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Abstra
tGeneti
 Programming is 
apable of automati
ally indu
ing symboli
 
omputer pro-grams on the basis of a set of examples or their performan
e in a simulation. Math-emati
al expressions are a well-de�ned subset of symboli
 
omputer programs andare also suitable for optimization using the geneti
 programming paradigm. Theindu
tion of mathemati
al expressions based on data is 
alled symboli
 regression.In this work, geneti
 programming is extended to not just �t the data i.e., get thenumbers right, but also to get the dimensions right. For this units of measurementare used. The main 
ontribution in this work 
an be summarized as:The symboli
 expressions produ
ed by geneti
 programming 
an bemade suitable for analysis and interpretation by using units of mea-surement to guide or restri
t the sear
h.To a
hieve this, the following has been a

omplished:� A standard geneti
 programming system is modi�ed to be able to indu
eexpressions that more-or-less abide type 
onstraints. This system is used toimplement a preferential bias towards dimensionally 
orre
t solutions.� A novel geneti
 programming system is introdu
ed that is able to indu
eexpressions in languages that need 
ontext-sensitive 
onstraints. It is demon-strated that this system 
an be used to implement a de
larative bias towards1. the ex
lusion of 
ertain synta
ti
al 
onstru
ts;2. the indu
tion of expressions that use units of measurement;3. the indu
tion of expressions that use matrix algebra;4. the indu
tion of expressions that are numeri
ally stable and 
orre
t.� A 
ase study using four real-world problems in the indu
tion of dimensionally
orre
t empiri
al equations on data using the two di�erent methods is pre-sented to illustrate the use and limitations of these methods in a frameworkof s
ienti�
 dis
overy.
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Resume(Abstra
t in Danish)Genetisk programmering er i stand til at produ
ere 
omputer programmer, automa-tisk pa baggrund af eksempler pa programmernes virkning i en simulering. Damatematiske udtryk er en velde�neret delmangde af symbolske 
omputer program-mer og kan disse ogsa bestemmes under genetisk programmerings paradigmet. Em-pirisk bestemmelse af matematiske udtryk kaldes symbolsk regression.I dette arbejde bliver genetisk programmering udvidet til, et varktoj der ikke bare"�tter data", men ogsa giver korrekte fysiske dimensioner. De vasentligste bidrag idette arbejde opsummeres ved:Symbolske udtryk, udledt ved hjalp af genetisk programmering kan gorestilgangelige for analyse og fortolkning, ved at lade dimensionsbetragt-ninger stotte eller begranse sogerummet.Dette er opnaet ved at� Et standard genetisk programmerings-varktoj er blevet modi�
eret til at pro-du
erer udtryk som hovedsagligt er dimensionelt konsistente. Dette modi�-
erede system er anvendt til at malrette genetisk sogning mod dimensioneltkorrekte udtryk via sakaldt "preferential bias".� Et nyt genetisk programmeringsvarktoj er blevet introdu
eret, som kan pro-du
ere udtryk baseret pa kontekst-folsomme bibetingelser. Det er blevetdemonstreret at dette system kan implementere malrettet sogning som viasakaldt "de
larative bias" giver mulighed for at1. udelukke visse syntaktiske udtryk,2. produ
ere udtryk baseret pa fysiske dimensioner,3. produ
ere udtryk der involverer matrix algebra,4. produ
ere udtryk som er numeriske stabile og korrekte,� Der er endvidere udfort et empirisk studie der er baseret pa �re praktiske prob-lemer og de to metoder, som involverer udtryk med korrekte fysiske dimen-sioner og derved illustrerer muligheder og begransninger indenfor automatiskdata-analyse.
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1
Chapter 1Introdu
tionPhysi
al 
on
epts are free 
reations of the human mind, and are not,however it may seem, uniquely determined by the external world.-Albert Einstein and Leopold Infeld, 1938The formation of modern s
ien
e o

urred approximately in the period between thelate 15th and the late 18th 
entury. The new foundations were based on the utiliza-tion of a physi
al experiment and the appli
ation of a mathemati
al apparatus inorder to des
ribe these experiments. The works of Brahe, Kepler, Newton, Leibniz,Euler and Lagrange personify this approa
h. Prior to these developments, s
ienti�
work primarily 
onsisted of 
olle
ting the observables, or re
ording the `readings ofthe book of nature itself'.This s
ienti�
 approa
h is traditionally 
hara
terized by two stages: a �rst one inwhi
h a set of observations of the physi
al system are 
olle
ted, and a se
ond onein whi
h an indu
tive assertion about the behaviour of the system | a hypothesis| is generated. Observations present spe
i�
 knowledge, whereas hypotheses rep-resents a generalization of these data whi
h implies or des
ribes observations. Onemay argue that through this pro
ess of hypothesis generation, one fundamentallye
onomizes thought, as more 
ompa
t ways of des
ribing observations are proposed.Although this view of the dispassionate s
ientist observing fa
ts and produ
ingequations is popular, it is not all there is to say about the pro
ess of s
ienti�
dis
overy. In the years that lead to Kepler's famous laws of planetary motion,he introdu
ed and abandoned various informal models of the solar-system. Thesemodels initially took the form of a 
olle
tion of embedded spheres (Holland et al.,1986)(pp. 323-325). It was only when he abandoned the idea of planets movingin 
ir
ular orbits around the sun and repla
ed it with ellipses that he was able topostulate his laws. Kepler is not unique in this; the pro
ess of the formulation ofs
ienti�
 law or theory usually takes pla
e in the 
ontext of a mental model of thephenomenon under study: using the right 
on
ept to explain the equation providesadditional justi�
ation for these equations. Finding a proper 
on
eptualization of theproblem is as mu
h a feat of s
ienti�
 dis
overy as the formulation of a mathemati
aldes
ription or explanation of a phenomenon.Today, in the beginning of the 21st 
entury, we are experien
ing yet another 
hangein the s
ienti�
 pro
ess as just outlined. This latest s
ienti�
 approa
h is one



2 CHAPTER 1. INTRODUCTIONin whi
h information te
hnology is employed to assist the human analyst in thepro
ess of hypothesis generation. This 
omputer-assisted analysis of large, multi-dimensional data sets is sometimes referred to as a pro
ess of Data Mining andKnowledge Dis
overy. The dis
ipline aims at providing tools to fa
ilitate the 
on-version of data into a number of forms that 
onvey a better understanding of thepro
ess that generated or produ
ed these data. These new models 
ombined withthe already available understanding of the physi
al pro
esses | the theory | 
anresult in an improved understanding and novel formulation of physi
al laws and animproved predi
tive 
apability.One parti
ular mode of data mining is that of model indu
tion. Inferring modelsfrom data is an a
tivity of dedu
ing a 
losed-form explanation based solely on ob-servations. These observations, however, always represent (and in prin
iple onlyrepresent) a limited sour
e of information. The question emerges how this, a lim-ited 
ow of information from a physi
al system to the observer, 
an result in theformation of a model that is 
omplete in the sense that it 
an a

ount for the entirerange of phenomena en
ountered within the physi
al system | and to even des
ribethe data that are outside the range of previously en
ountered observations. The
on�den
e in model performan
e 
an not be based on data alone, but might bea
hieved by grounding models in the domain so that appropriate semanti
 
ontentis obtainable. These models 
an then be used to reinfor
e, inspire or abandon thes
ientists' view of the problem.The overall goal of the approa
h is then to subtly 
hange the pro
ess of s
ienti�
dis
overy. Rather than having the s
ientist `read' the data, invent a 
on
eptualiza-tion (an informal model) of the problem using this data in order to �nally providea formal expression that des
ribes the 
on
eptualization and thus the phenomenon,the s
ienti�
 dis
overy pro
ess envisioned here removes the need for the s
ientistto work with only the raw data to inspire a 
on
eptualization of the pro
ess understudy. What is attempted here is to automati
ally generate expressions that usehigh level physi
al 
on
epts | units of measurement | to provide an approximate,but interpretable view of the data. It is thought that su
h approximate expressions,on
e analyzed, 
an help the s
ientist in understanding the data better. Finally, on
ethe 
on
eptualization is trustworthy, a formal expression 
an be proposed that iseither build out of (parts of) the automati
ally generated expressions or is builddire
tly out of the informal model itself.The prototypi
al 
y
le of observation, imagination, formalization and testing thatis asso
iated with s
ienti�
 dis
overy is then extended to in
lude an automatedmodelling step between observation and imagination. By providing tentative for-malizations based on data and high-level physi
al 
on
epts, the s
ientist is freedfrom examining measurements only: examining well-�tted, possibly meaningful ex-pressions is thought to be an task that 
an inspire novel 
on
eptualizations of thepro
esses under study. As su
h an automated method is biased only to the avail-able data and to these high-level 
on
epts, it would be free to propose approximatesolutions to the problem that are radi
ally di�erent from 
ontemporary thought.Understanding how su
h a di�erent approximation �ts in the s
ienti�
 frameworkmight lead to an enhan
ed or maybe even di�erent approa
h to des
ribing thephysi
al system.In order to 
reate su
h a system, we need model indu
tion algorithms that produ
emodels amenable to interpretation next to the ability to �t the data. The inter-



3pretation of these models should then provide the additional justi�
ation that isneeded to use the model with more than just statisti
al 
on�den
e. Clearly, everymodel has its own syntax. The question is whether su
h syntax 
an 
apture thesemanti
s of the system it attempts to model. Certain 
lasses of model syntax maybe inappropriate as a representation of a physi
al system. One may 
hoose a modelwhose representation is 
omplete, in the sense that a suÆ
iently large model 
an
apture the data's properties to a degree of error that de
reases with an in
reasein model size. Thus, one may de
ide to expand Taylor or Fourier series to a adegree that will de
rease the error to a 
ertain, arbitrarily given degree. However,
ompleteness of the representation is not the issue. The issue is in providing anadequate representation amenable to interpretation.The present work is an attempt to make the models produ
ed by the te
hnique of ge-neti
 programming more suitable to be used within a s
ienti�
 dis
overy framework.It 
riti
ally uses units of measurement as the apparatus to ground the models in thephysi
al domain. Units of measurement have been 
hosen as they embody a formalsystem for manipulating physi
al 
on
epts su
h as lengths, velo
ities, a

elerationand for
es. Manipulating numbers using arithmeti
 is then a

ompanied with ma-nipulating units of measurement. The units of measurement are proposed to forma suitable set of high-level 
on
epts to be used in s
ienti�
 dis
overy. The resultingsymboli
 expressions produ
ed by this system are fully dimensioned: the s
ientistworking with the system 
an analyze and interpret the equations by translating theformal de�nition of the units ba
k to the respe
tive physi
al 
on
epts.In the s
ienti�
 dis
overy pro
ess that is proposed here, the s
ientist still plays apivotal role. Although the pro
ess of 
reating equations from data is done usingautomated means, the important pro
ess of interpretation, analysis and embeddingthe proposed hypotheses in an existing or new theory remains �rmly in the hands ofthe s
ientist. The equations that are dis
overed form both an empiri
al formulationof the relationships in the data and a tentative proposal of the physi
al 
on
eptsthat are manipulated by the formulation. It is thought that the s
ientist usingthese tentative proposals 
an more eÆ
iently set up, test and refute models for theproblem under study.This work will fo
us on the de�nition and 
omparison of methods that in
orporateunits of measurement in the sear
h. The thesis forwarded in this work 
an then besummarized as:The symboli
 expressions produ
ed by geneti
 programming 
an bemade suitable for analysis and interpretation by using units of mea-surement to guide or restri
t the sear
h.To examine this, several paths will be traversed. Two geneti
 programming systemswill be developed: one that guides the sear
h to (more-or-less) dimensionally 
orre
texpressions, the other that restri
ts the sear
h to only those expressions that aredimensionally 
orre
t. The work is then organized as:� Chapter 2 gives a brief overview of geneti
 and evolutionary 
omputation,in parti
ular the te
hnique of geneti
 programming. The 
on
ept of multi-obje
tive optimization in the 
ontext of evolutionary sear
h will be des
ribed.



4 CHAPTER 1. INTRODUCTIONMulti-obje
tive optimization, in parti
ular using the 
on
epts of Pareto opti-mality, enables sear
hing in a spa
e where the trade-o�s between the obje
-tives are not known beforehand.� Chapter 3 introdu
es the standard form of indu
ing expressions using geneti
programming. This is 
alled symboli
 regression. Here it will be argued thatalthough geneti
 programming is 
apable of indu
ing mathemati
al (symboli
)expressions, interpretability is not a natural by-produ
t of these equations.� Chapter 4 will lay some groundwork for the rest of the thesis. It will fo
uson what it means to indu
e an empiri
al equation, and will brie
y des
ribetwo ways of in
orporating knowledge about the units of measurement in thesear
h.� Chapter 5 des
ribes the te
hnique 
alled Dimensionally Aware geneti
 pro-gramming. Rather than abiding to the units of measurement at all 
ost, itimplements a preferen
e toward dimensionally 
orre
t equations. It balan
esthe ability to �t the data with the ability to use the units in a 
orre
t way.� Chapter 6 introdu
es the system used for implementing Dimensionally Cor-re
t geneti
 programming. Due to the 
ontext-sensitivity of the 
onstraintspresent in this system, the expressiveness of a Logi
 Programming languageis used. The sear
h strategy in this Logi
 Programming system is a geneti
algorithm, its task is to optimize paths through the sear
h tree de�ned by aLogi
 Program.� Chapter 7 applies this novel system in a series of experiments involving theex
lusion of synta
ti
al 
onstru
ts, the use of interval arithmeti
, the use ofunits of measurement and �nally the indu
tion of 
orre
t senten
es in matrixalgebra. These four experiments are used to highlight the versatility of theapproa
h.� Finally, Chapter 8 
ompares the two approa
hes. On four real-world prob-lems, the dimensionally aware approa
h will be 
ontrasted with the dimension-ally 
orre
t approa
h to model indu
tion. The experiments will be 
ondu
tedon the basis of quantative measures | ability to provide well-�tted 
orre
tequations | and on the quality, the interpretability of the expressions.� Chapter 9 
on
ludes the thesis.
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Chapter 2Geneti
 Programming
2.1 Evolution at work:Geneti
 & Evolutionary ComputationIn `The origin of spe
ies', Charles Darwin (Darwin, 1859) introdu
ed the prin
iple ofnatural sele
tion as a unifying view for the origin and further evolution of organismsin nature. Using similar prin
iples the �eld of Evolutionary Computation ta
klesdiÆ
ult problems by evolving approximate solutions inside a 
omputer. Startingwith a primordial diversity of random solutions, repeated sele
tion and variationare applied to improve the quality of the solutions. The basi
 
riteria for evolutionto o

ur | be it in vitro as in biology or in sili
o, with 
omputers | have beensummarized by the biologist Maynard-Smith (Maynard-Smith, 1975) as:� Criterion of Fe
undity Variants leave a di�erent number of o�spring; spe-
i�
 variations have an e�e
t on behaviour and behaviour has an e�e
t onreprodu
tive su

ess;� Criterion of Heredity O�spring are similar to their parents: the 
opyingpro
ess maintains a high �delity;� Criterion of Variability O�spring are not exa
tly the same as their parent:the 
opying pro
ess is not perfe
t.These 
riteria are ne
essary ingredients for evolution to o

ur and are used to solveproblems by employing an Evolutionary Algorithm. Su
h an evolutionary algorithmoperates on populations of 
andidate solutions, ea
h solution is graded a

ordingto its performan
e and 
onstitutes a basis to improve upon for future generations.In its most basi
 form, an evolutionary algorithm works on a population of solutions,P , whi
h is subje
t to the iteration:Pt+1 = v(s(Pt)) (2.1)



6 CHAPTER 2. GENETIC PROGRAMMINGwhere the fun
tions s and v are 
alled sele
tion and variation operators respe
tively.Starting with a randomly generated population P0, this algorithm is applied for manyiterations, 
alled generations. The sele
tion fun
tion s implements the 
riterion offe
undity: it makes sure that solutions that have above average performan
e re
eivemore 
opies in the next generation. The sele
tion fun
tion is thus used to enfor
ethe goal of the optimization pro
ess; getting the best solution possible. Thesesele
ted solutions (
opies) are subsequently pro
essed by the variation operator v.The variation operator usually applies random, undire
ted 
hanges, and is supposedto balan
e the heredity and variability 
riteria. Too mu
h variation and the evolutionwill degrade to a random sear
h, too little variation and the population of tentativesolutions will evolve to a population of 
lones only.The sele
tion operator uses the performan
e of the solutions to give above averageperforming instan
es more 
opies in the next generation. An obje
tive fun
tionneeds to be de�ned that 
an 
al
ulate this performan
e. In the most simple 
ase,this fun
tion returns a s
alar value that 
al
ulates some obje
tive value. Thus givensome fun
tion that 
al
ulates the performan
e of an individual and a populationsize n, the sele
tion fun
tion assigns 
opies for the next generation. It 
an do thisthrough one of many ways.� Proportional Sele
tion Create n 
opies of individuals proportional to theperforman
e of solutions, the variation operators will then be applied to thisnew population;� Trun
ation Sele
tion For a number m < n, sele
t the best m individualsfrom the population, add n�m randomly sele
ted 
opies from these m bestindividuals to obtain a new population1, the variation operators will be appliedto these n�m 
opies;� Tournament Sele
tion For some k, the tournament size, repeatedly sele
tk individuals at random, and put the best of those k in the next generationafter applying the variation operators until n 
opies are assigned.The de�nition of this basi
 evolutionary algorithm is representation-free. It doesnot mention what form of solutions should be 
onsidered, and in e�e
t, many rep-resentations are used in the �eld of evolutionary 
omputation. The best knownevolutionary algorithm is the geneti
 algorithm (Holland, 1980; Goldberg, 1989),that typi
ally uses �xed length bitstrings as the representation of 
hoi
e. Other,older, work involved �nite state automaton (Fogel et al., 1966) and real valued ve
-tors (Re
henberg, 1965; S
hwefel, 1995). This work has evolved into the separatebut related �elds of evolutionary programming and evolution strategies. Currently,many problem-dependent representations are in use for pra
ti
al appli
ations.On
e the representation is 
hosen, variation operators need to be de�ned. Thesimplest of su
h operators is the mutation operator that makes a small randomized
hange to the representation: in the 
ase of bitstring 
ipping one or several bits isa 
ommon operation; when using 
oating point values a small Gaussian 
hange 
an1This sele
tion me
hanism is usually de�ned in a slightly di�erent way, where the variationoperator enlarges the population and the sele
tion operator redu
es it; but the de�nition given hereis equivalent with this. It is presented in this way to keep it in line with the abstra
t evolutionaryalgorithm in Equation 2.1.



2.2. STANDARD GENETIC PROGRAMMING 7be applied. Often also a re
ombination operator is de�ned: this is 
alled 
rossover.The 
rossover operator re
ombines the information in two solutions to 
reate oneor two new solutions. It does this in a randomized fashion. Its purpose is to explorenew 
ombinations of parts of the solution, in the hope that this leads to a new levelof performan
e.Not any 
ombination of representation, sele
tion and variation makes sense however.Variation of solutions need to be 
orrelated in some way with the performan
e ofsolutions. In its strongest form this means that a small 
hange in the representationof the solution should be a

ompanied with a small 
hange in the performan
e ofthe solution. Another 
orrelation that is often hypothesized is the exploitation ofbuilding blo
ks in the problem. These are partial representations (s
hemata) whoseworth in 
omplete solutions are as independent as possible from the 
ontext they areused in. By re
ombining building blo
ks, new high-performing solutions might beobtained. The interplay between the performan
e of solutions, the representationof solutions and the variation of representations is a major resear
h area in the �eld.Below, geneti
 programming is des
ribed. With this method, the representationsthat are being evolved are 
omputer programs that try to solve a spe
i�
 prob-lem. It is an attempt to perform automati
 programming in the sense outlined bySamuel (Samuel, 1959), where 
omputers are programmed by telling them what todo, not how to do it.2.2 Standard Geneti
 ProgrammingKoza's monograph \Geneti
 Programming, on the programming of 
omputers bynatural sele
tion" (Koza, 1992) marks the beginning of the �eld of geneti
 pro-gramming. It 
ontains a wealth of examples where a basi
 geneti
 programmingsystem was used to solve problems in various �elds of arti�
ial intelligen
e. The
ru
ial insight in the book was the observation that many, if not most problems inarti�
ial intelligen
e 
an be stated as:Given a problem X, �nd a 
omputer program that solves X.Together with a method to automati
ally �nd 
omputer programs | geneti
 pro-gramming | this guideline was powerful enough to solve a wealth of problems takenfrom the arti�
ial intelligen
e literature. Thus instead of using spe
ialisti
 repre-sentations like neural networks, de
ision trees, horn 
lauses or frames, the geneti
programming method tries to solve problems by relying on a single representationframework: that of 
omputer programs2.Geneti
 programming as envisioned by Koza does not pro
ess 
omputer programsin the same way as human programmers do. There's no �le of statements written inASCII, no pesky syntax with various spe
ial symbols like semi-
olumns that 
an bemispla
ed to produ
e a synta
ti
ally meaningless result, no myriad of data types that
annot be mixed. The standard single-typed geneti
 programming system operatesusing an abstra
tion of 
omputer programs | an already parsed expression, typi
ally2The primitive fun
tions and variables used inside the 
omputer programs vary however fromappli
ation to appli
ation



8 CHAPTER 2. GENETIC PROGRAMMINGrepresented in a parse tree. The use of a parse tree representation in a geneti
algorithm was pioneered by Cramer (Cramer, 1985).There's nothing spe
ial about parse trees other than that it 
ir
umvents issues ofa purely synta
ti
al nature and suggest a few natural variation operators. If onewere to try to optimize program snippets in C for instan
e, one 
ould try to pro
eedby using a geneti
 algorithm using the ASCII 
hara
ter set. Say that by 
han
e afun
tion su
h asdouble solution(double x, double y){ return x * y + sqrt(0.3);}would evolve, and arbitrary variation operators are allowed, it is easy to see that thepossibility of introdu
ing synta
ti
al errors is immense. Changing a single 
hara
terto an arbitrary other 
hara
ter would in most 
ases result in a synta
ti
 error.Geneti
 programming 
ir
umvents this problem by only 
onsidering the relevantpart of the syntax in a 
omputer friendly format | the parse tree. For all pra
ti
alpurposes the C-style fun
tion above 
an be des
ribed by the parse tree+*x y sqrt0.3where no information about the 
omputation that is performed is lost, but a fewsynta
ti
 issues are 
leared up. The number of arguments for ea
h fun
tion 
anbe dedu
ed from the number of 
hildren of a node and also issues of operatorpre
eden
e are resolved. The parse tree thus represents an unambiguous way of
omputing the fun
tion. It is this property that is also employed by 
ompilers.These generally use parse trees as an intermediate representation before generatingma
hine 
ode.The parse tree also provides inspiration to the issue of variation. As a parse treede
omposes a 
omputation into a hierar
hy of sub
omputations, varying these sub-
omputations at the various levels in the tree is a natural way of obtaining newprograms. Se
tion 2.2.3 will go into more detail on how to vary solutions in stan-dard geneti
 programming.2.2.1 The PrimitivesA parse tree is 
omposed of fun
tion symbols | the inner nodes | and terminalsymbols | the leafs of the tree. De�ning these fun
tion and terminal symbolsis an inherently problem dependent issue. If the problem is one of regression, itwould be natural to in
lude the independent variables in the terminal set and leta variety of mathemati
al fun
tions form the fun
tion set. If the problem is oneof simulated roboti
s, various sensor information 
ould be used as terminals orbran
hing instru
tion. The output of the program or side-e�e
ting fun
tions 
ouldthen be used as e�e
tuators.



2.2. STANDARD GENETIC PROGRAMMING 9Finding a symboli
 expression based on some data is a 
entral problem in this work.Typi
al fun
tion and terminal sets that are used here involve simple mathemati
alfun
tions, operating ultimately on the independent variables, the terminals. Themost 
ommonly used fun
tion set in this work is:F = fplus/2, times/2, minus/2, divide/2, sqrt/1gwhere the number behind the fun
tion name indi
ates the arity of the fun
tion.The terminal set 
onsists of the independent variables and a spe
ial terminal: a realvalued 
onstant. In Koza's original setup su
h 
onstants were initialized at random,but were not 
hanged during the run. Here we will however use a spe
ial mutationoperator for these 
onstants. A terminal set involving independent variables x, yand randomly initialized 
onstants will be denoted as:T = fx; y;RgThere are only vague guidelines for 
hoosing a parti
ular fun
tion and terminal set.In general one tries to �nd a suitable high-level set of fun
tions a

ompanied bya set of terminals that are most des
riptive for the problem at hand. There isinherently some arbitrariness in this sele
tion. It is however quite a

epted thatvery low-level fun
tions are not very useful: although logi
ally 
omplete, �ndinga real-valued fun
tion using only the nand operator is 
onsidered to be a wasteof time due to the enormous size of the parse trees one needs to even implementsimple fun
tions. The fun
tion and terminal set is usually 
hosen in su
h a way thatdi�erent, powerful solutions 
an be implemented by relatively small parse trees. Thefun
tion set de�ned above 
an already des
ribe all rational fun
tions of arbitrarydegree, and the sqrt fun
tion allows fra
tional powers as well.2.2.2 InitializationUsing the primitives, it is possible to generate well-formed parse trees. This 
an bedone in several ways. One of the simplest is the grow method, where a primitive |be it a fun
tion or terminal | is sele
ted uniformly at random, and as long as thereare unresolved subtrees, the pro
ess is repeated. When a prespe
i�ed depth or sizelimit is rea
hed only terminals are 
hosen. An example of this pro
ess is depi
tedin �gure 2.1Another method developed by Koza is the full method. Here fun
tion nodes arealways 
hosen until the prespe
i�ed-spe
i�ed depth limit is rea
hed. At that pointonly terminal nodes are 
hosen. The tree in Figure 2.1 
ould equally well havebeen 
reated by the full method if the depth limit was set at the low value of 3.Using the grow and full method ea
h for 50% of the population is known as theramped-half-and-half initialization method.As the primitives are 
hosen uniformly from the available primitives, the expe
tedsize of the trees varies 
onsiderably with the sizes of the fun
tion and terminal set.In Se
tion 6.2.1 the gambler's ruin model will be used to analyze the grow method.An overview of alternative tree initialization routines and an empiri
al 
omparisonbetween those 
an be found in (Luke and Panait, 2001).



10 CHAPTER 2. GENETIC PROGRAMMING(i) �# # (ii) �+# # # (iii) �+x # #(iv) �+x y # (v) �+x y sqrt# (vi) �+x y sqrt0.3Figure 2.1: Creating a tree. Empty spots (denoted by #) are re
ursively �lled inuntil the tree is 
ompleted.+�x y sqrt0.3�x +y z
�R

++y z sqrt0.3�x �x yFigure 2.2: Example of a subtree 
rossover where the parents on the left produ
ethe 
hildren on the right by ex
hanging the two 
ir
led subtrees.2.2.3 VariationGiven a parse tree where the internal nodes represent the fun
tions and the leafsthe terminals, many variation operators 
an be de�ned. Two basi
 operators willbe des
ribed here: subtree mutation and subtree 
rossover. These operators arevery simple: subtree mutation repla
es a randomly 
hosen subtree in a tree witha randomly generated subtree, while subtree 
rossover swaps two randomly 
hosensubtrees in the parents to 
reate a new tree. Figure 2.2 gives an example of subtree
rossover.Choosing subtrees randomly from all available subtrees implies some bias towardssele
ting smaller subtrees. This 
omes naturally from the parse tree representationwhere subtrees 
an be 
omposed of subtrees themselves. When randomly 
hoosingsubtrees from a tree 
omposed of binary fun
tions, slightly more than 50% of thesubtrees are terminals; randomly 
hoosing nodes in the tree will then in more thanhalf of the 
ases result in 
hoosing a terminal. As terminals are the smallest partsof trees, this results on average in an ex
hange of a minimal amount of information.To 
ounter this, Koza (Koza, 1992) took the pragmati
 approa
h of sele
ting aninternal node (a fun
tion) 90% of the time and a terminal 10% of the time. Many



2.2. STANDARD GENETIC PROGRAMMING 11x y t (x+ y)�p0:3 error0.0 1.0 0.55 0.54772 0.00227740.2 0.6 0.45 0.48990 0.039900. . . . . . . . . . . . . . .0.9 0.1 0.6 0.54772 0.0522770.8321Table 2.1: Example of evaluating a fun
tion indu
ed by geneti
 programming onthe available data, where t is the target variable.other approa
hes have been de�ned however to implement some other distributionon the sele
tion of subtrees (Langdon, 1999; Harries and Smith, 1997).One spe
ial mutation operator is used here that sele
ts a 
onstant | if present |in the tree and 
hanges its value a little | usually by adding a normally or Cau
hydistributed number.2.2.4 Measuring Performan
e and WrappingThe main feedba
k to an evolutionary algorithm is the performan
e measure. Theperforman
e measure is used by the sele
tion fun
tion to determine whi
h programsre
eive more variants in the next generation. Often the performan
e measure is asingle s
alar value, but more than a single performan
e 
riterion 
an be used as well.One would then enter the area of evolutionary multi-obje
tive optimization. A goodperforman
e measure for any evolutionary sear
h methods gives an as �ne-graineddi�erentiation between 
ompeting solutions as possible, fo
using on the eventualuse of the program and avoiding giving false information. An example of evaluatinga mathemati
al fun
tion on some data is given in Table 2.1.In this work, two error measures are mainly used for reporting results. One is theroot mean squared error (RMS error, or RMSE), de�ned asRMS(y; t) =vuut 1(N � 1) NXi (yi � ti)2using the symbols y and t as the model outputs and the target outputs on a dataset of size N respe
tively. The RMS error 
an be used to obtain a performan
emeasure stated in the same units as the target variable. Another measure that isused here is the normalized RMS error (NRMS), whi
h is de�ned as:NRMS(y; t) = RMS(y; t)std(t)where std is the standard deviation measure. The NRMS error measure s
ales theerror in su
h a way that a predi
tion of the average in the target data has an NRMSerror of 1:0.
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 programming, often the output of the programs is wrapped, that is, theoutput is 
hanged in su
h a way that it 
an be used by the performan
e 
al
ulation.Here the use of wrapping and its in
uen
e on the performan
e measure will be illus-trated in two problem domains: 
lassi�
ation and regression. Two wrappers will bedis
ussed that are 
apable of enlarging the solution spa
e for geneti
 programming.Wrappers for Classi�
ation Consider a problem in binary 
lassi�
ation. Here theobje
t of sear
h is a program that 
lassi�es input 
ases as belonging to a 
ertain
lass or not. One possibility of ta
kling su
h a problem is to only 
onsider fun
tionsthat return boolean values: if the program returns true for a 
ertain input 
ase it willbe interpreted as a positive, otherwise a negative. This is the general approa
h whenthe inputs are boolean variables, but for input data that is real-valued a di�erentapproa
h is usually adopted. In that 
ase, real valued fun
tions are used and theoutput of the program is interpreted as a s
ore: a real valued ordinal variable.Usually a �xed 
uto� value is set: s
ores falling above the 
uto� will be 
lassi�edas positive, and negatives otherwise. The use of an arbitrary 
uto� value to be ableto interpret a real valued out
ome as a binary 
lassi�
ation is a �rst example of awrapper fun
tion.Wrappers 
an however vary in their ability to make optimization easy or diÆ
ult.In the 
ase of the binary 
lassi�
ation problem an arbitrary 
uto� value 
an makeoptimization needlessly diÆ
ult. Evolving a 
lassi�er against a �xed 
uto� valuemakes this value very important for the 
lassi�ers. This might hinder the sear
h inunforeseen ways as it biases the sear
h towards 
lassi�ers that dis
riminate optimallyin the 
ontext of this arbitrary value. A better approa
h would be to 
al
ulate theoptimal 
uto� value for ea
h 
lassi�er independently. Here the wrapper fun
tionwould examine the full range of s
ores produ
ed by the 
lassi�er and will �nd that
uto� value that produ
es the optimal dis
rimination between the positive andnegative 
ases. This 
an be a

omplished with a single pass through a s
ore arrayand is usually feasible 
omputationally.As the s
ores produ
ed by the 
lassi�ers are ordinal, the a
tual values are irrelevant,it is the relative order that matters. By not imposing an arbitrary 
uto� point,but using the implied optimal 
uto� after the evaluation, the 
lassi�ers are less
onstrained in the s
ore range: in parti
ular adding a 
onstant value to the 
lassi�erwill not 
hange its performan
e. This in
reases the number of solutions to theproblem and 
an thus help the evolutionary sear
h in �nding good 
lassi�ers.Wrappers for Regression For regression a similar wrapper 
an be de�ned. Usu-ally in regression problems, the obje
t of sear
h is an expression that minimizessome least squares error 
riterion. A straightforward approa
h would then be touse this error as the performan
e measure. It will thus 
onstrain the sear
h to ex-pressions that are as 
lose to the target values as possible. However, this will also
onstrain the sear
h to expressions that have the proper slope and inter
ept that ispresent in the data: for example, an expression that produ
es outputs that have thesame shape as the desired output but is stru
turally wrong with a 
ertain 
onstantvalue, will have the squared value of this 
onstant added to its error for every 
ase.However, using standard (fast) methods of linear regression on the outputs of theexpression 
an identify su
h stru
turally di�erent slopes and inter
epts and s
ale the



2.3. MULTI-OBJECTIVE OPTIMIZATION 13output of the expression to the appropriate range. This again makes the programsinvariant against these transformations and in
reases the solution spa
e. With alarger spa
e of solutions, the sear
h is more likely to �nd a good expression. Usinglinear regression, for any well-de�ned expression f(x), it is possible to 
al
ulatea and b su
h that the squared error between the target values and the wrappedexpression a+ b � f(x) is minimal. This 
al
ulation is linear in the number of 
asesthat are 
onsidered.Even though the slope and inter
ept 
an be 
al
ulated linearly with the numberof 
ases, it is possible to 
ir
umvent the use of su
h a wrapper entirely duringthe run. If one were to employ Pearson's squared 
orrelation 
oeÆ
ient3 as theperforman
e measure, no slopes and inter
epts need to be 
al
ulated during the run:the 
orrelation measure already 
al
ulates a squared error equivalent, regardless ofthe slope and inter
ept. At the end of the run, the best expression 
an then bewrapped and used for making predi
tions.An interesting side-e�e
t of using a 
orrelation 
oeÆ
ient is that it is unde�ned whenthe predi
tions are 
onstant. Interestingly enough, in running geneti
 programmingusing a squared error measure some runs 
onverge prematurely on an expression
onsisting of a 
onstant only, whi
h usually represents the average value of thetarget data. Using a 
orrelation 
oeÆ
ient as the performan
e measure will identifysu
h an expression and by giving it the worst possible performan
e value, su
hexpressions are e�e
tively 
ulled.These are two examples of using some knowledge about the performan
e measureto enlarge the solution spa
e for geneti
 programming. Su
h tri
ks are not ne
essaryfor more standard regression and 
lassi�
ation methods, as these usually solve theproblems of arbitrary 
uto�s, slopes and inter
epts by making these expli
it in themodel ar
hite
ture. For example, in arti�
ial neural networks �nding the properinter
ept is a

omplished by adding so-
alled bias nodes to the neural network:the gradient based sear
h te
hniques will set the weights from these bias nodesto appropriate values. This se
tion showed that for geneti
 programming a similare�e
t 
an be a
hieved at the output level by employing smart wrappers.2.2.5 Auxiliary parameters and variablesA few auxiliary parameters and variables need to be set before running a geneti
programming system. One of the most important of these is the population size.However, not mu
h is known on the optimal or even minimal population size ingeneti
 programming. Other parameters involve the rate of applying the variationoperators, the exa
t way of performing sele
tion and the maximum size or depththe trees are allowed to grow to.2.3 Multi-Obje
tive OptimizationOften, the quality of a solution 
an not be easily 
aptured in a single number.For instan
e, when designing a power plant, both the 
ost of building a plant and3This is the 
orrelation 
oeÆ
ient found in statisti
al pa
kages, de�ned as: � 
ov(x;y)std(x)std(y)�2



14 CHAPTER 2. GENETIC PROGRAMMINGthe risk of the plant blowing up and taking 
ountless lives needs to be minimized.These obje
tives are usually 
ontradi
tory and very hard to balan
e at the outset ofdesigning a plant. Building a plant that has a minimal risk involves implementing
ountless se
urity measures, ea
h 
osting money. Avoiding to implement any se
u-rity measures at all will be very 
heap, though the people living near the plant mightnot be happy with su
h an inse
ure plant in their vi
inity. Without knowing thefull distribution of designs that balan
e 
ost and risk, it is diÆ
ult if not impossibleto judge whi
h balan
e of obje
tives is optimal. This is the area multi-obje
tiveoptimization applies to.The simplest form of multi-obje
tive optimization involves a weighting s
heme,where the relative importan
e of the obje
tives are �xed at the outset. In theexample, these weights are multiplied with the 
ost value and the risk value, andsubsequently added together to obtain a single s
alar value that judges a design.This pro
ess involves a priori assumptions on the relative worth of the obje
tives, andin the plant example would require an obje
tive judgement about the 
ost of takinga human life. There will quite likely be some disagreement about this monetaryvalue between the owners of the plant and the inhabitants of the neighbourhood.Without some knowledge about the trade-o�s involved in building the plant i.e.,thus without a set of designs that balan
e 
ost and risk, su
h a dis
ussion would bemade using a priori arguments only, quite likely not leading to any level of agreementbetween the parties involved.If there is no agreement how to translate one obje
tive into another obje
tive, howdoes one measure the quality of a solution? This is where the 
on
ept of Paretodominan
e 
an help. Instead of giving an absolute (s
alar) judgement for a solution,a partial order is de�ned based on dominan
e. A solution is said to dominate anothersolution when it is better on one obje
tive, and not worse on the other obje
tives.Thus a solution a dominates a solution b if and only if 9i : oi(a) < oi(b) and8j 6=ioj(a) � oj(b). This assumes without loss of generality that the obje
tivefun
tions o1; : : : ; om need to be minimized. A solution is said to be non-dominatedif no solution 
an be found that dominates it.The de�nition of the dominan
e relation gives rise to the de�nition of the Paretooptimal set, also 
alled the set of non-dominated solutions. This set 
ontains allsolutions that balan
e the obje
tives in a unique and optimal way. An example ofsu
h a set is depi
ted in Figure 2.3. Sin
e there is no single s
alar judgement, this setusually 
ontains a wealth of solutions. As there is no notion present of one obje
tivebeing more important than another, the aim of multi-obje
tive optimization is toindu
e this entire set. Pi
king a single solution from this set is then an a posteriorijudgement, whi
h 
an be done in terms of 
on
rete solutions with 
on
rete trade-o�s, rather than in terms of possible weightings of obje
tives.The question for multi-obje
tive optimization is now how to �nd this Pareto optimalset. One approa
h would be again a weighted approa
h, where the weights are variedbetween runs and for ea
h unique weighting s
heme a solution is obtained. Thiswould require many runs to estimate the Pareto set and the granularity of the weight
hanges needs to be estimated or assumed.An evolutionary multi-obje
tive approa
h avoids the granularity and multiple runsissues altogether by using the wealth of solutions present in the evolving populationto �nd a balan
e during a single run of the algorithm. It thus tries to �nd and storethe Pareto optimal set in the population. Many 
on
rete algorithms to a
hieve
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Objective 1Figure 2.3: An estimate of the Pareto optimal set using two obje
tives. The obje
-tives are: o1 = x2 and o2 = (x� 2)2this have been proposed, we will fo
us here on the non-dominated sorting geneti
algorithm II (NSGA-II) (Deb et al., 2000).A non-dominated sorting GA assigns ranks to solutions by �rst �nding the set ofnon-dominated solutions in the 
urrent population. These are removed from thepopulation and assigned rank 1. As these solutions are removed, a new so-
alledfront of non-dominated solutions is now present in the remainder of the originalpopulation. This se
ond front is extra
ted and assigned rank 2. This pro
edure isrepeated until no more solutions are present in the population: ea
h solution getsa rank a

ording to the pass that is used to extra
t it. It was shown that thispro
edure 
an be implemented in O(n2), where n is the population size (Deb et al.,2000).All solutions in the population have now been assigned an integer rank. Without anyfurther pro
essing, this algorithm will not �nd a good estimate of the Pareto optimalset. A population 
onsisting purely of 
lones is for instan
e a point of 
onvergen
e.Repeated sele
tion a
ting upon a �nite population will ensure 
onvergen
e to thispoint due to sto
hasti
 sampling e�e
ts. What is needed is a me
hanism to spreadout the population over the entire front.All solutions taken from the same front have the same integer rank. The NSGA-IIalgorithm will break ties by 
al
ulating the uniqueness of a solution in the front,�lling in the fra
tional part of the rank with this uniqueness value. The value isdetermined by 
al
ulating the distan
e in obje
tive value spa
e between a solutionand its nearest neighbours. The uniqueness value is then 
al
ulated by sortingea
h front for ea
h obje
tive and 
al
ulating the distan
e between ea
h solutionand its two nearest neighbours. Solutions at the extremes get `highest' distan
e.



