzy ranges in the corresponding fuzzy optimization

problem and (iv) solving the resulting fuzzy optimization problem. The details

are indicated in the following step-by-step procedure [135]:

1. Starting from any trial design vector

�

X

s

, minimize the individual objec-

tive function f

j

(

�

X) subject to the constraints g

i

(

�

X) � b

i

; i = 1; 2; : : : ;m using

ordinary (crisp) optimization procedures. Let the solution be

�

X

�

j

; i = 1; 2; : : : ; k.

2. Construct a matrix [

�

P] as

[

�

P] =

2

6

6

6

6

6

6

6

6

6

6

4

f

1

(

�

X

�

1

) f

2

(

�

X

�

2

) : : : f

k

(

�

X

�

1

)

f

1

(

�

X

�

2

) f

2

(

�

X

�

2

) : : : f

k

(

�

X

�

2

)

.

.

.

f

1

(

�

X

�

k

) f

2

(

�

X

�

k

) : : : f

k

(

�

X

�

k

)

3

7

7

7

7

7

7

7

7

7

7

5

(2.79)

It can be seen that the diagonal elements in the matrix [

�

P] are the minima

in their respective columns.

83

3. The minimum and maximum possible values of the objective functions

are identi�ed as

f

min

j

=

min

i

f

j

(

�

X

�

i

) = f

j

(

�

X

�

j

)

f

max

j

=

max

i

f

j

(

�

X

�

i

)

9

>

>

>

>

=

>

>

>

>

;

; j = 1; 2; : : : ; k (2.80)

4. From the extreme values of f

j

determined in equation (2.80), the mem-

bership functions of the fuzzy objective functions are constructed as

�

f

j

(

�

X) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0; if f

j

(

�

X) > f

max

j

�

�f

j

(

�

X)+f

max

i

f

max

j

�f

min

j

�

; if f

min

j

< f

j

(

�

X) � f

max

j

; j = 1; 2; : : : ; k

1; if f

j

(

�

X) � f

min

j

(2.81)

5. The fuzzy constraints can be stated as

g

i

(

�

X) � b

i

+ d

i

; i = 1; 2; : : : ;m (2.82)

where d

i

denotes the distance by which the boundary of the ith constraint

is moved. The membership function of the ith constraint can be de�ned as

�

g

i

(

�

X) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0; if g

i

(

�

X) > b

i

+ d

i

1 �

n

g

i

(

�

X)�b

i

d

i

o

; if b

i

� g

i

(

�

X) � b

i

+ d

i

; i = 1; 2; : : : ;m

1; if g

i

(

�

X) < b

i

(2.83)

6. By considering the optimum solution as the intersection of the mem-

bership functions of the objective functions and constraints, the solution of the

84

fuzzy multi-objective optimization problem can be found by determining

�

X and

� which maximize � subject to

� � �

f

j

(

�

X); j = 1; 2; : : : ; k

� � �

g

i

(

�

X); i = 1; 2; : : : ;m

9

>

>

=

>

>

;

(2.84)

This problem can be solved using ordinary single-objective non-linear pro-

gramming techniques.

For more information on this topic, refer to Rao [135], Dhingra et al. [136]

and Blin [137].

2.22 Displaced Ideal

Zeleny [41] tried to develop a methodology that emulates the criteria that

drives a human being to adopt a certain solution, which he calls the ideal point.

Coombs [138] introduced the idea of ideal point, and he showed that the proba-

bilities of choice depend on whether alternatives being compared lie on the same

side of the ideal point, or whether some lie on one side of the ideal and some on

the other.

When there are constraints, it becomes an unrealistic goal to reach the ideal

point, and there is a conict between what is preferable and what is possible. To

solve it, a decision must be taken by exploring the limits achievable along each

particular attribute of importance, so that the ideal alternative may be de�ned.

General infeasibility of nonavailability of this ideal alternative creates a pre-

decision conict and generates the impulse to move \as close as possible" towards

it. Because of the experienced conict, the decision maker starts searching for

new alternatives, preferably those which are the closest to the ideal one.

85

P

I

M

x

y

0

Figure 2.9: An example of a case where reaching the ideal point (M) is an unre-

alistic goal, and we search, instead, an alternative point (I).

86

If this ideal alternative is found, then there is no need for any further

decision making process, because the conict has been removed and the ideal has

become feasible. It should be observed that, in contrast with the relative stability

of the ideal point, the ideal alternative can be displaced quite frequently in depen-

dency on changes in the available set, objectives, evaluations, measurements, etc.

It becomes a moving target, a point of reference which provides a model for human

adaptivity, intransitivity and dynamic adjustment of preferences. Then, decision

making becomes the dynamic process of searching the ideal point via the ideal

alternative. Figure 2.9 (taken from Zeleny [41]) shows an example of a case where

reaching the ideal point (M in the graph) becomes an unrealistic goal, and instead

an ideal alternative is searched (I in the graph).

Partial decisions taking may consist of discarding some \obviously" inferior

alternatives, re-considering previously rejected alternatives, adding or deleting

criteria, etc.

As all alternatives are compared with the ideal, those which are the farthest

away are removed from further consideration. There are many important impacts

of such partial decisions. First, whenever an alternative is discarded there could

be a shift in a maximum available score to the next lower feasible level. Thus,

the ideal alternative is being displaced closer to the feasible set. Similarly, addi-

tion of a new alternative may displace the ideal farther away. Such displacements

induce changes in evaluations, attribute importance and ultimately in the prefer-

ence ordering of remaining alternatives. All alternatives are then compared with

respect to the new, displaced ideal, to take a �nal decision.

More information on this technique may be found in Zeleny [41] [139].

87

2.23 Lexicographic Method

In this method, the objectives are ranked in order of importance by the

designer. The optimum solution

�

X

�

is then obtained by minimizing the objective

functions, starting with the most important one and proceeding according to the

order of importance of the objectives.

Let the subscripts of the objectives indicate not only the objective function

number, but also the priority of the objective. Thus, F

1

(

�

X) and F

k

(

�

X) denote

the most and least important objective functions, respectively. Then the �rst

problem is formulated as

Minimize F

1

(

�

X) (2.85)

subject to

g

j

(

�

X) � 0; j = 1; 2; : : : ;m (2.86)

and its solution

�

X

�

1

and F

�

1

= (

�

X

�

1

) is obtained. Then the second problem

is formulated as

Minimize F

2

(

�

X) (2.87)

subject to

g

j

(

�

X) � 0; j = 1; 2; : : : ;m (2.88)

F

1

(

�

X) = F

�

1

(2.89)

88

and the solution of this problem is obtained as X

�

2

and F

�

2

= F

2

(X

�

2

). This

procedure is repeated until all k objectives have been considered. The ith problem

is given by

Minimize F

i

(

�

X) (2.90)

subject to

g

j

(

�

X) � 0; j = 1; 2; : : : ;m (2.91)

F

l

(

�

X) = F

�

l

; l = 1; 2; : : : ; i� 1 (2.92)

The solution obtained at the end, i.e., X

�

k

is taken as the desired solution

X

�

of the problem.

More information on this method may be found in Rao [52] and Sarma et

al. [140].

2.24 Goal-Attainment Method

This method is not subject to convexity limitations of any kind. In this

approach, a vector of weights w

1

; w

2

; : : : ; w

k

relating the relative under- or over-

attainment of the desired goals must be elicited from the decision maker in addi-

tion to the goal vector b

1

; b

2

; : : : ; b

k

for the objective functions f

1

; f

2

; : : : ; f

k

. To

�nd the best-compromise solution X

�

, we solve the following problem:

89

Minimize � (2.93)

subject to:

g

j

(

�

X) � 0; j = 1; 2; : : : ;m

b

i

+ � � w

i

� f

i

(

�

X); i = 1; 2; : : : ; k (2.94)

where � is a scalar variable unrestricted in sign and the weightsw

1

; w

2

; : : : ; w

k

are normalized so that

k

X

i=1

jw

i

j = 1 (2.95)

If some w

i

= 0 (i = 1; 2; : : : ; k), it means that the maximum limit of

objectives f

i

(

�

X) is b

i

.

It can be easily shown [141] (taken from Chen and Liu [141]) that the set

of non-inferior solutions can be generated by varying the weights, with w

i

� 0

(i = 1; 2; : : : ; k) even for nonconvex problems. The mechanism by which this

method operates is illustrated in Figure 2.10. The vector

�

b is represented by the

decision goal of the decision maker, who also decides the direction of �w. Given

vector �w and

�

b, the direction of the vector

�

b + � � �w can be determined, and

the problem stated by equation (2.93) is equivalent to �nding a feasible point on

this vector in objective space which is closest to the origin. It is obvious that the

optimal solution of equation (2.93) will be the �rst point at which

�

b+�� �w intersects

the feasible region F in the objective space. Should this point of intersection exist,

it would clearly be a noninferior solution.

90

b + α w

F

α*

F *

2
b

*f
2

b
1

f*
1

w b

f

2f

1

Figure 2.10: Goal-attainment method with two objective functions.

It should be pointed out that the optimum value of � will inform the

decision maker of whether the goals are attainable or not. A negative value

of � implies that the goal of the decision maker is attainable and an improved

solution will be obtained. Otherwise, if � > 0, then the decision maker goal is

unattainable.`

For more information on this method, refer to Chen and Liu [141] and Rao

[52].

There is an impressive amount of information on multiobjective optimiza-

tion. In 1992, John Wiley and Sons started publishing a new journal specialized in

this subject, with 3 issues per year, called Journal of Multi-criteria Decision

Analysis. Jaap Hartog (mcrit@sjaan.fbk.eur.nl) initiated an electronic multi-

criteria discussion list, called MCRIT-L, to serve as a discussion forum for shar-

ing information about multi-criteria decision making in all its various aspects.

91

This should give an idea of the huge volume of information available on this sub-

ject. Therefore, this chapter is just a highly simpli�ed general view of the �eld,

that does not attempt, under any means, to cover all the existing multiobjective

optimization methods.

92

Chapter 3

Multiobjective Optimization

using Genetic Algorithms

3.1 A Gentle Introduction to Genetic Algorithms

The famous naturalist Charles Darwin de�ned Natural Selection or Sur-

vival of the Fittest in his book [142] as the preservation of favorable individual

di�erences and variations, and the destruction of those that are injurious. In

nature, individuals have to adapt to their environment in order to survive in a

process called evolution, in which those features that make an individual more

suited to compete are preserved when it reproduces, and those features that make

it weaker are eliminated. Such features are controlled by units called genes which

form sets called chromosomes. Over subsequent generations not only the �ttest

individuals survive, but also their �ttest genes which are transmitted to their

descendants during the sexual recombination process which is called crossover.

John H. Holland became interested in the application of natural selection to

machine learning, and in the late 60s, while working at the University of Michigan,

he developed a technique that allowed computer programs to mimic the process

of evolution. Originally, this technique was called reproductive plans, but the

93

term genetic algorithm became popular after the publication of his book [143]

[144].

In 1989, Goldberg published a book [145] that provided a solid scienti�c

basis for this area, and cited no less than 73 successful applications of the genetic

algorithm. In the last few years the growing interest on this technique is reected

in a larger number of conferences, a new international journal, and an increasing

amount of software and literature devoted to this subject.

Koza [146] provides a good de�nition of a GA:

The genetic algorithm is a highly parallel mathematical algo-

rithm that transforms a set (population of individual mathemat-

ical objects (typically �xed-length character strings patterned after

chromosome strings), each with an associated �tness value, into a

new population (i.e., the next generation) using operations pat-

terned after the Darwinian principle of reproduction and survival of

the �ttest and after naturally occurring genetic operations (notably

sexual recombination).

Actually, the genetic algorithm derives its behavior from a metaphor of one

of the mechanisms of evolution in nature which is called hard selection [147].

Under this scheme, only the best available individuals are retained for generating

descendants. This contrasts with soft selection, which o�ers a probabilistic

mechanism for maintaining individuals to be parents of future progeny despite

possessing relatively poorer objective values.

It has been argued [147] that the term genetic algorithm (GA) is mis-

leading, since natural selection is only one of the mechanisms of evolution, and

it would be more appropriate to call them hard selection (HS) algorithms to

94

reect the fact that they deal with only that particular selection scheme. How-

ever, the term is so common today, that a change does not seem feasible, at least

in the near future.

A genetic algorithm for a particular problem must have the following �ve

components [148]:

1. A representation for potential solutions to the problem.

2. A way to create an initial population of potential solutions.

3. An evaluation function that plays the role of the environment, rating solu-

tions in terms of their \�tness".

4. Genetic operators that alter the composition of children.

5. Values for various parameters that the genetic algorithm uses (population

size, probabilities of applying genetic operators, etc.).

Some of the basic terminology used by the genetic algorithms (GAs) com-

munity is the following [147]:

� A chromosome is a data structure that holds a \string" of task parameters,

or genes. This string may be stored, for example, as a binary bit-string

(binary representation) or as an array of integers (oating point o real-coded

representation) that represent a oating point number. This chromosome is

analogous to the base-4 chromosomes present in our own DNA. Normally, in

the GA community, the haploid model of a cell is assumed (one-chromosome

individuals). However, diploids have also been used in the past [145].

� A gene is a subsection of a chromosome that usually encodes the value of

a single parameter.

95

� An allele is the value of a gene. For example, for a binary representation

each gene may have an allele of 0 or 1, and for a oating point representation,

each gene may have an allele from 0 to 9.

� A schema (plural schemata) is a pattern of gene values in a chromosome,

which may include \do not care" states (represented by a # symbol). Thus

in a binary chromosome, each schema can be speci�ed by a string of the

same length as the chromosome, with each character being one of f 0, 1, #

g. A particular chromosome is said to \contain" a particular schema if it

matches the scheme (e.g. chromosome 01101 matches schema #1#0#).

� If the solution of a problem can be represented by a set of N real-valued

parameters, then the job of �nding this solution can be thought of as a

search in an N -dimensional space. This region is simply referred as the

search space of the problem.

� The �tness of an individual is a value that reects its performance (i.e.,

how well solves a certain task). A �tness function is a mapping of the

chromosomes in a population to their corresponding �tness values. A �tness

landscape is the hypersurface obtained by applying the �tness function to

every point in the search space.

� A building block is a small, tightly clustered group of genes which have

co-evolved in such a way that their introduction into any chromosome will

be likely to give increased �tness to that chromosome. The building block

hypothesis [145] states that GAs generate their solutions by �rst �nding

as many building blocks as possible, and then combining them together to

give the highest �tness.

96

� Deception is a condition under which the combination of good building

blocks leads to reduced �tness, rather than increased �tness. This condition

was proposed by Goldberg [145] as a reason for the failure of GAs on certain

tasks.

� Elitism (or an elitist strategy) is a mechanism which ensures that the chro-

mosomes of the highly �t member(s) of the population are passed on to

the next generation without being altered by any genetic operator. The

use of elitism guarantees that the maximum �tness of the population never

decreases from one generation to the next, and it normally produces a faster

convergence of the population.

� Epistasis is the interaction between di�erent genes in a chromosome. It is

the extent to which the contribution to �tness of one gene depends on the

values of other genes. Geneticists use this term to refer to a \masking" or

\switching" e�ect among genes, and a gene is considered to be \epistatic"

if its presence suppresses the e�ect of a gene at another locus. This concept

is closely related to deception, since a problem with high degree of epis-

tasis is deceptive, since building blocks can not be formed. On the other

hand, problems with little or no epistasis are trivial to solve (hill climbing

is su�cient).

� Exploitation is the process of using information gathered from previously

visited points in the search space to determine which places might be prof-

itable to visit next. Hill climbing is an example of exploitation, because it

investigates adjacent points in the search space, and moves in the direction

giving the greatest increase in �tness. Exploitation techniques are good at

97

�nding local minima (or maxima). The GA uses crossover as an exploitation

mechanism.

� Exploration is the process of visiting entirely new regions of a search space,

to see if anything promising may be found there. Unlike exploitation, explo-

ration involves leaps into unknown regions. Random search is an exam-

ple of exploration. Problems which have many local minima (or maxima)

can sometimes only be solved using exploration techniques such as random

search. The GA uses mutation as an exploration mechanism.

� A genotype represents a potential solution to a problem, and is basically

the string of values chosen by the user, also called chromosome.

� A phenotype is the meaning of a particular chromosome, de�ned externally

by the user.

� Genetic drift is the name given to the changes in gene/allele frequencies

in a population over many generations, resulting from chance rather than

from selection. It occurs most rapidly in small populations and can lead to

some alleles to become extinct, thus reducing the genetic variability in the

population.

� A niche is a group of individuals which have similar �tness. Normally in

multiobjective and multimodal optimization, a technique called sharing is

used to reduce the �tness of those individuals who are in the same niche,

in order to prevent the population to converge to a single solution, so that

stable sub-populations can be formed, each one corresponding to a di�erent

objective or peak (in a multimodal optimization problem) of the function.

The basic operation of a Genetic Algorithm is illustrated in the following

segment of pseudo-code [149]:

98

generate initial population, G(0);

evaluate G(0);

t:=0;

repeat

t:=t+1;

generate G(t) using G(t-1);

evaluate G(t);

until a solution is found

First, an initial population is randomly generated. The individuals of this

population will be a set of chromosomes or strings of characters (letters and/or

numbers) that represent all the possible solutions to the problem. We apply

a �tness function to each one of these chromosomes in order to measure the

quality of the solution encoded by the chromosome. Knowing each chromosome's

�tness, a selection process takes place to choose the individuals (presumably, the

�ttest) that will be the parents of the following generation. The most commonly

used selection schemes are the following [150]:

� Proportionate Reproduction: This term is used generically to describe

several selection schemes that choose individuals for birth according to their

objective function values f . In these schemes, the probability of selection p

of an individual from the ith class in the tth generation is calculated as

p

i;t

=

f

i

P

k

j=1

m

j;t

f

j

(3.1)

where k classes exist and the total number of individuals sums to n. Sev-

eral methods have been suggested for sampling this probability distribu-

tion, including Monte Carlo or roulette wheel selection [151], stochastic

99

remainder selection [152] [153], and stochastic universal selection [154]

[155].

� Ranking Selection: In this scheme, proposed by Baker [156] the popu-

lation is sorted from best to worst, and each individual is copied as many

times as it can, according to a non-increasing assignment function, and then

proportionate selection is performed according to that assignment.

� Tournament Selection: The population is shu�ed and then is divided

into groups of k elements from which the best individual (i.e., the �ttest)

will be chosen. This process has to be repeated k times because on each

iteration only m parents are selected, where

m =

population size

k

For example, if we use binary tournament selection (k = 2), then we have to

shu�e the population twice, since in each stage half of the parents required

will be selected. The interesting property of this selection scheme is that we

can guarantee multiple copies of the �ttest individual among the parents of

the next generation.

After being selected, crossover takes place. During this stage, the genetic

material of a pair of individuals is exchanged in order to create the population

of the next generation. The two main ways of performing crossover are called

single-point and two-point crossover. When a single-point crossover scheme is

used, a position of the chromosome is randomly selected as the crossover point

as indicated in Figure 3.1. When a two-point crossover scheme is used, two

positions of the chromosome are randomly selected as indicated in Figure 3.2.

100

1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0

1 0 1 0 1 1 1 0

1 1 1 0 1 1 0 1

Cross-point Cross-point

Descendants

Figure 3.1: Use of a single-point crossover between two chromosomes. Notice that

each pair of chromosomes produces two descendants for the next generation. The

cross-point may be located at the string boundaries, in which case the crossover

has no e�ect and the parents remain intact for the next generation.

1 0 1 1 0 1 1 1 1 0 1 1 1 0

1 0 1 0 1 1

1 1 1 1

Descendants

0 1

011 0

 Cross-points Cross-points

1 0

Figure 3.2: Use of a two-point crossover between two chromosomes. In this case

the genes at the extremes are kept, and those in the middle part are exchanged. If

one of the two cross-points happens to be at the string boundaries, a single-point

crossover will be performed, and if both are at the string boundaries, the parents

remain intact for the next generation.

101

Mutation is another important genetic operator that randomly changes

a gene of a chromosome. If we use a binary representation, a mutation changes a

0 to 1 and viceversa. This operator allows the introduction of new chromosomic

material to the population and, from the theoretical perspective, it assures that|

given any population|the entire search space is connected [149].

If we knew in advance the �nal solution, it would be trivial to determine

how to stop a genetic algorithm. However, as this is not normally the case, we

have to use one of the two following criteria to stop the GA: either give a �xed

number of generations in advance, or verify when the population has stabilized

(i.e., all or most of the individuals have the same �tness).

GAs di�er from traditional search techniques in several ways [149]:

� GAs do not require problem speci�c knowledge to carry out a search.

� GAs use stochastic instead of deterministic operators and appear to be

robust in noisy environments.

� In evaluating a population of n strings, the GA implicitly estimates the

average �tnesses of all schemas that are present in the population, and

increasing or decreasing their representation. This simultaneous implicit

evaluation of large number of schemas in a population of n strings is known

as implicit parallelism. This ability makes them less susceptible to local

maxima and noise.

The traditional representation used by the genetic algorithms community

is the binary scheme according to which a chromosome is a string the form

hb

1

; b

2

; : : : ; b

m

i, where b

1

; b

2

; : : : ; b

m

are called alleles (either zeros or ones). Since

the binary alphabet o�ers the maximum number of schemata per bit of informa-

tion of any coding [145], its use has became very popular among scientists. This

102

01 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 01

27053 5

Representation of the number 35.5072 using
binary encoding

Representation of the number 35.5072 using
floating point encoding

Figure 3.3: Representing the same number using binary and oating point encod-

ings.

coding also facilitates theoretical analysis of the technique and allows elegant

genetic operators. However, since the \implicit parallelism" property of GAs does

not depend on using bit strings [148] it is worthwhile to experiment with larger

alphabets, and even with new genetic operators. In particular, for optimization

problems in which the parameters to be adjusted are continuous, a oating point

representation scheme seems a logical choice. According to this representation, a

chromosome is a string of the form hd

1

; d

2

; : : : ; d

m

i, where d

1

; d

2

; : : : ; d

m

are digits

(numbers between zero and nine). Consider the examples shown in Figure 3.3, in

which the same value is represented using binary and oating point encoding.

The term \oating" may seem misleading since the position of the implied

decimal point is at a �xed position, and the term \�xed point representation"

seems more appropriate. However, the reason that the term \oating point" is

preferred is because in this representation each variable (representing a parameter

to be optimized) may have the point at any position along the string. This means

that even when the point is �xed for each gene, is not necessarily �xed along the

chromosome. Therefore, some variables could have a precision of 3 decimal places,

while others are integers, and still they could all be represented with the same

103

string. Nevertheless, the term real-coded GAs is also used in the literature [158]

[159].

Floating point representation is faster and easier to implement, and pro-

vides a higher precision than its binary counterpart, particularly in large domains,

where binary strings would be prohibitively long. One of the advantages of oat-

ing point representation is that it has the property that two points close to each

other in the representation space must also be close in the problem space, and vice

versa [148]. This is not generally true in the binary approach, where the distance

in a representation is normally de�ned by the number of di�erent bit positions.

Goldberg [158] has presented a theory of convergence for real-coded or

oating-point GAs, and also real numbers and other alphabets have been proposed

[159], particularly for numerical optimization, in a resemblance of the power of

evolutionary strategies [160] in this domain. As Eshelman and Scha�er [161]

point out, a lot of researchers in the GA community have agreed to use real-coded

genetic algorithms for numerical optimization despite of the fact that there are

theoretical arguments that seem to show that small alphabets should be more

e�ective than large alphabets. Practitioners, on the other hand, have shown that

real-coded genes work better in practice [162]. A few attempts have been made to

develop a theoretical defense of this representation scheme, from which the recent

work by Eshelman and Scha�er deserves special attention [161]. One of the main

abilities of real-coded GAs is their capacity to exploit the gradualness of functions

of continuous variables (where gradualness is taken to mean that small changes

in the variables correspond to small changes in the function) [161] [159].

104

3.2 Multiobjective Optimization using GAs

Goldberg [145] indicates that the notion of genetic search in a multicriteria

problem dates back to the late 60s, in which Rosenberg's [163] study contained a

suggestion that would have led to multicriteria optimization if he had carried it out

as presented. His suggestion was to use multiple properties (nearness to some

speci�ed chemical composition) in his simulation of the genetics and chemistry of a

population of single-celled organisms. Since his actual implementation contained

only one single property, the multiobjective approach could not be shown in his

work, but it was a starting point for researchers interested in this topic.

Genetic algorithms require scalar �tness information to work, which means

that when approaching multicriteria problems, we need to perform a scalarization

of the objective vectors. One problem is that it is not always possible to derive

a global criterion based on the formulation of the problem. In the absence of

information, objectives tend to be given equivalent importance, and when we

have some understanding of the problem, we can combine them according to the

information available, probably assigning more importance to some objectives.

Optimizing a combination of the objectives has the advantage of producing a

single compromise solution, requiring no further interaction with the decision

maker [164]. The problem is, that if the optimal solution cannot be accepted,

either because the function used excluded aspects of the problem which were

unknown prior to optimization or because we chose an inappropriate setting of

the coe�cients of the combining function, additional runs may be required until

a suitable solution is found.

105

3.3 Use of aggregating functions

Several attempts have been made to combine the objective functions in dif-

ferent ways, as Fonseca and Fleming report [164]. One general approach involves

the use of aggregating functions. Several attempts are reported in the literature,

and will be described next.

3.3.1 Weighted sum approach

Jakob et al. [165] assign weights that estimate the importance of each

objective. The problem with this approach is precisely how to determine such

weights when we do not have enough information about the problem. In this case,

the optimal point obtained will be a function of the coe�cients used to combine

the objectives. We normally use a simple linear combination of the objectives

and we can generate the trade-o� surface (the term \trade-o�" in this context

refers to the fact that we are trading a value of one objective function for a value

of another function or other functions) by varying the weights. This approach is

very simple and easy to implement, but it has the disadvantage of missing concave

portions of the trade-o� curve [166].

3.3.2 Reduction to a single objective

Ritzel and Wayland [166] suggest to code the GA in such a way that all

the objectives, except for one, are constant (constrained to a single value), and

the remaining objective becomes the �tness function for the GA. Then, through a

process of running the GA numerous times with di�erent values of the constrained

objectives, a trade-o� surface can be developed. The obvious drawback of this

approach is that it is time-consuming, and the coding of the objective functions

may be di�cult or even impossible for certain problems.

106

3.3.3 Goal attainment

Wilson and Macleod [167] used this method to solve an optimization prob-

lem. In this method, a vector of weights relating the relative under- or over-

attainment of the desired goals must be elicited from the decision maker in addi-

tion to the goal vector. By varying the weights, we can generate the set of noninfe-

rior solutions, even for nonconvex problems [141]. In the case of underattainment

of the desired goals, a smaller weighting coe�cient is associated with a more

important objective. For overattainment of the desired goals, a smaller weighting

coe�cient is associated with a less important objective [52].

3.3.4 Use of Penalty Functions

The basic idea of this approach is to \punish" the �tness value of a chromo-

some whenever the solution produced violates some of the constraints imposed by

the problem. Theoretically, the penalty decreases when the value of the penalty

function coe�cient is increased and convergence is achieved by increasing the

penalty function coe�cient to in�nity [168]. However, a large value for the penalty

function coe�cient causes ill conditioning in the optimization process and results

in numerical instability or slow convergence. Furthermore, since the value of the

penalty function coe�cient is unknown, much experimentation is required to �nd

an appropriate value. The augmented Lagrangian method has been suggested

by Adeli and Cheng [168] to deal with this problem. They integrate the penalty

function method with the primal-dual method, which is based on sequential min-

imization of the Lagrangian function. Instead of only a single penalty function

coe�cient, in this approach two parameters associated with each constraint are

used, and there is no need that the Lagrangian multipliers go to in�nity to ensure

107

21 n. . .

gene performance

parentsGeneration(t) Generation(t+1)

select n
subgroups
using each
dimension of
performance
in turn

popsize

1

shuffle apply genetic
operators

popsize

1

STEP STEP STEP1 2 3

.

.

.

.

.

.

1

.

.

.

2

n

Figure 3.4: Schematic of VEGA selection.

convergence. Nevertheless, the problem that remains is that penalty functions are

generally problem dependent, and therefore di�cult to establish.

3.4 Non-Pareto approaches

To overcome the di�culties involved in the aggregating approach, much

work has been devoted to the development of alternative approaches based on

ranking [169]. We will examine next some of the most popular non-Pareto

approaches.

3.4.1 VEGA

David Scha�er [170] extended Grefenstette's GENESIS program [171] to

include multiple objective functions. Scha�er's approach was to use an exten-

sion of the Simple Genetic Algorithm (SGA) that he called the Vector Evaluated

Genetic Algorithm (VEGA), and that di�ered of the �rst only in the way in which

selection was performed. This operator was modi�ed so that at each generation

108

a number of sub-populations was generated by performing proportional selection

according to each objective function in turn. Thus, for a problem with k objec-

tives, k sub-populations of size N=k each would be generated, assuming a total

population size of N . These sub-populations would be shu�ed together to obtain

a new population of size N , on which the GA would apply the crossover and

mutation operators in the usual way. This process is illustrated in Figure 3.4

(taken from Scha�er [170]). Scha�er realized that the solutions generated by his

system were non-inferior in a local sense, because their non-inferiority is limited

to the current population, and while a locally dominated individual is also glob-

ally dominated, the converse is not necessarily true [170]. An individual who is

not dominated in one generation may become dominated by an individual who

emerges in a later generation. Also, he noted that the so-called \speciation" prob-

lem could arise from his approach (i.e., we could have the evolution of \species"

within the population which excel on di�erent aspects of performance). This prob-

lem arises because this technique selects individuals who excel in one dimension

of performance, without looking at the other dimensions. The potential danger

doing that is that we could have individuals with \middling" performance in all

dimensions, which could be very useful for compromise solutions, but that will

not survive under this selection scheme, since they are not in the extreme for

any dimension of performance (i.e., they do not produce the best value for any

objective function, but only moderately good values for all of them). Speciation

is undesirable because it is opposed to our goal of �nding a compromise solution.

Scha�er suggested some heuristics to deal with this problem. For example, to use a

heuristic selection preference approach for non-dominated individuals in each gen-

eration, to protect our \middling" chromosomes. Also, crossbreeding among the

109

\species" could be encouraged by adding some mate selection heuristics instead

of using the random mate selection of the traditional GA.

Although Scha�er reported some success, Richardson et al. [172] noted

that the shu�ing and merging of all the sub-populations corresponds to averag-

ing the �tness components associated with each of the objectives. Since Scha�er

used proportional �tness assignment, these were in turn proportional to the objec-

tives themselves [164]. Therefore, the resulting expected �tness corresponded to

a linear combination of the objectives where the weights depended on the distri-

bution of the population at each generation [172]. As a consequence, di�erent

non-dominated individuals were generally assigned di�erent �tness values. This

problem becomes more severe when we have a concave trade-o� surface because

points in concave regions of the trade-o� surface cannot be found by optimizing

a linear combination of the objectives, no matter what set of weights we use.

3.4.2 Lexicographic ordering

The basic idea of this technique is that the designer ranks the objectives

in order of importance. The optimum solution is then found by minimizing the

objective functions, starting with the most important one and proceeding accord-

ing to the order of importance of the objectives [52]. Fourman [173] suggested a

selection scheme based on lexicographic ordering. In a �rst version of his algo-

rithm, objectives were assigned di�erent priorities by the user and each pair of

individuals were compared according to the objective with the highest priority.

If this resulted in a tie, the objective with the second highest priority was used,

and so on. A second version of this algorithm, reported to work surprisingly well,

consisted of randomly selecting the objective to be used in each comparison. As

in VEGA, this corresponds to averaging �tness across �tness components, each

110

component being weighted by the probability of each objective being chosen to

decide each tournament [164]. However, the use of pairwise comparisons makes an

important di�erence with respect to VEGA, since in this case scale information

is ignored. Therefore, the population may be able to see as convex a concave

trade-o� surface, depending on its current distribution, and on the problem itself.

3.4.3 Evolutionary Strategies

Kursawe [174] formulated a multiobjective version of evolutionary strate-

gies [160] (ESs). Selection consisted of as many steps as objective functions had

the problem. At each step, one of these objectives was selected randomly accord-

ing to a probability vector, and used to delete a fraction of the current population.

After selection, the survivors became the parents of the next generation. The map

of the trade-o� surface was produced from the points evaluated during the run.

Since the environment was allowed to change over time, diploid individuals were

necessary to keep recessive information stored.

3.4.4 Weighted Sum

Hajela and Lin [175] included the weights of each objective in the chro-

mosome, and promoted their diversity in the population through �tness sharing.

Their goal was to be able to simultaneously generate a family of Pareto optimal

designs corresponding to di�erent weighting coe�cients in a single run of the GA.

Besides using sharing, Hajela and Lin used a vector evaluated approach based on

VEGA to achieve their goal.

111

3.5 Pareto-based approaches

We will also review some of the main Pareto-based approaches.

3.5.1 Pareto-based �tness assignment

This approach was �rst proposed by Goldberg [145] to solve the prob-

lems of Scha�er's approach. He suggested the use of non-domination ranking

and selection to move a population toward the Pareto front in a multiobjective

problem. The basic idea is to �nd the set of strings in the population that are

Pareto non-dominated by the rest of the population. These strings are then

assigned the highest rank and eliminated from further contention. Another set of

Pareto nondominated strings are determined from the remaining population and

are assigned the next highest rank. This process continues until the population

is suitably ranked. Goldberg also suggested the use of some kind of niching to

keep the GA from converging to a single point on the front. A niching mechanism

such as sharing [176] would allow the GA to maintain individuals all along the

non-dominated frontier. Hilliard et al. [177] used a Pareto optimality ranking

method to handle the objectives of minimizing cost and minimizing delay in a

scheduling problem. They tentatively concluded that the Pareto optimality rank-

ing method outperformed the VEGA method. The Pareto method was found to

be superior to a VEGA by Liepins et al. [178] when applied to a variety of set

covering problems. Ritzel et al. [166] also used non-dominated ranking and selec-

tion combined with deterministic crowding [179] as the niching mechanism. They

applied the GA to a groundwater pollution containment problem in which cost

and reliability were the objectives. Though the actual Pareto front was unknown,

Ritzel et al. used the best trade-o� surface found by a domain-speci�c algorithm,

called MICCP (Mixed Integer Chance Constrained Programming), to compare

112

the performance of the GA. They found that selection according to Pareto non-

domination was superior to both VEGA and non-domination with deterministic

crowding, at least for �nding points near or on the front found by MICCP.

3.5.2 Multiple Objective Genetic Algorithm

Fonseca and Fleming [180] have proposed a scheme in which the rank of

a certain individual corresponds to the number of chromosomes in the current

population by which it is dominated. Consider, for example, an individual x

i

at

generation t, which is dominated by p

(t)

i

individuals in the current generation. Its

current position in the individuals' rank can be given by [180]:

rank(x

i

; t) = 1 + p

(t)

i

(3.2)

All non-dominated individuals are assigned rank 1, while dominated ones

are penalized according to the population density of the corresponding region of

the trade-o� surface.

Fitness assignment is performed in the following way [180]:

1. Sort population according to rank.

2. Assign �tness to individuals by interpolating from the best (rank 1) to the

worst (rank n

�

� N) in the way proposed by Goldberg [145], according to

some function, usually linear, but not necessarily.

3. Average the �tnesses of individuals with the same rank, so that all of them

will be sampled at the same rate. This procedure keeps the global population

�tness constant while maintaining appropriate selective pressure, as de�ned

by the function used.

113

As Goldberg and Deb [150] point out, this type of blocked �tness assign-

ment is likely to produce a large selection pressure that might produce premature

convergence. To avoid that, Fonseca and Fleming use a niche-formation method

to distribute the population over the Pareto-optimal region, but instead of per-

forming sharing on the parameter values, they have used sharing on objective

function values [181]. This maintains diversity in the objective function values,

but may not maintain diversity in the parameter set, which is an important issue

for a decision maker. Furthermore, this approach may not be able to �nd multi-

ple solutions in problems where di�erent Pareto-optimal points correspond to the

same objective function value.

In this approach, it is possible to evolve only a certain region of the trade-

o� surface, by combining Pareto dominance with partial preference information in

the form of a goal vector. While the basic ranking scheme remains unaltered, as

we perform a Pareto comparison of the individuals, then those objectives which

already satisfy their goals will not be selected. If we specify fully unattainable

goals, then objectives will never be excluded from comparison. Changing the goal

values during the search alters the �tness landscape accordingly and allows the

decision maker to magnify a particular region of the trade-o� surface.

3.5.3 Non-dominated Sorting Genetic Algorithm

The Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by

Srinivas and Deb [182], and is based on several layers of classi�cations of the

individuals. Before the selection is performed, the population is ranked on the

basis of nondomination: all nondominated individuals are classi�ed into one cat-

egory (with a dummy �tness value, which is proportional to the population size,

to provide an equal reproductive potential for these individuals). To maintain

114

No

is

gen < maxgen

 ?
No

S T A R T

initialize

population

gen = 0

front = 1

classified ?

population
is identify

Nondominated
individuals

assign
dummy fitness

sharing in

current front

front = front + 1

 crossover

 mutation

S T O P

Yes

gen = gen + 1

reproduction

according to

dummy fitness

Yes

Figure 3.5: Flowchart of the Nondominated Sorting Genetic Algorithm (NSGA).

115

the diversity of the population, these classi�ed individuals are shared with their

dummy �tness values. Then this group of classi�ed individuals is ignored and

another layer of nondominated individuals is considered. The process continues

until all individuals in the population are classi�ed. A stochastic remainder pro-

portionate selection was used for this approach. Since individuals in the �rst front

have the maximum �tness value, they always get more copies than the rest of the

population. This allows to search for nondominated regions, and results in quick

convergence of the population toward such regions. Sharing, by its part, helps

to distribute it over this region. The e�ciency of NSGA lies in the way multiple

objectives are reduced to a dummy �tness function using a nondominated sorting

procedure. With this approach, any number of objectives can be solved [181],

and both maximimization and minimization problems can be handled. Figure 3.5

(taken from Srinivas and Deb [181]) shows the general ow chart of this approach.

3.5.4 Niched Pareto GA

Horn and Nafpliotis [183] proposed a tournament selection scheme based

on Pareto dominance. Instead of limiting the comparison to two individuals, a

number of other individuals in the population was used to help determine dom-

inance. When both competitors were either dominated or non-dominated (i.e.,

there was a tie), the result of the tournament was decided through �tness shar-

ing [176]. Population sizes considerably larger than usual were used so that the

noise of the selection method could be tolerated by the emerging niches in the

population [164].

The pseudocode for Pareto domination tournaments assuming that all of

the objectives are to be maximized is presented below [183]. S is an array of the

116

N individuals in the current population, random pop index is an array holding

the N indices of S, in a random order, and t

dom

is the size of the comparison set.

function selection /* Returns an individual from the current population S */

begin

shu�e(random pop index); /* Re-randomize random index array */

candidate 1 = random pop index[1];

candidate 2 = random pop index[2];

candidate 1 dominated = false;

candidate 2 dominated = false;

for comparison set index = 3 to t

dom

+ 3 do

/* Select t

dom

individuals randomly from S */

begin

comparison individual = random pop index[comparison set index];

if S[comparison individual] dominates S[candidate 1]

then candidate 1 dominated = true;

if S[comparison individual] dominates S[candidate 2]

then candidate 2 dominated = true;

end /* end for loop */

if (candidate 1 dominated AND : candidate 2 dominated)

then return candidate 2;

else if (: candidate 1 dominated AND candidate 2 dominated)

then return candidate 1;

else

do sharing;

end

117

Scaling of the objectives determines the convexity of the trade-o� surface,

so that if we use a non-linear rescaling, the objective values may convert a concave

surface into a convex one, and vice-versa. Pareto-ranking is blind to the convexity

of the trade-o� surface, but this does not mean that it always precludes specia-

tion [164], since this can still occur if certain regions of the trade-o� region are

simply easier to �nd than others. However, Pareto-ranking eliminates sensitivity

to the possible non-convexity of the trade-o� surface, and also it encourages the

production of compromise solutions.

It should be noticed that even when Pareto-based ranking correctly assigns

all non-dominated individuals the same �tness, does not guarantee that the Pareto

set be uniformly sampled, since �nite populations will tend to converge to only

one optimum when several equivalent optima are present, due to stochastic errors

in the selection process [164]. This phenomenon, which is known as genetic drift,

has been observed in both natural and arti�cial evolution, and can also occur in

Pareto-based GA optimization [164].

Goldberg and Richardson [176] proposed the used of �tness sharing to

prevent em genetic drift and to promote the sampling of the whole Pareto set by

the population. Fonseca and Fleming [180] implemented �tness sharing in the

objective domain and provided theory for estimating the necessary niche sizes

based on the properties of the Pareto set. Horn and Nafpliotis [183] also arrived

at a form of �tness sharing in the objective domain, and suggested the use of a

metric combining both the objective and the decision variable domains, leading

to what they called nested sharing.

Another interesting aspect that has been considered in GA-based multiob-

jective optimization has been the viability of crossover. This is an important issue,

118

because we could have di�erent genetic representations across di�erent regions of

the trade-o� surface, and therefore we could need to restrict crossover to happen

only locally [145]. So far, crossover restrictions have been implemented based on

the distance between individuals in the objective domain, either directly [180] or

indirectly [175].

3.6 Summary of Methods

In this section I will summarize the contents of this chapter, providing at

the same time some additional information regarding the mathematical program-

ming techniques and the Operations Research concepts that inspired them.

1. Use of aggregating functions

(a) Weighted sum: This method is based on the Weighting objectives

method introduced in Chapter 2. The ideal vector does not have to

be known, but a set of weights and probably some scaling factor have

to be provided by the user. This method will normally produce only

the min-max optimum, but not the Pareto front or the Pareto front

unless a lot of weight combinations are tried.

(b) Reduction to a single objective: The central idea of this technique is

based on the "�constrained method introduced in Chapter 2. The

ideal vector is not required, but in some cases it is very di�cult to

transform the objectives into constants. This method will normally

produce only the min-max optimum, but not the Pareto optimum or

the Pareto front.

(c) Goal-attainment: This method is based on the Global criterion and

Goal Programming techniques introduced in Chapter 2. The ideal

119

vector or another target vector must be provided by the user. This

method will normally produce only the min-max optimum, but not

the Pareto optimum or the Pareto front.

(d) Use of Penalty functions: This method is based on the "-constrained

method and theWeighting objectives method introduced in Chap-

ter 2. The ideal vector is not necessary, but the assignment of penalty

values is not always a trivial task. This method will normally produce

only the min-max optimum, but not the Pareto optimum or the Pareto

front.

2. Non-Pareto approaches

(a) VEGA: This method is somehow based on Multiattribute utility

theory, although within the context of genetic algorithms. The ideal

vector is not required, and the Pareto front can be generated. However,

since this approach really selects individuals based on their capabilities

in a single dimension, in problems with highly conicting objectives the

good trade-o�s will be eliminated. Both the min-max optimum and the

Pareto optimum may be found in certain problems.

(b) Lexicographic ordering: This method is based on the Lexicographic

method introduced in Chapter 2. The ideal vector is not required.

Normally, only the min-max optimummay be found using this approach.

(c) Evolutionary strategies: The method developed by Kursawe [174] is

also based on the Lexicographic method, although in this case, a

fraction of the population is replaced, keeping a historical record of the

best individuals found. The ideal vector is not required, but normally

only the min-max optimum will be found using this approach.

120

(d) Weighted sum: This method is based on the Weighting objectives

method, but in this case sharing is used to avoid convergence to a

single solution. Also, a hybrid approach in which a weighted sum is

combined with VEGA has been proposed by Hajela and Lin [175].

3. Pareto-based approaches

(a) Pareto-based �tness assignment: This method is based somehow on the

Sequential multiobjective problem solving method (SEMOPS)

introduced in Chapter 2. The ideal vector is not required, but an

algorithm to determine non-dominance is necessary. Therefore, the

Kuhn-Tucker conditions have to be incorporated within the selection

strategy of the genetic algorithm.

(b) MOGA: This is a variation of the previous method in which the �t-

ness of each individual is assigned based on the number of chromo-

somes that dominate it. Again, the Kuhn-Tucker conditions have to

be incorporated within the selection strategy of the genetic algorithm

to determine non-dominance, but the ideal vector does not have to be

provided.

(c) NSGA: This method is also a variation of Pareto-based �tness assign-

ment, although in this case the individuals are assigned dummy �tness

values. The ideal vector does not have to be known, but we need to

implement an algorithm to check for non-dominance (the Kuhn-Tucker

conditions can be used for that sake). The ideal vector does not have

to be provided by the user.

121

(d) NPGA: This method is based on Multiattribute utility theory.

The ideal vector does not have to be provided, but the sharing factor

and the tournament size are critical for the good performance of this

method.

122

Chapter 4

Implementation of MOSES

In this chapter, I will describe the capabilities, limitations, and implemen-

tation details of MOSES (MultiobjectiveOptimization of Systems in the Engineer-

ing Sciences), a system developed to compare several multiobjective optimization

techniques applied to di�erent engineering design optimization problems. MOSES

encompasses several programs and modules that allow the use of mathematical

programming techniques and GA-based approaches to solve multiobjective opti-

mization problems. All the code was developed in C (compiled with the GNU C

compiler), and run on a Sun Sparc Workstation. Parts of it were translated from

original FORTRAN implementations found in Osyczka [2]. I will start by talking

about some of the main algorithms used by MOSES, and then I will describe

two random search methods that can be used to �nd Pareto optimal solutions,

together with the min-max optimum. After that, I will describe some of the main

features of the Interactive Multicriterion Optimization System implemented by

Osyczka, which was translated to C and incorporated into MOSES. Finally, I will

talk about the di�erent GA-based approaches implemented.

The �rst step in developing a mathematical programming technique to deal

with multiobjective optimization problems is to be able to identify, given a set of

feasible solutions to the problem, which of them are Pareto optimal. After that,

123

it will be desirable to agree upon a concept of optimality in this context, in case

the designer desires a single �nal solution. For the scope of this work, we will

adopt the concept of min-max optimum for that sake. Therefore, we will provide

also an algorithm that will give us the min-max optimum from a certain set of

solutions.

4.1 Generating Pareto Optimal Solutions

We have seen already the concept of Pareto optimality, but I haven't

described so far, any algorithm that can identify the Pareto optimal solutions

from a given set of feasible solutions. Osyczka [2] provides an algorithm that is

based on the contact theorem, which is one of the main theorems in multiobjective

optimization [184].

First, let us de�ne a negative cone [2]. The negative cone in R

k

is the set

C

�

= f

�

f 2 R

k

j

�

f � 0g (4.1)

Thus, the contact theorem is:

A vector f

�

is a Pareto optimal solution for the general multiobjective

optimization problem if and only if

(C

�

+

�

f

�

) \ F = ff

�

g (4.2)

A graphical illustration of this theorem for a two criterion problem is shown

in Figure 4.1 (taken from Osyczka [2]).

124

F

f *

C + f *

C

f (x)

f (x)

1

2

Figure 4.1: Graphical illustration of the contact theorem.

Consider two solutions �x

(1)

and �x

(2)

for which we may have two speci�c

cases

(1)(C

�

+

�

f(�x

(1)

)) � (C

�

+

�

f (�x

(2)

)) (4.3)

(2)(C

�

+

�

f(�x

(1)

)) � (C

�

+

�

f (�x

(2)

)) (4.4)

A graphical illustration of these cases is presented in Figure 4.2 (taken

from Osyczka [2]).

We denote �x

(l)

= [x

l

1

; x

l

2

; : : : ; x

l

n

]

T

= any given point in X,

f(�x

(l)

) = [f

1

(�x

(l)

); f

2

(�x

(l)

); : : : ; f

k

(�x

(l)

)]

T

= vector of objective functions for

the point �x

(l)

,

�x

p

j

= [x

p

1j

; x

p

2j

; : : : ; x

p

nj

]

T

= The jth Pareto optimal solution,

�

f

p

j

= [f

p

1j

; f

p

2j

; : : : ; f

p

kj

]

T

=vector of objective functions for the jth Pareto

optimal solution.

125

f(x)
(1)

(2)f (x)f(x)

f (x)

(1)

(2)

f (x)

f (x) f (x)

f (x)

1 1

2 2

C + f(x)
(1)

C + f(x)

C + f(x)

C + f(x)
(2) (1)

(2)

Figure 4.2: Graphical illustration of equations (4.3) and (4.4).

Now the problem is to choose from any given set of solutions

L = f1; 2; : : : ; l; : : : ; l

a

g, the set of Pareto optimal solutions

J = f1; 2; : : : ; j; : : : ; j

a

g.

The main idea behind the Pareto algorithm is the following. Let �x

(l)

be a

new solution to be considered. If in the set of Pareto optimal solutions there is a

solution x

p

j

such that it

(i) satis�es (4.3) then �x

(l)

is substituted for �x

p

j

, or

(ii) satis�es (4.4) then �x

(l)

is discarded.

If none of the solutions from the Pareto set satis�es either 4.3 or 4.4, then

�x

(l)

becomes a new Pareto optimal solution.

The steps of the algorithm are the following [2]:

(1) Read k (number of objective functions), n (number of decision vari-

ables), l

a

(number of solutions available).

(2) Set f

p

i1

=1 for i = 1; 2; : : : ; k and j

a

= 1.

(3) Set l = 1.

(4) Read �x

(l)

and f(�x

(l)

).

126

(5) Set j = 1.

(6) If for every i 2 I we have f

i

(�x

(l)

) < f

p

ij

then substitute �x

p

j

= �x

(l)

and

f

p

j

= f(�x

(l)

) and go to 10, otherwise go to 7.

(7) If for every i 2 I we have f

i

(�x

(l)

) > f

p

ij

then go to 10 otherwise go to 8.

(8) Set j = j + 1.

(9) If j > j

a

then j

a

= j

a

+1 and x

p

ja

= �x

(l)

and

�

f

p

j

=

�

f(�x

(l)

) and go to 10,

otherwise go to 6.

(10) Set l = l+ 1.

(11) If l � l

a

, then go to 4, otherwise go to 12.

(12) Print �x

p

j

and

�

f

p

j

for j = 1; 2; : : : ; j

a

.

This algorithm is called PARETO by Osyczka [2] and it was translated

from FORTRAN to C and incorporated into MOSES.

4.2 The min-max algorithm

This algorithm chooses from any given set of solutions L = f1; 2; : : : ; l; : : : ; l

a

g,

the min-max optimal solution as de�ned in Chapter 1. We assume that the ideal

vector

�

f

0

is given.

The steps of the algorithm are the following [2]:

(1) Read k (number of objective functions), n (number of decision vari-

ables), l

a

(number of available solutions) ,

�

f

0

(ideal vector).

(2) Set v

�

1

=1.

(3) Set l = 1.

(4) Read �x

(l)

and

�

f(�x

(l)

).

(5) Evaluate vector �z(�x

(l)

) using formula (1.27).

(6) If �z(�x

(l)

) = 0 then retain this solution as the optimum since there is no

better solution, and go to 11, otherwise go to 7.

127

(7) Find the maximal values of all the steps of formula (1.29) for the

points �x

(l)

. These values are denoted v

r

for r = 1; 2; : : : ; k, and can be evaluated

as follows

v

1

=

max

i 2 I

fz

i

(x

(l)

)g (4.5)

and then I

1

= fi

1

g, where i

1

is the index for which the value of z

i

(�x

(l)

) is

maximal,

v

2

=

max

i 2 I; i 62 I

1

fz

i

(�x

(l)

)g (4.6)

and the I

2

= fi

1

; i

2

g, where i

2

is the index for which the value of z

i

(�x

(l)

) is

maximal,

v

r

=

max

i 2 I; i 62 I

r�1

fz

i

(�x

(l)

)g (4.7)

and then I

r

= fI

r�1

; i

r

g, where i

r

is the index for which the value of z

i

(�x

(l)

)

is maximal,

v

k

= z

i

(�x

(l)

) for i 2 I and i 62 I

k�1

(4.8)

(8) Replace v

�

r

by v

r

for r = 1; 2; : : : ; k and retain this solution as the

optimum if the following function is satis�ed

v

1

< v

�

1

_

r 2 f2; : : : ; kg

((v

r

< v

�

r

)

^

s 2 f1; : : : ; rg

(v

s

= v

�

s

)) (4.9)

where v

�

1

; v

�

2

; : : : ; v

�

k

is the set of optimal values of relative increments

ordered non-increasingly.

