Scientific Discovery
using
Genetic Programming

Maarten Keijzer

LYNGBY 2001

IMM-PHD-xx

IMM

IMM

INFORMATICS AND MATHEMATICAL MODELLING
May 1, 2002

M.K.
Technical University of Denmark

DK-2800 Lyngby — Denmark

Scientific Discovery using Genetic

Programming

Maarten Keijzer

LYNGBY 2001

IMM-PHD-xx

IMM

ISSN 0909-3192

Copyright © 2001 by Maarten Keijzer
Printed by IMM, Technical University of Denmark

Abstract

Genetic Programming is capable of automatically inducing symbolic computer pro-
grams on the basis of a set of examples or their performance in a simulation. Math-
ematical expressions are a well-defined subset of symbolic computer programs and
are also suitable for optimization using the genetic programming paradigm. The
induction of mathematical expressions based on data is called symbolic regression.

In this work, genetic programming is extended to not just fit the data i.e., get the
numbers right, but also to get the dimensions right. For this units of measurement
are used. The main contribution in this work can be summarized as:

The symbolic expressions produced by genetic programming can be
made suitable for analysis and interpretation by using units of mea-
surement to guide or restrict the search.

To achieve this, the following has been accomplished:

e A standard genetic programming system is modified to be able to induce
expressions that more-or-less abide type constraints. This system is used to
implement a preferential bias towards dimensionally correct solutions.

e A novel genetic programming system is introduced that is able to induce
expressions in languages that need context-sensitive constraints. It is demon-
strated that this system can be used to implement a declarative bias towards

1. the exclusion of certain syntactical constructs;

2. the induction of expressions that use units of measurement;

3. the induction of expressions that use matrix algebra;

4. the induction of expressions that are numerically stable and correct.

e A case study using four real-world problems in the induction of dimensionally
correct empirical equations on data using the two different methods is pre-

sented to illustrate the use and limitations of these methods in a framework
of scientific discovery.

Resume
(Abstract in Danish)

Genetisk programmering er i stand til at producere computer programmer, automa-
tisk pa baggrund af eksempler pa programmernes virkning i en simulering. Da
matematiske udtryk er en veldefineret delmangde af symbolske computer program-
mer og kan disse ogsa bestemmes under genetisk programmerings paradigmet. Em-
pirisk bestemmelse af matematiske udtryk kaldes symbolsk regression.

| dette arbejde bliver genetisk programmering udvidet til, et varktoj der ikke bare
"fitter data”, men ogsa giver korrekte fysiske dimensioner. De vasentligste bidrag i
dette arbejde opsummeres ved:

Symbolske udtryk, udledt ved hjalp af genetisk programmering kan gores
tilgangelige for analyse og fortolkning, ved at lade dimensionsbetragt-
ninger stotte eller begranse sogerummet.

Dette er opnaet ved at

e Et standard genetisk programmerings-varktoj er blevet modificeret til at pro-
ducerer udtryk som hovedsagligt er dimensionelt konsistente. Dette modifi-
cerede system er anvendt til at malrette genetisk sogning mod dimensionelt
korrekte udtryk via sakaldt " preferential bias”.

e Et nyt genetisk programmeringsvarktoj er blevet introduceret, som kan pro-
ducere udtryk baseret pa kontekst-folsomme bibetingelser. Det er blevet
demonstreret at dette system kan implementere malrettet sogning som via
sakaldt "declarative bias” giver mulighed for at

1. udelukke visse syntaktiske udtryk,

2. producere udtryk baseret pa fysiske dimensioner,
3. producere udtryk der involverer matrix algebra,
4

. producere udtryk som er numeriske stabile og korrekte,

e Der er endvidere udfort et empirisk studie der er baseret pa fire praktiske prob-
lemer og de to metoder, som involverer udtryk med korrekte fysiske dimen-
sioner og derved illustrerer muligheder og begransninger indenfor automatisk
data-analyse.

vii

Preface

This thesis has been submitted in partial fulfilment for the degree of Doctor of
Philosophy. The work documented in this thesis has been carried out both at DHI
— Water & Environment and the Department for Mathematical Modelling, Section
for Digital Signal Processing at the Technical University of Denmark. The work was
supervised by Professor Lars Kai Hansen of the DTU and Dr. Vladan Babovic of
DHI — Water & Environment.

During the Ph.D. study a number of conference papers and journal papers have
been written.

Accepted Journal Papers and Book Chapters

e Maarten Keijzer and Vladan Babovic. Declarative and preferential bias in
gp-based scientific discovery. Genetic Programming and Evolvable Machines,
to appear 2002.

e Vladan Babovic and Maarten Keijzer. On the introduction of declarative
bias in knowledge discovery computer systems. In P. Goodwin, editor. New
paradigms in river and estuarine management. Kluwer, 2001.

e Vladan Babovic and Maarten Keijzer. Genetic programming as a model
induction engine. Journal of Hydroinformatics, 2(1):35-61, 2000.

e Vladan Babovic and Maarten Keijzer. Forecasting of river discharges in the
presence of chaos and noise. In J. Marsalek, editor, Coping with Floods:
Lessons Learned from Recent Experiences, Kluwer, 1999.

e Vladan Babovic, Jean Philip Drecourt, Maarten Keijzer and Peter Friis
Hansen. Modelling of water supply assets: a data mining approach. Urban
Water, to appear 2002.

Conference Papers

e Maarten Keijzer, Vladan Babovic, Conor Ryan, Michael O'Neill, and Mike
Cattolico. Adaptive logic programming. In Lee Spector et.al., eds, Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), 2001.

e Maarten Keijzer, Conor Ryan, Michael O’Neill, Mike Cattolico, and Vladan
Babovic. Ripple crossover in genetic programming. In Julian Miller et.al.,
Genetic Programming, Proceedings of EuroGP,2001

viii

Maarten Keijzer and Vladan Babovic. Genetic programming within a frame-
work of computer-aided discovery of scientific knowledge. In Darell Whitley,
et.al., Proceedings of the Genetic and Evolutionary Computation Conference
(GECC0-2000), 2000.

Maarten Keijzer and Vladan Babovic. Genetic programming, ensemble
methods and the bias/variance tradeoff — introductory investigations. In Ric-
cardo Poli et.al., Genetic Programming, Proceedings of EuroGP 2000, 2000.

Maarten Keijzer and Vladan Babovic. Dimensionally aware genetic pro-
gramming. In Wolfgang Banzhaf et al., Proceedings of the Genetic and Evo-
lutionary Computation Conference, volume 2, 1999.

Maarten Keijzer, J.J. Merelo, G. Romero, M. Schoenauer. Evolving Ob-
jects: a general purpose evolutionary computation library In Pierre Collet,
EA-01, Evolution Artificielle, 5th International Conference on Evolutionary
Algorithms, 2001.

Maarten Keijzer and Vladan Babovic. Error correction of a deterministic
model in Venice lagoon by local linear models. In Modelli complessi e metodi
computatzionali intensivi per la stima e la previsione, 1999.

Michael O’Neill, Conor Ryan, Maarten Keijzer and Mike Cattolico. Crossover
in Grammatical Evolution: The Search Continues. In Julian Miller et.al., Ge-
netic Programming, Proceedings of EuroGP,2001.

Kim Jgrgensen, Berry Elfering, Maarten Keijzer, and Vladan Babovic. Anal-
ysis of long term morphological changes: A data mining approach. In Pro-
ceedings of the International Conference on Coastal Engineering, Australia,
2000.

Vladan Babovic, Maarten Keijzer, and Magnus Stefansson. Optimal embed-
ding using evolutionary algorithms. In Proceedings of the Fourth International
Conference on Hydroinformatics, lowa City, USA, 2000.

Vladan Babovic, Maarten Keijzer, and Marek Bundzel. From global to
local modelling: A case study in error correction of deterministic models. In
Proceedings of the Fourth International Conference on Hydroinformatics, lowa
City, USA, 2000.

Vladan Babovic, Maarten Keijzer, David R. Aquilera, and Joe Harrington.
An evolutionary approach to knowledge induction: Genetic programming in
hydraulic engineering. In Proceedings of the World Water & Environmental
Resources Congress, 2001.

Vladan Babovic and Maarten Keijzer. A Gaussian process model applied to
the prediction of water levels in Venice lagoon. In Proceedings of the XXIX
Congress of the International Association for Hydraulic Research,2001.

Vladan Babovic and Maarten Keijzer. An evolutionary algorithm approach
to the induction of differential equations. In Proceedings of the Fourth Inter-
national Conference on Hydroinformatics, 2000.

e Vladan Babovic and Maarten Keijzer. Computer supported knowledge dis-
covery — A case study in flow resistance induced by vegetation. In Proceed-
ings of the XXVIIl Congress of the International Association for Hydraulic
Research, 1999.

e Vladan Babovic and Maarten Keijzer. Data to knowledge — the new scien-
tific paradigm. In D. Savic and G. Walters, editors, Water Industry Systems,
1999.

Submitted Journal Papers

e Maarten Keijzer and Vladan Babovic. Knowledge fusion in data driven
modeling. Machine Learning.

e Vladan Babovic and Maarten Keijzer. Rainfall runoff modelling based on
genetic programming. Nordic Hydrology.

Acknowledgements

First and foremost | would like to thank Vladan, not only for convincing me to try
to obtain a Ph.D. in Denmark by joining him in his Talent project, but also for his
insistent enthusiasm and his many valuable contributions to this work. Although
as a Ph.D. thesis, this work is necessarily authored by me alone, most of the views
that are expressed in this work have been jointly developed.

Lars Kai and his group at the DTU have been very helpful. Although right from
the start I've taken an almost diametrically opposite path from the group’s research
by concentrating on the use of symbolic expressions rather than ‘sound’ numerical
procedure, these ‘numerics’ did have a profound influence on the work. | have
learned a lot from the group.

Conor Ryan, Michael O'Neill and Mike Cattolico deserve mentioning for the many
intense and considerably less intense discussions we held during the various confer-
ences and workshops in the past three years. One of the tangible results of these
discussions is the ALP system which is based on Michael and Conor’s ‘Grammatical
Evolution’ system. | hope we can continue to cooperate in the future.

The Ph.D. and this thesis were funded by the Danish Research Council under Talent
Project 9800463 entitled " Data to Knowledge — D2K”. This funding is greatly
appreciated.

Deventer, May 1, 2002

Maarten Keijzer

xi

Contents

Abstract iii
Resume (Abstract in Danish) v
Preface vii
1 Introduction 1
2 Genetic Programming 5

2.1 Evolution at work:

Genetic & Evolutionary Computation 5

2.2 Standard Genetic Programming 7
221 The Primitives 8
2.2.2 nitializationo 9
223 Variation 10
2.2.4 Measuring Performance and Wrapping 11
2.2.5 Auxiliary parameters and variables 13

2.3 Multi-Objective Optimization 13
2.4 Implementation Issueso 16
25 Summary . .. 19
3 Symbolic Regression 21
3.1 The Concentration of Suspended Sediment 24
3.2 Symbolic Regression on the Sediment Transport Problem 28

33 Summary 30

Xii CONTENTS
4 Induction of Empirical Equations 33
4.1 Units of Measurement as a Type System 36
4.2 Language, Biasand Search 37
4.3 Typing in Genetic Programming 39
4.4 Expressiveness of Type Systems 40
45 Typed Variation Operators 43
451 Brokenergodicity 43

452 Lossofdiversity 44

4.6 Summary 44

5 Dimensionally Aware Genetic Programming 47
5.1 Coerced Genetic Programming 48
5.1.1 Calculating the Coercion Error for the uom system 49

512 Wrapping L 51

5.2 Example: Sediment Transport 51
53 Summary 54

6 An Adaptive Logic Programming System 57
6.1 Logic Programming 58
6.2 An Adaptive Logic Programming System 61
6.2.1 Representation and the Mapping Process 63

6.2.2 Backtracking 81

6.2.3 Initialization o 81

6.2.4 Performance Evaluation 82

6.2.5 Special Predicates L. 82

6.3 Summary 82
6.4 Related Work 84
6.5 ALP,ILPand CLP. 88
6.6 Summary 89

7 Applications for the ALP System 91
7.1 Applicationso 91
7.1.1 A Sensible Ant on the Santa Fe Trail 92

7.1.2 Interval Arithmetic 98

7.1.3 Units of Measurement 103

7.1.4 Matrix Algebrao oL 111

7.2 Discussion 116

7.3 The Art of Genetic Programming 117

CONTENTS xiii
8 Experiments in Scientific Discovery 119
8.1 Problem 1: Settling Velocity of Sand Particles 120
8.2 Problem 2: Settling Velocity of Faecal Pellets 121
8.3 Problem 3: Concentration of sediment near bed 122
8.4 Problem 4: Roughness induced by flexible vegetation 123
8.5 Experimental Setup L 124
8.6 Quantitative Results 124
8.6.1 Bias/Variance Analysis 126

8.6.2 Settling velocity of sand particles 129

8.6.3 Settling velocity of faecal pellets 130

8.6.4 Concentration of suspended sediment near bed 130

8.6.5 Additional roughness induced by vegetation 131

8.6.6 Summary of the quantitative analysis. 131

8.7 Qualitative Results. 132
8.7.1 Interpretability of unconstrained expressions 133

8.7.2 Settling velocity of sand particles 133

8.7.3 Settling velocity of faecal pellets 134

8.7.4 Concentration of suspended sediment near bed 136

8.7.5 Additional roughness induced by vegetation 137

8.7.6 Summary and scope of GP-based scientific discovery . 138

8.8 Discussion 139

9 Conclusion 141
List of Tables 145
List of Figures 148
Bibliography 151

Xiv CONTENTS

Chapter 1

Introduction

Physical concepts are free creations of the human mind, and are not,
however it may seem, uniquely determined by the external world.
-Albert Einstein and Leopold Infeld, 1938

The formation of modern science occurred approximately in the period between the
late 15th and the late 18th century. The new foundations were based on the utiliza-
tion of a physical experiment and the application of a mathematical apparatus in
order to describe these experiments. The works of Brahe, Kepler, Newton, Leibniz,
Euler and Lagrange personify this approach. Prior to these developments, scientific
work primarily consisted of collecting the observables, or recording the ‘readings of
the book of nature itself’.

This scientific approach is traditionally characterized by two stages: a first one in
which a set of observations of the physical system are collected, and a second one
in which an inductive assertion about the behaviour of the system — a hypothesis
— is generated. Observations present specific knowledge, whereas hypotheses rep-
resents a generalization of these data which implies or describes observations. One
may argue that through this process of hypothesis generation, one fundamentally
economizes thought, as more compact ways of describing observations are proposed.

