IVERSITEIT VAN PRET
RSITY OF PRET
T

ORIA
E ORIA
BESITHI YA PRETORIA

Particle swarm optimization and differential
evolution for multi-objective multiple machine

scheduling
by

Jacomine Grobler

Submitted in partial fulfillment of the requirements for the degree
Master of Engineering (Industrial Engineering)
in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

September 2008

© University of Pretoria

IVERSITEIT VAN PRETORIA
VERSITY OF PRETORIA
IBESITHI YA PRETORIA

UN
UNI
YUN
G’

Publication data:

Jacomine Grobler. Particle swarm optimization and differential evolution for multi-objective multiple machine schedul-
ing. Master's dissertation, University of Pretoria, Department of Industrial and Systems Engineering, Pretoria, South
Africa, September 2008.

Electronic, hyperlinked versions of this dissertation are available online, as Adobe PDF files, at:
http://cirg.cs.up.ac.za/

http://upetd.up.ac.za/UPeTD.htm

http://cirg.cs.up.ac.za/
http://upetd.up.ac.za/UPeTD.htm

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Particle swarm optimization and differential evolution for
multi-objective multiple machine scheduling

by

Jacomine Grobler

E-mail: jacomine.grobler@gmail.com

Abstract

Production scheduling is one of the most important issues in the planning and operation
of manufacturing systems. Customers increasingly expect to receive the right product
at the right price at the right time. Various problems experienced in manufacturing,
for example low machine utilization and excessive work-in-process, can be attributed
directly to inadequate scheduling.

In this dissertation a production scheduling algorithm is developed for Optimatiz,
a South African-based company specializing in supply chain optimization. To address
the complex requirements of the customer, the problem was modeled as a flexible job
shop scheduling problem with sequence-dependent set-up times, auxiliary resources and
production down time.

The algorithm development process focused on investigating the application of both
particle swarm optimization (PSO) and differential evolution (DE) to production schedul-
ing environments characterized by multiple machines and multiple objectives. Alter-
native problem representations, algorithm variations and multi-objective optimization
strategies were evaluated to obtain an algorithm which performs well against both exist-
ing rule-based algorithms and an existing complex flexible job shop scheduling solution
strategy.

Finally, the generality of the priority-based algorithm was evaluated by applying it
to the scheduling of production and maintenance activities at Centurion Ice Cream and
Sweets. The production environment was modeled as a multi-objective uniform parallel

machine shop problem with sequence-dependent set-up times and unavailability intervals.

file:jacomine.grobler@gmail.com

e
o
" UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

A self-adaptive modified vector evaluated DE algorithm was developed and compared
to classical PSO and DE vector evaluated algorithms. Promising results were obtained
with respect to the suitability of the algorithms for solving a range of multi-objective
multiple machine scheduling problems.

Keywords: Flexible job shop scheduling problem, evolutionary multi-objective opti-

mization, particle swarm optimization, differential evolution.

Supervisors : Prof. V. S. S. Yadavalli
Prof. A. P. Engelbrecht
Department : Department of Industrial and Systems Engineering

Degree : Master of Engineering (Industrial Engineering)

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Acknowledgements

“Alone we can do so little; yet together we can do so much.”
Helen Keller
There are a number of people and institutions which I would like to acknowledge for

their help and support during the completion of this dissertation:
e Prof. Sarma Yadavalli for always believing in me and encouraging me to do better.
e Prof. Andries P. Engelbrecht for his excellent mentorship and financial support.
e Prof. Schalk Kok for the numerous insightful conversations and encouraging words.

e Leon Beetge from Optimatiz and Charles Meeser from Centurion Ice Cream for

their data, helpful comments and general support.

e The staff of the Department of Industrial and Systems Engineering for their en-

couragement and interest in my work.

e All my friends and colleagues in and outside of the Computational Intelligence

Research Group for their patience and valuable comments.

e The Automated Scheduling Optimization and Planning research group at the Uni-

versity of Nottingham for hosting me at their university.

e The University of Pretoria for their financial support enabling me to attend various

national and international conferences.

e The National Research Foundation for their financial assistance towards this re-
search. Opinions expressed in this dissertation and conclusions arrived at, are
those of the author and not necessarily to be attributed to the National Research

Foundation.
e My parents and grandmother for their unwavering love and support.

e My Creator for His blessing during the completion of this dissertation.

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Contents

List of Figures

List of Algorithms

List of Tables

1 Introduction
1.1 Objectives
1.2 Contributions

1.3 Dissertation Outline

2 Literature review

2.1
2.2
2.3
24
2.5

Classification according to flow pattern and number of machines («) . . .

Classification according to job constraints (3)

Classification according to objective function (y)

The Optimatiz problem

SUMMATY v o v e e e e e e e e e

3 Selecting an appropriate solution strategy

3.1

An overview of existing solution strategies

3.1.1
3.1.2
3.1.3
3.1.4

Optimal solution strategies
Heuristic methods
Metaheuristics

Selecting a suitable solution strategy

3.2 Particle swarm optimization oo

vil

viii

- W N -

14
15
18

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

3.2.1 The basic algorithm
3.2.2 The guaranteed convergence PSO algorithm
3.2.3 Algorithm parameters
3.2.4 Variations on the basic PSO algorithm
3.3 Differential evolution Lo
3.3.1 The basic algorithm L.
3.3.2 Algorithm parameters
3.3.3 Variations on the basic DE algorithm
3.4 A brief analysis of existing PSO- and DE-based scheduling algorithms . .
3.4.1 General observationso
3.4.2 Addressing more complex scheduling problems

3.5 Summary .. o.o. oL e

Solving the single objective Optimatixz problem

4.1 Alternative particle representations
4.1.1 The priority-based PSO algorithm
4.1.2 The random keys PSO algorithm
4.1.3 The rule-based PSO algorithm
4.1.4 Comparative analysis of alternative particle representations

4.2 Investigating alternative PSO topologies and DE base vector selection
strategies oL Lo
4.2.1 Comparative analysis of alternative PSO and DE strategies

4.3 Benchmarking the priority-based algorithm against alternative solution
strategleso L
4.3.1 The existing Optimatiz algorithms
4.3.2 Norman and Bean’s random keys genetic algorithm
4.3.3 Comparative analysis of alternative benchmark algorithms

4.4 Summary ...

The multi-objective priority-based algorithm
5.1 Introductory concepts and related literature

5.1.1 Multi-objective optimization

i

49
49
50
o7
58
99

66
66

72
72
75
76
81

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

5.1.2 Multi-objective multiple machine scheduling 84
5.2 Alternative multi-objective PSO and DE-based scheduling strategies . . . 85
5.2.1 The vector evaluated approach 86
5.2.2 Modified goal programming 87
5.2.3 Comparative analysis of alternative MOO strategies 90
5.3 A further investigation of the VEPSO algorithm 96
5.3.1 Variations on the basic VEPSO algorithm 97
5.3.2 Comparative analysis of alternative VEPSO algorithms 99
5.4 A further investigation of the VEDE algorithm 102
5.4.1 Variations on the basic VEDE algorithm 103
5.4.2 Comparative analysis of alternative VEDE strategies 103
D5 Summary ... oL e 106

Investigating the generality of priority-based metaheuristic algorithms107

6.1 The Centurion Ice Cream scheduling problem 108
6.2 An overview of related scheduling literature 109
6.2.1 The classical parallel machine scheduling problem 110
6.2.2 The parallel machine scheduling problem with sequence-dependent
set-up timeso 110
6.2.3 The parallel machine scheduling problem with unavailability con-
straints L L 111
6.2.4 Summaryo 112
6.3 Vector evaluated algorithms for the Centurion Ice Cream problem 112
6.4 Self-adaptive algorithms for the Centurion Ice Cream problem 118
6.4.1 Self-adaptive differential evolution 119
6.4.2 A comparative analysis of VEDE and S-VEDE 119
6.5 Summary 123
Conclusion 126
7.1 SUmMmaryo .o 126
7.2 Future research opportunities 128

7.3 Last words 131

1ii

A

[UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Qut

A Acronyms 149
B Symbols 151
C Derived Publications 158

iv

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Classification of scheduling systems based on resource environments [154] 6
Flow patterns of “single resource per operation” models

Flow patterns of “multiple resources per operation” models

A classification of common variations on the classical JSSP 10
A schematic representation of the Optimatiz problem 17
Solution strategies of the classical job shop scheduling problem [57] . . . 21
A classification of popular search methodologies [43] 22
An example of the disjunctive graph formulation [57] 25
A number of common metaheuristicso L 26
Particle velocity as resultant of three components 31
Variations on the basic PSO algorithm [39] 37
The gbest and Von Neumann topologies. 38
Applications of PSO to machine scheduling literature 44
Applications of DE to machine scheduling literature 45
A small example problem and possible solution 51
Calculating the set of possible operation starting times 54
An example P-PSO implementation 54
An example RKPSO implementation 58
An example RBPSO implementation 59
Results of the investigation into alternative particle representations . . . 64
Results of the investigation into alternative PSO and DE strategies . . . 68
Benchmarking results o0 7

4.9

5.1

5.2
5.3
5.4
2.5

6.1
6.2

6.3
6.4

e
o
" UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
G’

Investigating scalabilityo 80

T’Kindt and Billaut [136] define three main strategies for addressing mul-

tiple conflicting objectiveso 84
Results of the investigation into alternative MOO strategies 94
A graphical comparison of the VEPSO(1) and VEPSO(2) algorithms . . 98
Results of the investigation into alternative VEPSO-based strategies . . . 100
Results of the investigation into alternative VEDE-based strategies . . . 104
The Centurion Ice Cream production process 109
Results of the application of VEPSO and VEDE to the Centurion Ice

Cream problem 115

Results of the investigation into the use of self-adaptive differential evolution121

An example Pareto front for the large-sized Centurion Ice Cream problem,
as obtained by the VEDE(4) algorithm 125

vi

IVE T
NIBESITHI YA PRET

P
e
" UNIVERSITEIT VAN PRETORIA
’ UN RSITY OF PRETORIA
Yu ORIA
Qe

List of Algorithms

3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2
5.3

The basic gbest PSO algorithm [39]
The guaranteed convergence PSO (GCPSO) algorithm [138]
The classic DE algorithm [114]
The priority-based PSO mapping mechanism
Calculating operation finishing time
Allocation of operations to auxiliary resources
The random keys PSO sorting mechanism as applied to particle ¢

The rule-based PSO mapping mechanism
The rule-based benchmarking algorithms
The vector evaluated particle swarm optimization (VEPSO) algorithm
The vector evaluated differential evolution (VEDE) algorithm
The modified GP approach, ..

vii

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

List of Tables

2.1 Popular job constraints [136] Lo oL 11

2.2 Commonly used job shop scheduling measurements 15

4.1 There are a number of parameters which have a significant effect on the
performance of PSO oo 63
4.2 Experimental results of alternative mapping strategies and particle repre-
sentations with respect to makespan and earliness/tardiness 63
4.3 Experimental results of alternative mapping strategies and particle repre-
sentations with respect to queue time and the aggregated objective function 65
4.4 PSO and DE parameter derivation results 69
4.5 A comparison of the performance of various DE base vector selection
strategies and PSO topologies with respect to makespan and earliness/tardiness 70
4.6 A comparison of the performance of various DE base vector selection
strategies and PSO topologies with respect to queue time and the ag-
gregated objective functiono 71
4.7 RKGA algorithm parameters as selected for benchmarking purposes . . . 76
4.8 Experimental comparison of alternative solution strategies with respect
to makespan and earliness/tardiness 78

4.9 Experimental comparison of alternative solution strategies with respect

to queue time and the aggregated objective function 79
5.1 Multiple machine, multi-objective scheduling literature 85
5.2 The reference vectors used for each of the problems 92

viil

2.3

5.4

2.5

5.6

2.7

5.8

2.9

5.10

5.11

6.1

6.2

6.3

6.4

6.5

6.6

6.7

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Investigating alternative multi-objective optimization strategies for the

56-operation problemo 93
Investigating alternative multi-objective optimization strategies for the
100-operation problem 95
Investigating alternative multi-objective optimization strategies for the
256-operation problemo 95
Investigating alternative VEPSO-based strategies for the 56-operation
problem 101
Investigating alternative VEPSO-based strategies for the 100-operation
problem 101
Investigating alternative VEPSO-based strategies for the 256-operation
problem 102
Investigating alternative VEDE-based strategies for the 56-operation prob-

lem . . . L 105
Investigating alternative VEDE-based strategies for the 100-operation prob-

lem . . . 105
Investigating alternative VEDE-based strategies for the 256-operation prob-

lem . . . L 106
VEDE and VEPSO algorithm parameters 114
The reference vectors associated with each of the three data sets 116

Investigating alternative VEPSO and VEDE-based strategies for the small-

sized Centurion Ice Cream problem 116
Investigating alternative VEPSO and VEDE-based strategies for the medium-
sized Centurion Ice Cream problem 117
Investigating alternative VEPSO and VEDE-based strategies for the large-

sized Centurion Ice Cream problem 117
Investigating self-adaptive differential evolution for the small-sized Cen-
turion Ice Cream problem, 120
Investigating self-adaptive differential evolution for the medium-sized Cen-

turton Ice Cream problem L. 122

X

A

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

YUNIBESITHI YA PRETORIA
Qe

6.8 Investigating self-adaptive differential evolution for the large-sized Centu-

rion Ice Cream problem

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 1
Introduction

Production scheduling is commonly considered to be one of the most important issues
in the planning and operation of manufacturing systems [55]. Many production related
problems, including low machine utilization and excessive work in process, can be as-
signed directly to inadequate scheduling. Addressing these problems through improved
scheduling can, on the other hand, have a significant impact on cost reduction, customer
satisfaction, profitability, and overall competitive advantage.

