
1
______________________________________________________________________________________

António Gaspar Lopes da Cunha

Modelli ng and Optimisation of

Single Screw Extrusion

Tese submetida à Universidade do Minho para a

obtenção do grau de Doutor em Ciência e

Engenharia de Polímeros

Universidade do Minho

1999



2
______________________________________________________________________________________

SUMÁRIO

A produção de produtos em plástico por extrusão ou injecção é precedida pela plasticização

dos polímeros em unidades monofuso. Os mecanismos envolvidos neste processo são

complexos e dependem do material, da geometria e das condições de operação utili zados.

Usualmente, a definição das condições de operação ou da geometria do parafuso é baseada

num processo de tentativa e erro. Um método mais eficiente seria a determinação das

condições de operação ou da geometria do parafuso de forma a obter-se o desempenho

desejado, ou seja, resolver o problema inverso. Isto não é uma tarefa fácil, dado que a

formulação inversa da plasticização não pode ser obtida explicitamente. Além disso, a solução

pode não ser única, dado que diferentes combinações da geometria do parafuso e/ou das

condições de operação podem produzir o mesmo desempenho. Uma estratégia alternativa é

desenvolver um algoritmo de optimização onde, as equações disponíveis para resolver o

problema directo são usadas iteractivamente até que a solução convirja para um óptimo.

Neste trabalho implementa-se este esquema automático de optimização. Para isso

seleccionaram-se os Algoritmos Genéticos como algoritmo de optimização, devido à sua

capacidade para lidar com problemas combinatórios e ao facto de não necessitarem do cálculo

de derivadas nem de outro tipo de informação adicional. O desempenho de um esquema de

optimização deste tipo depende, primariamente, da validade das predições, e também, da

sensibil idade da rotina de modelação a variações nos dados de entrada. Desta forma, foi

implementada e validada uma rotina de modelação capaz de ter estes aspectos em

consideração e, simultaneamente, produzir resultados em pouco tempo de computação.

A ligação do algoritmo de optimização com a rotina de modelação é feita através de uma

função objectivo que quantifica os critérios relevantes bem como a sua relativa importância

para o processo. Tendo em conta a complexidade do espaço de procura e a existência de

conflitos entre os critérios foi desenvolvido um novo algoritmo de optimização multiobjectivo

usando Algorithmos Genéticos – Reduced Pareto Set Genetic Algorithm (RPSGA). Este

método incorpora uma técnica de redução do conjunto de Pareto. O algoritmo foi validado

usando problemas de teste (benchmark problems) conhecidos. Ao mesmo tempo, a

metodologia foi usada para a resolução de um problema real de extrusão e o seu desempenho

foi comparado com o de outro algoritmo Nondominated Sorting Genetic Algorithm (NSGA).

Os resultados obtidos parecem indicar que este algoritmo pode ser muito útil , especialmente
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quando são necessárias populações de grandes dimensões. Verificou-se, também, que a

metodologia é capaz de produzir resultados com significado físico.

A metodologia de optimização aqui desenvolvida foi aplicada na optimização das condições

operatórias e no desenho de parafusos para casos de estudo específicos. Com o objectivo de

validar a metodologia de optimização computacional comparam-se os resultados de uma

análise factorial completa, usando experiências de extrusão, com os resultados obtidos quer

por uma rotina analítica (previamente implementada) quer pela rotina numérica implementada

neste trabalho. É possível verificar que o modelo numérico produz melhores resultados. No

caso do desenho de parafusos, verifica-se que os resultados obtidos são sensíveis à

importância relativa dos diferentes critérios e a mudanças nas condições operatórias e nas

propriedades dos polímeros.
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SUMMARY

Upon manufacturing plastics parts by extrusion or injection, polymers are plasticised in single

screw units The mechanisms involved in this process are complex and material, geometry and

operation dependent. Usually, the setting of the extruder operating conditions or the

establishment of the adequate screw geometry is based on trial-and-error. A more efficient

method consists in determining the operating conditions or screw geometry that produce the

desired performance, i.e. to solve the inverse problem. This is not an easy task, since the

inverse formulation of plasticating extrusion cannot be explicitly obtained. Also, the solution

is probably not unique, since different combinations of screw geometry and/or operating

conditions might produce the same performance. An alternative strategy is to develop an

optimisation algorithm, where the equations available to solve the direct problem are used

iteratively, until the solution converges to an optimum.

In this work such an automatic optimisation scheme is implemented. Genetic Algorithms

(GAs) are chosen as the optimisation algorithm, given their capacity for dealing with

combinatorial-type problems and the fact that they do not require neither derivative

information nor other additional knowledge. The performance of such an optimisation scheme

depends, mainly, on the validity of the predictions and also, on the sensitivity of the

modell ing package to changes in the input variables. Therefore, a numerical modell ing

package able to take these aspects into consideration and, simultaneously, produce results

with lower computation time, is also implemented and validated.

The linkage between the optimisation algorithm and the modelling package is made through

an objective function that quantifies the relevant criteria and their relative importance to the

process. Given the complexity of the search space and the existence of some conflicting

criteria a new multiobjective optimisation method using GAs – Reduced Pareto Set Genetic

Algorithm (RPSGA) – was developed. This method incorporates a technique for reducing the

Pareto set. Well known benchmark problems were used to validate the algorithm. Also, a

“real world” extrusion problem is solved. Comparisons are made with Nondominated Sorting

Genetic Algorithm (NSGA). The results obtained seem to indicate that this approach can be

very useful, especially where there is the need to use large populations. This optimisation

methodology is able to produce results with physical meaning.
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The methodology developed in this work is applied to the optimisation of the operating

conditions and screw design for specific case studies. A full factorial analysis, using extrusion

experiments, was carried out in order to assess the computational results, obtained by both

analytical (implemented previously) and numerical modelling packages. The results allow one

to conclude that the approaches where the numerical model is used yield better results. The

results obtained for screw design show that the optimisation algorithm is sensitive to the

importance of the different criteria, to changes in the operating conditions and to changes in

the polymer properties.
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NOMENCLATURE

Greek characters

α inclination angle of the screw channel
α constant (equation 2.11, genetic algorithms)

αs thermal diffusivity of the solid plug
δ(H) length of scheme H
δC thickness of the melt film C (delay and melting zones)
δDE thickness of the melt film D/E (delay zone II and melting zone)
δ

f
flight clearance

φ solids conveying angle
γ shear strain
γ weighted average total strain (WATS)
γ� shear rate

γ� mean shear rate

η melt viscosity
ηi,j viscosity on the point of coordinates i,j of the finite differences grid
λ heat of fusion of the polymer
θ average helix angle

θ helix angle
θb helix angle at the barrel surface
θs helix angle at the root of screw
ρm melt density
ρs solid bed density

σshare radius of a circumference that is the maximum distance between
chromosomes

τ shear stress
τyx|C shear stress acting on the interface A-C in the direction x
τyx|DE shear stress acting on the interface A-DE in the direction x
τyz shear stress acting in the direction z

Roman characters

A slope of the taper
A

1
, A

2
constants of the pressure profile equation for solids conveying zone

A´
1

constant of the pressure profile equation for delay zone I

a constant of the power law viscosity equation
ai j regression constants (equation 2.6)
B

1
, B

2
constants of the pressure profile equation for solids conveying zone

B´
1

constant of the pressure profile equation for delay zone I
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b distance of the temperature controller to the interface
bN groove width

c constant
cp specific heat of the melt
D

b internal barrel diameter
D

i internal screw diameter
D

s external screw diameter

D average screw diameter
d is the distance in the y direction such that )dy(T)dy(T ss === 21

Dpointer distance between pointers (equation 2.10)
dij distance between individuals i and j

e flight width
e

m total mechanical power consumption for melting zone
e

mbp mechanical power required to build up pressure (melting zone)
e

mcl mechanical power dissipated on the clearance (melting zone)
e

mfC mechanical power dissipated on the melt film C (melting zone)
e

mfDE mechanical power dissipated on the melt film DE (melting zone)
e

mp mechanical power dissipated on the melt pool (melting zone)
e

p total mechanical power consumption for melt conveying zone
e

pcl mechanical power dissipated on the clearance (melt conveying zone)
e

pp mechanical power required to build up pressure (melt conveying zone)
e

psc mechanical power dissipated on the screw channel (melt conveying zone)
e

w total mechanical power consumption for solids conveying zone
é

w mechanical power consumption (delay zone I)
e

wb mechanical power dissipated on the barrel surface (solids zone)
′
wbe mechanical power dissipated on the barrel surface (delay zone I)

e
wf  mechanical power dissipated on the flights

e
wp mechanical power consumption for compression

e
ws mechanical power dissipated on the screw root

F performance measure
∇F gradient of F

F1 friction force between the barrel and the solid bed
F2, F6 forces due to the pressure gradient
F3, F4 friction forces due to the contact of solid bed with screw walls

F5 friction force due to the contact of solid bed with screw root
F8, F8 normal reactions
FOI objective function of individual I

f mean value of the objective function of all population

f objective function
fb polymer friction coeff icients at barrel surfaces
 fs polymer friction coeff icient at screw surface
f(H) mean value of the objective function of all i ndividuals of generation t
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f(t)dt residence time distribution function (RTD)
G function

gj j inequality constraints
H scheme (genetic algorithms)
H channel height
H1 channel height in the feed zone
H2 channel height in the metering zone
Hs height of the solid bed
hk k equality constraints
hN groove height
hN0 maximum groove height
K constant of the pressure profile equation for solids conveying zone
k0 constant of the power law viscosity equation
kb thermal conductivity of the barrel (metal)
km thermal conductivity of the melt
kp thermal conductivity of the screw (metal).
ks thermal conductivity of the solid polymer
l number of alleles or genes
limit indifference limit above which the performance of the solutions is considered

as similar

zAm |� down-channel mass flow rate in the solid bed, at localisation z

zz|Am ∆+� down-channel mass flow rate in the solid bed, at localisation z+∆z

z|Bym� rate of melt circulation thorough the pool in x-y plane

z|Cm� down-channel mass flow rate, for zone C at localisation z

z|Cxm� net flow rate out of the film, to melt pool, in the x direction

zz|Cm ∆+� down-channel mass flow rate of the melt film C, at localisation z+∆z

z|DEm� down-channel mass flow rate of the melt film DE, at localisation z

z|DExm� net flow rate out of the film D/E, to melt film C, in the x direction

zzDEm ∆+|� down-channel mass flow rate of the melt film DE, at localisation z+∆z

m(H,t) number of copies of the scheme H on generation t
m´I niche count of individual i

Tm� total down-channel mass flow rate

N number of individuals on the population (genetic algorithms)
N screw speed
N1,N2 range of variation of screw speed
N_ranks pre-defined number of ranks

Nmax maximum number of possible values for screw speed
NS number of individuals to be selected

n constant of the power law viscosity equation
o(H) scheme order
P pressure
Pi,j pressure on the point of coordinates i,j of the finite differences grid
P

1, P2
pressures at the at down-channel distance z1 and z2, respectively

p number of screw flights in parallel
pc crossover rate
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pm mutation rate
q number of peaks
Q global quality function (equation 2.28)

Q volumetric output
Q* volumetric flow rate associated with the neighbourhoods of plane y
Q*

c volumetric flow rate associated with the neighbourhoods of plane yc

qb heat flux on the barrel
qf heat flux on the flights
qs heat flux on the root of the screw

CR melting rate over interface A-C

DR melting rate over interface A-D

ER melting rate over interface A-E

r sphere radius that contains the total space (equation 2.17)
S screw pitch

Sh() sharing function
SP selection pressure

T temperature
T0 constant of the power law viscosity equation
T(y) cross temperature profile (direction y)
Tb barrel temperature
Tb1,Tb2 range of variation of barrel temperature
Tbmax maximum number of possible values for barrel temperature
Ti,j temperature on the point of coordinates i,j of the finite differences grid
Tm melting temperature
Ts temperature at screw surface
Ts0 temperature of the polymer at extruder entrance
Ts1 temperature profile for region 1
Ts2 temperature profile for region 2
t generation number (genetic algorithms)

t polymer residence time inside the extruder
t(y) residence time associated with each path-pair (y-yc)
tf time fraction that a fluid element spends on the upper portion of the channel

tdom size of the comparison set
tmax maximum number of generations

V volume that contains the total space (equation 2.18)
Vb barrel velocity
Vbx barrel velocity in transversal direction
Vbz barrel velocity in down-channel direction
VL melt velocity in the direction of screw axis
Vsy velocity of the solid towards solid-melt film interface (delay zone I)
Vsy1 velocity of the solid towards the solid-melt film C interface
Vsy2 velocity of the solid towards the solid-melt film E interface
Vsz solid bed velocity
Vx velocity profile in x-direction
Vz velocity profile in z-direction

zV average of the Vz velocity in x direction

W channel width
Wb channel width at the barrel surface
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Ws channel width at the root of screw
WB melt pool width
W average channel width

wj weight attributed to criterion j
X coordinate x of finite differences grid points
x Cartesian coordinate
∆x differential element in the x direction
Y coordinate y of finite differences grid points
y Cartesian coordinate
yc lower position a polymer particle on the channel (direction y)
∆y differential element in the y direction
z1, z2 down-channel distances
zm helical distance from the hopper to the location where the lower and lateral

melt films form
∆z differential element in the z direction
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1- INTRODUCTION

Single screw extrusion is one of most important polymer processing techniques and is also the

basis of a number of other important processing technologies. This explains the amount of

both experimental [MAD 59, STR 61] and theoretical work [TAD 70]. The pioneering work

of Maddock and Street [MAD 59, STR 61], on the understanding of the physical mechanisms

taking place inside the extruder, induced a number of new developments, such as barrier

screws, mixing sections, grooved barrels, etc. Moreover, the mathematical modell ing of the

phenomena developing inside the extruder [AGA 96, O´BR 92], enabled the use of software

to study the performance of existing systems and, eventually, to define the processing

conditions (and/or the equipment characteristics) for new materials/applications, with a

minimum of experimental effort.

The available software is able to predict some important process performance parameters,

such as mass throughput, power consumption, melt temperature and melt temperature

homogeneity, degree of mixing, length of screw required for melting and pressure generation,

for a given set of screw geometry, material properties and operating conditions. Nevertheless,

the definition of the operating conditions or the design of a new screw is a trial and error

process, where the operating conditions or the screw geometry are changed until they meet the

desirable performance measures. Presently, the challenge is to solve this optimisation problem

automatically, i.e., to obtain the optimal operating conditions or screw geometry for a given

polymer and screw geometry or processing conditions, respectively. This is not an easy task,

since the inverse formulation of plasticating extrusion cannot be explicitly obtained. Also, the

solution is probably not unique, since different combinations of screw geometry and/or

operating conditions might produce the same performance [COV 95]. Therefore, the

development of an optimisation algorithm, where the equations available to solve the direct

problem are used iteratively, until the convergence of the solution to an optimum, is necessary

[COV 99].

This work discusses the implementation of such automatic optimisation scheme for

plasticating single screw extrusion. Genetic algorithms were selected for this purpose, given

their capacity for dealing with combinatorial-type problems and the fact that they do not

require derivative information neither another additional knowledge [GOL 89a].

The results produced by any optimisation algorithm depend, principally, of the modelling

package, i.e., of their sensitivity to changes in the input variables and their correspondence
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with the real problem under study. Given their complexity and the number of variables

involved, this is a challenging problem. This probably also explains the scarcity of literature

on the subject [POT 94, FAS 94].

In chapter 2 the optimisation algorithm (Genetic Algorithms) used in this work is described

and compared with other techniques. Simultaneously, the methods used to quantify the system

performance, a conventional objective function and a new multiobjective optimisation

scheme, are presented.

Since it is important that process modelling produces adequate results, a compromise between

complexity and computing time vs. relaxation of simplifications frequently assumed, must be

discussed. Chapter 3 presents the global modell ing package implemented. The functional

zones in the screw are considered sequentially, and the results, such as cross temperature

profiles, pressure, output, residence time distribution, power consumption and solid bed

profile, are computed.

Extrusion experiments were carried out, using a full factorial analysis, in order to verify the

validity of the computational results. The results, either using an analytical or numerical

model, are compared with experimental data in chapter 5. In the same chapter, the

optimisation methodology developed in this work is applied in the optimisation of the

operating conditions and to the design of a screw for specific case studies.
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2- EXTRUSION OPTIMISATION

2.1- Introduction

A plasticating extruder receives the polymer from the hopper, melts and homogenises it and

pumps it to the die. The physical phenomena developed inside the machine are complex, and

were only fully understood after intense experimental and theoretical work [TAD 70, RAU

86, AME 89, AGA 96]. They correspond to a set of sequential functional zones that are

usually identified as (Figure 2.1):

i)

iv) v)iii)ii) vi)

Transversal
cuts

Figure 2.1- Physical phenomena inside the extruder.

i) Solids conveying in the hopper  - gravity conveying of granular materials;

ii) Solids conveying in the screw - friction drag solids conveying;

iii ) Delay zone - conveying of solids (partially) surrounded by a melt film;

iv) Melting zone - with a specific melting mechanism;

v) Melt conveying;

vi) Melt flow through the die.

For modelling purposes these functional zones are sequentially connected using the

appropriate boundary conditions, i.e., the results obtained within one zone are the input

conditions for the subsequent one. The system geometry, the polymer properties and the

operating conditions are taken into account, in order to obtain some performance measure of

the process, such as output, melt temperature, power consumption or degree of mixing.

However, in the most situations, it is necessary to define the operating conditions and/or the

system geometry in order to obtain the best system performance. This corresponds to the

inverse formulation of the problem that can be understood as an optimisation problem.
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At present, the most common method used for optimisation and design of the extrusion

process is that of trial-and-error. The operating conditions (screw speed and barrel

temperatures) are varied and the corresponding performance is analysed until they meet the

necessary specifications. This process can be carried out either using software or by

experimentation.

In this approach optimisation corresponds to the resolution of the inverse problem (by

opposition to the direct problem, where for a specific geometry, operating conditions and

material properties, equations are solved in order to the process performance parameters), i.e.,

obtaining the operating conditions or the screw geometry that satisfy the performance

parameters, such as output maximisation, melt temperature minimisation, degree of mixing

maximisation, etc.

The most eff icient and intuitive way of solving extrusion optimisation problems is through

their inverse formulation, where the equations that govern the process are solved in order to

the operating conditions or to the screw geometry and taking into account the boundary

conditions. This is not an easy task, especially for such a complex process as plasticating

extrusion where the inverse formulation cannot be explicitly obtained. Also, the problem is il l

posed, i.e., the solution is not unique, since different operating conditions or screw geometry

can produce identical performance measures [COV 95].

Therefore, the use of an optimisation methodology coupled to the available software to solve

the direct problem through an objective function that quantifies the performance is necessary.

Figure 2.2 illustrates such a methodology. The optimisation algorithm uses the modelling

package, iteratively, to obtain information about the process through this objective function.

For that, the modelling package receives, from the optimisation algorithm, the values of the

variables to optimise and evaluates the corresponding system performance, using the

database. A measure of the system performance is passed to the optimisation algorithm

through an objective function that takes into account the several performance parameters and

their relative importance.

There are several optimisation algorithms able to satisfy these requirements and several ways

to quantify the process performance. This chapter discusses the implementation of the above

methodology to polymer extrusion process.
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Optimisation Algorithm

Database

Modelling

Package

Objective

Function

USER

Figure 2.2- Optimisation methodology.

2.2- Optimisation techniques

The role of optimisation is to find the best set of parameters that optimise an objective

function, particularly by improving the performance in the direction of some optimal point or

points [GOL 89a]. In general, the aim is approach to the global optimum, on a given search

space, by maximising or minimising the objective function, which can be subjected to

equality or/and inequality constraints. In the case of a maximisation problem, the

mathematical formulation is the following:

Kkxh

Jjxg

Nixf

ik

ij

i

,,10)(

,,10)(tosubject

,,1)(maximise

�
�
�

==

=≥
=

(2.1)

where f is the objective function of the N parameters xi, gj are the J
(J≥0) inequality constraints, and hk are the K (K≥0) equali ty

constraints.
Real world optimisation problems (like polymer processing) might involve linear or non-

linear objective functions, linear or non-linear constraints, integer and/or continuous variables,

stochastic or deterministic inputs, and single or multiple criteria. Therefore, some algorithms

may be better adapted to the characteristics of specific problems, while others can work

satisfactory across a large spectrum of problems [GOL 89a].
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The aim of this section is to point out the characteristics of some
general purpose optimisation techniques, in order to select the more

adequate for the problem under study.

Random search
This technique consists simply in selecting randomly points from the search space and

evaluating them. This technique has the limitation of working with one point each time, which

does not provide an ampli fying overview of the search space; moreover, search is very slow

since the technique does not use any available information on the problem. Random search is

seldom used  [BEA 93a].

Gradient Methods
These methods use information about the objective function gradient in order to establish the

search direction. For instance if the objective is to optimise the function y = f(x1,x2), from a

given starting point P(x1
(0),x2

(0)) the gradient vector used is:









∂
∂

∂
∂=

21

,
x

f

x

f
fgrad

(2.2)

It can be proved that this vector has the direction of the largest increase of f [TOL 75]. These

methods perform well with unimodal functions, but they have the tendency to converge to the

first peak found with multimodal functions (Figure 2.3). Also, when the derivative (or an

approximation to the derivative) cannot be determined these methods cannot be used. The

search is local, since the search stops when one optimum is found [BEA 93a]. Gradient

methods can be combined with random search in order to overcome this problem. After

locating one peak using the gradient method, a new starting point is randomly chosen in order

to find a new peak. The process is repeated until a number of prescribed peaks are detected.

However, each of hill climbings is carried out in isolation, i.e., the method evaluates the same

number of points on the various regions of the search space regardless of their objective

function values [BEA 93a].
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P

Starting
point

Peak
found

Hill climb

f(x)

x

Figure 2.3- The search by gradient methods.

Simulated Annealing
Simulated annealing makes a parallelism with the way liquids freeze or metals recrystalli se

during the annealing process. When a melt, initially at high temperature and disordered, is

slowly cooled down, the system at any time is approximately under thermodynamic

equilibrium. The system becomes progressively ordered and approaches a frozen ground state.

When the initial temperature is too low, or the cooling is insuff iciently slow, the system may

become quenched, i.e., trapped in a local minimum energy state [RUT 89].

By analogy, simulated annealing optimisation starts from one point randomly selected from

the search space (an initial thermodynamic state with a given energy - E - and temperature -

T), and makes a random movement (keeping the temperature constant, the initial

configuration is perturbed and this energy change – ∆E – is computed). This movement will

be accepted if improvement is obtained (i.e. if the change in energy is negative), and accepted

with a determined probabil ity in the opposite case (positive change in energy). As the search

proceeds, this probabil ity decreases from a value close to 1 to near zero (in the physical

analogy the probabil ity is given by the Boltzman distribution – exp[∆E/T]). For the current

temperature, the process is repeated a number of times sufficient to produce a good sampling

of the search space. Then, the temperature is decreased and the entire process repeated until a

frozen state is attained (T=0). The application of this algorithm requires the choice of the

initial temperature, the number of iterations to be performed at each temperature, and how

much the temperature is decremented at each step [RUT 89]. As in the case of the random

search, the method works only with one point each time [BEA 93a].
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Neural networks
Neural networks are search algorithms based on the structure and the working of the human

neuron. Optimisation is carried out after identifying and learning the patterns that relate the

input to the output data. Figure 2.4 ill ustrates a simple neural network structure the

Feedforward Artificial Neural Network (FANN) or back-propagation network [RUM 86],

used commonly for modelling and control purposes. It is constituted by an input layer (given

by the parameters to optimise), an output layer (representing the objective function) and a

hidden layer that makes the connection between the two. A network of nodes (named

neurones) constitutes each of these layers. The output of a neurone is affected by a weight (the

parameters of the network) and passed to all neurones in the subsequent. Such weights modify

the value of the signals that cross a given connection, thus making possible to produce a

desired output value for a given set of inputs. They are defined after an adaptation and

learning state using training data.

N

T1

T2

T3

Objective
function

1 1Bias

Input
layer

Hidden
layer

Output
layer

Figure 2.4- Structure of a simple neural network.

The network is evaluated by furnishing input data to the neurones in the input layer. The data

is passed to the hidden layer without calculations, where it is processed by the neurones and

propagated to subsequent layers. The output of the network is a function representing the sum

of the contributions of the inputs to that network. If the biological analogies are ignored, this

methodology fits the neural network parameters to data, i.e., is a form of non-linear

regression.

Although this technique is well suited to a wide range of problems, the learning stage can be

very long and new training is required when considerable modifications to the problem

conditions are made [WAS 89, DIR 93, DIR 95].
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Expert systems
An expert system simulates the interaction of the user with a specialist to solve a problem. It

comprises (Figure 2.5) a knowledge base, a knowledge acquisition component, an interactive

component, an explanation component, and an inference component [WOR 94]. All the facts,

rules and know-how are collected in the knowledge base, where the knowledge acquisition

component provides communication between the specialists of the process and the knowledge

base. New information is incorporated in the base, for example, by monitoring how human

specialists solve various typical problems. A lot of interaction with the specialists is thus

necessary, in order to create a data base with the adequate dimension, able to work with

variations on the operating conditions, materials properties and system geometry. The

interactive component is the link between the final users and the knowledge base, either by

solving the problem (inference component) or by explaining the solutions (explanation

component) and the decision-making process to the user. This methodology has been used to

solve several design problems [BRO 86, THO 89, POW 89, WOR 94].

Knowledge
Acquisition
Component

Explanation

Component

Inference

Component

Interactive Component

KNOWLEDGE BASE

EXPERTS USERS

Figure 2.5- Expert system [WOR 94].

Sensitivity analysis
A sensitivity analysis is generally used to quantify the relationship between variations of the

parameters to optimise (independent variables) and variations of the objective function

(dependent variables). It considers the change in a performance measure F as a function of the

parameter x, through a function G [SMI 94]:

( )xxfGxF ),()( = (2.3)
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where f is the objective function or the criterion to satisfy. The gradient (the design

sensitivity) is given by:

( ) ( )
x

x),x(fDG

Dx

)x(Df
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+
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==∇

(2.4)

Once this sensitivity is known, the effects of a variation of the parameter δx on the objective

function can be estimated using e.g. finite differences (forward differences):

x

)x(F)xx(F

Dx

)x(DF

δ
δ −+=

(2.5)

Despite its simplicity, the finite difference method is often inaccurate and inefficient, making

it necessary to use other techniques, such as direct differentiation or adjoint methods, which

complicate the optimisation scheme [SMI 94].

Statistical methods
The aim here is to evaluate data, obtained either by computer modelling or by experimental

means, through the use of an objective function [TAD 70]. Several experimental designs are

available, such as full factorial, central composite, latin square, Plackett-Burman, Box-

Behnken, Taguchi and simplex design [MON 91]. The choice of a method depends on the

characteristics of the problem under study, namely the number of factors and levels for each

factor, the factors type (continuous or discrete), the type of response variable to study, the

sample size (number of replicates) and the restrictions involved [MON 91].

In polymer extrusion, assuming uniform temperature along the barrel, the full factorial

method produces an equation, for each one of the dependent variables, of the type:

( ) bbbbj TNaTaNaTaNaaTNf 12
2

22
2

11210, +++++= (2.6)

where fj is one of the j dependent variables, N is the screw speed, Tb is the barrel temperature,

and ak and akl are constants determined by regression analysis from experimental or modelling

data. The optimum of this function can be determined either by calculating the gradient vector

(equation 2.2) or by using graphical means. In real problems the temperature along the barrel

is not constant, which might increase the number of independent variables beyond reasonable

limits.
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When the relations between the criteria and the independent variables are established from the

results of a mathematical model, it is not possible to detect eventual interactions between the

variables, since the experimental variation is not present [MEN 92].

Evolutionary Algor ithms
Evolutionary Algorithms (EAs) are a class of stochastic search techniques. They include the

following methods [SPE 93a, CHI 95a]:

• Genetic Algorithms (GAs), proposed by John Holland [HOL 75];

• Evolutionary Strategies (ESs), proposed by Rechenberg [REC 73];

• Evolutionary Programming (EP), proposed by Fogel et al. [FOG 66];

• Genetic Programming (GP), proposed by Koza [KOZ 91].