Although this view of the dispassionate scientist observing facts and producing
equations is popular, it is not all there is to say about the process of scientific
discovery. In the years that lead to Kepler's famous laws of planetary motion,
he introduced and abandoned various informal models of the solar-system. These
models initially took the form of a collection of embedded spheres (Holland et al.,
1986)(pp. 323-325). It was only when he abandoned the idea of planets moving
in circular orbits around the sun and replaced it with ellipses that he was able to
postulate his laws. Kepler is not unique in this; the process of the formulation of
scientific law or theory usually takes place in the context of a mental model of the
phenomenon under study: using the right concept to explain the equation provides
additional justification for these equations. Finding a proper conceptualization of the
problem is as much a feat of scientific discovery as the formulation of a mathematical
description or explanation of a phenomenon.

Today, in the beginning of the 21st century, we are experiencing yet another change
in the scientific process as just outlined. This latest scientific approach is one

2 CHAPTER 1. INTRODUCTION

in which information technology is employed to assist the human analyst in the
process of hypothesis generation. This computer-assisted analysis of large, multi-
dimensional data sets is sometimes referred to as a process of Data Mining and
Knowledge Discovery. The discipline aims at providing tools to facilitate the con-
version of data into a number of forms that convey a better understanding of the
process that generated or produced these data. These new models combined with
the already available understanding of the physical processes — the theory — can
result in an improved understanding and novel formulation of physical laws and an
improved predictive capability.

One particular mode of data mining is that of model induction. Inferring models
from data is an activity of deducing a closed-form explanation based solely on ob-
servations. These observations, however, always represent (and in principle only
represent) a limited source of information. The question emerges how this, a lim-
ited flow of information from a physical system to the observer, can result in the
formation of a model that is complete in the sense that it can account for the entire
range of phenomena encountered within the physical system — and to even describe
the data that are outside the range of previously encountered observations. The
confidence in model performance can not be based on data alone, but might be
achieved by grounding models in the domain so that appropriate semantic content
is obtainable. These models can then be used to reinforce, inspire or abandon the
scientists’ view of the problem.

The overall goal of the approach is then to subtly change the process of scientific
discovery. Rather than having the scientist ‘read’ the data, invent a conceptualiza-
tion (an informal model) of the problem using this data in order to finally provide
a formal expression that describes the conceptualization and thus the phenomenon,
the scientific discovery process envisioned here removes the need for the scientist
to work with only the raw data to inspire a conceptualization of the process under
study. What is attempted here is to automatically generate expressions that use
high level physical concepts — units of measurement — to provide an approximate,
but interpretable view of the data. It is thought that such approximate expressions,
once analyzed, can help the scientist in understanding the data better. Finally, once
the conceptualization is trustworthy, a formal expression can be proposed that is
either build out of (parts of) the automatically generated expressions or is build
directly out of the informal model itself.

The prototypical cycle of observation, imagination, formalization and testing that
is associated with scientific discovery is then extended to include an automated
modelling step between observation and imagination. By providing tentative for-
malizations based on data and high-level physical concepts, the scientist is freed
from examining measurements only: examining well-fitted, possibly meaningful ex-
pressions is thought to be an task that can inspire novel conceptualizations of the
processes under study. As such an automated method is biased only to the avail-
able data and to these high-level concepts, it would be free to propose approximate
solutions to the problem that are radically different from contemporary thought.
Understanding how such a different approximation fits in the scientific framework
might lead to an enhanced or maybe even different approach to describing the
physical system.

In order to create such a system, we need model induction algorithms that produce
models amenable to interpretation next to the ability to fit the data. The inter-

pretation of these models should then provide the additional justification that is
needed to use the model with more than just statistical confidence. Clearly, every
model has its own syntax. The question is whether such syntax can capture the
semantics of the system it attempts to model. Certain classes of model syntax may
be inappropriate as a representation of a physical system. One may choose a model
whose representation is complete, in the sense that a sufficiently large model can
capture the data’s properties to a degree of error that decreases with an increase
in model size. Thus, one may decide to expand Taylor or Fourier series to a a
degree that will decrease the error to a certain, arbitrarily given degree. However,
completeness of the representation is not the issue. The issue is in providing an
adequate representation amenable to interpretation.

The present work is an attempt to make the models produced by the technique of ge-
netic programming more suitable to be used within a scientific discovery framework.
It critically uses units of measurement as the apparatus to ground the models in the
physical domain. Units of measurement have been chosen as they embody a formal
system for manipulating physical concepts such as lengths, velocities, acceleration
and forces. Manipulating numbers using arithmetic is then accompanied with ma-
nipulating units of measurement. The units of measurement are proposed to form
a suitable set of high-level concepts to be used in scientific discovery. The resulting
symbolic expressions produced by this system are fully dimensioned: the scientist
working with the system can analyze and interpret the equations by translating the
formal definition of the units back to the respective physical concepts.

In the scientific discovery process that is proposed here, the scientist still plays a
pivotal role. Although the process of creating equations from data is done using
automated means, the important process of interpretation, analysis and embedding
the proposed hypotheses in an existing or new theory remains firmly in the hands of
the scientist. The equations that are discovered form both an empirical formulation
of the relationships in the data and a tentative proposal of the physical concepts
that are manipulated by the formulation. It is thought that the scientist using
these tentative proposals can more efficiently set up, test and refute models for the
problem under study.

This work will focus on the definition and comparison of methods that incorporate
units of measurement in the search. The thesis forwarded in this work can then be
summarized as:

The symbolic expressions produced by genetic programming can be
made suitable for analysis and interpretation by using units of mea-
surement to guide or restrict the search.

To examine this, several paths will be traversed. Two genetic programming systems
will be developed: one that guides the search to (more-or-less) dimensionally correct
expressions, the other that restricts the search to only those expressions that are
dimensionally correct. The work is then organized as:

e Chapter 2 gives a brief overview of genetic and evolutionary computation,
in particular the technique of genetic programming. The concept of multi-
objective optimization in the context of evolutionary search will be described.

CHAPTER 1. INTRODUCTION

Multi-objective optimization, in particular using the concepts of Pareto opti-
mality, enables searching in a space where the trade-offs between the objec-
tives are not known beforehand.

Chapter 3 introduces the standard form of inducing expressions using genetic
programming. This is called symbolic regression. Here it will be argued that
although genetic programming is capable of inducing mathematical (symbolic)
expressions, interpretability is not a natural by-product of these equations.

Chapter 4 will lay some groundwork for the rest of the thesis. It will focus
on what it means to induce an empirical equation, and will briefly describe
two ways of incorporating knowledge about the units of measurement in the
search.

Chapter 5 describes the technique called Dimensionally Aware genetic pro-
gramming. Rather than abiding to the units of measurement at all cost, it
implements a preference toward dimensionally correct equations. It balances
the ability to fit the data with the ability to use the units in a correct way.

Chapter 6 introduces the system used for implementing Dimensionally Cor-
rect genetic programming. Due to the context-sensitivity of the constraints
present in this system, the expressiveness of a Logic Programming language
is used. The search strategy in this Logic Programming system is a genetic
algorithm, its task is to optimize paths through the search tree defined by a
Logic Program.

Chapter 7 applies this novel system in a series of experiments involving the
exclusion of syntactical constructs, the use of interval arithmetic, the use of
units of measurement and finally the induction of correct sentences in matrix
algebra. These four experiments are used to highlight the versatility of the
approach.

Finally, Chapter 8 compares the two approaches. On four real-world prob-
lems, the dimensionally aware approach will be contrasted with the dimension-
ally correct approach to model induction. The experiments will be conducted
on the basis of quantative measures — ability to provide well-fitted correct
equations — and on the quality, the interpretability of the expressions.

Chapter 9 concludes the thesis.

Chapter 2

Genetic Programming

2.1 Evolution at work:
Genetic & Evolutionary Computation

In ‘The origin of species’, Charles Darwin (Darwin, 1859) introduced the principle of
natural selection as a unifying view for the origin and further evolution of organisms
in nature. Using similar principles the field of Evolutionary Computation tackles
difficult problems by evolving approximate solutions inside a computer. Starting
with a primordial diversity of random solutions, repeated selection and variation
are applied to improve the quality of the solutions. The basic criteria for evolution
to occur — be it in vitro as in biology or in silico, with computers — have been
summarized by the biologist Maynard-Smith (Maynard-Smith, 1975) as:

e Criterion of Fecundity Variants leave a different number of offspring; spe-
cific variations have an effect on behaviour and behaviour has an effect on
reproductive success;

o Criterion of Heredity Offspring are similar to their parents: the copying
process maintains a high fidelity;

e Criterion of Variability Offspring are not exactly the same as their parent:
the copying process is not perfect.

These criteria are necessary ingredients for evolution to occur and are used to solve
problems by employing an Evolutionary Algorithm. Such an evolutionary algorithm
operates on populations of candidate solutions, each solution is graded according
to its performance and constitutes a basis to improve upon for future generations.

In its most basic form, an evolutionary algorithm works on a population of solutions,
P, which is subject to the iteration:

Py = v(s(F)) (2.1)

6 CHAPTER 2. GENETIC PROGRAMMING

where the functions s and v are called selection and variation operators respectively.
Starting with a randomly generated population Py, this algorithm is applied for many
iterations, called generations. The selection function s implements the criterion of
fecundity: it makes sure that solutions that have above average performance receive
more copies in the next generation. The selection function is thus used to enforce
the goal of the optimization process; getting the best solution possible. These
selected solutions (copies) are subsequently processed by the variation operator v.
The variation operator usually applies random, undirected changes, and is supposed
to balance the heredity and variability criteria. Too much variation and the evolution
will degrade to a random search, too little variation and the population of tentative
solutions will evolve to a population of clones only.

The selection operator uses the performance of the solutions to give above average
performing instances more copies in the next generation. An objective function
needs to be defined that can calculate this performance. In the most simple case,
this function returns a scalar value that calculates some objective value. Thus given
some function that calculates the performance of an individual and a population
size n, the selection function assigns copies for the next generation. It can do this
through one of many ways.

e Proportional Selection Create n copies of individuals proportional to the
performance of solutions, the variation operators will then be applied to this
new population;

e Truncation Selection For a number m < n, select the best m individuals
from the population, add n — m randomly selected copies from these m best
individuals to obtain a new population?, the variation operators will be applied
to these n — m copies;

e Tournament Selection For some k, the tournament size, repeatedly select
k individuals at random, and put the best of those & in the next generation
after applying the variation operators until n copies are assigned.

The definition of this basic evolutionary algorithm is representation-free. It does
not mention what form of solutions should be considered, and in effect, many rep-
resentations are used in the field of evolutionary computation. The best known
evolutionary algorithm is the genetic algorithm (Holland, 1980; Goldberg, 1989),
that typically uses fixed length bitstrings as the representation of choice. Other,
older, work involved finite state automaton (Fogel et al., 1966) and real valued vec-
tors (Rechenberg, 1965; Schwefel, 1995). This work has evolved into the separate
but related fields of evolutionary programming and evolution strategies. Currently,
many problem-dependent representations are in use for practical applications.

Once the representation is chosen, variation operators need to be defined. The
simplest of such operators is the mutation operator that makes a small randomized
change to the representation: in the case of bitstring flipping one or several bits is
a common operation; when using floating point values a small Gaussian change can

IThis selection mechanism is usually defined in a slightly different way, where the variation
operator enlarges the population and the selection operator reduces it; but the definition given here
is equivalent with this. It is presented in this way to keep it in line with the abstract evolutionary
algorithm in Equation 2.1.

2.2. STANDARD GENETIC PROGRAMMING 7

be applied. Often also a recombination operator is defined: this is called crossover.
The crossover operator recombines the information in two solutions to create one
or two new solutions. It does this in a randomized fashion. lts purpose is to explore
new combinations of parts of the solution, in the hope that this leads to a new level
of performance.

Not any combination of representation, selection and variation makes sense however.
Variation of solutions need to be correlated in some way with the performance of
solutions. In its strongest form this means that a small change in the representation
of the solution should be accompanied with a small change in the performance of
the solution. Another correlation that is often hypothesized is the exploitation of
building blocks in the problem. These are partial representations (schemata) whose
worth in complete solutions are as independent as possible from the context they are
used in. By recombining building blocks, new high-performing solutions might be
obtained. The interplay between the performance of solutions, the representation
of solutions and the variation of representations is a major research area in the field.

Below, genetic programming is described. With this method, the representations
that are being evolved are computer programs that try to solve a specific prob-
lem. It is an attempt to perform automatic programming in the sense outlined by
Samuel (Samuel, 1959), where computers are programmed by telling them what to
do, not how to do it.

2.2 Standard Genetic Programming

Koza's monograph “Genetic Programming, on the programming of computers by
natural selection” (Koza, 1992) marks the beginning of the field of genetic pro-
gramming. It contains a wealth of examples where a basic genetic programming
system was used to solve problems in various fields of artificial intelligence. The
crucial insight in the book was the observation that many, if not most problems in
artificial intelligence can be stated as:

Given a problem X, find a computer program that solves X.

Together with a method to automatically find computer programs — genetic pro-
gramming — this guideline was powerful enough to solve a wealth of problems taken
from the artificial intelligence literature. Thus instead of using specialistic repre-
sentations like neural networks, decision trees, horn clauses or frames, the genetic
programming method tries to solve problems by relying on a single representation

framework: that of computer programs?.

Genetic programming as envisioned by Koza does not process computer programs
in the same way as human programmers do. There’s no file of statements written in
ASCII, no pesky syntax with various special symbols like semi-columns that can be
misplaced to produce a syntactically meaningless result, no myriad of data types that
cannot be mixed. The standard single-typed genetic programming system operates
using an abstraction of computer programs — an already parsed expression, typically

2The primitive functions and variables used inside the computer programs vary however from
application to application

8 CHAPTER 2. GENETIC PROGRAMMING

represented in a parse tree. The use of a parse tree representation in a genetic
algorithm was pioneered by Cramer (Cramer, 1985).

There's nothing special about parse trees other than that it circumvents issues of
a purely syntactical nature and suggest a few natural variation operators. If one
were to try to optimize program snippets in C for instance, one could try to proceed
by using a genetic algorithm using the ASCII character set. Say that by chance a
function such as

double solution(double x, double y)
{

return x * y + sqrt(0.3);
}

would evolve, and arbitrary variation operators are allowed, it is easy to see that the
possibility of introducing syntactical errors is immense. Changing a single character
to an arbitrary other character would in most cases result in a syntactic error.
Genetic programming circumvents this problem by only considering the relevant
part of the syntax in a computer friendly format — the parse tree. For all practical
purposes the C-style function above can be described by the parse tree

+

/\
* sqrt

PN |

Xy 03

where no information about the computation that is performed is lost, but a few
syntactic issues are cleared up. The number of arguments for each function can
be deduced from the number of children of a node and also issues of operator
precedence are resolved. The parse tree thus represents an unambiguous way of
computing the function. It is this property that is also employed by compilers.
These generally use parse trees as an intermediate representation before generating
machine code.