In addition, recent customer demand for higher variety products have contributed to
an increase in product complexity. Subsequently, the number of parts being produced
in job shop environments has dramatically increased during the past decade [55]. This
increased complexity further emphasizes the need for improved planning and scheduling.

This need has resulted in numerous research papers being published in the field of
production scheduling during the last fifty years. It is interesting to note that many
researchers ignore the multi-objective nature of the production environment. Loukil et
al. [85], however, provide a strong motivation for considering production scheduling
problems to be multi-objective. More than one decision maker is often involved in de-
cision making in a manufacturing environment resulting in conflicting objectives. For
example, the marketing manager is interested in maximizing customer satisfaction by
minimizing expected tardiness, while the production manager is concerned with minimiz-
ing makespan and work in progress. To accommodate all stake holders, the availability of

a set of feasible solutions representing trade-offs between the various objective functions,

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 1. Introduction 2

can be quite valuable. However, due to the extreme complexity of multiple machine
multi-objective scheduling problems, very little research has been done in this field.

A large number of solution strategies have also been developed over the years for solv-
ing production scheduling problems. The aim of this dissertation is to investigate the ap-
plication of particle swarm optimization (PSO) [64] and differential evolution (DE) [131]
to multiple machine multi-objective scheduling problems. Since the development of PSO
and DE in 1995, these algorithms have shown to be effective in solving a large range
of problem types. Many production scheduling applications of PSO and DE also exist.
However, these tend to consider simple problems while significant research opportunities
exist in applying PSO and DE to more complex scheduling scenarios.

The production scheduling problem faced by Optimatiz, a South African company
specializing in supply chain optimization, can be considered a good example of a complex
production scheduling problem. The design and development of a production scheduling
algorithm for Optimatiz provides an excellent opportunity for investigating the appli-
cation of PSO and DE in a multi-objective multiple machine environment. Alternative
problem representations, variations on the classical PSO and DE algorithms, and multi-
objective optimization strategies can be easily investigated. All of these aspects, as well
as a number of other aspects, are considered in this dissertation.

The first objective of this introductory chapter was to provide a rationale for the
development of real world production scheduling algorithms. The objectives and contri-
butions of this dissertation are further highlighted in Sections 1.1 and 1.2 before a brief

outline of the rest of this dissertation is provided in Section 1.3.

1.1 Objectives

To investigate the application of PSO and DE to multiple machine multi-objective en-

vironments, the following sub-objectives have been defined:

e To contextualize the Optimatiz problem with respect to existing literature to enable

the formulation of a realistic yet tractable model of the production environment.

e To develop PSO and DE-based scheduling algorithms capable of addressing the

Optimatiz scheduling requirements.

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 1. Introduction 3

e To investigate the impact of alternative problem representations on the perfor-

mance of the developed algorithms.

e To investigate the impact of parameter values and alternative PSO topologies and

DE variations on algorithm performance.
e To benchmark the developed algorithms against existing solution strategies.
e To compare alternative multi-objective optimization approaches.

e To investigate the generality of the developed algorithms by applying the algo-

rithms to a different, yet related, multi-objective machine scheduling problem.

1.2 Contributions

The main contributions of this dissertation can be summarized in a similar fashion.

These contributions include:

e The first attempt at solving the multi-objective flexible job shop scheduling prob-
lem with sequence-dependent set-up times, auxiliary resources and production

down times.

e The first attempt at solving the multi-objective uniform parallel machine shop

problem with sequence-dependent set-up times and unavailability intervals.

e The first application of a vector evaluated Von Neumann guaranteed convergence

PSO (GCPSO) algorithm in the scheduling domain.

e The first application of particle swarm optimization and differential evolution to a

flexible job shop scheduling problem with additional constraints.

e The development of priority-based vector evaluated PSO and DE algorithms suit-

able for solving a range of multiple machine multi-objective scheduling problems.

e The development and application of an adaptive vector evaluated DE algorithm.

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 1. Introduction 4

1.3 Dissertation Outline

Chapter 2 contextualizes the Optimatiz problem with respect to existing literature. This
is achieved by means of Graham et al.’s three-field scheduling notation [51]. This analysis
leads to the problem being modeled as a multi-objective flexible job shop scheduling
problem with sequence-dependent set-up times, auxiliary resources, and production down
time.

An overview and analysis of existing solution strategies which have already been used
effectively to solve job shop scheduling problems is provided in Chapter 3. PSO and DE
are identified as solution strategies of choice and a detailed introduction of these two
paradigms is provided.

Chapter 4 documents the algorithm development process associated with the single
objective Optimatiz algorithm. Alternative problem representations, PSO topologies,
and DE based vector selection strategies are investigated. An in depth parameter deriva-
tion study is also performed and the priority-based algorithms are benchmarked against
existing solution strategies.

The multi-objective nature of the Optimatiz problem is further investigated in Chap-
ter 5. Alternative multi-objective optimization strategies are investigated before an ad-
ditional investigation into alternative information exchange strategies in the context of
Parsopolous et al.’s vector evaluated algorithms [108, 109] is conducted.

The purpose of Chapter 6 is to investigate the performance of the multi-objective
priority-based algorithms when applied to a different, yet related, scheduling environ-
ment. The Centurion Ice Cream and Sweets scheduling problem is modeled as a multi-
objective uniform parallel machine shop problem with sequence-dependent set-up times
and unavailability intervals.

Chapter 7 concludes the dissertation with a summary of the major findings and
future research opportunities identified during the completion of this study. Finally, the
definitions of all symbols and acronyms used, as well as publications derived from this

dissertation, is described in the three appendices.

-
o
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 2
Literature review

Production scheduling has been fascinating researchers since the 1950s [57]. Since then
a large number of scheduling models and algorithms have been developed, capable of
addressing a wide range of customer requirements. Various mechanisms exist to con-
textualize complex scheduling problems with respect to existing literature. Problem
classification is an important prerequisite to the selection of a suitable solution strat-
egy since information regarding problem complexity and existing algorithms provide
useful points of departure for new algorithm development [136]. One of the most well
known scheduling classification mechanisms is Graham et al.’s three field scheduling no-
tation, (a/3/v) [51], which classifies models according to the flow pattern and number
of machines (), the constraints placed on the jobs (), and the scheduling criteria (7).
The rest of this chapter describes each of these components in more detail with the aim
of identifying possible problem characteristics which is useful in modeling and solving

the Optimatixz problem which is discussed in more detail in Section 2.4.

2.1 Classification according to flow pattern and num-

ber of machines («a)

The first field of Graham et. al’s three field notation [51] is mostly concerned with
the configuration of primary resources (usually machines) and the flow of jobs on the

production floor. Recently, Zandieh et al. [154] have documented a classification for a

IVERSITEIT VAN PRET
RSITY OF PRET
T

ORIA
E ORIA
BESITHI YA PRETORIA

Chapter 2. Literature review

number of common scheduling problem classes. Since all models differ with respect to

the associated resource environments and follow the same convention as Graham et al.’s

notation, this taxonomy may be considered as a further breakdown of the a component.

As can be seen from Figure 2.1, the models range from more generic formulations, for

example the job shop scheduling problem with duplicate machines, to more specific

formulations, i.e. the single machine shop problem. The various models are primarily

classified according to:

e the characteristics of the routings of each of the jobs,

e the number of operations of each of the jobs,

e and the number of resources available to perform the required operations.

Specific routings

defined for each job

Single resource per

per operation

single resource per operation

operation]
Job shop with
~—— Open shop » Jobshop (e duplicate
machines Single
]) -) operation
Identical routings Identical routings defined
defined for each job defined for each job for each job
h 4 A4
. Parallel
N — - » Flowshop |« il fow » machine
Specific identical routings shop shop
defined for each job
Identical routings per

Identical routings per job , ¥] job & S|ng[e resource

single resource per operation | Pérmutation per operation

and “no-passing” constraints | flow shop

4
Single
\~ » machine e /
Single resource shop Single operation per job &

Figure 2.1: Classification of scheduling systems based on resource environments [154]

The most well known scheduling model in the classification is the classical job shop

scheduling problem (JSSP). Due to its intractability, the JSSP has been used extensively

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 2. Literature review 7

to test the performance of a wide range of solution strategies, ranging from neural net-
works to mixed integer linear programming. The purpose of this section is not to provide
a detailed review of job shop scheduling. For that the reviews of Blazewicz et al. [18]
and Jain and Meeran [57] should be consulted. However, due to the importance of the
problem, a brief definition is provided nonetheless.

Jain and Meeran [57] describe the problem as consisting of a finite set, J, of n; jobs,
ie. J = {Jv}:il to be processed on a finite set, M, of n,, machines, {Ml}f;”l Each
job J, must be processed on every machine and consists of a chain of n, operations,
Ou1,0p2, - - -y Opn, , that have to be scheduled in a predetermined sequence. There are n
operations in total, where n = ZZ; N,. 0y is the operation of job J, which has to be
processed on machine M; for an uninterrupted processing time p,;. No operation may
be interrupted. Each job has its own independent and individual flow pattern through
the machines. Each machine can process only one job at a time and each job can be
processed by only one machine at a time.

Upon closer inspection of Zandieh et al.’s classification [154], all of the models can,
in fact, be described as either generalizations of, or specific instances of the classical job
shop scheduling problem. This fact becomes evident when the flow patterns supported
by each of the models is compared.

The single machine scheduling problem (SMP), which is indicated in Figure 2.2, is
merely a job shop scheduling problem (JSSP) with only one operation per job. The flow
shop scheduling problem (FSSP), which is indicated in Figure 2.3, is restricted to specific
applications where identical routings are defined for each of the jobs. Thus the problem
consists of finding the order in which jobs should be processed on each resource. Closely
related to the FSSP, the permutation flow shop scheduling problem (PFSSP) boasts, in
addition to identical routings, the addition of a “no passing” constraint. This constraint
ensures that the same job sequence is followed for each of the resources.

In contrast, the parallel machine shop problem is limited to jobs consisting of only
one operation, which can be performed on any one of a number of resources. Yet another
close relation of the FSSP, the hybrid flow shop scheduling problem allows for identical

routings along with multiple resources per operation.

-

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

YUNIBESITHI YA PRETORIA
G’

Chapter 2. Literature review 8

Entrance

o P = = = Flow Shop Scheduling Problem
‘-.§ Lot Job Shop Scheduling Problem
R P ————— Single M achine Shop Scheduling Problem

Figure 2.2: Flow patterns of “single resource per operation” models

emm oo Em oo o cemmoec @D,
=" ° o ™ .,

— == = Hybrid Flow Shop Scheduling Problem
Flexible Job Shop Scheduling Problem
oo = Parallel M achine Shop Scheduling Problem

Figure 2.3: Flow patterns of “multiple resources per operation” models

The job shop scheduling problem with duplicate machines can be considered a gen-
eralization of the classical JSSP, the only addition being the allowance of more than one
resource per operation. This problem is also known as the flexible job shop scheduling
problem (FJSP), Kacem et al. [62] provide a more formal definition. Consider a finite set,
J, of n; jobs, {Jv}:ip to be processed on a finite set, M, of n,, machines, {Ml}zznl Each
job represents a number, n,, of nonpreemptable ordered operations 0,1, 02, - . ., Oyn,. The
execution of each operation of a job requires one resource or machine selected from a set
of available machines, @, C M, where k is a unique operation index. The assignment
of the operation k to the machine M;, where M, € Q). entails the occupation of this

machine during a processing time py;.

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 2. Literature review 9

The uniqueness of the FJSP results in making provision for the inclusion of additional
primary resources such that each operation does not have to be performed on a machine
specifically dedicated to it. A selection can be made from any of the available resources
belonging to a predefined set of resources. It is important to note, however, that each
operation may still only be assigned one resource from the set. The option of alternative
resources ensures that the FJSP is useful for scheduling in a wider range of production
systems including flexible manufacturing systems and parallel machine shops [35].

Finally, for most of the problem types in Figure 2.1, operations are performed ac-
cording to a predefined sequence which is derived from the product routing. However,
one exception exists in the form of the open shop problem. This formulation results from
a relaxation of the operation sequencing constraint. In other words, no specific sequence

is specified in which the operations of each of the jobs should be performed.

2.2 Classification according to job constraints ()

Brucker [21] and T'Kindt and Billaut [136] have done significant work in identifying
various types of constraints on the job characteristics, which, when included, may sig-
nificantly affect the realism of the scheduling model. A number of job constraints listed
in Table 2.1, and elsewhere, have already been used in a job shop environment. The
purpose of Figure 2.4 is to provide the reader with a glimpse into some of the most
common job constraint variations of the classical JSSP. For each variation, just two or
three of the solution strategies which have already been effectively employed to solve the
specific problem, are mentioned. The variations are further organized into four groups
depending on the implications of the extension.