(9) Set l = l + 1.

128

(10) If l � l

a

then go to 4, otherwise go to 11.

(11) Print x

�

; l

�

;

�

f(�x

�

); �z(�x

�

).

This algorithm is called MINMAXby Osyczka [2] and it was also translated

from FORTRAN to C and incorporated into MOSES, both in the mathematical

programming software and in some of the GA-based approaches.

4.3 Monte Carlo Methods

I also implemented the two Monte Carlo methods used by Osyczka [2]

to �nd the min-max optimum. These methods are called exploratory because

a point is generated by means of a rule which disregards the results previously

obtained. In particular, the Monte Carlo method picks up a certain number of

points at random over the estimated range of all the variables of the problem.

This is done formally by obtaining the randomly selected value for x

i

from the

following formula

x

i

= x

a

i

+ �

i

(x

b

i

� x

a

i

) for i = 1; 2; : : : ; n (4.10)

where x

a

i

is the estimated or given lower limit for x

i

, x

b

i

is the estimated

or given upper limit for x

i

, and �

i

is a random number between zero and one. I

employed the same random number generator used by the genetic algorithm to

implement the FORTRAN function RANF of the original program.

If we want to generate the values of variables for l

a

points, we start by

generating random numbers �

i

for each point, and then use equation (4.10) to

obtain the values of the variables x

i

. After that, we test each generated point for

violation and discard it if it is not a feasible solution. If the point is in the feasible

region, we evaluate the objective function for that point. The best result is taken

129

as the minimum, and a new set of random numbers is generated for each of l

a

points.

The two Monte Carlo methods described by Osyczka [2] to �nd the min-

max optimum are presented next.

4.3.1 Monte Carlo method 1

In this method, the space of variables is explored twice, �rst searching for

the ideal vector

�

f

0

and then searching for the min-max optimum. The algorithm

is the following [2]:

Do steps 1, 2, 3, 4, for l = 1; 2; : : : ; l

a

(1) Generate a random point �x

(l)

.

(2) If the point �x

(l)

is not in the feasible region go to 1, otherwise go to 3.

(3) Evaluate f

i

(�x

(l)

) for i = 1; 2; : : : ; k.

(4) Replace f

0

i

by f

i

(�x

(l)

) for every i for which f

i

(�x

(l)

) < f

0

i

.

Do steps 5, 6, 7, 8, for l = 1; 2; : : : ; l

a

(5) Generate a random point �x

(l)

.

(6) If the point x

(l)

is not in the feasible region go to 5, otherwise go to 7.

(7) Evaluate f

i

(�x

(l)

) for i = 1; 2; : : : ; k.

(8) Call MINMAX to check if the point �x

(l)

is the min-max optimum.

4.3.2 Monte Carlo method 2

Here, the space of variables is explored only once, and the Pareto set is

generated while searching for the ideal vector

�

f

0

. Then, this set analyzed to check

which solution is the min-max optimum. The algorithm is the following [2]:

Do steps 1, 2, 3, 4, 5, for l = 1; 2; : : : ; l

a

(1) Generate a random point �x

(l)

.

130

(2) If the point �x

(l)

is not in the feasible region go to 1, otherwise to 3.

(3) Evaluate f

i

(�x

(l)

) for i = 1; 2; : : : ; k.

(4) Replace f

0

i

by f

i

(�x

(l)

) for every i for which f

i

(�x

(l)

) < f

0

i

.

(5) Call PARETO for checking if the point �x

(l)

is Pareto optimal.

Do steps 6, 7 for j = 1; 2; : : : ; j

a

(6) Evaluate f

i

(�x

p

j

) for i = 1; 2; : : : ; k.

(7) Call MINMAX for checking if the point �x

p

j

is the min-max optimum.

There are several trade-o�s between these two methods. For example, the

second method uses less CPU time than the �rst, because the space of variables is

explored only once, but it also requires muchmore memory since the whole Pareto

set has to be stored. Obviously, the designer normally wants to analyze the entire

Pareto set in order to take a decision, but as I mentioned before, this set could be

too large and the computational resources available could be insu�cient for that

sake. Osyczka recommends the reduction of this set by introducing constraints of

the form

f

i

(�x) � f

0

i

for i = 1; 2; : : : ; k

where values of f

0

i

are chosen by the designer.

The second method should be preferred for problems with a large number

of constraints and for discrete programming problems, because in those cases we

expect to have a small Pareto set. The main advantage of exploratory methods in

general is their exibility, since they can be applied both to linear and non-linear

programming problems. However, they are normally recommended only for cases

where a few decision variables are handled because otherwise, they could take too

long to �nd a reasonable good solution.

131

4.4 Osyczka's Multicriterion Optimization Sys-

tem

This system was developed at the Technical University of Cracow, and its

FORTRAN implementation is provided in Osyczka's book [2]. A C translation of

that code was incorporated into MOSES, and its contents are explained next.

Osyczka's system contains several multiobjective optimization methods:

(1) Min-max method : Equation (1.27) is used to determine the elements

of the vector �z(�x) (see Chapter 1).

(2) Global criterion method : Equation (2.12) is used as the global function

(see Chapter 2).

(3) Weighting min-max method : This is a combination of the weighting

method and the min-max approach that can �nd the Pareto set of solutions for

both convex and non-convex problems. The equation

^

i 2 I

(z

i

(�x) = maxfw

i

z

0

i

(�x); w

i

z

00

i

(�x)g) (4.11)

is used to determine the elements of vector �z(�x).

(4) Pure weighting method : Equation (2.5) is used to determine a pre-

ferred solution.

(5) Normalized weighting method :

�

f(�x) is used in equation (2.5).

Since all these methods require the ideal vector, the user is given the choice

of providing it, or letting the system to �nd it automatically. For this purpose,

the system includes two single criterion optimization techniques:

(i) The exible tolerance (FT) method : Is a sequential method in which a

point is established on the basis of the previously obtained results. Based on this

information, the method will know where the minimum is likely to be so that the

132

appropriate search direction may be established. Normally sequential methods,

even when are more e�cient and more highly developed than exploratory methods,

tend to be designed to solve only continuous convex problems. However, this

particular method can deal with non-linear models [185]. A detailed explanation

of this algorithm is provided in Chapter 6.

(ii) The direct and random search (DRS) method : It is a mixture of an

exploratory and a sequential method. The direct search method [186] starts from

the point chosen by the user and seeks a minimum. Then, a new starting point is

generated at random and then the direct search method seeks a better solution.

The procedure is repeated n times, and each time the direct search method starts

from a new point where the value of n is given by the user. The best result from

all searches is taken as the minimum.

4.5 Implementing GA-based approaches

Several Multiobjective Optimization approaches based on genetic algo-

rithms were implemented and incorporated into MOSES. The main body of the

system was based on the Simple Genetic Algorithm (SGA) originally implemented

by Goldberg [145] and then translated to C by R. E. Smith and modi�ed by Je�

Erickson. However, this C implementation had to be modi�ed to support both

binary and oating point representations. The �rst, follows the traditional scheme

presented by Goldberg in his book [145], and the second corresponds to the repre-

sentation of integer or real numbers by using each allele as a digit, and placing the

decimal point according to the lower and upper bounds of the design variables.

MOSES has an automatic encoding facility. The user can choose among

three di�erent types of variables:

133

(1) Integer : No decimals are considered. The user has to provide a lower

and an upper limit, and MOSES determines the number of genes that each chro-

mosome needs to represent it, depending on the representation scheme selected

(either binary or oating point). To compute the actual size of the chromosome,

I used the expression:

size = (int)flog

m

(upper bound� lower bound) + 0:9g (4.12)

where m = 2 for binary representation, and m = 10 for oating point

representation.

(2) Discrete : A list of either integers or reals will be provided directly by

the user. Discrete variables are always considered reals by MOSES. The user has

to provide the size of the list, and the corresponding value of each one of them.

To compute the actual size of the chromosome, the following expression is used:

size = (int)flog

m

(num vals) + 0:9g (4.13)

where m = 2 for binary representation, and m = 10 for oating point

representation.

(3) Real : A range and a number of digits of precision are asked of the

user. To compute the actual size of the chromosome, the lower and upper bound

are recomputed based on the precision considered, using the expression:

new bound = previous bound � (10

precision

) (4.14)

where previous bound is the corresponding lower or upper bound provided

by the user and precision is an integer that indicates the number of digits to be

134

used after the decimal point. With these new bounds, equation (4.12) is used to

compute the chromosome size.

MOSES expects all the input from a �le, and it needs another �le to gen-

erate its output. The parameters of the GA (maximum number of generations,

maximum number of runs, population size, crossover rate, mutation rate, max-

imum number of generations and random numbers seed) can be passed on the

command line, but suitable defaults are included in the program.

Two-point crossover is always used, and even when tournament selection

was used for all the experiments of this thesis (except when indicated), roulette

wheel selection and stochastic remainder selection are also available.

The system was designed in a modular fashion, so that the user only has

to plug the particular decode, report and �tness modules to start working. Every-

thing else remains normally the same, except for the code used for selection, which

can be changed according to the user needs. To make things easier, however, the

code of each method was incorporated as a single unit in a separate program,

and compiled as an isolated entity. The techniques incorporated into MOSES are

briey explained in the following subsections, indicating in each case what were

the changes performed to the standard code.

4.5.1 Lexicographic Method

This is a variation of the lexicographic method [187] mentioned by Fonseca

and Fleming [188] in which individuals are compared in pairs (binary tournament

selection) and the individual with the highest �tness according to any of the

objective functions (the corresponding objective function is randomly chosen) is

selected.

135

4.5.2 Scha�er's VEGA

In this approach, developed by Scha�er [170], the population is randomly

divided into m subgroups, where

m =

population size

number of objectives

(4.15)

The individuals in each subgroup are selected according to a single objec-

tive function, and then crossover is performed over the entire population. This

can be easily implemented by using a ag that indicates, for each subgroup, which

is the objective function to use to determine the �tness of each individual.

4.5.3 Hajela's Approach

Hajela and Lin [175] proposed the use of a utility function of the form:

�

U =

l

X

i=1

W

i

F

i

F

�

i

(4.16)

where F

�

i

are the scaling parameters for the objective criterion, l is the

number of objective functions, and W

i

are the weighting factors for each objective

function F

i

. In my implementation, I used a min-max approach to determine the

utility function, so that the scaling factor was the ideal vector.

Hajela's approach also uses a sharing function of the form:

�(d

ij

) =

8

>

>

<

>

>

:

1�

�

d

ij

�

sh

�

�

; d

ij

< �

sh

0; otherwise

(4.17)

where � = 1 for this work, d

ij

is a metric indicative of the distance between

designs i and j, and �

sh

is the sharing parameter, which is typically chosen between

0.01 and 0.1. The �tness of a design i is then modi�ed as:

136

f

s

i

=

f

i

P

M

j=1

�(d

ij

)

(4.18)

where M is the number of designs located in vicinity of the i-th design.

Hajela incorporates weight combinations into the chromosomic string, so

our implementation was extended to accommodate the additional genes required,

according to the number of weight combinations provided by the user. Under

Hajela's representation, a single number represents not the weight itself, but a

combination of weights. For example, the number 4 (under oating point rep-

resentation) could represent the vector X

w

= (0:4; 0:6) for a problem with two

objective functions. Then, sharing is done on the weights.

Finally, a mating restriction mechanism was imposed, to avoid members

within a radius �

mat

to cross. The value of �

mat

= 0:15 used by Hajela was

adopted in my implementation.

4.5.4 The Niched Pareto Genetic Algorithm

In this method, only the function select() is rede�ned, as indicated in

[183] and shown in Chapter 3. The values of t

dom

and �

share

should be provided

by the user. Equivalence class sharing [183] is done on the attribute values (i.e.,

on the vector of objective function values), and it was implemented according to

the following algorithm [183]:

function selection

begin

.

.

.

else if nichecount[candidate 1] > nichecount[candidate 2]

then return candidate 2;

137

else return candidate 1;

end

The value of nichecount is generated by the equivalence class sharing algo-

rithm. The idea is that the best individual will be determined to be the one that

has the least number of individuals in its niche and thus the smallest niche count.

4.5.5 The Nondominated Sorting Genetic Algorithm

This is a variant of Goldberg's suggestion [145] for using a nondominated

ranking procedure to select the best individuals in the population. The algo-

rithm is shown in Figure 3.5, and its explanation may be found in [181]. In this

case, there is a pre-processing stage before starting the actual selection process.

This algorithm was implemented by looping during as many fronts as objective

functions the problem has. At each step of the loop, we have to determine if an

individual dominates in as many objectives as m � k where m is the maximum

number of objectives, and k is the current front (starting by zero). So, at the �rst

front, the absolute nondominated individuals will be selected, and as the num-

ber of front increases, individuals which dominate only partially will be chosen.

The idea of this method is to assign the highest dummy �tness values to the �rst

front, and decrease such dummy �tness value as we increase the number of fronts.

Sharing is done on these dummy �tness values, to spread diversity and avoid con-

vergence towards a single solution. The value of �

share

has to be provided by the

user. Since the checking for nondominance implies an O(N

2

) algorithm, a tem-

porary array of n� k dimensions was created (n=population size, and k=number

of objectives) to hold the solution vectors of each chromosome in the population,

avoiding a repeating function evaluation at each step of the nested loop.

138

It should be noticed that this implementation uses stochastic remainder

proportionate selection [148] as indicated by Srinivas and Deb [181].

4.5.6 The Multiple Objective Genetic Algorithm

This method is another variant of Goldberg's suggestion [145] proposed by

Fonseca and Fleming [180] for using nondominated ranking to select individuals.

The idea is to assign to each individual a rank based on the number of individuals

that dominate it plus one. According to this scheme, nondominated individuals

are assigned a rank of 1 (nobody dominates them). The �tness value of each

individual is computed according to the following expression:

fitness

i

=

population size

rank

i

(4.19)

This expression guarantees that the nondominated individuals always get

the highest �tness values.

Instead of averaging the �tness of the individuals that have the same rank,

as suggested by Fonseca and Fleming [180], I just implemented a form of sharing

on these �tness values, in which the value of �

share

is determined according to the

following expression:

�

share

= A=N (4.20)

where N=population size, and

A =

k

X

i=1

k

Y

j=1;j�i

(M

j

�m

j

) (4.21)

Here, k=number of objective functions, M

j

is the maximum value that

the jth objective function takes within the N individuals under consideration,

139

and m

j

is the minimum value that the jth objective function takes within the N

individuals of the population being considered.

4.5.7 An Approach Based on a Weighted Min-Max Strat-

egy

This is really a variant of Hajela's idea, in which a few changes were intro-

duced by me:

1. The initial population is generated in such a way that all their individuals

constitute feasible solutions. This can be ensured by checking that none of

the constraints is violated by the solution vector encoded by the correspond-

ing chromosome.

2. The user should provide a vector of weights, which are used to spawn as

many processes as weight combinations are provided (normally this number

will be reasonably small). Each process is really a separate genetic algorithm

in which the given weight combination is used in conjunction with a min-max

approach to generate a single solution. Notice that in this case the weights

do not have to be encoded in the chromosome as in Hajela's approach.

3. After the n processes are terminated (n=number of weight combinations

provided by the user), a �nal �le is generated containing the Pareto set,

which is formed by picking up the best solution from each of the processes

spawned in the previous step.

4. Since this approach requires knowing the ideal vector, the user is given the

choice to provide such values directly (in case he/she knows them) or to use

another genetic algorithm to generate it. This additional program works in

a similar manner, spawning k processes (k=number of objective functions),

140

where each process corresponds to a genetic algorithm responsible for a

single objective function. When all the processes terminate, there will be a

�le containing the ideal vector, which turns out to be simply the best values

produced by each one of the spawned processes.

5. The crossover and mutation operators were modi�ed to ensure that they

produced only feasible solutions. Whenever a child encodes an infeasible

solution, it is replaced by one of its parents.

6. Notice that the Pareto solutions produced by this method are guaranteed

to be feasible, as opposed to the other GA-based methods in which there

could be convergence towards a non-feasible solution.

4.5.8 An Approach Based on Min-Max Selection with Shar-

ing

This is another approach that I tried, in which a Min-Max selection strat-

egy replaces the Pareto ranking selection scheme previously reported in the liter-

ature, and sharing is used to avoid the GA converging to a single solution. The

basic algorithm is the following:

1. The initial population is generated as in the previous approach, ensuring

that all the individuals at generation zero encode only valid solutions.

2. By exploring the population at each generation, the local ideal vector is

produced. This is done by comparing the values of each objective function

in the entire population.

141

3. The binary tournament selection algorithm is modi�ed, so that instead of

comparing the �tnesses of two individuals, we compare their maximal devia-

tions with respect to the local ideal vector. If one dominates the other, then

it wins the tournament, and if there is a tie, then sharing is used to decide

who is the winner, in a way similar to the NPGA. This means that we count

the number of individuals within the niche of each one of the competitors,

and the individual with a lower count wins.

4. The crossover and mutation operators were modi�ed as in the previous algo-

rithm to ensure that they produced only feasible solutions. Whenever a child

encodes an infeasible solution, it is replaced by one of its parents.

5. Notice that the Pareto solutions produced by this method are also guar-

anteed to be feasible, as opposed to the other GA-based methods in which

there could be convergence towards an infeasible solution.

4.5.9 The GA optimizer for single-objective problems

Using the GA itself as an optimizer for single-objective problems is a con-

troversial topic, mainly because the di�culties found to adjust its parameters

(i.e., population size, maximum number of generations, mutation and crossover

rate) [189]. Since one of the goals of this work is to be able to produce a reliable

design optimization system, this is a natural problem to face. In practice, GA

parameters are empirically adjusted in a trial and error process that could take

quite a long time in some cases.

For several months, I experimentedwith a very simplemethodology, explained

below, for a variety of engineering design optimization problems. The results that

I obtained led me to think that it was a reasonable choice to use in MOSES. The

method is the following:

142

� Choose a certain value for the random number seed and make it a constant.

� Make constants for the population size and the maximum number of gener-

ations (I normally use 100 chromosomes and 50 generations, respectively).

� Loop the mutation and crossover rates from 0:1 to 0:9 at increments of 0:1

(this is actually a nested loop). This implies that 81 runs are necessary. In

each step of the loop, the population is not reinitialized.

� For each run, update 2 �les. One contains only the �nal costs, and the other

has a summary that includes, besides the cost, the corresponding values of

the design parameters and the mutation and crossover rates used.

� When the whole process ends, the �le with the costs is sorted in ascending

order, and the smallest value is searched for in the other �le, returning the

corresponding design parameters as the �nal answer.

So far, I have found much better results using oating point representation

with this methodology, and I think that will be the trend shown in the problems

solved in this work. This approach is actually a dynamic adjustment of param-

eters, because the population is initialized only once in the process, so that the

individuals' �tness continues improving while changing the crossover and muta-

tion rates. Notice that even when we could know the crossover and mutation

rates produced the best answer, running the GA once with those parameters will

not necessary generate the exact same answer. The reason is that the popula-

tion at the moment of �nding the best result could have been recombined and

improved several times, being quite di�erent of the random initial population of a

simple GA. This procedure has some resemblance with Eshelman's CHC Adaptive

Search Algorithm [190], but in my case I do not use any re-feeding of the popula-

tion through high mutation values when it has stabilized, nor a highly disruptive

143

recombinator operator that produces o�springs that are maximally di�erent from

both parents. My approach uses a conventional two-point crossover and it exhibits

its best behavior with a oating point representation in numerical optimization

problems.

144

Chapter 5

Some Engineering Design

Examples

The following set of engineering design optimization problems was chosen

from the literature, in order to test the di�erent techniques included in MOSES:

1. Design of an I-beam

2. Machining recommendations

3. Design of a machine tool spindle

4. Design of a 10-bar plane truss

5. Design of a 25-bar space truss

6. Design of a 200-bar plane truss

7. Design of a robot arm

8. Design of a combinatorial circuit

This chapter is devoted to the complete descriptions of such problems, and

because of their length, I will not include any further material here. Therefore

the results of their analysis will be presented in the next chapter.

145

P

x4

1x

3x

2x

Z

Y

Q

L = 200 cm

L/2

Figure 5.1: The simply supported I-beam of Example 1.

5.1 Example 1 : Design of an I-beam

The multiobjective optimization problem is formulated as follows [1]:

Find the dimensions of the beam presented in Figure 5.1 (taken from

Osyczka [1]) which satisfy the geometric and strength constraints and

which optimize the following criteria:

1. cross section area of the beam which for the give length reects

its volume; and

2. static deection of the beam for the displacement under the force

P.

Both criteria are to be minimized. It should be noted that these criteria

are contrary to one another (i.e., the best solution for the �rst objective function

gives the worst solution for the second one and viceversa).

146

It is assumed that:

1. Permissible bending stress of the beam material k

g

= 16 kN=cm

2

.

2. Young's Modulus of Elasticity E = 2� 10

4

kN=cm

2

.

3. Maximal bending forces P = 600 kN and Q = 50 kN .

The vector of the decision variables is x = [x

1

; x

2

; x

3

; x

4

]

T

. Their values

will be given in centimeters. The geometric constraints are:

10 � x

1

� 80; 10 � x

2

� 50; 0:9 � x

3

� 5; 0:9 � x

4

� 5 (5.1)

The strength constraint is

M

y

W

y

+

M

z

W

z

� k

g

(5.2)

where M

y

and M

z

are maximal bending moments in Y and Z directions

respectively;W

y

andW

z

are section moduli in Y and Z directions respectively. For

the forces acting the values ofM

y

and M

z

are 30; 000 kN�cm and 2; 500 kN�cm

respectively. The section moduli can be expressed as follows:

W

y

=

x

3

(x

1

� 2x

4

)

3

+ 2x

2

x

4

[4x

2

4

+ 3x

1

(x

1

� 2x

4

)]

6x

1

(5.3)

W

z

=

(x

1

� 2x

4

)x

3

3

+ 2x

4

x

3

2

6x

2

(5.4)

147

Thus the strength constraint is:

16 �

180; 000x

1

x

3

(x

1

� 2x

4

)

3

+ 2x

2

x

4

[4x

2

4

+ 3x

1

(x

1

� 2x

4

)]

�

15; 000x

2

(x

1

� 2x

4

)x

3

3

+ 2x

4

x

3

2

� 0

(5.5)

The objective functions can be expressed as follows

1. Cross-section area

f

1

(x) = 2x

2

x

4

+ x

3

(x

1

� 2x

4

) cm

2

(5.6)

2. Static deection

f

2

(x) =

P l

3

48EI

cm (5.7)

where I is the moment of inertia which can be calculated from

I =

x

3

(x

1

� 2x

4

)

3

+ 2x

2

x

4

[4x

2

4

+ 3x

1

(x

1

� 2x

4

)]

12

(5.8)

After substitution the second objective function is

f

2

(x) =

60; 000

x

3

(x

1

� 2x

4

)

3

+ 2x

2

x

4

[4x

2

4

+ 3x

1

(x

1

� 2x

4

)]

(5.9)

148

Test v f d SR SI TL MRR

No. (sfm) (ipr) (in) (�in) (% undamaged) (min) (in

3

/min)

1 625 0.002 0.050 25 24 150.6 0.75

2 625 0.010 0.050 150 31 108.1 3.75

3 625 0.018 0.050 230 19 89.8 6.75

4 625 0.010 0.097 86 29 80.2 7.28

5 625 0.018 0.097 180 20 29.4 13.10

6 966 0.005 0.078 30 55 32.7 4.52

7 966 0.015 0.078 210 45 24.2 13.56

8 1200 0.010 0.050 95 30 30.5 7.20

Table 5.1: Machinability data for 390 die cast/carbonide/wet.

5.2 Example 2 : Machining recommendations

The problem is the following [191]:

Machinability tests on 390 die cast aluminum cut with VC-3 carbide cut-

ting tools were conducted over the following ranges of speed, feed rates, and depths

of cut:

Cutting speed (v) : 600 sfm to 1200 sfm

Feed rate (f): 0.002 ipr to 0.018 ipr

Depth of cut (d): 0.050 in to 0.100 in

Table 5.1 (taken from Ghiassi et al. [191]) provides the cutting conditions

and associated machining performance measures (criteria). The data in this table

were used to develop �rst-order predicting equations for the performance variables

SR, SI, TL, and MRR in terms of the controllable variables v, f and d, in logarith-

mic transformed coordinates. The following equations represent the least-squares

�t to the data; the feed and depth of cut have been multiplied by 1000 to ensure

that their logarithms are positive.

149

lnSR = 7:49� 0:44 ln v + 1:16ln(1000f) � 0:61 ln(1000d)

lnSI = �4:13 + 0:92 ln v � 0:16 ln(1000f) + 0:43 ln(1000d)

lnTL = 21:90 � 1:94 ln v � 0:30 ln(1000f) � 1:04 ln(1000d)

lnMRR = �11:33 + ln v + ln(1000f) + ln(1000d)

(5.10)

Bounds on the values of the controllable variables are de�ned below to

reect the ranges over which the machinability tests were run, and bounds on the

values of the performance variables.

600 � v � 1200 sfm

0:002 � f � 0:018 ipr

0:05 � d � 0:10 in

(5.11)

SR � 75 �in

SI � 50% undamaged

TL � 30 min

(5.12)

In order to express the variables in Equations (5.11) and (5.12) in the same

form as in the performance model, Equation (5.10), their logarithmic transforma-

tions are given in Equations (5.13) and (5.14):

6:3969 � ln v � 7:0901

0:6931 � ln(1000f) � 2:8904

3:9120 � ln(1000d) � 4:6052

(5.13)

150

�0:44 ln v + 1:16ln(1000f) � 0:61 ln(1000d) � �3:17

�0:92 ln v + 0:16 ln(1000f) � 0:43 ln(1000d) � �8:04

1:94 ln v + 0:30 ln(1000f) + 1:04 ln(1000d) � 18:50

(5.14)

The natural logarithms of SR, TL and SI have been substituted from Equa-

tion (5.10) to obtain Equation (5.14). The constraint of TL was multiplied by �1

to maintain the same direction of inequality as the other constraints.

To simplify the statement of the problem, let x

1

= ln v, x

2

= ln(1000f),

x

3

= ln(1000d), and the vector x = (x

1

; x

2

; x

3

). Also, de�ne z

1

(x) = lnSR,

z

2

(x) = lnSI, z

3

(x) = lnTL, and z

4

(x) = lnMRR. Again, for simplicity, we

will refer to the objective functions as z

1

, z

2

, z

3

and z

4

, respectively, and de�ne

the vector z = (�z

1

; z

2

; z

3

; z

4

). Note that minimizing z

1

= lnSR is equivalent to

maximizing �z

1

. Accordingly, the components of z [from Equation (1.7)] may be

expressed as:

�z

1

= �7:49 + 0:44x

1

� 1:16x

2

+ 0:61x

3

z

2

= �4:13 + 0:92x

1

� 0:16x

2

+ 0:43x

3

z

3

= 21:90 � 1:94x

1

� 0:30x

2

� 1:04x

3

z

4

= �11:331 + x

1

+ x

2

+ x

3

(5.15)

Maximize z, as de�ned by Equation (5.15), under the following constraints:

6:3969 � x

1

� 7:0901

0:6931 � x

2

� 2:8904

3:9120 � x

3

� 4:6052

(5.16)

151

d d

a

F

b od a

l

c b

c a

Figure 5.2: Sketch of the machine tool spindle used for Example 3.

�0:44x

1

+ 1:16x

2

� 0:61x

3

� �3:1725

�0:92x

1

+ 0:16x

2

� 0:43x

3

� �8:0420

1:94x

1

� 0:30x

2

� 1:04x

3

� 18:4988

(5.17)

Inequalities (5.16) and (5.17) correspond to inequalities (5.13) and (5.14),

respectively.

5.3 Example 3 : Design of a machine tool spin-

dle

Consider the problem of a preliminary design of a machine tool spindle as

presented in Figure 5.2 (taken from Eschenauer et al. [192]). The formulation of

the multiobjective optimization problem is to minimize f

1

(x) and f

2

(x) as de�ned

below [192].

152

Objectives:

Volume of the spindle

f

1

(x) =

�

4

h

a(d

2

a

� d

2

o

) + l(d

2

b

� d

2

o

)

i

(5.18)

Static displacement under the force F

f

2

(x) =

Fa

3

3EI

a

1 +

l

a

I

a

I

b

!

+

F

c

a

"

�

1 +

a

l

�

2

+

c

a

a

2

c

b

l

2

#

(5.19)

where I

a

and I

b

are the moments of inertia

I

a

= 0:049(d

4

a

� d

4

o

); I

b

= 0:049(d

4

b

� d

4

o

) (5.20)

c

a

and c

b

are bearing sti�nesses

c

a

= 35400j�

ra

j

1

9

d

10

9

a

; c

b

= 35400j�

rb

j

1

9

d

10

9

b

(5.21)

with �

ra

and �

rb

as preloads of the bearings.

Constraints:

a) side constraints (bounds)

g

1

(x) = l � l

g

� 0

g

2

(x) = l

k

� l � 0

g

3

(x) = d

a1

� d

a

� 0

(5.22)

g

4

(x) = d

a

� d

a2

� 0

g

5

(x) = d

b1

� d

b

� 0

g

6

(x) = d

b

� d

b2

� 0

g

7

(x) = d

om

� d

o

� 0

(5.23)

153

b) Designer's proportion requirements

g

8

(x) = p

1

d

o

� d

b

� 0

g

9

(x) = p

2

d

b

� d

a

� 0

(5.24)

c) Maximal radial runout of the spindle nose �

g

10

(x) = j�

a

+ (�

a

��

b

)

a

l

j �� � 0 (5.25)

where �

a

and �

b

are the radial runouts of the front and the end bearings.

For this example, it is assumed that d

a

must be chosen from the set

X

3

= f80; 85; 90; 95g, and d

b

from the set X

4

= f75; 80; 85; 90g. Additionally,

the following constant parameters are assumed:

d

om

=25.00 mm d

a1

=80.00 mm

d

a2

=95.00 mm d

b1

=75.00 mm

d

b2

=90.00 mm p

1

=1.25

p

2

=1.05 l

k

=150.00 mm

l

g

=200.00 mm a=80.00 mm

E = 210; 000:0 N/mm

2

F = 10; 000 N

�

a

= 0:00540000 mm �

b

= �0:00540000 mm

� = 0:01000000 mm �

ra

= �0:00100000 mm

�

rb

= �0:00100000 mm

The decision variables are l, d

o

, d

a

and d

b

.

154

6 4 2

360"

 360" 360"

 5 3 1

Figure 5.3: 10-bar plane truss used for Example No. 4.

h
0.1 in

0.1 in

 w

w

0.1 in

Figure 5.4: Cross-section used for Example No. 4.

155

5.4 Example 4 : Design of a 10-bar plane truss

Consider the 10-bar plane truss shown in Figure 5.3 [193]. The problem is

to �nd the cross-sectional area of each member of this truss, such that we minimize

its weight, the displacement of each free node, and the stress that each member

has to support. The weight of the truss is given by f(x).

f(x) =

10

X

j=1

�A

j

L

j

(5.26)

where x is the candidate solution, A

j

is the cross-sectional area of the

jth member, L

j

is the length of the jth member, and � is the weight density

of the material. The assumed data are: modulus of elasticity, E = 1:09 � 10

4

ksi, � = 0:10 lb/in

3

, and a load of 100 kips in the negative y-direction is applied

at nodes 2 and 4. The maximum allowable stress of each member is called �

a

,

and it is assumed to be �25 ksi. The maximum allowable displacement of each

node (horizontal and vertical) is represented by u

a

, and is assumed to be 2 inches.

The minimum allowable cross-section area is 0:10 in

2

for all members. The cross-

section of each element can be di�erent, and is de�ned by the I-section shown

in Figure 5.4, with the depth and width as design variables. The web thickness

and ange thickness are each kept �xed at 0:1 in. The problem has, therefore, 20

design variables.

5.5 Example 5 : Design of a 25-bar space truss

Consider the 25-bar space truss taken from Rajeev and Khrisnamoorthy

[194] shown in Figure 5.5. The problem is to �nd the cross-sectional area of each

member of this truss, such that we minimize its weight, the displacement of each

free node, and the stress that each member has to support.

156

y

z

 1 2

3
4

5

6

7

10

8

9

x

Figure 5.5: 25-bar space truss used for example No. 5.

Node Fx (lbs) Fy (lbs) Fz (lbs)

1 1000 -10000 -10000

2 0 -10000 -10000

3 500 0 0

6 600 0 0

Table 5.2: Loading conditions for the 25-bar space truss shown in Figure 5.5.

157

Group Number Members

1 1-2

2 1-4, 2-3, 1-5, 2-6

3 2-5, 2-4, 1-3, 1-6

4 3-6, 4-5

5 3-4, 5-6

6 3-10, 6-7, 4-9, 5-8

7 3-8, 4-7, 6-9, 5-10

8 3-7, 4-8, 5-9, 6-10

Table 5.3: Group membership for the 25-bar space truss shown in Figure 5.5.

Node X Y Z

1 -37.50 0.00 200.00

2 37.50 0.00 200.00

3 -37.50 37.50 100.00

4 37.50 37.50 100.00

5 37.50 -37.50 100.00

6 -37.50 -37.50 100.00

7 -100.00 100.00 0.00

8 100.00 100.00 0.00

9 100.00 -100.00 0.00

10 -100.00 -100.00 0.00

Table 5.4: Coordinates of the joints of the 25-bar space truss shown in Figure 5.5.

158

Loading conditions are given in Table 5.2, member groupings are given in

Table 5.3, and node coordinates are given in Table 5.4. The assumed data are:

modulus of elasticity, E = 1� 10

4

ksi, � = 0:10 lb/in

3

; �

a

= �40 ksi, u

a

= �0:35

in.

5.6 Example 6 : Design of a 200-bar plane truss

Consider the 200-bar plane truss taken fromBelegundu [193], shown in Fig-

ure 5.6 (taken from Belegundu [193]). The problem is to �nd the cross-sectional

area of each member of this truss, such that we minimize its weight, the displace-

ment of each free node, and the stress that each member has to support.

There are a total of three loading conditions: (1) 1 kip acting in positive

x-direction at node points 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and 71; (2) 10 kips

acting in negative y-direction at node points 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15,

16, 17, 18, 19, 20, 24, 71, 72, 73, 74, and 75; and (3) loading condition 1 and 2

acting together. The 200 elements of this truss linked to 29 groups. The grouping

information is shown in Table 5.5. The stress in each element is limited to a

value of 10 ksi for both tension and compression members. Young's modulus of

elasticity = 30,000 ksi, weight density = 0:283 � 10

�3

kips/in

3

.

5.7 Example 7 : Design of a robot arm

Consider the PUMA-560 shown in Figure 5.7 (taken from Armstrong et

al. [195]). Koski and Osyczka [196] present a multiobjective optimization model

of such arm based on its rigid-body dynamics. By using angular coordinates for

the PUMA-560 robot, it is possible to calculate the generalized torques at each

joint applying the following equation:

159

Group Member

Number Number

1 1,2,3,4

2 5,8,11,14,17

3 19,20,21,22,23,24

4 18,25,56,63,94,101,132,139,170,177

5 26,29,32,35,38

6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37

7 39,40,41,42

8 43,46,49,52,55

9 57,58,59,60,61,62

10 64,67,70,73,76

11 44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75

12 77,78,79,80

13 81,84,87,90,93

14 95,96,97,98,99,100

15 102,105,108,111,114

16 82,83,85,86,88,89,91,92,103,104,106,107,109,110,112,113

17 115,116,117,118

18 119,122,125,128,131

19 133,134,135,136,137,138

20 140,143,146,149,152

21 120,121,123,124,126,127,129,130,141,142,144,145,147,148,150,151

22 153,154,155,156

23 157,160,163,166,169

24 171,172,173,174,175,176

25 178,181,184,187,190

26 158,159,161,162,164,165,167,168,179,180,182,183,185,186,188,189

27 191,192,193,194

28 195,197,198,200

29 196,199

Table 5.5: Group membership for the 200-bar plane truss shown in Figure 5.6.

160

240"

1 2 3 4 5

6 7 8 9 10 11 12 13 14

15 16 17 18 19

20 21 22 23 24 25 26 27 28

29 30 31 32 33

34 35 36 37 38 39 40 41 42

43 44 45 46 47

48 49 50 51 52 53 54 55 56

57 58 59 60 61

62 63 64 6665 67 68 69 70

71 72 73 74 75

144"

1 32 4

5 6 7 8
9 10

11
12 13

14
15 16 17

18 19 20 21 22 23 24 25

26 27
28 29 30

31
32 33

34
35 36

37 38

39 40 41 42

43 46 4744 45 48
49

50 51
52

53 54
55

56 57 58 59 60 61 62 63

64
65

66
67 68

69
70 71

72
73 74 75 76

77 78 79 80

81
82 83

84
85 86

87
88 89 90

91 92
93

94 95 96 97 98 99 100 101

102
103

104
105 106

107 108
109

110 111 112
113 114

115 116 117 118

119
120 121

122

123 124

125

126 127

128

129 130
131

132 133 134 135 136 137 138 139

140
141

142 143
144

145 146
147

148 149 150 151 152

153 154 155 156

157
158 159

160

161 162
163

164 165
166

167 168
169

170 171 172 173 174 175 176 177

178 179 180 181 182
183 184 185

186
187 188

189 190

191 192 193 194

195
196 197

198 199
200 360"

76 77

x

x

2

1

Figure 5.6: 200-bar plane truss used for example No. 6.

161

Figure 5.7: PUMA-560 robot arm and schematic representation of coordinate

angles �

i

.

M

ti

=

d

dt

@L

@

_

�

i

!

�

@L

@�

i

(5.27)

where �

i

is the rotation at joint i and

_

�

i

is the corresponding angular

velocity. The term

L = T � V (5.28)

represents the Lagrangian function of the mechanical system. Here, T is

the total kinetic energy of the system and V is the total potential energy. The

application of Equation (5.27) to a fully articulated robot arm results in the

following nonlinear second-order system of di�erential equations

A

�

� +B

_

�

2

+ c�m = 0 (5.29)

Here, the vector of angular accelerations is given by

�

� = (

�

�

1

;

�

�

2

; : : : ;

�

�

N

)

T

(5.30)

162

and the vector of squared angular velocities by

_

�

2

= (

_

�

1

_

�

1

;

_

�

1

_

�

2

; : : : ;

_

�

1

_

�

N

j

_

�

2

_

�

1

;

_

�

2

_

�

2

; : : : ;

_

�

2

_

�

N

j : : :

_

�

k

_

�

1

;

_

�

k

_

�

2

; : : : ;

_

�

k

_

�

N

j : : :

_

�

N

_

�

1

;

_

�

N

_

�

2

; : : : ;

_

�

N

_

�

N

)

T

(5.31)

where N is the number of joints. The corresponding matrices are

A =

2

6

6

6

6

6

6

6

6

6

6

4

D

11

D

12

: : : D

1N

D

21

D

22

: : : D

2N

.

.

.

D

N1

D

N2

: : : D

NN

3

7

7

7

7

7

7

7

7

7

7

5

(5.32)

and

B =

2

6

6

6

6

6

6

6

6

6

6

4

D

1

11

D

1

12

: : : D

1

1N

j D

2

11

D

2

12

: : : D

2

1N

D

1

21

D

1

22

: : : D

1

2N

j D

2

21

D

2

22

: : : D

2

2N

.

.

. j

.

.

.

D

1

N1

D

1

N2

: : : D

1

NN

j D

2

N1

D

2

N2

: : : D

2

NN

j D

N

11

D

N

12

: : : D

N

1N

j D

N

21

D

N

22

: : : D

N

2N

j

.

.

.

j D

N

N1

D

N

N2

: : : D

N

NN

3

7

7

7

7

7

7

7

7

7

7

5

where it is assumed that each joint has one degree of freedom. The ele-

ments of matrix A are the inertia terms, and the elements of matrix B represent

the centripetal and Coriolis terms. All these terms depend on the position of the

163

x

y

m

m

m

L

x

e

e

1

1
1

1

1

2

2

2
3

L2

x2m5

θ2

θ1

m 4

θ1

Figure 5.8: Mechanical model of the robot arm used for optimization.

arm|i.e., D

ij

= D

ij

(�

i

)|. Vector c = (D

1

;D

2

; : : : ;D

N

)

T

includes the gravita-

tional terms D

i

and m is the vector of torques. Kinetic Equations (5.27),(5.28)

and (5.29) represent the rigid-body motion of the arm, and they are geometrically

nonlinear because of large rotations of �

i

.

The manipulator is an isostatic structure, and thus it is possible to get

explicit expressions for all forces and moments in the system. The friction in the

joints as well as the exibility of the arm are not included in the following design

model. For the application of optimization methods, a two-member robot arm,

which corresponds to the two arms of the PUMA-560 robot in a plane motion,

is considered. This arm is assumed to move in the xy-plane only (corresponding

angular coordinates �

i

are shown in Figure 5.8 ftaken from Koski and Osyczka.

[196]g). The masses of the members are m

1

and m

2

. They are located as point

masses at distances e

1

and e

2

from the joints. The external load is represented

164

by the point mass m

3

. In the model used by Koski and Osyczka, only the coun-

terweight masses m

4

and m

5

, as well as their distances from the joints x

1

and x

2

are treated as design variables, whereas all the other quantities are �xed.

The torques of this two-member robot are obtained from the Equation 5.27

and are expressed as follows:

M

t1

= D

11

�

�

1

+D

12

�

�

2

+D

1

11

�

�

2

1

+D

2

12

�

�

2

2

+ (D

1

12

+D

2

11

)

_

�

1

_

�

2

+D

1

M

t2

= D

21

�

�

1

+D

22

�

�

2

+D

1

21

�

�

2

1

+D

2

22

�

�

2

2

+ (D

1

22

+D

2

21

)

_

�

1

_

�

2

+D

2

(5.33)

The coe�cients for torque M

t1

are:

D

11

= m

1

e

2

1

+m

4

x

2

1

+m

2

e

2

2

+m

3

L

2

2

+m

5

x

2

2

+ (m

2

+m

3

+m

5

)L

2

1

+2m

2

e

2

L

1

cos �

2

+ 2m

3

L

1

L

2

cos �

2

� 2m

5

x

2

L

1

cos �

2

+ J

1

+ J

2

(5.34)

D

12

= m

2

e

2

2

+m

3

L

2

2

+m

5

x

2

2

+m

2

e

2

L

1

cos �

2

+m

3

L

1

L

2

cos �

2

�m

5

x

2

L

1

cos �

2

+ J

2

(5.35)

D

1

11

= �m

5

x

2

L

1

[sin(�

0

+ �

1

) + sin �

2

] +m

5

x

2

2

sin 2�

0

(5.36)

D

2

12

= �m

2

e

2

L

1

sin �

2

�m

3

L

1

L

2

sin �

2

�m

5

x

2

L

1

sin(�

0

+ �

1

)

+m

5

x

2

2

sin 2�

0

(5.37)

165

D

1

12

+D

2

11

= �2m

2

e

2

L

1

sin �

2

� 2m

3

L

1

L

2

sin �

2

�

2m

5

x

2

L

1

sin(�

0

+ �

1

) + 2m

5

x

2

2

sin 2�

0

(5.38)

D

1

= m

1

ge

1

cos �

1

�m

4

gx

1

cos �

1

+m

2

ge

2

cos �

0

+m

3

gL

2

cos �

0

�

m

5

gx

2

cos �

0

+ (m

2

+m

3

+m

5

)gL

1

cos �

1

(5.39)

Coe�cients for torque M

t2

are:

D

21

= m

2

(L

1

e

2

cos �

2

+ e

2

2

) +m

3

(L

1

L

2

cos �

2

+ L

2

2

)�

m

5

(L

1

x

2

cos �

2

� x

2

2

) + J

2

(5.40)

D

22

= m

2

e

2

2

+m

3

L

2

2

+m

5

x

2

2

+ J

2

(5.41)

D

1

21

= m

2

L

1

e

2

sin �

2

+m

3

L

1

L

2

sin �

2

+m

5

(2x

2

2

sin �

0

cos �

0

� L

1

x

2

sin �

2

) (5.42)

D

2

22

= 2m

5

x

2

2

sin �

0

cos �

0

(5.43)

166

R

F

m

J

x

R y

m4 g

m4 a 4y

m4 a 4x

M t1
1

1 a 1y

m1 a 1x

m1 g
x

Fy

M t 2

m3 g
3 xa3m

m3 a 3 y2m g

J 2

m

m

2

2

a

a 2 x

2 y

M t 2
Fx

Fy

m5 g

m5 a 5 x

m5 a 5 y

(

Θ1

..

Θ1 Θ)
2

....
+

a r m
f o r e a r m

Figure 5.9: Free-body diagrams of the robot arm.

D

1

22

+D

2

21

= 4m

5

x

2

2

sin �

0

cos �

0

(5.44)

D

2

= m

2

ge

2

cos �

0

+m

3

gL

2

cos �

0

�m

5

gx

2

cos �

0

(5.45)

where J

1

and J

2

are the rotary inertias of members 1 and 2, respectively.

Notation �

0

= �

1

+ �

2

is used for convenience.

In addition to the torques, the joint forces are considered in the optimiza-

tion process. In this application the most convenient way of solving them is to

use the force equilibrium conditions in both coordinate directions x and y. For

this purpose, the free-body diagrams of both members have been depicted in Fig-

ure 5.9 (taken from Koski and Osyczka. [196]). The positive directions in this

�gure are associated with the global xy-axes, and the positive rotation direction

is counterclockwise.

167

By computing the accelerations from the well-known kinematic equation

a

p

= a

Q

+ �� r

p=Q

+ ! � (! � r

p=Q

) (5.46)

analytic expressions for a

i

(1; : : : ; 5) can be obtained. Here, a

Q

is the accel-

eration vector of the comparison point, � the angular acceleration vector of the

member, r

p=Q

the position vector from point P to point Q along the member,

and ! the angular velocity of the member. For member 1, point Q is the support

point and � = (0; 0;

�

�

1

)

T

, ! = (0; 0;

_

�

1

)

T

. For member 2, point Q is at the joint

and � = (0; 0;

�

�

0

)

T

, ! = (0; 0;

_

�

0

)

T

where �

0

= �

1

+ �

2

. Vector r

p=Q

depends on the

5 selected calculation points. Here, the detailed expressions for the accelerations

are presented separately, and they also appear as part of the terms in Equation

(5.33). The corresponding inertia forces m

i

a

i

(i = 1; : : : ; 5) and the moments

J

j

�

j

(j = 1; 2) with the complete free-body diagrams are shown in Figure 5.9.

The accelerations of the points at which the point masses are located have

the following explicit expressions:

a

1

=

�

�

1

e

1

2

6

6

4

� sin �

1

cos �

1

3

7

7

5

�

_

�

2

1

e

1

2

6

6

4

cos �

1

sin �

1

3

7

7

5

(5.47)

a

2

=

�

�

1

L

1

2

6

6

4

� sin �

1

cos �

1

3

7

7

5

�

_

�

2

1

L

1

2

6

6

4

cos �

1

sin �

1

3

7

7

5

+ e

2

�

�

0

2

6

6

4

� sin �

0

cos �

0

3

7

7

5

+ (5.48)

e

2

_

�

2

0

2

6

6

4

� cos �

0

� sin �

0

3

7

7

5

(5.49)

168

a

3

=

�

�

1

L

1

2

6

6

4

� sin �

1

cos �

1

3

7

7

5

�

_

�

2

1

L

1

2

6

6

4

cos �

1

sin �

1

3

7

7

5

+ L

2

�

�

0

2

6

6

4

� sin �

0

cos �

0

3

7

7

5

+ (5.50)

L

2

_

�

2

0

2

6

6

4

� cos �

0

� sin �

0

3

7

7

5

(5.51)

a

4

=

�

�

1

x

1

2

6

6

4

sin �

1

� cos �

1

3

7

7

5

�

_

�

2

1

x

1

2

6

6

4

cos �

1

sin �

1

3

7

7

5

(5.52)

a

5

=

�

�

1

L

1

2

6

6

4

� sin �

1

cos �

1

3

7

7

5

�

_

�

2

1

L

1

2

6

6

4

cos �

1

sin �

1

3

7

7

5

+ x

2

�

�

0

2

6

6

4

sin �

0

� cos �

0

3

7

7

5

+ (5.53)

x

2

_

�

2

0

2

6

6

4

cos �

0

� sin �

0

3

7

7

5

(5.54)

Here again the notations �

0

= �

1

+ �

2

,

_

�

0

=

_

�

1

+

_

�

2

and

�

�

0

=

�

�

1

+

�

�

2

have been used. By applying the force equilibrium conditions in the coordinate

directions, the following joint reactions (see Figure 5.9) to member 2 are obtained:

R

2x

= m

2

a

2x

+m

3

a

3x

+m

5

a

5x

R

2y

= m

2

a

2y

+m

3

a

3y

+m

5

a

5y

+ (m

2

+m

3

+m

5

)g

(5.55)

The torqueM

t2

at the joint can be calculated from the moment equilibrium

condition.

169

By applying the same routine to member 1, it is possible to derive expres-

sions for the support reactions:

R

1x

= m

1

a

1x

+m

2

a

2x

+m

3

a

3x

+m

4

a

4x

+m

5

a

5x

R

1y

= m

1

a

1y

+m

2

a

2y

+m

3

a

3y

+m

4

a

4y

+m

5

a

5y

+

(m

1

+m

2

+m

3

+m

4

+m

5

)g

(5.56)

The torque M

t1

is obtained again from the moment equilibrium condition.

Corresponding to the Lagrangian approach, the torques M

t1

and M

t2

must be the

same as those computed from Equation (5.33).

The resulting support reactions are:

R

1

=

q

R

2

1x

+R

2

1y

; R

2

=

q

R

2

2x

+R

2

2y

(5.57)

The torques M

ti

and the forces R

i

are chosen as criteria in the optimiza-

tion model. It is important to present the detailed expressions for M

ti

and R

i

because the choice of the design variables as well as the general complexity of the

optimization problem are associated with these formulas.

Given the previous information, now we can formulate the optimization

problem. The objective is to �nd such masses m

4

and m

5

for the counterweights

and such joint distances x

1

and x

2

which will minimize the chosen four design

criteria. Consequently, the design variable vector is:

�x = (x

1

; x

2

; x

3

; x

4

)

T

(5.58)

where the �rst two are the distances shown in Figure 5.8, x

3

= m

4

and

x

4

= m

5

.

170

θ

θ θ

θ

θ

θ

θ

θ

t

t

t

1 max

2 max

2 max

1 2

1

1 min

2 min

t

1 max

θ

..

..

.

..

..

.

.

..

rad
s

rad
s2

θ2

..

20

4

-20

10

-10

2

.

b)a)

Figure 5.10: Angular velocities and corresponding angular accelerations of the

robot arm used for Example No. 8.

The upper and lower limits for all these four design variables can be given

in the form

x

l

i

� x

i

� x

u

i

; i = 1; : : : ; 4 (5.59)

The torques m

t1

and M

t2

at the arm joints are chosen as the �rst two

criteria of the vector objective function. Their minimization is important because

it is then possible to use smaller motors, and the energy consumption is lower

if the variation ranges of the torques are small [196]. In the explicit expressions

of Equation (5.33), terms m

4

x

1

, m

4

x

2

1

, m

5

x

2

, and m

5

x

2

2

appear, and thus it is

reasonable to choose the design variables in the way presented.