16 CHAPTER 2. GENETIC PROGRAMMINGSubsequently, for all obje
tives this distan
e value is summed, s
aled to valuesbetween zero and one, and subtra
ted from the integer rank. In this way theinteger value still denotes the rank of the individuals, while the fra
tional part isused as a tie-breaker with 
ompeting solutions of the same integer rank. Solutionswith more unique trade-o�s will have a better rank then solutions in more populatedareas. The population 
an now be sorted on this rank and trun
ation sele
tion 
anbe used.The sorting is performed for ea
h obje
tive and ea
h front. The 
omputational
omplexity of this pro
edure is at most O(n logn). The overall 
omplexity of thispro
edure thus remains at O(n2).The NSGA-II algorithm is very robust and makes it possible to perform an adequatesear
h for a Pareto optimal set. It is used throughout this text (Chapters 5, 7 and8) whenever a multi-obje
tive problem is addressed.2.4 Implementation IssuesEvaluating individual programs for their performan
e is in most non-trivial appli
a-tions the most time-
onsuming task. Mu
h e�ort has undergone into making thisevaluation as fast as possible. Two main methods of representing parse trees inthe C programming language are in use: a pointer tree implementation and a tokenstring implementation. The pointer tree implementation has as its main advantagethat 
oding manipulations on the trees is very natural and 
an be very fast; it has asa drawba
k however that memory management is non-trivial. If one ignores memorymanagement, the time involved in allo
ating and de-allo
ating nodes 
an lead tosub-optimal performan
e. Be
ause in this representation pointers to the 
hildrenof a node needs to be kept, it also has a relatively high memory footprint. Thetoken string representation on the other hand is very parsimonious be
ause it onlyneeds to keep an identi�er to the node (a token) per element in the string. An arityfun
tion that returns the arity of a node given the identi�er 
an be used to keep thestring synta
ti
ally 
orre
t when applying the variation operators. String operationson modern 
omputers are very fast and memory management is also less of an issue.However, it is quite a bit more 
umbersome to keep a string synta
ti
ally 
orre
t,whi
h makes this representation less suitable for rapid development.For a review of pointer tree and token string implementations, the reader is referredto (Keith and Martin, 1994) that presents a 
omparative study of several implemen-tations and the 
orresponding evaluation fun
tions. The paper fo
uses on how tomake traversing the tree as fast as possible as a typi
al evaluation fun
tion requiresthat the parse tree is traversed multiple times. Another interesting approa
h waspioneered by Handley (Handley, 1994), where subtree sharing was used to redu
eevaluation time. It was experimentally shown that with using subtree sharing theamount of memory that needs to be used to store a population 
an be signi�
antlyless when 
ompared to a string-based approa
h (Keijzer, 1996). This is not obviousas a (sub)tree based approa
h needs to store indi
es or pointers next to some fun
-tion identi�
ation token, while a string based implementation only needs to storethe token.
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torized Evaluation Here we will des
ribe a method that in the 
ase of afun
tion and terminal set that do not have side-e�e
ts requires only a single passthrough the tree, regardless of the amount of data points. This method is by nomeans new, in the numeri
al 
omputation literature it is known as ve
torized eval-uation, and in e�e
t this was used by Handley (Handley, 1994) to 
a
he previouslyperformed 
omputations. It is reviewed here, as it 
an be used without regard tosubtree sharing and 
a
hing and the bookkeeping ne
essary to implement these. Ithas to the best of the author's knowledge as su
h not been presented in the geneti
programming literature before. It 
an be implemented in pra
ti
ally any tree-basedimplementation to speed up evaluation 
onsiderably.Consider a 
lassi�
ation or regression task where the fun
tion and terminal set arepurely fun
tional by nature: there are no side-e�e
ts when evaluating a fun
tionand there exists a large set of data points. The usual approa
h of evaluating atree on a data point is to re
ursively go down the tree to evaluate a single 
ase.Using re
ursion is however fairly slow 
ompared to iteration. By ve
torizing theevaluation, all 
ases will be evaluated for ea
h node in the tree. The tree is thenre
ursively traversed only on
e.To illustrate the ve
torized evaluation pro
edure, some C++ 
ode is presented inFigure 2.4. It assumes that ea
h subtree has a node identi�
ation number and apointer to the 
hildren trees. It also assumes the existen
e of the auxiliary (global)fun
tions pop_
ontainer and push_
ontainer that dispense and re-take pre-allo
ated 
ontainers from a (growing) sta
k and a fun
tion get_variable_valuesthat returns a 
ontainer with the values for a spe
i�
 variable for all 
ases. Theliberal use of the address operator 
an in C 
ode be repla
ed by a pointer withoutany di�eren
e. It is used here to simplify the syntax.This evaluation fun
tion will return a 
ontainer 
ontaining the output for all datapoints. After the performan
e has been evaluated it 
an be re-used by using thepush_
ontainer fun
tion. Copying the variable values is wasteful, espe
ially 
on-sidering that terminals are often the most numerous elements in the tree. This 
anbe resolved by modifying the 
ontainer storage fun
tions to re
ognize the 
ontain-ers 
ontaining the variable values and subsequently refraining from using in-pla
e
al
ulations. This is not done here as this would make the implementation moreinvolved then ne
essary. The ve
torized evaluation presented here a
hieves its task:it 
an evaluate a tree on an entire dataset with a single re
ursive traversal throughthe tree. It does this at a 
ost of keeping a number of ve
tors proportional to thedepth of the tree. Repla
ing re
ursion by iteration in this way is expe
ted to speedup evaluation 
onsiderably on problems that use non side-e�e
ting fun
tions and alimited number of 
onditional bran
hing instru
tions. As traversing the tree is doneonly on
e per evaluation, no spe
ial attention needs to be given to optimizing thetree traversal routine. Most notably, the swit
h statement in the routine is onlyexe
uted on
e for every node in the tree regardless of the amount of data that ismanipulated.It is maybe interesting to note that, when used with for example the bitset<size_t>template 
lass in the standard C++ library (Stroustrup, 1997)(pp. 492-496) as the
ontainer 
lass, this pro
edure is equivalent with sub-ma
hine
ode geneti
 program-ming (Poli and Langdon, 1999). The bitset 
lass implements optimized ve
torizedlogi
al operations on bitstrings stored parsimoniously in integers, and there is thenno need to manually implement evaluation and pa
king/unpa
king pro
edures.
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ontainer& Tree::evaluate(){ swit
h(nodeId){ 
ase plus :{ 
ontainer& 
0 = 
hild[0℄.evaluate();
ontainer& 
1 = 
hild[1℄.evaluate();// assuming a properly ve
torized addition// fun
tion defined on the 
ontainer 
lass
0 += 
1;// 
1 is not needed anymorepush_
ontainer(
1);return 
0;}// other fun
tionsdefault : // assume this is a variable{ 
onst 
ontainer& v = get_variable_values(nodeId);
ontainer& result = pop_
ontainer();result = v; // 
opyreturn result;}}}Figure 2.4: C++ snippet for performing ve
torized evaluation. It assumes a properlyde�ned 
ontainer 
lass and a method of storing and retrieving a growing number ofthese 
ontainers. In this example, the 
ontainer 
lass needs to be able to performve
torized evaluation, but this 
an also be done in the 
ode itself.



2.5. SUMMARY 192.5 SummaryThis 
hapter presented a very short introdu
tion in geneti
 programming. For amore thorough introdu
tion into the subje
t of geneti
 programming, the reader isreferred to Koza (Koza, 1992) and Banzhaf et al. (Banzhaf et al., 1998). The mainfo
us in this 
hapter was in providing the bare essentials to understand the evo-lutionary 
omputation approa
h in general and geneti
 programming in parti
ular.The material des
ribes a few 
on
epts that will be used in subsequent 
hapters. Afew tri
ks and tips have been des
ribed here that have been developed for pra
ti
alappli
ations employing geneti
 programming. These te
hniques involving wrappingand ve
torized evaluation have never made it into a separate paper and the oppor-tunity of writing this thesis was taken to give them an audien
e.
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Chapter 3Symboli
 RegressionAlthough geneti
 programming 
an be used for various automati
 programmingtasks, this text will fo
us on the indu
tion of mathemati
al expressions on data.This is 
alled symboli
 regression (Koza, 1992), to emphasize the fa
t that theobje
t of sear
h is a symboli
 des
ription of a model, not just a set of 
oeÆ
ientsin a prespe
i�ed model. This is in sharp 
ontrast with other methods of regression,in
luding feedforward arti�
ial neural networks, where a spe
i�
 model is assumedand often only the 
omplexity of this model 
an be varied.The regression task 
an be spe
i�ed with a set of input, independent, variablesx and a desireded output, dependent variable, t. The obje
t of sear
h is then toapproximate t using x and 
oeÆ
ients w su
h that:t = f(x;w) + �where � represents a noise term. With standard regression te
hniques the fun
tionalform f is prespe
i�ed. Using linear regression for example, f would be:f(x;w) = w0 + w1x1 + : : : wnxn (3.1)Where the 
oeÆ
ients w are found using least square regression. In matrix formthis would read: f(x;w) = wxwhere the bias 
oeÆ
ient w0 has been ommited for reasons of 
larity. The nonlinearte
hnique of regressing a feedforward arti�
ial neural network would introdu
e anauxillary transfer fun
tion g (usually a sigmoid) and would use the mapping:f(x;w) = wo � g(whx) (3.2)Here the 
oeÆ
ients w are usually 
alled weights: wh are the weights from theinput nodes to the hidden nodes and wo are the weights from the hidden nodes



22 CHAPTER 3. SYMBOLIC REGRESSIONto the output layer. Again bias weights for ea
h layer in the neural network areommited in the equation. Due to its fun
tional form, 
al
ulating the error gradientfor the weights of su
h an arti�
ial neural network is straightforward and has linear
omplexity in the number of weights.In 
ontrast with these te
hniques, geneti
 programming applied to the task of sym-boli
 regression does not use a prespe
i�ed fun
tional form. It uses low-level primi-tive fun
tions. These fun
tions 
an be 
ombined to spe
ify the full fun
tion. Givena set of primitive fun
tions taking one argument h1; : : : ; hu, and a set of fun
tionstaking two arguments g1; : : : ; gb, the overal fun
tional form indu
ed by geneti
 pro-gramming 
an take a variety of forms. The fun
tions h and g are usually standardarithmeti
al fun
tions su
h as addition, subtra
tion, multipli
ation and division but
ould also in
lude trigonometri
, logi
al, and trans
endental fun
tions. An examplefun
tion 
ould be: f(x;w) = h1(g2(g1(x3; w1); h2(x1)))But any legal 
ombination of fun
tions and variables 
an be obtained. This parti
-ular fun
tion 
an be depi
ted in tree form as:h1g2g1x3 w1 h2x1Filling in some 
on
rete primitive fun
tions for the abstra
t symbols h and g 
anlead to the tree: sqrt�+x3 w1 expx1Or as an expression f(x;w) =p(x3 + w1) expx1The obje
t of sear
h is then a 
omposition of the input variables, 
oeÆ
ients andprimitive fun
tions su
h that the error of the fun
tion with respe
t to the desiredoutput is minimized. The shape and the size of the solution is not spe
i�ed atthe outset of the optimization (although typi
ally a maximum size is given) and isanother obje
t of sear
h. The number of 
oeÆ
ients to use and whi
h value theytake is another issue that is determined in the sear
h pro
ess itself. The system isalso free to ex
lude 
ertain input variables from the equation, it 
an thus performa form of dimensionality redu
tion. By the use of su
h primitive fun
tions, geneti
programming is in prin
iple 
apable of expressing any fun
tional form that use thesefun
tions: in parti
ular given a suÆ
iently expressive fun
tion set, it is 
apable of



23expressing a linear relationship su
h as in Equation 3.1 or a non-linear relationshipsu
h as the arti�
ial neural network in Equation 3.2.Geneti
 programming is not the only system 
apable of indu
ing symboli
 expres-sions on data. A well known 
omputational work on the indu
tion of equationson data is the program BACON (Langley et al., 1987). In 
ontrast with geneti
programming, the BACON system explores the sear
h spa
e of possible expres-sions using various heuristi
s. These take the form of numeri
al 
omparisons: iffor instan
e two terms (variables or already indu
ed expressions) appear to in
reasetogether, an expression will be 
onsidered that takes the ratio of the two terms.Similarly, when one term in
reases while the other de
reases and does this in anon-linear way, the produ
t between the terms will be 
onsidered.The heuristi
s in the BACON system thus relate the numeri
al values between termswith the symboli
 manipulations that will be 
onsidered. It will thus produ
e anexpression where all the fun
tions that are applied have this heuristi
 justi�
ation.This presupposes that any mathemati
al relationship between sets of data 
an bein
rementally build using these heuristi
s. Furthermore, when the data is pollutedby noise, 
on
epts su
h as jointly in
reasing or de
reasing values be
ome diÆ
ultto measure. The appli
ation of the heuristi
s would then need further parametersthat need to be set with regard to estimates of the noise.With geneti
 programming, the possible transformations are not limited to someset of numeri
ally motivated heuristi
s. As des
ribed in Chapter 2, the variationoperators are randomized, while the overall performan
e of a 
omplete expression isused as the guide to sele
t expressions. The expressions that are indu
ed in this waythen do not ne

essarily have to abide some internal stru
ture that is in
rementallyjusti�ed. It is thus 
apable of performing `
reative' 
omputations as long as thatde
reases the error. This has as a drawba
k that the expressions that are indu
ed
an be
ome too 
reative, to the point that they are hard to understand.A geneti
 programming system performing symboli
 regression is thus required to�nd the shape of the equation, the 
omposition of primitive fun
tions, the useof input variables, the use and values of 
oeÆ
ients plus the 
omplexity of this
omposition all in a single optimization pass. Furthermore, no gradient informationis available about the 
omposition of fun
tions1, nor numeri
al heuristi
s on thestru
ture of the fun
tions are employed. The only feedba
k the system re
eives isthe overall performan
e of a given expression on the data given some error fun
tion.This is a daunting task and the question 
an be asked why one would try to �ndan expression in su
h a way when alternatives su
h as arti�
ial neural networks areavailable. If one is purely interested in approximating some data, the expressivepower of geneti
 programming provides no immediate bene�t over other methods.For example: even though with the proper set of primitive fun
tions the spa
e ofarti�
ial neural networks is only a subset of the expressions that 
an be indu
ed bygeneti
 programming, it has been shown that a feedforward arti�
ial neural networkof suÆ
ient 
omplexity 
an already approximate any mapping (Park and Sandberg,1991). The question of whi
h te
hnique is more 
apable of optimizing some data
an then not be resolved a priori using the expressiveness of the methods as themain argument. Any 
omparison would be empiri
al. It is then expe
ted to �nd
ases where neural networks outperform geneti
 programming and vi
e versa.1Though gradient information 
an sometimes be used to optimize the 
oeÆ
ients (Top
hy andPun
h, 2001).



24 CHAPTER 3. SYMBOLIC REGRESSIONEven though the issue of expressiveness does not give an immediate bene�t ofgeneti
 programming over for instan
e arti�
ial neural networks in the 
ontext of its
apability in approximating some data, this expressiveness is the main subje
t of thistext. In 
ontrast with neural networks, geneti
 programming is 
apable of providinganswers in the symboli
 language of mathemati
s, while arti�
ial neural networks
an ne

essarily only provide answers in the form of sets of numbers, weights, validin the 
ontext of a prespe
i�ed fun
tional form (Equation 3.2).This 
ontrast between indu
ing symboli
 expressions by geneti
 programming andmatri
es of numbers by regression be
omes more pronoun
ed when approximatingthe data is not the only obje
t of sear
h. In s
ienti�
 dis
overy for example, ob-taining some adequate �t is not enough. To fully in
orporate some results in thebody of s
ienti�
 work, it is ne

essary that some form of understanding about theexpressions that are indu
ed is a
hieved. The expressions thus need some furtherjusti�
ation before they 
an be used as models of the phenomenon under study.3.1 The Con
entration of Suspended SedimentAs a red thread through this work, the problem of �nding an expression that predi
tsand/or des
ribes the 
on
entration of suspended sediment near the bed of a streamis used. Not only is this problem a

ompanied with some extra-ordinary high qualitydata, it has been studied intensively by various resear
hers. This resear
h has leadto an empiri
al equation for this pro
ess that 
an be used as a ben
hmark equation.Below, symboli
 regression is used to obtain expressions that �t this data.Ba
kground The bottom 
on
entration of suspended sediment is a key param-eter within the me
hani
s of sediment transport. Here the aim is to develop anempiri
al formulation for the bed 
on
entration 
b, de�ned at an elevation of a fewgrain diameters from the bed. This seems to be more reasonable from a physi
alpoint of view then de�ning the referen
e 
on
entration further from the bottom,sin
e already a few diameters away from the bed the sediment parti
les are keptin suspension by the turbulen
e of the 
uid rather than by grain-to-grain 
ollisions,and should therefore be regarded as sediment in suspension.It is normally a

epted that the pro�le of suspended sediment 
on
entration is welldes
ribed by the Rouse (Rouse, 1939) distribution:
 = 
a�D � yy aD � a�z (3.3)in whi
h z = ws�uf (3.4)In equation (3.3) 
 denotes volume 
on
entration of suspended sediment; 
a de-notes a referen
e 
on
entration at a distan
e a above the bed; y denotes verti
al
oordinate, measured upward from the bottom; and D denotes water depth.



3.1. THE CONCENTRATION OF SUSPENDED SEDIMENT 25In equation (3.4) z denotes Rouse parameter; � denotes von K�arm�an 
onstant(� 0:40); uf shear velo
ity; and ws settling velo
ity of suspended sediment.If the value 
a appearing in Equation 3.3 is known, the suspended load transport
an be easily found as: qs = Z Da 
(y)u(y)dy (3.5)where u denotes 
ow velo
ity; and D water depth. The integration of Equation 3.5was performed by Einstein (Einstein, 1950) who assumed the 
on
entration pro�leto be given by Equation 3.3 and a logarithmi
 variation of the velo
ity along theverti
al.The 
on
entration pro�le 
(y) is usually 
al
ulated by a

epting the di�usion 
on-
ept for suspended sediment. In steady uniform 
ow, this leads to a balan
e betweenthe downward settling of sediment due to gravity and the upward di�usion asso
i-ated with turbulent 
u
tuations i:e:ws
+ �s �
�y = 0 (3.6)where �s denotes di�usion 
oeÆ
ient for the suspended sediment, whi
h is normallytaken to be proportional to the eddy vis
osity of the 
ow �.�s = �� = ��ufy �1� yD� (3.7)where � denotes momentum 
orre
tion fa
tor. If the paraboli
 distribution of �sgiven by (3.7) is inserted in (3.6), the pro�le of suspended sediment 
on
entrationgiven by (3.3) 
an be obtained by dire
t integration. The Rouse number z is nowdes
ribed by: z = ws��uf (3.8)In the spe
ial 
ase in whi
h the referen
e level a in (3.3) is taken equal to thedistan
e from the bed to the lower limit of the suspended sediment layer Æ, thereferen
e 
on
entration 
a be
omes equal to the bed 
on
entration 
b.One major problem with regard to the bed 
on
entration 
b is the de�nition ofthe distan
e Æ. Einstein (Einstein, 1950) suggested Æ to be of the order of twi
ethe grain size of the bed material d, and assumed the bed 
on
entration to beproportional to the 
on
entration of bed load parti
les. Further analysis and sheet-
ow experiments showed that the thi
kness of sheet-
ow later Æ in
reases with theShields parameter � a

ording to: Æs = 10�d (3.9)where: � = u2f(s� 1)gd (3.10)where d denotes median grain diameter (usually indi
ated as d50); g a

eleration ofgravity; and s relative density of sediment.



26 CHAPTER 3. SYMBOLIC REGRESSIONData A total number of 10 data sets were utilized in the determination of 
b (Guyet al., 1966). The experiments 
onsisted of a number of alluvial 
hannel tests withthe aim to determine the e�e
ts of the grain size and of water temperature on thehydrauli
 and sediment transport variables.The tests were performed in two di�erent 
umes: the larger one was 8 ft (2.44 m)wide, 2 ft (0.61 m) deep and 150 ft (45.72 m) long. Its slope 
ould be adjustedbetween 0 and 0.015, and the water dis
harge between 0 and 22 
fs (0-0.613 m3/s).The smaller 
ume was 2 ft (0.61 m) wide, 2.4 ft (0.76 m) deep and 60 ft (18.29 m)long. Its bottom slope 
ould be varied between 0 and 0.10 and the water dis
hargebetween 0 and 8 
fs (0-0.227 m3/s).A di�erent kind of sand was used for ea
h set of the tests. The median size d variedbetween 0.19 and 0.93 mm, while the geometri
 standard deviation �g (de�ned byEquation 3.11) ranged from 1.25 to 2.07.�g = 0:5 �d84d50 + d50d16 � (3.11)where d50 denotes median parti
le size of the sediment; and d16 and d84 parti
lesizes for whi
h 16% and 84% of the sediment is �ner by weight.The hydrauli
 
onditions of the individual tests were adjusted by 
hanging thedis
harge, the slope, or both, and the water and sediment were re-
ir
ulated untilequilibrium 
onditions were rea
hed. A signi�
ant drawba
k of these data sets isthe limited range of water depth 
overed (from 0.06 to 0.41 m). Apart from that,the tests 
omprise a wide range of situations, both from the point of view of thehydrauli
 parameters as well as the bed materials used, the transport rates measured,and the bed forms present, making them very attra
tive for the derivation of anexpression for the near bed 
on
entration in pure 
urrent 
ow.Table (3.1) summarizes the quantities used in the problem of determination of
on
entration of suspended sediment near bed. It is interesting to observe thatonly �, ws and d50 represent `raw' observations. Shear velo
ities uf and u0f are
al
ulated on the basis of raw observations as:uf =pgDI (3.12)u0f =pgD0I (3.13)where I denotes water surfa
e slope; and D0 denotes the boundary thi
kness layerde�ned through: vu0f = 6 + 2:5 ln D0kN (3.14)with v denoting mean 
ow velo
ity; and kN bed roughness � 2:5d.Human Proposed Relationship for Near-bed Con
entration Generally, thenear-bed 
on
entration of suspended sediment 
b depends on: (i) the e�e
tiveshear stress exerted on the bed by the 
ow � 0; (ii) the 
hara
teristi
s of the bed



3.1. THE CONCENTRATION OF SUSPENDED SEDIMENT 27variable des
ription uom� kinemati
 vis
osity m2=sws settling velo
ity m=sd50 median grain diameter mg gravity a

eleration 9:81m=s2uf shear velo
ity m=su0f shear velo
ity related to skin fri
tion m=s
b 
on
entration of sediment near the bed dimensionlessTable 3.1: Units of measurement of the independent and the dependent variablesfor the problem of determining the 
on
entration of sediment near the bed.material (size d, density �s); and (iii) the 
hara
teristi
s of the 
uid (density �,kinemati
 vis
osity �). Appli
ation of dimensional analysis leads to the fun
tionalrelationship 
b = ��0; [g(s� 1)d℄0:5w ; �
� (3.15)where �
 denotes a 
riti
al value of Shields parameter for initiation of motion. Itshould be noted that, for a given bed material, the fall velo
ity w 
an be uniquelyde�ned in terms of the kinemati
 vis
osity � (whi
h in turns depends on watertemperature) and of the grain size d, so that w in (3.15) 
an be e�e
tively repla
edby � and T.(Zyserman and Freds�e, 1994) followed an approa
h initially adopted by (Gar
iaand Parker, 1991) for the sele
tion of an expression for 
b, namely
b = Axn1 + Axn
m (3.16)where A, 
m, and n are 
onstants and x a suitable 
ombination of the independentdimensionless parameters. The 
hoi
e of the fun
tional form (3.16) is driven by thefa
t that 
b be
omes zero when x does as well as 
b 
onverging to the limiting value
m for high values of x.The �tting (Zyserman and Freds�e, 1994) yielded values A = 0:331, 
m = 0:46and n = 1:75, resulting in
b = 0:331(�0 � 0:045)1:751 + 0:3310:46 (�0 � 0:045)1:75 (3.17)The proposed relationship 
ompares well to values of near-bed 
on
entration ob-tained from independent data sets. It also provides an improved a

ura
y oversimilar expert-generated expressions and is universally regarded as the formulationdes
ribing the 
on
entration of suspended sediment near bed.



28 CHAPTER 3. SYMBOLIC REGRESSION3.2 Symboli
 Regression on the Sediment Trans-port ProblemStraightforward appli
ation of symboli
 regression The data in the sedimenttransport problem are a

ompanied with units of measurements that des
ribe thevarious data �elds. In standard regression, dimensioned variables 
annot be usedwithout any pre-pro
essing. Usually one employs some form of pre-pro
essing, beit applying Bu
kingham's �-theorem (Bu
kingham, 1914), or 
reating an ad-ho
set of dimensionless values using the original data. It is also possible to s
alethe variables to unit varian
e, by 
al
ulating the standard deviation and divide theoriginal measurement by this value. As the standard deviation of a measurement isstated in the same units as the measurement itself, this s
aling will render the pre-pro
essed data dimensionless. Any form of manipulation is subsequently formallyallowed.Here we use the data as is to be used for geneti
 programming. To meet the formalrequirements (but not the intent) of modelling using units of measurement, it issimply assumed that the data is divided by a 
onstant of magnitude one stated inthe same units as the original data. This 
onveniently avoids the issues of dealingwith units of measurements whi
h will be ta
kled in later 
hapters.After dividing the data in a training set and a test set, a geneti
 programming systemis applied that tries to �nd an expression that �ts the data. The language 
onsistof the observations f�; ws; d50; uf ; u0fg, and additionaly the gravity a

eleration
onstant g set at 9:81m=s2. Also in
luding arbitary 
onstant values, the full terminalset is des
ribed by: T = f�; ws; d50; uf ; u0f ; g;RgThe fun
tion set is:F = fplus/2, times/2, minus/2, divide/2, sqrt/1gUsing a standard geneti
 programming setup, using 50 independent runs, the best�tting expression on the training set was:
b � 0:284 ��u 0f � ws�3 �u 0f � g��g + u 0f + ufuf � g � g�5uf �1 g + 13:0  ws + g3u 0f wsuf �1�g + u 0fg ��1!uf �10B�u 0f � 11:3 gu 0f�u 0f � ws�2 � g21CA�10BB�g +0BB�d50 +vuut�u 0f � ws�2 wsg4 + g1CCA�2 g + u 0fws + u 0f � uf � ws + g2��1!�11A�11CA 12



3.2. SYMBOLIC REGRESSION ON THE SEDIMENT TRANSPORTPROBLEM 29A few observations 
an be made at this point. The solution produ
ed by symboli
regression on the raw observations presented above is very 
omplex. It manipulatesthe variables in a variety of intra
table ways, using high order polynomials andrepeated square roots. If we were to 
ompli
ate things by adding trigonometri
 andtrans
endental fun
tions, the geneti
 programming system would quite likely �nd away to use this enhan
ed expressive power to obtain a better �t on the training data.It is quite likely that the net result would be
ome an even more in
omprehensibleset of manipulations.Another problem with this equation is that it does not use the units of measurementproperly. No information about these units was given, and it is would have beenquite unlikely to get a dimensionally 
orre
t result. However, the absen
e of thedimensions makes the equation even harder to 
omprehend.Pre-pro
essing An approa
h more in line with the pra
ti
e in physi
s is to pre-pro
ess the variables to render them dimensionless. Applying the �-theorem usingthe variable d50 and the 
onstant g to perform the transformation, it is possible toredu
e the number of independent variables by using the transformation:�1 = wsd�0:550 g�0:5�2 = ufd�0:550 g�0:5�3 = u0fd�0:550 g�0:5�4 = �d�1:550 g�0:5As 
b is already dimensionless no pre-pro
essing needs to be done on this variable.Running a geneti
 programming system using the � variables as input produ
ed asthe best expression: 
b ��3 ��1 �3262�3�1 � �3 � 1p�3 + �2 3�4�1�3�1��2 + 34:2� 1:09�2 2�4 1p�3��2 � �3�4 ��1 � �4 + �3 + �2 2p�3 (2�3 � �1 + �4 )!�1 + �3 + �4 �3��2 p�3�4 � p�3�4 � �3 + �2 p�3 ��3 + �3�2 �4 ��1 �4�2!��3 + 0:054�2�2��1 �57:1�3�1 + 33:3� 76:6 (�3 + �1 )�1�2�4 � �2�3 ��1 �4�1!�1��1 (57:1� �3 )p�3 + �2 3�4 �3 (�2 + 0:54) � �2 �4 2�57:1�1�1 + 33:3� 93:2 1�3 �1 � 1p�3 (�3 � �4 + 8:81)�1��1!�1



30 CHAPTER 3. SYMBOLIC REGRESSIONDatasets Zysermann & Freds�e SR (Raw Values) SR (�-theorem)train 0.051 0.038 0.035test 0.047 0.047 0.054train + test 0.049 0.041 0.046Table 3.2: Comparison of the ben
hmark formulation produ
ed by s
ientists andthe formulations found by symboli
 regression (SR) using the raw values or thepre-pro

esed values. The error measure that is used is the Root Mean SquaredError (RMS). The ben
hmark formulation was indu
ed using all data, the split intest and training set presented here was used in the symboli
 regression experiment.This equation is also extremely 
omplex, quite possibly unne

esarily so. Althoughthe equation is dimensionally 
orre
t, it is su
h by virtue of the inputs being dimen-sionless. All arithmeti
al operations are then allowed. To interpret this expression,an additional translation needs to be performed, where the variables are translatedinto their original de�nition.In these two experiments it was not attempted to redu
e the 
omplexity of the equa-tions. Geneti
 programming pra
tioners often use some form of parsimony pressureto in
uen
e the size of the solutions (Zhang and M�uhlenbein, 1994; Zhang andM�uhlenbein, 1996; Iba et al., 1994; Zhang, 2000; de Jong et al., 2001). This mighthelp somewhat, though the main problems of the two experiments | ignoran
e ofunits, or extensive pre-pro
essing | will remain.Even though is not 
lear what data is used to indu
e Equation 3.17, a 
ompari-son on the performan
e on the di�erent sets used in the experiment is presentedin Table 3.2. The performan
e of human indu
ed equation, whi
h uses Shield'sparameter �0, 
omes from the fa
t that this parti
ular variable is already highly 
or-related with the 
on
entration. Performing a linear regression on �0 alone produ
esan expression that has a RMS error of 0:050, slightly worse than the performan
eof the ben
hmark equation 3.17.3.3 SummaryUsing symboli
 regression alone does not seem to help mu
h in providing inter-esting hypotheses in this domain. When using `raw' observations, the resultingexpression 
an be
ome very 
omplex very easily. No attention is given to the unitsof measurement, it merely presents a numeri
al re
ipe to map input numbers to apredi
tive value. This predi
tion might be good or bad, depending on some statis-ti
al estimate of the generalization error. The expressions that are produ
ed mightbe symboli
, the language that is used seems to be alien: it does not give the usermu
h information about the pro
ess underlying the data.Relying on dimensionless values does not help either. It has the same problems withthe 
omplexity of the solutions. In e�e
t, the dimensionless values help to furtherobfus
ate the relationships found by their relian
e on an extra translation step.Although the ability to �t the data is reasonable, the symboli
 regression runs donot add mu
h to our understanding of the problem. It thus presents a similarbla
k-box model similar to those produ
ed by arti�
ial neural networks. The only



3.3. SUMMARY 31approa
h that seems to be feasible is to attempt to 
ontrol the size of the solutionsso that short solutions are produ
ed. Analyzing su
h short solutions might be pos-sible, though then still interpretation needs to be performed mainly using numeri
alarguments. This is not mu
h di�erent from interpreting a small arti�
ial neuralnetwork.In the 
ase of the sediment transport problem, the Shield's parameters that wereprovided were highly 
orrelated with the target variable, on their own they alreadyprovide a robust estimate. Often however, formulating su
h a parameter is exa
tlythe obje
t of sear
h.
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Chapter 4Indu
tion of Empiri
alEquationsSuppose that we are given the task to model an unknown or poorly understoodsystem. In su
h situations a logi
al starting point is the design of measurement
ampaigns and the 
olle
tion of data. One usually measures for
ing variables (theones that are outside the system) and simultaneously the response of the system inview of the 
hange of the state of the system (state- or internal variables), and the
hange in 
orresponding output of the system (resulting fun
tions). After enoughdata of suÆ
ient quality are 
olle
ted, one 
an attempt to identify the system.Then, three possible s
enarios 
an o

ur (Kompare, 1995):1. Nothing useful 
an be 
on
luded from the observations. This 
an happenif the measuring 
ampaign was poorly designed, or nor 
arried out over asuÆ
iently long period of time, or if relationships among variables simply donot exist. More measurements, or redesigned more elaborate observations areneeded to improve the situation.2. Sometimes we may end up with a statisti
al, bla
k box model. With this
ategory of models we will be able to predi
t the proper behaviour of thesystem, although we will not be able to 
hara
terize its intrinsi
 stru
ture andbehaviour. In other words, we will be able to say what the model does, butnot how. In addition to this, we will not be able to guarantee the behaviourof su
h model in regions not 
overed by the data from whi
h the modelwas 
onstru
ted. This is due to the fa
t that the model 
overs only therelationships found within the given data.3. In some 
ases we may be able to re
ognize patterns within the data andform from these patterns inferen
e about basi
 pro
esses in the observed sys-tem. After repeated measurements we should be able to develop a 
on
eptual(me
hanisti
) model. Su
h a model is a so-
alled white box, or transparentmodel and we should be able to say what the model des
ribes and how itsperforman
e is a
hieved. Due to the 
on
eptual ba
kground of the model, weare mu
h more 
ertain that the model will represent reality. This also helpswhen using the data out of the range in whi
h model was 
onstru
ted.



34 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONSQuite obviously, the likelihood of us being able to 
onstru
t a 
on
eptual model foran unknown or poorly understood system in
reases with both the quality and thequantity of the observed data. To make the most of some experimental data, it isgenerally desirable to express the relation between the variables in a symboli
 form:an equation. In the view of the approximate nature of this fun
tional relation, su
han equation is des
ribed as empiri
al. No parti
ular stigma should be atta
hed tothe name sin
e many ultimately re
ognized 
hemi
al, physi
al and biologi
al lawshave started out as empiri
al equations.S
ien
es devote parti
ular attention to the development of a symbol system, su
has a s
heme of notation in mathemati
s, together with more re�ned representationsof physi
al and 
on
eptual pro
esses in the form of equations in the 
orrespondingsymbols. Ea
h equation 
an be regarded as a 
olle
tion of signs, whi
h 
onstitutesa model of an obje
t, pro
ess or event. Data, on the other hand, remain as meredata just to the extent that they remain a 
olle
tion of signs that does not serve asa model.From this point of view, the indu
tion of an equation within a symbol system repre-sents a means of better 
onveying the meaning or semanti
 
ontent en
apsulated inthe data. Indu
tion of an equation 
orresponds to �nding a model. In this pro
essthe information 
ontent is very little 
hanged, or even un
hanged, but the meaningvalue is 
ommonly in
reased immensely. Sin
e it is just this in
rease in meaningvalue that justi�es the a
tivity of substituting equations for data, there is a greatinterest in pro
esses that indu
e equations from data.Chapter 3 showed that the use of symboli
 regression as su
h does not provide thisin
rease in meaning value dire
tly. The interpretation of the symboli
 expressions ishindered by the size but even more by the seemingly arbitrariness of the 
omputa-tions that are performed. The system that produ
es these expressions is only guidedby numeri
al measures su
h as the error it makes. The 
omputations that are per-formed inside the expressions are then tailored to get this error down in whateverway possible. With symboli
 regression there is no expli
it means to 
reate expres-sions that 
an be interpreted by a s
ientist, and no means to justify the use of theexpressions that trans
ends statisti
al statements about the performan
e. Withoutsu
h means, interpretability of the expressions is 
oin
idental. What is needed is amethod that 
an help in the interpretation of the expression and the sub-steps thatare taken in the 
omputation. If the 
omputation de�ned by the expression 
an berelated to the physi
al pro
ess that it models, it is possible to 
onsider it a hypoth-esis of the system, instead of a bla
k box. The method to aid in this interpretationthat is 
onsidered here is the use of units of measurement.Throughout s
ien
e, the units of measurement of observed phenomena are used to
lassify, 
ombine and manipulate experimental data. Measurement is the pra
ti
eof applying arithmeti
 to the study of quantitative relations. Every measurementis made on some s
ale. A

ording to Stevens, to make a measurement is simplyto make `an assignment of numerals to things a

ording to a rule | any rule'(Stevens, 1959). There is a 
lose 
onne
tion between the 
on
ept of a s
ale andthe 
on
ept of an appli
ation of arithmeti
. Units of measurement are the namesof these s
ales. Simple unit names su
h as `kilogram', `se
ond', 'degrees are usedfor fundamental and asso
iative s
ales. Complex unit names, su
h as `kg m s�1'are used for derivative s
ales.