Variations which affect the length of the processing time of operations include the
preemptive JSSP, where operations may be interrupted and continued at a later stage [3,
69, 152] and the JSSP with sequence-dependent set-up times [32, 50, 72, 159]. The JSSP
with controllable processing times allow the assignment of different processing times to
operations, where a pre-determined cost is associated with each process time-reduction
alternative [58]. Processing times in the JSSP with batching is determined by the number

of similar products which are produced simultaneously as a single operation [111, 112,

10

dSS[[BIISSe[O 9) U0 SUOIIRLIBA TOWIWIOD JO UOIJROYISSR[O Y §°C @.ﬂﬂ—m.mrm_”

[0sT] puaAy spomiau fensu-vo T
dSSr papuedx3

[vp1] [8g] onsunaH T
<< pugAy Buifesuue parenwis-0Sd '€ saw) Buissaosoud
e [29] pugAy i6o| | i
e .m W Azzny-(v3) wyiuobie Areuonnjons g SIqel|0u0d Yum dSSC
w oo [ov] onsunay xosusmoqg Bumys-vo T
oo dSSr 9|1qixal4 [ev] yoreas edo] an8ULD g
- [8zT] punog pue youeig ‘T
il [TvT] yoress nael g SSIEP SNp UMM dSST
g - [s6] onsunaH T
- = m dssr Alqgwassy [otT] pugAy o16oj Azznj-vo "¢l
i . [2TT] wymiobe swn-feiwoukjod g
o = [sv] onsunaH 2 .
“ Wm 2] wiuoBle swn- EILouAod T [te] Puiuweiboud 1aboiu] -z [1TT] Bulwwresboid oiwreuAq ‘T
zz= dSSrsel [9] onsunaH T Buryoreq yum dssr
- =
Jossaoold ajdiynw pue dSSr 1ueljusay
1an pue dssr [z2] Buiwwreiboid reanewsyre ‘|
pauleJlsuod aoinosal a|dnn [eg] vO ‘€
: [og]l vo € wyLobre sunww -
[v2] v3a eAnosfgo-nniy '€ [6] s18u-mad Areuonnjons 'z (BsT wu ._om__ u;w::m_." M
[6vT] poulow oped SIUON-VO ‘2 [orT] yoseas nageL g [zz] yoress nqel ‘T d ds
[22T] onsunaH ‘T Buiwwresboid jurensuod ‘T dSSC 211940 sawl dn-18sjuspusdsp
dSSC 21seY20IS dSSC parensedes-ajdniny : -99uanbas yum dsse
P — [z6] ansunayelsw ojj0y v [€] erewoine yoremdois ‘g
witlvo g [ve] onsunay -1 [28] punoq pue youeld € [69] BuiwwelBboid jurensuod ‘g
[t1] Bunoesuoagns [szT] yoress pooynoqubieu ajqeneA 2 [15T] puaAy
wyuobe Bujures| wswadiouey ‘T 019np slurelisuod Ayoeded jo [oddvo T a160] Azzn}-(vo) wyiuoble onaus ‘T
dSSr oiweuig uonexejal fesodwal YyIm 4SS dssr Bupjdo|q pue 1em-oN uondwsaid ynm dssr

Chapter 2. Literature review

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 2. Literature review 11

Table 2.1: Popular job constraints [136]

Constraint Explanation

pmtn
split
prec
batch
no-wait
prmu
d,=d
Pv=0D
Snsd
Tnsd
Ssd

Tsd
Ak ko
blcg
block
recrc

unavail,

Preemption is authorized, i.e. jobs may be interrupted

Jobs may be split for simultaneous processing

Operations are connected by precedence relations
Operations are grouped into predefined batches

No waiting time is allowed between operations

Operations are processed on all machines in the same order
All due dates are identical

All processing times are equal

Sequence-independent resource set-up times are significant
Sequence-independent resource removal times are significant
Sequence-dependent resource set-up times are significant
Sequence-dependent resource removal times are significant
A minimum time lag is required between operations k; and ks
Parallel operations must be completed simultaneously

The inventory storage area between machines is limited

A job may be processed several times on the same machine

Significant resource unavailability intervals are present

113]. Minimizing a function of job due dates, as in the JSSP with due dates, indirectly

places restrictions on the processing times of jobs [42, 129]. Operation starting and

finishing times in an expanded JSSP are restricted by release dates, due dates, and

technological enabling constraints [151, 158].

The second group of variations affect the flow of jobs on the shop floor. The no-wait

and blocking JSSP consists of a JSSP where at least two operations are constrained

such that the second operation has to start immediately upon completion of the first

operation [20, 87, 92, 126]. The reentrant JSSP allows the processing of two operations

from the same job on the same machine [6, 30|, while the cyclic job shop consists of

operations which are repeated in a cyclic fashion [22, 29, 94]. When two or more jobs

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 2. Literature review 12

need to be completed before a third may be scheduled, the system can be considered an
example of an assembly JSSP [95, 142].

In terms of changes made to the resource requirements of operations, the multiple-
capacitated JSSP [100, 141] and JSSP with temporal relaxation of capacity constraints
due to subcontracting [33], allow the processing of more than one operation at a time
on a single resource. The multiple resource constrained JSSP or multiple processor task
JSSP, in turn, requires that an operation be processed simultaneously on two or more
resources [23, 44]. The FJSP [45, 63, 145] also belongs to this group.

The dynamic JSSP and stochastic JSSP belong to the final group since both of
these variations allow the scheduler to take into account uncertainty in the scheduling
process. The dynamic JSSP incorporates uncertainty with respect to the number of
jobs and the release dates associated with the jobs which are to be scheduled [11, 115],
while the stochastic JSSP focuses on incorporating uncertainty into the process time
estimates [74, 128, 150].

Three of the constraints described in this section justify more in depth explanations
due to their relevance to the problem considered in this dissertation. These constraints
include the addition of sequence-dependent set-up times, availability intervals, and aux-
iliary resources.

Sequence-dependent set-up times

The inclusion of set-up times is one of the most frequent additional complications
in scheduling, and incorporation of set-up times into traditional scheduling models has
already been attempted as early as the 1970s [83]. Yang and Liao [149] define set-up
times as the times of the tasks which need to be performed before a job can be processed
immediately after another job on the same resource. This additional complexity is partic-
ularly useful in modeling situations where cleaning operations and tool changes play an
important role in production. A typical example includes the manufacturing of different
colours of paint.

In the most complex case, sequence-dependent set-up times, where the set-up time
depends on the job previously scheduled, as well as the machine on which the current
operation is performed, a n X n (operation X operation) matrix of set-up time data is

required for each resource dj. The set-up time of operation k is defined by Sj, x4, Where

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 2. Literature review 13

K is the index of the previous operation scheduled on machine dj. If the set-up times
are machine independent, as is fortunately the case for the Optimatiz problem, S, k4,
can be simplified to Sy, [21].

A large number of solution strategies, ranging from genetic algorithms to integer pro-
gramming, have already been applied to production scheduling problems with sequence-
dependent set-up times. Detailed reviews can be found in Allahverdi et al. [7, 8] and
Yang and Liao [149].

Availability intervals

The advent of production calendars, holidays, preventative maintenance and unex-
pected breakdowns have a significant impact on machine availability and subsequently
the scheduling of production resources. If no pre-emption is allowed, the inclusion of ma-
chine availability constraints results in the planning horizon being divided into a number
of disconnected time windows [10].

Lee [70] differentiates between three types of unavailability intervals, namely resum-
able, non-resumable, and semiresumable unavailable intervals. When the unavailability
intervals are resumable all interrupted operations may continue when the resource is
available again without the incurrence of any time penalties. When the unavailability
intervals are nonresumable, all interrupted operations need to be reprocessed from the
start. Finally, in the semiresumable case, either additional work needs to be performed
proportional to the finished part of the operation, or an additional set-up is required.
Careful consideration resulted in resumable nonavailability intervals being identified as
most appropriate to the Optimatiz environment [53].

With respect to the available solution strategies, Lee [70] refers to a number of ap-
plications in the one machine, parallel machine, and flow shop environments. White
and Rogers [143] address a job shop scheduling problem with unavailability intervals
by means of a disjunctive graph formulation. Scheduled maintenance is regarded as an
operation and is assigned a processing time corresponding to the required maintenance
time.

Auxiliary resources

In a complex manufacturing environment, it can happen that the scheduling of opera-

tions are constrained by more than one resource type. In addition to machine availability,

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 2. Literature review 14

tooling and labour requirements also play a vital role in the efficient generation of realistic
schedules. Studies performed by Mason [88] indicate that 16% of scheduled production
cannot be met because tooling is typically not available. Additionally, 40% to 80% of
a foreman’s time is spent looking for and expediting materials and tools. Therefore in-
corporating the assignment of workers and tools into the schedule can have a significant
effect on production performance.

Gargeya and Deane [46] describe the multiple resource constrained job shop schedul-
ing problem: a job shop in which two or more resource types constrain output. This
formulation allows the simultaneous scheduling of machines, labour, and other auxiliary
resources, such as tools and jigs. If only two resource types are involved in the schedul-
ing scenario, the problem is referred to as a dual resource constrained JSSP. The two
most common dual resource problems are the labour constrained job shop (for scheduling
workers and machines) and the auxiliary resource constrained job shop (for scheduling
tools and machines).

Brucker [21] defines a class of problems that is very similar to the multiple resource
constrained JSSP: the multiprocessor task job shop scheduling problem. This problem
requires that a set of resources is linked to each operation. During a processing period
DrQ,, €ach operation k requires all resources belonging to the set @, € M. Two tasks
which require the same resource cannot be processed simultaneously and are referred to
as incompatible tasks.

Relatively little information is available with respect to solution strategies. Excep-
tions include Brucker [21], who converts a JSSP with multiprocessor tasks, unit process-
ing times, release dates, and precedence constraints between jobs into a shortest path
problem and Patel et al. [110] who follow a genetic algorithm approach for solving a dual

resource constrained scheduling problem.

2.3 Classification according to objective function (v)

A large number of standard objective functions have already been used to evaluate
schedule quality. The final field of Graham et al.’s notation [51] focuses on this aspect

of schedule optimization. There are obviously an infinite number of variations of cost-

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 2. Literature review 15

related objective functions which may be used. However, accurate cost information is not
always available in the Optimatiz environment and thus the more standardized objective
functions were considered to be more suitable.

Brucker [21] provides a list of the most common measurements which can be used
for objective function formulation. Any of the five measures in Table 2.2 can be used to
formulate at least four different objective functions of the form: max{q, |v=1...,n;},
S oo Gy Donlq wyeqy and max{w,q, | v =1...,n;}, where g, denotes the measurement
associated with job v, w, and d, denote the weight and the due date of job v, and n;
is the total number of jobs to be scheduled. For example, the following four objective
functions can be formulated for job completion time, where C, denotes the completion
time of job v: makespan (max{C, | v = 1...,n;}), total flow time (3.7, C,) and
weighted total flow time (.07, w,C,).

Table 2.2: Commonly used job shop scheduling measurements

JSSP measurement Formulation

Lateness L,=C,—d,
Earliness E, =max{0,d, — C,}
Tardiness T, = max{0,C, — d,}
Absolute deviation Dy, =| C, —d, |
Squared deviation Do, = (C, — d,)?

The description of the this final field of Graham’s three field notation concludes the
analysis of existing job shop based scheduling literature. The next section will introduce
the Optimatiz problem in more detail before attempting to contextualize the problem

within existing literature.

2.4 The Optimatiz problem

Optimatiz is a South African company which can be best described as a best-of-breed
software vendor specializing in supply chain optimization. The focus is on providing
clients with customized demand and supply planning solutions for addressing various
strategic, tactical and operational issues which may arise during the day-to-day running

of a business.

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 2. Literature review 16

The software consists of a number of modules. This dissertation focuses on the
scheduling module: Tactiz Scheduling. Classified as a forwards finite capacity production
scheduling tool, Optimatiz boasts a number of successful implementations in low-volume-
high-variety manufacturing environments.

Currently, the underlying algorithms of this module consists of rule-based heuristic
methods. Priority rules are the most frequent heuristic method applied to job shop
scheduling problems, due to their ease of implementation and low time complexity [18].
However, recent customer requirements have resulted in the investigation of more sophis-
ticated solution techniques for the Optimatiz problem. Opportunities for improvement
exist in terms of solution quality and model formulation. Furthermore, management is
specifically interested in the potential use of metaheuristics to obtain improved sched-
ules. Any improvements made should retain the functionality of the existing production
scheduling algorithms, but a compromise may be made with respect to the time required
to obtain a solution.

The Optimatiz scheduling requirements can be described most effectively by means
of the generic example indicated in Figure 2.5. Here two parts, namely subassembly
A and subassembly B, have to be manufactured and assembled to produce a specific
product. If each subassembly is defined as a different job, each job consists of a number
of operations which denote the manufacturing processes through which each job has to be
routed. Each operation can be performed on any machine from a set of primary resources.
Tools and labour may be required and can be selected from a set of auxiliary resources.
The processing time of an operation includes sequence-dependent set-up times and is
dependent on the resource on which it is produced. Scheduled maintenance, machine
breakdowns and production calendars also need to be incorporated into the schedule.

Additional requirements in terms of problem size and algorithm generality also exist.
The average number of operations and the maximum number of auxiliary and primary
resources which need to be considered have, respectively, been estimated at 100 and
216. Furthermore, definite variations exists between the various production environ-
ments serviced by Optimatiz. Since it would be beneficial to reduce the development
time associated with adapting the existing algorithms to each new client environment,

algorithm generality is an additional important requirement.

-

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

YUNIBESITHI YA PRETORIA
G’

Chapter 2. Literature review 17

Primary

Auxilliary Rgsmfjrce
Resource et for
Set for 021

F e

Subassembly A

o

Subassembly B

oo

Figure 2.5: A schematic representation of the Optimatiz problem

An analysis of the business requirements of Optimatiz and a consideration of exist-
ing literature, resulted in the job shop with duplicate machines problem, the parallel
machine scheduling problem and the single machine scheduling problem identified as
suitable points of departure. However, by solving a problem belonging to the class
of job shop scheduling problems, all three of the identified problem instances can be
addressed by means of judicial selection of the input parameters. The Optimatiz prob-
lem can thus be classified as a job shop with duplicate machines. More specifically,
the problem may be modeled as a flexible job shop scheduling problem with

sequence-dependent set-up times, auxiliary resources, and unavailability in-

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 2. Literature review 18

tervals. Minimum makespan, earliness/tardiness, and queue time were defined to be the
most important objective functions. To address the multi-objective nature of the client
schedule environments, all three of these functions need to be minimized simultaneously.

