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Abstract 
 
 
 It would be beneficial with today’s cluttered electromagnetic spectrum to be able 

to perform multiple radar missions simultaneously from a single platform. The design of 

a waveform for this application would greatly benefit the radar community. Radar 

systems are used to perform many missions, some of which include the detection and 

tracking of airborne and ground moving targets as well as Synthetic Aperture Radar 

(SAR) imaging. There are many systems that can operate in multiple modes to perform 

these missions, although there is no one radar that can simultaneously perform multiple 

missions using the same waveform [1]. Each mission can be mathematically reduced to 

an objective or set of objectives that can be used to evaluate their success. These 

objectives are functions of numerous radar and spatial parameters such as pulse repetition 

frequency (prf), center frequency, bandwidth, antenna beamwidth, and azimuth look 

angle, among others. In this thesis, an evolutionary multi-objective optimization 

technique known as the Strength Pareto Evolutionary Algorithm 2 (SPEA2), developed 

by Zitzler and Thiele [2], was applied to the simultaneous multi-mission radar waveform 

design problem. Several of the radar parameters mentioned above were varied to produce 

diverse waveforms that were manipulated using SPEA2. Due to computational 

constraints, the problem was approached by using two different scaled down real world 

scenarios to evaluate the performance of the evolutionary waveform design on a multi-

objective moving target indication (MTI) mission and a multi-objective SAR mission, 

respectively. Multiple experiments showed that SPEA2 can select a set of Pareto optimal 
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waveforms that accomplish these multi-objective missions effectively according to the 

objective functions that were developed for these missions. Finally, a procedure is 

outlined to combine these multi-objective MTI and SAR missions into one scaled 

experiment in which a distributed computing environment could be used to provide more 

computational resources.  
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1 Introduction 
 

1.1 Objective 
 

A radar is an electromagnetic system that operates by transmitting a particular type 

of waveform and detecting the nature of the returned echo signal from reflecting objects 

[3]. Radars are utilized for several different “tasks” often referred to as missions. Some of 

these missions include ground moving target indication (GMTI), airborne moving target 

indication (AMTI) and synthetic aperture radar (SAR) imaging. Current systems employ 

mission-specific hardware and waveforms. There are some existing multi-mode radar 

systems that have the ability to perform different missions [4], although not 

simultaneously [1]. By reducing the amount of required hardware and containing a large 

amount of information from a single waveform, a simultaneous multi-mission radar 

platform would be the most efficient to date.  

Different radar missions often have different objectives that may or may not be 

related.  The design of a radar waveform to accomplish such a mission forms a multi-

objective optimization problem (MOP). Often times, mission objectives are conflicting 

and are extremely difficult to effectively optimize. There are numerous radar parameters 

that must be designed to successfully meet these objectives such as pulse repetition 

frequency (PRF), center frequency, azimuth look angle, etc. The problem becomes even 

more complicated when a multi-mission waveform design is considered. The number of 

objectives increases, and often times, different sets of radar parameters are required for 
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each mission. This type of optimization problem where the solution is not intuitive lends 

itself well to evolutionary techniques.  

Genetic algorithms (GAs) are a specific subset of evolutionary computation 

techniques. They operate on the Darwinian concept of “survival of the fittest.” The 

primary responsibility of the user is to define a fitness evaluation function that can 

distinguish between “fit” and “unfit” solutions. When this is done effectively, genetic 

algorithms have the ability to search a vast solution space for an “optimal” solution. 

Achieving an “optimal” solution is the goal of every optimization algorithm, but 

this raises the question of how one defines optimality. This becomes increasingly 

complicated when a multi-objective scenario is considered. The Strength Pareto 

Evolutionary Algorithm 2 (SPEA2), developed by Zitzler and Thiele [2], is a multi-

objective evolutionary algorithm that optimizes in a Pareto sense. A solution is Pareto 

optimal (in the context of a maximization problem) if there exists no feasible vector 

which would increase some criterion without causing a simultaneous decrease in at least 

one other criterion [5].    

In this thesis, SPEA2 is applied to the simultaneous multi-mission radar waveform 

(SMRW) design problem. Waveform suites attempting to separately perform a multi-

objective SAR and a multi-objective MTI mission are generated and evaluated by 

SPEA2. The success of each mission is determined mathematically using a set of 

objectives. Objective functions are developed to map mission performance to fitness 

values that SPEA2 subsequently uses to determine a set of Pareto optimal solutions. 

Scaled down real-world scenarios were developed in order to evaluate waveform 
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performance in a simulated environment. Some real world missions, such as SAR 

imaging, operate over long periods of time (on the order of 20 minutes) and usually 

involve a large region of interest (ROI). The scaled scenarios make it possible to evaluate 

a complete family of Pareto optimal solutions in a reasonable amount of simulation time. 

The results of numerous simulations demonstrating the fidelity of multi-objective radar 

waveforms are presented. Finally, a true multi-mission, multi-objective scenario is 

developed that requires the use of a parallel processing computer cluster in future 

applications.  

1.2 Literature Review for Multi-Mode/Multi-Mission Waveform 
Design 

 
By employing a frequency-diverse waveform generator and a sophisticated digital 

signal processor, a single radar system capable of performing multiple missions can be 

developed. These systems require an explicit selection of the radar mode of operation, 

and then a specific waveform is generated to accomplish the selected mission. Many 

current radar systems have multi-mode capabilities. Some of these systems are described 

in [6], [7] and [8]. A perspective on the development of multi-mode radar systems is 

given by Strong in [9]. Multi-mode capabilities are also being explored in space-based 

radars, as discussed in [10].  

One state-of-the-art multi-mode radar system is described in [4]. The AN/APG-76 

multi-mode radar has the unique capability of performing SAR and GMTI missions 

simultaneously using a multi-aperture antenna. It is important to note that this 

“simultaneous” capability is the product of essentially combining the results of two 
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different radars. Each aperture transmits its own mission-specific waveform to 

accomplish its task. No multi-mode radar system can currently perform simultaneous 

missions with a single waveform, which is the aim of this thesis. 

 There has been some previous research in the area of multi-mode and multi-

mission radar waveform design and diversity. In [11], Mendelson and Ogle describe 

many of the conflicting parameters for SAR and MTI missions. Their work focuses on a 

processing technique that improves SAR and MTI mission capability for multi-mode 

radar systems. Antonik et al. [12] proposed the concept of a frequency diverse array that 

ignores the traditional separation of the antenna and waveform subsystems which 

provides additional degrees of freedom for multi-mission applications. Their proposal 

employs a separate waveform generator for each antenna which is controlled by its own 

subsystem. Simultaneous multi-mission performance is not addressed by this work.  

 Amuso et al. [13] performed a systems analysis that demonstrates the difficulty in 

designing a single radar system that can achieve SAR and MTI missions simultaneously. 

Interleaved structure for multi-mission waveform design using a simple single-objective 

genetic algorithm is discussed in this work. Interleaved waveform structure refers to 

interspersing MTI waveforms with sections of SAR waveforms. This is not true 

simultaneous multi-mission waveform design, as it is essentially a scheduling problem 

for MTI and SAR waveforms. Due to the overly simple genetic algorithm and the 

complexity of the problem, this approach did not produce worthwhile results.  

 The follow-up work from Amuso et al. employed a multi-objective genetic 

algorithm known as the Strength Pareto Evolutionary Algorithm (SPEA) to design 
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simultaneous multi-mission waveforms [14]. Objective functions were used to evaluate 

mission performance. Simultaneous multi-mission waveforms were designed for a real-

world scenario. Incremental increases in performance with respect to the defined mission 

objectives were shown for the waveforms designed by SPEA with respect to randomly 

generated waveforms. This thesis builds on the work presented in [14].  

1.3 Outline 
 

The organization of this thesis is as follows. Chapter 2 will describe the radar 

missions of interest and note the difficulty in the design of a single waveform to 

accomplish these missions. Chapter 3 will discuss genetic algorithms and will form the 

multi-objective optimization problem. Chapter 4 will describe SPEA2 and note its 

advantages over the other multi-objective optimization algorithms. Chapter 5 will detail 

how SPEA2 is applied to the SMRW design problem. It will contain a description of the 

desired missions to be accomplished as well as the objective functions used to evaluate 

their success. Chapter 6 will describe the scaled real-world scenarios used for simulation 

as well as provide the results and analysis of all experiments. Finally, Chapter 7 will give 

conclusions and future work.  
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2 Radar Background 
 

2.1 Missions 
 

The missions of interest for the SMRW design problem are synthetic aperture radar 

(SAR) imaging and moving target indication (MTI). These missions are two of the most 

common in radar application [15]. The following subsections will describe each mission 

and its relevance to the SMRW design problem. 

2.1.1 Moving Target Indication 
 

Moving target indication (MTI) is one of the most common missions for a radar to 

undertake. Separating moving targets from stationary ones is a vital task in many military 

and security applications. MTI is an extremely important mission in high-quality 

surveillance radars that operate in areas containing clutter [3]. For a stationary radar, an 

MTI mission is carried out by measuring the Doppler frequency shift of the received 

signal. A reference signal at the same frequency as the transmitted signal is utilized for 

this Doppler shift measurement. A simple MTI radar is shown in Figure 2-1.  

 
Figure 2-1: A block diagram of a simple MTI radar [15] 
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If the transmitted signal is of the form ( )1 sin 2 tA f tπ , then the reference signal will 

be of the same form with possibly a different amplitude, i.e. (2 sin 2 t )A f tπ . The Doppler-

shifted return echo that is received can then be represented as: 

 
( ) 0

3
4sin 2 t

echo t d
f RV A f f t
c

ππ⎛= ± −⎜
⎝ ⎠

⎞
⎟ (2-1)

where fd is the Doppler frequency shift, c is the velocity of propagation, and R0 is the 

target range. Only the low frequency (fd) component of the echo signal is of interest, and 

must be extracted. 

A simplified frequency response of a multiple pulse signal is shown in Figure 2-2. 

It has zero response at DC, which means that the radar will not detect stationary targets. 

Also, because of the periodicity of the transmitted signal the response also rejects 

frequencies in the vicinity of the PRF and its harmonics [3].  

 

Figure 2-2: Simplified frequency response of a multiple pulse signal Error! Reference source not found. 

The nulls in the frequency response are a significant issue with MTI radar systems which 

are commonly known as “blind speeds.” A blind speed refers to a certain velocity that the 
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radar cannot detect, due to its cancellation by the clutter rejection filter. Mathematically, 

these blind speeds are given as: 

 ( )
2n

n PRFv λ
=  (2-2)

 An MTI mission becomes more difficult when the radar platform is in motion. 

This is the case when the radar is aboard a flying aircraft, as was described in the SAR 

mission. Clutter is not as easily distinguished when its Doppler frequency shift is no 

longer equal to zero. However, this effect can be compensated for by one of two methods. 

