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Abstract 

Evolutionary Synthesis of MEMS 

by 

Raffi Roupen Kamalian 

Doctor of Philosophy in Engineering - Mechanical Engineering 

University of California, Berkeley 

Professor Alice M. Agogino, Chair 

 

An evolutionary synthesis framework for Microelectrical Mechanical System (MEMS) 

design is presented.  MEMS based technologies promise to bring a revolution to the 

world we live in just as the integrated circuit has done in recent decades; better design 

tools are critical to this revolution. More complex design objectives and constraints 

demand automation to generate successful devices. Genetic algorithms and other 

stochastic evolutionary synthesis approaches are used to design surface micromachined 

MEMS using flexural suspensions and electrostatic actuation.  

 

A general MEMS synthesis approach is presented, as well as data-structures for 

describing designs and applying synthesis algorithms. Synthesis is based on the use of 

reduced order modeling to simulate design performance. The application of the concept 

of shape grammars for MEMS synthesis is discussed and applied to the generation of 

viable initial resonator designs. Human Interactive Evolution Computation (IEC) is 

applied to MEMS to improve synthesis performance; user studies show an increase in 
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output quality through the use of human interaction compared to our non-interactive 

synthesis tool. 

 

The applicability of our approach, design encoding, objectives and constraints are 

discussed for several MEMS examples, including resonating masses, accelerometers and 

gyroscopes. We validate of our approach through fabrication and characterization, 

successfully generating MEMS devices with measured performance that matches 

simulation. The results of the characterization are studied to further improve our method 

for more accurate synthesis. 

 

 

 

 

 
________________________________________________________________________ 
Professor Alice M. Agogino, Chair       Date 
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Chapter 1:  
Introduction 
 

The goal of this thesis is to present synthesis methodologies suitable for Microelectrical 

Mechanical Systems (MEMS) design. We will present work done in further developing 

tools to automatically generate valid, useful MEMS configurations optimized for a given 

set of performance goals and constraints.  We are limiting this work to the design of 

surface micromachined MEMS devices using flexural suspensions and electrostatic 

actuation. 

 

This thesis focuses on synthesis using stochastic methods, particularly evolutionary 

methods.  Human interactive stochastic methods and classical deterministic optimization 

methods are also included.  Research on the impact of design constraints for synthesis is 

presented to illustrate their role in optimal MEMS synthesis applications. We 

demonstrate validation of our approach through fabrication and characterization and also 

study how to further improve our method for more accurate synthesis. Finally a survey of 

current ongoing and future research in this area is presented. 

 

In the following section, an overview of the field of MEMS will be given; this will be 

followed by a review of MEMS simulation and the motivations for MEMS synthesis and 

optimization. 
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1.1. Introduction to MEMS 

The field of MEMS popularly referred to as micro-machines, is already a well-

established field of academic research and is quickly becoming a mature technology with 

a wide array of commercial applications.  As the name suggests, the term MEMS usually 

includes both electronic and mechanical components, but the term is also applied to 

microscopic devices from other domains, including fluidic, thermal and magnetic 

systems.   

 

Current MEMS commercial applications include inertial sensors, such as accelerometers 

and gyroscopes; microfluidic systems, such as inkjet printer heads; pressure and chemical 

sensors; microrelays, optical switches, display technology, to name a few.   Other MEMS 

applications such as micro power generators, DNA sequencers, in-vivo health monitoring 

systems, RF signal processing and distributed sensor networks are being researched in 

academia [1,2,3,4]. 

 

Just as integrated circuit based technology has grown in leaps and bounds since the 

transistor was invented in 1945 at Bell Labs, moving far beyond its initial application 

areas, MEMS development over the next decades may take us to many new application 

areas not yet considered. The ability to add ubiquitous sensors (and intelligence) to any 

portion of a vehicle or tool or household object, or even the human bodies will allow us 

control over our environment that we have not even dreamed of yet. 
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One driving force in the development of MEMS applications is the advance in 

microfabrication technology.  MEMS are often created using the same type of 

microfabrication used in the microelectronics industry. This is usually a lithography-

based patterning combined with thin film deposition and chemical or plasma etching.  An 

additional benefit is that this fabrication method allows for the creation of MEMS 

systems including not only electromechanical components, but also control electronics, 

integrated onto a single monolithic chip [5,6].   

 

As microfabrication technology pushes ever further towards the sub-micron level, new 

avenues of MEMS devices are also made available, including using carbon nanotubes for 

their unique mechanical and electronic properties [7]. 

 

In concert with the development of MEMS fabrication technology is the rise of standard 

MEMS processes, offered through commercial fabrication houses [8,9].  This allows 

designers the ability to focus on device design and bypass process design.  Allowing 

commercial and academic designers to prototype MEMS designs without access to a 

multi-million dollar microfabrication lab and months of training. Despite the speed, cost 

savings and reliability offered by these standard processes, the time required from 

submission of layout to receiving a chip back is still a bottleneck in the design process.  

This can be compensated for eliminating the conventional ‘build and break’ iterative 

process through the use of better design tools. 
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Advances in MEMS fabrication allow for more advanced geometries and more advanced 

applications require larger, more complex layouts with more strict performance 

requirements. Using simulation software to predict the performance of a design before it 

is fabricated can lead to great improvements in shortening the design cycle and reducing 

cost, but simulation is only one part of the design equation. The demands of multiple 

design objectives combined with multiple design variables and constraints calls for a 

better solution than simply using simulation tools. In parallel with the development of 

MEMS fabrication and simulation technology, MEMS design tools must also be 

developed.   

 

Process design and simulation are also very important sectors of MEMS development, 

but we will focus our attention specifically to the area of surface micromachined 

electromechanical MEMS design for standardized processes. In the next section we will 

discuss the development of CAD tools to predict MEMS performance, which is a critical 

step in our approach to automated MEMS design. 

 

1.2. Introduction to MEMS Simulation with Reduced Order Modeling 

Due to the broadness of the definition of MEMS, the simulation requirements vary 

greatly across the spectrum.  From a hierarchical point of view, Senturia describes four 

levels of MEMS modeling [10]: system, device, physical and process.  For the purposes 

of this thesis, we are focusing on the physical level, although the methods presented here 

could be used at the device or system level as well.  Furthermore by designing in a 

standard process, we forgo the need to design on the process level. Senturia describes the 
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physical level as real devices in the three dimensional continuum. At a mathematical 

level, these devices can usually be described by partial differential equations, however for 

more complex designs, analytical or approximate methods of modeling performance are 

needed.  An issue particular with the simulation of MEMS devices is that they inherently 

involve multiple domains: at the least mechanical and electrical, often also including 

optical, thermal, magnetic and/or fluidic.  The complicated interaction between these 

domains requires numerical analysis tools. 

 

Numerical simulation methods, built on finite element, boundary element or finite 

difference methods have increasingly become popular to simulate the performance of 

complex MEMS devices [11].  Finite Element Analysis (FEA) discretizes the structure 

being modeled into small elements. Each element’s behavior can be described by several 

relatively simple equations, and using a computer, the effect of each element’s behavior 

can be aggregated across the entire structure. The data from these elements can be used to 

find the displacement in a structure or calculate the stresses inside of an object.  The 

accuracy of these calculations depends on the size of the elements and the element type 

used.  Unfortunately smaller elements results in more computation, requiring longer 

simulation time. 

 

Commercial FEA developers and MEMS layout software authors are increasingly 

simplifying the process of passing geometric models between design and simulation 

tools.  Companies such as ANSYS [12], ALGOR [13], ABAQUS/Coventor [14] 

specifically market tools for numerical modeling of MEMS structures.  
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The biggest limitation of FEA however is the speed required for a simulation.  A 

common MEMS design can contain thousands or tens of thousands of elements. If a 

higher-level device is being simulated, this can grow exponentially. For complex 

analyses minutes, hours or days can be required for a single simulation; these types of 

time requirements make iterative design optimization with FEA less practical.  

Furthermore many commercial and academic FEA packages are not easily interfaced by 

external programs, as is required in design synthesis. 

  
A solution to both these limitations is to use reduced order simulation software, such as 

SUGAR, an open source simulator created at UC Berkeley [15,16]. SUGAR uses a 

Modified Nodal Analysis (MNA) approach to look at designs, MEMS designs are broken 

down into discrete components at a higher level than FEA, rather than describing a 

suspension into hundreds of elements, it describes them it into individual beams, 

connected at nodes. These components together form a coupled system of ordinary 

differential equations, which can be solved numerically to find the behavior at each node. 

This approach is similar to a signal flow graph representation.  For mechanical systems it 

is similar to the way a circuit is analyzed using Kirchoff’s Current Law, except the 

potential and flow variables are force and velocity rather than voltage and current [17]. 

 

This method does not capture the same level of internal behavior as FEA, nor can it be 

used to accurately model all types of behavior, but, as it reduces the order of the model 

by orders of magnitude, it is much faster to simulate.  Furthermore the method of 

describing individual components lends itself well to parametric synthesis. 
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SUGAR is written in C++ but can be interfaced directly from MATLAB, allowing for 

easy integration into an optimization routine. MEMS design information is written to a 

netlist file that can be loaded, along with a process file that describes how the design 

would be fabricated, into SUGAR and evaluated. SUGAR also has the ability to translate 

a netlist into a layout file that can then be imported into a layout tool such as Cadence or 

a FEA package for further modeling. For these reasons we have chosen SUGAR as the 

simulation engine for our iterative MEMS synthesis approach. 

 

1.3. Motivation for MEMS Synthesis and Optimization 

Synthesis can be described as the generation of a design with performance objectives 

subject to specified constraints. Optimization is the process of searching for solutions that 

correspond to extreme values of one or more performance objectives.  Antonsson and 

Cagan describe synthesis as: 

“the reverse of the analytical process… design begins not with a description of of 

a device or system, but rather with a description of a desired function or 

behavior… The objective is to produce a description of a system that will exhibit 

the desired behavior.” [18] 

 

Synthesis is concerned with finding a valid design that meets the desired goals as closely 

as possible without violating any constraints.  When at least one of the desired goals are 

to be minimized or maximized, the synthesis problem becomes an optimization problem: 
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an attempt to find a solution that is best (e.g. strongest, fastest, cheapest, most sensitive, 

etc.) for the given situation 

 

In MEMS design, like macro machine design, engineers often are given high-level 

performance goals and design parameters.  A current trend in MEMS design is to replace 

macro or electronic components in current products, such as inertial sensors and RF 

elements with MEMS-based components. In cases like these the higher-level device 

requirements are already stipulated, and a viable MEMS device that matches or exceeds 

the performance is desired.  The engineer may have a strict set of constraints and multiple 

competing objectives, which makes finding a valid design difficult without assistance 

from automation. 

 

Furthermore, with appropriate synthesis tools, MEMS design need not be limited to 

expert MEMS designers.  This type of expertise is usually gained through years of 

experience and requires a strong foundation in several disciplines (mechanical 

engineering, electrical engineering, solid mechanics, and microfabrication, to name a 

few).  Through the proper encoding of synthesis tools, intelligent MEMS design can be 

brought to the non-MEMS expert. This aspect of MEMS synthesis could lead to great 

strides in commercial MEMS development, as it would allow designers from other 

disciplines to incorporate MEMS components into their products.  
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Figure 1.1: Flowchart of MEMS Synthesis Concept 
 

1.4. Approach to MEMS Synthesis 

Our conceptualization of the synthesis of MEMS is more than the generation of 

topologies to meet specifications; it also includes characterization and validation of our 

synthesis output and use of a knowledge base to incorporate existing designs, and 

characterization data taken from previously fabricated designs.  

Figure 1.1 shows a flowchart for the entire approach.   A detailed view of the design 

synthesis module, as envisioned in this research is presented in Figure 1.2. 
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Figure 1.2: Detailed Flowchart of Synthesis Module. Knowledge base provides 
information on constraints taken from previous characterization and initial designs 
drawn from past designs. Fine-tuning of the synthesis output can be performed by 

gradient based optimization or human interactive evolutionary optimization.  
 

An evolutionary synthesis algorithm such as Zhou’s genetic algorithm [19] is at the core 

of this module. It receives objective goal information from the user as well as constraint 

information from the knowledge base.  These constraints include fabrication oriented 

constraints (limitations on what types of geometries can be fabricated) as well as 

simulation directed constraints (limitations of types of geometries and configurations can 

be simulated).  Initial designs can be generated once an appropriate design-encoding 

scheme is chosen; at that point designs can be randomly generated or drawn from a 

library of existing designs. The output of the evolutionary synthesis algorithm represents 
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good, valid designs, but fine-tuning post-optimization may be desired.  This can be done 

using either a gradient based local optimization or a human interactive evolutionary 

optimization.   

 

Many of the individual components presented in  

Figure 1.1 and Figure 1.2 have been developed and tested independently, and are 

presented in this thesis. The next section will discuss the organization of this thesis and 

where each component can be found. 

 

1.5. Organization of Dissertation 

The remainder of this thesis is divided into 9 chapters.  Chapter 2 presents details of the 

design objectives and initial design generation necessary before synthesis can occur. 

Chapter 3 introduces several synthesis and optimization approaches suited to MEMS 

design problems.  The emphasis is on stochastic methods known as genetic algorithms; 

this method uses evolution to search the design space.  Chapter 4 presents an adjunct to 

the evolutionary synthesis approach, involving the use of Interactive Evolutionary 

Computation (IEC), a human interaction means of optimization. This work represents the 

first application of IEC to microdesign.  

 

Chapters 5 and 6 present synthesis implementations for several practical MEMS 

applications as a way of demonstrating the applicability of our synthesis approach. 

Specifically the design of resonators, accelerometers and gyroscopes will be discussed, 

along with the impact of objectives and constraints on their optimal design.  Chapter 7 
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represents a critical portion of this thesis.  We endeavored to “close the loop” between 

synthesis, simulation and characterization by fabricating output generated by our 

synthesis tool and comparing the measured performance.   

 

Through this work we identify both strengths and weaknesses in our approach, in chapter 

8, we present a discussion of future work in evolutionary synthesis for MEMS. This 

includes proposed extensions of the human interaction research presented in chapter 4 as 

well as work currently underway to broaden the scope of the MEMS devices possible 

using this approach. Lastly chapter 9 is the conclusion of this thesis. 
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Chapter 2:  
Design Objectives and Instantiation for 
MEMS 
 
This chapter will discuss implementation design objectives and initial design instantiation 

that must occur before evolutionary synthesis can be performed.  Design objectives suited 

to MEMS applications will be presented as a motivation for the use of multiobjective 

optimization methods. The application of shape grammars to MEMS device represntation 

is presented as a means of initial design instantiation. A resonating mass example is 

presented to illustrate the flexibility available under this approach. 

 

2.1. Design Objectives for MEMS 

As synthesis is our goal, the performance objectives used in our methods are critical to 

the success of the algorithm and the usefulness of the design.  For the class of devices we 

are focusing on, comprised primarily of vibratory suspensions and actuators, common 

performance numbers that the designer may want to use are resonant frequency, bode plot 

shape, spring stiffness, actuation voltage, cross axis sensitivity, displacement, and design 

area.   

 

In cases where we are asked to synthesize for a specific performance goal, the objective 

function we are minimizing can be expressed as: 

)()( xffxobjective o −=  

where fo is the desired goal for performance and f(x) is the performance of the design 

expressed by the geometry x. 
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A useful question that should be asked when coding a synthesis program is, “what impact 

will these objectives have on the geometry of the design produced?”  Even if the designer 

is not an expert in MEMS, the correlation of device geometry on objectives can be 

predicted in advance, even if it is only qualitative.  For example, maximum capacitive 

sensitivity as an objective for an ADXL-type accelerometer (Figure 2.1). This device is 

comprised of a suspension and a center mass with multiple parallel capacitive fingers, 

where capacitive sensitivity can be defined as: 

2_
g

tNL
x
C

ySensitivitCapacitive ooε
=

∂
∂=  

where N is the number of fingers, Lo is the overlap per finger, t is the out-of-plane 

thickness of the device(generally a fixed dimension) and g is the gap between fingers. 

 

 

Figure 2.1: SEM of ADXL Accelerometer [20] 
 



15 

 

Inspection of this capacitive sensitivity relationship shows immediately that maximum 

capacitive sensitivity would be limited by the constraints of the problem, meaning the 

best solution would have the maximum number of fingers, the maximum finger overlap 

length and the minimum gap.  In other words, for this objective only, the relationship 

with the geometry variables is monotonic.  

 

However, MEMS problems rarely are limited to only one objective.  More often there are 

multiple, potentially competing objectives that must be weighed against each other to 

generate the most suitable design. For example, in the case of the accelerometer, if a 

second objective calls for a very high resonant frequency, this value will be affected by 

the mass associated with the sense fingers’ geometry, which is critical to the first 

objective - capacitive sensitivity.   Moreover, if the objective is acceleration sensitivity, 

then not only the capacitive sensitivity but the suspension stiffness also directly impacts 

this number.   This requirement for multiple, competing objectives is one motivation for 

the use of multiple objective evolutionary synthesis approaches that will be discussed 

more in chapter 3. 

 

Regardless of the synthesis approach taken, identifying the relationship between 

objectives in advance can allow the designer to avoid spending computing power on 

variables and objectives that do not need to be included.  Likewise, they can help the 

designer avoid setting goals and constraints that make synthesizing a viable solution 

impossible. For example, an accelerometer with extremely high sensitivity and extremely 
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high resonant frequency objectives may be impossible to realize without violating the 

constraints on minimum feature size dictated by the fabrication process selected. 

 

2.2. Instantiation for Synthesis - Device Grammars for MEMS 

The evolutionary synthesis and optimizations algorithms presented in this thesis all share 

a similar approach – they start with one or more initial design and then modify that 

design or designs as they search the design space for suitable solutions.  Initial designs 

can either be randomly generated or drawn from pre-existing configurations.   

 

Generating a valid initial design and encoding its parameters into a data structure and 

then modifying that data is essential to all approaches.  The concept of ‘shape grammars’ 

is particularly suitable to these tasks. 

 

Stiny first defined shape grammars for design in 1980 [21]; they can be defined as a 

language that creates a shape through successive application of shape transformation 

rules, starting with an initial shape. Cagan also describes shape grammars as the 

following [18]: 

 

Through shape grammars, classes of known artifacts can be recreated, but also 

through shape grammars, unique and novel solutions can be created.  

Furthermore within engineering design, spaces of artifacts can be explored 

through directed search algorithms to drive designs towards characteristics that 

best meet any given set of design objectives and constraints. 
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Shape grammars have been applied to product design and particularly architecture.  A 

shape grammar for Frank Lloyd Wright designed prairie houses was developed by Konig 

and Eisenberg [22]. Once a set of grammar rules had been identified, Wright’s houses 

could be fully described by these rules, and furthermore, an infinite number of new 

variations could be produced in the style. It is the generation and modification aspects of 

shape grammars we are interested in utilizing in this thesis. 

 

Shape grammars are non-deterministic, however, in that there are multiple ways of 

defining rules for any given class of object and multiple orders in which transformations 

are applied from the initial to the final shape. 

 

2.2.1. MEMS Resonating Mass Shape Grammars 

Agarwal, Cagan and Stiny developed a grammar for MEMS resonators in 2000 [23,24].  