Combining a number of JSSP variations to meet specific scheduling requirements,
as is required for the Optimatiz problem, is fortunately not new. In fact, as scheduling
models have become more and more complex, this practice is quite common. Hoitomt et
al. [55] solve a JSSP with a number of additional constraints by means of an augmented
Lagrangian formulation. Bertel and Billaut [15] develops both a greedy algorithm and a
genetic algorithm for a hybrid flow shop scheduling problem with re-entrance and release
dates. Hwang and Sun [56] uses a dynamic programming formulation for a re-entrant
JSSP with sequence-dependent set-up times. Numerous examples of complex job shop
scheduling problems also exist in the semi-conductor manufacturing industry [89, 90].

However, incorporation of auxiliary resources along with a relatively large number of
additional constraints and problem features, as is the case with the proposed problem, is
not commonly found in literature. One notable exception is the work done by Norman
and Bean [99] in the application of a random keys genetic algorithm to a complex pro-
duction problem, which is in many respects similar to the problem faced by Optimatiz.
Multiple machines, ready times, sequence-dependent set-up times, machine down time,
and scarce tools are addressed.

It is important to note that most of the existing algorithms mentioned in Figure 2.4
specializes in solving only the specific variation for which it was developed. Based on this
observation, this dissertation will follow a similar strategy and the algorithms developed
should subsequently be considered as specialized algorithms for the FJSP with sequence-

dependent set-up times, auxiliary resources, and machine down time.

2.5 Summary

The most important contribution of this chapter lies in the identification of a job shop-
based scheduling model which adequately addresses the unique business requirements of
Optimatiz. Now that the problem has been suitably described, the next step is to select

an appropriate solution strategy. Numerous research papers propose solution strategies

-

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

YUNIBESITHI YA PRETORIA
Qe

Chapter 2. Literature review 19

ranging from complex metaheuristic implementations to simple rule-based approaches.
Every solution strategy has its merits — the challenge is to find the best one for the

purpose at hand.

e
o
" UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3

Selecting an appropriate solution

strategy

The design of a suitable algorithm requires the identification of the most appropriate
solution strategy for the given scheduling problem. This chapter provides an overview of
existing solution strategies which have already been employed effectively in a job shop
environment. Based on this information a suitable strategy is selected for the Optimatix

environment.

3.1 An overview of existing solution strategies

Figure 3.1 shows that a large number of solution strategies have already been applied
to the classical job shop scheduling problem over the last 50 years. A more generic
classification of the various search methodologies is, however, more useful for the purposes
of this dissertation. Feoktistov [43] differentiates between optimal solution strategies
and approximate methods (refer to Figure 3.2). The approximate methods are again
categorized into heuristics and metaheuristics. This section is aimed at providing a brief
introduction into each of these strategies and describing a number of popular examples of
each strategy. Comments are also made regarding the suitability of the different search

methodologies for solving job shop-based scheduling problems.

20

I A
UNIVERSITY OF PRETORIA
YA PRETORIA

UNIVERSITEIT VAN PRETOR

YUNIBESITHI

'%
K

21

ing an appropriate solution strategy

Chapter 3. Select

[26] werqoxd Surmparps dots qol [eotsse[d a1} Jo soIgojeI)s uoHNog :1°¢ 2INII g

i i
j uonesiwndo :
m days abire “

: i vt
juoress nqey | j buiesuue T
o R | pajenuis ; lenen !
s N = i PI0981-0)-pI0I8I ”
{yoreas ydap! jluswanoidw _ pue wyiuobe | 2[oUD
| e|qeueA ” | enmesal 1 abnpppiess L Oneues
o |
i 1 !
j uonsasuRy | Bundaooe
L ! ploysaiyL
——
| swyiobe “
i onaue |
swyiobe uoneindwod
mumﬂﬂo&%%o& ploysaiyL Areuonnjong
e 1
UM pES— 3
-) AU _ 1 uonoeysies |
' uonexejas | e 5 1 jurensuo? |
! ueibueibe | i] Seatamats
I i i NET juonesiundoj
——————— - i s o e 1 u i
I Aienp i = ounog ! F—— o — s] " un ainpadoid | Lo
] G i ! i ;) i juoress ureag| I yosusmog | — =
1 arefoung ; i pue youesg | i mﬁ%&ﬁ% i i Llds i . | ! Bugus_ i yoress " swalshs
......................... RIS = e ———— R . 12207 3 vadx3y |
ﬂ L» _|.m|v_._m\.,>|&ﬂ_..“ aouabijerul
1 !
sa|nJ yoredsip swyliobe wumwmm_m:nmc L. BnenN
Auoud uopasu| soeUBMOE
[eanewayren spoylaw uonesiwndo

aAnesaWNUT

(spoylaw 8AN2NIISUOD)

swyoBle palojrel

uonewixoiddy

wa|qoid
Buiinpayas doys
qol [edisse|d ayL

(spoylaw aAneIaN)
swyioBb|y [esoUD

-
Fue

o
“ UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
*!# YUNIBESITHI YA PRETORIA
Chapter 3. Selecting an appropriate solution strategy 22
Optimization
Continuous Combinatorial

oy — —

- Approximate
Linear Quadratic Nonlinear IOnl?ethods B
Local methods laka!
methods
/ 4
Classical Metaheuristics Heuristics
methods

-

Population Neighbour
based hood

Figure 3.2: A classification of popular search methodologies [43]

3.1.1 Optimal solution strategies

During the 1960s significant emphasis was placed on finding exact solutions by means of
elaborate and sophisticated mathematical constructs. The most widely used enumerative
strategy is the branch-and-bound algorithm [68] which entails an implicit search of a tree
structure representing the solution space. A number of procedures have been developed
to exclude large portions of the tree to speed up the search process. Unfortunately, apart
from the excessive computational burden, this strategy’s performance is also relatively
problem dependent and is sensitive to the initial upper or lower bound values [57].

The suitability of optimal solution strategies is also highly dependent on the complex-
ity of the problem. Research from the 1970s clearly highlights the extreme intractability
of the job shop scheduling problem [21]. The problem can be classified as strongly NP-

hard. Therefore, only a small number of special instances of the JSSP are solvable within

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 23

polynomial time and optimal solution strategies are probably of limited use. Approxi-
mation methods, on the other hand, becomes an attractive alternative. Even though the
optimality of the solutions cannot be guaranteed, larger problems can be solved more

efficiently.

3.1.2 Heuristic methods

In general, heuristic methods simply aim to obtain a “good enough” solution by selecting
decision variables to obtain solutions which continuously progress towards a superior so-
lution. The general local search procedure, the shifting bottleneck heuristic, and various

priority-based rules are often applied to job shop scheduling problems.

General local search procedure

The simplest heuristic method for solving the JSSP is the general local search procedure.
This method consists of iteratively evaluating the current solution and determining the
direction in which movement should take place to improve the objective function. Search
directions and step lengths can be determined using conjugate gradients, newton meth-

ods, or steepest gradient descent [39].

Priority dispatch rules

One of the earliest heuristic methods developed for scheduling applications, priority
dispatch rules (PDRs) [107], is based on the assignment of priorities to all operations
available for sequencing. These priorities can be assigned according to a large number
of heuristic rules, for example, shortest processing time (SPT) and earliest due date
(EDD). Although very easy to implement with a low computational burden, PDRs are
highly problem dependent and solution quality degrades significantly as dimensionality

increases [57].

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 24

The shifting bottleneck heuristic

The shifting bottleneck heuristic (SBH) [4] is commonly considered to have had the
greatest influence on approximation methods for production scheduling applications.
This is largely due to its exploitation of the well-developed algorithms for the single
machine shop scheduling problem. The strategy involves relaxing the problem into a
number of single machine problems, which are solved one at a time and ranked according
to objective function value. The schedule for the more complex job shop scheduling
problem can then be generated by sequentially scheduling each machine based on its
rank [57].

The SBH heuristic is often used in conjunction with the disjunctive graph formulation,
which consists of a set of nodes representing all the operations to be processed on the
set of machines. Two fictitious nodes are also added, namely the source node (at the
beginning of the network) and the sink node (at the end of the network). The set of nodes
are indicated by V. A weight, proportional to the processing time of the operation, is
assigned to each of the nodes. Precedence relationships between operations are indicated
by means of a set of directed arcs denoted by C. Capacity constraints ensure that
two jobs which require the same machine cannot be processed simultaneously. These
constraints are enforced by means of a set of undirected arcs, D. Potential feasible
solutions are obtained by defining directions for each of the disjunctive arcs [21]. When
solving a makespan minimization problem, shortest path algorithms are traditionally
used to find the optimal solution. An example of a disjunctive graph formulation for a
3 machine 4 job problem is illustrated in Figure 3.3.

Although the shifting bottleneck heuristic with disjunctive graph representation is
robust and useful for solving real life job shop problems, concurrent or parallel processing
and indefinite cyclical process flows cannot be modelled directly [143]. Feasibility of
solutions can also be a problem since an acyclic graph is required for schedule feasibility.
However, even though these difficulties exist, Mason et al. [89, 90] have documented a
number of successful applications of a modified SBH in the semi-conductor manufacturing

industry.

e

e
". UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 25

Source

pvI
Operation | of job v with processing time pvl
Conjunctive arcs which indicate the precedence
— . .
constraints between operations
— Disjunctive arcs which enforce the capacity

constraints associated with machine 1

...... » Disjunctive arcs which enforce the capacity
constraints associated with machine 2

————4 Disjunctive arcs which enforce the capacity
constraints associated with machine 3

Figure 3.3: An example of the disjunctive graph formulation [57]

.

e

b
“ UNIV ERSIT[EIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy

26

3.1.3 Metaheuristics

The inability of heuristic methods to escape local optima have resulted in the develop-

ment of metaheuristics. These “intelligent heuristics” temporarily allow non-improving

feasible moves which have a positive impact on the algorithm’s ability to explore the

search space [119]. For reference purposes a number of the more common metaheuristics

are indicated in Figure 3.4.

Metaheuristics
\
Ne|ghbour Population
hood-based based
algonthms algorithms
Swarm
Slmula'Fed Tabu search intelligence
annealing / \
Ant colony Particle swarm
) optimization optimization
Evolutionary
computation
4
Evolutionary Genetic Genetic Evolutionary Differential
programming algorithm programming strategies evolution

Figure 3.4: A number of common metaheuristics

Neighbourhood metaheuristics refer to those search methodologies where a single so-

lution is transformed over time by making use of predefined neighbourhoods. Population-

based metaheuristics, on the other hand, are characterized by a population of candidate

solutions which are adapted over time. The candidate solutions in an evolutionary al-

gorithm compete for survival [27], whereas the agents in a swarm communicate and

P

e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 27

cooperate with each other by acting on the environment [39].

Of the listed examples, simulated annealing (SA), tabu search (TS), and genetic
algorithms (GAs) have been most frequently applied to job shop scheduling problems [49].
However, it will become evident throughout the rest of this section that each of these

search methodologies have their own advantages and disadvantages.

Tabu search

TS can be defined as an algorithm which deals with cycling by temporarily forbidding
moves that would return to a solution recently visited [48]. This is accomplished by
means of a tabu list which records the most recent solutions and prevents the search
from continuing with these now non-feasible moves. This list can act as both a recency-
based memory (where the list classifies solutions according to the length of time they have
spent in the list) and frequency-based memory (where the number of times a solution
occurs has an influence). Additionally, an incumbent solution [155] is used to keep track
of the best solution found thus far and certain aspiration criteria can also be defined to
override the tabu list if this should become necessary. This solution strategy has led to

a number of successful solutions of job shop scheduling problems [57].

Simulated annealing

SA is an optimization process based on the cooling process of liquids and solids. As a
substance cools, the molecules tend to align themselves in a crystalline structure associ-
ated with the minimum energy state of the system. This is analogous to the algorithm
converging to the optimal solution of an optimization problem. As the temperature of
the metals decrease, the alignment of the atoms in the structure continually changes.
This alignment is analogous to the fitness of the solution: an alignment which results
in a lower energy state also results in an improved solution. Alignments of atoms are

probabilistically accepted based on the Boltzmann—Gibbs distribution:

BIZQ <t> = f@ig)—fxq) . (31>
e T otherwise,

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 28

where P;,;,(t) is the probability of moving from point z;, to z;,, a is a positive constant
and Y is the temperature of the system [39].

Jain and Meeran [57] describe SA as a generic technique requiring excessive com-
putational effort due to its inability to achieve good solutions quickly. However, the
hybridization of SA with other solution strategies, including genetic algorithms, has

greatly improved its competitiveness.

Evolutionary algorithms

Evolutionary algorithms attempt to mimic the process of biological evolution to find bet-
ter and better solutions [119]. A number of operators (for example selection, crossover,
mutation, and cloning) act upon a population of randomly initialized individuals to
transform these individuals into better solutions.

Opinions seem to be conflicting with respect to the success of evolutionary algo-
rithms (EA)s in solving complex scheduling problems. Jain and Meeran [57] criticize
GAs for being inefficient, stating that GAs are unable to successfully represent the clas-
sical job shop scheduling problem since traditional crossover operators cannot generate
feasible schedules. Yet many successful JSSP applications of modified EAs have been
recorded [62, 91, 99].