The first is to shift the frequency of the oscillator to account for the shift in the clutter 

Doppler frequency [3]. The Doppler shift of the clutter is determined by the speed of the 

aircraft and the pointing direction of the antenna. The other compensation method is to 

redesign the FIR filter to reject the Doppler shift frequencies.  

The design of a waveform to accomplish an MTI mission depends on the selection 

of many parameters. The center frequency (fc) of the transmitted radar signal will 

determine the Doppler frequency according to: 

 2 r c
d

v ff
c

=  (2-3)

where vr is the relative radial velocity of the target with respect to the radar. The velocity 

range that the radar is interested in detecting depends on what type of mission is to be 

performed. Also, the range capability of a particular PRF must be considered. A multiple-

time-around echo is a signal that is received after an interval exceeding the pulse 

repetition interval. These multiple-time-around echoes result in erroneous range 

measurements known as range ambiguities [3]. A low PRF reduces the chance receiving 
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these multiple-time-around echoes, but as shown by Equation 2-2, it also produces a low 

first blind speed. A high PRF introduces range ambiguities but also extends the first blind 

speed so that faster moving targets can be detected. A GMTI mission must be able detect 

slow moving targets, thus requiring a low PRF to ensure that no targets of interest fall 

within the range of the blind speeds. In contrast, an AMTI mission must be able to detect 

much faster moving targets, upwards of 700 m/s. This requires the use of a medium to 

high PRF to extend the first blind speed and also to ensure that the target’s position is 

frequently updated so that it is not lost. Table 2-1 [13] gives a summary of the conflicting 

parameters needed to accomplish AMTI, GMTI, and SAR missions. The table contains 

two parameters not previously discussed, dwell time and revisit time. Dwell time refers to 

the total amount of time that a target is illuminated during a mission while revisit time is 

the desired time between illuminations of a target during the mission.  

Mission AMTI GMTI Stripmap SAR

Dwell Time    Short          
(100 ms)

Moderate      
(0.5 s)

Very Long      
(20 min)

Revisit Time Short          
(~10 s)

Moderate      
(30 s) Long

PRF Medium       
(> 1 KHz)

Low           
(> 200 Hz)

Low           
(~ 250 Hz)

Bandwidth Narrow        
(1 MHz)

Moderate      
(5 MHz)

Wide          
(30 MHz)

Beamwidth Narrow Narrow Wide  
Table 2-1: Requirements for radar missions of interest [13] 

When multiple pulses are transmitted from the radar, there are more opportunities 

to detect and extract information from the echo signal. The likelihood that a target is 

detected by a radar can be described by the following expression, known as the 

probability of detection (Pd).  

 10



 

 
( )

t

d sn
V

P p v d
∞

= ∫ v  (2-4)

Vt is the voltage threshold for detection and psn is the signal-plus-noise probability density 

function (pdf) which depends on the signal-to-noise ratio as well as the signal and noise 

statistics. Pd is a monotonic-increasing function of signal-to-noise ratio (SNR) for a given 

threshold [15]. When many pulses are returned from a target, they can be summed to 

improve the probability of detection. This process is called pulse integration. Pulse 

integration can be done in two ways, before the threshold detection process (pre-detection 

or coherent integration) or after the threshold detection (post-detection or non-coherent 

integration) [3]. For ideal pre-detection, the SNR is improved by a factor equal to the 

number of integrated pulses (M). For ideal post-detection, the SNR is improved by a 

factor approximately equal to M  as M becomes large [15]. Therefore, the number of 

pulses that a radar emits upon each target is a critical factor for the detection of that 

target.  

MTI missions are a critical radar task, especially in military and air traffic control 

applications [8], [9]. The detection and tracking of moving targets has become 

increasingly important over the years [9]. Also imperative to military applications is the 

ability to image an area. In some instances it may be critical to obtain images in high 

resolution while others might require a system that can image through foliage. SAR 

imaging can perform each of these tasks, among others, and thus is an important mission 

for a radar to be able to accomplish.  

 11



 

2.1.2 Synthetic Aperture Radar Imaging 
 

Synthetic aperture radar takes advantage of the motion of its carrier vehicle to 

produce a high cross-range resolution. Effectively, the motion causes the synthesis of a 

large antenna aperture. SAR achieves its high cross-range resolution by using the motion 

of the vehicle to generate the antenna aperture sequentially rather than simultaneously as 

with a conventional array antenna [3].  

R
θB

ROI

v

v
PRF

 
Figure 2-3: Two-dimensional strip-map SAR scenario 

Figure 2-3 depicts a two-dimensional SAR scenario. The antenna is positioned to 

transmit perpendicular to the direction of motion, which is referred to as sidelooking 

radar or a strip-map SAR configuration. The X’s represent the positions at which a pulse 

is emitted. ROI denotes the region of interest, θB is the antenna beamwidth, v is the 

velocity of the aircraft, R is the range, and PRF is the pulse repetition frequency. The 

effective aperture length (Leff) is equal to RθB.  

There are two fundamental limits to the effective aperture length that can be created 

by SAR. The first is that Leff can be no larger than the width of the illuminated region 

 12



 

( eff BL Rθ≤ ). The second constraint is that the aperture size must be restricted so that the 

phase front can be considered as a plane wave, also known as the far field of the array 

[3]. The far field of an antenna is the minimum distance that the rays originating from a 

radiating source may be considered parallel to each other at the target [3]. This far field 

condition results in what is known as unfocused SAR. In unfocused SAR, the best 

achievable resolution is a function of the square root of the range. However, if a 

correction factor is applied that takes into account the curvature of the spherical 

wavefront, the resolution can become independent of range. This phase correction factor 

is defined as follows: 

 22 x
R

πϕ
λ

Δ =  (2-5)

where λ is the wavelength and x is the distance from the center of the synthetic aperture. 

With this correction, all the received echo signals at range R are in phase and the SAR is 

considered to be focused at this range. The cross-range resolution of the focused SAR is  

 
2cr
Dδ =  (2-6)

where D is the size of the actual antenna. The down-range resolution is strictly a function 

of the bandwidth (B) of the radar signal and can be approximated as follows [16]: 

 
2dr
c
B

δ =  (2-7)

where c is the wave propagation speed.  

A SAR mission imposes constraints upon the PRF, just as an MTI mission does. 

For SAR imaging, the PRF must be low enough to avoid range ambiguities and high 
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enough to avoid angle ambiguities (image fold-over) that result from too large a spacing 

between the synthetic array elements. The distance traveled by the radar between pulse 

transmissions should be less than half a wavelength [3]. This constraint places the first 

grating lobe ( gθ ) of the synthetic array at 

 ( )
2g
PRF

v
λθ =  (2-8)

Grating lobes are other maxima in a radiation pattern that are not the desired main beam. 

They have the effect of producing undesired echo signals and thus usually should be 

minimized or avoided [3]. It is known that the first null of the physical antenna ( nθ ) is 

located at 

 
n D

λθ =  (2-9)

Since g nθ θ≥  to avoid grating lobes, and combining Equations 2-6, 2-8 & 2-9, the lower 

limit on the PRF is defined to be: 

 

cr

vPRF
δ

≥  (2-10)

The upper limit on the PRF is imposed by the unambiguous range (Ru) constraint that was 

previously discussed in Section 2.1.1. The PRF can not be greater than the amount of 

time that it takes for a radar signal to travel to the target and back. Imposing this 

constraint and combining with Equation 2-10 yields the range of PRF’s that can be 

selected for a SAR mission.  
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2cr u

v cPRF
Rδ

≤ ≤  (2-11)

One technique to generate a SAR image is by first collecting a video phase history 

(VPH). The cross-range dimension of the VPH contains spatial information while the 

down-range dimension contains frequency information. Consider the problem of imaging 

a region of interest (ROI) as depicted in Figure 2-3. The ground can be considered the 

“target” in a terrain imaging application. As the radar travels along its path of motion, it 

receives echo signals from the ground that differ in phase. This phase information is 

stored as it is received at each position and effectively comprises the spatial information 

in the cross-range dimension. It can be thought of as a discrete signal in the spatial 

frequency domain, sampled at a rate equal to the velocity of the aircraft divided by the 

PRF. The down-range dimension of the VPH is filled by indicating which part of the 

frequency spectrum that the received signal belongs to. As noted by Equation 2-7, the 

down-range resolution is determined by the bandwidth of the transmitted signal – i.e. 

narrow pulses give high resolution. Narrow pulses are short in time which results in a 

large frequency spectrum. This yields more bandwidth, and thus increased down-range 

resolution. 

The VPH generated by a SAR system can be represented in the frequency (ω  - 

down-range) and spatial frequency domain (  - cross-range) by the following equation: uk

 ( )2 2( , ) ( ) ( , ) ( , ) exp 4u n u u u n
n

S k P A k A k j k k x jk yω ω ω ω= − −∑ u n−  (2-12)

where ( )P ω  is the Fourier transform of the transmitted radar signal,  is the is Doppler 

amplitude pattern for the nth target, 

nA

A  is the Doppler transmit-receive mode radar 
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amplitude pattern, k is the wavenumber, xn is the down-range of the nth target, and yn is 

the cross-range of the nth target. The SAR image is then reconstructed using matched-

filtered inversion as shown here:  

 * *( , ), ( , ) ( ) ( , ) ( , )x u y u u uF k k k k P A k S kω ω ω ω ω⎡ ⎤ =⎣ ⎦  (2-13)

The reconstructed image in the spatial domain is then obtained by applying a 2D inverse 

Fourier transform as follows: 

 ( )( , ) ,n n
n

nf x y f x x y y= − −∑ (2-14)

where 

 ( )21
( , )( , ) ( ) ( , ) ( , )

x yn k k u n uf x y P A k A kω ω ω−=F  (2-15)

The nth target function ( , )nf x y  is the point spread function (PSF) of the SAR imaging 

system [16] and will be utilized to determine the quality of the SAR image in the 

experiments to follow.  

 It has been shown that like an MTI mission, a SAR mission requires the 

distinction of numerous parameters [1], [13]. The bandwidth of the transmitted signal is 

directly related to the achievable down-range resolution of the SAR image, while the 

cross-range resolution has an effect on the selection of PRF. It is of course desirable to 

achieve the highest resolution possible, but constraints are imposed as shown in Equation 

2-11 and also by other missions. The selection of the parameters such as PRF, center 

frequency, number of pulses, bandwidth, etc. is where the challenge lies for multi-

mission waveform design.  
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3 Genetic Algorithms & Multi-Objective Optimization 
 

3.1 Genetic Algorithms 
 

Evolutionary algorithms use the concept of “survival of the fittest” and 

mathematically implement this concept into an algorithm in order to produce a generic 

stochastic approach to solving single or multi-objective optimization problems [17]. 

Genetic algorithms are a specific subset of evolutionary algorithms that consist of 

numerically encoded population members, commonly referred to as individuals1. Each 

individual is represented by a number of genes that are grouped together to form 

chromosomes. The information stored in the chromosomes is then extracted and 

evaluated mathematically by an application-specific fitness function. This fitness measure 

is then used to rank individuals within the population. At this point, a selection process is 

applied to determine which members will pass to the next generation and be permitted to 

produce offspring. This general process is repeated until the desired number of 

generations is reached. A simple flowchart describing a basic genetic algorithm is shown 

in Figure 3-1.  