The parse tree also provides inspiration to the issue of variation. As a parse tree
decomposes a computation into a hierarchy of subcomputations, varying these sub-
computations at the various levels in the tree is a natural way of obtaining new
programs. Section 2.2.3 will go into more detail on how to vary solutions in stan-
dard genetic programming.

2.2.1 The Primitives

A parse tree is composed of function symbols — the inner nodes — and terminal
symbols — the leafs of the tree. Defining these function and terminal symbols
is an inherently problem dependent issue. If the problem is one of regression, it
would be natural to include the independent variables in the terminal set and let
a variety of mathematical functions form the function set. If the problem is one
of simulated robotics, various sensor information could be used as terminals or
branching instruction. The output of the program or side-effecting functions could
then be used as effectuators.

2.2. STANDARD GENETIC PROGRAMMING 9

Finding a symbolic expression based on some data is a central problem in this work.
Typical function and terminal sets that are used here involve simple mathematical
functions, operating ultimately on the independent variables, the terminals. The
most commonly used function set in this work is:

F = {plus/2, times/2, minus/2, divide/2, sqrt/1}

where the number behind the function name indicates the arity of the function.
The terminal set consists of the independent variables and a special terminal: a real
valued constant. In Koza's original setup such constants were initialized at random,
but were not changed during the run. Here we will however use a special mutation
operator for these constants. A terminal set involving independent variables z, y
and randomly initialized constants will be denoted as:

T ={z,y,R}

There are only vague guidelines for choosing a particular function and terminal set.
In general one tries to find a suitable high-level set of functions accompanied by
a set of terminals that are most descriptive for the problem at hand. There is
inherently some arbitrariness in this selection. It is however quite accepted that
very low-level functions are not very useful: although logically complete, finding
a real-valued function using only the nand operator is considered to be a waste
of time due to the enormous size of the parse trees one needs to even implement
simple functions. The function and terminal set is usually chosen in such a way that
different, powerful solutions can be implemented by relatively small parse trees. The
function set defined above can already describe all rational functions of arbitrary
degree, and the sqrt function allows fractional powers as well.

2.2.2 Initialization

Using the primitives, it is possible to generate well-formed parse trees. This can be
done in several ways. One of the simplest is the grow method, where a primitive —
be it a function or terminal — is selected uniformly at random, and as long as there
are unresolved subtrees, the process is repeated. When a prespecified depth or size
limit is reached only terminals are chosen. An example of this process is depicted
in figure 2.1

Another method developed by Koza is the full method. Here function nodes are
always chosen until the prespecified-specified depth limit is reached. At that point
only terminal nodes are chosen. The tree in Figure 2.1 could equally well have
been created by the full method if the depth limit was set at the low value of 3.
Using the grow and full method each for 50% of the population is known as the
ramped-half-and-half initialization method.

As the primitives are chosen uniformly from the available primitives, the expected
size of the trees varies considerably with the sizes of the function and terminal set.
In Section 6.2.1 the gambler’s ruin model will be used to analyze the grow method.
An overview of alternative tree initialization routines and an empirical comparison
between those can be found in (Luke and Panait, 2001).

10 CHAPTER 2. GENETIC PROGRAMMING

(i) (ii) (iii)
X X X
PN N N
+ # +
PN Pl
x
(iv) (v) (vi)
X X X
PN N N
+ # + sqrt + sqrt
A~ A~ | A~ |
Xy Xy # x y 03

Figure 2.1: Creating a tree. Empty spots (denoted by #) are recursively filled in
until the tree is completed.

+ +

/\
sqrt + sqrt
| |
0.3 y z 03
X
N
X X X
P
Xy

Figure 2.2: Example of a subtree crossover where the parents on the left produce
the children on the right by exchanging the two circled subtrees.

2.2.3 Variation

Given a parse tree where the internal nodes represent the functions and the leafs
the terminals, many variation operators can be defined. Two basic operators will
be described here: subtree mutation and subtree crossover. These operators are
very simple: subtree mutation replaces a randomly chosen subtree in a tree with
a randomly generated subtree, while subtree crossover swaps two randomly chosen
subtrees in the parents to create a new tree. Figure 2.2 gives an example of subtree
crossover.

Choosing subtrees randomly from all available subtrees implies some bias towards
selecting smaller subtrees. This comes naturally from the parse tree representation
where subtrees can be composed of subtrees themselves. When randomly choosing
subtrees from a tree composed of binary functions, slightly more than 50% of the
subtrees are terminals; randomly choosing nodes in the tree will then in more than
half of the cases result in choosing a terminal. As terminals are the smallest parts
of trees, this results on average in an exchange of a minimal amount of information.
To counter this, Koza (Koza, 1992) took the pragmatic approach of selecting an
internal node (a function) 90% of the time and a terminal 10% of the time. Many

2.2. STANDARD GENETIC PROGRAMMING 11

x y t (r+y) x+v0.3 error
0.0 1.0 055 0.54772 0.0022774
0.2 06| 0.45 0.48990 0.039900
09 01| 06 0.54772 0.052277

0.8321

Table 2.1: Example of evaluating a function induced by genetic programming on
the available data, where ¢ is the target variable.

other approaches have been defined however to implement some other distribution
on the selection of subtrees (Langdon, 1999; Harries and Smith, 1997).

One special mutation operator is used here that selects a constant — if present —
in the tree and changes its value a little — usually by adding a normally or Cauchy
distributed number.

2.2.4 Measuring Performance and Wrapping

The main feedback to an evolutionary algorithm is the performance measure. The
performance measure is used by the selection function to determine which programs
receive more variants in the next generation. Often the performance measure is a
single scalar value, but more than a single performance criterion can be used as well.
One would then enter the area of evolutionary multi-objective optimization. A good
performance measure for any evolutionary search methods gives an as fine-grained
differentiation between competing solutions as possible, focusing on the eventual
use of the program and avoiding giving false information. An example of evaluating
a mathematical function on some data is given in Table 2.1.

In this work, two error measures are mainly used for reporting results. One is the
root mean squared error (RMS error, or RMSE), defined as

N

RMS(y, t) = ﬁ Z(yi —t)?

[3

using the symbols y and t as the model outputs and the target outputs on a data
set of size NV respectively. The RMS error can be used to obtain a performance
measure stated in the same units as the target variable. Another measure that is
used here is the normalized RMS error (NRMS), which is defined as:

NRMS(y, t) = %(é)’t)

where std is the standard deviation measure. The NRMS error measure scales the
error in such a way that a prediction of the average in the target data has an NRMS
error of 1.0.

12 CHAPTER 2. GENETIC PROGRAMMING

In genetic programming, often the output of the programs is wrapped, that is, the
output is changed in such a way that it can be used by the performance calculation.
Here the use of wrapping and its influence on the performance measure will be illus-
trated in two problem domains: classification and regression. Two wrappers will be
discussed that are capable of enlarging the solution space for genetic programming.

Wrappers for Classification Consider a problem in binary classification. Here the
object of search is a program that classifies input cases as belonging to a certain
class or not. One possibility of tackling such a problem is to only consider functions
that return boolean values: if the program returns true for a certain input case it will
be interpreted as a positive, otherwise a negative. This is the general approach when
the inputs are boolean variables, but for input data that is real-valued a different
approach is usually adopted. In that case, real valued functions are used and the
output of the program is interpreted as a score: a real valued ordinal variable.
Usually a fixed cutoff value is set: scores falling above the cutoff will be classified
as positive, and negatives otherwise. The use of an arbitrary cutoff value to be able
to interpret a real valued outcome as a binary classification is a first example of a
wrapper function.

Wrappers can however vary in their ability to make optimization easy or difficult.
In the case of the binary classification problem an arbitrary cutoff value can make
optimization needlessly difficult. Evolving a classifier against a fixed cutoff value
makes this value very important for the classifiers. This might hinder the search in
unforeseen ways as it biases the search towards classifiers that discriminate optimally
in the context of this arbitrary value. A better approach would be to calculate the
optimal cutoff value for each classifier independently. Here the wrapper function
would examine the full range of scores produced by the classifier and will find that
cutoff value that produces the optimal discrimination between the positive and
negative cases. This can be accomplished with a single pass through a score array
and is usually feasible computationally.

As the scores produced by the classifiers are ordinal, the actual values are irrelevant,
it is the relative order that matters. By not imposing an arbitrary cutoff point,
but using the implied optimal cutoff after the evaluation, the classifiers are less
constrained in the score range: in particular adding a constant value to the classifier
will not change its performance. This increases the number of solutions to the
problem and can thus help the evolutionary search in finding good classifiers.

Wrappers for Regression For regression a similar wrapper can be defined. Usu-
ally in regression problems, the object of search is an expression that minimizes
some least squares error criterion. A straightforward approach would then be to
use this error as the performance measure. It will thus constrain the search to ex-
pressions that are as close to the target values as possible. However, this will also
constrain the search to expressions that have the proper slope and intercept that is
present in the data: for example, an expression that produces outputs that have the
same shape as the desired output but is structurally wrong with a certain constant
value, will have the squared value of this constant added to its error for every case.
However, using standard (fast) methods of linear regression on the outputs of the
expression can identify such structurally different slopes and intercepts and scale the

2.3. MULTI-OBJECTIVE OPTIMIZATION 13

output of the expression to the appropriate range. This again makes the programs
invariant against these transformations and increases the solution space. With a
larger space of solutions, the search is more likely to find a good expression. Using
linear regression, for any well-defined expression f(x), it is possible to calculate
a and b such that the squared error between the target values and the wrapped
expression a + b+ f(x) is minimal. This calculation is linear in the number of cases
that are considered.

Even though the slope and intercept can be calculated linearly with the number
of cases, it is possible to circumvent the use of such a wrapper entirely during
the run. If one were to employ Pearson’s squared correlation coefficient® as the
performance measure, no slopes and intercepts need to be calculated during the run:
the correlation measure already calculates a squared error equivalent, regardless of
the slope and intercept. At the end of the run, the best expression can then be
wrapped and used for making predictions.

An interesting side-effect of using a correlation coefficient is that it is undefined when
the predictions are constant. Interestingly enough, in running genetic programming
using a squared error measure some runs converge prematurely on an expression
consisting of a constant only, which usually represents the average value of the
target data. Using a correlation coefficient as the performance measure will identify
such an expression and by giving it the worst possible performance value, such
expressions are effectively culled.

These are two examples of using some knowledge about the performance measure
to enlarge the solution space for genetic programming. Such tricks are not necessary
for more standard regression and classification methods, as these usually solve the
problems of arbitrary cutoffs, slopes and intercepts by making these explicit in the
model architecture. For example, in artificial neural networks finding the proper
intercept is accomplished by adding so-called bias nodes to the neural network:
the gradient based search techniques will set the weights from these bias nodes
to appropriate values. This section showed that for genetic programming a similar
effect can be achieved at the output level by employing smart wrappers.

2.2.5 Auxiliary parameters and variables

A few auxiliary parameters and variables need to be set before running a genetic
programming system. One of the most important of these is the population size.
However, not much is known on the optimal or even minimal population size in
genetic programming. Other parameters involve the rate of applying the variation
operators, the exact way of performing selection and the maximum size or depth
the trees are allowed to grow to.

2.3 Multi-Objective Optimization

Often, the quality of a solution can not be easily captured in a single number.
For instance, when designing a power plant, both the cost of building a plant and

2
3This is the correlation coefficient found in statistical packages, defined as: (%)

14 CHAPTER 2. GENETIC PROGRAMMING

the risk of the plant blowing up and taking countless lives needs to be minimized.
These objectives are usually contradictory and very hard to balance at the outset of
designing a plant. Building a plant that has a minimal risk involves implementing
countless security measures, each costing money. Avoiding to implement any secu-
rity measures at all will be very cheap, though the people living near the plant might
not be happy with such an insecure plant in their vicinity. Without knowing the
full distribution of designs that balance cost and risk, it is difficult if not impossible
to judge which balance of objectives is optimal. This is the area multi-objective
optimization applies to.

The simplest form of multi-objective optimization involves a weighting scheme,
where the relative importance of the objectives are fixed at the outset. In the
example, these weights are multiplied with the cost value and the risk value, and
subsequently added together to obtain a single scalar value that judges a design.
This process involves a priori assumptions on the relative worth of the objectives, and
in the plant example would require an objective judgement about the cost of taking
a human life. There will quite likely be some disagreement about this monetary
value between the owners of the plant and the inhabitants of the neighbourhood.
Without some knowledge about the trade-offs involved in building the plant i.e.,
thus without a set of designs that balance cost and risk, such a discussion would be
made using a priori arguments only, quite likely not leading to any level of agreement
between the parties involved.

If there is no agreement how to translate one objective into another objective, how
does one measure the quality of a solution? This is where the concept of Pareto
dominance can help. Instead of giving an absolute (scalar) judgement for a solution,
a partial order is defined based on dominance. A solution is said to dominate another
solution when it is better on one objective, and not worse on the other objectives.
Thus a solution a dominates a solution b if and only if 3i : 0;(a) < 0;(b) and
Vjzioj(a) < oj(b). This assumes without loss of generality that the objective
functions o1, ..., 0., need to be minimized. A solution is said to be non-dominated
if no solution can be found that dominates it.

The definition of the dominance relation gives rise to the definition of the Pareto
optimal set, also called the set of non-dominated solutions. This set contains all
solutions that balance the objectives in a unique and optimal way. An example of
such a set is depicted in Figure 2.3. Since there is no single scalar judgement, this set
usually contains a wealth of solutions. As there is no notion present of one objective
being more important than another, the aim of multi-objective optimization is to
induce this entire set. Picking a single solution from this set is then an a posteriori
judgement, which can be done in terms of concrete solutions with concrete trade-
offs, rather than in terms of possible weightings of objectives.

The question for multi-objective optimization is now how to find this Pareto optimal
set. One approach would be again a weighted approach, where the weights are varied
between runs and for each unique weighting scheme a solution is obtained. This
would require many runs to estimate the Pareto set and the granularity of the weight
changes needs to be estimated or assumed.

An evolutionary multi-objective approach avoids the granularity and multiple runs
issues altogether by using the wealth of solutions present in the evolving population
to find a balance during a single run of the algorithm. It thus tries to find and store
the Pareto optimal set in the population. Many concrete algorithms to achieve

2.3. MULTI-OBJECTIVE OPTIMIZATION 15

35 | —

25 | —

Objective 2
N
T
o
1

15 —

05 o B

Objective 1

Figure 2.3: An estimate of the Pareto optimal set using two objectives. The objec-
tives are: 0; = x? and 0y = (z — 2)?

this have been proposed, we will focus here on the non-dominated sorting genetic
algorithm Il (NSGA-II) (Deb et al., 2000).