171

The torques do not depend on the design variables alone, but also on the

position of the robot arm (�

1

; �

2

). On the angular velocities (

_

�

1

;

_

�

2

) and on the

angular accelerations (

�

�

1

;

�

�

2

). Usually, the working space of the robot arm is

restricted, and thus constraints are needed of the following form:

�

l

i

� �

i

� �

u

i

; i = 1; 2 (5.60)

Here, �

l

i

and �

u

i

are the lower and the upper limits of the angles �

i

. In each

position of the arm, the angular velocities and accelerations may be di�erent. In

order to optimize the performance of the robot, the torques should be as small as

possible at all working positions and at all existing angular velocity acceleration

combinations. Thus, the �rst two criteria are chosen as follows:

f

1

(�x) =

max

�

1

max

�

2

max

_

�

i

;

�

�

i

M

t1

f

2

(�x) =

max

�

1

max

�

2

max

_

�

i

;

�

�

i

M

t2

(5.61)

where notation

_

�

i

,

�

�

i

is associated with the chosen angular velocity pro�le.

This is shown in Figure 5.10 (taken from Koski and Osyczka. [196]) where a trape-

zoidal pro�le, typical of robot applications, has been depicted for both members.

The corresponding angular accelerations are also presented in this �gure.

The construction of joints, especially with the choice of bearings, depends

largely on the reaction forces at the joints. Thus, it seems reasonable to choose

the maximum values of the joint forces as two additional criteria.

172

By using the �xed trapezoidal velocity pro�les (see Figure 5.10) and every

feasible position of the arm, these criteria can be expressed in the form

f

3

(�x) =

max

�

1

max

�

2

max

_

�

i

;

�

�

i

R

1

f

4

(�x) =

max

�

1

max

�

2

max

_

�

i

;

�

�

i

R

2

(5.62)

The geometrical interpretation of all the four criteria is the following [196]:

a small movement at every position (�

1

; �

2

) of the arms is performed by using the

�xed trapezoidal pro�les (

_

�

1

;

_

�

2

;

�

�

1

;

�

�

2

shown in Figure 5.10), and the maximum

values of the torques and the joint forces during the movement are selected.

By using the design variables x

i

given in Equation (5.29), the criteria pre-

sented in Equations (5.61) and (5.62), the side constraints of (5.59), and the state

constraints of (5.60), it is now possible to formulate the multicriteria optimization

problem [196]:

min (f

1

(�x); f

2

(�x); f

3

(�x); f

4

(�x))

T

(5.63)

subject to

�

l

i

� �

i

� �

u

i

i = 1; 2

x

l

i

� x

i

� x

u

i

i = 1; 2; 3; 4

(5.64)

The numerical design data for the design problem is given below [196].

These values are close to the arms of the PUMA-560 robot shown in Figure 5.7

[195].

173

Input Output

Figure 5.11: A gate in a two-dimensional template, gets its second input from

either one of two gates in the previous column.

m

1

= 17 kg; m

2

= 6 kg; m

3

= 2 kg;

L

1

= L

2

= 0:43 m; e

1

= 0:07 m; e

2

= 0:14 m;

�

l

1

= �40

�

; �

u

1

= 220

�

; �

l

2

= �140

�

; �

u

2

= 140

�

;

_

�

1 max

= 2

rad

s

;

_

�

2 max

= 4

rad

s

;

�

�

1 max

= 10

rad

s

2

;

�

�

2 max

= 20

rad

s

2

;

x

l

1

= x

l

2

= 0; x

u

1

= x

u

2

= 0:2 m; x

l

3

= x

l

4

= 0;

x

u

3

= 35 kg; x

u

4

= 15 kg; J

1

= 0:2619 kg �m

2

; J

2

= 0:0924 kg �m

2

(5.65)

5.8 Example 8 : Design of a combinatorial cir-

cuit

Consider the instantiation of the combinatorial circuit design problem

known as the adder problem [197]. We want to �nd the combination of �ve

174

possible types of gates (AND, OR, NOT, XOR and WIRE) so that our circuit

performs the two-bit addition of its inputs. The objective is to minimize the use of

gates other that WIRE, while keeping a functional design. The circuit can be seen

as a two-dimensional array of gates S, where a gate S

i;j

gets its �rst input from

S

i;j�1

and its second input from either S

i+1;j�1

or S

i�1;j�1

as shown in Figure 5.11

(taken from Louis and Rawlins [197]).

5.9 Summary and additional comments

In this last section I will summarize the characteristics of the eight problems

introduced in this chapter, adding some of the reasons why they were chosen to

test MOSES.

1. Design of an I-beam: This problem has 4 design variables, 1 non-linear con-

straint and 2 objective functions (both to be minimized). Due to the sim-

plicity of the analysis that this problem requires, it is a good choice to tune

up MOSES. Also, since it has only 2 objectives and its variables have rela-

tively small ranges, it is possible to graph both the feasible region and the

Pareto front in a reasonable amount of time.

2. Machining recommendations: This problem has 3 design variables, 3 linear

constraints and 4 objective functions (all to be maximized). No graph can

be produced of the feasible region or the Pareto front because of the high

number of objectives. The main importance of this problem is that the ideal

vector is achievable.

3. Design of a machine tool spindle: This problem has 4 design variables, 9

linear and 1 non-linear constraint and 2 objective functions (both to be

minimized). The feasible region and the Pareto front can be graphically

175

displayed in a reasonable amount of time. One of the interesting issues when

dealing with this problem is that 2 of its design variables are discrete, which

makes it hard (or even impossible to deal with) for certain mathematical

programming techniques.

4. Design of a 10-bar plane truss: This problem has 20 design variables, 22

non-linear constraints and 3 objective functions (all to be minimized). The

analysis involved in this problem is quite complex and takes a considerable

amount of CPU time. Also, since the range of each variable is quite large,

the feasible region can not be displayed graphically in a reasonable amount

of time. Such a large search space, together with the fact that the objective

functions can not be provided explicitly and that they are highly conicting

(making it di�cult to produce good trade-o�s), make this an interesting

problem.

5. Design of a 25-bar space truss: This problem has 8 design variables, 55 non-

linear constraints and 3 objective functions (all to be minimized). The objec-

tive functions can not be provided explicitly, and they are highly conicting

among each other. The range of each design variable is quite large, and

therefore the feasible region can not be displayed in a reasonable amount of

time. This problem has some similarities with the previous one, although

its analysis is di�erent. One of its particular remarks is that it has less

design variables, but a higher constrained search space. This should favor

mathematical programming techniques.

6. Design of a 200-bar plane truss: This problem has 29 design variables, 200

non-linear constraints and 3 objective functions (all to be minimized). The

176

objective functions can not be provided explicitly, and they are highly con-

icting among each other. The range of each design variable is quite large,

and therefore the feasible region can not be displayed in a reasonable amount

of time. This problem has the highest number of design variables of all,

which will make it extremely di�cult for mathematical programming tech-

niques and the GA using binary representation. Due to its size, much CPU

time has to be spent in the analysis stage of this problem.

7. Design of a robot arm: This problem has 4 design variables, no constraints

and 4 objective functions (all to be minimized). The analysis stage of this

problem requires extremely high amounts of CPU time. The values of the

objectives are highly sensitive to the values of the design variables, which

makes this a di�cult problem for any GA-based technique. Also, the fact

that we are dealing with an unconstrained search space, mathematical pro-

gramming techniques will have some di�culties to �nd a good trade-o�.

8. Design of a combinatorial circuit: This problem has 16 design variables, 48

constraints and 2 objective functions (both to be maximized). This problem

involves a broader concept of design that the one encompassed by previous

examples. Here, the emphasis is on generating functional circuits minimized

with respect to the use of certain gates. Consequently, less numericalmanip-

ulations are involved, but a more di�cult search space is faced. Because of

the way in which this problem is stated, only GA-based techniques can be

used to solve it.

177

Chapter 6

Analysis of Results

In this chapter, I will present the results obtained using each one of the

methods implemented in MOSES (see Chapter 4) to solve the problems presented

in Chapter 5. I will start by analyzing the complexity of each one of the multi-

objective optimization algorithms employed. Also, interesting issues such as the

closeness of the best solution generated to the ideal vector and the �nal distribu-

tion of Pareto points will be analyzed. Additionally, I will present some details

on the computation of the ideal vector using both mathematical programming

techniques and the genetic algorithm. In this respect, there are some surpris-

ing results, since the GA was able to �nd better results than the mathematical

programming techniques used, applying the procedure described in Chapter 4 to

adjust its parameters, and using oating point representation. These results are

consistent and appear in every single problem. These results suggest that the

GA may be a practical numerical optimization tool. Finally, I will critique each

of these algorithms, describing their advantages and disadvantages based on the

experiments run on the examples presented in Chapter 5.

178

6.1 Measuring the Complexity of each Algorithm

I will start by analyzing the complexity of the Simple Genetic Algorithm

(SGA) presented by Goldberg in his book [145]. The basic outline of the algorithm

is the following:

During g generations do:

for m do:

decode();

compute fitness();

select();

crossover();

mutation();

end loop for m

statistics();

end loop for g

Here, g refers to the number of generations and m refers to the population

size.

The time taken for decoding depends on the representation scheme used.

When binary representation is used, it requires 2 � l + p operations, where l is

the length of the string and p is the number of variables. The reason is that

transforming a binary string into a decimal number requires l raised to the second

power plus l additions. Furthermore, we need to perform one division per each

variable in order to adjust the number to the precision desired. So, as the length

of the chromosome increases, the decoding takes more time. When a oating

179

point representation is used, we need l � 1 additions and l divisions. Since the

strings are normally shorter under this representation scheme, and it is faster to

divide than to raise to the second power, this encoding is more e�cient, mainly

when there are many design variables involved.

To compute a single �tness value is really the main issue when measuring

time complexity of a GA, because many times in multiobjective optimization the

functions involved are very complex and a considerable amount of time could be

needed just to evaluate once the �tness of a chromosome, as we will see in some

of the examples under study in this work.

The time complexity of selection has been studied by Goldberg and Deb

[150]. If we use roulette wheel selection, we simulate the spin of a weighted

roulette wheel. Therefore, if the search for such location is performed via linear

from the beginning of the list, each selection requires O(m) steps, where m refers

to the population size, because on average half the list will be searched. Now,

since in each generation m spins are required to �ll the population, this selection

strategy requires O(m

2

) steps. Using binary search, we can improve the e�ciency

of the algorithm to O(m log m), if we can a�ord the extra memory required,

because binary search is O(log m).

If we use stochastic remainder selection, the expected number of copies

of a string is calculated as c

i

=

f

i

f

, and the integer portions of the count are

assigned deterministically. The remainders are then used probabilistically to �ll

the population. If we �ll without replacement, each remainder is used to bias

the ip of a coin that determines whether the structure receives another copy or

not, and then the algorithm is O(m), because only one pass is required. If we use

replacement, the remainders are used to size the slots of a roulette wheel selection

process, so the algorithm takes in this case O(m

2

) steps.

180

The so-called stochastic remainder selection is performed by sizing the

slots of a weighted roulette wheel equally spaced markers along the outside of the

wheel, and spinning the wheel once; the number of copies an individual receives

is then calculated by counting the number of markers that fall in its slot. This

algorithm is O(m) because only one pass is needed through the list after the sum

of the function values is calculated.

Ranking selection is a two-step process in which the chromosomes are

�rst sorted and then their assignment values are used in some form of propor-

tionate selection. Since sorting can be done in O(m log m) using quicksort, and

proportionate selection varies from O(m) to O(m

2

), this technique has a complex-

ity between O(m log m) and O(m

2

) depending upon the proportionate selection

scheme used.

Tournament selection requires the random selection of a constant num-

ber of individuals from the population. Since the comparison among those indi-

viduals can be done in constant time and m competitions are required to �ll a

generation, the algorithm is O(m).

Crossover and mutation only require l manipulations of the string, but

since those are done in memory, there is no signi�cant time to count for.

Finally, to get the population statistics, we need m comparisons, since we

have to determine the best overall individual.

All the previous analysis shows that the most signi�cant operations during

the execution of a GA are selection, decoding and �tness evaluation. Since the GA

runs a nested loop, the basic process requires g �m �tness evaluations assuming

everything inside the loop is done in constant time. If we use a selection strategy

that takes linear time, then the GA will take g � m

2

plus the time needed for

decoding. Considering a conservative population policy in which the number of

181

individuals is at least twice the length of the string, the time needed for decoding is

about O(n

2

), too. Thus, in general, we may say that the GA is O(m

2

). Observe

that g may vary a lot, so in certain cases the algorithm could become O(m

3

).

Nevertheless, if g is greater than m, the value of m

2

will, in general, be much

larger than g, so the performance of the algorithm will still be dominated by

the O(m

2

) complexity. This, of course, could get slower if the �tness function

requires too much time. For example, if a matrix inversion is required at each

step of the GA, we have to consider that an O(p

3

) algorithm (where p is the size

of the matrix) is going to be executed inside a nested loop, and that is going to

take longer than the search itself. In all the following GA-based methods, binary

tournament selection was used unless otherwise is speci�ed.

6.1.1 Monte Carlo Methods

In Chapter 4 I described two exploratory techniques that use Monte Carlo

methods to �nd the min-max optimum solution. The �rst explores the variable

space twice. Therefore we can analyze its complexity by decomposing the algo-

rithm in two parts:

1. Generate ideal vector: At this stage,m points are randomly generated (where

m is de�ned by the user and is equivalent to the population size used with

the GA). For each solution, we have to check feasibility and evaluate each

one of the objective functions. This means that at least m� k evaluations

are needed (where k is the number of objective functions of the problem).

2. Compute the min-max optimum:We have to generate againm random solu-

tions and check their feasibility. This also requiresm�k function evaluations

in the best case (if a solution is not feasible we have to generate it and check

it again). Then, we have to compute the deviations of each one of these

182

solutions with respect to the ideal vector. This requires m � k operations

because we have to do that for each objective. Finally, the best solution

has to be found (the solution with the minimum deviation from the ideal

vector). This last process requires m comparisons.

From the previous analysis, we can see that we need to perform at least

3 �m� k +m operations. Since k is normally very small compared to m, then

the complexity of this algorithm can be considered linear.

The second Monte Carlo method used by MOSES is faster, since it only

requires looking into the solution space once. In this case we still require m � k

operations to generate the ideal vector, but after that, we check if the solution

generated is in the Pareto set. This requires another m comparisons. Finally,

we apply the min-max algorithm over the Pareto optimum solution found to

determine the min-max optimum. As indicated before, we require r�k operations

to compute the deviations of each solution with respect to the ideal vector, and

then r comparisons to �nd the min-max optimum (r is the number of Pareto

optimum solutions). Since r will always be less than m, we require less time

for this process than when the previous method is used. This second method is

also linear, but requiring about half of the operations of the previous method.

However, as indicated in Chapter 4, its main drawback is that it requires more

memory than the previous method, since it has to store the entire Pareto set.

6.1.2 Osyczka's Multiobjective Optimization System

This is a fairly complicated piece of software and it is not easy to analyze it.

Basically, it consists of two stages. The �rst stage encompasses the computation

of the ideal vector using single optimization techniques applied to each vector (the

user can also provide the target values). In my experiments I only used the exible

183

tolerance method to compute the ideal vector, and therefore I will provide more

details of how it works to have a better idea of how to measure its complexity.

The complete details and proofs of its convergence may be found in Himmelblau

[185].

The basic idea of the Flexible Tolerance method is to improve the value

of the objective function by using information provided by feasible points, as well

as certain nonfeasible points termed near-feasible points. The near-feasibility

limits are gradually made more restrictive as the search proceeds toward the

solution of the problem, until in the limit only feasible solutions are accepted. My

implementation uses the exible polyhedron search of Nelder and Mead [185], but

any other unconstrained minimization algorithm could replace it. Let us assume

that �x

(0)

is our initial guess, that t = 0:05�

(k)

is the size of the initial polyhedron,

m is the number of equality constraints, n is the number of variables, r = n�m is

the number of degrees of freedom, k = 0; 1; : : : is an index referring to the number

of completed stages of search, � is the tolerance criterion, � = 1, � = 0:5, = 2,

� = 1� 10

�5

, s is the current stage and:

T (�x) =

2

4

m

X

i=1

h

2

i

(�x) +

p

X

i=m+1

U

i

g

2

i

(�x)

3

5

1

2

(6.1)

where U

i

is the Heaviside operator [185] such that U

i

= 1 for g

i

(�x) � 0

and U

i

= 1 for g

i

(�x) < 0. Also, h

i

(�x) = 0 for i = 1; : : : ;m and g

i

(�x) � 0 for

i = m + 1; : : : ; p are respectively the equality and inequality constraints of the

problem.

184

Additionally,

�

(0)

= 2(m+ 1)t (6.2)

and

�

(k)

= min

(

�

(k�1)

;

m+ 1

r + 1

r+1

X

i=1

�x

(k)

i

� �x

(k)

r+2

)

(6.3)

The procedure for obtaining the vertices �x

(0)

i

, for i = 1; : : : ; r+1, required

to start the search is as follows. Compute �

(0)

and compute the value of T (�x)

at the initial vector �x

(0)

. As could be seen before, T (�x) is de�ned as the positive

square root of the sum of the squared values of all the violated equality and=or

inequality constraints of the problem. If T (�x

(0)

) � 0, then �x

(0)

is a feasible or

near-feasible point and the initial vertices, �x

(0)

i

, for i = 1; : : : ; r + 1, are obtained

using the unconstrained method of Nelder and Mead [185]. If T (�x

(0)

) > �

(0)

, T (�x)

is minimized until a feasible or near-feasible �x vector becomes the base point for

building the initial polyhedron. The complete algorithm is the following:

1. Is T (�x

(k)

i

) � �

(k)

? If yes, then go to step 2, otherwise go to step 3.

2. Determine x

(k)

r+2

=

1

r

h�

P

r+1

i=1

�x

(k)

i

�

� �x

(k)

h

i

. Go to step 4.

3. Minimize T (�x

(k)

) so that T (�x

s

i

) � �

(k)

. Let �x

(k)

i

= �x

(s)

i

. Compute f(�x

(k)

i

).

Go to step 1.

4. Is �

(k)

� �? If yes, then STOP, otherwise determine �x

(k)

r+3

= �x

(k)

r+2

+�(�x

(k)

r+2

�

�x

(k)

h

).

5. Is T (�x

(k)

r+3

) � �

(k)

? If yes, then go to step 7, otherwise go to step 6.

6. Minimize T (�x

(k)

r+3

) so that T (�x

(s)

i

) � �

(k)

. Let �x

(k)

r+3

= �x

(s)

i

. Compute f(�x

(k)

r+3

).

185

7. Is f(�x

(k)

r+3

) < f(�x

(k)

h

)? If yes, then go to step 19, otherwise go to step 8.

8. Is f(�x

(k)

r+3

) < f(�x

(s)

s

)? If yes, then go to step 9, otherwise go to step 10.

9. Determine �x

h

= �x

(k)

r+3

, f(�x

(k)

h

) = f(�x

(k)

r+3

). Make k = k + 1 and go to step 1.

10. Is f(�x

(k)

r+3

) < f(�x

(k)

h

)? If yes, then go to step 11, otherwise go to step 12.

11. Determine �x

(k)

h

= �x

(k)

r+3

.

12. Determine �x

(k)

r+5

= �x

(k)

r+2

+ �(�x

(k)

h

� �x

(k)

r+2

).

13. Is T (�x

(k)

r+5

) � �

(k)

? If yes, then go to step 15, otherwise go to step 14.

14. Minimize T (�x

(k)

r+5

) so that T (�x

(s)

i

) � �

(k)

. Let �x

(k)

r+5

= �x

(s)

i

. Compute f(�x

(k)

r+5

).

15. Is f(�x

(k)

r+5

) < f(�x

(k)

h

)? If yes, then go to step 16, otherwise go to step 17.

16. Determine �x

(k)

h

= �x

(k)

r+5

, f(�x

(k)

h

) = f(�x

(k)

r+5

), and k = k + 1. Go to step 1.

17. Determine �x

(k)

i

= �x

(k)

+ 0:5(�x

(k)

i

� �x

(k)

l

), for i = 1; : : : ; r + 1.

18. Determine new values for f(�x

(k)

i

), for i = 1; : : : ; r+1, and k = k+1. Go to

step 1.

19. Determine �x

(k)

r+4

= �x

(k)

r+3

+ (�x

(k)

r+3

� �x

(k)

r+2

).

20. Is T (�x

(k)

r+4

) � �

(k)

? If yes, then go to step 22, otherwise go to step 21.

21. Minimize T (�x

(k)

r+4

) so that T (�x

(s)

i

) � �

(k)

. Let �x

(k)

r+4

= x

(s)

i

. Compute f(�x

(k)

r+4

).

22. Is f(�x

(k)

r+4

) � f(�x

(k)

l

)? If yes, then go to step 24, otherwise go to step 23.

23. Determine �x

(k)

h

= �x

(k)

r+3

, f(�x

(k)

h

) = f(�x

(k)

r+3

), and k = k + 1. Go to step 1.

24. Determine �x

(k)

h

= �x

(k)

r+4

, f(�x

(k)

h

) = f(�x

(k)

r+4

), and k = k + 1. Go to step 1.

186

As it has been reported by Himmelblau [185], the previous algorithm

presents a great variation in terms of performance, and it is very sensitive to

the guess provided by the user and to the values of �, � and . A good dis-

cussion of such issues is shown in Himmelblau's book [185], and the algorithm

could require until 50 % more time to achieve convergence if such parameters are

not properly set. From my own experience, I can tell that keeping these last 3

parameters �xed (as suggested by Himmelblau) and using a good guessing point,

the technique is very fast, but it still requires about 200 % or 300 % more time

than any Monte Carlo method. If a bad guessing point is provided this time could

be increased until 100 % more (i.e., 400 % slower than any Monte Carlo method).

The second part of Osyczka's system consists of �nding the min-max opti-

mum. As I explained before, this can be done in linear time. Therefore, the

search of the ideal vector turns out to be the most time consuming part of the

program. This extra time complexity is justi�ed by the fact that we are using

an adaptive search technique that will be able to move the search polyhedron

to the feasible zone even when an infeasible starting point is provided, and it is

expected to provide better results than a random search technique. Nevertheless,

we will see from the results obtained with the examples included in Chapter 5

that Osyczka's system is a very useful tool only when we can provide very good

guesses. In practice, it is therefore advisable to use a random search technique to

get an initial solution and then to apply any of the methods of Osyczka's system

to �ne tune the results.

6.1.3 Lexicographic Method and Linear Combination

The Lexicographic method and a simple linear combination of objectives

both use the GA in its simplest form, so their complexity remains the same as

187

indicated before, depending on the selection strategy used. In my experiments

I always used binary tournament selection for both methods, which is the most

e�cient selection strategy available. Therefore, these two techniques are quite

fast and are the lower bound in terms of time of all the GA-based techniques.

6.1.4 VEGA

Scha�er's VEGA requires the same complexity than the SGA, because

it only subdivides the population into k subgroups, where k is the number of

objectives, and applies the corresponding objective function to each one of them.

In my implementation, I run a loop from 1 to k, and inside that loop I generate p

individuals, where p = popsize=k. This is equivalent to running a single loop from

1 to popsize. The only additional modi�cation in the code is the addition of a

switch statement to decide what objective function to use at each �tness function

call. This requires a ag to indicate which objective has to be evaluated at each

time, but does not increase the time complexity of the algorithm in a signi�cant

way (only an extra comparison is required at each �tness function invocation).

6.1.5 NSGA

This is the slowest algorithm included in MOSES, mainly because of the

way in which it was implemented. The SGA had to be modi�ed in the procedure

generation() as to include the algorithm described by Srinivas [181]. Therefore,

we have to add to the time complexity of the SGA, the time required by this

additional code. Such extra code consists of four parts that can be analyzed

separately:

1. Compute vector values for each chromosome: Since we have to manipulate

the objective function values of each chromosome, for the sake of e�ciency, I

188

decided to sacri�ce some memory, and store such values at the beginning of

the algorithm. This requires to compute them only once, instead of having

to do it each time that it is required. This process requires to evaluate k

objective function values m times (where m is the population size).

2. Check dominance: This requires three nested loops. The �rst consists of

the number of fronts (same as k in my implementation); the second and

third consist of the population size. Therefore, we need to perform k �m

2

operations.

3. Compute �tness distances: To do sharing, we need to know �rst how far are

the solutions one from another. This requires a doubly nested loop from 1 to

m, since we need to compute our distance metrics on each individual against

all the others in the population. Thus, this process requires m

2

operations.

4. Do sharing: The last stage of the process consists of doing sharing by count-

ing how many individuals are in each nest, and decreasing the �tness of each

individual on that proportion. This process also requires m

2

operations.

From the previous analysis, we can see that the second process (checking

for dominance) is the one that requires more operations. However, that is not

really the slowest process within this algorithm, because normally it is more time

consuming to evaluate the objective functions. Nevertheless, since such function

evaluation is already included in the analysis of the SGA, we should count only for

the extra time required by steps 2�4. This implies that this algorithm isO(c�m

2

),

where c = k + 2. The value of k is normally very small compared to the value of

m, so the time complexity is really dominated by the m

2

operations. Finally, I

should also mention that this method uses stochastic remainder selection, which

189

also increases the time complexity of the algorithm. This contributes to make it

the slowest GA-based algorithm used in my experiments.

6.1.6 MOGA

This implementation is faster than Srinivas' NSGA, but also has some time

consuming processes. First, the algorithm requires computing the vector values

(i.e., the function values for all objectives) for each chromosome. This requires

k �m function evaluations. Then, we need to check for dominance. The loop in

this case is di�erent from what Srinivas uses, but the time complexity remains

the same, since we still require k � m

2

operations to assign ranks. The next

stage of the algorithm consists of computing the area for �

share

. This requires

k

2

+ k �m operations. Finally, we have to compute distances and do sharing, as

in the previous algorithm. We need m

2

operations for each of these two processes.

Fonseca's MOGA requires k � m

2

+ k

2

+ 2m

2

+ k � m operations. This

algorithm can be considered O(c�m

2

+ p), where c = k+ 2 and p = k �m+ k

2

.

This seems to be a slower algorithm than NSGA, but that is not necessarily

true, because the use of binary tournament selection in this case requires a linear

algorithm for that stage of the algorithm, instead of a quadratic algorithm as in

NSGA. That accounts for the extra (almost linear) time complexity required to

compute �

share

, which by the way, eliminates the need of extra experimentation

to try to �nd its optimum value. That is the reason why this method turns out

to be faster than NSGA in practice.

190

6.1.7 NPGA

The implementation of this algorithm also requires computing the vector

values for each chromosome, which implies k � m function evaluations. Addi-

tionally, this implementation requires a modi�cation of the function select() so

that a local dominance procedure is run. The main loop required to check for

local dominance goes from 2 to t

dom

+2. Since the value of t

dom

is normally small

(assumed 10 in my experiments), then we need to execute this loop for only a

few times. The worst behavior of the algorithm is exhibited when we have to do

sharing, in which case we need to execute 2 � k � m + 2 � m operations. All

these operations have to be done for each individual in the population; thus, the

complexity of the algorithm is O(c � m + p) in the worst case, where c = t

dom

and p = (k + 2) �m

2

. When sharing is not necessary (i.e., when one individual

totally dominates or is totally dominated) only c�m operations are required. This

analysis shows why this method is much faster than the two previous techniques

described. However, some additional issues such as �nding the proper value of

t

dom

and �

share

may make it necessary to run this algorithm more than once. It

should be nevertheless mentioned that in my experiments, I found the behavior of

this algorithm to be very robust when t

dom

= 10 and �

share

= 0:1 were used, but

we will also see how such robustness is seriously a�ected when these parameters

are changed.

6.1.8 Hajela's Method

This method is very e�cient, since the only modi�cation that the SGA

implementation requires is the addition of a process to compute the metric dis-

tances for the niches, and another to do sharing. Each one of these processes

requiresO(m

2

) operations, as indicated before, but no further processing is required,

191

since only an additional decision is required to implement mating restrictions.

This method is, therefore, very e�cient and easy to implement, although it has the

drawback of requiring longer strings to place the weights (a factor that increases

the decoding time within the GA itself) and that we require to know the ideal

vector. This last requirement may be satis�ed if we have certain knowledge of

the problem and it is possible to estimate the goals that we want to achieve. An

exploratory method such as the Monte Carlo strategies described in Chapter 4

can be used for such purpose.

6.1.9 My Weighted Min-Max Method

It is very easy to compute the complexity of this method, since all it does

is to spawn as many processes as weights are provided by the user. Each one

of these processes is just a simple GA like the one described above, so we only

have to multiply its processing time by W (where W is, of course, the number

of weights given by the user). As the examples that follow show, the number of

weights does not have to be excessive. In all the following examples, no more than

20 weights were used to produce excellent results. Moreover, since each process is

completely independent from the other (they only share a �le that contains the

pareto solutions), then the method can be easily implemented in parallel or in a

distributed system to improve its performance, becoming therefore as fast as a

conventional SGA. The only change in the code is done in the �tness function, that

requires the computation of the deviations of each objective with respect to the

ideal vector. It is important to point out that if such an ideal vector is not known

beforehand, we can provide any reasonable target values that we want to achieve,

and the technique will still work very well. If the proper resources are available

(i.e., several workstations in a distributed system, or a parallel architecture), this

192

method requires the shortest amount of time, together with the Lexicographic

method and the linear combination of objectives. However, if such facilities are

not at hand, it could become one of the slowest, because we would need to execute

sequentially the same program several times (normally between 10 and 20).

6.1.10 My Min-Max Strategy with Sharing

My implementation modi�es the function select() and the procedure

statistics(). The changes in select() are somewhat similar to those per-

formed within NPGA, but now instead of using a �xed t

dom

to determine local

dominance, I use a min-max strategy to check for local dominance over the entire

population. My algorithm requires to loop from 1 to k to compute the deviations

of the min-max method for each chromosome, and when there are ties, sharing is

performed over the same basis as in NPGA. Then, we require k�m+2�(k+2)�m

2

operations when sharing is necessary. Otherwise, the algorithm will be O(k�m).

This is signi�cantly faster than most of the other GA-based algorithms, but it

also requires a way of �nding �

share

, which is not necessarily the same as before.

Furthermore, we also need to compute the local ideal vector at each generation,

with a process that requires k � m operations (for small k and large m it can

be considered linear). But even after performing these additional computations,

this method is one of the fastest GA-based strategies with which I experimented,

although its main weakness is its high sensitivity to the value of �

share

.

6.2 Example 1 : Design of an I-Beam

Before I start the analysis of results for this example, it is convenient to

show the feasible region in the objective function space, so that we can visualize

the Pareto front that we wish to achieve. Figure 6.3 shows the feasible region

193

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.1: Example 1: Distribution of points using the Lexicographic Method

with a binary representation at generation zero. Only points within the feasible

region are displayed.

Method x

1

x

2

x

3

x

4

f

1

f

2

Monte Carlo 1 30.84 28.26 3.79 4.06 188:65 0.06175

Monte Carlo 1 52.97 44.08 1.99 0.99 555.22 0:00849

Min-Max (OS) 74.97 44.97 1.97 1.97 316:85 0.01697

Min-Max (OS) 74.99 44.99 1.99 2.06 326.49 0:01636

GA (Binary) 66.39 38.63 0.90 0.91 128:27 0.05241

GA (Binary) 80.00 50.00 4.99 4.99 848.41 0:00591

GA (FP) 61.14 41.14 0.90 0.90 127:46 0.06034

GA (FP) 80.00 50.00 5.00 5.00 850.00 0:00590

Literature 60.70 49.90 0.90 0.90 128:47 0.060

Literature 80.00 50.00 5.00 5.00 850.00 0:0059

Table 6.1: Comparison of results computing the ideal vector of example 1 from

Chapter 5 (design of an I-beam). For each method the best results for optimum

f

1

and f

2

are shown in boldface. OS stands for Osyczka's Multiobjective Opti-

mization System.

194

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.2: Example 1: Initial feasible region for Monte Carlo method.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.3: Example 1: Initial feasible region.

195

in the objective function space for this problem. It can be easily seen that the

curve at the bottom of the graph is the Pareto front, since this is a minimization

problem and the best compromises will be precisely at that part of the curve.

Let us start our analysis by presenting a methodology to compute the ideal

vector, so that we can measure the quality of our solution. After that, I will show

graphically the Pareto front of the problem, and the approximations produced

with each method.

The ideal vector of this problem was computed usingMonte Carlo Meth-

ods 1 and 2 (generating 100 points) presented in Chapter 4, Osyczka's multi-

objective optimization system and a GA (with a population of 100 chromo-

somes running during 50 generations) using binary and oating point represen-

tation, with the procedure described in Chapter 4 to adjust its parameters. The

corresponding results are shown in Table 6.1, including the best results reported

in the literature [1]. The results for Monte Carlo Method 2 are the same as for

Method 1, and the results presented for the Min-max method are also the basis

for computing the best trade-o� for all the methods in Osyczka's system.

Since the Monte Carlo Methods previously mentioned and Osyczka's mul-

tiobjective optimization system do not generate the Pareto front, I will compare

them with the GA-based approaches only in terms of the best overall result found.

Besides those results, it is interesting to observe the initial distribution of points

randomly generated by the method (see Figure 6.2). I used the same random

number generator for both Monte Carlo methods and the GA, but since most

GA-based methods do not check feasibility, the corresponding graph shows fewer

points. Nevertheless, as we will see next, the GA is able to generate the Pareto

front in a single run, whereas most mathematical programming techniques require

196

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.4: Example 1: The GA using a linear combination of the objectives with

scaling, after 50 generations.

a lot of e�ort to do that, when possible, or simply generate a single �nal solution

(the best overall).

We will start by analyzing the behavior of the Lexicographic Method at

di�erent stages of the search process. Figure 6.1 shows the distribution of points

produced at generation zero using this method. Figure 6.38 shows the distribu-

tion of points at generation 20 using binary representation, and Figure 6.39 shows

the corresponding distribution using oating point representation. It is easy to

see how the points start grouping at the lower part of the Pareto front, but there

are still several dominated points in the results. It is interesting to see how the

oating point representation provides a more uniform distribution than binary

representation, even when using the same method and the same parameters for

the GA. Figure 6.39 shows how there are fewer dominated points at generation

20, and the Pareto front seems to be more clear. However, after 50 generations,

binary representation seems to produce a better distribution (see Figure 6.40)

than oating point representation (see Figure 6.41). There are also fewer points

197

displayed, because there is more redundancy of solutions using oating point

representation. The reason for this behavior is that this representation scheme

provides a faster convergence, and therefore the population at this stage of the

search is starting to converge towards a global optimum. Notice, however, that

when the GA uses oating point representation a better overall solution is found.

I also compared the e�ect of a simple linear combination of objectives (addition

or multiplication) using scaling, and the results after 50 generations are shown

in Figure 6.4. Observe how the GA converges towards a global solution, and it

�nds a good trade-o�, but it completely fails at delineating the Pareto front. Fur-

thermore, the use of oating point representation produces a very good solution

(better than the solution produced using binary representation), but the popula-

tion totally converges to it after 50 generations. This shows the superiority of this

scheme as a numerical optimization tool to achieve a single goal, but obviously a

simple linear combination of objectives will not be suitable if we want to �nd the

entire Pareto front or at least a good part of it. However, a linear combination

of objectives is a good competitor for mathematical programming techniques, at

least in this problem, since it works equally fast and it produces better results. In

both previous cases a penalty function was used to \punish" the �tness each time

that a constraint was violated, as reported in previous work [198] [199] [200].

Scha�er's VEGA produces a rough approximation of a part of the Pareto

front after 20 generations using binary representation (see Figure 6.5), but it still

has several dominated points within the population. After 50 generations, how-

ever, the contour seems very well de�ned, even though there are still a few domi-

nated points gathering inside the feasible zone (see Figure 6.6). The well-known

\speciation" problem does not seem to be a big issue up to this point, because

the method can generate in a reasonable amount of time most of the Pareto front,

198

Method x

1

x

2

x

3

x

4

f

1

f

2

L

p

(f)

Ideal Vector 127.46 0.0059 0.000000

Monte Carlo 1 77.57 20.59 3.47 3.88 401.77 0.0159 3.837581

Monte Carlo 2 75.01 31.02 1.76 2.48 277.09 0.0198 3.525181

Min-max (OS) 75.06 44.99 1.99 1.99 320.55 0.0167 3.350946

GCM (OS) 75.06 44.99 1.99 1.99 320.55 0.0167 3.350946

WMM (OS) 75.06 44.99 1.99 1.99 320.55 0.0167 3.350946

PMM (OS) 74.97 44.97 1.97 1.97 316.85 0.0170 3.360191

NMM (OS) 74.99 44.99 1.99 2.06 326.49 0.0164 3.332501

GALC (B) 80.00 50.00 0.92 3.98 463.99 0.0083 3.042494

GALC (FP) 80.00 50.00 0.90 3.80 445.55 0.0086 2.953417

Lexicographic (B) 80.00 45.25 0.98 2.73 319.95 0.0124 2.614093

Lexicographic (FP) 80.00 50.00 0.90 2.26 293.74 0.0134 2.572228

VEGA (B) 80.00 50.00 0.94 2.24 295.59 0.0134 2.589958

VEGA (FP) 80.00 23.33 3.52 5.00 479.49 0.0116 3.736026

NSGA (B) 80.00 44.28 2.39 4.35 555.19 0.0080 3.714160

NSGA (FP) 80.00 50.00 5.00 1.18 506.56 0.0132 4.210141

MOGA (B) 80.00 46.48 1.29 2.70 347.27 0.0119 2.743380

MOGA (FP) 80.00 30.38 0.90 3.53 279.95 0.0146 2.668388

NPGA (B) 78.75 36.69 1.40 3.71 372.17 0.0117 2.909137

NPGA (FP) 78.52 29.36 2.51 2.74 344.44 0.0160 3.409632

Hajela (B) 80.00 50.00 0.90 4.72 535.48 0.0072 3.418376

Hajela (FP) 80.00 50.00 1.92 5.00 634.05 0.0066 4.090622

GAminmax1 (B) 80.00 40.58 0.92 3.02 312.77 0.0127 2.603628

GAminmax1 (FP) 80.00 50.00 0.90 2.43 310.33 0.0126 2.568096

GAminmax2 (B) 80.00 35.06 0.91 3.57 316.20 0.0127 2.626021

GAminmax2 (FP) 80.00 39.32 0.90 2.85 290.92 0.0137 2.607544

Table 6.2: Comparison of the best overall solution found by each one of the meth-

ods included in MOSES for the �rst example. GA-based methods were tried

with binary (B) and oating point (FP) representations. The following abbre-

viations were used: OS = Osyczka's System, GCM = Global Criterion Method

(exponent=2.0), WMM (Weighting Min-max), PWM (Pure Weighting Method),

NWM (Normalized Weighting Method), GALC = Genetic Algorithm with a lin-

ear combination of objectives using scaling. In all cases, weights were assumed

equal to 0.5 (equal weight for both objectives).

199

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.5: Example 1: Distribution of points using VEGA with a binary repre-

sentation at generation twenty.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.6: Example 1: Distribution of points using VEGA with a binary repre-

sentation at generation �fty.

200

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

Figure 6.7: Example 1: Distribution of points using VEGA with oating point

representation at generation twenty.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

Figure 6.8: Example 1: Distribution of points using VEGA with oating point

representation at generation �fty.

201

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.9: Example 1: Distribution of points using VEGA with binary represen-

tation at generation 100.

and the best overall solution that it produces is also very good. Floating point

representation does not help very much in this example, since it produces very

sparse distributions, as can be seen in Figure 6.7. Even when the Pareto front is

partially visible, there are many dominated individuals present in the population.

After 50 generations, the quick convergence property of this scheme representation

newly produces a stable population that partially converges towards the appro-

priate Pareto contour, but the set is not as good as the one produced with binary

representation, since the visible part of the Pareto front is smaller in this case (see

Figure 6.8). Interestingly, against what one could think, the best overall solution

turned out to be poorer in this case than when using binary representation. The

reason is that the population started converging towards a Pareto solution at

the bottom of the Pareto front, instead of converging towards the left angle of

the contour as most of the previous techniques. It should be mentioned that,

as Srinivas and Deb indicate [181], after many generations, VEGA converges to

very few non-dominated solutions, as can be seen in Figure 6.9. In fact, after 500

202

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.10: Example 1: Distribution of points using NSGA with binary repre-

sentation at generation �fty.

generations, it converges to only 2 non-dominated solutions. As I said before, the

accelerated convergence rate provided by the oating point representation shows

this undesirable property of the algorithm very early in the process. VEGA is

not well suited for problems with concave trade-o�s, as Fonseca and Fleming

indicate [188], because each objective is weighted proportionally to the size of

each subpopulation and to the inverse of the average �tness (in terms of that

objective) of the whole population at each generation if proportionate selection is

used. Richardson et al. [172] noted that shu�ing and merging all subpopulations

corresponds to averaging the normalized �tness components associated with each

of the objectives. Di�erent non-dominated individuals will be assigned di�erent

�tness values, in a direct contradiction of the de�nition of non-dominance. This

method clearly seeks for individuals that excel in one objective and not for the

best trade-o�s. However, in problems in which the trade-o� surface is convex (like

this example), it is possible to get a good approximation of the Pareto front after

a relatively small number of generations.

203

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.11: Example 1: Distribution of points using NSGA with binary repre-

sentation at generation twenty.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.12: Example 1: Distribution of points using NSGA with binary repre-

sentation at generation 500.

204

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.13: Example 1: Distribution of points using NSGA with oating point

representation at generation 50.

My version of Srinivas' NSGA produces a very smooth contour of the

Pareto front using binary representation after 50 generations, as can be seen in

Figure 6.10. Even after only 20 generations, the result is very good (see Fig-

ure 6.11). Contrary to what Srinivas and Deb [181] indicate, this technique does

not seem as stable as they claim, since after 500 generations the population has

almost converged to a very small subset of the Pareto set (see Figure 6.12). This

e�ect can be anticipated again by using oating point representation with only 50

generations (see Figure 6.13). Furthermore, this technique also produces only a

fraction of the Pareto front since the beginning, because non-dominated solutions

placed at the bottom of the Pareto-front seem to guide the search in this example.

This technique requires muchmore CPU time than any of the other previous tech-

niques, and due to the fact that it does not manipulate at any moment the real

�tnesses of the objective functions, the best overall solution produced at the end is

very poor for both representation schemes, but worse for oating point representa-

tion because of its trend to stabilize the population around a single non-dominated

205

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.14: Example 1: Distribution of points using MOGA with binary repre-

sentation at generation 20.

solution which in this case is not a very good trade-o� (see Table 6.2). It should

be also pointed out that in the original de�nition of the algorithm constraints

were not taken into consideration, and they have to be taken care of separately,

or infeasible solutions could be generated and even dominate the search. It has

been reported by the authors of this algorithm [181] that it is highly susceptible

to the value of �

share

, and they recommend to follow the guidelines given by Deb

and Goldberg [201]. In this example, however, there was no notorious change in

the distribution of points for di�erent values of �

share

. The identi�cation of non-

dominated individuals and the determination of niche sizes are processes O(n

2

).

Additionally, since the authors use stochastic remainder selection, the algorithm

could become even slower.

Fonseca's MOGA works in a very interesting manner. First, when I ran

it with a binary representation scheme during 20 generations, a promising con-

tour appeared (see Figure 6.14). However, after 50 generations, even when the

contour is better than that produced by NSGA, there is still a relatively spread

206

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.15: Example 1: Distribution of points using MOGA with binary repre-

sentation at generation 50.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.16: Example 1: Distribution of points using MOGA with binary repre-

sentation at generation 100.

207

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.17: Example 1: Distribution of points using MOGA with oating point

representation at generation 50.

population (see Figure 6.15). I increased the number of generations, and after 100

generations, the front is completely visible, but there are still a lot of dominated

points in the graph (see Figure 6.16). As I kept increasing the number of gener-

ations, the technique started behaving as NSGA, and after 500 generations only

3 non-dominated points remained alive, with an almost total convergence of the

population toward one of them. The best overall solution produced by the method

is better than the result produced by a linear combination of objectives, but not as

good as the solution provided by the Lexicographic method. This should not sur-

prise us, because this algorithm uses the true objective function values to guide

the search, but the niching technique used avoids to �nd the best overall indi-

vidual in the population. Again, oating point representation produces a better

overall result, but because of its accelerated convergence, it produces a fuzzier

Pareto front (see Figure 6.17). I also used a value of �

share

= 0:1 as in NSGA,

and changing this value didn't a�ect the result produced by the algorithm. To

compute the niche size I used the method suggested by Fonseca and Fleming [180].

208

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.18: Example 1: Distribution of points using NPGA with binary repre-

sentation at generation 20.

This algorithm is more e�cient than NSGA, but its behavior does not seem very

appropriate, because even when the population is diversi�ed after a few genera-

tions, there are still a lot of non-dominated points present in the population. The

main criticism to this technique is the fact that it does sharing on the objective

function values to distribute the population over the Pareto front, instead of doing

it on the parameter values as NSGA [181]. This makes the algorithm incapable

of �nding multiple solutions in problems where di�erent Pareto optimum points

correspond to the same objective function value. Finally, as in the case of NSGA,

MOGA does not check feasibility, and consequently is possible to have infeasible

solutions at late stages of the search. This is an important drawback, because one

of this solutions could dominate the others and then the GA would converge to an

infeasible region. It is therefore the responsibility of the user to check feasibility

of the solution at some point, and probably penalize those solutions even if they

apparently dominate others.

209

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.19: Example 1: Distribution of points using NPGA with binary repre-

sentation at generation 50.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.20: Example 1: Distribution of points using NPGA with binary repre-

sentation at generation 100.

210

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.21: Example 1: Distribution of points using NPGA with binary repre-

sentation at generation 500.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.22: Example 1: Distribution of points using NPGA with binary repre-

sentation at generation 50 with �

share

= 1:0.

211

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.23: Example 1: Distribution of points using NPGA with oating point

representation at generation 50.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.24: Example 1: Distribution of points using NPGA with oating point

representation at generation 100.

212

When I started using the NPGA developed by Horn and Nafpliotis [183]

my �rst impression is that its behavior was similar to MOGA, but that was

not the case. At an early stage in the search process, the algorithm produces

a very smooth distribution, even though there are still many dominated points

in the population (see Figure 6.18). After 50 generations, the behavior of this

technique looks similar to MOGA, because the population seems too sparse, with

many dominated individuals (see Figure 6.19). However, if we continue up to

100 generations, the front is more stable and there is no convergence to a single

point (see Figure 6.20). Remarkably, after 500 generations, the population looks

very well distributed, proving the stability of the algorithm (see Figure 6.21).

Furthermore, this technique is able to display a larger section of the Pareto front

than the other GA techniques based on Pareto-ranking selection. Considering the

scarce manipulation of the �tness function, this technique produces a reasonably

good best overall solution. In this case, the value of �

share

plays a critical role, and

if we increase it from 0.1 (same value used in the previous techniques) to 1.0, we

will see that the technique has more di�culties to form niches (see Figure 6.22).

Furthermore, the main criticism of this technique is that it requires an additional

parameter to be adjusted: the size of the tournament t

dom

[183]. As indicated

by Srinivas and Deb [181], if this value is too small, some non-dominated points

will not be found, and if it is too large, we could have premature convergence. I

used t

dom

= 10 to generate the previous graphs, but modifying this parameter I

ran into the problems mentioned by Srinivas and Deb. In terms of representation

schemes, a oating point representation produced a very smooth surface in only

50 generations (see Figure 6.23), but the best overall solution was poorer than

the value produced using binary representation. The reason for this is that the

algorithm converged toward the bottom part of the Pareto front, as in the case of

213

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.25: Example 1: Distribution of points using Hajela's method with binary

representation at generation 20.

NSGA and MOGA, instead of moving towards the left side of the contour in which

the best overall non-dominated individuals reside. Nevertheless, the technique

shows the same stability after 100 generations using this representation scheme

(see Figure 6.24) as a good indication of its strength. The only thing that prevents

me from recommending this representation to accelerate convergence in this case,

is that when oating point representation is used, the algorithm becomes more

sensitive to the parameters, so that if �

share

and/or t

dom

is slightly modi�ed, the

behavior of the technique abruptly changes. In that direction, Horn and Nafpliotis

[183] give some guidelines derived from their empirical study of their algorithm

to choose these values.

As could be expected from a Non-Pareto approach, the performance of

Hajela's method was not very stable with this example. This weighted min-max

approach produces a very good distribution of points over the Pareto front after

20 generations (see Figure 6.25). At that stage of the search, the performance of

the algorithm seems excellent, since the contour seems very clear, and the best

214

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.26: Example 1: Distribution of points using Hajela's method with binary

representation at generation 50.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.27: Example 1: Distribution of points using Hajela's method with binary

representation at generation 50 using 500 individuals.

215

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.28: Example 1: Distribution of points using Hajela's method with oat-

ing point representation at generation 50.

overall individual found is very good (L

p

= 2:676497). Unfortunately, when the

number of generations increases, the technique quickly converges towards a single

point, which happens to be a poor non-dominated solution (see Figure 6.26). A

reasonable assumption would be to attribute the failure of the technique to the use

of a small population, but that is not the case, because even using a population

of 500 chromosomes, only two extra non-dominated points appeared, as shown in

Figure 6.27). The main drawback of this technique seems to be its lack of stability,

because it loses its smooth initial distribution very easily, besides requiring much

extra information, such as a list of possible weights, �

share

(chosen to be 0:1 in this

case, as in the previous techniques), and the mating restriction threshold (chosen

to be 0:1 in this case). In this particular example, the increment and decrement of

�

share

and the mating threshold didn't a�ect the solution in any signi�cant way.

In terms of representation schemes, the use of a oating point representation

only makes things worse, because the entire population converges, after only 50

generations to a unique solution, which turns out to be worse than the best

216

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.29: Example 1: Distribution of points using my method based on the

min-max algorithm with binary representation at generation zero.

trade-o� produced when using a binary representations scheme (see Figure 6.28).

In fact, after only 10 generations, the GA converges to such solution, showing

the premature convergence problem of this approach. Also, as in the previous

techniques discussed, this algorithm does not check feasibility of the solutions at

any time, so it could be the case that after several generations a bad solution

dominates the others and the GA could converge towards a invalid solution.

Before showing the results produced with my method based on the min-

max approach, I want to show the distribution of points at generation zero, since in

this case the algorithm ensures that only feasible solutions are generated. It can be

seen in Figure 6.29 that the initial distribution has a fairly large amount of points

near the Pareto front, but most of them are sparsely distributed. However, if we

constraint the initial generation to be totally feasible, and if we also restrict the

operators to produce only feasible children, then we can ensure, at each moment,

that the points encoded are in the feasible zone. Now, in terms of the results,

this method produced a very uniform distribution of points over the Pareto front,

217

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

’puntos1.dta’

Figure 6.30: Example 1: Distribution of points using my method based on the

min-max algorithm with binary representation at generation 50.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.31: Example 1: Distribution of points using my method based on the

min-max algorithm with oating point representation at generation 50.

218

showing the most part of it after 50 generations (see Figure 6.30) using binary

representation. The best overall individual is also the best of all (only surpassed

by VEGA) using binary representation (see Table 6.2). The main drawbacks of

this approach is that an independent run is required for each weight combination,

so if there is no access to a parallel architecture, this will consume much more

time than with previous approaches. Additionally, the set of weight combinations

should be provided by the user, and the ideal vector must be known. In this last

point, however, I should point out that another goal of this work is to show that

the GA can be used as an e�ective single-objective numerical optimization tool.