Their goal was to create a generative system for valid resonating masses.  Their grammar 

started with an initial shape that included at least one spring and one actuator and then 

modified the design with a set of transformation rules, a few of which include: 

a) add anchor 

b) add comb drive 

c) add beam segment 

d) add folded flexure 
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This grammar, while allowing creative unconventional configurations in many ways, was 

also somewhat traditional in that all geometries involved were Manhattan.  This MEMS 

resonator generative grammar was proposed, but never implemented unfortunately. 

 

2.2.2. Resonator Instantiation Example in SUGAR 

A very basic resonator generation routine was implemented in SUGAR.  This function 

works similar to the Agarwal/Cagan/Stiny grammar to automatically generate a SUGAR 

netlist with random dimensions and configuration.  The function generates a resonating 

mass in steps as presented in pseudo code in Table 2.1: 

Table 2.1: Pseudo Code Representation Of Resonator Mass Random Generation 
Function 

Step Action Variables 
randomly 
generated 

1 Create Center Mass Lplate, Wplate 
2 Add two comb drives at top and bottom 

of center mass 
Nfingers, Lfingers, 
Wfingers, g, 
Lfinger_overlap 

3 Decide how many legs, set k=1 Nlegs 
4: Add kth  leg  

4a Pick side for leg (left or right) ConnectionX(k) 
[+ Wplate or –Wplate] 

4b Choose location point on plate edge ConnectionY(k) 
4c Decide number of beams for this leg, set i 

= 1 
Nbeams(k) 

4d Generate ith  beam segment Lbeam(k,i),Wbeam(k,i), 
beam(k,i) 

4e Check for beam crossover violation, if 
valid, i = i+1 

 

4f Add additional beam segments by 
repeating steps 4c-4e til i = Nbeams 

 

4g Terminate leg with anchor,  
then set k = k+1 

 

5 Add additional legs by repeating step 4 til 
k = Nlegs 
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An example of a SUGAR based implementation of this instantiation function is presented 

in Table 2.2. Of key interest is step 9, where the crossover constraint is violated and the 

function steps back to the last good configuration and starts over again. This ensures that 

all shapes generated are valid.  Other specifics have been added for the implementation 

presented here, including Manhattan angles only on beam segments, and constraints on 

the number of beam segments allowed and their min/max size. 

 

Table 2.2: Step By Step Example Of Four-Leg Resonator With Manhattan Angle 
Constraints Generated With This Method. Up to 4 beam segments per leg are 

allowed. 
Iteration Action Shape generated 
1 Generate 

Center Mass 

 
2 Add comb 

drives to top 
and bottom 
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3 Generate first 
beam 
segment of 
first leg (in 
this version 
we stipulated 
normal angle 
on all first 
segments 

 
4 Add beam to 

current leg 

 
5 Add beam to 

current leg 
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6 Beam limit 
for this leg 
reached, add 
anchor to leg, 
start next leg 

 
7 Add beam to 

current leg 

 
8 Beam limit 

for this leg 
reached, add 
anchor to leg, 
start next leg 
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9 Add beam to 
current leg 
** this beam 
violates 
crossover 
rule, must be 
discarded 
and replaced 
** 

 
11 Revert to last 

valid shape 

 
12 Add beam to 

current leg 
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13 Beam limit 
for this leg 
reached, add 
anchor to leg, 
start next leg 

 
14 Add beam to 

current leg 

 
15 Add beam to 

current leg 
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16 Beam limit 
for this leg 
reached, add 
anchor to leg.  
Leg number 
limit reached, 
design is 
finished 

 
 

More examples of designs randomly generated by this instantiation routine can be seen in 

Figure 2.2. Also this method can be easily modified to include other types of suspension 

elements besides beams. SUGAR allows user defined elements in addition to the standard 

components. Figure 2.3 shows an example of the instantiation when meandering beams 

are allowed as well. Note in the case of these meandering beams (defined as a grouping 

of beam elements), due to the larger real estate occupied by one elemental piece, 

crossover is much more common and therefore, many more iterations are required to 

create viable designs. Also, the examples presented here are all asymmetric cases, but 

symmetric connection points or legs could also be implemented using a similar method.   

Furthermore, a method could be designed to create more complex geometries (including 

legs that branch, etc).   

 

The reader should note that the designs presented in this section represent randomly 

generated topologies that can be used as initial starting points for synthesis, but are not 

final practical designs.  In the interest of generality, we have implemented as few rules 

and constraints as possible for this example.  More restricted instantiations for specific 

MEMS design applications will be presented in chapters 5 and 6. In those chapters, the 
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design objectives, data structures and design objectives for more complex examples, such 

as accelerometers and gyroscopes will be presented.   

 

    

Figure 2.2: Examples from Resonating Mass Random Instantiation Function.  
Including With and Without Manhattan Angle Constraints 

 

Figure 2.3: Example of Random Instantiation Incorporating More Complex 
Elements. In this case, meandering spring elements in addition to conventional 

beam elements. This does not represent an optimum MEMS design, but rather an 
example of the range of MEMS geometry that can be generated as an initial starting 

point for synthesis. 
 



26 

 

While this method allows a designer to generate random MEMS topologies, it does not 

include a means to manipulate the shape, which is the 2nd part of a shape grammar and 

critical to synthesis.  In the example presented above a netlist, in the form of a text file, is 

generated that describes the shape (that in turn can be loaded into SUGAR for plotting or 

simulation).  But this does not allow us to go back at a later point in time to modify the 

parameters of a particular element in that netlist.  In order to do this a data structure that 

can properly encode the design information (both configuration and sizing) and be 

manipulated by a synthesis routine is needed.  A more flexible method currently being 

developed is described in chapter 8 as part of the future work. 

 

Because of the limitations of the simulation tools available at present, we are limiting 

ourselves to the realm of surface micromachined electro-mechanical MEMS, but the 

ideas presented here can be extended to other domains if the ability to predict design 

performance is available. 
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Chapter 3:  
Synthesis and Optimization of MEMS 
with Stochastic Methods 
 

Stochastic optimization is the minimization (or maximization) of an objective or multiple 

objectives through the use of random variation. Methods of stochastic optimization 

include multistart methods [25] and simulated annealing and genetic algorithms [26].  

Each process has its own advantages and disadvantages that will be discussed in more 

depth in this chapter, but a key feature of most stochastic methods is that they are 

recursive optimization algorithms that rely on measurements of only the objective 

function being optimized, not on direct measurements of the gradient of the objective 

functions. These methods therefore do not require a detailed analytical model directly 

relating the problem variables with the objective function [27].  Likewise these methods 

can be effective for complex problems with nonlinearities and a high number of variables 

and constraints or for problems that contain discrete parameters. In the case of MEMS, 

discrete variables could include the number of comb drive fingers, number of 

crenulations on a serpentine spring, etc.  Furthermore some stochastic methods are very 

readily adapted for parallel computing, whereas gradient-based optimization methods are 

not [28]. 

 

For these reasons, stochastic methods are well suited for classes of design synthesis 

problems as well.  By not requiring direct relationships between objective functions and 

design parameters, stochastic methods are well suited not only to size optimization, 
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where a design’s general layout is set, and only the values of the parameters of that layout 

are tuned, but also configuration optimization.   In the case of MEMS, a simple example 

of configuration optimization would be a resonating mass.  The design may be comprised 

of actuators, a center mass and a suspension, but the shape of the center mass, or number 

of beams in the suspension and their connectivity need not be explicitly set in advance. 

 

In this section, we will discuss the stochastic optimization techniques of simulated 

annealing and genetic algorithms.  We will also compare the advantages and 

disadvantages of the two methods relative to each other.  Finally we will briefly review 

other stochastic methods applicable to MEMS synthesis and optimization. 

 

3.1. Naïve Search, Simulated Annealing 

Naïve search, also known as the random walk approach, is a simple search technique 

where a candidate design is randomly perturbed, if that perturbation increases fitness it is 

kept, otherwise it is rejected and the previous design is kept.  This process can continue 

until either a viable solution is reached, a certain number of perturbations have occurred 

and/or no improvements can be found after a certain number of perturbations. 

 

 Perturbations can be of fixed or random size. The type of perturbations allowed and the 

number of parameters affected by each perturbation can be adjusted to suit a particular 

problem. A key limitation of this random walk approach is that it is only suited for global 

optimization if the solution space is convex, e.g. – there are no local minima, as this 

method has no way to prevent getting stuck in the first local minima encountered. 
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Simulated annealing (SA) is a similar method, except it does incorporate a mechanism to 

jump out of local minima.  SA is similar to a random walk approach, except it is willing 

to take a ‘worse’ solution (lower fitness) with a certain probability.  As the number of 

perturbations increases or the proposed solution gets closer to the desired goal, the 

probability of accepting a lower fitness solution decreases [29].   
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Figure 3.1: Example of Simulated Annealing. The dashed line represents 
frequency goal value.  Frequency error decreases with successive perturbations but 
several instances where a worse solution is chosen. Stop condition is reached when 

acceptable solution is found. 
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As the name implies, simulated annealing exploits an analogy between the way in which 

a heated metal cools into a minimum energy state and a stochastic optimization algorithm 

that slowly “lowers the temperature” in stages to eventually “freeze” at the global 

optimum. SA randomly perturbs a given initial design, whose variations are accepted as 

the new design with a threshold probability, known as the Metropolis Condition, which 

decreases as the computation proceeds. The slower the rate of probability decrease, the 

more likely the algorithm is to find an optimal or near-optimal solution (Figure 3.1, 

Figure 3.2).   

  

 

Figure 3.2: Simulated Annealing Synthesis 
 

Both the naïve search method and the simulated annealing method perform an 

unconstrained optimization for a single fitness function, F(x). A multi-objective problem 

requires a weighted sum of the objective functions: 
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where n is the number of objectives being optimized, and wi is the weighting value for the 

ith  objective.  The relative weighting of multiple objectives can be problematic.  Deriving 

arbitrary importance ratios between objectives functions can be subjective. Also the 

minimized solution found could be a compromise solution that does not perform well in 

any one objective.  

 

Constraints must also be incorporated into the single objective function by adding a 

penalty function.  The penalty function adds a penalty if the constraint is violated, 

therefore the optimization routine will attempt to minimize the constraint violation. The 

objective function becomes: 
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where m is the number of constraints applied, gi(x) is the constraint function, and Ki is the 

weighting value for the ith  constraint.  The K values must be significantly larger than the 

weighted objective values [30]. Penalty functions can be applied to both equality and 

inequality constraints, in the case of inequality constraints, gi(x) is only non zero if the 

constraint is violated. 
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3.2. GA / MOGA 

Genetic Algorithms (GAs) have become a popular choice for optimization and synthesis 

because of their ease of use, applicability and global search abilities [28, 31, 32, 33].  

GAs are styled after the principles of evolution in the natural world, based on the 

concepts of genetics and natural selection. A key feature is that very little problem 

information is required for a GA, other than the ability to encode and alter a proposed 

design and the ability to evaluate its performance. 

Figure 3.3: Genotype vs. Phenotype 
 

The most basic form of GA relies on binary encoding.  An individual is described by a 

binary string of 1’s and 0’s, where specific groups of digits of that string represent 

specific design variables.  The binary string is a pseudo-chromosomal representation of a 

solution akin to a DNA string in biology, where certain portions of the DNA string define 

specific traits of a human being. The binary string is referred to as the genotype 
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representation and the physical manifestation of those variables is known as the 

phenotype (Figure 3.3). 

 

The binary string represents design variables for an individual design or solution. When 

this string is evaluated it gives an objective function value, this objective function value 

can used to assign fitness to the individual. Fitness can also be modified by constraints, 

for example a design violating a constraint might be given a poor fitness value regardless 

of its objective function value. 

 

Figure 3.4 shows the basic flow of a Genetic Algorithm used for optimization or 

synthesis.  Unlike traditional gradient methods or Simulated Annealing, a GA searches 

the design space with a population of solutions/designs, not just one. Once a population is 

generated at random, the individual designs (also referred to as individuals in a 

population) are evaluated and assigned a fitness value. The population is then modified 

by genetic operations and a new population is created.  The cycle repeats itself until a 

stop condition is reached. 
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Figure 3.4: Simple Flowchart of Basic Genetic Algorithm Implementation. [28]. 
 

The design of genetic operations in a GA is a key feature in the success of the 

optimization output and the speed of convergence.  There are many types of operations, 

inspired by the biological analogy; three of the most common are selection, crossover and 

mutation.  Selection is where copies of individuals are selected for the following 

generation. There are different types of selection; one is ‘roulette wheel selection’, where 

the probability of an individual to be selected for the next generation is proportional to its 

fitness value. This is analogous to Darwinian ‘natural selection’, where more fit 

individuals are more likely to survive (and replace poor fitness designs).    Mutation in 
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terms of GA is quite similar to the perturbation in simulated annealing; a design’s 

variables are stochastically changed, resulting in a new design, with at least a slight 

difference than its antecedent in the genotype.  Crossover is where two design’s 

genotypes are cut-and-spliced into two new designs. This follows the biological analogy, 

where two individuals mate and produce offspring, who are made up of genetic material 

from both parents. Therefore the original designs are often referred to as ‘parents’ and the 

resulting designs as ‘children’. Parents can either be randomly selected or selected in a 

roulette wheel method, the idea being that better parents produce better children. 

 

As with other stochastic techniques, one of the benefits of genetic algorithms is that they 

only require discrete function evaluations, meaning discrete or discontinuous functions 

that cannot be optimized by gradient methods can be handled by GAs. Another benefit is 

that GAs return a population of solutions, rather then a single best solution.  This 

becomes especially important in multi-objective GAs, which we will also discuss in this 

section.  Finally, GAs, unlike SA and gradient-based methods, are well suited for parallel 

computing. For a given generation, the objective function evaluation for each individual 

is not dependent on the function call of any other individual; therefore these function 

calls can be computed in parallel on multiple computers.  Once the entire population has 

been evaluated, it can be ranked and genetic operations applied.  Depending on the speed 

of each objective function evaluation, parallel computing can significantly improve the 

genetic algorithm’s optimization search. 
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For optimization problems with multiple objectives, the simple GA introduced above 

could be used by combining several objective functions into a weighted sum, as with 

simulated annealing.  The same issues remain, however, in how best to derive the relative 

weightings, especially for problems with more then a few competing objectives.  One 

solution to this problem is the use of Pareto ranking to determine fitness. 

 

Pareto ranking comes from the concept of Pareto optimality - for a problem with n 

objective functions, an individual in a population is Pareto optimal if there is no solution 

that is better than it in all n objectives.  This Pareto optimal individual would also be 

referred as non-dominated. The Pareto frontier is the set of all non-dominated solutions.  

For a two objective problem, the Pareto frontier forms a curve.  In a minimization 

problem the non-dominated individuals would be those with no individuals to the lower 

left of them when plotted in the solution space (Figure 3.5).  In three or more dimensions, 

the Pareto frontier is an n-dimensional surface. 
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Figure 3.5: Example Pareto Frontier For Two Objective Minimization Problem. 
Non-dominated individuals have no other individuals in its lower left quadrant. 

 

A set of solutions can be ranked based on Pareto Optimality in a number of ways; 

Goldberg’s method [31] assigns rank 1 to all non-dominated individuals in the population 

and removes them, then assigns rank 2 to the non-dominated individuals in the modified 

population, and continues until the entire population has been given a rank. Pareto 

ranking therefore identifies individuals that excel in one or more objectives, regardless of 

their performance in other objectives, as well as those that are good compromises in 

several objectives. 

 

Multi-objective Genetic Algorithms (MOGAs) differ from the single-objective GA 

presented above in that they assign fitness based on Pareto ranking rather than directly 

based on the objective function value. Pareto ranking is based upon the individual’s 

 

 Pareto Optimal 
 (non-dominated) 
 

Non-Pareto Optimal 
(dominated) 

Objective  1 

Objective  2 

0 
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performance relative to the rest of the population, and as the best individuals are passed 

along from generation to generation via the genetic operations, the MOGA will 

continually push the Pareto frontier forward in search of the best solutions. 

 

A critical issue with GAs is how to encode a design into a phenotype.  The binary string 

is the simplest implementation, where blocks of digits represent binary numbers for each 

of the design variables.  One limitation of this is design variable precision; more 

precision requires longer strings, which leads to increased computational complexity.  

Another significant limitation is the “Hamming Cliff”, for some binary numbers, an 

increment to the neighboring number requires the alteration of many bits: e.g. 01111111 

= 127, and 10000000 = 128; while the phenotype is very close, the genotype is not [34]. 

The cliff represents an artificial impediment to a gradual search through a continuous 

search space.  Another problem with encoding parameters as a binary string is that it 

requires a fixed string length.  This limitation is less an issue in the case of size 

optimization, where all strings are of equal length, but becomes important when applied 

to configuration optimization problems, where the number of parameters described in a 

genotype can change.  

 

One solution is to use real-parameter encoding, for example using a vector of real 

numbers representing the design variables. This resolves the Hamming Cliff and 

precision issues. Furthermore, the vector can change length depending on the number of 

variables for a specific individual. The drawback of using real parameters in encoding is 

in the lack of ease of implementation; the meaning of crossover and mutation becomes 
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less obvious. Mutation and crossover in terms of a binary string is very close to the 

biological inspired concept of DNA manipulation (e.g. flipping bits for mutation). 

 

In 2001, Zhou developed a real-parameter encoding scheme and Pareto Rank-based 

MOGA implementation for evolving MEMS devices [19,35].  For full details on the 

genetic operations used, the genotype encoding format, etc, please refer to these papers.  

The work presented in this thesis uses the same fundamental approach and encoding 

methods for MEMS synthesis.  

 

Other work combining GA for MEMS has been done by Antonsson – [36,37], but applied 

specifically to mask generation and process design for MEMS fabrication, to optimize the 

correspondence between a fabricated design and a goal design shape. Antonsson also 

chose real-parameter encoding due to its suitability for describing the mask design 

variables. At a higher level, Fan has worked on using system-level synthesis of RF band 

pass filters made up of MEMS components using genetic programming techniques on 

bond graphs [38]. This work called upon pre-existing parameterized models of MEMS 

resonators and used genetic programming to design their connectivity and sizing. 

 

3.3. Comparison between SA and MOGA for MEMS Synthesis 

In this section we compare Zhou’s GA approach with a simulated annealing method 

based on the same encoding scheme. We present two design examples: in the first we 

apply a single objective GA and SA to a meandering resonator design with one objective 
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and in the second we apply MOGA and SA to an electrostatic actuator system with 

multiple objectives. 

 

3.3.1. Implementation 

A meandering resonator synthesis problem, as described by Zhou and Agogino [39] was 

chosen as the first example to synthesize. It is comprised of a center mass connected to 

four clusters comprised of a series of beams and an anchor (see Figure 3.6). This design 

is based on similar configurations modeled and fabricated by Fedder [40]. The design 

goal for this example is to have the lowest natural frequency at f = 93,723 Hz. Maximum 

and minimum values were set for the beam properties (length, width, angle) and a 

maximum number of beams per resonator leg were also specified. The center mass 

properties were fixed.  
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Figure 3.6: Example 1 – Schematic representations of meandering resonator[41] 
  

To better compare with SA, we chose to use a single objective, resonant frequency, 

therefore single objective GA, (SOGA) was utilized rather than MOGA.  Zhou [39] 

presents full results of the MOGA synthesis for this example with three objectives, 

resonant frequency, and lateral and vertical stiffness. Table 3.1 shows the designs and 

constraints used in this example, which with the exception of the parameter ‘maximum 

number of beam’s per leg,’ is identical to Zhou’s original example. 