Particle swarm optimization

PSO can be classified as a stochastic population-based optimization technique [64], which
was developed as a model of the flocking behaviour of birds. Since its development, the
algorithm has established itself as a competitive solution strategy for a wide range of
real-world problems. However, due to its relatively recent development, very few complex

scheduling applications have been documented.

Ant colony optimization

The first ant colony optimization (ACO) algorithm was developed to model the foraging
behaviour of ants [39]. This search methodology is traditionally associated with discrete

combinatorial optimization problems which can be modeled as decision graphs [27]. Each

P

e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 29

ant is tasked with constructing a candidate solution or path through the decision graph.
Good solutions are marked with a high pheromone concentration, which ensures that
they are revisited with a higher probability. As an ant is progressing through the graph,
the transition probability, P, (t), associated with visiting node iy immediately after

node 77 at time t is given by

i (1)

1112

ZigENil 7Tia1i2 (t)

where 7;,;, denotes the pheromone concentration of the link between node ¢; and node
i9, a is a positive constant used to amplify the pheromone influence, and N, is the set
of feasible nodes connected to node i;. Although this technique has been used success-
fully in solving simpler scheduling problems [13, 19, 36], not many complex scheduling

applications have been reported.

3.1.4 Selecting a suitable solution strategy

Based on the above analysis, a population-based metaheuristic was selected for further
investigation. Apart from the metaheuristic’s ability to escape from local minima, there
are distinct advantages associated with using a population-based algorithm for optimiz-
ing multiple conflicting objectives. Since a population of candidate solutions is adapted
over time, different individuals can simultaneously converge to different regions of the
objective space. This results in significantly less effort required to generate a set of
trade-off solutions.

Of all the population-based algorithms, genetic algorithms seem to be the most suc-
cessful at addressing complex scheduling problems. However, as a direct result of the
no free lunch theorem [144], there is no way of predicting that a GA would indeed be
the best solution strategy for the Optimatiz problem. Technically, any of the search
methodologies in Figure 3.4 could be used.

For the purposes of this dissertation, the two latest additions to the metaheuristics
depicted in Figure 3.4, namely particle swarm optimization and differential evolution,
were selected for further investigation. The inherent simplicity [64, 114] and proven

success on simpler scheduling problems have further added to the desirability of the

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 30

two algorithms. Further research opportunities are also present in investigating the use
of continuous optimization algorithms for solving discrete combinatorial optimization

problems.

3.2 Particle swarm optimization

Kennedy and Eberhart [64] trace the origins of the particle swarm optimization (PSO)
algorithm back to Reynold’s “boid” simulations [121]. The initial objectives of this
study and the other collective behaviour studies of the late 80s was to simulate the
graceful, unpredictable choreography of collision-proof birds in a flock [37]. However,
the optimization potential, of what was at that stage only a conceptual model, soon
became apparent. Simplification and parameter derivation resulted in the first simplistic
implementation by Kennedy and Eberhart [64] in 1995.

Since its humble beginnings, PSO has established itself as a simple and computa-
tionally efficient optimization method in both the fields of artificial intelligence and
mathematical optimization. Applications range from more traditional implementations
such as training artificial neural networks [40, 137] and task allocation [124], to more
specific applications, such as the design of aircraft wings [140] and the generation of
interactive, improvised music [17]. The rest of this section introduces the basic concepts
of PSO before the actual algorithm, associated algorithm parameters, and variations are

discussed in more detail.

3.2.1 The basic algorithm

The PSO algorithm represents each potential problem solution by the position of a
particle in multi-dimensional hyperspace. Throughout the optimization process velocity
and displacement updates are applied to each particle to move it to a different position
and thus a different solution in the search space.

The velocity update is often thought to be the most critical component of the PSO
algorithm since it incorporates the concepts of emergence and social intelligence. Fig-

ure 3.5 illustrates that the magnitude and direction of a particle’s velocity at time ¢ is

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 31

considered to be the resultant of three vectors: the particle velocity vector at time ¢t — 1,
the cognitive component (pbest), which is a vector representation of the best solution
found to date by the specific particle, and the social component (gbest), which is a vector
representation of the best solution found to date by all the particles in the swarm. The

gbest model [64] calculates the velocity of particle ¢ in dimension j at time ¢ 4 1 using
v (t+ 1) =wv(t) + crry(0)[245(t) — 245(8)] + cara; (D) [25 () — 245(2)] (3.3)

where v;;(t) represents the velocity of particle ¢ in dimension j at time ¢, ¢; and ¢ are
the cognitive and social acceleration constants, Z;;(t) and x;;(t) respectively denotes the
personal best position (pbest) and the position of particle i in dimension j at time t. 27 (t)
denote the global best position (gbest) in dimension j, w refers to the inertia weight, and

r1;(t) and 79;(t) are sampled from a uniform random distribution, U(0, 1).

Figure 3.5: Particle velocity as resultant of three components

The displacement of particle ¢ at time ¢ is simply derived from the calculation of

v;;(t + 1) in equation (3.3) and is given as

This simultaneous movement of particles towards their own previous best solutions

(pbest) and the best solution found by the entire swarm (gbest) results in the particles

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 32

converging to one or more good solutions in the search space. For the sake of complete-

ness, pseudocode of the basic PSO algorithm is provided in Algorithm 3.1.

Initialize an n,-dimensional swarm of n, particles
t=1
while t < I,,,, do
for All particles ¢ do
if f(z;(t)) < f(Z;) then
T, = x;(t)
end
if f(Z;) < f(z*) then
Tt =1

end
end

for All particles ¢ do
Update the particle velocity using equation (3.3)
Update the particle position using equation (3.4)

end
t=t+1
end

Algorithm 3.1: The basic gbest PSO algorithm [39]

3.2.2 The guaranteed convergence PSO algorithm

Unfortunately, the basic PSO algorithm has a potentially dangerous property. The
algorithm is “driven” by the fact that as a particle moves through the decision space,
it is always attracted towards its pbest value and the flock’s gbest value. If any of the

particles reach a position in the search space where

T=x(t)=2" (3.5)

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 33

only the momentum term (wv;;(t) in equation (3.3)) remains to act as a driving force for
the specific particle to continue exploring the rest of the search space. However, if the
condition described in equation (3.5) persists, it can result in the swarm stagnating on
a solution which is not necessarily a local optimum [138]. The guaranteed convergence
particle swarm optimization (GCPSO) algorithm [138] has been shown to address this
problem effectively and have thus been used for all simulations in this dissertation. This
algorithm (Algorithm 3.2) requires that different velocity and displacement updates,
defined as

Urj(t + 1) = — 275(t) + 25 (1) + wor(t) + p(t) (1 — 2r4(2)) (3.6)
and
z-(t+1) =1 (t) + wv;(t) + p(t)(1 — 2r;(¢)), (3.7)

are applied to the global best particle, where p(t) is a time-dependent scaling factor,
r;(t) is sampled from a uniform random distribution, U(0, 1), and all other particles are
updated by means of equations (3.3) and (3.4). This algorithm forces the gbest particle
into a random search around the global best position. The size of the search space
is then adjusted on the basis of the number of consecutive successes or failures of the
particle, where success is defined as an improvement in the objective function value. In
Algorithm 3.2, the number of consecutive successes is denoted by ¢ and the number of

consecutive failures are denoted by 7.

3.2.3 Algorithm parameters

A section on PSO would not be complete without discussing the various parameters
which have an effect on algorithm performance. Eberhart et al. [65] and Engelbrecht [39]
provide a detailed description of each of the PSO parameters. Thus this dissertation

focuses only on those parameters which directly impacts on scheduling performance.

e The swarm size, ng, and maximum number of iterations, I,,q., largely determined

the amount of time available to produce a scheduling solution.

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy

34

Initialize an n,-dimensional swarm of n, particles

t=1
p(t) =1
¢=0
n=0

while t < I,,,,, do

for All particles ¢ do

T, =z(t)
end
if f(Z;) < f(z*) then
(=(+1
n=20
Tt =12
else
n=n+1
(=0
end

end
for All particles i|i # T do
Update the particle velocity using equation (3.3)

Update the particle position using equation (3.4)
end

Update the gbest particle velocity using equation (3.6)
Update the gbest particle position using equation (3.7)

t=t+1
end

Algorithm 3.2: The guaranteed convergence PSO (GCPSO) algorithm [138]

P

e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 35

maz Places an upper bound on the maximum velocity that a particle may obtain.
This parameter was incorporated into the PSO algorithm to prevent the particle
velocities from becoming excessively large as particles move further away from the

gbest and pbest positions.

The inertia weight, w, is important in ensuring that a suitable trade-off is obtained
between exploration of different areas of the search space and further exploitation
of good areas. As can be seen from equation (3.3), w weighs the contribution of
the previous velocity. Large values of w thus encourage exploration while smaller

values encourage exploitation.

The two acceleration coefficients, ¢; and cq, also have a significant impact on the
exploration-exploitation trade-off of the algorithm, since they control the stochastic

influence of the cognitive and social components on particle velocity [39].

3.2.4 Variations on the basic PSO algorithm

In order to address the inherent limitations and requirements of the PSO algorithm, a

number of variations on the gbest PSO algorithm have been developed over the years. As

described in Engelbrecht [39] these variations, indicated in Figure 3.6, can be organized

into six main categories:

Social-based algorithms use different social topologies or network structures. Al-
gorithms using alternative means of calculating pbest and gbest are also classified

as social-based algorithms.

Hybrid algorithms refer to all PSO variations that incorporate concepts from other
metaheuristics. Examples include the use of EA-based concepts such as selection,

reproduction, and mutation.

Sub-swarm-based algorithms are based on some explicit or implicit grouping of
particles in sub-swarms and can be divided into cooperative and competitive sub-

swarm-based algorithms.

P

e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 36

e Memetic algorithms incorporate local search procedures within the standard PSO

to enhance the exploitation ability of the algorithm.

e Multi-start algorithms inject chaos into the swarm to increase diversity through

random initialization of particles.

e Algorithms which utilize various repelling methods also have as their main objec-
tive the diversification of the swarm. This class of algorithms include all variations
where specific mechanisms are employed to avoid particle collisions or where adja-

cent particles are repelled.

Of all the PSO variations developed over the past decade, the degree of social interac-
tion between particles has probably received the most attention. A number of alternative
social network structures have been developed to explore different information exchange
mechanisms between the particles within a swarm. Kennedy and Mendes [66] have al-
ready empirically evaluated a number of these social network structures, including the
gbest, lbest, pyramid, star and Von Neumann structures. The gbest and Von Neumann
topologies (refer to Figure 3.7) are the most important variations for the purposes of this
dissertation.

It is well known in PSO literature that the gbest PSO algorithm converges fairly
quickly [65], since all particles are partially attracted to the best position found by the
swarm. Depending on the problem, this relatively fast loss of diversity can result in the
algorithm finding a suboptimal solution within relatively few iterations.

The Von Neumann PSO organizes the particles into a lattice according to the particle
indices. Each particle belongs to a neighbourhood consisting of its nearest neighbours
in the cubic structure. Instead of being partially attracted to gbest, the velocity of
a particle is influenced by the best solution found by the other particles in the same
neighbourhood. Since these neighbourhoods overlap, information about good solutions
is eventually propagated throughout the swarm, but at a much slower rate. In so doing
more diversity and subsequent slower convergence is obtained, leading to significantly

improved chances of finding a good solution.

&

ORIA
ORIA
ORIA

T
T

YA PRE

VERSITY OF FPRE

IVERSITEIT VAN PRET
IBESITHI

K
UN
&, U

37

Chapter 3. Selecting an appropriate solution strategy

JerEmTERTE TR —
' osd
! sauoqareg |
e -
HE O 17< I
jones asuelsip!
i.—-sseuid !

.|.|.|.|.|.|. —
_ .
.mc_nbom:wuw_
. _
| -
salbarens
Bulreys uopewioly|

bomau _m_uom_
! feojyoselaiH
| -

1 aimonas "
" aqnosadAH |
mI.Ww_”_daam.cl._
i ewos |

i.puom-ews !
i TspooT T
i -inoqubiau !
i Bumaie !
IS I ETE
“ jeneds !
paseq-ssoun
i sylomau "
"_m_oo.w _m_uma.wm

sainonns
3I0MISN [B100S

[6€] wyjIodre S OIseq 9Y) UO SUOIJRLIRA Q'€ 9INJI]

swyLoble 0sd
paseq-[e100s

S TemTITRSTe—. —
i 1
josd 8920"
| PP, =
~'uosuaixa |
" reneds !
iuum saponreg !

o remTmm———— —
I Apopn |
! soualeyo) |

spoylaw Buijaday

S TmTRmTRTR—. —
| OSd paseq |
! usipers
| PO, 1
~sagoreas |
" reoo; !
.. 2usewais

f

I osd

"m:_gs__i__z i

swyilobe “swiquobre
OSd vels-ninA 0OSd 2nBWaN

sayoeoidde

OSd
annnadwo)d

.I.I.I.I.I.I. —
! osduds
! anpesadoo) j

i 0Ssd i
Ipaseq JaIsn|Oj
...l.l.l.l.l. .h

“ aseyd-ninAl

sayoeo.idde
0Sd aAneladoo)

ﬁ)

L

J

v

swpobe

OSd psseq
wiems-gns

;

ST —
! 0Sd paseq
! Auojoowy |

I swuems i
" fernd
j-OSdpeseq
i uonnjong !
i. Tenuasayig, !
;OSdpeseq
i Abaens !