                                                 
1 It should be known that throughout this thesis, the terms “individual,” “population member,” and 
“solution” are used interchangeably.  
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Initialize Population

Determine Fitness

Apply Selection Terminate?

Create Offspring

N

Y

 
Figure 3-1: Simple genetic algorithm flowchart 

Genetic algorithms have the ability to explore many solutions throughout a vast 

solution space. A genetic algorithm is a robust, stochastic search technique that has the 

ability to evaluate a group of solutions in parallel and continuously refine them [18]. This 

is the main characteristic of GAs that has made them so popular in a wide variety of 

applications such as engineering [18] [19], finance [20], and computer science [21] 

among others. The following sub-sections will describe each element of a genetic 

algorithm in detail so that the reader is familiar with GA terminology and concepts before 

SPEA2 is discussed.  

3.1.1 Individual Representation & Initialization 

To begin the discussion on the functionality of a typical GA, the numerical 

representation of a single population member (individual) must first be addressed. From 

an algorithmic point of view, the individual is nothing more than an encoded solution to a 

mathematical problem [1]. Binary encoding of individuals was used for the radar 

application addressed by this thesis. As will be shown in Section 3.1.2, genetic operators 
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such as crossover and mutation are easily applied when binary encoding is used. An 

example of a binary encoded individual is shown in Figure 3-2. 

 
Figure 3-2: Example binary encoded individual 

Each binary encoded gene represents a physical characteristic of the individual. A 

collection of genes is known as a chromosome. As can be seen in Figure 3-2, both genes 

and chromosomes can be of different lengths because there may be more bits needed to 

encode one physical characteristic than another. The chromosomes contain the encoded 

information that distinguishes each individual. The actual encoded values represented by 

each gene are referred to as alleles [14].  

To illustrate the aforementioned concepts, consider a human individual example, 

as outlined in [1]. The nucleus of most human cells is comprised of two sets of 

chromosomes, one coming from each parent. This results in 46 total chromosomes. These 

chromosomes contain specific information about the individual. For an example, take eye 

color. The gene that determines eye color is found in the same chromosome and position 

for all humans. The value located in that particular position determines the actual color of 

the individual’s eyes. If there were four possible choices for eye color, two bits would be 
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used for the encoding. For instance, say 00 – blue, 01 – brown, 10 – green, 11 – hazel. 

Therefore, if the eye color gene was 01, the allele would be brown.  

The genetic algorithm begins with the generation of an initial population (P0) 

consisting of N individuals. This is usually accomplished by using a random number 

generator. Once P0 is generated, each individual is evaluated by an application-specific 

fitness function. It is at this point where the individual is decoded and mathematically 

evaluated. This is the most crucial part of any GA. A fitness function that does not 

effectively represent the desired characteristics for a solution will yield a poor result. The 

fitness function for the SMRW design problem will be described in the following chapter. 

For this discussion, it is not necessary to elaborate on how the fitness of an individual is 

determined.  

At this point, a common step is to rank the population members according to their 

fitness. The ranking establishes order within the population. Depending on the fitness 

function, this ranking can be done in ascending or descending order. Typically, most 

genetic algorithms aim to increase fitness so descending ranking would be appropriate in 

this case. This is usually the point in a GA where a check is performed to determine if the 

maximum number of generations has been reached. If it has, then the algorithm 

terminates and the current population (Pi) contains the possible solutions to the problem. 

Because of the ranking process, the most “fit” individual is the first individual in the 

solution population.  
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3.1.2 Generating an Offspring Population 

If the maximum number of generations has not been reached, the algorithm 

continues and the offspring creation process is commenced. At this point, many GAs 

employ a technique known as elitism. To ensure that the best solutions survive to the next 

generation, X number of the most “fit” individuals are passed directly to the next 

generation population (Pi+1). These X population numbers are usually referred to as the 

“elite” members. This elitism technique has been shown to increase the performance of 

GAs both mathematically [22] and empirically [23]. 

Next, mating pairs (or “parents”) must be selected from the population. There are 

many different techniques that have been developed for this task. Some of these methods 

include roulette wheel selection, rank selection, tournament selection and basic random 

selection. Intuitively, a selection scheme that produces a balance between favoring the 

traits of the best members and providing diversity by allowing many population members 

to participate would most likely result in an effective search. For this reason, the mating 

selection process that was chosen for the problem addressed by this thesis is tournament 

selection (TS). TS provides the diversity that is needed to keep the population from 

becoming stagnant by allowing all members to participate but it also favors the 

individuals who possess higher fitness. The advantageous traits of tournament selection 

including its speed and effectiveness are documented in [23]. TS begins by randomly 

selecting four individuals from the current population, Pi. The four individuals are 

grouped in pairs of two, and their fitness values are compared within these groups. The 

two individuals with the higher fitness are selected to be the first mating pair. This 
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process is repeated until the desired amount of mating pairs is achieved. A pictorial 

representation of tournament selection is shown in Figure 3-3. 

Ind. 22 – Fitness = 0.35

Ind. 11 – Fitness = 0.7

Ind. 4 – Fitness = 0.8

Ind.15 – Fitness = 0.4

Parent 1

Parent 2

Ind. 4 – Fitness = 0.8

Ind. 11 – Fitness = 0.7

 
Figure 3-3: Tournament selection 

Once the parents are selected, a crossover operation occurs to create offspring. 

There are also several crossover methods that can be implemented. Some of these include 

single-point crossover, two-point crossover, and uniform crossover. Each technique is 

inherently similar, as they all accomplish the same task of swapping genes between the 

two parents. However, there are constraints to the single-point and two-point crossover 

methods. In each technique, the crossover point must be selected at the beginning of a 

gene. This constraint is imposed to ensure that the offspring population is a combination 

of the physical characteristics of their parents. If this constraint was not met, the gene that 

was split by the crossover would essentially be a mutation, meaning it may not be a trait 

of either of the parents. Uniform crossover was chosen because it does not impose the 

crossover point constraint. Uniform crossover selects a random number of genes to be 

swapped between the two parents to create two offspring. Uniform crossover is illustrated 

in Figure 3-4 where Gxy represents a binary gene. As can be seen in the figure, genes 

simply have the ability to change values in uniform crossover. There is no chance of 
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shifting a gene’s position within a chromosome or changing the gene length. Any 

crossover operation is usually subject to a crossover probability. This probability 

determines the chance that two parent individuals will mate to produce offspring or 

simply copy themselves as the offspring.  

Parent 1 G11 G12 G13 G14 G15 G16 G17 G18 G19

Parent 2 G21 G22 G23 G24 G25 G26 G27 G28 G29

Offspring 1 G11 G22 G  G24 G  G27 G
G12 G14 G17

13 15 G16 18 G19

Offspring 2 G21 G23 G25 G26 G28 G29  
Figure 3-4: Uniform crossover 

The number of offspring that are generated is algorithm specific. Generally, the 

population size remains constant; therefore the number of offspring equals the population 

size minus the elite population that was passed to the next generation. Before the 

offspring proceed to the next generation, a mutation operator is often invoked to 

introduce more variety in the search space. Binary mutation simply selects a random 

number of bits that comprise the offspring’s genes to invert. A mutation probability is 

used to determine how many bits are mutated. Typically, this is a small probability 

because mutating many bits tends to make the GA perform more like a random search 

technique [24]. At this point, the offspring population is combined with the elite 

population and Pi+1 is complete. The Pi+1 population is then passed to the fitness 

evaluation function and the process is repeated until the desired number of generations is 

reached.  

 23



 

3.2 The Multi-Objective Optimization Problem 
 

The Multi-objective Optimization Problem (MOP) can be defined as the problem 

of finding a vector of decision variables which satisfies constraints and optimizes a vector 

function whose elements represent the objective functions [25]. These objective functions 

are often in conflict with one another and thus an ideal solution vector often times does 

not exist. Pareto optimality defines a criterion to estimate the ideal solution and will be 

discussed in the following section. First, the MOP and the ideal solution vector will be 

defined mathematically. 

 

Figure 3-5: A mapping illustration from decision variable space to multi-objective function space 
(reproduced from [1] with author’s permission) 

 Figure 3-5 illustrates the mapping of a solution (decision space) to a multi-

objective function space [1]. The MOP can be defined as follows: 

Find a vector 

 [ ]Tnxxxx **
2

*
1

* ...,,=v  (3-1)

which satisfies the m inequality constraints 

 miforxgi ...,2,10)( =≥  (3-2)
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and the p equality constraints 

 piforxhi ...,2,10)( ==  (3-3)

as well as optimizes the vector function 

 ( ) ( ) ( )[ ]Tk xfxfxfxf vvvvv
...,,)( 21= (3-4)

In the context of the SMRW design problem, Equation 3-4 will be used to contain the 

objective functions that map to the particular mission requirements. Now, let 

 [ ]TiO
n

iOiOiO xxxx )()(
2

)(
1

)( ...,,=v (3-5)

be a vector that optimizes the ith objective function. The vector 

 Ω∈)(iOxv  (3-6)

is such that 

 ( ) )()( xfoptxf i
x

iO
i

vv

Ω∈
=  (3-7)

Thus the vector 

 [ ]TO
k

OO ffff ...,, 21=
v

 (3-8)

is ideal for a MOP. The point in Rn space that determines this vector shown in 

Equation 3-8 is referred to as the ideal vector [1].  

3.3 Pareto Optimality 
 

When multiple, possibly conflicting, objectives are considered a compromise must 

be attained in the optimization process. Pareto optimality, first introduced by Edgeworth 

in 1881 and then generalized by Pareto in 1896, addresses this trade-off problem. A 
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solution is Pareto optimal if there exists no feasible vector which would increase some 

criterion (in a maximization problem) without causing a simultaneous decrease in at least 

one other criterion [5]. To understand Pareto optimality, the concept of dominance with 

respect to decision vectors must be defined. Consider two decision vectors, denoted 1vv  

and  which belong to the solution set 2vv Ω . In context of a maximization problem, 1vv  is 

said to dominate  if and only if  2vv

 { } { }1 2 11,2,... : ( ) ( ) 1,2,... : ( ) ( )i i j ji n f v f v j n f v f v∀ ∈ ≥ ∧ ∃ ∈ > 2
v v v v  (3-9)

All decision vectors which are not dominated by any other decision vector of the solution 

set are referred to as non-dominated [5]. Non-dominated decision vectors are considered 

to be Pareto optimal. A collection of these non-dominated vectors is referred to as a 

Pareto front. In the context of the MOP previously described, a vector  is Pareto 

optimal if for every  and 

*x ∈Ωv

x∈Ωv { }1,2,...I k=  either 

 ( )*( ) ( )i I i if x f x∈∀ =v v  (3-10)

or there is at least one i  such that I∈

 *( ) ( )i if x f x<v v  (3-11)

3.4 Evolutionary Multi-Objective Optimization Techniques 
 

In the late 1960’s, genetic algorithms were beginning to be applied in single-

objective optimization problems. The first true multi-objective evolutionary algorithm 

(MOEA) is generally attributed to J. David Schaffer for his work on the Vector Evaluated 
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Genetic Algorithm (VEGA) [26] in the mid 1980’s. Since then, many different MOEAs 

have been proposed, with only a certain few achieving noted success. Most successful 

MOEAs incorporated David E. Goldberg’s ideas [27] on the use of non-dominated 

ranking and selection to help guide solutions toward the Pareto optimal front. An 

excellent review of the history of MOEAs is presented by Carlos A. Coello Coello in 

[28]. An overview of two MOEAs noted in his article is presented in the following 

subsections as a precursor to Chapter 4, which describes the Strength Pareto Evolutionary 

Algorithm 2.  