 

For the SOGA implementation, a population of 400 designs was evolved for 30 

generations.  The crossover rate was set at 70%, mutation rate at 10%, elitism rate was 

5% with new immigrants making up the balance. 

 

For the SA implementation, the probability of changing any single beam parameter was 

set to 10%, as was the probability of adding or deleting a beam segment from each of the 

four clusters. The maximum number of iterations was set to 5,000, but a conditional 

statement can stop the synthesis if the objective error is below an accepted value 

(frequency error < 100 Hz). 

 



42 

 

Table 3.1: Design Parameters/Constraints Used for MEMS Resonator Example. 
Parameter  Value 
Center mass 
dimensions 

4 100µm x 20µm beams connected in a 
square pattern, leg elements join at 
connection nodes between these four 
beams 

Max number 
of beams per 
leg 

14 

Min number 
of beams per 
leg 

1 

Max beam 
length 

100 µm 

Min beam 
length 

10 µm 

Max beam 
width 

10 µm 

Min beam 
width 

2 µm 

 

To further demonstrate the feasibility of these design tools, SA was also used with more 

strict constraints, including forcing Manhattan geometry (all beam elements are 

orthogonal) and forcing symmetry between the clusters (all legs are mirror images of 

each other). 

 

The second example presented is to synthesize the optimum design for an electrostatic 

actuator/spring device.  This example, also developed originally by Zhou in [19] is 

inspired by a homework assignment in UC Berkeley’s graduate level MEMS 

Introductory course, EECS 245: 

 

Create a device as small as possible that can achieve a displacement of 20 µm at 

an input voltage of 15V utilizing electrostatic actuation. 
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The representation chosen for synthesis is comprised of two clusters, a comb-drive array 

(where the number of combs, number of fingers per comb, length of fingers, gap between 

fingers can all be varied) and a serpentine spring (where the beam width, length, and 

number of crenulations can be varied) (Figure 3.7). 

 

 

 

Figure 3.7: Example 2 – Schematic Representations Of Electrostatic Actuator. 
From   [19] 

 

 

In example 2, the GA implementation has two objectives: 1) achieve a displacement 

greater then 20 µm at 15V and 2) minimize the overall area of the entire structure. 

MOGA is well suited to tackle these two competing objectives. The same genetic 

operation settings were used for this example as the first one - the crossover rate = 70%, 

mutation rate = 10%, elitism = 5%. A population of 400 was used for 25 generations. 
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For SA to reach a solution, the minimum required displacement is added as a constraint 

through the use of a penalty function. If the constraint is violated, a penalty is added to 

the objective we wish to minimize (the device area in this example). As the SA 

minimizes the objective function it also minimizes the constraint violation. The objective 

function is: 

 

  2)()()( xkgxfxF +=  

 

where f(x) is the area of the device, g(x) is: 

 

 if displacement > 20 µm, g(x) = 0,  

 else g(x) = 20 µm - displacement   

 

k is chosen to be large enough so that the penalty function dominates when g(x) is non-

zero. In our research we used k values ranging from 1x103 to 1x105. 

 

A simple example where a generated design would be invalidated during synthesis would 

be where a generated spring crossed itself or another component in the design. Figure 3.8 

shows examples of invalid configurations that would be rejected. 
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Figure 3.8: Example of Invalid Configurations Of The Resonating Mass Example. 
Left: Leg crosses itself. Right: Two legs cross each other 

 

  

All synthesis tests were run on a Pentium III-450 MHz PC, running MATLAB 5.0 and 

SUGAR 2.0a [15]. The best performance metric available for comparison of GA and SA 

is execution time.  We could compare the number of simulator executions before a 

solution is reached, this neglects the time spent in the GA on genetic operations, 

instantiating individuals, etc, a significant source of computation time for relatively 

simple designs to simulate. 

 

3.3.2. Results 

For the meandering resonator example SOGA produced a population of good designs that 

converged to the objective quickly. Figure 3.9 shows an optimal design, along with a plot 

of the frequency of the best-ranked design in the population for each generation. The 

best-ranked design converges to the objective value within 15 generations. The 30-

generation run took 4-5 hours on average to complete. 
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Figure 3.9: SOGA Results For Example 1 – Meandering Resonator. Top: Natural 
frequency of best solution per generation. Bottom:  layout of best-ranked design. 
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Figure 3.10: SA Results for Example 1 – Meandering Resonator. Top: Solution 
reached in fewer then 300 iterations. Bottom: layout of final design. 

 

The SA implementation was also able to achieve a good solution quickly.  Figure 3.10 

shows a solution along with a plot of the resonant frequency per iteration. In this case the 
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solution was reached quickly, only taking 279 iterations (approximately 1 hour). For 

different starting points, the average time was in the range of 4 to 5 hours. Figure 3.11 

shows a solution with forced Manhattan geometry. Figure 3.12 is an example solution 

with Manhattan geometry as well as forced symmetry between the four legs. This more 

constrained version reached valid solutions anywhere from 0.5 to 1 hour.  

 

 

Figure 3.11: SA Results For Modified Example 1 – Meandering Resonator With 
Manhattan Geometry. 
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Figure 3.12: SA Results For Modified Example 1 – Top: Meandering resonator 
with Manhattan geometry and symmetry constraints. Bottom: Solution was reached 

in 620 iterations. 
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Figure 3.13: Example 2 – Displacement And Device Area Of Top 20 MOGA 
Solutions. The optimum is highlighted. 

 

Due to the greater computation required in simulating electrostatic actuator forces, the 

simulation times for the electrostatic actuator example were significantly longer. The 

MOGA was able to develop a set of solutions within approximately 9 hours on average. 

Figure 3.13 shows the objective values for the top 20 solutions found.  Of these, the top 8 

are valid (displacement greater then 20 µm), with number 8 (highlighted) having the 

smallest area, 4.57e-8 m2. Figure 3.14 shows the layout of this design. It should be noted 

that the smallest of the 34 designs developed by the graduate students in the UC Berkeley 

MEMS class the same year through traditional methods was only 4.90e-8 m2. 
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Figure 3.14: Example 2 – Layout of Smallest of the Pareto Optimal Solutions 
Found by MOGA. 

 

In example 2, SA was not able to reach the globally optimum solution reached by 

MOGA.  After extensive adjustments of the penalty function and the cooling rate, the 

best SA trial only reached an area of 6.65e-8 m2 after 7,000 iterations requiring over 18 

hours (Figure 3.15 and Figure 3.16). This difference in area of nearly 50% compared to 

the GA could possibly be overcome with further adjustment of the penalty function 

weighting and increasing the cooling rate to avoid the SA from getting stuck in a local 

minimum. 
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Figure 3.15: SA Results For Example 2 – The Displacement (Top) and Device 
Area (Bottom) Per Iteration For The Best SA Solution Generated. In the objective 
function the displacement error was weighted heavily to keep displacement above 

20mm. 
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Figure 3.16: Layout of Best Example 2 Solution Found By SA. 
 

3.3.3. Summary of Comparison 

The results show that simulated annealing can in some cases synthesize valid designs 

faster then genetic algorithms. Especially in convex, or nearly convex problems such as 

the resonating mass example, although in these cases traditional methods may actually be 

better suited. However SA’s dependence on a single objective function and the difficulty 

in finding the global optimum indicate that it is a less robust method for many MEMS 

synthesis problems in comparison to genetic algorithms. 

 

3.4. Other Stochastic Methods 

There has been a limited amount of work investigating other stochastic methods for 

MEMS synthesis or optimization.  Shea and Vale are currently applying their machine 

learning-based algorithm known as a “burst algorithm” for multi-objective design 
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synthesis to Zhou’s meandering spring resonator example [42,43].  The burst algorithm 

perturbs a design in an iterative manner, similar to a naïve search, but it incorporates 

machine learning as well. It does this by keeping an archive of previously discovered 

Pareto optimal designs.  If a perturbation fails, a design from the archive is called up and 

perturbed. As this cycle repeats the archive becomes a collection of designs scattered 

along the Pareto frontier.  Their initial work, also using SUGAR, has shown that they are 

able to achieve comparable results as MOGA with fewer simulations. 

 

Campbell has initiated work in applying a version of the taboo search method (often 

spelled ‘tabu’ in the literature) to synthesis problems including MEMS design [44,45]. 

Taboo search is similar to the Burst algorithm, in that it stores previously evaluated 

designs.  Taboo’s unique feature is that it attempts to better traverse the search space by 

guiding the search away from areas that have been searched already.  Campbell’s 

optimization tool, known as A-design was applied to accelerometer synthesis, but 

primarily due to a lack of a domain specific formulation, appears to have been 

unsuccessful for valid MEMS design generation [45]. 

 

3.5. Non-stochastic Optimization for MEMS design 

3.5.1. Parametric Optimization 

Most engineers are familiar with classical non-stochastic optimization methods, such as 

Newton-Rapheson, steepest descent (gradient), grid search, etc.  For direct search 

methods such as grid search, only the objective function and constraints need to be 

evaluated, as in the case of the stochastic methods presented in the preceding sections. 
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Gradient-based methods use the first and/or second-order derivates of the objective 

function and/or constraints to search. Direct methods tend to require much iteration, 

whereas gradient methods require derivative information, which may be difficult to 

calculate, if possible at all, making their use on discontinuous functions problematic.  

Both methods are generally deterministic, meaning given an initial starting point they 

will always find the same solution, and tend to get stuck at suboptimal solutions in 

complex nonconvex spaces. 

 

For these reasons application to MEMS synthesis have been limited to sizing 

optimization of fixed parametric models [28,46,47,48].  For example, Fedder has 

developed a tool for generating a folded flexure dog bone resonator [49].  A grid search 

method was used to find the appropriate suspension and comb drive sizing for a given 

objective function, in this case, a weighted sum of device area, actuation voltage and 

oscillation amplitude. 

 

Sedivec [50] developed a unique implementation that combined grid search, steepest 

decent and random walk in a quasi-stochastic hybrid method. It was applied to 

synthesizing MEMS resonating masses with a desired resonant frequency, while 

simultaneously minimizing the effect of fabrication uncertainty (the topic of fabrication 

uncertainty is discussed further in chapter 7 of this thesis). 
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3.5.2. Local optimization of GA output 

One drawback of genetic algorithms is the difficulty in finding the globally optimum 

solution in a practical amount of time (it can find good solutions, but not optimal 

solutions). As mentioned above, gradient-based methods are well suited for finding a 

local minimum. This has prompted idea of combining these two methods, finding better 

solutions in a reasonable amount of time. 

 

In conjunction with the evolutionary synthesis of MEMS work presented in this thesis, 

Ying Zhang has applied gradient-based optimization to output from our MOGA tool.  

The genetic algorithm’s ability to generate a good, valid topology is exploited and then 

mated with the gradient-based optimization’s ability to best size that topology for the 

given objectives. A flowchart of this work is shown in Figure 3.17. 

 

Figure 3.17: Flowchart For Local Optimization Of GA Output 
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3.5.2.1. Gradient-based local optimization formulation 

This local optimization was performed for a two objective resonating mass design 

problem (see section 5.3).  The objectives for the GA were to reach a goal resonant 

frequency (10kHz) and minimize device area (defined as a bounding box about the center 

mass and suspension).  For the purposes of this gradient optimization, we were interested 

in taking this configuration and then minimizing the area.  The objective function 

combined both area and frequency: 

2)10)(()()( kHzxKxAxF −+= ω  

where A(x) is the area of the design (defined by area enclosed by a bounding box around 

all the beam segments), ω(x) is the resonant frequency of the design and K is a scaling 

constant.  Minimizing this objective function means reducing both the design’s area as 

well as its deviation from 10kHz resonant frequency. 

 

In this case resonant frequency was also applied as an inequality constraint, in order to be 

valid, the design could not deviate more than 500 Hz from 10kHz. There were also 

constraints on the minimum and maximum beam dimensions allowed (identical to those 

in Table 3.1). All starting point designs complied with these constraints at the outset.   

 

The design’s general configuration generated by the GA was fixed - the number of beams 

in a leg and their angle - and only the sizing was adjusted – length and width of each 

beam segment in the legs.  The popular fmincon optimization routine in MATLAB was 

used for this exercise [51]. Fmincon can utilize both gradient and direct methods to 
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optimize. Therefore we attempted to estimate gradients with a finite difference 

calculation, using a 0.1µm step size on design variables.  

 

Figure 3.18: MOGA Output Design Used as Initial Configuration for Gradient-
Based Optimization. The configuration of this design (number of beams per leg, and 

angle of beams) is fixed but the sizing of the legs is variable. 
 

 

3.5.2.2. Gradient-based Optimization Results 

The results were encouraging for the test cases using this fine-tuning approach.  Figure 

3.18 shows a design as generated by the 2-objective MOGA.  The resonant frequency of 

the MOGA output is 10.0 kHz and design area is 16.1 x 108 m2.  After gradient 

optimization (Figure 3.19), the same configuration can be reduced to an area of 14.2 x 
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108 m2, an area reduction of 12%.  This design still maintains a frequency of 10.3 kHz, 

within the acceptable frequency range. 

 

Figure 3.19: Output Of Gradient Optimization. Area is reduced by 12% from 
initial design. 

 

It is important to note the fact that the frequency did not reach the limit of the 

inequality constraint (9.5kHz or 10.5kHz).  This is due to the fact that the objective 

function includes frequency error, so fmincon also attempts to force the design 

towards 10.0 kHz, not only reducing area. 

 

The results presented in this example here demonstrate the viability of this hybrid 

concept of gradient-based fine-tuning of evolutionary synthesis output.  It should also 

be noted that for some MOGA output that we tested, a negligible improvement, in 
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some cases less than 0.5% reduction in area, was found using gradient-based 

optimization, particularly for output from long MOGA runs (as much as 500 

generations).  The indirect implication is that our MOGA is capable of finding 

designs at or very near the optimal size for a given configuration, if given enough 

evolution time. The impact of evolution time in MOGA is discussed more in depth in 

section 5.3. 
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Chapter 4:  
MEMS Synthesis and Optimization using 
Human Interaction Methods 
 
4.1.  Introduction to MEMS Synthesis Using Human Interaction 

One of the limitations of our current evolutionary approach is that it depends on 

simulation software to evaluate design quality. As mentioned in section 1.2, there are 

many design issues that cannot be currently detected by the simulation software, 

particularly SUGAR, which was chosen over more accurate FEA due to its much greater 

simulation speed.  These issues lead to poor performance or potentially premature failure.  

While many of these potential problems are clearly visible to a human user instantly, they 

would be difficult or extremely computationally costly to mathematically model and 

simulate in a means fast enough to keep iterative design methods such as GA practical. 

 
To address this problem, we combined the MOGA approach described in the previous 

sections with interactive evolutionary computation (IEC) techniques to embed the human 

user's visual inspection and domain knowledge into the computer-aided MEMS design 

process.  IEC uses evolutionary optimization to evolve a group of designs similar to GA, 

but instead relies on a human user to rate each design based on his or her subjective 

evaluation for performance and shape. This allows the human’s judgment and preferences 

to further shape which designs are developed, avoiding potential design flaws that are not 

included in our software and also avoiding regions of design space that the human’s 

experience tells them is not a fruitful direction of search. 
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4.2. MEMS Synthesis 

The same resonating mass design example used in the standard GA test case is chosen for 

this IEC demonstration.  In this case four objective functions are formulated as a 

minimization of the distances to four goals: 1) resonant frequency (100 kHz), 2) 

suspension stiffness in the lateral direction (100 N/m), 3) stiffness in longitudinal 

direction (1 N/m), and 4) device area (device area goal = 0, i.e. area is minimized). The 

device area is defined by the area contained within a rectangle bounding the resonator’s 

center mass, comb drives and beams, but not the anchors and contact pads. 

 

Table 4.1: Design Parameters/Constraints Used For MEMS Resonator Synthesis 
Comparison 

Parameter Name Value 
Center mass 5.3066e-011 kg 
Leg symmetry 
constraint: 

On 

Manhattan angle only 
constraint 

Off 

Max number of beams 
per leg 

7 

Min number of beams 
per leg 

1 

Max beam length 100 µm 
Min beam length 10 µm 
Max beam width 10 µm 
Min beam width 2 µm 
Max beam angle �/2 
Min beam angle -�/2 

 
 
 

As in our standard GA implementation, each beam variable has a set of constraints 

(max/min length, width and angle), and there is a limit on the number of beams per leg 
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(Table 4.1). The center mass is considered a parameter and not a design variable for this 

research. Basic geometrical checking is performed to prevent beams from crossing each 

other as such designs could not be fabricated or operated. For this research, we limit 

ourselves to symmetric legs only. 

 

4.3. Evolutionary Optimization for MEMS 

4.3.1. MOGA Optimization 

In order to compare a MOGA-only approach to the MOGA+IEC approach we first solve 

the MEMS resonator example with four objectives using a standard MOGA 

implementation with an initial population size of 400, and genetic operators of cross-over 

and mutation. A non-dominated or Pareto set of approximately 60-100 designs is 

achieved after 30 generations for this example.  

 

 Although these designs are Pareto optimal in the solution space according to the 

objective performance simulated in SUGAR, they may contain flaws that prevent them 

from being suitable designs for fabrication. These flaws include potential stress 

concentrations,  ‘near misses’ where two legs come very close to each other without 

actually crossing in the static case, but may collide while the structure is being resonated, 

as well as other flaws or features that a human engineer may reject based on previous 

experience or their engineering knowledge.  Of the 60-80 designs in a typical Pareto set 

returned by the MOGA, only 25-30 are within 50% of our most critical objective, 

resonant frequency. Of these, only approximately four or five designs are free of non-

simulated design flaws.  The current simulation software has no means to simulate 
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residual stress effects, stress concentrations, transient responses of structures, and other 

features that a designer might perceive as awkward or difficult to fabricate or use.  

Therefore, to improve the viability of the synthesis output, an alternative means of 

evaluating a design is added to the evolution process. 

 

4.3.2. Interactive Evolutionary Computation (IEC) 

 
IEC is a method for optimizing a system using subjective human evaluation as part of the 

optimization process.  It is well suited for optimizing systems whose evaluation criteria 

are preferential or subjective, such as graphics, music and design, and systems that can be 

evaluated based on expert's domain knowledge.  Fields in which this technology has been 

applied includes graphic arts and animation, 3-D CG lighting, music, editorial design, 

industrial design, facial image generation, speech and image processing, hearing aid 

fitting, virtual reality, media database retrieval, data mining, control and robotics, food 

industry, geophysics, education, entertainment, social system, and others  [52]. 

 

The IEC implementation used for this research is a single objective genetic algorithm, 

similar in structure to the MOGA, except instead of using a simulation tool to gauge the 

performance of a particular design for multiple objectives, the design is given a single 

integrated preference score by an IEC human user, and this score is used as the sole 

objective for ranking design individuals by fitness.  In this case, IEC is used to measure 

the human user’s satisfaction with a particular design based on its shape and quantitative 

simulator performance. This allows human knowledge and expertise to be embedded into 

the synthesis process. 
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4.3.3. Integration 

Human fatigue is one of the difficulties faced in implementing an IEC approach [52]. 