For that sake, I developed the methodology described in Chapter 4 to adjust the

parameters of the GA, and as the results indicate, the GA can �nd better answers

than mathematical programming techniques using this dynamic adjustment of

parameters. The trade-o� in that respect is either to run the GA 10 or 20 times

without any clue of what the most appropriate parameters are, or to run it 81

times with this methodology and get at least a sub-optimal solution. More on this

parameter adjustment scheme will be discussed in a later section. On the other

hand, mymethod guarantees that only feasible solutions are generated at all times,

because it imposes restrictions on the production of chromosomes at generation

zero, and during crossover and mutation. Also, it is very stable, because at all

times only single objective optimization problems are being solved, and no niching

or mating parameters of any sort are required. When using this technique with a

oating point representation, the Pareto front generated is slightly less uniformly

distributed, but a larger segment of the contour is visible after 50 generations

(see Figure 6.31). Additionally, the best overall solution is the best trade-o� that

I found for this problem. This corroborates once more the e�ciency of oating

point representation in numerical optimization problems like this.

219

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.32: Example 1: Distribution of points using my approach based on min-

max selection with sharing, using binary representation at generation 20.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.33: Example 1: Distribution of points using my approach based on min-

max selection with sharing, using binary representation at generation 50.

220

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.34: Example 1: Distribution of points using my approach based on min-

max selection with sharing, using binary representation at generation 100.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.35: Example 1: Distribution of points using my approach based on min-

max selection with sharing, using binary representation at generation 500.

221

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.36: Example 1: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at generation 20.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.37: Example 1: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at generation 50.

222

Finally I tried mymin-max selection strategy with sharing. Using the same

initial population shown in Figure 6.29, this algorithm has a very stable behavior

if a good value for �

share

is used (I chose 0.5 for this example). After 20 generations

using binary representation, the algorithm starts producing a good portion of the

Pareto front, but there are still several dominated points present (see Figure 6.32).

At generation 50, however, the contour of the Pareto front seems very clear (see

Figure 6.33). At Generation 100, most points are grouping within the inferior

part of the Pareto curve (see Figure 6.34), forming a line, but without converging

to a unique solution. After 500 generations, the points seem to be spreading

again, but a good portion of the Pareto front is still visible (see Figure 6.35),

and the population has not converged to a single non-dominated point. The

use of oating point representation produces better results in all aspects. After

20 generations, the population is spread over a larger area, covering the Pareto

front completely (see Figure 6.36). After 50 generations, there is a clearer Pareto

front than before, and the part containing the best non-dominated individuals is

displayed (Figure 6.37) as the results from Table 6.2 reects, since we were able

to �nd a better overall result in this case. It should be mentioned that several of

the previous GA-based techniques, such as MOGA and NSGA generated poorer

overall solutions because they were only able to generate points at the right hand

side of the solution space, instead of moving towards the curve of global optima.

This did not happen with this approach, in which a more uniform distribution

was achieved even after many generations.

Table 6.2 compares the best overall solution found by this and the remain-

ing techniques using both representation schemes, with respect to the ideal vector.

To evaluate these results, I used as a parameter the maximum deviation from the

ideal vector, which is de�ned by

223

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.38: Example 1: Distribution of points using the Lexicographic Method

with a binary representation at generation twenty.

L

p

(f) =

k

X

i=1

�

�

�

�

�

f

0

i

� f

i

(x)

�

i

�

�

�

�

�

(6.4)

where �

i

= f

0

i

,or f

i

(x), depending on which gives the maximum value for

L

p

(f), k is the number of objectives and f

0

i

is the ideal vector.

Notice that Osyczka's Multiobjective Optimization System requires very

good guesses to derive a good solution, since it normally moves within a very

small window, and the �nal vector that it produces is always very close to the

values given by the user. The reason is that the system was originally designed

to be used interactively, so that the user could be guessing around what region

he/she wanted to get a solution, and the program would sketch a solution (if

any) around a certain vector of decision variables. Unfortunately, that is not very

satisfactory in practice, because the user may completely ignore the shape of the

feasible region and there could be a fairly large search space to trace.

224

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.39: Example 1: Distribution of points using the Lexicographic Method

with a oating point representation at generation twenty.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.40: Example 1: Distribution of points using the Lexicographic Method

with a binary representation at generation �fty.

225

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 6.41: Example 1: Distribution of points using the Lexicographic Method

with a oating point representation at generation �fty.

6.3 Example 2 : Machining Recommendations

In this example I will not show any graphical representation of the Pareto

front, because there are too many objective functions, and plotting them is not

possible. So, for this problem I will concentrate on how good all the techniques do

in terms of getting the best overall result. First, I will start by showing the ideal

vector, according to each one of the techniques used in the previous example.

It is very interesting that this time the GA with oating point representation

generated all but one element of the ideal vector. For the value of SI, the GA

with binary representation found a slightly better value. It should be noted that

in this problem, we are minimizing the �rst objective function, while maximizing

the others. As can be seen from the results presented in Table 6.3, I found even

better results than those reported in the literature.

Since I am only measuring the performance of each technique in terms of

the best solution overall, there is not much to say about the results presented in

Tables 6.4 and 6.5. One of the interesting things observed during the experiments

226

Method v f d SR SI TL MRR

(sfm) (ipr) (in) (�in) (% udmg) (min) (in

3

/min)

Monte Carlo 1 1105.94 0.0020 0.0695 14:03 56.15 39.67 1.87

Monte Carlo 1 1105.94 0.0020 0.0695 14.03 56:15 39.67 1.87

Monte Carlo 1 1014.64 0.0026 0.0739 18.78 51.18 40:76 2.35

Monte Carlo 1 949.56 0.00330 0.0925 22.16 51.06 34.22 3:48

Min-Max (OS) 1200.00 0.0016 0.0496 13:02 54.18 51.14 1.18

Min-Max (OS) 1200.00 0.0016 0.0496 13.02 54:18 51.14 1.18

Min-Max (OS) 1200.00 0.0016 0.0496 13.02 54.18 51:14 1.18

Min-Max (OS) 1200.00 0.0026 0.0499 21.95 50.49 44.43 1:86

GA (Binary) 1045.64 0.0020 0.100 11:31 62.52 30.42 2.51

GA (Binary) 1200.00 0.0020 0.0783 12.36 63:88 30.03 2.25

GA (Binary) 1020.42 0.0020 0.0628 15.18 50.05 51:74 1.54

GA (Binary) 1074.73 0.0035 0.0819 24.16 53.80 30.01 3:70

GA (FP) 1053.00 0.0020 0.1000 11:28 62.93 30.01 2.53

GA (FP) 1053.00 0.0020 0.1000 11.28 62:93 30.01 2.53

GA (FP) 1134.11 0.0020 0.0500 16.66 50.01 53:43 1.36

GA (FP) 952.98 0.0042 0.0960 28.57 50.09 30.42 4:61

Literature 1048.0 0.0020 0.1000 11:30 62.65 30.29 2.51

Literature 1200.0 0.002 0.0776 12.43 63:64 30.31 2.23

Literature 840.0 0.002 0.1000 12.46 51.11 46:52 2.02

Literature 944.0 0.004 0.1000 25.60 51.16 30.38 4:40

Table 6.3: Comparison of results computing the ideal vector of example 2 from

Chapter 5 (machining recommendations). For each method the best results for

each objective function are shown in boldface. OS stands for Osyczka's Multi-

objective Optimization System.

227

Method v f d SR

(sfm) (ipr) (in) (�in)

Ideal Vector 11.28

Monte Carlo 1 914.37 0.0030 0.0969 19.55

Monte Carlo 2 1014.64 0.0026 0.0739 18.77

Min-max (OS) 1200.00 0.0026 0.0499 21.95

GCM (OS) 1200.00 0.0026 0.0499 21.95

WMM (OS) 1200.00 0.0026 0.0499 21.95

PMM (OS) 1200.00 0.0016 0.0496 13.02

NMM (OS) 1200.00 0.0016 0.0496 13.02

GALC (B) 1200.00 0.0044 0.0607 36.03

GALC (FP) 987.57 0.0020 0.1000 11.60

Lexicographic (B) 1200.00 0.0020 0.0657 13.76

Lexicographic (FP) 1200.00 0.0020 0.0759 12.60

VEGA (B) 1200.00 0.0020 0.0781 12.38

VEGA (FP) 1037.39 0.0020 0.1000 11.35

NSGA (B) 1200.00 0.0020 0.0691 13.34

NSGA (FP) 959.16 0.0020 0.1000 11.75

MOGA (B) 1118.34 0.0021 0.0868 12.67

MOGA (FP) 1200.00 0.0020 0.0740 12.79

NPGA (B) 1075.07 0.0021 0.0939 12.29

NPGA (FP) 1094.35 0.0020 0.0927 11.61

Hajela (B) 1045.55 0.0020 0.1000 11.31

Hajela (FP) 1200.00 0.0034 0.0556 28.19

GAminmax1 (B) 1082.18 0.0020 0.0943 11.55

GAminmax1 (FP) 1049.50 0.0020 0.1000 11.29

GAminmax2 (B) 1041.07 0.0020 0.1000 11.33

GAminmax2 (FP) 1029.80 0.0020 0.1000 11.39

Table 6.4: (Part I) Comparison of the best overall solution found by each one of

the methods included in MOSES for the second example (machining recommen-

dations). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In

all cases, weights were assumed equal to 0.25 (equal weight for every objective).

(Continued in Table 6.5)

228

Method SI TL MRR L

p

(f)

(% udmg) (min) (in

3

/min)

Ideal Vector 63.88 53.43 4.61 0.000000

Monte Carlo 1 51.11 36.12 3.18 1.385445

Monte Carlo 2 51.18 40.76 2.35 1.279883

Min-max (OS) 50.49 44.43 1.86 1.889006

GCM (OS) 50.49 44.43 1.86 1.889006

WMM (OS) 50.49 44.43 1.86 1.889006

PMM (OS) 54.18 51.14 1.18 1.856245

NMM (OS) 54.18 51.14 1.18 1.856245

GALC (B) 50.47 30.89 3.84 2.944513

GALC (FP) 59.32 33.98 2.37 0.280571

Lexicographic (B) 59.24 36.05 1.89 0.745638

Lexicographic (FP) 63.03 31.02 2.19 0.295288

VEGA (B) 63.81 30.11 2.25 0.230000

VEGA (FP) 62.07 30.89 2.49 0.064436

NSGA (B) 60.54 34.20 1.99 0.586649

NSGA (FP) 57.75 35.96 2.30 0.411813

MOGA (B) 62.10 30.49 2.45 0.184670

MOGA (FP) 62.35 31.85 2.13 0.371517

NPGA (B) 61.94 30.33 2.54 0.122571

NPGA (FP) 63.11 30.13 2.43 0.073782

Hajela (B) 62.52 30.42 2.51 0.030583

Hajela (FP) 50.65 36.57 2.72 1.990499

GAminmax1 (B) 62.92 30.25 2.45 0.063389

GAminmax1 (FP) 62.73 30.20 2.52 0.014317

GAminmax2 (B) 62.27 30.68 2.50 0.049133

GAminmax2 (FP) 61.65 31.33 2.47 0.096331

Table 6.5: (Part II) Comparison of the best overall solution found by each one of

the methods included in MOSES for the second example (machining recommen-

dations). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In all

cases, weights were assumed equal to 0.25 (equal weight for every objective).

229

was that most methods start with a very small set of feasible solutions (from 3 to 5)

and eventually produce complete populations of non-dominated individuals in only

a few generations. That, of course, is not the case of in methods, since they start

with a complete population of feasible solutions. The behavior of all techniques is

more or less the same as before. This time, VEGA produced a very good overall

solution, although its �nal distribution totally converges to that single vector.

MOGA and NPGA presented very good performances, considering that they do

not manipulate objective function values directly. Hajela's method produced an

excellent overall result, but also presented a premature convergence of the entire

population to that single vector. It should be noted that the poor performance

of oating point representation for Hajela's method is due to a problem with the

de�nition of ranges for the weights. As in the previous example, myweighting min-

max method produced the best overall results using oating point representation,

and my min-max method that uses sharing presented very good solutions with

both binary and oating point representations. It is important to mention that

because of the quick convergence property of oating point representation, it was

necessary to use a very small sharing factor to avoid total convergence of the

population to a single value. A value of �

share

= 0:01 gave the best distribution,

and a value of �

share

= 0:001 gave the best overall result, presented in Tables 6.4

and 6.5. When binary representation was used, as with all the previous methods,

a value of �

share

= 1:0 was used. It is interesting how even when the best solution

produced is very close to the ideal vector, several methods (remarkably several

mathematical programming techniques) failed to �nd it.

230

Method x

1

x

2

x

3

x

4

f

1

f

2

Monte Carlo 1 59.08 189.17 90 75 606667:43 0.032467

Monte Carlo 1 26.26 193.29 90 85 1457744.67 0:019242

GA (Binary) 60.00 200.00 80 75 466532:80 0.038087

GA (Binary) 25.00 190.09 95 90 1640191.80 0:016613

GA (FP) 56.16 194.49 95 90 312430:43 0.017951

GA (FP) 25.35 189.58 95 90 1641135.80 0:016615

Literature 63.89 183.29 85 80 531059:8 0.030182

Literature 66.45 183.36 95 85 694101.0 0:023078

Table 6.6: Comparison of results computing the ideal vector of example 3 from

Chapter 5 (design of a machine tool spindle). For each method the best results

for optimum f

1

and f

2

are shown in boldface.

6.4 Example 3 : Design of a Machine Tool Spin-

dle

Again, I will start by showing the feasible region in the objective function

space for this example, so that we can visualize the Pareto front that we wish to

achieve. Figure 6.42 shows the feasible region in the objective function space for

this problem. In this case, the Pareto front is very similar to the graph of the �rst

example, since this is also a minimization problem and the best compromises will

be at the bottom part of the curve.

The ideal vector of this problem was computed using Monte Carlo Meth-

ods 1 and 2 (generating 100 points) presented in Chapter 4, and a GA (with a

population of 100 chromosomes running during 50 generations) using binary and

oating point representation, with the procedure described in Chapter 4 to adjust

its parameters. The corresponding results are shown in Table 6.6, including the

best results reported in the literature [192]. The results for Monte Carlo Method

2 are the same than for Method 1. Notice that Osyczka's multiobjective optimiza-

tion system is not able to handle discrete variables, so no results are available for

the min-max method using Osyzcka's system. The GA using both binary and

231

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.42: Example 3: Initial feasible region for example 3.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.43: Example 3: Initial feasible region for Monte Carlo method solving

the third example.

232

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.44: Example 3: The GA using a linear combination of the objectives

with scaling, after 50 generations using binary representation.

oating point representation found the ideal vector. As can be seen in the results,

the best result for the second objective function was found using binary represen-

tation, but the solution generated using oating point representation is extremely

close, so it is reasonable to assume that the GA using oating point representation

found a better solution than the one that used binary representation.

Since the Monte Carlo Methods previously mentioned and Osyczka's mul-

tiobjective optimization system do not generate the Pareto front, I will compare

them with the GA-based approaches only in terms of the best overall result found.

Besides those results, it is interesting to observe the initial distribution of points

randomly generated by the method (see Figure 6.43). As should be expected of a

highly constrained problem, there are very few feasible points in the initial ran-

dom set generated (only �ve), and this will be observed also with the GA-based

methods that do not check feasibility. Nevertheless, as in previous examples, the

233

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.45: Example 3: The GA using a linear combination of the objectives

with scaling, after 50 generations using oating point representation.

GA is able to generate the Pareto front in a single run, whereas most mathe-

matical programming techniques require a great deal of e�ort to do that, when

possible, or simply generate a single �nal solution (the best overall).

We will start by analyzing the behavior of the Lexicographic Method at

di�erent stages of the search process. Figure 6.46 shows the distribution of points

produced at generation zero using this method. There are not many points, but

there are certainly more to start than when using Monte Carlo method. Fig-

ure 6.47 shows the distribution of points at generation 20 using binary represen-

tation, and Figure 6.48 shows the corresponding distribution using oating point

representation. Notice how the points start grouping at the lower part of the

Pareto front, but there are still several dominated points in the results. It is

interesting to see how the oating point representation provides a more uniform

distribution than binary representation, even when using the same method and

the same parameters for the GA. Figure 6.48 shows how there are fewer dominated

points at generation 20, and the Pareto front seems to be more clear. However,

234

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.46: Example 3: Distribution of points using the Lexicographic Method

with a binary representation at generation zero. Only points within the feasible

region are displayed.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.47: Example 3: Distribution of points using the Lexicographic Method

with a binary representation at generation twenty. Only points within the feasible

region are displayed.

235

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.48: Example 3: Distribution of points using the Lexicographic Method

with a oating point representation at generation twenty. Only points within the

feasible region are displayed.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.49: Example 3: Distribution of points using the Lexicographic Method

with a binary representation at generation �fty. Only points within the feasible

region are displayed.

236

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.50: Example 3: Distribution of points using the Lexicographic Method

with a oating point representation at generation �fty. Only points within the

feasible region are displayed.

after 50 generations, binary representation seems to produce a better distribution

(see Figure 6.49) than oating point representation (see Figure 6.50). There are

also fewer points displayed, because there is more redundancy of solutions using

oating point representation. The reason for this behavior is that this represen-

tation scheme provides a faster convergence, and therefore the population at this

stage of the search is starting to converge towards a global optimum. Notice, how-

ever, that when the GA uses oating point representation a better overall solution

is found. I also compared the e�ect of a simple linear combination of objectives

(addition or multiplication) using scaling, and the results after 50 generations

are shown in Figure 6.44. Observe how in this case, even a good scaling of the

objectives is not able to �nd a good trade-o�, and, as expected, is also unable

to delineate the Pareto front. The use of a oating point representation slightly

improves the best overall solution, although we still get global convergence of the

237

Method x

1

x

2

x

3

x

4

f

1

f

2

L

p

(f)

Ideal Vector 312430.43 0.016613 0.000000

Monte Carlo 1 56.67 190.22 85 80 728581.78 0.026474 1.925552

Monte Carlo 2 26.26 193.29 90 85 1457744.67 0.019242 3.824071

GALC (B) 42.27 187.83 95 90 1386131.13 0.016955 3.457194

GALC (FP) 42.78 188.01 95 90 1377893.38 0.016975 3.432031

Lexicographic (B) 62.02 200.00 95 85 856072.60 0.021843 2.054856

Lexicographic (FP) 61.98 190.91 95 80 709307.00 0.026191 1.846824

VEGA (B) 54.63 200.00 90 85 987526.38 0.021241 2.439365

VEGA (FP) 54.45 191.11 95 90 1151553.50 0.017747 2.754052

NSGA (B) 65.22 200.00 90 85 708412.19 0.024386 1.735100

NSGA (FP) 62.00 197.36 95 90 985238.13 0.018839 2.287456

MOGA (B) 65.52 200.00 90 85 699786.88 0.024531 1.716431

MOGA (FP) 67.75 189.34 95 90 800608.63 0.020108 1.772895

NPGA (B) 57.92 200.00 90 75 654768.06 0.032233 2.035952

NPGA (FP) 43.53 187.86 95 90 1363536.50 0.017006 3.387944

Hajela (B) 59.87 188.12 95 80 757841.81 0.024983 1.929456

Hajela (FP) 61.19 188.10 95 90 975296.19 0.018607 2.241669

GAminmax1 (B) 66.99 200.00 90 85 656950.38 0.025319 1.626757

GAminmax1 (FP) 71.98 188.17 95 90 672894.56 0.021687 1.459166

GAminmax2 (B) 58.58 192.94 95 85 926272.00 0.020756 2.214113

GAminmax2 (FP) 69.47 191.78 95 90 759919.19 0.020682 1.677212

Table 6.7: Comparison of the best overall solution found by each one of the meth-

ods included in MOSES for the third example (design of a machine tool spindle).

GA-based methods were tried with binary (B) and oating point (FP) representa-

tions. The following abbreviations were used: GALC = Genetic Algorithm with a

linear combination of objectives using scaling. In all cases, weights were assumed

equal to 0.5 (equal weight for every objective).

population (see Figure 6.45). This example shows how sometimes the simple lin-

ear combination of objectives using scaling completely fails to �nd a reasonable

good solution to a multiobjective optimization problem.

Scha�er's VEGA produces a rough approximation of a part of the Pareto

front after 20 generations using binary representation (see Figure 6.51), but it

still has several dominated points within the population. After 50 generations,

however, the contour seems very well de�ned, and we can clearly see the two lower

238

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.51: Example 3: Distribution of points using VEGA with a binary repre-

sentation at generation twenty.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.52: Example 3: Distribution of points using VEGA with a binary repre-

sentation at generation �fty.

239

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.53: Example 3: Distribution of points using VEGA with oating point

representation at generation twenty.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.54: Example 3: Distribution of points using VEGA with oating point

representation at generation �fty.

240

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.55: Example 3: Distribution of points using VEGA with binary repre-

sentation at generation 100.

curves of the feasible zone (see Figure 6.52). Even when a good portion of the

Pareto front can be generated using VEGA, the best overall solution produced is

not very good, since the method did not keep points near the corner of the inferior

curve where the best trade-o� is located. Floating point representation has a very

promising start (see Figure 6.53), and it converges to a reasonably good Pareto

contour that is, however, not as good as that produced with binary representation.

Again, the quick convergence property of this scheme representation produces a

much more stable contour, but with fewer points (see Figure 6.54). Interestingly,

in this example we have again the case of an overall solution poorer than that

produced using binary representation. The reason is the same mentioned in the

�rst example: the population started converging towards a Pareto solution at

the bottom right of the Pareto front, instead of converging towards the left angle

of the contour. Finally, as in previous cases, VEGA converges to very few non-

dominated solutions after only 100 generations (see Figure 6.55), again indicating

241

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.56: Example 3: Distribution of points using NSGA with binary repre-

sentation at generation �fty.

this method's tendency toward global convergence of the population to a single

point.

My version of Srinivas' NSGA produces a rough approximation of the

Pareto front using binary representation after 50 generations, as can be seen in

Figure 6.56. The three inferior curves are quite clear. However, it seems that the

technique still requires more generations to converge towards a better contour.

If we monitor its behavior after only 20 generations, we will see a very sparse

distribution of points (see Figure 6.57). However, if the number of generations is

excessive, there is a trend towards global convergence, as can be observed in Fig-

ure 6.58.This e�ect can be again anticipated by using oating point representation

with only 50 generations (see Figure 6.59). This curve is about the best contour

that we can get using this technique in this example. It is interesting that we were

able to produce a very good trade-o� solution using binary representation, but

this is not a trend when using this technique, and, as mentioned before, the GA

242

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.57: Example 3: Distribution of points using NSGA with binary repre-

sentation at generation twenty.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.58: Example 3: Distribution of points using NSGA with binary repre-

sentation at generation 500.

243

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.59: Example 3: Distribution of points using NSGA with oating point

representation at generation 50.

is not able to keep it over generations. Finally, there was not signi�cant change

in the results when the value of �

share

was modi�ed.

Fonseca's MOGA shows once again a very interesting behavior. First, run-

ning the GA with a binary representation during 20 generations, we can see an

sparse but clear distribution of points (see Figure 6.60) that start delineating the

Pareto contour. As in the �rst example, after 50 generations the contour is excel-

lent, but there are still several dominated points in the graph (see Figure 6.61).

After 100 generations, we start losing the contour, and there is a strong trend

to converge to a single point (see Figure 6.62). After 500 generations, the entire

population converged to only 3 almost identical non-dominated points, as in the

�rst example. In this case, the best overall solution is better than all the other

previous techniques for both representations. It is also interesting to notice that

in this example, a oating point representation produced a poorer overall solution

after 50 generations, and a fuzzier Pareto front (see Figure 6.63). I also used a

244

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.60: Example 3: Distribution of points using MOGA with binary repre-

sentation at generation 20.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.61: Example 3: Distribution of points using MOGA with binary repre-

sentation at generation 50.

245

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.62: Example 3: Distribution of points using MOGA with binary repre-

sentation at generation 100.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.63: Example 3: Distribution of points using MOGA with oating point

representation at generation 50.

246

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.64: Example 3: Distribution of points using NPGA with binary repre-

sentation at generation 20.

value of �

share

= 0:1 as in NSGA, and changing this value did not a�ect the results

produced by the algorithm.

Again, NPGA has a very good start, as can be observed in the graph

produced after 20 generations (see Figure 6.64), but it still has a lot of domi-

nated points in that search stage. After 50 generations, the distribution is still

too sparse, with many dominated individuals (see Figure 6.65). However, if we

continue up to 100 generations, the front is more stable and there is no conver-

gence to a single point (see Figure 6.66). Remarkably, after 500 generations, the

population looks very well distributed, proving the stability of the algorithm (see

Figure 6.67), although the Pareto front does not seem too clear. Once more, this

technique is able to keep more points through a lot of generations than any other

Pareto-based technique, and its best overall solution using binary representation

is remarkably good considering the scarce manipulation of the �tness function.

It should be mentioned again that the value of �

share

plays a critical role in the

performance of the algorithm, because if we increase it from 0.1 (same value used

247

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.65: Example 3: Distribution of points using NPGA with binary repre-

sentation at generation 50.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.66: Example 3: Distribution of points using NPGA with binary repre-

sentation at generation 100.

248

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.67: Example 3: Distribution of points using NPGA with binary repre-

sentation at generation 500.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.68: Example 3: Distribution of points using NPGA with binary repre-

sentation at generation 50 with �

share

= 1:0.

249

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.69: Example 3: Distribution of points using NPGA with oating point

representation at generation 50.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.70: Example 3: Distribution of points using NPGA with oating point

representation at generation 20.

250

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.71: Example 3: Distribution of points using Hajela's method with binary

representation at generation 20.

in the previous techniques) to 1.0, we will see that the technique has more di�-

culties to form niches (see Figure 6.68). The value of t

dom

signi�cantly a�ects the

performance of the algorithm both in terms of e�ciency (it gets much slower) and

quality of results (it could completely fail in �nding the Pareto front). Another

important observation is that a oating point representation did not work at all

in this example. The main problem was that the population converged to only

infeasible solutions that are good trade-o�s but violate the constraints imposed by

the problem. Even at early stages of the search (see Figure 6.70) very few feasible

points are maintained, and after 50 generations there is only one point left (see

Figure 6.69) which is not even a good trade-o�. After 100 generations, no feasible

solutions appear. This problem is a good example to illustrate what I said before

about checking feasibility within these algorithms. If we check at every moment

that we are only manipulating feasible solutions, then we can guarantee that our

algorithm will keep a population of feasible points and we will not run into the

problem presented in this example.

251

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.72: Example 3: Distribution of points using Hajela's method with binary

representation at generation 50.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.73: Example 3: Distribution of points using Hajela's method with binary

representation at generation 50 using 500 individuals.

252

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.74: Example 3: Distribution of points using Hajela's method with oat-

ing point representation at generation 50.

As could be expected from a Non-Pareto approach, the performance of

Hajela's method was not very stable with this example. Even after 20 genera-

tions, the Pareto front does not seem very clear (see Figure 6.71). Anyway, the

performance of the algorithm does not seem too bad until we advance more in the

search process. After 50 generations, only a few points are left in the population

(see Figure 6.72) producing a good overall solution, but a poor Pareto front. As

in the �rst example, increasing the population size to 500 chromosomes does not

a�ect the result too much (see Figure 6.73). As in the �rst example, changing

the values of �

share

and the mating threshold (taken as 0:1 in this case) did not

a�ect the solution in any signi�cant way. In terms of representation schemes,

the use of a oating point representation only makes things worse, because the

entire population converges, after only 50 generations to a couple of solutions,

which turn out to be worse than the best trade-o� produced when using a binary

representation scheme (see Figure 6.74).

253

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.75: Example 3: Distribution of points using my method based on the

min-max algorithm with binary representation at generation zero.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.76: Example 3: Distribution of points using my method based on the

min-max algorithm with binary representation at generation 50.

254

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.77: Example 3: Distribution of points using my method based on the

min-max algorithm with oating point representation at generation 50.

Before showing the results produced with my method based on the min-

max approach, I want to show the distribution of points at generation zero, since

in this case the algorithm ensures that only feasible solutions are generated. It

can be seen in Figure 6.75 that the initial distribution has a fairly large amount

of points near the Pareto front, but most of them are distributed over the entire

feasible region. After 50 generations, and using 10 di�erent weights (as in the

�rst example), we can get a rough contour of the Pareto front (see Figure 6.76).

This example shows the importance of choosing the right weights, since the values

that worked very well in the �rst example do not seem to be very appropriate for

this one. However, the best overall solution is the best obtained so far using

binary representation (see Table 6.7), and if we connect the dots, we can get a

very good approximation of the entire Pareto front, although the use of a di�erent

and larger set of weights seems to be more appropriate. The use of oating point

representation reduces the number of points in the contour (see Figure 6.77) as in

the �rst example, but it also produces the best trade-o� found for this problem.

255

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.78: Example 3: Distribution of points using my approach based on min-

max selection with sharing, using binary representation at generation 20.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.79: Example 3: Distribution of points using my approach based on min-

max selection with sharing, using binary representation at generation 50.

256

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.80: Example 3: Distribution of points using my approach based on min-

max selection with sharing, using binary representation at generation 100.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.81: Example 3: Distribution of points using my approach based on min-

max selection with sharing, using binary representation at generation 500.

257

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.82: Example 3: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at generation 20.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 6.83: Example 3: Distribution of points using my approach based on min-

max selection with sharing, using oating point representation at generation 50.

258

Finally I tried my min-max selection strategy with sharing. Using the

same initial population shown in Figure 6.75, this algorithm has a very stable

behavior if a good value for �

share

is used (I chose 0.5 for this example). After

only 20 generations using binary representation, the algorithm starts producing a

fairly large portion of the Pareto front, but there are still several dominated points

present (see Figure 6.78). At generation 50, the middle part of the Pareto front is

very well de�ned (see Figure 6.79), with relatively few dominated points present in

the graph. At Generation 100, most points are grouping within the inferior part of

the Pareto curve (see Figure 6.80), forming a smooth line, but without converging

to a unique solution. After 500 generations, a few points seem to be spreading

again, but a good portion of the Pareto front is still visible (see Figure 6.81), and

the population has not converged to a single non-dominated point. The use of a

oating point representation produces a very good contour after 20 generations

(see Figure 6.82), but tends to converge towards the extremes of the Pareto curve,

without being able to generate the middle part of it (see Figure 6.83). With respect

to the best overall solution, we have the opposite case of the �rst example, because

oating point representation produces a better result than binary representation.

This is because this representation was able to keep a few points near to the corner

of global non-dominated individuals. Nevertheless, the graphs show the trend of

the method to behave better when binary representation is used.

6.5 Example 4 : Design of a 10-bar Plane Truss

Due to the extremely large size of the search space, I will not be able to

show it graphically. This is because of the high number of decision variables (20

in total, considering that there are 10 cross-sectional areas to be determined, each

consisting of 2 values). Since the range of each variable goes from 0.25 to 999.99,

259

Method x

1

x

2

x

3

f

1

f

2

f

3

Monte Carlo 1 32.80 64.55 952.57 31653:40 2.904226 19.813087

Monte Carlo 1 560.66 983.17 476.91 80905.76 0:593976 4.894527

Monte Carlo 1 874.86 974.69 174.33 80641.81 0.593976 4:894527

Min-Max (OS) 149.69 149.69 149.69 18836:86 2.953601 22.275247

Min-Max (OS) 149.94 149.94 149.94 18878.93 2:942967 22.206487

Min-Max (OS) 149.94 149.94 149.94 18878.93 2.942967 22:206487

GA (Binary) 126.84 62.01 0.29 4929:28 7.111559 74.140541

GA (Binary) 999.99 999.99 999.99 115525.01 0:441966 3.503093

GA (Binary) 999.99 974.16 999.99 125884.37 0.441966 3:333183

GA (FP) 98.90 87.60 0.26 4638:28 7.599996 84.149033

GA (FP) 999.99 999.99 999.96 105498.98 0:441966 4.355180

GA (FP) 999.97 999.99 999.95 125882.29 0.441967 3:333209

Literature 68.19 106.40 7.50 4793:20 7.428803 78.343449

Literature 68.19 106.40 7.50 4793.20 7:428803 78.343449

Literature 68.19 106.40 7.50 4793.20 7.428803 78:343449

Table 6.8: (Part I) Comparison of results computing the ideal vector of example 4

from Chapter 5 (design of a 10-bar plane truss). For each method the best results

for optimum f

1

, f

2

and f

3

are shown in boldface. OS stands for Osyczka's

Multiobjective Optimization System. (Continued in Tables 6.9, 6.10 and 6.11)

Method x

4

x

5

x

6

x

7

x

8

x

9

x

10

Monte Carlo 1 218.32 766.84 329.31 309.84 67.62 884.46 238.92

Monte Carlo 1 687.97 651.63 907.20 400.74 527.49 428.28 943.04

Monte Carlo 1 687.97 651.63 907.20 400.74 527.49 428.28 943.04

Min-Max (OS) 149.69 149.69 149.69 149.69 149.69 149.69 149.69

Min-Max (OS) 149.94 149.94 151.36 149.94 149.94 149.94 149.94

Min-Max (OS) 149.94 149.94 151.36 149.94 149.94 149.94 149.94

GA (Binary) 2.83 307.47 2.97 1.85 164.10 0.33 0.25

GA (Binary) 999.99 999.99 999.99 999.99 999.99 0.40 408.46

GA (Binary) 999.99 999.99 999.99 999.99 999.99 983.40 990.65

GA (FP) 0.25 163.06 25.26 55.34 40.91 0.25 0.25

GA (FP) 999.68 995.99 999.99 969.99 999.99 334.54 11.04

GA (FP) 999.78 999.98 999.99 999.97 999.90 999.90 999.79

Literature 0.40 61.50 93.00 38.90 47.80 0.41 0.42

Literature 0.40 61.50 93.00 38.90 47.80 0.41 0.42

Literature 0.40 61.50 93.00 38.90 47.80 0.41 0.42

Table 6.9: (Part II) Comparison of results computing the ideal vector of example

4 from Chapter 5 (design of a 10-bar plane truss). OS stands for Osyczka's

Multiobjective Optimization System. (Continued in Tables 6.10 and 6.11)

260

Method x

11

x

12

x

13

x

14

x

15

x

16

x

17

Monte Carlo 1 336.86 247.97 277.32 165.75 474.50 80.25 154.58

Monte Carlo 1 50.69 610.30 148.90 758.23 335.02 880.26 549.24

Monte Carlo 1 50.69 610.30 148.90 758.23 335.02 880.26 549.24

Min-Max (OS) 149.69 149.69 149.69 149.69 149.69 149.69 149.69

Min-Max (OS) 149.94 149.94 149.94 149.94 149.94 149.94 149.94

Min-Max (OS) 149.94 149.94 149.94 149.94 149.94 149.94 149.94

GA (Binary) 10.57 0.27 0.87 41.47 170.62 6.78 163.87

GA (Binary) 999.99 685.44 999.99 999.99 999.99 999.99 999.99

GA (Binary) 999.99 974.16 999.99 999.99 999.99 999.99 999.99

GA (FP) 1.44 1.07 74.05 0.25 40.98 75.85 200.27

GA (FP) 0.55 1.21 999.99 999.99 999.98 999.99 999.99

GA (FP) 999.74 999.97 999.99 999.99 999.96 999.99 999.95

Literature 7.07 0.40 27.10 24.20 43.20 73.40 50.10

Literature 7.07 0.40 27.10 24.20 43.20 73.40 50.10

Literature 7.07 0.40 27.10 24.20 43.20 73.40 50.10

Table 6.10: (Part III) Comparison of results computing the ideal vector of example

4 from Chapter 5 (design of a 10-bar plane truss). OS stands for Osyczka's

Multiobjective Optimization System. (Continued in Table 6.11)

Method x

18

x

19

x

20

Monte Carlo 1 149.35 202.75 120.33

Monte Carlo 1 919.97 817.87 337.84

Monte Carlo 1 919.97 817.87 337.84

Min-Max (OS) 149.69 149.69 149.69

Min-Max (OS) 149.94 149.94 149.94

Min-Max (OS) 149.94 149.94 149.94

GA (Binary) 223.78 4.60 0.49

GA (Binary) 999.99 999.99 999.99

GA (Binary) 999.99 999.99 999.99

GA (FP) 200.32 0.25 0.25

GA (FP) 986.32 999.99 999.94

GA (FP) 504.66 999.99 999.84

Literature 70.10 1.00 2.60

Literature 70.10 1.00 2.60

Literature 70.10 1.00 2.60

Table 6.11: (Part IV) Comparison of results computing the ideal vector of example

4 from Chapter 5 (design of a 10-bar plane truss). OS stands for Osyczka's

Multiobjective Optimization System.

261

40000
50000

60000
70000

80000
1

1.5
2

2.5
3

3.5
0

5

10

15

20

25

30

Weight

Displacement

Stress

Figure 6.84: Initial feasible region for Monte Carlo method solving the fourth

example.

considering increments of 0.01 we would have to perform 100000

20

iterations to

generate the feasible zone (about 1 � 10

100

iterations). Even if we consider only

100 values from each range, we have to generate 1 � 10

40

points. However, I

will display the 3-dimensional representation of the objective functions when each

method is applied to this example, and this will give us a better idea of how the

feasible zone looks like, although it may harder to identify the Pareto front from

such graphs. To solve this problem, it was necessary to add a module to each

program in order to analyze the plane truss generated by each algorithm. This

module uses the matrix factorization method included in Gere and Weaver [202]

together with the sti�ness method [202] [203] to analyze the structure.

The ideal vector of this problem was computed using Monte Carlo Meth-

ods 1 and 2 (generating 500 points) presented in Chapter 4, and a GA (with a

population of 500 chromosomes running during 100 generations) using binary and

oating point representation, with the procedure described in Chapter 4 to adjust

its parameters. The corresponding results are shown in Tables 6.8, 6.9, 6.10 and

262

6.11 including the best results reported in the literature [193]. This time, there

is a great di�erence between the results found by the GA and the mathematical

programming techniques, con�rming two hypothesis about them: a) Monte Carlo

methods are not very reliable when the search space is too large, as in this case,

and b) Mathematical Programming techniques need a very good guess point to

start the search, and if this value is not close to the optimum region (as in this

case) the results tend to be completely undesirable. Notice that, as in previous

cases, the GA with oating point representation produced the best results, except

for the last objective, for which the binary representation found a slightly better

solution. However, again, we can say that, in general, the GA with oating point

representation produced the best results (i.e., the ideal vector). Notice that the

set of results reported by Belegundu [193] was produced optimizing only the �rst

objective (i.e., the total weight of the truss). We can see how the GA with oat-

ing point representation found a better result than that reported by Belegundu,

showing, once more, that this technique can overcomemathematical programming

techniques when used properly (i.e., if we can �nd the right set of parameters,

which is what the procedure described in Chapter 4 does). The results for Monte

Carlo Method 2 are the same than for Method 1.

Since the Monte Carlo Methods previously mentioned and Osyczka's mul-

tiobjective optimization system do not generate the Pareto front, I will compare

them with the GA-based approaches only in terms of the best overall result found.

Besides those results, it is interesting to observe the initial distribution of points

randomly generated by the method (see Figure 6.84). As can be seen from the

tables previously shown (see Tables 6.8, 6.9, 6.10 and 6.11), the objectives are

highly conicting, and therefore, it is very hard to come up with a good compro-

mise. From the graph depicted in Figure 6.84 we can see that the optimum region

263

70000

75000

80000

0.5

0.55

4

4.5

5

5.5

6

6.5

Weight

Displacement

Stress

Figure 6.85: Example 4: The GA using a linear combination of the objectives

with scaling, after 100 generations using binary representation.

73000
74000

75000
76000

77000
78000 0.49

0.495
0.5

0.505
0.51

0.515
0.52

0.525
0.53

0.535

4.25
4.3

4.35
4.4

4.45
4.5

4.55
4.6

4.65
4.7

Weight

Displacement

Stress

Figure 6.86: Example 4: The GA using a linear combination of the objectives

with scaling, after 100 generations using oating point representation.

264

40000450005000055000600006500070000750008000085000
1

1.5
2

2.5
3

3.5
40

5

10

15

20

25

Weight

Displacement

Stress

Figure 6.87: Example 4: Distribution of points using the Lexicographic Method

with a binary representation at generation zero. Only points within the feasible

region are displayed.

would be located as close as possible to the ideal vector for each one of the axis.

However, because of the great variation in the results, we will see that the com-

mon compromise will be to have higher values of weight to allow smaller stresses

and displacements. This is true in the physical world, since larger cross-sectional

areas allow less stress and displacement in the structure. It is also important

observe through all the graphs corresponding to the example the ranges of the

axis, because even when the clusters of points could all look alike, there will be a

great variation in terms of the ranges. For example, the initial region for Monte

Carlo Methods presents a trend towards relatively low weights and stresses and

higher displacements.

We will start by analyzing the behavior of the Lexicographic Method at

di�erent stages of the search process. Figure 6.87 shows the distribution of points

produced at generation zero using this method. We can see that this distribu-

tion has many similarities with the initial distribution of Monte Carlo methods,

previously shown, except that in this case the ranges are smaller and there seems

265

60000
70000

80000
90000

100000 0.5

1

1.5

3

4

5

6

7

8

9

10

11

Weight

Displacement

Stress

Figure 6.88: Example 4: Distribution of points using the Lexicographic Method

with a binary representation at generation twenty. Only points within the feasible

region are displayed.

45000500005500060000650007000075000800008500090000

1

1.5

20

5

10

15

20

Weight

Displacement

Stress

Figure 6.89: Example 4: Distribution of points using the Lexicographic Method

with a oating point representation at generation twenty. Only points within the

feasible region are displayed.

266

65000700007500080000850009000095000100000105000
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

Weight

Displacement

Stress

Figure 6.90: Example 4: Distribution of points using the Lexicographic Method

with a binary representation at generation 100. Only points within the feasible

region are displayed.

50000
60000

70000
80000

90000
0.6

0.7
0.8

0.9
1

1.1

4
5
6
7
8
9

10
11
12

Weight

Displacement

Stress

Figure 6.91: Example 4: Distribution of points using the Lexicographic Method

with a oating point representation at generation 100. Only points within the

feasible region are displayed.

267

to be a slightly better distribution of points. Figure 6.88 shows the distribution

of points at generation 20 using binary representation, and Figure 6.89 shows

the corresponding distribution using oating point representation. As in previous

cases, we can see that using a oating point representation up to this stage of

the search process, we can get a more uniform distribution of points, with fewer

dominated points than when we use binary representation, and with compromises

that favor weight over stress and displacement. After 100 generations, oating

point representation presents points more uniformly distributed, almost shaping

a plane that seems to be the Pareto front (see Figure 6.91). As mentioned before,

the compromise taken was to reduce weight, sacri�cing displacement and stress,

whereas in the solution found using binary representation (see Figure 6.90) there

is more dispersion of the points, and the compromise seems to be the reduction of

stress and displacement, sacri�cing weight. This is a good example to illustrate

the importance of the scheme representation chosen to apply a genetic algorithm.

In this case, the use of oating point representation provided a more compact

distribution of points and a better overall solution (see Tables 6.12, 6.13, 6.14)

and 6.15), but it also could seem more practical to sacri�ce one objective (weight,

in this example) to improve the other two (displacement and stress) rather than

what this technique did (exactly the opposite). I also compared the e�ect of a

simple linear combination of objectives (addition or multiplication) using scaling,

and the results after 100 generations are shown in Figure 6.85. Observe how in

this case, even a good scaling of the objectives is not able to �nd a good trade-o�,

and, as expected, is also unable to delineate the Pareto front. The population

starts converging to a small set of points in which weight and displacement are

favored, and stress is sacri�ced. The use of oating point representation gives a

very similar distribution, and can not avoid global convergence even when this is

268

50000
60000

70000
80000

90000
100000 0.5

1

1.5

2

2.5
0

5

10

15

20

Weight

Displacement

Stress

Figure 6.92: Example 4: Distribution of points using VEGA with a binary repre-

sentation at generation twenty.

not totally evident in the graph until we see the ranges in the axis (see Figure 6.86).

In this case, however, stress and displacement are given priority over weight. The

best overall result in both cases is very poor, with the compromise established by

oating point representation being worse in terms of the ideal vector (although

the decision maker could still want a compromise of that sort).

Scha�er's VEGA produces a reasonably good distribution of points after

20 generations using binary representation (see Figure 6.92), but it still has several

dominated points within the population. Up to this point, weight has priority over

stress and displacement. After 50 generations, however, things seem to change,

and now the compromise is to favor displacement and stress, sacri�cing weight

(see Figure 6.93). At this stage, there are fewer dominated points in the graph,

and we can start visualizing a trade-o� contour. After 100 generations, we have

partial convergence of the population towards a region that favors displacement

and stress over weight, with only a few points escaping from this region (see

Figure 6.96). The best overall solution produced using this method with binary

269

Method x

1

x

2

f

1

f

2

f

3

L

p

(f)

Ideal Vector 4638.27 0.441966 3.333183 0.000000

Monte Carlo 1 568.79 548.29 53192.31 0.965460 7.648280 12.94718

Monte Carlo 2 739.06 862.57 55219.31 0.855851 7.103715 12.97281

Min-max (OS) 149.94 149.94 18868.75 2.948609 22.237597 14.41121

GCM (OS) 149.94 149.94 18878.93 2.942967 22.206487 14.39130

WMM (OS) 149.94 149.94 18868.75 2.948609 22.237597 14.41121

PMM (OS) 149.69 149.69 18836.86 2.953601 22.275247 14.42692

NMM (OS) 149.94 149.94 18878.93 2.942967 22.206487 14.39130

GALC (B) 999.99 999.99 69569.32 0.557806 5.429589 14.89001

GALC (FP) 986.23 996.95 72453.42 0.527797 4.521338 15.17143

Lexicographic (B) 211.19 815.41 60622.20 0.766283 7.931645 14.18339

Lexicographic (FP) 445.21 922.61 40120.69 1.167479 11.700044 11.80164

VEGA (B) 40.42 273.03 57619.82 1.379811 9.670593 15.44597

VEGA (FP) 988.71 820.67 67208.04 0.676467 6.405205 14.94211

NSGA (B) 677.02 999.99 88579.33 0.532519 4.648191 18.69688

NSGA (FP) 871.94 877.51 83412.55 0.567590 4.614603 17.65221

MOGA (B) 999.99 999.99 48199.54 0.964701 7.932508 11.95430

MOGA (FP) 972.31 762.56 43846.84 1.007271 8.380988 11.24674

NPGA (B) 999.99 275.11 62843.73 0.874356 8.118541 14.96295

NPGA (FP) 14.40 57.03 50687.80 0.840845 12.244041 13.50404

Hajela (B) 812.58 81.82 51259.10 1.44721 9.118564 13.37708

Hajela (FP) 262.96 433.37 46976.37 1.319407 9.631833 13.00298

GAminmax1 (B) 999.99 349.50 29984.80 1.183646 10.203125 9.20386

GAminmax1 (FP) 597.63 484.86 28053.57 1.290751 10.923750 9.24603

GAminmax2 (B) 999.99 999.99 112587.49 0.441966 3.698968 23.38331

GAminmax2 (FP) 995.78 999.25 108346.09 0.448540 3.716841 22.48911

Table 6.12: (Part I) Comparison of the best overall solution found by each one of

the methods included in MOSES for the fourth example (design of a 10-bar plane

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In

all cases, weights were assumed equal to 0.33 (equal weight for every objective).

(Continued in Tables 6.13, 6.14 and 6.15)

270

Method x

3

x

4

x

5

x

6

x

7

x

8

x

9

Monte Carlo 1 82.46 713.22 273.77 686.78 478.02 389.66 711.35

Monte Carlo 2 27.50 419.06 314.71 560.84 875.14 242.53 422.33

Min-max (OS) 149.94 149.94 149.94 149.94 149.94 149.94 149.94

GCM (OS) 149.94 149.94 149.94 151.36 149.94 149.94 149.94

WMM (OS) 149.94 149.94 149.94 149.94 149.94 149.94 149.94

PMM (OS) 149.69 149.69 149.69 149.69 149.69 149.69 149.69

NMM (OS) 149.94 149.94 149.94 151.36 149.94 149.94 149.94

GALC (B) 453.70 92.95 999.99 999.99 999.99 687.66 2.49

GALC (FP) 443.74 105.54 973.44 990.69 698.35 853.29 7.56

Lexicographic (B) 103.79 680.00 999.99 625.02 413.83 943.66 96.33

Lexicographic (FP) 119.93 705.79 982.58 531.84 63.94 182.92 212.88

VEGA (B) 747.28 227.40 999.99 43.95 754.28 999.99 904.53

VEGA (FP) 330.54 642.00 559.35 934.17 871.85 772.50 276.30

NSGA (B) 999.99 932.40 999.99 999.99 539.62 866.29 999.99

NSGA (FP) 571.91 586.58 817.15 696.57 275.67 770.45 832.84

MOGA (B) 595.63 999.99 872.65 778.18 976.24 999.99 993.94

MOGA (FP) 420.26 216.58 630.09 937.91 596.98 329.61 135.19

NPGA (B) 144.28 761.98 362.95 730.09 513.68 946.59 3.00

NPGA (FP) 913.50 293.54 942.89 967.59 897.88 663.62 746.60

Hajela (B) 677.37 119.94 999.99 306.19 999.99 994.26 485.06

Hajela (FP) 915.82 234.17 563.21 192.44 712.29 428.97 163.35

GAminmax1 (B) 41.69 36.41 739.40 300.38 775.73 81.50 19.83

GAminmax1 (FP) 139.44 22.04 353.38 418.54 327.86 316.09 56.63

GAminmax2 (B) 999.99 999.99 999.99 999.99 999.99 999.99 182.66

GAminmax2 (FP) 994.69 935.50 995.36 996.86 994.25 994.82 10.11

Table 6.13: (Part II) Comparison of the best overall solution found by each one of

the methods included in MOSES for the fourth example (design of a 10-bar plane

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In

all cases, weights were assumed equal to 0.33 (equal weight for every objective).

(Continued in Tables 6.14 and 6.15)

271

Method x

10

x

11

x

12

x

13

x

14

x

15

x

16

Monte Carlo 1 420.06 179.62 548.32 49.21 454.42 100.22 572.62

Monte Carlo 2 262.27 403.24 519.37 969.49 317.29 763.80 243.18

Min-max (OS) 149.94 149.94 149.94 149.94 149.94 149.94 149.94

GCM (OS) 149.94 149.94 149.94 149.94 149.94 149.94 149.94

WMM (OS) 149.94 149.94 149.94 149.94 149.94 149.94 149.94

PMM (OS) 149.69 149.69 149.69 149.69 149.69 149.69 149.69

NMM (OS) 149.94 149.94 149.94 149.94 149.94 149.94 149.94

GALC (B) 1.65 244.40 44.11 999.99 999.99 29.56 999.99

GALC (FP) 10.86 262.61 7.76 975.55 950.37 881.98 698.79

Lexicographic (B) 999.99 356.46 999.99 586.39 998.94 321.76 593.05

Lexicographic (FP) 6.81 109.10 586.41 43.80 956.88 712.47 430.76

VEGA (B) 734.12 101.46 138.12 909.71 359.34 495.71 999.99

VEGA (FP) 584.72 222.63 436.98 570.08 791.96 871.64 946.63

NSGA (B) 878.05 735.83 568.36 999.99 788.23 749.83 999.99

NSGA (FP) 521.01 946.13 849.67 981.95 965.13 488.56 902.68

MOGA (B) 999.99 407.08 94.87 170.13 999.99 846.14 414.63

MOGA (FP) 704.39 811.73 888.41 143.05 591.59 981.12 571.07

NPGA (B) 538.34 999.99 11.88 218.09 463.96 950.37 999.99

NPGA (FP) 621.74 767.30 689.26 445.81 719.91 670.87 865.13

Hajela (B) 37.71 999.99 999.99 999.99 363.73 375.61 708.13

Hajela (FP) 873.88 577.44 280.74 430.82 876.98 183.82 391.43

GAminmax1 (B) 4.82 40.87 7.89 778.72 102.08 856.51 160.79

GAminmax1 (FP) 9.78 79.04 11.61 209.11 336.30 222.86 266.77

GAminmax2 (B) 478.74 181.67 999.99 999.99 999.99 999.99 999.99

GAminmax2 (FP) 127.64 267.33 432.67 966.51 958.36 996.60 998.63

Table 6.14: (Part III) Comparison of the best overall solution found by each one of

the methods included in MOSES for the fourth example (design of a 10-bar plane

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In

all cases, weights were assumed equal to 0.33 (equal weight for every objective).