Starting from a pool of points they confine progressively the region where the optimum is

located through the application of genetic operators (Figure 2.6).

The differences between the various techniques are related to the coding representation of the

search space, to the types of selection mechanisms used, to the structure of the operators, and

to the measures of accomplishment. Evolutionary programming (EP) is mainly used in

artificial intelligence, whereas genetic programming is used to develop more complex

structures such as Lisp expressions or neural networks to solve specific problems. Genetic

Algorithms (GAs) and Evolutionary Strategies (ESs) are mainly used in optimisation

problems and have similar performance [SPE 93a]. GAs have probably received more

attention in the literature, particularly to tackle multiobjective optimisation problems [FON

93, HOR 94, SRI 95].
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Figure 2.6- How EAs work.

General comments
Most optimisation methods start from one point of the search space and move to another

using a transition rule. However, in multimodal problems when a local peak is found it is

difficult to ensure that the algorithm wil l continue its search. Since Genetic Algorithms work

with a population of points that climb many peaks in parallel, the probability of converging to

a false peak is reduced, in comparison with other methods. Therefore, it is clear that GAs are

substantially different from the other search methods [GOL 89a]:

• They require the codification of the set of parameters;

• They carry out the search on a population, not in a single point;

• They do not require information concerning derivatives nor another auxiliary knowledge,

but only the value of the objective function; other methods, such as gradient techniques
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also require derivatives of the objective function; neural networks and expert systems need

some form of previous knowledge on the process;

• They use probabil istic transition rules, not deterministic rules;

• They obtain more than a single solution, leaving the final choice up to the user.

The robustness of an optimisation method, i.e., the balance between efficiency (when the

algorithm is able to attain the optimum in a specific problem) and efficacy (when the

algorithm performs well in several types of problems) is another significant characteristic.

Figure 2.7 illustrates this point plotting efficiency against the problem type. The most

advantageous method has a curve defined as robust scheme (good eff iciency and efficacy),

where the attainment of an optimum on a specific problem is passed to a second level, in

order to achieve good performance in several types of problems [GOL 89a]. Combinatorial

problems have a linear or non-linear objective function defined over a set of finite but very

large solutions. Unimodal problems have one global optimum, whereas multimodal problems

have two or more local optima. Enumeration or random walk methods have little efficiency

and the efficacy remains practically constant for all types of problems. The gradient

(specialised) scheme performs well in a narrow class of problems (unimodal), but is of little

utility in other types of problems. Other specialised algorithms such as simulated annealing

for combinatorial problems can be eff icient for another type of problems.

Problem type

combinatorial                unimodal                 multimodal

E
ff

ic
ie

nc
y

Robust scheme

Enumeration or

random walk

Specialised scheme

Figure 2.7- Eff iciency vs. problem type for several methods [GOL 89a].

Genetic Algorithms are a robust method that can be applied with success in several types of

problems. Since they work with a population of points it is possible to obtain more than one

solution on the search space, as it will be reported later, when niching and speciation are
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discussed. The use of probabil istic transition rules does not mean that the method is a simple

random search, but is used to conduct the search to regions not previously explored. GAs are

of easy and direct application because they only need to know what the parameters to

optimise are (in order to code them) and what the objective function value is [GOL 89a]. This

characteristic is useful for complex problems such as polymer extrusion optimisation, where it

is not possible to obtain an explicit equation for the objective function.

2.3- Genetic Algorithms

Genetic Algorithms (GAs) are search and optimisation methods that mimic natural evolution

through genetic operators like crossover and mutation. They work with a population of points,

each one representing a possible solution in the search space. Each individual has a value

associated to it (fitness or objective function), which is a measure of its performance on the

system. Individuals with greater performance have a bigger opportunity for reproduction, i.e.

to pass their characteristics to future generations [GOL 89a].

The link between the algorithm and the real problem under study is made: i) through coding

the solution space (generally a binary codification) where each solution is transformed into a

string defined as chromosome; ii) via an objective function that quantifies the performance of

each individual (solution or chromosome).

The flowchart depicted in Figure 2.8 shows the various steps of the algorithm [HOL 75, GOL

89a]. The initial population individuals are obtained randomly in the Initialisation module.

Next, these elements are evaluated as a function of their performance on the problem under

study, i.e., evaluation consists in modelling the extrusion process using as input data each

chromosome representing the parameters to optimise (e.g. screw speed, barrel temperature

profile, etc). As a result, the values of the parameters to be considered in the objective

function are obtained. In the following step a new population is produced from the previous

one. In order to do that, the genetic operators (crossover, mutation and/or inversion) are

applied to elements of the initial population that were selected on the basis of their fitness

values. Consequently, a new population is obtained. If the number of prescribed generations

has not been reached (t > tmax), this new population follows the same route (evaluation,

selection, crossover, etc) [HOL 75, GOL 89a].
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The methodology will be illustrated with an example, where the aim is to define the screw

speed and the barrel temperature that maximise the output of a given extruder and polymer.

First, is necessary to define the range of variation of the parameters to optimise (screw speed

– N ∈[N1, N2], and barrel temperature - Tb ∈[Tb1, Tb2]) and their variation intervals ∆N and

∆Tb, respectively (i.e., the maximum number of possible values for screw speed is

112
max +

∆
−

=
N

NN
N  and similarly for the barrel temperature). Then, the population is

initialised, i.e., values of N and Tb are obtained randomly in their range of variation [0, Nmax-

1]. Table 2.1 illustrates this procedure, considering a population of 10 individuals, the screw

speed varying between 30 and 50 rpm, the barrel temperature lying between 160 and 180ºC,

∆N=∆Tb=1 and Nmax=Tbmax=21. Each chromosome comprises 10 positions, 5 corresponding to

screw speed and 5 to barrel temperature. Each of these positions is named a gene or an allele.

START

Population
initialisation

Evaluation

Crossover

Mutation

Inversion

Selection

ENDt > t max YesNo

Figure 2.8- GA flowchart.

The first iteration starts with the evaluation of all the individuals. An extrusion modelling

package calculates the output for the system geometry, polymer properties and the specific

operating conditions. The individuals are sorted by descending order of the output. A pre-
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defined number of individuals is selected for crossover, mutation and inversion (in this

example only crossover will be used). Individuals with greater performance (output) will be

given a greater opportunity to be selected. Table 2.2 presents the results obtained for the 10

individuals of the initial population.

Table 2.1- Generation of the initial population for the example under study.
Transformed variables Real variables ChromosomeIndividual

N Tb N Tb N Tb

1 10 1 40 161 01010 00001
2 0 12 30 172 00000 01100
3 5 20 35 180 00101 10100
4 14 15 44 175 01110 01111
5 6 4 36 164 00110 00100
6 20 18 50 178 10100 10010
7 5 2 35 162 00101 00010
8 18 4 48 164 10010 00100
9 6 14 36 174 00110 01110
10 18 11 48 171 10010 01011

Table 2.2- Initial population for the example under study.
Chromosome Transformed

variables
Individual

N Tb N Tb

Output
(kg/hr)

Crossover
Position

Parents

1 10100 10010 20 18 8.5 2 1,3

2 10010 00100 18 4 8.1 6 2,4

3 10010 01011 18 11 8.0 8 1,10

4 01110 01111 14 15 7.7

5 01010 00001 10 1 7.0

6 00110 00100 6 4 6.2

7 00110 01110 6 14 6.0

8 00101 00010 5 2 6.0

9 00101 10100 5 20 5.8

10 00000 01100 0 12 5.2

Q =6.85

The next generation includes the best individuals from the previous one (in this case 40%) and

new individuals obtained by crossover between the parents selected previously (carried out on

a random selected position). Crossover consists in the interchange of genes between the

parents. Figure 2.9 illustrates this procedure for the crossover between individuals 1 and 3 on

position 2. The other individuals are obtained by crossover between individuals 2 and 4 and

between individuals 1 and 10, on positions 6 and 8, respectively. Table 2.3 presents this

second generation and the corresponding mass outputs. As can be observed the output average
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was increased from 6.85 to 7.8 kg/hr. This process is repeated until the maximum number of

iterations is reached or some convergence criterion is satisfied (such as, a percentage of the

population converges for the same value).

Chromosome 1

Chromosome 2

  10   9    8    7    6    5    4    3    2    1           position

position = 2

Random number:

New Chromosomes

Decimal

20 - 18

18 - 11

20 - 19

18 - 10

Selection of:

0 1 0 0 1 00101

0 0 1 0 1 11001

0 1 0 0 1 10101

0 0 1 0 1 01001

Figure 2.9- Example of crossover.

Table 2.3- Second generation for the example under study.
Chromosome Transformed

variables
Individual

N Tb N Tb

Output
(kg/hr)

1 10100 10010 20 18 8.5

2 10010 00100 18 4 8.1

3 10010 01011 18 11 8.0

4 01110 01111 14 15 7.7

5 10100 10011 20 19 8.5

6 10010 01010 18 10 8.0

7 10010 00100 18 4 8.1

8 01110 01111 14 15 7.7

9 10000 10010 16 18 7.8

10 00100 01100 4 12 5.6

Q =7.8

The improvement in performance throughout the various generations can be explained with

the aid of the Schemata Theory [GOL 89a], together with the properties of the genetic

operators. A scheme describes a set of chromosomes with fixed genes (alleles) in certain

positions. For example, in binary representation, the chromosomes (010), (011) and (000) can

be represented by the scheme H = 0** , where the asterisk is a meta symbol, representing a

position of indifference (i.e., either 0 or 1). This means that three characters constitute a
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scheme, { }V + = 0 1, , * . A population of N individuals can be represented by 2l to N.2l

schemes, where l is the number of alleles in each scheme.

The differences between the several schemes are quantified using the concept of scheme

order, o(H), and scheme length, δ(H). Scheme order represents the number of fixed positions

that the scheme contains (in a binary representation this corresponds to the number of 0s and

1s), e.g., o(1*01*) = 3 and o(*1**0 ) = 2. The scheme length is the distance between the first

and the last fixed positions, e.g., ( )δ 1 01 4 1 3* * = − =  and ( )δ * * *01 5 2 3= − = .

For example, when proportional selection, simple crossover and mutation are used, the lower

limit of the expected number of copies of the scheme H, included in the generation (t+1), is

given by [GOL 89a]:

( ) ( ) ( ) ( ) ( )



 −

−
−≥+ Hop

l

H
p

f

Hf
tHmtHm mc

1
1,1,

δ (2.7)

where m(H, t+1) and m(H, t) are the number of copies of the scheme H on the generations t+1

e t, respectively; f(H) is the mean value of the objective function of all individuals of

generation t which are represented by the scheme H; f  is the mean value of the objective

function of the entire population; pc and pm are the probabilities of crossover and mutation,

respectively. The number of copies of the schemes having a mean value of the objective

function greater than [f(H)] increases as the search progresses. This search is a geometric

progression that promotes the exponential increase of the best individuals on future

generations.

The schemata theory wil l be il lustrated with an example where the aim is to maximise the

sin(x) function (0 ≤  x ≤ π). Table 2.4 represents the initial population of 5 individuals.

The best individual of the initial population (individual 2) will be the first individual of the

second generation, while the others will be obtained by crossover between parents 1 and 2 on

string point 2 and between parents 2 and 5 on string point 3. For crossover purposes the

parents are picked up using a selection technique (roulette-wheel, introduced in the next

section) based on their performance, while the crossover points are obtained randomly. The

improvement obtained with this new generation is evident, since the average of the objective

function increased from 0.559 to 0.76. The optimal string in this problem is (10000), which
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represents x = π/2. This string is contained in the scheme H1=(1**** ) that represents two

individuals of the initial population and four of the second generation, whereas scheme

H2=(0**** ) is represented by three individuals of the initial population and by one on the new

population. Since the objective is to maximise sin(x) function, it is desirable to have more

copies of scheme H1 than H2. This improvement in performance by simple manipulation of

the strings and ignoring the complete search space il lustrates the potential of GAs. These short

and above-average schemata are known as building blocks. As the search proceeds, the

combination of these blocks produces better building blocks, until convergence to the

optimum [GOL 89a].

Table 2.4- Example of the GA working for the sin(x) function.
Initial population New population

Individual String x f(x) Crossover
Point

Parents String x f(x)

1 01001 0.90 0.783 2 1,2 10100 2.00 0.909

2 10100 2.00 0.909 3 2,5 01000 0.80 0.717

3 00010 0.20 0.199 10101 2.10 0.863

4 00100 0.40 0.389 10010 1.80 0.974

5 11010 2.60 0.516 11100 2.80 0.335

)(xf =
0.559

)(xf =
0.760

2.3.1- Genetic operators

A- Selection
The selection operator determines which individuals of the current population will act as

parents of the next generation. The process has two steps. First, a value is attributed to the

objective function of each individual. This can be done either by attributing a value

proportional to the performance of each individual (objective function value), or by ranking

the population according to the corresponding value of the objective function and

subsequently attributing a value to the objective function of each individual that depends

solely on its position on that ranking.

This scheme introduces a uniform scaling of the entire population and a simple and effective

way of controlli ng the selection pressure - SP (representing the probabil ity of selection of the

best individual in comparison with the average probabil ity of all i ndividuals). Ranking can be

linear or exponential [BAK 85]:
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respectively, where N is the number of population individuals, FOi is the objective function

value for individual i, SP is the selection pressure (1.0 < SP ≤ 2.0) and c is a constant that

controls the selection pressure on the exponential ranking (0<c<1).

The second step of this operator consists in the selection of the parents according to the value

previously attributed. Several techniques are available:

• Roulette-wheel selection,

• Tournament selection,

• Stochastic universal selection,

• Local selection,

• Truncation selection.

i) Roulette wheel selection

This is the simplest selection technique, and consists on [BAK 87]:

1. ordering the population individuals by descending order of their objective function value;

2. calculating their cumulative sum;

3. generating a random number between 0 and the total of the above sum;

4. selecting an individual whose cumulative sum wil l be closer but greater than the number

generated previously;

5. repeating  steps 3 and 4 until the total number of individuals is selected.

Tables 2.5 and 2.6 describe this procedure, considering a population of 10 individuals  (N=10)

and that the objective function value was determined according to the linear ranking scheme

(equation 2.8), with a selection pressure of 2 (SP=2). The probabil ity of each individual being

selected was calculated. Table 2.6 ill ustrates the selection of 6 individuals: First, a random

number is obtained and compared with the cumulative sum; the first individual that has a

cumulative sum equal or greater than this number will be selected.
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Table 2.5- Roulette wheel selection.

Individual order 1 2 3 4 5 6 7 8 9 10

Objective function 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2

Cumulative sum 2.0 3.8 5.4 6.8 8 9.0 9.8 10.4 10.8 11.0

Selection probabil ity 0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.06 0.03 0.02

Table 2.6- Selection of 6 individuals using the roulette wheel method.
Random number (between 0 and 11.0) 3.1 0.5 7.1 10.6 6.1 5.2

Individual selected 2 1 5 8 4 3

ii) Tournament selection

This technique consists on the random selection of a fixed number of individuals (Ntour) from

the entire population. The best is picked up from this sub-group and used as parent. The

process is repeated whenever necessary to produce a new individual. The value of Ntour can be

defined as a percentage of the total population (N) and can vary between 2 and N.

ii i) Stochastic universal selection

This procedure is similar to the roulette-wheel selection, but now pointers equally separated

replace the random numbers. The first pointer is obtained from a number generated randomly

ranging between 0 and the prescribed distance, Dpointer, where:

NS

FO
D

N

i
i

erintpo

∑
== 1

(2.10)

and NS is the number of individuals to be selected [BAK 87].

Tables 2.7 and 2.8 show the results obtained using the previous example. The distance

between pointers is 1.833 (11/6) and the number randomly generated is 0.516.

Table 2.7- Stochastic selection.
Individual order 1 2 3 4 5 6 7 8 9 10

Objective function 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2

Cumulative sum 2.0 3.8 5.4 6.8 8 9.0 9.8 10.4 10.8 11.0

Table 2.8- Selection of 6 individuals using the stochastic selection method.
Pointer 0.516 2.349 4.182 6.015 7.848 9.681
Individual selected 1 2 3 4 5 7
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iv) Local selection

In this case, the individual to be selected is conditioned to a zone called local neighbourhood.

Neighbourhood is defined by the structure through which the population is distributed and can

be interpreted as a group of potential associated individuals. Initially, half of the population is

selected, either randomly or by one of the methods described above. Next, a neighbourhood is

defined for each of these individuals, their parents being selected from within. The structure

of the neighbourhood can be linear (full and half ring), two-dimensional (full cross, half cross,

full star and half star) or three-dimensional [GOR 91].

The structure defines the neighbourhood size (i.e., number of individuals). Information

interchange between all the population is guaranteed by the overlapping of the neighbourhood

[GOR 91].

v) Truncation selection

In this technique only part of the population can be selected. The population is grouped by

decreasing order of the individual objective function values and only the first Ntrunc (a

percentage of the total population, which generally stands between 10% and 50%) individuals

are selected [BLI 95].

Although there have been efforts for developing strategies to compare the eff iciency of the

various selection techniques proposed, is not possible to define in advance the best selection

technique to be used in a particular optimisation problem. Empirical studies on the real

problem should therefore, be carried out [BLI 95].

B- Crossover
This operator enables the production of two new chromosomes (offspring) of a new

generation from two existing chromosomes in the current population (parents), by genes

interchange between them. This interchange is carried out from one or more positions in the

chromosome, thus defining the type of crossover to be applied:

• Crossover in one position;

• Crossover in multiple positions;

• Uniform crossover;

This is the most powerful process of information modification that GAs use for searching,

since it allows a rapid exploration of the search space. As the information that passes to future
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generations is obtained from individuals with greater performance, this is not a random search

but explores the best regions of the search space [GOL 89a, BEA 93b].

i) Crossover in one position

As shown in Figure 2.10, a random position is selected in the parents chromosomes, the genes

are exchanged between them and two individuals are created. In this example, crossover is

carried out between two chromosomes of length 6 (0 to 5), between positions 3 and 4.

Crossover only involves the exchange of genes in the chromosomes [GOL 89a].

Chromosome 1

Chromosome 2

1 0 1 1 0 1

0 1 1 0 1 1

  5    4    3    2    1    0           position

position = 3

Random number:

New Chromosomes
1 0 1 0 1 1

0 1 1 1 0 1

Decimal

45

27

43

29

Selection of:

Figure 2.10- Example of crossover in one position.

ii) Crossover in multiple positions

In this case, m positions are picked randomly, from 1 until the maximum number of genes,

without repetition. These positions are then ordered and the genes between the successive

positions are interchanged [SPE 91]. Figure 2.11 exempli fies this process for the case of two

positions (m = 2). Crossover occurs between two chromosomes of length 6 (0 to 5), between

positions 1 and 2 and between positions 4 and 5.
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Chromosome 1

Chromosome 2

1 0 1 1 0 1

0 1 1 0 1 1

  5    4    3    2    1    0           position

position 2 = 1

position 1 = 4

Random numbers:

New Chromosome

1 1 1 0 0 1

0 0 1 1 1 1

Decimal

45

27

57

15

Selection of:

Figure 2.11- Example of crossover in two points.

ii i) Uniform crossover

Uniform crossover generalises the previous scheme, since each gene is a point for potential

crossover. The concept is based on the random definition of two masks with the same number

of genes as the chromosomes. Each mask gene identifies the parents that provide the gene for

the offspring. Generally, the second mask is the inverse of the first one. Each gene of the new

individual is equal to the corresponding gene of parent 1 if the gene of the mask is 1, and

equal to the corresponding gene of parent 2 if the gene is 0 [BEA 93b, SYS 89]. Figure 2.12

il lustrates this type of crossover. Offspring 1 remains with the genes of parent 1 when the

corresponding position on the mask is 1, otherwise it will have the genes of parent 2.

Other crossover techniques have been proposed, but they have little application [GOL 85,

SYS 91, DAV 91]. Despite several comparative studies [BEA 93b, SYS 89], it is diff icult to

define the best crossover technique for a particular problem, hence the choice of one method,

as well as of the best crossover ratio, should be based upon experimental evaluation.

C- Mutation
In this process, one chromosome position is randomly selected and the value of the gene is

changed, thus causing the destruction of the existing information. The need for this operator

comes from the fact that, along the various iterations relevant information may be lost when

the worst chromosomes are eliminated. Through this occasional random change, GAs

guarantee that new areas of the search space are explored [BEA 93b]. Due to they

characteristic (destruction of information), the probabil ity of occurrence of mutation must be

lower, in the order of 1/N [BÄC 91].
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Chromosome 1

Chromosome 2

1 0 1 1 0 1

0 1 1 0 1 1

  5    4    3    2    1    0           position

mask 2 =   1   0   0   1   1   1

mask 1 =   0   1   1   0   0   0

Random numbers:

New Chromosomes
0 0 1 0 1 1

1 1 1 1 0 1

Decimal

45

27

11

61

Selection of:

Figure 2.12- Example of uniform crossover.

Figure 2.13 shows an example of mutation. First, a random number that defines the mutation

position is selected. Then, another random number between 0.00 and 1.00 is obtained and

compared with the mutation ratio (in this case 0.08). If the number is smaller, then the gene

in this position is subjected to mutation, i.e., a random integer number (0 or 1) is placed in the

position previously selected (this means 50% of probabil ity). Mutation only occurs if this last

number is different from the gene in the selected position, and wil l only be carried out for a

given number of chromosomes, defined for the mutation rate (considering a rate of 0.1, the

probability of mutation will be (0.1 x 0.08 x 0.5)x100 = 0.4%).

Chromosome 1 0 1 1 0 1

  5    4    3    2    1    0           position

position = 3

Random numbers:

Decimal

45

New Chromosome
1 0 0 1 0 1 37

Selection of:

n. between 0 and 1 = 0.05 Smaller than the mutation ratio = 0.08

integer n. between 0 e 1 =

0

1 0 1 1 0 11 45

or

Figure 2.13- Example of mutation.

The theoretical demonstration of the eff iciency of any of these techniques is yet to be done. In

fact, the importance of crossover and mutation is stil l a matter of debate [SPE 93b].
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D- Inversion
Inversion produces the interchange of information inside one chromosome. It is used with the

objective of reordering the genes inside the chromosomes, in order to increase the potential

for evolution [GOL 89a, BEA 93b]. Two points of the chromosome are randomly selected

and their genes are inverted, as illustrated in Figure 2.14. This operator is particularly useful

when the objective function varies with time, which is not the case of polymer extrusion.

I nitial Chromosome 1 0 1 1 0 1

  5    4    3    2    1    0           position

position 2 = 1

position 1 = 4

Random numbers:

New Chromosome 1 1 1 0 0 1

Decimal

45

57

Selection de:

Figure 2.14- Example of inversion.

2.3.2- Sizing the population

Defining the population size (or length) to be used on a specific problem is of primal

importance. A too small population does not process sufficient schemes to attain the optimum

and may converge quickly to another point. On the other hand, the choice of excessive length

results in a useless increase of the computation times [GOL 89b].

The population size depends essentially on the number of genes in the chromosomes

(schemes) to be processed (l) and on the degree of computer parallelism (algorithm) [GOL

89b, GOL 92].

Goldberg et al. [GOL 92] showed that the optimum population size depends also on the

selection method used and on the characteristics of the specific problem under study (Table

2.9). De Jong and Spears [DeJ 90] confirmed these results and concluded that the choice of

the population size has a strong interacting effect on the results. The number of individuals

required for convergence is lower when the stochastic universal selection method is used, but

this supremacy is offset by greater computational costs [GOL 92].

Most of these studies are empirical and limited to a particular type of problems. Thus, a

practical assessment of the population size is required for each new particular problem.
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Table 2.9- Influence of the selection method on the population size (RW- roulette-wheel
selection, TS- tournament selection, R- ranking e SUS- stochastic universal selection).

N
l RW TS R SUS

20 109 54 109 21
50 271 135 271 82
200 1084 1084 1084 144

2.3.3- Niching and speciation

Multimodal functions
In most optimisation problems it is necessary not only to find the overall optimum, but also to

identify the various local optima. Conventional GAs are not able to do this, since they

converge necessarily to one point of the overall search space [GOL 89a].

As demonstrated in Figures 2.15 and 2.16 (representing the functions f x x1
6( ) sin (5 )= π  and

f x e x
x

2

2 2
0 1

0 8 6

2

( ) sin (5 )
ln

.

.=
−

−



 π , in the interval 0≤x≤1, respectively) the individual optima of

a multimodal function can have identical or different values. If GAs are applied repeatedly to

determine of the maximum of the first function, they converge indifferently to any single

peak. This happens because the population cannot have an infinite dimension, as assumed by

the schemata theory. The problem is designated by “genetic drift” and can cause the

accumulation of errors as the search proceeds [GOL 87]. However, convergence to a single

peak is not desirable in functions with various similar maxima. Generally, when the search

space has local maxima with different values, it will be interesting that convergence occurs to

the peak with the greatest value, but also that a determined number of individuals converge

for each individual peak. This is particularly important in the case of complex functions, as it

provides the characterisation of their topography.
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Figure 2.15- Multimodal function with
maximum of equal values.

Figure 2.16- Multimodal function with
maximum of different values.
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In order to deal with the above, the concepts of niching and speciation of natural evolution

should be introduced in a population of chromosomes. This is based on the idea of forming

stable populations of organisms by creating separated niches where they are forced to share

the available resources [GOL 87, DEB 89].

There are several niching methods that can extend the concept of GAs to domains that require

the identification of multiple solutions. Mahfoud [MAH 95] compared four niching methods

(sharing, crowding, sequential niching and parallel hil lclimbing) and concluded that parallel

hil lclimbing fails on problems of high complexity, that sequential niching [BEA 93c] is weak

on easy problems and unable to solve harder problems, that sharing [GOL 87] works well on

problems with varying levels of complexity and that its performance can be improved through

the application of fitness scaling, and finally, that deterministic crowding [MAH 92, MAH

94] is able to deal with problems of all levels of complexity, but it may lose the lower optima

as the search proceeds. Therefore, sharing seems to be the most promising method.

Sharing analogue forms can be created through modifications to the theory of natural niche

and specie formation. Goldberg and Richardson [GOL 87] proposed that they should be

implemented in the chromosomes based on the distance between them di j, i.e., a sharing

function, Sh(di j), should be defined as:

Sh d

d
if d

otherwise

ij

ij

share
ij share( )
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
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α

(2.11)

where α is a constant and σshare is the radius of a circumference defining the maximum

distance between chromosomes, in order to form  as many niches as the number of peaks on

the search space. The sharing function has three properties:
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Figure 2.17 illustrates this concept. The function f1(x) considered in Figure 2.15 has 5 maxima

in the search space (0≤x≤1). The niche size is given by the ratio between the size of the search

space and the number of peaks, i.e., 1/5=0.2; consequently, σshare is 0.1.

Since the basic idea of sharing is that the objective function of an individual diminishes in the

presence of its neighbours, the final objective function value (FO´i) will result from the ratio

between the initial evaluation (FOi) and its niche count (m í).

FO
FO

mi
i

i

′ =
′

(2.13)

where m í is the sum of all the sharing functions related to this individual.

′ =
=

∑m sh di i j
j

N

( )
1

(2.14)

The sharing function with himself [sh(dii )=1] will be also included.
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Figure 2.17- Definition of σshare for implementing sharing.

The distance between individuals can be determined in the real parameter space, (phenotypic

sharing) or in the codified space (genotype sharing). The former will be adopted, since it has

physical meaning and greater performance (according to Deb [DEB 89]). Two individuals (Xi

e Xj) on a p dimensional space can be defined as:

[ ]
[ ]

X x x x

X x x x

i i i p i
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The distance between them (di j) can be defined using the norm on a p dimensional space,

using the Euclidean distance.

( )d x xij k i k j
k

p

= −
=

∑ , ,

2

1

(2.16)

In most practical optimisation problems, σshare cannot be determined as easily as in the

previous example (Figure 2.17). If each niche is contained in one p-dimensional space with

radius equal to σshare, this means that each sphere contains 1/q of the total volume of the search

space, where q is the number of peaks in that space. The sphere radius (r) that contains the

total space is therefore given by [DEB 89]:

( )r x xk k
k

p

= −
=

∑1

2

2

1
,max ,min

(2.17)

and the volume (V) is:

V c r p= (2.18)

where c is a constant and xk,min and xk,max are the minimum and maximum values for the

parameter k in all the population, respectively.