A non-dominated sorting GA assigns ranks to solutions by first finding the set of
non-dominated solutions in the current population. These are removed from the
population and assigned rank 1. As these solutions are removed, a new so-called
front of non-dominated solutions is now present in the remainder of the original
population. This second front is extracted and assigned rank 2. This procedure is
repeated until no more solutions are present in the population: each solution gets
a rank according to the pass that is used to extract it. It was shown that this
procedure can be implemented in O(n?), where n is the population size (Deb et al.,
2000).

All solutions in the population have now been assigned an integer rank. Without any
further processing, this algorithm will not find a good estimate of the Pareto optimal
set. A population consisting purely of clones is for instance a point of convergence.
Repeated selection acting upon a finite population will ensure convergence to this
point due to stochastic sampling effects. What is needed is a mechanism to spread
out the population over the entire front.

All solutions taken from the same front have the same integer rank. The NSGA-II
algorithm will break ties by calculating the uniqueness of a solution in the front,
filling in the fractional part of the rank with this uniqueness value. The value is
determined by calculating the distance in objective value space between a solution
and its nearest neighbours. The uniqueness value is then calculated by sorting
each front for each objective and calculating the distance between each solution
and its two nearest neighbours. Solutions at the extremes get ‘highest’ distance.

16 CHAPTER 2. GENETIC PROGRAMMING

Subsequently, for all objectives this distance value is summed, scaled to values
between zero and one, and subtracted from the integer rank. In this way the
integer value still denotes the rank of the individuals, while the fractional part is
used as a tie-breaker with competing solutions of the same integer rank. Solutions
with more unique trade-offs will have a better rank then solutions in more populated
areas. The population can now be sorted on this rank and truncation selection can
be used.

The sorting is performed for each objective and each front. The computational
complexity of this procedure is at most O(nlogn). The overall complexity of this
procedure thus remains at O(n?).

The NSGA-II algorithm is very robust and makes it possible to perform an adequate
search for a Pareto optimal set. It is used throughout this text (Chapters 5, 7 and
8) whenever a multi-objective problem is addressed.

2.4 Implementation Issues

Evaluating individual programs for their performance is in most non-trivial applica-
tions the most time-consuming task. Much effort has undergone into making this
evaluation as fast as possible. Two main methods of representing parse trees in
the C programming language are in use: a pointer tree implementation and a token
string implementation. The pointer tree implementation has as its main advantage
that coding manipulations on the trees is very natural and can be very fast; it has as
a drawback however that memory management is non-trivial. If one ignores memory
management, the time involved in allocating and de-allocating nodes can lead to
sub-optimal performance. Because in this representation pointers to the children
of a node needs to be kept, it also has a relatively high memory footprint. The
token string representation on the other hand is very parsimonious because it only
needs to keep an identifier to the node (a token) per element in the string. An arity
function that returns the arity of a node given the identifier can be used to keep the
string syntactically correct when applying the variation operators. String operations
on modern computers are very fast and memory management is also less of an issue.
However, it is quite a bit more cumbersome to keep a string syntactically correct,
which makes this representation less suitable for rapid development.

For a review of pointer tree and token string implementations, the reader is referred
to (Keith and Martin, 1994) that presents a comparative study of several implemen-
tations and the corresponding evaluation functions. The paper focuses on how to
make traversing the tree as fast as possible as a typical evaluation function requires
that the parse tree is traversed multiple times. Another interesting approach was
pioneered by Handley (Handley, 1994), where subtree sharing was used to reduce
evaluation time. It was experimentally shown that with using subtree sharing the
amount of memory that needs to be used to store a population can be significantly
less when compared to a string-based approach (Keijzer, 1996). This is not obvious
as a (sub)tree based approach needs to store indices or pointers next to some func-
tion identification token, while a string based implementation only needs to store
the token.

2.4. IMPLEMENTATION ISSUES 17

Vectorized Evaluation Here we will describe a method that in the case of a
function and terminal set that do not have side-effects requires only a single pass
through the tree, regardless of the amount of data points. This method is by no
means new, in the numerical computation literature it is known as vectorized eval-
uation, and in effect this was used by Handley (Handley, 1994) to cache previously
performed computations. It is reviewed here, as it can be used without regard to
subtree sharing and caching and the bookkeeping necessary to implement these. It
has to the best of the author’s knowledge as such not been presented in the genetic
programming literature before. It can be implemented in practically any tree-based
implementation to speed up evaluation considerably.

Consider a classification or regression task where the function and terminal set are
purely functional by nature: there are no side-effects when evaluating a function
and there exists a large set of data points. The usual approach of evaluating a
tree on a data point is to recursively go down the tree to evaluate a single case.
Using recursion is however fairly slow compared to iteration. By vectorizing the
evaluation, all cases will be evaluated for each node in the tree. The tree is then
recursively traversed only once.

To illustrate the vectorized evaluation procedure, some C++ code is presented in
Figure 2.4. It assumes that each subtree has a node identification number and a
pointer to the children trees. It also assumes the existence of the auxiliary (global)
functions pop_container and push_container that dispense and re-take pre-
allocated containers from a (growing) stack and a function get_variable_values
that returns a container with the values for a specific variable for all cases. The
liberal use of the address operator can in C code be replaced by a pointer without
any difference. It is used here to simplify the syntax.

This evaluation function will return a container containing the output for all data
points. After the performance has been evaluated it can be re-used by using the
push_container function. Copying the variable values is wasteful, especially con-
sidering that terminals are often the most numerous elements in the tree. This can
be resolved by modifying the container storage functions to recognize the contain-
ers containing the variable values and subsequently refraining from using in-place
calculations. This is not done here as this would make the implementation more
involved then necessary. The vectorized evaluation presented here achieves its task:
it can evaluate a tree on an entire dataset with a single recursive traversal through
the tree. It does this at a cost of keeping a number of vectors proportional to the
depth of the tree. Replacing recursion by iteration in this way is expected to speed
up evaluation considerably on problems that use non side-effecting functions and a
limited number of conditional branching instructions. As traversing the tree is done
only once per evaluation, no special attention needs to be given to optimizing the
tree traversal routine. Most notably, the switch statement in the routine is only
executed once for every node in the tree regardless of the amount of data that is
manipulated.

It is maybe interesting to note that, when used with for example the bitset<size_t>
template class in the standard C++ library (Stroustrup, 1997)(pp. 492-496) as the
container class, this procedure is equivalent with sub-machinecode genetic program-
ming (Poli and Langdon, 1999). The bitset class implements optimized vectorized
logical operations on bitstrings stored parsimoniously in integers, and there is then
no need to manually implement evaluation and packing/unpacking procedures.

18 CHAPTER 2. GENETIC PROGRAMMING

container& Tree::evaluate()

{
switch(nodeId)
{
case plus :
{
container& cO = child[0].evaluate();
container& cl1 = child[1].evaluate();
// assuming a properly vectorized addition
// function defined on the container class
cO0 += c1;
// cl is not needed anymore
push_container(cl);
return cO;
}
// other functiomns
default : // assume this is a variable
{
const container& v = get_variable_values(nodeld);
container& result = pop_container();
result = v; // copy
return result;
}
}
}

Figure 2.4: C4++ snippet for performing vectorized evaluation. It assumes a properly
defined container class and a method of storing and retrieving a growing number of
these containers. In this example, the container class needs to be able to perform
vectorized evaluation, but this can also be done in the code itself.

2.5. SUMMARY 19

2.5 Summary

This chapter presented a very short introduction in genetic programming. For a
more thorough introduction into the subject of genetic programming, the reader is
referred to Koza (Koza, 1992) and Banzhaf et al. (Banzhaf et al., 1998). The main
focus in this chapter was in providing the bare essentials to understand the evo-
lutionary computation approach in general and genetic programming in particular.
The material describes a few concepts that will be used in subsequent chapters. A
few tricks and tips have been described here that have been developed for practical
applications employing genetic programming. These techniques involving wrapping
and vectorized evaluation have never made it into a separate paper and the oppor-
tunity of writing this thesis was taken to give them an audience.

20

CHAPTER 2. GENETIC PROGRAMMING

21

Chapter 3

Symbolic Regression

Although genetic programming can be used for various automatic programming
tasks, this text will focus on the induction of mathematical expressions on data.
This is called symbolic regression (Koza, 1992), to emphasize the fact that the
object of search is a symbolic description of a model, not just a set of coefficients
in a prespecified model. This is in sharp contrast with other methods of regression,
including feedforward artificial neural networks, where a specific model is assumed
and often only the complexity of this model can be varied.

The regression task can be specified with a set of input, independent, variables
x and a desireded output, dependent variable, t. The object of search is then to
approximate t using x and coefficients w such that:

t=f(x,w)+e

where € represents a noise term. With standard regression techniques the functional
form f is prespecified. Using linear regression for example, f would be:

fx,w) =wo +wiz1 + ... wpTy, (3.1)

Where the coefficients w are found using least square regression. In matrix form
this would read:

Flx, w) = wx
where the bias coefficient wy has been ommited for reasons of clarity. The nonlinear

technique of regressing a feedforward artificial neural network would introduce an
auxillary transfer function g (usually a sigmoid) and would use the mapping;:

f(X7 W) = Wqo g(whx) (32)

Here the coefficients w are usually called weights: wy, are the weights from the
input nodes to the hidden nodes and w, are the weights from the hidden nodes

22 CHAPTER 3. SYMBOLIC REGRESSION

to the output layer. Again bias weights for each layer in the neural network are
ommited in the equation. Due to its functional form, calculating the error gradient
for the weights of such an artificial neural network is straightforward and has linear
complexity in the number of weights.

In contrast with these techniques, genetic programming applied to the task of sym-
bolic regression does not use a prespecified functional form. It uses low-level primi-
tive functions. These functions can be combined to specify the full function. Given
a set of primitive functions taking one argument hq, ..., h,, and a set of functions
taking two arguments gy, . .., gy, the overal functional form induced by genetic pro-
gramming can take a variety of forms. The functions h and g are usually standard
arithmetical functions such as addition, subtraction, multiplication and division but
could also include trigonometric, logical, and transcendental functions. An example
function could be:

f(x,w) = hi(g2(g1(z3,w1), ha(z1)))

But any legal combination of functions and variables can be obtained. This partic-
ular function can be depicted in tree form as:

hy

Filling in some concrete primitive functions for the abstract symbols h and g can
lead to the tree:

sqrt

X

N
+ exp

P |
T3 Wy T

Or as an expression

fx,w) =+/(z3 +wy1)expx;

The object of search is then a composition of the input variables, coefficients and
primitive functions such that the error of the function with respect to the desired
output is minimized. The shape and the size of the solution is not specified at
the outset of the optimization (although typically a maximum size is given) and is
another object of search. The number of coefficients to use and which value they
take is another issue that is determined in the search process itself. The system is
also free to exclude certain input variables from the equation, it can thus perform
a form of dimensionality reduction. By the use of such primitive functions, genetic
programming is in principle capable of expressing any functional form that use these
functions: in particular given a sufficiently expressive function set, it is capable of

23

expressing a linear relationship such as in Equation 3.1 or a non-linear relationship
such as the artificial neural network in Equation 3.2.

Genetic programming is not the only system capable of inducing symbolic expres-
sions on data. A well known computational work on the induction of equations
on data is the program BACON (Langley et al., 1987). In contrast with genetic
programming, the BACON system explores the search space of possible expres-
sions using various heuristics. These take the form of numerical comparisons: if
for instance two terms (variables or already induced expressions) appear to increase
together, an expression will be considered that takes the ratio of the two terms.
Similarly, when one term increases while the other decreases and does this in a
non-linear way, the product between the terms will be considered.

The heuristics in the BACON system thus relate the numerical values between terms
with the symbolic manipulations that will be considered. It will thus produce an
expression where all the functions that are applied have this heuristic justification.
This presupposes that any mathematical relationship between sets of data can be
incrementally build using these heuristics. Furthermore, when the data is polluted
by noise, concepts such as jointly increasing or decreasing values become difficult
to measure. The application of the heuristics would then need further parameters
that need to be set with regard to estimates of the noise.

With genetic programming, the possible transformations are not limited to some
set of numerically motivated heuristics. As described in Chapter 2, the variation
operators are randomized, while the overall performance of a complete expression is
used as the guide to select expressions. The expressions that are induced in this way
then do not neccessarily have to abide some internal structure that is incrementally
justified. It is thus capable of performing ‘creative’ computations as long as that
decreases the error. This has as a drawback that the expressions that are induced
can become too creative, to the point that they are hard to understand.

A genetic programming system performing symbolic regression is thus required to
find the shape of the equation, the composition of primitive functions, the use
of input variables, the use and values of coefficients plus the complexity of this
composition all in a single optimization pass. Furthermore, no gradient information
is available about the composition of functions!, nor numerical heuristics on the
structure of the functions are employed. The only feedback the system receives is
the overall performance of a given expression on the data given some error function.

This is a daunting task and the question can be asked why one would try to find
an expression in such a way when alternatives such as artificial neural networks are
available. If one is purely interested in approximating some data, the expressive
power of genetic programming provides no immediate benefit over other methods.
For example: even though with the proper set of primitive functions the space of
artificial neural networks is only a subset of the expressions that can be induced by
genetic programming, it has been shown that a feedforward artificial neural network
of sufficient complexity can already approximate any mapping (Park and Sandberg,
1991). The question of which technique is more capable of optimizing some data
can then not be resolved a priori using the expressiveness of the methods as the
main argument. Any comparison would be empirical. It is then expected to find
cases where neural networks outperform genetic programming and vice versa.

IThough gradient information can sometimes be used to optimize the coefficients (Topchy and
Punch, 2001).

24 CHAPTER 3. SYMBOLIC REGRESSION

Even though the issue of expressiveness does not give an immediate benefit of
genetic programming over for instance artificial neural networks in the context of its
capability in approximating some data, this expressiveness is the main subject of this
text. In contrast with neural networks, genetic programming is capable of providing
answers in the symbolic language of mathematics, while artificial neural networks
can neccessarily only provide answers in the form of sets of numbers, weights, valid
in the context of a prespecified functional form (Equation 3.2).

This contrast between inducing symbolic expressions by genetic programming and
matrices of numbers by regression becomes more pronounced when approximating
the data is not the only object of search. In scientific discovery for example, ob-
taining some adequate fit is not enough. To fully incorporate some results in the
body of scientific work, it is neccessary that some form of understanding about the
expressions that are induced is achieved. The expressions thus need some further
justification before they can be used as models of the phenomenon under study.

3.1 The Concentration of Suspended Sediment

As a red thread through this work, the problem of finding an expression that predicts
and/or describes the concentration of suspended sediment near the bed of a stream
is used. Not only is this problem accompanied with some extra-ordinary high quality
data, it has been studied intensively by various researchers. This research has lead
to an empirical equation for this process that can be used as a benchmark equation.
Below, symbolic regression is used to obtain expressions that fit this data.