(Continued in Table 6.15)

272

Method x

17

x

18

x

19

x

20

Monte Carlo 1 412.64 228.87 484.10 41.59

Monte Carlo 2 822.99 290.74 124.14 388.45

Min-max (OS) 149.94 151.36 149.94 149.94

GCM (OS) 149.94 149.94 149.94 149.94

WMM (OS) 149.94 151.36 149.94 149.94

PMM (OS) 149.69 149.69 149.49 149.69

NMM (OS) 149.94 149.94 149.94 149.94

GALC (B) 999.99 939.14 612.52 3.38

GALC (FP) 991.55 353.91 715.32 32.00

Lexicographic (B) 836.76 999.99 944.36 373.50

Lexicographic (FP) 659.13 299.28 908.48 568.38

VEGA (B) 999.99 161.84 0.61 133.48

VEGA (FP) 909.70 130.85 422.78 718.08

NSGA (B) 453.50 679.71 999.99 713.62

NSGA (FP) 982.48 895.44 946.93 584.22

MOGA (B) 999.99 578.93 297.43 999.99

MOGA (FP) 389.85 708.47 464.30 620.24

NPGA (B) 54.88 309.74 152.27 491.54

NPGA (FP) 961.66 385.32 740.64 516.32

Hajela (B) 999.99 647.67 705.56 163.89

Hajela (FP) 993.84 155.72 631.91 53.29

GAminmax1 (B) 999.99 798.45 6.99 3.94

GAminmax1 (FP) 844.37 376.55 49.98 9.64

GAminmax2 (B) 999.99 902.14 999.99 999.99

GAminmax2 (FP) 933.07 856.75 995.59 981.88

Table 6.15: (Part IV) Comparison of the best overall solution found by each one of

the methods included in MOSES for the fourth example (design of a 10-bar plane

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In all

cases, weights were assumed equal to 0.33 (equal weight for every objective).

273

60000
70000

80000
90000

100000
110000

0.5
0.6

0.7
0.8

0.9
1

1.1
1.2

1.3

3

4

5

6

7

8

9

10

Weight

Displacement

Stress

Figure 6.93: Example 4: Distribution of points using VEGA with a binary repre-

sentation at generation �fty.

400004500050000550006000065000700007500080000

1

1.50

5

10

15

20

Weight

Displacement

Stress

Figure 6.94: Example 4: Distribution of points using VEGA with oating point

representation at generation twenty.

274

5000055000600006500070000750008000085000

1

1.5

4

5

6

7

8

9

10

11

12

Weight

Displacement

Stress

Figure 6.95: Example 4: Distribution of points using VEGA with oating point

representation at generation �fty.

60000
70000

80000
90000

100000
110000 0.5

0.6
0.7

0.8
0.9

1
1.1

1.2
1.3

3

4

5

6

7

8

9

10

Weight

Displacement

Stress

Figure 6.96: Example 4: Distribution of points using VEGA with binary repre-

sentation at generation 100.

275

550006000065000700007500080000850009000095000

1

1.5

4
5
6
7
8
9

10
11
12

Weight

Displacement

Stress

Figure 6.97: Example 4: Distribution of points using VEGA with oating point

representation at generation 100.

representation is not very good, because of its trend to favor individuals who

excel in only one dimension, rather than to keep the best trade-o�s. After only

20 generations, oating point representation seems to be doing better in terms of

obtaining compromises, but has more problems to keep the distribution of points

uniform (see Figure 6.94). After 50 generations, stress gains some importance over

weight, and the �nal contour starts to appear (see Figure 6.95). Finally, after 100

generations, the population seems to be converging towards the best compromise

found by the algorithm, favoring stress and displacement over weight. Notice that

the weight has increased somewhat more than before, but the stress has decreased

(see Figure 6.97). Floating point representation was able to �nd a better overall

solution than binary representation in this example, by allowing a slightly higher

displacement and stress in order to reduce the total weight of the structure. As in

previous examples, global convergence to a single point seems to be just a matter

of time when using this technique.

276

90000
95000

100000
105000

110000
115000

120000
0.45

0.5

0.55
3

3.5

4

4.5

5

Weight

Displacement

Stress

Figure 6.98: Example 4: Distribution of points using NSGA with binary repre-

sentation at generation 100.

60000
70000

80000
90000

100000
110000 0.5

0.6
0.7

0.8
0.9

1
1.1

3.5
4

4.5
5

5.5
6

6.5
7

7.5

Weight

Displacement

Stress

Figure 6.99: Example 4: Distribution of points using NSGA with binary repre-

sentation at generation twenty.

277

120000

125000
0.445

0.45
0.455

0.46
0.465

0.473.3

3.35

3.4

3.45

3.5

3.55

Weight

Displacement

Stress

Figure 6.100: Example 4: Distribution of points using NSGA with binary repre-

sentation at generation 500.

85000
90000

95000
100000

105000
0.5

0.55

0.6

3.5

4

4.5

5

5.5

Weight

Displacement

Stress

Figure 6.101: Example 4: Distribution of points using NSGA with oating point

representation at generation 100.

278

After only 20 generations, my version of Srinivas' NSGA that uses binary

representation presents a slightly compact cluster of points that represent compro-

mises in which weight has priority over displacement and stress (see Figure 6.99).

However, after 100 generations, we can see that the compromise is now to pri-

oritize stress and displacement over weight, and the points are distributed in a

lesser compact way than before (see Figure 6.98). After 500 generations, the trend

is to make the population converge towards a solution in which stress and dis-

placement are extremely close to the ideal vector, but the weight is excessive (see

Figure 6.100). The selection mechanism of this technique seems to favor solutions

that highly dominate with respect to those two objectives, sacri�cing compromises

that would balance better with respect to weight. Again, to converge to a global

trade-o� with two almost ideal objectives seems to be only a matter of time. If

we use oating point representation, we can anticipate the previous results, since

after 100 generations there seems to be a strong trend towards solutions in which

stress and displacement take precedence over weight (see Figure 6.101), however,

since the points are distributed over a slightly larger range, this representation

produces a better overall solution up to this point. Once more, there was not

signi�cant change in the results when the value of �

share

was modi�ed.

Fonseca's MOGA gives a good region of compromise solutions after 20

generations using binary representation, favoring weight over displacement and

stress (see Figure 6.102). After 100 generations, the behavior of the technique is

very consistent, since now we have less dominated points, and the compromise

solutions have a slightly lower stress than before, but we still have a relatively low

weight (see Figure 6.103). Due to the good compromise solutions present at this

stage of the search, the best overall result reported at this point is remarkably

good. After 500 generations, the method shows a set of points less compact than

279

50000
60000

70000
80000

90000
100000

1
1.5

2
2.5

3
3.50

5

10

15

20

25

Weight

Displacement

Stress

Figure 6.102: Example 4: Distribution of points using MOGA with binary repre-

sentation at generation 20.

50000
60000

70000
80000

90000

1

1.5

2

2.5
0

5

10

15

20

Weight

Displacement

Stress

Figure 6.103: Example 4: Distribution of points using MOGA with binary repre-

sentation at generation 100.

280

50000 55000 60000 65000
70000 75000 80000 0.6

0.7
0.8

0.9
1

1.1
1.2

1.3
4

5

6

7

8

9

10

11

Weight

Displacement

Stress

Figure 6.104: Example 4: Distribution of points using MOGA with binary repre-

sentation at generation 500.

45000500005500060000650007000075000800008500090000

1

1.5

4
5
6
7
8
9

10
11
12
13
14

Weight

Displacement

Stress

Figure 6.105: Example 4: Distribution of points using MOGA with oating point

representation at generation 100.

281

60000
70000

80000
90000

100000
110000

1
2

3
4

5
6

0
5

10
15
20
25
30
35
40
45

Figure 6.106: Example 4: Distribution of points using NPGA with binary repre-

sentation at generation 20.

at earlier stages in the search, with better compromise solutions (i.e., solutions

that favor the three objectives), but without clear indication of where the Pareto

front is (see Figure 6.104) The best overall solution found by this technique is

excellent using both representations, and the one produced using oating point

representation was the best found. The graph after 100 generations using oating

point representation shows for this problem more sparsed points than when using

binary representation, but the compromises are better since the ranges of the

objectives are smaller (see Figure 6.105). I also used a value of �

share

= 0:1

as in NSGA, but changing this value did not a�ect the results produced by the

algorithm.

After 20 generations, NPGA produces a quite compact cluster of points,

but there is a large variation in the ranges of them (see Figure 6.106), and we

can clearly see a lot of dominated points. After 50 generations, we still have a

large variation in the ranges of the objectives (see Figure 6.107). At generation

100, the trend seems clear: weight is being favored over displacement and stress

282

60000
70000

80000
90000

100000
110000 1

2
3

4
5

6
7

0

10

20

30

40

50

60

Weight

Displacement

Stress

Figure 6.107: Example 4: Distribution of points using NPGA with binary repre-

sentation at generation 50.

40000
50000

60000
70000

80000
90000 1

2
3

4
5

6
7

0

10

20

30

40

50

60

Weight

Displacement

Stress

Figure 6.108: Example 4: Distribution of points using NPGA with binary repre-

sentation at generation 100.

283

70000
80000

90000
100000

110000
120000

1
2

3
4

5
6

7

0
5

10
15
20
25
30
35
40
45
50
55

Weight

Displacement

Stress

Figure 6.109: Example 4: Distribution of points using NPGA with binary repre-

sentation at generation 500.

40000
50000

60000
70000

80000
90000

100000 0.5
1

1.5
2

2.5
3

3.5
0

5

10

15

20

25

30

35

Weight

Displacement

Stress

Figure 6.110: Example 4: Distribution of points using NPGA with binary repre-

sentation at generation 100 with �

share

= 1:0.

284

40000 50000 60000 70000 80000 90000100000110000
1

2

3
4

5

0
5

10
15
20
25
30
35
40
45
50

Weight

Displacement

Stress

Figure 6.111: Example 4: Distribution of points using NPGA with oating point

representation at generation 100.

40000
50000

60000
70000

80000
90000

1
2

3
4

5
6

7

0

10

20

30

40

50

60

70

Weight

Displacement

Stress

Figure 6.112: Example 4: Distribution of points using NPGA with oating point

representation at generation 20.

285

(see Figure 6.108). As in previous cases, we can see that this method does not

converge to a single solution and even after 500 generations, the population looks

very well distributed, but the stress has taken some priority over weight, producing

slightly better trade-o�s than before (see Figure 6.109). As in previous examples,

this method was able to keep more points through a lot of generations than any

other Pareto-based technique. The best overall solution produced when binary

representation was used scores average compared to the other techniques, and

improves a little if we use oating point representation. As in previous examples,

the value of �

share

plays a critical role in the performance of the algorithm, because

if we increase it from 0.1 (same value used with the previous techniques that use

niches) to 1.0, the distribution of points is less compact than before, slightly

favoring displacement over weight (see Figure 6.110). This trade-o� allows the

technique to �nd a slightly better overall solution, but more infeasible points are

generated in the graph. The value of t

dom

signi�cantly a�ects the performance

of the algorithm both in terms of e�ciency (it gets much slower) and quality of

results (it could completely fail in �nding the Pareto front). If we use oating

point representation in this example, we will be able to see, even in early stages

of the search, that weight is being given priority over displacement and stress (see

Figure 6.112). After 100 generations, the technique keeps consistency, and there

is a quite compact cluster of points of compromise solutions in which stress was

slightly favored over weight, and from which we may extract an overall solution

which is better than that produced with binary representation (see Figure 6.111).

When we use Hajela's method, the results seem to be more consistent than

before, probably because I chose a good set of weights. After 20 generations, there

is a more or less uniform distribution of points, encompassing compromise solu-

tions in which stress and displacement have priority over weight (see Figure 6.113).

286

60000
70000

80000
90000

100000

1

1.5

20

5

10

15

20

Weight

Displacement

Stress

Figure 6.113: Example 4: Distribution of points using Hajela's method with

binary representation at generation 20.

45000500005500060000650007000075000800008500090000
1

1.5
2

2.5
3

3.50

5

10

15

20

25

Weight

Displacement

Stress

Figure 6.114: Example 4: Distribution of points using Hajela's method with

binary representation at generation 50.

287

50000
60000

70000
80000

90000
1

1.5

2

2.5

3
0

5

10

15

20

Weight

Displacement

Stress

Figure 6.115: Example 4: Distribution of points using Hajela's method with

binary representation at generation 100.

50000
60000

70000
80000

90000
100000

1

1.5

4
5
6
7
8
9

10
11
12
13
14

Weight

Displacement

Stress

Figure 6.116: Example 4: Distribution of points using Hajela's method with

binary representation at generation 500

288

45000
50000

55000
60000

65000
70000

75000
1

1.5
2

2.5
3

3.5

5

10

15

20

25

Weight

Displacement

Stress

Figure 6.117: Example 4: Distribution of points using Hajela's method with

oating point representation at generation 20.

45000
50000

55000
60000

65000 1
1.1

1.2
1.3

1.4
1.5

1.6
1.7

1.8
1.9

7

8

9

10

11

12

13

Weight

Displacement

Stress

Figure 6.118: Example 4: Distribution of points using Hajela's method with

oating point representation at generation 100.

289

After 50 generations weight is given a higher priority, and displacement and stress

values get increased (see Figure 6.114). At generation 100, the technique has found

very good compromises, as the corresponding graph shows (see Figure 6.115). The

best overall results found by this technique using both representations are above

average, mainly because of the fairly large range of the objective values. To see

if the technique could keep the diversity of the population, I ran the algorithm

for 500 generations, and although the technique loses the Pareto front, the diver-

sity of the population is maintained (see Figure 6.116). The trade-o�s after that

many generations favor displacement and stress rather than weight, but no main

convergence trend can be observed in the population. The use of oating point

representation provides a more solid Pareto front after 20 generations, with a

trade-o� that favors stress and displacement over weight (see Figure 6.117). How-

ever, after 100 generations the front has been lost, and the population looks quite

sparse, with a compromise that favors stress and weight over displacement (see

Figure 6.118). The diversity of such population explains that we are able to �nd

a better overall solution when oating point representation is used.

Before showing the results produced with my method based on the min-

max approach, I want to show the distribution of points at generation zero, since

in this case the algorithm ensures that only feasible solutions are generated. It

can be seen in Figure 6.119 that the initial distribution is fairly sparse, and that

the trade-o� seems to be more or less balanced between the 3 objectives. After

100 generations, and using 20 di�erent weights with binary representation, we can

see the Pareto front that contains the best overall result found for this example

(see Figure 6.120). The compromise is quite fair between the 3 objectives, with

the weight slightly favored. The use of oating point representation produces a

very similar Pareto contour, with its best overall result slightly lower than before

290

50000
60000

70000
80000

90000
100000 0.5

1

1.5

2

2.50

5

10

15

20

Weight

Displacement

Stress

Figure 6.119: Example 4: Distribution of points using my method based on the

min-max algorithm with binary representation at generation zero.

20000
30000

40000
50000

60000
1

1.5
2

2.5
3

3.5

5

10

15

20

25

30

35

Weight

Displacement

Stress

Figure 6.120: Example 4: Distribution of points using my method based on the

min-max algorithm with binary representation at generation 100.

291

20000
30000

40000
50000

60000
1

1.5
2

2.5
3

3.5

5

10

15

20

25

30

35

Weight

Displacement

Stress

Figure 6.121: Example 4: Distribution of points using my method based on the

min-max algorithm with oating point representation at generation 100.

(see Figure 6.121). Apparently the set of weights chosen was very good, because

both the Pareto contour and the best overall result were excellent. However, as

I have mentioned before, the performance of this technique is highly dependent

upon those weights. This is the reason why, it is probably wiser to try to combine

the e�ects of at least two methods when tackling multiobjective optimization

problems, so that one can account for the weaknesses of the other.

In this example, I had problems trying to �nd a good value for �

share

.

The results presented here correspond to a value of 0:5. Using the same initial

population shown in Figure 6.119, we can see that after 20 generations using

binary representation, the trend is already clear: displacement and stress have

priority over weight. The cluster of points does not look too sparse, even at that

early stage of the search, which is an indicator of the premature convergence

that we will achieve (see Figure 6.122). One interesting e�ect produced by this

algorithm is that after only 50 generations, it is able to draw the portion of the

Pareto front visible from the ranges of the objectives chosen by the GA (see

292

85000
90000

95000
100000

105000
110000

115000 0.45

0.5

0.55

3

3.5

4

4.5

Weight

Displacement

Stress

Figure 6.122: Example 4: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at generation 20.

115000

120000 0.445

0.45

0.455

0.46

0.465

3.3
3.35

3.4
3.45

3.5
3.55

3.6
3.65

3.7
3.75

Weight

Displacement

Stress

Figure 6.123: Example 4: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at generation 50.

293

113000
113500

114000
114500

115000
115500

116000 0.4
0.41

0.42
0.43

0.44
0.45

0.46
0.47

0.48

3.45

3.5

3.55

3.6

3.65

3.7

Weight

Displacement

Stress

Figure 6.124: Example 4: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at generation 100.

70000
75000

80000
85000

90000
95000

100000
105000

0.55

0.6

0.65

3.5

4

4.5

5

5.5

6

6.5

Weight

Displacement

Stress

Figure 6.125: Example 4: Distribution of points using my approach based on

min-max selection with sharing, using oating point representation at generation

20.

294

110000

115000

120000
0.4455

0.446
0.4465

0.447
0.4475

0.448
0.4485

0.449
0.4495

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

Weight

Displacement

Stress

Figure 6.126: Example 4: Distribution of points using my approach based on

min-max selection with sharing, using oating point representation at generation

100.

Figure 6.123). The points are lined up in a very rigid manner, with only a couple

of dominated results outside the contour. This shows how this technique has the

ability to �nd these Pareto contours relatively easy, but it turns out to be more

di�cult to keep it from converging to a single global result as we will see in the

following graphs. At generation 100 only a few points are visible, delineating

the Pareto front, and representing solutions that are optimum in terms of the

displacement (the same value of the ideal vector is found) and almost optimum

in terms of stress, but not very good in terms of weight (see Figure 6.124). This

behavior is typical of the min-max algorithm, since two objectives are optimum or

nearly optimum and therefore their deviations are zero. However, in an attempt

to achieve such optimality for these two objectives, the method highly disfavor

the other one and, consequently, the total deviation is very high, as can be seen in

the results (see Tables 6.12, 6.13 and 6.14). After 500 generations, however, the

method has converged to a unique solution (in fact, that really happens only a

few stages after generation 100). When oating point representation is used, after

295

20 generations we observe a similar graph as before, which leads us to think that

the technique will behave the same way (see Figure 6.125), but that is not the

case, because consistency is maintained after 100 generations, without achieving

global convergence of the population (see Figure 6.126). The problem now is that

the Pareto front does not seem very clear yet. This example shows once more how

the representation scheme can make the big di�erence when using a GA. In this

case, even when the solutions found by the two scheme representations are similar

(being the best overall solution found using oating point representation better),

with trade-o�s that favor displacement and stress over weight, the behavior of

the technique is more regular (i.e., without premature convergence) when using a

representation scheme that normally accelerates convergence.

6.6 Example 5 : Design of a 25-bar Space Truss

Once again, the large size of the search space of this problem makes it

impractical to show graphically the feasible region. The problem has 3 objective

functions, 8 decision variables and 55 constraints. Since the range of each deci-

sion variable goes from 0.1 to 999.99, considering increments of 0.01 we would

have to perform 100000

8

iterations to generate the feasible region (about 1� 10

40

iterations). Considering the amount of time needed to generate all the constraint

information and to analyze the structure, this goal seems infeasible in a reason-

able amount of time. Nevertheless, as in the previous example, I will provide

3-dimensional representations of the objective function space with each method,

to get a good idea of how does the feasible zone look like, and where the Pareto

front is. As before, to solve this problem, it was necessary to add a module to

each program in order to analyze the space truss generated by each algorithm.

296

Method x

1

x

2

x

3

f

1

f

2

f

3

Monte Carlo 1 718.36 24.32 384.19 57144:60 0.050551 1958.00

Monte Carlo 1 716.02 884.66 391.44 275439.48 0:003382 207.27

Monte Carlo 1 701.86 946.54 943.48 232253.56 0.003764 194:88

Min-Max (OS) 3.53 3.53 3.53 1166:98 0.781186 42028.65

Min-Max (OS) 3.88 3.88 3.88 1359.41 0:598842 33872.70

Min-Max (OS) 3.88 3.88 3.88 1359.41 0.598842 33872:70

GA (Binary) 0.100 0.660 3.900 72845:41 1.544286 87294.85

GA (Binary) 808.35 999.99 999.99 330717.40 0:002757 148.303585

GA (Binary) 999.99 999.99 999.99 330717.40 0.002757 148:303585

GA (FP) 0.120 0.220 3.370 468:93 1.565098 90959.54

GA (FP) 999.94 999.99 999.99 330716.80 0:002757 148.303654

GA (FP) 999.99 999.99 999.99 330717.25 0.002757 148:303598

Literature 0.100 0.700 3.200 493:94 1.285167 79916.70

Literature 0.100 0.700 3.200 493.94 1:285167 79916.70

Literature 0.100 0.700 3.200 493.94 1.285167 79916:70

Table 6.16: (Part I) Comparison of results computing the ideal vector of example

5 from Chapter 5 (design of a 25-bar space truss). For each method the best

results for optimum f

1

, f

2

and f

3

are shown in boldface. OS stands for Osyczka's

Multiobjective Optimization System. (Continued in Table 6.17)

Method x

4

x

5

x

6

x

7

x

8

Monte Carlo 1 257.10 739.09 15.86 239.59 11.67

Monte Carlo 1 504.67 731.47 938.00 940.11 984.20

Monte Carlo 1 804.08 943.77 491.77 477.04 765.34

Min-Max (OS) 3.53 3.53 3.53 3.53 3.53

Min-Max (OS) 3.88 3.88 3.88 3.88 5.30

Min-Max (OS) 3.88 3.88 3.88 3.88 5.30

GA (Binary) 0.100 1.29 999.99 0.820 2.560

GA (Binary) 999.99 999.99 999.99 999.99 999.99

GA (Binary) 626.24 885.75 999.99 999.99 999.99

GA (FP) 0.100 3.030 0.750 0.230 3.910

GA (FP) 999.94 999.76 999.79 999.99 999.99

GA (FP) 999.94 999.95 999.99 999.98 999.99

Literature 0.100 1.400 1.100 0.500 3.400

Literature 0.100 1.400 1.100 0.500 3.400

Literature 0.100 1.400 1.100 0.500 3.400

Table 6.17: (Part II) Comparison of results computing the ideal vector of example

5 from Chapter 5 (design of a 25-bar space truss). OS stands for Osyczka's

Multiobjective Optimization System.

297

45000
50000

55000
60000

65000 1
1.1

1.2
1.3

1.4
1.5

1.6
1.7

1.8
1.9

7

8

9

10

11

12

13

Weight

Displacement

Stress

Figure 6.127: Initial feasible region for Monte Carlo method solving the �fth

example.

This module uses the matrix factorization method included in Gere and Weaver

[202] together with the sti�ness method [202] [203] to analyze the structure.

The ideal vector of this problem was computed using Monte Carlo Meth-

ods 1 and 2 (generating 300 points) presented in Chapter 4, and a GA (with

a population of 300 chromosomes running during 100 generations) using binary

and oating point representation, with the procedure described in Chapter 4 to

adjust its parameters. The corresponding results are shown in Tables 6.16 and

6.17 including the best results reported in the literature [198].

The results presented for this example demonstrate the ine�ciency of

mathematical programming techniques to �nd the ideal vector when the search

space is too large. In such circumstances random methods completely fail in

�nding reasonable solutions and mathematical programming techniques require

guessing points too close to the actual solution vector (which we obviously do not

know). Again, the GA with oating point representation found the best results,

except for the last objective, for which the binary representation found a slightly

298

254700
254800

254900
255000

255100
255200 0.003075

0.0030755
0.003076

0.0030765
0.003077

0.0030775
0.003078

0.0030785

177.9
178

178.1
178.2
178.3
178.4
178.5
178.6
178.7
178.8
178.9

Weight

Displacement

Stress

Figure 6.128: Example 5: The GA using a linear combination of the objectives

with scaling, after 100 generations using binary representation.

better solution. However, it is interesting that binary representation completely

failed to �nd a reasonable solution for the �rst objective, probably because of the

small population considered for such a long string (136 genes). It is also important

to point out that the set of results reported by Coello et al. [198] was produced

optimizing only the �rst objective (i.e., the total weight of the truss) in a discrete

manner. As in the previous case, the GA with oating point representation was

able to �nd a better solution than that reported before in the literature. The

results for Monte Carlo Method 2 are the same than for Method 1.

Since the Monte Carlo Methods previously mentioned and Osyczka's mul-

tiobjective optimization system do not generate the Pareto front, I will compare

them with the GA-based approaches only in terms of the best overall result found.

Besides those results, it is interesting to observe the initial distribution of points

randomly generated by the method (see Figure 6.127). As can be seen from the

tables previously shown (see Tables 6.16 and 6.17), the objectives are highly con-

icting, and therefore, it is very hard to come up with a good compromise. From

299

194000194500195000195500196000196500197000197500198000
0.00335

0.00336
0.00337

0.00338
0.00339

198
198.5

199
199.5

200
200.5

201
201.5

202
202.5

203

Weight

Displacement

Stress

Figure 6.129: Example 5: The GA using a linear combination of the objectives

with scaling, after 100 generations using oating point representation.

the graph depicted in Figure 6.127 we can see that the optimum region would

be located as close as possible to the ideal vector for each one of the axes. How-

ever, because of the great variation in the results, we will see that the common

compromise will be to have higher values of weight to allow smaller stresses and

displacements. This is true in the physical world, since larger cross-sectional areas

allow less stress and displacement in the structure. It is also important observe

through all the graphs corresponding to each example the ranges of the axis,

because even when the clusters of points could all look alike, there will be a great

variation in terms of the ranges.

We will start by analyzing the behavior of the Lexicographic Method at

di�erent stages of the search process. Figure 6.130 shows the distribution of points

produced at generation zero using this method. We can see that this distribu-

tion is quite di�erent that the initial distribution of Monte Carlo methods. Here,

weight is sacri�ced for the sake of getting a lower displacement, but the total stress

is very high. In the initial distribution of Monte Carlo methods, points are more

300

150000
200000

250000
300000

0.01
0.02

0.03
0.04

0.05
0.06

0

500

1000

1500

2000

2500

3000

Weight

Displacement

Stress

Figure 6.130: Example 5: Distribution of points using the Lexicographic Method

with a binary representation at generation zero. Only points within the feasible

region are displayed.

150000
200000

250000
300000 0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04

0

500

1000

1500

2000

2500

Weight

Displacement

Stress

Figure 6.131: Example 5: Distribution of points using the Lexicographic Method

with a binary representation at generation twenty. Only points within the feasible

region are displayed.

301

100000
150000

200000
250000 0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Weight

Displacement

Stress

Figure 6.132: Example 5: Distribution of points using the Lexicographic Method

with a oating point representation at generation twenty. Only points within the

feasible region are displayed.

250000

300000 0.003
0.0035

0.004
0.0045

0.005
0.0055

150

200

250

300

Weight

Displacement

Stress

Figure 6.133: Example 5: Distribution of points using the Lexicographic Method

with a binary representation at generation 100. Only points within the feasible

region are displayed.

302

150000

200000
0.0035

0.004
0.0045

0.005
0.0055

0.006
0.0065

0.007
0.0075150

200

250

300

350

400

Weight

Displacement

Stress

Figure 6.134: Example 5: Distribution of points using the Lexicographic Method

with a oating point representation at generation 100. Only points within the

feasible region are displayed.

sparsed, and weight has a clear dominance over displacement, but the total stress

remains considerably low. This provides a reasonable explanation for the com-

pletely di�erent kind of trade-o�s that each technique will produce. Figure 6.131

shows the distribution of points at generation 20 using binary representation,

and Figure 6.132 shows the corresponding distribution using oating point repre-

sentation. The trade-o�s provided by both graphs are di�erent, because binary

representation is favoring stress over weight, whereas oating point representation

favors weight over stress. Displacement, on the other hand, has similar values in

both graphs. In this example, contrary to the results of the previous one, binary

representation produces a more uniform distribution of points that oating point

representation. After 100 generations, binary representation de�nitely shows a

better distribution of points, almost conforming a plane that seems to be the

Pareto front (see Figure 6.134). Floating point representation, shows a cluster of

points much more sparsed (see Figure 6.134). However, in terms of the best over-

all result, oating point representation can do much better, since it keeps a better

303

150000
200000

250000
300000

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0

500

1000

1500

2000

2500

3000

3500

Weight

Displacement

Stress

Figure 6.135: Example 5: Distribution of points using VEGA with a binary

representation at generation twenty.

trade-o� among the objectives, with a better value for the weight than when using

binary representation, which favors a higher weight to reduce the total stress. As

before, I also compared the e�ect of a simple linear combination of objectives

(addition or multiplication) using scaling. A linear combination of objectives did

not produce good results in this example. When a binary representation was used,

the population lined up into a straight line after 100 generations, with only a few

points outside it (see Figure 6.128). Unfortunately this line represents trade-o�s

that are not very well balanced, since the values of the three objectives are quite

high. The use of oating point representation improved things a little bit, produc-

ing lower weights while keeping the same stress as before (i.e., when using binary

representation) and allowing a higher stress (see Figure 6.129). This turns out

to produce better overall solutions, and a more reasonable contour of the Pareto

front. However, the trade-o�s are still too high and the arrangement of the points

at generation 100 are a clear indicator of an imminent convergence of the entire

population, which happens only a few generations later.

304

Method x

1

f

1

f

2

f

3

L

p

(f)

Ideal Vector 468.928261 0.002757 148.303585 0.000000

Monte Carlo 1 786.01 113293.85 0.006212 363.6076 243.306621

Monte Carlo 2 660.75 110264.89 0.006925 394.8020 237.316252

Min-max (OS) 3.8821 1344.32 0.676830 34793.19 479.969778

GCM (OS) 3.8821 1359.41 0.598842 33872.70 445.507894

WMM (OS) 3.8821 1344.32 0.676830 34793.19 479.969778

PMM (OS) 3.8821 1359.41 0.598842 33872.70 445.50789

NMM (OS) 3.8821 1359.41 0.598842 33872.70 445.50789

GALC (B) 282.44 254696.03 0.003078 178.85 542.46737

GALC (FP) 247.91 193849.17 0.003389 202.83 412.98462

Lexicographic (B) 516.62 219176.78 0.005791 280.06 468.38825

Lexicographic (FP) 450.57 129424.79 0.005412 303.46 277.010455

VEGA (B) 839.62 234854.32 0.003473 205.70 500.478800

VEGA (FP) 468.34 219453.21 0.003482 202.59 467.617915

NSGA (B) 999.99 250615.78 0.002975 171.74 533.680836

NSGA (FP) 709.53 226478.31 0.003971 205.53 482.796241

MOGA (B) 83.50 85297.74 0.023970 990.87 194.274927

MOGA (FP) 201.80 81778.41 0.021254 908.03 185.226194

NPGA (B) 28.41 92943.08 0.010969 585.22 203.127877

NPGA (FP) 539.39 55812.18 0.029665 1307.44 135.596546

Hajela (B) 6.88 99464.52 0.017495 1134.42 223.105294

Hajela (FP) 69.95 107947.60 0.007593 421.48 232.796738

GAminmax1 (B) 9.28 85604.05 0.036615 2190.83 207.605910

GAminmax1 (FP) 8.42 16230.99 0.037474 2227.73 60.226711

GAminmax2 (B) 999.99 330717.40 0.002757 148.30 704.262255

GAminmax2 (FP) 921.03 322935.45 0.002769 149.59 687.680069

Table 6.18: (Part I) Comparison of the best overall solution found by each one of

the methods included in MOSES for the �fth example (design of a 25-bar space

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In

all cases, weights were assumed equal to 0.33 (equal weight for every objective).

(Continued in Table 6.19)

305

Method x

2

x

3

x

4

x

5

x

6

x

7

x

8

Monte Carlo 1 441.86 412.95 221.47 593.79 240.96 37.1945 642.65

Monte Carlo 2 291.60 478.25 629.48 777.60 187.36 56.9828 577.80

Min-max (OS) 3.8821 5.2964 3.8821 3.8821 3.8821 3.8821 3.8821

GCM (OS) 3.8821 3.8821 3.8821 3.8821 3.8821 3.8821 5.2964

WMM (OS) 3.8821 5.2964 3.8821 3.8821 3.8821 3.8821 3.8821

PMM (OS) 3.8821 3.8821 3.8821 3.8821 3.8821 3.8821 5.2964

NMM (OS) 3.8821 3.8821 3.8821 3.8821 3.8821 3.8821 5.2964

GALC (B) 425.67 999.99 59.00 123.80 999.99 820.83 999.99

GALC (FP) 440.14 999.39 0.52 513.61 439.53 493.92 998.86

Lexicographic (B) 455.59 587.54 999.99 932.43 999.99 761.67 999.99

Lexicographic (FP) 439.90 520.77 427.54 296.86 375.58 725.23 655.95

VEGA (B) 999.99 999.99 999.99 661.79 853.86 999.99 999.99

VEGA (FP) 920.78 870.16 418.78 839.55 817.89 947.87 985.55

NSGA (B) 999.99 999.99 599.88 999.99 977.42 999.99 999.99

NSGA (FP) 887.07 982.84 982.05 780.48 890.77 761.94 906.92

MOGA (B) 344.84 799.85 351.95 968.68 447.63 102.92 82.12

MOGA (FP) 766.06 290.23 795.97 539.97 895.71 399.41 351.92

NPGA (B) 652.02 740.52 761.61 966.87 464.42 635.52 575.39

NPGA (FP) 177.03 175.81 889.32 514.16 103.14 2.91 117.61

Hajela (B) 40.84 171.33 1.27 147.24 999.99 10.41 277.95

Hajela (FP) 569.04 416.87 642.84 250.29 112.66 85.28 743.15

GAminmax1 (B) 11.66 88.95 3.02 77.09 999.99 3.95 127.39

GAminmax1 (FP) 14.53 104.01 0.14 77.21 43.19 4.91 117.57

GAminmax2 (B) 999.99 999.99 999.99 999.99 999.99 999.99 999.99

GAminmax2 (FP) 997.60 999.59 961.44 988.96 998.70 989.70 998.41

Table 6.19: (Part II) Comparison of the best overall solution found by each one of

the methods included in MOSES for the �fth example (design of a 25-bar space

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In all

cases, weights were assumed equal to 0.33 (equal weight for every objective).

306

200000

250000

300000 0.003
0.004

0.005
0.006

0.007
0.008

150

200

250

300

350

Weight

Displacement

Stress

Figure 6.136: Example 5: Distribution of points using VEGA with a binary

representation at generation �fty.

100000
150000

200000
250000

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0

5000

10000

15000

Weight

Displacement

Stress

Figure 6.137: Example 5: Distribution of points using VEGA with oating point

representation at generation twenty.

307

150000

200000

250000
0.003

0.004
0.005

0.006
0.007

0.008
0.009

150

200

250

300

350

400

450

Weight

Displacement

Stress

Figure 6.138: Example 5: Distribution of points using VEGA with oating point

representation at generation �fty.

240000250000260000270000280000290000300000310000320000
0.003

0.0035

0.004
140

150

160

170

180

190

200

210

Weight

Displacement

Stress

Figure 6.139: Example 5: Distribution of points using VEGA with binary repre-

sentation at generation 100.

308

220000230000240000250000260000270000280000290000300000310000
0.0029

0.003
0.0031

0.0032
0.0033

0.0034
0.0035

0.0036
150

160

170

180

190

200

210

Weight

Displacement

Stress

Figure 6.140: Example 5: Distribution of points using VEGA with oating point

representation at generation 100.

Scha�er's VEGA produces a very compact distribution of points after 20

generations using binary representation (see Figure 6.135), with only a few dom-

inated points within the population. Weight has a clear priority over stress and

displacement up to this point. After 50 generations, the population looks more

sparse, and the priorities have changed, giving stress and displacement preference

over weight (see Figure 6.136). After 100 generations, we have two contours,

from which the most compact seems to be the Pareto front (see Figure 6.139).

Displacement and stress have decreased and, consequently, weight has increased.

The best overall solution produced using this method with binary representa-

tion is extremely poor, because even when stress and displacement are extremely

close to the optimum values, weight is far too high to produce a reasonably good

maximum deviation. The results are very similar using oating point representa-

tion, because after only 20 generations the graph presents the form of a straight

line of points that represent compromises in which stress is extremely high and

309

260000270000280000290000300000310000320000
0.0028

0.00285
0.0029

0.00295
0.003

0.00305
0.0031

145

150

155

160

165

170

175

Weight

Displacement

Stress

Figure 6.141: Example 5: Distribution of points using NSGA with binary repre-

sentation at generation 100.

displacement and weight are conservatively low (see Figure 6.137). After 50 gen-

erations, however, weight starts increasing, and stress and displacement go down,

producing better trade-o�s (see Figure 6.138). Finally, after 100 generations, the

population is still very sparse, but the trend is clear: displacement and stress are

converging towards their optimum values, whereas the weight is increased (see

Figure 6.140). Due to the less uniform distribution of points at this generation, I

was able to �nd a better overall result using oating point representation. I should

also mention the fact that, as it will be seen in the following graphs, a situation

that kept repeating in this problem was that oating point representation was

able to keep more diversity in the population than binary representation, which

is not a common phenomenon, since this representation normally works all the

other way around.

After 20 generations, my version of Srinivas' NSGA that uses binary rep-

resentation presents a quite sparse distribution of solutions in which displacement

310

200000

250000

300000 0.003
0.0035

0.004
0.0045

0.005
0.0055

150

200

250

300

Weight

Displacement

Stress

Figure 6.142: Example 5: Distribution of points using NSGA with binary repre-

sentation at generation twenty.

290000295000300000305000310000315000320000325000330000

0.0028

0.00285

0.0029

0.00295

145

150

155

160

165

Weight

Displacement

Stress

Figure 6.143: Example 5: Distribution of points using NSGA with binary repre-

sentation at generation 500.

311

230000240000250000260000270000280000290000300000310000
0.003

0.0035

0.004

150

160

170

180

190

200

210

220

Weight

Displacement

Stress

Figure 6.144: Example 5: Distribution of points using NSGA with oating point

representation at generation 100.

and stress are strongly favored over weight (see Figure 6.142). After 100 gener-

ations, this trend is even stronger, producing in consequence higher weights and

lower stresses (see Figure 6.141). The points are still very sparsely distributed,

although there is an important grouping in a zone where weight is very high and

stress and displacement are practically optimum. After 500 generations, the pop-

ulation has almost converged to a point within the zone previously mentioned, in

which weight is extremely high, but stress and displacement are practically opti-

mum (see Figure 6.143). Again, the selection mechanism of this technique seems

to favor solutions that highly dominate with respect to those two objectives, sac-

ri�cing compromises that would balance better with respect to weight. The use

of oating point representation after 100 generations produces similar results as

before (i.e., with binary representation), but the weight is kept slightly lower (see

Figure 6.144). Because of that reason the best overall solution is better when

oating point representation is used. Once again, there was no signi�cant change

in the results when the value of �

share

was modi�ed.

312

100000
150000

200000
250000

0.05

0.1

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Weight

Displacement

Stress

Figure 6.145: Example 5: Distribution of points using MOGA with binary repre-

sentation at generation 20.

100000
150000

200000
250000 0.01

0.02
0.03

0.04
0.05

0.06
0.07

0

500

1000

1500

2000

2500

3000

Weight

Displacement

Stress

Figure 6.146: Example 5: Distribution of points using MOGA with binary repre-

sentation at generation 100.

313

150000

200000 0.005

0.01

0.015

0.02

200
300
400
500
600
700
800
900

1000
1100

Weight

Displacement

Stress

Figure 6.147: Example 5: Distribution of points using MOGA with binary repre-

sentation at generation 500.

100000
150000

200000
250000

0.005

0.01

0.015

0.02

100
200
300
400
500
600
700
800
900

1000

Weight

Displacement

Stress

Figure 6.148: Example 5: Distribution of points using MOGA with oating point

representation at generation 100.

314

Fonseca's MOGA gives a good region of compromise solutions after 20 gen-

erations using binary representation, favoring weight over displacement and stress

(see Figure 6.145). The Pareto front seems very clear in this case, with only a few

dominated points. After 100 generations, the ranges of stress and displacement

have been lowered, but without increasing weight, showing the right way to follow

in terms of �nding the best trade-o�. Most of the Pareto front is still there, but

there are more dominated points within the population (see Figure 6.146). Due

to the good compromise solutions present at this stage of the search, the best

overall result reported at this point is remarkably good. After 500 generations,

the method shows a set of points less compact than at earlier stages in the search,

with better compromise solutions (i.e., solutions that favor the three objectives),

but without clear indication of where is the Pareto front (see Figure 6.147). The

best overall solution found by this technique is excellent using both representa-

tions, being the one produced using oating point representation the best found

so far. The graph after 100 generations using oating point representation shows

more sparse points than when using binary representation, but the compromises

are better since the ranges of the objectives are slightly smaller for the three

objectives (see Figure 6.148). I also used a value of �

share

= 0:1 as in NSGA to

generate these graphs, but changing this value did not a�ect the results produced

by the algorithm.

After 20 generations, NPGA produces a sparse distribution of points, with

trade-o�s that seem very reasonable, since none of the objectives has excessively

high values (see Figure 6.149). After 50 generations, things have not changed

much, and we only observe that some points start to gather at a region parallel

to the plane formed by weight and displacement (see Figure 6.150). At genera-

tion 100, the trend seems clear: weight is being favored over displacement and

315

100000
150000

200000
250000

300000
0.005

0.01

0.015

0.02

100
200
300
400
500
600
700
800
900

1000
1100
1200

Weight

Displacement

Stress

Figure 6.149: Example 5: Distribution of points using NPGA with binary repre-

sentation at generation 20.

100000
150000

200000
250000

300000
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0

500

1000

1500

2000

Weight

Displacement

Stress

Figure 6.150: Example 5: Distribution of points using NPGA with binary repre-

sentation at generation 50.

316

100000
150000

200000
250000 0.01

0.02
0.03

0.04
0.05

0.06
0.07

0.08

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

Weight

Displacement

Stress

Figure 6.151: Example 5: Distribution of points using NPGA with binary repre-

sentation at generation 100.

100000
150000

200000
250000

0.01
0.02

0.03
0.04

0.05
0.06

0
500

1000
1500
2000
2500
3000
3500
4000

Weight

Displacement

Stress

Figure 6.152: Example 5: Distribution of points using NPGA with binary repre-

sentation at generation 500.

317

150000
200000

250000
300000

0.05

0.1

0.15

0

5000

10000

15000

Weight

Displacement

Stress

Figure 6.153: Example 5: Distribution of points using NPGA with binary repre-

sentation at generation 100 with �

share

= 1:0.

100000
150000

200000
250000 0.005

0.01
0.015

0.02
0.025

0

500

1000

1500

Weight

Displacement

Stress

Figure 6.154: Example 5: Distribution of points using NPGA with oating point

representation at generation 100.

318

100000
150000

200000
250000

0.05

0.1

0.15

0.2

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Weight

Displacement

Stress

Figure 6.155: Example 5: Distribution of points using NPGA with oating point

representation at generation 20.

stress (see Figure 6.151), but good trade-o�s are being made, since the values

of stress and displacement are not excessive. This is corroborated by the best

overall solution reported (see Tables 6.16 and 6.17). The main strength of this

method is proved once more, since after 500 generations the diversity of the popu-

lation is maintained, with a very solid region parallel to the planes formed by the

weight and displacement, slightly more sparse than at generation 100 (see Fig-

ure 6.152). As in previous examples, this method was able to keep more points

through many generations than any other Pareto-based technique. The use of

oating point representation produces a similar e�ect at generation 20, only that

this time the population forms a more compact cluster of points shaped as a

straight line, de�ning the Pareto front (see Figure 6.155). After 100 generations,

the Pareto front starts to vanish, but the compromises remain the same, with

good values for every objective (see Figure 6.154). The sparse distribution of the

population at this stage of the search must be the reason why oating point rep-

resentation produced a better overall solution than binary representation. As in

319

100000

150000

0.005
0.01

0.015
0.02

0.025
0.03

0

500

1000

1500

2000

2500

Weight

Displacement

Stress

Figure 6.156: Example 5: Distribution of points using Hajela's method with

binary representation at generation 20.

previous examples, the value of �

share

plays a critical role in the performance of

the algorithm, because if we increase it from 0.1 (same value used with the previ-

ous techniques that use niches) to 1.0, the distribution of points is less compact

than before, slightly favoring displacement over weight (see Figure 6.153).

Hajela's method provides moderately good results as in the previous exam-

ple, but it can not keep them through too many generations. After 20 generations

using binary representation, the distribution of points is sparse, but a sector of the

Pareto front is already visible, with compromises in which weight and displace-

ment take priority over stress (see Figure 6.156). After 50 generations the trade-o�

remains the same, but now the weight has gotten slightly lower, allowing to dis-

play a clear image of the Pareto front (see Figure 6.157). At generation 100, the

Pareto front gets thinner, with a lowering of stresses and an increment of weight

(see Figure 6.158). Total convergence to a unique solution seems only a matter

of time, and after 500 generations only 3 points remain in the graph, as expected

(see Figure 6.159). The best overall results found by this technique using both

320

95000

100000

105000 0.015

0.02

0.025
500

1000

1500

2000

2500

Weight

Displacement

Stress

Figure 6.157: Example 5: Distribution of points using Hajela's method with

binary representation at generation 50.

9950099600997009980099900100000100100100200100300 0.017
0.01705

0.0171
0.01715

0.0172
0.01725

0.0173
0.01735

0.0174
0.01745

1080

1090

1100

1110

1120

1130

1140

Weight

Displacement

Stress

Figure 6.158: Example 5: Distribution of points using Hajela's method with

binary representation at generation 100.

321

99500

100000

100500 0.01735

0.0174

0.01745

1080
1085
1090
1095
1100
1105
1110
1115
1120

Weight

Displacement

Stress

Figure 6.159: Example 5: Distribution of points using Hajela's method with

binary representation at generation 500

8000090000100000110000120000130000140000150000160000
0.01

0.02

0.03

0.04

0.05

0

500

1000

1500

2000

2500

Weight

Displacement

Stress

Figure 6.160: Example 5: Distribution of points using Hajela's method with

oating point representation at generation 20.

322

110000

115000

120000
0.0065

0.007

0.0075
360

370

380

390

400

410

420

430

Weight

Displacement

Stress

Figure 6.161: Example 5: Distribution of points using Hajela's method with

oating point representation at generation 100.

representations are above average, mainly because the value of the third objective

is kept low. Binary representation provides, in this case, a slightly better overall

result. When using oating point representation, the population at generation

20 seems to be forming a solid front that balances the three objectives quite well

(see Figure 6.160). However, the method is not able to keep such front, and

after 100 generations the technique has converged to a few points none of which

represent better overall solutions than those found using binary representation

(see Figure 6.161). The change of representation produced the same premature

convergence as before, only that faster, because of the accelerated convergence

property of this representation scheme.

Before showing the results produced with my method based on the min-

max approach, I want to show the distribution of points at generation zero, since

in this case the algorithm ensures that only feasible solutions are generated. It

can be seen in Figure 6.162 that the initial distribution looks already very well

distributed along what seems to be the Pareto front. Apparently the high number

323

150000
200000

250000
300000 0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0

500

1000

1500

2000

2500

3000

Weight

Displacement

Stress

Figure 6.162: Example 5: Distribution of points using my method based on the

min-max algorithm with binary representation at generation zero.

80000
85000

90000
95000

100000 0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09

0.1
0.11

1000

2000

3000

4000

5000

6000

7000

Weight

Displacement

Stress

Figure 6.163: Example 5: Distribution of points using my method based on the

min-max algorithm with binary representation at generation 100.

324

10000
15000

20000
25000

30000 0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09

0.1
0.11

1000

2000

3000

4000

5000

6000

7000

8000

Weight

Displacement

Stress

Figure 6.164: Example 5: Distribution of points using my method based on the

min-max algorithm with oating point representation at generation 100.

of constraints seems to be an engine good enough to drive the search towards

the proper zone. The trade-o� is also very good, with low displacements and

weights, and relatively low weights. After 100 generation and using 20 di�erent

weights with binary representation, we can see the Pareto front very clearly (see

Figure 6.163). Notice how weight and displacement are kept low whereas stress is

relatively high. The amount of points displayed, even when small, seems su�cient

to sketch the Pareto contour. If we use oating point representation, then the

contour will look similar after 100 generations (see Figure 6.164), but looking at

the ranges of the objectives we will notice how the weight is now lower whereas

the stress is kept in about the same range as before (i.e., when using binary

representation). This representation scheme provided, by far, the best overall

solution that I was able to get for this problem, with an extremely low deviation.

This corroborates, once more, my hypothesis about the e�ciency of this method

both for computing the best overall result and for getting the Pareto front, as

long as we select an appropriate set of weights. The results obtained in this and

325

285000290000295000300000305000310000315000320000325000330000

0.0028
0.00285

0.0029
0.00295

0.003
145

150

155

160

165

170

Weight

Displacement

Stress

Figure 6.165: Example 5: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at generation 20.

previous examples shows how this technique can be an excellent substitute for

any mathematical programming technique, since it has systematically provided a

much better overall result in every single problem in which it has been used.

As in the previous example, I also had a lot of problems trying to �nd a

good value for �

share

. The results presented here correspond to a value of 0:5.

Using the same initial population shown in Figure 6.162, we can see that after 20

generations using binary representation, the trend is already clear: displacement

and stress have priority over weight. The cluster of points does not look too sparse,

even at that early stage of the search, which is an indicator of the premature

convergence that we will achieve (see Figure 6.165). After 50 generations the

entire population has converged to a unique solution in which displacement and

stress are optimum and the weight is extremely high. The use of oating point

representation provides a better perspective at generation 20, since there is still

a sparse distribution of points representing solutions in which weight is lower

than when using binary representation, and displacement and stress are kept

326

150000

200000

250000 0.004
0.005

0.006
0.007

0.008
0.009

100

200

300

400

500

600

700

800

Weight

Displacement

Stress

Figure 6.166: Example 5: Distribution of points using my approach based on

min-max selection with sharing, using oating point representation at generation

20.

295000
300000

305000
310000

315000
320000 0.00278

0.002785
0.00279

0.002795
0.0028

0.002805
0.00281

0.002815
0.00282

149

150

151

152

153

154

155

156

157

Weight

Displacement

Stress

Figure 6.167: Example 5: Distribution of points using my approach based on

min-max selection with sharing, using oating point representation at generation

50.

327

120000
130000

140000
150000

160000
170000

180000
0.0045

0.005
0.0055

0.006
0.0065

0.007
0.0075

0.008

250
300
350
400
450
500
550
600
650

Weight

Displacement

Stress

Figure 6.168: Example 5: Distribution of points using my approach based on

min-max selection with sharing, using oating point representation at generation

100.

relatively low (see Figure 6.166). At generation 50, weight has increased and

several points have achieved optimality with respect to displacement and stress.