3.4.1 Strength Pareto Evolutionary Algorithm 
 

Zitzler and Thiele introduced SPEA in the late 1990’s [5] and it quickly became 

one of the most popular MOEAs because of its incorporation of elitism. SPEA utilizes an 

archive of non-dominated population members which make up the elite population. Once 

a member enters the archive, it is guaranteed to remain there until another solution comes 

along that dominates it. Each individual in the archive is assigned a strength value that is 

proportional to the number of solutions it dominates. Then, each individual in the 

population is assigned a fitness value based on the strengths of the archive members that 

dominate them. The archive size is limited in SPEA; if the archive grows larger than a 

predefined limit a clustering technique is used that removes solutions that are located 

close to one another in an attempt to preserve the characteristics of the Pareto front. 

Mating pairs are chosen by using tournament selection on both the archive and the 

population, which was another novel concept implemented by SPEA.  

 27



 

SPEA was shown to perform well on a variety of multi-objective problems [5], 

[29] and many of its characteristics were adopted by other techniques [30], [31]. 

However, as [31] would point out, SPEA contained some deficiencies that limited its 

effectiveness in several instances. These deficiencies are addressed by SPEA’s authors in 

the development of SPEA2.  

3.4.2 Non-dominated Sorting Genetic Algorithm II 
 

Kalyanmoy Deb et al. introduced the Non-dominated Sorting Genetic 

Algorithm II in 2000 and published it in 2002 [31]. This algorithm implements a fast 

population ranking scheme which reduces its computational complexity compared to 

most other MOEAs. Also, rather than employing the fitness sharing technique proposed 

in its first version [32] to promote diversity in the population, NSGA-II uses a crowded-

comparison operator to accomplish this task. Fitness sharing requires a user-defined 

sharing parameter, often denoted shareσ , which determines the amount of sharing desired 

in the problem. The diversity of the population is heavily dependent on this sharing 

parameter and it is often unclear what value it should take. NSGA-II defines a “crowding 

distance” ( ) measure which computes the average distance of two points on either 

side of the individual in question along each objective. The selection process takes into 

account the number of individuals that each member dominates (referred to as non-

domination rank, denoted ) as well as the crowding distance measure. The guiding of 

the selection process is outlined using the crowded-comparison operator ( ) as follows: 

distancei

ranki

np

( ) (( ) ( ))n rank rank rank rank distance distancei j if i j or i j and i j< = >p    (3-12) 
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Equation 3-12 states that between two solutions with different non-domination ranks, the 

solution with lower rank is preferred. If the non-domination ranks are equal, the solution 

belonging to a less crowded area is desired.  

 NSGA-II has been shown to produce very promising results on standard multi-

objective test problems [2] [31], prompting its inclusion as one of the landmarks for 

evaluating other MOEAs. It was also shown to be superior to SPEA in almost every 

measurable fashion. This prompted Zitzler, Thiele and Laumanns to develop its own next 

generation MOEA, SPEA2.  

 29



 

4 The Strength Pareto Evolutionary Algorithm 2 
(SPEA2)  

 

4.1 Overview 

The Strength Pareto Evolutionary Algorithm 2 [2] presents several improvements 

over its predecessor SPEA. It boasts an improved fitness assignment scheme which 

distinguishes individuals in a much more effective fashion. A more precisely guided 

search process is fostered by a nearest neighbor density technique. Finally, a new archive 

truncation method guarantees the preservation of boundary solutions to ensure that the 

entire span of the Pareto front remains intact.  

 
Figure 4-1: SPEA2 Flowchart 
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Figure 4-1 depicts the flowchart for SPEA2. An initial population is created by 

using a random number generator, as was described in Section 3.1.1. An archive of elite 

solutions, denoted At where t is the generation number, is utilized in SPEA2 as in SPEA 

to preserve the best solutions across each generation. However, unlike its predecessor, the 

archive size in SPEA2 is constant. Also in contrast to SPEA, SPEA2 selects mating pairs 

only from the archive population. This promotes the reproduction of advantageous 

characteristics, but at the same time limits the variation in the offspring. Variation can be 

introduced through the mutation operator. The user decides what type of mating 

selection, crossover operation, and mutation operator to implement. For the SMRW 

design problem, tournament selection, uniform crossover, and binary mutation were 

employed as described in Section 3.1.2.  

The details of SPEA2 will be described in the following sections. Section 4.2 will 

discuss the fitness assignment scheme which includes the nearest-neighbor density 

technique. Section 4.3 will describe the environmental selection process as well as the 

techniques used to maintain a constant archive size.  

4.2 Fitness Assignment 

One of the deficiencies that was discovered in SPEA was that individuals who 

were dominated by the same archive members were assigned identical fitness values. It 

was irrelevant if one dominated member performed better than the other dominated 

member in each objective. Both dominated members had equal probability of passing to 

the next generation in SPEA. This situation forced SPEA to perform more like a random 
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search algorithm. Therefore, in SPEA2, each individual’s fitness is based upon the 

solutions that dominate it as well as the solutions that it dominates.  

For each individual i, a strength value S(i) is determined that represents the 

number of solutions that it dominates. In mathematical terms, 

 { }( ) | t tS i j j P A i j= ∈ + ∧ f (4-1)

where |  | denotes the cardinality of a set and + represents a multi-set union. These 

strength values are then used to assign a raw fitness, R(i), to each individual.  

 
,

( ) ( )
t tj P A j i

R i S
∈ +

= j∑
f

 (4-2)

Thus, the raw fitness of an individual is determined by the strength of its dominators in 

both the archive and the population [2]. Note that in terms of raw fitness, a low number 

represents a “good” solution, i.e. it is not dominated by many members. A zero raw 

fitness would indicate that the particular individual is non-dominated. This idea is 

illustrated in Figure 4-2 along with a comparison of SPEA’s fitness assignment scheme.  

 
Figure 4-2: Fitness assignment schemes for the same population in SPEA2 (left) and SPEA2 (right)  

[2].  
                                                 
2 Note that the Pareto front, non-dominated members and dominated members are explicitly indicated in 
the SPEA diagram for clarity but are also applicable in the SPEA2 diagram. 
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 It is imperative to understand the difference between fitness assignment strategies 

between SPEA and SPEA2. In Figure 4-2, the letters are used to distinguish between 

population members for the purpose of this discussion. SPEA’s fitness assignment begins 

by determining the number of solutions that each archive member dominates. In the case 

depicted by Figure 4-2, there are three non-dominated members (A,B,C) which make up 

the external archive population and three population members (D,E,F). Members A and C 

dominate one member: F, while member B dominates three members: D, E, and F. These 

domination counts are then divided the number of population members (3) plus one to 

produce a fitness value for the archive members. The population members are then 

assigned a fitness value equal to the summed fitness values of its dominators plus one. 

Members D and E are dominated by B, therefore their fitness values are both equal to 

member B’s fitness plus one – i.e. 3/4 + 1 = 7/4.  

 The SPEA2 raw fitness assignment scheme utilizes a strength value (S) and a raw 

fitness value (R). The strengths of each member are equal to the number of individuals in 

the population that they dominate and the raw fitness values are equal to the sum of the 

strengths of each member’s dominators. The non-dominated members (A,B,C) have a 

raw fitness value equal to 0 because they are not dominated by any other member. 

Members A and C dominate one member, F, so their strength is equal to 1. Member B 

dominates 3 members (D,E,F) so its strength value is 3. Member D is only dominated by 

member B, so it is assigned a raw fitness value of 3. It dominates members E and F, so it 

is assigned a strength value of 2. This assignment process continues for each member of 

the population.  
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Figure 4-2 explicitly shows the deficiency of the SPEA fitness assignment 

scheme. The two individuals that are dominated by the same member of the archive 

population (D and E) are assigned the same fitness value (7/4), despite the fact that one 

individual (D) is clearly superior to the other (E) in objective space. The SPEA2 fitness 

assignment remedies this issue. Individual D has a lower raw fitness (3) than individual E 

(5), indicating that it is indeed a better solution.  

Raw fitness is only one part of the SPEA2 fitness measure. To differentiate 

between individuals that may, by chance, have identical raw fitness values, an additional 

density measure is incorporated. The inverse of the distance to the k-th nearest neighbor 

is taken to be the density estimate for a given individual. For every member, the distances 

to all other members is calculated and sorted in ascending order. The distance to the k-th 

element, denoted k
iσ , is the point of interest for the density measure. Based on the work 

of Silverman in [33] the SPEA2 authors determine k as follows: 

 ( ) ( )k size P size A= +  (4-3)

The density for each individual is then calculated as: 

 1( )
2k

i

D i
σ

=
+

 (4-4)

Two is added in the denominator to ensure that D(i) takes a value less than one. Finally, 

the fitness of an individual for the SPEA2 algorithm is calculated as: 

 ( ) ( ) ( )F i R i D i= +  (4-5)
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4.3 Environmental Selection 

The process by which the archive population is updated and maintained is referred 

to as environmental selection. For SPEA2, the first step of this process is to copy all non-

dominated individuals from the current archive and population to the next generation’s 

archive (i.e. At+1). Non-dominated individuals are easily distinguished, as they are 

guaranteed to have a fitness value less than one. This update process is depicted 

mathematically by: 

 { }1 | (t t tA i i P A F i+ ) 1= ∈ + ∧ < (4-6)

At this point, the size of the archive is checked against the pre-defined size limit, 

denoted N. If  then the environmental selection process is complete and 

mating selection can be commenced. If 

1( )tsize A N+ =

1( )tsize A N+ <  then the archive is filled with the 

best dominated population members (an easy task given that the members are already 

sorted in ascending fitness). The most complicated situation occurs when . 1( )tsize A N+ >

When the size of the archive is larger than N, the SPEA2 truncation operator must 

be utilized. This algorithm iteratively removes solutions from the archive until it meets 

the size requirement. This is accomplished by choosing the individual which has the 

minimum distance to another individual at each stage. Ties are broken by the second 

smallest distance, etc. The goal of this truncation technique is to maintain the spread of 

the Pareto front while also preserving the boundary solutions. The technique is illustrated 

for clearer understanding in Figure 4-3 and is mathematically depicted in Equation 4-7. 
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(4-7)

  
Figure 4-3: Illustration of the SPEA2 archive truncation scheme. N = 4 is assumed and the numbers 

on the right side indicate the order of elimination. 