Human interaction is required for every evaluation, thus limiting the population size and 

number of generations that can be used. The current MOGA requires on the order of 

12,000 evaluations (a population size of 400 over 30 generations) to evolve a group of 

good solutions from randomly generated initial design individuals.  This magnitude of 

evaluation is not feasible for human interaction, therefore randomly generated starting 

points for IEC is not practical. 

 

 

Figure 4.1: Integration of MOGA System and IEC System in this Experiment 
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One solution to this problem is to combine the non-interactive GA and IEC together to 

use the best attributes of each:  the tireless, rapid synthesis of MOGA with the ability of 

IEC to overcome many design flaws and embed human knowledge. The method of 

combining MOGA and IEC chosen was serial; MOGA is run, and the individuals of its 

final evolutionary generation are then used by IEC as an initial population for further 

interactive evolution. This integration of MOGA and IEC is illustrated in Figure 4.1 

 

As the population produced by the MOGA process is much larger than that of IEC, a 

manual data selection step between the two components is added.  This allows the human 

user to select only the designs that are contained within a hyper-rectangle in the objective 

space (Figure 4.2). Although we use a hyper-rectangle in our experiment, the integrated 

MOGA+IEC concept need not restrict the shape of data selection area. 
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Figure 4.2: Data Selection Interface to Select Initial Population for IEC 
 

This step serves to cull the initial population for IEC from a wide array of designs spread 

around the objective space down to a smaller number of high-ranking designs centered 

around the objective goals. For example, there is little value in further evolving a design 

that has a resonant frequency that is an order of magnitude or more away from our goal 

resonant frequency. 

 

Once a region of the MOGA solution space is selected, the design candidates contained 

within that space are passed on to the IEC component.  These designs serve as a pool 

from which the initial population is drawn as well as new immigrants in later IEC 

generations. 
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Figure 4.3: Rating Window for IEC: User gives preference score to nine designs at 
a time based on shape and performance. 

 

For the MEMS resonator example, the IEC interface presents the user with nine designs 

at a time. Each design is graphically displayed, and its performance simulated by 

SUGAR is presented as a percentage of the goal for each of the four objectives (Figure 

4.3).  The users select a preference score from ‘1’ (worst) to ‘5’ (best) based on their 

impression of the shape and performance numbers.  As a larger population size will give 

better, more diverse results, the IEC population size can be set to more than nine. For this 

paper, a population size of twenty-seven was used; therefore three windows of nine 

designs were presented to the user for each evaluation at evolutional generation. 
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At the completion of each generation’s evaluation, the user preference scores are used by 

the MOGA to evolve the next generation.  This process continues until the user chooses 

to end the evolution process. 

 

4.4. Experimental Evaluation 

To gauge the effectiveness of the MOGA+IEC implementation, a blind evaluation test for 

MOGA+IEC vs. MOGA-alone was performed. First, the MEMS design with MOGA-

only was conducted, and then IEC applied to the MOGA outputs, using the proposed 

approach. Designs obtained by both approaches were visually evaluated based on users' 

domain knowledge. Statistical tests were applied to the difference of evaluation to both 

approaches. 

 

4.4.1. Experimental Setup 

Users started with an identical population of 400 resonators with symmetric legs 

generated with MOGA. They selected a region to serve as the IEC initial population and 

scored designs for several generations. Users continued until either satisfied with the 

results or until the tenth generation was reached.  

 

As a rule of thumb, IEC users were instructed to focus their preference scoring on the 

resonant frequency, the primary objective of the resonator design, and modify that score 

up or down based on the performance of the other objectives as well as the user’s 

subjective evaluation of the design shape based on their domain knowledge. 
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A subjective test for comparison by the same user was conducted after each IEC test was 

completed. The population of the final generation of MOGA+IEC designs was compared 

side by side to the MOGA-only final Pareto set, using the same interface as the IEC 

window. The MOGA+IEC and MOGA-only designs were interspersed to ensure 

unbiased and consistent scoring between the two sets of designs.  The users were not 

informed as to which approach produced any of the designs being evaluated. 

 

Due to the large size of the Pareto design sets – 60 to 80  returned by the MOGA-only 

step in the process for the 4 objectives – only a subset was shown to the user for scoring 

in this final subjective comparison with MOGA+IEC. This subset was generated by 

taking only the members of the Pareto set within 50% of the resonant frequency goal, 

reducing the number from 60-80 down to a more manageable 25-35.  This step removes 

the irrelevant designs, only requiring a human score on potentially good designs. This can 

be justified because no user will give a resonator design significantly deviating from the 

primary objective goal a ‘5’ score, and it saves the human user the tedium of scoring 

dozens of poor performing designs; recall that the Pareto set contains designs that are 

optimal in one or more objective, but could perform very poorly in the other objectives. 

 

The scores given to each approach were tallied and compared. The quantity of ‘5’ scores 

given by the users for each approach was chosen as the primary metric for effectiveness 

as we believed that the number of highly ranked feasible designs best measures the ability 
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of the MOGA+IEC system to further hone designs developed by the MOGA and 

incorporate design issues that are difficult, if not impossible, to be numerically optimized.  

 

The degree of MEMS experience in the background of the users was also recorded.  

Although one might argue that experts with MEMS design experience are better suited to 

rate MEMS design candidates than non-experts, we note that many of the potential design 

flaws identified can be observed by basic human visual recognition without necessarily 

requiring extensive training and experience in the field of MEMS. Thus this raises the 

question of whether non-experts might be trained to recognize good and bad resonator 

features and perform comparably to experienced MEMS designers in this process. 

 

4.4.2. Experimental Results 

Subjective tests and comparisons were performed on eleven engineering graduate 

students from the University of California at Berkeley. The number of the best scores, 

‘5’, given to the designs in the Pareto set of the final generation of the MOGA-only and 

the MOGA+IEC tests are presented in Table 4.2. Here '+1', '0', and '-1' in the sign column 

mean that the number of 5's in the MOGA+IEC Pareto set is more, equivalent, or less 

than that of MOGA-only, respectively. 

 

An evaluation of the results in Table 4.2 shows that the MOGA+IEC is significantly 

better than the MOGA-alone using both the sign test [53] (p < 0.02), and the Wilcoxon 

Matched-Pairs Signed-Ranks [53] (p < 0.01).  
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Table 4.2: Test Results for the User Evaluations of MEMS Designs with MOGA-
only and MOGA+IEC. 

 
MOGA+IEC MOGA

User # Expert? # of 5's # of 5's sign
1 Y 7 9 -1
2 Y 12 6 1
3 Y 7 3 1
4 N 6 2 1
5 Y 4 4 0
6 Y 11 9 1
7 N 8 7 1
8 Y 1 0 1
9 N 6 3 1
10 N 12 7 1
11 N 9 2 1  

 

Figure 4.4a shows an example of a design in the Pareto set returned by the MOGA that 

was given a bad score of ‘1’ by one of the users.  In this case the user penalized the 

presence of a sharp corner in the meandering springs due to the potential of the associated 

stress concentration to lead to premature stress failure.  Figure 4.4b shows an example 

design generated by the same user; the performance numbers predicted by the simulator 

software are similar, but the user’s interaction has produced a design without potential 

operational flaws. 



73 

 

 

Figure 4.4: (a) Top: MEMS Resonator Design Produced by MOGA. Given a poor 
score by a user due to potential stress concentrations in the legs. (b) Bottom: High 

Scoring MOGA+IEC Design Generated by the Same user. 
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Unfortunately, with only six experts participating, we were not able to draw any 

statistically relevant conclusions about whether MEMS expertise has any impact on the 

success of the MOGA+IEC framework. As we refine our work in future experiments, we 

hope to involve more MEMS experts in the testing. 

 

4.5. Discussion and Conclusions 

 
The results of user testing on the MEMS resonator synthesis example show that using 

IEC to further evolve designs generated by MOGA can produce better results than those 

using MOGA alone. Use of MOGA alone does not include critical factors that are 

difficult and/or costly to simulate or may have been overlooked or omitted from the 

constraints and objectives. As these factors can have a major impact on the effectiveness 

of a design when fabricated, MOGA with IEC is able to outperform MOGA alone by 

incorporating human domain knowledge to produce top ranking designs that are more 

suitable to the user‘s judgment of well performing designs.  

 

During the course of human user tests, we also made some interesting observations of the 

impact of human interaction on the synthesis process.  It was our observation that humans 

tended to give low scores to designs that had particular features the user deemed 

undesirable. For example, as above when the users had a high dislike of sharp corners, 

they would highly penalize design shapes containing those corners. This causes families 

of related designs having those features to quickly die off, thus blocking a road of 

evolution that the user believes is not worth pursuing. The end results show an implicit 

constraints or penalties concerning the undesirable features. This phenomenon can be 
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used to overcome insufficiencies in the GA formulation, whether due to improper 

constraint encoding or simulator limitations. 

 

On a much smaller scale we also note that users gave higher scores to designs with 

‘interesting’ shapes despite the fact that those designs had poorer performance.  This led 

to those designs propagating into the next generation, being mutated or used for 

crossover, producing many variants of the ‘interesting’ shapes, eventually yielding 

designs with the ‘interesting’ features but also better performance according to the 

simulator. This phenomenon could be described as ‘positive punctuated evolution’; a new 

shape can quickly flourish and dominate the population if it contains a key feature that 

the user finds ‘advantageous’. This phenomenon has the potential to accelerate the GA’s 

search for good designs and helps embed expert knowledge into designs returned by IEC. 

 

Although these observations are not comprehensive enough to make definitive 

conclusions, it appears that humans are well suited to identifying what they believe to be 

‘problem designs’ and ‘killing off’ these designs.  In most cases the user made this 

judgment quickly based on the shape, before even looking at the performance numbers 

returned by the simulator.  

 

One could describe this human interaction as applying another type of constraint to the 

evolution process.  A human can eliminate designs outside their range of acceptability 

just as the automated GA presented in the previous section eliminates designs with beams 

that cross or a resonant frequency in the wrong direction. 
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Chapter 5:  
Evolutionary Synthesis of Resonating 
Mass 
 

This chapter presents an explanation of the encoding, objectives and constraints used to 

evolve resonating mass MEMS structures.  This type of structure is used as the primary 

example for evolutionary synthesis throughout this thesis.  As shown in Figure 5.1, 

despite changes in the center mass and leg constraints, the configurations used for 

different implementations of this example are fundamentally the same – a fixed-size, 

symmetric center mass connected to four legs, each leg consisting of multiple beam 

segments connected in a linear chain, each terminating with an anchor. However, specific 

parameters, such as the number of legs or the center mass configuration are easily 

modified. 

 

5.1. Encoding 

The resonating mass synthesis designs evolved using simulated annealing and genetic 

algorithms presented in this thesis follow the encoding scheme developed by Zhou [19]. 

Rather than describe the design based on the coordinates of the intersections between 

beam segments, Zhou describes the structure as a list of beam dimensions, which is better 

suited for SUGAR’s netlist format.   As the center mass is fixed during synthesis, the 

geometry of the center mass is not encoded in the data structure, but rather stored in the 

synthesis routine that translates an individual design’s leg configuration into a SUGAR 

netlist (therefore all designs receive the same center mass). 
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Figure 5.1: Various Examples of Resonating Masses Generated By Different 
Versions of Our Encoding Scheme and Synthesis Approach. 

 

In the asymmetric leg case, each of the legs is described by an n x 3 matrix, where n is 

the number of beam segments for that leg.  The three columns correspond to the beam 

segment length, width and rotation angle (in global coordinates).  Figure 5.2 shows an 

example of a design and the matrix describing one of its legs.   
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Figure 5.2: SUGAR Representation of a Resonating Mass with the Array of 
Length, Width and Angle Values Representing the Top Left Leg.  The first row 

corresponds with the outmost segment and moves inwards from there. 
 

The genotype for each individual design is comprised of several fields.  The leg geometry 

matrices are included as well as performance and objective function vectors and fitness 

ranking. In the cases presented here we have chosen four legs per resonator, but this 

could be any number, the genotype encoding is not limited, although physically there 

may be practical limits on leg placement around a center mass in the phenotype 

representation. Each individual is included as an element in an array equal to the size of 

the population (Figure 5.3). 

 

Length Width Angle 
29.5 5.0 4.1 
46.3 2.0 -41.7 
70.8 9.1 0.0 
86.7 8.2 77.1 
85.7 2.0 -41.7 
39.7 9.1 0.0 
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Figure 5.3: Illustration of Population and Geometry Encoding Method for Multi-
Leg Resonating Mass Example. 

 

Special cases of this data structure were created for alternate constraint cases, such as the 

symmetric version of the resonating mass, which has one n x 3 matrix that describes all 4 

legs.  In the same way, this data structure is capable of describing designs with more than 

4 legs or even have the number of legs to be a variable that can change between 

individuals in the same population. 

 

5.2. Design Objectives 

As the resonating mass is our most established evolutionary MEMS example, we have 

used several sets of objectives to synthesis designs.  Zhou’s original implementation 
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synthesized for three performance goals, designed to match the performance of a 

resonating mass presented in [40] in resonant frequency, suspension stiffness in the 

lateral direction and the vertical (transverse) direction. 

 

We transformed this into a four objective optimization problem by adding design area as 

an additional objective.  This forth objective has a goal of zero area, which makes it an 

optimization problem rather than simply a constrained synthesis problem.  Chapter 7 

presents examples of designs generated for these objectives that were later fabricated and 

tested. 

 

We have also implemented a two objective version, this formulation minimized area 

while aiming for a certain resonant frequency. In this case a stiffness constraint was 

added, to ensure that the lateral stiffness was greater than the vertical stiffness, so that the 

resonant mode that was being optimized was in the correct direction. This 

implementation was used to study the impact of constraints on synthesis, and is discussed 

more in depth in the next section. 

 

5.3. Role of Constraints in MEMS Synthesis 

Until now the resonator synthesis examples have consisted of a fixed center mass (either 

with or without electrostatic comb drives) connected to four legs, each made up of 

multiple beam segments (Figure 5.4).  We have run our MOGA synthesis program for 

several sets of performance objectives, all calculated using the SUGAR simulation 

program. As we are designing resonators, the most significant performance objective for 
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all structures is the in-plane resonant frequency, which is a function of the center mass 

and the leg stiffness (and to a lesser extent, the leg mass).  Other performance objectives 

we have used for synthesis include the stiffness of the structure in the x or y-direction as 

well as the device area (defined as a bounding rectangle around the comb drives and 

resonator legs). 

 

 

Figure 5.4: Schematic of Resonator Synthesis Example Problem.  The geometry of 
the center mass is fixed, while the number of beam segments per leg and the size and 

angle of each segment is variable 
 

It is a common misconception amongst non-MEMS designers that designs with 

Manhattan (or 90 degree) corners are better from a manufacturability point of view then 

irregular intersections, as can be the case in the macro world. For example, milling a 

piece of steel with non-orthogonal sides can be time consuming and expensive. It is much 

more expensive to create a corner at 91 degrees instead of 90.  But in the case of MEMS, 

fabricated through a lithography process that is similar in many ways to developing a 

photograph, any intersection between straight-line segments is equally easy to fabricate. 
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The content of the photo has no impact on the difficulty or cost to develop it. Any 

structure that can be described by MEMS industry standard CAD formats such as GDS or 

CIF can be transferred into a lithography mask and fabricated. The only real limitation is 

on the resolution of the lithography, impacting the cost to generate the mask and 

minimum size of features that can be fabricated. 

 

When faced with multiple complex, competing objectives, there is no reason to believe 

that the optimal configuration for a given resonator specification must have symmetric 

legs or Manhattan angles. In order to explore the role of symmetry further, we chose 

constraint cases with double axis/single axis/no symmetry and with/without Manhattan 

geometry and other constraint variations. 

 

We conducted the study using a variant of Zhou’s original resonator synthesis example as 

a case study. Zhou’s implementation had the following geometric constraints: sizing 

limits (maximum and minimum length and width on the beam segments that make up 

each leg) and maximum and minimum angle limits for each element (each element must 

radiate away from the center mass).   Table 5.1 for constraints on the parameter values .  

Simple beam-crossing detection constraints were also imposed to avoid synthesizing 

physically meaningless designs consisting of beams crossing other beams, etc [39]. 

 

For convex optimization problems, constraints only serve to limit the design space and, if 

applied artificially, could produce suboptimal designs. One might argue that this is also 

the case for non-convex spaces if the optimization algorithm has the ability to jump out 
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of local minima and has no computational time limits. The reality with stochastic 

optimization techniques, such as simulated annealing or GAs, is that the time required to 

search the entire design space can be astronomical and careful restrictions of the space 

can lead to better results when there is a limitation on the number of iterations. Thus it is 

possible that a specific design problem, such as our resonator example, could benefit 

from the reduction of variables and the reduced design space formed when Manhattan 

angle constraints or symmetry is enforced.   On the other hand, these restrictions could 

severely limit the exploration of more compact design concepts that could exploit a 

broader range of angles.  

 

Table 5.1: Design Parameters/Constraints Used for MEMS Resonator Case Study 
Parameter  Value 
Center mass 
dimensions 

100µm x 100µm plate w/ 4 30µm x 
50µm beams attached. Plus mass of the 
comb drives (11 fingers, 50µm long by 
4µm thick with 3µm gap, plus a 4µm 
thick spine) 

Max number 
of beams per 
leg 

7 

Min number 
of beams per 
leg 

1 

Max beam 
length 

100 µm 

Min beam 
length 

10 µm 

Max beam 
width 

10 µm 

Min beam 
width 

2 µm 

 

Forcing leg symmetry has benefits as well as drawbacks.  Devices with asymmetric legs 

may not travel in orthogonal directions when displaced making them incompatible with 
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comb drives and causing potential short-circuits between the inter-digitated fingers.  On 

the other hand, as with the angle constraint, it is possible that optimal configurations may 

be excluded by forcing symmetry. A symmetry requirement could limit concepts that try 

to take advantage of other asymmetric aspects of the problems, such as asymmetric X and 

Y suspension stiffness goals.  A solution consisting of two short, stiff legs and two longer 

more flexible legs may have the goal resonant frequency or stiffness but still occupy a 

smaller area then an equivalent design with all four legs symmetric. 

  

One obvious benefit of constraints is that they can limit the number of variables involved 

in the search space, leading to faster synthesis of good designs.  For example, each leg of 

the meandering resonators consists of up to seven beam segments, each beam segment 

has three variables associated with it: length, width and angle.  Forcing symmetry 

between the four legs reduces the optimization problem with up to 84 variables into, at 

most, a 21 variable problem (the number of beam segments per leg can also range from a 

maximum of seven to a minimum of one).  Likewise enforcing Manhattan angles would 

change a third of these variables into four discrete values (0, 90, 180, 270 degrees) rather 

than an infinite space of continuous values. This could lead to faster convergence or a 

larger number of good configurations evolved by the nth generation. 