35Common methods for �nding equations based on data usually involve a dimensionalanalysis (whi
h attempts to remove issues of s
ale) and subsequent 
urve-�ttingby hand or automati
 means. An example of this was given in Chapter 3. Here itis suggested that an approa
h in whi
h the dimensions | physi
al units of mea-surement | of the data 
an be used as an additional sour
e of information inorder to help 
reating expressions, as well as 
he
king their validity and usefulness.Rather than ignoring dimensions altogether, or proposing dimensionless formulae(i.e., expressions based ex
lusively on dimensionless numbers), the obje
tive is to
reate fully dimensioned formulae. It is postulated that su
h formulae 
an be easierinterpreted. Then, if a fully dimensioned expression is obtained, it 
an provide abasis for the 
reation of a me
hanisti
, white box model.Using units helps in transforming physi
al 
on
epts into mathemati
al expressions.If a physi
al 
on
ept or physi
al manipulation is sensible and numeri
ally analogousto some appli
ation of arithmeti
, the substitution of the resulting equation to betterdes
ribe the data is justi�ed. The reverse is however not ne
essarily true: not everyappli
ation of arithmeti
 on measurements is rooted in physi
al reality. For example:the addition of the lengths of two sti
ks 
an 
orrespond with a proposal to 
ombinethe sti
ks to form one longer sti
k. The results produ
ed by the addition thendes
ribe the length of the 
ombined sti
k. In an experimental situation this mightor might not be a sensible proposal. Dividing the two length of these sti
ks 
anhave a variety of interpretations: it 
an 
orrespond with the sine of the angle thetwo sti
ks make in the 
ase the sti
ks are part of a triangle, but it 
an also be anoperation to normalize the lengths in the 
ase they are independent measurements.Without referen
e to the physi
al experiment that is des
ribed, it is impossibleto determine the exa
t meaning of su
h an appli
ation of arithmeti
. Relating adimensioned formulation to the physi
al experiment is then the role of the humanuser. The dimensioned formulae are tentative proposals: the units of measurementthat are manipulated by the formulae form a guide to their interpretation.To a
hieve the goal of 
reating fully dimensioned formulae, geneti
 programmingis used. One of the advantages of geneti
 programming over other methods forregression is the symboli
 nature of the solutions that are produ
ed. In the nat-ural s
ien
es for instan
e, a symboli
 answer in a language the user understands,mathemati
s, provides a great bene�t over methods that produ
e 
oeÆ
ients in aprespe
i�ed model. This is espe
ially pronoun
ed in empiri
al modelling of unknownphenomena where an underlying theoreti
al model does not exist. As was shown inChapter 3, the solutions produ
ed by geneti
 programming 
an not be interpretedat all times. The size of the solutions produ
ed 
an hinder interpretation, whilesetting the size to low limits 
an hinder the sear
h eÆ
ien
y.The goal of this approa
h is simple: to 
reate a geneti
 programming system thatprodu
es equations that are easier to interpret by domain spe
ialists. The systemis thus applied to the area of s
ienti�
 dis
overy. The GP-produ
ed equationsare supposed to form a set of hypotheses in and about the domain, stated inthe symboli
 language of equations. Rather than produ
ing bla
k-box solutions toproblems, the aim is to provide statements where the units of measurement help ininterpreting the expression and ultimately help in forming an enhan
ed view of theproblem.



36 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONSOperation TypeAddition/Subtra
tion ([x; y℄! [x; y℄! [x; y℄)Multipli
ation ([x; y℄! [v; w℄! [x+ v; y + w℄)Division ([x; y℄! [v; w℄! [x� v; y � w℄)Square Root ([x; y℄! [x=2; y=2℄)a
 ([x; y℄! [0; 0℄! [
x; 
y℄)Trans
endental Fun
tions ([0; 0℄! [0; 0℄)Table 4.1: The type system de�ned by the physi
al units of measurement. It de�nes
onstraints in the 
ase of addition and subtra
tion where the units of the operandsneed to be the same, in the 
ase of trigonometri
, hyperboli
, exponential and manyother fun
tions the units of the operands need to be dimensionless. Multipli
ation,division and the square root fun
tion are always de�ned, but introdu
e arithmeti
almanipulations on the types. Finally, the power fun
tion a
 is only de�ned when these
ond operand is a 
onstant, whose value will in
uen
e the output type. Here thea
tual value of the expression in
uen
es its type.4.1 Units of Measurement as a Type SystemConsider a variable v measured in units LxT yMz where L, T and M are thedimensions of length, time and mass respe
tively and x, y and z the 
orrespondingexponents. When one of the exponents is unity and the other exponents zero, theunit of v is referred to as a base unit. When all exponents are zero the unit is
alled dimensionless. In all other 
ases we speak of derived units. Furthermore,ve
tor notation for the units su
h that u = [x; y; z℄ is used to denote the ve
torof exponents. This ve
tor of exponents 
ontains all information ne
essary to makestatements about the units of measurement of variable v.For example: u = [1;�2; 1℄ de�nes a derived unit of for
e, whether it is measuredin kg m=se
2 or in lbs ft=se
2. Although in this paper the SI units of measurementare used, other units su
h as for example in
ome per 
apita 
an also be de�ned. Fornotational 
onvenien
e a smaller system, 
onsisting of two physi
al dimensions isused below (Table 4.1). This generalizes trivially to arbitrary numbers of dimensions,physi
al or otherwise.The term type system is used to refer to the 
ombination of type spe
i�
ationsof variables and 
onstants together with the type spe
i�
ations of the operators.The notation for this type system is borrowed from the typed �-
al
ulus, in whi
h(T ! U ! V ) denotes a fun
tion that requires two arguments of type T and U andreturns a value of type V . The types in the units of measurement (uom) systemare then real valued ve
tors.The 
onstraints on the mathemati
al operators involved in uom problems are spe
-i�ed as follows: ea
h operator 
an impose 
onstraints on its operands (for instan
eequality requirement in the 
ase of addition) or it 
an spe
ify manipulations in or-der to produ
e the output type from the input types as for example in the 
ase ofmultipli
ation. Several 
onstraints and manipulations are de�ned within the uomsystem as spe
i�ed in Table 4.1.Along with the de�nition of the independent and dependent variables and possiblytyped 
onstants, this type system de�nes an un
ountably in�nite number of types,



4.2. LANGUAGE, BIAS AND SEARCH 37where any real-valued ve
tor of the appropriate size is a data type in its own right.If all variables and 
onstants are dimensionless, the language redu
es to an untypedlanguage. In this 
ase, no manipulations 
an introdu
e non-zero exponents.The existen
e of derived units makes this type system more 
omplex than the typesystems usually used in 
omputer languages: these de�ne only base types su
h asfloat, int and string, the only way to 
ombine them is to put them in stru
tsor tuples.4.2 Language, Bias and Sear
hWith de�ning the type system for the units of measurement, a language of ex-pressions in this type system is de�ned. Several routes 
an be taken at this point.The most obvious is to implement this type system in geneti
 programming in su
ha way that the system will only indu
e expressions that are dimensionally 
orre
t.This is the area where Strongly Typed Geneti
 Programming is employed. Belowa review of su
h systems is presented, together with some argumentation on howmany of the existing systems are either not powerful enough to express the languageof dimensionally 
orre
t expressions, or why they are not expe
ted to perform wellon this parti
ular problem domain. This dis
ussion leads to the formulation of a newstrongly typed geneti
 programming system whi
h is fully des
ribed in Chapter 6.However, stri
tly abiding the 
onstraints imposed by this type system might not bethe most appropriate approa
h to 
reate useful expressions i.e., workable hypothe-ses that provide maximum insight into the problem. Although `getting the unitsright' has been hammered into many s
ientists and engineers, it is important to
onsider that with the automati
 indu
tion of expressions based on data and unitsof measurement it is not tried to indu
e s
ienti�
 law from examples, or even tomake a statement about 
ause and e�e
t. The goal is to 
reate a good performingexpression that helps in the analysis of 
auses, an enhan
ed 
on
eptualization ofthe problem, whi
h might ultimately form the basis of a new empiri
al law. Thislaw should be proposed by the domain expert however, as the hypothesis generationengine envisioned here 
an only provide expressions; not justi�
ations.Interpreting arithmeti
 applied to measurements is not 
lear 
ut. A mathemati
aloperation 
an apply to many things whi
h are diÆ
ult, if not impossible, to interpretas a realisti
 des
ription of a physi
al pro
ess. Above, examples were given aboutthe possible meanings a simple division of two length measurements 
an have:depending on the experimental layout of the measurements this division operator
an indi
ate a measurement of the sine of an angle or a simple normalization. Thesame holds for other operations. Although the units of measurement provide someinformation about the use of the variables, applying arithmeti
 on those variablesneeds further justi�
ation that goes beyond formal means.Modelling using units of measurement balan
es on the border between 
ausativemodelling and modelling by asso
iation. As any statisti
al textbook warns: 
or-relation does not equal 
ausation. Trying to redu
e the error for some model isjust a parti
ular form of maximizing 
orrelation between a model and a dependentvariable. Limiting the independent variables to for
ing variables and in
luding theunits of measurement in the sear
h might in
lude some 
ausative element in the



38 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONSsear
h. However, restri
ting the 
lass of senten
es that might be produ
ed to thosethat abide all the restri
tions in the measurements might miss out on important as-so
iations between measurements. Even more, a formally 
orre
t manipulation 
anbe meaningless. Taking the ar
 tangent of a ratio of two weight measurements willformally produ
e an angular measurement, but there is no physi
al interpretationof the angle between two weights.Be
ause model indu
tion is used in areas where no predi
tive theory exists 1, it
an not be established that everything that is measured is relevant in exa
tly theform (units) that it is measured in. It might turn out that a 
ertain measurementis asso
iated with a related property of the problem, stated in di�erent units. Forexample, a measurement in length units might be best used as if it was stated insurfa
e units | simply be
ause the measured value determines the value along oneaxis of a surfa
e variable, while the value along the other axis is 
onstant. Su
ha variable stated in length units would then be proportional to the unmeasuredsurfa
e variable. By strongly abiding to the units in the problem, su
h a use of thisvariable will never be 
onsidered, possibly leading to the premature 
on
lusion thatthe parti
ular set of measurements is useless.One parti
ular solution to these kind of problems is to introdu
e 
onstants statedin arbitrary units. Then it is possible to multiply the example variable measured inlength units with a 
onstant value stated in length units to obtain the desired mea-surement in surfa
e units. This will however defeat the entire purpose of modellingusing units of measurement: the units of any measurement 
an then be trans-formed to any other unit by multiplying it with an appropriate 
onstant. We 
aneven perform this as a pre-pro
essing step, leading to a symboli
 regression set upas presented in Chapter 3.As a formal system, the use of units of measurement poses a few more problems.Given the existen
e of 
onstants stated in arbitrary units it is easy to trivialize dimen-sional 
orre
tness by making liberal use of these 
onstants. If arbitrary dimensioned
onstants are absent, it is quite likely that modelling will not su

eed as experimen-tally 
olle
ted data 
annot vary or measure everything that is relevant. Any givenmeasurement might be indi
ative for a range of units. A variable stated in lengthunits might be proportional to a re
tangular surfa
e if the other axis of the re
tangleis kept 
onstant. Likewise, a set of length measurements 
an be proportional to aset of velo
ity measurements if all experimentation is performed using a �xed periodof time. The details on the possible roles a single variable 
an take is determined bythe physi
al setup of the experimentation and 
an be hard to exhaustively spe
ifybeforehand.The use of a dimensionally (more or less) 
orre
t expression 
an however be great forthe s
ientist. By balan
ing dimensions, an expression stated in some parti
ular units
an point to phenomena in the problem that are not obvious. By analyzing su
hformulae, the s
ientist might be able to update a mental pi
ture of the phenomenonunder study and gain new insight. This analysis needs to be performed with respe
tto the way the data is produ
ed: the experimental setting. This setting is onlypresent in a watered down form for the model indu
tion engine, in the form of unitsof measurements.Abiding rigorously to the units of measurement implements a de
larative bias. As it1If su
h theory did exist, we would not bother performing predi
tive modelling.
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ular form of bias is 
alled semanti
 bias (Muggle-ton and Raedt, 1994). A de
larative bias imposed on a language redu
es the set ofsenten
es that 
an be derived: it thus restri
ts the sear
h. It is however not a prioriguaranteed that this bias is justi�ed in a set of empiri
ally 
olle
ted data. It wasattempted to show that a de
larative bias to using only the units in the experimentalsetup 
an be misleading in at least two ways: dimensionally 
orre
t expressions arenot guaranteed to be meaningful, as not all formally allowed arithmeti
 operationswill have a physi
al interpretation; and formally in
orre
t expressions 
an be mean-ingful when a measurement is asso
iated with another phenomenon to whi
h it isproportional.To also investigate formally in
orre
t expressions, it might then be worthwhile toexamine ways of guiding the sear
h rather than restri
ting it. Changing the sear
hto make it more likely that a 
ertain 
lass of senten
es is produ
ed is 
alled imple-menting a preferential bias (Muggleton and Raedt, 1994). A system that uses apreferential bias towards dimensionally 
orre
t expressions is presented in Chapter 5.It is hypothesized that su
h a system | whi
h allows errors in the units to o

ur| provides a more fertile ground for the ultimate goal of modelling using units ofmeasurement: understanding the data better by analyzing expressions that �t thedata well.Apart from the possibility that formally in
orre
t expressions 
an provide additionalinformation, the use of a preferential bias might also help simply as an enhan
e-ment of the sear
h 
apabilities of the system | even when ultimately only 
orre
texpressions are 
onsidered.4.3 Typing in Geneti
 ProgrammingStrongly typed geneti
 programming (Montana, 1995) was the �rst of many ap-proa
hes that 
onstrain the allowable programs in geneti
 programming by meansof a type system. The purpose of a strongly typed system is to make only thoseprograms well-formed that are type 
orre
t. It thus attempts to redu
e the sear
hspa
e to the spa
e of 
orre
tly typed programs. It thus introdu
es a de
larative biasin the sear
h spa
e.Tree Based GP Montana's work introdu
ed the 
on
ept of a generi
 fun
tion ingeneti
 programming. A generi
 fun
tion is well-de�ned over all or a well-de�nedsubset of available types. As an example: in Table 4.1, the 
onstraints on the uomtype system are de�ned as generi
 fun
tions.Strongly typed geneti
 programming aims at initializing and maintaining a popula-tion 
onsisting of 
orre
tly typed programs. The goal is to optimize the programswith respe
t to some obje
tive fun
tion. When these programs are representedas trees, most e�ort is devoted to de�ning a suitable initialization routine and astrongly typed subtree 
rossover.Several approa
hes have followed upon this work. The following are dis
ussed here:
ontext free grammars (point typing) (Gruau, 1996; Whigham, 1996a), paramet-ri
 polymorphism (generi
 typing) (Yu and Cla
k, 1998), inheritan
e (subtyping)
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 grammars (Wong and Leung, 1997). These ap-proa
hes share the use of a tree representation in order to store the program alongwith the type information, together with the de�nition of variational operatorsthat manipulate this tree representation. Most notably, a strongly typed subtree
rossover is de�ned that ex
hanges parts of the programs while keeping the typeinformation in the tree up to date and 
orre
t.Developmental GP As an alternative to using trees as the representation, de-velopmental approa
hes have been proposed (Banzhaf, 1994; O'Neill and Ryan,2001). Here linear strings of bits or integers are maintained, that are mapped intoan expression using some derivation pro
ess. Developmental GP makes a distin
-tion between an untyped genotype | the string | and a typed phenotype | thederivation tree and ultimately the expression generated by the string.In 
ontrast with tree based approa
hes, the variational operators in developmentalGP are simple and untyped: the string representation is dire
tly manipulated and allissues 
on
erning typing are handled in the derivation pro
ess. These systems arestrongly typed as they only produ
e 
orre
tly typed expressions. The main di�eren
ewith tree based approa
hes lies in the absen
e of strongly typed variation operators.String based systems 
an employ synta
ti
 
onstraints su
h as 
ontext free gram-mars (CFGs), whose 
ontent is a disjun
tion of produ
tion rules. This implementsa de
larative bias in the form of a synta
ti
 bias (Muggleton and Raedt, 1994).Re
ently however, grammar-based approa
hes have been su

essfully extended touse logi
 programs (Keijzer et al., 2001a) that 
an model 
ontext-sensitive infor-mation. Chapter 6 is devoted to the introdu
tion of this logi
 programming baseddevelopmental system.4.4 Expressiveness of Type SystemsA 
ontext free grammar (CFG) 
an implement only a limited type system, and thereis no notion of generi
 fun
tions. Be
ause of this, a CFG needs a separate symbolfor ea
h type in the grammar. This is 
alled point typing. As an example, 
onsiderthe usual arithmeti
al fun
tion set and two terminals, x and y. The set of parsetrees 
an be de�ned by the 
ontext free grammar:Grammar 1 A Lisp-style grammar using a single type:<expr> ::= x |y |(sqrt <expr>) |(+ <expr> <expr>) |(* <expr> <expr>) |(- <expr> <expr>) |(/ <expr> <expr>).where the CFG symbol <expr> is of type double. The types and arity of thefun
tion set are hidden in the produ
tion rules for <expr>. An equivalent grammar



4.4. EXPRESSIVENESS OF TYPE SYSTEMS 41treating T and F as terminal symbols whi
h produ
es senten
es in a more C-stylelanguage is:Grammar 2 A 
ontext-free grammar for symboli
 regression:<expr> ::= <terminal> |<mon op>(<expr>) |(<expr> <bin op> <expr>).<terminal> ::= x | y.<mon op> ::= sqrt.<bin op> ::= + | * | - | /.The type system indire
tly implemented by this grammar is de�ned as: <expr> and<terminal> are of type double, <mon op> is of type (double ! double) and<bin op> is of type (double ! double ! double). By adding more symbols,other types 
an be in
orporated in the grammar. Customarily, the <terminal>symbol is de�ned as a separate symbol from the <expr> symbol even though theyhave the same type.There is no apparent bene�t for preferring one grammar over the other. In theliterature, Koza-style geneti
 programming uses (albeit impli
itly) the �rst, whileusers of CFG based geneti
 programming seem to prefer the se
ond (Whigham,1996a; O'Neill and Ryan, 2001). Although the use of di�erent grammars 
an resultin a radi
ally di�erent performan
e, it is in general not possible to 
hoose an optimalor even a good grammar in advan
e.Although a 
ontext free grammar 
an be used to spe
ify the syntax of an arbitrary
omputer language, the importan
e of su
h synta
ti
al issues is very limited. In
ontrast with parsing, generating senten
es in a spe
i�
 
omputer language is trivialwhen the 
omputation that needs to be performed is represented in an unambiguousformat. A parse tree is su
h a format. If pure synta
ti
al issues | su
h as whereto put a semi-
olumn | are hardly relevant, why are 
ontext free grammars in
ommon use in geneti
 programming?One reason for using 
ontext free grammars is to implement a type system that
an be used to 
onstrain the expressions that 
an be produ
ed. When the fun
tionset is 
omposed of | say | logi
al fun
tions and arithmeti
al fun
tions, a 
ontextfree grammar 
an be used to make sure that boolean and real-valued types do notget mixed. The type system that 
an be implemented with a 
ontext free grammaralone is however severely limited as ea
h type needs to be represented by a set ofprodu
tion rules.Another potential bene�t in using 
ontext free grammars was identi�ed by Whighamas the possibility of 
hanging the bias of a geneti
 programming system by 
hang-ing the grammar, while leaving the language (the set of possible senten
es that 
anbe expressed) inta
t (Whigham, 1996b). As it is diÆ
ult to �nd a good grammarin advan
e, Whigham experimented with 
hanging the grammar during optimiza-tion (Whigham, 1996a).



42 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONSContext free grammars are not well suited to model the uom system. Sin
e there isan un
ountably in�nite number of types present in the uom system, a full spe
i�
a-tion is impossible. There have been implementations for a subset of the uom system(Ratle and Sebag, 2000), where all integer units in the range [�2; 2℄ have been mod-elled using the restri
ted fun
tion set of f+; �;�; =g. Sin
e this gives 5 di�erenttypes per dimension, a full spe
i�
ation of the grammar (ex
luding fun
tions su
has sqrt) for a problem stated in LTM requires 53 = 125 di�erent symbols, ea
hhaving many rules (for example, the multipli
ation and division operators requiringup to 125 rules per type):<exp in 0 0 0> ::=(<exp in 0 0 0> * <exp in 0 0 0>) |(<exp in 1 0 0> * <exp in -1 0 0>) |(<exp in 2 0 0> * <exp in -2 0 0>) |...[followed by 122 more definitions for multipli
ation℄.Due to the tediousness of writing su
h a grammar by hand, (Ratle and Sebag,2000) used a grammar generation routine. A more detailed dis
ussion of the e�e
-tiveness of su
h a grammar in 
ombination with a strongly typed subtree 
rossoveris postponed until Se
tion 4.5.Typing through inheritan
e (subtyping) is more expressive than using CFGs. Theapproa
h is used in modern Obje
t-Oriented languages and in its most basi
 formmodels an is-a relationship. Although existing, the support for generi
 fun
tionsis limited. For example suppose that a base type obje
t is de�ned as well as twoderived types integer and 
oat. To de�ne a generi
 list, in the subtyping approa
hone would need to 
reate a type obje
t list2. It is now possible to add integers and
oats to the list through their an
estor obje
t. When retrieving an element fromthis list however, one retrieves something of type obje
t, rather then an integer or
oat. In general a runtime 
he
k must to be performed in order to determine thetype of the obje
t. If the goal is to 
reate a list of integers, a whole new typeinteger list needs to be de�ned, dupli
ating the fun
tionality of the obje
t list. Asthe uom system requires generi
 fun
tions where the a
tual type of the operandsis required to 
al
ulate the output type, the subtyping approa
h seems not to besuitable.Strongly typed GP through parametri
 polymorphism (generi
 typing) (Yu andCla
k, 1998) is modelled on the basis of modern fun
tional languages su
h asHaskell, that have their roots in the typed �-
al
ulus. It presents a 
omplete typesystem where type variables and thus generi
 fun
tions play a prominent role. Forthe previous example, given two types integer and 
oat, it is possible to de�ne ageneri
 list by the type spe
i�
ation [T ℄, where T denotes a type variable, or pa-rameter (hen
e the name parametri
 polymorphism). A fun
tion 
ons 
an easily bede�ned to be of the type (T ! [T ℄ ! [T ℄), meaning that the �rst argument is oftype T , the se
ond argument a list of T s and it returns a list of T s. A uni�
ationpro
edure infers the types in the tree generation routine, and ensures that for exam-ple no 
oat 
an be added to a list of integers. Parametri
 polymorphism enhan
ed2In fa
t, the Java language gives su
h a list-of-obje
ts in its standard library.
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 is well suited for implementing a strongly typed version of theuom system. In this paper logi
 programming is used in order to implement thistype system.Similarly to 
ontext free grammars, logi
 grammars do not form a type-system perse, but rather a de�nition of a (
omputer) language. Logi
 grammars are morepowerful than 
ontext free grammars sin
e additional | semanti
 | information
an be manipulated as well. A logi
 grammar is usually translated into a logi
program that 
an parse and generate senten
es in the language. Chapter 6 willintrodu
e a system for performing strongly typed geneti
 programming on logi
programs dire
tly.4.5 Typed Variation OperatorsMost strongly typed geneti
 programming systems rely on strongly typed 
rossoveroperators that attempt to keep the expressions 
orre
t at all times by only swappingtype-
ompatible sub-expression. Two a priori arguments in favour of relaxing thetype 
onstraint for the variational operators are identi�ed here: a general argumentinvolving ergodi
ity of the sear
h spa
e and a spe
i�
 argument involving loss ofdiversity for subtree 
rossover.4.5.1 Broken ergodi
ityStrongly typed geneti
 programming systems vastly redu
e the size of the sear
hspa
e (Montana, 1995) by ex
luding all but 
orre
tly typed formulations. For enu-merative or random sear
h this 
onsiderably a

elerates the sear
h pro
ess. How-ever, for algorithms utilizing some notion of a neighbourhood, a redu
ed sear
hspa
e may be detrimental, espe
ially when the resulting spa
e is fragmented withrespe
t to the neighbourhood fun
tion. In the 
ase of simulated annealing for in-stan
e, an a priori requirement for global 
onvergen
e is that the sear
h spa
e isergodi
: any point in the sear
h spa
e needs to be 
onne
ted to any other point ina �nite number of steps. When this 
ondition is not met, the sear
h method is saidto su�er from broken ergodi
ity (Palmer, 1982). Broken ergodi
ity implies that theresults strongly depend on the initial 
onditions. The apparent fo
us on `proper'initialization in the geneti
 programming literature already points at the existen
eof a problem.As an example of fragmentation, 
onsider the uom system with strongly typedsubtree 
rossover and mutation. For example, let us 
onsider a node that adds twovelo
ities [m=s℄+ [m=s℄. Both of the velo
ities are 
al
ulated in subtrees below theaddition node. On
e these types are instantiated, subtree 
rossover and mutationare for
ed to treat the arguments of the addition as velo
ities. The variationaloperator 
annot 
hange one of the arguments to, say, a subtree stated in units oflength as this would produ
e an in
onsistent tree. There is therefore no path toin
rementally transform the addition of velo
ities to an expression stated in otherunits, no matter how bene�
ial for the performan
e of the expression this might be.The system is always for
ed to treat the expression as being a statement in velo
ityunits.



44 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONSUsing strongly typed variation operators, all 
hanges to an expression (be it using
rossover or mutation) are made in the 
ontext of the types present in the un
hangedpart of the expression. This has the potential to lead to a strong dependen
e onthe initial population, where the typing stru
ture of the best performing expressiondetermines a template the rest of the optimization has to 
onform to. As thistemplate is 
hosen relatively arbitrarily (it is 
hosen on the basis of a limited sampleof randomly generated programs that might have undergone only a few rounds ofsele
tion and variation), this 
an have a strong impa
t on the ability to sear
h well.4.5.2 Loss of diversityAnother problem for tree-based geneti
 programming in the 
ontext of a type-system lies in the availability of geneti
 material (subtrees) to be re
ombined usingstrongly typed subtree 
rossover. Consider a system based on a tree-based stronglytyped approa
h, using strongly typed variational operators working on a type-system
ontaining T types (or a 
ontext free grammar with T non-terminal symbols). Sin
ea strongly typed subtree 
rossover only swaps subtrees of the same type, the 
odebase of subtrees present in the population is e�e
tively partitioned into T di�erentsubspa
es: one for every type. There is also only a limited 
apa
ity of types that
an be present in any one individual due to limitations of size.Although strongly typed subtree 
rossover is 
apable of 
reating new subtrees, it isusually not 
apable of 
reating new types: ex
hanging material of the same type willgenerally not 
hange the type of the node above the ex
hange spot. An ex
eptionis the exponentiation rule (see Table 4.1) where the value of the 
onstant in
uen
esthe type. Ex
hanging 
onstants with di�erent values will 
hange the type of theexpression, potentially leading to a type error3.Due to the e�e
ts of repeated sele
tion and subtree dupli
ation by subtree 
rossover,it 
an be expe
ted that number of distin
t subtrees for any one type will be only asmall fra
tion of all available subtrees (Keijzer, 1996). The mutation operators arethen solely responsible for introdu
ing new types in the population, leading to theexpe
tation that subtree 
rossover will loose its e�e
tiveness during the run.4.6 SummaryThis 
hapter lays some groundwork for the 
hapters that follow. The goal andmethod of this thesis is identi�ed: making the equations produ
ed by geneti
 pro-gramming more suitable for analysis and interpretation by the use of units of mea-surement as a type system.The system of units of measurement is de�ned in the notation of the typed �-
al
ulus, where the units are des
ribed by a ve
tor of exponents. These ve
torsform the types in this system. Be
ause the number of types as su
h is un
ountablyin�nite, simple type systems 
annot 
ater for this level of expressiveness. It was3When using 
ontext sensitive grammars, su
h errors 
annot in prin
iple all be 
he
ked synta
-ti
ally, therefore (Wong and Leung, 1997) implemented a semanti
 validation pro
edure to 
he
kif all 
onstraints are satis�ed after a subtree 
rossover event.



4.6. SUMMARY 45shown that spe
i�
ally a 
ontext-free grammar 
an not be used to spe
ify all possibletypes in this system.A brief review of strongly typed geneti
 programming is given, showing that themost 
ommon approa
h to ensure type 
orre
tness of expressions is by employ-ing operators that keep all types 
orre
t at all times. Some arguments are givenwhy strongly typed variation operators are not ne
essarily the optimal approa
h toensure this type 
orre
tness. A brief hint is given that in developmental geneti
programming systems untyped variation operators 
an be used. This will be ex-plored in depth in Chapters 6 and 7, where a developmental geneti
 programmingsystem is introdu
ed that 
an implement the units of measurement type system infull generality, without the need for strongly typed variation operators.The term de
larative bias is asso
iated with strongly typed geneti
 programming.In the units of measurement system, the language of all possible expressions isredu
ed to only those expressions that are dimensionally 
orre
t. De
larative biasis a method of introdu
ing ba
kground knowledge from the problem domain intothe sear
h. By redu
ing the number of well-formed expressions, a sear
h speedupis expe
ted (Montana, 1995). Above it is argued however that su
h a speedup 
anonly be expe
ted when enumerative of random sear
h are used; the introdu
tionof de
larative bias in sear
h te
hniques that employ some form of neighbourhoodfun
tion | su
h as geneti
 programming and simulated annealing | might hinderthe sear
h in unforeseen ways by breaking the ergodi
ity in the neighbourhoodfun
tion de�ned by the sear
h operators.Chapter 5 will however introdu
e a method where the information about the unitsof measurement is not taken as an a priori redu
tion of allowed expressions. Itwill implement the units of measurement as a preferen
e rather than a 
onstraint.This will be 
alled a preferential bias, where the sear
h spa
e is not redu
ed, butextra information about the amount of typing error is in
luded in the performan
eevaluation. A multi-obje
tive sear
h is then used to �nd the optimal balan
e betweenthe �t on the data and the type 
onsisten
y of the proposed formulations.
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Chapter 5Dimensionally Aware Geneti
ProgrammingStrong typing is not the only approa
h imaginable to obtain expressions that useunits of measurement. Due to possible problems with ergodi
ity, but also be
ausethe parti
ular set of units that are used in the experimental setup 
annot be expe
tedto present the best possible set, a less stri
t approa
h might be worth investigating.Su
h an approa
h is the 
oer
ion based approa
h introdu
ed here.Rather then insisting on keeping the expressions 
orre
tly typed at all 
ost, theapproa
h relies on a set of 
oer
ion fun
tions of arity 1, that map one type intosome other type, any other type. Coer
ions in 
omputer languages are often usefulwhen the type system prevents otherwise sensible operations. Without 
oer
ions,it would for instan
e be hard to add an integer value to a 
oating point value; anoperation that from a mathemati
al point of view should not pose any diÆ
ulties.As 
oer
ion fun
tions 
ir
umvent a type system, too many 
oer
ions make the 
odehard to read and interpret. With the 
oer
ed geneti
 programming approa
h thenumber of 
oer
ions is used as a se
ond obje
tive, 
oer
ions are thus allowed whenthey help in better solving the primary obje
tive, while gratuitous 
oer
ions arepunished when alternatives are present.The main philosophy behind this approa
h is that while type 
orre
tness 
an helpin 
reating readable and interpretable 
omputer programs, a rigorous adheren
e toa spe
i�
 type system might ex
lude the indu
tion of well-performing expressions.By refusing to view the 
onstraints imposed by a parti
ular type system as hard
onstraints, it is expe
ted that this leads to a more eÆ
ient sear
h. Furthermore, alimited number of typing errors 
an be quite a

eptable if it helps the performan
e.Be
ause it is not 
lear what the optimal balan
e between type 
orre
tness andperforman
e is at the outset of the experimentation, a multi-obje
tive strategy basedon Pareto optimality is used. This has an advantage over penalty fun
tions (Yu andBentley, 1998) that no a priori 
hoi
e has to be made about the balan
e betweenperforman
e and type 
orre
tness. Due to the existen
e of 
oer
ion fun
tions,in
orre
tly typed expressions are not viewed as illegal expressions, as they 
an stillbe exe
uted. More importantly even, a run results in a front of non-dominated
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e performan
e and type 
orre
tness in unique ways. Inspe
tingthe exa
t balan
e a
hieved between type violations and performan
e 
an highlightproblems in the problem de�nition and might lead to additional insight.5.1 Coer
ed Geneti
 ProgrammingThe name Coer
ed Geneti
 Programming is 
hosen as the general name for thisapproa
h. Rather then avoiding to generate in
orre
tly typed parse trees, the treesare repaired by inserting 
oer
ion fun
tions. The appli
ation of a 
oer
ion fun
tionis asso
iated with a 
oer
ion error that is supposed to model the `badness' of theparti
ular 
oer
ion that is applied.The system thus depends on the de�nition of a 
omplete set of 
oer
ion fun
tions.When all types 
an be 
oer
ed into ea
h other using su
h fun
tions, the 
oer
ionapproa
h to typing 
an be de�ned as follows:1. Set up a basi
 (single-typed) geneti
 programming system using all fun
tionsand terminals, without the set of 
oer
ion fun
tions. No e�ort is made toensure that the types mat
h, other than making sure that a fun
tion has asmany arguments as its arity (i.e. all binary fun
tions are of the generi
 form(T ! U ! V ).);2. Before evaluation, repair the tree by re
ursively mat
hing a
tual types. If andwhen a type violation o

urs:� insert the appropriate 
oer
ion fun
tion;� add the asso
iated 
oer
ion error to the total 
oer
ion error for theprogram;3. evaluate the repaired tree;4. return the evaluation result together with the total 
oer
ion error.The 
oer
ion error of a program is used as a se
ond obje
tive in a multi-obje
tivesear
h. Thus, rather than 
onstraining the sear
h to type-
orre
t formulations only,all expressions 
an be inferred. Type 
orre
tness is viewed as a soft 
onstraint,and the sear
h is guided rather than for
ed to abide these 
onstraints. It thusimplements a preferential bias towards 
orre
t solutions rather then the de
larativebias used by strongly typed geneti
 programming. At the end of a run, typi
ally aPareto front of non-dominated solutions is delivered; it is up to the user to judgewhi
h balan
e between the ability to solve the problem and type 
orre
tness is themost appropriate for the problem at hand.Appli
ability of the approa
h The 
oer
ion approa
h to typing is suitable forany language where the types have a more-or-less meaningful 
oer
ion into ea
hother. The language of units of measurement possesses this, but also a languagethat mixes integers, 
oats and booleans have su
h `natural' translations.If these `natural' 
oer
ion fun
tions 
an not be de�ned however, a strongly typedapproa
h might be worth investigating. An example of this would be a language



5.1. COERCED GENETIC PROGRAMMING 49that allows string manipulations together with numeri
 operators. It is not 
learhow to 
oer
e a string into a number in a sensible way or vi
e versa.The 
oer
ion approa
h is related to repair-based algorithms that are used in runtimetyped geneti
 programming systems (Yu and Bentley, 1998). There is one 
ru
ialdi�eren
e: repair based algorithms do not in general use the e�ort that is needed inrepairing expressions to guide the sear
h. There is therefore no sele
tion pressuretowards �nding expressions that do not need repair. Coer
ed geneti
 programmingdoes provide su
h pressure. It will tend to avoid expressions that need ex
essiveamounts of repair.5.1.1 Cal
ulating the Coer
ion Error for the uom systemFor the uom system a single 
oer
ion fun
tion that only passes its argument 
anbe de�ned: 
oer
e : ([x; y℄! [u; v℄)
oer
ion-error = ju� xj+ jv � yjwhi
h states that the 
oer
ion fun
tion 
an transform a type stated in a uominto a type within any other uom . This is equivalent to multiplying the inputtype with a 
onstant of magnitude unity and uom [u � x; v � y℄. The 
oer
ionerror is a

umulated through the expression and is used as an additional obje
tive.In previous work (Keijzer and Babovi
, 1999) the 
oer
ion error has also been
alled goodness-of-dimension. The goal of the 
oer
ion approa
h within the uomsystem is to �nd a trade-o� between dimensionally 
orre
t formulations and well-�tted formulations. The 
oer
ion approa
h provides a gra
eful degradation whenno 
orre
t formulations that �t the data well 
an be found.As this 
oer
ion fun
tion does not 
al
ulate anything | it simply returns the valueof its arguments | no a
tual manipulations to the expression are ne
essary. While
al
ulating the 
oer
ion error, the algorithm 
onsiders 
oer
ions only at the followingnodes:� At the root node: when the uom of the expression di�ers from the desireduom;� At addition and subtra
tion nodes: when the two arguments di�er, one argu-ment is 
oer
ed into the uom of the other argument;� At trans
endental nodes: when the argument di�ers from the dimensionlessuom, a 
oer
ion takes pla
e.The algorithm for 
al
ulating the 
oer
ion error is re
ursively applied at all possible
oer
ion points and sele
ts that set of 
oer
ions that gives the smallest 
oer
ionerror. The addition and subtra
tion nodes are 
onstrained to 
oer
e the uom of oneargument into the other and not both to some third potentially more optimal uom .Binary fun
tions su
h as multipli
ation and division propagate the 
onstraints, and
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al
ulate the produ
t of possible 
oer
ions. As an example: 
onsider a treeusing a length measurement, a time measurement and a velo
ity measurement inthe following way. *+m s +m/s mThis expression is 
learly in
orre
t, it adds lengths to time measurements and lengthsto velo
ities. To 
al
ulate the minimal 
oer
ion error, two arrays of values aremaintained: one to store the 
oer
ed units of the tree, the se
ond to store the
oer
ion error. The terminals are initialized with arrays storing the input dimensionsand a 
oer
ion error of 0. Cal
ulating these arrays at the addition node will resultin the following stru
ture: *[s,m℄ [2,2℄[m℄[0℄ [s℄[0℄ [m m/s℄ [1 1℄[m/s℄[0℄ [m℄[0℄For the �rst addition bran
h, the information 
ontained in the arrays [s,m℄[2,2℄,indi
ates that to obtain an expression stated in se
onds, the �rst argument of thefun
tion (the length measurement) needs to be 
oer
ed. This 
oer
ion involves ane�ort (the 
oer
ion error) of 2: the length measurement should be multiplied witha 
onstant stated in units of time per length to obtain a time measurement. Theother option is to 
oer
e the variable in unit time to a variable in units of length.To obtain su
h a length measurement, it needs to be multiplied with a 
onstantin velo
ity units. For the se
ond addition bran
h a similar 
al
ulation is made.Be
ause there the arguments to the fun
tion only di�er in the time dimension, the
oer
ion error is 1. The multipli
ation node distributes the tentative outputs of theaddition nodes by 
onsidering all possible output units. Be
ause no 
oer
ion errors
an be made at this point, it will simply add the asso
iated 
oer
ion errors of itsarguments. The 
al
ulation will then look like:[ms, m, m2, m2/s℄[3,3,3,3℄[s,m℄ [2,2℄[m℄[0℄ [s℄[0℄ [m m/s℄ [1 1℄[m/s℄[0℄ [m℄[0℄The possible outputs of this tree is thus one of [ms, m, m2, m2/s℄. Suppose thatthe target uom for this problem is an a

eleration. Coer
ing the arrays of possibleoutputs to an a

eleration will result in:[m/s2, m/s2, m/s2, m/s2℄ [6,5,6,5℄Then, the minimal 
oer
ion error for this expression is the se
ond or the fourth seriesof 
oer
ions, 
orresponding with a 
oer
ion error of 5. Considering the se
ond seriesof 
oer
ions will produ
e the 
orre
t expression:



5.2. EXAMPLE: SEDIMENT TRANSPORT 51* (m/s2)1/s2 * (m)+ (s)*s/m m s + (m/s)m/s *1/s mwhere the 
oer
ions that are (impli
itly) applied are shown in boldfa
e. Although inprin
iple the use of binary fun
tions su
h as multipli
ation and division 
an involvean exponential e�ort in 
al
ulating the 
oer
ion error of expressions, in pra
ti
e(due to the pressure on minimizing 
oer
ions) the 
omputation is feasible.The 
oer
ion error is then used as a se
ond obje
tive that is to be minimized inthe sear
h. This 
oer
ed geneti
 programming system applied to problems involvingunits of measurement is 
alled Dimensionally Aware Geneti
 Programming (DAGP).The name indi
ates that even though the system uses the dimensions in the data, itis only `aware' of them, not for
ed to abide them at all 
ost. The primary motivationfor the de�nition of this DAGP was the suspi
ion that for many pra
ti
al problemsnot all relevant data would be measured and that this data is not always statedin the optimal units for indu
ing expressions (Se
tion 4.2). Making the systemaware of the uom in the problem des
ription, rather than rigorously abiding themis thought to provide a more robust system than a strongly typed approa
h.5.1.2 WrappingOften with geneti
 programming, methods 
an be devised that enlarge the solutionspa
e by making use of wrappers. Se
tion 2.2.4 introdu
ed wrappers for regressionand 
lassi�
ation. When indu
ing fully dimensioned empiri
al equations, anotheropportunity for wrapping the output arises.In the system des
ribed above, the 
oer
ion error made at the output level (the rootnode of the tree) was in
luded in the overall 
oer
ion error of the expression. Anexpression that is dimensionally 
onsistent, but produ
es an output in the wrongunits will thus have a non-zero 
oer
ion error. By relaxing this 
onstraint to allowany output units, the solution spa
e is again enlarged. The wrapper that will beused then takes the form of a multipli
ation by a 
onstant, stated in su
h unitsthat the overall output is stated in the 
orre
t units. Su
h dimensioned 
onstantsat the output level are part of standard s
ienti�
 pra
ti
e and produ
ed normalizing
onstants su
h as Chezy's roughness 
oeÆ
ient (stated in m0:5=s2).5.2 Example: Sediment TransportThe sediment transport problem was more fully des
ribed in Se
tion 3.1. Theterminal set is presented here again in Table 5.1, and the fun
tion set 
onsists ofthe usual:



52 CHAPTER 5. DIMENSIONALLY AWARE GENETIC PROGRAMMINGF = fplus/2,times/2,div/2,minus/2,sqrt/2gName uom des
ription� m2=s kinemati
 vis
osityuf m=s sheer velo
ityu0f m=s sheer velo
ity related to skin fri
tionws m=s settling velo
ityd50 m median grain diameterg 9:81m=s2 gravity a

eleration
b dimensionless 
on
entration of suspended sedimentTable 5.1: Dimensioned terminal set for the sediment transport problem.Optimizing on the 
oer
ion error de�ned in Se
tion 5.1.1, and on the normalizedroot mean squared error (NRMS), the typi
al result of a dimensionally aware geneti
programming run is a front of non-dominated solutions that balan
e between a

u-ra
y on the training data and 
oer
ion error. Su
h a front is depi
ted in Figure 5.1.This �gure is typi
al in that there exists a trade-o� between the error on the dataand the 
oer
ion error. This is not at all obvious as the do
trine of dimensionalanalysis in s
ien
e seems to suggest that dimensionally in
orre
t formulations areexpe
ted to be wrong. These equations might be `wrong' when looking at thedimensions only, but they do su

eed in modelling the data well.The reason for dimensionally in
orre
t expressions to evolve and have better a
-
ura
y than the dimensionally 
orre
t expressions has its origins in two separatereasons. Firstly, there are simply more dimensionally in
orre
t expression thandimensionally 
orre
t ones. The number of mathemati
al relations that 
an bemodelled with an in
orre
t expression is larger then that of dimensionally 
orre
texpressions, as the spa
e of in
orre
t expressions 
ontains all arithmeti
al fun
tionsusing the fun
tions and variables. Se
ondly the data is 
olle
ted and measuredthrough empiri
al means: not all relevant phenomena 
an be measured in su
h apro
ess and it is not guaranteed that the spa
e of dimensionally 
orre
t models
ontains a solution.With this trade-o� expli
itly modelled in the front of non-dominated solutions,the user's judgement enters the equation. The di�eren
e in error between the bestdimensionally 
orre
t equation and the best equation �tted on the data in Figure 5.1is suÆ
iently large to examine some other equations. In this parti
ular 
ase it wouldseem wise to also examine the formulations that have a 
oer
ion error 
lose to 0:5and a NRMS value 
lose to 0:44, and 
ontrast them with the dimensionally 
orre
texpression that evolved in the same run. A 
oer
ion error of 0:5 is fairly low: it 
anfor instan
e be 
aused by an addition of a length measurement with a measurementstated in the square root of length as the only violation of the 
onstraints. Whetherthis in
onsisten
y weights up against the level of improvement is ne

issarily asubje
tive 
hoi
e.Performing many independent runs results in a set of fronts of non-dominated solu-tions. From these again a front 
an be formed (see Figure 5.2). This is ultimatelythe set the user has to 
hoose from. Also here a trade-o� between performan
e
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al front of non-dominated solutions produ
ed in a single run ofthe dimensionally aware system. Almost invariably, a balan
e between goodness-of-�t and 
oer
ion error exists in the front of solutions.on the data and dimensional 
orre
tness 
an be observed, 
areful examination ofthe formulae 
an provide additional insight into whi
h units need to be violated toobtain a better �t on the data.Interpretability Using a version of dimensionally aware geneti
 programming, inprevious work (Keijzer and Babovi
, 2000b) the following equation was indu
ed forthis problem. 
b � 1:121� 10�5�1 + 100u0fwsgd50 � u0f � wsu0f + ufThis formula is dimensional 
orre
t, and furthermore it uses the most relevant phys-i
al properties in the relevant 
ontext. For example, the dimensionless term u0fwsgd50is e�e
tively a ratio of shear and gravitational for
es. Shear for
es are representedby u0f , `responsible' for elevating sediment parti
les into the stream, while the grav-itational term gd50ws is `responsible' for settling the parti
les. The remaining groupu0f�wsu0f+uf is a ratio of resultant energy near the bed and of the total available energyin the 
ow transporting the parti
les.The formula thus introdu
es two dimensionless terms, ea
h being relevant to theproblem. Three sour
es of information lead to the indu
tion of the expression:� the input output relation present in the data;
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NRMSFigure 5.2: Overview of all fronts of non-dominated solutions produ
ed by 50 inde-pendent runs of a dimensionally aware geneti
 programming system. The front ofthis set is depi
ted with additional 
ir
les.� the units of measurement des
ribing the dependent and independent variablesin the problem;� the user that sele
ted this expression, symboli
ally manipulated it and triedto interpret it.The �rst two sour
es are automated, while the third step 
riti
ally depends on auser that tries to distill meaning out of the proposed relationship. The expli
it useof the units of measurement helped in �nding a link between the expression and thephysi
al world. Several of su
h tentative relationships have been proposed above.5.3 SummaryThe method of using 
oer
ion rather than strong typing was �rst introdu
ed in (Kei-jzer and Babovi
, 1999), where it was applied to the problem of indu
ing expressionsin the language of units of measurement. The parti
ular 
ombination of typing as
oer
ion on problems involving units of measurement is 
alled `Dimensionally AwareGP', abbreviated to DAGP. The details of the 
al
ulation of the 
oer
ion errorin (Keijzer and Babovi
, 1999) are slightly di�erent from those presented here.Even though DAGP is 
apable of optimizing well, it has a drawba
k in that it relieson a multi-obje
tive sear
h strategy to balan
e �tting 
apability and 
oer
ion error.The 
omputational 
omplexity of this multi-obje
tive sear
h strategy (NSGA-II) is
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 in the population size. For pra
ti
al appli
ations, this limits the populationsize that 
an be used. The spe
i�
 
al
ulation of the 
oer
ion error used here is inthe worst 
ase exponential in the depth of the tree. In pra
ti
e upper bounds onthe number of 
oer
ions that are maintained 
an be employed: this is not likely tohave adverse e�e
ts, as a tree with a large number of potential 
oer
ions, will havea very large 
oer
ion error. The pressure on minimizing this 
oer
ion error helps inavoiding su
h large 
omputations, but a maximum number 
an be easily set to 
ullexpressions with an ex
essive amount of possible 
oer
ions.To investigate the 
apabilities of DAGP in 
ontrast with a dimensionally 
orre
tapproa
h, an implementation of a strongly typed geneti
 programming is needed.As was shown in Se
tion 4.4, systems that 
an handle only 
ontext-free 
onstraintsor that use typing through inheritan
e are not 
apable of expressing the languageof units of measurement in full generality. A form of parametri
 polymorphism thatallows expli
it type 
al
ulations is needed.To a
hieve this a new geneti
 programming system is de�ned. This is 
alled anAdaptive Logi
 Programming system and will be introdu
ed in Chapter 6. It isbased on a developmental geneti
 programming system 
alled Grammati
al Evolu-tion (O'Neill and Ryan, 2001), but is extended to handle arbitrary logi
 programsinstead of 
ontext-free grammars only. Se
tion 7.1.3 will 
ontrast the untyped
rossover used in ALP, with a typed 
rossover on problems involving units of mea-surement.The experiment performed here is ane
dotal in nature. It highlights some issuesthat arise when using the DAGP method of indu
ing dimensioned equations, inparti
ular the Pareto front that is produ
ed by this method. Although it is easierto use a system that produ
es a single best answer, it is thought that parti
ularlyin an exploratory endeavour su
h as s
ienti�
 dis
overy the many alternatives thatare expli
itly delivered makes the system more useful for the s
ientist using it.With the de�nition of this strongly typed geneti
 programming system in Chapter 6and its s
ope in Chapter 7, it is then �nally possible to 
ompare symboli
 regression,dimensionally aware geneti
 programming and strongly typed geneti
 programmingon the problem of �nding empiri
al equations on data. This 
omparison involvingfour real-world unsolved problems 
an be found in Chapter 8.
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Chapter 6
An Adaptive Logi
Programming System
Logi
 Programming makes a rigorous distin
tion between the de
larative aspe
tof a 
omputer program and the pro
edural part (Burke and Foxley, 1996). Thede
larative part de�nes the meaning of the program: the set of all fa
ts that 
anbe dedu
ed. The pro
edural part aims at derives these fa
ts.The programming language Prolog is a 
on
rete implementation for the Logi
 Pro-gramming paradigm, where the pro
edural aspe
t is implemented using a depth-�rstsear
h-strategy through the rules (
lauses) de�ned by a logi
 program (Sterling andShapiro, 1994).Due to its de
larative nature, logi
 programming is very suitable for de�ning 
om-puter languages and 
onstraints on them. Su
h a logi
 program then 
onsists of ade�nition of all valid 
omputer programs. In e�e
t, the logi
 program de�nes botha parser and a generator for the language. The language 
an take the form of sim-ple algebrai
 expressions; a robot steering language; 
onstrained languages su
h asalgebrai
 expression in the language of physi
al units of measurements and matrixalgebra; as well as logi
 programs themselves. If the latter is the 
ase, one normallyspeaks of Indu
tive Logi
 Programming (ILP) (Muggleton and Raedt, 1994).When su
h a logi
 program is run using the Prolog sear
h strategy, it will enumerateall possible 
omputer programs in the domain de�ned by the logi
 program. Whenthe sear
h is for that parti
ular 
omputer program that performs best on someproblem, and the number of possible programs is large, su
h an enumeration is nota viable sear
h strategy.An alternative for the depth-�rst sear
h strategy of Prolog is examined here. Avariable length geneti
 algorithm is used to spe
ify the 
hoi
e to make at ea
h
hoi
e-point in the derivation of a query. This hybrid of a variable length geneti
algorithm operating on logi
 programs is given the name Adaptive Logi
 Program-ming.
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tor(Var1, Var2)) : � bodyz }| {pred(Var1)| {z }literal , pred(Var2)| {z }literal .| {z }
lauseFigure 6.1: The stru
ture of a 
lause in a logi
 program.6.1 Logi
 ProgrammingThe basi
 
onstru
t in logi
s programs is a term. A term is a 
onstant, a variable ora 
ompound term. Constants denote parti
ular elements su
h as integers, 
oatingpoint values and atoms, while variables denote a single but unspe
i�ed element.The symbol for an atom 
an be any sequen
e of 
hara
ters. It 
an be quoted toavoid 
onfusion with other symbols (su
h as variables). Symbols for variables aredistinguished by beginning with an upper
ase letter or an unders
ore.A 
ompound term 
omprises a fun
tor and a sequen
e of one or more terms 
alledarguments. A fun
tor is 
hara
terized by its name, whi
h is an atom, and its arityor number of arguments. Constants are 
onsidered fun
tors of arity 0. Synta
ti
allyfun
tors have the form f(t1; t2; : : : ; tn) where the fun
tor has the name f and isof arity n. The ti's are the arguments. A fun
tor f of arity n is denoted f=n.Fun
tors with the same name but di�erent arities are distin
t. Terms are groundif they 
ontain no variables; otherwise they are non-ground. Goals are atoms or
ompound terms, and are generally non-ground.A logi
 program 
onsists of 
lauses 
onsisting of a head and a body. See Figure 6.1for the stru
ture of a 
lause. Clauses themselves 
an be thought of as 
ompoundterms in their own right, they are 
hara
terized by their prin
ipal fun
tor :-/2. Thehead and the body are the two arguments for this fun
tor. The terms o

urring asprin
ipal fun
tors in the body are 
alled literals, to emphasize that they are literallyused i.e., they are evaluated. A 
lause with an empty body is 
alled a fa
t. Theterm predi
ate is reserved for a set of 
lauses that share the same fun
tor (nameand arity) in the head of the 
lause. Finally a logi
 program is de�ned as a set ofsu
h predi
ates.With all the de�nitions and notational 
onventions in pla
e, 
onsider the logi
programsym(x).sym(y).sym(X + Y) :- sym(X), sym(Y).sym(X * Y) :- sym(X), sym(Y).whi
h re
ursively de�nes the predi
ate sym/1. The derivation fun
tor :-/2 shouldbe read as the impli
ation sign  . This program de
lares the 
omplete and in�niteset of legal expressions 
ontaining the atoms x and y and the fun
tions of addition+/2 and multipli
ation */2. This logi
 program is equivalent with the 
ontext freegrammar:



6.1. LOGIC PROGRAMMING 59<sym> ::= x.<sym> ::= y.<sym> ::= <sym> + <sym>.<sym> ::= <sym> * <sym>.Logi
 programming has its roots in predi
ate logi
. Clauses are universally quanti�edover the variables. The third 
lause in the program above 
an be translated inpredi
ate logi
 as8X;Y : sym(X + Y ) sym(X) ^ sym(Y ) (6.1)Thus: X+Y is a sym if X and Y are syms. This is the de
larative reading of the 
lause.The pro
edural reading would be: to show that sym(X+Y) is valid, show that bothsym(X) and sym(Y) are valid. In 
ontrast with the program, a query 
onsists of aterm where the variables are existentially quanti�ed. For example, the query?- sym(X).
an be interpreted as the inquiry 9X : sym(X) i.e., is there su
h an X? Whenrunning this query in Prolog it produ
es the following sequen
e of solutions:X = x;X = y;X = x + x;X = x + y;X = x + (x + x);X = x + (x + y);X = x + (x + (x + x));...From this sequen
e, the general operation of the depth �rst 
lause sele
tion inProlog 
an be inferred. It �rst examines the �rst 
lause of the program: sym(x).Binding the variable X to the atom x gives the �rst instan
e of the sequen
e. Abinding su
h as this is usually des
ribed in a substitution format: [x/X℄. Whenthe user asks for the next solution, the system ba
ktra
ks: a 
ag gets set at this
lause, the binding of X is undone and Prolog will examine the next 
lause: sym(y).This will result in the substitution [y/X℄. Ba
ktra
king for a se
ond time involvessubstituting X with X1 + X2 (Prolog will provide fresh variables wherever a 
on
i
tmight arise). This is denoted as: [(X1 + X2)/X℄. The goal sta
k is updated withtwo new goals: sym(X1) and sym(X2). The Prolog engine will now try to resolvethese two goals, in the �rst instan
e resulting in the bindings [x/X1℄ and [x/X2℄.The full set of bindings will then be: [x/X2℄ [x/X1℄ [(X1 + X2)/X℄ , whi
h 
anbe simpli�ed to [(x+x)/X℄. The return value will thus be X = x + x.Extrapolating this sequen
e it is easy to see that without bounds on the depth orsize of the derivation, the depth-�rst 
lause sele
tion strategy employed in Prolog
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ontains the multipli
ation 
hara
ter. If su
hlimits are employed, Prolog will eventually generate su
h expressions, though this
an take a long time.A logi
 program as su
h does not de�ne how to obtain solutions, it simply de�nes allpossible expressions of this simple 
omputer language. One of the many interestingfeatures of logi
 programming is that there is no stri
t de�nition of input and output.The same program 
an be used both for generating expressions as well as for parsingexpression. When running the query ?- sym(x + x * y) in Prolog, the programwill return with the answer yes, indi
ating that indeed, the expression x + x * yis a member of the set sym. The parsing and generating parts 
an be mixed: thequery sym(X + X*Y) would enumerate all possible bindings for the variables X andY.Although in this example program input and output 
an be mixed, not all predi
ates
an be written that way. This leads to the de�nition of the mode of the variables in apredi
ate. A variable o

urring in the head of a 
lause 
an be input, output, or both.The mode is stri
tly speaking not a part of the Prolog language, though severalvariants have been de�ned to use the mode of predi
ates to produ
e more eÆ
ient
ode. In some logi
 programs that are used to generate senten
es in Chapter 7, thenotion of mode will be used to write more eÆ
ient programs.Logi
 programming is a 
onvenient paradigm for spe
ifying languages and 
on-straints. A predi
ate 
an have several arguments that 
an be used as attributes.These attributes 
an be used to 
onstrain the sear
h spa
e. For example, the logi
program and querysym(x,1).sym(y,1).sym(X+Y,S) :-sym(X,S1), sym(Y,S2), S is S1+S2+1.sym(X*Y,S) :-sym(X,S1), sym(Y,S2), S is S1+S2+1.?-sym(X, S), S<5.Program 6.1.1: Logi
 program de�ning a set of expressions together with their size.spe
i�es all expressions of size smaller than 5. The des
riptive power of a logi
program, makes it an ideal 
andidate for implementing attribute logi
 and 
onstraintlogi
 programming. It is this 
onvenient representation of data, program stru
turesand 
onstraints that the geneti
 algorithm will try to exploit in this work.Formally, a Logi
 Programming system is de�ned by Sele
ted Literal De�nite 
lauseresolution (or SLD-resolution for short), and an ora
le fun
tion that sele
ts the next
lause or the next literal. This ora
le fun
tion is in Prolog implemented as:� Sele
t �rst 
lause� Sele
t �rst literal� Ba
ktra
k on failure
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Figure 6.2: The sear
h tree spanned by the logi
 program 
ontaining the 
lausessym(x) and sym(X+Y) :- sym(X), sym(Y) Prolog will always 
hoose the leftmostbran
h �rst.Prolog thus tries to enumerate the entire domain with a depth �rst strategy, but it
an get trapped in an in�nite derivation. Figure 6.2 presents the sear
h tree that isspanned by a simple logi
 program 
ontaining the fa
t x/0, and the fun
tion +/2.In this 
ase all the solutions are present on the left side of the tree, thus Prolog 
anenumerate them. Changing the order of the 
lauses would transfer all the solutionsto the right side of the tree, and without a depth limit, Prolog would not be ableto derive a single instan
e of the set.Due to the non-deterministi
 de�nition of the expressions, Logi
 Programming isa 
onvenient paradigm to de�ne 
onstrained expressions. Parsing expressions andgenerating expressions 
an in prin
iple be done with the same program. The goalof this approa
h is to generate expressions from some 
onstrained set of 
omputerprograms. In parti
ular the goal is to generate that 
omputer program that performsbest on some obje
tive fun
tion. Prolog is 
apable of enumerating all 
omputerprograms given their de�nition in a logi
 program. When the number of possiblesolutions grows, this enumeration is not a viable sear
h strategy, espe
ially sin
ethe ordering of the 
lauses in the program determine the enumeration order. Inthe examples above, expressions 
ontaining a multipli
ation operator 
an only begenerated after all valid expressions 
ontaining the other operators are generated.To realisti
ally sear
h in the spa
e of expressions de�ned by a set of predi
ates,the Adaptive Logi
 Programming system is introdu
ed. It repla
es the �rst 
lauserule in Prolog with a string of 
hoi
es that represents an arbitrary path through thesear
h tree. A variable length geneti
 algorithm is used to sear
h this spa
e of pathsthrough the logi
 program.6.2 An Adaptive Logi
 Programming SystemGrammati
al Evolution (O'Neill and Ryan, 2001) aims at indu
ing arbitrary 
om-puter programs based on a 
ontext-free spe
i�
ation of the language. It employs avariable length integer representation that spe
i�es a sequen
e of 
hoi
es made in



62 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM(0) sym(x).(1) sym(y).(2) sym(X + Y) :- sym(X), sym(Y).(3) sym(X * Y) :- sym(X), sym(Y).goal sta
k substitutions 
odon value?- sym(X).?- sym(X1), sym(X2). [(X1 + X2)/X℄ 2?- sym(X2). [y/X1℄ 1?- sym(X3), sym(X4). [(X3 * X4)/X2℄ 3?- sym(X4). [x/X3℄ 0?- [y/X4℄ 1Table 6.1: Deriving a solution from a logi
 program by guiding the sele
tion of
lauses by a string of integers.the 
ontext-free grammar. This sequen
e of 
hoi
es represents a path through the
ontext-free grammar and thus a senten
e in the language the grammar de�nes.Due to the spe
i�
 representation of a sequen
e of 
hoi
es no type informationneeds to be maintained in the evolving strings. Furthermore, no 
ustom mutationand 
rossover operators need to be designed: simple variable length string operatorsare used. In the GE-system, the 
hoi
es are 
alled 
odons to emphasize a biologi
alanalogy with triplets of nu
leotides en
oding a 
hoi
e for a spe
i�
 protein.In the Adaptive Logi
 Programming system (ALP) we similarly use a sequen
e of
odons as the base representation, but rather than 
hoosing between the produ
tionrules of a 
ontext-free grammar, the 
odons are used to make a 
hoi
e between the
lauses in a logi
 program. The sequen
e of 
hoi
es thus represents the 
lause-sele
tion fun
tion operating together with SLD-resolution on the logi
 program. Itde�nes a path through the sear
h tree.To give an example of the pro
ess, 
onsider Program 6.1, and a sequen
e of 
hoi
es[2; 1; 3; 0; 1℄. The derivation of an instan
e is shown in Table 6.1. The initial queryis sym(X). By 
hoosing 
lause 2| the addition 
lause | two new goals are indu
edand a variable binding is made that introdu
es two new logi
 variables. At everystep in the derivation, the �rst literal in the goal sta
k is sele
ted. When a fa
t issele
ted, no new literals appear in the goal sta
k and a logi
 variable is bound to aground term.The result of this pro
ess is a list of variable substitutions:[(X1 + X2)/X℄[y/X1℄[(X3 * X4)/X2℄[x/X3℄[y/X4℄.whi
h ultimately leads to the uni�
ation: X = y + x*y. This symboli
 expressionis produ
ed in the form of a parse tree, not unlike the S-expressions used in LISP,and they 
an readily be a

essed and evaluated1. The depth-�rst 
lause sele
tionof Prolog is thus repla
ed by a guided sele
tion where 
hoi
es are drawn from thegenotype. The genotype represents a path through the sear
h tree (an example of1The algebrai
 notation used to present these programs are supported by Prolog for notational
onvenien
e.
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tion Prolog Modi�
ationClause First Found From GenotypeLiteral First Found From GenotypeOn Failure Ba
ktra
k RestartTable 6.2: Possible modi�
ations to the sele
tion fun
tion. The ALP system usedhere is identi�ed in boldfa
e.su
h a sear
h tree 
an be found in Figure 6.2). The �rst unresolved literal is 
hosento be the �rst to derive. It is possible to repla
e this with guided sele
tion as well,be it in the same string or in a separate string. Together with a 
hoi
e whether to doba
ktra
king or not, this leads to Table 6.2 whi
h gives an overview of the parts ofthe Prolog engine that 
an be repla
ed. Table 6.2 thus de�nes a family of adaptivelogi
 programming systems. Here we will fo
us on the system that 
orresponds withmodi�ed 
lause sele
tion using ba
ktra
king. This was 
ompared with a setup thatdid not employ ba
ktra
king, and it was shown that for more 
onstrained programs,ba
ktra
king is indeed helpful (Keijzer et al., 2001a).There are some pra
ti
al problems asso
iated with repla
ing literal sele
tion. Inmany appli
ations, a logi
 program 
onsists of a mix of non-deterministi
 predi
ates(su
h as the sym/1 and sym/2 predi
ates above) and deterministi
 predi
ates (su
has numeri
al assignment and 
omparison operators). The deterministi
 predi
atesoften assume some variables to be bound to ground terms, evaluating them out oforder would lead to runtime errors. The system studied here, whi
h uses ba
ktra
k-ing, en
apsulates the Prolog language as a spe
ial 
ase: the string 
ontaining an(in�nite) number of zeros is equivalent with running the program through Prolog.A logi
 program is thus used as a formal spe
i�
ation of a set of parse trees, thesequen
e of 
hoi
es is used to steer the sear
h pro
ess to derive a parse tree, anda small external program is used to evaluate the parse trees. See Figure 6.3 for thetypi
al 
ow of information. The s
ope of the system are then logi
 programs wherethere is an abundan
e of solutions that satisfy the 
onstraints, whi
h are subse-quently evaluated for performan
e on a problem domain. In some 
ir
umstan
es,when the obje
tive fun
tion 
an be eÆ
iently evaluated in Prolog, the externalprogram is not ne
essary.6.2.1 Representation and the Mapping Pro
essLike Grammati
al Evolution, the ALP system studied here is a member of the familyof Developmental GP systems (DGP) (Banzhaf et al., 1998)(pp. 250-255). In DGPa distin
tion is made between the representation the variation operators a
t uponand the 
omputer program that is en
oded by this representation. Using a biologi
alanalogy, the internal representation is 
alled the genotype and the 
omputer programthe phenotype. The mapping pro
ess to go from a genotype to a phenotype is thenseen as a developmental pro
ess, hen
e the name developmental GP. In the 
ase ofALP, the developmental pro
ess that is used to derive a 
omputer program takesitself pla
e in the 
ontext of a full-
edged programming environment: the exe
utionof a logi
 program.
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x      y    t y+xy

E =sum (t − (x+xy))^2

Fitness Evaluation

2 4 1 ....

3 8 2 3 1 ....

.

genotypefitness

2 1 3 0 1 .....

DerivationGenetic Algorithm

sym(x).
sym(y).
sym(X + Y) :− sym(X), sym(Y).
sym(X * Y) :− sym(X), sym(Y).

eval(E) :− sym(X), c_eval(X, E).

Figure 6.3: Overview of the ALP system: the sequen
e of 
hoi
es is used in thederivation pro
ess to derive a spe
i�
 instan
e for sym(X), this instan
e is passedto the evaluation fun
tion. The 
al
ulated obje
tive fun
tion value is returned tothe geneti
 algorithm.



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 65The representation that is used in the ALP system is a variable length string 
onsist-ing of integers 
alled 
odons | named su
h to emphasize another biologi
al analogy| Given n predi
ates, ea
h having the number of 
lauses C = [
1; 
2; : : : ; 
n℄, thevalue of the integers are restri
ted to lie in the range [0;Qni 
i), the produ
t ap-pears for reasons given below. When there is a single predi
ate in the program, theintegers de
ode simply to a 
lause in the predi
ate. As an example, 
onsider thesimple program:(0) sym(x).(1) sym(X + Y) :- sym(X), sym(Y).Be
ause the number of 
lauses in this program equals 2 and there is only onepredi
ate involved, the genotype is equivalent with a bitstring, where a 0 denotesthe terminal x and 1 denotes the addition fun
tion. This program was alreadyen
ountered above in Figure 6.2. It is now 
lear that the 
odons en
ode a 
hoi
efor the path to take through the sear
h tree: 0 en
odes a 
hoi
e for the left bran
h,1 en
odes a 
hoi
e to the right. When using su
h a simple program that 
ontains asingle predi
ate without additional 
onstraints, there is a one-to-one 
orresponden
ebetween the string of 
odons and the form of the resulting expression:1 1 0 0 0 1 0+ + x x x + xTable 6.3: Corresponden
e between a path through a logi
 program and the symbolsthat are indu
ed.the parse tree of the resulting program will then be:++x x xThis dire
t 
orresponden
e holds for any single-predi
ate program that does notintrodu
e additional 
onstraints on the expressions that are indu
ed.The two extra bits at the tail of the bitstring in Table 6.3 are unexpressed in theresulting program. They will be kept in the genotype as they might get expressedafter a 
rossover or mutation event. It is quite possible that the program is not�nished when there are no more 
hoi
es left in the string. In that 
ase, one ofseveral me
hanisms 
an be employed:1. destru
tion: the string gets the worst possible performan
e value;2. repair: the string is extended with random integers until it �nds a solution;3. reuse: the string gets wrapped and the reading restarts at the beginning untilsome maximum level of wrappings is rea
hed (O'Neill and Ryan, 2001);4. Prolog: the string is extended with an in�nite number of zeros (i.e., theun�nished logi
 program is exe
uted using Prolog).



66 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEMFrom these 
hoi
es the �rst one, destru
tion, is used here. Destru
ting the genotypewill result in a failure rate for the algorithm. The destru
tion method is mainly
hosen for its simpli
ity: the repair method would involve 
hanging the genotypein the mapping pro
ess, and it would have the disadvantage that when 
onsideringmore 
onstrained programs a large runtime overhead 
an be indu
ed. It has thisin 
ommon with the Prolog method. This overhead o

urs when the un�nishedexpression is lo
ated in a bran
h of the sear
h tree that does not 
ontain solutions,or only 
ontains equations that are too long. Es
aping su
h a bran
h involvesexamining all possible paths in that bran
h until the sear
h depth is ex
eeded,ba
ktra
king would then be employed to �nd another bran
h.The wrapping method has as a disadvantage that it is not guaranteed to �nish.In parti
ular, when using a simple program su
h as the one above, the wrappingmethod is guaranteed not to �nish as the same un�nished tree would be usedrepeatedly.There are thus three possible out
omes of the mapping pro
ess: (i) the string is
ompletely mapped into an expression with no spare 
odons left, (ii) the string ismapped into an expression with spare 
odons left, or (iii) the string is mapped intoa partially 
ompleted expression. The last out
ome is 
onsidered a failure.Properties of the en
oding for simple programs.Consider a simple (Koza-style) language 
onsisting of t terminals [x1; : : : ; xt℄, uunary fun
tions [h1; : : : ; hu℄, and b binary fun
tions [f1; : : : ; fb℄. The language ofparse trees 
an then be modelled by the single predi
ate logi
 program:expr(x1).� � �expr(xt)expr(h1(X)) :- expr(X).� � �expr(hu(X)) :- expr(X).expr(f1(X, Y)) :- expr(X), expr(Y).� � �expr(fb(X, Y)) :- expr(X), expr(Y).Program 6.2.1: General program for performing 'Koza'-style geneti
 programming.In
lusion of higher arity fun
tions is straightforward.every 
odon in a string will now de
ode into a spe
i�
 
lause if it is used in the
ontext of the query ?- expr(X). Obviously, ternary and higher arity fun
tions 
anbe 
atered for as well.As there is a one-to-one 
orresponden
e to an element in the string and the 
lausein the logi
 program it en
odes for, the size of the goal sta
k during the generationof an expression 
an be written in terms of the 
odons of the string. De�ne thefun
tion:



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 67b(x) = number of literals in the body of 
lause x minus onethus: b(x) = 8<: �1 if x < t : terminal0 if t � x < t+ u : unary1 if t+ u � x : binary (6.2)De�ne the fun
tion g, the number of literals on the goal sta
k after k 
odons areused from string s as: g(s; k) = g0 + kXi=1 b(si) (6.3)Where g0 is the initial state of the goal sta
k (usually 1). Then a string s of lengthN will de
ode to a 
omplete expression when the following 
ondition is satis�ed:9k � N : g(s; k) = 0 (6.4)The validity of this 
ondition 
an be 
he
ked using the 
orresponden
e betweenthe fun
tion g and the number of literals on the goal sta
k. Initially, there are g0literals on the goal sta
k. When a binary fun
tion is added, one literal is poppedfrom the goal sta
k, and two are added. For a terminal, one literal is removed andfor a unary fun
tion, one is removed and one is added. Finally, when there are noliterals left i.e., the goal sta
k is empty, g equals zero and the query (and thus theexpression) is �nished.In e�e
t, using programs of this simple form, the string of integers is simply a pre�xen
oding of the parse trees under 
onsideration, with the possibility of not fullyspe
ifying the 
omplete parse tree.Initialization and the Gambler's Ruin Model Given these logi
 programs, it isimportant to know what the probability is of generating a legal string, given that werandomly generate 
hoi
es. This obviously depends on the proportion of variables,unary fun
tions and binary fun
tions that are present in the program. These aredenoted here by t, u and b respe
tively, and the total number by C = t + u + b.Examining Equation 6.4 for string length 0, there is 1 unresolved literal, the originalquery. For ea
h 
odon we add to the string, this number 
an in
rease, de
rease orstay the same, depending on what value is drawn (Equation 6.2). If the number ofunresolved literals drops to zero at any point, Equation 6.4 de�nes that the stringwill en
ode a legal expression regardless of the 
odons that appear after that point.This situation is mu
h like the situation of a gambler in a 
asino. The gambler hasa starting fortune, and 
an pla
e bets, that are won or lost. Given a �xed probabilityof winning a bet p and of losing a bet q, what is the probability that the gamblerwould be ruined? This is known as the gambler's ruin model.Generating a string of random 
odons with a �xed probability is equivalent withsu

essively pla
ing bets; the pay-o� fun
tion is given by Equation 6.2. A bet



68 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEMis lost when a terminal is drawn, while a bet is won when a binary fun
tion isdrawn. Drawing a unary fun
tion does not 
hange the fortune (i.e., the number ofunresolved literals in the goal sta
k). The gambler starts with an initial fortune ofg0 = 1 unresolved literal, the initial goal. When the gambler runs out of literals, thefortune is lost and the gambler is ruined. In this 
ase the gambler's ruin 
orrespondswith the ALP system's gain: it su

essfully derived an expression.When uniformly generating 
odons from the range [0; C), the probabilities of win-ning respe
tively losing are: p = b=C and q = t=C. It is well known that witha starting 
apital of g0 and a stopping 
apital of T , the gambler goes home with
apital T with probabilityPillegal =8<: ( qp )g0�1( qp)T�1 when p 6= qg0T when p = q (6.5)In our 
ase, the start 
apital is 1 unresolved literal, while the gambler never stopswithout any bounds on the size of the genotype. The probability of the tree not�nishing is thenPillegal = limT!inf qp � 1qpT � 1 = � 0 if q > p1� q=p if q < p (6.6)and if p = q, Pillegal = limT!inf 1T = 0 (6.7)Thus if the probability of drawing a terminal is equal or larger than the probability ofdrawing a binary fun
tion, the probability of ending up with a string that en
odes alegal parse tree will tend to 1. However, when there are more binary fun
tions thanterminals, the probability of obtaining a legal string will 
onverge to q=p. Thus if nolimits on the tree are employed only a fra
tion of the trees 
an ever be generated.The expe
ted 
hange in the size of the goal sta
k after randomly sele
ting a 
lauseis simply p� q, the goal sta
k is thus expe
ted to grow when there are more binaryfun
tions than terminals. Without bounds on the size or depth of the trees, theexpe
ted size of the trees is thus in�nite when p >= q, as it grows at every step.When p < q, the expe
ted size is the point where we expe
t the goal sta
k to beof size 0, this is simply 1q�p .The pro
ess of 
reating a random tree and its in
uen
e on the size of the goalsta
k is depi
ted in Figure 6.4. The small graph depi
ts the size of the goal sta
k(the fun
tion g(s; k) from Equation 6.3) with in
reasing string length for somerandom 
hoi
es. As the graph of the size of the goal sta
k in these simple predi
ateprograms 
ontain all information about the shape of the parse tree that is produ
ed,this graph will be 
alled the shape graph. When and if the size of the goal sta
kdrops to zero, the query is 
ompleted and a valid expression is obtained. The shapeof the expression that results is depi
ted on the right of Figure 6.4.
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sta
ksize string length

ffx hx x
Figure 6.4: Creating a tree using a random walk. Depi
ted are the shape graphwith the 
orresponding tree. The tree is 
reated in a depth �rst manner.By making the probabilities of sele
ting the 
lauses in the program dependent onthe length of the string, in prin
ipal an expe
ted shape graph 
an be enfor
ed onan initial population.Ripple 
rossover It was stated above that to 
reate a 
hild, the 
rossover usedin ALP grafts a randomly 
hosen suÆx of one string upon a randomly 
hosen pre�xof another, the points are 
hosen independently in the expressed part of the string.In the 
ontext of the programs de�ned in Table 6.2.1, this 
rossover has a very
lear e�e
t on the parse trees that are en
oded by the strings. This e�e
t wastermed ripple 
rossover (Keijzer et al., 2001b). Although it resembles a variablelength one-point 
rossover from geneti
 algorithms, the term one-point 
rossoverhas been used to des
ribe a very di�erent operator for geneti
 programming (Poliand Langdon, 1998). Therefore, the term ripple 
rossover will be used hen
eforthto designate the spe
i�
 
rossover used in the GE and ALP systems.Consider the program:(0) expr(x).(1) expr(f(X,Y)) :- expr(X), expr(Y).The string of 
hoi
es will be 
onstru
ted from the two letter alphabet [0; 1℄ withthe mapping de�ned by the de�nition above. A string maps into a parse tree in thefollowing way:[1; 1; 1; 1; 0; 0; 0; 0; 1; 0; 0℄!en
odes f1f2f3f4x5 x6 x7 x8 f9x10 x11
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sta
ksize string length

pre�xsuÆx unexpressed 
ode
Figure 6.5: Splitting a tree into a pre�x and suÆx.The symbols in the expression are subs
ripted with the lo
ation in the genotypethat is used to en
ode them. Splitting the tree after the �fth position will result inan un�nished tree and a set of subtrees:[1,1,1,1,0℄ !en
odes f1f2f3f4x5 X6 X7 X8 X9

[0,0,0,1,0,0℄ !en
odes x1 x2 x3 f4x5 x6where the upper
ase logi
 variables X6 : : :X9 indi
ate that the expression is un�n-ished. The 
rossover point o

urring after x5 has the e�e
t of removing all subtreesto the right of the point. Figure 6.5 depi
ts the splitting pro
ess in terms of theshape graph. Cutting the string thus results in 
utting all the subtrees to the rightof the string, leaving in this 
ase 4 un�nished subtrees. The suÆx of the string en-
odes these subtrees. When another string is spli
ed in a similar way, swapping thetails results in grafting missing subtrees from one tree upon the other tree. Whenthe number of subtrees en
oded by the tail is smaller than the number demandedby the head of the string, the resulting tree will en
ode an un�nished tree.The example given here used a string that de
odes to a full tree without any spare
odons. In pra
ti
e, there is often a tail of unexpressed 
ode for any given string. Ifthe string [0; 0; 0; 1; 0; 0℄ from above would be used as a genotype, it would en
odethe expression x and would have three spare subtrees that 
an get expressed whenneeded. This is depi
ted in Figure 6.5 as well, where the suÆx is used as a treein its own right: the minimum value of the goal sta
k fun
tion g(s; k) lies at �3:there are therefore three unexpressed subtrees present. The tail of unexpressed 
ode
an then fun
tion as a bu�er of spare subtrees.