;- 0sdpeseq !
i wyoby !
i._.2nauen_ !

swyyobe pugAH

J

;

wuytoble 0Sd
J1seq ay) uo suoneuep

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

38

Von Neumann

Figure 3.7: The gbest and Von Neumann topologies [39]. The lines between particles indicate

the propagation of information through the swarm.

3.3 Differential evolution

Originally developed from work done on Chebyshev’s polynomial fitting problems, dif-
ferential evolution (DE) finds its roots in the genetic annealing algorithm of Storn and
Price [131]. Classified as a parallel direct search method [130], DE achieved third place
on benchmark problems at the first international contest on evolutionary optimization
in 1996. Since then, the number of DE research papers increased significantly every year
and DE is now well-known in the evolutionary computation community as an alterna-
tive to traditional EAs. The algorithm is considered to be easy to understand, simple to
implement, reliable, and fast [114]. Application areas are just as diverse as is the case
for the PSO algorithm and range from function optimization [131] to the determination
of earthquake hypocenters [123].

Similar to the previous section, the rest of this section first introduces the basic con-

cepts of DE before the actual algorithm, associated algorithm parameters, and variations

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 39

are discussed in more detail.

3.3.1 The basic algorithm

The success of DE can be mainly attributed to the use of a difference vector which
determines the step size of the algorithm as the population, consisting of vectors of
floating point numbers, moves through the search space. Information regarding the
difference between two existing solutions is, in other words, used to guide the algorithm
towards better solutions [131].

More specifically, for each individual, 7, in the population, a base vector, z; (t),
as well as two other vectors, z;,(t) and z,(t), are randomly selected from the current
population, where z;;(t) denotes the 4" dimension of individual i of generation ¢ and
1 # 11 # 19 # i3. The target vector, T';, can then be obtained through the application of

a differential mutation operator defined as
Tij(t) =iy (t) 4 F(wiy;(t) — wiy5(t)) (3.8)
Then, for all dimensions, j, if r ~ U(0,1) < p, or j =v ~ U(1,...,n,)
cij(t) =Ti;(t) (3.9)

otherwise ¢;;(t) = z;;(t), where p, is the probability of reproduction, n, is the number
of dimensions, F' is the scaling factor, and ¢; is known as the trial vector.

An individual may only be replaced by an individual with a better fitness function
value. In other words, if the fitness of ¢;(¢) is better than the fitness of the i** individual
of the original population, this individual is replaced by ¢;(t) [38]. For the sake of
completeness, pseudocode of the basic DE algorithm is provided in Algorithm 3.3.

The differential mutation operator in equation (6.4) has the desirable property that
it allows the step sizes of the algorithm to automatically adapt to the objective function
landscape [114]. For example, before the population has converged around a specific
optimum, the randomly sampled individuals could still be far apart in different areas
of the search space. This allows for larger step sizes during the initial iterations of the
optimization algorithm when greater exploration of the search space and the ability to

escape from local optima is desirable. Later on, when all of the individuals are converging

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy

40

Initialize an n, -dimensional population of n, individuals
t=1
i1, 49,13 =0
while t < I,,,,, do
for All individuals i do
Randomly select an individual, i1, from the population
Randomly select an individual, i5, from the population
while ¢, = i, do
Randomly select an individual, 45, from the population
end
Randomly select an individual, i3, from the population
while iy = i3 or i, = 13 do
Randomly select an individual, i3, from the population
end
Randomly select a dimension, v
for All dimensions j do
if r ~(0,1) <p, or j =v then
Calculate ¢;;(t) using equation (6.4)
else
cij(t) = xy(1)
end
enci3 nd
for All individuals i do
if f(ei(t)) < f(@i(t)) then
z,(t+1) =¢t)

end
end
t=t+1

end

Algorithm 3.3: The classic DE algorithm [114]

r

e

" UNIVERSITEIT VAN PRETORIA

’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Qe

Chapter 3. Selecting an appropriate solution strategy 41

around a single optimum, smaller step sizes are automatically taken since all individuals
are close to each other in the search space. This strategy allows the algorithm to more

effectively exploit the area around the optimum in search of a better solution.

3.3.2 Algorithm parameters

DE has surprisingly few parameters when compared to PSO. Since the population size
and maximum number of iterations have already been considered in Section 3.2.3, only

the scaling factor, F', and reproduction probability, p,, are discussed below:

e Price et al. [114] define F as a positive real-valued number that controls the rate
at which the population evolves. Large F' values tend to allow larger step sizes
which are traditionally considered to be better for exploration purposes, whereas

smaller F' values are better for exploitation.

e The reproduction probability controls the fraction of parameter values that are
inherited from the target vector. Larger values of p, are associated with improved
exploration capability, whereas smaller p, values focus on intensifying the search

around good solutions.

3.3.3 Variations on the basic DE algorithm

The number of DE research papers increases exponentially each year and as the algorithm
is refined, results continue to improve and additional research opportunities become
visible. As a result, several variants of DE have been defined over the years. This
section describes a number of these variants according to Storn and Price’s DE/xz/y/z
notation [131], where z refers to the method used to select the target vector, y refers to

the number of difference vectors used and z denotes the crossover mechanism used.

Alternative base vector selection mechanisms

Storn [130] identifies three different base vector selection mechanisms: DE/rand/y/z,
DE/best/y/z and DE/rand-to-best/y/z (DE/R2B/y/z):

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 42

e A randomly selected population member serves as the base vector in DE /rand /y/z.

e The base vector is selected as the population member with the best fitness function,
i.e. the best individual, in DE/best/y/z. Incorporating the best individual into
the equation is meant to enable faster convergence, with a subsequent decrease in

population diversity.

e DE/R2B/y/z aims to address the limitations of DE/best/y/z in terms of potential
premature convergence. A linearly or exponentially decreasing value (y € (0,1))
is incorporated into the equation used to calculate the base vector. This ensures
that more emphasis is placed on random base vector selection at the start of the
optimization run when population diversity is important. Towards the end, the
DE/best/y/z strategy is emphasized when convergence to the best solution is de-

sirable. The adjusted target vector equation becomes

Tij(t) =varj(t) + (L — 7))@ j(t) + F(2iy;(t) — 2i55(¢)), (3.10)

where z,;(t) denotes the j component of the best individual in the population at

time t.

Alternative difference vector selection strategies

Storn [130] defines an additional variant which uses y difference vectors to “shift the
random variation slightly into a gaussian direction”. Preliminary results have indicated
that this seems to be beneficial for a large number of functions. As an example, the trial

vector for DE/z/2/z is given as
Tij(t) =wiy5(8) + F(ay5(t) + 255 () — 24,5(t) — 2455(2)), (3.11)
where il 7é ig 7é ig 7é i4 7é ’1/-5.

Alternative cross-over mechanisms

Two different crossover mechanisms, namely exponential and binomial crossover, have

also been employed effectively in DE-based algorithms. Exponential crossover operators

-
o
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 43

are applied to each of the n, dimensions until v ~ U(0,1) > p,. Binomial crossover
operators are applied per dimension whenever v ~ U(0,1) < p,. For high values of p,,
the exponential and binomial crossovers thus yield similar results [12].

The identification of a large number of DE variants is important because different
strategies perform differently on different problems. Since no single strategy can be
proved to outperform all other strategies for all problems, finding the best performing
algorithm variation for each data set may result in significant performance improvements.
However, it is not always practical to test all strategies, thus careful consideration should
be given to determine which strategies result in the greatest improvement for a specific
problem. For the purposes of this dissertation, an investigation into alternative base
vector selection mechanisms was considered to be the most useful. This investigation is

described in more detail in Section 4.2.

3.4 A brief analysis of existing PSO- and DE-based

scheduling algorithms

The number of papers where PSO and DE are applied to scheduling has dramatically
increased over the past few years [73]. This section provides an overview of PSO and

DE machine scheduling literature before making a number of interesting observations.

3.4.1 General observations

Effective production scheduling requires solving a complex combinatorial and discrete op-
timization problem. Subsequently, two main approaches for solving scheduling problems
by means of continuous optimization algorithms, such as PSO and DE, can be identified
from literature [73]. Figures 3.8 and 3.9 firstly organize the relevant machine scheduling
literature into the two main approaches followed, and then also distinguishes between
different types of scheduling models which have been solved by these two approaches.
The first approach is based on redefining the standard operators of the classical PSO

and DE algorithms, allowing the algorithms to function in a discrete domain. Secondly,

&

o
" UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 44

PSO
scheduling

applications

/\

Discrete PSO Conglggous

scheQang scheduling

faathms algorithms

A
Single
fRo=hop BaEhop machine Job shop Flow shop
fiuling fduiing schedulin schedulin scheduling
[75] [76, 104, 105]) g 9 (77,78, 79, 134]
FJSP
JSSP
[126, 145, 146] [59, 62 Zlf]o' gL

Figure 3.8: Applications of PSO to machine scheduling literature

the scheduling problem may be converted into a continuous problem which can be solved
easily by means of a continuous optimization algorithm.

According to Lei [73], the redefinition of the standard PSO operators often lead to
poor performance in scheduling. Although the structure of the problem can be more
easily exploited, it is quite difficult to retain the trade-off between social and individual
learning which is largely responsible for the success of the continuous PSO. The inherent
structure of the information exchange between particles is, after all, changed. A similar
argument may be used for DE. The definition of the difference vector may be problem-
atic when the continuous DE operators are discretized. Nonetheless, as can be seen from
Figure 3.8, discrete PSO algorithms have already been applied successfully to single ma-
chine scheduling [9, 103], flow shop scheduling [76, 105, 106], and job shop scheduling [75].
Discrete DE algorithms have been used to solve flow shop scheduling [5, 104, 133] and

E
BESITHI YA PRETORIA

e
o
“ UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNI
Qe

Chapter 3. Selecting an appropriate solution strategy 45
DE
scheduling
applications
Discrete DE Contllanuous
theqtlrj]“ng scheduling
S algorithms
/\
Single >
Flow sh_op machine Single
scheduling scheduling machine Job shop
[131] scheduling scheduling
‘%\ [29]
A /\
Assembly ; !
No-wait FSSP PFSSP FSSP with Flow shop Oﬁ}’e‘gt'ﬁ/'e ob'\jA:(lttli;/e
132 103 heduli
[132] [103] se}g]ps scheduling [156]]
FSSP Real-world
PFSSP [29, 101, 156] flow shops
. . Hybrid FSSP | ftirce
Single- Multi - naddn constr_alned
objective objective e FSSP with add.
[115] [116] [121] constraints
[25]

single machine scheduling problems [132].

Figure 3.9: Applications of DE to machine scheduling literature

In this dissertation, the second approach will be followed where the scheduling prob-

lem is converted to a continuous problem which can be solved directly by the PSO and

DE algorithms. Following this approach requires the algorithms to be able to operate

effectively in two separate search spaces: (1) The schedule allocation space, S, which

consists of all the feasible schedules associated with the problem to be addressed, and

(2) the particle space, P, which consists of all the possible positions of the particles

within the search space. To evaluate the fitness of a particle, the solution x € P, must

first be mapped to y € S, before the fitness function value f € F (where F denotes the

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 46

objective space) can be calculated.

In the PSO domain this approach has already been applied successfully to var-
ious flow shop [77, 78, 79, 135], job shop [127, 146, 147]|, and multiprocessor task
scheduling problems [41]. Continuous DE implementations, on the other hand, have fo-
cused on the single machine scheduling problem (SMP) [97, 96, 134], flow shop schedul-
ing problem (FSSP) [25, 97, 102, 116, 117, 122, 157], and job shop scheduling prob-
lem (JSSP) [118, 157].

3.4.2 Addressing more complex scheduling problems

It is obvious from the analysis of Section 3.4.1 that PSO and DE are establishing them-
selves as solution strategies of note for simpler scheduling problems. The applications to
more complex production scheduling problems are still, however, considered to be rela-
tively sparse. This is especially true for scheduling problems where both the sequencing
of operations and the allocation of these operations to resources need to be addressed.

All the PSO and DE scheduling applications discussed in Section 3.4.1 can be reduced
effectively to the problem of finding an “optimal” sequence of operations subject to a
number of problem-specific constraints. However, when the processing of operations on
alternative resources can lead to a reduction in the overall processing time, for example
as in the case of a flexible job shop scheduling problem, the allocation of operations
to resources becomes an important part of the optimization problem. This additional
complexity understandably creates a number of additional challenges for the scheduling
algorithm.

To the best of the author’s knowledge no applications of differential evolution to a
flexible job shop scheduling problem exist. However, five papers addressing flexible job

shop scheduling problems by means of PSO could be identified:

e Xia and Wu [145] developed a simulated annealing-PSO-based hybrid solution
strategy. It is notable that only the allocation of operations to resources is done
by means of PSO. The actual sequencing of the assigned operations is performed
by a simulated annealing (SA) algorithm and the multiple objectives are addressed

by combining all relevant objectives into a single weighted sum objective.

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 47

e Liu et al. [80, 81] solved the multi-objective flexible job shop scheduling problem
with minimum makespan and flowtime by means of a variable neighbourhood PSO
algorithm, which employed a variable neighbourhood-based local search mechanism
to enhance the exploitation ability of the swarm. Dynamic weighted aggregation

is used to simultaneously minimize the two objective functions.

e Jia et al. [59] have minimized makespan, total workload, and maximum workload
by means of a PSO algorithm employing a chaotic local search around the gbest
particle. The multiple objectives are addressed by further minimizing the objective

with the smallest fitness value at each function evaluation.

e Jia et al. [60] used a fully informed pareto-based PSO algorithm to minimize the
makespan and maximum lateness in a flexible job shop (FJSP) environment. A
problem-specific mutation operator was also defined to improve the diversity of the

Swarin.