However, the population still looks fairly sparse (see Figure 6.167). At generation

100 we have almost total convergence of the population, although the values of the

displacements are higher than before (when using binary representation) and the

values of the weights are lower (see Figure 6.168). The premature convergence of

the algorithm shows the main drawback of this method: it converges too quickly

when more than one objective may achieve optimality at the same time, even if

the remaining objective (or objectives) have extremely high values (see Tables 6.18

and 6.19). Floating point representation provided a slightly better best overall

solution, but in general we may say that their solutions after 100 generations

(when total convergence has practically been achieved) are quite similar.

6.7 Example 6 : Design of a 200-bar Plane Truss

328

Method x

1

x

2

x

3

f

1

f

2

f

3

Monte Carlo 1 488.72 110.45 546.89 3019191:78 3.9983 74.99

Monte Carlo 1 569.46 29.17 760.92 5423359.65 0:522427 9.5056

Monte Carlo 1 836.72 135.62 41.77 5635985.90 0.556857 8:7115

Min-Max (OS) 47.418 47.418 47.418 617227:10 3.8398 91.9799

Min-Max (OS) 49.601 49.601 49.601 650984.03 3:6148 86.0389

Min-Max (OS) 49.601 49.601 49.601 641862.42 3.6235 85:8669

GA (Binary) 0.300 1.290 0.100 893885:79 33.6943 957.1493

GA (Binary) 999.99 999.99 999.99 9963295.72 0:370375 5.124250

GA (Binary) 999.99 999.99 896.22 9963295.72 0.370375 5:124250

GA (FP) 0.100 1.140 0.100 36167:73 38.675848 1062.77608

GA (FP) 999.58 999.50 995.30 9961698.96 0:370376 5.124382

GA (FP) 999.21 999.78 997.52 9962313.62 0.370377 5:124336

Literature 0.100 1.504 1.202 35162:93 44.144661 1137.7476

Literature 0.100 1.504 1.202 35162.93 44:144661 1137.7476

Literature 0.100 1.504 1.202 35162.93 44.144661 1137:7476

Table 6.20: (Part I) Comparison of results computing the ideal vector of example

6 from Chapter 5 (design of a 200-bar plane truss). For each method the best

results for optimum f

1

, f

2

and f

3

are shown in boldface. OS stands for Osyczka's

Multiobjective Optimization System. (Continued in Tables 6.21, 6.22, 6.23 and

6.24)

329

Method x

4

x

5

x

6

x

7

x

8

x

9

x

10

Monte Carlo 1 863.54 725.49 86.99 370.21 320.60 342.01 39.47

Monte Carlo 1 205.42 798.62 793.28 26.42 88.80 42.19 330.31

Monte Carlo 1 285.47 280.01 300.94 227.05 218.25 858.61 722.51

Min-Max (OS) 47.418 47.418 47.418 47.418 47.418 47.418 47.418

Min-Max (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

Min-Max (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

GA (Binary) 0.100 5.150 999.99 0.100 5.130 0.100 4.650

GA (Binary) 992.44 999.99 999.99 999.99 999.99 999.99 999.99

GA (Binary) 721.96 999.99 999.99 999.99 999.99 999.99 999.99

GA (FP) 0.110 2.130 0.440 0.210 3.100 0.100 4.24

GA (FP) 998.99 999.94 999.91 999.07 999.65 999.96 999.98

GA (FP) 998.97 999.94 999.93 999.20 999.90 999.89 799.99

Literature 1.193 2.092 0.2236 0.100 3.003 0.100 4.056

Literature 1.193 2.092 0.2236 0.100 3.003 0.100 4.056

Literature 1.193 2.092 0.2236 0.100 3.003 0.100 4.056

Table 6.21: (Part II) Comparison of results computing the ideal vector of example

6 from Chapter 5 (design of a 200-bar plane truss). OS stands for Osyczka's

Multiobjective Optimization System. (Continued in Tables 6.22, 6.23 and 6.24)

Method x

11

x

12

x

13

x

14

x

15

x

16

x

17

Monte Carlo 1 48.17 1.32 911.54 978.25 125.93 92.57 628.68

Monte Carlo 1 419.91 820.36 641.79 768.99 995.88 119.53 735.38

Monte Carlo 1 225.59 932.22 396.87 946.95 939.75 941.38 470.30

Min-Max (OS) 47.418 47.418 47.418 47.418 47.418 47.418 47.418

Min-Max (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

Min-Max (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

GA (Binary) 0.660 0.340 10.270 0.430 8.170 1.370 0.100

GA (Binary) 999.99 653.17 999.99 999.99 999.99 999.99 999.99

GA (Binary) 999.99 999.99 999.99 999.99 999.99 999.99 999.99

GA (FP) 1.04 0.710 6.45 0.39 7.34 1.24 2.11

GA (FP) 999.89 999.75 999.99 999.65 999.99 999.96 999.90

GA (FP) 999.98 999.83 999.96 999.92 999.93 999.99 999.99

Literature 0.2915 0.7880 7.036 0.100 7.043 0.3987 1.5547

Literature 0.2915 0.7880 7.036 0.100 7.043 0.3987 1.5547

Literature 0.2915 0.7880 7.036 0.100 7.043 0.3987 1.5547

Table 6.22: (Part III) Comparison of results computing the ideal vector of example

6 from Chapter 5 (design of a 200-bar plane truss). OS stands for Osyczka's

Multiobjective Optimization System. (Continued in Tables 6.23 and 6.24)

330

Method x

18

x

19

x

20

x

21

x

22

x

23

x

24

Monte Carlo 1 899.65 167.02 466.18 264.20 953.07 390.65 326.46

Monte Carlo 1 610.54 585.89 830.03 448.94 527.13 470.69 975.88

Monte Carlo 1 634.71 447.23 526.03 550.32 916.07 959.82 935.28

Min-Max (OS) 47.418 47.418 47.418 47.418 47.418 47.418 47.418

Min-Max (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

Min-Max (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

GA (Binary) 20.510 0.660 20.570 1.610 3.510 20.490 0.380

GA (Binary) 999.99 981.87 999.99 999.99 999.99 999.99 999.99

GA (Binary) 999.99 999.99 999.99 974.16 999.99 999.99 999.99

GA (FP) 19.33 0.100 11.05 2.00 1.21 15.58 1.79

GA (FP) 999.98 999.99 999.99 999.99 999.98 999.99 999.95

GA (FP) 999.97 999.87 999.99 999.96 999.98 999.97 999.89

Literature 7.2436 2.4735 8.1146 1.4121 3.3018 7.8096 3.4169

Literature 7.2436 2.4735 8.1146 1.4121 3.3018 7.8096 3.4169

Literature 7.2436 2.4735 8.1146 1.4121 3.3018 7.8096 3.4169

Table 6.23: (Part IV) Comparison of results computing the ideal vector of example

6 from Chapter 5 (design of a 200-bar plane truss). OS stands for Osyczka's

Multiobjective Optimization System. (Continued in Table 6.24)

Method x

25

x

26

x

27

x

28

x

29

Monte Carlo 1 15.40 20.94 127.92 577.68 60.77

Monte Carlo 1 688.30 644.94 749.22 944.70 706.74

Monte Carlo 1 902.98 293.74 998.16 989.32 388.58

Min-Max (OS) 47.418 47.418 197.42 197.42 197.42

Min-Max (OS) 49.601 63.74 199.60 199.60 199.60

Min-Max (OS) 63.744 49.601 199.60 199.60 199.60

GA (Binary) 25.69 5.130 2.650 7.690 40.970

GA (Binary) 999.99 999.99 999.99 999.99 999.99

GA (Binary) 999.99 999.99 999.99 999.99 999.99

GA (FP) 20.10 4.01 4.92 11.24 21.67

GA (FP) 999.99 999.98 999.98 999.99 999.99

GA (FP) 999.99 999.98 999.98 999.91 999.99

Literature 8.7839 4.9573 14.2127 14.4496 14.7895

Literature 8.7839 4.9573 14.2127 14.4496 14.7895

Literature 8.7839 4.9573 14.2127 14.4496 14.7895

Table 6.24: (Part V) Comparison of results computing the ideal vector of example

6 from Chapter 5 (design of a 200-bar plane truss). OS stands for Osyczka's

Multiobjective Optimization System.

331

3.5e+06 4e+06
4.5e+06 5e+06

5.5e+06 6e+06
6.5e+06

5

10

0
10
20
30
40
50
60
70
80
90

Weight

Displacement

Stress

Figure 6.169: Initial feasible region for Monte Carlo method solving the sixth

example.

Once again, the large size of the search space of this problem makes it

impractical to show graphically the feasible region. The problem has 3 objective

functions, 29 decision variables and 200 constraints. Since the range of each

decision variable goes from 0.1 to 999.99, considering increments of 0.01 we would

have to perform 100000

29

iterations to generate the feasible region (about 1 �

10

145

iterations). Considering the amount of time needed to generate all the

constraint information and to analyze the structure, this goal seems infeasible in

a reasonable amount of time. Nevertheless, as in the previous example, I will

provide 3-dimensional representations of the objective function space with each

method, to get a good idea of how the feasible zone appears, and where the Pareto

front is. As before, to solve this problem, it was necessary to add a module to

each program in order to analyze the space truss generated by each algorithm.

This module uses the matrix factorization method included in Gere and Weaver

[202] together with the sti�ness method [202] [203] to analyze the structure.

332

The ideal vector of this problem was computed using Monte Carlo Meth-

ods 1 and 2 (generating 500 points) presented in Chapter 4, and a GA (with a

population of 500 chromosomes running during 100 generations) using binary and

oating point representation, with the procedure described in Chapter 4 to adjust

its parameters. The corresponding results are shown in Tables 6.20, 6.21 6.22,

6.23 and 6.24 including the best results reported in the literature [193]. Notice

that the results presented by Belegundu violate 34 constraints of the problem,

which means that his solution is not valid. This explains why the GA could not

achieve such a low weight using oating point representation. In fact, in Bele-

gundu's thesis [193] he even provides a better solution (with a total weight of

26261.05) but that violates 48 constraints. I chose to include a solution with a

higher weight, but a lower number of violations. Nevertheless, the number of

constraints violated is still high and the GA would not possibly converge towards

such kind of solutions.

In this example, Monte Carlo method provided results that are within

the average solutions provided by the GA-based techniques, which is remarkable,

considering the large size of the search space. This reects the problems of the GA

to �nd reasonable trade-o�s when the length of the chromosome string is too large

(493 genes in this case). Also the high amount of constraints (200 total) makes this

problem easier for mathematical programming techniques than for the GA using

a penalty function. The performance of Osyzcka's multiobjective optimization

system is extremely good, but mainly because the initial guesses provided by the

user were quite close to a Pareto solution. The main use of such techniques is

precisely in cases in which we have a rough approximation of the solution, or a lot

of knowledge about how the solution space appears, and we want to experiment

within the boundaries of our result. Nevertheless, it should be pointed out that

333

5.4e+065.45e+065.5e+065.55e+065.6e+065.65e+065.7e+065.75e+06

0.41

0.415

6.3

6.35

6.4

6.45

6.5

6.55

6.6

6.65

Weight

Displacement

Stress

Figure 6.170: Example 6: The GA using a linear combination of the objectives

with scaling, after 100 generations using binary representation.

my min-max method that uses weights was able to �nd a better overall result

than any other technique (including mathematical programming methods) also

for this example (using oating point representation) con�rming its robustness as

a numerical optimization tool. It should be noticed than in the following results,

no graphs will be shown for more than 100 generations because of the extreme

amount of CPU time required to iterate using the GA. To have an idea of such

requirements, it is su�cient to be aware that each solution of the truss requires

that the computer solves a system of N simultaneous linear equations, where N

is the number of degrees of freedom of the structure (150 in this case). Even the

GA in its simplest form will require to solve M � G times the structure, where

M is the population size and G the number of generations. That should give an

idea of the heavy amount of calculations required for this example.

Since the Monte Carlo Methods previously mentioned and Osyczka's mul-

tiobjective optimization system do not generate the Pareto front, I will compare

them with the GA-based approaches only in terms of the best overall result found.

334

4.7e+06
4.8e+06

4.9e+06
5e+06

5.1e+06
5.2e+06

5.3e+06
0.41

0.415

0.42

0.425

6.25
6.3

6.35
6.4

6.45
6.5

6.55
6.6

6.65
6.7

6.75

Weight

Displacement

Stress

Figure 6.171: Example 6: The GA using a linear combination of the objectives

with scaling, after 100 generations using oating point representation.

Besides those results, it is interesting to observe the initial distribution of points

randomly generated by the method (see Figure 6.169). As can be seen from the

tables previously shown (see Tables 6.20, 6.21, 6.22, 6.23 and 6.24) the objec-

tives are highly conicting, and therefore, it is very hard to come up with a good

compromise. From the graph depicted in Figure 6.169 we can see that the opti-

mum region would be located as close as possible to the ideal vector for each one

of the axis. However, because of the great variation in the results, we will see

that the common compromise will be to have higher values of weight to allow

smaller stresses and displacements. This is true in the physical world, since larger

cross-sectional areas allow less stress and displacement in the structure. It is

also important observe through all the graphs corresponding to each example the

ranges of the axis, because even when the clusters of points could all look alike,

there will be a great variation in terms of the ranges.

We will start by analyzing the behavior of the Lexicographic Method

at di�erent stages of the search process. Figure 6.172 shows the distribution of

335

4.5e+065e+065.5e+066e+066.5e+067e+067.5e+068e+068.5e+06

5

10

15

0
10
20
30
40
50
60
70
80
90

Weight

Displacement

Stress

Figure 6.172: Example 6: Distribution of points using the Lexicographic Method

with a binary representation at generation zero. Only points within the feasible

region are displayed.

5e+06
5.5e+06

6e+06
6.5e+06

7e+06
7.5e+06

8e+06
0.5

0.6
0.7

0.8
0.9

1
1.1

1.2

5

10

15

20

25

30

Weight

Displacement

Stress

Figure 6.173: Example 6: Distribution of points using the Lexicographic Method

with a binary representation at generation twenty. Only points within the feasible

region are displayed.

336

3.5e+06
4e+06

4.5e+06
5e+06

5.5e+06
6e+06

6.5e+06 0.5
1

1.5
2

2.5
3

3.5

0

10

20

30

40

50

60

70

Weight

Displacement

Stress

Figure 6.174: Example 6: Distribution of points using the Lexicographic Method

with a oating point representation at generation twenty. Only points within the

feasible region are displayed.

5.5e+06
6e+06

6.5e+06
7e+06

7.5e+06
8e+06

0.45

0.5

0.55

6

7

8

9

10

11

12

13

Weight

Displacement

Stress

Figure 6.175: Example 6: Distribution of points using the Lexicographic Method

with a binary representation at generation 100. Only points within the feasible

region are displayed.

337

4e+06
4.5e+06

5e+06
5.5e+06

6e+06
6.5e+06

0.45
0.5

0.55
0.6

0.65
0.7

7

8

9

10

11

12

13

Weight

Displacement

Stress

Figure 6.176: Example 6: Distribution of points using the Lexicographic Method

with a oating point representation at generation 100. Only points within the

feasible region are displayed.

points produced at generation zero using this method. This distribution is not

very di�erent than the initial distribution of Monte Carlo method. The main

di�erence is in terms of the ranges: the graph for Monte Carlo method has a

lower range for the weight at the initial population, but it has about the same

ranges for the other two objective functions. The trade-o� in both cases is more

or less the same (weight and displacement have priority over stress), but there is

a higher variation of solutions in the initial distribution of Monte Carlo method.

Figure 6.173 shows the distribution of points at generation 20 using binary rep-

resentation, and Figure 6.174 shows the corresponding distribution using oat-

ing point representation. The trade-o�s provided by both graphs are di�erent,

because binary representation is favoring stress and displacement over weight,

whereas oating point representation favors weight over stress and displacement.

At this stage of the search, oating point representation o�ers a more uniform dis-

tribution of points than binary representation. After 100 generations, both graphs

look remarkably similar, although oating point representation provides a better

338

trade-o� solution and a slightly better distribution of points (see Figures 6.175

and 6.176). The �nal trade-o� obtained using oating point representation was

to slightly favor weight over stress and displacement. As before, I also compared

the e�ect of a simple linear combination of objectives (addition or multiplication)

using scaling. A linear combination of objectives produced a rather strange graph

after 100 generations. When binary representation was used, the distribution was

somewhat more uniform, without achieving total convergence of the population,

although the ranges are very tight. Weight is slightly favored over displacement

in this case (see Figure 6.170). When oating point representation was used, the

�nal population formed two clusters of points with very tight ranges (see Fig-

ure 6.171). In this case, displacement was slightly favored over weight and stress.

The best overall solution was found using oating point representation, because

the population contains better trade-o�s. However, the best overall results found

with both representation schemes are poorer than those found with the Lexico-

graphic method. Furthermore, when only a linear combination of objectives is

used, convergence towards a single solution seems imminent (this can be easily

seen from the tight ranges of the objective function values).

Scha�er's VEGA produces a semi-compact cluster of points after only 20

generations using binary representation (see Figure 6.177). Stress has been given

priority over weight and displacement. Floating point representation produces

a very similar distribution after 20 generations, but with a trade-o� that favors

weight over stress and displacement (see Figure 6.179). After 50 generations,

the population looks more compact when a binary representation is used, and

the ranges have been tightened, mainly with respect to displacement (see Fig-

ure 6.178). The compromise now is more clear: stress and displacement have

priority over weight. The use of oating point representation produces a good

339

Method x

1

f

1

f

2

f

3

L

p

(f)

Ideal Vector 36167.73 0.370376 5.124250 0.000000

Monte Carlo 1 504.01 4475679.05 0.773293 12.173738 125.211428

Monte Carlo 2 370.14 5075790.44 0.561163 9.682691 140.745011

Min-max (OS) 49.601 641862.42 3.686123 88.04811 41.881840

GCM (OS) 49.601 641862.42 3.623485 85.86687 41.287050

WMM (OS) 49.601 641862.42 3.686123 88.04811 41.881840

PMM (OS) 47.418 617227.10 3.839831 91.97989 42.382994

NMM (OS) 49.601 641862.42 3.623485 85.86687 41.287050

GALC (B) 319.45 5388876.23 0.418137 6.623930 148.418423

GALC (FP) 41.85 4662186.53 0.426666 6.736934 128.371292

Lexicographic (B) 209.31 5106929.51 0.590409 11.446706 142.029185

Lexicographic (FP) 324.86 3925963.62 0.538302 9.329877 108.822923

VEGA (B) 238.54 5956689.85 0.546020 10.048603 165.131483

VEGA (FP) 786.24 4051105.81 0.662998 10.306576 112.810251

NSGA (B) 999.99 7020831.93 0.424951 6.678441 193.569332

NSGA (FP) 465.28 5369341.87 0.548805 8.334404 148.564917

MOGA (B) 201.94 3626863.83 0.489753 8.435848 100.247575

MOGA (FP) 91.26 2910316.85 0.722471 12.477403 81.852839

NPGA (B) 30.58 4028058.04 3.723483 73.607848 132.789464

NPGA (FP) 283.43 4453361.10 0.970288 5.468708 123.817748

Hajela (B) 95.47 1924166.83 1.362296 28.222939 59.387070

Hajela (FP) 137.90 4291090.29 0.874752 11.478412 120.245983

GAminmax1 (B) 13.26 1508966.74 2.213371 47.516121 53.970163

GAminmax1 (FP) 0.100 686362.29 2.223398 43.910769 30.549494

GAminmax2 (B) 910.90 9633841.60 0.370438 5.140362 265.368984

GAminmax2 (FP) 311.56 7816682.34 0.377604 5.508466 215.217609

Table 6.25: (Part I) Comparison of the best overall solution found by each one of

the methods included in MOSES for the sixth example (design of a 200-bar plane

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In

all cases, weights were assumed equal to 0.33 (equal weight for every objective).

(Continued in Tables 6.26, 6.27, 6.28 and 6.29)

340

Method x

2

x

3

x

4

x

5

x

6

x

7

x

8

Monte Carlo 1 248.68 591.30 80.54 554.36 59.41 320.37 660.33

Monte Carlo 2 434.52 478.17 766.34 926.32 262.27 880.61 722.87

Min-max (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

GCM (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

WMM (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

PMM (OS) 47.418 47.418 47.418 47.418 47.418 47.418 47.418

NMM (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

GALC (B) 395.26 55.35 121.82 806.05 999.99 196.28 999.99

GALC (FP) 934.02 102.56 164.06 856.15 59.06 115.84 895.39

Lexicographic (B) 562.18 228.89 999.99 999.99 999.99 99.08 999.99

Lexicographic (FP) 490.93 261.98 716.80 378.18 493.62 172.48 947.73

VEGA (B) 536.52 999.99 481.29 469.10 999.99 999.99 456.86

VEGA (FP) 233.10 973.32 266.45 636.04 372.60 539.54 966.85

NSGA (B) 729.22 999.99 999.99 838.28 708.10 999.99 999.99

NSGA (FP) 394.50 916.59 429.33 900.76 215.59 970.86 895.58

MOGA (B) 23.71 316.63 999.99 872.65 778.18 976.24 999.99

MOGA (FP) 294.00 44.25 143.95 588.13 150.60 42.22 900.79

NPGA (B) 482.26 987.45 17.07 963.91 375.91 298.25 999.99

NPGA (FP) 376.94 961.69 912.80 485.72 41.95 10.60 438.87

Hajela (B) 5.78 5.99 20.06 41.37 999.99 6.74 228.58

Hajela (FP) 526.57 117.66 90.98 487.06 116.43 689.35 444.33

GAminmax1 (B) 4.93 13.52 21.46 81.38 999.99 10.80 91.17

GAminmax1 (FP) 102.77 15.17 8.95 60.59 13.89 0.54 72.27

GAminmax2 (B) 999.99 999.99 670.36 999.99 999.99 914.06 999.99

GAminmax2 (FP) 507.56 411.48 256.32 970.55 680.86 527.94 989.51

Table 6.26: (Part II) Comparison of the best overall solution found by each one of

the methods included in MOSES for the sixth example (design of a 200-bar plane

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In

all cases, weights were assumed equal to 0.33 (equal weight for every objective).

(Continued in Tables 6.27, 6.28 and 6.29)

341

Method x

9

x

10

x

11

x

12

x

13

x

14

x

15

Monte Carlo 1 201.44 938.64 216.95 480.92 233.70 433.72 349.93

Monte Carlo 2 787.24 677.48 91.48 162.18 949.91 931.35 562.31

Min-max (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

GCM (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

WMM (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

PMM (OS) 47.418 47.418 47.418 47.418 47.418 47.418 47.418

NMM (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

GALC (B) 44.00 999.99 201.55 220.45 999.99 341.00 999.99

GALC (FP) 211.55 959.81 179.72 122.01 998.51 290.49 991.09

Lexicographic (B) 500.55 417.79 396.29 688.26 941.10 686.64 923.30

Lexicographic (FP) 379.78 493.43 483.86 366.32 377.72 176.23 299.43

VEGA (B) 999.99 529.65 999.99 835.83 804.09 645.22 999.99

VEGA (FP) 958.67 738.16 169.25 285.13 598.61 26.18 425.17

NSGA (B) 305.61 724.70 669.27 360.02 999.99 771.59 999.99

NSGA (FP) 630.80 689.38 584.35 821.89 875.03 282.05 908.43

MOGA (B) 993.94 999.99 407.08 77.73 985.89 348.38 999.99

MOGA (FP) 294.47 788.77 292.17 206.14 549.07 783.29 973.79

NPGA (B) 401.86 989.95 15.94 467.94 78.66 854.04 89.81

NPGA (FP) 629.11 885.84 149.11 874.80 982.86 604.00 634.80

Hajela (B) 10.20 177.92 37.31 23.63 238.07 7.09 194.55

Hajela (FP) 138.28 560.16 443.88 564.05 284.91 84.72 295.44

GAminmax1 (B) 15.99 54.46 19.11 19.69 133.50 12.17 185.38

GAminmax1 (FP) 4.32 101.02 19.86 24.66 91.77 91.34 159.49

GAminmax2 (B) 999.99 999.99 999.99 971.81 999.99 999.99 999.99

GAminmax2 (FP) 405.85 999.86 896.94 910.15 992.17 661.75 965.52

Table 6.27: (Part III) Comparison of the best overall solution found by each one of

the methods included in MOSES for the sixth example (design of a 200-bar plane

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In

all cases, weights were assumed equal to 0.33 (equal weight for every objective).

(Continued in Tables 6.28 and 6.29)

342

Method x

16

x

17

x

18

x

19

x

20

x

21

x

22

Monte Carlo 1 605.46 650.30 89.46 396.33 357.04 526.03 883.42

Monte Carlo 2 242.57 48.88 315.34 875.24 444.38 492.37 935.04

Min-max (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

GCM (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

WMM (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

PMM (OS) 47.418 47.418 47.418 47.418 47.418 47.418 47.418

NMM (OS) 49.601 49.601 49.601 49.601 49.601 49.601 49.601

GALC (B) 192.22 365.82 999.99 410.63 999.99 225.98 772.74

GALC (FP) 221.00 398.75 993.63 407.73 971.32 304.32 258.93

Lexicographic (B) 343.48 822.80 902.24 165.95 778.62 242.05 552.68

Lexicographic (FP) 89.84 113.99 880.21 686.89 801.43 730.66 283.87

VEGA (B) 728.28 993.66 999.99 26.35 836.59 999.99 999.99

VEGA (FP) 921.41 446.62 738.61 532.28 866.27 477.85 854.78

NSGA (B) 999.99 969.01 999.99 730.88 895.97 999.99 652.47

NSGA (FP) 711.12 358.32 678.77 310.20 738.32 396.34 532.93

MOGA (B) 262.00 205.07 999.99 707.30 990.61 218.69 465.08

MOGA (FP) 212.44 103.93 890.15 602.09 987.54 201.35 32.30

NPGA (B) 126.10 648.53 834.68 999.99 999.99 381.70 970.05

NPGA (FP) 456.01 771.41 288.38 337.69 953.04 387.24 250.90

Hajela (B) 23.07 15.20 416.22 56.91 422.00 39.39 41.97

Hajela (FP) 725.96 463.73 959.95 71.77 848.02 184.86 661.01

GAminmax1 (B) 37.05 4.56 205.69 78.08 159.84 25.63 41.85

GAminmax1 (FP) 25.07 1.65 223.10 30.81 383.57 46.74 90.27

GAminmax2 (B) 999.99 999.99 999.99 999.99 999.99 999.99 999.99

GAminmax2 (FP) 883.82 983.68 968.51 813.06 959.20 961.54 849.51

Table 6.28: (Part IV) Comparison of the best overall solution found by each one of

the methods included in MOSES for the sixth example (design of a 200-bar plane

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In

all cases, weights were assumed equal to 0.33 (equal weight for every objective).

(Continued in Table 6.29)

343

Method x

23

x

24

x

25

x

26

x

27

x

28

x

29

Monte Carlo 1 464.17 186.46 591.06 599.54 907.51 818.03 211.24

Monte Carlo 2 384.91 305.80 988.40 528.76 742.48 939.33 668.10

Min-max (OS) 49.601 49.601 49.601 49.601 199.60 199.60 213.74

GCM (OS) 49.601 49.601 63.744 49.601 199.60 199.60 199.60

WMM (OS) 49.601 49.601 49.601 49.601 199.60 199.60 213.74

PMM (OS) 47.418 47.418 47.418 47.418 197.42 197.42 197.42

NMM (OS) 49.601 49.601 63.744 49.601 199.60 199.60 199.60

GALC (B) 999.99 550.28 999.99 610.24 999.99 999.99 999.99

GALC (FP) 956.89 845.72 990.23 893.61 980.45 958.03 998.39

Lexicographic (B) 999.99 999.99 917.21 617.42 343.89 999.99 857.43

Lexicographic (FP) 954.03 938.10 738.21 325.21 950.14 791.35 847.54

VEGA (B) 715.82 555.71 999.99 938.54 999.99 999.99 999.99

VEGA (FP) 981.52 749.77 871.18 602.99 798.65 620.77 844.67

NSGA (B) 999.99 723.36 999.99 999.99 738.68 999.99 654.16

NSGA (FP) 634.31 304.25 931.62 924.14 546.39 898.56 699.44

MOGA (B) 999.99 669.93 999.99 999.99 668.86 999.99 999.99

MOGA (FP) 920.64 87.60 967.83 207.61 812.97 968.07 998.36

NPGA (B) 15.78 286.15 797.16 3.79 407.56 839.46 413.57

NPGA (FP) 809.75 158.71 646.77 513.51 61.09 617.50 205.76

Hajela (B) 533.19 124.87 394.24 112.04 160.36 472.10 665.32

Hajela (FP) 671.18 781.38 199.67 653.79 416.76 632.24 215.40

GAminmax1 (B) 260.63 76.28 242.75 74.56 97.55 203.68 344.79

GAminmax1 (FP) 208.84 108.13 215.59 52.45 101.15 240.78 223.00

GAminmax2 (B) 999.99 999.99 999.99 999.99 999.99 999.99 999.99

GAminmax2 (FP) 991.08 980.92 975.94 965.24 994.13 988.03 998.31

Table 6.29: (Part V) Comparison of the best overall solution found by each one of

the methods included in MOSES for the sixth example (design of a 200-bar plane

truss). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In all

cases, weights were assumed equal to 0.33 (equal weight for every objective).

344

5e+06
5.5e+06

6e+06
6.5e+06

7e+06
7.5e+06

8e+06
0.5

1

1.5

5

10

15

20

25

30

Weight

Displacement

Stress

Figure 6.177: Example 6: Distribution of points using VEGA with a binary

representation at generation twenty.

5.5e+06
6e+06

6.5e+06
7e+06

7.5e+06
8e+06 0.4

0.5
0.6

0.7
0.8

0.9
1

5

10

15

20

Weight

Displacement

Stress

Figure 6.178: Example 6: Distribution of points using VEGA with a binary

representation at generation �fty.

345

3.5e+06
4e+06

4.5e+06
5e+06

5.5e+06
6e+06 0.5

1

1.5

2

5

10

15

20

25

30

35

40

Weight

Displacement

Stress

Figure 6.179: Example 6: Distribution of points using VEGA with oating point

representation at generation twenty.

4e+06
4.5e+06

5e+06
5.5e+06

6e+06
6.5e+06

7e+06
0.5

0.6
0.7

0.8
0.9

1
1.1

1.2
1.3

7
8
9

10
11
12
13
14
15
16
17

Weight

Displacement

Stress

Figure 6.180: Example 6: Distribution of points using VEGA with oating point

representation at generation �fty.

346

6e+06
6.5e+06

7e+06
7.5e+06

8e+06
8.5e+06 0.4

0.5
0.6

0.7
0.8

0.9
1

5

10

15

20

Weight

Displacement

Stress

Figure 6.181: Example 6: Distribution of points using VEGA with binary repre-

sentation at generation 100.

4.5e+06
5e+06

5.5e+06
6e+06

6.5e+06
7e+06

0.5
0.6

0.7
0.8

0.9
1

1.1
6
7
8
9

10
11
12
13
14
15
16
17

Weight

Displacement

Stress

Figure 6.182: Example 6: Distribution of points using VEGA with oating point

representation at generation 100.

347

5.5e+06
6e+06

6.5e+06
7e+06

7.5e+06
8e+06

8.5e+06 0.5

1

1.5

5

10

15

20

Weight

Displacement

Stress

Figure 6.183: Example 6: Distribution of points using NSGA with binary repre-

sentation at generation twenty.

sketch of the Pareto front, with tight ranges for the weight and displacement but

with a broader range for the stress (see Figure 6.180). The ranges of the axis give

the impression of a more sparse distribution in this latter case, but the popula-

tion is quite compact. After 100 generations, a binary representation provides an

almost linear distribution of points, forming what seems to be the Pareto front

(see Figure 6.181). Floating point representation produces a front somewhat more

sparse, but wider along the x and z axis, which is the reason why it produces a

better overall solution (see Figure 6.182). Comparing these 2 previous graphs, we

can easily see that this is another example of how oating point representation is

able to keep a better diversity of the population in certain problems, mainly when

the size of the search space (and, consequently, the length of the chromosome

strings) is fairly large.

After 20 generations, my version of Srinivas' NSGA that uses binary rep-

resentation produces a rather compact cluster of points representing solutions in

which weight is favored over stress and displacement (see Figure 6.183). After

348

6.5e+06
7e+06

7.5e+06
8e+06

8.5e+06 0.4

0.5

0.6

0.7

0.8

5.5
6

6.5
7

7.5
8

8.5
9

9.5

Weight

Displacement

Stress

Figure 6.184: Example 6: Distribution of points using NSGA with binary repre-

sentation at generation 50.

7.5e+06
8e+06

8.5e+06
9e+06

0.4

0.45

0.5

5

5.5

6

6.5

7

7.5

Weight

Displacement

Stress

Figure 6.185: Example 6: Distribution of points using NSGA with binary repre-

sentation at generation 100.

349

4.5e+06
5e+06

5.5e+06
6e+06

6.5e+06
7e+06 0.5

1

1.5
5

10

15

20

Weight

Displacement

Stress

Figure 6.186: Example 6: Distribution of points using NSGA with oating point

representation at generation 20.

5e+06
5.5e+06

6e+06
6.5e+06

7e+06
7.5e+06

8e+06
0.5

0.6
0.7

0.8
0.9

1

6
6.5

7
7.5

8
8.5

9
9.5
10

10.5
11

11.5

Weight

Displacement

Stress

Figure 6.187: Example 6: Distribution of points using NSGA with oating point

representation at generation 50.

350

5.5e+06
6e+06

6.5e+06
7e+06

7.5e+06
8e+06

0.45
0.5

0.55
0.6

0.65
5.5

6

6.5

7

7.5

8

8.5

Weight

Displacement

Stress

Figure 6.188: Example 6: Distribution of points using NSGA with oating point

representation at generation 100.

50 generations, the population seems more sparse, but the ranges are narrower,

indicating that the cluster is very compact (see Figure 6.184). At this point, stress

and displacement have been favored over weight. After 100 generations the pop-

ulation looks more sparse, although the ranges of the axis are even narrower than

before (see Figure 6.185). The compromise adopted by this method seems clear

now: stress and displacement have priority over weight. The use of oating point

representation produces better results in this example. After 20 generations, the

distribution of points looks sparse, and weight has been favored over stress and

displacement (see Figure 6.186). The Pareto front seems more clear after 50 gen-

erations, in which better trade-o�s are made, allowing slightly higher weights to

decrease stress and displacement (see Figure 6.187). This process continues after

100 generations, where weights have been newly increased to decrease stress and

displacement (see Figure 6.188). At this point, the population looks more sparse,

but that is because the ranges of the axis are narrower. Floating point repre-

sentation provided a much better overall solution, because the population after

351

4e+06
4.5e+06

5e+06
5.5e+06

6e+06
6.5e+06

7e+06
0.5

0.6
0.7

0.8
0.9

1
1.1

1.2

5

10

15

20

25

Weight

Displacement

Stress

Figure 6.189: Example 6: Distribution of points using MOGA with binary repre-

sentation at generation 20.

100 generations keeps better compromises between weight and displacement. In

this case, I did not run tests up to 500 generations because of the excessive CPU

required. Finally, as in previous examples, there was no signi�cant change in the

results when the value of �

share

was modi�ed.

Fonseca's MOGA gives very good compromises even after only 20 gener-

ations using binary representation, favoring weight over stress and displacement,

but with a better compromise than the previous methods (see Figure 6.189). At

this stage, there is a solid group of points in the compromise zone, but there

are still several dominated points. After 100 generations, however, the Pareto

front is very clear, with slightly increased stresses and lower displacements (see

Figure 6.190). Weights remain about the same as before, but with a narrower

range of variation. Because of the low weights achieved while keeping reasonable

low stresses and displacements, the best overall solution found using binary rep-

resentation is quite good as compared to what the previous GA-based methods

analyzed so far could do in this problem. Floating point representation provides,

352

4e+06
4.5e+06

5e+06
5.5e+06

0.45
0.5

0.55
0.6

0.65

6

7

8

9

10

11

12

13

Weight

Displacement

Stress

Figure 6.190: Example 6: Distribution of points using MOGA with binary repre-

sentation at generation 100.

3.5e+06
4e+06

4.5e+06
5e+06

5.5e+06
6e+06 1

2
3

4
5

6
7

8

5

10

15

20

25

30

35

40

Weight

Displacement

Stress

Figure 6.191: Example 6: Distribution of points using MOGA with oating point

representation at generation 20.

353

3e+06
3.5e+06

4e+06
4.5e+06

0.5
0.55

0.6
0.65

0.7
0.755

10

15

20

25

Weight

Displacement

Stress

Figure 6.192: Example 6: Distribution of points using MOGA with oating point

representation at generation 100.

even better compromises than binary representation. After only 20 generations

weight has taken priority over stress and displacement, and a very compact cluster

of points has been gathered (see Figure 6.191). After 100 generations, however,

the Pareto front looks more like that found using binary representation, although

in this case the compromise is better, because weights are kept lower than before

without signi�cantly a�ecting stress and displacement (see Figure 6.192). Because

of the lower weights achieved using oating point representation, the best overall

result found using this representation scheme is better than when binary represen-

tation was used. I also used a value of �

share

= 0:1 as in NSGA to generate these

graphs, but changing this value did not a�ect the results produced by the algo-

rithm. There was no attempt to run this algorithm for more than 100 generations

because of the high demands of CPU time required by this method.

As in previous cases, NPGA shows a remarkably consistent behavior, that

corroborates its robustness as a multiobjective optimization technique. After 20

generations using binary representation, the Pareto front is already visible, and

354

4.5e+065e+065.5e+066e+066.5e+067e+067.5e+068e+06 0.5
1

1.5
2

2.5
3

3.5

0
10
20
30
40
50
60
70
80

Weight

Displacement

Stress

Figure 6.193: Example 6: Distribution of points using NPGA with binary repre-

sentation at generation 20.

4.5e+06
5e+06

5.5e+06
6e+06

6.5e+06
7e+06

7.5e+06 0.5
1

1.5
2

2.5
3

3.5

0
10
20
30
40
50
60
70
80

Weight

Displacement

Stress

Figure 6.194: Example 6: Distribution of points using NPGA with binary repre-

sentation at generation 50.

355

4.5e+06
5e+06

5.5e+06
6e+06

6.5e+06
7e+06

7.5e+06 0.5
1

1.5
2

2.5
3

3.5

0
10
20
30
40
50
60
70
80

Weight

Displacement

Stress

Figure 6.195: Example 6: Distribution of points using NPGA with binary repre-

sentation at generation 100.

4.5e+06
5e+06

5.5e+06
6e+06

6.5e+06
7e+06

7.5e+06
1

1.5
2

2.5
3

3.5

0
10
20
30
40
50
60
70
80

Weight

Displacement

Stress

Figure 6.196: Example 6: Distribution of points using NPGA with binary repre-

sentation at generation 100 with �

share

= 1:0.

356

4.5e+06
5e+06

5.5e+06
6e+06

6.5e+06 0.6
0.7

0.8
0.9

1
1.1

1.2
1.3

0
1
2
3
4
5
6
7
8
9

Weight

Displacement

Stress

Figure 6.197: Example 6: Distribution of points using NPGA with oating point

representation at generation 100.

4e+06
4.5e+06

5e+06
5.5e+06

6e+06
6.5e+06

7e+06

5

10

0

10

20

30

40

50

60

70

Weight

Displacement

Stress

Figure 6.198: Example 6: Distribution of points using NPGA with oating point

representation at generation 20.

357

4.5e+06
5e+06

5.5e+06
6e+06

6.5e+06 0.5
0.6

0.7
0.8

0.9
1

1.1
1.2

1.3
1.4

0

10

20

30

40

50

60

Weight

Displacement

Stress

Figure 6.199: Example 6: Distribution of points using NPGA with oating point

representation at generation 50.

the compromise is to favor weight over stress and displacement (see Figure 6.193).

After 50 generations, there are fewer dominated points in the population, and the

Pareto front is quite clear (see Figure 6.194). The compromise among the objec-

tives remains the same. After 100 generations, the Pareto front looks like a plane

formed by a very solid layer of points with exactly the same compromise as before

(see Figure 6.195). Due to the high values of displacement and stress adopted,

the best overall result is not as good as we would like (see Tables 6.20, 6.21, 6.22

and 6.23). When oating point representation is used, the results produced seem

less consistent. After 20 generations, a cluster of points representing compromise

solutions in which weight is highly favored over stress and displacement is gener-

ated (see Figure 6.198). However, after 50 generations, the trade-o� has changed

and displacement has been slightly favored over weight (see Figure 6.199). The

distribution of points is, nevertheless, too sparse, when we compare it to that

displayed at earlier stages of the search process. After 100 generations, the popu-

lation is still too sparse, although there is certain resemblance of the Pareto front

358

3.5e+06
4e+06

4.5e+06
5e+06

5.5e+06

1

1.55

10

15

20

25

30

Weight

Displacement

Stress

Figure 6.200: Example 6: Distribution of points using Hajela's method with

binary representation at generation 20.

that binary representation produced (see Figure 6.197). It is, however, due to

this sparse distribution of points that oating point representation produced a

better overall solution than binary representation. As in previous examples, the

value of �

share

plays a critical role in the performance of the algorithm, because

if we increase it from 0.1 (same value used with the previous techniques that use

niches) to 1.0, the entire population converges to a very small set of points after

only 100 generations, producing very bad compromises among the objectives (see

Figure 6.196).

Hajela's method provides a highly sparse distribution of points after 20

generations using binary representation, with trade-o�s that strongly favor weight

over displacement and stress (see Figure 6.200). After 50 generations, this trend is

even more noticeable, and lower weights are being generated while stress increases

and displacement remains the same as at earlier generations (see Figure 6.201).

After 100 generations the population has formed a very compact plane that con-

stitutes the Pareto front, with compromises that highly favor weight over stress

359

2.4e+062.5e+062.6e+062.7e+062.8e+062.9e+063e+063.1e+063.2e+06
0.9

1
1.1

1.2
1.310

15

20

25

30

35

Weight

Displacement

Stress

Figure 6.201: Example 6: Distribution of points using Hajela's method with

binary representation at generation 50.

1.95e+06
2e+06

2.05e+06
2.1e+06

2.15e+06 1.1
1.15

1.2
1.25

1.3
1.35

24
24.5

25
25.5

26
26.5

27
27.5

28
28.5

29
29.5

Weight

Displacement

Stress

Figure 6.202: Example 6: Distribution of points using Hajela's method with

binary representation at generation 100.

360

3.5e+06
4e+06

4.5e+06
5e+06

1

1.55

10

15

20

25

30

Weight

Displacement

Stress

Figure 6.203: Example 6: Distribution of points using Hajela's method with

oating point representation at generation 20.

3.5e+06
4e+06

4.5e+06
5e+06

1

1.55

10

15

20

25

30

Weight

Displacement

Stress

Figure 6.204: Example 6: Distribution of points using Hajela's method with

oating point representation at generation 20.

361

4.3e+064.31e+064.32e+064.33e+064.34e+064.35e+064.36e+064.37e+064.38e+06
0.8742

0.8743
0.8744

0.8745
0.8746

0.8747
0.8748

11.43
11.435
11.44

11.445
11.45

11.455
11.46

11.465
11.47

11.475
11.48

Weight

Displacement

Stress

Figure 6.205: Example 6: Distribution of points using Hajela's method with

oating point representation at generation 100.

and displacement (see Figure 6.202). Notice that since the weights produced are

extremely low (compared to the values produced by previous methods), the best

overall result that this method generates using binary representation is excellent.

Floating point representation has a disappointing behavior in this example. After

only 20 generations we can see a notorious lack of points in the graph, indicat-

ing redundancy in the solutions encoded by the population (see Figure 6.203).

The compromise is similar as when binary representation is used, given weight

preference over stress and displacement. After 50 generations only a few points

remain in the graph, which means that the GA has practically converged to a sin-

gle solution (see Figure 6.204). In this case, the weight and stress have increased,

allowing a lower displacement. After 100 generations, total convergence is a fact

as can be seen in the corresponding graph (see Figure 6.205). The best overall

solution found using oating point representation is much poorer than the one

found using binary representation, because convergence in the former case took

place towards a zone of not very good compromises (displacement has priority

362

4.5e+06 5e+065.5e+06 6e+066.5e+06 7e+067.5e+06 8e+06

5

10

15

0
10
20
30
40
50
60
70
80
90

Weight

Displacement

Stress

Figure 6.206: Example 6: Distribution of points using my method based on the

min-max algorithm with binary representation at generation zero.

over stress and weight). Again, the set of weights and the niching parameters

used by this technique play a crucial role on its performance.

Before showing the results produced with my �rst method based on the

min-max approach, I want to show the distribution of points at generation zero,

since in this case the algorithm ensures that only feasible solutions are generated.

Figure 6.206 shows such initial distribution. The cluster of points at generation

zero is gathered around a straight line that delineates a trade-o� in which weight

is favored over stress and displacement. After 100 generations, and using 20 dif-

ferent weights with binary representation, the Pareto front is perfectly visible (see

Figure 6.207). The compromise still favors weight over stress and displacement,

but with a better trade-o� than that produced by all the previous GA-based meth-

ods. Floating point representation produces a similar contour, but with a much

better trade-o� among the 3 objectives (see Figure 6.208). The best overall result

produced in this latter case has the lowest deviation from all techniques (includ-

ing Osyczka's system with very good guesses), con�rming the robustness of this

363

1.5e+06

2e+06 2
3

4
5

6
7

0

50

100

150

Weight

Displacement

Stress

Figure 6.207: Example 6: Distribution of points using my method based on the

min-max algorithm with binary representation at generation 100.

500000

1e+06

1.5e+06

2
3

4
5

6
7

10
20
30
40
50
60
70
80
90

100
110
120

Weight

Displacement

Stress

Figure 6.208: Example 6: Distribution of points using my method based on the

min-max algorithm with oating point representation at generation 100.

364

6.5e+06
7e+06

7.5e+06
8e+06

8.5e+06
0.4

0.45

0.5

5.5

6

6.5

7

7.5

8

8.5

9

Weight

Displacement

Stress

Figure 6.209: Example 6: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at generation 20.

technique as a numerical optimization tool. It should be reminded, however, that

the performance of this technique is highly dependent upon the weights provided

by the user. Nevertheless, the results provided by this technique make it worth

experimenting with the weights mainly if we consider that it turns out to be less

di�cult to tune up this parameter in practice than what one could expect. This

has been shown with the examples solved in this thesis in which the search space

has a very di�cult shape for most GA-based techniques, and the set of weights

used to produce the results reported was chosen only once.

This example produces the worst observed behavior for my second tech-

nique based on the min-max algorithm. After 20 generations using binary repre-

sentation, the population has a good distribution, and the Pareto front is clearly

visible (see Figure 6.209). The compromise adopted has been to favor displace-

ment and stress over weight. After 100 generations, however, the population is

starting to converge to a unique point, and the algorithm is having a lot of trouble

trying to avoid that (see Figure 6.210). The ranges at this point look very tight,

365

9.65e+06
9.7e+06

9.75e+06
9.8e+06

9.85e+06
9.9e+06

9.95e+06
0.37039

0.3704
0.37041

0.37042
0.37043

0.37044

5.125

5.13

5.135

5.14

5.145

Weight

Displacement

Stress

Figure 6.210: Example 6: Distribution of points using my approach based on

min-max selection with sharing, using binary representation at generation 100.

5e+06
5.5e+06

6e+06
6.5e+06

7e+06
0.45

0.5

0.55

0.6

6
7
8
9

10
11
12
13
14
15

Weight

Displacement

Stress

Figure 6.211: Example 6: Distribution of points using my approach based on

min-max selection with sharing, using oating point representation at generation

20.

366

8e+06

8.5e+06

9e+06 0.375
0.376

0.377
0.378

0.379
0.38

0.381
0.382

0.383
0.384

5.3

5.35

5.4

5.45

5.5

5.55

5.6

Weight

Displacement

Stress

Figure 6.212: Example 6: Distribution of points using my approach based on

min-max selection with sharing, using oating point representation at generation

100.

and total convergence seems imminent. The reason for this poor behavior is that

the algorithm was able to �nd two elements of the ideal vector (displacement

and stress) which are non-conicting, and moved towards the regions where they

reside regardless of the extremely high values found for the weight. That is the

reason why this method reported the poorest overall solution of all the techniques

under study (see Tables 6.20, 6.21, 6.22 and 6.23). Floating point representation

provides a better performance in terms of population distribution, and after 20

generations the Pareto front looks more uniform (see Figure 6.211). The compro-

mise in this case is, however, similar than before, with compromises that favor

displacement and stress over weight. After 100 generations the population still

looks somewhat sparse, but convergence towards the same kind of solutions found

using binary representation seems unavoidable (see Figure 6.212). Floating point

representation provides a slightly better overall solution, but still extremely poor

when compared to the results produced by the other techniques. The value of

�

share

used for solving this problem was 0:5 and the initial population used was

367

Method x

1

x

2

f

1

f

2

f

3

f

4

Monte Carlo 1 0.19247 0.19511 103:11 39.30 708.72 236.49

Monte Carlo 1 0.02417 0.09112 214.30 29:85 795.79 434.79

Monte Carlo 1 0.04311 0.10200 135.1197 41.1169 385:88 205.76

Monte Carlo 1 0.01713 0.12098 127.45 41.90 658.27 194:94

Min-Max (OS) 0.19247 0.19511 103:11 39.30 708.72 236.49

Min-Max (OS) 0.02417 0.09112 214.30 29:85 795.79 434.79

Min-Max (OS) 0.04311 0.10200 135.12 41.12 385:88 205.76

Min-Max (OS) 0.01713 0.12098 127.45 41.90 658.27 194:94

GA (Binary) 0.1565 0.2000 92:82 41.25 679.78 201.59

GA (Binary) 0.1621 0.0963 194.43 29:60 805.76 444.92

GA (Binary) 0.2000 0.1972 132.20 41.94 373:85 194.52

GA (Binary) 0.1419 0.0965 130.06 41.93 389.06 194:61

GA (FP) 0.1557 0.2000 91:99 40.29 684.44 211.95

GA (FP) 0.2000 0.0930 168.03 29:59 890.92 443.34

GA (FP) 0.2000 0.2000 132.21 41.94 373:83 194.52

GA (FP) 0.2000 0.0096 105.22 41.94 692.73 194:52

Literature 0.199 0.199 112:75 39.06 750.60 303.09

Literature 0.175 0.114 216.76 30:21 713.05 452.31

Literature 0.198 0.140 133.11 41.94 374:82 195.23

Literature 0.191 0.198 111.99 41.94 485.66 195:21

Table 6.30: (Part I) Comparison of results computing the ideal vector of example

7 from Chapter 5 (design of a robot arm). For each method the best results

for optimum f

1

, f

2

, f

3

and f

4

are shown in boldface. OS stands for Osyczka's

Multiobjective Optimization System. (Continued in Table 6.31)

that shown in Figure 6.206, in which weight has priority over stress and displace-

ment. The main weakness of this technique is again made evident: it tends to fail

when it is possible to �nd solutions that produce more than one element of the

ideal vector and highly disfavor the remaining objectives.

6.8 Example 7 : Design of a Robot Arm

In this example I will not show any graphical representation of the Pareto

front, because there are too many objective functions, and plotting them is not

possible anymore. So, for this problem I will concentrate on how good do all

368

Method x

3

x

4

Monte Carlo 1 34.9006 2.4059

Monte Carlo 1 18.9996 14.5462

Monte Carlo 1 0.00755 0.70932

Monte Carlo 1 29.5132 0.02916

Min-Max (OS) 34.9006 2.40593

Min-Max (OS) 18.9996 14.5462

Min-Max (OS) 0.07550 0.70932

Min-Max (OS) 29.5132 0.02916

GA (Binary) 35.0000 0.4095

GA (Binary) 22.4752 15.00

GA (Binary) 0.00340 0.0000

GA (Binary) 1.8294 0.0066

GA (FP) 35.00 0.9869

GA (FP) 35.00 15.00

GA (FP) 0.0000 0.0004

GA (FP) 35.00 0.0010

Literature 34.98 5.77

Literature 10.24 14.86

Literature 0.001 0.002

Literature 14.30 0.001

Table 6.31: (Part II) Comparison of results computing the ideal vector of example

7 from Chapter 5 (design of a robot arm). OS stands for Osyczka's Multiobjective

Optimization System.