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 71Thus, under the operation of ripple 
rossover, the genotype falls apart in two pie
es:a pre�x that en
odes an un�nished parse tree, and a suÆx that en
odes a 
olle
tionof subtrees.A Bias indu
ed by Ripple Crossover It is possible to show some bias that isindu
ed by ripple 
rossover when there is no tail of unexpressed 
ode. Equation 6.3de�ned the number of goals in the goal sta
k for a string after k 
odons weretranslated, as: g(s; k) = g0 + kXi=1 b(si)where the fun
tion b returns the number of literals in the body of the 
lause minus1 and g0 is the initial state of the goal sta
k. Ripple 
rossover sele
ts 
rossoverpoints at random in the string and subsequently splits the string in a pre�x and asuÆx. If the size of the goal sta
k for the pre�x string is larger than the numberof subtrees 
ontained in the suÆx string, the mapping pro
ess will not be able toprodu
e a 
omplete expression.To 
larify the relationship between the size of the goal sta
k (the shape graphde�ned by the fun
tion g(s; k)) and the shape of the en
oded tree, two extreme
ases are examined here: left-skewed and right-skewed binary trees. Consider a leftskewed tree with 
orresponding shape graph:fffx x x x
The pre�x en
oding of this tree is [f; f; f; x; x; x; x℄. Furthermore, 
onsider theright skewed tree:fx fx fx xwhose pre�x en
oding is [f; x; f; x; f; x; x℄. In terms of the goal sta
k (and thusthe shape graph), a left skewed tree needs a larger sta
k than a right skewed tree.When 
rossing these trees using ripple 
rossover, the shapes are 
rossed over as well(Figure 6.7).
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al failure rate with a ripple 
rossover that 
reates a single 
hild.The ripple 
rossover used in previous work (Keijzer et al., 2001b; Keijzer et al.,2001a), 
reated one 
hild only, and put it ba
k in the population without regard toit being legal or not. This typi
ally leads to a high failure rate in the beginning ofthe run. Figure 6.6 depi
ts the typi
al shape of the failure rate during a run. Inthe �rst generation, the failure rate rises sharply, depending on the program thatis used lying between 1/4 to 1/3 of all 
rossovers. Subsequently, when a tail ofunexpressed 
ode forms, the failure rate drops, but as 
an be seen in the graph,even at generation 100, the failure rate is still signi�
ant.In prin
iple this 
ould be remedied by (i) 
hoosing the point for the suÆx dependingon the size of the goal sta
k at the point 
hosen for the pre�x, or (ii) 
reate two
hildren, one using the �rst parent as pre�x, the other using the se
ond parent as thepre�x. For the type of programs studied here, it would then be guaranteed to 
reateat least one valid o�spring be
ause for two strings s1 and s2 with 
rossover pointsk1 and k2 it holds that g(s1; k1)� g(s2; k2) � 0, and/or g(s2; k2)� g(s1; k1) � 0.The equality holds when both are valid. Thus for two given 
rossover points, thereis always an o�spring that is valid.It was 
hosen to use this se
ond method as the �rst method is not guaranteed tosu

eed: the size of the goal sta
k for the �rst point 
an demand more subtreesthan the se
ond parent 
an deliver. This 
ould again be �xed by 
hoosing the pointsin an even more restri
ted fashion, but one of the purposes of ripple 
rossover isto have a simple, untyped and unrestri
ted 
rossover. Although the informationabout the size of the goal sta
k 
ould be used to guide the 
rossover points, itwas 
hosen to use the simple method of 
reating two o�spring given two 
rossoverpoints, putting the �rst one that su

eeds in de
oding to an expression ba
k in thepopulation.Figure 6.7 shows the e�e
t of this 
rossover in terms of the shape graph of theindividuals. When one o�spring is invalid, the other individual is ne
essarily valid
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�R invalidvalid

Figure 6.7: The e�e
t of ripple 
rossover on the shape graph for two parents not
ontaining any unexpressed 
ode. The 
rossover points are indi
ated with a small
ir
le. If one o�spring is invalid, the other is ne
essarily valid and will have a tail ofunexpressed 
ode.and will have a tail of unexpressed 
ode. By sele
ting the valid o�spring always,no invalid individuals 
an enter the population. A side-e�e
t of the pro
edure isthat the tail of unexpressed 
ode qui
kly forms and that it will 
onsist of 
ode thathas undergone sele
tion. This is an important di�eren
e from generating a tailat random, as there is then for example no guarantee that the tail en
odes validsubtrees.Using this pro
edure will guarantee legal o�spring when using single predi
ate pro-grams without additional 
onstraints, but the bias towards right-skewed trees usedas the pre�x remains. However, left-skewed trees are very suitable to be used assuÆxes, simply be
ause they en
ode for more subtrees then their right-skewed 
oun-terparts. They will initially be
ome unexpressed, but are stored in the populationand due to ripple 
rossover and mutation 
an soon be
ome expressed again.In the presen
e of a symmetri
 fun
tion set, this bias towards right-skewed expres-sions has no reper
ussions for the ability to express solutions. In e�e
t, there isa memory advantage in preferring right-skewed expressions as the size of the goalsta
k is kept at low values. The e�e
t of ripple 
rossover on asymmetri
 fun
tionsets is a left for future study.For the sake of 
ompleteness, a balan
ed tree with 
orresponding shape graph isdepi
ted below. fffx x fx x ffx x fx x
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sta
ksizeFigure 6.8: The e�e
t of a mutation on the goal sta
k. The mutation point isindi
ated with a 
ir
le.Ripple Mutation Many mutations 
an be de�ned, but here we fo
us on a singlepoint mutation. A point is 
hosen in the string and repla
ed with a random integerfrom the admissible range. This mutation also has a rippling e�e
t on the expressiontree that is en
oded in the string. Consider again the string and mapping:[1; 1; 1; 1; 0; 0; 0; 0; 1; 0; 0℄!en
odes f1f2f3f4x5 x6 x7 x8 f9x10 x11Repla
ing the fourth element 1 with a 0, results in:[1; 1; 1; 0; 0; 0; 0j0; 1; 0; 0℄!en
odes f1f2f3x4 x5 x6 x7 x8 f9x10 x11All variable to the right of the mutation point have shifted their lo
ation in thetree, and the last four 
odons have be
ome unexpressed. If one were to mutate aterminal into a binary fun
tion however, parts of the tail of unexpressed 
ode wouldget expressed again. In the absen
e of su
h a tail however, the resulting expressionwould be invalid. In the early generations when there is no or little unexpressed
ode, ripple mutation would thus be biased to sample expressions that are shorterthan the parent. As it would 
reate unexpressed 
ode in that pro
ess, this e�e
twill lessen in later stages of the run.One of the 
hara
teristi
s of ripple 
rossover and ripple mutation is the disregard
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ture of the trees that are derived (i.e. the shape graph). Be
auseof this 
hanges propagate to the right of the tree, in parti
ular the se
ond andsubsequent arguments of the root node are subje
t to 
hange relatively easily. Theripple variation operators are then expe
ted to be fairly destru
tive.Multiple predi
ates and polymorphism.Until now the programs that are 
onsidered used a single predi
ate without addi-tional 
onstraints, but multiple predi
ates are an obvious extension. Consider theprogram:expr(x).expr(X) :- bin op(X, A1, A2), expr(A1), expr(A2).bin op(X + Y, X, Y).bin op(X * Y, X, Y).Here we have two predi
ates expr/1 and bin op/2, ea
h having two 
lauses. Thereare several options for en
oding su
h a program in a string of 
hoi
es. For 
ontext-free grammars whi
h translate dire
tly to a logi
 program su
h as the one above,O'Neill and Ryan de�ned an upper bound for the 
odons in the string (usually 256)(O'Neill and Ryan, 2001) . Given a set of n predi
ates with a 
orresponding numberof 
lauses [
1; : : : ; 
n℄ and given a predi
ate r, the mapping rule used is (O'Neilland Ryan, 2001): 
hoi
e(r) = 
odon mod 
r (6.8)This modulo rule makes sure that the 
odon value is mapped into the interval [0; 
r)and thus represents a valid 
hoi
e for a 
lause. As the 
odons themselves are drawnfrom the interval [0; 256), the mapping rule is degenerate: many 
odon values mapto the same 
hoi
e of rules. Unfortunately, in the 
ase of the program 
onsideredhere, this mapping rule introdu
es a linkage between the 
lauses of the di�erentpredi
ates. As we have two predi
ates, ea
h having two 
lauses, the modulo rulewill map all even 
odon values to the �rst 
lause and all odd values to the se
ond
lause, regardless of the predi
ates that are used. Above it was shown that the
rossover and mutation operators 
an shift the lo
ation of the subtrees when usinga single predi
ate. In the 
ase of multiple predi
ates, this shift in lo
ation 
an alsoresult in a shift in predi
ates: a 
odon value that previously en
oded for a 
lausein one predi
ate 
an be re-interpreted to en
ode for a 
lause in another predi
ate.This property of this developmental geneti
 programming system is 
alled intrinsi
polymorphism (Keijzer et al., 2001b).As Program 6.2.1 indu
es a �xed mapping for even and odd 
odon values, we
an restri
t our attention to bitstrings. In the 
ontext of the two predi
ate logi
program, we 
an have the following mapping:
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odes expr+ expr* x x xWhere the name expr is used to denote the use of the re
ursive expr/1 
lause. Thefun
tion symbols + and � have been put at the lo
ation where they are derived.The string of 
hoi
es then 
orresponds again with a depth �rst traversal of thederivation tree. Due to Prolog's operator handling, the a
tual parse tree that isprodu
ed by the query will look like: +*x x xMutating the third element of the string will result in:[1; 0; 0; 1; 0; 0; 0℄!en
odes expr+ x expr+ x xThis is quite a signi�
ant 
hange. This single mutation event 
hanged the expression((x�x)+x) into (x+(x+x)). It is instru
tive to inspe
t what happened. Changingthe third element left the �rst two elements inta
t. The third element used toen
ode for the re
ursive expr rule, but is repla
ed by the non re
ursive rule, theterminal x. Be
ause of this 
hange, the fourth element of the string whi
h used toen
ode for the multipli
ation 
lause of the string is re-interpreted as an en
odingfor the re
ursive expr 
lause. Similarly, the �fth element that used to en
ode forthe terminal expr is 
hanged into the addition operator as it is evaluated in the
ontext of the predi
ate bin op.Thus by 
hanging a single element in the string, the string is again split into a pre�xand a suÆx. This time the suÆx is reinterpreted. Changing the third element fromexpr to x 
hanges the derivation tree and the suÆx that will be reinterpreted to:expr+ x E2 [1 0 0 0℄
where the variable labelled E2 indi
ates that the derivation is not 
omplete until asubtree starting with the expr/1 predi
ate is produ
ed. The 
odon that used toen
ode for the se
ond 
lause of the bin op predi
ate (multipli
ation) will now bere-interpreted as the se
ond 
lause of the expr predi
ate, thus:
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The next 
odon to insert into the derivation tree used to en
ode for the �rst 
lausein the expr predi
ate, but the sear
h pro
ess has rea
hed the bin op predi
ate atthis point in the derivation. Hen
e the �rst 
lause in this predi
ate will be used, theaddition. expr+ x expr+ E3 E4 [0 0℄
The rest of the derivation pro
ess will not demand any re-interpretations, thus theremaining 
odons 
an be simply inserted as terminating x's.In this 
ase, the modulo rule thus de�nes a �xed transition when the 
odons areinterpreted in the 
ontext of di�erent predi
ates. The terminal x impli
itly en
odesfor the addition operator + and vi
e versa, while the re
ursive expr 
lause is linkedto the multipli
ation operator in the bin op predi
ate. This linkage depends on theordering of the 
lauses as well as the number of 
lauses per predi
ate2.This linking between 
lauses of di�erent predi
ates in the 
ontext of the variationoperators introdu
es a bias in the sear
h pro
ess. This bias is undesirable be
auseit depends on the layout of the program and its impa
t on the sear
h is not 
lear.In e�e
t this means that the order in whi
h the 
lauses are de�ned are expe
ted tomake a di�eren
e to the sear
h eÆ
ien
y.To remove this bias the mapping rule is 
hanged. Given again our set of 
lauses for npredi
ates [
1; : : : ; 
n℄, the 
odon values are now taken from the interval [0;Qni 
i).The mapping rule is subsequently 
hanged to:
hoi
e(r) = 
odonQr�1i=1 
i mod 
r (6.9)This rule is simply the standard method for mapping multi-dimensional matri
es intoa 
ontiguous array of values. The predi
ates form the dimensions, with the numberof 
lauses as the 
oordinates. With this rule, every legal 
odon value en
odes aunique set of 
lauses, one from ea
h predi
ate. In the program dis
ussed here,2When using two predi
ates having 2 and 3 
lauses, together with 
odons drawn from [0; 6) alltransitions are possible.
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ates, ea
h having two 
lauses. The 
odons are thus drawn from[0; 4). Ea
h 
odon value now en
odes for a unique set of 
lauses:
odon expr bin op expr bin op0 0=1 = 0 mod 2 0=2 = 0 mod 2 x +1 1=1 = 1 mod 2 1=2 = 0 mod 2 expr +2 2=1 = 0 mod 2 2=2 = 1 mod 2 x *3 3=1 = 1 mod 2 3=2 = 1 mod 2 expr *By using this mapping rule, the representation in e�e
t be
omes polyploid : thesingle string of integers is isomorph with a set of n strings, ea
h en
oding the
lause to 
hoose when it is evaluated in the 
ontext of ea
h predi
ate. The a
tiveelement is determined by whi
h predi
ate is a
tive in that part of the exe
utionof the logi
 program generating the expression. All other elements at the samelo
ation are re
essive, mutations on them do not have an e�e
t on the resultingexpression.For an example of this polyploidity, 
onsider the following en
oding:[1; 0; 3; 3; 2; 2; 0℄ = � expr : [1; 0;1; 1;0;0;0℄bin op : [0;0; 1;1; 1; 1; 0℄ �! +*x x xwhere the elements in bold are the a
tive elements of the set of strings. As in thisparti
ular program we have three terminating 
lauses and one re
ursive one, onlythe re
ursive 
lause determines how the rest of the string is interpreted.If we again 
onsider a mutation in the third element, several things 
an happen.If we mutate the integer 3 to the integers 0 or 2, the 
lause en
oded for 
hangesfrom the re
ursive expr (
lause 2) to the terminal expr (
lause 1), by virtue of themapping rule de�ned in Equation 6.9. Given that the 
hange happens be 3 ! 0,the individual will ultimately de
ode to:[1; 0; 0; 3; 2; 2; 0℄ = � expr : [1; 0;0;1; 0;0;0℄bin op : [0;0; 0; 1;1; 1; 0℄ �! +x *x xBe
ause the 
lauses belonging to di�erent predi
ates are independently en
oded,the integer on the �fth position now en
odes both the terminal expr and themultipli
ation bin op. When the integer 3 at the third position is 
hanged to theinteger 1 however, nothing 
hanges dire
tly in the phenotype, as the third elementwill still en
ode for the re
ursive expr. The mutation is thus neutral. Even thoughthe 
oding is degenerate as many integer values de
ode to the same 
lause, thereis no redundan
y: if the 
odon would be used in a later generation in the 
ontextof the predi
ate bin op, it would en
ode for the addition fun
tion rather than themultipli
ation.Thus, every lo
ation in the genotype 
an en
ode for a unique 
lause for ea
h predi-
ate. This gives the genotype in prin
iple the opportunity to en
ode many di�erenttrees, whi
h tree is derived depends on the 
ontext it is used in. Whether this
apability is helpful in sear
h and optimization needs to be as
ertained. What itdoes a
hieve is make the system independent of the order in whi
h the 
lauses arede�ned by removing linkages between the order of 
lauses in di�erent predi
ates.
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rossover does not look at the names of the predi
ates to pi
k 
rossoverpoints. It is thus quite 
ommon that it will sele
t a pre�x that ends in one predi
ateand a suÆx that used to start with another predi
ate. This re-interpretation ofgeneti
 material will then happen quite often. It is left for future work to examinethe worth of this intrinsi
 polymorphism.Context-Sensitive ProgramsA logi
 program is 
apable of using 
ontext-sensitive information. Consider Pro-gram 6.2.2 that 
al
ulates the bounds of an expression.interval(x, 1, 10).interval(y, -5, 5).interval(X + Y, L, U) :-interval(X,Lx, Ux),interval(Y, Ly, Uy),L is Lx + Ly,U is Ux + Uy.interval(-X, L, U) :-interval(X, Lx, Ux),L is -Ux,U is -Lx.interval(X * Y, L, U) :-interval(X,Lx, Ux),interval(Y, Ly, Uy),B1 is Lx * Ly, B2 is Lx * Uy,B3 is Ux * Ly, B4 is Ux * Uy,L is min(min(B1, B2), min(B3,B4)),U is max(max(B1, B2), max(B3,B4)).interval(1 / X, L, U) :-interval(X,Lx, Ux),
at
h(A is 1/Lx, ,fail), % fail on math ex
eptions
at
h(B is 1/Ux, ,fail), % idemsign(A) + sign(B) =\= 0, % make sure the interval% does not 
ontain zeroL is min(A,B),U is max(A,B).interval(sqrt(X), L, U) :-interval(X,Lx, Ux),Lx >= 0,L is sqrt(Lx), U is sqrt(Ux).Program 6.2.2: A 
ontext-sensitive program that 
al
ulates the the numeri
al in-terval for an expression and only derives those expressions that are well-de�ned
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 program is 
apable of generating expressions that are guaranteed toavoid a division by zero or taking the square root of a negative number, given thespe
i�ed range of the terminals. It will furthermore 
al
ulate bounds on the rangeof the expression. In this program, the lower and upper bound L and U are usedas attributes in the program and their values are used in the 
lause that handlesdivision to make sure that no expression will be derived that 
an theoreti
ally divideby zero. This is done by 
he
king whether the bounds of the argument 
ontainzero. Likewise the square root fun
tion is prote
ted by 
he
king whether the lowerbound of the argument is smaller than zero. This is one example of the 
onvenien
eof the logi
 programming paradigm to spe
ify 
onstraints.When in
reasing the number of 
onstraints, 
are must be taken that it is still feasibleto derive numerous solutions. The aim of the ALP system is not to �nd a single ora small set of feasible solution, but to �nd the best expression under a number ofrelatively mild 
onstraints.In the example program, a query of the form ?- interval(X, 0, 1). would askthe system to �nd a program that lies exa
tly within the spe
i�ed interval. The�nd a feasible solution is then a sear
h problem in its own right, let alone �ndingan expression that will �t some data well.It is again instru
tive to see what happens with the fun
tion trees when a mutationor 
rossover event o

urs. As Program 6.2.2 uses a single predi
ate, the genotypephenotype mapping is monomorph, there is no re-interpretation of geneti
 material.Consider the mapping: [+; �; x; y; sqrt; x℄!en
odes xy +pxand [+;+; x; y; sqrt; x℄!en
odes x+ y +pxFor reasons of 
larity, the integers in the string have been repla
ed with the symbolsfor the fun
tors they en
ode for3. Now suppose the �rst string is 
ut after the �fthposition, leaving [+; �; x; y; sqrt℄ and the se
ond is 
ut after the �rst position, thusleaving [+; x; y; sqrt; x℄. After merging the parts, the 
omplete string will read:[+; �; x; y; sqrt;+; x; y; sqrt; x℄. Without the additional 
onstraints on the squareroot fun
tion, this string would en
ode for:[+; �; x; y; sqrt;+; x; yjsqrt; x℄!en
odes xy +px+ ywhere the tail [sqrt; x℄ is unexpressed. However, when using this string of 
odonsin the logi
 program 6.2.2, the following situation would o

ur:interval(sqrt(X), L, U) :-interval(X,Lx, Ux), % X gets bound to x+y% Then Lx = -4, Ux = 15Lx >= 0, ... % fail! Lx equals -43This 
an be done be
ause there exists a one-to-one mapping between 
odon value and the
lause that is sele
ted.
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lause thus fails be
ause the subtree sqrt(x+ y) 
an possibly in
lude a math-emati
al error. The ba
ktra
king me
hanism will now try to redo the last goal thatsu

eeded, whi
h was in this 
ase interval(y,-5,5). Reading the next 
odonsfrom the genotype would result in generating sqrt(x), whi
h, when added to x leadsto a 
orre
t expression. The real mapping would thus be:[+; �; x; y; sqrt;+; x;y; sqrt; x℄!en
odes xy +qx+pxThe 
odon en
oding y above thus disappears from the derivation, and the subtreeat the ba
k is used in its pla
e. By using ba
ktra
king, performing a 
rossover isnot an all or nothing proposition: if a 
onstraint gets violated in a 
rossover, thereis still a possibility of 
reating a valid expression by simply trying to apply the next
odon. In Se
tion 7.1.1 it will be shown that it is possible to e�e
tively use thisme
hanism to 
onstrain the sear
h spa
e without removing the e�e
tiveness of thevariation operators.6.2.2 Ba
ktra
kingTo enable ba
ktra
king, the system maintains a list of 
lauses that have been tried atea
h point in the resolution pro
ess. On
e a failure o

urs be
ause some 
onstraintshave been violated or a maximum depth is rea
hed, the system extra
t a new 
odonfrom the genotype, and the mapping rule is applied. When the 
odon de
odes toan untried 
lause the pro
ess 
ontinues. However, when the 
odon de
odes to analready tried 
lause | that has already proven to fail | the 
odon will de
ode tothe next untried 
lause that is appli
able. If there is no su
h 
lause, the pro
edurewill start at the beginning of the list of appli
able 
lauses. When no more 
hoi
esremain, thus all 
lauses are tried and all failed, the system will ba
ktra
k to theprevious level.With this pro
edure, the ALP system is equivalent with Prolog when it is run inthe 
ontext of a genotype 
ontaining only zeros. When a failure o

urs, the se
ond
lause is tried, and so on.6.2.3 InitializationInitialization is performed by doing a random walk through the grammar, maintain-ing the 
hoi
es made, ba
ktra
king on failure or when a spe
i�ed depth limit isrea
hed. After a su

essful derivation is found, the shortest, non-ba
ktra
king pathto the 
omplete derivation is 
al
ulated. An o

urren
e 
he
k is performed and ifthe path is not present in the 
urrent population, a new individual is initialized withthis shortest non-ba
ktra
king path. Individuals in the initial population will thus
onsist solely of non-ba
ktra
king derivations to senten
es.As a maximum depth limit is used, the possible problem of not 
reating viableo�spring indi
ated in Se
tion 6.2.1 is not en
ountered. By making uniform random
hoi
es in the initialization pro
edure, it is however sensitive to the distributionof terminal and binary fun
tions in the logi
 program. It is not 
lear at this pointwhat the reper
ussions of 
hanging this initialization pro
edure are when using more
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onstrained programs than the ones 
onsidered in Se
tion 6.2.1. Therefore,it was 
hosen to use the initialization pro
edure des
ribed here to 
reate a referen
eimplementation that produ
es a fully viable initial population without 
lones. Thisreferen
e implementation 
an be used to 
he
k possible improvements against.6.2.4 Performan
e EvaluationThe performan
e of expressions (
omputer programs) is typi
ally 
al
ulated in aspe
ial module, written in a 
ompiled language su
h as C. This program walksthrough the tree stru
ture and evaluates ea
h node. This is however not ne
essaryif the performan
e 
an be readily evaluated in the logi
 program itself. The queryinvestigated typi
ally has the form: �nd that derivation for expression(X), su
hthat eval(X;F ) returns the maximal or minimal F . Typi
ally, the top level predi
atefor this system will have the form:obje
tive(F) :- expression(X), eval(X,F).This predi
ate is 
alled by the system with a non-grounded (free) F. The predi
ateexpression/1 will derive a parse tree, the eval/2 predi
ate will evaluate the parsetree and bind the obje
tive fun
tion value to F.6.2.5 Spe
ial Predi
atesAll Prolog built-in 
lauses su
h as assignment (is/2) are evaluated in Prolog di-re
tly. This is done as often su
h 
lauses are deterministi
 and depend on the Prologdepth-�rst sear
h strategy, or they expe
t some variables to be bound to groundterms. Calls to external libraries are evaluated dire
tly as well.Often, there is a need for arbitrary real valued and integer 
onstants to appearin the expressions. A prime example is symboli
 regression. In previous work, are
ursive logi
 program was used to derive and evaluate su
h 
onstants (Keijzeret al., 2001a).In the 
urrent implementation of the ALP system, two spe
ial predi
ates are usedthat 
an retrieve integer and 
oating point values. These are 
alled ext int/2 andfp/1 respe
tively. Those values are stored in a separate string, whi
h is kept at thesame length as the string of 
hoi
es. Although this involves storing many valuesthat are not expressed, for the 
urrent purposes the additional memory overheaddoes not present diÆ
ulties.The derivation engine re
ognizes these predi
ates, and retrieves values from thegenotype. This way, variation operators 
an be de�ned on those 
onstants, whi
hthen 
o-evolve with the string of 
hoi
es.6.3 SummaryIn the pre
eding se
tions, the ALP system is outlined, dis
ussing programs using asingle predi
ate, programs using multiple predi
ates and programs that have addi-tional, 
ontext sensitive 
onstraints. Some variation operators have been dis
ussed,
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Figure 6.9: Overview of the genotype used in the ALP system for a program 
on-sisting of three predi
ates. It uses a separate string for ea
h predi
ate in the pro-gram (although this is in the implementation pa
ked in a single string) togetherwith a string of 
oating point values. The 
hoi
es made in the resolution of thelogi
 program determine a path through the genotype, while it is possible that
onstraint-violating 
odons get ignored. Usually a tail of unexpressed 
ode evolves,that 
ontains unexpressed geneti
 material. The expressed 
ode is in general a smallfra
tion of the 
omplete geneti
 
ode.together with ba
ktra
king and initialization. Figure 6.9 depi
ts the genotype ofthe individuals that are used in the ALP system. The representation undergoingvariation and sele
tion is depi
ted with multiple strings, one for ea
h predi
atein the program. In pra
ti
e these strings are pa
ked in a single string, using thelinearization formula from Equation 6.9.There 
an be a massive amount of unused information in su
h an individual: at everylo
ation there is only one 
oding element, when the string is �nished de
oding intoa 
omplete expression, the rest of the string is ignored.Pre�xes and suÆxes are 
entral in the ALP system. Not only does ripple 
rossoverexpli
itly manipulate these stru
tures, they also have a straightforward interpretationin terms of the sear
h tree for the logi
 program. A pre�x determines a partial paththrough the sear
h tree; it thus e�e
tively sets the starting point for the sear
h.The suÆxes on the other hand en
ode 
ontinuations of these sear
h paths. Whenworking with re
ursively de�ned programs, these 
ontinuations en
ode for similarpaths in di�erent 
ontexts.The mapping pro
ess that de�nes how the genotype gets translated into a 
om-puter program is depi
ted in Figure 6.10. The genotype gets impli
itly translatedinto a string of integers that represents the shortest non-ba
ktra
king path to thegoal-state. When indu
ing 
omputer programs, the goal-state is equivalent to asu

essfully indu
ed 
omputer program given the 
onstraints.Although it is possible to �nd some biologi
al analogies between this mapping pro-
ess and the translation-trans
ription 
y
le in DNA, these are not engineered into
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Figure 6.10: Overview of the mapping pro
ess. The multiple strands represent asele
tion from one of the predi
ates in the program, this sele
tion pro
ess results ina single string of 
hoi
es. This string of 
hoi
es is translated into a parse tree.the system with the purpose of mimi
king their biologi
al 
ounterparts in the vaguehope that when nature uses su
h 
onstru
ts they might be useful, but are dire
t
onsequen
es of the 
hoi
e to indu
e arbitrary length sear
h paths through a logi
program. The design 
hoi
es are made to enhan
e the optimization pro
ess in ALP,not to mimi
 any natural phenomenon. Multiple strands of geneti
 material ap-peared when the linkages between 
lauses belonging to di�erent predi
ates wereremoved. A logi
al result of this 
hoi
e is that the "translation" at one part of thestring in
uen
es the "trans
ription" further to the right.The emergen
e of unexpressed 
ode is a logi
al 
onsequen
e of the use of ripple
rossover. Ripple 
rossover operates very unlike any variation operator appearing innature, it is however a relatively easy and sensible operator to apply to the re
ursivelyde�ned programs 
onsidered here. The appearan
e of illegal strands of 
ode that donot get expressed is 
aused by the use of a ba
ktra
king me
hanism. Ba
ktra
kingis used be
ause it proved to be invaluable when using 
ontext sensitive 
onstraints(Keijzer et al., 2001a).6.4 Related WorkWong and Leung (Wong and Leung, 1997) hybridized logi
 programming and ge-neti
 programming in their system LOGENPRO. In LOGENPRO, one de�nes agrammar 
onsisting of synta
ti
 and semanti
 de�nitions in the form of a De�niteClause Grammar (DCG). This grammar is transformed into a logi
 program by au-tomati
 means in su
h a way that next to the parse tree for the expressions thatare evaluated, a parse tree of information about the derivation is generated. Thisse
ond parse tree des
ribes the rules that are applied and the variable substitutionsthat are made. This is the stru
ture that is manipulated by the variation operators.



6.4. RELATED WORK 85Due to the semanti
 
onstraints, some fairly intri
ate subtree 
rossover and muta-tion operators are used. Even then, a semanti
 validation | 
he
king whether thenewly 
reated parse tree is a

epted by the logi
 program { needs to be performed.Ross (Ross, 1999) des
ribes a similar system that uses De�nite Clause TranslationGrammars (DCTG). The di�eren
e between a DCTG and a DCG lies in the expli
itseparation between syntax and semanti
s in the DCTG, while the DCG mixes thesyntax and semanti
s in the body of the 
lauses. Like in (Wong and Leung, 1997),the DCTG in (Ross, 1999) is translated into a logi
 program and parse trees ofthe derivation pro
ess are manipulated. The 
rossover des
ribed in (Ross, 1999)seems to only use type information 
ontained in the predi
ate names and arity atthe heads of the 
lauses and swaps derivation subtrees that 
ontain the same head.A semanti
 veri�
ation (running the Prolog program on the derivation tree), issubsequently performed.In both approa
hes the variation operators are strongly typed, and subsequently thenumber of allowable 
rossover pairs in the parse trees 
an be signi�
antly redu
ed.This is in stark 
ontrast with the ALP system, where all parts of the string 
anbe subje
t to 
rossover with any other part of any other string. Another di�er-en
e between these approa
hes and the ALP system lies in the method of 
reatingexpressions. Espe
ially in the approa
h outlined by Ross (Ross, 1999), the stri
tseparation between 
ontext-free synta
ti
 rules used to generate senten
es and thesemanti
 validation used to validate the expressions 
an lead to a wasteful generateand test 
y
le in the algorithm. The LOGENPRO system on the other hand triesto push the test-
y
le inside the 
rossover operator, leading to a potentially moreeÆ
ient system. However, the net e�e
t of both approa
hes is that 
rossover isrestri
ted to swapping subtrees that dire
tly lead to a valid program. The 
rossoveroperator is thus strongly typed.The ALP system on the other hand is not 
onstrained to use logi
 grammars as itworks with logi
 programs dire
tly. Although a logi
 program is eminently suitableto de�ne a logi
 grammar, logi
 programs 
an also take more dire
t, 
onstru
tive,approa
hes towards generating stru
tures. The use of untyped variation operatorstogether with a fault tolerant mapping method is also very di�erent from the treebased geneti
 programming systems des
ribed above.As an example of the di�eren
e between a grammati
al approa
h and a 
onstru
tiveapproa
h, 
onsider the problem of generating a permutation of a list of items. Su
ha permuted list 
an be needed as a subtask for a larger programming task. It isalready not perfe
tly 
lear how to approa
h this problem using a grammar as wewant to transform one sequen
e into another sequen
e. Grammars are usually usedto de�ne legal senten
es, not transformations. Assume for the sake of simpli
ityhowever that the obje
t is to 
reate a permutation of a �xed length list [1; 2; : : : ; 10℄.In a grammati
al approa
h, one approa
h would be to de�ne the syntax to be a listof length 10, where the elements are numbers. In a DCG this would look likenumber(1).. . .number(10).list([℄, 0).list([N|L℄, Sz) ! number(N), list(L, S), f Sz =:= S + 1 g.list10(L) ! list(L, 10).
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h would de�ne all lists 
ontaining the numbers 1 to 10. The 
urly bra
kets areused to indi
ate the semanti
 
he
ks, the fun
tor =:=/2 denotes arithmeti
 equality.The important thing to noti
e is that it presents a synta
ti
al de�nition, whi
h iseminently suitable for parsing lists. The 
he
k for the size is a small semanti

omponent. However, we are interested in a permutation, thus there is a need to
he
k if a number already o

urs in the list. A straightforward implementation ofthis would be to simply 
he
k if the number already o

urred:perm list([℄,0).perm list([N|L℄, Sz) ! number(N), perm list(L, S),fnot(member(N,L)), Sz =:= S+1g.perm list10(L) ! perm list(L,10).This will indeed de�ne all possible permutations, but in the pro
ess of generatingthem, it would generate all possible sublists, dis
arding the illegal lists. This is not aproblem when parsing a possible permutation, but when generating su
h a list it 
anbe very wasteful. Although possibly less wasteful ways of de�ning a grammar forthis problem are imaginable, the main point to be made is that many 
onstru
tionssu
h as permuted lists are not best modelled by a grammar, making a distin
tionbetween a 
ontext-free syntax together with semanti
 
onstraints. Although forparsing senten
es the grammati
al approa
h is suÆ
iently powerful, for generatingsenten
es a more pro
edural approa
h seems to be needed. ALP 
an deliver su
ha 
onstru
tive approa
h: in a logi
 program, it is possible to de�ne a permutationpro
edurallyint(0, ).int(N,Z) :- int(N1,Z), N is N1+1, N < Z.permute([℄,[℄).permute(List,[PermHead|PermRest℄) :-length(List, L),L > 0,int(Choi
e,L), % 
hoose an integernth0(Choi
e, List, PermHead), % get the 
hoi
e and% make it the headdelete nth0(Choi
e, List, Smaller), % 
reate smaller listpermute(Smaller,PermRest).The predi
ate permute/2 transforms an arbitrary list into a permuted version ofthe same list. It does this by making an arbitrary 
hoi
e from the input list andputting that one at the head of the output list. The element that is 
hosen getsdeleted from the input list and the algorithm re
urses. It ultimately hinges on thepredi
ate int/2, that sele
ts an integer bounded above by the length of the list4.The program thus de�nes a pro
edural way of permuting a list, it is diÆ
ult toidentify grammati
al elements in this small program. Furthermore, this programis generi
, it does not make any assumption about the 
ontents of the list. Thepredi
ate permute/2 is set up to do a permutation of any list.4When randomly generating strings, the int/2 predi
ate is heavily biased towards samplingthe lowest numbers. Therefore ALP uses the spe
ial predi
ate ext int/2 (See Se
tion 6.2.5) thatretrieves an integer from the genotype.