 

In the next section we present the resonator design case study, with five constraint 

settings and discuss the quality of the results returned by the MOGA. 
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5.3.1. MEMS Resonator Synthesis with and without Angle and Symmetry 

Constraints 

For this case study we adapted our existing MOGA program to synthesize designs with 

two objectives:  (1) minimize error from the target resonant frequency of 10,000 Hz and 

(2) minimize the device area (as defined by the bounding rectangle).  The same beam 

length and width constraints were applied from Table 5.1.  Furthermore we constrained 

the resonance to be in the Y-direction; this was done by highly penalizing any design that 

had a lower stiffness in the X-direction than the Y-direction.  Resonance in the X-

direction would be impossible to excite with the comb drives aligned to the Y-direction, 

as they can only perturb the center mass in the Y-direction. 

 

Initially the MOGA was run for a population size of 400 for 50 generations. After 50 

generations the designs within the Pareto set with a resonant frequency within 5% of the 

goal frequency were recorded.  Each configuration was run 25 times, each with a 

randomly generated starting population. 

 

Based on the performance results, we chose to perform a second set of MOGA runs, this 

time for a population of 400 over 500 generations (10x the original setting). This second 

set of MOGA results allowed us to observe the MOGA searching wider sections of the 

search space, which we expected would allow it to find a larger number of good 

solutions.  But we were also cognizant when given this much time to search, the MOGA 

may find and exploit gaps in our geometry constraint functions to find optimum solutions 
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that are not fabricatable. Each constraint configuration was run 10 times for each of the 

five cases, also with a randomly generated starting population.  

 

We applied five constraint cases to the resonator synthesis problem: 

Case 1.  Asymmetric legs, unconstrained beam angle  

(up to 84 continuous variables) 

Case 2.  Asymmetric legs, constrained beam angle  

(up to 84 continuous variables) 

Case 3.  Y-Symmetric legs, unconstrained beam angle  

(up to 42 continuous variables) 

Case 4.  Symmetric legs, unconstrained beam angle  

(up to 21 continuous variables) 

Case 5.  Symmetric legs, Manhattan beam angle  

(up to 14 continuous variables; up to 7 base-4 integers) 

 

Other than the beam-crossing constraint, cases 1, 3 and 4 were performed with no angle 

constraints, meaning a beam segment could run in any direction. Case 3 is the same as 

Case 4, except only Y-symmetry is enforced, not X-symmetry. The idea with case 3 is to 

explore the biological analog in symmetry. Case 2 uses the same angle constraint used by 

Zhou [35]: beam segments can only radiate away or parallel to the center mass.  Case 5 

has symmetric legs and also enforces Manhattan angles on all beam segments: all beams 

are orthogonal to the axes. Figure 5.5 presents examples of each constraint type. These 

are actual designs output by the synthesis software for each constraint setting (although 
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not optimal solutions.) Note that the design space decreases as we apply successively 

more restrictive constraints in moving from Case 1 to Case 5. 

 

Figure 5.5: Example Designs For Each of The Five Test  Cases. 
 

Table 5.2: Best Resonator Performance Evolved Using Five Different Constraint 
Settings After 50 Generations.  The objectives were reaching a resonant frequency 

of 10 kHz +/- 5% and minimizing device area. No designs were synthesized in case 1 
with suitable resononant frequency performance. 

 
Best Design within 5% of 10,000 Hz 

after 50 generations 
Constraint 

Case: 
Resonant Frequency 

(Hz) Area (m^2) 
1 * * 
2 10,327 2.105E-07 
3 10,325 1.711E-07 
4 10,463 1.55E-07 
5 10,380 1.703E-07 
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Table 5.3: Best Resonator Performance Evolved Using Five Different Constraint 
Settings After 500 Generations.  The objectives were reaching a resonant frequency 

of 10 kHz +/- 5% and minimizing device area. 

 
Best Design within 5% of 10,000 Hz 
after 500 generations 

Constraint 
Case: 

Resonant Frequency 
(Hz) Area (m^2) 

1 10,445 2.073E-07 
2 10,469 1.698E-07 
3 10,237 1.713E-07 
4 9,987 1.485E-07 
5 10,199 1.455E-07 

 

The results of the 50-generation tests can be seen in Table 5.2 and Table 5.3.  Case 1, 

with minimal constraints, was unable to produce any designs within the 5% frequency 

threshold range, but cases 2, 3, 4 and 5 were able to produce 22, 3, 69, and 38 threshold 

designs, respectively.  Case 2, which only limits the beam angles to radiate away from the 

center mass, is able to produce designs with the desired resonant frequency, but with the 

worst minimum (Table 5.2) and average (Table 6.1) area of all of the cases. This case has 

more variables to optimize than all of the other cases that produced results, and the 

MOGA may not have been able to effectively search the design space in only 50 

generations. It is also likely that the outward radiating angle constraint eliminates space 

efficient designs that have beams turning back towards the center mass.  

 

An analysis of the threshold designs shows there is a significant difference between the 

cases with respect to minimizing device area. An analysis of variance (ANOVA) test of 

the designs supports the hypothesis that different constraint cases produce significantly 

different populations with respect to device area (F = 34.6, p < 0.01) [54].  But as we 

only looked at a specific range of frequencies (10kHz +/-5%), ANOVA does not show a 
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significant difference in frequencies among the threshold designs (F=0.93, p=0.43), 

meaning all constraint cases were able to produce designs with similar resonant 

frequencies.   

 

Case 4 performed slightly better than all of the other cases in minimizing device area, but 

the average over all of the threshold designs was higher than cases 2 and 3, suggesting 

that its slightly better performance here was “an outlier” to a pattern. Another interesting 

observation is that Case 4 – with full symmetry but no angle constraints – produced the 

largest number of threshold designs, approximately 80% more than case 5, over 3 times 

as many as case 2 and an order of magnitude more than case 3. Cases 1 and 2 had the 

largest number of degrees of freedom, yet produced inferior or unacceptable designs in 

50 generations; the probability of geometrical violations (beams crossing each other, etc) 

is much higher in these cases, in effect causing a large portion of the population to be 

wasted on invalid or designs that are impossible to fabricate. 
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Figure 5.6: Smallest Threshold Design Synthesized in 50 Generations.  Case 2 
constraints (asymmetric beams, angular constraints away from center mass); case 3 

constraint (vertical symmetry on legs); case 4 constraint (full symmetry on legs); 
and case 5 constraints (symmetric legs and Manhattan geometry).  

 

The fact that cases 2 and 3 produced the least number of threshold designs indicates that 

the lack of full symmetry, or at least the larger design space no or limited symmetry 

allows, plays a major role in the MOGA’s ability to optimize over the resulting design 

space within 50 generations.  We note that case 3 – with only Y-symmetry – 

outperformed case 2 in minimizing area and distance from the target frequency. Figure 4 

shows the best design from each case for their set of threshold designs. Note that while 

 Case 2 Case 3 

  
ωr = 10,327 Hz;  

Area = 2.105E-07 m2 
ωr = 10,325 Hz;  

Area = 1.711E-07 m2 
Case 4 Case 5 

  
ωr = 10,463 Hz;  

Area = 1.55E-07 m2 
ωr = 10,380 Hz;  

Area = 1.703E-07 m2 
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the best designs from cases 3, and 5 were nearly identical in the objective space, their 

configurations are not similar in the design space. 

 

Table 5.4: Average Statistics for All Designs Generated by 50 Generation MOGA 
That Were Within 5% of 10,000 Hz (i.e., within 500 Hz of the goal) Over 25 Runs. 

Case 

Frequency 
difference 
from goal 
of designs 
within 5% 
of 10 kHz 

Area of 
designs 

within 5% of 
10 kHz 

 
Number of 
designs in 
Pareto set 
returned 
by GA 

Number of 
Pareto set 

designs 
within 5% of 
10 kHz per 

run 
1 * * 23.6 0 
2 265 3.2260E-07 31.3 0.88 
3 190 1.956E-07 23.4 0.12 
4 156 2.046E-07 19.6 2.76 
5 133 1.975E-07 22.8 1.52 

 
Table 5.5: Average Statistics for All Designs Generated by 500 Generation MOGA 
That Were Within 5% of 10,000 Hz (i.e., within 500 Hz of the goal) over 10 Runs. 

Case 

Frequency 
difference 

from goal of 
designs 

within 5% 
of 10 kHz 

Area of 
designs 

within 5% of 
10 kHz 

 
Number of 
designs in 
Pareto set 
returned 
by GA 

Number of 
Pareto set 

designs 
within 5% of 
10 kHz per 

run 
1 135 2.526E-07 29.6 1.00 
2 155 2.217E-07 32.1 7.90 
3 80 1.916E-07 26.3 2.70 
4 25 1.814E-07 21.8 1.70 
5 42 1.595E-07 27.6 3.00 

 

Looking at the 500-generation tests in Tables 4.2b and 4.3b helps further clarify the 

effects of the constraints on performance. In general, we can see that equal or better 

performance was reached compared to the 50-generation tests (Figure 5.6). Furthermore, 

because of the increased number of generations, the Pareto sets returned by the MOGA 

are populated with more and better threshold designs. In case 1, by searching the design 

space further, the 500-generation MOGA was able to successfully generate better 
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designs. However of the 10 runs performed, only three were able to generate successful 

valid designs within the specified frequency range.  At least 250 generations were 

required to generate one design in this range. This illustrates that given enough 

computation our MOGA was successfully able to find acceptable solutions, albeit less 

optimum ones, even in this much larger, unconstrained design space.   

 

Case 2 for 500-generations returns interesting results, as mentioned previously, the 

outward radiating angle constraint limits the area minimization, but as the design space 

has been limited, the number of threshold designs generated is much greater than case 1.  

The number of threshold designs generated is also affected by our constraint 

implementation, which will be discussed further below.  The case 3 results standout, as 

the best design evolved within 500 generations was slightly larger than the best design 

evolved in the 50-generation test. The limited sample size could explain this variation.  

But the number of successful designs generated per run and their average performance 

does increase as expected with more generations. 
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Figure 5.7: 500 generation Cases: Smallest threshold design synthesized by case 1 
constraints (asymmetric beams, no angular constraints); case 2 constraints 

(asymmetric beams, angular constraints away from center mass); case 3 constraint 
(vertical symmetry on legs); case 4 constraint (full symmetry on legs); and case 5 

constraints (symmetric legs and Manhattan geometry). 
 

Cases 4 and 5 for 500 generations produced designs with smaller areas and better average 

performance than the 50-generation case, as one would expect.  However an interesting 

feature to observe is the much lower number of threshold designs generated for these 

 Case 1 Case 2 

  
ωr = 10445 Hz;  

Area = 2.073E-07 m2 
ωr = 10469 Hz;  

Area = 1.698E-07m2 
Case 3 

 
ωr = 10237 Hz;  

Area = 1.713E-07 m2 
Case 4 Case 5 

  
ωr = 9987 Hz;  

Area = 1.485E-07 m2 
ωr = 10199 Hz;  

Area = 1.455E-07 m2 
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cases compared to case 2 (Table 5.5), which is different than the 50-generation case 

(Table 5.4). This is caused by the large number of the designs generated by the MOGA 

that performing quite well in the objective space, but were non-fabricatable. In most 

cases this was due to the MOGA generating two types of flawed designs – designs that 

contained parallel overlap between legs and designs where the legs wrapped around the 

comb drives through the top or bottom bonding pads.   

 

Both of these flaws demonstrate limitations of our node-based simulation environment.  

Two parallel or collinear beams will not violate our beam intersection constraint, which 

calculates the cross product of their centerlines to detect beam crossing. Even if the 

parallel centerlines are non-collinear, the beams may overlap, as they have finite width.  

Furthermore as SUGAR defines an anchor (used in this case as a bonding pad for our 

comb drives) as a single node, our beam crossing detection implementation has no ability 

to detect beams crossing the bonding pads. An example of a threshold design generated 

using constraint case 4 is shown in figure 6.  In the case of the 50-generation MOGA 

tests, these two flaws rarely occurred and made up only a small number of the Pareto set 

designs, however given an order of magnitude more evolution, the 500-generation 

MOGA often discovered designs that took advantage of these two situations to produce 

designs that better satisfied the design constraints, filling up the Pareto frontier with 

designs that our beam overlap constraint function did not penalize.  
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Chapter 6:  
Advanced MEMS Synthesis Applications 
 

To demonstrate the breadth of our MEMS synthesis approach, this chapter presents two 

examples of more advanced MEMS devices that can be synthesized using evolutionary 

methods, an ADXL type accelerometer and a vibratory rate gyro.  Extensive study of the 

best-suited genetic operations and design constraints is not included, as the focus of this 

chapter is on the encoding and instantiation to apply evolutionary synthesis to new 

classes of design problems rather than the details of algorithm implementation. The 

configurations presented in this chapter are only example implementations of 

accelerometers or gyros, but by no means the only.  The same implementations used for 

the types presented here can easily be adapted for other types of designs however. 

  

6.1. ADXL-type Accelerometer 

To demonstrate the applicability of evolutionary synthesis for MEMS applications we 

chose a well-known MEMS design application, the synthesis of an ADXL type 

accelerometer by Analog Devices.  The ADXL-type accelerometers were one of the first 

commercial applications of MEMS and are used in applications such as automotive air 

bags, laptop drop sensors and other inertial measurement situations [55].  The numerous 

versions (there are currently 10 variations being produced by Analog Devices) vary in 

performance but share a similar configuration of the electromechanical portion of the 

design. 

  



96 

 

 

 
Figure 6.1: Analog Devices’ Single Axis Accelerometers - top: ADXL 50, bottom: 

ADXL 150 [from 55]. 
 
As Analog Devices’ layouts shown in Figure 6.1 demonstrate, designs are comprised of a 

suspended center mass, with sense fingers along both sides. Pairs of fixed fingers 

anchored to the substrate are interdigitated with the moving fingers on the center mass.  

The change in capacitance between the moveable finger and the stationary ones can be 

measured to calculate the acceleration-induced motion of the center mass. 
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6.1.1. Encoding 

For this application we did two types of design encoding to describe the geometry of an 

ADXL-type accelerometer.  The two methods share the same encoding for the center 

mass and sense fingers, and differ in the geometry of the suspension.  One method 

incorporates the serpentine spring element (similar to the serpentine present in the ADXL 

design in Figure 6.1) and the 2nd uses regular beam segments connected in linear chains. 

An example of both types can be seen Figure 6.2. We also tried both versions with and 

without suspension symmetry to compare the output and demonstrate the flexibility of the 

encoding structure. 

 

   
Figure 6.2: Example Instantiations Of Two Types Of ADXL-Type Accelerometers, 

With Serpentine Springs And Free-Form Multi-Segment Suspension Beams. 
 

Each individual’s geometry is divided into three geometry fields: springs, spine (center 

mass) and sense fingers. Table 6.1 describes the contents of each of these fields. The 
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proper number of sense fingers is generated with the specified spacing along both sides of 

the spine when the individual design is converted to a SUGAR netlist. 

 

Table 6.1: Encoding Structure for ADXL-Type Accelerometer Example. Two 
versions were created, one with regular meandering springs and one with free-form 

legs comprised of multiple beam segments. 
Geometry field 
name 

Variables Sample Min/Max 
Constraint 

Spine Spine Length 
Width 

50-500µm 
20-100µm 

Sense Fingers Finger Length 
Finger Width 
Finger Gap 

20-100µm 
2-10µm 
2-10µm 

Springs: 
Version 1: Serpentine 
springs 

Crenulation Length 
Crenulation Width 
Number of Crenulations 
 
 
 

50-200µm 
20-10µm 
1-4 

Springs: 
Version 2: Multi-
beam segment legs:  
 
Four n x 3 matrices.  
Each matrix row 
represents a beam 
segment. 

Number of beam segments per 
leg: n 
 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

∆

∆
∆
∆
∆

mmm wl

wl

wl

wl

wl

θ

θ
θ
θ
θ

���

444

333

222

111

 

 

1-4 
 
 
length: 10-150µm 
width: 2-10µm 
∆ angle: -90º, +90º 

 

In the second method, the approach to encoding the geometry of the springs is similar to 

that of the resonating mass.  A key difference is that in this case the angle representation 

is a delta angle, rather than an absolute global orientation.  This difference is significant; 

it allows more control over the types of joint intersection evolved.  The importance of this 

is discussed in more detail in section 7.4. 
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6.1.2. Design Objectives 

Two problem formulations were tested for this application, the first was a three objective 

synthesis problem where there was a goal value set for resonant frequency, a goal value 

for transverse sensitivity (defined as the ratio of Klateral /Kvertical).  The third objective is to 

minimize area (defined as an orthonormal bounding box around the entire structure).  In 

this case the sense fingers and center mass spine sizes were fixed.   

 

The second synthesis problem was a four objective problem, three objectives were the 

same and the fourth objective added was to maximize the capacitive sensitivity. As 

mentioned in section 2.1, the relationship between finger geometry and sensitivity is 

monotonic, and we can easily predict in advance what geometry will maximize this 

particular objective. But in this case we are interested in the balance between maximizing 

capacitive sensitivity and the other three objectives (particularly design area, which is 

most directly affected by the size of the sense fingers), looking to the GA to synthesis 

interesting combinations of all four objectives.  The user may choose a configuration with 

less than maximum sensitivity if it performs particularly well in a different competing 

objective. Sample output from these runs will be presented in the following section. 

 

6.1.3. Sample Output 

Figure 6.3 through Figure 6.6 demonstrate example output from several versions of the 

accelerometer synthesis GA.  Figure 6.3 represents the output and performance values for 

the 3 objective case with asymmetric legs.  In this case none of the objectives were a 
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function of the capacitive sensitivity, so the sense finger sizing is arbitrary (except for its 

impact of their mass on the resonant frequency). Figure 6.4 and Figure 6.5 represent the 

output from the four objective implementation with serpentine spring legs. Both the 

asymmetric and symmetric cases are represented, respectively.  Finally Figure 6.6 

represents an output from the four objective problem with asymmetric mutli-segment legs 

- clearly this particular design represents a configuration where high capacitive sensitivity 

is chosen over minimized area. 

 

 
Figure 6.3: 3-Objective Accelerometer Synthesis Output, with Symmetric 

Suspension Constraint Removed and up to 3 Free-Form Beams Per Leg Allowed. 
(Note: stationary sense fingers not shown). 

 
 

Simulated Performance 
(Synthesis Goal): 
ω = 50.01 kHz (50kHz) 
Klateral/Kvertical =91 (100) 
Area = 2.05e-8 m2 (min) 
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Figure 6.4: 4-Objective Serpentine Suspension Accelerometer Synthesis Output, 
with Symmetric Suspension Constraint Removed. 

 

Simulated Performance 
(Synthesis Goal): 
ω = 49.95 kHz (50kHz) 
Klateral/Kvertical =105 (100) 
Area = 7.43e-8 m2 (min) 
Sensitivity = 0.0019 (max) 
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Figure 6.5: 4-Objective Serpentine Suspension Accelerometer Synthesis Output, 
with Symmetric Suspension Constraint Activated. 

 

 
Figure 6.6: 4-Objective Accelerometer Synthesis Output, without Symmetric 

Suspension Constraints. 
 