The parameter σshare may be calculated from [DEB 89]:

σ share p

r

q
=

(2.19)

where q is the number of peaks that are expected to exist.

If this analysis is applied to the function f1(x) represented in Figure 2.17, with p=1, xk,min=0,

xk,max=1 and q=5 one obtains r=0.5 and σshare=0.1.

Since in most optimisation problems the number of peaks is unknown, the use of the above

methodology to define the value of σshare, implies the use of a trial and error procedure.

Sharing can be indistinctly applied in the space of the variables to optimise, or in the criteria

space, depending on which niching is necessary. Generally it is applied in the criteria space,

where the choice of the solution is carried out and where diversity along the Pareto frontier is

required.
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During sharing process, scaling of all space parameters in the same interval (for example

between 0 and 1) is indispensable in order to avoid the comparison between values that can be

very different. For example, if in a polymer extrusion problem only the output and the power

consumption are considered as relevant criteria, with their value ranging between 2 and

10kg/hr and between 1000 and 3000W, respectively, and if 4 peaks exist, the value of σshare,

becomes 500.004. As shown in Figure 2.18-A one unique niche comprises the entire range of

the output parameter. Conversely, if both parameters are scaled between 0 and 1, the value of

σshare is 2 /4, which corresponds to the radius of the circumferences shown in Figure 2.18-B.
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Figure 2.18- The importance of scaling the variables.

As σshare, the α parameter (equation 2.11) controls the radial size of the niche “radius” (see

Figure 2.19) [GOL 87, HOR 93].

The variation of the degree of the Holder metric used in the equation 2.16 changes the shape

of the niche [HOR 94]:

d x xij k i k j
k

p s s

= −










=
∑ , ,

1

1

(2.20)

where s is the metric degree. Figure 2.20 shows the variation of the niche shape in two-

dimensional space with the value of s.
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Figure 2.19- Influence of α on the sharing function.
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Figure 2.20- Niche shapes as a function of Holder metric, in two dimensions.

When optimising multimodal functions, the performance of the genetic algorithm could be

affected when crossover is applied between individuals from different peaks, as the new

individuals generally do not belong to any of them. This can be avoided by reducing the

frequency of crossover between the individuals of different peaks. A new parameter σmating,

similar to σshare, does not allow crossover between individuals whenever the distance between

themselves is greater than σmating; since σmating belongs to the same space that σshare (and is also a

measure of the distance between two individuals), these parameters can be identical [GOL

89a, FON 93, DEB 89, MAH 94].

2.4- Objective function

The optimisation of polymer plasticating extrusion is a multiobjective
problem, where it is necessary to satisfy simultaneously several system

performance measures (criteria, att r ibutes or objectives), such as output,
length of screw required for melting, melt temperature, power

consumption, degree of mixture. Some of these are conflicting, e.g.,
maximise the output and minimise the power consumption simultaneously.

α =20

α =2
α =1

α =0.5

α =0.1
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Moreover, their relative impor tance to the global process performance is
subjective and can be considered differently. The mathematical formulation
of a multiobjective optimisation problem (by modification of equation 2.1)

is:

Kkxh

Jjxg

MmNixf
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ij

im

,,10)(

,,10)(tosubject

,,1;,,1)(maximise

�
�

��

=≥

==
== (2.21)

where M is the number of criteria to satisfy.

The various objectives can be taken into account in two ways. Usually, a global objective

function, that includes all the criteria, is considered. However, the decision-maker may be

interested in obtaining if possible several alternative solutions. Other methods have been

developed for this purpose, taking advantage from the fact that GAs work with a population

of individuals [GOL 89a, FON 93, HOR 94, SRI 95].

i) Global objective function methods

In this case the individual criteria are combined in order to form a global objective function

with one unique value. The global objective function can be calculated using various

possibilities, such as the weighted sum of the criteria, the distance between the criteria, the

Min-Max formulation [SRI 95] and the product of the criteria [POT 93, POT 94, POT 96,

POT 97].

The weighted sum of the criteria is obtained from [SRI 95]:

FO w Fi j j
j

q

=
=

∑
1

(2.22)

where q is the number of criteria, wj is the weight attributed to each criterion (which can vary

between 0 and 1, with ∑wj = 1) and Fj is the objective function of criterion j, which can take

two forms, depending whether one wishes to maximise or  to minimise the criterion Xj:

F
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j j
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Xj is the value that results from the evaluation of the criterion j, while Xjmin and Xjmax are the

minimum and maximum values that this criterion can take, respectively. By definition, each

individual objective function value ranges between 0 and 1 and, consequently, so does the

value of the global objective function. The reduction of all values to the same non-

dimensional scale is, therefore, assured.

The global objective function can also be a measure of the distance between the values of the

individual objective functions and a demand-level vector (yj), which has to be defined by the

decision-maker:

rq
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(2.25)

where r is the metric constant (1 ≤ r < ∞). Usually a Euclidean metric (r = 2) is used.

The Min-Max formulation can be presented by modifying equation 2.21 [SRI 95]:

qjZ j ,,1minmaximise �==Γ (2.26)

where Zj is determined by:

j

jj
j

y

yF
Z

−
=

(2.27)

Potente et al. [POT 93, POT 94, POT 96, POT 97] considered the product of individual

performance criteria to quantify the global performance of polymer extrusion, in order to

avoid the possibil ity of solutions where any of the single criteria might take a zero value:

∑= ∏j
j ji

a

j

a

ji qFO (2.28)

where aj are the weight factors and qj are the individual quality criteria.

In this work the weighted sum of the criteria will be used. Since this formulation is probably

the simplest, easily takes into account the relative importance of all criteria and scales all

space parameters in the same interval (as will be necessary when sharing is applied).
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ii ) Pareto Optimum

In a typical multiobjective optimisation, there is a set of solutions that is better than the others

when all the objectives are considered simultaneously, but can be worst than some if only

specific criteria are considered. Therefore, a solution corresponding to the optimum of all the

criteria does not exist in a problem of this type The concept of Pareto optimal or non-

dominated solutions [GOL 89a, FON 93, HOR 94, SRI 95] is illustrated in Figure 2.21

considering, as an example, two individual criteria relevant to extrusion. If both objectives are

to be minimised, point 5 is dominated by point 2, since it represents a condition where both

criteria are greater. Therefore, points 5 and 6 are dominated, whereas points 1, 2, 3 and 4 are

non-dominated, and make-up the Pareto frontier.
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Figure 2.21- Pareto frontier.

2.5- Multiobjective optimisation

The concept of non-dominated solutions can be used together with GAs to obtain,

simultaneously, several solutions along the Pareto frontier. Selecting one solution along the

Pareto frontier requires that the user has some knowledge about the factors that influence the

problem. The choice made by one user is not necessarily coincident with the choice of

another. Based on the initial idea proposed by Goldberg [GOL 89a], several multiobjective

optimisation methods have been developed [FON 93, HOR 94, SRI 95]. They require that the

conventional GA be modified in such a way that:

i)  Each individual is evaluated independently in each criterion.

Pareto Frontier
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ii)  The selection is made independently in each criterion; several methods, such as

tournament selection or ranking schemes [FON 93, HOR 94, SRI 95] can be adopted.

It is necessary to consider the concepts of niching and speciation in order to distribute

the population evenly throughout the entire frontier [GOL 87].

Crossover and mutation between individuals are made according to previous selection

schemes.

i) Method based on ranking schemes

The method proposed by Fonseca and Fleming [FON 93] is based on the attribution of a value

to the objective function of each individual through a ranking scheme. Accordingly in each

generation position 1 on the scale is attributed to the non-dominated individuals, while the

remaining are classified in terms of the number of individuals that dominate them. This is

equivalent to writing:

rank ni i= +1 (2.29)

where ranki represents the position of the individual i on the ranking and ni is the number of

individuals that dominate i.

This attribution follows various stages:

a) The population is ordered following the ranking described above;

b) The value of the objective function is attributed by interpolating between the “best”

(rank=1) and the “worst” (rank=n*≤N) individuals, using a ranking function (equation

2.8 or 2.9);

c) The average value of the objective function is computed from the individuals with the

same rank;

d) Niche count (equation 2.13) is incorporated on the above objective function value, in

order to place the individuals inside each rank; consequently, convergence to a unique

point is avoided;

e) Finally, a selection method is applied (e.g. roulette-wheel selection) in order to obtain

an individual for reproduction and/or recombination;

f) The procedure follows the conventional GA route.

ii) Method based on tournament selection
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Horn, Nafpliotis and Goldberg [HOR 94] modified the tournament selection technique in

order to avoid convergence to a single solution, and to maintain multiple non-dominated

solutions. This modification was carried out adding tournament by domination followed by

sharing whenever it was not possible to choose a parent (solution of the actual population) for

reproduction and/or recombination. This selection process follows five steps:

a) Two individuals are randomly chosen;

b) A set of individuals (tdom) is also chosen randomly for comparison purposes;

c) Each of the two candidates is compared with the set;

d) If one of the candidates is dominated by the set and the other is not, the latter is

chosen;

e) If none of them is dominated, sharing is used to choose the winner (the individual

with smaller niche count  - ′mi ).

The size of the comparison set (tdom) controls the selection pressure. The eff iciency of this

algorithm depends on the relation between the sharing pressure and the selection applied.

Sharing is applied on the attribute space where diversity is desirable.

ii i) Method based on non-dominated sorting

Similarly to the method based on ranking schemes, the basic idea is to use the ranking

selection scheme to emphasise the influence of better points, while sharing is used to maintain

a stable distribution along the Pareto frontier [SRI 95].

As in the previous algorithms, this method differs from a traditional GA on the selection

operator working mechanism. The steps for the selection phase are:

a) To identify the non-dominated population individuals (that will constitute the first

individuals front, front =1);

b) To attribute an objective function value according to the front number (the first will

have the highest value) and identically to all the individuals of the same front;

c) To maintain the diversity, the individuals of this front will be subjected to sharing, i.e.,

the objective function value will be divided by the niche count;

d) To proceed to the next front: front = front +1;
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e) To identify the non-dominated individuals of the current population, ignoring for the

time being those that have been already classified;

f) Repeat steps b) to e) while individuals to be classified still exist;

g) To proceed according to the usual methods of selection, crossover and mutation.

2.5.1- Reduced Pareto set

The result of a multiobjective optimisation method using GAs is the Pareto frontier, which

usually contain a large number of points (e.g. 500 points). The practical use of this optimal

Pareto frontier is reduced if it becomes too problematic to identify the preferred solution from

this set of points. Figure 2.22-A illustrates one result with a multiobjective optimisation

method applied to the optimisation of the extrusion process where the aim was to minimise

melt temperature at die outlet and mechanical power consumption. After reducing the number

of points in the frontier (Figure 2.22-B), while maintaining all its characteristics intact, the

choice of the optimal point can be easily made, considering the relative importance of the two

criteria (the points 1 to 5 are the non-dominated ones).
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Figure 2.22- Example of reducing the Pareto frontier.

The multiobjective optimisation methods described previously, based on the attribution of an

objective function value to the individuals from the set of non-dominated points, have limited

application to problems with many criteria, where most points that define the population in

each generation are non-dominated. For example, in Figure 2.22-A some of the points

presented are dominated, since only two criteria are defined; however, if other criteria were to

be considered, these dominated points could be non-dominated in the corresponding Pareto

frontiers. Therefore, when a multiobjective optimisation method with GAs is applied the

probability that all the individuals of the population will be selected for reproduction is

similar, since the selection phase of the above methods is based on the whether the individuals
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are non-dominated or not. Pareto frontier reduction together with a multiobjective

optimisation algorithm wil l be very useful, since it provides a clearer separation of the

individuals.

Pareto set reduction [ROS 85], based on the clustering of solutions, can be incorporated in

two steps of a GA multiobjective optimisation: during the selection of individuals for

reproduction and recombination and at the end, for the choice of the preferential solution from

the Pareto set obtained.

The method proposed by Roseman and Gero [ROS 85] produces the clustering of solutions

that can be considered similar between themselves, in all or in some criteria. Then, inside the

groups, the solutions that show to have preferential characteristics are selected. The technique

consists in comparing the proximity of solutions on the hyper-space, i.e., the similitude or

proximity of two solutions is evaluated through some kind of measure of the distance between

them by the aggregation of the various distances in each criteria. The technique used for

clustering the solutions was the Complete-linkage method [ROS 85]. It is essential to define

an indifference limit, above which the performance of the solutions is considered as similar.

This limit, that can be distinct for each criterion, is defined as the percentage of the distance

between adjacent groups relative to the total distance (between extreme groups). The

algorithm involves the sequence illustrated in Figure 2.23.

Table 2.10 presents an example where the Pareto set contain 5 different polymer extrusion

operating conditions (A, B, C, D and E) with performance measures in two criteria (melt

temperature and power consumption to be minimised).

Assuming that 10% is an acceptable percentage difference limit for each objective, the groups

are sorted in ascending performance order and the initial differences are computed – steps a)

to e) of Figure 2.23 (see Table 2.11).
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a) For each objective sort the solutions by ascending order.

b) For each objective, every solution is treated as one group (one solution per group, except in

the case of equal solutions).

c) In the case of equal solutions, maintain one solution by group, referencing the solution that is

kept.

d) For each objective (Cj), calculate the maximum amplitude [Range(Cj)]:

( ) ( ) ( )jjj CMinCMaxCRange −=                                                      (2.30)

e) For each objective calculate the differences (dif) between each adjacent group (k and k+1). The

differences between adjacent groups are calculated as a percentage of the interval of existent

values for each objective. The minimum difference is the ratio of the difference between

adjacent groups over the pre-defined difference limits for each objective.
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−+
=                                        (2.31)

f) Select the absolute minimal difference.

g) If this difference exceeds the limit for each objective, select the next minimum difference. If all

the limits have been exceeded, the algorithm ends.

h) Merge the groups whose difference is below the limits for the respective objective.

i) Recalculate the differences for this objective.

j) If any solution of the assembled groups is dominated, eliminate this solution. If not, return to

step f).

k) If the number of solutions/groups that remain non-merged is greater than the number of

required soutions/groups, return to step f).

Figure 2.23- Algorithm for the reduction of the Pareto set.

Table 2.10- Pareto optimal set for extrusion example.
Operating
Condition

Melt
Temperature

(ºC)

Power
Consumption

(W)
A 192 560
B 178 770
C 169 1000
D 165 1450
E 166 1500
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Table 2.11- Example of Pareto set reduction:
Values sorted and grouped in each objective – 1st iteration.
C1 – Melt temperature (ºC) C2 - Power consumption (W)

Group Operating
Conditions

Values Difference
(%)

Operating
Conditions

Values Difference
(%)

1 A 192 51.9 E 1500 5.3
2 B 178 33.(3) D 1450 47.9
3 C 169 11.(1) C 1000 24.5
4 E 166 3.7 B 770 22.3
5 D 165 A 560

After the first iteration the minimum difference found in criterion C1 is 3.7% – i.e., step f),

between groups 4 and 5, and since it is lower than 10% - step g). The next stage is to merge

these groups – step h), and check for domination between them (Table 2.12) – step j).

Operating condition D is non-dominated by E, since it has a higher performance in criterion

C2, i.e., a higher group, then this solution is not eliminated – step j).

Table 2.12- Example of Pareto set reduction:
Check for domination – 1st iteration.

GroupsOperating
Condition C1 C2

E - 1
D - 2

After the 2nd iteration the differences for criterion C1, where the groups 4 and 5 are linked,

needs to be recalculated (Table 2.13) – step i).

Table 2.13- Example of Pareto set reduction:
Values sorted and grouped in each objective – 2nd iteration.

C1 – Melt temperature (ºC) C2 - Power consumption (W)
Group Operating

Conditions
Values Diff .

(%)
Group Operating

Conditions
Values Diff .

(%)
1 A 192 51.9 1 E 1500 5.3
2 B 178 33.(3) 2 D 1450 47.9
3 C 169 14.8 3 C 1000 24.5
4 E 166 4 B 770 22.3
4 D 165 5 A 560

The minimum difference in criterion C2 is now 5.3% between groups 1 and 2, i.e., operating

conditions E and D. Merging groups 1 and 2 and checking for domination is carried out

(Table 2.14). In this case operating condition E dominates operating condition D, since they

belong to the same group in criterion C1, i.e., operating condition D will be eliminated in all

criteria.
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Table 2.14- Example of Pareto set reduction:
Check for domination – 2nd iteration.

GroupsOperating
Condition C1 C2

E 4 -
D 4 -

After recalculating the differences, the results are presented in Table 2.15. The minimum

difference found is now 14.8%, which is greater than the pre-defined acceptable limits (10%)

– step k), hence the process stops. The operating conditions A, B, C and E define the new

reduced Pareto frontier.

Table 2.15- Example of Pareto set reduction:
Values sorted and grouped in each objective – 3rd iteration.

C1 – Melt temperature (ºC) C2 - Power consumption (W)
Group Operating

Conditions
Values Diff .

(%)
Group Operating

Conditions
Values Diff .

(%)
1 A 192 51.9 1 E 1500 53.2
2 B 178 33.(3) D 1450
3 C 169 14.8 2 C 1000 24.5
4 E 166 3 B 770 22.3

D 165 4 A 560

Using the reduction of Pareto set with the GAs

The fundamental objective of multiobjective optimisation with GAs is to distribute the

population uniformly along the Pareto frontier and simultaneously to promote the progressive

displacement of this frontier towards the improvement of the individual objectives [GOL 89a,

FON 93, HOR 94, SRI 95].

Starting with a set of solutions on the Pareto frontier, in any given generation, the method

reduces the number of solutions on the efficient frontier, while maintaining the characteristics

of the original set. This feature can be incorporated in multiobjective optimization with GAs,

by modifying the traditional algorithm in order to include the Pareto set reduction in each

generation and to define a ranking scheme of the solutions that considers this reduction. The

number of individuals that belong to the Pareto frontier (N) is reduced according to a pre-

defined number of ranks (k = 1, 2, ..., N_Ranks). The objective function value is calculated

according to the sequence described in Figure 2.24.
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a) Pre-define the number of required ranks, N_Ranks;

b) First iteration, k =1;

c) While k < N_Ranks do:

1. Reduce the population down to k
N

N Ranks_







 individuals

2. For all the remaining individuals that do not have yet a rank from previous iterations, do
Rankk = k;

3. Go to the next generation, k = k + 1;

d) Assign the individuals to be classified as: Ranki = N_Ranks;

e) Calculate the objective function value from this ranking, using equation 2.8 or 2.9, where N is
replaced by N_Ranks and i by Ranki;

f) Select the individuals for reproduction by one of the available methods (e.g. roulette-well
selection).

Figure 2.24- Reduced Pareto set with GAs.

This algorithm can also include sharing for a more uniform distribution of the population

along the Pareto frontier. In this case, an additional step is inserted between steps e) and f) of

Figure 2.24, using equation 2.13 to calculate a new value for the objective function. The

selection pressure can be controlled by the value of N_Ranks (the smaller this value, the

greater the selection pressure), which ranges between 2 and N. The determination of a precise

value requires an empirical study; acceptable values, that do not alter significantly the

performance of the algorithm, are usually situated between 10% and 50% of N.

This algorithm does not require scaling objective values during the Pareto set reduction.

Another advantage is the use of a unique parameter, N_Ranks (if sharing is not considered)

which is easy to determine.
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3- MODELL ING OF SINGLE SCREW EXTRUSION

3.1- Introduction

In a typical single screw extruder an Archimedes type screw rotates inside a heated barrel.

The screw has (at least) three distinct geometrical sections (figure 3.1): the feed zone, where

the channel depth is constant (H1); the compression zone, where the channel depth changes

along the axis; and the metering zone, where the channel depth is again constant but smaller

(H2).

D

H1
H2

Heater band

FEED COMPRESSION METERING

L1 L2 L3

Figure 3.1- Typical single screw extruder.

As stated previously, the objective of this work is to optimise automatically this process

through the use of an optimisation algorithm (GAs), i.e., to define the processing conditions

(screw speed and barrel temperature profile), or the screw geometry that produce the best

system performance. Since, the inverse formulation of this process cannot be explicitly

obtained and the solution is probably not unique, the use of an optimisation scheme, like the

il lustrated by figure 2.1, is adopted. The process modelling package has as input data the

polymer properties, screw geometry and processing conditions, and its results (output, melt

temperature, length of the screw required for melting, power consumption and degree of

mixing) are used to quantify the process performance. The theoretical model must be sensitive

to changes on the input data, able to predict the required performance parameters and,

simultaneously, must produce results with low computation times (given the intense use

required by the optimisation algorithm).

The abil ity to produce reliable performance parameters and the sensitivity to the input data are

usually accomplished via elaborate theoretical mathematical models, which make use of

sophisticated, but time consuming, numerical schemes such as finite elements [VIR 84,

ZHU 91, PAL 72a, PAL 72b, KIM 95, CHA 95, GHO 96, BRO 97]. Conversely, analytical

models [AGA 96, DAR 56, TAD 70, BRO 72, TAD 67, GRI 62], produce results more
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quickly but with less accuracy, since the resolution of the constitutive equations is made with

some important simpli fications. Thus, a compromise between these two approaches must be

found. Results such as output, melt temperature, melt temperature distribution, power

consumption, solid profile, length of screw required for melting, degree of mixing, residence

time distribution, pressure profile, are required for a relevant optimisation. For that, numerical

models based on finite differences [TAD 72, ELB 84, LIN 85a, FEN 77] will be used

whenever possible. Since their computation time is incomparably lower than the obtained

with finite elements. The objective of this chapter is to present and discuss the computer

implementing of the mathematical models adopted for each functional zone (see figure 2.1).

These individual zones will be considered sequentially and their boundary conditions will be

discussed. A global model of the extrusion process, where the aim is the determination of the

operational point for a given extruder/die combination will be adopted.

3.2- Extruder geometry

Figure 3.2 illustrates a portion of the screw and barrel that is used to define the geometry of a

single screw extruder. The internal barrel diameter is Db, the internal and external screw

diameters are Di and Ds, respectively, and the screw pitch is S. The channel depth H, is given

by:

2
ib DD

H
−

=
(3.1)

The flight clearance is δf. The helix angle, θ, and the channel width, W vary in the radial

direction (at the root of the screw, θs and Ws, at the barrel surface, θb and Wb) respectively:
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S
arctg

π
θ

(3.3)

eSW ss −= θcos (3.4)

eSW bb −= θcos (3.5)
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The flight width, e, is measured in a direction normal to the flights (as the channel width).

Generally, the number of screw flights in parallel, p, is 1. The channel depth varies in the

compression zone of the screw, between H1 and H2:

212 LAHH −= (3.6)

A is the slope of the taper.

Figure 3.2- Geometry of an extruder screw.

Modern extruders have a number of additional features such as grooved barrel sections,

distributive and dispersive mixing sections and barrier screws [RAU 86]. Only the grooved

barrel wil l be considered in this work. The grooves can be longitudinal or helicoidal (figure

3.3). The groove width is bN; the height (hN) is not constant, but decreases linearly from a

maximum value at the beginning (hN0) to zero.

Figure 3.3- Barrel section with longitudinal and helicoidal grooves.
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Modelli ng plasticating single screw extrusion implies necessarily that a number of

simpli fications need to be made. Some of these are associated with the geometry of the screw

channel and to the cinematic conditions [TAD 70]:

a) The channel can be unrolled and treated as a

rectangular cross section, so that Cartesian

coordinates are used.

The error introduced by this approximation is negligible, since the channel depth is much

smaller than the screw diameter [TAD 70, FEN 79, STE 95]. Therefore, the channel width

and the helix angle become constants given by their average values, W  and θ , respectively

(equations 3.7 and 3.8).

2
sb WW

W
+

=
(3.7)

2
sb θθθ +=

(3.8)

b) The screw is stationary and the barrel rotates.

This simplification is usually adopted since it is easier to visualise and study the extrusion

physical phenomena. Tadmor and Klein [TAD 70] discussed this assumption for melt flow in

the melt conveying zone. They proved that the tangential velocity profile of an isothermal

Newtonian fluid flowing between two infinitely long concentric cylinders, is identical,

regardless whether it is the inner or the outer cylinder that rotates, i.e., they concluded about

the legitimacy of this assumption. More recently, Rauwendall et al. [RAU 98] proved

experimentally that this assumption is justified. They derived analytical equations for the flow

of a Newtonian fluid in a single screw extruder using two geometrical systems (flat plate and

cylindrical) and two cinematic conditions (rotating barrel and rotating screw). They concluded

that the velocities and the pressure gradients are exactly the same for the cylindrical system

and that for the flat plate system the differences are insignificant if the channel depth is small

relatively to the barrel diameter (H<0.2D).

Hence, one can define a barrel velocity (Vb) and its components (Vbx and Vbz) on a Cartesian

system (figure 3.4).

bb DNV π= (3.9)
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bbbz VV θcos= (3.10)

bbbx sinVV θ= (3.11)

where N is the screw speed.

y

z

x

Vbx

Vb Vbz

θb

Barrel

Pushing

flight

Trail ing

flight
W

Figure 3.4- Barrel velocity components.

3.3- Solids conveying

The solids conveying zone extends from the hopper until the location, on the screw, where the

first polymer pellets melt.

HOPPER
The hopper of an extruder is generally constituted by a sequence of vertical and/or convergent

columns. The pellets are transported to the screw by the action of gravity. During this process

a stress field is developed in the pellets, which depends on the working conditions, static

(hopper closed, during the initial loading) or dynamic stress fields (hopper open, during the

discharge), figure 3.5 [WAL 66, WAL 73, THO 95]. In dynamic conditions two types of flow

can occur (figure 3.6), funnel flow or mass flow [THO 95], which depends on the converging

wall slop. The funnel flow occurs when the slop is shallow, this type of flow is undesirable,

and on the contrary the mass flow wil l occur when the hopper walls are sufficiently smooth.

Generally, the hopper on the extrusion process works open but in quasi-static conditions

[WAL 66, WAL 73].

The pressure at bottom of the hopper is often considered as an initial condition for the

calculations on the solids conveying zone on the screw. It may be estimated by performing a

force balance on an elemental horizontal slice of bulk solids material [WAL 66].
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static dynamic

Figure 3.5- Stress fields for static and dynamic
conditions.

Funnel flow Mass flow

Figure 3.6- Flow types for dynamic conditions.

SCREW
The solids conveying zone has received less attention in comparison with the melting and

melt conveying zones [AME 89]. This is probably due to the difficulties associated namely in

considering that the solid bed does not behave as consistent block, as well as in determining

some important polymer physical proprieties (such as bulk density and coefficients of

friction) which depend on process variables like temperature, velocity and local pressure.

One of the first attempts to model this zone was carried out by Darnell and Mol [DAR 56],

who assumed that the flow of solids (i.e., the movement of a non-deformable elastic solid

bed) results from the difference between the friction forces acting on the screw surface and

barrel surfaces. Subsequent studies have been proposed, extended this analysis and considered

motion due to shear rates in polymer melt films surrounding the solid, non-isothermal

conditions, two-dimensional solid bed and fluid containing solid particles [CHU 71, BRO 72,

TAD 72, LOV 73, ATT 80]. The model developed by Tadmor and Broyer [TAD 72] deserves

a special note, since the original Darnell and Mol´s analysis was extended to include the

thermal effects that take place on the solid bed, particularly closer to the screw and barrel

surfaces.

This decade witnessed new theoretical and experimental studies. After verifying

experimentally that the pellets do not behave generally as a coherent bed, some authors [ZHU

91, FAN 91] developed a theoretical model based on finite elements, which takes this fact into

consideration, but that introduces also four new material parameters that are difficult to

determine in practice. The Spalding and Hyun group developed a non-isothermal model for

starve-fed and for flood-fed extruders [STR 92, HYU 97]. A device for measuring solids
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conveying rates as a function of barrel and screw temperatures, screw speed, and discharge

pressure was developed [HYU 96]. The results obtained with this model are compared with

experimental and theoretical data. The results seem to be reasonable, but they need some

additional work in order to be validated. Recently Campbell et al. [CAM 95, YAM 98]

proposed a model assuming that the solid bed behaves as an elastic fluid. The model remains

to be completed and validated. Finally, Spalding et al. developed methods that allow the

quantification of the bulk density and the friction coefficients as a function of temperature,

velocity and pressure, which are tested with several polymers [HYU 90, SPA 93, SPA 95a,

SPA 95b].