6.4. RELATED WORK 87This example also illustrates some possible problems with typed 
rossovers in 
on-strained domains. In the list/2 predi
ate de�ned above, even though the de�nitionis re
ursive, the 
he
k for the size of the list implies a very stringent 
onstraint fora subtree 
rossover. Only 
rossovers that swap lists of the same size are valid, allother 
rossovers are invalid. ALP, using an inherently more messy mapping pro
ess,would however be able to migrate any part of the string en
oding a list to any otherpart, as long as it 
an de
ode to a list of the proper length. The tail of unexpressed
ode would be helpful to a
hieve this.Subtree and substring 
rossovers in the ALP system It is however possible toimplement a subtree 
rossover in the ALP system by utilizing information gatheredabout the evolution of the goal sta
k and the predi
ate that was used at every pointin the derivation. Sele
ting a 
rossover point k1, its subtree is spanned by the �rstpoint k2 > k1 su
h that: g(s; k2) = g(s; k1)� 1Where g(s; k) is the goal sta
k fun
tion de�ned in Equation 6.3. The point k2is the point where all the unresolved literals pushed on the sta
k by the predi
ateen
oded by sk1 are resolved and removed from the goal sta
k, whi
h in turn meansthat all arguments needed by the predi
ate used at point k1 have been bound toground terms.The 
ondition 
an be simpli�ed tog(s; k2)� g(s; k1) = g0 + k2Xi=0 b(si)� g0 � k1Xj=0 b(sj) =k2Xi=k1 b(si) = �1The 
ondition that it is the �rst point that has this property makes sure that weswap a single subtree. Subtree 
rossover is then a spe
ial 
ase of a general stru
turepreserving two-point 
rossover on strings, where given two strings s1 and s2 with
rossover points k1 < k2 and l1 < l2g(s1; k1)� g(s1; k2) = g(s2; l1)� g(s2; l2)Interpreted in terms of the goal sta
k, this 
ondition simply states that the dif-feren
es in goal sta
k size for the substrings must be equal to ea
h other. Whenswapping substrings that abide this 
onstraint, the integrity of the goal sta
k is guar-anteed and no tail of unexpressed 
ode is needed. This does however not ne
essarilywork for programs with multiple predi
ates and 
ontext-sensitive 
onstraints.In terms of the shape graph, a subtree is simply the �rst point to the right that islo
ated one not
h lower than the 
urrent level. In terms of the shape graph andthe parse tree this 
an be depi
ted as
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R�

Figure 6.11: Subtree 
rossover on the shape graph.ffx x ffx x x
With the additional provision that two subtrees 
an only be ex
hanged when theyen
ode for a 
lause in the same predi
ate, this subtree 
rossover is equivalent withthe subtree 
rossover outlined by Ross (Ross, 1999). It has the additional bene�tthat instead of having a semanti
al validation 
he
k and possible dire
t failure inthe 
ase of 
ontext-sensitive 
onstraints, the derivation pro
ess would still be ableto re-interpret the rest of the string and possibly return a 
omplete expression.Figure 6.11 depi
ts the pro
ess of subtree 
rossover in terms of the shape graph.6.5 ALP, ILP and CLPIndu
tive Logi
 Programming (ILP) aims at indu
ing logi
 programs. based ondata (Muggleton and Raedt, 1994). As logi
 programs themselves 
an be readilyexpressed as parse trees in a logi
 program5, ALP 
ould 
on
eivably be used toindu
e logi
 programs. Even in that 
ase, a large di�eren
e between ILP and ALPwould remain: ILP usually works by transforming an overly spe
i�
 logi
 program(the set of all positive and negative examples) into a more general program, usingvarious heuristi
s to as
ertain whi
h generalizations are allowed.5logi
 programming shares this ability with LISP



6.6. SUMMARY 89ALP usually operates in a 
onstru
tive way, 
reating a parse tree (in this 
ase a logi
program) out of an indu
tive de�nition of possible parse trees (logi
 programs).However, due to ALP's ability to use transformations and pro
edural rules as well,it might be possible to 
onstrain ALP in su
h a way that it will only use those rulesthat are used in ILP. In that 
ase ALP 
an be used merely as an alternative to depth�rst sear
h in a highly 
onstrained sear
h spa
e. The worth of this approa
h is notexplored further here.Constrained Logi
 Programming (CLP) tries to �nd solutions in heavily 
onstrainedsear
h domains de�ned by logi
 programs (Ja�ar and Maher, 1994). Here the obje
tof sear
h is usually a single or small set of solutions that abide the 
onstraints. ALPis is general not 
apable of signi�
antly optimizing expressions when generatinga single solution is a diÆ
ult sear
h problem in its own right. Creating the �rstgeneration should then already solve the problem. ALP works best when there is anabundan
e of solutions of di�erent merit | whi
h is the 
ase in program indu
tion.However, in Se
tion 7.1.2 and Chapter 8, it will be shown how in some 
ir
umstan
esde
larative (hard) 
onstraints 
an be transformed to preferential (soft) 
onstraints.Using a multi-obje
tive sear
h then provides a viable approa
h to optimize in thepresen
e of diÆ
ult 
onstraints.6.6 SummaryIn this 
hapter the adaptive logi
 programming system has been outlined. Parti
ularattention was given to the mapping pro
ess from a string of 
odons (a path througha logi
 program) and the resulting parse tree that de�nes the 
omputer program.The e�e
t of the variation operators on the string of 
odons was examined in the
ontext of simple programs, synta
ti
ally 
onstrained programs and semanti
ally
onstrained programs.The shape graph was introdu
ed to visualize the shape of a parse tree generatedby a path through a logi
 program. This shape graph is de�ned as the numberof literals on the goal sta
k for ea
h point in the tree generation pro
ess. In the
ase of simple single predi
ate programs without 
onstraints, the shape graph givesall information needed to implement stru
ture preserving one point and two point
rossovers.ALP, being not bound to a grammati
al formalism but to the 
apabilities of aTuring-
omplete programming environment, might have promise as a powerful androbust approa
h to the problem of automati
 program indu
tion in the 
ontext ofsynta
ti
 and semanti
 
onstraints. The next 
hapter is devoted to a feasibilitystudy of ALP's untyped variation operators and to some limited 
ase studies inproblems involving a variety of 
onstraints.
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Chapter 7Appli
ations for the ALPSystemThe ALP system is implemented using SWI-Prolog1. SWI-Prolog de�nes a two-wayC API, that allows to 
all Prolog from C (used by the resolution engine) and C fromProlog (used for evaluation of parse trees). The geneti
 algorithm is implementedusing the evolutionary obje
ts library2. The system is 
apable of performing multi-obje
tive optimization, using the elitist non-dominated sorting algorithm NSGA-II(Deb et al., 2000).The general optimization 
y
le in the algorithm that is used 
onsists of a variationstep in whi
h the population is doubled in size, using a tournament sele
tion of size2 to obtain the parents, and a subsequent sele
tion step in whi
h the population issorted and halved. In evolutionary strategy terminology this is a (�+�) strategy withan additional tournament sele
tion step. In the 
ase of multi-obje
tive optimization,the sorting is based on linear ranking, 
onsisting of an integer value that designateswhi
h front the individual belongs to, and a fra
tional value that is used to breakties. This fra
tional value represents the uniqueness of the individual in its frontof non-dominated solutions. The NSGA-II algorithm improved upon the originalNSGA algorithm by removing the dependen
e on a sharing parameter (Deb et al.,2000).This algorithm is strongly elitist as a new individual has to improve upon at leastone individual in the previous generation in order to be in
luded in the breedingpopulation for the 
urrent generation. One of the rami�
ations of this 
hoi
e isthat there is no straight reprodu
tion in the system, all newly added individuals willhave undergone some form of variation.7.1 Appli
ationsHere we will examine the feasibility of the ALP system on various appli
ationswith varying 
onstraints. First a small experiment showing how some ba
kground1http://www.swi.psy.uva.nl/proje
ts/SWI-Prolog2http://www.sour
eforge.net/proje
ts/eodev



92 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMStrategy (�+ �)Population Size (�) 500No. of Generations 100No. of runs 100Crossover Probability 0.97Constant Mutation 0.03Maximum depth at init 6Maximum depth 15Table 7.1: Parameters for the ALP system used for nearly all experiments.knowledge about the fun
tion set on the arti�
ial ant problem 
an be used to removevarious sour
e of redundan
y. Se
ondly, the system is used to �nd an equation thatis well-adapted to some data set, while at the same time is 
onstrained to �ndequations that produ
e outputs that are provably in the right domain. The programuses interval arithmeti
 to a
hieve this. Thirdly, the system is tried upon the problemof �nding a dimensionally 
orre
t equation. Finally the system is 
onstrained toprodu
e equations in the language of matrix algebra.The main aim of these experiments are to give a proof of prin
iple that the adaptivelogi
 programming system introdu
ed here is 
apable of dealing with a wide rangeof appli
ations. The appli
ations involving interval logi
, units of measurement andmatrix algebra are important to make geneti
 programming more suitable for usein s
ienti�
 and engineering settings. The arti�
ial ant problem is more of a toyproblem, but points to the possibility of extending the power of geneti
 programmingby disallowing some a priori bad or redundant 
onstru
ts.Ea
h of the programs studied here have 
ontext-sensitive 
onstraints. Where theperforman
e between subtree 
rossover and ripple 
rossover are 
ompared, the sub-tree 
rossover is modi�ed to have a se
ond try with new 
rossover points if a
rossover does not produ
e a valid o�spring. This to level the �eld somewhat3.The 
omparative experiments performed here are mainly used as eviden
e on thelarge di�eren
e between ripple 
rossover and subtree 
rossover when applied toindu
ing expressions subje
t to 
ontext-sensitive 
onstraints.7.1.1 A Sensible Ant on the Santa Fe TrailThe arti�
ial ant problem has been studied intensively in (Langdon and Poli, 1998)whi
h showed that it is a diÆ
ult problem with multiple ridges and lo
al optima.The goal is to �nd a 
omputer program that steers an ant over a trail of foodpie
es, eating as mu
h food as possible. The trail that is used is the well-knownSanta Fe trail that 
ontains 89 pie
es of food. The su

ess 
riterion for an arti�
ialant program is then to steer the ant to eat these 89 pie
es of food within 600 steps.The logi
 program that de�nes the spa
e of allowable ant programs 
an be statedas follows.3As des
ribed in Se
tion 6.2.1 ripple 
rossover was modi�ed to attempt a reversal of roles forpre�xes and suÆxes in 
ase of failure.



7.1. APPLICATIONS 93ant(move)ant(left)ant(right)ant(iffoodahead(X,Y)) :- ant(X), ant(Y).ant(seq(X,Y)) :- ant(X), ant(Y).Program 7.1.1: Program for indu
ing an arti�
ial ant.The move atom indi
ates a move forward by the ant, left and right turn the ant90 degrees on the grid, the iffoodahead instru
tion bran
hes on the informationwhether there is a food pellet present in the 
ell the ant is fa
ing, while the seqoperator simply applies its arguments in sequen
e. A program 
onsisting of theseinstru
tions is iteratively applied until time runs out.In the usual geneti
 programming notation of terminal and fun
tion sets, this logi
program above 
an be des
ribed by: T = f move/0, left/0, right/0g and F =f iffoodahead/2, seq/2 g. The Program 7.1.1 will be extended to implement afew 
ontext-sensitive 
onstraints.The spa
e of possible ant programs 
ontains many ine�e
tive pie
es of 
ode that
an be identi�ed even before trying to �nd a program for a spe
i�
 trail. It is forexample ine�e
tive to let the ant move left and subsequently move right without any
ommands in between as its overall state would not have 
hanged. Furthermore,dire
tly nesting iffoodahead/2 
alls is also ine�e
tive as the out
ome of the 
he
kis already known. This embodies knowledge about the semanti
s of the fun
tionset. We might also assume that if there is food ahead, moving toward the foodseems to be a good idea.These 
onstraints are readily implemented in the ALP system. For this an ant/3predi
ate will be used. As usual, the �rst argument will be used to indu
e the 
om-puter program that is evaluated. The se
ond argument is used to spe
ify the input
onstraints, 
onstraints that are imposed by the 
aller, while the third argumentis used to spe
ify some output 
onstraints: 
onstraints subsequent 
lauses need toabide.The start 
lause is of the form ant/1 that 
alls ant/3, not demanding any 
on-straints on the program (signi�ed by the empty list [℄), and ignores the output
onstraints (the unders
ore symbol). Thus:ant(X) :- ant(X,[℄, ).The sequen
e operator is used to propagate the 
onstraints.ant(seq(X,Y),In,Out) :- ant(X, In, C), ant(Y, C, Out).The two additional arguments In and Out get imposed on the arguments of thesequen
e operator. The intermediate variable C is used to propagate the 
onstraintsfrom the �rst subexpression to the other.
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lause that indu
es the move atom is de�ned as followsant(move, C, [℄) :- \+ member(no move, C).where \+ is the Prolog symbol for negation by failure: it will only su

eed whenthe exe
ution of its argument fails. The member/2 fun
tion is a built-in 
lause, andis exe
uted in Prolog dire
tly. This 
lause 
onstrains the move atom to be onlyappli
able when the set of 
onstraints does not 
ontain the no move atom. A movefurthermore removes all 
onstraints, it thus returns the empty list [℄. Turning toleft:ant(left, C, [no right℄) :- \+ member(no left, C).Is appli
able only when there is no no left 
onstraint. It imposes a no right
onstraint to the next a
tion. So when the ant turns left, it will not immediatelyturn right, be
ause:ant(right, C, [no left℄) :- \+ member(no right, C).For the iffoodahead fun
tion the following 
onstraints are imposed:ant(iffoodahead(X, Y), In, Out) :-\+ member(no if, In),ant(X,[no left, no right, no if℄, OutLeft),ant(Y, [no move, no if℄, OutRight),interse
tion(OutLeft, OutRight, Out).The �rst literal in the body of the 
lause imposes the 
onstraint that the 
lause 
anonly be used when there is no no if 
onstraint pending. Furthermore it spe
i�esthat when food is spotted, turning is not allowed, whi
h will ne
essarily lead toa move as the next a
tion (note that due to the propagating of 
onstraints anynumber of intermediate sequen
e operators 
an o

ur as long as the �rst a
tionthat is applied is a move). When there is no food ahead however, moving is notallowed: this will mean that a 
onstru
tion su
h as `iffoodahead(seq(move,X),seq(move,Y))' is not allowed, as this 
ould equivalently (and shorter) be spe
i-�ed as `seq(move,iffoodahead(X,Y))'. For both bran
hes, it is not allowed toimmediately 
he
k for food again. The 
lause will return the interse
tion of the
onstraints imposed by the two bran
hes, thus if both bran
hes end with imposingthe same 
onstraint(s) these will be propagated to the next a
tion.This in e�e
t implements information about some immediate redundan
ies in thefun
tion set for the arti�
ial ant problem. It redu
es the sear
h spa
e by disallowingspe
i�
 
ombinations of 
ode. No knowledge about the trail is in
luded in theprogram, the 
onstraints are imposed to remove redundan
ies and to take onemaybe sensible a
tion: when there's food spotted, eat it.



7.1. APPLICATIONS 95The e�e
ts of subtree 
rossover and ripple 
rossover in the 
ontext of these 
on-straints are expe
ted to be quite di�erent. In the 
ase of subtree 
rossover, at-tempting to move a subtree to an illegal 
ontext will result in a failure. Considerfor example inserting the subtreeseqleft move into lo
ation X of seqright Xthus trying to form the tree seqright seqleft moveThe 
onstraint against turning would make this tree invalid. When using ripple
rossover however, the ba
ktra
king operator would simply skip the left a
tionand the intermediate tree would be
omeseqright seqmove YWhi
h is as su
h invalid. If there is however still geneti
 material left, possibly inthe tail of unexpressed 
ode, the resolution pro
ess would use that to �ll in thevalue of Y and then 
reate a valid tree. As the 
onstraints in this grammar onlyex
lude 
ertain pairs of a
tions or 
onditions, the ba
ktra
king operator is expe
tedto be relatively su

essful in 
reating valid o�spring.The e�e
t of using these 
onstraints is dramati
 in the ability of ALP to �ndsolutions to the problem. Figure 7.1 shows the 
umulative probability of su

essover the generations for both ripple 
rossover and subtree 
rossover for both logi
programs. The su

ess rate for solving the problem goes to 97% for ripple 
rossover,while subtree 
rossover's performan
e goes to 80%. On the standard formulationof the problem, su

ess rates are mu
h lower. We 
annot 
on
lude that ripple
rossover together with ba
ktra
king is better suited to handle the 
onstraints,as the su

ess rates on the standard formulation of the problem already show asigni�
ant advantage for ripple 
rossover. It appears that for this type of problemthe more destru
tive variation applied through ripple 
rossover has a bene�t overthe more lo
alized 
hanges of subtree 
rossover. This is espe
ially pronoun
ed inthe later stages of the run, where 
umulative su

ess for subtree 
rossover levelso�, while the runs using ripple 
rossover keep �nding solutions.It is however instru
tive to examine the failure rate of both methods. These aredepi
ted in Figure 7.2. Initially the failure rates of both methods peak when the�rst illegal 
rossovers o

ur. Very soon however, the tail of unexpressed 
ode beginsto form and together with the ba
ktra
king me
hanism, the failure rate of ripple
rossover drops to very low values. The failure rate of subtree 
rossover on theother hand initially rises and levels o� at a rate of 5%. In both 
ases the 
rossoveroperators have two tries in 
reating a valid individual. Due to the elitist trun
ationsele
tion method that is used, invalid individuals only slow down the sear
h. The
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Figure 7.3: The evolution of the average size of the population on the arti�
ial antproblems.5% invalid individuals that are 
reated by subtree 
rossover would mean that thegeneti
 algorithm e�e
tively pro
esses 475 individuals per generation rather than500.It is 
lear from this experiment that the `sensible' program helps in solving theproblem faster than the straightforward program, regardless of the variation operatorthat is used. The `sensible' program uses 
ontext-sensitive 
onstraints to introdu
esome a priori information to ex
lude redundant subexpressions.By redu
ing the sear
h spa
e to ex
lude 
ertain 
onstru
ts, an impli
it bias towardsshorter solutions is introdu
ed. It was estimated in (Langdon and Poli, 1998) thatthe spa
e of possible ant programs has a high density of solutions of a relative shortsize. Figure 7.3 shows the evolution of the size of the population undergoing both
rossover operators. The `sensible' ant 
onstraints indu
e populations 
ontainingprograms that are signi�
antly shorter than when using the un
onstrained de�nitionof possible ant programs.Con
luding the ExperimentAlthough the `sensible' ant-problem studied here is a toy problem, the way the
onstraints are introdu
ed point to a more general appli
ation: disallowing 
ertain
onstru
ts be
ause they are redundant or meaningless. This 
an often be identi�edjust examining the de�nition and des
ription of the fun
tion set. It proved to befairly easy to disallow some 
ommonly o

urring fragments from the ant programs,the redu
ed sear
h spa
e allowed to sear
h with great su

ess. Many fun
tionsets have known redundan
ies or allow nonsensi
al 
ombinations. By using a logi
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h it is possible to disallow spe
i�
 
onstru
ts. This 
an be
ontrasted with a pure synta
ti
al approa
h (
ontext-free grammars), where it isonly possible to express what is allowed.A possible appli
ation of this te
hnique in symboli
 regression would be to spe
i�-
ally disallow nesting of some fun
tions. For example, the 
lauseexpr(exp(X),C) :- \+ member(no exp,C), expr(X, [no exp|C℄).would disallow nested exponentiation fun
tions. In the pra
ti
e of performing sym-boli
 regression it o

urs fairly often that su
h nested expressions appear, and theirpresen
e makes it usually diÆ
ult to interpret the equation. When using a subtree
rossover using su
h a grammar, any attempt of inserting a subtree 
ontaining anexp fun
tion underneath an exp fun
tion that is already present would lead to afailure. Using ripple 
rossover with ba
ktra
king, su
h an o�ending operation wouldsimply be skipped and the next instru
tion would be read from the genotype. Whi
hof the two approa
hes is the best 
annot be answered 
on
lusively at this point.7.1.2 Interval Arithmeti
The solutions provided by geneti
 programming in the area of symboli
 regression
an exhibit several types of over�tting behaviour; the most destru
tive ones o

urwhen arithmeti
al errors are indu
ed. When the fun
tion sets in
lude fun
tions thatare not de�ned in the full range of possible inputs su
h as division and the squareroot fun
tion, the operators are usually prote
ted (Koza, 1992) to return defaultvalues in the 
ase of an error. Unfortunately, this prote
tion only works well whenthe arithmeti
al error o

urs in the training set: if errors o

ur on a di�erent set,the default values are plainly returned, whi
h might lead to strange behaviour of theexpressions. For the division operator, prote
ting just a division by zero does notsolve the problem of ill-de�ned expression: 
onsider Figure 7.4 where an expression istrained on the indi
ated data points and subsequently evaluated over the full range.It indu
es an asymptote and the usual prote
tion me
hanism will only prote
t thepoint where the a
tual division by zero o

urs. Values 
lose to this point will leadto a predi
tion of arbitrary large values.A method to avoid mathemati
al errors and 
al
ulate the domain of an expressionis to use interval arithmeti
 that 
al
ulates upper and lower bounds for ea
h part inthe expression. Interval arithmeti
 is readily expressed in the ALP system, the logi
program 6.2.2 that was used to illustrate the use of ba
ktra
king implements this.The program 
al
ulates the theoreti
al upper and lower bounds of an expression.The logi
 program that generates expressions and their bounds while avoiding math-emati
al ex
eptions is used on a sediment transportation problem whi
h has beendes
ribed in Se
tion 3.1. Here we are interested in indu
ing an empiri
al formulathat predi
ts the 
on
entration of sediment near the bed of a stream. A 
on
en-tration 
annot have arbitrary values, it is 
onstrained to lie within 0 and 1, where1 means 
omplete saturation. To implement su
h 
onstraints, we 
an use the logi
program 6.2.2 de�ned in Se
tion 6.2.1.
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Figure 7.4: An automati
ally indu
ed expression using the indi
ated points as thetraining set. It is evaluated over the full domain. Note that the usual prote
tionme
hanism of disallowing a division by zero would not eliminate the asymptoteitself. This leads to wildly ina

urate values in the neighbourhood of the invalidpoint.
The terminals for this problem will be the variables � and �0 that are dimensionlessvariables (Shields parameters) that are derived from measured variables. The lowerand upper bounds for these variables are empiri
ally determined by examining thedataset, but in prin
iple these 
ould be set to theoreti
al values. Be
ause the lowerbounds are 
lose to zero for the dependent and independent variables, they wereset to 0. Now the obje
t of sear
h is an expression that (i) �ts the data well, and(ii) keeps within bounds. This is easiest to set up with a multi-obje
tive sear
h,espe
ially 
onsidering the fa
t that the interval predi
ate 
al
ulates worst 
asebounds4. It was however not tried to 
al
ulate better bounds in the grammar forfear of over
omplexifying the logi
 program.This leads to the following setup:

4Consider for example a variable x with a data range of [�1; 1℄, and the expression x � x. Theinterval that is 
al
ulated for this expression would be [�1; 1℄, while in reality, the minus sign wouldalways 
an
el out, leaving the tighter bounds of [0; 1℄.



100 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMinterval(theta, 0, 6.08).interval(theta_p, 0, 1.98).\* Rest of the interval/3 predi
ate, see Program 6.2.2 *\interval_error(O, L, U) :-O is abs(L-0) + abs(U-0.55). % bounds for 
b [0,0.55℄obje
tive([O1,O2℄) :-interval(X, L, U),eval(X,O1), % evaluate on datainterval_error(O2, L, U). % 
al
ulate the interval errorwhere the obje
tive/1 predi
ate is 
alled by the resolution engine. The rest of thede�nition of the interval/3 predi
ate 
an found in Program 6.2.2 whi
h de�nes theinterval arithmeti
 for addition, multipli
ation, subtra
tion, division and the squareroot fun
tion. It returns two obje
tive values that will be handled by the NSGA-IIalgorithm (Deb et al., 2000). Not only will ALP try to indu
e an expression thatfollows the data range, the use of Program 6.2.2 also removes the need of usingprote
ted algebrai
 operators, as the expression is guaranteed to be valid in thedomain de�ned by the input variables.ResultsTo obtain a baseline measure of the performan
e of the system, �rst a set of 100runs are performed where the se
ond obje
tive is not used. Here the operators areprote
ted in the data range, thus divisions by zero are impossible and square rootsof negative numbers 
an also not o

ur, but there is no sele
tion pressure towardsexpressions that follow the desired data range. The errors on the data are reportedas normalized root mean squared errors.Next to this experiments are performed that use the se
ond obje
tive: the intervalerror. All runs are performed on the same training data for the sediment transporta-tion problem. As the multi-obje
tive run ends up with a front of non-dominatedsolutions, in a post-pro
essing step a 
hoi
e must be made from this front. It wasde
ided that the best performing expression on the data that had an interval errorsmaller than 0.1 would be sele
ted. It was not insisted to have an exa
t mat
h onthe bounds be
ause the bounds 
al
ulated in the logi
 program are not tight.Although no 
on
lusive eviden
e 
an be expe
ted from applying a system on asingle problem, two questions will be investigated. The �rst question is 
on
ernedwith the optimization ability: does the addition of a se
ond obje
tive help or hinderthe sear
h for a well-�tted expression? The se
ond question is 
on
erned withthe performan
e of the expressions on the test-set: does the addition of a se
ondobje
tive optimized on the data range help in avoiding over�tting?Figure 7.5 shows the evolution of the training performan
e for subtree and ripple
rossover on both the multi- and single obje
tive problems. The use of a single
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Figure 7.5: Evolution of the mean performan
e on the training set for the multi-obje
tive and single obje
tive runs. The mean performan
e is 
al
ulated as anaverage over the performan
e of the best expression in a generation.obje
tive leads to signi�
antly better results on the training set than the multi-obje
tive setup. Table 7.2 shows the results of a two-tailed t-test on the meanperforman
e at the �nal generation.When evaluating the expressions on the test set however, these di�eren
es disappear.Figure 7.6 shows the performan
e of the sele
ted expressions from ea
h run on thetestset. Even though the best of those are very similar in their ability to generalize,the worst performing expressions taken from the single obje
tive runs do howevershow a large over�t. Note that with the normalized RMS measure used here, anerror of 1.0 would be produ
ed by an expression that has a 
onstant value | themean of the target signal. Expressions that on the test set s
ore worse than an errorof 1.0 are thus worse than the performan
e of a 
onstant. This level of over�ttingSubtree MO Ripple MO Subtree RippleSubtree MO 0.62 10�6 10�7Ripple MO 0.62 10�6 10�7Subtree 10�6 10�6 0.29Ripple 10�7 10�7 0.29Table 7.2: Probability that the di�eren
e in observed mean performan
e in the �nalgeneration is 
aused by random e�e
ts using a two tailed t-test on the trainingset. The label `MO' designates the multi-obje
tive runs. There's no signi�
antdi�eren
e between subtree 
rossover and ripple 
rossovers; the di�eren
es betweenthe multi-obje
tive runs and the single obje
tive runs is however signi�
ant.
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Figure 7.6: Performan
e of the sele
ted expressions of the multi-obje
tive and singleobje
tive runs on the testset. The error measure that is used is the normalized RMSerror, whi
h is de�ned in su
h a way that an error of 1 is a
hieved by a 
orre
tpredi
tion of the target average.
an be 
alled destru
tive. The use of a se
ond obje
tive that sele
ts expressions ontheir ability to be valid in a prespe
i�ed output range seems to help in redu
ing thelevel of destru
tive over�tting behaviour.Con
luding the ExperimentThe interval program used here is a general approa
h to symboli
 regression wherethe issue of prote
ted mathemati
al operators is solved. If the ranges on the inputvariables are set 
orre
tly, there is no possibility that mathemati
al ex
eptions o

ur.If the bounds are set to theoreti
ally known values, it is likewise guaranteed that theexpressions indu
ed by this program are well-de�ned for all possible input values.Here an approa
h was examined where the 
orre
t range of the output intervalwas used as a se
ond obje
tive in a multi-obje
tive sear
h. The 
onstraints, thusimposed, did not hamper the sear
h for a well-�tting equation by mu
h. It didhowever help in avoiding over�tted equations. This is to be expe
ted as the outputsof the expressions that are indu
ed in this way are guaranteed to lie within a 
ertaindata range.The use of interval arithmeti
 in symboli
 regression 
an take many forms. Primarilyit 
an take 
are of avoiding the indu
tion of destru
tive under and over
ows in theinput-output mapping. By guiding the sear
h to �nd expressions that produ
eoutputs in the appropriate data range, destru
tive over�tting 
an be avoided. Theresulting expressions are then provably in the right range for all possible inputs.
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tive approa
h might also not be the only approa
h that 
an a
hievethis. As often, a tailor made wrapper 
an help. By using the program for intervalarithmeti
, the output bounds of ea
h indu
ed expression are known. It is thena fairly simple matter to �nd a slope and an inter
ept su
h that the bounds ofthe expression 
oin
ides with the desired output range. This 
an for instan
e bea
hieved with the following 
lause:s
aled_interval(I+S*X) :-interval(X,L,U),
at
h(S is 0.55/(U-L),_,fail), % 0.55: new rangeI is - L*0.55/(U-L).Whi
h will indu
e expressions that are always in the right domain. It is up to thegeneti
 algorithm to �nd an expression subje
t to this s
aling that will �t the datawell.Although the 
onstraints imposed by interval arithmeti
 are fairly simple and 
anbe programmed into a regular geneti
 programming system without mu
h trouble,the use of the logi
 programming representation made it possible to use it withoutany 
hanges to the sear
h engine. It shows the versatility of the approa
h, where a
hange in the de�nition of logi
 programs 
an help in �nding more reliable solutions.7.1.3 Units of MeasurementIn the physi
al s
ien
es, data represents 
areful observations of a physi
al systemunder study. Apart from the raw numbers that are 
olle
ted, units of measurementof the observed variables provide additional information about the physi
al pro
ess.In Chapter 5 a method was proposed that utilized the information in the units ofmeasurement in a preferential manner: a multi-obje
tive strategy was used to min-imize both the error on the data and the error in the dimensions of the evolvingexpressions. The expressiveness of the ALP system 
an however be used to de
lar-atively 
onstrain the sear
h su
h that only dimensionally 
orre
t formulations willbe 
onsidered. In fa
t, ta
kling problems involving units of measurement was themain inspiration for de�ning the ALP system.A 
omparison between de
larative and preferential methods of formula indu
tion inthe 
ontext of units of measurements 
an be found in 
hapter 8.The problem used here involves the sediment transport problem, already en
oun-tered in Chapters 3 and 5. In 
ontrast with the approa
h outlined in Chapter 5, thesystem is 
onstrained to generate only dimensionally 
orre
t equations. It thus usesa de
larative bias towards the use of units of measurements. Another approa
h forthis 
lass of problems is studied in (Ratle and Sebag, 2000) where a 
ontext freegrammar is generated that models a subset of the language of units of measurement.Implementation of the units of measurement system in a Logi
 ProgramThe 
onstraints imposed by the units of measurement 
an be e�e
tively imple-mented in a logi
 program. In order to implement the system a predi
ate uom/2 is
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ate provides the algebrai
 expression andthe se
ond argument a list 
ontaining the exponents of the units su
h that the fa
t`uom(ws,[1,-1℄)' for example denotes an input variable ws stated in the units oflength over time: a velo
ity.
For addition and subtra
tion, the program needs to ensure that both arguments areof the same type, thus:
uom(X + Y, UOM) :-uom(X, UOM),uom(Y, UOM).

Although this 
lause 
an be used for both modes (input and output) of the se
ond(UOM) argument of the predi
ate, the behaviour of the ALP system will be di�erentfor ea
h mode. If the UOM argument is bound to a ground term i.e., it spe
i�es theneed for a parti
ular unit of measurement, the re
ursive 
alls to �nd the argumentsX and Y will be 
onstrained to be stated in these measurements. If on the otherhand the UOM argument is not grounded, the re
ursive pro
edure to �nd the X partof the addition is un
onstrained. However, after the indu
tion of this �rst part,the UOM argument will have been bound to a ground term: the units of the �rstargument. The sear
h for the Y part of the expression is then 
onstrained to bestated in the same units as the �rst part of the expression. In this 
ase no spe
ial
ases needed to be 
onsidered, but below the meta-logi
al predi
ate ground/1 willbe used to 
he
k for groundedness or non-groundedness of the inputs.
For multipli
ation and division, two 
lauses need to be de�ned: one when the UOMvariable is de�ned (grounded) and another when it is not de�ned. This is ne
essarybe
ause in the 
ase when the units are known beforehand, a di�erent 
al
ulationneeds to be performed then when they are indu
ed by the arguments of the expres-sions. It was 
hosen to implement this using a helper predi
ate multipli
ation/3,to make it possible for the genotype to 
ode for the operation, and subsequently letba
ktra
king help in 
hoosing the appropriate 
lause. The following set of 
lausesimplements multipli
ation (implementation of division is similar):



7.1. APPLICATIONS 105uom(X*Y, UOM) :-multipli
ation(X,Y,UOM).multipli
ation(X, Y, UOM) :-ground(UOM), % is UOM set to a value?uom(X, UOMx), % get the units for the �rst argument
all(minus(UOM, UOMx, UOMy)), % 
al
ulate the units for the% se
ond argument% su
h that y = output - xuom(Y, UOMy). % 
onstrain the expression% to be of units UOMymultipli
ation(X, Y, UOM) :-not(ground(UOM)), % is UOM unknown?uom(X, UOMx),uom(Y, UOMy), % Do not 
onstrain the units
all(plus(UOMx, UOMy, UOM)). % Cal
ulate the output units:% output = x + yThe predi
ates minus/3 and plus/3 perform subtra
tion and addition on lists ofexponent values. They are wrapped inside Prolog's built-in 
all/1 predi
ate tomake sure that they are evaluated in Prolog dire
tly (See Se
tion 6.2.5). Theground/1 predi
ate 
he
ks whether the variable is bound to a ground term. In the�rst 
lause, that only applies when the units are grounded, the �rst argument forthe multipli
ation is found in an un
onstrained way. Subsequently, the di�eren
ebetween the output and this argument's units is 
al
ulated, the result are the unitsthe se
ond argument needs to be stated in to obtain a 
onsistent formulation. Whenno units are demanded, both the �rst and the se
ond argument are indu
ed without
onstraints on the units they're stated in. They are added together to 
al
ulatethe output units. The two 
lauses for applying multipli
ation are thus de�ned fordi�erent modes.In the experiments des
ribed below one additional fun
tion is used, sqrt/1, de�nedas:uom(sqrt(X), UOM) :-square root(X,UOM).square root(X, UOM, C) :-ground(UOM), % is UOM set to a value?
all(mult(UOM, 2.0, UOMx)), % multiply by twouom(X, UOMx). % 
onstrain the operandsquare root(X, UOM, C) :-not(ground(UOM)), % is UOM unknown?uom(X, UOMx), % �nd an operand (un
onstrained)
all(mult(UOMx, 0.5, UOM)). % 
al
ulate the output UOMWhere the mult/3 predi
ate 
al
ulates a multipli
ation with a s
alar value.Together with 
lauses de�ning the variables and retrieving 
onstant values (whi
h
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onstrained to dimensionless units in order to disallow arbitrary 
oer
ions), thislogi
 program implements the system in full generality. The ALP system evolvespaths through the logi
 program that result in 
orre
tly typed expression, whi
h aresubsequently subje
t to evaluation on the available observations.The Sediment Transport ProblemFor the �rst set of experiments the sediment transport problem is revisited. The in-puts for this program are the independent variables, together with their dimensions,represented as a list of exponents.uom(X,U) :- leaf(X,U).leaf(nu, [2,-1℄). % kinemati
 vis
osityleaf(uf, [1,-1℄). % shear velo
ityleaf(uf_p, [1,-1℄). % sheer vel. related to skin fri
tionleaf(ws, [1,-1℄). % settling velo
ityleaf(d50, [1,0℄). % median diameter of sand grainsleaf(9.81, [1,-2℄). % gravity a

elerationleaf(C, [0,0℄) :- % dimensionless 
onstantfp(C). % obtain float from genotypeThis logi
 program de
laring the uom then de�nes a sear
h where most 
onstraintsare 
ontext-sensitive. Be
ause of this, subtree 
rossover will �nd it diÆ
ult toex
hange subtrees, as it does not have a fallba
k me
hanism in 
ase 
onstraints areviolated. Apart from the 
ase where there is no desired output unit and the entireexpression 
onsists of non-linear operators, subtree 
rossover will only be able toex
hange subtrees that are stated in the same units. It will then be 
onstrained toonly sear
h in the spa
e of units that are present in the initial generation.The untyped ripple 
rossover however will be able to ex
hange expressions statedin arbitrary units. The ba
ktra
king me
hanism helps in reinterpreting the remain-der of the string to indu
e a 
orre
t formulation. By using the helper predi
atemultipli
ation/3, division/3 and square root/2 that de�ne the operationof the program in the 
ase of di�ering modes, the ba
ktra
king me
hanism willwork as intended. When a multipli
ation is 
hosen for instan
e, sele
ting the 
lausefor the wrong mode (for instan
e the 
lause that 
he
ks for groundedness when theUOM is ungrounded), would only lead to skipping a single 
odon, the next 
odonwill automati
ally 
ode for the proper 
lause.It is unfortunately not 
lear what 
onsequen
es breaking up the program in severalpredi
ates has for subtree 
rossover. Subtree 
rossover will ex
hange subtrees start-ing with the same predi
ate, and thus when sele
ting a multipli
ation/2 predi-
ate in one tree, it will sear
h for the same predi
ate in the other tree. When su
ha tree is found, but the modes of the predi
ates di�er, the 
rossover will fail. Thesele
tion of subtrees is done randomly, thus the probability of sele
ting a predi
atewill be determined by its frequen
y of o

urren
e in the tree. Whigham (Whigham,1996a) advo
ates setting a priori probabilities for the sele
tion of di�erent non-terminals (predi
ates) in a 
ontext-free grammar. This would however add another
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t of these parameters on the sear
h isdiÆ
ult to determine, as it is quite likely that their importan
e depends on the stateof the population.This program is designed with the possibility of ba
ktra
king in mind and is thustilted in favour of the untyped variational operator 
alled ripple 
rossover. The maindrawba
k for typed subtree 
rossover is however not easily solvable: due to it mostlyex
hanging subtrees of the same type (units), it will be heavily biased towards thetypes present in the initial population. The units of measurement language has anin�nitude of possible types, leading to the assumption that subtree 
rossover willbe ine�e
tive in this domain. This a priori drawba
k of subtree 
rossover on theunit of measurement problem was the primary motivation that lead to 
reating theALP system. With this system in pla
e, together with an implementation of subtree
rossover, it is �nally possible to 
he
k whether this assertion is founded.The desired output for this problem is a dimensionless quantity, a 
on
entration.Two experiments were performed, one where the desired output is given and oneexperiment where no desired output is given. The se
ond experiment thus seeksfor a dimensionally 
onsistent formulation stated in any units. It is quite 
ommonfor empiri
al equations to multiply the resulting equation with a 
onstant stated insome units to obtain an equation stated in the desired units of measurement5, thisis usually a residual 
oeÆ
ient that tries to des
ribe some unmodelled phenomena.In that 
ase the sear
h is for an expression that is internally 
onsistent, withoutne
essarily inferring the desired dimension. In the logi
 program this is a

omplishedwith the following goals:(1) ?- uom(X,[0,0℄).(2) ?- uom(X, _).Where the unders
ore symbol ` ' denotes an unnamed variable. The experimentswere run for 300 generations.From Figure 7.7 and Figure 7.8 it 
an be inferred that subtree 
rossover is not
apable of optimizing well on this problem. In 
ontrast with this, ripple 
rossoversear
hes reasonably well, the average performan
e is in both experiments signi�-
antly better than subtree 
rossover, even the less 
onstrained subtree 
rossoverexperiment is not able to improve upon the fully 
onstrained ripple 
rossover runs.On the problem setup where the expression 
an be stated in arbitrary units (i.e. thegoal statement is of the se
ond form), ripple 
rossover is 
apable of outperformingthe human-indu
ed equation on average6.Settling velo
ity of Fae
al PelletsTo investigate if the la
k of sear
h 
apabilities when employing a subtree 
rossoveris stru
tural or 
oin
idental, a se
ond experiment is performed using a di�erentdataset. The obje
t of sear
h in this 
ase is to �nd a dimensionally 
orre
t expressionthat des
ribes the settling velo
ity of fae
al pellets. This problem is de�ned withthe following variables and query:5A famous example is Chezy's roughness 
oeÆ
ient, stated in the unit m1=2=s.6This is however the performan
e on the training set only.
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Figure 7.7: The evolution of the average performan
e for subtree 
rossover andripple 
rossover on the sediment transportation problem. The problem setup requiresthe expressions to be stated in dimensionless units. The performan
e of a human-proposed alternative formulation is depi
ted with a straight line.leaf(l, [1,0,0℄). % length of the pelletleaf(w, [1,0,0℄). % width of the pelletleaf(rhos, [-3,0,1℄). % density of sea waterleaf(flrhos, [-3,0,1℄). % density relative to fresh waterleaf(9.81, [1,-2,0℄). % gravity a

elerationleaf(X,[0,0,0℄) :- % dimensionless 
onstantfp(X)?- uom(X,[1,-1,0℄).than the sediment problem des
ribed above purely from the perspe
tive of obtaininglegal expressions. Not only is the dimension of mass added, there's no obvious wayto manipulate the variables in length units with the variables stated in density units.In order to produ
e a valid expression, the gravity a

eleration term must be used.The simplest expression that abides all 
onstraints is of the form pgl or pgw. Theonly degree of freedom that is allowed is multiplying this basi
 expression with anarbitrary expression stated in dimensionless units.Due to the highly 
onstrained nature of this problem, it was ne
essary to in
rease thedepth at initialization to 8. This to allow the 
reation of 500 unique individuals inthe �rst generation. Figure 7.9 shows the average performan
e of the two systems.Again, subtree 
rossover gets stu
k at a suboptimal performan
e fairly early in therun.
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Figure 7.8: The evolution of the average performan
e for subtree 
rossover andripple 
rossover on the sediment transportation problem. The problem setup allowsthe expressions to be stated in any units, as long as they are internally 
onsistent.The performan
e of a human-proposed alternative formulation is depi
ted with astraight line.
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Figure 7.9: The evolution of the average performan
e for subtree 
rossover andripple 
rossover on the settling velo
ity of fae
al pellets problem. The problemsetup requires the expressions to be stated in velo
ity units.To appre
iate the diÆ
ulty in sear
hing in this 
onstrained spa
e, 
onsider thefailure rates depi
ted in Figure 7.10. For both 
rossovers, failure rates are high.Interestingly enough, the failure rate of subtree 
rossover is mu
h lower than thefailure rate of ripple 
rossover. This quite obviously does not mean that subtree
rossover sear
hes more e�e
tively as it's �nal performan
e is mu
h worse than thatof ripple 
rossover.Inspe
tion of the resulting expressions for the subtree 
rossover runs showed thatmore than half of the expressions produ
ed at the end of the run are of the parti
ularform pgw + gw. These runs 
onverged on this expression fairly rapidly as legal
rossovers on this stru
ture produ
e very often 
lones. As there was no mutationpresent, this expression forms a lo
al optimum in the sear
h. The runs employingripple 
rossover were able to indu
e a diversity of well-performing expressions.Con
luding the ExperimentsIt has been veri�ed that the ALP system in 
ombination with ripple 
rossover is
apable of sear
hing in the area of dimensionally 
orre
t equations. The use ofa subtree 
rossover is however problemati
. The existen
e of a great diversity ofpossible types in this type of problem prevents subtree 
rossover from sear
hingwell.Again, no mutation was used. As ripple 
rossover is 
apable of 
reating new types,whereas subtree 
rossover is not, the 
omparison is not 
ompletely fair. However,implementing a typed mutation in this highly 
onstrained set of possible expressions
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Figure 7.10: The evolution of the failure rate for subtree 
rossover and ripple
rossover on the settling velo
ity of fae
al pellets problem.is not without problems itself. A typed subtree mutation routine would involve thefresh initialization of a subtree starting from a spe
i�
 