Background The bottom concentration of suspended sediment is a key param-
eter within the mechanics of sediment transport. Here the aim is to develop an
empirical formulation for the bed concentration ¢;, defined at an elevation of a few
grain diameters from the bed. This seems to be more reasonable from a physical
point of view then defining the reference concentration further from the bottom,
since already a few diameters away from the bed the sediment particles are kept
in suspension by the turbulence of the fluid rather than by grain-to-grain collisions,
and should therefore be regarded as sediment in suspension.

It is normally accepted that the profile of suspended sediment concentration is well
described by the Rouse (Rouse, 1939) distribution:

D—y a N
=c, | —= 3.3
¢ c(y D—@) (3:3)
in which
Ws
= 3.4
= (3.4)

In equation (3.3) ¢ denotes volume concentration of suspended sediment; ¢, de-
notes a reference concentration at a distance a above the bed; y denotes vertical
coordinate, measured upward from the bottom; and D denotes water depth.

3.1. THE CONCENTRATION OF SUSPENDED SEDIMENT 25

In equation (3.4) z denotes Rouse parameter; x denotes von Karman constant
(= 0.40); uys shear velocity; and w, settling velocity of suspended sediment.

If the value ¢, appearing in Equation 3.3 is known, the suspended load transport
can be easily found as:

D
0% = / e(y)uy)dy (35)

where u denotes flow velocity; and D water depth. The integration of Equation 3.5
was performed by Einstein (Einstein, 1950) who assumed the concentration profile
to be given by Equation 3.3 and a logarithmic variation of the velocity along the
vertical.

The concentration profile ¢(y) is usually calculated by accepting the diffusion con-
cept for suspended sediment. In steady uniform flow, this leads to a balance between
the downward settling of sediment due to gravity and the upward diffusion associ-
ated with turbulent fluctuations i.e.

Oc
wee + esa—y =0 (3.6)
where ¢, denotes diffusion coefficient for the suspended sediment, which is normally
taken to be proportional to the eddy viscosity of the flow e.

€5 = fe = Bruysy (1 — 2) (3.7)
D

where 3 denotes momentum correction factor. If the parabolic distribution of €,

given by (3.7) is inserted in (3.6), the profile of suspended sediment concentration

given by (3.3) can be obtained by direct integration. The Rouse number z is now

described by:

Ws
z= Y (3.8)

In the special case in which the reference level a in (3.3) is taken equal to the
distance from the bed to the lower limit of the suspended sediment layer §, the
reference concentration ¢, becomes equal to the bed concentration c;.

One major problem with regard to the bed concentration ¢, is the definition of
the distance §. Einstein (Einstein, 1950) suggested & to be of the order of twice
the grain size of the bed material d, and assumed the bed concentration to be
proportional to the concentration of bed load particles. Further analysis and sheet-
flow experiments showed that the thickness of sheet-flow later § increases with the
Shields parameter 6 according to:

5, = 100d (3.9)
where:
oo (3.10)
~ (s—1)gd '

where d denotes median grain diameter (usually indicated as d50); g acceleration of
gravity; and s relative density of sediment.

26 CHAPTER 3. SYMBOLIC REGRESSION

Data A total number of 10 data sets were utilized in the determination of ¢, (Guy
et al., 1966). The experiments consisted of a number of alluvial channel tests with
the aim to determine the effects of the grain size and of water temperature on the
hydraulic and sediment transport variables.

The tests were performed in two different flumes: the larger one was 8 ft (2.44 m)
wide, 2 ft (0.61 m) deep and 150 ft (45.72 m) long. lts slope could be adjusted
between 0 and 0.015, and the water discharge between 0 and 22 cfs (0-0.613 m?/s).
The smaller flume was 2 ft (0.61 m) wide, 2.4 ft (0.76 m) deep and 60 ft (18.29 m)
long. Its bottom slope could be varied between 0 and 0.10 and the water discharge
between 0 and 8 cfs (0-0.227 m?/s).

A different kind of sand was used for each set of the tests. The median size d varied
between 0.19 and 0.93 mm, while the geometric standard deviation o, (defined by
Equation 3.11) ranged from 1.25 to 2.07.

dss d50] (3.11)

”9:0'5[750%—16

where dso denotes median particle size of the sediment; and dyg and dg4 particle
sizes for which 16% and 84% of the sediment is finer by weight.

The hydraulic conditions of the individual tests were adjusted by changing the
discharge, the slope, or both, and the water and sediment were re-circulated until
equilibrium conditions were reached. A significant drawback of these data sets is
the limited range of water depth covered (from 0.06 to 0.41 m). Apart from that,
the tests comprise a wide range of situations, both from the point of view of the
hydraulic parameters as well as the bed materials used, the transport rates measured,
and the bed forms present, making them very attractive for the derivation of an
expression for the near bed concentration in pure current flow.

Table (3.1) summarizes the quantities used in the problem of determination of
concentration of suspended sediment near bed. It is interesting to observe that
only v, wy and dso represent ‘raw’ observations. Shear velocities u; and u} are
calculated on the basis of raw observations as:

Uf = \/m (312)

uy = +/gD'l (3.13)

where I denotes water surface slope; and D' denotes the boundary thickness layer
defined through:
v D'
— =6+25In-— (3.14)
uf kN

with v denoting mean flow velocity; and kxn bed roughness ~ 2.5d.

Human Proposed Relationship for Near-bed Concentration Generally, the
near-bed concentration of suspended sediment ¢, depends on: (i) the effective
shear stress exerted on the bed by the flow 7'; (ii) the characteristics of the bed

3.1. THE CONCENTRATION OF SUSPENDED SEDIMENT 27

variable description uom

v kinematic viscosity m?/s

Wi settling velocity m/s

dso median grain diameter m

g gravity acceleration 9.81m/s*

uf shear velocity m/s

u'y shear velocity related to skin friction m/s

Cp concentration of sediment near the bed dimensionless

Table 3.1: Units of measurement of the independent and the dependent variables
for the problem of determining the concentration of sediment near the bed.

material (size d, density ps); and (iii) the characteristics of the fluid (density p,
kinematic viscosity v). Application of dimensional analysis leads to the functional

relationship
_ 0.5
¢ = <9', lo(s = D™ wl)d] ,ec> (3.15)

where 6. denotes a critical value of Shields parameter for initiation of motion. It
should be noted that, for a given bed material, the fall velocity w can be uniquely
defined in terms of the kinematic viscosity v (which in turns depends on water
temperature) and of the grain size d, so that w in (3.15) can be effectively replaced
by vand T.

(Zyserman and Fredsge, 1994) followed an approach initially adopted by (Garcia
and Parker, 1991) for the selection of an expression for ¢;, namely

Azx"

=17 iz (3.16)

Co

where A, ¢,,, and n are constants and z a suitable combination of the independent
dimensionless parameters. The choice of the functional form (3.16) is driven by the
fact that ¢, becomes zero when z does as well as ¢, converging to the limiting value
cm for high values of x.

The fitting (Zyserman and Fredsge, 1994) yielded values A = 0.331, ¢, = 0.46
and n = 1.75, resulting in

331(8" — 0.04 1.75
o — 0.331(6" — 0.045) (3.17)

1 + 06.34361 (9/ _ 0'045)1.75

The proposed relationship compares well to values of near-bed concentration ob-
tained from independent data sets. It also provides an improved accuracy over
similar expert-generated expressions and is universally regarded as the formulation
describing the concentration of suspended sediment near bed.

28 CHAPTER 3. SYMBOLIC REGRESSION

3.2 Symbolic Regression on the Sediment Trans-
port Problem

Straightforward application of symbolic regression The data in the sediment
transport problem are accompanied with units of measurements that describe the
various data fields. In standard regression, dimensioned variables cannot be used
without any pre-processing. Usually one employs some form of pre-processing, be
it applying Buckingham's II-theorem (Buckingham, 1914), or creating an ad-hoc
set of dimensionless values using the original data. It is also possible to scale
the variables to unit variance, by calculating the standard deviation and divide the
original measurement by this value. As the standard deviation of a measurement is
stated in the same units as the measurement itself, this scaling will render the pre-
processed data dimensionless. Any form of manipulation is subsequently formally
allowed.

Here we use the data as is to be used for genetic programming. To meet the formal
requirements (but not the intent) of modelling using units of measurement, it is
simply assumed that the data is divided by a constant of magnitude one stated in
the same units as the original data. This conveniently avoids the issues of dealing
with units of measurements which will be tackled in later chapters.

After dividing the data in a training set and a test set, a genetic programming system
is applied that tries to find an expression that fits the data. The language consist
of the observations {v, ws,d50,uf,u’f}, and additionaly the gravity acceleration
constant g set at 9.81m/s2. Also including arbitary constant values, the full terminal
set is described by:

T = {Va wsad507uf7u‘lf7g7R}

The function set is:

F = {plus/2, times/2, minus/2, divide/2, sqrt/1}

Using a standard genetic programming setup, using 50 independent runs, the best
fitting expression on the training set was:

¢y ~ 0.284 ((u} — ws)3 (uf —9g) (g +

(g +13.0 (ws + g3u; wsup " <g + —

-1

!

qgu
u}—11.37f‘—g2 g+ | dso +

2
(1= w.)

3.2. SYMBOLIC REGRESSION ON THE SEDIMENT TRANSPORT
PROBLEM 29

A few observations can be made at this point. The solution produced by symbolic
regression on the raw observations presented above is very complex. It manipulates
the variables in a variety of intractable ways, using high order polynomials and
repeated square roots. If we were to complicate things by adding trigonometric and
transcendental functions, the genetic programming system would quite likely find a
way to use this enhanced expressive power to obtain a better fit on the training data.
It is quite likely that the net result would become an even more incomprehensible
set of manipulations.

Another problem with this equation is that it does not use the units of measurement
properly. No information about these units was given, and it is would have been
quite unlikely to get a dimensionally correct result. However, the absence of the
dimensions makes the equation even harder to comprehend.

Pre-processing An approach more in line with the practice in physics is to pre-
process the variables to render them dimensionless. Applying the II-theorem using
the variable ds5o and the constant g to perform the transformation, it is possible to
reduce the number of independent variables by using the transformation:

mo= wedidPgTO
T = updy 0ty
my = uhdsdtg 0P
ma = vdgPg0s

As ¢y is already dimensionless no pre-processing needs to be done on this variable.
Running a genetic programming system using the 7 variables as input produced as
the best expression:

Cp R
Ty (7 (326275 — 7)Lwr S, s (s 4342 — 109707, ——
3 3 3 s 2 Ty 3 2 : - 2 4\/ﬂ
—1) -1
s s —my+ 7+ e +mTg Ty
o 71'4 4 o ./71'3(2’/T3—71'1+’/T4) 3 4738
-1
T2 /T3 /T3 T3 -2
<77T4 —m) (71'3 + T2 /T3 <W3+7r27r4> my >
(w3 +0.054m52) ™" (57.1m5 1 +33.3 = 6.6 (my + 1)
T2 -t - 1 (571—7‘(’3) 71'23
2 _ = —1 . _ 2
< 4 7r3> 4 > < T3 +7r4 mg (72 + 0.54) T2y

—1
B 1 1 S\
57.1 1 433.3-932 — - 8.81
< T+ - 7T1> — (mg —my +) > >

30 CHAPTER 3. SYMBOLIC REGRESSION

Datasets Zysermann & Fredsge SR (Raw Values) SR (II-theorem)

train 0.051 0.038 0.035
test 0.047 0.047 0.054
train + test 0.049 0.041 0.046

Table 3.2: Comparison of the benchmark formulation produced by scientists and
the formulations found by symbolic regression (SR) using the raw values or the
pre-proccesed values. The error measure that is used is the Root Mean Squared
Error (RMS). The benchmark formulation was induced using all data, the split in
test and training set presented here was used in the symbolic regression experiment.

This equation is also extremely complex, quite possibly unneccesarily so. Although
the equation is dimensionally correct, it is such by virtue of the inputs being dimen-
sionless. All arithmetical operations are then allowed. To interpret this expression,
an additional translation needs to be performed, where the variables are translated
into their original definition.

In these two experiments it was not attempted to reduce the complexity of the equa-
tions. Genetic programming practioners often use some form of parsimony pressure
to influence the size of the solutions (Zhang and Mihlenbein, 1994; Zhang and
Miihlenbein, 1996; Iba et al., 1994; Zhang, 2000; de Jong et al., 2001). This might
help somewhat, though the main problems of the two experiments — ignorance of
units, or extensive pre-processing — will remain.

Even though is not clear what data is used to induce Equation 3.17, a compari-
son on the performance on the different sets used in the experiment is presented
in Table 3.2. The performance of human induced equation, which uses Shield's
parameter #’, comes from the fact that this particular variable is already highly cor-
related with the concentration. Performing a linear regression on 6’ alone produces
an expression that has a RMS error of 0.050, slightly worse than the performance
of the benchmark equation 3.17.

3.3 Summary

Using symbolic regression alone does not seem to help much in providing inter-
esting hypotheses in this domain. When using ‘raw’ observations, the resulting
expression can become very complex very easily. No attention is given to the units
of measurement, it merely presents a numerical recipe to map input numbers to a
predictive value. This prediction might be good or bad, depending on some statis-
tical estimate of the generalization error. The expressions that are produced might
be symbolic, the language that is used seems to be alien: it does not give the user
much information about the process underlying the data.

Relying on dimensionless values does not help either. It has the same problems with
the complexity of the solutions. In effect, the dimensionless values help to further
obfuscate the relationships found by their reliance on an extra translation step.

Although the ability to fit the data is reasonable, the symbolic regression runs do
not add much to our understanding of the problem. It thus presents a similar
black-box model similar to those produced by artificial neural networks. The only

3.3. SUMMARY 31

approach that seems to be feasible is to attempt to control the size of the solutions
so that short solutions are produced. Analyzing such short solutions might be pos-
sible, though then still interpretation needs to be performed mainly using numerical
arguments. This is not much different from interpreting a small artificial neural
network.

In the case of the sediment transport problem, the Shield’s parameters that were
provided were highly correlated with the target variable, on their own they already
provide a robust estimate. Often however, formulating such a parameter is exactly
the object of search.

32

CHAPTER 3. SYMBOLIC REGRESSION

33

Chapter 4

Induction of Empirical
Equations

Suppose that we are given the task to model an unknown or poorly understood
system. In such situations a logical starting point is the design of measurement
campaigns and the collection of data. One usually measures forcing variables (the
ones that are outside the system) and simultaneously the response of the system in
view of the change of the state of the system (state- or internal variables), and the
change in corresponding output of the system (resulting functions). After enough
data of sufficient quality are collected, one can attempt to identify the system.
Then, three possible scenarios can occur (Kompare, 1995):

1. Nothing useful can be concluded from the observations. This can happen
if the measuring campaign was poorly designed, or nor carried out over a
sufficiently long period of time, or if relationships among variables simply do
not exist. More measurements, or redesigned more elaborate observations are
needed to improve the situation.