Given the current limitations of the most recent models for solids conveying, the pressure

gradient and power consumption will be computed adopting the Broyer and Tadmor analysis

[BRO 72, TAD 72]. The temperature profile requires obviously a non-isothermal model,

hence the model of Tadmor and Broyer [TAD 72] will be modified and implicit finite

differences will be adopted. The method avoids the need of a numeric relation between the

value of the differences on the transversal and longitudinal directions.

Pressure generation
Broyer and Tadmor [BRO 72, TAD 72] considered the following simplifications:

• The pellets behave as a continuous elastic plug;

• The solid plug contacts perfectly all sides of the screw channel and barrel;

• The flight clearance is neglected;

• The various friction coeff icients are constant;

• The polymer density is assumed to be constant;

• Gravitational and inertial forces are neglected.

The density and friction coefficients can vary with temperature, pressure, velocity and other

variables if the calculations are performed on small down-channel increments.

From simple geometric considerations, the volumetric output is given by [DAR 56, TAD 70,

BRO 72]:
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(3.12)

where φ is the solids conveying angle.
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The pressure profile is obtained from force and torque balances made on a differential down-

channel element, as shown in figure 3.7 [TAD 70, BRO 72]. The forces include friction (F1)

between the barrel and the solid bed (acting in a direction making an angle θ+φ with the

down-channel direction), friction due to the contact of the solids with the screw root (F5) and

screw walls (F3 and F4), respectively, normal reactions (F7 and F8), and forces due to the

pressure gradient (F6 and F2).

F1

F2

F3

F4
F5

F6
F7

F8

dZ

θφ

Figure 3.7- Forces acting on a solid bed element.

The pressure rise is given by:
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where P
1
 and P

2
 are the pressures at down-channel distance z

1
 and z

2
, respectively. A1, A2, B1,

B2 and K are constants given by:
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In these equations, fs, and fb are the polymer-metal fr iction coeff icients at the screw and

barrel sur faces, respectively.
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Power consumption

The mechanical power consumption in the solids conveying zone (ew) is the product of the

friction force at the barrel surface by the barrel velocity in the φ direction. In turn, the latter is

the product of the local pressure by the interfacial area between the solid bed and the barrel

(P2 fb Wb dz) [BRO 72]:

dzPWfDNde bbbw φπ cos2= (3.19)

Upon integration along the down-channel direction:

φπ coszPWfDNe mbbbw ∆= (3.20)

where Pm is:
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The mechanical power consumption results from:

wpwfwswbw eeeee +++= (3.22)

where ewb , ews, ewf and ewp are the mechanical power dissipated on the barrel surface, on the

screw root, on the flights and for compression, respectively. The corresponding expressions

are:
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with:



69
______________________________________________________________________________________

b

s

S

e
S

e

r

θ

θ

cos
1

cos
1

1

−

−
=

(3.27)

Transversal temperature profile
The temperature profile in the solid plug can be predicted by solving the energy equation,

which depends on:

• heat convection along the channel due to the polymer motion;

• heat conduction (in the radial direction) due to the temperature gradients;

• heat conduction in the down-channel direction.

The latter can be neglected when compared with the other two. Thus the temperature profile

along the screw channel can be described by equation 3.28, where the left term represents heat

convection and right term represents the heat conduction:

2
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V ssz ∂
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∂ α
(3.28)

Vsz is the solid bed velocity, T(y) is the cross temperature profile (direction y) and αs is the

thermal diffusivity of the solid plug.

Friction at the polymer-barrel and polymer-screw walls and heat conduction from the barrel

increase the temperature of the solid plug (particularly near the surfaces). Pressure,

temperature and relative velocity affect the friction coefficients, therefore, the temperature.

Figure 3.8 shows the heat fluxes due to friction on the various surfaces on a differential cross-

channel slice of the solid plug. The heat fluxes on the flights (qf) and on the screw root (qs) are

generally neglected [TAD 72]. Heat generation on the root of the screw will be considered in

this work, in order to define the location where the polymer reaches the melting point and the

second part of the delay zone starts (as will be presented in the following section).

Equation 3.28 is solved considering that the heat fluxes (per unit surface) are defined by

equations 3.23 and 3.24 divided by the surface where they act ( zWb ∆  and zWs ∆ ,

respectively). The heat generated at the barrel surface is dissipated in two fluxes, one in the

direction of the solids, the other in the direction of the barrel [TAD 72]:
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where ks and kb are the thermal conductivity of the solid polymer and of the barrel (metal),

respectively.

Barrel

Screw

FlightFlight

qb

qs

qf qf

y

x

∆z

H

W

Figure 3.8- Heat fluxes due to friction on solid plug cross-channel slice.

The evaluation of the conductive heat flux on the barrel is made using the barrel temperature

value (Tb), measured at distance b from the interface, and considering a linear temperature

profile along the barrel thickness:
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where T is the interface temperature.

It is more difficult to compute the heat flux on the screw, because the screw temperature is not

known. One can either consider that the temperature at the screw surface (Ts) is constant (e.g.

equal to the inlet polymer temperature - Ts0) or assumes an adiabatic screw. In this case, the

heat flux is:
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(3.31)

where kp is the thermal conductivity of the screw (metal).

Equation 3.28 can be solved using an implicit finite difference method, such as a Crank-

Nicolson scheme, together with the boundary conditions in the barrel (equation 3.29) and in

the screw root (equation 3.31). The differential element in the y direction (∆y) will be

independent of that in the z direction (∆z) [TAD 72, MIT 97]. The screw channel is filled with
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a rectangular grid with sides parallel to the y and z axes (figure 3.9); ∆y and ∆z are the grid

spacing (or differential elements) in the y and z directions, respectively. The co-ordinates of

the grid points (Y,Z) are given by:
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with i = 0, 1, … M and j = 0, 1, …, N.
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Figure 3.9- Finite differences grid.

The discretisation of equation 3.28 is made using central difference approximations for the

first order derivative in the z and in y directions, respectively:
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Using the Crank-Nicolson scheme for the second order derivatives in the y direction yields:
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Figure 3.9 shows the 6 points involved in these approximations for calculating the

temperature in the point T(i,j). Replacing in equation 3.28 and rearranging:
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where the temperatures on the left hand side are unknown and the temperatures on right hand

side were computed in the previous step, or correspond to the initial temperatures for z=0

(i=0). Replacing j by 1, 2, …, N-1 produces a system of equations, that can be put in matrix

form:

BTA = (3.37)
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Since this system has N-2 equations and N unknowns, the two boundary conditions (equations

3.29 and 3.31) produce two extra equations:
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Then, the matrix A (3.38) and the vector B (3.40) are changed into:
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The solution to this system can be obtained using, e.g., the method of Gauss elimination with

partial pivoting.
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Barrel grooves

The output capacity of the solids conveying zone, as well its insensitivity to pressure

fluctuations can be increased by augmenting the friction coeff icient on the internal barrel

surface, via machining longitudinal or helicoidal grooves on the barrel (figure 3.3).

Several theoretical and experimental analyse on the grooved section of extruders have been

carried out [BOE 90, POT 85, RAU 82a, RAU 82b, GRÜ 84, RAU 86, POT 88, POT 89]. In

this work the influence of the grooves will be considered through the use of an equivalent

friction coeff icient (that depends on the grooves geometry) in the conventional solids

conveying analysis. This equivalent (or eff icient) friction coefficient will be determined by

the contact of the solid bed in screw channel with the barrel flight tip surface and with the

solid bed contained by the barrel grooves. The influence of the grooves geometry (groove

depth, hN, and total groove width - number of grooves multiplied by the groove width, bN) on

the performance of four methods to compute the equivalent friction coefficient is presented in

Appendix A. As expected, total groove width is the relevant parameter, since the occurrence

of a transversal polymer flow on the grooves is determinant for their eff iciency. For that

reason, the effective friction coefficient only decreases when the groove depth is sufficiently

small (towards the end of the grooved section).

3.4- Delay

The melting mechanism does not start immediately at the end of solids conveying zone (i.e.,

when the solid polymer closer to barrel surface reaches the melting temperature). Maddock

[MAD 59] and Tadmor et al. [TAD 67] reported a two-stage process (figure 3.10):

• The polymer in contact with the barrel surface melts first and forms a film at the barrel-

solid polymer interface. This film increases gradually its thickness.

• Subsequently, a melt pool appears near to the active screw flight of the channel and its

width increases until the entire polymer melts (this is the melting zone).

There are, at least, two causes for this delay [AGA 96, TAD 67, KAC 72]. The initial melt

rather than accumulating near to the active flight will penetrate and fill the voids between

pellets, delaying the film formation. After the formation of the melt film, the melting

mechanism wil l only start when the thickness of the melt film exceeds the flight clearance. It

is common that the film thickness grows far beyond the value of the clearance, until that a
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sufficient cross channel pressure, is able to push and deform the solid bed against the trailing

flight [KAC 72, AGA 96].

Melt film

Active flank Passive  flank

Melt pool

Figure 3.10- Maddock/Tadmor melting mechanism.

In principle, depending on the operating conditions, particularly the screw temperature, it is

possible that the polymer closer to the screw surfaces (walls and root) reaches its melting

point during the delay zone. As seen in the previous section, at the screw flanks and root there

is, also, dissipation by friction, with a consequent gradual increase of the temperature of the

solid polymer. Therefore, the delay zone can have two stages (figure 3.11), i.e., from a

specified screw location onwards a melt film near all screw surfaces can be formed, and can

be maintained through the melting length.

Delay zone I Delay zone II

Figure 3.11- Proposed two-stage delay zone.

DELAY ZONE I
As shown in figure 3.12, the solid bed contacts the screw walls and root, where the local

temperature increases due to heat dissipation from friction. This mechanism is completed

when the solid polymer reaches its melting point. Simultaneously, the solid polymer continues

to melt at the melt film-solid bed interface (the heated barrel and the intense shearing

occurring in the film contribute significantly to this process, as will be seen later).

Kacir and Tadmor [KAC 72] developed a theoretical model for this zone that allows the

calculation of the film thickness profile, the temperature profiles in the film and in the solid
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bed, the pressure generation, the power consumption and the zone length. Additionally, the

model developed here considers:

• heat convection in the down-channel direction,

• heat conduction in the radial direction,

• heat convection in the radial direction.

Vbz

Vbx Vsz

H

x
z

y

T(y)

Tb

Tm

Tso

Ts

A

Vb

CδC

Figure 3.12- Cross-section for delay zone I.

The following assumptions are established:

• The solid bed is an isotropic and homogeneous continuum;

• Melt leakage over the flight tips is neglected;

• The molten polymer is an inelastic viscous fluid;

• The flow is steady;

• The solid-melt interface is smooth;

• The melt film flow is fully developed in the down and cross channel directions (i.e.,

∂Vx/∂x = 0 and ∂Vz/∂z = 0);

• Gravitational and inertial forces are neglected.

Melt film

The momentum and energy equations are the following [ELB 84, LEE 90, HUA 93,

HAN 96]:
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where ρm is the melt density, cp is the melt specific heat, km is the melt thermal conductivity

and η is the melt viscosity, which will be calculated using a temperature dependent power

law:

( )[ ] 1
00

−−−= nTTaexpk γη � (3.49)

k0 , a, T0 and n are constants and γ�  is the shear rate, given by:
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Since the leakage flow is neglected, the melt must recirculate in the x-direction:

 ∫ =C

dyyVx

δ

0
0)( (3.51)

where δC is the melt film thickness.

The relevant boundary conditions are:
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where Tm is the melting temperature.

The resolution of equations 3.45, 3.47, 3.48 and 3.51, coupled to the boundary conditions

3.52, provides the melt film velocity and temperature fields. The mesh is similar to that shown

in figure 3.9, where the y coordinates vary between y=0 (solid-melt interface) and y=δC (the

film thickness). The equations are non-linear, since the viscosity depends on the temperature

and on the velocity field, thus involving the use of a specific finite difference discretisation

[MIT 80, ZIE 83]. The solution of equations 3.45 and 3.47 can be obtained using the implicit

Crank-Nicholson scheme.
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where 
2

1
1 +− j,i

η is the viscosity calculated using equation 3.49 with an average temperature and

shear rate:
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The differential terms of the energy equation (3.48) need to be replaced by equations 3.33 and

3.35, respectively.
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Substituting j by 1, 2, …, N-1, produces a system of equations that can be put in matrix form

as in equation 3.37. The system is completed with equation 3.51 and with an equation for the

mass flow rate in the melt film, obtained by a mass balance.

Figure 3.13 shows the iterative procedure for the simultaneous resolution of equations 3.53,

3.54 and 3.57, where Vx(y), Vz(y), 
x

P

∂
∂

, P and T(y), need to be determined for section i. The

numerical resolution is similar to that of the solids conveying zone, when equation 3.28 is put

in matrix form (equation 3.37).

Initial values for:

Vx0,j(y) (e.g., a linear profile between 0 and Vbx)

Vz0,j(y) (e.g., linear variation between Vsz and Vbz)

T0,j(y) (e.g., linear variation between Tm and Tb)

do {

do {

solve equation 3.53 (to obtain Vxi,j and ∂P/∂x)

solve equation 3.54 (to obtain Vzi,j and Pi)

} while (Vxi,j, ∂P/∂x,  Vzi ,j and Pi have not converged)

solve equation 3.57 (to obtain Ti,j)

} while (Ti ,j has not converged)
Figure 3.13- Method for solving a system of non-linear differential equations.

Solid bed

Here, a displacement of the solids towards the melt film must occur, due to melting [TAD 70,

ELB 84]. An additional term in the energy equation (the heat convection in the radial

direction) must be included.
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where Vsy is the velocity towards the solid-melt interface.

At the screw root the heat generated by friction dissipation has two components, one in the

solids direction, the other in the screw direction.
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The screw temperature must be known. As referred previously this is not an easy task. An

empirical equation suggested by Cox and Fenner [COX 80] will be adopted:

( )[ ] ( )zexpTzexpT)z(T sobs ββ +−= 1 (3.60)

where:
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and zm is the helical distance between the hopper and the location where the lower and lateral

melt films first appears.

The discretisation of equation 3.58 is identical to that of equation 3.28.

Mass and heat balances over the solid-melt interface

The behaviour of the melt film and of the solid bed can be coupled through mass and heat

balances in the interface. The mass flow rate in the melt film ( zz|Cm ∆+� ) is determined by the

rate of melting over the interface (RC): see figure 3.14, which represents an elemental portion

of the interface between the melt film, C, and the solid bed A (see also figure 3.12).

Czczzc Rmm +=∆+ �� (3.62)

where:

∫=
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δ

ρ
0

)(� (3.63)

csysC WzVR ∆=ρ (3.64)

where ρs is the solid bed density and the indices C|z and C|z+∆z refer to the down-channel

increment z and z+∆z, respectively, in zone C.

The mass flow rate in the solid bed ( zz|Am ∆+� ) is:

CzAzzA Rmm −=∆+ �� (3.65)

where:

( )szsszszA WHVm ρ=� (3.66)

and Hs|z is the solid bed height. Then, the total mass flow rate ( Tm� ) is:
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zzczzAT mmm ∆+∆+ += ��� (3.67)

Finally, a heat balance over the melting interface yields:
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Figure 3.14- Mass balances over the solid-melt interface.

Pressure gradient

Force and torque balances, identical to those carried out for the solids conveying zone allows

the computation of the pressure profile. Here, a viscous force replaces the friction force at the

barrel wall [KAC 72]:

dzWF bτ=1
(3.69)

where τ is the shear stress. For isotropic pressure distribution and constant channel depth:
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A2, B2 and K are defined by equations 3.15, 3.16 and 3.17, respectively, and the mean shear

rate, γ� , used to compute τ is:

( )φθδ
θγ

+
=

bC

bb

sin

sinV� (3.73)

Power consumption
The mechanical power consumption can be calculated following the procedure presented for

the solids conveying zone, but replacing the contact with the barrel by a melt film. Then,

equation 3.22 becomes [KAC 72]:

e e e e ew wb ws wf wp
′ ′= + + + (3.74)

where  ′
wbe  is the power dissipated on the barrel surface, given by:
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DELAY ZONE II
This zone corresponds to the classic delay zone studied by Chung [CHU 71, CHU 75] who

developed a model predicting the pressure profile assuming isothermal conditions.

Instead, in this work this zone will be considered as a particular case of melting where the five

distinct sections represented in figure 3.15 can be identified [ELB 84, LIN 85a]. In this way,

physical compatibil ity between adjacent functional zones is ensured.
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Figure 3.15- Cross-section for delay zone II .
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The solid bed (A) is surrounded by melt films adjacent to the barrel wall (C), the screw root

(E) and the active (B) and trailing screw flights (D). The delay zone II differs from the

melting zone only in terms of melt pool B. The transition of the former to the latter is

prescribed by the thickness of B reaching the channel depth [ELB 84]. Whereas in the delay

zone II section B is a melt film and calculations will be carried out in the x-direction, in the

melting zone, section B is a melt pool where the melt recirculates, hence a two-dimensional

approach will be followed. The model wil l be presented in the next section.

3.5- Melting

A schematic representation of the melting mechanism in a rectangular channel cross-section is

shown in Figure 3.16.
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Figure 3.16- Cross-section for melting.

Different forms of the momentum and energy equations describe each of the five individual

regions. Boundary conditions and force, heat and mass balances will complete the equations

available.

The main assumptions include [ELB 84, LIN 85a]:

• The solid bed is an isotropic and homogeneous continuum;

• Melt leakage over the flight tips is neglected;

• The molten polymer is a purely viscous fluid;

• The flow is steady,

• The solid-melt interfaces are smooth;
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• The flow of the melt films is fully developed in the down and cross channel directions

(i.e., ∂Vx/∂x = 0 and ∂Vz/∂z = 0);

• The temperature field, of the melt films is fully developed in the cross channel direction

(i.e., ∂T/∂x = 0), but not in the down channel direction (i.e., ∂T/∂z ≠ 0);

• Heat conduction in the down channel direction is neglected (i.e., ∂2T/∂z2 << ∂2T/∂y2);

• Gravitational and inertial forces are neglected;

• The solid bed velocity is constant (this has been reported as producing the best results,

especially in association with cross-channel flow [LIN 85a, LIN 85b]).

Momentum and energy equations
a) Melt films (C, D and E)

Given the above assumptions and the development of cross-channel melt circulation around

the solid bed, the momentum and energy equations for films C, D and E are identical. Region

D can be considered as an extension of region E, as suggested by previous experimental work

[ELB 84]. The flow and the thermal behaviour of regions C and DE can be described by

equations 3.45 to 3.50 with the following boundary conditions:
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for region DE.

b) Melt pool  (zone B)

When the melt pool width (WB) is equal or greater than the screw channel depth recirculation

takes place, i.e., ∂Vz/∂y≠0. Otherwise, B will behave as C (i.e., delay zone prevails). During

melting, the momentum in the z direction and energy equations (3.47 and 3.48) take the form:
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where the shear rate is given by:
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The boundary conditions are:
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c) Solid bed (zone A)

The solid bed is considered to move in the down channel direction at constant velocity:
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Different heat conduction and dissipation rates occur in the two opposite sides of the solid bed

and cause an asymmetrical temperature distribution. Consequently, region A can be sub-

divided in two (see figure 3.17):
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where Vsy1 and Vsy2 are the solid polymer velocities in the direction of the melt films C and E,

respectively, Ts1 and Ts2 are the temperature profiles for sub-regions 1 and 2, respectively, and

d is the distance in the y direction such that )dy(T)dy(T ss === 21 .

The boundary conditions for these regions are:
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Distance d is calculated through an iterative process, starting with an initial value (for

example, Hs|z/2) until the temperature at d for the two regions is equal.
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Figure 3.17- Solid bed sub-regions.

Mass and heat balances
Taking into account melt recirculation around the solid bed, the mass balance for region C is

(see figure 3.18, which represents an elemental portion of the interface of the melt film, C,

and the solid bed, A; see also figure 3.16):

Cz|DExz|Cxz|Czz|C Rmmmm ++−=∆+ ���� (3.86)
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z|sz|sysC WzVR ∆= 1ρ (3.90)

where:

z|Cm� down-channel mass flow rate,

z|Cxm� net flow rate to the melt pool, in the x direction,

zDExm |� cross-channel flow rate into the film from DE.

In the above equations δDE|Z is the thickness of melt film DE.
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Figure 3.18- Mass balance for region C.

The mass balance for zone DE yields (see figure 3.19, where an elemental portion of the

interface between the melt films, DE, and the solid bed, A, is represented, see also figure

3.16):

EDz|Byz|DExz|DEzz|DE RRmmmm +++−=∆+ ���� (3.91)

where:

z|DEm� down-channel mass flow rate:
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z|Bym� rate of melt circulation through the melt pool in the x-y plane,

DR melting rate over the interface A-D for an increment ∆z,

ER melting rate over the interface A-E for an increment ∆z:

( )ssz|sysED HWzVRR +∆=+ 2ρ (3.93)
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Figure 3.19- Mass balance for region DE.

The mass balance for the solid bed A is (see figure 3.20, where a portion of the interface

between the melt pool, B, and the solid bed, A, is represented):
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( )EDBCz|Azz|A RRRRmm +++−=∆+ �� (3.94)

with:

( )z|ssszsz|A WHVm ρ=� (3.95)

Finally, the mass balance in the melt pool B (figure 3.20) produces the two following

equations, which allow the calculation of z|Bym� .
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Figure 3.20- Mass balances for regions A and B.

The solid polymer velocity in the direction of the melt films C (Vsy1) and DE (Vsy2) can be

determined by heat balances over the interfaces A-C and A-DE. The corresponding equations

are, respectively:
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Force balances

The analysis is completed with the equilibrium of forces acting on the solid bed in the x and y

directions:
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and with a condition of pressure continuity along the solid bed:
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where τyx|DE and τyx|C  are the shear stresses acting on the interfaces A-DE and A-C,

respectively.

The various system of equations are subjected to the following geometric constraints:

HH DEsC =++ δδ (3.103)

WWW DEsB =++ δ (3.104)

The discretisation by finite differences is similar to that presented to the other differential

equations.

Power consumption
The mechanical power consumption for the melting zone (em), results from the contributions

of the power dissipated on the melt films C (emfC) and DE (emfDE), on the melt pool (emp), on

the flight clearance (emcl) and the power required to build up pressure (embp):

mbpmclmpmfDEmfCm eeeeee ++++= (3.105)

The power required for shearing the melt films and the melt pool results from the relative

velocity between the metal surfaces (barrel and screw) and the solid bed:
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where τyx and τyz are the shear stresses in the directions x and z, respectively.

The integral in direction y is due to the variation of the velocities in this direction; a weighted

average is computed. For melt film C the corresponding expression is:
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where Ws is the solid bed width and WA*∆z is the area were the shear stresses act. For melt

film DE is:
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where Hs is the solid bed height and (Ws+Hs)*∆z is the area were the shear stresses act.

Finally, for the melt pool:
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where Vz|B and τyz|B are the average values for each y, since they vary with x and y. The power

consumption on the flight clearance and the required to build up pressure are, respectively:
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3.6- Melt Conveying

The melt conveying, or pumping zone, develops after melting is completed. It contributes to

mixing and to generate the required pressure to force the polymer through the die at a specific

output. This, is the most studied functional zone since it determines the mass output of the

extruder and its working characteristics can be inferred from a fluid mechanics analysis,

without the need of extensive experimental work. Most theoretical analyses published so far

considered the following type of simpli fications [AME 89, RAU 86]:

• Polymer rheology – purely viscous Newtonian or non-Newtonian fluid.

• Isothermal or non-isothermal conditions.

• One-, two- or three-dimensional flow.

• Down channel convection effects – included or neglected.

• Leakage flow through the screw tips – included or neglected.
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• Existing or not existing slip at the walls.

Table 3.1 summarises the assumptions made in the melt conveying models, according to

Amellal et al. [AME 89]. Fenner et al. [FEN 77] compared experimental results with

theoretical results obtained using various models. They conclude that, for most practical

purposes, a two-dimensional analysis of developing non-isothermal non-Newtonian flow gave

the satisfactory predictions.

Table 3.1- Assumptions of melt conveying models (individual
references are given in the review by Amellal et al. [AME 89]).

AssumptionsModels
1 2 3 4 5 6

Rowell and Finlayson Y Y 2 N N N
Carley and Strub Y Y 2 N N N
Carley, Mallouk and Mckelvey Y Y 1 N N N
Carley and Mckelvey Y Y 1 N N N
Mallouk and Mckelvey Y Y 1 N N N
Mckelvey, Jepson Y Y 2 N N N
Squires Y Y 1 N N N
Mori and Matsumoto N Y 1 N N N
Griff ith N Y 2 N N N
Squires N Y 1 N N N
Middleman N Y 2 N N N
Zamodits and Pearson N N 2 N N N
Dyer, Martin N N 2 N N N
Kaiser and Smith N N 2 Y N N
Donovan N Y 1 Y Y N
Fenner and Will iams N N 2 Y N N
Pali t and Fenner Y Y 2 N N N
Pali t and Fenner N Y 2 N N N
Pittman et al. Y Y 2 N Y N
Choo, Hami and Pittman N Y 2 N Y N
Viriyayuthakorn and Kassahun N N 3 Y Y N
Brucker et al. N N 2 Y Y N
Meijer and Verbraak Y Y 1 N N Y

ASSUMPTIONS: 1- Newtonian flow, 2- Isothermal model, 3- Number of
dimensions considered, 4- Convection included, 5- Leakage flow taken into
account, 6- Slip at wall exists.

More recently, new studies have been reported (see table 3.2). Joo and Kwon [JOO 93]

studied the effect of the 3D circulatory flow on the residence time distribution. Kim and

Kwon [KIM 95a] suggested a simple approach to determine the screw characteristics for 3D

flow, by introducing a Total Shape Factor to correct 2D flow analysis. They also compared

the results of a quasi 3D model and of 2D model considering slip and concluded that slip

effects are very significant [KIM 95b]. Chiruvella et al. [CHI 95b] developed a 2D non-



92
______________________________________________________________________________________

Newtonian non-isothermal model based on finite differences. Chang and Lin [CHA 95]

developed a hybrid finite element finite difference method for simulating the non-Newtonian

non-isothermal melt flow on the screw channel. The velocity and pressure fields were

obtained using finite elements whereas temperature is computed using finite differences.

Lekarou and Brandao [LEK 96] proposed a non-Newtonian non-isothermal model where a

finite difference/finite volume method was used to solve the governing equations. More

recently, Ghoreishy and Rafizadeh [GHO 96] developed a numerical algorithm based on the

finite element method to solve the flow and energy equations under non-Newtonian and non-

isothermal conditions. A least squares finite element method is used to solve the flow

equations, whereas the energy equation is solved with the Bubnov-Galerkin formulation.

Cheng et al. [CHE 97] studied the effect of the slip at the screw and barrel using a simple

analytical model. Finally, Yu and Hu [YU 98] compared the results obtained with two simple

analytical models, one assuming the traditional parallel plates geometry, the other a helical

channel. They concluded that the second model reduces to the first when the channel depth-

to-screw diameter ratio approaches zero. However, the use of these most sophisticated models

needs to take into consideration the high computation times (principally when finite elements

are used) that are involved.

Table 3.2- Assumptions for the melt conveying models.
AssumptionsModels References

1 2 3 4 5 6
Joo and Kwon [JOO 93] N Y 3 N N N
Kim and Kwon [KIM 95a] N Y 3 N N N
Kim and Kwon [KIM 95b] N Y 3 N N Y
Chiruvella, Jaluria and Abib [CHI 95b] N N 2 Y N N
Chang and Lin [CHA 95] N N 2 Y N N
Lekarou and Brandao [LEK 96] N N 2 Y N N
Ghoreishy and Rafizadeh [GHO 96] N N 2 Y N N
Cheng, Xie, Bigio and Briber [CHE 97] Y Y 1 N N Y
Yu and Hu [YU 98] Y Y 1 N N N
ASSUMPTIONS: 1- Newtonian flow, 2- Isothermal model, 3- Number of dimensions considered,
4- Convection included, 5- Leakage flow taken into account, 6- Slip at wall exists.