As Figure 4-3 depicts, the first solution that is truncated from the Pareto front is the 

one that is closest to its nearest neighbor (B). Notice that member A is not removed 

because it is a boundary solution. Member G will also not be removed in any truncation 

scenario. The second elimination is made as a decision between members E and F. They 

are the two members with the minimum distance to each other. Member F is selected to 

be removed because the distance to its next nearest neighbor (G) is smaller than member 

E’s next nearest neighbor (D). The archive size is set to be four, so one more solution 

must be removed. The next minimum distance between two members is between C and 

D. Member D is chosen to be removed because the distance from D-E is smaller than the 

distance from C-A. The archive is now reduced to its required size of four members.  
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4.4 Verification with the 0/1 Multi-Objective Knapsack Problem 

To verify the functionality of the SPEA2 implementation, the 0/1 multi-objective 

knapsack problem (MOKP) was utilized [34]. The standard 0/1 single objective knapsack 

problem is well-known and is frequently used to test optimization algorithms. It is a 

combinatorial optimization problem in which a set of n items each have an associated 

profit (p) and weight (w). The goal of the experiment is to choose the items that have the 

maximum profit while not exceeding the weight capacity (W) of the “knapsack.” 

Mathematically, this is stated as follows: 

 

{ }
1 1

0,1 1

n n

j j j j
j j

j

maximize p x subject to w x W

x for all j n
= =

≤

∈ ≤ ≤

∑ ∑
 (4-8)

 To extend this into a multi-objective problem, m knapsacks with different weight 

capacities are introduced. When an item is selected for inclusion, it is placed in all m 

knapsacks. The items also have knapsack-specific profits and weights, corresponding to 

the effects of including an item on each objective. The 0/1 MOKP is defined as follows: 

 

{ }
1 1

1

0,1 1

n n

i j j ij j i
j j

j

maximize p x subject to w x W i m

x for all j n
= =

≤ ≤ ≤

∈ ≤ ≤

∑ ∑
 (4-9)

 Zitzler and Thiele have developed a comprehensive set of MOKP test data and 

results3 that are referenced in [2], [5] and [29]. For the purposes of verifying the 

functionality of the SPEA2 implementation, a simple MOKP was chosen for testing. A 

three knapsack, one-hundred item problem was selected. This problem was robust 

                                                 
3 Available publicly at http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/. 
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enough to exercise SPEA2 but simple enough to accomplish given the computational 

constraints. A population size of five-hundred members was used along with an archive 

size of 30, per the experiments in [2]. Although the problem could not be evolved for as 

many generations as in [2] (50 as opposed to 500), the results were similar to those 

reported by Zitzler and Thiele. This indicated that the algorithm was indeed functioning 

as intended and could now be applied to the SMRW design problem.  
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5 SPEA2 Applied to Simultaneous Multi-Mission 
Radar Waveform Design 

 

5.1 Waveform Suite Approach 

Section 1.2 noted the main deficiency of existing multi-mode radar systems: they 

cannot accomplish multiple missions simultaneously using the same waveform. Section 

2.1 highlighted the numerous radar parameters that are of specific interest to 

accomplishing MTI and SAR missions, some of which are summarized in Table 2-1. This 

section will aim to define a single waveform, which will be referred to as a waveform 

suite, that combines different radar parameters to accomplish multiple missions 

simultaneously.  

The RIT Multi-Mission Radar Waveform Tool has been developed in MATLAB® 

and provides its user the ability to vary a number of different radar parameters. These 

parameters are: 

• Number of pulses per coherent processing interval (CPI) 

• Pulse repetition frequency (PRF) 

• Center frequency (fc) 

• Bandwidth 

• Azimuth beam steering angle 

• Elevation beam steering angle 

For each CPI, the orthogonal waveform suite can be comprised of all or a subset of these 

parameters. For the purposes of the genetic algorithm, these parameters are binary 
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encoded. The specifics of the encoding will be discussed in Section 5.2. Each CPI will 

contain a binary string that represents the value of each parameter to be used during that 

particular transmission, which will be known as a sub-waveform. The transmission of a 

CPI covers a time interval equal to the number of pulses for that CPI times the inverse 

PRF. The concatenation of the binary encoded sub-waveforms will then make up the 

waveform suite which will cover the entire mission time. A visual representation of a 

binary encoded waveform suite with five bit sub-waveforms is depicted in Figure 5-1. In 

a GA sense, a waveform suite is analogous to an individual or a solution vector. SPEA2 

will accept an initial population of waveform suites, evaluate their performance based on 

the objective functions defined in Section 5.3, and reproduce new waveform suites as 

described in Chapter 4.  

 
Figure 5-1: Binary encoded waveform suite 

5.2 Parameter Encoding 

The RIT Multi-Mission Radar Waveform Tool allows its user to select the 

number and type of radar parameters to be varied during each run of the genetic 

algorithm. A screenshot of the radar parameter selection portion of the RIT Multi-

Mission Radar Waveform Tool graphical used interface (GUI) is shown in Figure 5-2. 
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The user first selects the parameter of interest and then defines how many bits should be 

used to encode its variations. The different values that the parameter is allowed to take 

are then defined. This process is best described by an example. Consider selecting center 

frequency as the parameter to be varied in each sub-waveform. The user selects two bits 

to perform the encoding. This allows the use of four possible values for center frequency. 

The user defines these center frequency values in an array. The binary encoding would 

then determine which value should be used in each sub-waveform. For instance, if 00 was 

selected as the code for the first sub-waveform, the first value in the array would be used 

for center frequency (4.92 GHz for the case shown in Figure 5-2). A binary code is 

generated for each sub-waveform and concatenated with previous sub-waveform codes to 

comprise a waveform suite, or individual in the GA sense.  

 
Figure 5-2: RIT Multi-Mission Radar Waveform Tool: Selection of radar parameters GUI 

screenshot 

If multiple parameters were selected to be varied, their binary codes would be 

concatenated into a sub-waveform and then combined with other sub-waveforms to 

define the waveform suite. All non-varied parameters are selected to be the first value in 

each array and are held constant throughout the experiment. There is no need to encode a 

constant parameter, as it is used for all sub-waveforms.  
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5.3 Objective Functions 
 

Four objective functions are utilized to evaluate the success of each waveform 

suite. These objective functions map the performance of the waveform suite into fitness 

values that are used by SPEA2 to determine dominated and non-dominated individuals. 

The success of the SAR mission is measured by estimating the quality of the resulting 

image. This is accomplished by calculating the peak sidelobe level (PSL) and the 

integrated sidelobe level (ISL) of the point source spatial response given by Equation 2-

15. The success of an MTI mission is evaluated by a target revisit time specification as 

well as the number of integrated pulses placed on a target. As described by Section 2.1.1, 

the number of integrated pulses is directly related to the probability of detection. The 

following subsections will elaborate on these four objective functions. 

5.3.1 Peak Sidelobe Level & Integrated Sidelobe Level 
 

PSL and ISL are discussed together in this subsection because they are inherently 

related to one another. As Section 2.1.2 noted, a video phase history contains spatial and 

frequency information for an image. A two-dimensional inverse Fourier transform is then 

applied to the VPH to create a point spread function (PSF). If the VPH was of infinite 

size and completely filled, its PSF would represent an ideal point source – i.e. an impulse 

with all its energy focused in the “main beam.” As the size of the VPH decreases and as it 

becomes less filled, the power in the PSF spreads out and sidelobes become more 

pronounced. The result of this effect is that the corresponding output image will be 

blurred. Reducing the peak sidelobe level and the integrated sidelobe level will thus 
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increase the image quality. PSL is defined as the highest power in the normalized PSF 

that is not part of the main lobe. ISL is summation of all the power in the normalized PSF 

minus the power in the main lobe. PSL and ISL have been used to measure the imaging 

quality of array imaging systems in [35] [36], and specifically for SAR imaging systems 

in [37] [38] [39]. Building upon these works, the following PSL and ISL objective 

functions, shown in Figure 5-3 and Figure 5-4 respectively, were developed to map SAR 

mission performance (image quality) to fitness values.  
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Figure 5-3: PSL SAR objective function. Absolute PSL values greater than 14 dB result in fitness 

values of 1. 
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Figure 5-4: ISL SAR objective function. Absolute ISL values greater than 45 dB result in fitness 

values of 1. Any absolute ISL value less than 20 dB gives a fitness value of 0. 
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5.3.2 Number of Integrated Pulses 
 

Section 2.1.1 documented how the number of pulses integrated over a coherent time 

interval is directly related to the probability of detection. The more pulses that are emitted 

upon a target, the more likely it is that the target will be detected. The objective function 

that was developed for the number of integrated pulses was designed to especially favor a 

larger number of pulses per CPI. A discrete linear function with a non-linear spacing of 

the independent variable accomplished this task. For all MTI missions, four possible 

pulse values per CPI were allowed. The discrete objective function to map the number of 

pulses into fitness is shown in Figure 5-5.  
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Figure 5-5: Number of pulses MTI objective function. The target number of pulses (the number that 

gives a fitness value of 1) is the maximum allowed in the simulation scenario, 32.  

5.3.3 Revisit Time 
 

The revisit time for a two-dimensional range cell was chosen as the second objective 

function for an MTI mission. Depending on the type of target being tracked, long or short 

revisit times may be required. As Table 2-1 notes, an AMTI mission requires revisit times 

on the order of ten seconds while a GMTI mission requires revisit times around thirty 
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seconds [13]. Consider a target revisit time for a particular mission as T seconds. Revisit 

times greater than T seconds can degrade mission performance by possibly losing a 

tracked target of interest. However, revisit times significantly less than T seconds can be 

considered an inefficient use of resources since other missions (SAR in this case) could 

be performed. The selection of a revisit time target is highly dependent on the mission 

requirements. For the scaled MTI mission described in Section 6.2, a revisit time of 

0.75 s within a 3 s mission was chosen. With the previously described tradeoffs between 

revisit times longer and shorter than the target in mind, the objective function shown in 

Figure 5-6 was developed.  
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Figure 5-6: Revisit time MTI objective function. The target revisit time is 0.75 s and results in a 
fitness value of 1. The maximum revisit time is 1.5 s and any value greater than 1.5 s results in a 

fitness value of 0.  
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6 Simulation Scenarios & Results 

The previous chapters have documented the many constraints placed upon the 

selection of radar parameters for simultaneous multi-mission radar waveform design. 

There are also physical limitations of radar systems as well as computational constraints 

to consider when designing a simulation scenario. Some of the physical limitations 

include a common PRF and number of emitted pulses for each radar sub-aperture for a 

given CPI. Also, orthogonal signal separation must occur among simultaneous sub-

aperture transmissions [1]. The main computational constraint to consider is the inverse 

FFT (IFFT) operation required for the SAR mission. A 2-D IFFT has to be computed for 

each range cell of the region of interest. This restraint limits both the size of the ROI thus 

also limiting the length of the mission for a simulation.  