2. Sometimes we may end up with a statistical, black box model. With this
category of models we will be able to predict the proper behaviour of the
system, although we will not be able to characterize its intrinsic structure and
behaviour. In other words, we will be able to say what the model does, but
not how. In addition to this, we will not be able to guarantee the behaviour
of such model in regions not covered by the data from which the model
was constructed. This is due to the fact that the model covers only the
relationships found within the given data.

3. In some cases we may be able to recognize patterns within the data and
form from these patterns inference about basic processes in the observed sys-
tem. After repeated measurements we should be able to develop a conceptual
(mechanistic) model. Such a model is a so-called white box, or transparent
model and we should be able to say what the model describes and how its
performance is achieved. Due to the conceptual background of the model, we
are much more certain that the model will represent reality. This also helps
when using the data out of the range in which model was constructed.

34 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONS

Quite obviously, the likelihood of us being able to construct a conceptual model for
an unknown or poorly understood system increases with both the quality and the
quantity of the observed data. To make the most of some experimental data, it is
generally desirable to express the relation between the variables in a symbolic form:
an equation. In the view of the approximate nature of this functional relation, such
an equation is described as empirical. No particular stigma should be attached to
the name since many ultimately recognized chemical, physical and biological laws
have started out as empirical equations.

Sciences devote particular attention to the development of a symbol system, such
as a scheme of notation in mathematics, together with more refined representations
of physical and conceptual processes in the form of equations in the corresponding
symbols. Each equation can be regarded as a collection of signs, which constitutes
a model of an object, process or event. Data, on the other hand, remain as mere
data just to the extent that they remain a collection of signs that does not serve as
a model.

From this point of view, the induction of an equation within a symbol system repre-
sents a means of better conveying the meaning or semantic content encapsulated in
the data. Induction of an equation corresponds to finding a model. In this process
the information content is very little changed, or even unchanged, but the meaning
value is commonly increased immensely. Since it is just this increase in meaning
value that justifies the activity of substituting equations for data, there is a great
interest in processes that induce equations from data.

Chapter 3 showed that the use of symbolic regression as such does not provide this
increase in meaning value directly. The interpretation of the symbolic expressions is
hindered by the size but even more by the seemingly arbitrariness of the computa-
tions that are performed. The system that produces these expressions is only guided
by numerical measures such as the error it makes. The computations that are per-
formed inside the expressions are then tailored to get this error down in whatever
way possible. With symbolic regression there is no explicit means to create expres-
sions that can be interpreted by a scientist, and no means to justify the use of the
expressions that transcends statistical statements about the performance. Without
such means, interpretability of the expressions is coincidental. What is needed is a
method that can help in the interpretation of the expression and the sub-steps that
are taken in the computation. If the computation defined by the expression can be
related to the physical process that it models, it is possible to consider it a hypoth-
esis of the system, instead of a black box. The method to aid in this interpretation
that is considered here is the use of units of measurement.

Throughout science, the units of measurement of observed phenomena are used to
classify, combine and manipulate experimental data. Measurement is the practice
of applying arithmetic to the study of quantitative relations. Every measurement
is made on some scale. According to Stevens, to make a measurement is simply
to make ‘an assignment of numerals to things according to a rule — any rule’
(Stevens, 1959). There is a close connection between the concept of a scale and
the concept of an application of arithmetic. Units of measurement are the names
of these scales. Simple unit names such as ‘kilogram’, ‘second’, 'degrees are used
for fundamental and associative scales. Complex unit names, such as ‘kg m s=!'
are used for derivative scales.

35

Common methods for finding equations based on data usually involve a dimensional
analysis (which attempts to remove issues of scale) and subsequent curve-fitting
by hand or automatic means. An example of this was given in Chapter 3. Here it
is suggested that an approach in which the dimensions — physical units of mea-
surement — of the data can be used as an additional source of information in
order to help creating expressions, as well as checking their validity and usefulness.
Rather than ignoring dimensions altogether, or proposing dimensionless formulae
(i.e., expressions based exclusively on dimensionless numbers), the objective is to
create fully dimensioned formulae. It is postulated that such formulae can be easier
interpreted. Then, if a fully dimensioned expression is obtained, it can provide a
basis for the creation of a mechanistic, white box model.

Using units helps in transforming physical concepts into mathematical expressions.
If a physical concept or physical manipulation is sensible and numerically analogous
to some application of arithmetic, the substitution of the resulting equation to better
describe the data is justified. The reverse is however not necessarily true: not every
application of arithmetic on measurements is rooted in physical reality. For example:
the addition of the lengths of two sticks can correspond with a proposal to combine
the sticks to form one longer stick. The results produced by the addition then
describe the length of the combined stick. In an experimental situation this might
or might not be a sensible proposal. Dividing the two length of these sticks can
have a variety of interpretations: it can correspond with the sine of the angle the
two sticks make in the case the sticks are part of a triangle, but it can also be an
operation to normalize the lengths in the case they are independent measurements.
Without reference to the physical experiment that is described, it is impossible
to determine the exact meaning of such an application of arithmetic. Relating a
dimensioned formulation to the physical experiment is then the role of the human
user. The dimensioned formulae are tentative proposals: the units of measurement
that are manipulated by the formulae form a guide to their interpretation.

To achieve the goal of creating fully dimensioned formulae, genetic programming
is used. One of the advantages of genetic programming over other methods for
regression is the symbolic nature of the solutions that are produced. In the nat-
ural sciences for instance, a symbolic answer in a language the user understands,
mathematics, provides a great benefit over methods that produce coefficients in a
prespecified model. This is especially pronounced in empirical modelling of unknown
phenomena where an underlying theoretical model does not exist. As was shown in
Chapter 3, the solutions produced by genetic programming can not be interpreted
at all times. The size of the solutions produced can hinder interpretation, while
setting the size to low limits can hinder the search efficiency.

The goal of this approach is simple: to create a genetic programming system that
produces equations that are easier to interpret by domain specialists. The system
is thus applied to the area of scientific discovery. The GP-produced equations
are supposed to form a set of hypotheses in and about the domain, stated in
the symbolic language of equations. Rather than producing black-box solutions to
problems, the aim is to provide statements where the units of measurement help in
interpreting the expression and ultimately help in forming an enhanced view of the
problem.

36 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONS

Operation Type

Addition /Subtraction ([z,y] = [z, y] = [z,9])
Multiplication ([z,y] = [v,w] = [z + v,y + w)])
Division ([2,y] = [v,w] = [z — v,y —w])
Square Root ([z,y] = [2/2,y/2])

a ([z,y] = [0,0] = [cx, cy])
Transcendental Functions ([0,0] — [0,0])

Table 4.1: The type system defined by the physical units of measurement. It defines
constraints in the case of addition and subtraction where the units of the operands
need to be the same, in the case of trigonometric, hyperbolic, exponential and many
other functions the units of the operands need to be dimensionless. Multiplication,
division and the square root function are always defined, but introduce arithmetical
manipulations on the types. Finally, the power function a® is only defined when the
second operand is a constant, whose value will influence the output type. Here the
actual value of the expression influences its type.

4.1 Units of Measurement as a Type System

Consider a variable v measured in units L*TYM?#* where L, T and M are the
dimensions of length, time and mass respectively and x, y and z the corresponding
exponents. When one of the exponents is unity and the other exponents zero, the
unit of v is referred to as a base unit. When all exponents are zero the unit is
called dimensionless. In all other cases we speak of derived units. Furthermore,
vector notation for the units such that u = [z,y, 2] is used to denote the vector
of exponents. This vector of exponents contains all information necessary to make
statements about the units of measurement of variable v.

For example: u = [1,—2,1] defines a derived unit of force, whether it is measured
in kg m/sec® orin Ibs ft/sec?. Although in this paper the Sl units of measurement
are used, other units such as for example income per capita can also be defined. For
notational convenience a smaller system, consisting of two physical dimensions is
used below (Table 4.1). This generalizes trivially to arbitrary numbers of dimensions,
physical or otherwise.

The term type system is used to refer to the combination of type specifications
of variables and constants together with the type specifications of the operators.
The notation for this type system is borrowed from the typed A-calculus, in which
(T' — U — V) denotes a function that requires two arguments of type T" and U and
returns a value of type V. The types in the units of measurement (uom) system
are then real valued vectors.

The constraints on the mathematical operators involved in uom problems are spec-
ified as follows: each operator can impose constraints on its operands (for instance
equality requirement in the case of addition) or it can specify manipulations in or-
der to produce the output type from the input types as for example in the case of
multiplication. Several constraints and manipulations are defined within the uom
system as specified in Table 4.1.

Along with the definition of the independent and dependent variables and possibly
typed constants, this type system defines an uncountably infinite number of types,

4.2. LANGUAGE, BIAS AND SEARCH 37

where any real-valued vector of the appropriate size is a data type in its own right.
If all variables and constants are dimensionless, the language reduces to an untyped
language. In this case, no manipulations can introduce non-zero exponents.

The existence of derived units makes this type system more complex than the type
systems usually used in computer languages: these define only base types such as
float, int and string, the only way to combine them is to put them in structs
or tuples.

4.2 Language, Bias and Search

With defining the type system for the units of measurement, a language of ex-
pressions in this type system is defined. Several routes can be taken at this point.
The most obvious is to implement this type system in genetic programming in such
a way that the system will only induce expressions that are dimensionally correct.
This is the area where Strongly Typed Genetic Programming is employed. Below
a review of such systems is presented, together with some argumentation on how
many of the existing systems are either not powerful enough to express the language
of dimensionally correct expressions, or why they are not expected to perform well
on this particular problem domain. This discussion leads to the formulation of a new
strongly typed genetic programming system which is fully described in Chapter 6.

However, strictly abiding the constraints imposed by this type system might not be
the most appropriate approach to create useful expressions i.e., workable hypothe-
ses that provide maximum insight into the problem. Although ‘getting the units
right’ has been hammered into many scientists and engineers, it is important to
consider that with the automatic induction of expressions based on data and units
of measurement it is not tried to induce scientific law from examples, or even to
make a statement about cause and effect. The goal is to create a good performing
expression that helps in the analysis of causes, an enhanced conceptualization of
the problem, which might ultimately form the basis of a new empirical law. This
law should be proposed by the domain expert however, as the hypothesis generation
engine envisioned here can only provide expressions; not justifications.

Interpreting arithmetic applied to measurements is not clear cut. A mathematical
operation can apply to many things which are difficult, if not impossible, to interpret
as a realistic description of a physical process. Above, examples were given about
the possible meanings a simple division of two length measurements can have:
depending on the experimental layout of the measurements this division operator
can indicate a measurement of the sine of an angle or a simple normalization. The
same holds for other operations. Although the units of measurement provide some
information about the use of the variables, applying arithmetic on those variables
needs further justification that goes beyond formal means.

Modelling using units of measurement balances on the border between causative
modelling and modelling by association. As any statistical textbook warns: cor-
relation does not equal causation. Trying to reduce the error for some model is
just a particular form of maximizing correlation between a model and a dependent
variable. Limiting the independent variables to forcing variables and including the
units of measurement in the search might include some causative element in the

38 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONS

search. However, restricting the class of sentences that might be produced to those
that abide all the restrictions in the measurements might miss out on important as-
sociations between measurements. Even more, a formally correct manipulation can
be meaningless. Taking the arc tangent of a ratio of two weight measurements will
formally produce an angular measurement, but there is no physical interpretation
of the angle between two weights.

Because model induction is used in areas where no predictive theory exists !, it
can not be established that everything that is measured is relevant in exactly the
form (units) that it is measured in. It might turn out that a certain measurement
is associated with a related property of the problem, stated in different units. For
example, a measurement in length units might be best used as if it was stated in
surface units — simply because the measured value determines the value along one
axis of a surface variable, while the value along the other axis is constant. Such
a variable stated in length units would then be proportional to the unmeasured
surface variable. By strongly abiding to the units in the problem, such a use of this
variable will never be considered, possibly leading to the premature conclusion that
the particular set of measurements is useless.

One particular solution to these kind of problems is to introduce constants stated
in arbitrary units. Then it is possible to multiply the example variable measured in
length units with a constant value stated in length units to obtain the desired mea-
surement in surface units. This will however defeat the entire purpose of modelling
using units of measurement: the units of any measurement can then be trans-
formed to any other unit by multiplying it with an appropriate constant. We can
even perform this as a pre-processing step, leading to a symbolic regression set up
as presented in Chapter 3.

As a formal system, the use of units of measurement poses a few more problems.
Given the existence of constants stated in arbitrary units it is easy to trivialize dimen-
sional correctness by making liberal use of these constants. If arbitrary dimensioned
constants are absent, it is quite likely that modelling will not succeed as experimen-
tally collected data cannot vary or measure everything that is relevant. Any given
measurement might be indicative for a range of units. A variable stated in length
units might be proportional to a rectangular surface if the other axis of the rectangle
is kept constant. Likewise, a set of length measurements can be proportional to a
set of velocity measurements if all experimentation is performed using a fixed period
of time. The details on the possible roles a single variable can take is determined by
the physical setup of the experimentation and can be hard to exhaustively specify
beforehand.

The use of a dimensionally (more or less) correct expression can however be great for
the scientist. By balancing dimensions, an expression stated in some particular units
can point to phenomena in the problem that are not obvious. By analyzing such
formulae, the scientist might be able to update a mental picture of the phenomenon
under study and gain new insight. This analysis needs to be performed with respect
to the way the data is produced: the experimental setting. This setting is only
present in a watered down form for the model induction engine, in the form of units
of measurements.

Abiding rigorously to the units of measurement implements a declarative bias. As it

LIf such theory did exist, we would not bother performing predictive modelling.

4.3. TYPING IN GENETIC PROGRAMMING 39

involves a type system, this particular form of bias is called semantic bias (Muggle-
ton and Raedt, 1994). A declarative bias imposed on a language reduces the set of
sentences that can be derived: it thus restricts the search. It is however not a priori
guaranteed that this bias is justified in a set of empirically collected data. It was
attempted to show that a declarative bias to using only the units in the experimental
setup can be misleading in at least two ways: dimensionally correct expressions are
not guaranteed to be meaningful, as not all formally allowed arithmetic operations
will have a physical interpretation; and formally incorrect expressions can be mean-
ingful when a measurement is associated with another phenomenon to which it is
proportional.