The model adopted in this work must be coherent with the previous zones and must be able to

predict the most relevant process variables (pressure gradient, power consumption,

temperature profile, residence time distribution and degree of mixing). The non-isothermal

two-dimensional flow of a non-Newtonian fluid, in the presence of convection must,
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therefore, be considered. Figure 3.21 presents the velocity and the temperature profiles for

this zone. The following assumptions are made [FEN 77, FEN 79]:

• Gravitational and inertial forces are neglected;

• The molten polymer is a viscous fluid obeying to the power-law;

• The flow is steady;

• Leakage flow and wall slip are neglected;

• The flow is fully developed in the down and cross channel directions (i.e., ∂Vx/∂x = 0 and

∂Vz/∂z = 0);

• The temperature field is fully developed in the cross channel direction (i.e., ∂T/∂x = 0);

• Heat conduction in the down channel direction can be neglected (i.e., ∂2T/∂z2 << ∂2T/∂y2).
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x
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y

T(y)
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Figure 3.21- Cross-section for melt conveying zone.

Under these conditions, the governing equations are identical to those for the melt pool in the

melting zone (equations 3.45, 3.46, 3.78 and 3.79). The relevant boundary conditions are:
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(3.112)

Power consumption
The power consumption (ep) results from the contribution of the power dissipated on the

screw channel (epsc) on the flight clearance (epcl) and from the power required to build up

pressure (epp) which are given by equations 3.109 to 3.111, respectively [TAD 70, RAU 86].
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Residence time distr ibution (RTD) and mixing
The degree of mixing of a particular melt increases with the generation of interfacial area

between its individual components and with the average flow residence time inside the

extruder. The increase of interfacial area is proportional to the growth of shear strain of the

melted polymer. The stress experienced by each polymer particle varies with its position in

the screw channel. Particles close to the barrel and to the screw root suffer a greater level of

stress than those in the centre. Therefore, the average strain can be used as a relatively simple

but satisfying criterion to quantify the degree of mixing in an extruder [PIN 70, BIG 73,   BIG

74].

Pinto and Tadmor [PIN 70] computed the Residence Time Distribution (RTD) and the

“degree of mixing” (by means of a weighted-average total strain - WATS), assuming the

isothermal flow of a Newtonian fluid between parallel plates. Bigg [BIG 73, BIG 74]

developed a two-dimensional non-Newtonian isothermal model predicting the residence time

and strain distributions. The velocity gradients on the x and z directions (Vx(y) and Vz(y)) are

computed numerically, assuming constant melt temperature and that Vz only varies with y.

The model used in this work follows generally the Bigg´s [BIG 73, BIG 74] analysis, but

assumes that the velocity on the z direction varies with x and y and that flow is non-isothermal

(equations 3.45, 3.46, 3.78 and 3.79). Since the molten polymer recirculates in the x direction,

it is important to define the position that the same element of fluid occupies in upper (y) and

lower (yc) portions of the channel (Figure 3.22). These positions can be calculated from:
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x dyyVdyyV
c (1.113)

The time fraction that a fluid element spends on the upper portion of the channel is tf

(consequently, on the lower portion is 1-tf).
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Each path-pair has a residence time associated with it - t(y):
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L
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L

=
(1.115)

where VL(y) is the velocity in the direction of the screw axis, calculated from:
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( ) ( ) ( )[ ] θθ cossinyVyVyV zxL += (1.116)

and ( )yVz  is the average of the Vz(x,y) velocity in x direction, i.e.:
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izz
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where N is the number of increments (see figure 3.9).

y

yc

Figure 3.22- Circulation of a melt element along the upper and lower paths.

The weighted average total strain (WATS) can be calculated by integrating the strain

experienced by a particle - γ(y) - with respect to the residence time distribution function – f(t):

( ) ( )∫
∞
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dttfyγγ
(1.118)

The residence time distribution function is obtained from:
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where f(t)dt is the fraction of melt whose residence time lie in the range t to t+dt, Q*+Q*
c is

the total volumetric flow rate (i.e., Q), dQ* and dQ*
c are the differential flow associated with

the neighbourhoods of planes y and yc, respectively, so that:

( ) ( ) ( )[ ] WdyyVyVQQd czzC +=+ ** (1.120)

The average velocities are calculated from equation 1.117 for the corresponding y values.
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The strain undergone by a melt element (necessary in equation 1.118) is given the shear rate

multiplied by the time of shearing. A particle stays in the extruder a time t(y), of which tf is

spent in the upper path and 1-tf in the lower path. Consequently, γ(y) is calculated from:

( ) ( ) ( ) ( ) ( ) ( )fcf tytytytyy −+= 1γγγ �� (1.121)

where the total shear rates in the upper and lower paths are determined with the aid of

equation 3.80 with the following modification:
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3.7- Computer implementation

This section describes the computer implementation of the individual models described

previously. Routines for each one are initially developed. Then, a global model is built up

through a coherent linkage between adjacent zones.

As depicted in figure 3.23 and described in greater detail in figure 3.24, the algorithm

estimates two initial output values (from the screw geometry in the melt conveying zone and

the screw speed) and carries out calculations along the down-channel direction. The down-

channel length is divided into small increments. The variables calculated for element i will be

used as input data for element i+1. The predicted pressure at the die exit is used as a

convergence criterion. If this pressure is lower than ε (a suff iciently small value) the program

stops; otherwise additional computations are carried out with new output values (defined by

the Secant Method - figure 3.24). If a maximum number of pre-defined iterations are reached

without convergence, this means that the input data (material properties, system geometry and

operating conditions) is not adequate.

Simultaneously, another global model of the extrusion process (implemented previously

[CUN 94]) will be studied. The model only differs in the theoretical models used for the

individual zones, where analytical models are used (except in the calculation of the solid bed

temperature profile for the solids conveying zone). Take into account the type of individual

models used, the algorithm described and implemented here will be named numerical,

whereas the other algorithm wil l be named analytical. Table 3.3 presents a comparison

between the two in terms of the models used for the individual functional zones.
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Star t

Define:
Q1 and Q2

•Hopper
•Solids Conveying
•Delay
•Melting
•Melt Conveying

End

Yes

No

Die

Pexit < εε

New 
Q1 and Q2

For each      Z∆∆

Figure 3.23- Global program structure.

Q1
P1 = f( Q1) [using the modelling routine]:

[Hopper, Solids Conveying, Delay Zone I, Delay Zone II
OR Melting, Melt Conveying and Die]

Q2
P2 = f( Q2) [using the modelling routine]:

[Hopper, Solids Conveying, Delay Zone I, Delay Zone II
OR Melting, Melt Conveying and Die]

Iteration = 2
do {

if  ( Piteration- Piteration-1>0) {
[permute Qiteration-1 with Qiteration]
[permute Piteration-1 with Piteration]

}

( )( )

1

11
1

1
−

−−
+

−

−−−=

iteration

iteration

iterationiterationiterationiteration
iterationiteration

P

P
PPQQ

QQ

Piteration+1 = f( Qiteration+1) [using the modelling routine]:
[Hopper, Solids Conveying, Delay Zone I, Delay
Zone II OR Melting, Melt Conveying and Die]

iteration = iteration +1
} while  (( Piteration+1 >ε) or (iteration <  maximum nº of
iterations))

Figure 3.24- Global algorithm.
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Table 3.3- Compar ison between the analytical and the numerical models.

Analytical model
• Hopper

- Walker [WAL 66] analysis (static
loading conditions)

• Solids conveying zone
- Tadmor and Broyer [TAD 72] non-
isothermal solid plug

• Delay zone
- Tadmor and Klein [TAD 70] is used to
estimate the zone length
- Chung [CHU 75] is used to compute
the pressure profile

• Melting zone
- Tadmor [TAD 70] three-zone melting
model, with a power law temperature
dependent fluid
- Melt temperature was computed
assuming viscous dissipation with
isothermal barrel and adiabatic screw
[AGA 96]

• Melt conveying zone
- Non-Newtonian model  [TAD 70]
coupled to the above average melt
temperature approach

Numerical model
• Hopper

- Walker [WAL 66] analysis (static
loading conditions)

• Solids conveying zone
- Non-isothermal solid plug, with heat
dissipation at all surfaces

• Delay zone
- Two sequential steps:

1. Solid bed and a melt film near to the
inner barrel wall (with heat convection on
the radial and longitudinal directions)
2. Solid bed surrounded by melt films

• Melting zone
- Lindt et al [LIN 85, ELB 84] 5-zone
model

• Melt conveying zone
- 2D non-isothermal flow of a non-
Newtonian fluid [FEN 77]

Hopper
The hopper is considered as a sequence of vertical and/or convergent columns containing

loose pellets. In figure 3.25 P0 is the boundary condition for section 1, P1 is the pressure at

bottom of section 1 (and boundary condition for section 2), and identically for P2 and P3

(which correspond to a boundary condition for the solids conveying zone in the screw). The

input data for calculating the vertical pressure profile include the pellets physical properties

(density and internal and external friction coefficients), the system geometry and the height of

material in the hopper.

Solids conveying in the screw
The input data comprises the system geometry, the physical and thermal polymer properties

and the local operating conditions. Below the hopper aperture the pressure is assumed to be

constant and equal to the pressure at the bottom of the hopper. The calculations in this zone

are made along small down-channel increments, where the polymer properties are up-dated



99
______________________________________________________________________________________

for the local pressure and temperature conditions (see figure 3.26). This zone ends when the

material adjacent to the barrel surface reaches the polymer melting temperature. At that

location the pressure, the solids conveying length, the power consumption, and the transversal

temperature profile are known.

1

2

3

P0 = 0

P1

P2

P3

Figure 3.25- Hopper geometry.

Delay zone
The entry conditions from preceding zone provide the possibil ity of predicting pressure, film

thickness and transversal temperature profiles in the solid bed and in the melt film along the

down-channel direction. When the temperature, near to the screw root, reaches the melting

point, the zone ends. This zone leads either to a delay zone II or to the melting zone (as stated

before, the delay zone II is a particular case of the melting zone). The computation algorithm

is presented in figure 3.27. At the end of this zone the zone length, the film thickness, the film

and solid bed transversal temperature profiles, the pressure and the mechanical power

consumption are computed.

Melting zone
Calculations for the melting zone require similar data to that of the delay zone. Figures 3.28

and 3.30 show the sequence of calculations for this zone. The results for this zone are

pressure, films thickness, solids profile, films and solid bed transversal temperature profiles,

melt pool two-dimensional temperature profile and power consumption.
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Melt conveying
The strategy adopted for this zone is il lustrated in Figure 3.30. Pressure, two-dimensional

temperature profile, power consumption, residence time distribution and weighted average

total strain (WATS) constitute the calculations made for this zone.

------------ Solids Conveying Zone ------------
[I NPUT D ATA]

• Geomet r y ( W, H, θ, e, … )

• Mat er i al p r oper t i es ( fs, fb, ρs, αs, ks, kb, Tm)

• Oper at i ng c ondi t i ons ( N, Tb, Ts, Ts0)

• Ent r ance c ondi t i ons ( P1)

z ← HG/ si n( θ )

P ← P1
Ts mean ← Ts0
do {

[U pdat i ng mat er i al p r oper t i es f or P and Ts mean]
φ  ← equat i on 3 . 12
P2 ← equat i on 3 . 13
Ts i ← equat i on 3 . 28 b y f i ni t e d i f f er ences
ew ← equat i on 3 . 20
Ts mean ← Aver age Ts I
P ← P2
z ← z + ∆z

} whi l e ( Ts i ( y = H) < Tm )
[R ESULTS]

Zs ( sol i ds c onveyi ng l engt h) ;
Ts i ( z = Zs) ; P ( z = Zs) ; ew ( z = Zs)

Figure 3.26- Algorithm for the solids conveying zone.

Die
The calculations on the die are needed in order to calculate the operational point of the

extruder/die combination and to validate experimentally the extrusion theoretical results.

Since the objective of this work is to study the extruder (and not the die), the model for this

zone should be able to predict pressure gradient values identical to that of the experimental

results. Therefore, the pressure gradient in the die is computed using an empirical equation

relating pressure and output:

∆P C QC= 1
2 (3.123)

where C1 and C2 are constants determined experimentally.



101
______________________________________________________________________________________

------------ Delay Zone I ------------
[I NPUT D ATA]

• Geomet r y ( W, H, θ, e, … )

• Mat er i al p r oper t i es ( fs,  fb,  ρs,  αs,  ks,  kb,  km,  Tm,  η)

• Oper at i ng c ondi t i ons ( N, Tb,  Ts)

• Ent r ance c ondi t i ons ( Zs,  Ts i( z = Zs) , P( z = Zs), ew( z = Zs) )
z ← Zs
P ← P( z = Zs)
Ts mean ← Aver age Ts i ( z = Zs)
ew ← ew ( z = Zs)
δc0 ←δ f

do {
[U pdat i ng s ol i ds p r oper t i es f or P and Ts mean]
P2 ← equat i on 3 . 70
[C al cul at i ons o n t he f i l m]

do {
Tf 0i ← ( Tib + Tm ) /2
Tf mean ← Aver age Tf 0I
[U pdat i ng mel t p r oper t i es f or P and Tf mean]
Vxi,  Vzi ←Assume l i near p r of i l e o r t ake p r of il e f r om pr evi ous z
Do {

Vxoi ← Vxi; Vzoi ← Vzi
Vxi ← equat i on 3 . 45 b y f i ni t e d i f f er ences
Vzi ← equat i on 3 . 47 b y f i ni t e d i f f er ences

} whi l e ( ( Vx0i ≠ Vxi)  and ( Vz0i ≠ Vzi))
Tf I ← equat i on 3 . 48 b y f i ni t e d i f f er ences

} whi l e ( Tf i  ≠ Tf 0i )
[I t er at i ve c al cul at i on o f  Vsy]

Ts i ← equat i on 3 . 58 b y f i ni t e d i f f er ences
Vsy ← equat i on 3 . 68
Do {

Vsyo ← Vsy
Ts i ← equat i on 3 . 58 b y f i ni t e d i f f er ences
Vsy ← equat i on 3 . 68

} whi l e ( Vsy0  ≠ Vsy )
mC|z+ ∆z  ← equat i on 3 . 62
mA|z+ ∆z  ← equat i on 3 . 65
[I t er at i ve c al cul at i on o f  Hsz]

Hsz ← H
do {

Hs ← Hsz
δC ← equat i on 3 . 63
Hsz ← H - δC

} whi l e ( Hsz  ≠ Hs )
ew ← equat i on 3 . 74
Ts mean ← Aver age Ts I
Tf mean ← Aver age Tf I
P ← P2
z ← z + ∆z

} whi l e ( Ts ( y = 0 ) < Tm )
[R ESULTS]

Zd ( l engt h o f d el ay z one I )
Ts I( z = Zd) ; Tf I( z = Zd)
δC( z = Zd) ; P( z = Zd) ; ew( z = Zd)

Figure 3.27- Algorithm for delay zone I.
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-- - - - - - - - - Delay Zone II OR Melting Zone - - --------
[I NPUT D ATA]

• Geomet r y ( W, H, θ, e, … )

• Mat er i al p r oper t i es ( fs, fb, ρs, αs, ks, kb, km, η)

• Oper at i ng c ondi t i ons ( N, Tb, Ts)

• Ent r ance c ondi t i ons ( Zd, δC, Ts i( z = Zd) , Tf i( z = Zd), P( z = Zd), ew( z =
Zd))

z ← Zs; P ← P( z = Zs)
Ts mean ← Aver age Ts i( z = Zs)
ew ← ew ( z = Zs) ; δC0 ←δC; δDE0 ←δf; WB0 ←2δf
do {

P2 ← Subroutine DP_DZ
[I t er at i ve c al cul at i on o f Vsy1 and Vsy2]

Vsy1 ← equat i on 3 . 98
Vsy2 ← equat i on 3 . 99
Do {

V0sy1 ← Vsy1; V0sy2 ← Vsy2
[C al cul at i on o f a, Ts iI  and Ts iII , u s i ng t he Secant M et hod –
unt i l Ts iI  = Ts iII , a t p oi nt a ]

Ts iI ← equat i on 3 . 83 b y f i ni t e d i f f er ences
Ts iII ← equat i on 3 . 84 b y f i ni t e d i f f er ences

Vsy1 ← equat i on 3 . 98
Vsy2 ← equat i on 3 . 99

} whi l e ( ( V0sy1  ≠ Vsy1 ) a nd ( V0sy2  ≠ Vsy2 ))
RC ← equat i on 3 . 90; RDE ← equat i on 3 . 93; mC|z  ← equat i on 3 . 87;
mCx|z  ← equat i on 3 . 88; mDex|z  ← equat i on 3 . 89;
mDE|z  ← equat i on 3 . 92; mC|z+∆z  ← equat i on 3 .8 6;
mDE|z+∆z  ← equat i on 3 . 91; mA|z+∆z  ← equat i on 3 . 94;
mB|z+∆z  ← equat i on 3 . 96; mBy  ← equat i on 3 . 97
[I t er at i ve c al cul at i on o f Hsz and Wsz]

Hsz ← H ; Wsz ← WB0              
do {

Hs ← Hsz; Ws ← Wsz
δC ← equat i on 3 . 87
δDE ← equat i on 3 . 92
Hsz ← H - δC - δDE
Wsz ← equat i on 3 . 95

} whi l e ( ( Hsz  ≠ Hs ) a nd ( Wsz  ≠ Ws ))
ew ← equat i on 3 . 105
X/W ← Wsz/ W [ Sol i ds P r of i l e]
Ts mean ← Aver age Ts iI and Ts iII
Tf mean ( zone B , C o r D E) ← Aver age Tf i ( zone B, C o r D E)
P ← P2
z ← z + ∆z

} whi l e ( X/W > 1 % )
[R ESULTS]

Zm ( l engt h o f m el t i ng z one)
TB i( z = Zm)
P( z = Zm)
Ew( z = Zm)

Figure 3.28- Algorithm for delay zone II and melting zone.
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-- - - - - - - - - - - Subroutine DP_DZ - - - - - - - - - - - -
dp/dz0 ← dp/dz f r om pr evi ous i ncr ement
dp/dzD ← dp/dzD f r om pr evi ous i ncr ement
do {

dp/dzD0 ← dp/dzD
[Z one C ]

do {
TC mean ← Aver age TC 0I
[U pdat i ng mel t p r oper t i es f or P and TC mean]
Vxi and Vzi ← Assume l i near p r of i l e o r t ake p r of i l e f r om p r evi ous z
do {

Vxoi ← Vxi; Vzoi ← Vzi
Vxi ← equat i on 3 . 45; Vzi ← equat i on 3 . 47 b y f in i t e d i f f er ences

} whi l e ( ( Vx0I ≠ VZi)  and ( Vx0i ≠ Vzi))
TC i ← equat i on 3 . 48 b y f i ni t e d i f f er ences

} whi l e ( TC i  ≠ TC 0i )
[Z one D E]

do {
TDE 0i ← ( Ts + Tm ) / 2; TDE mean ← Aver age TDE 0I
[U pdat i ng mel t p r oper t i es f or P and TDE mean]
Vxi and Vzi ← Assume l i near p r of i l e o r t ake p r of i l e f r om p r evi ous z
do {

Vxoi ← Vxi; Vzoi ← Vzi
Vxi ← equat i on 3 . 45; Vzi ← equat i on 3 . 47 b y f in i t e d i f f er ences

} whi l e ( ( Vx0I ≠ Vxi)  and ( Vz0i ≠ Vzi))
TB i ← equat i on 3 . 48 b y f i ni t e d i f f er ences

} whi l e ( TDE i  ≠ TDE 0i)
dp/dzD ← equat i ons 3 . 100 a nd 3 . 102

} whi l e ( | dp/dzD0 – dp/dzD| < e r r or )
if  ( wB<H)

th en  [ Zone B – u ni di mensi onal]
do {

TB 0i ← ( Ts + Tm ) / 2; TB mean ← Aver age TB 0i
[U pdat i ng mel t p r oper t i es f or P and TB mean]
Vxi and Vzi ← Assume l i near p r of i l e o r t ake p r of i l e f r om p r evi ous z
do {

Vxoi ← Vxi; Vzoi ← Vzi
Vxi ← equat i on 3 . 45; Vzi ← equat i on 3 . 47 b y f in i t e d i f f er ences

} whi l e ( ( Vx0I ≠ Vxi)  and ( Vz0i ≠ Vzi))
TB i ← equat i on 3 . 48 b y f i ni t e d i f f er ences

} whi l e ( TB i  ≠ TB 0i )
el se [ Zone B – t wo- di mensi onal]

do {
TB 0ij ← ( Ts + Tm ) / 2; TB mean ← Aver age TB 0ij
[U pdat i ng mel t p r oper t i es f or P and TB mean]
Vxi,  Vzij ← Assume l i near p r of i l e o r t ake p r of i l e f r om p r evi ous z
do {

Vxoi ← Vxi; Vzoij ← Vzij
Vxi ← equat i on 3 . 45 b y f i ni t e d i f f er ences
Vzij ← equat i on 3 . 78 b y f i ni t e d i f f er ences

} whi l e ( ( Vx0I ≠ Vxi)  and ( Vz0ij ≠ Vzij))
TB ij ← equat i on 3 . 79 b y f i ni t e d i f f er ences

} whi l e ( TB ij  ≠ TB 0ij )
dp/ dz ← equat i on 3 . 101
[R ESULTS]

dp/ dz
TC I
TDE I
TB i j

Figure 3.29- Melting zone: algorithm for the calculation of dp/dz.
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-- - - - - - - - - - - Melt Conveying - - - - - - - - - - - -
[I NPUT D ATA]

• Geomet r y ( W, H, θ, e, … )

• Mat er i al p r oper t i es ( fs, fb, ρs, αs, ks, kb, km, η)

• Oper at i ng c ondi t i ons ( N, Tb, Ts)

• Ent r ance c ondi t i ons ( Zm, TB ij( z = Zm) , P( z = Zm), ew( z = Zm) )
z ← Zm
P ← P( z = Zm)
Tmean ← Aver age TB ij( z = Zm)
ew ← ew( z = Zm)

do {
Tmean ← Aver age T0ij
[U pdat i ng mel t p r oper t i es f or P and Tmean]
Vxi and Vzij ← Assume l i near p r of i l e o r t ake pro f i l e f r om p r evi ous zone
do {

Vxoi ← Vxi
Vzoij ← Vzij
Vxi ← equat i on 3 . 45 b y f i ni t e d i f f er ences
Vzij ← equat i on 3 . 78 b y f i ni t e d i f f er ences

} whi l e ( ( Vx0i ≠ Vxi)  and ( Vz0ij ≠ Vzij))
T ij ← equat i on 3 . 79 b y f i ni t e d i f f er ences

} whi l e ( Tij  ≠ T0ij )
RTP ← equat i on 3 . 120
WATS ← equat i on 3 . 119

[R ESULTS]
P
Tij
RTP
WATS

Figure 3.30- Algorithm for the melt conveying zone.
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4- EXPERIMENTAL WORK

4.1- Polymer properties

A High Density Polyethylene blown film extrusion grade (NCPE 0928, from BOREALIS)

was used in the experimental part of the work. Some of the properties presented in Table 4.1

were determined experimentally (viscosity, melt density, specific heat, heat of fusion and

melting temperature). As to the remaining properties, due to the impossibil ity to make their

experimental determination, it was decided to opt by values existent in the literature for

similar grades of the same polymer.

Viscosity curves were determined at typical extrusion shear rates (between 6 and 300 s-1) and

temperatures (160, 190 and 220 ºC) using a twin-bore capillary rheometer (ROSAND RH-7-

2, see Figure 4.1). The experiment is computer controlled, the user only defining the set of

descent speed of the pistons. The tests were made at constant speed, the shear rate being

proportional to this velocity and the shear stress being calculated from the pressure read by a

transducer at bottom of the barrels. The Bagley and Rabinowitsch corrections are performed

automatically in order to obtain the real value of the viscosity. The flow curves (appendix B)

for the three temperatures considered allow the calculation of the power law constants (Table

4.1).

Piston

Thermocouple

Polymer

Record of the
applied force

Heater

Pressure
transducer

Capillary
Die

Figure 4.1- Capill ary rheometer scheme.

The melt density has been determined using the same capil lary rheometer, but adjusted to

construct the diagram pressure/volume/temperature (PVT). The PVT test relates the volume

filled by a fixed quantity of material with pressure and temperature. In this test only one barrel

of the rheometer is used, Figure 4.2. The experimental procedure involves the compression (at
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constant speed and fixed temperature) of a known quantity of material while the pressure and

the volume are recorded. The test was made at three typical extrusion temperatures (160, 190

and 220 ºC). Relating melt density with temperature and pressure it is possible to obtain the

constants of the corresponding equation (Table 4.1). The PVT curves were presented in

appendix B.

Piston

Thermocouple

Polymer

Record of the
applied force

Heater

Screw

Pressure
transducer

Figure 4.2- Capill ary rheometer scheme, adjusted to PVT tests.

The specific heat, heat of fusion and the melting temperature where determined

experimentally with a PERKIN ELMER Differential Scanning Calorimeter (DSC 7). This

device is constituted by two ovens, where it is possible to vary the temperature of both the

sample and the reference, and by two temperature sensors, as shown in Figure 4.3. This

device is based in the Flux Compensation Principle: the signal detected is a measure of the

difference between the heat fluxes that cross the ovens of the sample and the reference. These

heat fluxes were received independently by each one of the ovens, so that the sample oven

temperature is equal to the reference oven temperature (with differences less than 0.01 ºC).

The results obtained are presented in Appendix B and summarised in Table 4.1.

B

A

B

A

A- Heaters

B- Temperature sensors

Room temperature

Figure 4.3- DSC scheme.



107
______________________________________________________________________________________

Table 4.1- Polymer proper ties.
Property Equation Values Ref.

Solids density

( ) PF
0 e∞∞ ρ−ρ+ρ=ρ

with

TT

b
TbTbbF

g

32
210 −

+++=

ρ∞ = 948 kg/m3

ρ0= 560 kg/m3

Tg= -125 °C
b0= -1.276e-9 1/Pa
b1= 8.668e-9 1/°C Pa
b2= -5.351e-11 1/°C2 Pa
b3 = -1.505e-4 °C/Pa

[HYU 90]

Melt density PTgPgTgg 3210m +++=ρ
g0 = 854.4 kg/m3

g1 = -0.03236 kg/m3 °C
g2 = 2.182e-7 kg/m3 Pa
g3 = 3.937e-12 kg/m3 °C Pa

--------

Friction coefficients polymer-barrel = 0.45
polymer-screw = 0.25

[PAS 92]

Solids thermal
conductivity

0.186 W/m °C [PAS 92]

Melt thermal
conductivity

0.097 W/m °C [PAS 92]

Heat of fusion 196802 J/kg --------
Solids specific heat 1317 J/kg --------

Melt specific heat 2
210m TCTCCC ++=

C0 = -1289 J/kg
C1 = 86.01 J/kg °C
C2 = -0.3208 J/kg Pa

[SPA 92]

Melting temperature 119.6 °C --------

Viscosity ( )0TTa1n
0 ek −−−γ=η �

n = 0.345
k0 = 29.94 kPa sn

a = 0.00681 1/°C
T0 = 190 °C

--------

4.2- Extruder

A Leistritz LSM 36 laboratorial single screw extruder fitted with a conventional polyethylene-

type three-zone screw was available. A simple annular die was attached to the extruder (see

Figure 4.4).

D
 =

 3
6 

m
m

H1 = 5.6 mm

7D 7D12D

10.3D 7D 6D

H2 = 2.0 mm

2.7D

Heater band

20
 m

m

235 mm

55 mm

310 mm

110 mm

D 175 mm

D35 mm

Figure 4.4- Geometry of the extruder used in the experiments.
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Although the extruder is able to control 6 independent zones, as shown in Figure 4.4, the

heater bands were grouped into three zones plus the die (for direct comparison with the

computations, as will be discussed later).

The extruder was instrumented with flush-mounted pressure and temperature dynisco-type

transducers, as shown in figure 4.5. A computer equipped with a data acquisition board was

used to read the pressure, whereas the temperature was read with temperature indicators. The

power consumption was obtained from the motor amperage indicated by the machine control

system. The extruder was equipped with a pneumatic screw extraction device, specially

developed for this work, thus making it possible to determine the length of screw required for

melting.