For the scaled down SAR scenario described in Section 6.1, the minimum 

simulation time is 0.346 s and the minimum size ROI contains 10 x 15 = 150 range cells. 

For a population size of 100 members, each generation of SPEA2 runs for approximately 

10 minutes on a 3.2 GHz, 1 GB RAM PC. MTI missions require a relatively long 

simulation run in order to measure criteria such as revisit time, which also requires a 

larger ROI. To create a scaled physical scenario that can simulate a meaningful MTI 

mission with a revisit time measure, a simulation time of at least a few seconds must be 

used. This means that there are more pulse positions during the simulation, which 

increases the cross-range dimension of the VPH. Thus, a larger IFFT would have to be 

employed over more cells, because the ROI would increase as well. Since the scaled SAR 
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scenario with a simulation time of only 0.346 s takes approximately 10 minutes per 

generation to run, it was not possible to integrate a SAR and MTI mission on a single PC. 

Therefore, it was decided to create two scaled scenarios where each mission could be 

tested with multiple objectives separately. A procedure is outlined to combine the two 

scenarios to create a true simultaneous multi-mission simulation that can be performed on 

a multiple-node parallel processing computer in Section 7.2.  

6.1 Scaled Scenario 1: SAR Mission 
 

The first simulation scenario was generated to accomplish a SAR mission using 

peak sidelobe level and integrated sidelobe level as objectives. As noted in Section 5.3.1, 

PSL and ISL represent a measure of the quality of the SAR image. The scaled physical 

scenario is depicted in Figure 6-1.  

 
Figure 6-1: Scenario 1 - SAR mission (not drawn to scale) 
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While obviously not drawn to scale, Figure 6-1 provides an effective visual 

representation of the simulated scenario. A typical beamwidth of  was chosen first 

and then the length of the ROI (l) was considered. Flying for one SAR effective aperture 

length (Leff) is sufficient for a scaled scenario, so therefore the distance to the ROI (d) 

determines the length of the ROI by the following simple trigonometric equation: 

5oθ =

 
2 * tan

2
l d θ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (6-1)

As documented earlier, it was important to keep the size of the ROI minimal since an 

IFFT operation must be performed for every range cell. With that restriction in mind, a 

scaleable distance of 500 m was selected as d. This yielded an Leff of 45 m, so l was also 

made to be 45 m. A reasonable choice of 30 m for the down-range dimension of the 

rectangular ROI was then made.  

 The final physical parameters to determine were the dimensions of the range cells 

which are directly related to the resolution of the SAR system. A resolution of 3 m in 

each range dimension was deemed appropriate as it would produce an integer number of 

computationally manageable cells within the ROI. As noted in Equation 2-6, the cross-

range resolution is strictly a function of the actual radar aperture size. The aperture size 

was chosen to be 6 m to produce a 3 m cross-range resolution. Equation 2-7 gives the 

down-range resolution of the SAR imaging system as a function of the bandwidth of the 

system. A bandwidth of 50 MHz was chosen to produce a 3 m down-range resolution.  

 For this scenario, the aircraft was “flown” from 0 m to 45 m at a speed of 

130 m/s. This required a simulation run time of 0.346 s.  It was determined that for the 
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number of range cells in the ROI, a maximum IFFT size of 256 x 256 could be performed 

given the computational and time constraints. Therefore, a PRF of 369 Hz was chosen to 

produce 128 pulses over the entire simulation run time. This number is important because 

it is the horizontal dimension of the video phase history. It was chosen to be half the IFFT 

size in order to improve the resolution of the IFFT for as accurate PSL and ISL readings 

as possible. 

6.1.1 Full Bandwidth, Single Aperture Experiment 
 

The first experiment that was performed using this scenario allowed the azimuth 

pointing angle of a single radar aperture to be varied between -31 to 31 degrees in 2 

degree increments. This required the use of five bits per CPI for the binary encoding. 

Only one pulse per CPI was allowed. This resulted in waveform suites that were 128 x 5 

= 640 bits long. A visual representation of a waveform suite for this experiment can be 

seen in Figure 6-2.  

 
Figure 6-2: Example waveform suite for the full bandwidth, single aperture experiment 

As the radar traversed, the VPH for each range cell in the ROI was filled. If a cell 

was illuminated during a CPI, its VPH was filled with an entire column of 1’s for that 

pulse position since the entire bandwidth was being used. After the radar had flied its 
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course, the IFFT operation was performed on each range cell and a PSL and ISL value 

was determined for each cell. The objective functions shown in Figure 5-3 and Figure 5-4 

were then applied to each cell to determine a PSL and ISL fitness value. These fitness 

values were then averaged over the entire ROI to determine a single PSL and ISL fitness 

for a waveform suite, or individual.  

The full bandwidth, single aperture experiment was performed using different 

population and archive sizes in SPEA2. Four different simulations were run that 

alternated population sizes of 50 & 100 members and archive sizes of 10 & 20. A 

summary of the genetic and radar parameters used in the full bandwidth, single aperture 

experiment are presented in Table 6-1. 

Simulation Parameter Value
No. of sub-apertures 1
Physical apterture size 6 m
Effective aperture length 45 m
Center frequency 600 MHz
Bandwidth 50 MHz
PRF 369 Hz
No. of pulses 1
VPH dimensions 128 x 128
IFFT size 256 x 256
Cross range resolution 3 m
Down range resolution 3 m
Beamwidth 5˚
Airplane velocity 130 m/s
ROI cross range size 45 m
ROI down range size 30 m
Distance to ROI 500 m
Azimuth angle (varied) -31˚ to 31˚ in 2˚ steps
Objective functions PSL & ISL
Simulation time 0.346 s
Crossover probability 0.5
Mutation probability 0.05
SPEA2 archive size 10 or 20 members
SPEA2 population size 50 or 100 members
Generations 500  

Table 6-1: Summary of simulation parameters for the full bandwidth, single aperture experiment 

 50



 

6.1.1.1 Results 
 

The following figures display the results from simulations run with all four 

combinations of population and archive size. The fitness values of the initial and final 

population members are presented. In addition, the initial and final video phase history 

and point source response (PSR) for one range cell (the middle cell) are depicted. For the 

point source response, a center slice in the cross-range and down-range dimension was 

taken to produce a 2-D representation. A summary table of the PSL and ISL values for 

this middle cell as the population evolved for each simulation is given at the end of this 

section.  
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Figure 6-3: Initial population and final archive population for the full bandwidth, single aperture 

experiment. Population Size = 50, Archive Size = 10. 
Red = 1, Blue = 0
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Figure 6-4: Initial (left) and final (right) VPH for the middle cell of the ROI. Population Size = 50, 

Archive Size = 10. 
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Figure 6-5: Initial (left) and final (right) PSR for the middle cell of the ROI. Population Size = 50, 

Archive Size = 10. 
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Figure 6-6: Initial population and final archive population for the full bandwidth, single aperture 

experiment. Population Size = 50, Archive Size = 20. 
Red = 1, Blue = 0
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Figure 6-7: Initial (left) and final (right) VPH for the middle cell of the ROI. Population Size = 50, 

Archive Size = 20. 
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Figure 6-8: Initial (left) and final (right) PSR for the middle cell of the ROI. Population Size = 50, 

Archive Size = 20. 
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Figure 6-9: Initial population and final archive population for the full bandwidth, single aperture 

experiment. Population Size = 100, Archive Size = 10. 
Red = 1, Blue = 0
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Figure 6-10: Initial (left) and final (right) VPH for the middle cell of the ROI. Population Size = 100, 

Archive Size = 10. 
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Figure 6-11: Initial (left) and final (right) PSR for the middle cell of the ROI. Population Size = 100, 

Archive Size = 10. 
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Figure 6-12: Initial population and final archive population for the full bandwidth, single aperture 

experiment. Population Size = 100, Archive Size = 20. 
Red = 1, Blue = 0
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Figure 6-13: Initial (left) and final (right) VPH for the middle cell of the ROI. Population Size = 100, 

Archive Size = 20. 
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Figure 6-14: Initial (left) and final (right) PSR for the middle cell of the ROI. Population Size = 100, 

Archive Size = 20. 
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Generation PSL (dB) PSL Fitness ISL (dB) ISL Fitness Generation PSL (dB) PSL Fitness ISL (dB) ISL Fitness
0 (initial) -3.95 0.28 -31.79 0.47 0 (initial) -3.95 0.28 -31.79 0.47

50 -13.29 0.95 -39.81 0.79 50 -11.90 0.85 -39.88 0.79
100 -12.22 0.87 -39.80 0.79 100 -13.46 0.96 -40.54 0.82
200 -13.46 0.96 -40.43 0.82 200 -13.46 0.96 -40.54 0.82
300 -13.46 0.96 -40.43 0.82 300 -13.46 0.96 -40.82 0.83
400 -12.75 0.91 -39.68 0.79 400 -13.46 0.96 -41.22 0.85
500 -12.43 0.89 -40.03 0.80 500 -13.46 0.96 -41.22 0.85

Generation PSL (dB) PSL Fitness ISL (dB) ISL Fitness Generation PSL (dB) PSL Fitness ISL (dB) ISL Fitness
0 (initial) -3.95 0.28 -31.79 0.47 0 (initial) -3.95 0.28 -31.79 0.47

50 -11.83 0.84 -38.58 0.74 50 -12.03 0.86 -39.80 0.79
100 -11.62 0.83 -38.15 0.73 100 -12.80 0.91 -40.18 0.81
200 -13.37 0.95 -39.73 0.80 200 -13.22 0.94 -39.86 0.79
300 -13.46 0.96 -40.68 0.83 300 -13.46 0.96 -39.90 0.80
400 -13.46 0.96 -40.68 0.83 400 -13.46 0.96 -40.68 0.83
500 -13.46 0.96 -40.68 0.83 500 -13.46 0.96 -40.68 0.83

50 Pop. Members - 10 Arch. Size - Middle Cell of ROI

50 Pop. Members - 20 Arch. Size - Middle Cell of ROI

100 Pop. Members - 10 Arch. Size - Middle Cell of ROI

100 Pop. Members - 20 Arch. Size - Middle Cell of ROI

 
Table 6-2: Summary of the evolution of PSL and ISL values for each full bandwidth, single aperture 

simulation 

The 100 population, 10 archive size experiment was repeated using five different 

initial random seeds. This was done to verify the results that were obtained. The 

following fitness plot depicts the initial population and the final archive population for 

the five starting seeds, each represented by a different color. Figure 6-16 shows a closer 

view of the archive population of Figure 6-15. 
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Figure 6-15: Initial population and final archive population using five different random seeds for the 

full bandwidth, single aperture experiment. Population Size = 100, Archive Size = 10. 
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Figure 6-16: Archive population using five different random seeds for the full bandwidth, single 

aperture experiment. Population Size = 100, Archive Size = 10. 
 