369

the techniques in terms of getting the best overall result. First, I will start by

showing the ideal vector, according to each one of the techniques used in the

previous example. Again, the GA with oating point representation found the

entire ideal vector. As can be seen from the results presented in Table 6.30, I

found even better results than those reported in the literature.

Since I am only measuring the performance of each technique in terms of

the best solution overall, there is not much to say about the results presented

in Table 6.32, because they are self-explanatory. One of the most remarkable

things observed when performing the experiments corresponding to this problem

was that oating point representation consistently gave a poorer result with all

GA-based methods. The reason for this behavior is that the solutions to this

problem are very sensitive to the values of the design variables. Since oating

point representation provides with shorter chromosomes, crossover tends to a�ect

more the phenotypes in problems with a small number of variables like this. For

this problem, binary representation requires strings of length 59, whereas oating

point representation requires strings of only 20 genes, that being the main reason

for the poorer performance of the latter, since it turns out to be harder for this

scheme representation to keep good solutions through generations, unless an elitist

selection strategy is implemented. This shows how in problems with short strings,

a oating point representation might not work very well unless some additional

restrictions are imposed when mating chromosomes.

As before, mymethod based on a weighted min-max approach provided the

best overall result, with only a slight di�erence between binary and oating point

representation. VEGA, Hajela's approach and my Pareto-GA method provide

very good results when binary representation is used, but produce very poor

solutions with oating point representation. However, some techniques such as

370

Method x

1

f

1

f

2

f

3

f

4

L

p

(f)

Ideal Vector 91.99 29.59 373.83 194.52 0.000000

Monte Carlo 1 0.18738 117.68 39.74 505.73 221.24 1.112581

Monte Carlo 2 0.12276 123.43 41.41 458.17 200.12 0.995563

Min-max (OS) 0.12438 135.62 35.06 740.01 306.76 2.215680

GCM (OS) 0.12438 135.62 35.06 740.01 306.76 2.215680

WMM (OS) 0.12438 135.62 35.06 740.01 306.76 2.215680

PMM (OS) 0.12438 135.62 35.06 740.01 306.76 2.215680

NMM (OS) 0.12438 135.62 35.06 740.01 306.76 2.215680

GALC (B) 0.20000 102.18 41.94 529.01 194.52 0.943299

GALC (FP) 0.20000 161.89 30.85 878.20 430.70 3.365909

Lexicographic (B) 0.04690 129.19 41.29 414.91 202.44 0.950512

Lexicographic (FP) 0.20000 105.00 41.74 694.10 197.74 1.425351

VEGA (B) 0.18010 129.71 41.90 393.13 194.90 0.879695

VEGA (FP) 0.20000 105.20 41.94 692.83 194.79 1.415545

NSGA (B) 0.13680 115.61 41.69 465.15 197.78 0.926816

NSGA (FP) 0.14100 93.16 41.48 676.66 199.22 1.248742

MOGA (B) 0.17370 144.92 34.49 637.22 316.49 2.072441

MOGA (FP) 0.20000 165.01 29.73 885.55 438.00 3.418972

NPGA (B) 0.08520 109.84 41.51 695.58 204.99 1.511325

NPGA (FP) 0.20000 227.94 29.75 631.28 449.13 3.480962

Hajela (B) 0.19990 132.75 41.75 376.58 196.89 0.873619

Hajela (FP) 0.20000 166.52 47.46 841.71 394.29 3.692761

GAminmax1 (B) 0.16430 132.20 41.94 373.87 194.52 0.854600

GAminmax1 (FP) 0.20000 132.19 41.94 373.93 194.52 0.854665

GAminmax2 (B) 0.18930 124.37 41.86 413.73 195.25 0.877150

GAminmax2 (FP) 0.20000 200.75 31.01 686.86 430.04 3.278562

Table 6.32: (Part I) Comparison of the best overall solution found by each one

of the methods included in MOSES for the seventh example (design of a robot

arm). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In

all cases, weights were assumed equal to 0.25 (equal weight for every objective).

(Continued in Table 6.33)

371

Method x

2

x

3

x

4

Monte Carlo 1 0.18074 13.47721 1.5555

Monte Carlo 2 0.17042 9.26852 0.33446

Min-max (OS) 0.09609 29.9961 6.9961

GCM (OS) 0.09609 29.9961 6.9961

WMM (OS) 0.09609 29.9961 6.9961

PMM (OS) 0.09609 29.9961 6.9961

NMM (OS) 0.09609 29.9961 6.9961

GALC (B) 0.20000 20.2738 0.0132

GALC (FP) 0.06450 35.0000 15.000

Lexicographic (B) 0.01970 10.5668 0.4671

Lexicographic (FP) 0.02720 35.0000 0.8189

VEGA (B) 0.08990 15.3888 0.4392

VEGA (FP) 0.01320 35.0000 0.0188

NSGA (B) 0.06090 20.9519 0.4369

NSGA (FP) 0.20000 35.0000 0.2221

MOGA (B) 0.00630 35.0000 9.1130

MOGA (FP) 0.08090 35.0000 15.000

NPGA (B) 0.04760 35.0000 0.6984

NPGA (FP) 0.20000 0.0009 15.000

Hajela (B) 0.11240 0.0391 0.1537

Hajela (FP) 0.20000 35.000 10.0624

GAminmax1 (B) 0.20000 0.0059 0.0006

GAminmax1 (FP) 0.05000 0.0122 15.000

GAminmax2 (B) 0.15480 21.6953 0.24970

GAminmax2 (FP) 0.06390 35.0000 15.000

Table 6.33: (Part II) Comparison of the best overall solution found by each one

of the methods included in MOSES for the seventh example (design of a robot

arm). GA-based methods were tried with binary (B) and oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System,

GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC

= Genetic Algorithm with a linear combination of objectives using scaling. In all

cases, weights were assumed equal to 0.25 (equal weight for every objective).

372

Hajela's method, prematurely converged to the solution presented in Table 6.32.

In these tests, �

share

= 0:1 for all Pareto-based approaches, except mine, which

uses �

share

= 0:5.

6.9 Example 8 : Design of a Combinatorial Cir-

cuit

This is by far, the hardest problem faced by the GA-based methods ana-

lyzed in this thesis. To solve it, many obstacles had to be faced. First, the

two objectives indicated in Chapter 4 (i.e., functionality and the minimization

of the number of gates other than WIRE) had to be combined to get the best

performance of the GA, which means that the problem had to be considered as

a single-objective optimization problem. The GA is able to solve this single-

objective optimization problem when a proper population size and parameters

were provided. In that sense, I was unable to reproduce the results presented by

Louis in his dissertation [204] for the traditional GA. The �tness function that he

suggests did not work at all, and I was unable to achieve convergence using the

genetic algorithm with di�erent parameters. In this respect, I should point out

that the convergence graph that Louis shows on page 67 of his dissertation [204]

indicates that the maximum �tness that he could get after 50 generations was

around 41, which is below the bound of feasible solutions (a feasible solution has

a �tness of 44). In my experiments, I had to devise a di�erent �tness function, I

used a fairly large population size (500), and a combination of low crossover and

high mutation rate (for example, crossover rate = 0.1 and mutation rate = 0.4)

to �nd feasible solutions. This clearly indicates the di�culties of the GA to keep

highly �t schemas, since crossover will tend to disrupt good solutions. This makes

373

this problem very challenging and interesting to apply the GA. Also, because of its

encoding it is not suitable for traditional mathematical programming techniques.

In the analysis of this problem, I will show the �tness function that was

found most appropriate for the traditional GA, together with convergence graphs

that will show the e�ciency of the technique. On the other hand, it is also

interesting to look at the physical representation of the solutions found by the

GA, and compare them with those previously reported in the literature [205].

First of all, the main problem faced when trying to design a 2-bit adder

with a GA was to devise a good �tness function. The initial approach was to use a

slight variation of the function suggested by Louis in his dissertation [204], which

consists of the number of correct additions performed. Instead of checking on the

3 possible outcomes for each of the 16 possible combinations of inputs, I checked

only on the �nal result on each case, requiring, therefore, only 16 comparisons

instead of the 48 originally required. This �tness function worked �ne, assuming

that proper parameters were provided for the GA. In the results that follow, I

used a population size of 500 chromosomes, a crossover rate of 0.1, a mutation

rate of 0.4, and I ran the GA for 100 generations. I also found more suitable to

incorporate the second objective as a reward to the �tness function, since none of

the multiobjective optimization techniques implemented in MOSES was able to

handle such value as a completely separate objective function. In fact, the �tness

function that I used turns out to be a linear combination of the two objectives (i.e.,

an addition of them). I ran a loop over the 16 di�erent types of gates employed

for each design, and whenever a WIRE was employed, the �tness function was

rewarded with a bonus of unitary value. Therefore, the best solutions found use

9 WIREs, since their �tness is 25 (a functional circuit has a �tness of 16, and

since the �tness is increased by one for each WIRE that uses, a �tness of 25

374

6

8

10

12

14

16

18

20

22

24

0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 F
itn

es
s

Number of Generations

Figure 6.213: Convergence history of the GA solving problem No. 8 (binary

representation). The evolution of the maximum �tness is displayed through 100

generations.

means that we have a functional circuit that uses 9 WIRES). That corresponds

to a better solution than those provided by Louis (his sample solution produced

with the traditional GA has a �tness of 24, and his sample solution using his

masked crossover operator has a �tness of 21). Notice that since I did not use any

elitist selection strategy in my tests (I did not want to alter the basic structure of

MOSES with the details of this problem), the graphs will not show a monotonic

increment of the �tness values.

The convergence of the GA using a linear combination of the two objectives

is shown in Figures 6.213 and 6.214. The �rst graph shows the evolution of the

maximum �tness, and the second shows the evolution of the average �tness. We

can see how the GA requires over 70 generations to come up with feasible solutions,

but once it �nds one, it can easily make the population converge towards them

It is interesting to notice that, due to the nature of the problem, the GA is able

to generate several di�erent solutions even without using any kind of sharing

technique. Notice that only binary representation was used, since the problem

375

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 F
itn

es
s

Number of Generations

Figure 6.214: Convergence history of the GA solving problem No. 8 (binary

representation). The evolution of the average �tness is displayed through 100

generations.

is too sensitive to the scheme representation to allow the use of oating point

representation. The fact that oating point representation does not seem to work

with this problem should not surprise us, since it is more suitable for numerical

optimization problems and in this case the concept of design is taken from a

more creative perspective, with a search space shaped in a form in which binary

representation seems the \natural" and obvious encoding.

Finally, since I considered interesting to analyze some of the solutions

generated by the GA, I decided to include some of the circuits corresponding to

some of the designs produced by the GA. Figures 6.215 and 6.216, show some

examples of such designs. The solution provided by Louis in his dissertation

[204] is shown in Figure 6.217 (this is the solution corresponding to the use of a

traditional GA with an elitist selection strategy). As can be observed in these

pictures, my designs use an extra WIRE, which means that they require one gate

less than the design produced by Louis. According to my own goals set for this

376

B1

A1

B0

A0

X2

X1

X0XOR

XOR

XOR

AND

XOR

WIRE

WIRE

WIRE

WIRE

AND

OR

WIRE

WIRE WIRE

WIRE

WIRE

Figure 6.215: Example 8: A sample circuit design produced by MOSES using

binary representation.

B1

A1

B0

A0

X2

X1

X0XOR

XOR

XOR

XOR

WIRE

WIRE

WIRE

WIRE

WIRE

WIRE WIRE

WIRE

WIRE

AND

AND

OR

Figure 6.216: Example 8: A sample circuit design produced by MOSES using

binary representation.

377

B1

A1

B0

A0

X2

X1

X0XOR

XOR XOR

XOR

AND

AND

WIRE

AND

XOR

WIRE WIRE

WIRE

WIRE

WIRE

WIRE

WIRE

Figure 6.217: Example 8: A sample circuit design produced by the classical genetic

algorithm with an elitist selection strategy used by Sushil Louis.

problem, my designs are better than Louis' designs, because they are functional

and maximize the number of WIREs within the circuit.

6.10 Critique of each Method

After analyzing all the results previously presented, I have derived some

conclusions about the behavior of each technique that will be summarized in the

following section, indicating the advantages and disadvantages of each technique,

and where seems most appropriate to use them.

6.10.1 Monte Carlo Method 1

� Fast convergence.

� Reasonable good solutions, but only one at a time.

� It can not generate the Pareto front.

378

� It computes the best overall solution using the min-max method, but with-

out explicitly asking the ideal vector.

� It can handle multiple objectives and multiple constraints, but if there are

too many variables (more than 4) and=or their ranges are too large, and

therefore the search space is too large to track, then this random method is

not very e�ective.

� This method is less e�cient (computationally speaking) than Monte Carlo

Method 2, because it explores the space twice, but it uses less memory.

6.10.2 Monte Carlo Method 2

� Very fast convergence.

� It is very e�cient because the space of variables is explored only once, but it

requires much more computer memory since the whole set of Pareto optimal

solutions has to be stored.

� It does not generate the Pareto front, but it only outputs the best non-

dominated solution.

� It is more e�cient when there are many constraints than Method 1, since

the Pareto region is smaller.

� Monte Carlo methods in general are very suitable for generating a rough

solution when the size of the search space is not too large, and when time

is an issue, since they are very fast at that. However, when the Pareto set

is too large or there are many variables involved, these methods turn out to

be very ine�cient and will have di�culty �nding a reasonable solution.

379

6.10.3 Osyczka's Multiobjective Optimization System

� Relatively fast convergence, but slower than Monte Carlo methods.

� It may �nd reasonable good solutions but only if we give a very close approx-

imation. If we provide a guessing point too far from the global optimum,

the single optimization technique used to compute the ideal vector could

take a long time to center the proper portion of the search space or even fail

to do so.

� It can generate a very small fraction of the Pareto front (most of the time

only one point), and only if a su�cient amount of points is used by the

method (normally a large number).

� It computes the best overall solution using 5 di�erent methods, and the user

is given the choice of providing the ideal vector or to let the system compute

it, and it o�ers the possibility of being used as an interactive system.

� It can handle multiple objectives and multiple constraints, and also several

single-criterion optimizationmay be incorporated (only the exible tolerance

method is incorporated in my implementation). Its only drawback in that

sense is the amount of memory available, because it could require very large

arrays when there are several variables (with large ranges) involved.

� The system can not deal with discrete variables, since it assumes that every

variable is continuous.

� Although many di�erent options are available to the user in this system,

it was designed to be used in an interactive manner, which means that the

user has to provide a lot of information and try it over and over again.

380

6.10.4 GA-based Linear Combination of Objectives

� It is very easy to implement, and as e�cient as the traditional SGA.

� It requires certain knowledge of the problem, since scaling is necessary to

avoid premature convergence problems. In most cases, it will, anyway, con-

verge towards a single solution.

� It is very e�cient (i.e., it is fast and it can provide very good overall results)

if proper scaling factors are used.

� It is recommended as an exploratory tool together with some of the Monte

Carlo techniques previously described.

6.10.5 Lexicographic Method

� It is very easy to implement, because the traditional GA only needs to

be extended using a random ag to choose among the di�erent objective

functions.

� It is the fastest GA-based technique, since no additional computations need

to be done, the original complexity of the traditional GA is kept.

� It does not work very well when the number of objective functions increases.

� It works surprisingly well with small problems, and is able to draw the

contour of the Pareto front very accurately. However, in larger problems is

not very good at generating the Pareto front.

� Randomly selecting an objective is equivalent to averaging �tness across

�tness components, each component being weighted by the probability of

each objective being chosen to decide each tournament [188]. However, since

381

pairwise comparisons are used, this method is essentially di�erent from a

linear combination of objectives, because scale information is ignored.

6.10.6 VEGA

� It is very e�cient and easy to implement and understand.

� It is not appropriate for problems with a concave trade-o� surface, because

it will not be able to �nd it.

� It is able to generate a good portion of the Pareto front in most cases,

but it tends to converge to a single solution if either too many generations

or oating point representation is used, since the problem of \speciation"

becomes critical.

� It is not recommended to use it with a oating point representation scheme,

unless only a rough approximation of the best trade-o� is desired, but it will

not do better than a linear combination of objectives and it takes about the

same computation time.

6.10.7 NSGA

� The selection strategy is somewhat slow, because checking for non-dominance

requires an O(n

2

) algorithm, and the computation of the niche counts requires

also O(n

2

) operations, where n refers to the population size.

� Not very good for generating the best overall solution, because the real

objective function values are never used by the algorithm.

� It can generate good Pareto fronts some times, but it can not keep them for

too long (no more than 100 generations).

382

� Sharing is done in the parameter values instead of the objective values, to

ensure a better distribution of individuals, and to let multiple equivalent

solutions exist.

� It does not consider the inclusion of constraints, so they have to be con-

sidered independently by the user, and that could imply an increase in the

complexity of the algorithm.

� The value of �

share

has to be estimated beforehand, because that could

a�ect, under certain conditions, the performance of the algorithm.

� Floating point representation is not recommended unless very few genera-

tions are used.

� The use of stochastic remainder selection seriously degrade the overall per-

formance of the algorithm.

6.10.8 MOGA

� It is faster than NSGA, because its ranking algorithm is more e�cient and

it uses a tournament selection strategy.

� Again, how to choose the value of �

share

is an issue, even when sometimes

there is no signi�cant change in the results when this parameter is modi�ed.

� Sharing is done on the objective value space, which means that two di�erent

vectors with the same objective function values can not exist simultaneously

in the population under this scheme. This is apparently undesirable, because

these are precisely the kind of solutions that the user normally wants, but

the method works surprisingly well in practice.

383

� It can display a good portion of the Pareto front when it is used with a

binary encoding for several generations. It does not converge towards a

single solution if appropriate sharing parameters are chosen, but it is better

if oating point representation is used because it displays a clearer Pareto

front and it requires less generations.

� A reasonably good overall result can be found with this technique, because

the �tness values are used to guide the search, even when the niching mech-

anism avoids the technique to �nd the best overall result.

� It is very stable if sharing parameters are chosen appropriately, but it could

produce fronts that contain an excessive amount of dominated points even

after many generations. In some cases, it seems to be more capable to

display the whole feasible region, instead of just displaying the Pareto front.

� The algorithm does not check feasibility of the solutions encoded in the

individuals, so that there could be convergence towards infeasible solutions.

6.10.9 NPGA

� This is the fastest of the Pareto-ranking techniques, if the tournament size

for determining non-dominance (t

dom

) is not very large (which is normally

the case).

� It produces very clear Pareto fronts, and it keeps the points that form the

curve even after many generations.

� It produces the largest section of the Pareto front of all Pareto-ranking based

techniques.

� It does not check feasibility of the points generated.

384

� Besides requiring the value of �

share

for forming niches, it requires the size of

the tournament for determining non-dominance (t

dom

), and the performance

of the techniques highly relies on such values.

� Floating point representation produces good approximations of the Pareto

front, and presents a remarkable robustness after many generations, although

sometimes it does not generate the non-dominated points where the global

optimum reside.

� When using oating point representation, the technique becomes more sen-

sitive to the values of its parameters, and a slight change of them abruptly

modi�es the results, and premature convergence is the normal trend of the

method.

� Using binary representation, good overall solutions may be obtained, but

not better than those generated by simple linear combination of objectives

or by the Lexicographic method.

6.10.10 Hajela's Method

� This is a non-Pareto approach based on the weighted min-max method.

� The determination of the weights could be an issue, although the designer

normally knows what weights to assign.

� It uses the ideal vector, but if it is not known, the method can still be

used providing a utility function (i.e., an estimation of what would be the

desirable solution).

� It works very well at early stages of the search, generating a very clear

portion of the Pareto front and an excellent best overall solution, but it

385

quickly converges towards a single non-dominated solution after a few more

generations even if large populations are used.

� It uses sharing in the objective function space, and applies mating restriction

to try to preserve the best individuals, requiring therefore the determination

of �

share

and the mating restriction threshold to operate well.

� The method is very sensitive to changes in the values of its parameters.

� The use of oating point representation produces premature convergence of

the GA.

� The method does not check feasibility of the solutions encoded, and some-

times converges towards invalid solutions.

� It only produces reasonable good trade-o�s when used with binary represen-

tation during a few generations. Otherwise, it has a very poor performance.

6.10.11 GA with a Weighted Min-Max Technique

� This method is based on a weighted min-max optimization approach.

� It generates only points within the feasible region, and enforces feasibility

in the crossover and mutation operators across generations.

� It requires the determination of a set of weights for each one of the objective

functions.

� It requires the ideal vector, but it may also be used with a utility function.

� This method is intended to be used with a distributed or a parallel GA,

since it transforms the multiobjective optimization problem into k single-

optimization problems where k is the number of objective functions.

386

� If run on a sequential machine, this method is really slow compared to the

previous methods.

� It generates an excellent contour of the Pareto front with very few non-

dominated points evenly distributed.

� It generates the best overall solution of all methods.

� It is very robust since each objective is treated separately.

� It does not require sharing or any other parameters.

� It works almost equally well with both binary and oating point represen-

tation. However, with oating point representation is able to �nd the best

overall solutions.

6.10.12 GA with Min-Max Binary Tournament Selection

and Sharing

� It uses a min-max binary tournament selection scheme (deterministic).

� The ideal vector is determined for each population and non-dominance is

measured with respect to such vector in each generation.

� It uses sharing to decide ties in a similar manner as in NPGA, counting the

niche sizes of the two competitors in terms of their objective function values

(the one with less individuals in its niche wins).

� It is extremely fast, since it does not require any sort of ranking or sorting

of the population.

� It is sensitive to changes in the value of �

share

, and it normally requires

higher values than those used by other Pareto-based approaches.

387

� It �nds a large portion of the Pareto front in a reasonable number of gener-

ations, and it keeps most of it after many generations.

� It produces a very good overall solution using binary representation.

� It uses the objective function values, but it never combines those functions

in any way.

� It does not require large populations to produce reasonable approximations

of the Pareto front.

� It tends to converge to unique (and usually poor) solutions when there is at

least one achievable element from the ideal vector.

388

Chapter 7

Discussion

Some of my experiences regarding population policies and sharing param-

eters are discussed in this chapter, in the hope of clarifying the issues of adjusting

parameters in multiobjective optimization problems. The di�culties that some

problems present, such as the design of combinatorial circuits, are also addressed,

and a brief discussion on representation issues and the importance of choosing a

good �tness function is provided. Another important point is made regarding the

incorporation of knowledge from the domain into the genetic algorithm. In that

respect, some of the most important work in the area is referenced, and my own

ideas are discussed. Finally, an expert system is introduced that advises on the

most proper technique to use (from those contained in MOSES) depending on the

user's needs and the knowledge that he/she has about the characteristics of the

problem. This system is intended to be used as a front end to MOSES, so that

the user knows the most proper procedure to follow. Hopefully, all the informa-

tion provided in this chapter will be enough for any novice user to exploit most

of the potential of MOSES, even if he/she has little or no knowledge of genetic

algorithms.

389

10

15

20

25

30

200 400 600 800 1000 1200 1400

M
ax

im
um

 F
itn

es
s

Population size

Figure 7.1: Relation between population size and maximum�tness for the example

No. 8

7.1 Population Policies

One of the issues that normally worries GA practitioners is the �ne tuning

of parameters. In this thesis, I have addressed the problem of adjusting crossover

and mutation rates using a sequential procedure that is equivalent to a dynamic

adjustment of parameters. However, this procedure uses a constant population

size and its behavior depends on this parameter. There is some important work on

de�ning optimum population sizes for serial and parallel genetic algorithms done

by Goldberg [206] [207], Reeves [208] and Alander [209]. In Goldberg's work, it

is desired to maximize the number of new schemata per individual, so that the

optimal population for binary-coded strings grows exponentially with the length

of the string. Reeves [208] and Alander[209], on the other hand suggest that it

is possible to use very small populations for numerical optimization problems,

without degrading too much the performance of the GA. Alander suggests that

we choose population sizes between L and 2 � L, where L is the length of the

chromosome, and Reeves further suggests the use of the probability that at least

390

M L

p

(f) (B) L

p

(f) (FP) E

50 2.836104 2.921610 5000

100 2.653560 2.607544 10000

150 2.683763 2.627390 15000

200 2.605933 2.621065 20000

250 2.599961 2.608188 25000

300 2.603364 2.616161 30000

350 2.599006 2.627159 35000

400 2.619167 2.615799 40000

450 2.581377 2.582281 45000

500 2.628888 2.568597 50000

Table 7.1: Comparison of results using di�erent population sizes with my min-

max method that uses sharing. M is the population size, L

p

(f) is the maximum

deviation with respect to the ideal vector and E is the number of function eval-

uations required. These results correspond to example 1 from Chapter 5 using

binary (B) and oating point (FP) representations.

one allele is present at each locus in the initial population as the lower bound

to estimate our population size. As Reeves points out, one of the main issues

when using the GA is that if we have to experiment too much, or if we have

to use population sizes extremely large, then the technique will not be a good

competitor against other heuristics such as simulated annealing and tabu search,

mainly in the domain of numerical optimization. Reeves' idea is valid, but my

experiments with single and multiple-objective optimization indicate that the GA

using a larger alphabet (namely a oating point representation) is able to �nd

better solutions than binary representation, using the exact same parameters (i.e.,

population size, crossover and mutation rates). Also, if we move into problems

in which the concept of design is taken in a more creative sense rather than from

a numerical point of view, then we will see that de�ning population sizes can be

even more di�cult.

I will start my analysis by showing the e�ect of the population size on the

performance of the GA, measured in terms of the best overall result, because what

391

we are interested in right now is knowing how good the GA can be at �nding a

single trade-o�. For these experiments, I will be using my min-max method that

uses sharing and some of the examples from Chapter 5. First, I will show some

of the analysis corresponding to example 1 (design of an I-beam) using binary

and oating point representations (see Table 7.1). We can see how when binary

representation is used, there is no big di�erence between the results using larger

populations than the one I used in my experiments (M=100). The chromosome

length in this case is 49, which means that I am using a conservative approach

of requiring a population of at least 2 � L. From these results, we can see that

even if we increase the population to 450 chromosomes, the result is improved

by only about 3 %, while the computational cost is increased 4.5 times. The

following expression given by Reeves [208] can be used to compute the minimum

population size required to ensure enough diversity in the population:

P

�

2

= (1 � (1=2)

M�1

)

L

(7.1)

where P

�

2

is the probability that at least one allele is present at each locus

in the initial population, using binary representation. If we want to have a prob-

ability of 100 %, M must be chosen as at least 40. However, such a small value

will produce a value L

p

(f) = 2:752742, which is not very good, although is better

than the value produced with 50 chromosomes. Furthermore, in cases such as

example 6 in which the length of the string for binary representation is very large

(493 in case of example 6), his formula suggests using population sizes as small as

40, when in practice even a population of 500 was unable to �nd the ideal vector.

Floating point representation requires chromosomes of length 16, and it

produces better results than binary representation in average, and it generates

the best result overall. For this example, a value of �

share

= 0:5 was used, and the

392

M L

p

(f) (B) L

p

(f) (FP) E

50 0.351841 0.316188 5000

100 0.049133 0.096331 10000

150 0.163010 0.004151 15000

200 0.154574 0.000812 20000

250 0.117164 0.004070 25000

300 0.031906 0.012259 30000

350 0.189382 0.012264 35000

400 0.156802 0.000029 40000

450 0.175122 0.000029 45000

500 0.141048 0.000003 50000

Table 7.2: Comparison of results using di�erent population sizes with my min-

max method that uses sharing. M is the population size, L

p

(f) is the maximum

deviation with respect to the ideal vector and E is the number of function eval-

uations required. These results correspond to example 2 from Chapter 5 using

binary (B) and oating point (FP) representations.

number of function evaluations was calculated by multiplying M � k � g, where

k is the number of objectives and g is the number of generations. Even when the

alphabet used by oating point representation is considerably larger, we can see

how the results are consistently better. The same behavior is exhibited when we

perform single-objective optimization, as we saw in Chapter 6. This contradicts

Reeves' theory according to which a higher alphabet such as this would require

considerably larger populations to converge. My experiments show exactly the

opposite, since I always found it possible to generate better solutions (and in less

time) using oating point representation.

Another study of the e�ect of population size was conducted on example

2 (machining recommendations) from Chapter 5. The results are shown in Table

7.2. Again, oating point representation is able to surpass binary representation

on average, and it �nds a result that practically matches the ideal vector (its

deviation is almost zero). The chromosome length in this problem is 40 for binary

393

M L

p

(f) (B) L

p

(f) (FP) E

50 2.054163 3.651128 5000

100 2.214113 1.677212 10000

150 2.021498 2.269683 15000

200 1.740228 1.706499 20000

250 1.864798 1.827804 25000

300 1.731681 1.961402 30000

350 1.754297 1.524895 35000

400 1.780415 1.582077 40000

450 1.849722 1.643386 45000

500 1.816256 1.624714 50000

Table 7.3: Comparison of results using di�erent population sizes with my min-

max method that uses sharing. M is the population size, L

p

(f) is the maximum

deviation with respect to the ideal vector and E is the number of function eval-

uations required. These results correspond to example 3 from Chapter 5 using

binary (B) and oating point (FP) representations.

representation and 13 for oating point representation. One interesting observa-

tion with regards to this problem is that the sharing factor used was di�erent. I

used �

share

= 1:0 for binary representation and �

share

= 0:001 for oating point

representation. This factor also plays a crucial role in terms of convergence and

population diversity. For example, I found in this problem that a low value of

�

share

with oating point representation gives a much better overall result, but

makes the population converge to a unique solution most of the time. However,

if a higher value is used (for example �

share

= 0:01) there is a better distribution

of the population, although the best overall result turns out to be poorer. Using

binary representation, the converse seems to be true. An interesting aspect of the

importance of �

share

is that it can be used to switch the GA from a mathematical

programming tool in which we aim to �nd only one trade-o� (the best available)

to a Pareto ranking technique in which we want to �nd the entire Pareto front.

More in this respect will be discussed in the following section.

394

The last analysis that I did was on example 3 from Chapter 5. The results

are presented in Table 7.3. When binary representation is used in this example,

a chromosome length of 31 is required, and when oating point representation is

used, the length goes down to only 10. For these experiments, I used a value of

�

share

= 0:5 both for binary and oating point representation, but any change

to this value did not seem to a�ect the overall result. It should be noticed that

even when the average result is better for binary representation in this case, the

best overall solution was found with oating point representation, and it produces

results not too di�erent to those produced with binary representation except for

the �rst case (when M=50) which is the source of discrepancy in the performance

of these two representation schemes.

My experience in numerical optimization has shown me that normally a

rate of at least 1:1 between population size and chromosome length produces

reasonable results, and a rate of 2:1 is advised whenever possible (i.e., when the

computational cost is not too high). Nevertheless, there are always exceptions

to this rule, and in some problems very sensitive to the representation scheme

used, even a slight change in the population size produces a signi�cant di�erence

in the results. To illustrate my point, I am going to use example 8 from Chapter

5 (design of a combinatorial circuit). I tried to solve this problem using di�erent

population sizes while keeping constant the remaining parameters of the GA. The

results are shown in Figure 7.1, and indicate an erratic behavior of the GA. As

can be seen in this table, the GA is able to �nd the optimum result only when a

population of 500 chromosomes is used. Interestingly, it does not �nd the solution

even with larger populations as one would expect, and in several cases it even fails

to �nd a feasible result. The logic behind this behavior is that this problem is

very sensitive to the use of operators, and because of the constraints imposed on

395

the inputs and the possible gates to be employed in the design, some populations

disfavor the propagation of the good solutions and get stuck in a non-feasible

result. Also, the extremely high mutation rates (0.4 in this case) make the GA to

behave more like a hill-climbing technique than like a more robust evolutionary

approach. It is interesting to point out that even when the design of circuits is

considered to be more within the domain of genetic programming, the traditional

GA is perfectly capable to handle it if a proper representation is used and if a

good technique for adjusting its parameters is employed. For instance, in example

8 from Chapter 5, I encoded the gates in a column order (in a top-down manner),

because it reects better the interactions among inputs and outputs. However, as

Louis indicates [205], a row order from left to right does not work at all since the

problem becomes highly deceptive and the GA can not �nd the proper building

blocks to ensure convergence towards the proper areas of the search space. Also,

the use of a oating point representation did not work, regardless of the parameters

used including population size. It would be interesting however, to experiment

with some of the crossover approaches that have been proposed in the literature

such as those mentioned in Eshelman and Scha�er's work [161].

7.2 Niching Parameters

My experiments with �tness sharing for each objective within my min-max

strategy gave promising results at the beginning, but it had some problems with

the last 4 problems, both in terms of �nding the best overall result and in terms

of providing a good distribution of the population. The value of �

share

plays a

key role in the performance of the algorithm, and therefore, I decided to run some

tests with di�erent values to see its e�ect on the solutions found. My results are

summarized in Tables 7.4, 7.5 and 7.6 for examples 1, 2 and 3 respectively. For

396

�

share

L

p

(f) (B) L

p

(f) (FP)

0.0 2.628584 2.570911

0.00001 2.660908 2.623860

0.0001 2.660908 2.623860

0.001 2.660908 2.635036

0.01 2.660908 2.635036

0.1 2.922974 2.631968

0.5 2.653560 2.607544

1.0 2.720461 2.607544

10.0 2.683472 2.575646

100.0 2.603680 2.567910

Table 7.4: Comparison of results using di�erent values of �

share

with my min-max

method that uses sharing. L

p

(f) is the maximum deviation with respect to the

ideal vector. These results correspond to example 1 from Chapter 5 using binary

(B) and oating point (FP) representations.

�

share

L

p

(f) (B) L

p

(f) (FP)

0.0 0.215196 0.066086

0.00001 0.033297 0.096233 (*)

0.0001 0.020111 0.096753

0.001 0.200788 0.096331 (*)

0.01 0.325226 0.125649

0.1 0.403476 (*) 0.054456

0.5 0.295288 0.054456

1.0 0.049133 0.270773 (*)

10.0 0.173621 0.096753

100.0 0.946293 0.095485 (*)

Table 7.5: Comparison of results using di�erent values of �

share

with my min-

max method that uses sharing. L

p

(f) is the maximum deviation with respect to

the ideal vector. These results correspond to example 2 from Chapter 5 using

binary (B) and oating point (FP) representations. The asterisk (*) indicates

total convergence of the population to a unique solution.

397

�

share

L

p

(f) (B) L

p

(f) (FP)

0.0 2.491438 1.828912

0.00001 2.214113 1.677212

0.0001 2.214113 1.677212

0.001 2.214113 1.677212

0.01 2.214113 1.677212

0.1 2.214113 1.677212

0.5 2.214113 1.677212

1.0 2.214113 1.677212

10.0 2.214113 1.708526

100.0 1.673000 1.508644

Table 7.6: Comparison of results using di�erent values of �

share

with my min-max

method that uses sharing. L

p

(f) is the maximum deviation with respect to the

ideal vector. These results correspond to example 3 from Chapter 5 using binary

(B) and oating point (FP) representations.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 7.2: Distribution of points in the objective function domain for exam-

ple 1 using my min-max strategy with a sharing factor of 0.0001 under binary

representation.

398

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 7.3: Distribution of points in the objective function domain for example 1

using my min-max strategy with a sharing factor of 0.0001 under oating point

representation.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 7.4: Distribution of points in the objective function domain for example 1

using my min-max strategy with a sharing factor of 100.0 under binary represen-

tation.

399

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

f2

f1

Figure 7.5: Distribution of points in the objective function domain for example

1 using my min-max strategy with a sharing factor of 100.0 under oating point

representation.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 7.6: Distribution of points in the objective function domain for exam-

ple 3 using my min-max strategy with a sharing factor of 0.0001 under binary

representation.

400

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 7.7: Distribution of points in the objective function domain for example 3

using my min-max strategy with a sharing factor of 0.0001 under oating point

representation.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 7.8: Distribution of points in the objective function domain for example 3

using my min-max strategy with a sharing factor of 100.0 under binary represen-

tation.

401

0.01

0.015

0.02

0.025

0.03

0.035

0.04

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

f2

f1

Figure 7.9: Distribution of points in the objective function domain for example

3 using my min-max strategy with a sharing factor of 100.0 under oating point

representation.

the �rst example, oating point representation provides better overall results in

general, but poorer distributions than binary representation. A couple of examples

should illustrate this. If we look at the graph corresponding to �

share

= 0:0001

(see Figures 7.2 and 7.3) and �

share

= 100:0 (see Figures 7.4 and 7.5) we will

notice the trend of binary representation to spread the population over the Pareto

front, whereas oating point representation normally keeps fewer points and it has

more di�culties forming niches. However, it can succeed converging towards the

Pareto contour, although it probably will not keep it for too long. This con�rms

my assertion on the quick convergence property of oating point representation,

and explains why this representation scheme produces better overall results than

binary representation. For the second example, little analysis is required, since the

ideal vector is practically feasible. From the results of Table 7.5, we can see that

oating point representation again provides better results in general, but there is

a strong trend to converge towards a unique solution. Binary representation, on

the other hand, produces better distributions, although it has more di�culties to

402

Problem �

share

L

p

(f) (B) L

p

(f) (FP) q

Example 1 22.727 2.653479 2.567664 10

Example 2 208.0 0.291994 0.000012 3

Example 3 46.40 1.660654 1.492613 3

Example 4 1992.38 22.727313 22.489108 10

Example 5 1060.39 704.262255 687.680069 10

Example 6 2486.79 265.368984 215.217609 10

Example 7 14.47 0.859784 3.250367 3

Table 7.7: Comparison of results using estimated values of �

share

with mymin-max

method. L

p

(f) is the maximum deviation with respect to the ideal vector. The

value of q indicated the number of desired peaks to which we want the population

to converge.

�nd the best overall result. In the third example, a variation in the value of �

share

does not produce too much di�erence in the results, unless a large value is used or

no sharing is done. Again, oating point representation consistently found better

overall results, but with poorer distributions as we can see in Figures 7.6 to 7.9.

The conclusion after 3 examples seems clear: we should use binary representation

with my method to get the Pareto front, and oating point representation to get

the best overall result. The value suggested for �

share

when no information about

the problem is provided, is 0.5 or 1.0 for binary representation and 0.00001 and

0.5 for oating point representation. That is the reason why I mostly preferred

to use 0.5 for both approaches to start experimenting with my method.

After reviewing some literature on niches, besides the seminal work pub-

lished by Goldberg and Richardson [176], I found extremely interesting the paper

by Deb and Goldberg [201], and I decided to use a sharing function over the

parameters (instead of the �tness results, as I did in my method). The modi�-

cation to my code was straightforward, and since I assume that the user always

knows the ranges of the variables used, it was very easy to compute the estimate

that Deb and Goldberg proposed. The principle to derive such an estimate is to

403

assume that each niche is enclosed in a p-dimensional hypersphere of radius �

share

such that each sphere encloses

1

q

of the volume of the space, where q is the number

of peaks in the solution space. The radius of a hypersphere containing the entire

space is calculated as [201]

r =

1

2

v

u

u

t

p

X

k=1

(x

k;max

� x

k;min

)

2

(7.2)

and the volume is calculated as V = cr

p

with c a constant. Dividing

this volume in q parts and recognizing that the hypervolume has the same form

regardless of size, �

share

may be calculated as:

�

share

=

r

p

p

q

(7.3)

I tested this estimate on several of the examples from Chapter 5, and the

results are displayed in Table 7.7. With the �rst 3 examples, the results are

very encouraging, since this methodology could �nd better results with the same

population sizes as before. With the other examples, the results were the same,

which is indicative of the strong trend of the algorithm to converge towards zones

in which one or more elements of the ideal vector have been targeted. This is

understandable given the nature of the selection strategy used. The value of q

could vary, and the ones displayed in Table 7.7 are just representative. In most

cases, there was not much di�erence in the results when they were changed. Since

we normally do not know how many peaks (or Pareto solutions) the problem has, it

is hard to estimate this parameter. However, it is encouraging to see that in some

cases, such as in example 2, this approach provided with results that could not

be achieved before with larger populations. The only drawback that I see to this

approach to establish niches is that the populations generated are normally not

very well distributed, even if large values of q are used. Therefore, my decision was

404

to consider this approach for getting the best overall result, and use the previous

�tness sharing approach to get a better distribution of the population. This makes

a lot of sense if we are interested in better distributions in the objective function

domain, so that the decision maker can get a broader perspective of the kind of

trade-o�s that can be made, and also allows to use the GA as a mathematical

programming tool whenever necessary, as in cases in which it is possible to �nd

the ideal vector (as in example 2).

Finally, I also read the paper by Samir Mahfoud [210] on sharing and a way

to estimate upper bounds for population sizes in terms of certain �xed parameters

such as the number of desired classes (or peaks), the probability of crossover,

the probability of disruption (a hard number to get), the maximum number of

generations and the probability with which we want to ensure that the population

is going to keep the given number of desired classes. Mahfoud uses roulette

wheel for his analysis, and they recommend such strategy for applications that

involve sharing, so one of the extensions to my work will be to incorporate these

recommendations. But regardless of that observation, I tried his equation with a

couple of examples to see what sort of upper bounds would produce, and using

the parameters that I employed in my experiments, Mahfoud's formula suggests

population sizes of about 160 for a probability of disruption of 0:5 and 10 classes,

but it grows exponentially as the probability of disruption approaches one. For

example, if the probability of disruption is increased to 0:8, the population size is

increased to about 260. If the population of disruption goes up to 1, the population

size increases to 420. Those estimates are conservative, and somehow I followed

them in my experiments, although I was not aware of this work until I concluded

my experiments. I just followed a simple empirical estimate on population size

after a brief experimentation period.

405

7.3 Incorporating Knowledge About the Domain

The GA was conceived as a \black box" that could search in any environ-

ment without need of speci�c knowledge about it [145]. However, as time passed,

researchers realized that in certain domains it was important to hybridize the

GA with other techniques to make it compete with other heuristics in terms of

performance. For example Sirag and Weisser [211] proposed a model in which

the Boltzmann distribution could be incorporated into the GA, so that a simu-

lated annealing procedure could be applied to crossover, inversion and mutation

operators, mainly for combinatorial optimization problems.

In a more general way, Scha�er and Morishima [212] proposed the use of

some marks along the string to identify loci of good and bad building blocks so

that the same principle of survival of the �ttest could be applied to the contents

of the chromosome string to make the crossover operator depend not only on

the string length, but also on its contents. However, their experiments with this

new operator (called punctuated crossover) did not conclusively prove its use-

fulness [213]. Louis continued this work in his dissertation [205] and proposed

a masked crossover operator that makes use of certain rules to propagate seg-

ments of the string that are producing better o�springs. Also, his results are

not totally convincing, because he applies such masks only to a certain kind of

design (that involving the production of sequences, such as circuit design) and

his DGA (Designer Genetic Algorithm) does not do better than traditional GAs

when there is at least partial deception in the problem, which is precisely the kind

of problems in which we are interested on having some improvements of the GA's

performance.

More within the area of numerical optimization, I have to mention Davis'

e�orts to encourage the use of hybrid GAs [162] that incorporate knowledge about

406

the domain so that their performance can be enhanced. He proposed several

strategies such as a generate-and-test technique that combined with a real-coded

GA produces very satisfying results in numerical optimization applications. Sim-

ilar work was conducted by Powell and Skolnick [214] [215] [216] with the system

called EnGENEous, which is an interdigitation of expert systems and numerical

optimization techniques together with a GA, intended for single objective engi-

neering applications.

Also, there is some interesting work on the mixture of connectionist models

and GAs to improve evolution through learning [217] using the Hinton and Nowlan

model.

My idea of incorporating some knowledge about the domain into the GA

initiated with an attempt to use some of the Pareto generation algorithms (namely

the Kuhn-Tucker conditions) within some of the GA's operators, particularly

crossover. However, the �rst experiments were not very encouraging, since such

conditions were forcing the population through zones extremely restricted with-

out promoting diversity of the individuals, therefore producing premature con-

vergence. Furthermore, the additional information slowed down the performance

of the GA in a signi�cant manner. Therefore, I tried to follow an alternative

approach. Inspiration came from Fonseca's paper on MOGA [180] which sketches

the idea of using a utility function within the GA following the goal attainment

method. His method turned out to be a progressive articulation of references in

which he assumes the decision maker as an observer that changes the goals across

the search process to guide the GA through the correct solutions area. He also

mentioned that ideally, such a method would have an expert system to replace

the human decision maker, and would be run in a parallel processor, to account

for the ine�ciencies of the process.

407

With this idea in mind, I developed my second algorithm for multiobjec-

tive optimization. Its basic structure is very simple, since it only replaces the

select() function so that instead of running a conventional binary tournament,

the individuals are chosen based on their closeness to the ideal vector. When

there is a tie, then sharing on their �tnesses is performed, in a similar way as in

the NPGA. Since the ideal vector has to be known, then the algorithm was mod-

i�ed to be able to compute it in terms of the population available at each run, so

that it did not have to be provided by the decision maker. This algorithm works

well in problems in which it is not possible to achieve more than one element

of the ideal vector while highly conicting with the others (which unfortunately

is a common case in real-world applications). In such cases, nothing can pre-

vent the technique from converging towards trade-o�s in which those objectives

not so conicting practically achieve the ideal vector, but those conicting get

really poor values (either too high or too low, depending on what kind of opti-

mization is being performed). This strategy incorporates some knowledge about

the domain (in this case, the current ideal vector) to help guide the search, and

uses a selection strategy that takes advantage of such knowledge (through a min-

max strategy that selects those individuals closest to the ideal vector) to guide

the search. Additionally, feasibility constraints are imposed on the crossover and

mutation operators, and to the starting population. More work in this respect is

necessary, since the results are very good for certain cases, it may be possible to

make it work in a more general manner without sacri�cing much of its excellent

performance and its need of little external information.

408

7.4 An Expert System to Select a Multiobjec-

tive Optimization Method

The �nal part of this chapter describes the development of an expert system

called MOSES Advisor, which is intended to help the user to choose the most

appropriate multiobjective optimization technique according to the characteristics

of the problem to be solved and the computer resources available. The knowledge

contained in MOSES Advisor was derived from the information provided at the

end of Chapter 6. The structure of the system is straightforward, and it consists

of a menu containing all the methods contained in MOSES so that the user may

choose the one he/she prefers. According to the option selected, some general

information about the method will be displayed, explaining its main strengths and

weaknesses so that the user may be aware of them. After that, a few questions will

be asked concerning speci�c characteristics of the problem and/or the resources

available to solve it, so that some extra advise may be provided in terms of how

appropriate that method is to solve the problem in hand. With that information

the user should be able to either apply the method in a better way, or change to

another method more appropriate to what he/she wants to do. The expert system

still has a lot of room for improvement, since several other things additional to

the general information provided could be added. For example, some algorithms

for computing share factors and population policies could be added to help the

designer decide what parameters to use with the GA. MOSES Advisor was written

using NASA's expert systems shell called CLIPS.

A sample session with MOSES Advisor follows:

Welcome to MOSES Advisor

An Expert System for Multiobjective Optimization

409

Method to Analyze:

1) Monte Carlo Method 1

2) Monte Carlo Method 2

3) Osyczka's MOS

4) GA-Based Linear Combination of Objectives

5) Lexicographic Method

6) VEGA

7) NSGA

8) MOGA

9) NPGA

10) Hajela's Method

11) GA with a Weighted Min-max Technique

12) GA with Min-max and Sharing

Choose one option: 1

Monte Carlo method 1 could work in your problem if a suffi-

ciently large population is used (> 50 points). This technique

is less efficient than method 2 because it has to explore the

search space twice. However, it produces better results becau-

se of the way in which generates the Pareto set.

Do you want to generate the entire Pareto front? yes

Do you know the ideal vector? yes

Do you have more than 4 design variables? no

410

Do you have more than 2 objectives? no

Do you have a lot of computer memory available? yes

Are the ranges of the variables too large? no

If you have enough computer resources available, namely com-

puter memory, you should probably also try method 2, since it

is faster than method 1, but it requires more memory because

it has to store the entire Pareto set.

If you know the ideal vector for your problem, you should try

options 10-12 from the main menu to get better results,rather

than using Monte Carlo method 1 or 2.

If you want to generate the entire Pareto front, an explora-

tory technique such as Monte Carlo methods 1 or 2 is not a

good choice, because they are able to generate only one point

at a time. Look at options 5-12 from the main menu.

This is sample of the way in which MOSES Advisor operates, explaining

in general the main characteristics of the method and then advising if one should

use it or not based on a few simple questions. This system is intended to be used

as a front-end to MOSES, so that the user can decide more easily which method

to choose according to the characteristics of the problem. Nevertheless it is always

advisable to try at least one mathematical programming technique together with

a GA-based technique to get a better approximation to the desired solution.

411

Chapter 8

Conclusions

8.1 Contributions

Through these pages I have shown empirical work leading to a better under-

standing of di�erent strategies for multiobjective optimization. The algorithms

incorporated into MOSES are capable of handling design optimization problems

with several objectives, according to the needs of the user in terms of quality of the

solution and time and architecture available. After an exhaustive set of exper-

iments, I have been able to delineate lines of behavior of several mathematical

programming and GA-based methods for multiobjective optimization. An expert

system containing the knowledge derived from such experiments was implemented

in CLIPS and made available to the users of MOSES. An ad-hoc oating point

representation that performs a direct mapping of a real number into a string of

integers with the decimal point at a �xed position was proved to be a robust rep-

resentation scheme for single objective numerical optimization problems, but not

very suitable for multiobjective optimization nor single objective optimizations

too susceptible to the design scheme, such as the design of circuits.

I provided a very exhaustive bibliographic review of multiobjective opti-

mization methods from both the Operations Research and the GA communities'

412

perspectives. The most important methods found in this literature survey were

implemented in MOSES and they were tested through a set of 8 numerical opti-

mization problems that involve real-world applications. These tests showed the

weaknesses and strengths of each one of these methods, and served as a guide to

the design maker to decide which method to use under what conditions.

I also proposed two multiobjective optimization methods based on the

min-max optimization approach. The �rst of them provided the best results

in all senses, overpassing every other technique consistently. This technique is

very robust because it transforms the multiobjective optimization problem into

several single optimization problems, and it works very well independently of

the representation scheme used, although binary representation provided better

Pareto distribution whereas oating point representation provided better overall

results. This, by the way, was the general trend in all methods tried, since oating

point representation has a demonstrated quick convergence property. This method

is very suitable for distributed or parallel systems, since it requires to execute as

many processes as objectives we have, but it can also been used in a sequential

architecture if the time constraints are not very strong. The structure of the

algorithm for this method requires that the user provides a set of weights and the

ideal vector. The �rst requirement can be easily satis�ed, and the set of tests

presented in this work provide with enough empirical evidence to prove that only

a small amount of such weights is necessary to generate excellent results (no more

than 20 in all cases). However, if the number of objectives is increased, this set

should be increased correspondingly, at least in a linear manner, at a rate of 10

more weights for each new objective added. The second requirement is harder to

satisfy, but I also provided a methodology capable of �nding the ideal vector of

numerical optimization methods with great accuracy. This contradicts the belief

413

that GAs are not good optimizers, since the results presented in this thesis give

empirical evidence of the contrary. The GA consistently surpassed the results

produced by any mathematical programming technique used and even the best

results previously reported in the literature. Also, it is possible to provide a utility

function that contains the desired target values for each objective, in case we do

not want to compute the ideal vector. The algorithm will still work well in such

cases, although it may not provide results as good as when the ideal vector is

provided.