ontext. For the pelletsproblem, this initialization was in itself a non-trivial task. Experiments with aninitialization operator used as a mutation showed that a signi�
ant runtime penaltyis asso
iated with using this operator. It relies heavily on ba
ktra
king to �nd anexpression in the 
onstrained domain and suggests the use of extra parameters to
ontrol the speed and quality of the operator.Ripple 
rossover has a high mutation 
avour. Individuals undergoing ripple 
rossoverare subje
t to re-interpretation of geneti
 material and have a tail of unexpressed
ode that 
an be
ome used again. This tail is a store of geneti
 material that atleast in one 
ontext has lead to a �nished expression. The runtime penalty forusing the tail is lower than that of using a strongly typed mutation operator. Thestrings involved are always �nite: if the end of the string is rea
hed during thederivation pro
ess, the individual is marked invalid. As the individuals here areinitialized without a tail, this tail is formed ex
lusively from geneti
 material thathas undergone sele
tion. In parti
ular this means that the string of integers in thetail en
ode for at least one �nishing derivation in one parti
ular 
ontext. Revisitingthat 
ontext enables the re-
reation of that expression.7.1.4 Matrix AlgebraMatrix algebra de�nes a set of very powerful mathemati
al expressions. It allowsgrouping of for instan
e spatial and temporal data into a small set of variablesymbols. There have been a few attempts at indu
ing expressions in matrix algebra
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omputation (Montana, 1995; Martin et al., 1999), buteither no experimental results were given (Martin et al., 1999), or the proposedimplementation did not implement the 
onstraints in a general fashion, and wereable to only indu
e expressions within a given set of matrix dimensions (Montana,1995).The use of logi
 programming in spe
ifying the 
onstraints allows writing a programthat is 
apable of indu
ing 
orre
t matrix expressions given arbitrary sized inputmatri
es.The problem studied here is a problem in the indu
tion of a rainfall-runo� modelfor the Orgeval river, lo
ated in Fran
e. The model uses past pre
ipitation and triesto predi
t the dis
harge, the amount of water 
owing through the river at a 
ertainpoint in time. This data was sampled at hourly intervals. It was 
hosen to limitthe pre
ipitation data to one week of observations prior to the predi
tions. In e�e
tthis means that there are 7� 24 = 168 inputs for ea
h predi
tion.In this setting, regular symboli
 regression would have to 
ope with 168 terminals,even disregarding the use of moving averages that are sensible to add in a prepro-
essing step (See for instan
e (Whigham and Crapper, 1999) where some movingaverages were introdu
ed for a rainfall-runo� appli
ation). In 
ontrast with this,using the language of matrix algebra, these 168 terminals are repla
ed by a singleterminal: a ve
tor of 168 observations. The system is allowed to index the ve
torand to apply summation and averaging operators, leading to the in
lusion of all po-tential moving averages and lump sums in the spa
e of possible programs. The useof ve
tors and matri
es allows a 
on
ise symboli
 formulation of a solution involvingall input variables.The operations that are used are split in several groups:1. matrix algebra (sum, matrix produ
t, ve
torized produ
t)2. aggregating (sum, mean)3. 
on
atenation4. indexing (sele
t a range of values from an input variable)5. non-linear unary operators (sqrt, log, exp)The implementation of these operators is non-trivial, and the ALP system is pushedto its limits in a

ommodating for them. Here we will dis
uss the key 
lauses. Themain predi
ate is matrix/3. As usual, the �rst argument to the fun
tion is thesymboli
 expression that is to be generated. The se
ond an third arguments arethe dimensions of the matrix: the number of rows and the number of 
olumns.As we are interested in the a single value as output, the toplevel query will bematrix(X,1,1).There are a number of binary fun
tions de�ned that only work properly on matri-
es of the same size. These are addition and subtra
tion, but also element-wisemultipli
ation and division. These all have the form:matrix(f(X,Y), R, C) :- matrix(X, R, C), matrix(Y, R, C).
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tion in question (the fun
tion name f does not appear in thelogi
 program, it is used here to indi
ate a number of 
lauses, all varying on thissame theme). For matrix multipli
ation the number of rows of the �rst argumentsneeds to be equal to the number of 
olumns in the se
ond arguments. In a 
lausethis be
omes:matrix(X * Y, R, C) :- matrix(X, R, N), matrix(Y, N, C).The output dimensions are thus the outer dimensions of the input matri
es. Theinner dimensions are un
onstrained, but on
e set (by indu
ing an expression for X),they fun
tion as a 
onstraint. There is an ex
eption to these rules: when one ofthe matri
es is a s
alar, all operations are again allowed:matrix(f(S,X), R, C) :- matrix(S, 1, 1), matrix(X, R, C).Where f now ranges over all fun
tions de�ned so far.Aggregating values by applying an average or a summation is fairly intri
ate. Itwas tried to mimi
 the language used by spe
ialized matrix algebra languages su
has Matlab and O
tave. In these language an average operator is de�ned so that ifboth the number of rows and 
olumns are larger than one (i.e., it is a matrix), it willprodu
e a row ve
tor, applying the aggregation operator to the individual 
olumns,while if the input is a ve
tor it will return a s
alar value. The logi
 program wasenhan
ed to a

ommodate for these spe
ial 
ases.The transpose of a matrix is simply de�ned asmatrix(transpose(X), R, C) :- matrix(X, C, R).Matrix based languages usually also a

ommodate 
on
atenation of smaller matri
essu
h that they form larger matri
es. This is again only allowed when a regularmatrix 
an be formed. Thus depending on the type of 
on
atenation | verti
alor horizontal | either the rows or the 
olumns of the two arguments need to bethe same. Con
atenation and a

ompanying 
onstraints are implemented in theprogram by 
he
king these requirements.Indexing the variables 
an be used to 
reate moving averages. The syntax for amoving average of the �rst 20 elements with a stepsize of 2 for a 
olumn ve
torpre
 would be mean(pre
(1:2:20,:)). The dimensions of this ve
tor would be10 � 1. A fairly intri
ate me
hanism is used here to make sure that a variable issele
ted and that the indi
es sele
ted are in the proper range. Also here spe
ial
ases for di�erent modes of the matrix dimensions are used.Be
ause su
h moving averages 
an be seen as an extension of the terminal set, anadditional me
hanism is used that 
hanges the program while deriving the expres-sion, su
h that at any point, the system 
an add su
h an indexed expression andsubsequently re-use it. This me
hanism uses the meta-logi
al fun
tion assert/1,that 
an add 
lauses to a logi
 program. These are thus automati
ally de�ned ter-minals, and the algorithm is then 
apable of 
hanging the program while runningit.
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h as log and exp are in
luded as well. As they do notmanipulate the dimensions, but are just applied elementwise, no spe
ial 
are hasto be taken to use them. If this appli
ation leads to mathemati
al ex
eptions, theexpression is marked invalid. There is thus no interval arithmeti
 applied here.The overall program de�ning the matrix expressions is quite intri
ate and althoughit works reasonably well, e�orts are underway to improve upon it.The system is trained using a sequen
e of 1000 hourly measurement points wherethe only input variable is de�ned as:matrix(pre
,168,1)Identifying the pre
ipitation of the last week su
h that pre
(1,1) is the 
urrentpre
ipitation and pre
(168,1) is the pre
ipitation one week in the past.ResultsOne of the best performing expressions on the training set was:-46.281 + 17.157 * exp(mean(pre
).*mean([ pre
(7:1:57);sum([pre
(64:9:151);sum(pre
(3:1:27))℄)℄))Due to its shortness, it was sele
ted and it a
hieved admirable performan
e on thetesting data. The program 
riti
ally makes use of the square bra
ket operator thatdenotes 
on
atenation. The semi 
olumn means that the 
on
atenation is performedover the rows. The inner term of sum([pre
(64:9:151) ; sum(pre
(3:1:27)℄)
al
ulates a sum on a ve
tor of dimensions 11� 1, the �rst 10 elements are takenfrom the range starting at 64 hours in the past with stepsize 9, while the 11th and�nal element is in itself a sum of the more re
ent rainfall. The nested sums are asummation of 10+24 = 34 di�erent rainfall observations, that are 
on
atenated tothe pre
(7:1:57) term. The mean that is 
al
ulated of this ve
tor of dimension51 � 1 thus in
ludes as its 51st term, these 34 observations lumped together. It
al
ulates a weighted average with the short term rain fall and the long term rainfallbeing more important than the medium term. The whole average is multiplied withthe mean rainfall in the week before and exponentiated to give the �nal predi
tion.To appre
iate the diÆ
ulty in 
reating su
h a model it is instru
tive to 
ompare thegraph of the pre
ipitation with the predi
ted and a
tual 
ows in Figure 7.11. Al-though there's an obvious 
onne
tion between rainfall intensity and the subsequentruno� in the Orgeval river, it is by now means a straightforward relationship dueto the spiked distribution of pre
ipitation. In parti
ular, the model is 
apable ofpredi
ting the peaks with admirable a

ura
y. This is important when fore
asting
oods. The method introdu
ed here shows promise in indu
ing equations that 
anmodel su
h relationships. It does this without prepro
essing of the data other thansetting the maximum history (a week).The expression that is des
ribed above provides an additional view of the main
hara
teristi
s of the Orgeval 
at
hment. The moving averages and moving sumspropose some spe
i�
 intervals of observing the rainfall for the fast 
ow of the
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harge on the rainfall-runo� problem.
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at
hment (from 3 hours to 27 hours in the past), the medium 
ow of the 
at
hment(7 hours to 57 hours), and the low 
ow (larger than 64 hours in the past). Breakingup the 
ows in a 
at
hment in a 
ouple of su
h `reservoirs' is standard pra
ti
e inbuilding a 
on
eptual model. Here this breakup in the number of reservoirs andtheir temporal e�e
t on the runo� of the river has been automati
ally found.Con
luding the ExperimentThe experiment performed for the rainfall-runo� problem is a �rst experiment intothe domain of matrix algebra using the expressiveness of the ALP system. Thisexperiment already provided a reasonable performan
e, but it is 
onje
tured herethat better performan
e is possible by in
luding some domain knowledge. Hardlyany of the runs used the matrix produ
t. It seemed not ne
essary to use this toindu
e the models. It was in
luded in the fun
tion set be
ause it was thought that itwould make it possible to perform �ltering. It did not seem to be helpful. A possibleavenue of further resear
h might be to simplify the language to �rst let the evolvingprograms set up some moving averages, lump sums, maxima and minima based onindexing the available data, and subsequently let it indu
e a symboli
 expressionsthat 
ombines these proposed aggregate variables. A se
ond approa
h 
ould be toperform a simple linear regression on these variables.These approa
hes are however left for future work. The experiment des
ribed hereshowed that it is possible to indu
e expressions in the very promising area of matrixmanipulations.7.2 Dis
ussionThe ALP system was originally developed to be able to sear
h in the area of dimen-sionally 
orre
t expressions. The use of untyped variation operators was hypothe-sized to be ne
essary to be able to sear
h in this area. The experiments performedon two real-world problems in this area in Se
tion 7.1.3 seem to 
on�rm this.The main problem with a typed 
rossover operator lies in its non-explorative naturein the spa
e of types: it is only 
apable of swapping subtrees that are of exa
tlythe same type: in the 
ase of typing with units of measurement, the number ofpossible types is very large and subsequently the number of legal 
rossover points
an drop dramati
ally, leaving subtree 
rossover to fo
us on a small region of thesear
h spa
e. The experiments did not employ a typed mutation operator to 
reatenew subtrees and possibly new types. The reason for not in
luding su
h an operatorlies in the runtime performan
e penalties asso
iated with this operator.Ripple 
rossover works robustly on these problems. However, it 
annot be ruledout at this point that its main sear
h 
apabilities 
ome from it being simply agood global randomization operator. Even in that 
ase, one advantage of a ripplerandomizer is that the geneti
 material used in this randomization are 
ontained inthe genotype. The 
omputational e�ort in 
reating new solutions is then known.There exists some sele
tion pressure on this `randomizing' material to en
ode fora 
omputation that �nishes before it rea
hes the end; genotypes that do not havethis ability will on average produ
e more failures and will have greater diÆ
ulty in



7.3. THE ART OF GENETIC PROGRAMMING 117multiplying. In domains where initialization is already a non-trivial problem in itselfthis property of en
oding for 
ompleting the resolution pro
ess is important in itsown right.The experiments in this 
hapter tried to highlight these di�eren
es between theuse of a typed and an untyped 
rossover operator. It also showed that an untypedoperator su
h as ripple 
rossover is feasible to use as a variation operator in highly
onstrained domains. It is however left for future work to implement and investigatethe use of typed mutation operators to help in sear
hing more eÆ
iently.7.3 The Art of Geneti
 ProgrammingIn the book "The Art of Prolog" (Sterling and Shapiro, 1994) Sterling and Shapirostate that writing an elegant and powerful Prolog program is a skill that 
an only belearned through pra
ti
e. Re
ognizing a 
on
ise logi
 program is one thing, writingone quite another.Compared to the programs used for the ALP system, writing a program for exe
utionin Prolog is 
omparatively easy, as the exe
ution path of the system is deterministi
.For the ALP system, this does not hold. The geneti
 programmer using the ALPsystem has to take into a

ount that the programs will be exe
uted using anypath through the sear
h tree, and also that these paths are �nite. Also the e�e
tsof ba
ktra
king need to be 
onsidered in writing a logi
 program for generating
omputer programs. Fortunately, when deterministi
 
al
ulations are needed, adire
t 
all 
an exe
ute statements in the Prolog resolution model. This allows touse the eÆ
ien
y of Prolog whenever that is needed. Determining what to 
al
ulatedeterministi
ally and what to generate by the geneti
 algorithm is another issue inwriting a logi
 program in the ALP system.In this 
hapter several logi
 programs were used, some with more su

ess thanothers. The program for the sensible ant was maybe fortunate: the way the 
on-straints were imposed redu
ed the sear
h spa
e 
onsiderably. The program forinterval arithmeti
 was relatively straightforward, but transforming 
onstraints onthe range for the output to something manageable for a geneti
 algorithm involveda multi-obje
tive sear
h. It also showed the 
onvenien
e of the system in settingup wrappers.The program for generating expressions that are valid in the language of units ofmeasurement and in the language of matrix manipulations involved 
reating 
lausesfor multiple modes: 
lauses that handle the 
ase when the values of the attributesare known (grounded) and 
lauses when the values are unknown. It is expe
tedthat espe
ially the matrix algebra program will undergo 
onsiderable re�nementin the future. An interesting extension to this work would be the 
ombination ofinterval 
onstraints, units of measurements 
onstraints and matrix 
onstraints in asingle program, in order to indu
e short expressions that are mathemati
ally stable,dimensionally 
orre
t and 
an be applied to massive amounts of data.Investing time in setting up a program su
h that the ALP system 
an sear
h e�e
-tively 
an be very rewarding: these programs are used to generate expressions inproblem domains, not just for single problem instan
es. The art of geneti
 program-ming lies in the de
laration of a generative program that is optimally attuned to the
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 algorithm. On
e su
h a program has been written, subsequentappli
ation of the system involves setting up some spe
i�
 information for a probleminstan
e: the variables and desired outputs. It is expe
ted that both the geneti
algorithm and the programs themselves need to undergo 
onsiderable re�nement.The experiments and dis
ussion presented in this 
hapter indi
ate that the 
ombi-nation of logi
 programming to de�ne problem domains and a geneti
 algorithm to�nd optimal expressions for problem instan
es is a sensible approa
h to the problemof automati
 indu
tion of 
omputer programs to solve hard problems.
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Chapter 8Experiments in S
ienti�
Dis
overy
Chapter 4 outlined the main goal of the work: to use the information in the units ofmeasurement in a problem des
ription to make the expressions produ
ed by geneti
programming more amenable to interpretation and analysis. To a
hieve this twomain approa
hes have been de�ned: Dimensionally Aware Geneti
 Programming(Chapter 5) that uses a preferential bias towards dimensionally 
orre
t expressions;and an Adaptive Logi
 Programming system (Chapter 6), where a de
larative biasis implemented that 
an redu
e the sear
h spa
e to only those expressions thatare dimensionally 
orre
t. The logi
 program that implements the language ofdimensionally 
orre
t expression was presented in Chapter 7.In order to inter
ompare performan
e a number of experiments are 
arried out,using the following settings:� Strongly Typed (STGP), using the program des
ribed in Se
tion 7.1.3.� Dimensionally Aware GP (DAGP), using a program to indu
e symboli
 ex-pressions and the 
oer
ion 
al
ulation des
ribed in Se
tion 5.1.1.� Symboli
 Regression GP (SRGP), using the same program as DAGP, butwithout the 
oer
ion 
al
ulation.These three settings have ea
h been applied to four di�erent problems, all usingthe ALP system. Ea
h problem involves a largely unsolved s
ienti�
 problem in itsown right. The problems are des
ribed below. The four problems have a ratherdiverse range of spe
i�
ations: the available data vary from very sparse (57 
ases)to abundant (4800 
ases), while the spe
i�
ation of the uom varies from poor todes
riptive. These 
hoi
es were driven by the intention to examine the robustnessof the methods and the quality of the provided solutions.



120 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY8.1 Problem 1: Settling Velo
ity of Sand Parti
lesThe settling velo
ity of sand grains is an important parameter in the study of sedi-mentary pro
esses in a 
oastal environment. A number of di�erent settling velo
ityequations have been presented in the literature. This 
ase study 
on
entrates onthe settling velo
ity of sand grains.Ba
kgroundSand grain settling velo
ity data has been gathered and presented by Hallermeier(Hallermeier, 1981). The data (see also Table 8.1) 
onsists of the sand graindiameter d, the 
uid kinemati
 vis
osity � , and the relative density de�ned as
0 = (� � �f )=�f . The data were organized in di�erent ranges of the 
al
ulatednon-dimensional Ar
himedes Buoyan
y Index, de�ned as A = � ��f � 1� gd3�2 . It isquite obvious that only d and � represent raw observations, whereas 
0 and A arederived from other raw observations (su
h as � and �f ) whi
h were not dire
tlyavailable. It should be noted that su
h a prepro
essing of raw observations intoderived quantities inevitably introdu
es a degree of bias. The authors opted touse raw observations and to avoid the use of derived quantities whenever possible.However, in this 
ase the observation of the density of sand � is not available, andthe derived quantities are employed instead. The data were limited to 115 di�erentlaboratory experiments.variable des
ription uomd sand grain diameter 
m� kinemati
 vis
osity 
m2=sA Ar
himedes Buoyan
y Index dimensionless
0 relative density dimensionlessg gravity a

eleration: 981
m=s2ws settling velo
ity 
m=sTable 8.1: uom of the independent and the dependent variables for the problem ofdetermining the settling velo
ity of sand.Human proposed relationshipsA large number of settling velo
ity equations for sand parti
les have been proposed.Here, we present only the most a

urate one proposed by Hallermeier (Hallermeier,1981). The Hallermeier equations were �tted using settling data involving �ne to
oarse sand grains. These equations (in the 
gs unit system and for varying rangesof A) read:ws = gd2(���f )18� A � 39ws = �� ��f � 1� g�0:7 � d1:16�0:4� 39 < A � 104ws = ��( ��f � 1� gd0:91�0:5 104 < A < 3� 106
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ity of Fae
al PelletsThe settling velo
ity of fae
al pellets produ
ed by marine organisms 
ontributes todi�erent o
eani
 pro
esses in
luding sedimentation rates, geo
hemi
al 
y
les andnutrient availability. Be
ause fae
al pellets are aggregates of smaller parti
les, thepellet sinking rates 
an be mu
h larger than the rates of the individual parti
les.This in
reases the sedimentation 
ux and possibly the rate of parti
le deposition.Fae
al pellets in
uen
e sediment transport pro
esses in the benthi
 boundary layer,and an evaluation of fae
al pellet settling rates 
ontributes to the study of sedimentmobility on the sea 
oor.Ba
kgroundFae
al pellet settling velo
ity equations have been presented in the literature forboth pelagi
 and benthi
 organisms. Signi�
antly larger pellets with higher settlingvelo
ities are produ
ed by these benthi
 organisms. The present 
ase study 
on
en-trates on fae
al pellets of benthi
 origin produ
ed by the benthi
 feeder Amphi
teiss
aphobran
hiata.Human proposed relationshipsThe existing settling velo
ity equations for fae
al pellets of benthi
 origin are basedon measured fae
al pellet settling velo
ity data (Tahgon et al., 1984). Two mainapproa
hes are typi
ally adopted by human analysts when approximating this dataset: (i) either equations are �tted to the data or (ii) equations are based on thedes
ription of natural sedimentary pro
esses.A number of equations presented in the literature (Tahgon et al., 1984), (Komarand Taghon, 1985) have been �tted to the data. (Tahgon et al., 1984) 
al
u-lated the nominal diameter (dn) based on the equal volume sphere. They analyzedtwo separate groups of data: Group 1 (where 37 < Re < 178) 
onsisted ofpellets produ
ed by feeding on < 61�m sediment fra
tion and Group 2 (where45 < Re < 117) 
onsisted of pellets produ
ed by feeding on 61- 250 �m sed-iment fra
tion. Here Re denotes the Reynolds number 
al
ulated as Re = wsdn� .Taghon et al. (Tahgon et al., 1984) used a regression analysis to yield (in the 
gsunit system): ws = 1:30dn + �� 9:08 (8.1)(Komar and Taghon, 1985) used the pellets nominal diameter (dn) to produ
e thefollowing: ws = 0:275 (�flg)3 d4n� !0:2 (8.2)where �fl denotes the di�eren
e between the densities of fresh water and salt water.(Komar and Taghon, 1985) also found a relationship between the pellet settling
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ity (ws) and the settling velo
ity (wt) of the `equivalent' sphere i.e., the spherede�ned by the pellets nominal diameter. wt was 
al
ulated either using (Gibbs et al.,1971) or (Davies, 1945). They presented the following (in 
m/se
) using (Gibbset al., 1971) ws = 0:824w0:767t (8.3)and using (Davies, 1945) ws = 1:08w0:686t (8.4)Although the original settling velo
ity data were measured in sea water it appearsthat (Komar and Taghon, 1985) used freshwater 
onditions in developing the aboveequations.In addition to these equations whi
h were purely �tted to data, a number of naturalsedimentary parti
le settling velo
ity equations have also been developed. How-ever, the a

ura
y of these equations is orders of magnitude worse than the �ttedequations. A full inter-
omparison falls outside of the s
ope of the paper and theseequations are not analyzed here in further detail. Instead, the interested reader isreferred to (Babovi
 et al., 2001) for a more thorough survey and dis
ussion.DataThe measured fae
al pellet data (see Table 8.2) in
lude length (l), width at widestpoint (w), density (�) and measured settling velo
ity (ws) for ea
h individual pellet.Settling velo
ities were measured in sea water.variable des
ription uoml pellet length 
mw pellet width at the widest point 
m�s density of salt water g=
m3�fl density di�eren
e between salt and fresh water g=
m3dn nominal diameter 
m
sf Corey shape fa
tor 
sf = wplw dimensionlessg gravity a

eleration 981
m=s2ws settling velo
ity m=sTable 8.2: uom of the independent and the dependent variables for the problem ofdetermining the settling velo
ity of pellets.8.3 Problem 3: Con
entration of sediment near bedThe des
ription of the sediment problem 
an be found in Chapter 3, here only theinputs and desired output is repeated.
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ription� m2=s kinemati
 vis
osityuf m=s sheer velo
ityu0f m=s sheer velo
ity related to skin fri
tionws m=s settling velo
ityd50 m median grain diameterg 9:81m=s2 gravity a

eleration
b dimensionless 
on
entration of suspended sedimentTable 8.3: Dimensioned terminal set for the sediment transport problem.8.4 Problem 4: Roughness indu
ed by 
exible veg-etationThe in
uen
e of rigid and 
exible vegetation on 
ow 
onditions is not well under-stood. Some laboratory experiments using physi
al s
ale modeling have been per-formed (Tsujimoto et al., 1993), (Larsen et al., 1990) but only over a limit rangeand with variable su

ess. Similarly, although �eld experiments are 
ontinuing, thedata availability remains poor.More re
ently, a numeri
al model has been developed with the intention of deepen-ing the understanding of the underlying pro
esses (Kutija and Hong, 1996). Thismodel is a one-dimensional verti
al model based on the equations of 
onservationof momentum in the horizontal dire
tion. This numeri
al model is used here as anexperimental apparatus in the sense that this fully deterministi
 model is used asa sour
e of data. It is here further pro
essed in order to indu
e a more 
ompa
tmodel of the additional bed resistan
e indu
ed by vegetation.The model takes into a

ount the e�e
ts of shear stresses at the bed and the addi-tional for
es indu
ed by 
ow through vegetation. For a more detailed des
riptionand a dis
ussion of the spe
i�
s of the model, the reader is referred to (Kutija andHong, 1996).DataThe Kutija-Hong model, was in e�e
t used as a truthful representation of a physi
alreality, while providing the 
onvenien
es of fast 
al
ulation and an ability to produ
eresults with any degree of s
ale re�nement.The model has been run with a wide range of input parameters in order to 
reatetraining data. Altogether, some 4800 training data were generated. The inputdata were varied in the ranges: 2.5 � hw � 4.0; 0.25 � hr � 2.25; 50 � m � 350;0.001 � d � 0.004; 0.4 � p � 1.0.This problem is rather di�erent from the three 
ase studies already des
ribed. Onone side this is the only problem where data were abundant (see Table 8.5). Onthe other side, even at the outset it is obvious that no observations about the
exibility of the vegetation are provided (for example in a form of Young's modulus
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ity). So, it 
an already be stated that the problem is well 
overed bythe observations, but not by the uom, sin
e nothing 
an be postulated about thestru
tural properties of the vegetation (whether it is grass, bamboo or a tree).variable des
ription uomhw water depth mhr reed height md reed diameter mm number of reed shoots per unit area dimensionlessp eddy-vis
osity approximation and its relation to the dimensionlessvegetated layer height
th theoreti
al value of Chezy's 
oeÆ
ient m0:5=sin the absen
e of vegetationg gravity a

eleration 9:81m=s2
 measured value of Chezy's 
oeÆ
ient m0:5=sTable 8.4: uom of the independent and the dependent variables for the problem ofdetermining the Chezy roughness 
oeÆ
ient.8.5 Experimental SetupFor all problems the same setup was 
hosen. As the basi
 strategy, the elitist,non-dominated sorting GA II (NSGA-II) (Deb et al., 2000) was sele
ted. When asingle obje
tive is used, this algorithm redu
es to an elitist (�+ �) strategy. Table8.6 spe
i�es the various parameters used in the experiments. It was 
hosen toexperiment with a minimal fun
tion set 
onsisting only of basi
 arithmeti
 and asquare root fun
tion, regardless of the data. Table 8.5 summarizes the availabilityof data. The error fun
tion used here is the normalized root mean squared error.8.6 Quantitative ResultsComparing the three approa
hes is not a straightforward task, as we are 
on
ernedwith two di�erent obje
tives. On the one hand, an expression with a low generaliza-tion error is required. On the other hand, the expressions need to be interpretablein the symbol system used in physi
s. However, stri
t adheren
e to the uom systemmight not be the best approa
h in all 
ases, as the measured data may not provideExperiment Train Test Totalsand 78 37 115pellets 38 19 57sediment 171 86 257roughness 3200 1600 4800Table 8.5: Data availability.
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tive 1 Minimize the normalized RMSObje
tive 2 Minimize the dimension errorFun
tion Set f+;�;�; =; sqrtgEither with or without type 
onstraintsPopulation Size 250No. of Runs 50No. of Generations 400Crossover Prob. 0.8Mutation Prob. 0.2Tournament Size 2Strategy elitist (250 + 250)Multi Obje
tive strategy NSGA IISize of Training Set 23 of the full setSize of Test Set remaining 13 of the full setOutput type Problem dependentTable 8.6: The parameters for the experimentsa 
omplete des
ription of all relevant phenomena in the problem. Sometimes, whenno adequate �t with a dimensionally 
orre
t formulation 
an be obtained, it mightbe more prudent to sele
t a formulation that has a good �t and a non-zero 
oer
ionerror. As DAGP produ
es a front of non-dominated solutions rather than a singlesolution, a sele
tion from the front needs to be made. Therefore the following threepost-pro
essing rules are used:� Sele
t the best �tting equation (DAGP-FIT). This 
hoi
e produ
es resultsthat are 
omparable with the symboli
 regression runs. No expli
it interestin the dimensional 
orre
tness of the expression is enfor
ed sin
e the sele
tedequations are from the high goodness-of-�t and low goodness-of-dimensionedge of Pareto front. This 
hoi
e is made in order to investigate whetherthe use of uom improves or hinders the sear
h for �nding well generalizingexpressions.� Sele
t the best �tting equation with a 
oer
ion error of 0 (DAGP-DIM). This
hoi
e restri
ts the a

epted solutions to dimensionally 
orre
t expressionsonly. These results are dire
tly 
omparable to STGP.� Sele
t the best �tting equation with a 
oer
ion error smaller than 1 (DAGP-MID). This allows to tolerate a small 
oer
ion error if this helps the �tting
apability.These three post-pro
essing rules me
hanize the sele
tion of expressions from thePareto front, making 
omparisons more obje
tive. Table 8.7 summarizes the 
om-parison between the three DAGP post-pro
essing rules and their adversaries. Thetable highlights systems that result in signi�
antly better average performan
e onthe test sets for the four problems. This is therefore a measure of the reliability ofthe method to produ
e good results.The �rst 
olumn in Table 8.7 
ompares the two methods that are 
apable of pro-du
ing dimensionally 
orre
t formulations. For the sand and roughness problems
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t Almost Corre
t Not Corre
t(STGP DAGP-DIM) (STGP DAGP-MID) (DAGP-FIT SRGP)sand DAGP DAGP nonepellets none DAGP nonesediment none DAGP noneroughness DAGP DAGP noneTable 8.7: Results on the four problems, 
omparing the (50 run) average NRMSover the test set using a two-tailed t-test with a signi�
an
e level of 5%. Thelabel denotes the setting that was signi�
antly better than its adversary, and `none'when there was no signi�
ant di�eren
e. `Corre
t' denotes the test using onlydimensionally 
orre
t formulations. `Almost Corre
t' denotes a test between STGPand the best �tting formulation on the training set that has a 
oer
ion error lowerthan 1. `Not Corre
t' denotes the test between the best �tting expressions on thetraining set from DAGP and SRGP (Symboli
 Regression GP), without any regardto the 
oer
ion errors the expressions made.STGP DAGP-DIM DAGP-MID DAGP-FIT SRGPsand 0.36 / 0.36 0.32 / 0.28 0.28 / 0.25 0.27 / 0.24 0.25 / 0.24pellets 0.73 / 0.57 0.80 / 0.60 0.64 / 0.44 0.62 / 0.44 0.57 / 0.74sediment 0.63 / 0.65 0.60 / 0.62 0.49 / 0.56 0.42 / 0.55 0.41 / 0.55roughness 0.48 / 0.48 0.40 / 0.40 0.30 / 0.30 0.29 / 0.29 0.26 / 0.27Table 8.8: Comparison of the train / test errors. Average NRMS over 50 runs.DAGP produ
es signi�
antly better results, while for the others no signi�
ant di�er-en
e is found. If a small dimension error is tolerated (DAGP-MID), DAGP performsequivalently to or better than STGP on all four problems. The 
omparison betweenDAGP-FIT and symboli
 regression in Table 8.7 shows that neither produ
es signif-i
antly better results. The preferential bias in DAGP does not prevent �nding goodexpressions. Figure 8.1 provides a plot of the performan
e on the test set of the 50sele
ted individuals.In order to investigate the performan
e the di�erent systems a
hieve on the testset, Table 8.8 summarizes the errors on both the training and the testing set.8.6.1 Bias/Varian
e AnalysisEven a qui
k referen
e to Tables 8.7 and 8.8 reveals that DAGP seems to be areasonable approa
h for this 
lass of s
ienti�
 dis
overy problems. In order to learnwhere this performan
e originates and to explain the �tting 
apabilities of the varioustyping systems, an additional analysis was 
arried out by de
omposing the errorsinto bias and varian
e terms (Geman et al., 1992; Keijzer and Babovi
, 2000a).Given N data points and M models, the de
omposition is based on the followingequality:
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Figure 8.1: Overview of the 50 best performing expressions on the test set for thefour problems des
ribed in the text. (a) Settling velo
ity of sand. (b) Settlingvelo
ity of fae
al pellets. (
) Con
entration of sediment. (d) Roughness indu
ed by
exible vegetation.



128 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY1NM NXi=1 MXj=1(ti � yij)2| {z }mean squared error = 1N NXi=1(ti � �yi)2| {z }bias2 + 1NM NXi=1 MXj=1( �yi � yij)2| {z }varian
e (8.5)where ti denotes the desired output, yij the ith output of the jth model, and�yi = 1=MPMj yij is the average model 
al
ulated as the average of all predi
tionsfor input i. The varian
e term does not depend on the desired output and measuresthe variability in the predi
tions of the expressions. The bias error measures theperforman
e of the ensemble, and is an indi
ation of the intrinsi
 
apability ofthe method to model the phenomenon under study. The equality (8.5) is theempiri
al version of the de
omposition; the theoreti
al version de�ned over in�nitedata in
ludes a term addressing the noise in the data. In the empiri
al equation,the noise is absorbed by the bias term.It is important to emphasize that the error due to bias is di�erent from the biasof the system. The bias of the system entails the tenden
y to sample 
ertain kindof solutions more regularly than others. A heavily biased method will have a smallerror due to bias if and only if the introdu
ed bias is appropriate for the problem.With an inappropriate bias, the error will grow. An unbiased method on the otherhand will always have a low bias error | however, it is the error due to varian
ethat explains the �tting 
apability.In an ideal setting, one 
an expe
t that biased methods generally have low varian
eerror, while the level of bias error determines the appropriateness of the bias tothe problem at hand. This 
an be exempli�ed by 
onsidering a maximally biasedmethod that produ
es the same answer regardless of the data that is available.Su
h a method will always have zero varian
e error as its predi
tions are alwaysthe same. The performan
e of the system is then 
ompletely determined by itsbias error, having a low bias error when the expression happens to �t the data, andhaving a large bias error otherwise.An unbiased method on the other hand 
an be identi�ed by a low bias error, thougha signi�
ant varian
e error due to over�tting will remain. A prototypi
al exampleof su
h a method is a nearest neighbour method, that uses the value of the mostsimilar point in the data to make a predi
tion. This method is unbiased as near thestored points the average of all nearest neighbour models will produ
e the 
orre
tanswer. The error due to varian
e will however be equal to the noise in the data asea
h individual predi
tion will return a stored, noisy, data point. When predi
tionsare made further away from the stored data, this error due to varian
e will in
rease.However, these are the two extremes. In realisti
 
ir
umstan
es the methods understudy 
an exhibit various ranges of biased/unbiased behaviour. The STGP systemis expe
ted to have a signi�
ant bias, sin
e it only samples dimensionally 
orre
tequations, and from these it tries to �nd the best �tting one. At the same time,the SRGP method is expe
ted to have a low bias, due to the ability to �t thedata in whatever way, using the set of fun
tions that are available. DAGP tries tostrike some middle ground by allowing in
orre
tly typed expressions to proliferate inaddition to 
orre
tly typed expressions. The bias introdu
ed in DAGP is thus hopedto be less stringent than the bias of STGP, possibly leading to lower bias error.