To also investigate formally incorrect expressions, it might then be worthwhile to
examine ways of guiding the search rather than restricting it. Changing the search
to make it more likely that a certain class of sentences is produced is called imple-
menting a preferential bias (Muggleton and Raedt, 1994). A system that uses a
preferential bias towards dimensionally correct expressions is presented in Chapter 5.
It is hypothesized that such a system — which allows errors in the units to occur
— provides a more fertile ground for the ultimate goal of modelling using units of
measurement: understanding the data better by analyzing expressions that fit the
data well.

Apart from the possibility that formally incorrect expressions can provide additional
information, the use of a preferential bias might also help simply as an enhance-
ment of the search capabilities of the system — even when ultimately only correct
expressions are considered.

4.3 Typing in Genetic Programming

Strongly typed genetic programming (Montana, 1995) was the first of many ap-
proaches that constrain the allowable programs in genetic programming by means
of a type system. The purpose of a strongly typed system is to make only those
programs well-formed that are type correct. It thus attempts to reduce the search
space to the space of correctly typed programs. It thus introduces a declarative bias
in the search space.

Tree Based GP Montana's work introduced the concept of a generic function in
genetic programming. A generic function is well-defined over all or a well-defined
subset of available types. As an example: in Table 4.1, the constraints on the uom
type system are defined as generic functions.

Strongly typed genetic programming aims at initializing and maintaining a popula-
tion consisting of correctly typed programs. The goal is to optimize the programs
with respect to some objective function. When these programs are represented
as trees, most effort is devoted to defining a suitable initialization routine and a
strongly typed subtree crossover.

Several approaches have followed upon this work. The following are discussed here:
context free grammars (point typing) (Gruau, 1996; Whigham, 1996a), paramet-
ric polymorphism (generic typing) (Yu and Clack, 1998), inheritance (subtyping)

40 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONS

(Haynes et al., 1996), and logic grammars (Wong and Leung, 1997). These ap-
proaches share the use of a tree representation in order to store the program along
with the type information, together with the definition of variational operators
that manipulate this tree representation. Most notably, a strongly typed subtree
crossover is defined that exchanges parts of the programs while keeping the type
information in the tree up to date and correct.

Developmental GP As an alternative to using trees as the representation, de-
velopmental approaches have been proposed (Banzhaf, 1994; O'Neill and Ryan,
2001). Here linear strings of bits or integers are maintained, that are mapped into
an expression using some derivation process. Developmental GP makes a distinc-
tion between an untyped genotype — the string — and a typed phenotype — the
derivation tree and ultimately the expression generated by the string.

In contrast with tree based approaches, the variational operators in developmental
GP are simple and untyped: the string representation is directly manipulated and all
issues concerning typing are handled in the derivation process. These systems are
strongly typed as they only produce correctly typed expressions. The main difference
with tree based approaches lies in the absence of strongly typed variation operators.
String based systems can employ syntactic constraints such as context free gram-
mars (CFGs), whose content is a disjunction of production rules. This implements
a declarative bias in the form of a syntactic bias (Muggleton and Raedt, 1994).
Recently however, grammar-based approaches have been successfully extended to
use logic programs (Keijzer et al., 2001a) that can model context-sensitive infor-
mation. Chapter 6 is devoted to the introduction of this logic programming based
developmental system.

4.4 Expressiveness of Type Systems

A context free grammar (CFG) can implement only a limited type system, and there
is no notion of generic functions. Because of this, a CFG needs a separate symbol
for each type in the grammar. This is called point typing. As an example, consider
the usual arithmetical function set and two terminals, x and y. The set of parse
trees can be defined by the context free grammar:

Grammar 1 A Lisp-style grammar using a single type:

<expr> ::= x |
y |
(sqrt <expr>) |
(+ <expr> <expr>) |
(* <expr> <expr>) |
(- <expr> <expr>) |
(/ <expr> <expr>).

where the CFG symbol <expr> is of type double. The types and arity of the
function set are hidden in the production rules for <expr>. An equivalent grammar

4.4. EXPRESSIVENESS OF TYPE SYSTEMS 41

treating 7" and F' as terminal symbols which produces sentences in a more C-style
language is:

Grammar 2 A context-free grammar for symbolic regression:
<expr> ::= <terminal> |

<mon_op> (<expr>) |
(<expr> <bin_op> <expr>).

<terminal> = x| y.
<mon_op> 1= sqrt.
<bin_op> = + | x| -]/

The type system indirectly implemented by this grammar is defined as: <expr> and
<terminal> are of type double, <mon_ op> is of type (double — double) and
<bin_ op> is of type (double — double — double). By adding more symbols,
other types can be incorporated in the grammar. Customarily, the <terminal>
symbol is defined as a separate symbol from the <expr> symbol even though they
have the same type.

There is no apparent benefit for preferring one grammar over the other. In the
literature, Koza-style genetic programming uses (albeit implicitly) the first, while
users of CFG based genetic programming seem to prefer the second (Whigham,
1996a; O’Neill and Ryan, 2001). Although the use of different grammars can result
in a radically different performance, it is in general not possible to choose an optimal
or even a good grammar in advance.

Although a context free grammar can be used to specify the syntax of an arbitrary
computer language, the importance of such syntactical issues is very limited. In
contrast with parsing, generating sentences in a specific computer language is trivial
when the computation that needs to be performed is represented in an unambiguous
format. A parse tree is such a format. If pure syntactical issues — such as where
to put a semi-column — are hardly relevant, why are context free grammars in
common use in genetic programming?

One reason for using context free grammars is to implement a type system that
can be used to constrain the expressions that can be produced. When the function
set is composed of — say — logical functions and arithmetical functions, a context
free grammar can be used to make sure that boolean and real-valued types do not
get mixed. The type system that can be implemented with a context free grammar
alone is however severely limited as each type needs to be represented by a set of
production rules.

Another potential benefit in using context free grammars was identified by Whigham
as the possibility of changing the bias of a genetic programming system by chang-
ing the grammar, while leaving the language (the set of possible sentences that can
be expressed) intact (Whigham, 1996b). As it is difficult to find a good grammar
in advance, Whigham experimented with changing the grammar during optimiza-
tion (Whigham, 1996a).

42 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONS

Context free grammars are not well suited to model the uom system. Since there is
an uncountably infinite number of types present in the uom system, a full specifica-
tion is impossible. There have been implementations for a subset of the uom system
(Ratle and Sebag, 2000), where all integer units in the range [—2, 2] have been mod-
elled using the restricted function set of {+,x,—,/}. Since this gives 5 different
types per dimension, a full specification of the grammar (excluding functions such
as sqrt) for a problem stated in LTM requires 5% = 125 different symbols, each
having many rules (for example, the multiplication and division operators requiring
up to 125 rules per type):

<exp-in_0.0.0> ::=
(<exp_in_ 0_.0_0> * <exp_in 0.0_.0>) |
(<exp_in_1 0 0> * <exp_in -1.0.0>) |
(<exp-in_2.0.0> * <exp-in_-2.0.0>) |

[followed by 122 more definitions for multiplication].

Due to the tediousness of writing such a grammar by hand, (Ratle and Sebag,
2000) used a grammar generation routine. A more detailed discussion of the effec-
tiveness of such a grammar in combination with a strongly typed subtree crossover
is postponed until Section 4.5.

Typing through inheritance (subtyping) is more expressive than using CFGs. The
approach is used in modern Object-Oriented languages and in its most basic form
models an is-a relationship. Although existing, the support for generic functions
is limited. For example suppose that a base type object is defined as well as two
derived types integer and float. To define a generic list, in the subtyping approach
one would need to create a type object_ list?. It is now possible to add integers and
floats to the list through their ancestor object. When retrieving an element from
this list however, one retrieves something of type object, rather then an integer or
float. In general a runtime check must to be performed in order to determine the
type of the object. If the goal is to create a list of integers, a whole new type
integer_ list needs to be defined, duplicating the functionality of the object_ list. As
the uom system requires generic functions where the actual type of the operands
is required to calculate the output type, the subtyping approach seems not to be
suitable.

Strongly typed GP through parametric polymorphism (generic typing) (Yu and
Clack, 1998) is modelled on the basis of modern functional languages such as
Haskell, that have their roots in the typed A-calculus. It presents a complete type
system where type variables and thus generic functions play a prominent role. For
the previous example, given two types integer and float, it is possible to define a
generic list by the type specification [T'], where T' denotes a type variable, or pa-
rameter (hence the name parametric polymorphism). A function cons can easily be
defined to be of the type (T' — [T'] — [T']), meaning that the first argument is of
type T', the second argument a list of T's and it returns a list of T's. A unification
procedure infers the types in the tree generation routine, and ensures that for exam-
ple no float can be added to a list of integers. Parametric polymorphism enhanced

2In fact, the Java language gives such a list-of-objects in its standard library.

4.5. TYPED VARIATION OPERATORS 43

with type arithmetic is well suited for implementing a strongly typed version of the
uom system. In this paper logic programming is used in order to implement this
type system.

Similarly to context free grammars, logic grammars do not form a type-system per
se, but rather a definition of a (computer) language. Logic grammars are more
powerful than context free grammars since additional — semantic — information
can be manipulated as well. A logic grammar is usually translated into a logic
program that can parse and generate sentences in the language. Chapter 6 will
introduce a system for performing strongly typed genetic programming on logic
programs directly.

4.5 Typed Variation Operators

Most strongly typed genetic programming systems rely on strongly typed crossover
operators that attempt to keep the expressions correct at all times by only swapping
type-compatible sub-expression. Two a priori arguments in favour of relaxing the
type constraint for the variational operators are identified here: a general argument
involving ergodicity of the search space and a specific argument involving loss of
diversity for subtree crossover.

4.5.1 Broken ergodicity

Strongly typed genetic programming systems vastly reduce the size of the search
space (Montana, 1995) by excluding all but correctly typed formulations. For enu-
merative or random search this considerably accelerates the search process. How-
ever, for algorithms utilizing some notion of a neighbourhood, a reduced search
space may be detrimental, especially when the resulting space is fragmented with
respect to the neighbourhood function. In the case of simulated annealing for in-
stance, an a priori requirement for global convergence is that the search space is
ergodic: any point in the search space needs to be connected to any other point in
a finite number of steps. When this condition is not met, the search method is said
to suffer from broken ergodicity (Palmer, 1982). Broken ergodicity implies that the
results strongly depend on the initial conditions. The apparent focus on ‘proper’
initialization in the genetic programming literature already points at the existence
of a problem.

As an example of fragmentation, consider the uom system with strongly typed
subtree crossover and mutation. For example, let us consider a node that adds two
velocities [m/s] +[m/s]. Both of the velocities are calculated in subtrees below the
addition node. Once these types are instantiated, subtree crossover and mutation
are forced to treat the arguments of the addition as velocities. The variational
operator cannot change one of the arguments to, say, a subtree stated in units of
length as this would produce an inconsistent tree. There is therefore no path to
incrementally transform the addition of velocities to an expression stated in other
units, no matter how beneficial for the performance of the expression this might be.
The system is always forced to treat the expression as being a statement in velocity
units.

44 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONS

Using strongly typed variation operators, all changes to an expression (be it using
crossover or mutation) are made in the context of the types present in the unchanged
part of the expression. This has the potential to lead to a strong dependence on
the initial population, where the typing structure of the best performing expression
determines a template the rest of the optimization has to conform to. As this
template is chosen relatively arbitrarily (it is chosen on the basis of a limited sample
of randomly generated programs that might have undergone only a few rounds of
selection and variation), this can have a strong impact on the ability to search well.

4.5.2 Loss of diversity

Another problem for tree-based genetic programming in the context of a type-
system lies in the availability of genetic material (subtrees) to be recombined using
strongly typed subtree crossover. Consider a system based on a tree-based strongly
typed approach, using strongly typed variational operators working on a type-system
containing 7" types (or a context free grammar with 7' non-terminal symbols). Since
a strongly typed subtree crossover only swaps subtrees of the same type, the code
base of subtrees present in the population is effectively partitioned into 7 different
subspaces: one for every type. There is also only a limited capacity of types that
can be present in any one individual due to limitations of size.

Although strongly typed subtree crossover is capable of creating new subtrees, it is
usually not capable of creating new types: exchanging material of the same type will
generally not change the type of the node above the exchange spot. An exception
is the exponentiation rule (see Table 4.1) where the value of the constant influences
the type. Exchanging constants with different values will change the type of the

expression, potentially leading to a type error>.

Due to the effects of repeated selection and subtree duplication by subtree crossover,
it can be expected that number of distinct subtrees for any one type will be only a
small fraction of all available subtrees (Keijzer, 1996). The mutation operators are
then solely responsible for introducing new types in the population, leading to the
expectation that subtree crossover will loose its effectiveness during the run.

4.6 Summary

This chapter lays some groundwork for the chapters that follow. The goal and
method of this thesis is identified: making the equations produced by genetic pro-
gramming more suitable for analysis and interpretation by the use of units of mea-
surement as a type system.

The system of units of measurement is defined in the notation of the typed A-
calculus, where the units are described by a vector of exponents. These vectors
form the types in this system. Because the number of types as such is uncountably
infinite, simple type systems cannot cater for this level of expressiveness. It was

3When using context sensitive grammars, such errors cannot in principle all be checked syntac-
tically, therefore (Wong and Leung, 1997) implemented a semantic validation procedure to check
if all constraints are satisfied after a subtree crossover event.

4.6. SUMMARY 45

shown that specifically a context-free grammar can not be used to specify all possible
types in this system.

A brief review of strongly typed genetic programming is given, showing that the
most common approach to ensure type correctness of expressions is by employ-
ing operators that keep all types correct at all times. Some arguments are given
why strongly typed variation operators are not necessarily the optimal approach to
ensure this type correctness. A brief hint is given that in developmental genetic
programming systems untyped variation operators can be used. This will be ex-
plored in depth in Chapters 6 and 7, where a developmental genetic programming
system is introduced that can implement the units of measurement type system in
full generality, without the need for strongly typed variation operators.

The term declarative bias is associated with strongly typed genetic programming.
In the units of measurement system, the language of all possible expressions is
reduced to only those expressions that are dimensionally correct. Declarative bias
is a method of introducing background knowledge from the problem domain into
the search. By reducing the number of well-formed expressions, a search speedup
is expected (Montana, 1995). Above it is argued however that such a speedup can
only be expected when enumerative of random search are used; the introduction
of declarative bias in search techniques that employ some form of neighbourhood
function — such as genetic programming and simulated annealing — might hinder
the search in unforeseen ways by breaking the ergodicity in the neighbourhood
function defined by the search operators.

Chapter 5 will however introduce a method where the information about the units
of measurement is not taken as an a priori reduction of allowed expressions. It
will implement the units of measurement as a preference rather than a constraint.
This will be called a preferential bias, where the search space is not reduced, but
extra information about the amount of typing error is included in the performance
evaluation. A multi-objective search is then used to find the optimal balance between
the fit on the data and the type consistency of the proposed formulations.

46

CHAPTER 4.