The second technique that I proposed does not require the ideal vector,

since it is able to compute it based on the local populations generated. How-

ever, to avoid convergence to a single solution, a form of sharing similar to that

employed by the NPGA (Niched Pareto Genetic Algorithm) was implemented,

but the problem of �nding an optimum tournament size was eliminated by using

a min-max binary tournament selection strategy. However, the niche sharing

factor still has to be provided by the user. In that direction, some work was

conducted to try to �nd a way to automate the computation of this value. After

some experimentation, I provided evidence of the importance of a �tness sharing

for delineating Pareto contours, and also of the superiority of doing sharing on

the parameter values to obtain better overall results with small populations. My

second method is very fast and reliable except in cases in which it is possible to

�nd solutions that highly favor more than one objective (namely when some ele-

ments of the ideal vector are achievable) but that highly disfavor other objectives.

This behavior is common in highly convex search spaces which are unfortunately

very common in numerical optimization techniques and more work is required to

extend this method to deal with such situations. So far, the only technique that

has produced favorable results is using a variation of Eshelman's CHC algorithm

414

that erases and regenerates part of the population after a certain number of gen-

erations or when it got stuck in a local optimum. This approach is valid, but is

not the most desirable way of dealing with the di�culties of this technique, so

more work in that direction is required.

The two techniques that I developed ensure that only feasible points are

produced at generation zero, and the crossover and mutation operators were mod-

i�ed in such a way that this feasibility property is checked at every moment, so

that infeasible solutions are never generated by the algorithms. This property

makes my approaches unique, since none of the other GA-based techniques ana-

lyzed considered such an important issue, mainly because most of the previous

work with multiobjective optimization techniques dealt only with unconstrained

problems. My techniques were tested also with problems with several constraints

(mostly non-linear), providing excellent results (at least for my �rst min-max

strategy). This aspect of the search is important, because at least one of the

algorithms tested in this worked converged towards infeasible solutions in one

occasion. Finally, the method normally used to handle constraints into the GA

was to use a penalty function, such as I have done before in previous published

work.

Another point covered in this thesis was the importance of choosing ade-

quate population sizes to run the genetic algorithm. Some analysis in that direc-

tion was performed, showing that reasonably small populations can be used for

numerical optimization if a oating point representation is adopted. This is

because oating point representation requires strings of shorter length than binary

representation. The use of a oating point representation together with a sharing

strategy on the parameter values in my second min-max technique produces out-

standing results if what we are interested on is the best overall solution (that is

415

normally what researchers look for in many engineering applications), even when

small populations are used.

It should be also mentioned that the circuit design problem (Example 8)

required some extra e�ort in all respects, because of its peculiar characteristics.

The concept of design is taken in a broader sense in this case, since a certain

arrangement of parts has to be devised. In this application a oating point repre-

sentation appeared to be too unstable to provide good results, but binary repre-

sentation found results better than those reported in the literature. This problem

was solved with MOSES in a single-optimization mode, although a second objec-

tive was added to the �tness function whenever feasible solutions were found, so

that those minimizing the number of gates used could be rewarded. The design

of circuits has traditionally been considered more within the domain of genetic

programming, but some of my recent work shows that it can be also done with

traditional genetic algorithms if a proper representation scheme is adopted, and

my strategy for adjusting the parameters of the GA is employed.

The last aspect of my work was concerned with the incorporation of knowl-

edge about the domain into the GA. In that respect, I reviewed several references

that cover that topic, indicating how my second min-max technique uses some

knowledge about the domain (namely the best solutions found for each objective

at a given stage of the search) to generate the ideal vector, in a way similar to

what Fonseca proposed in his work on MOGA (Multiple Objective Genetic Algo-

rithm). I also experimented with some variation of the min-max procedure and

a incorporation of the Kuhn-Tucker conditions directly into the crossover opera-

tor, but that did not work very well since the search appeared to be extremely

constrained to allow the GA to �nd good Pareto contours. That is the reason

why I decided instead to focus my work on the use of the min-max concept into

416

the selection strategy in one case (method 2), and into the �tness function in the

other (method 1).

Finally, my expert system (the so-calledMOSES Advisor) also has much

room for improvement. It is highly desirable to add to it some features that allow

the user to get estimates of the most appropriate sharing factors and population

policies suggested, according to the information provided in this thesis, together

with some tips and hints about how to tackle problems with certain characteristics,

based on previous experiences. In that sense, it would be very useful to enhance

the knowledge base with the experiences derived from further experiments with

MOSES, so that novice users can take advantage of that and make a better use

of the system.

My main goal of providing a system that allows experimentation with

di�erent multiobjective optimization techniques and that includes at least one

method that is robust under all circumstances (in this case my �rst min-max

strategy) has been satis�ed. However, more work is still desirable in my second

strategy, so that similar results may be achieved with only a single run of the GA.

Hopefully, this tool should be of any use for designers who deal with real-world

problems.

8.2 Future Work

Much additional work remains to be done, since this is a very broad area

of research. For example, it is desirable to do more theoretical work on niches and

population sizes for multiobjective optimization problems to verify my empirical

results. In that sense, I expect that some of my examples may be useful as

benchmarks for those interested in this area. To talk about convergence in this

context seems a rather di�cult task, since there is no common agreement on what

417

optimum really means. However, if we use concepts from Operations Research

such as the min-max optimum, it should be possible to develop such a theory of

convergence for these kinds of problems. Also, it is highly desirable to be able

to �nd more ways of incorporating knowledge about the domain into the GA, as

long as it can be automatically assimilated by the algorithm during its execution

and does not have to be provided by the user (to preserve its generality). It is

also important to follow Eshelman and Scha�er's work on a theoretical framework

for the excellent performance of real-coded GAs so that practice can �nally meet

theory in numerical optimization problems.

418

Bibliography

[1] A. Osyczka, \Multicriteria optimization for engineering design," in Design

Optimization (J. S. Gero, ed.), pp. 193{227, Academic Press, 1985.

[2] A. Osyczka, Multicriterion Optimization in Engineering with FORTRAN

programs. Ellis Horwood Limited, 1984.

[3] V. Pareto, Cours D'Economie Politique, vol. I and II. F. Rouge, Lausanne,

1896.

[4] H. Baier, \Uber algorithmen zur emittlung und charakterisierung pareto-

optimaler losungen bei entwurfsaufgaben elastischer tragwerke,"

ZAMM, vol. 57, no. 22, pp. 318{320, 1977.

[5] L. Duckstein, \Multiobjective optimization in structural design: The model

choice problem," in New Directions in Optimum Structural Design

(E. Atrek, R. H. Gallagher, K. M. Ragsdell, and O. C. Zienkiewicz,

eds.), pp. 459{481, John Wiley and Sons, 1984.

[6] F. Szidarovszky and L. Duckstein, \Basic properties of MODM problems,"

in Classnotes 82-1, Tucson, Arizona: Department of Systems and

Industrial Engineering, University of Arizona, 1982.

[7] K. Koski, \Multicriterion optimization in structural design," in New Direc-

tions in Optimum Structural Design (E. Atrek, R. H. Gallagher,

K. M. Ragsdell, and O. C. Zienkiewicz, eds.), pp. 483{503, John

Wiley and Sons, 1984.

[8] C. L. Hwang and A. S. M. Masud, \Multiple objective decision-making

methods and applications," in Lecture Notes in Economics and

Mathematical Systems, vol. 164, New York: Springer-Verlag, 1979.

[9] H. Jutler, \Liniejnaja modiel z nieskolkimi celevymi funkcjami (linear model

with several objective functions)," Ekonomika i matematiceckije

Metody, vol. 3, pp. 397{406, 1967. (In Polish).

[10] R. Solich, \Zadanie programowania liniowego z wieloma funkcjami celu

(linear programming problem with several objective functions),"

Przeglad Statystyczny, vol. 16, pp. 24{30, 1969. (In Polish).

419

[11] A. Osyczka, \An apporach to multicriterion optimization problems for

engineering design," Computer Methods in Applied Mechanics and

Engineering, vol. 15, pp. 309{333, 1978.

[12] A. Osyczka, \An approach to multicriterion optimization for structural

design," in Proceedings of International Symposium on Optimal

Structural Design, University of Arizona, 1981.

[13] S. Rao, \Game theory approach for multiobjective structural optimization,"

Computers and Structures, vol. 25, no. 1, pp. 119{127, 1986.

[14] C. H. Tseng and T. W. Lu, \Minimax multiobjective optimization in

structural design," International Journal for Numerical Methods

in Engineering, vol. 30, pp. 1213{1228, 1990.

[15] S. H. Ib�a~nez, M�etodos de Dise~no Optimo de Estructuras. Colegio de Inge-

nieros de Caminos, Canales y Puertos, 1990. (in Spanish).

[16] H. W. Kuhn and A. W. Tucker, \Nonlinear programming," in Proceedings

of the Second Berkeley Symposium on Mathematical Statistics and

Probability (J. Neyman, ed.), (Berkeley, California), pp. 481{492,

University of California Press, 1951.

[17] T. C. Koopmans, \Analysis of production as an e�cient combination

of activities," in Activity Analysis of Production and Allocation,

Cowles Commision Monograph No. 13 (T. C. Koopmans, ed.),

(New York, New York), pp. 33{97, John Wiley and Sons, 1951.

[18] H. Terry, \Comparative evaluation of performance using multiple criteria,"

Management Science, vol. 9, no. 3, pp. 431{442, 1963.

[19] K. C. Kapur, \Mathematical methods of optimization for multiobjective

transportation systems," Socio-economic planning science, vol. 4,

pp. 451{467, 1970.

[20] B. Roy, \Problems and methods with multiple objective functions," Math-

ematical programming, vol. 1, no. 2, pp. 239{266, 1971.

[21] D. P. Loucks, \Conict and choice: Planning for multiple objectives,"

in Economy wide Models and Development Planning (C. Blitzer,

P. Clark, and L. Taylor, eds.), (New York, New York), Oxford Uni-

versity Press, 1975.

[22] J. L. Cohon and D. H. Marks, \A review and evaluation of multiobjec-

tive programming techniques," Water Resources Research, vol. 11,

pp. 208{220, apr 1975.

420

[23] A. P. Wierzbicki, \A methodological guide to multiobjective optimization,"

in IIASA Working Paper, WP-79-122, (Laxenburg, Austria), Inter-

national Institute for Applied System Analysis, 1979.

[24] C. L. Hwang, S. R. Paidy, and K. Yoon, \Mathematical programming

with multiple objectives: A tutorial," Computing and Operational

Research, vol. 7, pp. 5{31, 1980.

[25] J. P. Ignizio, Linear Programming in Single- and Multiple-Objective Systems.

Prentice-Hall, Inc., 1982.

[26] A. Osyczka and J. Koski, \Selected works related to multicriterion optimiza-

tion methods for engineering design," in Proceedings of Euromech

Colloquium, (University of Siegen), 1982.

[27] W. Stadler, \A Survey of Multicriteria Optimization or the Vector Maxi-

mumProblem, Part I : 1776-1960," Journal of Optimization Theory

and Applications, vol. 29, pp. 1{52, sep 1984.

[28] M. K. Starr and M. Zeleny, \MCDM-state and future of the arts," in Mul-

tiple Criteria Decision Making (M. K. Starr and M. Zeleny, eds.),

vol. 6 of TIMS Studies in the Management Sciences, pp. 5{29, Ams-

terdam: North-Holland Publishing Company, 1977.

[29] E. R. Lieberman, \Soviet multi-objectivemathematical programming meth-

ods: An overview," Management Science, vol. 37, pp. 1147{1165,

sep 1991.

[30] G. W. Evans, \An overview of techniques for solving multiobjective math-

ematical programs," Management Science, vol. 30, pp. 1268{1282,

nov 1984.

[31] P. C. Fishburn, \A survey of multiattribute/multicriterion evaluation theo-

ries," inMultiple Criteria Problem Solving (S. Zionts, ed.), (Berlin),

pp. 181{224, Springer-Verlag, 1978.

[32] R. Benayoun, B. Roy, and B. Sussman, \Electre: Une m�ethode pour guider

le choix en pr�esence de points de vue multiple," Direction Scien-

ti�que, 1966. Note de Travail, No. 49.

[33] J. L. Cohon, Multiobjective Programming and Planning. Academic Press,

1978.

[34] Z. Lounis and M. Z. Cohn, \Multiobjective optimization of prestressed

concrete structures," Journal of Structural Engineering, vol. 119,

pp. 794{808, mar 1993.

421

[35] D. G. Carmichael, \Computation of pareto optima in structural design,"

International Journal for Numerical Methods in Engineering,

vol. 15, pp. 925{952, 1980.

[36] L. M. Boychuk and V. O. Ovchinnikov, \Principal methods of solution of

multicriterial optimization problems (survey)," Soviet Automatic

Control, vol. 6, pp. 1{4, 1973.

[37] M. E. Salukvadze, \On the existence of solution in problems of optimization

under vector valued criteria," Journal of Optimization Theory and

Applications, vol. 12, no. 2, pp. 203{217, 1974.

[38] P. L. Yu, \Decision dynamics with an application to persuasion and nego-

tiation," in Multiple Criteria Decision Making (M. K. Starr and

M. Zeleny, eds.), pp. 159{177, New York: North-Holland Publish.

Co., 1977.

[39] L. Duckstein and S. Opricovic, \Multiobjective optimization in river basin

development," Water Resources Research, vol. 16, pp. 14{20, feb

1980.

[40] J. Koski, \Multicriterion optimization in structural design," in Proceedings

of International Symposium on Optimum Structural Design, (Uni-

versity of Arizona, Tucson, Arizona), 1981.

[41] M. Zeleny, \Adaptive displacement of preferences in decision making," in

Multiple Criteria Decision Making (M. K. Starr and M. Zeleny,

eds.), vol. 6 of TIMS Studies in the Management Sciences, pp. 147{

157, Amsterdam: North-Holland Publishing Company, 1977.

[42] A. P. Wierzbicki, \On the use of penalty functions in multiobjective opti-

mization," in Proceedings of the International Symposium on Oper-

ations Research, (Mannheim, Germany), 1978.

[43] A. P. Wierzbicki, \The use of reference objectives in multiobjective opti-

mization," inMultiple Criteria Decision Making Theory and Appli-

cation (G. Fandel and T. Gal, eds.), pp. 469{486, New York:

Springer-Verlag, 1980.

[44] M. Zeleny, \Compromise programming," inMultiple Criteria Decision Mak-

ing (M. K. Starr and M. Zeleny, eds.), Columbia, South Carolina:

University of South Carolina Press, 1973.

[45] M. Zeleny, Multiple Criteria Decision Making. New York: McGraw-Hill

Book Company, 1982.

[46] A. Charnes and W. W. Cooper, Management Models and Industrial Appli-

cations of Linear Programming, vol. 1. John Wiley, New York,

1961.

422

[47] Y. Ijiri, Management Goals and Accounting for Control. North-Holland,

Amsterdan, 1965.

[48] Y. Y. Haimes, W. Hall, and H. Freedman, Multi-Objective Optimization in

Water Resources Systems: The Surrogate Trade-O� Method. Else-

vier, Amsterdam, 1975.

[49] J. P. Ignizio, Goal Programming and Extensions. Heath, Lexington, Mas-

sachusetts, 1976.

[50] J. P. Ignizio, \The determination of a subset of e�cient solutions via goal

programming," Computing and Operations Research, vol. 3, pp. 9{

16, 1981.

[51] A. Goicoechea, D. R. Hansen, and L. Duckstein,Multiobjective Analysis with

Engineering and Business Applications. New York: John Wiley and

Sons, 1982.

[52] S. S. Rao, \Multiobjective optimization in structural design with uncer-

tain parameters and stochastic processes," AIAA Journal, vol. 22,

pp. 1670{1678, nov 1984.

[53] A. Charnes, W. W. Cooper, R. J. Niehaus, and A. Stedry, \Static and

dynamic assignment models with multiple objectives and some

remarks on organization design," Management Science, vol. 15,

no. 8, pp. B365{B375, 1969.

[54] S. Lee and V. Jaaskelainen, \Goal programming: Management's math

model," Industrial Engineering, pp. 30{35, feb 1971.

[55] S. Lee, Goal Programming for Decision Analysis. Auerbach, Philadelphia,

1972.

[56] S. S. Rao, \Game theory approach for multiobjective structural optimiza-

tion," Computers and Structures, vol. 25, no. 1, pp. 119{127, 1987.

[57] J. Nash, \The bargaining problem," Econometrica, vol. 18, pp. 155{162,

1950.

[58] J. Nash, \Two-person cooperative games," Econometrica, vol. 21, pp. 128{

140, 1953.

[59] F. Szidarovszky, I. Bogardi, and L. Duckstein, \Use of cooperative games

in a multi-objective analysis of mining and environment," in Pro-

ceedings of the 2nd International Conference on Applied Numerical

Modelling, (Madrid, Spain), 1978.

423

[60] M. Gershon, L. Duckstein, and A. Bardossy, \Di�erential dynamic program-

ming application to multi-objective decision making," in Proceed-

ings of the CORS/ORSA/TIMS Joint Meeting, (Toronto, Canada),

1981.

[61] K. W. Hipel and N. M. Fraser, \Metagame analysis of the garrison conict,"

Water Resources Research, vol. 16, pp. 627{637, aug 1980.

[62] K. W. Hipel, R. K. Ragade, and T. E. Unny, \Metagame analysis of water

resources conicts," Journal of the Hydraulic Division of the Amer-

ican Society of Civil Engineers, vol. HY10, no. 100, pp. 1437{1455,

1974.

[63] N. Howard, Paradoxed of Rationality, Theory of Metagames and Political

Behaviour. Cambridge, Mass.: MIT Press, 1971.

[64] K. W. Hipel, R. K. Ragade, and T. E. Unny, \Metagame theory and its

applications to water resources,"Water Resources Research, vol. 12,

pp. 331{339, jun 1976.

[65] N. M. Fraser and K. W. Hipel, \Solving complex conicts," IEEE Transac-

tions on Systems, Man and Cybernetics, vol. SMC-9, pp. 805{816,

dec 1979.

[66] N. M. Fraser and K. W. Hipel, Conict Analysis: Models and Resolution.

New York: Elsevier Science Publishing, 1984.

[67] K. W. Hipel, M. Wang, and N. M. Fraser, \Hypergame analysis of the falk-

land/malvinas conict," International Studies Quarterly, vol. 32,

pp. 335{358, 1988.

[68] M. A. Takahashi, N. M. Fraser, and K. W. Hipel, \A procedure for analyzing

hypergames," European Journal of Operational Research, vol. 18,

pp. 111{122, 1984.

[69] N. Okada, K. W. Hipel, and Y. Oka, \Hypergame analysis of the lake biwa

conict," Water Resources Research, vol. 21, pp. 917{926, jul 1985.

[70] M. Wang, K. W. Hipel, and N. M. Fraser, \Modeling misperceptions in

games," Behavioral Science, vol. 33, pp. 207{223, 1985.

[71] J. V. Neuman and O. Morgenstern, Theory of Game and Economic Behav-

ior. Princeton, New Jersey: Princeton University Press, second ed.,

1947.

[72] R. L. Keeney, \Multi-dimensional utility functions: Theory, assessment and

applications," Operations Research Center 43, Massachusetts Insti-

tute of Technology, Cambridge, Massachusetts, 1969.

424

[73] H. Rai�a, \Preferences for multi-attributed alternatives," 1969.

[74] J. O. Berger, Statistical Decision Theory: Foundations, Concepts and Meth-

ods. New York: Springer-Verlag, 1980.

[75] R. L. Keeney and H. Rai�a, Decision with Multiple Objectives: Preferences

and Value Trade-o�s. New York: John Wiley and Sons, 1976.

[76] K. R. Oppenheimer, \A proxy approach to multi-attribute decision making,"

Management Science, vol. 24, pp. 675{689, feb 1978.

[77] T. W. Keelin, A protocol and procedure for assessing multi-attribute pref-

erence functions. Dept. of engineering economic systems, Stanford

University, Stanford, California, 1976.

[78] A. M. Geo�rion, J. S. Dyer, and A. Feinberg, \An interactive approach for

multi-criterion optimization, with an application to the operation

of an academic department," Management Science, vol. 19, no. 4,

pp. 357{368, 1972.

[79] R. Krzysztofowicz and L. Duckstein, \Preference criterion for ood con-

trol under uncertainty," Water Resources Research, vol. 15, no. 3,

pp. 513{520, 1979.

[80] Y. Y. Haimes and W. A. Hall, \Multiobjectives in water resources sys-

tems analysis: The surrogate trade-o� method," Water Resources

Research, vol. 10, pp. 615{624, aug 1974.

[81] Y. Y. Haimes, P. Das, and K. Sung, \Multi-objective analysis in the maumee

river basin: A case study on level b planning," Tech. Rep. SED-

WRG-77-1, Case Western Reserve University, Cleveland, Ohio,

1977.

[82] Y. Y. Haimes, Hierarchical Analysis of Water Resource Systems: Modeling

and Optimization of Large-Scale Systems. New York: McGraw-Hill

International Book Co., 1977.

[83] P. Das and Y. Y. Haimes, \Multiobjective optimization in water quality and

land management," Water Resources Research, vol. 15, pp. 1313{

1322, dec 1979.

[84] S. C. Olenik and Y. Y. Haimes, \A hierarchical multi-object method for

water resources planning," IEEE Transactions on Systems, Man

and Cybernetics, vol. SMC-9, no. 9, pp. 534{544, 1979.

[85] L. David and L. Duckstein, \Multi-criterion ranking of alternative long-

range water resource systems," Water Resources Bulletin, vol. 12,

no. 4, pp. 731{745, 1976.

425

[86] L. Duckstein and M. Gershon, \Multi-objective analysis of a vegetation

management problem using electre ii," Tech. Rep. 81-11, Depart-

ment of Systems and Industrial Engineering, University of Arizona,

Tucson, Arizona, 1981.

[87] P. Rietveld, Multiple Objective Decision Methods and Regional Planning.

New York: North-Holland, 1980.

[88] L. Duckstein, M. Gershon, and R. McAni�, \Development of the santa cruz

river basin: A comparison of multi-criterion approaches," Tech.

Rep. 51, Engineering Experimentation Station, University of Ari-

zona, Tucson, Arizona, 1981.

[89] B. Roy, \Electre III: Algorithme de classement bas�e sur une repr�esentation

oue des pr�ef�erences en pr�esence de crit�eres multiples," Cahiers du

C.E.R.O., vol. 20, no. 1, pp. 3{24, 1978.

[90] J. M. Skalka, \Electre III et IV. aspects m�ethodologiques et guide

d'utilisation," Document 25, 1984. Lamsade, Paris.

[91] B. Roy, \Classement et choix en pr�esence de points de vue multiples

(la m�ethode ELECTRE)," Revue fran�caise d'Informatique et de

Recherche Op�erationnelle, vol. 6, no. 8, pp. 57{75, 1968.

[92] B. Roy and P. Bertier, \La m�ethode electre: Une application du m�edia

planning," in Operational Research (M. Ross, ed.), pp. 291{302,

Amsterdam: North-Holland, 1973.

[93] J. Kempf, L. Duckstein, and J. Casti, \Polyhedral dynamics and fuzzy sets

as a multi-objective decision making aid," in Proceedings of the

Joint Nat'l TIMS/PRSA Meeting, (New Orleans, Louisiana), 1979.

[94] L. Duckstein and J. Kempf, \Multi-criteria q analysis for plan evaluation,"

in Proceedings of the 9th Meeting of the EURO Working Group on

MCDM, (Amsterdam), 1979.

[95] R. Pfa� and L. Duckstein, \Ranking alternative plans that manage the santa

cruz river basin by using q-analysis as a multi-criteria decision-

making aid," in Proceedings of the Joint AZ Sect. AWRA, and

Hydrology Sect., (AZ-Nevada Acad. of Science, Tucson, Arizona),

1981.

[96] R. G. Atkin, \An approach to structure in architectural and urban design,"

Environment and Planning Bulletin, vol. 1, pp. 51{67, 1974.

[97] J. P. Brans, P. Vincke, and B. Mareschal, \How to select and how to rank

projects: the PROMETHEE method," European Journal of Oper-

ational Research, vol. 24, pp. 228{238, feb 1986.

426

[98] J. P. Brans and P. Vincke, \A preference ranking organisation method

(the PROMETHEEmethod for multiple criteria decision-making),"

Management Science, vol. 31, pp. 647{656, jun 1985.

[99] G. D'Avignon, M. Turcotte, L. Beaudry, and Y. Duperre, \Degr�e de

sp�ecialisation des hôpitaux de quebec," tech. rep., Universit�e Laval,

Quebec, Canada, jul 1983.

[100] J. M. Dujardin, \Une �evaluation multicrit�ere de projets de rem�ediation �a

l'�echec dans l'enseignement secondaire belge," in XIX Meeting of

the European Working Group on Multiple Criteria Decision Aid,

(Li�ege, France), mar 1984.

[101] B. Mareschal and J.-P. Brans, \Geometrical representations for MCDA,"

European Journal of Operational Research, vol. 34, pp. 69{77, feb

1988.

[102] G. V. Huylenbroeck, \The conict analysis method: bridging the gap

between ELECTRE, PROMETHEE and ORESTE," European

Journal of Operational Research, vol. 82, pp. 490{502, may 1995.

[103] M. Roubens, \Preference relations on actions and criteria in multicrite-

ria decision making," European Journal of Operational Research,

vol. 10, pp. 51{55, 1982.

[104] R. Bellman and S. Dreyfus, Applied Dynamic Programming. Princeton, New

Jersey: Princeton University Press, 1962.

[105] R. E. Larson and J. Casti, Principles of Dynamic Programming, Part I:

Basic Analytic and Computational Methods. New York: Marcel

Dekker, Inc., 1978.

[106] P. L. Yu and G. Leitmann, \Compromise solutions, domination structures

and salukvadze's solution," in Multi-Criteria Decision Making and

Di�erential Games (G. Leitmann, ed.), pp. 85{101, New York:

Plenum Press, 1976.

[107] B. Villarreal and M. H. Karwin, \Dynamic programming approaches for

multi-criterion integer programming," Tech. Rep. 78-3, Department

of Industrial Engineering, SUNY, Bu�alo, New York, 1978.

[108] G. Tauxe, R. Inman, and D. Mades, \Multi-objective dynamic program-

ming: A classic problem redressed," Water Resources Research,

vol. 15, no. 6, pp. 1398{1402, 1979.

[109] G. Tauxe, R. Inman, and D. Mades, \Multi-objective dynamic programming

with application to a reservoir,"Water Resources Research, vol. 15,

no. 6, pp. 1403{1408, 1979.

427

[110] D. E. Bell, \A utility theory approach to preferences for money over time,"

Operations Research Center 72, Massachusetts Institute of Tech-

nology, Cambridge, Massachusetts, 1972.

[111] D. F. Anderson and J. Rohrbaugh, \Objective function dynamics: Evaluat-

ing urban systems through time," IEEE Transactions, pp. 458{464,

1979.

[112] L. G. Mitten, \Preference order dynamic programming," Management Sci-

ence, vol. 21, pp. 43{46, 1974.

[113] F. Seo and M. Sakawa, \A methodology for environmental systems man-

agement: Dynamic application of the nested lagrangian multiplier

method," IEEE Transactions on Systems, Man and Cybernetics,

vol. SMC-9, pp. 794{805, dec 1979.

[114] S. Opricovic, \An extension of compromise programming to the solution of

dynamic multi-criteria problems," in Proceedings of the 9th IFIP

Conference on Optimization Techniques, (Warsaw, Poland), 1979.

[115] F. Szidarovszky, \Notes on multi-objective dynamic programming," Tech.

Rep. 79-1, Department of Systems and Industrial Engineering, Uni-

versity of Arizona, Tucson, Arizona, 1979.

[116] F. Szidarovszky and L. Duckstein, \A general framework for dynamic multi-

objective programming techniques," Tech. Rep. 81-27, Department

of Systems and Industrial Engineering, University of Arizona, Tuc-

son, Arizona, 1981.

[117] D. Jacobson and D. Mayne, Di�erential Dynamic Programming. New York:

Elsevier, 1970.

[118] D. Murray and S. Yakowitz, \Constrained di�erential dynamic programming

and its application to multi-reservoir control," Water Resources

Research, vol. 15, no. 5, pp. 1017{1027, 1979.

[119] A. Bardossy, L. Duckstein, and I. Bogardi, \An e�cient solution of multi-

objective compromise optimization in water resources by di�erential

dynamic programming," Tech. Rep. 81-25, Department of Systems

and Industrial Engineering, University of Arizona, Tucson, Arizona,

1981.

[120] A. Goicoechea, A multi-objective stochastic programming model in water-

shed management. Dept. of systems and industrial engineering,

University of Arizona, Tucson, Arizona, 1977. (Unpublished).

[121] A. Goicoechea, L. Duckstein, and M. Fogel, \Multiple objectives under

uncertainty: An illustrative application of protrade," Water

Resources Research, vol. 15, pp. 203{210, apr 1979.

428

[122] S. Vajda, Probabilistic Programming. New York: Academic Press, 1972.

[123] Y. Haimes, K. Loparo, S. C. Olenik, and S. Nanda, \Multi-objective sta-

tistical method for interior drainage systems," Water Resources

Research, vol. 16, no. 3, pp. 465{475, 1980.

[124] A. Goicoechea, L. Duckstein, and M. Fogel, \Multi-objective programming

in watershed management: A study of the charleston watershed,"

Water Resources Research, vol. 12, pp. 1085{1092, dec 1976.

[125] R. Benayoun, J. Montgol�er, J. Tergny, and O. Laritchev, \Linear pro-

gramming with multiple objective functions: Step method (stem),"

Mathematical Programming, vol. 1, no. 3, pp. 366{375, 1971.

[126] C. N. Klahr, \Multiple objectives in mathematical programming," Opera-

tions Research, vol. 6, no. 6, pp. 849{855, 1958.

[127] D. Savir, \Multi-objective linear programming," Tech. Rep. ORC 66-21,

Operations Research Center, University of California, Berkeley,

California, 1966.

[128] C. Maier-Rothe and J. M. F. Stankard, \A linear programming approach

to choosing between multi-objective alternatives," in Proceedings

of the 7th Mathematical Programming Symposium, (The Hague),

1970.

[129] S. M. Belenson and K. C. Kapur, \An algorithm for solving multicriterion

linear programming problems with examples," Operations Research

Quarterly, vol. 24, no. 1, pp. 65{77, 1973.

[130] D. E. Monarchi, C. C. Kisiel, and L. Duckstein, \Interactive multiobjective

programming in water resources: a case study," Water Resources

Research, vol. 9, pp. 837{850, aug 1973.

[131] S. Zionts and J. Wallenius, \An interactive programming method for solving

the multiple criteria problem,"Management Science, vol. 22, no. 6,

pp. 652{665, 1976.

[132] D. E. Monarchi, \Interactive algorithm for multiple objective decision mak-

ing," Tech. Rep. 6, Hydrology and Water Resources Department,

The University of Arizona, Tucson, Arizona, 1972.

[133] K. R. Oppenheimer, A Proxy Approach to Multi-Attribute Decision Mak-

ing. Dept. of engineering-economic systems, Stanford University,

Stanford, California, 1977.

[134] P. Nijkamp and J. B. Vos, \A multicriteria analysis for water resource and

land use development,"Water Resources Research, vol. 13, pp. 513{

518, jun 1977.

429

[135] S. S. Rao, \Multi-objective optimization of fuzzy structural systems," Inter-

national Journal for Numerical Methods in Engineering, vol. 24,

pp. 1157{1171, 1987.

[136] A. K. Dhingra, S. S. Rao, and H. Miura, \Multiobjective decision making in

a fuzzy environment with applications to helicopter design," AIAA

Journal, vol. 28, pp. 703{710, apr 1990.

[137] J.-M. Blin, \Fuzzy sets in multiple criteria decision-making," in Multiple

Criteria Decision Making (M. K. Starr and M. Zeleny, eds.), vol. 6

of TIMS Studies in the Management Sciences, pp. 129{146, Ams-

terdam: North-Holland Publishing Company, 1977.

[138] C. H. Coombs, \On the use of inconsistency of preferences in psychological

measurement," Journal of Experimental Psychology, vol. 5, pp. 1{7,

1958.

[139] M. Zeleny, \The theory of the displaced ideal," inMultiple Criteria Decision

Making (M. Zeleny, ed.), pp. 153{206, New York: Springer-Verlag,

1976.

[140] G. V. Sarma, L. Sellami, and K. D. Houam, \Application of lexicographic

goal programming in production planning - two case studies,"

Opsearch, vol. 30, no. 2, pp. 141{162, 1993.

[141] Y. L. Chen and C. C. Liu, \Multiobjective VAR planning using the goal-

attainment method," IEE Proceedings on Generation, Transmis-

sion and Distribution, vol. 141, pp. 227{232, may 1994.

[142] C. Darwin, The Origin of Species by Means of Natural Selection or the

Preservation of Favored Races in the Struggle for Life. The Book

League of America, 1929. Originally published in 1859.

[143] J. H. Holland, Adaptation in Natural and Arti�cial Systems. Ann Harbor :

University of Michigan Press, 1975.

[144] J. H. Holland, Adaptation in Natural and Arti�cial Systems. An Introduc-

tory Analysis with Applications to Biology, Control and Arti�cial

Intelligence. Cambridge, Massachusetts: MIT Press, 1992.

[145] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Reading, Mass. : Addison-Wesley Publishing Co., 1989.

[146] J. R. Koza, Genetic Programming. On the Programming of Computers by

Means of Natural Selection. The MIT Press, 1992.

[147] J. Heitkoetter and D. Beasley, \The hitch-hiker's guide to evolutionary com-

putation (faq in comp.ai.genetic)." USENET, sep 1995. (Version

3.3).

430

[148] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-

grams. Springer-Verlag, second ed., 1992.

[149] B. P. Buckles and F. E. Petry, Genetic Algorithms. Technology Series, IEEE

Computer Society Press, 1992.

[150] D. E. Goldberg and K. Deb, \A comparison of selection schemes used in

genetic algorithms," in Foundations of Genetic Algorithms (G. E.

Rawlins, ed.), pp. 69{93, San Mateo, California: Morgan Kauf-

mann, 1991.

[151] A. K. D. Jong, An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. PhD thesis, University of Michigan, 1975.

[152] L. B. Booker, \Intelligent behavior as an adaptation to the task environ-

ment," Tech. Rep. 243, University of Michigan at Ann Arbor, Ann

Arbor, Michigan, 1982.

[153] A. Brindle, Genetic Algorithms for Function Optimization. PhD thesis,

Department of Computer Science of the University of Alberta,

Alberta, Canada, 1981.

[154] J. E. Baker, \Reducing bias and ine�ciency in the selection algorithm,"

in Proceedings of the Second International Conference on Genetic

Algorithms (J. Grefenstette, ed.), (Hillsdale, New Jersey), pp. 14{

21, Lawrence Erlbaum Associates, 1987.

[155] J. J. Grefenstette and J. E. Baker, \How genetic algorithms work: A critical

look at implicit parallelism," in Proceedings of the Third Interna-

tional Conference on Genetic Algorithms (J. D. Scha�er, ed.), (San

Mateo, California), pp. 20{27, George Mason University, Morgan

Kaufmann Publishers, jun 1989.

[156] J. E. Baker, \Adaptive selection methods for genetic algorithms," in Pro-

ceedings of an International Conference on Genetic Algorithms and

Their Applications (J. J. Grefenstette, ed.), (Hillsdale, New Jersey),

pp. 100{111, Lawrence Erlbaum, 1985.

[157] D. Whitley, \The genitor algorithm and selection pressure: Why rank-based

allocation of reproductive trials is best," in Proceedings of the Third

Conference on Genetic Algorithms (J. D. Scha�er, ed.), (San Mateo,

California), pp. 116{121, George Mason University, Morgan Kauf-

mann Publishers, jun 1989.

[158] D. E. Goldberg, \Real-coded genetic algorithms, virtual alphabets and

blocking," Tech. Rep. 90001, University of Illinois at Urbana-

Champaign, Urbana, Illinois, sep 1990.

431

[159] A. H. Wright, \Genetic algorithms for real parameter optimization," in

Foundations of Genetic Algorithms (G. J. E. Rawlins, ed.), pp. 205{

218, San Mateo, California: Morgan Kaufmann Publishers, 1991.

[160] H. P. Schwefel, Numerical Optimization of Computer Models. Great Britain:

John Wiley and sons, 1981.

[161] L. J. Eshelman and J. D. Scha�er, \Real-coded genetic algorithms and

interval-schemata," in Foundations of Genetic Algorithms 2 (L. D.

Whitley, ed.), pp. 187{202, San Mateo, California: Morgan Kauf-

mann Publishers, 1993.

[162] L. Davis, ed., Handbook of Genetic Algorithms. New York, New York: Van

Nostrand Reinhold, 1991.

[163] R. S. Rosenberg, Simulation of genetic populations with biochemical prop-

erties. PhD thesis, University of Michigan, Ann Harbor, Michigan,

1967.

[164] C. M. Fonseca and P. J. Fleming, \An overview of evolutionary algorithms in

multiobjective optimization," tech. rep., Department of Automatic

Control and Systems Engineering, University of She�eld, She�eld,

U. K., 1994.

[165] W. Jakob, M. Gorges-Schleuter, and C. Blume, \Application of genetic algo-

rithms to task planning and learning," in Parallel Problem Solving

from Nature, 2nd Workshop (R. M�anner and B. Manderick, eds.),

Lecture Notes in Computer Science, (Amsterdam), pp. 291{300,

North-Holland Publishing Company, 1992.

[166] B. J. Ritzel, J. W. Eheart, and S. Ranjithan, \Using genetic algorithms

to solve a multiple objective groundwater pollution containment

problem," Water Resources Research, vol. 30, pp. 1589{1603, may

1994.

[167] P. B. Wilson and M. D. Macleod, \Low implementation cost IIR digital �lter

design using genetic algorithms," in IEE/IEEE Workshop on Nat-

ural Algorithms in Signal Processing, (Chelmsford, U.K.), pp. 4/1{

4/8, 1993.

[168] H. Adeli and N.-T. Cheng, \Augmented lagrangian genetic algorithm for

structural optimization," Journal of Aerospace Engineering, vol. 7,

pp. 104{18, jan 1994.

[169] D. Powell and M. M. Skolnick, \Using genetic algorithms in engineering

design optimization with non-linear constraints," in Proceedings of

the Fifth International Conference on Genetic Algorithms (S. For-

rest, ed.), pp. 424{431, Morgan Kaufmann Publishers, jul 1993.

432

[170] J. D. Scha�er, \Multiple objective optimization with vector evaluated

genetic algorithms," in Genetic Algorithms and their Applications:

Proceedings of the First International Conference on Genetic Algo-

rithms, pp. 93{100, Lawrence Erlbaum, 1985.

[171] J. J. Grefenstette, \GENESIS: A system for using genetic search proce-

dures," in Proceedings of the 1984 Conference on Intelligent Sys-

tems and Machines, pp. 161{165, 1984.

[172] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard, \Some guide-

lines for genetic algorithms with penalty functions," in Proceedings

of the Third International Conference on Genetic Algorithms (J. D.

Scha�er, ed.), (George Mason University), pp. 191{197, Morgan

Kaufmann Publishers, 1989.

[173] M. P. Fourman, \Compaction of symbolic layout using genetic algorithms,"

in Genetic Algorithms and their Applications: Proceedings of the

First International Conference on Genetic Algorithms, pp. 141{153,

Lawrence Erlbaum, 1985.

[174] F. Kursawe, \A variant of evolution strategies for vector optimization,"

in Parallel Problem Solving from Nature. 1st Workshop, PPSN I

(H. P. Schwefel and R. M�anner, eds.), vol. 496 of Lecture Notes

in Computer Science, (Berlin, Germany), pp. 193{197, Springer-

Verlag, oct 1991.

[175] P. Hajela and C. Y. Lin, \Genetic search strategies in multicriterion optimal

design," Structural Optimization, vol. 4, pp. 99{107, 1992.

[176] D. E. Goldberg and J. Richardson, \Genetic algorithm with sharing for

multimodal function optimization," in Genetic Algorithms and

Their Applications: Proceedings of the Second International Con-

ference on Genetic Algorithms (J. J. Grefenstette, ed.), pp. 41{49,

Lawrence Erlbaum, 1987.

[177] M. R. Hilliard, G. E. Liepins, M. Palmer, and G. Rangarajen, \The com-

puter as a partner in algorithmic design: Automated discovery of

parameters for a multiobjective scheduling heuristic," in Impacts

of Recent Computer Advances on Operations Research (R. Sharda,

B. L. Golden, E. Wasil, O. Balci, and W. Stewart, eds.), New York:

North-Holland Publishing Company, 1989.

[178] G. E. Liepins, M. R. Hilliard, J. Richardson, and M. Palmer, \Genetic algo-

rithms application to set covering and travelling salesman prob-

lems," in Operations research and Arti�cial Intelligence: The inte-

gration of problem-solving strategies (D. E. Brown and C. C. White,

eds.), pp. 29{57, Norwell, Massachusetts: Kluwer Academic, 1990.

433

[179] S. M. Mahfoud, \Crowding and preselection revisited," in Parallel problem

Solving from Nature, 2nd Workshop (R. M�anner and B. Manderick,

eds.), (Amsterdam), North-Holland Publishing Company, 1992.

[180] C. M. Fonseca and P. J. Fleming, \Genetic Algorithms for Multiobjec-

tive Optimization: Formulation, Discussion and Generalization," in

Proceedings of the Fifth International Conference on Genetic Algo-

rithms (S. Forrest, ed.), (San Mateo, California), pp. 416{423, Uni-

versity of Illinois at Urbana-Champaign, Morgan Kau�man Pub-

lishers, 1993.

[181] N. Srinivas and K. Deb, \Multiobjective Optimization Using Nondominated

Sorting in Genetic Algorithms," Evolutionary Computation, vol. 2,

pp. 221{248, fall 1994.

[182] N. Srinivas and K. Deb, \Multiobjective optimization using nondominated

sorting in genetic algorithms," tech. rep., Department of Mechanical

Engineering, Indian Institute of Technology, Kanput, India, 1993.

[183] J. Horn and N. Nafpliotis, \Multiobjective Optimization using the Niched

Pareto Genetic Algorithm," Tech. Rep. IlliGAl Report 93005, Uni-

versity of Illinois at Urbana-Champaign, Urbana, Illinois, USA,

1993.

[184] J. G. Lin, \Maximal vectors and multi-objective optimization," Journal of

Optimization Theory and Applications, vol. 18, pp. 41{64, jan 1976.

[185] D. M. Himmelblau, Applied Nonlinear Programming. New York: McGraw-

Hill Book Company, 1972.

[186] R. Hooke and T. A. Jeeves, \Direct search solution of numerical and statis-

tical problems," Journal of the ACM, vol. 8, pp. 221{230, 1961.

[187] A. Ben-Tal, \Characterization of pareto and lexicographic optimal solu-

tions," in Multiple Criteria Decision Making Theory and Applica-

tions (G. Fandel and T. Gal, eds.), vol. 177 of Lecture Notes in

Economics and Mathematical Systems, pp. 1{11, Berlin: Springer-

Verlag, 1980.

[188] C. M. Fonseca and P. J. Fleming, \An overview of evolutionary algorithms

in multiobjective optimization," Evolutionary Computation, vol. 3,

pp. 1{16, Spring 1995.

[189] J. J. Grefenstette, \Optimization of control parameters for genetic algo-

rithms," IEEE Transactions on Systems, Man, and Cybernetics,

vol. 16, no. 1, pp. 122{128, 1986.

434

[190] L. J. Eshelman, \The chc adaptive search algorithm: How to have safe

search when engaging in nontraditional genetic recombination," in

Foundations of Genetic Algorithms (G. E. Rawlins, ed.), pp. 265{

283, San Mateo, California: Morgan Kaufmann Publishers, 1991.

[191] M. Ghiassi, R. E. DeVor, M. I. Dessouky, and B. A. Kijowski, \An appli-

cation of multiple criteria decision making principles for planning

machining operations," IIE Transactions, vol. 16, pp. 106{114, jun

1984.

[192] H. Eschenauer, J. Koski, and A. Osyczka, eds., Multicriteria Design Opti-

mization. Berlin, Germany: Springer-Verlag, 1990.

[193] A. D. Belegundu, A Study of Mathematical Programming Methods for Struc-

tural Optimization. Dept. of civil and environmental engineering,

University of Iowa, Iowa, Iowa, 1982.

[194] S. Rajeev and C. S. Krishnamoorthy, \Discrete optimization of struc-

tures using genetic algorithms," Journal of Structural Engineering,

vol. 118, pp. 1233{50, may 1992.

[195] B. Armstrong, O. Khatib, and J. Burdick, \The explicit dynamic model and

inertial parameters of the PUMA 560 arm," in Proceedings of the

1986 IEEE International Conference on Robotics and Automation,

(San Francisco, California), pp. 510{518, apr 1986.

[196] J. Koski and A. Osyczka, \Optimal counterweight balancing of robot arms

using multicriteria approach," in Multicriteria Design Optimiza-

tion. Procedures and Applications (H. Eschenauer, J. Koski, and

A. Osyczka, eds.), ch. 5, pp. 151{167, Berlin, Germany: Springer-

Verlag, 1990.

[197] S. Louis and G. Rawlins, \Designer genetic algorithms: Genetic algorithms

in structure design," in Proceedings of the Fourth International

Conference on Genetic Algorithms (R. K. Belew and L. B. Booker,

eds.), (San Mateo, California), pp. 53{60, University of California,

San Diego, Morgan Kaufmann Publishers, jul 1991.

[198] C. A. Coello, M. Rudnick, and A. D. Christiansen, \Using genetic algo-

rithms for optimal design of trusses," in Proceedings of the Sixth

International Conference on Tools with Arti�cial Intelligence, (New

Orleans, LA), pp. 88{94, IEEE Computer Society Press, nov 1994.

[199] C. A. Coello and A. D. Christiansen, \Using genetic algorithms for optimal

design of axially loaded non-prismatic columns," in International

Conference on Neural Nets and Genetic Algorithms, ICANNGA'95

(D. W. Pearson, N. C. Steele, and R. F. Albrecht, eds.), (France),

pp. 460{463, Ecole des Mines d'Al�es, Springer-Verlag, apr 1995.

435

[200] C. A. Coello, F. S. Hern�andez, and F. A. Farrera, \An approach to

optimal design of reinforced concrete beams using genetic algo-

rithms," in Proceedings of the IASTED International Conference

on Applied Modelling, Simulation and Optimization (M. H. Hamza,

ed.), (Canc�un, M�exico), pp. 141{144, IASTED-ACTA Press, jun

1995.

[201] K. Deb and D. E. Goldberg, \An investigation of niche and species forma-

tion in genetic function optimization," in Proceedings of the Third

International Conference on Genetic Algorithms (J. D. Scha�er,

ed.), (San Mateo, California), pp. 42{50, George Mason University,

Morgan Kaufmann Publishers, jun 1989.

[202] J. M. Gere and W. Weaver, Analysis of Framed Structures. D. Van Nostrand

Company, Inc., 1965.

[203] C. A. Coello, \An�alisis de estructuras reticulares por computadora (m�etodo

de rigideces)." Tesis de Licenciatura, 1991. (in Spanish).

[204] S. J. Louis, Genetic Algorithms as a Computational Tool for Design. PhD

thesis, Department of Computer Science, Indiana University, aug

1993.

[205] S. J. Louis and G. J. E. Rawlins, \Pareto optimality, GA-easiness and

deception," in Proceedings of the Fifth International Conference

on Genetic Algorithms (S. Forrest, ed.), (University of Illinois at

Urbana-Champaign), pp. 118{123, Morgan Kaufmann Publishers,

1993.

[206] D. E. Goldberg, \Optimal initial population size for binary-coded genetic

algorithms," Tech. Rep. TCGA Report 85001, University of

Alabama, Tuscaloosa, 1985.

[207] D. E. Goldberg, \Sizing populations for serial and parallel genetic algo-

rithms," in Proceedings of the 3rd International Conference on

Genetic Algorithms (J. D. Scha�er, ed.), (San Mateo, California),

pp. 70{79, George Mason University, Morgan Kaufmann, jun 1989.

[208] C. R. Reeves, \Using genetic algorithms with small populations," in Proceed-

ings of the Fifth International Conference on Genetic Algorithms

(S. Forrest, ed.), (San Mateo, California), pp. 92{99, University of

Illinois at Urbana Champaign, Morgan Kaufmann, jul 1993.

[209] J. T. Alander, \On optimal population size of genetic algorithms," in Pro-

ceedings of ComEuro 92, pp. 65{70, IEEE Computer Society Press,

1992.

436

[210] S. W. Mahfoud, \Population size and genetic drift in �tness sharing," in

Foundations of Genetic Algorithms 3 (L. D. Whitley and M. D.

Vose, eds.), pp. 185{223, San Francisco, California: Morgan Kauf-

mann Publishers, 1995.

[211] D. J. Sirag and P. T. Weisser, \Toward a uni�ed thermodynamic genetic

operator," in Genetic Algorithms and Their Applications: Proceed-

ings of the Second International Conference on Genetic Algorithms

(J. J. Grefenstette, ed.), (Hillsdale, New Jersey), pp. 116{122,

Masachussets Institute of Technology, Lawrence Erlbaum Asso-

ciates, jul 1987.

[212] J. D. Scha�er and A. Morishima, \An adaptive crossover distribution mech-

anism for genetic algorithms," in Genetic Algorithms and their

Applications: Proceedings of the Second International Conference

on Genetic Algorithms (J. J. Grefenstette, ed.), (Hillsdale, New

Jersey), pp. 36{40, Masachusetts Institute of Technology, Lawrence

Erlbaum Associates, jul 1987.

[213] D. J. Scha�er and A. Morishima, \Adaptive knowledge representation: A

content sensitive recombination mechanism for genetic algorithms,"

International Journal of Intelligent Systems, no. 3, pp. 229{246,

1988.

[214] D. J. Powell, M. M. Skolnick, and S. S. Tong, \Interdigitation : Hybrid tech-

nique for engineering design optimization employing genetic algo-

rithms, expert systems, and numerical optimization," in Handbook

of Genetic Algorithms (L. Davis, ed.), ch. 20, pp. 312{331, New

York: Van Nostrand Reinhold, 1991.

[215] D. Powell, M. Skolnick, and S. Tong, \EnGENEous:domain independent,

machine learning for design optimization," in Third International

Conference on Genetic Algorithms (J. D. Scha�er, ed.), (San Mateo,

California), pp. 151{159, George Mason University, Morgan Kauf-

mann Publishers, jun 1989.

[216] D. Powell, M. M. Skolnick, and S. Tong, \Using genetic algorithms in engi-

neering design optimization via non-linear constraints," in Fifth

International Conference on Genetic Algorithms, (University of Illi-

nois at Urbana-Champaign), pp. 424{31, Morgan Kau�man Pub-

lishers, jul 1993.

[217] R. K. Belew, \When both individuals and populations search: Adding sim-

ple learning to the genetic algorithm," in Proceedings of the Third

International Conference on Genetic Algorithms (J. D. Scha�er,

ed.), (San Mateo, California), pp. 34{41, George Mason University,

Morgan Kaufmann Publishers, jun 1989.

437

Biography

Carlos Artemio Coello Coello was born in October 18, 1967 in Tonal�a,

Chiapas, M�exico. He attended the Escuela de Ingenier��a Civil of the Universidad

Aut�onoma de Chiapas, where he obtained a Bachelor of Science in Civil Engi-

neering with Honors in 1991. After that, he decided to go into Computer Science

and was admitted to Tulane University's graduate program in the fall of 1991.

He obtained a Master of Science degree in Computer Science in 1993, and then

decided to continue in the graduate program to get a doctorate. In 1996, he

completed his Doctor of Philosophy degree in Computer Science. During all the

time that he was at Tulane University, he was supported by a scholarship from

the Secretar��a de Educaci�on P�ublica of the Mexican government.