15.7D

22.6D

24.4D

26.1D

xx.x

yy.y

MPa

ºC

Force

Screw 
extraction 
device

Machine control system

xx.x

yy.y

rpm

ºC

zz.z A

Figure 4.2- Layout of the pressure/temperature transducers and screw extraction device.

The experimental procedure for the extruder experiments is the following:

i) Connect the extruder using the pre-defined operating conditions;

ii) Wait until the process stabilises (circa 30 minutes);

iii ) Read and record the motor amperage indicated by the machine control system;

iv) Read and record the temperature and pressure values using the data acquisition
system;

v) Extract the screw:
a) Stop the machine;
b) Disconnect the temperature resistances;
c) Take off the die;
d) Connect the screw extraction device and collect the screw outside the extruder;
e) Take the polymer from the screw channel marking the number of the spires;
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4.3- Statistical design of experiments

Considering the time consuming and cost intensive characteristics of the experimental work

involved in the trial-and-error optimisation of the extrusion operating conditions for specific

polymer/equipment combinations, its relevance in determining the influence of and the

interactions between the various input variables [MON 91], a full factorial design of

experiments was adopted.

As seen in Chapter 1, this type of analysis consists in the study of the process response

observed when the input variables are changed, as well as in the possibil ity to relate these

changes with the input variables. The independent variables susceptible of influencing the

experimental results (dependent or output variables) are classified in several levels of

intensity. The effect of a factor is defined as the change in response that results from a change

in the factor level. The interaction between factors corresponds to the different responses

observed when the level of one factor is changed, and the differences in response between the

levels of this factor are not identical at all l evels of the other factors [MON 91].

Table 4.2 presents the four independent factors chosen to be studied in this work (screw

speed, N and three-barrel temperatures, T1, T2 and T3). Since each factor is varied at three

levels, 34 experiments should be carried out. Table 4.3 lists the experiments, which are to be

performed in random order. In order to identify the possible interactions between variables it

was necessary to replicate the experiments; in the present study, each experiment was

replicated three times, thus increasing the total amount of work to 243 experiments. In order

to minimise the required effort only mass output, melt temperature (at die entrance) and

mechanical power consumption were monitored for each experiment.

Table 4.2- Definition of factors and levels for the experiments.

FACTORS (4) LEVELS (3)

Rotation speed (rpm) N 10 30 50

Zone 1 T1 150 170 190

Barrel Temperatures (°C) Zone 2 T2 160 180 200

Zone 3 T3 170 190 210

Two types of analysis were performed with this experiments, namely an Analysis of Variance

(ANOVA) and a Multivariate Analysis of Variance (MANOVA) [CHA 96]. In the former, the

analysis is performed on each of the dependent variables. In the MANOVA analysis the four
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variables are considered simultaneously in order to detect a potential degree of correlation

between them.

Table 4.3- L ist of exper iments.
Experiment No. T1 (°C) T2 (°C) T3 (°C) N (rpm)

A1, A2, A3 150 160 170 10, 30, 50
A4, A5, A6 150 160 190 10, 30, 50
A7, A8, A9 150 160 210 10, 30, 50

A10, A11, A12 150 180 170 10, 30, 50
A13, A14, A15 150 180 190 10, 30, 50
A16, A17, A18 150 180 210 10, 30, 50
A19, A20, A21 150 200 170 10, 30, 50
A22, A23, A24 150 200 190 10, 30, 50
A25, A26, A27 150 200 210 10, 30, 50
A28, A29, A30 170 160 170 10, 30, 50
A31, A32, A33 170 160 190 10, 30, 50
A34, A35, A36 170 160 210 10, 30, 50
A37, A38, A39 170 180 170 10, 30, 50
A40, A41, A42 170 180 190 10, 30, 50
A43, A44, A45 170 180 210 10, 30, 50
A46, A47, A48 170 200 170 10, 30, 50
A49, A50, A51 170 200 190 10, 30, 50
A52, A53, A54 170 200 210 10, 30, 50

A55, A56, A57 190 160 170 10, 30, 50
A58, A59, A60 190 160 190 10, 30, 50
A61, A62, A63 190 160 210 10, 30, 50
A64, A65, A66 190 180 170 10, 30, 50
A67, A68, A69 190 180 190 10, 30, 50
A70, A71, A72 190 180 210 10, 30, 50
A73, A74, A75 190 200 170 10, 30, 50
A76, A77, A78 190 200 190 10, 30, 50
A79, A80, A81 190 200 210 10, 30, 50

4.4- Experiments related to the assessment of GAs

As seen in section 2.3, extrusion optimisation with GAs starts with a population of points well

distributed along the search space and proceeds until virtually all population elements have

identical values. In the process, as news generations are created, the average performance of

the population improves progressively. As discussed later, it was decided to carry out

experiments using the operating conditions predicted for specific generations and to monitor

the value and the evolution of the objective function. The list of experiments and
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corresponding generation number is presented in Table 4.4 (see also Figure 5.22). The output,

melt temperature at extruder exit, pressure along the barrel, power consumption and solids

bed profile were monitored.

Table 4.4- L ist of exper iments to assess the optimisation results.
Processing ConditionsExperiment

Number N (rpm) T1 (ºC) T2 (ºC) T3 (ºC)
Generation

Exp1 29 165 180 190 0
Exp2 46 163 172 188 5
Exp3 48 160 168 185 10
Exp4 49 156 164 193 15
Exp5 50 153 161 189 20
Exp6 50 151 161 175 30
Exp7 50 150 160 170 40
Exp8* 44 165 176 188 0
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5- RESULT S AND DISCUSSION

5.1- Introduction

In this chapter the most important numerical modelli ng and Genetic Algorithm parameters

will be defined. The predictions of the modelling package wil l be discussed and compared

with experimental data. Two case studies involving the optimisation of the operating

conditions and screw design will be studied in detail. Comparison with experimental trial-

and-error optimisation results wil l be used to assess the methodology.

5.2- Case studies

The extrusion case studies presented in this section wil l be used as reference for the

optimisation of the operating conditions and for the screw design. These examples will be

followed by both, the computational and the extrusion experiments.

a) Optimisation of the operating conditions

This example will deal with the optimisation of the operating conditions, i.e., the aim is to set

the screw speed (N) and the barrel temperature profile in three zones (T1, T2 and T3) of the

Leistritz extruder available. Table 5.1 shows their range of variation.

Table 5.1- Range of var iation of the processing conditions.
Processing conditions Minimum Maximum

Screw speed (rpm) 10 50
Barrel Temperature – Zone 1 (°C) 150 190
Barrel Temperature – Zone 2 (°C) 160 200
Barrel Temperature – Zone 3 (°C) 170 210

Therefore, each chromosome wil l be formed by 4 parts (one for each variable) each having 6

genes, with a total length l = 24 (Figure 5.1).

N
(6)

T1

(6)

T2

(6)

T3

(6)

Figure 5.1- Chromosome structure.

Table 5.2 defines the criteria to optimise, their corresponding objective (maximisation or

minimisation) and the allowable limits (Xi min and Xi max). The relative importance is

established by a set of weights (wi) - Table 5.3. Five case studies were considered.
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Table 5.2- Cr iter ia definition.

Cr iteria Objective Xi min Xi max

Output (Kg/hr) Maximise 1 9
Length of screw required for melting (mm) Minimise 200 821
Melt temperature (°C) Minimise 150 210
Power consumption (W) Minimise 0 3000

Table 5.3- Weights of the individual cr iter ia.
WeightsCase

Studie
s

W1 W2 W3 W4

OF1 0.5 0.2 0.2 0.1
OF2 0.2 0.5 0.2 0.1
OF3 0.2 0.2 0.5 0.1
OF4 0.1 0.2 0.2 0.5
OF5 0.25 0.25 0.25 0.25

b) Screw design

The methodology adopted for screw design will be illustrated with an example. The aim is to

design a three-zone screw, i.e., to optimise the geometrical parameters shown in Figure 5.2

that satisfy the criteria contained in Table 5.4.

D
 =

 3
6 

m
m

D1 = [20,27] mm

7D

L1 = [10,450] mm

10.3D 7D 6D

D3  = [27,33] mm

2.7D

Heater band

20
 m

m

235 mm

L2 = [100,400] mm

L = 960 mm PITCH:
       S = [28,44] mm

Figure 5.2- Designing a screw: parameters to optimise.

As shown in Table 5.5, various situations will be studied successively. Different individual

objectives, multiple objectives but with different criteria weights, variations in the processing

conditions, or the use of various polymers, will be considered. The use of various polymers in

the same extruder will be simulated by considering the extrusion of HDPE, LDPE and PVC,
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each under its typical processing conditions. The optimisations will be made using GAs with

objective function and using the analytical model. Some additional runs, where the

multiobjective optimisation GA and the numerical model are used, will also be made. The

LDPE and PVC properties were presented in Appendix B.

Table 5.4- Cr iter ia to satisfy.

Cr iteria Objective Xi min Xi max

Output (Kg/hr) Maximise 0 15
Length of screw required for melting (mm) Minimise 200 936
Melt temperature (°C) Minimise 160 230
Power consumption (W) Minimise 0 10000
Mixing quality (WATS) Maximise 0 1300

Table 5.5- Runs for screw design (objective function GA).
Optimisation Criter ia

(Weights)
Processing conditions

Ru
n

Aim of the

Optimisation Q T L P W N T1 T2 T3
Polymer

1 1 0 0 0 0 50 150 160 170 HDPE

2 0 1 0 0 0 50 150 160 170 HDPE

3 0 0 1 0 0 50 150 160 170 HDPE

4 0 0 0 1 0 50 150 160 170 HDPE

5

Individual
Criteria

0 0 0 0 1 50 150 160 170 HDPE

6 0.5 0.1 0.2 0.1 0.1 50 150 160 170 HDPE

7 0.2 0.2 0.2 0.2 0.2 50 150 160 170 HDPE

8 0.2 0.3 0.2 0.1 0.2 50 150 160 170 HDPE

9

Different
Relative
Weights

0.1 0.1 0.2 0.5 0.1 50 150 160 170 HDPE

6 0.5 0.1 0.2 0.1 0.1 50 150 160 170 HDPE

10 0.5 0.1 0.2 0.1 0.1 50 150 160 170 HDPE

11

Reproducibilit y

0.5 0.1 0.2 0.1 0.1 50 150 160 170 HDPE

12 0.5 0.1 0.2 0.1 0.1 10 150 160 170 HDPE

13 0.5 0.1 0.2 0.1 0.1 30 150 160 170 HDPE

6

Processing

Conditions

0.5 0.1 0.2 0.1 0.1 50 150 160 170 HDPE

14 0.5 0.1 0.2 0.1 0.1 50 150 160 170 HDPE Constant
15

Screw Pitch

0.5 0.1 0.2 0.1 0.1 50 150 160 170 HDPE Var iable

6 0.5 0.1 0.2 0.1 0.1 50 150 160 170 HDPE

16 0.5 0.1 0.2 0.1 0.1 50 150 160 170 LDPE

17

Different

Materials 0.5 0.1 0.2 0.1 0.1 50 170 180 200 PVC

18 0.5 0.1 0.2 0.1 0.1 50 150 160 170 HDPE* Lower

19

Multiple

Criteria

Viscosity 0.5 0.1 0.2 0.1 0.1 50 150 160 170 HDPE
*

Higher
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5.3- Modelling results

5.3.1- Setting the numerical modelling parameters

The results of the numerical modell ing of the plasticating polymer extrusion process depend

on the initial input values of some parameters. Some of these are associated with the

numerical algorithm (e.g., the grid size in the transversal plane - xy, length of the increment in

the down-channel direction), while others concern to process variables (initial thickness of the

films surrounding the solid bed, initial melt pool width, criterion to estimate the length of

delay zone II , screw temperature along the solids conveying zone).

a) Grid size in the transversal plane - xy

The use of a small grid to model a process using finite differences leads, almost invariably, to

more accurate results. However, since this is also obtained at the expense of a greater

computation time, a careful balance needs to be made, particularly if the modelling package is

to be used in connection with an optimisation algorithm. In order to establish this, various

runs were made using a different number of grid points, as indicated in Table 5.6 and studying

the variation of the responses of the parameters listed in Figure 5.3.

Table 5.6- Number of gr id points.
Number of gr id pointsRun number

X Y
1 5 5
2 8 8
3 10 10
4 12 12
5 13 13
6 14 14
7 15 15
8 20 20
9 25 25
10 30 30

Figures 5.4 to 5.8 show the evolution of single valued responses versus the number of grid

points (line with full symbols), and their relative difference to the preceding value (line with

open symbols). Results obtained with less than 8 grid points are very poor; results obtained

with 10 to 15 points are reasonable (relative differences lower than 5%). Above 15 grid points
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the relative differences are lower than 2%. The oscillations of the relative differences for

some responses do not represent any additional error of the numerical model.

� Single values:
• output,
• maximum pressure,
• power consumption,
• melt temperature at the extruder exit,
• length of screw required for melting,

� Profiles along down-channel direction (Z):
• solid bed,
• pressure,
• melt temperature,
• power consumption,
• thickness of the film close to the barrel surface,

� Cross-temperature and velocity profiles in the down-channel direction.

Figure 5.3- Response parameters to study.
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Figure 5.4- Output and relative difference vs. number of grid points.
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Figure 5.5- Maximum pressure and relative difference vs. number of grid points.
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Figure 5.6- Power consumption and relative difference vs. number of grid points.
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Figure 5.7- Melt temperature and relative difference vs. number of grid points.
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Figure 5.8- Length required for melting and relative difference vs. number of grid points.

Figures 5.9 and 5.10 represent the effect of the grid size for the pressure and melt temperature

profiles, where a bigger grid influence was detected. Above 5 grid points the profiles become

virtually identical.
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Figure 5.10- Melt temperature profile vs. number of grid points.

Figure 5.11 presents transversal temperature and velocity profiles for 5 and 20 grid points.

Cross-sections in the solids conveying, delay, melting and melt conveying zones were

considered. The profiles on the left have the same shape and order of magnitude than those on

the right.

The computation time required for the various runs is identified in Figure 5.12. As expected,

computationally time growth exponentially upon a linear increase of the number of grid

points.

Considering the results presented, it seems that the most adequate grid size to use depends on

the application. If the modelling package is to be used in association with an optimisation

algorithm, where it needs to be used many times, a grid size of 10 seems preferable. If the

objective is to study a specific processing situation, where a few runs are needed, a grid size

of at least 15 points will be more advisable.
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Figure 5.11- Transversal profiles: A) solid bed temperature profile for the solid and delay zones; B) Vz velocity

profile in zone C for the melting zone; C) two-dimensional temperature profile in the pumping zone.
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b) Increment  along the down-channel direction - z

The effect of the size of the increment used in the down-channel direction on the stability of

the results was identified after carrying out the runs shown in Table 5.7.

Table 5.7- Number of increments in z direction.
Run number Number of increments

in z direction (ZB)

1 80
2 90
3 100
4 110
5 120
6 130

Again, changes in output, maximum pressure, power consumption, melt temperature, length

of screw required for melting, with different increments along the down-channel direction

were studied. Above 100 elements the maximum pressure is stable (variabil ity lower than 3%,

as shown in Figure 5.13), and the screw length required for melting varies less than 9%

(Figure 5.14). The variabil ity of the output, power consumption and melt temperature is

inferior, respectively, to 2%, 5% and 0.2% (see appendix C). Obviously the use of a larger

number of increment points requires greater computation times but, as shown in Figure 5.15

this increase is not relevant, principally when compared with their growth when the grid size

increases, as settled before. The profiles of process variables along the down-channel

direction become unstable for 80 or less increments (particularly in the case of pressure, solid

bed and film thickness profiles).

Therefore, it can be inferred from the above that it should use at least 100 increments.
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Figure 5.13- Maximum pressure and relative difference vs. number of increments in z direction.
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Figure 5.15- Computation time versus the number of increments in z direction.

5.3.2- Parameters definition

a) Initial thickness of the film close to the barrel sur face

Three runs were made in order to study the influence of the initial thickness of the film close

to barrel surface (zone C, Figure 3.13) on the results. An initial value of this film is needed at

the beginning of delay zone I. The results are shown in Table 5.8, where the flight clearance

(δ
f
) is equal to 0.1 mm. No significant differences are perceived. A similar behaviour would

be obtained upon considering profiles along the down-channel direction, particularly the film

thickness profile (Figure 5.16).

b) Initial thickness of the film close to the screw root and passive flank

Three runs were also used to study the influence of the initial thickness of the film close to the

screw root (zone E) and to the screw passive flank (zone D) surfaces (Figure 3.16). These
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variables must be assumed at the beginning of delay zone II , where they are considered to be

equal. Table 5.9 and Figure 5.17 shows that differences between runs can attain 6.5% in the

case of maximum pressure and for screw length required for melting. Then, any of these

values can be used for this parameter.

Table 5.8- Effect of the initial thickness of the film close to barrel surface.

Run δδC0 Output
(kg/hr )

Maximum
Pressure
(MPa)

Power
Consumption

(W)

Melt
Temperature

(ºC)

Length for
Melting

(m)
1 δδ

f
8.097 24.63 2741 179.86 1.529

2 2δδ
f

8.097 24.63 2735 179.86 1.529

3 4δδ
f

8.104 24.58 2727 179.85 1.529

Maximum
difference (%) 0.09 0.20 0.51 0.006 0.0
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Figure 5.16- Film thickness profile vs. initial thickness value.

Table 5.9- Effect of the initial thickness of film close to screw and passive flank surfaces.

Run δδD0 Output
(kg/hr )

Maximum
Pressure
(MPa)

Power
Consumption

(W)

Melt
Temperature

(ºC)

Length for
Melting

(m)
1 δδ

f
8.097 24.63 2741 179.86 1.529

2 2δδ
f

8.054 25.14 2641 179.44 1.628

3 4δδ
f

8.160 25.68 2735 179.76 1.529

Maximum
difference (%) 1.3 6.5 3.8 0.23 6.5

c) Initial melt pool width (or thickness of the film close to the passive flank)

The effect of this parameter (zone B, Figure 3.15) was studied through the 6 runs identified in

Table 5.10. At the beginning of delay zone II , it starts as a thin film, whose width increases as

melting proceeds. Power consumption and length required for melting are the most sensitive
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parameters (7.5% and 12.9%, respectively). However, if runs 1 and 6 are ignored, the

differences are, almost, null. Figure 5.18 ill ustrates the effect of this initial value on the solid

bed profile. Only for WB0 equal to 30δ
f
 some differences are perceived. Consequently, any

value in the interval [2δ
f
, 15δ

f
] can be used for this parameter.
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Figure 5.17- Film thickness profiles for zone DE vs. initial thickness of this film.

Table 5.10- Effect of the initial width of the melt pool.
Run WB0 Output

(kg/hr)
Maximum
Pressure
(MPa)

Power
Consumptio

n (W)

Melt
Temperatur

e (ºC)

Length for
Melting

(m)
1 δδ

f
8.086 24.25 2694 179.79 1.727

2 2δδ
f

8.097 24.63 2741 179.86 1.529

3 4δδ
f

8.098 24.66 2740 179.86 1.529

4 8δδ
f

8.096 24.69 2740 179.88 1.529

5 15δδ
f

8.089 24.77 2739 179.88 1.529

6 30δδ
f

8.113 25.61 2550 179.76 1.529

Maximum
difference (% ) 0.33 5.6 7.5 0.067 12.9

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Z (m)

X
/W

W b0 = f

W b0 = 2f

W b0 = 4f

W b0 = 8f

W b0 = 15f

W b0 = 30f

Wb0 = δf

Wb0 = 2δf

Wb0 = 4δf

Wb0 = 8δf

Wb0 = 15δf

Wb0 = 30δf

Figure 5.18- Effect of the initial width of the melt pool on the solid bed profile.

d) Screw temperature upon solids conveying
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Generally, the screw temperature is not known, except when the screw is refrigerated and the

temperature is controlled. Therefore, it was assumed that the screw temperature in the delay

and melting zones is given by equation 3.61 and that in the pumping zone it equals the barrel

temperature. The screw temperature in the solids conveying zone needs to be set. The runs

listed in Table 5.11 were made for that purpose. Three situations are considered: a)

temperature equal to the inlet polymer temperature, b) average of local barrel temperature and

c) adiabatic screw. The relative differences only are significant in the case of the length of

screw required for melting for the second situation. However, it is necessary to note that the

value of the friction coefficient between the solid polymer and the screw surface used in the

calculations is small (equal to 0.25). This means that the influence of the method to compute

the heat exchanged and/or generated in the screw surface will be attenuated. Since it is

desirable that this coefficient will be the smallest possible, in order to improve the solids

conveying capacity, it will not be considered in this study. Therefore, in the remaining

calculations the screw will be considered adiabatic. This is what is more realistic in the major

part of the practical extrusion situations [AGA 96].

Table 5.11- Effect of the screw temperature value on solids conveying zone.
Run Tscrew Output

(kg/hr)
Maximum
Pressure
(MPa)

Power
Consumpti

on (W)

Melt
Temperatu

re (ºC)

Length for
Melting

(m)
1 Ts0 8.097 24.63 2741 179.86 1.529
2 (Tb+Ts0)/2 8.115 24.06 2693 179.80 1.726
3 Adiabatic 8.129 23.89 2686 179.80 1.579
Maximum

difference (%) 0.40 3.10 2.05 0.03 12.9

5.3.3- Assessing the modelling results

The computational results were assessed by direct comparison with responses measured

experimentally. As shown in Table 4.2, four independent variables (screw speed and 3 barrel

temperatures) were varied within a practical operating window. A statistical design of

experiments defined 81 runs, involving replication (Table 4.3).
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Extrusion experiments

Table 5.12 presents the results obtained with the extrusion experiments. The table lists the

significant terms (5% level) for the multivariate (MANOVA) and univariate (ANOVA)

analyses. According to the results of the multivariate analysis all main effects and the majority

of the two–way interactions are statistically significant. However, when the effect of melt

temperature is considered individually, one can conclude that barrel temperatures T1 and T2,

and corresponding two-way interactions do not appear to be important.

Table 5.12- Factorial analysis – responses of the extrusion experiments
(* statistically significant, -- statistically  non-significant).

EFFECT Multi variate analysis Univariate analysis

Output Temperature Power

Intercept * * * *

N * * * *

T1 * * -- *

T2 * * -- *

T3 * * * *

N*T1 * * -- *

N*T2 * * -- *

N*T3 * * * *

T1*T2 * * -- --

T1*T3 -- * -- --

T2*T3 -- -- -- --

N*T1*T2 -- * -- --

Figures 5.19 and 5.20 show graphically some of the responses observed. Mass output, melt

temperature and power consumption are plotted against screw speed, at various levels of T1,

T2 and T3. The values of all the variables increase with screw speed. The output increases due

to the corresponding increase of the drag capacity, but at the expense of an increase in power

consumption. The small increase in melt temperature is mainly due to viscous dissipation in

the melt conveying zone, since the time available for heat conduction from the barrel

diminishes.

The output does not change when barrel temperatures T1 and T2 vary, for a screw speed of 10

rpm, and exhibits low sensitivity to T3. The insensitivity to T1 and T2 was expected, since the

operating point for a given extruder/die system is mainly dictated by the pumping zone and by
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the die, i.e., the influence of these barrel temperatures on the final melt temperature should be

small , specially for small screw speeds.

N (rpm)

50.030.010.0

O
ut

pu
t (

K
g/

hr
)

9

7

5

3

1

T3 (°C)

   170

   190

   210

N (rpm)

50.0030.0010.00

O
ut

pu
t (

K
g/

hr
)

9

7

5

3

1

T1 (°C)

   150

   170

   190

N (rpm)

50.030.010.0

O
ut

pu
t (

kg
/h

r)

9

7

5

3

1

T2 (ºC)

   160

   180

   200

N (rpm)

50.0030.0010.00

M
el

t t
em

pe
ra

tu
re

 (
°C

)

220

210

200

190

180

170

160

T1 (°C)

   150

   170

   190

N (rpm)

50.0030.0010.00

M
el

t T
em

pe
ra

tu
re

 (
ºC

)
220

210

200

190

180

170

160

T2 (ºC)

   160

   180

   200

N (rpm)

50.0030.0010.00

M
el

t t
em

pe
ra

tu
re

 (
°C

)

220

210

200

190

180

170

160

T3 (°C)

   170

   190

   210

Figure 5.19- Output and melt temperature vs. screw speed – extrusion experiments.

Melt temperature is only dependent on T3, which is certainly due to the fact that melt

temperature is measured at the end of zone 3. Again the process seems to be controlled by

heat conduction. These results would be probably different with another polymer exhibiting

high viscosity levels and lower temperature dependence (e.g. HDPE with fillers).
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Finally, power consumption, for small screw speeds (10 rpm), exhibits the same behaviour as

output, but for higher screw speeds the variation is in the opposite sense, i.e., it diminishes

with increasing barrel temperature.
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Figure 5.20- Power consumption and length of screw required for melting vs. screw speed – extrusion experiments.

Analytical model

Table 5.13 lists data equivalent to that of Table 5.12, but now for the responses of the

analytical modell ing package. All the main effects are significant, either when the individual

(ANOVA) or the global (MANOVA) behaviour are considered. The model is insensitive to

the effect of two-way interactions of barrel temperatures T1 and T2 on the output, but is

sensitive to their main effects.

The symbols between brackets identify the differences in relation to the experimental data. A

univariate analysis identifies manly differences in the behaviour of output and melt

temperature. Differently of the experimental responses, the analytical ones are not able to

consider the effect of the most two-way interactions on the output. In practice, T1 and T2 do

not seem to affect the melt temperature, since the process is controlled by heat conduction,
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whereas the analytical model is not able to take this into consideration. The differences for the

multivariate analysis only occur for the effect of 3 two-way interactions (N*T1, T1*T2 and

T2*T3)

Table 5.13- Factorial analysis – responses of the analytical model
(* statistically significant, -- statistically  non-significant).

EFFECT Multi variate analysis Univariate analysis

Output Temperature Power Length

Intercept * * * * *

N * * * * *

T1 * * (* ) * *

T2 * * (* ) * *

T3 * * * * *

N*T1 (--) (--) -- (--) *

N*T2 * (--) (* ) * --

N*T3 * * (--) * *

T1*T2 (--) (--) -- -- --

T1*T3 -- (--) -- -- --

T2*T3 (* ) (* ) (* ) (* ) --

Some of the results obtained for this case are shown in Figures 5.21 and 5.22, but now the

length of screw required for melting is also included. The effect of screw speed on the length

of screw required for melting seems to be mainly determined by heat conduction in the

melting zone, since when T1 increases the length required for melting diminishes. Concerning

to the other parameters is possible to verify that globally the behaviour is similar to that

observed for the experimental results, although some differences are identified:

• In practice all barrel temperatures (especially for high screw speeds) influence output,

whereas the analytical model is not able to take this effect into consideration. This

probably happens because the model is not able to considers the influence of the melt

temperature on the output, i.e., the effect of the increase in melt temperature due to the

increase in barrel temperatures T1 and T2 does not affect the output.

• The model predictions for the output are significantly smaller than that of the practice (the

differences remain between 0.5 and 0.9 kg/hr).
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• The analytical model responses predict the effect of barrel temperatures T1 and T2 on the

melt temperature, whereas the experimental results do not.
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Figure 5.21- Output and melt temperature vs. screw speed – analytical model.
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Figure 5.22- Power consumption and length of screw required for melting vs. screw speed – analytical model.

Numerical model
Table 5.14 and Figures 5.23 and 5.24 depict the numerical modelling data. All the main

effects are significant except for T2 on the output, which does not exist here. The symbols

between square brackets indicate differences in relation to the analytical results, whereas the

symbols between circular brackets indicate disagreement with experimental data. In terms of

the responses observed (Figures 5.23 and 5.24) the behaviour is identical to that of the
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previous approaches (experimental and analytical model), the differences will be discussed

next.

Table 5.14- Factor ial analysis – responses of the numerical model
(* statistically significant, -- statistically  non-significant).