Simulated Performance 
(Synthesis Goal): 
ω = 46.75 kHz (50kHz) 
Klateral/Kvertical =106 (100) 
Area = 6.40e-8 m2 (min) 
Sensitivity = 0.0028 (max) 

Simulated Performance 
(Synthesis Goal): 
ω = 25.76 kHz (25kHz) 
Klateral/Kvertical =96 (100) 
Area = 2.45e-7 m2 (min) 
Sensitivity = 0.0119 (max) 
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Note again that these examples do not represent a comprehensive search of the design 

space or best set of design objectives or constraints for a GA, but rather demonstrate the 

ability of GAs, and the flexibility of this data structure, to generate suitable output for a 

relevant set of objectives.  

 
6.2. MEMS Vibratory Rate Gyroscope  

Micromachined gyroscopes can be used to measure rotation rates for a variety of 

applications in navigation and guidance systems, automotive safety and consumer 

electronics.  This section presents a MEMS gyroscope encoding scheme along with 

example output from an instantiation and naïve and Simulated Annealing optimization 

routines.  A full GA implementation has not been performed, but this section 

demonstrates the applicability of the evolutionary approach to this type of MEMS 

application through the use of a simulated annealing synthesis. 

 

Vibratory rate gyroscopes (VRGs) use Coriolis acceleration to measure rotation rate. A 

mass is driven in vibration in the x-direction; rotation about the z-axis (out of plane) 

induces Coriolis acceleration in the y-direction, which is then capacitively sensed. Clark, 

Howe and Horowitz [56,57] presented a surface micromachined VRG that used 

resonance mode matching to maximize sensitivity.  Acar and Shkel [58] have developed 

a VRG that decouples the vibrating masses into two independently oscillating proof 

masses.  This version is designed not to be driven at resonance, and therefore is less 

sensitive to fabrication fluctuation.  
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We have chosen a VRG design similar to both Clark’s and Acar’s for this application 

example; the encoding scheme presented here could easily be adjusted to match either 

version directly if desired.  A center mass is driven in the x-direction by two comb drives 

and connected to an outer frame by a set of four serpentine springs, the outer frame 

contains sense fingers which can measure the Coriolis induced displacement in the y-

direction.  

 

6.2.1. Encoding 

We used a simple encoding scheme that uses parametric sizing within a fixed 

configuration (Figure 6.7).  In this case the only variability in the number of discrete 

elements comes from varying the number of crenulations in a serpentine subnet and the 

number of drive and sense fingers, the remainder of the variables are continuous lengths 

and widths. Substituting the serpentine springs with crab-leg, double folded flexures or 

free form suspensions as implemented in the resonating mass example could be done 

easily with this flexible encoding structure.  

 

The key design elements that are most important to the performance of this design are the 

relative spring constants in the x and y-directions for both the inner and outer suspensions 

(as Acar and Shkel refer to their design as a “Four degree-of-freedom Gyroscope”[58]) 

and the masses of the inner mass and outer frame.  Figure 6.8 shows several more 

examples of instantiations using this data structure. 
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Figure 6.7: Description of Vibratory Rate Gyro Encoding Structure – each design 
has 4 fields that describe the geometry of the device; each of these fields contains 

several parameters that can be altered by an optimization routine 
 

Like the accelerometer presented in the previous section, the number of sense fingers is 

not an explicit variable, rather the number of sense fingers is dependent on the size of the 

outer frame, the sense finger width and gap.  An alternative encoding scheme where the 

number of fingers is set and the length of the outer frame is adjusted accordingly could 

also have been implemented. 

 

Outer Suspension:  
(4 x serpentine element) 

Variables: Length 1
Length 2

Width 
Number of crenulations

Outer Frame +  
Sense Fingers: 

Variables:  Frame Width
Sense Finger Length
Sense Finger Width

Sense Finger Gap 

Inner Suspension:  
(4 x serpentine element) 

Variables: Length 1
Length 2

Width 
Number of crenulations

Inner mass + Drive Fingers: 
Variables:  Mass Width

Number of Comb Fingers
Finger Length

Finger Overlap Length
Finger Width

 Finger Gap 

Linner1 
Linner2 

Louter1 
Louter2 
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Figure 6.8: Example Instantiations Of Gyro Design Encoding. 
 

6.2.2. Design Objectives 

As we are dealing with a more complex device than presented in the previous sections, 

the number of objectives of interest to a designer has increased. As we are dealing with 

vibratory devices, resonant frequency is especially critical, it is important to ensure that 

the minimum resonant frequency is well above the bandwidth of extraneous accelerations 

the device might be subjected to, that the Coriolis accelerations are distinct from noise.  

Synthesizing for a desired resonant frequency with a GA or SA can be achieved in the 

same manner as shown in the ADXL and resonating mass example in this thesis. 

 

Clark style VRGs are particularly interested in very close mode matching between 

resonance of the inner mass and the outer mass, providing maximum rotational rate 

sensitivity.  Optimization of the mode matching can be easily achieved as a minimization 
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of the difference between the two resonance frequencies.  Although the previous 

synthesis examples focused on only the lowest resonant frequency, SUGAR has the 

ability to simulate the higher order modes as well.  Using the mode shape information 

encapsulated in the eigenvector of the system, the direction of oscillation of a mode can 

be identified.  The two frequencies corresponding to x-direction resonance and y-

direction resonance can be extracted and the result supplied to the objective function. 

 
Cenk style VRGs do not operate at resonance, but rather at a frequency between the inner 

and outer masses’ resonant frequencies.  In this case both resonant frequencies can be set 

as synthesis goals to ensure their proper placement.  Other objectives of interest are 

similar to the previous examples in this chapter, i.e. capacitive sensitivity of the sense 

fingers, suspension stiffness, design area, etc. 

 

It should be noted that if the number of crenulations of the serpentine spring is fixed, this 

problem could be solved analytically using gradient methods, but as we have shown in 

this section, there are a number of competing objectives which make it well suited for a 

multi-objective approach. Likewise, stochastic methods make alteration of the design 

configuration relatively quick and easy, not requiring the recalculation of the analytical 

equations to describe the new design. 

 

6.2.3. Sample Output 

While we have developed a data structure to describe this type of MEMS structure, we 

currently have not implemented a full genetic algorithm based synthesis for it.  We have, 

however, written the instantiation routine to generate a random configuration as well as a 
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mutation function to stochastically perturb a design.  Using these functions, we first were 

able to create a naïve search implementation for a single resonant frequency goal.  Figure 

6.9 shows the results from a naïve search for a lowest resonant frequency of 50 kHz.  

Within 25 perturbations a solution within 300 Hz of the goal is found.  Figure 6.10 is the 

SUGAR representation of this design.   

 

This simple naïve search, purely focused on lowest resonant frequency is severely limited 

however, as can be seen by looking at the mode shape.  Figure 6.11 shows that the lowest 

mode is in the sense direction, not the drive direction, as is desired, furthermore the 

lateral stiffness of the outer suspension relative to the inner suspension is too low this 

gyro application.  Clearly synthesis with additional constraints and objectives is better 

suited to this application example. 

 

 

Figure 6.9: Resonant Frequency Error per iteration for simple naïve search 
synthesis of 50k resonant frequency gyro. 
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Figure 6.10: Layout of Synthesized Gyroscope with Lowest Resonant Frequency 

of 50kHz. 

 
Figure 6.11: First Mode Shape for Design Presented in Figure 6.10.  Oscillation is 

in the vertical direction. 
 
To solve the issue of synthesizing the incorrect mode shape, we add a constraint to the 

system.  When SUGAR is called to provide the resonant modes of the device, the 

eigenvectors provided with each mode are also inspected to decide if the mode shape 

associated with a resonant frequency is in the desired direction - in this case, the lateral 

direction for the lowest frequency and the vertical direction for the 2nd lowest frequency.  
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We implemented this constraint as a penalty function, designs in violation of the desired 

mode shapes were given extremely poor fitness values.   In this case a naïve search was 

able to devices with oscillation at the lowest resonant frequency in the appropriate 

direction. 

 

We applied a simulated annealing algorithm with a more realistic objective function to 

demonstrate the ability of this data structure to synthesize a meaningful design using 

stochastic optimization.  We chose a Clark-style VRG design application, where we 

desire close matching between the lowest two resonant frequencies (ωr-lowest, ωr-2nd_lowest) 

close to a frequency goal (ωgoal).   The objective function becomes: 

  lowestndrlowestrgoallowestr kxF _2)( −−− −+−= ωωωω  

where k is a scaling factor, chosen to balance the importance of frequency difference to 

the matching frequency goal (the values of k =10 and 100 were used).  

 

Figure 6.12 shows the objective function (dot-dashed line) along with the lowest and 2nd 

lowest resonant frequencies (solid and dotted lines respectively).  We desire both the 

frequencies to be as close as possible and to approach our goal, in this case 10 kHz. In 

this case a k scaling factor of 100 is used.  The final frequencies output after 150 

perturbations was 8.38 kHz and 8.40 kHz.  A lower k factor produces designs closer to 10 

kHz but with a larger difference in frequencies. Figure 6.13 shows the mode shapes for 

the final design at 150 perturbations. Note that the absolute displacement in the mode 

shape plots is arbitrary (as it is taken from the eigenvector).  Only the orientation and 

relative magnitude of the node displacement has relevance.  The constraints have 
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successfully forced the lowest resonant frequency to be in the lateral (drive) direction and 

the 2nd mode is the vertical (sense) direction. 

 

 
Figure 6.12: Simulated Annealing of Gyroscope. Objective function evaluation 

and design resonant frequencies per perturbation. Objective function is minimized, 
forcing the lowest resonant frequency and 2nd lowest resonant frequency close 

together and close to the goal of 10 kHz. 
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Figure 6.13: Mode Shapes for Simulated Annealing Example. Lowest mode is 
forced to be in lateral direction and 2nd lowest is in vertical direction. Note that 

magnitude of displacement is arbitrary, only the orientation and relative magnitude 
of node movement has significance. 
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Chapter 7:  
Fabrication and Characterization of 
Synthesis Output 
 
7.1. Introduction 

We fabricated a wide range of MOGA generated MEMS resonating masses to validate 

our MOGA based MEMS synthesis approach, to validate our use of SUGAR as an 

effective evaluation engine, and to better understand the constraints and objectives 

necessary for accurate synthesis.  The designs were created with a variety of different GA 

settings and constraints.  We compare the predicted results with measured performance 

from the fabricated structures; additionally the results are compared with finite element 

modeler’s simulation results to help better understand what factors contribute to 

discrepancies in certain types of geometries.  

 

By tackling a wide range of devices generated by different GA settings, including inward 

turning suspensions, sharp joint angles and asymmetry, rather than limiting ourselves to 

typical symmetric, Manhattan suspensions, we are attempting to identify whether these 

constraints are truly necessary for MEMS structures, or are simply an artifact of 

engineers limiting themselves to ‘traditional’ methods of macro machine design.   

 

In the macro-world, the development of sophisticated Computer Numerical Controlled 

(CNC) milling machines has allowed for macro designers to break free of the cost and 

practicality limitations that previously forced them to adhere to 90-degree corners.  In the 

same way, the use of sophisticated and efficient simulation tools has allowed designers to 
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break free from simple geometries they are able to analyze by hand. Likewise in MEMS 

design, particularly using a genetic algorithm to evolve layouts, helps to also explore 

non-traditional portions of the design space. 

 

Characterization of the fabrication process and material properties is a critical component 

of the MOGA approach. Advance knowledge of Young’s modulus of materials once they 

are fabricated is critical for stiffness calculations. Material density is also required for 

mass calculations. Both of these properties impact the resonant frequency of the 

structures we are generating.  Additionally fabrication variations, such as line overetch, 

and non-vertical sidewalls have an impact on the performance of a fabricated device and 

therefore must be characterized. 

 

The information learned in this study can be used to improve our MEMS synthesis 

software. By studying the types of features that occur in MOGA generated designs whose 

measured performance differs from their FEA or SUGAR predicted performance, we can 

identify fabrication or simulation issues that need to be addressed in our MOGA 

formulation to ensure better accuracy in future MOGA runs.  This can take the form of 

added design constraints, or a change in the design objectives of the genetic algorithm.   

 
7.2. Method 

7.2.1. Resonator Test Case: 

For our fabrication and characterization example, we chose the MEMS resonator test case 

of the type presented in chapter 5.  We synthesized devices for four objectives: 
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1. Resonant Frequency (ωr) 

2. Klateral 

3. Kvertical 

4. Area 

 

Note: Kvertical is the y-direction when looking at the layout, not to be confused with the 

out of plane, or z-direction. 

 

Our fabrication test devices were designed with two sets of goals: 

 Set 1: 

1. Resonant Frequency (ωr) = 10,000 Hz 

2. Klateral = 100 N/m 

3. Kvertical = 0.5 N/m 

4. Area = Minimize (goal = 0 Area)  

  

 Set 2: 

1. Resonant Frequency (ωr) = 15,000 Hz 

2. Klateral = 100 N/m 

3. Kvertical = 1.0 N/m 

4. Area = Minimize (goal = 0 Area)  

 

As our fourth objective has a goal of zero area, which is impossible to physically achieve, 

it is impossible to synthesize a design that meets all four goals.  Our primary interest was 
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objective 1, the resonant frequency goal, with a minimal area (objective 4). Klateral and 

Kvertical were specified less as specific goals, but more to ensure that the suspension 

evolved would be less stiff in the vertical direction so that resonance in the lowest natural 

frequency was also in that direction. 

 

Note that depending on the film thickness, the lowest resonant frequency may be out of 

the plane (if Kout-of-plane < Klateral, Kvertical).  In this research we limited ourselves (in both 

simulation and characterization) to only in-plane resonance modes. We constrained our 

simulation to only look at in-plane resonance and as we ran our characterizations in the 

presence of air (where squeeze-film damping will damp out of plane motion), and our 

actuators only excited motion in the plane – we were only measuring in-plane resonance. 

 

7.2.2. Fabrication of Synthesis Output 

 
Each MOGA synthesis run outputs a set of non-dominated Pareto solutions.  As 

mentioned above, no designs were able to meet all design objective goals, therefore 

designs that met our goal values in resonant frequency within approximately 10-20%, 

that also had higher lateral stiffness (Klateral >> Kvertical) and a shape deemed ‘of interest’ 

(for either its unique shape or its predicted performance) were chosen for fabrication.  

One of our goals was to study the impact of different constraints and objectives of the 

MOGA on the viability of the output created, therefore we tried to select a diverse group 

of different designs, rather than just fabricating multiple versions of a few shapes.   
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SUGAR netlists were created for each of the solutions chosen for fabrication.  A program 

was written to translate the netlists directly into parametrized cells (known as P-cells), 

allowing for layout in Cadence.  The translation program also automatically included 

proper layout for bond pads attached to the four leg anchors and comb drives (Figure 

7.1).  Furthermore, the program automatically corrected joint gaps (Figure 7.2) at points 

where beam segments met.  By connecting the vertices of connecting beams, we attempt 

to avoid potential abnormalities, such as stress concentration points that could cause the 

fabricated device to behave differently from the simulation software’s prediction.  

 

 

Figure 7.1: Example Of Synthesized Resonator Design Once Converted Into 
Cadence P-Cell.  Bond pads and anchors are automatically generated. 
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Figure 7.2: Gaps Between Two Rectangular Beam Segments Are Automatically 
Filled When Converted Into P-Cells. 

 

The layout file generated contained two copies each of several test structures and 38 

unique resonator designs generated by both MOGA and MOGA+IEC, for the constraint 

settings shown in Table 7.1. 

 

Layout from Cadence was then submitted for fabrication to MEMSCAP’s MUMPs 

fabrication house (formerly MCNC). We chose to evolve for a standardized 

commercially available fabrication process, the PolyMUMPs process [8]. Use of a 

standardized process is not only faster and more cost effective, it also reduces the 

likelihood of process variation or errors that would negatively impact our ability to 

produce consistent, characterizable devices.   
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Table 7.1: List Of Constraint Settings Used to Develop Designs Selected for 
Fabrication.  Asymmetric, Symmetric and Symmetric with Manhattan Angles only 

were chosen for the two sets of objectives: 
Run name Symmetric 

Legs? 
Manhattan 

Angles 
Only? 

Max 
Number of 
Beams per 

Leg 

Angle 
Range 

Max 
Beam 

Length 

Objective Set 1: ωr = 10kHz, Klat = 100 N/m, Kvert = 0.5 N/m, Area = min. 

Run 1 Y N 7 ±� 100�m 

Run 4 / IECrun 4 Y N 14 ±� 100�m 

Run 5 / IECrun 5 Y Y 7 ±� 100�m 

Run 6 Y Y 4 ±� 150�m 

Run 16 N N 5 ±� / 3 150�m 

Objective Set 2: ωr = 15kHz, Klat = 100 N/m, Kvert = 1.0 N/m, Area = min. 

Run 17 Y N 9 ±� / 2 150�m 

Run 19 / IECrun 

19 

Y N 7 ±� 100�m 

Run 20 Y Y 5 ±� 100�m 

Run 21 N N 7 ±� / 2 100�m 

 

Numerous works have been performed to characterize the material properties of the 

polysilicon MUMPs process since it was first introduced in 1992. The results of these 

characterizations are compiled in [59]. While there is variation between runs, the 

numbers for Young’s Modulus, Poisson’s ratio and material density are well known 

within our expected range of accuracy. We used 165 GPa, 0.3 and 2330 kg/m3 

respectively for the three values.  Our suspensions were fabricated in the poly1 layer with 

a nominal film thickness of 2 um, with a poly0 backing below the structures. 
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The PolyMUMPs process uses a 0.25 um mask pixel size, meaning our feature resolution 

is 0.25um, with a minimum feature size of 2.0 um.  We did not limit the beam width 

dimensions during simulation, so we expected a small amount of additional error between 

the fabricated (discrete beam widths) and simulated (continuous beam widths). 

 

7.2.3. Characterization of Overetch 

Upon receipt of the chips from the fabrication house, the structures were released and 

characterization began. The first step was to quantify the fabrication variation between 

the fabricated design geometry and the originally synthesized design geometry. 

 

A critical issue with the fabrication of a CAD layout is overetch – the difference between 

the location of a line as laid out in CAD and the actual location on the fabricated device 

(Figure 7.3). In the case of beams in a MEMS suspension, a given beam’s width will vary 

by twice the line overetch amount. Literature [60] cites a line width variation of 0.05-0.10 

um, which would result in a beam overetch of 0.10-0.20um.   
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Figure 7.3: Illustration of Overetch in MEMS Layout 
 

In anticipation of this overetch, we could have added an amount from 0.10-0.20um to all 

of our beam widths in order to account for the expected overetch.  As this was our first 

attempt at characterization, we chose not to pre-alter our layouts for the expected 

overetch, rather we decided to submit our layout with the beam widths as evolved.  To 

account for overetch more accurately, we chose to do measurements of beam width on 

the fabricated devices to compare against the layout widths to find the average beam 

overetch rate across all the structures. 

 

7.2.4. Geometry Correction of Simulation Models 

Once the average overetch is found, this amount can be subtracted from all the designs’ 

simulation models and their performance re-simulated.  This allows us to estimate the 

‘as-fabricated’ performance of the structure.  One of our primary foci for this research, is 

validating the accuracy of our simulator, but when overetch is accounted for (pre-

fabrication or post-fabrication) is not of critical importance to this goal. 