A number of interesting observations can be made from this brief analysis. Firstly, it
can indeed be confirmed that PSO and DE do not seem to be considered as established
solution strategies for more complex scheduling environments when compared to, for
example, genetic algorithms. Real world scheduling problems, where a large number
of additional scheduling-specific constraints need to be addressed, have not been solved
frequently by means of either PSO or DE. In fact, no additional constraints are even
considered in the listed examples.

Secondly, the largest problem attempted by any of these PSO-based algorithms only
consider the scheduling of 56 operations on at most 15 resources, which is currently
considered to be a problem of “great size” in FJSP scheduling literature [63]. This is in
sharp contrast with the Optimatiz problem where a multi-objective FJSP consisting of
up to 256 operations on 216 resources, need to be considered.

Thirdly, apart from the PSO-SA hybrid of Xia and Wu [145], all the algorithms
make use of a two-part particle representation and resource allocation is addressed by
means of rounding off the continuous PSO particle dimensions to the nearest integer

value representing a resource index.

P

e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 3. Selecting an appropriate solution strategy 48

Finally, a number of the algorithms [59, 80, 81| employ complex local search mecha-
nisms. Apart from the increased computational complexity, extending these algorithms
to include sequence-dependent set-up times, auxiliary resources, and production down
time, as is required in the proposed problem, would require that major structural changes

be made to the algorithms currently in use at Optimatiz.

3.5 Summary

This chapter documented the process of selecting a suitable solution strategy. Particle
swarm optimization and differential evolution were selected as the solution strategies of
choice. A brief introduction to each one of these search methodologies was provided
before the existing PSO and DE scheduling work was described in more detail. The
next chapter focuses on describing the actual implementation of these two strategies in

a scheduling environment.

e
o
" UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 4

Solving the single objective

Optimatixz problem

A large number of options are available when particle swarm optimization (PSO) and
differential evolution (DE) are applied to a complex production scheduling problem such
as the problem faced by Optimatiz. The focus of this chapter is to motivate the initial
“design choices” which were made during algorithm development. Investigations into
appropriate problem representations are conducted within the context of PSO, suitable
parameter values are derived and alternative PSO topologies and DE base vector selec-
tion mechanisms are implemented. Finally, the resulting PSO and DE algorithms are

benchmarked against existing solution strategies.

4.1 Alternative particle representations

It is well known that the existence of separate search spaces have a significant impact on
the performance of optimization algorithms [99], thus justifying research into alternative
problem representations for the Optimatiz problem. In the context of PSO and DE, the
performance of problem representations may be considered to be relatively independent
of search methodology. The purpose of this section is, thus, to investigate alternative

problem representations and mapping mechanisms in the context of PSO. To achieve

49

r

e

" UNIVERSITEIT VAN PRETORIA

’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Qe

Chapter 4. Solving the single objective Optimatix problem 50

this objective, three PSO-based heuristics, namely the priority-based PSO (P-PSO), the
random keys PSO (RKPSO), and the rule-based PSO (RBPSO), were developed.

Although all empirical performance evaluations throughout this and the next chapter
were conducted on data sets ranging from 56 to 256 operations, a smaller problem, similar
in complexity to the Optimatiz problem, can be used to compare the various algorithms
on a conceptual level. Four operations, indicated by means of the network diagram in
Figure 4.1, need to be scheduled. Precedence constraints, denoted by arrows between the
operations, are also present. Each operation needs to be scheduled on a single resource
from a set of primary resources and a single auxiliary resource may also be required.
The primary and auxiliary resource sets associated with each operation are respectively
denoted by oval and rectangular blocks linked to each operation. Consider the fourth
operation in Figure 4.1 as an example. This operation may be scheduled on either
the first or second resource (primary resource allocation), but also requires the third
resource as an auxiliary resource. The network diagram can, subsequently, be converted
to a particle representation. The final solution (before the inclusion of production down
time) can then be converted into the feasible schedule indicated by means of a gantt
chart.

Throughout the rest of this section each of the three PSO-based heuristics are de-
scribed and illustrated by means of the example problem. The experimental conditions
of the empirical analysis are also described and the results of the investigation are pre-

sented.

4.1.1 The priority-based PSO algorithm

The priority-based algorithm is based on the idea that evolving operation priorities
over time may lead to superior operation sequences. The particle representation of the
priority-based PSO (P-PSO) algorithm consists of a (2n — ¢)-dimensional vector, where
@ is the number of operations which may be processed on only one primary resource
and n is the total number of operations which need to be scheduled. The allocation of
auxiliary resources are enforced as additional problem constraints.

Dimensions n + 1 to 2n — ¢ are used to represent the allocation of operations to

primary resources. This is done by discretizing the search space as follows: For each

51

ORIA
ORIA
ORIA

T
T

IVERSITEIT VAN PRET
VERSITY OF FPRE
IBESITHI YA PRE

Q}
1
& v

uornjos o[qissod pue woqord ojdurexs [[ews y :1°f 2In31q

195 80In0SaI AelXNy l
105 90IN0sa) Arewid @

T uonesadO

v uonesado| o

et [e |
Z uonesado

N[™ <

I A N ooy

Chapter 4. Solving the single objective Optimatix problem

(sAep) sawil wisiueyosw

Buiddew wajgo.d

uonejuasaldal
=v :o_HEmQO__ ¢ uonesado [r uonesado 1 < [spnrey < e a

r

e

" UNIVERSITEIT VAN PRETORIA

’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Qe

Chapter 4. Solving the single objective Optimatix problem 52

operation k, the k' dimension of the P, space is divided into |@Q| intervals, where |Q|
denotes the number of primary resources on which operation k£ can be processed. Since
each interval is associated with a unique integer number or resource index, dimensions
n + 1 to 2n — ¢ of the position vector can easily be interpreted as resource allocation
variables.

Figure 4.1 shows that operation 1 may be scheduled on either resource 1 or resource
2. The first dimension of the P, space is subsequently divided into two intervals, namely
{=1500,0} and {0, 1500}, given that £ € {—1500,1500}. In the example particle repre-
sentation ¢ in Figure 4.3, z;5 = 10.2, where z;; denotes the j* dimension of particle i.
Since 10.2 € {0, 1500} operation 1 is scheduled on resource 2. Similarly, operation 2 and
4 are also scheduled on resource 2 and operation 3 is scheduled on resource 1.

The sequencing variables of dimensions 1 to n denote the priority values of each
of the operations. These priorities are used as input to a schedule-building heuristic
which attempts to schedule each operation at the earliest available time on its associated
resource. In this dissertation, Giffler and Thompson’s heuristic [47] (initially developed
in 1960 and since then successfully used by Sha and Hsu [127] and Gao et al. [45]) was
extended to include the unique problem characteristics of the Optimatiz environment.

The modified Giffler and Thompson heuristic is given in Algorithm 4.1. The basic idea
of the algorithm is to maintain two sets of operations. As can be seen in the pseudocode,
the first set, ©, stores all operations which are available for scheduling at a specific time.
The operations in © are inserted one by one into the partial schedule, ®, according to
their associated priority values. Inserting the operation with the highest priority, k,
into ® involves considering each element in a set of possible starting times, ¥y, (refer
to Figure 4.2). The earliest starting time which allows for a feasible auxiliary resource
allocation determines the position of operation & in the partial schedule. As soon as an
operation is scheduled all its successors, which have no other unscheduled predecessors,
become available for scheduling. These operations can be inserted into © before the next
operation is scheduled. As an example, consider the priorities of the example problem in
Figure 4.3. These priorities can be converted into the job permutation: {1,4,3,2}. The
application of the modified Giffler and Thompson’s heuristic [47] results in the schedule
in Figure 4.3 being obtained.

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 4. Solving the single objective Optimatix problem

93

Initialize ® = 0
Initialize © to contain all operations without any predecessors
while © # 0 do
Select k from © as the operation with the highest priority
Determine ¥, (the set of possible starting times for operation k on resource dy)
while £ € © do
Set t, = min{¥;}
Calculate the finishing time associated with ¢;: 2z, = Finish(#)
(Refer to Algorithm 4.2)
Determine feasibility of schedule with respect to auxiliary resources
(Refer to Algorithm 4.3)
if ty results in a feasible schedule then
Delete k from ©
else
Delete t;, from ¥,

end
end

Insert k into ®
for All successors m of k do
if All other predecessors of operation m € ® then
Insert m into ©
end

end
end

Algorithm 4.1: The priority-based PSO mapping mechanism

The most involved step of the modified Giffler and Thompson algorithm is determin-

ing whether a feasible auxiliary resource allocation exists for a specific operation starting

time. A two step process is required. Firstly, the effect of the resource-specific down

time intervals on the operation duration needs to be determined in order to obtain an

P

e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 4. Solving the single objective Optimatix problem 54
A
Rezc()il)Jrce Operation i - 3 Optieraztion Opiefaltion
[y >
Release datel T T T Time
of operation i A B C

Figure 4.2: When operations k — 3,k — 2 and k — 1 are already scheduled on resource dj, the

possible starting times of operation k, ¥y, are A, B and C

Resource Time (days)
Sequencing variables : Allocation variables : N EE
dimensions 1ton dimensions n + 1 to 2n 1 Operation J| Operation 3 Operation 4|]
2 Operation 2
12 | 12 |16.2]19.1 10.2|1054}-450 3 © _|Operation 4
4 Operation 1

Figure 4.3: An example PPSO particle representation and corresponding solution to the

example problem

accurate finishing time. Secondly, the availability of the required auxiliary resources
during the operation processing time needs to be evaluated.

More detail with respect to the inclusion of production down time into the sched-
ule is provided in Algorithm 4.2. Depending on the available data, either a sequence-
independent resource-dependent set-up time or a sequence-dependent resource-indepen-
dent set-up time may be used to calculate the processing time of an operation. Here
Sy denotes the sequence-dependent set-up time if operation k is processed immediately
after operation k; on the same resource.

The second half of the pseudocode of Algorithm 4.2 describes the procedure followed
to incorporate the down time intervals into the operation processing time. The starting
times, 9, and ending times, yx, of all the resource down time intervals of resource dj
needs to be provided as input data. If the proposed starting time of operation £ falls
within any of the predefined down time intervals, the operation will only start once the

resource is available again. If a resource is expected to become unavailable in the midst

P

e

" UNIVERSITEIT VAN PRETORIA

’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Qe

Chapter 4. Solving the single objective Optimatix problem 55

of an operation’s processing time, the operation will be scheduled to resume on the same
resource once it becomes available again. The processing time of the operation is then

adjusted to allow for this period of inactivity.

for All operations k do
2, = i + Drdy, + Skyk
for All downtime intervals p do
if 2z, <1, orty > x, then
Interval p is an intersected downtime interval of operation k

end
end

for Intersected downtime intervals p of operation k do
if v, < 2z and t;, < x, then
Zk =2k + Xp — Up
end
if v, <t and t; < x, then
2k =2k + Xp — Uk

end
end

for All downtime intervals q from p to P do
if z;, > 1, then
2 =2k + Xqg — Yq
else
Break to operation k + 1
end

end
end

Algorithm 4.2: Calculating the finishing time associated with starting time ¢; of operation

k (Finish(ty,))

Once an accurate idea of the operation processing time on the required primary

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 4. Solving the single objective Optimatix problem 56

resources is obtained, the pseudocode of Algorithm 4.3 can be applied. For each auxiliary
resource in the set of available auxiliary resources, V., the algorithm checks whether an
auxiliary resource is available during the proposed processing time of operation k. If no
such resource exists, operation k cannot be scheduled at the proposed starting time and

needs to be rescheduled on its associated primary resource.

for All operations k do
if V. # () then
for All resources | € V;, do
for All scheduled intervals p do
if 2z, < xp orty > ¥, then
Operation k will overlap interval p

end
end

if Operation k overlaps any intervals then
Operation k cannot be scheduled on resource [€ V,
if [= |Vi| then
Operation k is infeasible

Break to operation k + 1
else

Break to resource [+ 1

end
else

Schedule operation k on resource [€ V),

end
end
end
end

Algorithm 4.3: Allocation of operations to auxiliary resources

The P-PSO algorithm is considered useful since the continuous nature of the PSO
algorithm can be exploited to solve a very complex, discrete combinatorial optimization

problem [127]. However, Sha and Hsu [127] also mention a characteristic of concern for

r

e

" UNIVERSITEIT VAN PRETORIA

’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Qe

Chapter 4. Solving the single objective Optimatix problem 57

scheduling algorithms which utilize a priority-based fitness function evaluation mecha-
nism. A very small change in the position of the particle within the P, space may result
in a very large change in the S, space. The algorithm, additionally, has the property
that many different solutions within Py map to the same solution in S.

The last problematic aspect of a priority-based mapping mechanism is the effect
which the schedule-building heuristic has on the simultaneous optimization of the specific
set of multiple objectives required by Optimatiz. Since the schedule-building mechanism
attempts to position each operation at the earliest possible time, the algorithm is, in fact
biased towards the minimization of makespan. However, this statement is also heavily
dependent on the characteristics of the problem being solved. As an example, consider
the scheduling of a single operation on a single resource while simultaneously minimizing
earliness/tardiness and makespan. If the earliest starting time is larger than the due
date of the job to which the operation belongs, minimizing makespan also minimizes the
earliness/tardiness objective. However, if the earliest starting time is smaller than the
due date of the associated job, the two objectives become conflicting, and the solution

and subsequent fitness calculation is distorted.