EFFECT Multi variate analysis Univariate analysis

Output Temperature Power Length

Intercept * * * * *

N * * * * *

T1 * * (* ) * *

T2 * [(--)] ( * ) * *

T3 * * * * *

N*T1 [* ] [ * ] [( * )] [ * ] *

N*T2 * [--] ( * ) [(--)] [ * ]

N*T3 * [(--)] [ * ] * *

T1*T2 (--) -- [(* )] [(--)] [ * ]

T1*T3 -- -- -- -- --

T2*T3 [--] [--] [--] [--] --

The comparison of the numerical results (Table 5.13) with the experimental ones (Table 5.14)

reveals fewer differences. In this case, the multivariate analysis only differs in T1*T2 term.

The univariate analysis is also improved, except for the effect on melt temperature, where 5

differences exist. The differences observed between the experimental and the numerical

model responses are the following:

• The numerical model does not take into account the effect of T2 on the output;

• Barrel temperatures T1 and T2 have some influence on melt temperature predicted by the

numerical model;

• The power consumption calculated by the numerical model increases with T1.

Finally, the comparison between the analytical and the numerical models revels some

differences, principally when the univariate analysis of the output, melt temperature and

power consumption are considered. However, the numerical results are closer to the

experimental ones than those of the analytical model are.
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Figure 5.23- Output and melt temperature vs. screw speed – numerical model.

The global behaviour of the numerical model is identical to that observed for the analytical.

The disagreements are:

• The importance of T2 for output is null i n the numerical model;

• The output prediction made by the numerical model are higher than that of the analytical

and closer to the experimental ones;
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• The length of screw required for melting, calculated with the numerical model, is circa

0.15 meters lower than those obtained with the analytical model. The reason for that is due

to the increase of solid bed temperature provided by friction dissipation in all surfaces of

the screw channel (barrel and screw root), whereas in the analytical model only the

dissipation on the barrel surface is considered.
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Figure 5.24- Power consumption and length of screw required for melting vs. screw speed – numerical model.
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At this point, it will be important to verify whether the differences in the responses of the two

mathematical models adopted will affect the results of the optimisation algorithm. Table 5.15

report the results obtained for the case studies presented in Tables 5.2 and 5.3. The criterion

length of screw required for melting wil l not be considered (thus rendering OF2 meaningless),

since no experimental data is available.

Table 5.15- Best operating window.

Case studiesType of
results

Paramete
r OF1 OF3 OF4 OF5

N (rpm) 50 10-30 10 10
T1 (°C) 190 190 150-190 170-190
T2 (°C) 180-200 200 200 200

Extrusion
experiments

T3 (°C) 170 170 170 170
N (rpm) 50 10 10 10
T1 (°C) 150 150 150 150
T2 (°C) 160 160 160 160

“ Analytical”
model

T3 (°C) 170 170 170 170
N (rpm) 50 10 10 10
T1 (°C) 190 150 150 150
T2 (°C) 160 200 200 200

Numerical
Model

T3 (°C) 170 170 170 170

The results are very similar, especially for screw speed N and barrel temperature T3. As far as

barrel temperatures T1 and T2 are concerned, the numerical results are slightly closer to the

real ones than those produced with the analytical approach.

Figure 5.25 shows the evolution of the optimisation of example OF1 (see Table 5.3) of the

above case study when the analytical model is adopted (Table 5.15) in terms of the practical

operating window instead of the criteria. The line in bold represents the average of 30% of the

best elements of the population and the thin line represents the average of 75% of the best

elements of the population. As explained in section 4.5, it was considered as relevant not only

to assess the final results of the optimisations (as done above in Table 5.15), but also to

monitor the evolution along the various generations. For that purpose, the experimental and

predicted solutions of the generations identified in Table 4.4 were directly compared.

This is done in Table 5.16, where output, melt temperature, power consumption and length of

screw required for melting, are listed for the experimental (E), analytical (A) and numerical

(N) approaches. As expected, numerical results are closer to the experimental data. As the

search proceeds the output increases from 5.33 to 7.93 kg/hr, since for this case study the
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greater weight is given for the maximisation of the output. This grow is obtained at expenses

on the increase of the power consumption. The simultaneous observation of Figure 5.25 and

Table 5.16 allows one to conclude that: the first criteria that stabilise are output and power

consumption (after the 20th generation), which depend directly of the screw speed (the first

parameter that stabilises); then, stabilises melt temperature (after the 30th generation), which

depends mainly of the barrel temperature T3; finally stabil ises the screw length for melting

(after the 40th generation) that depends from the barrel temperatures T1 and T2 (where the

melting occurs).
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Figure 5.25- Operating window.

Table 5.16- Comparison between experimental and computational data (E- experimental, A-
analytical computations, N- numerical computations).

Output (kg/hr) Melt temperature (ºC) Power consumption (W) Length (m)Exp.
Nº E A N E A N E A N E A N

Exp1 5.33 4.45 4.79 184 196 194 1256 1238 1344 0.905 1.563 1.526
Exp2 7.54 7.05 7.52 184 196 194 2307 2245 2398 0.937 1.787 1.577
Exp3 7.46 7.36 7.84 184 193 192 2408 2386 2502 0.856 1.818 1.646
Exp4 7.93 7.51 7.98 191 196 197 2514 2440 2488 0.997 1.825 1.720
Exp5 7.96 7.68 8.15 186 193 194 2622 2541 2539 1.138 1.823 1.784
Exp6 7.91 7.65 8.08 174 186 184 2793 2549 2595 0.953 1.831 1.760
Exp7 7.93 7.66 8.11 175 188 187 2736 2538 2515 0.856 1.831 1.828
Exp8 7.50 6.75 7.22 183 197 195 2207 2102 2269 0.953 1.787 1.565

Table 5.17 shows the global objective function for the three approaches (using the weights

defined in Table 5.3 for example OF1). The global objective function value increases as the
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search proceeds for all approaches (experiments 1 to 7), and follows the corresponding output

values (Table 5.16).

It is possible to conclude that both the analytical and the numerical methods conduct the

optimisation to the same result that is similar to the experimental. In this example (OF1)

barrel temperatures T1 and T2 have less relative importance than the other two (N and T3) do.

Table 5.17- Global objective function for exper imental and computational data.

Global Objective FunctionExp. No. Generation
E A N

Exp1 0 0.2788 0.2272 0.2445
Exp2 5 0.3738 0.3385 0.3649
Exp3 10 0.3697 0.3525 0.3789
Exp4 15 0.3857 0.3579 0.3824
Exp5 20 0.3860 0.3662 0.3902
Exp6 30 0.3903 0.3672 0.3906
Exp7 40 0.3921 0.3692 0.3909
Exp8 0 0.3734 0.3251 0.3515

5.4- Optimisation results

5.4.1- Setting the GAs parameters

The objectives of this section are:

• define the value for the most important Genetic Algorithm general parameters using an

objective function;

• verify if the new method of multiobjective optimisation with GAs, developed in this work,

is able to attain the Pareto frontier;

• define the multiobjective GA parameters to use in the optimisation of the extrusion

process.

The definition of the GA general parameters will be made using the extrusion optimisation

example depicted in section 5.1 (example OF1 – Table 5.3). Three benchmark problems

[SRI 95] will be used to verify the functionality of the Reduced Pareto Set Genetic Algorithm

(RPSGA) method, developed here, when compared with the Niched Pareto Genetic Algorithm

(NPGA) method [HOR 93, HOR 94]. At the same time some multiobjective optimisation GA

parameters will be defined for both methods. Finally, these methods will be used to define the

same parameters, but now using the extrusion optimisation problem - OF1.
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GENERAL PARAMETERS

As discussed before, despite the existing theories [GOL 89a, GOL 89b, BÄC 91, GOL 92] on

the definition of the best optimisation parameters, such as population length, selection and

crossover methods, crossover and mutation rates, practice as shown that the decision must be

made based on empirical information. Therefore, using as a starting point the order of

magnitude of values that were used in the literature [GOL 89a], experiments were carried out

using a Pentium 166MHz personal computer. In order to simpli fy this study, due to the

greater number of parameters, each one will be considered independently of the others,

ignoring the effect of possible interactions between them.

a) Population length

Three runs of the optimisation algorithm are made using three different population lengths

(100, 200 and 300 individuals). Figure 5.26 shows the global objective function versus

calculation time, using the population length as a parameter.
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Figure 5.26- Influence of the population length (pc=70%, pm=0.2%).

 If the population length is excessively low (N=100), it might not be possible to process

sufficient schemes in order to obtain the optimum [GOL 89b, GOL 92].  In this case, the ideal

length is N=200, since the maximum value of the objective function is reached. The use of a

larger population length (N=300) does not improve the algorithm performance and increases

the computation time.

b) Crossover r ate
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The importance of the crossover rate on GAs is associated with the number of schemata that

will be possible to process. Figure 5.27 ill ustrates this fact by representing the global

objective function versus calculation time for three different crossover rates. Only crossover

rates above 50% guarantee that the global objective function is at is maximum. A crossover

rate of 70% seems to be adequate.
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Figure 5.27- Influence of the crossover rate (N=200, pm=0.2%).

c) Mutation rate

As in nature, mutation rate must be small. Figure 5.28 shows that for values between 0.2%

and 1.0%, the final results exhibit small differences.
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Figure 5.28- Influence of the mutation rate (N=200, pc=70%).

d) Selection operator
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Figure 5.29 compares the performance of the proportional, linear ranking and exponential

ranking methods used during first stage of selection (attribution of a value to the objective

function). The differences observed are due to the relative selection pressure inherent to the

different ranking methods and to their capacity for exploring new search space areas (balance

between “exploitation” and “exploration” ). In this case, the use of an exponential ranking

scheme seems more appropriate.
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Figure 5.29- Importance of the method used in the 1st step of the selection.

However, ranking also depends on specific parameters. The exponential ranking method

depends on the c parameter (equation 2.9) that controls the selection pressure. Theoretically

this parameter can varies between 0 and 1, but in practice only values near 1 (exclusive)

produces good results. Figure 5.30 shows that although different values produce similar

results c = 0.99 allows attaining the maximum value of the objective function.

The parameter SP (equation 2.8) controls the selection pressure for the linear ranking scheme.

Figure 5.31 shows the results obtained with 3 values for this parameter, its range of variation

is 1 < SP ≤ 2. The optimisation performance decreases when the value of this parameter is

lower. This is easily explained by the fact that for greater values of SP the selection pressure

is larger.

e) Crossover operator

It is not possible to define theoretically which is the better crossover technique to apply in

each particular situation. The choice of the better technique only is possible through the

experimental verification of their performance. Figure 5.32 shows the results obtained with
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crossover in two points and uniform crossover. Moreover, the better performance of the

optimisation with uniform crossover the differences are not significant.

Thus, it is possible to conclude that the best GA parameters to use are N= 200, pc= 70% and

pm between 0.2 and 1%. As selection operator can be used, by order of preference,

exponential ranking scheme with c=0.99, linear ranking scheme with SP=2 or proportional

value. Concerning to the crossover operator, both of the two types studied (two-points or

uniform) show similar performance.
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Figure 5.30- Importance of the c parameter – exponential ranking.
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Figure 5.32- Importance of the crossover type.

MULTIOBJECTIVE OPTIMISATION PARAMETERS
In order verify the functionality of the multiobjective optimisation algorithm developed here

(RPSGA), three benchmark problems [SRI 95] will be studied here before tackling the

extrusion process. The methods based on tournament selection (NPGA) and of reduced Pareto

set (RPSGA) will be compared for each case.

a) Benchmark problems

Problem F1:

( )2
12

2
11

2−=

=

xfMinimise

xfMinimise (5.1)

Figure 5.33 represents the Pareto frontier for the two functions, f11 and f12. The nondominated

points are located for 0 < x < 20 and for f11 and f12 between 0 and 4.

Problem F2:
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(5.2)

The Pareto frontier is represented in Figure 5.34.
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Problem F3:
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(5.3)

The Pareto region for this problem is confined to a line given by: x1 = -2.5 and 2.5 ≤ x2 ≤

14.79.

The performance of a multiobjective optimisation algorithm can be assessed by evaluating

how uniform the distribution of the population along the entire Pareto frontier is and whether
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it is maintained throughout successive generations.  The measurement of this distribution can

be made with the chi-square deviation form [SRI 95]:

∑
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
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i i

ii nn
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ι

(5.4)

where q is the number of desired optimal points and the (q+1)th subregion is the dominated

region, ni is the number of individuals present in the i th subregion of the nondominated region,

in  is the expected number of individuals in the i th subregion of the nondominated region, and

2
iσ  is the variance of individuals in the i th subregion of the nondominated region, given by:

qi
N

n
n i

ii ...,,2,1,12 =

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 −=σ

(5.5)

When the population is successfully distributed along the Pareto border, the value of the

performance measure is the lowest possible.

PROBLEM F1

The computations listed in Tables 5.18 (tournament selection method) and 5.19 (reduced

Pareto set method) were made. Three GA parameters will be considered: the radius of a

circumference that is the maximum distance between chromosomes (σshare), the size of the

comparison set (tdom) and the indifference limits above which the performance of the solutions

is considered as similar (limits). The values used here are of the other of magnitude of values

that were used in the literature.  Table 5.20 presents the values assumed for the other relevant

optimisation parameters.

Table 5.18- Runs for problem F1 – tournament selection.
Run σσshare tdom(% of N)

1 0.1 30
2 0.1 20
3 0.1 13
4 0.1 10
5 0.001 30
6 0.001 20
7 0.001 13
8 0.001 10
9* 0.001 13



144
______________________________________________________________________________________

Table 5.19- Runs for problem F1 –reduced Pareto set.
Run σσshare limits
10 0.1 0.1
11 “ 0.01
12 “ 0.001
13 0.01 0.01
14 0.001 “
15 0.001 0.001
16* 0.001 0.01
17* “ 0.001

Table 5.20- Algor ithm parameters.
Number of generations
(NG)

200

Population length (N) 100
Chromosome length (l) 14
Crossover rate (CR) 0.7
Mutation rate (MR) 0.004
x range [-10, 10]
Precision 0.001

The performance measure for the first 4 runs is presented in Figure 5.35. As can be observed,

their value deteriorates during the search. Since it is not easy to distinguish between the

individual curves, a moving average of the performance values will be used in the following.

This is represented in Figure 5.36, where:

NGi
i

MA

i

j
j

i ,,2,11 �==
∑

=
ι

(5.6)

In this equation ιj is the performance measure for generation j and NG is the total number of

generations.

The improvement obtained in Figure 5.37 with the values of σshare and tdom for runs 5 to 8 is

evident. The value of the moving average decreases rapidly (i.e., the performance increases)

from 10 to 5 in the first 50 generations, afterwards it is maintained at the same level during

the 200 generations. A careful observation of the corresponding Pareto curves would show

that the best distribution along the Pareto frontier is obtained with run 7, covering the entire

frontier and attaining values for f11 close to 0.
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Figure 5.35- Problem F1: performance measure for runs 1 to 4.
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Figure 5.37- Problem F1: moving average for runs 5 to 8.
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At this point, the reasons explaining the considerable oscillation on the performance measure

reported above are not clear. Consequently, an additional run (run 9) without mutation, but

with the other parameters equal to those used in run 7 was made. Since the same type of

oscill ation was obtained, mutation is not to blame. Instead, crossover between certain

nondominated individuals that produce dominated offspring could cause this behaviour.

Figure 5.38 represents the moving average along the several generations for runs 10 to 12,

where the reduced Pareto set method was applied with different limit values (0.1, 0.01 and

0.001, respectively). It is not possible to make a clear distinction between them. However,

their performance is inferior to that obtained with run 7, where tournament selection was

applied.
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Figure 5.38- Problem F1: moving average for runs 10, 11 and 12.

The influence of σshare can be identified by carrying out runs 11, 13 and 14 (Table 5.19). The

shape of the curves would be similar to those of Figure 5.38. Whereas the performance value

of run 11 oscillates around 6, that of runs 13 and 14 decreases to 4.

Figure 5.39 shows the moving average of runs 14 to 17, thus ill ustrates the influence of the

limit values and the absence of mutation (see Table 5.19). Run 16  (σshare=0.001, limits = 0.01

and without mutation) seems to be the best choice. The direct analysis of the Pareto frontiers

would provide the same conclusions.

Finally, a direct comparison between Niched Pareto Genetic Algorithm (NPGA) and Reduced

Pareto Set Genetic Algorithm (RPSGA) will be made. Figure 5.40 shows the moving average
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and the Pareto frontiers for runs 7 (NPGA) and 16 (RPSGA. The reduced Pareto set method

seems to exhibit the best results.
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Figure 5.39- Problem F1: moving average for runs 14 to 17.
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Figure 5.40- Problem F1: moving average for NPGA and RPSGA methods.

PROBLEM F2

In this case, the best results obtained are shown in Figure 5.41 using the parameters given in

Table 5.21. The two methods have similar performance. Nevertheless, for values of f21 near 0

and 2, the reduced Pareto set method appears to get a better distribution of points.
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Table 5.21- Algor ithm parameters for problem F2.
Number of generations 200
Population length 100
Chromosome length 14
Crossover rate 0.7
Mutation rate 0.004
x range [-2, 10]
Precision 0.001
σshare 0.01
Limits 0.01
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Figure 5.41- Pareto frontier for problem F2: A) NPGA; B) RPSGA.

PROBLEM F3

Since this problem has two variables to optimise and its domain of actuation is restricted by

two inequalities, it requires the use of robust optimisation schemes. The Pareto region is

confined to a line given by x1 = -2.5 and 2.5 ≤ x2 ≤ 14.79. Several runs were made, where the

values of σshare and limits were tested. The parameters used are again given in Table 5.21,

except for the x1 and x2 range of variation (-20 ≤ x1, x2 ≤ 20) and the value of σshare (0.001 for

NPGA). The best results produced by the two methods are shown in Figure 5.42. While the

points corresponding to the NPGA method are dispersed around x1∈[-2.6,-2.1] and 4.66 ≤ x2

≤ 14.58, the values of the RPSGA method converge to x1 = -2.3, and 4.7 ≤ x2 ≤ 14.82. Clearly,

the optimal Pareto frontier was not reached. Probably, this would only be possible by

transforming this problem into an unconstrained optimisation one, for example using an

exterior penalty function [SRI 95].
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Figure 5.42- Pareto frontiers (variables domain): A) NPGA; B) ditto enlarged; C) RPSGA; D) ditto enlarged.

b) Extrusion process

In order to test the same optimisation approaches in the optimisation of an extrusion problem,

the example defined in Table 5.1 (case study OF1 in section 5.1), in order to satisfy the

criteria set in Table 5.2 will be adopted, but now using the multiobjective optimisation GA,

instead of an objective function. For that purpose, the multiobjective optimisations (mo) listed

in Table 5.22 were carried out (using the following optimisation parameters: N=500, CR=0.7,

MR=0.004, NG=50 and l=24).

Table 5.22- Multiobjective optimisation computations.

Run Opt. method σσshare Limits Observations
mo1 Tournament selection 0.01 -- Repeated 5 times
mo2 “ 0.001 --
mo3 Reduced Pareto set 0.01 0.1
mo4 “ “ 0.01
mo5 “ “ 0.001 Repeated 5 times
mo6 “ 0.1 0.01
mo7 “ 0.01 “ Equal to mo4
mo8 “ 0.001 “

The use of “ full” Pareto curves to compare these results is not an easy assignment, due to their

similarity and the large number of individuals on both populations (see Figure 5.43, where the
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Pareto Curve for two criteria – screw length required for melting an output – were depicted, as

an example).
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Figure 5.43- Pareto frontier for runs mo1 and mo6.

As proposed earlier, these limitations can be overtaken if the populations are simpli fied by

means of the reduced Pareto set algorithm. Figure 5.44 presents the corresponding Pareto

frontiers, in the criteria domains, for runs mo1 and mo6, where the output (only criterion to

maximise) is plotted against length of screw required for melting, melt temperature and power

consumption. If the frontiers are analysed individually, it is possible to conclude that run mo6

is better. However, the best points in one Pareto frontier, e.g., output versus length for

melting, can be the poorest points on another partial frontier, e.g., output versus melt

temperature.

Consequently, an alternative method will be used to compare the results. The best results will

be compared upon affecting the weights of Table 5.3 to final population (generation 50),

using the objective function defined by equation 2.22.

Figure 5.45 shows the values of the global objective function for runs mo1 and mo2 (Table

5.22). Clearly, the mo1 run is superior in all the cases studied.
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Figure 5.45- Global objective function for runs mo1 and mo2.

Figure 5.46 shows the results obtained when limits are varied (runs mo3 to mo5, Table 5.22),

the best run seems to be mo4 when limits is equal to 0.01. The influence of σshare is presented

in Figure 5.47 (runs mo6 to mo8). The best performance is obtained when σshare is equal to

0.1 (run mo6).

Another important matter to take into consideration is the reproducibility of the results. In

order to estimate this, runs mo1 (NPGA) and mo5 (RPSGA) were repeated 5 times each.

Given the results obtained (Figures 5.51 and 5.52), NPGA method seems to be stable than the

RPSGA method. However, if the 3 best results provided by each one are compared (Figure

5.50), the differences are not impressive, but runs mo5c and mo5e, corresponding to RPSGA

method are the best.
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Figure 5.46- Global objective function for runs mo3 to mo5.
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Figure 5.47- Global objective function for runs mo6 to mo8.
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Figure 5.48- Global objective function for runs mo1 (a, b, c, d, e).
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Figure 5.49- Global objective function for runs mo5 (a, b, c, d, e).
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Figure 5.50- Comparison between NPGA and RPSGA methods.

5.4.2- Optimisation of the operating conditions

As settled before, one of the main objectives of this work is to optimise automatically the

operating conditions for a given extruder/polymer combination. This means, for example, to

define the screw speed and barrel temperatures profile that produce the better extruder

performance, i.e., that maximise the output and the degree of mixing, minimise the screw

length required for melting, the melt temperature, the power consumption and the residence

time of an extrusion process. Not only some of these individual objectives are contradictory,

but also they can have different importance to the process. The use of an objective function,

as represented by equation 2.22, easily permits the change of the relative importance of the

several criteria, and by this way to determine the corresponding optimal conditions. However,

when it is necessary to make this change a new run of the optimisation algorithm needs to be

performed. This diff iculty can be undertaken using a multiobjective optimisation

methodology as those presented before, namely the Niched Pareto Genetic Algorithm

(NPGA) and the Reduced Pareto Set Genetic Algorithm (RPSGA) methods. In this case the

result is a Pareto frontier where all the optimal conditions were represented. The decision-

maker only needs to take into consideration the trade-off between the relevant criteria in order

to choose the corresponding optimal solution.
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To optimise the operating conditions will be used an example where the objective is to set the

screw speed and the barrel temperature profile in three zones in order to maximise the output

and to minimise the screw length required for melting, the melt temperature and the power

consumption. For that the values of Tables 5.1 (range of variation of operating conditions),

5.2 (criteria definition) and 5.3 (weights of the individual criteria) will be used. This example

will be studied for all cases of Table 5.3 using both the Genetic Algorithm with objective

function (equation 2.22) and the Reduced Pareto Set Genetic Algorithm (RPSGA), and for

each one the analytical and the numerical models. Finally, these results will be compared with

experimental results obtained in a Leistritz extruder (Table 4.3). Table 5.23 presents the

numerical and the GA parameters used for the optimisation types studied.

Table 5.23- Numerical and GA parameters used in the optimisations.
Optimisation type

Objective function Reduced Pareto SetParameter
Analytical Numerical Analytical Numerical

Number of increments in Z direction 100 100 100 100
Number of grid points in transversal plane -- 10 -- 10
Initial thickness of the film close to the barrel -- δf -- δf
Initial thickness of the film close to the screw
root and passive flank

-- δf -- δf

Initial melt pool width -- 2δf -- 2δf
Screw temperature upon solids conveying -- --
Population length 200 200 500 500
Crossover rate 70 70 70 70
Mutation rate 2 2 2 2
Selection operator exp. ranking +

roulette wheel
exp. ranking +
roulette wheel

exp. ranking +
roulette wheel

exp. ranking +
roulette wheel

Crossover operator two points two points two points two points
Number of generations 50 50 50 50
Chromosome length 24 24 24 24
σshare -- -- 0.1 0.1
limits -- -- 0.01 0.01
NOTE: δf - fli ght clearance.

Figure 5.51 shows the evolution of the global and the individual objective functions as the

search proceeds for case study OF1. The optimisation process seems to converge after 20

generations. During the search the growth of the global objective function follows the

evolution of the output individual criterion, given their higher relative importance.

Simultaneously the other criteria deteriorate during this process. Obviously, the output growth

is achieved at expenses of power consumption. Likewise, a higher output implies short

residences times and consequently an increase on the screw length required to melting the
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polymer. Furthermore, the viscous dissipation increases with the output, which has a

consequence the increases of the melt temperature.
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Figure 5.51- Genetic Algorithm optimisation of global and individual objective functions
(case study OF1, Table 5.3).

The convergence of the genetic search is achieved when a reasonable number of population

individuals have the same value. Figure 5.52 shows the evolution of the global objective

function considering the best individual and the average of best 30, 50, 75 and 100% of the

population. The best individual of each generation converges rapidly and maintains its value.

Likewise, the average of 30, 50 and 75 % of the population converge to the same value and

maintain it. This does not happens for the average of 100% of the population, because in all

the generations mutation has a (small) probabil ity to occurs, which due to its characteristics

can produces considerable modifications on some individuals. Thus, the use of an average of

75% of the population as a convergence criterion seems to be adequate.
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Figure 5.52- Evolution of global objective function for the average of the best and
the average of best 30, 50, 75 and 100% of the population.

The evolution of the genetic algorithm optimisation can also be followed using the parameters

to optimise, screw speed and barrel temperatures in three zones. Figure 5.53 presents the
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evolution of the mean value of the best 75 and 30% population individuals of each generation

(bold and thin contour lines, respectively), forming the practical operating window. The initial

variation range is also represented. The best algorithm performance relatively to Figure 5.25

is due to the use here of improved GA parameters.
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Figure 5.53- Practical operating window. Bold contours: mean value of the best 75%
chromosomes; thin contours: mean values of the best 30% chromosomes.

Figure 5.54, where the evolution of the global and individual objective functions for case

studies OF2 to OF5 (Table 5.3) are represented, demonstrates that the results are sensitive to

the relative importance of the process variables. This point is clearly confirmed by

observation of the results obtained for case studies OF1 and OF4, where the weights affecting

the output and the power consumption are interchanged. The behaviour of the global objective

function is similar to that of the most important individual criterion. These two criteria are not

only conflicting in the objective function (usually the aim is to maximise the output and

minimise the power consumption), but also in their interaction (as increasing the output

requires more power).

The use of a multiobjective optimisation methodology as the one developed in this work,

Reduced Pareto Set Genetic Algorithm (RPSGA), easily permits with one run to obtain, not

only the 5 solutions represented by each one of the cases studied, but the entire Pareto

frontier. Figure 5.55 shows the Pareto frontiers obtained in the optimisation of the operating

conditions using both the RPSGA and the numerical model (Table 5.23). These curves are

graphed as a function of mass output assuming these as the most important criterion;

however, they can be represented as a function of any other criteria. The decision-maker can

choose a desirable value for the output (if this is the most important criterion, as in the case
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study OF1) see the value of the other criteria (Figure 5.55-A) and relate this point with the

corresponding operating conditions (Figure 5.55-B). However, since this is a

multidimensional problem is possible that optimal points for given two criteria could not be

optimal for any other two criteria.
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Figure 5.54- Evolution of the global and individual objective functions for case studies OF2 to OF5.

Table 5.24 shows the results corresponding to the maximisation of equation 2.22 and using

the analytical model. The data indicates that:

• When the most important criterion is output maximisation, screw speed converges to its

maximum value – OF1;

• When the weight attributed to the minimisation of the length of screw required for melting

is higher, barrel temperature for zone 1 is also higher, since melting occurs predominantly

here – OF2;

• Minimisation of length of the screw required for melting, melt temperature or power

consumption is always achieved when the screw speed is at its lowest possible value (10

rpm) – OF2 to OF4;
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• Melt temperature at the extruder exit is at its minimum, using the lowest barrel temperature

profile – OF3.
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Figure 5.55- Pareto optimal set: A) criteria eff icient frontiers; B) operating conditions eff icient frontiers.