 

Overetch 
amount 

Geometry as laid out 

Geometry actually fabricated 
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If the overetch rate is found to be consistent across fabrication runs, it can be added to 

beam widths in future layouts so that the ‘as-fabricated’ geometry (and performance) 

more closely matches the ‘as synthesized’ geometry (and performance).  As this overetch 

causes a significant shift in the resonant frequency, with each unique design shifting a 

different amount, we framed our comparison between simulated and fabricated variation 

as a percent error, rather then an absolute difference in frequency, expressed in hertz. 

 

7.2.5. Resonant Frequency Measurement 

The fabricated designs were excited to resonance electrostatically via probe tips on a 

probe station.  A DC bias voltage from a power supply was applied to one of the two leg 

bond pads and an AC voltage was applied to one of the comb drive pads.  The other 

comb drive pad was grounded (see circuit diagram Figure 7.4).  The AC signal was 

generated by an HP33120A function generator.  The resonant frequency was detected 

manually by visual observation through the probe station’s microscope CCD camera. 

Frequency was swept upwards until the amplitude of oscillations reached a peak.  This 

was verified multiple times.  We were able to achieve resolutions of approximately +/- 

100 Hz in our resonant frequency measurements (based on multiple measurements of the 

same structures across different days). 
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Figure 7.4: Electrical Schematic For MEMS Resonance Characterization. Probe 
tips are connected to both comb drive pads and bias probe is connected to leg 

anchors. 
 

 

Multiple copies of the fabricated designs were measured across three of the MUMPS 

fabricated chips.  For each device, the resonant frequencies measured were then averaged 

to give a mean performance for that design.  This average number is used to compare 

against simulation. 
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7.2.6. Comparison with Simulation 

The percentage difference between each device’s average measured resonant frequency 

performance and its simulated performance is used as a benchmark for the accuracy of 

the simulator. In this case, we compared the measurements with both the predictions of 

SUGAR and the commercial FEA package ANSYS.  

 

The first step for both simulations was to recreate a given design’s SUGAR netlist with 

the average overetch subtracted from the beam width.  Once this ‘as fabricated’ netlist 

was created, a SUGAR modal analysis was performed to find the ‘as fabricated’ resonant 

frequency (which has been shifted downwards from the original ‘as synthesized’ due to 

thinner, more compliant beams). 

  

ANYSYS simulations were created from the same netlist used in SUGAR. Using the 

SUGAR function ‘cho2cif’, the SUGAR layout is converted to the Caltech Interchange 

Format (CIF), which can then be brought into ANSYS using the built-in CIF importer.  

This imports the 2-D topology of the design into ANSYS; the layout was then merged 

into a single contiguous area through a Boolean union operation and meshed.  It is 

important to note that the geometries in ANSYS did not include the joint gap filling that 

was included in the Cadence P-cell conversion.  It was found that the minor geometric 

details in the joints between two beam segments did not have a significant impact on the 

ANSYS-simulation performance.  As including these geometric details only varied the 

ANSYS predicted resonant frequency by a few 10’s of Hertz (while our measurement 

resolution was in the 100’s of Hertz), justifying the omission of these details.  
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It was found that 5um mesh spacing provided a sufficiently accurate lowest resonant 

frequency. Further refinement of the mesh size did not significantly alter the frequency. 

A 2D planar 8-node element with thickness was used for FEA, as more complex 3D 

element models were not necessary to find the in-plane resonant frequency.  

 

The boundary conditions at the anchors were simulated by applying a zero displacement 

constraint to the mesh nodes at the center of the anchors – approximating the fabricated 

configuration where the inner 10 um square of 14 x 14 um anchor is affixed to the 

substrate. Due to the scale and stiffness of polysilicon, we found this approximation of 

the anchor sufficient for our level of accuracy.  

 

A modal analysis was performed using the ‘Subset’ method (Block Lanczos also returns 

identical answers).  A frequency sweep from 0 to 100 kHz was performed to identify up 

to the first five modes, although the measurements we were comparing to were only 

interested in the first (lowest) mode. 

 

It is important to reiterate the significant difference between how a geometry is described 

and simulated in SUGAR and how a geometry is described and simulated in an FEA 

package like ANSYS.  As mentioned previously, SUGAR uses nodal analysis, and looks 

at discrete elements joined at unique nodes.  The ANSYS simulation, as we performed it, 

much more closely matches the real situation on a fabricated design, where two 

overlapping beam portions become a contiguous element.  The impact of the difference 

between these two simulators is discussed in the next section. 
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7.3. Results 

7.3.1. Overetch Measurements 

After the chips were returned from MUMPS and released, we measured 55 features with 

help of a scanning electron microscope (SEM). The features measured were beam and 

comb drive finger widths at different places on the chip.  The average amount of line 

overetch was 0.15 µm with a standard deviation of 0.06µm.  We then modified the beam 

widths in our simulator models by two times this average value in order to compensate 

for the impact of overetch on design geometry (Table 7.2) 

 

Table 7.2: Example from Synthesized Design “IECrun5-05”, Comparing Original 
Beam Dimensions as Synthesized with SEM Measured Beam Widths and Beam 

Widths With Average Overetch Subtracted (Used in ‘As Fabricated’ Simulations).  
Difference in simulated performance for these three configurations is presented at 

the bottom. 

Beam # 
Original width as 
synthesized (µµµµm) 

Width of actual beam as 
measured in SEM (µµµµm) 

Width with average 
overetch subtracted (µµµµm) 

1 9.6 9.14 9.3 
2 2.7 2.42 2.4 
3 2.3 2.17 2.0 
4 6.7 6.17 6.4 
5 6.5 6.17 6.2 
6 2.2 1.91 1.9 
7 2.6 2.41 2.3 

Simulated 
Performance 

(kHz) 10.9 9.00 9.10 
 

 

Table 7.2 also indicates the impact of overetch on a sample design’s performance.  In the 

case of design “IECrun5-05” the resonant frequency of the design was shifted from 10.9 

kHz to 9.10 kHz when all beam widths are reduced by 0.30 um, a shift of 17% 
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downwards. The table further shows that applying the average overetch (9.10 kHz) to all 

beams can provide a close approximation to the actual geometry (9.0 kHz), where the 

amount of overetch varies. Across all the devices fabricated, the average shift in resonant 

frequency after incorporating the overetch in the simulation model was approximately 

17%. 

 

7.3.2. Fabricated Device Resonant Frequency Measurements 

180 separate measurements of resonant frequency were performed in all with 3-5 

measurements for each design and the results averaged.  For all devices the error between 

measured performance and SUGAR predicted performance ranged from -45 % to 87%, 

with an average of -8% and a standard deviation of 20%.  In comparing ANSYS 

simulations with SUGAR for all devices simulated, the performance ranged from -5% to 

88% with an average of 6% and a standard deviation of 16%.  In comparing ANSYS 

simulations with measured resonant frequencies, the results ranged from –45% to 5%, 

with an average of -13% and a standard deviation of 10%.   

 

As we fabricated a wide variety of unconventional designs (38 total), including designs 

that contain features that may not simulate properly in SUGAR or ANSYS or may not 

fabricate properly, we expected to find a wide variation in the performance, as 

represented by the large standard deviations.  We need to segregate the different types of 

designs to better understand the factors causing this variation. 
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We found these three sets of results (SUGAR simulation, ANSYS simulation and 

measured devices) could generally be classified into three categories: 

1) Designs where SUGAR and ANSYS and measured values generally agreed (13 

designs). 

2) Designs where ANSYS generally agreed with measured value, but SUGAR 

differed significantly (16 designs) 

3) Designs where measured values different significantly from ANSYS and SUGAR 

predictions (9 designs). 

 

By studying the differences between designs in the three groups, we are able to infer 

information about the impact that different design features have on simulated or 

fabricated performance.  In the following section we will discuss the factors that caused 

the significant differences. 

 

7.3.3. Description of Performance Groups 

7.3.3.1. Group 2 

Group 2 designs represent cases where SUGAR and ANSYS disagreed, and yet the 

ANSYS results are supported by the measured value, therefore the natural suspect is 

SUGAR’s simulation method for causing the discrepancy.  Inspection of designs that fell 

into this group show that error primarily arises due to the overlapping beam issue 

mentioned in the previous section: SUGAR models beams as discrete elements connected 

explicitly at a node point and does not account for beam segments overlapping. (Figure 

7.5) 
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Figure 7.5: Examples Of Group 2 Designs. ANSYS generally agreed with 
measured values, but SUGAR predictions differed significantly. 

 

In exchange for much faster simulation speed, SUGAR does not include the actual 

conditions at the end of the beam – it assumes a fixed connection exactly at the node 

point.  In reality, when two beams connect at an angle, especially an acute angle, there is 

some overlap in their areas.  Therefore the SUGAR simulation is based on the length of 

Average measured ωr = 12.4 kHz 
ANSYS predicted ωr = 12.5 kHz 
SUGAR predicted ωr = 10.8 kHz 

Average measured ωr = 13.3 kHz 
ANSYS predicted ωr = 13.6 kHz 
SUGAR predicted ωr = 10.8 kHz 
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the beam as specified in the netlist, whereas ‘effective length’ of the compliant portion of 

the beam changes in both the ANSYS simulation and the fabricated design.  ANSYS 

joins all the beam polygons into a single polygon through a union operation, overlapping 

areas are subsumed, as they are in Cadence layout that is used to create the fabricated 

design. 

 

Figure 7.6: Example of Symmetric Design “IECrun19-03” (see Figure 7.5 - 
Bottom) Where Beam Overlap Caused Significant Disagreement Between ANSYS 

and SUGAR Simulated Performance. ANSYS and the measured value on the 
fabricated device did correspond. Significant overlap occurs at two points, where 

the legs connects to the center mass and the outer most beam segments (see insets). 
 

The SUGAR model for the lower design in Figure 7.5 is shown in Figure 7.6. This is a 

prime example of how overlap can cause a mismatch between ANSYS/fabricated and 

 

Average measured ωr = 13.3 kHz 
ANSYS predicted ωr = 13.6 kHz 
SUGAR predicted ωr = 10.8 kHz 

Actual L 

SUGAR 
simulated L 

Beam entirely 
overlapped by 
center mass 

     = node point 
in SUGAR model 
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SUGAR. In this symmetric design, significant overlap occurs at two regions, at the inner 

most beams that connect to the center mass and the outer most beams that connect to the 

anchors. SUGAR’s simulation predicts a resonant frequency of 10.8 kHz, whereas 

ANSYS predicts 13.6 kHz, and the average measured value was 13.3 kHz.   

 

The impact of these overlaps can clearly be seen by adjusting the SUGAR model to 

approximate the ‘as fabricated’ geometry. By removing the inner most beams (which are 

completely subsumed by the center mass in the fabricated device) from the netlist, the 

SUGAR predicted resonant frequency shifts upwards from 10.8 kHz to 13.1 kHz. 

Furthermore, removing 10 µm of length from the outer most beams to approximate the 

overlap of the anchor and the sharp joint angle makes the frequency 13.2 kHz. 

 

7.3.3.2. Group 3 

Group 3 designs represent cases where neither SUGAR nor ANSYS agreed with the 

measurements made from the fabricated designs.  Due to the existence of groups 1 and 2, 

we believe that this group exists due not to a general error in our simulations or approach 

to accounting for overetch, but rather due to a discrepancy between the environment we 

are simulating and what exists in reality on the chip. It should be noted that all the 

designs that fall into group 3 are cases of negative error, in other words, the measured 

frequency is lower than the simulated frequency in all group 3 cases. (Figure 7.7) 
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Figure 7.7: Two Examples of Group 3 Designs.  SUGAR and ANSYS simulations 

match but fabrication issues cause the measured value to shift downwards. 
 

 

MEMSCAP includes limited characterization for each of their production runs, in the 

case of our chips, they list a compressive residual stress in the poly 1 layer (our designs’ 

structural layer) of 5.0 MPa [61]. We believe this residual stress is responsible for the 

downward frequency shift. 

 

Average measured ωr = 8.4 kHz 
ANSYS predicted ωr = 10.8 kHz 
SUGAR predicted ωr = 11.1 kHz 

Average measured ωr = 4.2 kHz 
ANSYS predicted ωr = 7.8 kHz 
SUGAR predicted ωr = 7.8 kHz 
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Analytically, the relationship between residual stress and resonant frequency for a fixed-

fixed beam can be expressed with the following equation: 

crit

resid
rr σ

σωω −=′ 1  [62] 

 

where �resid is the residual stress in the beam and �crit is the critical stress at which 

buckling occurs: 

2

4
AL

EI
crit

πσ =  [63] 

 

where A is beam cross-sectional area, I is second moment of area, E is Young’s Modulus 

for the beam and L is the length of the beam.  As �resid/�crit gets closer to unity, the design 

will undergo a larger shift in resonant frequency.  In our case residual stress is nominally 

identical for all structures, but the critical buckling stress varies from design to design.  

From the above equations, its clear that designs with longer lengths and/or smaller cross 

sectional areas will have a lower critical stress and therefore be more susceptible to 

frequency shift.  

 

We verified this phenomenon by analyzing a simple test structure (‘test 1-1’) comprised 

of 4 single fixed-fixed beam legs (Figure 7.8).  This design, as fabricated, has 3.6 um x 

2um x 520 um legs.  Which makes gives a �crit of approximately 8 MPa. Using the 

MEMSCAP supplied �resid of 5 MPa, this gives a frequency shift of approximately 39% 

(ωr’ =0.61ωr).  
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In the case of this test structure, SUGAR and ANSYS predict a resonant frequency of 8.6 

kHz and 8.4 kHz respectively, but the measured value was 6.3 kHz – approximately a 

30% difference. The analytical equation does not include the true beam end conditions at 

the anchors or other extenuating factors (which would lead to a higher sigma critical, and 

therefore a smaller shift), so we take 30% to be close enough to the analytical prediction 

for this verification. 

 

 
Figure 7.8: Simple Test Structure ‘Test 1-1’ Used to Verify Effect of Residual 

Stress on Resonant Frequency.  
 

ANSYS can predict the effect of residual stress through a two-step simulation, which first 

performs a static analysis using a uniform pre-stress load and then performs modal 

analysis based on the pre-stressed mesh.  Using this functionality, we repeat the 

simulation of the ‘test 1-1’ with residual stress included.  For a residual stress of 5 MPa 

we find the predicted resonant frequency shift from 8.4 kHz to 7.7 kHz. A residual stress 

of 10 MPa results in a resonant frequency of 6.9 kHz.   Based on this measurement we 

suspect the true residual stress to be higher than the 5 MPa reported by MEMSCAP. The 

ANSYS simulation does not include the 3D realities of the anchor geometry, etc; 

therefore we cannot make a definitive judgment about actual amount of residual stress. 



135 

 

 

 

 
Figure 7.9: Three Examples of Designs in Group 1: where SUGAR, ANSYS 

predictions of performance closely matched measured. These examples include a 
symmetric-Manhattan design, a symmetric unconstrained angle design and an 

asymmetric design. 

Average measured ωr = 8.2 kHz 
ANSYS predicted ωr = 8.7 kHz 
SUGAR predicted ωr = 8.6 kHz 

Average measured ωr = 13.1 kHz 
ANSYS predicted ωr = 14.6 kHz 
SUGAR predicted ωr = 13.0 kHz 

Average measured ωr = 10.0 kHz 
ANSYS predicted ωr = 10.8 kHz 
SUGAR predicted ωr = 11.4 kHz 
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In practical terms the residual stress issue means designs that have high axial stiffness 

and wide anchor spacing will not match simulations.  In the section 7.4 we will discuss 

how this knowledge can be incorporated into the MOGA synthesis formulation to avoid 

designs with this fabrication issue. 

 

7.3.3.3. Group 1 

Group 1 is comprised of the remaining designs that did not suffer from simulation error 

(due to overlap) or fabrication error (due to the unsimulated residual stress) (Figure 7.9).  

In this case the simulation in SUGAR corresponded to the simulation in ANSYS and the 

measured value from the fabricated designs.  For the 18 designs that fell into this group, 

error between ANSYS and SUGAR ranged from –5% to 6%, with a standard deviation of 

3%, corresponding to a 95% confidence interval of ± 6% if we assume a normal 

distribution.  This level of correspondence between the reduced order nodal simulation 

and the FEA simulation for complex shapes serves to validate SUGAR’s choice as a 

viable simulation engine for our evolutionary MEMS design tool. 

 

Comparing the Group 1 designs’ SUGAR simulations with the measured values also 

serves to validate our approach to MEMS design synthesis using SUGAR.  We found that 

the difference between SUGAR and measured values for this group ranged from –18% to 

7%, with a standard deviation of 7% and a 95% confidence interval of ± 13%.  These 

designs validate the approach that a SUGAR-based evolutionary synthesis approach can 

generate viable MEMS configurations when mated to the proper synthesis formulation.   
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As this was our first synthesis attempt using the PolyMUMPS process, we were uncertain 

about the material properties on the fabricated chip.  This study also shows that the 

Young’s Modulus of 165 GPa, Poisson’s ratio of 0.3 and density of 2300 kg/m3 is 

sufficiently close to the actual properties to predict performance.  The outstanding issue 

remains beam overetch.  Further study across more MUMPS fabrication runs should be 

performed to characterize the overetch problem, which will allow adding the expected 

overetch to design models in advance to resolve this issue. 

 
7.4. Discussion 

This section discusses the lessons learned from this characterization study and how it can 

be used to improve the Genetic Algorithm formulation to avoid designs with fabrication 

or simulation issues, as in the designs found in Groups 2 and 3, and ensure all designs 

stay within feasible regions of the design space.   

 

A key limitation that shapes the recommendations made in this section is what is 

physically possible in the SUGAR simulation environment.  For example, SUGAR’s 

nodal analysis modeling does not incorporate the entire bulk solid, so detecting where 

polygons cross each other would require additional programming outside of the SUGAR 

environment.  

 

Likewise SUGAR does not currently have the ability to simulate residual stress or stress 

gradients in a structure.  Therefore these fabrication related issues cannot be directly 

included into a synthesis algorithm (neither as a constraint nor as an objective).  
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7.4.1. Proposed Design Constraints – Group 2 

As mentioned in the previous section describing Group 2 designs, the major issue was 

‘beam overlap.’  As shown in the example design in Figure 7.6, this type of issue created 

simulation mismatches in two distinctive ways. 

 

First, where resonator legs connected to the center mass, if the innermost beam was at 

parallel to the edge and was short, in the fabricated design, this beam was either partially 

or entirely subsumed in the center mass and did not flex, whereas SUGAR did not model 

this properly.  Therefore a constraint could be added to force the innermost beams to be 

normal to the center mass, or limit the minimum allowable length or width of these 

beams to avoid this beam from being a thin compliant beam with its effective length 

significantly changed through overlap with the center mass (Figure 7.10). 
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Figure 7.10: Inner Beam Simulation Problem and Proposed Solutions. 
 

The second type of beam overlap that must be avoided for accurate simulation is where 

two beams meet at an acute angle and the overlap changes the effective length of the 

compliant portion of one or both of the beams. The easiest and the most restrictive 

solution would be to limit sharp angles of intersection between any two beams.   

 

However overlap is only an issue when a significant portion of a beam’s length is 

‘subsumed’ by another beam.  Therefore this angle constraint can be made more effective 

(and less restrictive) by only being applied to junctions between thin beams and thick 

beams. (Figure 7.11) 
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As an example – the overlap when two beams 75um long and 3 um wide join at a 30 

degree angle is not a significant source of error, while the overlap between a 30 um long, 

3 um beam joining with a 10 um beam at 30 degrees is. 