4.1.2 The random keys PSO algorithm

The random keys PSO (RKPSO) algorithm is a direct application of Norman and Bean’s
random keys genetic algorithm (RKGA) [99] to the PSO paradigm. The gene represen-
tation of the RKGA consists of an n-dimensional vector in contrast with the 2n — ¢
dimensions required for the P-PSO algorithm. A sorting mechanism (which is given
in Algorithm 4.4) is used to decode the real-valued n-dimensional vector into its corre-
sponding resource indices and priorities. The mechanism simply interprets the integer
component of the particle dimension as a primary resource index. The decimal com-
ponent is taken to be the priority of the associated operation for sequencing purposes.
Giffler and Thompson’s heuristic [47] can then be applied directly. The example in
Figure 4.4 shows that the resource allocation decision is again addressed through dis-
cretization of the search space. However, now z;; € {0, 1}, where x;; is the 5" dimension
of the " particle representation.

The RKPSO has the important advantage that the dimensionality of the P space is

r

e

" UNIVERSITEIT VAN PRETORIA

’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Qe

Chapter 4. Solving the single objective Optimatix problem 58

for All operations k do
L= ([[zix]| mod |Qx[) +1

dp = Qu
t = ik — ||z |
end

Algorithm 4.4: The random keys PSO sorting mechanism as applied to particle ¢

i Time (days
oo iaablos : Resource [~ =177 |(|y)| HEE
dimensions 1ton 1 Operation 1| Operation 3 Operation 4|
2 Operation 2
1.22]2.12|1.62]1.45 3 ¢ |Operation 4
4 Operation 1 |

Figure 4.4: An example RKPSO particle representation and corresponding solution to the

example problem

halved. However, the limitations of Giffler and Thompson’s heuristic [47], as identified in
the previous section, are still applicable. Furthermore, in most traditional optimization
applications one dimension is used to denote one unique and separate concept. Here
both operation sequence and resource allocation is represented by a single dimension,

which could have significant implications for algorithm performance.

4.1.3 The rule-based PSO algorithm

The rule-based PSO (RBPSO) algorithm [53] is another attempt at reducing the P
space. This strategy was inspired by both the rule-based algorithms currently used
by Optimatiz, as well as elements of Kacem et. al’s genetic algorithm-based approach
to flexible job shop scheduling [62]. Similar to the RKPSO, the particle representation
consists of one n-dimensional vector which represents the sequencing variables. However,
the resource allocation is now performed within the schedule-building mechanism as
described in Algorithm 4.5.

The only difference between Algorithm 4.5 and Algorithm 4.1 is that the resource

r

e

" UNIVERSITEIT VAN PRETORIA

’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Qe

Chapter 4. Solving the single objective Optimatix problem 59

allocation now involves considering each primary resource in the set, Q. The resource

allocation, [,,;,, which results in the smallest finishing time, zy is subsequently se-

min ?

lected. An illustration of the algorithm is, again, provided in Figure 4.5.

Seqqencing and . Resolft Time (days)
allocation variables : HEEEEEEEEEEE
dimensions 1 ton d Operation 1 Operation 3 Operation 4
2 Operation 2
225 |1250| 625 | 450 3 ¢ |Operation 4
4 Operation 1

Figure 4.5: An example RBPSO particle representation and corresponding solution to the

example problem

It should, however, be noted that even though the dimensionality of the P, space is
reduced, this is done at the cost of a more computationally complex algorithm since an
explicit search of all possible resource allocations are performed for each particle during

the schedule construction phase.

4.1.4 Comparative analysis of alternative particle representa-
tions

The purpose of this section is to evaluate alternative particle representations by compar-
ing the performance of the P-PSO, RKPSO, and RBPSO algorithms. However, for an
investigation into algorithm performance to be most effective, it is important to conduct
such an experimental analysis under the same conditions under which the algorithms
will eventually be used. It should be noted that this study is not only focused on im-
proving the existing scheduling algorithms of Optimatiz, but rather in identifying those
requirements that if addressed will best meet the needs of Optimatiz’ clients and then
to develop an effective solution which addresses all of these requirements. To achieve
these objectives, three test problems corresponding to actual problem size and complex-
ity were derived from actual customer data and were adapted, as described in the rest

of this section, to incorporate the changing customer requirements of Optimatiz. Un-

-
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 4. Solving the single objective Optimatix problem 60

Initialize ® = 0
Initialize © to contain all operations without any predecessors
while © # 0 do
Select i from © as the operation with the highest priority
for All resources | € Qy, on which operation k may be scheduled do
Determine Wy, (the set of possible starting times for operation k on resource d,)
while k£ € © do
Set tx = min{¥;}
Calculate the finishing time associated with ¢;: 2z, = Finish(ty)
(Refer to Algorithm 4.2)
Determine feasibility of schedule with respect to auxiliary resources
(Refer to Algorithm 4.3)
if ty; results in a feasible schedule then
Delete k from ©
else
Delete t;; from W,

end
end

Insert k into ©
end

Zhlin < MINEQ, {201}
Set t =ty ..
Delete k from ©
Insert k into ®
for All successors m of k do
if All other predecessors of operation m € ® then
Insert m into ©
end

end
end

Algorithm 4.5: The rule-based PSO mapping mechanism

P

e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 4. Solving the single objective Optimatix problem 61

less otherwise indicated, all performance analyses in this dissertation were conducted on
these data sets.

The effectiveness of a scheduling solution is, furthermore, highly dependent on the
realism of the solution. In other words, it is important that the actual solution obtained
corresponds to the requirements of the production environment which is to be sched-
uled. By effectively modeling the actual production environment, the number of times
rescheduling is required as well as the disruptions associated with frequent reschedul-
ing, can be drastically reduced. The time required to customize scheduling algorithms
for each client’s unique production environment can also be reduced when the level of
generality of a consulting firm’s scheduling algorithms is increased. To achieve these
objectives, the existing customer data sets were extended to include resource-dependent
processing times and sequence-dependent set-up times.

The variation, 0%, of all operation process times processed on different resources was
calculated from Kacem et. al’s benchmark data set for flexible job shop scheduling prob-
lems [63], which address both the allocation of operations to resources and the sequencing
of these operations on their associated resources. Subsequently, the processing times and
set-up times of the data sets used in this dissertation were randomly generated within
the interval [up — op, up +0p], where up denotes the operation-dependent data point as
obtained from the original customer data set. In alignment with customer requirements,
half of the sequence-dependent set-up times were initialized to zero. The data sets range
in size from 56 to 256 operations which are to be scheduled on 216 resources and are
available for comparison purposes from the author.

The results of the performance evaluation for the three PSO-based heuristics were
recorded over 30 independent simulation runs over each of the three data sets. Both
accuracy and computational complexity were considered to be important performance
measurements. Throughout the rest of this dissertation, f; denotes makespan, fo the
earliness/tardiness criteria, and f3 the queue time. In this chapter, goal programming,
which minimizes the weighted deviation between each fitness function value and a target

value set for it, was used to address the multiple objectives. The aggregated fitness

e
e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 4. Solving the single objective Optimatix problem 62

function, fy, is given as

3

fr =Y 1(fs = g + v fs (4.1)
s=1

where g, denotes the target value of the s fitness function, f,, and v is selected as
sufficiently small. Throughout the rest of this dissertation, p and o respectively denote
the mean and standard deviation associated with the corresponding performance mea-
surement and Clyg5 is a 95% confidence interval on u. Finally, g; and g, were set to

250, and g3 was set to 0.
Analysis of the behaviour of the priority-based PSO on the 56-operation problem
resulted in the parameter values listed in Table 4.1 being defined as suitable for initial
comparison purposes. The number of particles in the swarm is denoted by ns and the

size of the discretization intervals, 0, of operation k is dependent on A, where

2\

|Qy| is the number of resources on which operation k£ may be scheduled, A is the number
of discretization intervals which are allocated to a single operation-resource pair, and
a — b indicates that the associated parameter is decreased linearly from a to b over 95%
of the total number of iterations, I,,.,. Finally, the sequencing and resource allocation
variables were initialized from a rectangular distribution within the intervals {—500, 500}
and {—1500, 1500}.

The actual results of the investigation into alternative problem mapping mechanisms
and particle representations are recorded in Tables 4.2 and 4.3 and Figure 4.6. The
RBPSO outperformed both the RKPSO and P-PSO with respect to all four objective
functions for the two larger problem instances. No statistically significant difference could
be identified between the RBPSO and the P-PSO on the 56 operation problem when the
aggregated objective function was considered. The RBPSO did, however, outperform
the P-PSO with respect to the makespan objective.

Even though the RBPSO was clearly the best algorithm with respect to solution
quality, this was not the only criterion which had to be considered for the Optimatiz

environment. During the empirical evaluation, it was evident that the RBPSO algorithm

Q}
1
& v

IVE
NIB

IVERSITEIT VAN PRET
RSITY OF PRE
ESITHI YA PRE

ORIA
TORIA
TORIA

Chapter 4. Solving the single objective Optimatix problem

63

Table 4.1: There are a number of parameters which have a significant effect on the performance

of PSO

Parameter Value used

N

A

Imaz

C1

Co

27

3

200
20—1.0
28—
0.8 — 04

took significantly longer to return a solution than the other two algorithms. An analysis

of the complexity of the three algorithms was subsequently performed.

Table 4.2: Experimental results of alternative mapping strategies and particle representations

with respect to makespan and earliness/tardiness

Pro- Algo- fi fa

blem rithm p o Cl s n o Cl s

56-op P-PSO 1582.37 7.76 + 2.90 3563.24 316.19 4+ 118.05
RKPSO 2086.04 109.26 + 3.83 4060.96 353.53 =+ 132.00
RBPSO 1567.71 0.00 +0 3546.47 331.85 + 123.90

100-op P-PSO 1862.46 13.90 =+ 5.19 7045.34 378.46 £+ 141.31
RKPSO 2271.42 12858 4+ 48.01 8024.63 809.16 + 302.11
RBPSO 1799.55 50.99 £ 19.04 6431.98 369.90 &+ 138.11

256-op P-PSO 5059.85 153.17 £ 57.19 39007.07 2789.33 =+ 1041.44
RKPSO 6191.17 731.57 =+ 273.14 38382.25 4102.06 =+ 1531.56
RBPSO 4922.67 62.13 £ 23.20 30892.79 3508.45 =+ 1309.93

Assume that the complexity of the initialization of ® and © (in Algorithm 4.1) is

ORIA
VERSITY OF PRETORIA
IBESITHI YA PRETORIA

IVERSITEIT VAN PRET

re

e

". UN
UN

V,, U

64

Chapter 4. Solving the single objective Optimatix problem

suoryejuasaIdor oo1)red OAT)RUIOIR OJUI UOIJRSIISOAUT 9} JO SHNSY :9°F 2In31g

(suolneiado) azis wa|qoid

(suoineiado) azis wa|goid

95z 00T 95 962 00T 9s
0 0
r 0002 - 000S
- 0000T m
F 000% 0005 2
Vo) - 15
oSday - —¥-— | c 0SsSdgy - -¥-— 3
0009 @ - 00002 &
OSdHy ---m--- ® OSdM)Y ---m--- m
L =3 s o
OSdd —— 0008 3 OSd-d 00052 2
| 0000T - 0000€ m
- 000SE€ o
F 0002T - 0000V
000¥T 000SY
(suoneiado) azis wa|qoid (suoneiado) azis wa|qoid
95z 00T 95 952 00T 95
0
> 0
- 0000T S | 0001
H - 0002
v [0000z 8 osday - -¥ g
osday - -¥- — S
z - 000g £
OSdXy ---m-- - [0000€ ‘@ OSdyy ---m--- o
OSdd —— = 0Sd-d —e— - 0007 g
- oooor %, >
< r 0009
(2] .
r 00005 W. . + 0009
00009 000L

P

e
" UNIVERSITEIT VAN PRETORIA
’ UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Qe

Chapter 4. Solving the single objective Optimatix problem 65

Table 4.3: Experimental results of alternative mapping strategies and particle representations
with respect to queue time and the aggregated objective function

Pro- Algo- f3 fa

blem rithm p o Clos n o Cl, s

56-op P-PSO 137.56 157.39 £ 58.76 4788.46 390.82 £ 145.92
RKPSO 389.39 302.35 £ 112.89 6042.93 609.69 £ 227.64
RBPSO 107.76 158.77 £+ 59.30 4727.16 429.11 £ 160.21

100-op P-PSO 685.03 254.60 £ 95.06 9102.42 57498 £ 214.68
RKPSO 1376.47 45224 4+ 168.85 11184.20 1248.05 =+ 465.98
RBPSO 629.22 388.59 £ 145.09 8369.60 775.02 £ 289.36

256-op P-PSO 12760.31 2704.64 = 1009.82 56384.06 5223.65 = 1950.32
RKPSO 10539.85 3118.69 =+ 1164.41 54668.49 7143.55 = 2667.15
RBPSO 7504.28 2782.99 =+ 1039.07 42863.06 5982.83 =+ 2233.77

of order X and the complexity of determining the actual position where an operation
should be inserted into the schedule is of order Y. If the actual insertion process of an
operation is of order Z, then the complexity of the mapping mechanism of the P-PSO
algorithm can be shown to be of order nng,,,. + X + nY + nZ, where ng,,,. is the
maximum number of primary resources on which an operation may be scheduled. The
complexity of the mapping mechanism associated with the RKPSO can then be shown
to be of order n + nng,,., + X +nY +nZ.

It should be noted that both the RKPSO and P-PSO algorithms make use of a pre-
optimization process where the search space is discretized for the purposes of resource
allocation. However, this discretization, which is of order nng,,,., is only performed once
per simulati