8.6. QUANTITATIVE RESULTS 129STGP DAGP-DIM DAGP-MID DAGP-FIT SRGPsand 0.23 (0.19) 0.07 0.06 0.06 (0.04) 0.04pellets 0.28 0.30 0.19 0.19 104 (0.20)sediment 0.34 (0.29) 0.30 0.26 0.27 0.24roughness 0.14 0.10 0.06 0.05 0.03Table 8.9: Errors due to bias, normalized using the varian
e of the target vari-able. Errors between bra
kets have been 
al
ulated using the middle 90% of thepredi
tions, and are reported when they di�er from the unpro
essed values.STGP DAGP-DIM DAGP-MID DAGP-FIT SRGPsand 0.41 (0.30) 0.05 (0.01) 0.06 (0.01) 0.14 (0.01) 0.94 (0.03)pellets 0.11 (0.06) 0.08 (0.05) 0.07 (0.04) 0.07 (0.04) 106 (0.06)sediment 0.26 (0.03) 0.09 (0.06) 0.06 (0.03) 0.13 (0.03) 6.33 (0.03)roughness 0.12 (0.07) 0.04 (0.02) 0.02 (0.01) 0.02 (0.01) 0.04 (0.02)Table 8.10: Errors due to varian
e, normalized using the varian
e of the targetvariable. Errors between bra
kets have been 
al
ulated using the middle 90% of thepredi
tions.In order to estimate the errors due to bias and varian
e, a new bat
h of 500 runs wasset up for ea
h system and problem. The same test set as before was held ba
k, butfor ea
h run, a new training set of the same size was 
reated using a bootstrappedsample drawn with repla
ement from the original training set. This is done to avoidoverestimating the error due to bias and subsequently underestimating the error dueto varian
e that 
an be expe
ted when using a �xed training set for all runs.Tables 8.9 and 8.10 provide an overview of the errors due to bias and varian
erespe
tively. These errors are normalized using the varian
e of the targets. It hasbeen reported (Keijzer and Babovi
, 2000a) that for modelling algebrai
 expressionson the basis of data, geneti
 programming 
an quite regularly produ
e out of rangepredi
tions. In order to obtain a more robust measure of the bias, Tables 8.9and 8.10 also show post-pro
essed values for the bias and varian
e errors betweenbra
kets whereby the highest and lowest 5% of the predi
tions were ex
luded fromthe 
al
ulation in Equation 8.5.8.6.2 Settling velo
ity of sand parti
lesExamination of the errors due to bias and varian
e, reveals that for the sand prob-lem, for STGP both terms are mu
h higher than for the other systems. This is astrong indi
ation that the bias introdu
ed by the uom is not the most appropriatefor this problem. It for
es STGP to sample solutions that are on average not �ttingwell (high bias error) and, given di�erent bootstrapped training data sets, evolvessolutions that are di�erent from ea
h other (high varian
e error). Figure 8.1(a)shows the performan
e on the test set for the 50 resulting expressions. These re-sults show that STGP invariably produ
es equations with similar poor performan
e.The three statisti
s: high bias error, high varian
e error when trained on di�erentdata sets, together with level performan
e when trained on the same data, indi
ate



130 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERYthat STGP might su�er from premature 
onvergen
e due to broken ergodi
ity (seeSe
tion 4.5.1). Inspe
tion of the history of the runs 
on�rms this. At the initializa-tion stage, the de
larative bias for
es STGP to sample a spe
i�
 kind of solution (inthis 
ase of the general form p dg
 where 
 is some dimensionless term). The re-mainder of the run time is used to enhan
e the �t of this general solution by addingvarious dimensionless terms. This in
reases the varian
e error. It appears that the
onstraints that are enfor
ed partition the sear
h spa
e whi
h drasti
ally redu
e thenumber of admissible solutions. Strongly in
uen
ed by initialization, throughout therun STGP 
ontinues to sample only admissible se
tions of the sear
h spa
e withoutexploring the sear
h spa
e well enough. This results in premature 
onvergen
e andsub-level performan
e.On this same problem, the bias and varian
e errors for DAGP-DIM, whi
h produ
esexpressions from the same set as STGP, are 
omparable to the less 
onstrainedexpressions. This further reinfor
es the suspi
ion that STGP su�ers from premature
onvergen
e as it 
learly shows that the 
onstrained sear
h spa
e does 
ontain goodsolutions.8.6.3 Settling velo
ity of fae
al pelletsFor the pellets problem Figure 8.1 shows a 
lear division between 
orre
tly andin
orre
tly typed results; the latter perform mu
h better. The main 
ause for thisbehaviour 
an again be attributed to the error due to bias. The pellets problem isthe only problem with the presen
e of mass units (Table 8.2) whi
h in turn in
reasesthe set of 
onstraints. A possible reason for the inability of any of the dimensionally
orre
t expressions to provide an adequate �t might lie in a poor 
onne
tion betweenthe units of the measured data and the data itself. The uom themselves are alsopoorly 
onne
ted: the gravitational a

eleration g was needed to make it evenpossible to represent dimensionally 
orre
t expressions (see Table 8.2). Sin
e thereare only two density units present, �s and �fl, there is only one way to use those ina dimensionally 
orre
t equation, whi
h is to divide them by ea
h other. The pelletsproblem seems to be underspe
i�ed both with respe
t to 
overage by data and withrespe
t to the 
hoi
e of measurements. Only when 
oer
ion errors are tolerated areasonable �t 
an be obtained. The poor data 
overage enables SRGP to over�tthe data, while the DAGP results remain remarkably regularized. Examination ofthe evolution of the size of the equations (Figure 8.2) shows that SRGP in generalevolves mu
h larger solutions than either STGP or DAGP. On the average, theSRGP expressions 
ontain more fun
tions than data points available.8.6.4 Con
entration of suspended sediment near bedFor the sediment problem, not mu
h di�eren
e between the 
onstrained results 
anbe found. Both approa
hes perform well in modelling the data. Analysis on thetest set reveals that the 
onstrained approa
hes are as 
apable in �tting the dataas the un
onstrained methods. However, the fashion in whi
h the un
onstrainedmethods arrive at these results is instru
tive: there is a mu
h smaller de
line in errorfrom the train to the test set than for the un
onstrained solutions. It appears that,for the sediment problem, the information 
ontained in the uom helps in obtainingsolutions that generalize well. It has been stated already in the problem des
ription
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tion 8.3) that the data set 
overs all relevant physi
al phenomena. In this setupit seems that the knowledge provided by the uom is well 
orrelated with the data.8.6.5 Additional roughness indu
ed by vegetationThe roughness problem is 
hara
terized by abundan
e of systemati
ally sampleddata with �xed in
rements over the entire range of inputs. However, it has beenargued earlier (Se
tion 8.4) that the measurements were not 
omplete as nothinghas been re
orded about the 
exibility of the vegetation. As the information aboutthe uom does not 
over all aspe
ts of the problem, it 
an be expe
ted that the moreheavily biased methods would not bene�t as mu
h or 
ould even be hindered by thisinformation. Table 8.9 
on�rms this: STGP has the highest bias error, followed byDAGP-DIM, DAGP-MID, DAGP-FIT and ultimately SRGP, whi
h has the lowesterror due to bias. The signi�
antly better results of DAGP-DIM over STGP 
an forthe largest part be attributed to the lower varian
e error.8.6.6 Summary of the quantitative analysisQuantitatively speaking, for the four problems, it seems that the in
lusion of knowl-edge about the uom is best done through expressing a preferen
e rather than im-posing synta
ti
al 
onstraints. The preferential bias of DAGP does not exhibit theproblems related to broken ergodi
ity that 
hara
terize the synta
ti
al approa
h.Moreover, DAGP appears to be able to �nd good solutions even when the uominformation is only partially relevant. Furthermore, the de
larative bias in STGPseems not only to introdu
e a high bias error when the 
onstraints are not par-ti
ularly relevant, but it also has a high error due to varian
e. STGP thus showsdisadvantages for being biased (a high bias error when the bias is not appropri-ate) and being an unbiased method (a high varian
e error). DAGP only shows thedisadvantage due to its biased nature, as its error due to varian
e is quite low.The 
omparison between DAGP and standard symboli
 regression is 
lear 
ut: thein
lusion of the additional obje
tive based on 
oer
ion error does not pre
lude DAGPof sear
hing well. More importantly, the additional obje
tive seems to have anregularizing e�e
t on the produ
ed solutions. Table 8.10 shows a 
onsiderablysmaller tenden
y of DAGP to produ
e destru
tively over�tted expressions. This isalso 
on�rmed by inspe
tion of Figure 8.1 where the SRGP runs routinely produ
eover�tted equations.The regularizing e�e
t 
an be most 
learly seen in the errors due to bias and varian
e.Though the errors due to bias are 
omparable between SRGP and DAGP-FIT, theerrors due to varian
e are signi�
antly higher for SRGP. This is in a

ordan
e with�ndings reported in (Keijzer and Babovi
, 2000a). However, it should be emphasizedthat regularization is not 
aused by the introdu
tion of units of measurements perse, but rather the fashion in whi
h uom are introdu
ed.Furthermore, and as illustrated in Figure 8.2, DAGP generally 
onsiders smallersolutions than either STGP and SRGP. This preferen
e to parsimonious solutionsseems to be another side-e�e
t of using the uom in a multi-obje
tive setting andhas been noted elsewhere (Keijzer and Babovi
, 1999), whi
h might partially explainthe observed regularization e�e
t.
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Figure 8.2: Evolution of the average size for the pellets and roughness problems.The evolution of the size on the other two problems exhibit a similar trend as thegraph for the roughness problem.8.7 Qualitative ResultsIn order to provide an indi
ation of the quality of the solutions that are generated,a short analysis is provided below. This is an inherently subje
tive pro
ess as itinvolves the interpretation of the equations, and even more subje
tive reasons su
has aestheti
 appeal. Judgements need to be made regarding the expressions inorder to determine whether the proposed intera
tions are meaningful or 
oin
idental.However, sin
e the amount of knowledge about the physi
al pro
esses is very limitedno de�nite statements about the physi
s should be expe
ted from the hypothesisindu
tion engines.The expressions below are sele
ted by taking the best performing expressions overthe entire data set using both the training and testing sets. These expressionsare inspe
ted for their value in des
ribing the problem itself, with the aim to learnsomething about the intera
tions o

urring in the pro
esses under study and possiblyto guide further data 
olle
tion 
ampaigns. For ea
h method, only one expressionis examined. In a more realisti
 setting a short-list of interesting expressions wouldbe sele
ted and analyzed further. This is not done here, as it would in
rease thealready high degree of subje
tivity.The problems 
onsidered in this paper are from highly spe
ialized sub-�elds ofhydrauli
s and the authors feel ill-equipped to address them here appropriately.Su
h a dis
ussion would also fall outside the s
ope of the present work. The aimof this analysis is not to sele
t the ultimate expression, but rather to point out theinterpretability in these equations. The expressions are simpli�ed and in 
onstantsthe �rst three signi�
ant digits are presented.The quantitative results have already revealed that there is a trade-o� between theinformation 
ontained in the data (the numbers) and the information 
ontained inthe units of measurements. Sin
e dimensionally aware GP produ
es equations thatmore-or-less abide the 
onstraints, it is possible to investigate the expressions them-selves and possibly learn something about these dis
repan
ies in order to understand



8.7. QUALITATIVE RESULTS 133the problem more fully.8.7.1 Interpretability of un
onstrained expressionsConsider the best expression produ
ed by symboli
 regression (SRGP) for the sed-iment problem in Formulation box 8.7.1. Although this formulation has the bestperforman
e over the training as well as over the test set of all expressions indu
edin this experiment, it would prove tough if not impossible to interpret this expres-sion. It is not only the sheer size of the formulation whi
h makes the exer
ise almostimpossible, but also the dimensionally in
onsistent fashion in whi
h the variables are
ombined, provides no help in determining the physi
al intera
tions for this problem.
b ' 0:284 ��u 0f � ws�3 �u 0f � g��g + u 0f + ufuf � g � g�5uf �1 g + 13:0  ws + g3u 0f wsuf �1�g + u 0fg ��1! uf �10B�u 0f � 11:3 gu 0f�u 0f � ws�2 � g21CA�10BB�g +0BB�d50 +vuut�u 0f � ws�2 wsg4 + g1CCA�2 g + u 0fws + u 0f � uf � ws + g2��1!�11A�11CA 12
Formulation 8.7.1: The best expression for the sediment problem produ
ed bysymboli
 regression (SRGP). Even though this formulation produ
es the best �t tothe training and test data (NRMS 0.36), it is very hard to distill some informationout of this equation.This \formula" is taken as an indi
ation of the sort of expression un
onstrainedgeneti
 programming indu
es. Spa
e restri
tions prevent us from presenting thebest expressions SRGP produ
es for the other problems. It will suÆ
e to state thatthese do not provide a brighter pi
ture.As has been stated in the introdu
tion, one 
an also perform a dimensional analysisand transform all dimensioned variables to dimensionless groups of numbers. Usingthis approa
h one would avoid problems related to units of measurement, but 
er-tainly not guarantee 
reation of solutions of lower 
omplexity (Babovi
 and Keijzer,2000). Formulation 8.7.1 
learly demonstrates the need for 
onstraints if one wantsto use GP in a knowledge dis
overy setting.8.7.2 Settling velo
ity of sand parti
lesThe best expressions for the sand problem 
an be found in Formulation 8.7.2. In allthree expressions a distin
t pattern emerges revealing a 
ommonly appearing sub-expression pg
0d. This is not only dimensionally 
orre
t and physi
ally relevant but
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0d�1:223� 1:098pA�DAGP-DIM ws ' 0:447pg
0d 8qA 12 
0 14 � 1:93DAGP-MID ws ' 0:170 (gd
0) 1732 
0 116 d 18 g 14vuuuut1:43�vuuut 
0rA� 1:994p
0 � 
0�Formulation 8.7.2: Hypotheses generated using STGP, DAGP-DIM and DAGP-MID for the sand problem. The NRMS errors of these equations are 0.26, 0.28 and0.22 respe
tively.it also redu
es the NRMS error to 0:40 when evaluated as is. In order to in
reasea

ura
y while remaining dimensionally 
orre
t, this basi
 expression is s
aled bythe dimensionless terms A and 
0. The grain diameter d 
annot be involved inthis s
aling without sa
ri�
ing dimensional 
orre
tness. However, sin
e DAGP-MIDallows small dimensional errors, it 
an use the variable d and su

eeds in signi�
antlyredu
ing the error by manipulating d, A and 
0. Internal 
onsisten
y for DAGP-MIDremains; only the output units are di�erent from the desired uom.Another stru
ture that emerges in these experiments reveals that it is bene�
ial totake repeated roots of the variable A, most often three times, resulting in the term8pA. Further examination of the range of A reveals that 8pA � e� log(A). Takingthese bits of information together 
ould lead to an experiment where the desiredoutput is divided by the term pg
0d and a symboli
 regression experiment in
ludingthe logarithm in the fun
tion set in order to �nd the optimal s
aling fa
tor.These 
onsiderations and manipulations are des
ribed to indi
ate how this approa
h�ts in s
ienti�
 work. S
ientists generally approa
h dis
overy from various angles:proposing tentative formulations, s
rutinizing them based on �rst prin
iples and alsoby manipulating expressions both symboli
ally and numeri
ally. The indu
tion ofdimensioned expressions using GP 
an provide a fertile ground for su
h experimen-tation.8.7.3 Settling velo
ity of fae
al pelletsThe expressions for the pellets problem 
an be found in Formulation box 8.7.3.STGP models the relationship by taking the square root of two terms relating gand a length term l, while DAGP-DIM produ
es a short expression relating thesettling velo
ity to the re
tangular surfa
e of the pellets l � w, s
aled by the ratioof densities. The equation indi
ates that the fae
al pellet settling velo
ity in
reaseswith in
reased values of the nominal diameter and the di�erential (or 
oating)density. This general relationship has also been developed for the settling velo
itiesof other types of parti
les. The general equation des
ribing these relationships isgiven as:



8.7. QUALITATIVE RESULTS 135STGP ws ' s 150 gw � 0:0189 g�0:764w� 0:664 �
 (2w + l)�s �DAGP-DIM ws ' 0:144pg 4swl�fl�sDAGP-MID ws ' pgw10 + g 1316 �
 4932 l 1916100�s� 1916Formulation 8.7.3: Hypotheses generated using STGP, DAGP-DIM and DAGP-MID for the pellets problem. The NRMS errors of these equations are 0.58, 0.60and 0.54 respe
tively.Equation A B CStokes Settling (Low Re) - Sphere 1 2 1High Re - Sphere 0.5 0.5 0.5Equation (8.2) 0.6 0.8 0.6Table 8.11: Typi
al parameters for various settling parametersws � �gAdBn ��� �f�f � (8.6)where values for A, B, and C are given in Table 8.11.The fae
al pellet data examined here are in the intermediate Reynolds number range(37 < Re < 178), whi
h explains why the semi-empiri
al Equation 8.2 has valuesfor A, B and C lying between the range of the values for Stokes and High Re settling.Comparing Equation 8.2 with the expression indu
ed with DAGP-DIM reveals thatthe dependen
e of the settling velo
ity on the geometri
al properties is essentiallythe same (albeit in the DAGP-DIM 
ase the dependen
e is on l and w and not dn).Also, the power value is lower for the ratio of the relative density to the 
uid densitythan in Equation 8.2. Nevertheless, it 
an be 
on
luded, that the DAGP-DIMequation has the same general form as other parti
le settling velo
ity equations. Itis only the dependen
e of the settling velo
ity on the geometri
al properties and therelative parti
le density that is slightly di�erent from other 
ases.DAGP-MID produ
es an equation that �ts better than other approa
hes althoughin this 
ase it does not remain internally 
onsistent. Taking this equation as a pro-totypi
al example of a GP-generated hypothesis, it is possible to further manipulatethe expression manually. The purpose is to demonstrate how a domain spe
ialist
an use additional insights and symboli
 gymnasti
s to distill some meaning out oftentative formulations su
h as the one above. For example, the power of the �flvariable of magnitude 49=32 is rather 
lose to the `ni
er' power of 48=32 = 1:5. Inthe same spirit, one 
an 
hange the ��19=16s term to ��24=16s = ��1:5s . After thesemanipulations, whi
h in e�e
t redu
e the error, the density term be
omes a true



136 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERYratio and their uom disappear in the overall expression. The simpli�ed expressionsreads: ws ' pgw10 + g 1316 l 1916 ��fl�s � 32100whi
h has an NRMS error of 0.53, however with a 
oer
ion error. The two termsdo point at separate e�e
ts in the physi
s of the settling of the pellets. The �rstterm depends on the width, while the se
ond term depends on the length and thedensities. Note that the STGP solution has a similar form, thus reinfor
ing a `theory'that su
h a de
omposition represents a valid approa
h.8.7.4 Con
entration of suspended sediment near bed
STGP 
b ' 0:0132 �u 0f � ws�2 ws2u 0fd50 uf g �6ws2 + 6 u 0f 2 � 5 u 0f ws�DAGP-DIM 
b ' �u 0f �9:87� 10�6 uf � 1:27� 10�4 u 0f �gd50DAGP-MID 
b ' 0:0143 �ws � u 0f � 138 (uf � ws) 18g uf 78u0f 18w 14sFormulation 8.7.4: Hypotheses generated using STGP, DAGP-DIM and DAGP-MID for the sediment problem. The NRMS errors of these equations are 0.46, 0.46and 0.42 respe
tively.For the sediment problem, DAGP-DIM produ
es an elegant formulation balan
ingthe shear for
es with the median diameter of the settling parti
les. No referen
eto the settling velo
ity ws is made whi
h makes this formula more parsimoniousthan the STGP formulation. At this point one 
an also forward an argument of adi�erent nature. The �rst two 
ase studies were 
on
erned with �nding reasonableexpressions for ws itself, whi
h is intrinsi
ally diÆ
ult to measure and 
hara
terize,and 
onsequently inevitably polluted by noise. It appears that DAGP provides ahigh quality �t with `smoother' expressions (or at least depending on `smoother'variables).Finally and very importantly, it should be noted that all equations presented in For-mulation box 8.7.4 provide a higher degrees of a

ura
y than the human-generatedformula 3.17. Furthermore, equation 8.7.4 was �tted on entire data set with result-ing NRMS = 0:47.
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 ' 3 hw pghr�1 1p2 hr + 2 d+ hw + 4 dm phr +shr p�pp+ 4 p2 + hrd (p+m)� (2 p+m)�1!DAGP-DIM 
 ' 1:58 4sg2 (hw � hr)h2w pmdh2rDAGP-MID 
 ' 1:87(hw (hw + d)) 18 (hw � hr) 316 p 532 g 3764h 1732r (dm) 14Formulation 8.7.5: Hypotheses generated using STGP, DAGP-DIM and DAGP-MID for the roughness problem. The NRMS errors of these equations are 0.27,0.26 and 0.20 respe
tively.8.7.5 Additional roughness indu
ed by vegetationThe formulations for the roughness problem are presented in Formulation box 8.7.5.The STGP expression shows that using the uom does not ne
essarily lead to un-derstandable formulations. In the denominator it adds water depths and diametersof the reeds to form its dimensionally 
orre
t expression. It is diÆ
ult to imaginethe physi
al signi�
an
e of this addition.The best formulations for DAGP-DIM and DAGP-MID 
ame from the same run,and 
loser inspe
tion reveals a high degree of similarity in the results. Rewriting theequations in the form of a produ
t of simple terms raised to a 
ertain power revealsstru
tural similarity. Ignoring the 
onstant terms, for DAGP-DIM and DAGP-MIDrespe
tively this formatting results in the following expressions:h 12w (hw � hr) 14 p 14m� 14 d� 14 h� 12rhw(hw � d) 18 (hw � hr) 316 p 532m� 14 d� 14 h� 1732rThe two equations written in this form reveal a high degree of similarity. The powersof the se
ond | dimensionally in
orre
t | expression are rather 
lose to the 
orre
tpowers in the �rst expression. The main di�eren
e between the dimensionally 
orre
tand the dimensionally in
orre
t equation lies in the phw term, that appears in theDAGP-DIM equation. The dimensionally in
orre
t expression uses 8phw(hw � d).Furthermore, removing the d variable from this expression does not in
rease theerror. Repla
ing the phw term in the dimensionally 
orre
t equation with 4phw andres
aling the formula, indeed redu
ed the NRMS error from 0:26 to 0:20. This is asimilar pro
edure as outlined in Se
tion 8.7.3, where `strange' powers are roundedto nearest `ni
e' powers. The output units of this expression would however still bestated in in
orre
t units. If this hw term was stated in surfa
e units however, theexpression would be dimensionally 
orre
t. One possibility to 
onsider is that theterm is used as a proxy for a variable that is stated in surfa
e units whi
h has valuesproportional to hw.
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ope of GP-based s
ienti�
 dis
overyThe overall pro
ess des
ribed in this study forms in the authors' opinion a �rstiteration of applying geneti
 programming in the domain of s
ienti�
 dis
overy. Asthe results produ
ed by geneti
 programming are knowledge-ri
h, the hypothesesindu
ed 
an be used to further re�ne the experimental setup or inspire a new set ofexperiments in an iterative fashion. In this study, the raw data were taken at fa
evalue and the expressions were indu
ed and post-pro
essed by automati
 means. We�rmly believe that the post-pro
essing should be 
arried out by domain spe
ialiststhat 
an use their ba
kground knowledge and sense of aestheti
s to judge whi
h ofthe proposed hypotheses is the most appropriate formulation. Su
h a judgement isnot o�ered here; related work (Babovi
, 1996; Babovi
 and Keijzer, 1999; Babovi
et al., 2001; Babovi
 and Keijzer, 2000) does attempt to sele
t an appropriateformulation and sets up a small theory of worth of the expressions produ
ed by GP.These `theories' are set up after examining the hypotheses generated by GP andprovide ground for dis
ussion and further experimentation. The qualitative analysesgiven above gave a few examples on how to use the hypothesis generated by GPto in
rease the usability of the expressions and how they �t into s
ienti�
 work.Spe
i�
ally it was shown that the s
ientist using systems like these 
an:� Exploit numeri
al similarity. A persistent repetition of 
onse
utive rootstaken of a single variable in Se
tion 8.7.2 lead to the dis
overy of a numeri
alnear equivalen
e with a logarithmi
 relation in the domain. This inspired theproposal of a new experiment using GP that would in
lude this logarithmi
relation. Entering this di�erent sub-expression into the equation 
an also bedone manually.� Exploit synta
ti
 similarity to existing equations. Se
tion 8.7.3 showedthat one of the GP-indu
ed expressions was quite similar to an existing,human-proposed expression, even though it used di�erent variables. ThisGP-indu
ed equation used measurable variables rather than approximations.This 
an reinfor
e the a

eptan
e of the existing equation and, by virtue ofthe new equation being stated using di�erent variables, suggest an extensionof this equation to a family of related equations | appli
able to di�erentmeasurement 
olle
tion 
ampaigns.� Use symboli
 manipulations for manual improvement. Se
tion 8.7.3 alsopresented an possibility to improve a GP-indu
ed equation by manual inter-vention. By 
hanging the powers of an expression we were able to improveboth the goodness of �t of the equation and its aestheti
 appeal. A s
ientist,intimately familiar with the domain, is even more likely to use su
h manipu-lations to provide genuine advan
es in model elegan
e and ability to explainthe data.� Use within-run synta
ti
 di�eren
es to examine the des
riptiveness ofthe data. In Se
tion 8.7.5, the di�eren
e between a well-�tting expressionthat was dimensionally in
orre
t and a less a

urate expression that was di-mensionally 
orre
t 
ould be narrowed down to a di�eren
e in a single term.These expressions evolved in the same run using DAGP. The term in questiondepended on a single variable stated in length units. It was possible to makethe well-�tted expression dimensionally 
orre
t by verifying that the variable



8.8. DISCUSSION 139stated in length units was used as a proxy for a variable, proportional tothe original, stated in surfa
e units. The de�nition of su
h a variable and asubsequent new measurement 
ampaign to measure this variable 
ould leadto enhan
ed understanding of the physi
al pro
ess. This is a very good ex-ample of the worth of more-or-less 
orre
t expressions as they 
an point todis
repan
ies in the problem des
ription.� Produ
e expressions that perform better than human-proposed ones.Finally and very importantly, GP is 
apable of produ
ing expressions that arebetter than those developed by a s
ientist. From the four problems, there wasonly one instan
e (the sediment problem), where a human-proposed expressionwas stated solely in terms of available data. This allowed a dire
t 
omparisonbetween the GP-indu
ed expressions and the human-proposed expression ontheir ability to �t the data (Se
tion 8.7.4). The GP-indu
ed expressions didnot only perform better, they were also stated in more basi
 units, makinginterpretation easier.The main advantage of using geneti
 programming in s
ienti�
 dis
overy is itsability to generate a large number of di�erent, yet meaningful hypotheses in a veryshort amount of time. These hypotheses are based on the experimental data whilesatisfying 
onstraints and are stated in a language that is 
onsidered well suited forthese problems: mathemati
s. GP 
ontains no notion about the problem other thanthe 
onstraints and the available data. GP is thus able to propose solutions that arenon-intuitive and sometimes provo
ative. The time s
ale of human invention runson the s
ale of months, if not years. Using a hypothesis generator 
an 
onsiderablya

elerate this pro
ess, on
e the s
ientist is able to interpret these hypotheses. Theuse of uom to 
onstrain or bias the sear
h has proven to be very helpful in thissetting.8.8 Dis
ussionMany issues have surfa
ed in the pre
eding se
tions. Although it is 
learly possible toevolve dimensionally 
orre
t equations based on data a trade-o� has been observed.Allowing small dimensional errors 
an improve the ability to provide well �ttingequations, sometimes with radi
ally better results. This prin
ipally o

urs whenthe uom of the problem de�nition does not provide a 
omplete 
overage of thedynami
s of the system under study.Geneti
 programming is an opportunisti
 sear
h algorithm: it provides expressionsthat �t the data while satisfying the 
onstraints. Sin
e the only feedba
k from theproblem domain is in the form of error fun
tions, the algorithm produ
es expressionsthat model the relationship in whatever fashion that redu
es this error. When thenumeri
al values of a parti
ular measurement are indi
ative of some other underlyingphenomenon that 
ould be stated in di�erent uom, the geneti
 programming systemuses the measurements in a very di�erent way than the uom pres
ribe. It is thussus
eptible of modelling by asso
iation, where a set of numeri
al values are usedas a proxy for an underlying phenomenon. This holds in general for any form ofdata-driven modelling. The use of the uom serves two purposes: to redu
e thismodelling by asso
iation, and to aid in interpreting the expressions.



140 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERYThe resulting front of non-dominated solutions produ
ed by DAGP makes it possibleto examine the di�eren
es between the 
orre
t and the more-or-less 
orre
t expres-sions. As the expressions are usually related | they share the same evolutionaryhistory | it is insightful to examine the trade-o� between the 
oer
ion error andthe �t on the data. For the roughness problem this trade-o� was used to improveupon the expressions.Even though with STGP the sear
h spa
e is vastly redu
ed in 
omparison to SRGP,no eviden
e is found that the redu
tion of the sear
h spa
e leads to the evolution ofbetter solutions in a shorter amount of time. On the 
ontrary, the relaxation of the
onstraints helped in evolving better �tting equations. This might be an artifa
t ofthis parti
ular appli
ation and use of units of measurement. Still it o�ers a strong
ase against the prevailing intuition that the redu
tion of the sear
h spa
e helps insolving problems faster.
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Chapter 9Con
lusionThis work introdu
ed several approa
hes that enhan
e geneti
 programming to beable to indu
e symboli
 expressions on data while taking 
are of the units of mea-surement. The goal of this approa
h is to automati
ally indu
e expressions that 
anbe analyzed with numeri
al and symboli
 means by an informed user.It was shown in Chapter 3 that symboli
 regression as su
h does not provide mu
hbene�t over other methods of regression. The use of the symboli
 nature of theexpressions indu
ed by standard GP as a vehi
le for obtaining insight appears to beproblemati
. As the only feedba
k supplied to standard GP is the (numeri
al) error,the expressions are then mostly numeri
al re
ipes to redu
e this error.To obtain interpretable expressions, an approa
h that exploits the symboli
 natureof of geneti
 programming is developed. It 
riti
ally uses units of measurementas a method of typing the expressions. A 
ompletely typed result in this system
orresponds with a fully dimensioned mathemati
al relation. The derivative s
alesthat are proposed by su
h an expression attempt to establish some relationshipbetween a physi
al pro
ess and the automati
ally indu
ed expression.Chapter 4 showed that units of measurement 
an be implemented using a typesystem where the exponents of the units are used as separate types. Mathemati
aloperations on the values then 
orrespond with operations on the types. It was shownthat 
ontext-free grammars 
annot model the system of units of measurement infull generality. A method based on parametri
 polymorphism enhan
ed with expli
ittype arithmeti
 seems to be needed. It was argued that to provide maximal aidin the explorative �eld of s
ienti�
 dis
overy, rigorously abiding this type systemis not ne
essarily the optimal approa
h. Two main problems with using the unitsof measurement as a formal system, subje
t to purely formal manipulations, havebeen identi�ed.� Formally 
orre
t expressions 
an be meaningless.Units of measurement 
an not exhaustively spe
ify an experimental setup.There are then several ways how meaningless expressions 
an be formed.A basi
 example of a meaningless expression would be the formally 
orre
tappli
ation of an ar
sine on a ratio of two weight measurements. Formally
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e an angular measurement, physi
ally this manipulation ismeaningless.This might be 
onsidered a pathologi
al example, but in one of the 
asestudies the following situation was en
ountered. In the roughness problem,two length measurements were used in an addition: one measurement wasthe mean diameter of a plant, the other the water depth. It is questionablewhat the physi
al meaning is of this addition as not only the s
ales of the twovariables di�er enormously, the measurements themselves apply to di�erentdire
tions in the experimental setting.� Formally in
orre
t expressions 
an be meaningful.Be
ause physi
al experiments are limited in s
ope and be
ause it is unknownin advan
e what variables need to be 
ombined to provide the answer, manypossibly relevant variables are not measured, or are kept at 
onstant values.The values that are measured 
an then be equivalent (up to a multipli
ative
onstant) to a whole set of phenomena stated in di�erent units. A length mea-surement 
an be proportional to a velo
ity if all measurements are performedusing a 
onstant period of time. A length measurement 
an be proportionalto a re
tangular surfa
e measurement if the length at the other axis is kept
onstant.The 
ase study on the roughness problem is again illustrative for the potentialmeaningfulness of formally in
orre
t equations. In this problem, a formallyin
orre
t expression was indu
ed that 
ompared to its formally 
orre
t 
ounter-part `misused' a length measurement, the water depth, as if it were a surfa
emeasurement. In the experimental setup, there was however no measurementof the width of the 
hannel or the blo
king surfa
e of the plants. As the datawas produ
ed by a numeri
al model, this width is likely to be kept 
onstant,maybe even impli
itly. The in
rease in a

ura
y of the in
orre
t expressionover its formally 
orre
t 
ounterpart seems to support an hypothesis that inthe roughness problem, a `blo
king surfa
e' measurement might be needed inthe formulation of an empiri
al equation. Regardless of whether this hypothe-sis is true, without 
onsidering formally in
orre
t expressions, su
h alternativeviews of the meaning of the variables in the experimental setup are impossible.It is then unlikely that a purely formal approa
h will be the ultimate tool in s
ienti�
dis
overy. A formal approa
h is only likely to give the optimal answer if the user 
ana priori state that ea
h measurement 
an be 
ombined a

ording to formal rules toform meaningful results. This situation seems to be only obtainable in the 
ontextof a predi
tive theory or an empiri
al equation; su
h a theory is exa
tly what isbeing sear
hed for.It is therefore 
laimed here that the designation of the input data in appropriateunits of measurement is as mu
h part of the pro
ess of s
ienti�
 dis
overy as theformulation of 
ombinations of this data. It is important to note that the argu-mentation does not dispute the worth of units of measurement in forming modelsof physi
al pro
esses, but merely points at the diÆ
ulties a purely formal view ofs
ienti�
 dis
overy brings.Apart from 
onsiderations about the nature of units of measurement, the exa
t wayto sear
h the spa
e of dimensionally (in)
orre
t expressions through the means of
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 programming has been resear
hed. Two possible ways of biasing the sear
hof a geneti
 programming system have been identi�ed. One is the in
lusion of theunits of measurement as a de
larative bias, where the spa
e of possible expressionsis redu
ed to those that are dimensionally 
orre
t. The other is the implementationof a preferential bias: here dimensional 
orre
tness is not seen as an all or nothingproposition, but a gradation between the severity of 
onstraint violations is usedto indu
e a set of expressions that balan
e a

ura
y on the data and dimensional(in)
orre
tness.Two di�erent systems have been developed and des
ribed that implement these dif-ferent biases. The method that uses a preferential bias is des
ribed in Chapter 5. It
riti
ally depends on a multi-obje
tive sear
h strategy to balan
e goodness-of-�t anddimensional 
orre
tness. The general method is based on 
oer
ion of types, appliedto the indu
tion of expressions using units of measurement it is 
alled DimensionallyAware GP (DAGP).The system that implements the de
larative bias is introdu
ed in Chapter 6 andis applied to the indu
tion of dimensionally 
orre
t expressions in Chapter 7. Itis used as a strongly typed geneti
 programming system (STGP). Although thisSTGP system uses a geneti
 algorithm as the main sear
h engine, it is envisionedthat other weak sear
h algorithms su
h as simulated annealing 
an be applied aswell. This in 
ontrast with the DAGP system, where the multi-obje
tive sear
h thatis 
entral to its operations quite likely prevents a non population based sear
h tobe appli
able.The 
omparative study between straightforward symboli
 regression, dimensionallyaware GP and strongly typed (dimensionally 
orre
t) GP in Chapter 8 showed thaton four real-world problems, a trade-o� exists between the information 
ontained inthe observations and the information 
ontained in the units of measurement. Theuse of units of measurement a
tually hinders the sear
h for a

urate formulations,even though it helps in interpreting them. This was shown through the means ofa bias-varian
e analysis, where the error due to bias for dimensionally 
orre
t ex-pressions was found to be stru
turally higher than the bias error for less 
onstrainedexpressions. Even worse, the strongly typed (de
larative) approa
h to the indu
tionof dimensionally 
orre
t expressions showed on one of the four problems that it
an 
ombine a high bias error with a high varian
e error, thus exhibiting very poorsear
h performan
e. It is hypothesized that this is 
aused by problems with theergodi
ity of the sear
h spa
e. The dimensionally aware approa
h does not exhibitthis problem, but rather shows a gra
eful degradation when 
onstraints are hard tosatisfy.Purely from the perspe
tive of sear
h towards dimensionally 
orre
t expressions, theDAGP approa
h already appears to be better suited for these types of problems thanthe STGP approa
h.Furthermore, if one 
ompares the dimensionally aware approa
h with standard sym-boli
 regression on the basis of purely the �tting 
apability, no signi�
ant di�eren
ebetween the two methods is found. This indi
ates that the multi-obje
tive sear
hthat implements the preferential bias does not prevent the system of �tting thedata equally well as an unbiased system. The balan
e between obtaining a good�t on the data and presenting a dimensioned expression is thus able to give a goodsample of the range of possible expressions. On the one hand, the best �tted ex-pressions are not worse than what 
an be obtained from using a te
hnique su
h as
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 regression, while on the other hand the dimensionally 
orre
t formulationsare not worse (and sometimes better) than what 
an be obtained using a stronglytyped system. This balan
e between well-�ttedness and dimensional 
orre
tness isdynami
ally established during the sear
h.The implementation of the preferential bias in a multi-obje
tive sear
h toward afront of non-dominated solutions helped in regularizing the solutions. A side-e�e
ttowards parsimonious solutions was observed and it is hypothesized that this is oneof the 
auses for the regularizing e�e
t. The method employing de
larative biasdoes not exhibit these side-e�e
ts.It appears that the approa
h based on 
oer
ion a
hieves the best balan
e amongstsatisfying the 
onstraints, �tting the data and regularization of the indu
ed expres-sions. The (im)balan
e between the 
onstraints and the �tting ability expli
itly
atered for in this dimensionally aware GP provides additional insights into theproblem.Using DAGP and STGP, several expressions have been found that provide a 
on-sistent hypothesis of the main 
hara
teristi
s of the physi
al pro
ess. This demon-strates the value of the expressions that use units of measurement to help in theinterpretation of the results. It is this possibility of dire
tly interpreting the resultsthat distinguishes geneti
 programming from other methods. The modi�
ationsto geneti
 programming presented here 
an deliver this interpretability in a moreprofound way than straightforward symboli
 regression.The overall goal of the work | aiding in the interpretation of the symboli
 resultsprodu
ed by geneti
 programming | has been a
hieved. By using additional infor-mation, units of measurement, as a type system, the geneti
 programming systemis for
ed to produ
e expressions that have some limited semanti
 
ontent. This se-manti
 
ontent 
an however not be extra
ted without any e�ort. The user is 
riti
alin relating the appli
ation of arithmeti
 with the derivation of physi
al 
on
epts.In the perspe
tive of measurement theory, the use of these systems without addi-tional human e�ort is unsound. Measurement theory pres
ribes the pro
ess of sub-stituting numbers for observables and ultimately substituting equations for physi
alpro
esses as a one way street: an arithmeti
al operation on two measurements 
anbe performed if and only if there is a meaningful physi
al analogy of this operationin the physi
al pro
ess. Examples of this 
an be found in the experiments studiedhere. In the roughness problem: subtra
tion of the reed height from the waterdepth is a meaningful operation as it des
ribes the length in the 
hannel wherewater 
an 
ow unhindered by vegetation. However, adding the water depth to thereed diameter appears to be meaningless, even though the operation is formally
orre
t.There is thus no formal guarantee that a well-�tted dimensionally 
orre
t expressionproposes a meaningful relation, hen
e the unsoundness of merely using units ofmeasurements to make equations meaningful. However, an informed user | thedomain spe
ialist | 
an use the equations to �nd meaningful relations. As theequations are well-�tted to the data, there is a high likeliness that the relationshipsthat are proposed have some 
onne
tion with the physi
al pro
ess that is modeled.It is shown in this work that su
h 
onne
tions, 
an be found by examining theresulting equations. In parti
ular, it was shown that by not insisting on dimensional
orre
tness at all times (DAGP), better �tting expressions 
an be found, withoutne
essarily sa
ri�
ing this interpretability.



145The main bene�t of these methods then lies in proposing well-�tted equations that
an be used to obtain a better insight in the physi
al pro
ess that underly thedata. Rather than having the human s
ientist resear
h all possible 
ombinationsof variables and derivative measurements, while at the same time trying to obtaina

ura
y (a low error), the systems here automati
ally indu
e expressions with higha

ura
y and tentative relations. The s
ientist trying to interpret the expressionsfun
tions as a reality 
he
k. In the absen
e of a formal syntax and semanti
s ofphysi
al reality this human in
uen
e is ne
essary.The system des
ribed in this work is envisioned to be a sour
e of additional infor-mation, to be used next to the measurements themselves. The s
ientist 
an usethe additional set of equations to more a

urately des
ribe the physi
al pro
essunder study. Ultimately, the goal is to form an empiri
al equation together with ajusti�
ation for its use. The system is 
apable of providing highly 
ompressed viewson this data in the form of symboli
 expressions. By balan
ing for
es, velo
itiesand length measurements, the equations produ
ed by the system are not ne
essarilybla
k box models whose performan
e 
an only be measured in their ability to reliably`explain' the varian
e in the data, but 
an be inspe
ted by the s
ientist and used asa vehi
le for interpretation and as a form of inspiration for alternative views of theproblem. By 
ombining the power of an automated system to produ
e equations,and the ingenuity of a human observer to form hypotheses from these equations, itis thought that the best of two worlds are 
ombined: fast exploration of the spa
eof symboli
 des
riptions by automati
 means and the 
reativity of a human mindto �nd a justi�
ation or a refutation for the well-�ttedness of these expressions.This 
ombination of data-driven sear
h and knowledge-driven justi�
ation is hopedto lead to new advan
es in s
ien
e. The unbiasedness of data-driven sear
h mightlead the knowledge-driven pro
ess of theory-formation to 
onsider novel 
on
eptsor novel 
ombinations of existing 
on
epts.
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