6.1.1.2 Analysis 
 

In each simulation, there was a significant increase in both PSL and ISL fitness 

from the initial population to the final archive population. In the simulations where an 

archive size of 20 was used (Figure 6-6, Figure 6-12), it can be seen that the algorithm 

evolved to find one clearly superior, non-dominated archive member. However, the best 

results in terms of PSL and ISL fitness result from the simulation using 100 population 

members and 10 archive members shown in Figure 6-9. Two non-dominated archive 

members with high fitness values in each dimension are reported. Table 6-2 agrees with 

this assessment, as the PSL fitness and ISL fitness shown for the middle cell are the 

highest for the 100 population members and 10 archive members simulation. However, it 

is important to note here that the results reported in Table 6-2 are only for one cell out of 

the entire ROI. The fitness for this individual cell may actually decrease as the population 
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evolves, but the average fitness across the ROI would increase. This phenomenon occurs 

for several generations as reported in Table 6-2.  

In accordance with the increase in population fitness, the VPH and PSR depict a 

vast improvement from their initial states. In each simulation, the VPH becomes much 

more filled with energy as the population evolves. In correspondence to this, the 

normalized power in the cross-range dimension of the PSR drops significantly from its 

initial to final state. Note that the PSR in the down-range dimension represents a sinc 

function and does not change from its initial to final state because the system is 

employing its full bandwidth. When energy hits a range cell in this experiment, the entire 

down-range spectrum of the VPH is filled. Therefore, the PSR has structure in only the 

cross-range dimension for this experiment.  

Finally, an important result to note is the amount of VPH space that is empty for 

the evolved archive member (Figure 6-4, Figure 6-7, Figure 6-10, Figure 6-13). The final 

designed waveform suite produces good PSL and ISL measures and there are still some 

pulse positions that are empty in the VPH. This indicates that there are instances within 

the SAR mission where another mission, like MTI, could be accomplished.  

6.1.2 Split Bandwidth, Multiple Sub-Aperture Experiment 
 

For this experiment, rather than the entire bandwidth being used for the radar 

signal, it was split into four equal sub-bands. This required the use of four sub-apertures, 

each radiating at their own center frequency. An azimuth pointing angle had to be 

encoded for each sub-aperture, as it was allowed to be varied between -31 to 31 degrees 

in 2 degree increments. This required the use of 20 bits per CPI for the binary encoding. 

 58



 

Only one pulse per CPI was used. This resulted in waveform suites that were 128 x 5 x 4 

= 2560 bits long. A visual representation of a waveform suite for this experiment can be 

seen in Figure 6-17.  

 
Figure 6-17: Example waveform suite for the split bandwidth, multiple sub-aperture experiment 

As the radar traversed, the VPH for each range cell in the ROI was filled. If a cell 

was illuminated during a CPI by one of the four frequency bands, its VPH was filled with 

1’s for that frequency band and pulse position. After the radar had flied its course, the 

IFFT operation was performed on each range cell and a PSL and ISL value was 

determined for each cell. The objective functions shown in Figure 5-3 and Figure 5-4 

were then applied to each cell to determine a PSL and ISL fitness value. These fitness 

values were then averaged over the entire ROI to determine a single PSL and ISL fitness 

for a waveform suite, or individual.  

The split bandwidth, multiple sub-aperture experiment was performed using 

different population and archive sizes in SPEA2. Four different simulations were run that 

alternated population sizes of 50 & 100 members and archive sizes of 10 & 20. A 

summary of the genetic and radar parameters used in the split bandwidth, multiple sub-

aperture experiment are presented in Table 6-3. 
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Simulation Parameter Value
No. of sub-apertures 4
Physical apterture size 6 m
Effective aperture length 45 m
Center frequencies 581.25, 593.75, 606.25, 618.75 MHz
Bandwidth 50 MHz
PRF 369 Hz
No. of pulses 1
VPH dimensions 128 x 128
IFFT size 256 x 256
Cross range resolution 3 m
Down range resolution 3 m
Beamwidth 5˚
Airplane velocity 130 m/s
ROI cross range size 45 m
ROI down range size 30 m
Distance to ROI 500 m
Azimuth angle (varied) -31˚ to 31˚ in 2˚ steps
Objective functions PSL & ISL
Simulation time 0.346 s
Crossover probability 0.5
Mutation probability 0.05
SPEA2 archive size 10 or 20 members
SPEA2 population size 50 or 100 members
Generations 500  

Table 6-3: Summary of simulation parameters for the split bandwidth, multiple sub-aperture 
experiment 

6.1.2.1 Results 
 

The following figures display the results from simulations run with all four 

combinations of population and archive size. The fitness values of the initial and final 

population members are presented. In addition, the initial and final video phase history 

and point source response (PSR) for one range cell (the middle cell) are depicted. For the 

point source response, a center slice in the cross-range and down-range dimension was 

taken to produce a 2-D representation. A summary table of the PSL and ISL values for 

this middle cell as the population evolved for each simulation is given at the end of this 

section.  
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Figure 6-18: Initial population and final archive population for the split bandwidth, multiple sub-

aperture experiment. Population Size = 50, Archive Size = 10. 
Red = 1, Blue = 0
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Figure 6-19: Initial (left) and final (right) VPH for the middle cell of the ROI. Population Size = 50, 

Archive Size = 10. 

0 50 100 150 200 250
-40

-30

-20

-10

0

Cross Range Samples

N
or

m
al

iz
ed

 P
ow

er
 (d

B
)

0 50 100 150 200 250
-40

-30

-20

-10

0

Down Range Samples

N
or

m
al

iz
ed

 P
ow

er
 (d

B
)

0 50 100 150 200 250
-40

-30

-20

-10

0

Cross Range Samples

N
or

m
al

iz
ed

 P
ow

er
 (d

B
)

0 50 100 150 200 250
-40

-30

-20

-10

0

Down Range Samples

N
or

m
al

iz
ed

 P
ow

er
 (d

B
)

 
Figure 6-20: Initial (left) and final (right) PSR for the middle cell of the ROI. Population Size = 50, 

Archive Size = 10. 
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Figure 6-21: Initial population and final archive population for the split bandwidth, multiple sub-

aperture experiment. Population Size = 50, Archive Size = 20. 
Red = 1, Blue = 0
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Figure 6-22: Initial (left) and final (right) VPH for the middle cell of the ROI. Population Size = 50, 

Archive Size = 20. 
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Figure 6-23: Initial (left) and final (right) PSR for the middle cell of the ROI. Population Size = 50, 

Archive Size = 20. 
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Figure 6-24: Initial population and final archive population for the split bandwidth, multiple sub-

aperture experiment. Population Size = 100, Archive Size = 10. 
Red = 1, Blue = 0
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Figure 6-25: Initial (left) and final (right) VPH for the middle cell of the ROI. Population Size = 100, 

Archive Size = 10. 
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Figure 6-26: Initial (left) and final (right) PSR for the middle cell of the ROI. Population Size = 100, 

Archive Size = 10. 
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Figure 6-27: Initial population and final archive population for the split bandwidth, multiple sub-

aperture experiment. Population Size = 100, Archive Size = 20. 
Red = 1, Blue = 0
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Figure 6-28: Initial (left) and final (right) VPH for the middle cell of the ROI. Population Size = 100, 

Archive Size = 20. 
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Figure 6-29: Initial (left) and final (right) PSR for the middle cell of the ROI. Population Size = 100, 

Archive Size = 20. 
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Generation PSL (dB) PSL Fitness ISL (dB) ISL Fitness Generation PSL (dB) PSL Fitness ISL (dB) ISL Fitness
0 (initial) -7.48 0.53 -32.13 0.48 0 (initial) -7.48 0.53 -32.13 0.48

50 -14.43 1.00 -36.11 0.64 50 -14.37 1.00 -36.08 0.64
100 -14.62 1.00 -36.73 0.67 100 -14.13 1.00 -36.63 0.67
200 -13.77 0.98 -36.11 0.64 200 -14.36 1.00 -36.95 0.68
300 -13.77 0.98 -36.11 0.64 300 -14.72 1.00 -36.68 0.67
400 -13.77 0.98 -36.11 0.64 400 -15.49 1.00 -37.60 0.70
500 -13.77 0.98 -36.11 0.64 500 -14.64 1.00 -37.95 0.72

Generation PSL (dB) PSL Fitness ISL (dB) ISL Fitness Generation PSL (dB) PSL Fitness ISL (dB) ISL Fitness
0 (initial) -7.48 0.53 -32.13 0.48 0 (initial) -7.48 0.53 -32.13 0.48

50 -13.46 0.96 -35.95 0.64 50 -13.60 0.97 -36.33 0.65
100 -14.35 1.00 -36.02 0.64 100 -15.18 1.00 -36.48 0.66
200 -14.58 1.00 -36.67 0.67 200 -14.49 1.00 -36.96 0.68
300 -14.05 1.00 -36.39 0.66 300 -14.81 1.00 -36.85 0.67
400 -14.64 1.00 -36.46 0.66 400 -15.74 1.00 -37.59 0.70
500 -14.69 1.00 -36.84 0.67 500 -15.74 1.00 -37.59 0.70

50 Pop. Members - 10 Arch. Size - Middle Cell of ROI

50 Pop. Members - 20 Arch. Size - Middle Cell of ROI

100 Pop. Members - 10 Arch. Size - Middle Cell of ROI

100 Pop. Members - 20 Arch. Size - Middle Cell of ROI

 
Table 6-4: Summary of the evolution of PSL and ISL values for each split bandwidth, multiple sub-

aperture simulation 

The 100 population, 10 archive size experiment was repeated using five different 

initial random seeds. This was done to verify the results that were obtained. The 

following fitness plot depicts the initial population and the final archive population for 

the five starting seeds, each represented by a different color. Figure 6-31 shows a closer 

view of the archive population of Figure 6-30. 
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Figure 6-30: Initial population and final archive population using five different random seeds for the 

split bandwidth, multiple sub-aperture experiment. Population Size = 100, Archive Size = 10. 
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Figure 6-31: Archive population using five different random seeds for the split bandwidth, multiple 

sub-aperture experiment. Population Size = 100, Archive Size = 10. 
 

6.1.2.2 Analysis 
 

Like the previous experiment, the final archive population showed an 

improvement in fitness over the initial random population. However, compared to the 

previous experiment it was shown that the PSL fitness was higher and the ISL fitness was 

lower for this experiment on average. By splitting the VPH into four regions in the down-

range dimension, some structure was introduced in that dimension of the PSR. This is a 

direct cause for the decreased ISL fitness. The increase in PSL fitness could have been an 

effect of this spreading of the PSR energy as well. The peak level of the normalized 

power may decrease but the integrated power increases as it spreads out over the 2-D 

region. Also like the previous experiment, the best results in terms of PSL and ISL fitness 

seemed to be a product of the simulation that used 100 population members and 10 

archive members. This is not surprising as more population members allows SPEA2 to 

have more genetic data to choose from, and a smaller archive ensures that only the best 
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solutions reproduce. Also as in the previous experiment, there are empty regions within 

the VPH of the best evolved archive member. There are pulse positions and frequency 

spectrum that is available to accomplish other missions.   