 

 
Figure 7.11: Beam Junction Simulation Problem and Proposed Solution. 

 
 

7.4.2. Proposed Design Constraints/Objectives – Group 3 

As described in the previous section, the measured values for group 3 designs differed 

significantly from simulation predictions due to residual stress.  Residual stress varies 

greatly between MUMPs runs (anywhere from 1 to 17 MPa) in the last 15 runs, making 

incorporating residual stress effects on resonant frequency or other objectives inaccurate.  

Furthermore the additional computation power required to include this in the simulation 
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portion of a synthesis program would slow a synthesis tool significantly (simulation 

engines such as SUGAR can not currently include residual stress effects at all). Therefore 

a better choice is to adjust the synthesis objectives to ensure that designs generated do not 

suffer from residual stress effects. 

 

One simple solution would be to limit the distance between the anchor points, as is done 

in many conventional suspension designs created by hand.  This could be done explicitly 

by explicitly placing the anchor positions relative to the center mass. Another 

implementation could place an inequality constraint on the maximum allowable distance 

between anchor points, or less explicitly create an additional minimization objective of 

‘anchor distance’; designs that violate this constraint would be considered invalid in our 

GA implementation. If implemented as an additional objective, ‘anchor distance’ will be 

balanced with the other objectives in our multi-objective GA, however, and will not 

necessarily be present in Pareto designs returned by the GA (Figure 7.12). 

 

Additionally, adding these constraints or objectives would also most likely contribute to 

smaller design areas. It would drive designs towards more space efficient regions of the 

design space. 
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Figure 7.12: Proposed Anchor Distance Constraint or Objectives. 
 

But as demonstrated by designs in group 1, (Figure 7.9), not all designs with a large 

anchor distance will have resonant frequency prediction issues when fabrication includes 

residual stress.  A high lateral stiffness must be present.  In the top design in Figure 7.9, 

for example, the residual stress was relaxed by a flexing of the meander, reducing the 

resonant frequency shift.   

 

When choosing designs to fabricate in this study, we set a relatively high lateral stiffness 

objective (100 N/m), and only concerned ourselves with ensuring Klateral >> Kvertical, not 

with the amount of Klateral. Especially in the case of Manhattan angle constraints, this 

resulted in designs with legs going directly laterally, with little, if any meandering. In the 
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future, Klateral should have a maximum constraint. This will also serve to encourage 

designs with more meandering, which will result in smaller design area. 

 

Another important factor that impacts the accuracy of the designs produced is sensitivity 

to fabrication variation.  As mentioned previously, overetch amount is not well 

quantified, and therefore the actual size of fabricated features cannot be precisely 

predicted.  In our GA implementations for this and other design problems, we have set a 

minimum beam width of 2µm, the minimum feature size of the PolyMUMPs process.  

However as beam width can change as much as 0.3µm or more with overetch, beams at 

this minimum feature size are much more susceptible to fabrication variation.  Whereas 

beams with a width of 10µm are much less sensitive to this variation – a 0.3 µm overetch 

will cause a 3% change in width for 10µm beams versus a 15% for 2µm beams.   

 

To further explain the impact of beam variation sensitivity, we can look at its impact on 

suspension performance. Stiffness is a function of the second moment of area, I, which 

for a rectangular beam is  

12

3hw
I =  

where h is height of beam (in this case thickness of poly 1 layer) and w is the beam width.  

Stiffness of a beam, k is 

3L
EI

k ∝  
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where E is the Young’s modulus and L is the length of the beam. As beam width has a 

cubic contribution to I, which is proportional to k, a 5% reduction in beam width can 

cause a 15% reduction in beam stiffness.   

 

In a simplified lumped parameter model, resonant frequency is defined as: 

m
k=ω  

where m is the suspended mass.  Using this model we can see that a 5% thinning of beam 

width on a suspension can shift resonant frequency downwards by 7%.   

 

Fabrication variation sensitivity can be reduced through additional constraints or 

objectives – increasing the minimum allowable beam width constraint from 2um to 4um 

for example.  This would restrict the design space, requiring longer beams to achieve the 

same stiffness as a thinner beam could achieve.   

 

Alternatively a more complex overall sensitivity metric can be computed from the beam 

widths and lengths. In the case of most of the designs evolved for this study, we find that 

a majority of the compliance in a suspensions comes from only a portion of the beam 

elements, for example 1-3 beam segments in a 7 beam symmetric resonator leg contribute 

90%+ of the compliance (compliance = stiffness-1) in a suspension (beams that are both 

long and thin). Therefore fabrication variation mitigation should be focused on these 

important segments.  An example variation sensitivity metric could be: 

( )� −
=

ii kww
S

min

1  
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where wi and ki are the width and stiffness of the ith  beam in the suspension, and wmin is 

the minimum allowable beam width.  From the above equation you can see that 

suspensions with beam segments with very low stiffness and a small width will result in a 

higher S value.  This fabrication variation sensitivity metric could also be considered the 

inverse of ‘robustness’ or ‘fabricatability’.   Therefore we could implement a constraint to 

limit it or an objective to minimize it, resulting in designs that are more robust to 

fabrication variation. 

 

These are a few examples of ways that lessons learned through this research could be 

incorporated into additional constraints or objectives.   Additionally a user aware of these 

issues could implicitly apply this information interactively to an interactive evolution 

synthesis. 

 

7.4.3. Conclusion 

This study has validated our approach to MEMS synthesis using multi-objective genetic 

algorithms using the reduced-order modeling tool SUGAR as a simulation engine.  By 

fabricating devices produced through several types of constraints and comparing 

simulation predicted performance with measured resonant frequency, we were able to 

identify different fabrication and simulation problems that impact the success of the 

synthesis. We were able to classify our results into three groups: 1) designs where the 

measured performance matched simulation, 2) designs where simulation different from 

measured due to simulator limitation, and 3) designs where simulations differed from 

measured due to fabrication variation. 
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For the successfully generated designs in the first group, we were able to achieve a 95% 

confidence interval of  +/-13%, which given the fabrication variations currently present in 

MEMS fabrication is reasonable for our first attempt at “closing the loop” between 

synthesis, simulation, fabrication and characterization.  

 

More importantly, by studying the other two groups, we were able to identify deficiencies 

in our current synthesis encoding and suggest several additional constraints or objectives 

that will lead to better designs in the future. 
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Chapter 8:  
Ongoing and Future Work 
 

This chapter integrates the research in this dissertation with parallel research being 

performed by others, and also makes recommendations for future research directions. We 

will go over three areas - the expanded object-oriented data structure, advanced human 

interactive evolutionary synthesis and development of a knowledge base for initial 

designs. The expanded data structure allows for synthesis of complex MEMS structures 

and more advanced genetic manipulation than what was presented in chapters 5 and 6, 

and will facilitate the less restricted instantiation research reviewed in chapter 2. We will 

present the research plan to continue the human interaction work presented in chapter 4, 

developing different ways of combining human expertise with computational synthesis, 

and finally we will discuss the current work being done to develop a knowledge base to 

draw initial design information for evolutionary synthesis. 

 

8.1. Object-oriented Data Structure 

8.1.1. Introduction 

The implementations of evolutionary synthesis for MEMS presented in this thesis, 

particularly the data structure to genetically encode a design and the genetic operations to 

modify it are case specific and thus limiting for a fundamental framework for a general 

MEMS synthesis tool. 
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The focus of this work, developed in cooperation with Sebastian Graf of Aachen 

University [64], is to create a general and flexible data structure for use with genetic 

algorithms and other evolutionary synthesis techniques. The hierarchical data structure 

supports an extendable MEMS design and component library and is able to handle 

complex connectivity between those blocks as well as design constraints and multiple 

objective goals.  

 

8.1.2. Implementation 

The data structure used is object based; meaning each component of a MEMS design is 

described and represented as an entity with its own parameters and attachment points for 

the connectivity with other components. Since the data structure is hierarchical, two types 

of design elements are defined - Higher level elements, or clusters, are composed of other 

elements, whereas the most basic elements do not contain any further components. For 

example basic elements include anchors, beams, plates, etc.  Clusters are made up 

combinations of basic elements, for example a folded flexure suspension is made of 

multiple beam elements and an anchor.  A resonating mass cluster might be made up of 

two folded flexure clusters along with a center mass cluster.   

 

This hierarchical, nodal approach works well with SUGAR, which defines elements in a 

similar hierarchy of in its netlist, with each lumped parameter element connected at 

nodes. In addition to the physical attributes of a cluster of elements, the data structure 

also includes a list with connection points referred to as the block’s external nodes. These 

nodes are used for connectivity with other elements (whether they be basic or clusters). 
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Since several blocks can share the same external node complex graph-like connectivity is 

possible. In addition to the attributes list and nodes list clusters provide a list with all their 

contained blocks. Each block also contains several flag variables, which are used to 

control the modifications made by the optimization routines. For example a flag can 

prevent the alteration of the block’s attributes.  

 

A key feature of this data structure is that it allows information about the elements and 

how to manipulate them to be embedded into the object for that element.   For example, a 

beam element not only contains information on its geometry, but also can include 

instructions on how to mutate this element (e.g. “choose one of the following three 

actions: change length, change width, change angle”).   

 

In contrast the data structure used in chapter 4 and 5 of this thesis only contained 

geometric information for fixed basic elements, element connectivity was fixed (i.e. only 

linear chains of beams connected to a fixed center mass).  Furthermore the genetic 

operations had to be specifically written for each design problem. 

 

Using this new object-oriented structure, once a library of basic elements and clusters has 

been created, at the top level only the choice of what type of elements to start with as an 

initial design must be made for a given set of objectives.  How to interface these elements 

with the perturbations or genetic operations is already included into the data structure for 

each element. This allows for much broader application to a wider range of MEMS 

designs.   
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8.1.3. Examples 

The data-structure has been developed and used with MOGA for a simple two objective 

optimization problem similar to the work presented in section 5.3.  The problem calls for 

the synthesis of a resonating mass with resonant frequency of 10 kHz with minimum 

area.  In this case the center mass was set as a 100 �m x 100 �m square plate with four 

leg attachment points. Figure 8.1 shows output from this MOGA, in this case only basic 

beam elements are allowed, this type of solution is similar to those presented in this 

thesis, Figure 8.2 demonstrates a cyclic graph configuration not possible with the 

standard implementation, the addition of cross-leg beams is included as a possible 

mutation operation for the device as a whole. Figure 8.3 demonstrates the ability to mix 

different elements – in this case serpentine clusters and beam elements are both allowed 

in legs. Note that this is similar to the type of structure shown in Figure 2.3, except in this 

case the encoding structure allows this design to be modified and evolved.   
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Figure 8.1: Four Leg Resonating Mass Encoded Using Object-Oriented Data 
Structure. 

 

Figure 8.2: Example of Flexibility of Object-Oriented Data Structure. Cyclical 
graph configurations can be generated and manipulated by MOGA. 

 

ω = 10.0 kHz 

ω = 50.1 kHz 
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Figure 8.3: Example of Alternate MOGA Implementation Output Using Object 
Oriented Data Structure - four leg resonating mass where multiple element types 

are allowed, both serpentine spring clusters and regular beam elements are 
incorporated into the same leg. 

 

8.2. Expanded IEC development 

8.2.1. Alternate IEC Integration 

A major thrust of the future work by the author will be in expanding the IEC work 

presented in chapter 4.  The initial IEC presented here used a simple serial relationship 

between interactive and non-interactive evolution where IEC was a post-process applied 

after MOGA evolution.  We chose the simplest, but also least powerful means of mating 

the two. As with all IEC work, human fatigue is still a critical factor limiting the process. 

As a result, we will investigate running a non-interactive evolution with periodic human 

intervention. This better utilizes the knowledge of the user throughout the evolution 

process and makes more efficient use of the tirelessness of the non-interactive approach. 

ω = 32.4 kHz 
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We will verify this by performing user tests for both quality of output and execution 

time, similar to those conducted in chapter 4. 

 

8.2.2. Online Knowledge Embedding 

The second goal of our collaboration will be to extend the forefront of IEC research by 

introducing the concept of “Online Knowledge Embedding” in our design tools.  One of 

the key drawbacks of evolutionary design in the analog integrated circuit field has been 

the inability to focus the evolution on specific parts of a design while leaving the rest of 

the design fixed.  Takagi has used online knowledge embedding in his work with simple 

photomontage systems [65,66], which use IEC to evolve a picture of a human face for 

tasks such as identifying criminals. This allows the user (e.g. a witness to a crime) to fix 

facial features that they feel are a good match and continue evolving the rest of the face. 

By reducing the number of variables involved, this allows the evolutionary algorithm to 

more quickly converge on the best solution.  Configurational synthesis problems like 

MEMS design synthesis are much more complex, for example our resonating mass case 

study problem, synthesizing a MEMS resonator, involves up to 84 continuous variables, 

so the ability to reduce variables is highly desirable. 

 

We have split the development of online knowledge embedding in our IEC MEMS 

synthesis tools into two stages – the first is simpler and works similar to the 

photomontage system, it allows the human to fix or ‘freeze’ specific elements of designs. 

In our case study example this would include the geometry (angles, lengths, and/or 

widths) of some or all of the beams that make up the suspension of the MEMS resonator.  
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The human user will be able to focus the IEC’s attention on specific parts of the MEMS 

device, reducing the computational complexity of the problem and allowing it to 

synthesis better designs faster.  

 

The second stage for online knowledge embedding takes the human interaction one step 

further.  It would allow the human to suggest directly to the IEC how to evolve a given 

design from one generation to another.  In the photomontage example, this would be 

similar to a witness suggesting to a police sketch artist to lengthen the hair or increase the 

size of the nose on a sketch. Applying this concept to IEC synthesis would be highly 

useful not only for MEMS but other IEC applications. Often when using our IEC MEMS 

tool, a user would evolve a design that was good, but had perhaps one flaw in it.  Using 

this more advanced knowledge embedding, the user could specifically tell the 

evolutionary algorithm how to improve the design, rather than relying purely on 

stochastics to randomly happen upon the correct choice. In effect the human user is able 

to direct the evolution, giving the evolution process a ‘push’ in a specific direction.  This 

type of online knowledge embedding will have the benefit of being able to more 

efficiently evolve a more population of designs, as the human has a more hands on role in 

the evolution of each design throughout the evolution process and can avoid spending 

resources evolving in less fruitful directions.  User tests will be performed to validate the 

effectiveness of both stages of knowledge embedding IEC through comparison with the 

previous IEC and non-interactive evolutionary algorithms developed. 
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8.2.3. Artificial Intelligence Assisted IEC 

The third goal is to further build upon the first two goals by incorporating artificial 

intelligence concepts into IEC.  As mentioned previously, human fatigue is the key 

limitation of IEC.  To avoid this, we would like to be able to train a computer program to 

recreate the decision making process of a human expert.  If we were dealing with only 

one specific synthesis problem using our basic IEC implementation, it is feasible to create 

an expert system comprised of specific functions to recreate the decision of a human user 

based on the geometry of a design.  But this solution is impractical if the problem 

formulation is subject to change.  A better solution is to create a learning agent. An agent 

can be trained by observing the human’s interaction with the software and learn to 

reproduce it, eventually taking over a larger and larger share of the decision-making 

burden from the human. One of the first approaches we will investigate is the use of 

ensemble learners.  We will also study other machine learning techniques, such as 

support vector machines and neural networks. 

 

8.2.4. Application of IEC to Real-World MEMS problems 

For the application aspect of the project, the goal is to make a concrete demonstration of 

IEC’s effectiveness in MEMS design.  Several companies developing MEMS have 

expressed interest in using automated synthesis to improve their products.  We would like 

to use the many aspects of our IEC MEMS software developed throughout the research 

phase of this project to prove that a user can synthesize better designs than currently 

produced by traditional design methods. This would entail identifying one or more 

commercial MEMS products, such as accelerometers, gyroscopes, or micro-relays.  Then 
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apply the IEC software to synthesize devices using the same application specifications 

and design constraints. By comparing several metrics such as sensitivity, device area, 

power required, measurement range, etc a definitive evaluation can be made about our 

tools’ ability to produce superior examples of ‘real-world’ devices. 

 

 

8.3. Case Based Initial Design Generator 

 
Figure 1.1 and Figure 1.2 presented our overall framework for MEMS synthesis, in 

addition to the components described in this thesis; another part that is currently being 

developed is a case-based library from which a synthesis algorithm can draw initial 

designs.  The synthesis work presented in this thesis uses randomly generated designs for 

fixed configurations for all application examples.  Essentially a user has to derive their 

own encoding scheme and general design configuration and randomly generate instances 

for that configuration.  A more efficient method is to use a knowledge base to draw 

similar examples from for both the encoding and initial configurations.   

 

The ability to draw upon past design knowledge is advantageous to the designer, as it 

permits them to generate useful MEMS designs without the same depth of knowledge in 

this domain. Furthermore better configurations can be generated faster as we will not 

need to revolve ‘from scratch’ every time.  Case-based reasoning can utilize past 

successful MEMS designs and sub-assemblies as building blocks stored in an indexed 

library.  Reasoning tools will then find cases in the library with solved problems similar 

to the current design problem and propose an approximate solution. 



157 

 

Chapter 9: Conclusions 

In this thesis, several important developments in evolutionary synthesis of MEMS have 

been presented. Different stochastic and non-stochastic synthesis approaches including 

genetic algorithms, simulated annealing and gradient methods have been presented and 

compared.  The use of human interactive evolutionary synthesis for MEMS has also been 

demonstrated; user test results demonstrate that by combining automated and interactive 

synthesis, better MEMS structures can be generated. 

 

The applicability of our evolutionary synthesis is demonstrated for several example 

surface micromachined suspension applications, including accelerometers and 

gyroscopes.  Details of instantiation, design objectives, constraints and genetic encoding 

structure are discussed as well.  A case study of the impact of constraints on MEMS 

resonator synthesis has shown that due to the high dimensionality of the designs space, 

symmetry and angle constraints may be required to reach better solutions in a reasonable 

amount of time. 

 

Our approach to the evolutionary synthesis of MEMS has been validated through the 

characterization of fabricated designs. We were able to fabricate resonating mass 

structures with measured performance close to our predicted performance. More 

importantly we developed new design rules that will improve our design constraints and 

objectives for future synthesis.  Fabrication variation and simulator limitations remain to 
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be outstanding issues facing evolutionary synthesis that need to be addressed in future 

synthesis tools. 

 

Finally we presented ongoing and future directions for research in MEMS design 

synthesis.  An object oriented data structure for describing more complex MEMS 

topologies for evolutionary optimization is presented.  Development of a case-based 

library to store initial design information is presented as well.  A research plan for 

building on the initial human interactive evolution presented in this thesis is also 

presented.  This work will better utilize the tirelessness of automated synthesis with the 

expertise of a human designer to generate better MEMS designs. 

 

As mentioned in chapter 1, MEMS based technology promises to bring a revolution to 

world we live in just as the integrated circuit has done in recent decades; better design 

tools are critical to this revolution. It is hoped that this thesis presents a more complete 

picture of the utility of design synthesis for MEMS and can inspire future research into 

other aspects of the application of design automation to the field of MEMS. 
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