If the same problem is solved using a multiobjective optimisation methodology, the final

result is a Pareto frontier where, in principle, all the set of weights are represented. For that

reason, the use of a specific combination of weights, is only possible through an indirect

approach. In this case, the objective function was applied to the same final generation, using

successively the various weights, and the best individual of each set of weights is chosen.

Table 5.25 presents the corresponding operating values.
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Table 5.24- Operating conditions for OF optimisation – analytical model.
OF1 OF2 OF3 OF4 OF5

N (rpm) 50 10 10 10 10
T1 (°C) 150 167 152 152 151
T2 (°C) 160 170 161 170 160
T3 (°C) 170 170 170 170 170

Table 5.25- Operating conditions for RPS – analytical model.

Cases under study
OF1 OF2 OF3 OF4 OF5

N (rpm) 50 10 10 10 10
T1 (°C) 154 174 154 154 154
T2 (°C) 161 166 161 161 161
T3 (°C) 170 170 170 170 170

The values in Tables 5.24 and 5.25 are similar. Differences exist for T2 in Case OF4 (9°C),

but they have little importance as suggested by the experimental data (Table 5.13).

As discussed previously, the biggest advantage of a multiobjective optimisation is the

possibility of testing “all” the combinations of weights only with one run. Therefore, the

decision-maker, upon obtaining the Pareto frontier from a multiobjective optimisation

scheme, possesses the necessary information to made decisions about the process.

If the objective function is now optimised using the numerical model, the data presented in

Table 5.26 is obtained. A comparison with the results obtained with the analytical model

(Table 5.24) shows that case studies OF1 and OF4 have different T1 and T2, respectively and

that case study OF3 has a distinct screw speed. In the case of multiobjective optimisation

using the numerical model (Table 5.27) the differences are more important.

Table 5.26- Operating conditions for OF optimisation – numerical model.
Cases under study

OF1 OF2 OF3 OF4 OF5
N (rpm) 50 13 17 10 12
T1 (°C) 184 165 151 155 155
T2 (°C) 165 177 162 196 172
T3 (°C) 170 170 170 170 170
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Table 5.27- Operating conditions for RPS – numerical model.
Cases under study

OF1 OF2 OF3 OF4 OF5
N (rpm) 50 27 10 10 10
T1 (°C) 188 184 177 177 177
T2 (°C) 164 180 193 193 193
T3 (°C) 173 170 170 170 170

In order to compare and discuss the optimisation results obtained either by extrusion

experiments or by computations, three approaches were considered namely factorial design of

experiments, GAs with an objective function and multiobjective optimisation with GAs. In

the first case, it is possible to define the operating conditions through extrusion experiments,

analytical results, or numerical results. In the remaining approaches, analytical or numerical

modell ing were considered.

In this study the intent is to optimise the operating conditions (screw speed, and barrel

temperature profile – Table 5.1) in order to maximise the output and to minimise the melt

temperature and the power consumption (Table 5.2). In order to be possible the comparison

between the approach that uses experimental results and the others, the minimisation of the

screw length required for melting will not be considered. Thus, Table 5.3 is transformed into

Table 5.28.

Table 5.28- Weights of the individual cr iter ia.
WeightsCase

Studies W1 W2 W3 W4

OF1´ 0.6 0 0.3 0.1
OF2´ -- -- -- --
OF3´ 0.2 0 0.6 0.2
OF4´ 0.1 0 0.3 0.6
OF5´ 0.(3) 0 0.(3) 0.(3)

Tables 5.29 to 5.32 summarise the results obtained on the optimisation of the operating

conditions for the case studies OF1´ (Table 5.29), OF3´ (Table 5.30), OF4´ (Table 5.31) and

OF5´ (Table 5.32).

When more importance is given to output (case study OF1´ - Table 5.28), screw speed

converges to its maximum possible value in all the approaches. The differences between them

occur for T1 and T2. While the values of T1 obtained with the approaches that use the

numerical model are closer to the corresponding experimental values, the values of T2 for both

models are different. This is due to the fact that, for the analytical model, the output does not
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seem to vary with barrel temperatures but melt temperature does (Figure 5.21); consequently

the melt temperature criterion assumes some importance. For the numerical model T2 does not

affect the output, whereas has some influence on melt temperature (Figure 5.23)

Table 5.29- Results of the var ious approaches for OF1´.
Optimisation type Model N (rpm) T1 (ºC) T2 (ºC) T3 (ºC)

Factorial design Experimental 50 190 180-200 170
Factorial design Analytical 50 150 160 170
Factorial design Numerical 50 190 160 170
Objective function GA Analytical 50 150 160 170
Objective function GA Numerical 50 182 166 170
Reduced Pareto Set GA Analytical 50 154 161 170
Reduced Pareto Set GA Numerical 50 180 165 173

Table 5.30 presents the results when the main criterion is the minimisation of melt

temperature at the exit of the extruder. As the experimental data suggests, the last barrel

temperature determines melt temperature (Table 5.12) and then the values of T1 and T2

converge to their maximum possible value. Screw speed does not seem to be determinant

since it converges to values between 10 and 30 rpm. This happens due to the small weight

attributed to the output criterion. Analytical computational results indicate that this objective

is achieved with the lowest barrel temperature profile and the lowest screw speed. This is

explained by the fact that, when this mathematical model is used, barrel temperatures T1 and

T2 have some importance (Table 5.13) and the variation of melt temperature with the screw

speed is non negligible (Figure 5.21). For the approaches that use the numerical model, when

the screw speed is small (factorial design and RPSGA) the value of T2 is the greatest possible.

This is justified by the fact that for screw speed equal to 10 rpm melt temperature does not

vary with T2 (Figure 5.23).

The minimisation of the power consumption (case study OF4´ – Table 5.31) is accomplished

with the lowest screw speed. The results of all approaches are very similar, the greater

differences occur on T2 for the analytical results. Being the power consumption behaviour, as

a function of screw speed and T2, similar in all the approaches, the differences observed are

probably due to the sensitivity to melt temperature (Figures 5.19 to 5.24).

When is given equal importance to the criteria (case study OF5´ – Table 5.32) the results are

similar to those of the previous two case studies as well as the reasons for this behaviour.



163
______________________________________________________________________________________

Table 5.30- Results of the several approaches for OF3´.
Optimisation type Model N (rpm) T1 (ºC) T2 (ºC) T3 (ºC)

Factorial design Experimental 10-30 190 200 170
Factorial design Analytical 10 150 160 170
Factorial design Numerical 10 150 200 170
Objective function GA Analytical 10 152 161 170
Objective function GA Numerical 17 151 162 170
Reduced Pareto Set GA Analytical 10 154 161 170
Reduced Pareto Set GA Numerical 11 157 200 171

Table 5.31- Results of the several approaches for OF4´.
Optimisation type Model N (rpm) T1 (ºC) T2 (ºC) T3 (ºC)

Factorial design Experimental 10 150-190 200 170
Factorial design Analytical 10 150 160 170
Factorial design Numerical 10 150 200 170
Objective function GA Analytical 10 152 170 170
Objective function GA Numerical 10 155 196 170
Reduced Pareto Set GA Analytical 10 154 161 170
Reduced Pareto Set GA Numerical 11 157 200 171

Table 5.32- Results of the several approaches for OF5´.
Optimisation type Model N (rpm) T1 (ºC) T2 (ºC) T3 (ºC)

Factorial design Experimental 10 170-190 200 170
Factorial design Analytical 10 150 160 170
Factorial design Numerical 10 150 200 170
Objective function GA Analytical 10 151 160 170
Objective function GA Numerical 12 155 172 170
Reduced Pareto Set GA Analytical 10 154 161 170
Reduced Pareto Set GA Numerical 11 157 200 171

5.4.3- Screw design

Screw design, i.e., the optimisation of the screw geometry parameters, is a very challenging

task. First of all, the number of parameters to optimise can vary widely. This means that the

use of GAs requires the manipulation of a chromosome of variable length, that needs to

“accommodate” the eventual existence of mixing sections, barrier compression zone, grooves

on the barrel, etc. Another important aspect is the multi-modality of the search space, which

constitutes an additional problem for the algorithm. Moreover, the practical definition of the

screw geometry must involve complex situations, such as processing a single polymer under a

relatively wide operating window, a single polymer but with varying properties (various
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grades) or even several polymers. This means that not only the optimisation of a number of

objectives are pursued, but the sensitivity of those objectives to changes in the process

variables must also be considered.

Such an analysis is complete only if the operating conditions and the mechanical behaviour of

the screws are examined. The design of a screw with optimal process performance needs to

take into account the mechanical strength to support the stresses required by the conveying

process. Variables such as the torsional strength of the screw root, strength of the screw flight

and lateral deflection of the screw are fundamental and need to be carefully thought about.

In this section, a preliminary study on the optimisation of the screw geometrical parameters,

using Genetic Algorithms with objective function (Figure 5.2), in order to satisfy the criteria

of Table 5.4 will be made (Table 5.5). Taken into account the multi-modality of this

optimisation problem (as will be seen next), the use of a multiobjective algorithm that

produces a set of solutions (Pareto frontier) can be useful in order to obtain various similar

answers with one run. Therefore, four runs of the optimisation procedure using the Reduced

Pareto Set Genetic Algorithm, for case studies 6 to 9 with multiple criteria and different

relative weights (Table 5.5) will also be made. Finally, an example where the aim is to design

a conventional screw (Figure 5.2), to use with 3 different materials (HDPE, LDPE and PVC),

in order to satisfy the criteria of Table 5.4 and to obtain the most equili brated performance

will be studied. The processing conditions were maintained constant, case studies (or runs) 6,

16 and 17 (Table 5.5).

a) GA with objective function

Figure 5.56 shows the results obtained when the aim of the optimisation considers only the

individual criteria. An identical screw is obtained when the objectives are to maximise the

output (Q – run 1) and minimise the power consumption (P – run 4). In this case the channel

depth in the metering zone is the largest possible (D3 = 27 mm) and the compression ratio is

small (CR = 1.73), since such a screw offers small resistance to the flux. When the objectives

are to minimise the length of screw required for melting (L – run 3) and to maximise the

degree of mixing (W – run 5) the channel depth converge for a small value (D3 = 32.8) and the

compression ratio is greater (CR = 5). Furthermore, this screw has the largest metering zone

length (20.3D). Here the objective is to melt the polymer earlier in order to have, not only a

small melting zone, but also a bigger degree of mixing. Since the melting occurs essentially in
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the melt conveying zone of the process. The minimisation of the melt temperature (T – run 2)

is achieved with a screw with a compression ratio equal to 4 and with the greatest possible

value for the internal screw diameter (equivalent to small channel depth). This reveal that the

increase on the melt temperature is not due to viscous dissipation but is controlled by heat

conduction (as concluded before – section 5.4).
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Figure 5.56- Influence of the individual criteria.

The results for different relative weights are presented in Figure 5.57. As can be seen, when

greater weight is given to the maximisation of the output (run 6), the screw is similar to that

obtained when the maximisation of the output and the minimisation of power consumption

are considered alone (runs 1 and 4). The screws differ in the length of the compression zone,

since here some importance is given to the minimisation of the screw length required for

melting and the maximisation of the mixing degree. The screw obtained in this case reflects a

compromise between higher outputs (run 1) and these two criteria. In the remaining cases the

screw obtained is the same and is identical to that obtained when the screw length required for

melting and the degree of mixing are considered alone (run 3 and 5). Again a compromise
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between objectives is obtained, but now the screw reflects the small importance of the output

by decreasing the internal screw diameter from 32.8 to 31.9 mm.
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At this point it will be important the study of the reproducibil ity of the results and to verify if

this optimisation problem is multi-modal. Figure 5.58 shows the results obtained when 3 runs

of the same optimisation problem are made using the same criteria and operating conditions

(runs 6, 10 and 11). The algorithm converges for two different solutions; this probably means

that the problem is multimodal [GOL 87]. In order to confirm this task the global objective

function is plotted against two of the parameters to optimise (L1 and L2) - see Figure 5.59. As

can be seen, there are various maxima distributed at random along the search space.

Figure 5.60 shows the influence of screw speed on the design of a screw. As the screw speed

increases the compression ratio decreases and the compression zone is transferred from the

beginning to the middle of the screw. The screw obtained with 10 rpm (run 12) has a channel

depth the smallest possible. In this case it was necessary to have a small channel depth in

order to increase the polymer compression capacity of the screw. When the screw speed

increases the melting of the polymer occurs later on the screw (runs 13 and 6), since the

residence time of the polymer inside the extruder decreases. Consequently the compression
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zone follows this behaviour because during the melting phase it was necessary to compress

the polymer in order to increase the melting capacity.
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The influence of barrel temperature profile on the screw design optimisation will be studied

with an example where the 3 screws obtained with 3 different screw speeds (Figure 5.60, runs

12, 13 and 6) were subjected to 3 different barrel temperature profiles (Table 5.33).

Table 5.33- Barr el temperature profiles.
T1 (ºC) T2 (ºC) T3 (ºC)

Profile 1 150 170 190
Profile 2 160 180 200
Profile 3 170 190 210

Figure 5.61 shows their behaviour in terms of the global objective function determined using

the 5 criteria and the weights correspondent to run 6 (Table 5.5). The variation of the global

objective function with screw speed and barrel temperature profiles is linear. The best screw

for 10 rpm is that obtained with N=10 rpm and Profile 1. The screw obtained with N=50rpm

and Profile1 shows the best performance for screw speeds of 30 and 50 rpm. This is probably

due to the similitude of the two last screws in terms of the channel depth.
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Figure 5.61- Influence of the barrel temperature profile: A) screw for N=10rpm;

B) screw for N=30rpm; C) screw for N=50rpm.

Figure 5.62 presents the results obtained in the screw design optimisation, but now including

additionally the screw pitch as a parameter to optimise. Two situations are studied: constant

screw pitch along the screw (run 14) and different screw pitch for each geometrical zone (run

15). For both cases the screw obtained has a screw pitch that corresponds to a helix angle of

21°. Generally this value is equal to 17.7°, correspondent to a square screw where the pitch is

equal to the screw external diameter.
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The influence of different materials on the screw design is presented in Figure 5.63 (runs 6,

16 and 16). The screws obtained for the two polyolefines (runs 6 and 16, respectively for

HDPE and LDPE) are identical, since they have similar properties. However, the localisation

of the compression zone of the screw optimised for LDPE (run 16) is closer of the feed zone,

probably due to its lower thermal conductivity (Appendix B). The larger compression zone of

the screw optimised for PVC (run 17) is probably due to its higher viscosity (Appendix B).
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Figure 5.63- Influence of different materials.

Finally, if some changes in the viscosity level of an HDPE (runs 18, 6 and 19) and the

corresponding optimisations are performed, three different screws are obtained (Figure 5.64).
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The optimal screws for low (run 18) and high (run 19) viscosity levels have a smaller

compression ratio and a higher length of the compression zone than that obtained when a

medium viscosity level (run 6) is considered.
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b) Multiobjective optimisation with RPSGA method

Table 5.34 shows the 6 best results obtained on the screw design optimisation of the cases

corresponding to runs 6 to 9 (Table 5.5). In this case, the optimisation was performed using

the Reduced Pareto Set Genetic Algorithm (RPSGA) using the parameters presented in Table

5.23 (analytical model). The last generation (50) was ordered in function of a global objective

function (equation 2.22) computed using the weights corresponding to runs 6 to 9. Then, the 6

best individuals are chosen. The 6 screws of each run are similar to those obtained before

(Figure 5.57) and between themselves. The advantage of this method (RPSGA) is that the

decision-maker has now multiple optimal alternatives, which in principle take into account the

multi-modality of the problem.
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Table 5.34- Screws geometry and corresponding cr iter ia values obtained using RPSGA.
L1

(xD)
L2

(xD)
D1

(mm)
D3

(mm)
Q

(kg/hr )
LT

(m)
T

(ºC)

eW

(W)
WATS CR

12.4 6.4 20.0 27.2 11.90 0.8203 165.1 2256 66.37 1.82

12.2 9.6 20.0 27.8 11.83 0.8553 164.6 2134 49.25 1.95

12.4 3.3 21.6 27.2 11.69 0.7845 166.7 2403 88.00 1.64

12.1 5.6 20.4 27.6 11.59 0.7884 166.5 2343 88.51 1.86

12.4 6.9 20.0 28.0 11.56 0.8113 166.1 2283 78.01 2.00

Run 6

12.4 5.0 21.6 28.0 11.47 0.7857 167.6 2419 93.44 1.80

3.5 2.8 22.8 31.8 4.526 0.322 191.8 2481 847.2 3.14

3.8 2.9 20 31.6 4.334 0.319 191.9 2389 834.4 3.64

3.3 3.2 20.4 31.8 4.432 0.326 191.9 2434 844.6 3.71

3.3 3.2 21.2 31.8 4.448 0.328 191.6 2437 841.4 3.52

4.4 2.9 20.6 31.6 4.908 0.346 190.2 2374 765.5 3.50

Run 7

3.2 2.8 20.4 31.2 3.807 0.302 193.8 2291 845.1 3.25

3.5 2.8 22.8 31.8 4.526 0.322 191.8 2481 847.2 3.14

3.3 3.2 21.2 31.8 4.448 0.328 191.6 2437 841.4 3.52

3.3 3.2 20.4 31.8 4.432 0.326 191.9 2434 844.6 3.71

4.3 2.8 21.6 31.8 4.844 0.34 190.7 2522 801.1 3.43

3.8 2.9 20 31.6 4.334 0.319 191.9 2389 834.4 3.64

Run 8

3.8 2.8 20 31.6 6.165 0.357 189.1 2773 683.2 3.64

3.2 2.8 20.4 31.2 3.807 0.302 193.8 2291 845.1 3.25

3.2 2.8 20.4 31.2 3.807 0.302 193.8 2291 845.1 3.25

3.8 2.9 20 31.6 4.334 0.319 191.9 2389 834.4 3.64

2.5 3.5 20.5 31.3 4.201 0.312 193.1 2375 818.6 3.30

3.3 2.9 20 31.2 4.255 0.313 192.9 2367 800.6 3.33

Run 9

4.4 2.9 20.6 31.6 4.908 0.346 190.2 2374 765.5 3.50

c) Optimal screw to use with 3 different polymers
As described at the beginning of this section, the objective here is to design a screw that can

be used with 3 different polymers, with the most overall performance. In order to achieve that

the optimisation strategy is the following:

1- Make 3 different optimisations, one for each material (as those made before - Figure

5.63).

2- Make a single optimisation, where the “global” objective function is the average of the

global objective function for each material.

3- Make a single optimisation, where the “global” objective function is the sum of the

minimum individual functions (Max-Min) for all materials, affected by the respective

weight, calculated as follows:



173
______________________________________________________________________________________

∑
=

=
q

j
kjji FMinwFO

1
, )(

(5.7)

where, q is the number of criteria, wj is the weight attributed to each and Fj,k is the

individual objective function for criterion j and material k.

4- Chose a screw, based on an analysis of gains and losses of optimisations 2 and 3 relatively

to the individual optimisations 1.

In order to do this, each of these 5 optimisations was repeated 10 times (to overcome the

multi-modality problem). Therefore, 5 different screws are obtained corresponding to the best

of each set of 10 runs. The best screw obtained for each material wil l be compared with the

screws obtained using the average and the Min-Max global objective functions. This

comparison wil l be made in terms of: output (Figure 5.65), power consumption (Figure 5.66),

specific energy - power/output ratio - (Figure 5.67), screw length required for melting (Figure

5.68), WATS (Figure 5.69), melt temperature (Figure 5.70) and melt/barrel temperatures ratio

(Figure 5.71).

Given the higher weight attributed to output maximisation, the screws have higher output,

power consumption and screw length required for melting as well as lower WATS. The screws

obtained for each polymer have higher output (Figure 5.65) and lower specific energy (Figure

5.65). The screw obtained with the Min-Max objective function is better than the one obtained

with the average objective function. If the screw obtained with the Min-Max objective

function is chosen the losses in terms of the output are circa 3 kg/hr for HDPE, less than 1

kg/hr for LDPE and circa 2 kg/hr for PVC. The losses in terms of specific energy are circa

0.03 J/kg for HDPE and less than 0.001 J/kg for LDPE and PVC. Concerning screw length

required for melting and WATS criteria the best screw is obtained with the average objective

function, but the performance of the screw obtained with the Min-Max objective function is

almost as good. Finally, for all the polymers studied, the performance in terms of the melt

temperature and melt/barrel temperature ratio criteria is identical. It is possible to conclude

that the screw obtained with the Min-Max objective function has better performance than the

obtained with the average objective function.

At this point, to choose a screw the decision-maker needs to make a balance between two

costs. The costs in terms of output if the screw obtained with the Min-Max objective function

is chosen and the costs associated to the manufacture of three screws and to the time needed

to change them on the extruder if the three screws obtained alone are chosen.
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Figure 5.65- Output versus polymer and optimisation strategy.
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Figure 5.66- Power consumption versus polymer and optimisation strategy.
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Figure 5.67- Specific energy versus polymer and optimisation strategy.
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Figure 5.69- Mixing quality versus polymer and optimisation strategy.
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Figure 5.70- Melt temperature versus polymer and optimisation strategy.
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6- CONCLUSIONS

An optimisation approach to solve “automatically” single screw extrusion inverse problems

was proposed and implemented in this work. The scheme developed was applied to the setting

of the optimal operating conditions of an existing extruder and to the design of new extrusion

screws.

Genetic Algorithms are of easy application, show the capacity to deal with complex search

spaces, do not require any sort of additional information and the results are sensitive to the

process parameters with physical meaning. Furthermore, GAs can be changed to take into

account the existence of several criteria to be satisfied simultaneously, which is a

characteristic of most real world optimisation problems. The approach based on the weighting

of several individual criteria requires the a priori definition of the weights, the results having

been shown to be sensitive to changes in these weights. However, if the decision-maker needs

to change the relative importance of the criteria, the program needs to be run again.

Conversely, the approach based on the concept of Pareto´s optimali ty allows the definition of

Pareto frontiers between all the criteria only with one run. In this case if the user wants to

define the criteria values to be satisfied in order to choose either the operating point or the

screw geometry, a trade-off between the different criteria and parameters to optimise will be

established.

The comparison between experimental and computational results produced by two different

models clarifies the importance of the modelling package. It is clear that, when the numerical

modell ing routine is used, the optimisation results are closer to the experimental ones,

regardless of the application of factorial design or genetic algorithm optimisation methods.

One drawback of such methods is that the computation time grows exponentially. However,

this question is becoming progressively less relevant given the exponential increase of

computational power and the fact that a trial-and-error approach is avoided.

The Reduced Pareto Set Genetic Algorithm (RPSGA) multiobjective optimisation method

developed in this work showed a good performance when applied to both benchmark and

extrusion problems. The comparison with the Niched Pareto Genetic Algorithm (NPGA)

shows that there is not a clear winner, the main advantage of the RPSGA method lying in the

reduction of the Pareto set, especially in problems that require large populations.

In this work it was clearly demonstrated that a fundamental step of optimisation strategies

using GAs is the definition (or setting) of its parameters (crossover and mutation rates,



178
______________________________________________________________________________________

population length, etc). The appropriate choice of these parameters increases the performance

of the optimisation algorithm in terms of both the best results and the least time needed by the

computations. This type of analysis is always required if changes on the optimisation

conditions are to be made (number of variables to optimise, type of these variables, etc). The

parameter values obtained in this work can be used as a starting point for new studies.

The running of the numerical modell ing package implemented in this work depends on some

parameters that were defined a priori. The parameter most susceptible of influencing the

results is the grid size in the transversal plane - xy, which is related with the used numerical

algorithm (finite differences, in this case). As expected, if the number of grid points increase

(i.e., the grid size decreases) the model predictions improves but at the expense of

computation time. It was determined that the best grid size, when the numerical modelling

package is to be used by the optimisation algorithm (were it needs to be run several times), is

10 grid points. With this grid size it is possible to obtain good optimisation results with

reasonable computation time. Conversely, if the objective is to study a specific processing

situation, where only a few runs are needed a grid size of at least 15 points is recommended.

The setting of the increment length in the down-channel direction does not offer any

difficulty, since in this case the increase in computation time is not important. Other

parameters concerned to process variables (initial thickness of the films surrounding the solid

bed, initial melt pool width, criterion to estimate the length of delay zone II , screw

temperature along the solids conveying zone) were also defined. In this case the choice of the

corresponding values is trivial and does not offer special attention, except in the case of the

screw temperature where the best option is to consider the screw to be adiabatic

The assessment of the optimisation results of the computational operating conditions obtained

by the three approaches (factorial design, genetic algorithms with an objective function and

reduced Pareto set genetic algorithm) and using the two theoretical models of the extrusion

process (analytical and numerical) allows one to conclude that the approaches where the

numerical model is used yield better result. Differences only occur for barrel temperatures T1

and T2.

The results obtained for screw design show that the optimisation algorithm is sensitive to the

importance of the different criteria, to changes in the operating conditions and to changes in

the polymer properties. The study of the reproducibil ity of the optimisation algorithm and the

graphical representation of the global objective function as a function of two parameters to
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optimise shows that this is a multimodal problem. Finally, a methodology to verify the

possibility of using just one screw for three different polymers (LDPE, HDPE and PVC) was

studied. In this, in order to choose a screw(s) the decision-maker needs to strike a balance

between the cost related with the losses in output (if the decision is to use just one screw for

the three polymers) and the costs related to the manufacture of three screws and time needed

to change them on the extruder.



180
______________________________________________________________________________________

7- SUGGESTIONS FOR FURTHER WORK

Several interesting and challenging studies can be carried out to extend the present work,

some possibilities being:

i) To further develop the optimisation methodology for screw design with GAs by

extending the numerical analysis used in this work to the modelling of barrier screws and

mixing sections.

ii) To extend this methodology to the modelling of the plasticating phase of injection

moulding (reciprocating-screw) that can be included in an optimisation methodology (as

the one used in this work) for the setting of the operating conditions and for screw and

non-return valve design.

iii ) To apply the methodology developed in this work to the optimisation of the operating

conditions and for screw design of co-rotating twin-screw extruders.

iv) Given the computational time consumed by the modelling package, improvements in the

discretisation with finite differences should be pursued. For example, the Crank-Nicolson

scheme may be replaced by the A.D.I. (Alternating-Direction Implicit) scheme,

particularly in the case of two-dimensional analysis.

In the optimisation methodology with GAs for screw design, the choice between the screw

configuration, i.e., the definition of whether the screw is conventional or barrier-type and if it

has mixing sections or not, will be made automatically. The simple chromosome described in

chapter 2 will be modified in order to include the geometrical parameters (of the conventional

and barrier screws and of the mixing sections), two flags that indicate if the screw is

conventional, barrier-type and/or has mixing sections and two flags that will define the type of

the barrier screw and mixing sections. Figure 7.1 ill ustrates this purpose. The GA evaluates

each chromosome thus defined and the final result includes a screw that can be conventional

or barrier-type and can include or not mixing sections depending on the flag values.

The application of this optimisation methodology to twin-screw extrusion will be

accomplished using the “LUDOVIC” commercial modell ing package, which was developed

at CEMEF (Centre de Mise en Forme de Matiéres Plastiques), Sophia-Antipolis, France. This

programme is able to compute melt temperature profile, residence time distribution, pressure

profile, mixing degree, power consumption and shear rates for a given twin-screw extruder

geometry, operating conditions and polymer properties. Therefore, it will be possible to
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optimise the operating conditions such as screw speed, barrel temperature profile and feed

rate, as well as screw design. In the latter case the parameters to consider are the number,

type, localisation and geometry of the various screw sections.

  

0 0 1 0 110010 0 1 0 11001 0 0 1 0 110010 0 1 0 1

Conventional
screw

parameters

Barrier 
screw

parameters

Mixing 
section 

parameters
Flags

1  2   3   4

Flag 1: = 0 - conventional screw
= 1 - barrier screw

Flag 2: = 0 - without mixing sections
= 1 - with mixing sections

Flag 3: = 0 - barrier screw type 1
= 1 - barrier screw type 2

Flag 4: = 0 - mixing section type 1
= 1 - mixing section type 2

Flags 3 and 4 can have more than 1
gene in order to accommodate more
barrier screw and mixing section
types.

Figure 7.1- Chromosome definition for global screw design.
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