6.2 Scaled Scenario 2: MTI Mission 
 

The second scaled simulation scenario was generated to accomplish an MTI 

mission using number of integrated pulses and revisit time as objectives. Section 5.3.2 

and 5.3.3 discuss the importance of these objectives in relation to an MTI mission. The 

scaled physical scenario is depicted in Figure 6-32.  

 
Figure 6-32: Scenario 2 - MTI mission (not drawn to scale) 

While obviously not drawn to scale, Figure 6-32 provides an effective visual 

representation of the simulated scenario. As many of the scenario parameters as possible 

were kept the same as SAR mission scenario for consistency. In order to make it possible 
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to achieve a revisit time specification, the scenario had to be set up to run for a longer 

mission time. Three seconds of simulation time with a revisit time goal of 0.75 s was 

selected for this scenario. Attempting four revisits of each cell was sufficient to determine 

the effectiveness of a scaled mission. A longer simulation time increased the cross-range 

dimension of the VPH by introducing many more pulse positions. At a medium PRF of 

333 Hz, 1000 pulses are generated in 3 s. Thus, an IFFT size of at least 256 x 1000 would 

be required to achieve a resolution accurate enough to even coarsely determine a PSL and 

ISL value. As discussed at the beginning of this chapter, performing large IFFT 

operations on many range cells is not possible given the computational constraints of a 

single PC. With an IFFT operation no longer considered and since revisit time and 

number of integrated pulses is easy to calculate for a large number of cells, it was 

possible to increase the size of the ROI to conform to the increase in mission time. The 

dimensions and placement of the ROI as well as the varying azimuth pointing angle 

guarantee that it was physically possible to illuminate each cell at all times during the 

mission.    

6.2.1 Revisit Time & Integrated Pulses Experiment 
 

The experiment performed with the MTI scaled scenario used a single aperture with 

a center frequency of 600 MHz. The azimuth pointing angle was allowed to be varied 

between -60 to 60 degrees in 3.75 degree increments, requiring five bits of encoding per 

CPI. At each CPI, the radar was permitted to emit 1, 8, 16 or 32 pulses. Each pulse that 

was emitted during a CPI had the same azimuth pointing angle. Two bits were used to 

encode the number of pulses. Depending on the choice for the number of pulses per CPI, 
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the waveform suite varies in length. A visual representation of a waveform suite for this 

experiment can be seen in Figure 6-33.  

 
Figure 6-33: Example waveform suite for the revisit time & integrated pulses experiment  

As the radar illuminated a range cell, a timestamp and the number of pulses placed 

on the cell was recorded. The difference in timestamps was then calculated to determine 

revisit times for each cell. The objective functions shown in Figure 5-5 and Figure 5-6 

were then applied to each cell to determine a pulse fitness and revisit time fitness value 

for each instance of a revisit time and each number of pulses that were placed on that cell. 

These fitness values were then averaged first within their cell and then over the entire 

ROI to determine a single number of pulse fitness for a waveform suite, or individual. An 

example of this process for one single range cell is shown in Table 6-5. 

Revisit Times (s) Revisit Time Fitness Values Avg. Cell Revisit Time Fitness
0.50, 0.65, 1.10 0.67, 0.87, 0.53 0.69

Number of Pulses Pulse Fitness Values Avg. Cell Pulse Fitness
8, 32, 16 0.25, 1.00, 0.50 0.58  

Table 6-5: Single range cell fitness evaluation for revisit time & integrated pulses experiment 

The revisit time & integrated pulses experiment was performed using different 

population and archive sizes in SPEA2. Four different simulations were run that 

alternated population sizes of 50 & 100 members and archive sizes of 10 & 20. Also, to 
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demonstrate the increased effectiveness of using a larger population size, a simulation 

was also run with 200 population members and an archive size of 25 members. This 

simulation was run over several days and reiterates the need for a multiple PC cluster to 

run large populations and more complicated scenarios. A summary of the genetic and 

radar parameters used in this experiment are presented in Table 6-6. 

Simulation Parameter Value
No. of sub-apertures 1
Physical apterture size 6 m
Flight distance 1050 m
Center frequency 600 MHz
Bandwidth 50 MHz
PRF 333 Hz
No. of pulses (varied) 1, 8, 16, 32
Cross range cell size 3 m
Down range cell size 3 m
Beamwidth 5˚
Airplane velocity 130 m/s
ROI cross range size 1000 m
ROI down range size 30 m
Distance to ROI 500 m
Azimuth angle (varied) -60˚ to 60˚ in 3.75˚ steps
Objective functions Revisit time & No. of pulses
Simulation time 3 s
Crossover probability 0.5
Mutation probability 0.05
SPEA2 archive size 10 or 20 members
SPEA2 population size 50 or 100 members
Generations 500  

Table 6-6: Summary of simulation parameters for the revisit time & integrated pulses experiment 

6.2.1.1 Results 
 

The following figures display the results from simulations run with all 

combinations of population and archive size. The fitness values of the initial and final 

population members are presented.  
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Figure 6-34: Initial population and final archive population for the revisit time & integrated pulses 

experiment. Population Size = 50, Archive Size = 10. 
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Figure 6-35: Initial population and final archive population for the revisit time & integrated pulses 

experiment. Population Size = 50, Archive Size = 20. 
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Figure 6-36: Initial population and final archive population for the revisit time & integrated pulses 

experiment. Population Size = 100, Archive Size = 10. 
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Figure 6-37: Initial population and final archive population for the revisit time & integrated pulses 

experiment. Population Size = 100, Archive Size = 20. 
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Figure 6-38: Initial population and final archive population for the revisit time & integrated pulses 

experiment. Population Size = 200, Archive Size = 25. 

The 100 population, 10 archive size experiment was repeated using five different 

initial random seeds. This was done to verify the results that were obtained. The 

following fitness plot depicts the initial population and the final archive population for 

the five starting seeds, each represented by a different color.  
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Figure 6-39: Initial population and final archive population using five different random seeds for the 

revisit time & integrated pulses experiment. Population Size = 100, Archive Size = 10. 

6.2.1.2  Analysis 
 

Each simulation run generated a well-spread Pareto front for the revisit time & 

integrated pulses experiment. Unlike PSL and ISL which are related, revisit time and 

number of integrated pulses are conflicting objectives. The integrated pulses objective is 

attempting to look at each cell as much as possible and place as many pulses on the cell 

as it can. The revisit time objective tries to establish an order in which the cells are to be 

illuminated by the radar. When multiple pulses are used, they each have the same 

azimuth pointing angle. Keeping this angle constant for many pulses fundamentally 

opposes the revisit time objective. Therefore, the results show a diversified Pareto front 

in which there are some solutions with high pulse fitness and low revisit time fitness and 

vice-versa.  
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Obviously, the goal of these experiments is to increase each fitness value to one 

and move the Pareto front toward the upper right of the fitness plot. The results presented 

here indicate that the front is indeed moving in this direction. As shown by Figure 6-38, a 

larger population size yields better results over the same number of generations. The best 

solution in this simulation that was run with 200 population members has a revisit time 

fitness of approximately 0.55 and a pulse fitness of about 0.7 whereas the simulations run 

with smaller population sizes achieve a best solution of approximately 0.5 revisit time 

fitness and 0.65 pulse fitness. This may not seem like a substantial difference, but if the 

algorithm was allowed to run with thousands of population members thousands of 

generations, SPEA2 would have more of a chance to search the solution space and 

produce highly fit solutions.  
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7 Conclusion and Future Work 
 

7.1 Conclusion 
 

Chapter 6 presented results that demonstrate the effectiveness of SPEA2 for 

designing waveforms to accomplish missions with multiple objectives. Each simulation 

for every scaled experiment showed an increase in fitness for all objectives from the 

initial population to the final archive population. Regardless of what the actual fitness 

values were, each experiment produced a significant shift toward Pareto optimal solutions 

with higher fitness values, corresponding to increased mission effectiveness. It was 

demonstrated that SPEA2 can find Pareto solutions for related objectives as well as 

conflicting ones. It was also shown through the empty space in the final video phase 

histories (Figure 6-10, Figure 6-25) that there is available space within the waveform 

suite for a SAR mission to accomplish other missions, such as MTI. The results presented 

here for individual multi-objective scaled missions provide optimism for accomplishing a 

true multi-mission scenario experiment given more computational resources. This 

evolutionary technique is especially encouraging because it has shown the ability design 

waveforms that can effectively accomplish multiple user defined radar mission 

objectives.  

7.2 Future Work 
 

Waveform design is a task that can be done a-priori. In the case of this work, the 

goal was to apply a genetic algorithm to design a radar waveform that can accomplish 
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multiple missions that have multiple objectives. Since the design is a-priori, the amount 

of time that the genetic algorithm requires to find a solution, within reason, is 

inconsequential. Therefore, even if the algorithm required days, weeks, or months to run 

a sophisticated multi-mission scenario, the resulting waveform can be used in real-world 

applications.  

With this in mind, the next step in this work is to integrate the SAR mission 

scenario with the MTI mission scenario and use all four objectives for a single design. As 

noted earlier, this integration can not be accomplished using a single PC due to the 

number and large size of the required 2-D IFFT operation for the SAR PSL and ISL 

objective functions. However, implementing this integrated scenario using a parallel 

processing system with multiple nodes can be accomplished and is the next major task. 

Essentially, the MTI scenario described in Section 6.2 can be used for the experiment by 

calculating a VPH for each cell as done in the SAR experiments and adding the PSL and 

ISL fitness values into the revisit time and number of pulses fitness vector. SPEA2 would 

then operate upon a 4 x 1 fitness vector rather than a 2 x 1 fitness vector as done in each 

of the experiments performed for this thesis.  

Another improvement to the work done here that can be performed using a multi-

node cluster is to increase the number of SPEA2 population members and number of 

generations. As discussed at the end of Chapter 6, increasing these genetic parameters 

increases the size and, inherently the variety, of the possible solution space. A five 

percent increase in fitness values was demonstrated for the MTI mission when the 

population size was increase from 100 members to 200 members. Population sizes of 
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around 100 members are considered small for a genetic algorithm. Typically, populations 

consisting of thousands of members and running for thousands of generations are 

implemented. This capacity would be possible with the use of a multi-node cluster and 

should be integrated into the future experiments.  

Finally, other genetic operators such as alternate forms of selection, crossover and 

mutation could be implemented to possibly produce different Pareto solutions. Different 

genetic operators would most likely create minor differences in relation to the current 

results and were not explored in this thesis because the focus was to prove that SPEA2 

could be applied to multi-objective radar waveform design. This goal has been 

accomplished and an experiment has been outlined to apply SPEA2 to a true multi-

mission, multi-objective radar scenario using a parallel processing computer cluster.  
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