INDUCTION OF EMPIRICAL EQUATIONS

47

Chapter 5

Dimensionally Aware Genetic
Programming

Strong typing is not the only approach imaginable to obtain expressions that use
units of measurement. Due to possible problems with ergodicity, but also because
the particular set of units that are used in the experimental setup cannot be expected
to present the best possible set, a less strict approach might be worth investigating.
Such an approach is the coercion based approach introduced here.

Rather then insisting on keeping the expressions correctly typed at all cost, the
approach relies on a set of coercion functions of arity 1, that map one type into
some other type, any other type. Coercions in computer languages are often useful
when the type system prevents otherwise sensible operations. Without coercions,
it would for instance be hard to add an integer value to a floating point value; an
operation that from a mathematical point of view should not pose any difficulties.

As coercion functions circumvent a type system, too many coercions make the code
hard to read and interpret. With the coerced genetic programming approach the
number of coercions is used as a second objective, coercions are thus allowed when
they help in better solving the primary objective, while gratuitous coercions are
punished when alternatives are present.

The main philosophy behind this approach is that while type correctness can help
in creating readable and interpretable computer programs, a rigorous adherence to
a specific type system might exclude the induction of well-performing expressions.
By refusing to view the constraints imposed by a particular type system as hard
constraints, it is expected that this leads to a more efficient search. Furthermore, a
limited number of typing errors can be quite acceptable if it helps the performance.

Because it is not clear what the optimal balance between type correctness and
performance is at the outset of the experimentation, a multi-objective strategy based
on Pareto optimality is used. This has an advantage over penalty functions (Yu and
Bentley, 1998) that no a priori choice has to be made about the balance between
performance and type correctness. Due to the existence of coercion functions,
incorrectly typed expressions are not viewed as illegal expressions, as they can still
be executed. More importantly even, a run results in a front of non-dominated

48 CHAPTER 5. DIMENSIONALLY AWARE GENETIC PROGRAMMING

solutions that balance performance and type correctness in unique ways. Inspecting
the exact balance achieved between type violations and performance can highlight
problems in the problem definition and might lead to additional insight.

5.1 Coerced Genetic Programming

The name Coerced Genetic Programming is chosen as the general name for this
approach. Rather then avoiding to generate incorrectly typed parse trees, the trees
are repaired by inserting coercion functions. The application of a coercion function
is associated with a coercion error that is supposed to model the ‘badness’ of the
particular coercion that is applied.

The system thus depends on the definition of a complete set of coercion functions.
When all types can be coerced into each other using such functions, the coercion
approach to typing can be defined as follows:

1. Set up a basic (single-typed) genetic programming system using all functions
and terminals, without the set of coercion functions. No effort is made to
ensure that the types match, other than making sure that a function has as
many arguments as its arity (i.e. all binary functions are of the generic form
(T —-U—=V).);

2. Before evaluation, repair the tree by recursively matching actual types. If and
when a type violation occurs:

e insert the appropriate coercion function;

e add the associated coercion error to the total coercion error for the
program;

3. evaluate the repaired tree;

4. return the evaluation result together with the total coercion error.

The coercion error of a program is used as a second objective in a multi-objective
search. Thus, rather than constraining the search to type-correct formulations only,
all expressions can be inferred. Type correctness is viewed as a soft constraint,
and the search is guided rather than forced to abide these constraints. It thus
implements a preferential bias towards correct solutions rather then the declarative
bias used by strongly typed genetic programming. At the end of a run, typically a
Pareto front of non-dominated solutions is delivered; it is up to the user to judge
which balance between the ability to solve the problem and type correctness is the
most appropriate for the problem at hand.

Applicability of the approach The coercion approach to typing is suitable for
any language where the types have a more-or-less meaningful coercion into each
other. The language of units of measurement possesses this, but also a language
that mixes integers, floats and booleans have such ‘natural’ translations.

If these ‘natural’ coercion functions can not be defined however, a strongly typed
approach might be worth investigating. An example of this would be a language

5.1. COERCED GENETIC PROGRAMMING 49

that allows string manipulations together with numeric operators. It is not clear
how to coerce a string into a number in a sensible way or vice versa.

The coercion approach is related to repair-based algorithms that are used in runtime
typed genetic programming systems (Yu and Bentley, 1998). There is one crucial
difference: repair based algorithms do not in general use the effort that is needed in
repairing expressions to guide the search. There is therefore no selection pressure
towards finding expressions that do not need repair. Coerced genetic programming
does provide such pressure. It will tend to avoid expressions that need excessive
amounts of repair.

5.1.1 Calculating the Coercion Error for the uom system

For the uom system a single coercion function that only passes its argument can
be defined:

coerce : ([, y] = [u,v])

coercion-error = |u —z| + |v — y]

which states that the coercion function can transform a type stated in a uom
into a type within any other uom . This is equivalent to multiplying the input
type with a constant of magnitude unity and uom [u — z,v — y]. The coercion
error is accumulated through the expression and is used as an additional objective.
In previous work (Keijzer and Babovic, 1999) the coercion error has also been
called goodness-of-dimension. The goal of the coercion approach within the uom
system is to find a trade-off between dimensionally correct formulations and well-
fitted formulations. The coercion approach provides a graceful degradation when
no correct formulations that fit the data well can be found.

As this coercion function does not calculate anything — it simply returns the value
of its arguments — no actual manipulations to the expression are necessary. While
calculating the coercion error, the algorithm considers coercions only at the following
nodes:

e At the root node: when the uom of the expression differs from the desired
uom;

e At addition and subtraction nodes: when the two arguments differ, one argu-
ment is coerced into the uom of the other argument;

e At transcendental nodes: when the argument differs from the dimensionless
uom, a coercion takes place.

The algorithm for calculating the coercion error is recursively applied at all possible
coercion points and selects that set of coercions that gives the smallest coercion
error. The addition and subtraction nodes are constrained to coerce the uom of one
argument into the other and not both to some third potentially more optimal uom .
Binary functions such as multiplication and division propagate the constraints, and

50 CHAPTER 5. DIMENSIONALLY AWARE GENETIC PROGRAMMING

thus calculate the product of possible coercions. As an example: consider a tree
using a length measurement, a time measurement and a velocity measurement in
the following way.

*

N

+ +

N
m s m/s m

This expression is clearly incorrect, it adds lengths to time measurements and lengths
to velocities. To calculate the minimal coercion error, two arrays of values are
maintained: one to store the coerced units of the tree, the second to store the
coercion error. The terminals are initialized with arrays storing the input dimensions
and a coercion error of 0. Calculating these arrays at the addition node will result
in the following structure:

[s.m] [2.2] [m m/s] [1 1]

PN
[m]l0] [s][o] [m/sﬁ[o]

For the first addition branch, the information contained in the arrays [s,m][2,2],
indicates that to obtain an expression stated in seconds, the first argument of the
function (the length measurement) needs to be coerced. This coercion involves an
effort (the coercion error) of 2: the length measurement should be multiplied with
a constant stated in units of time per length to obtain a time measurement. The
other option is to coerce the variable in unit time to a variable in units of length.
To obtain such a length measurement, it needs to be multiplied with a constant
in velocity units. For the second addition branch a similar calculation is made.
Because there the arguments to the function only differ in the time dimension, the
coercion error is 1. The multiplication node distributes the tentative outputs of the
addition nodes by considering all possible output units. Because no coercion errors
can be made at this point, it will simply add the associated coercion errors of its
arguments. The calculation will then look like:

[ms, m, m?, m?/s][3,3,3,3]

[sm] [2.2] [m m/s] [1 1]

PN
w0l B0l /0] M

The possible outputs of this tree is thus one of [ms, m, m?, m?/s]. Suppose that
the target uom for this problem is an acceleration. Coercing the arrays of possible
outputs to an acceleration will result in:

[m/s?, m/s?, m/s?, m/s?] [6,5,6,5]

Then, the minimal coercion error for this expression is the second or the fourth series
of coercions, corresponding with a coercion error of 5. Considering the second series
of coercions will produce the correct expression:

5.2. EXAMPLE: SEDIMENT TRANSPORT 51

* (m/s?

)
* (m)
/\

1/s2
+ (s) + (m/s)
N
* S m/s *
PN P
s/m m 175 m

where the coercions that are (implicitly) applied are shown in boldface. Although in
principle the use of binary functions such as multiplication and division can involve
an exponential effort in calculating the coercion error of expressions, in practice
(due to the pressure on minimizing coercions) the computation is feasible.

The coercion error is then used as a second objective that is to be minimized in
the search. This coerced genetic programming system applied to problems involving
units of measurement is called Dimensionally Aware Genetic Programming (DAGP).
The name indicates that even though the system uses the dimensions in the data, it
is only ‘aware’ of them, not forced to abide them at all cost. The primary motivation
for the definition of this DAGP was the suspicion that for many practical problems
not all relevant data would be measured and that this data is not always stated
in the optimal units for inducing expressions (Section 4.2). Making the system
aware of the uom in the problem description, rather than rigorously abiding them
is thought to provide a more robust system than a strongly typed approach.

5.1.2 Worapping

Often with genetic programming, methods can be devised that enlarge the solution
space by making use of wrappers. Section 2.2.4 introduced wrappers for regression
and classification. When inducing fully dimensioned empirical equations, another
opportunity for wrapping the output arises.

In the system described above, the coercion error made at the output level (the root
node of the tree) was included in the overall coercion error of the expression. An
expression that is dimensionally consistent, but produces an output in the wrong
units will thus have a non-zero coercion error. By relaxing this constraint to allow
any output units, the solution space is again enlarged. The wrapper that will be
used then takes the form of a multiplication by a constant, stated in such units
that the overall output is stated in the correct units. Such dimensioned constants
at the output level are part of standard scientific practice and produced normalizing
constants such as Chezy’s roughness coefficient (stated in m®3/s?).

5.2 Example: Sediment Transport

The sediment transport problem was more fully described in Section 3.1. The
terminal set is presented here again in Table 5.1, and the function set consists of
the usual:

52 CHAPTER 5. DIMENSIONALLY AWARE GENETIC PROGRAMMING

F = {plus/2,times/2,div/2,minus/2,sqrt/2}

Name uom description

v m?/s kinematic viscosity

uy m/s sheer velocity

'y m/s sheer velocity related to skin friction
W m/s settling velocity

dso m median grain diameter

g 9.81m/s? gravity acceleration

Cp dimensionless concentration of suspended sediment

Table 5.1: Dimensioned terminal set for the sediment transport problem.

Optimizing on the coercion error defined in Section 5.1.1, and on the normalized
root mean squared error (NRMS), the typical result of a dimensionally aware genetic
programming run is a front of non-dominated solutions that balance between accu-
racy on the training data and coercion error. Such a front is depicted in Figure 5.1.
This figure is typical in that there exists a trade-off between the error on the data
and the coercion error. This is not at all obvious as the doctrine of dimensional
analysis in science seems to suggest that dimensionally incorrect formulations are
expected to be wrong. These equations might be ‘wrong’ when looking at the
dimensions only, but they do succeed in modelling the data well.

The reason for dimensionally incorrect expressions to evolve and have better ac-
curacy than the dimensionally correct expressions has its origins in two separate
reasons. Firstly, there are simply more dimensionally incorrect expression than
dimensionally correct ones. The number of mathematical relations that can be
modelled with an incorrect expression is larger then that of dimensionally correct
expressions, as the space of incorrect expressions contains all arithmetical functions
using the functions and variables. Secondly the data is collected and measured
through empirical means: not all relevant phenomena can be measured in such a
process and it is not guaranteed that the space of dimensionally correct models
contains a solution.

With this trade-off explicitly modelled in the front of non-dominated solutions,
the user's judgement enters the equation. The difference in error between the best
dimensionally correct equation and the best equation fitted on the data in Figure 5.1
is sufficiently large to examine some other equations. In this particular case it would
seem wise to also examine the formulations that have a coercion error close to 0.5
and a NRMS value close to 0.44, and contrast them with the dimensionally correct
expression that evolved in the same run. A coercion error of 0.5 is fairly low: it can
for instance be caused by an addition of a length measurement with a measurement
stated in the square root of length as the only violation of the constraints. Whether
this inconsistency weights up against the level of improvement is neccissarily a
subjective choice.

Performing many independent runs results in a set of fronts of non-dominated solu-
tions. From these again a front can be formed (see Figure 5.2). This is ultimately
the set the user has to choose from. Also here a trade-off between performance

5.2. EXAMPLE: SEDIMENT TRANSPORT 53

35 | —

25 X .

Coercion error
N
T
1

15 —

1r >< 4
0.5 | >< >< >< 4

O 1 1 1 1
0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.% 0.58

NRMS error

Figure 5.1: A typical front of non-dominated solutions produced in a single run of
the dimensionally aware system. Almost invariably, a balance between goodness-of-
fit and coercion error exists in the front of solutions.

on the data and dimensional correctness can be observed, careful examination of
the formulae can provide additional insight into which units need to be violated to
obtain a better fit on the data.

Interpretability Using a version of dimensionally aware genetic programming, in
previous work (Keijzer and Babovic, 2000b) the following equation was induced for
this problem.

uwws\ vy —w
¢~ 1.121 x 1075 (1 n 100ﬁ> o e
gdso) uy +uy

This formula is dimensional correct, and furthermore it uses the most relevant phys-
u'fws
gdso

ical properties in the relevant context. For example, the dimensionless term
is effectively a ratio of shear and gravitational forces. Shear forces are represented
by u} ‘responsible’ for elevating sediment particles into the stream, while the grav-

itational term 2450 js ‘responsible’ for settling the particles. The remaining group
Ws

ul —ws

u’eruf

in the flow transporting the particles.

is a ratio of resultant energy near the bed and of the total available energy

The formula thus introduces two dimensionless terms, each being relevant to the
problem. Three sources of information lead to the induction of the expression:

e the input output relation present in the data;

54 CHAPTER 5. DIMENSIONALLY AWARE GENETIC PROGRAMMING

5 T T T
® X
XX
X
4 XX X X XX X X -
X
X
§3- ® X ¥ X X X -
i x y
.5 X X X X X
3] XX
[} X XX X
o
© 2t X ORRXX XX X X X X -
X
><><><X X « X X X
XXOK XXX X X X « X
X X X %
>§°<X><X X X Y X »
X
1k B)i&x«x xxxxxxxxxxx X -
X XX
X X
X&S’kx X%& X x X7y X
M % X X x X
. Xx?&&g«xx XX MR Xy K XK
] P X% X X %& X M
A é>n§<>< XXX x
0 ! | X
0.3 0.35 0.4 0.45 0.5

Figure 5.2: Overview of all fronts of non-dominated solutions produced by 50 inde-
pendent runs of a dimensionally aware genetic programming system. The front of
this set is depicted with additional circles.

e the units of measurement describing the dependent and independent variables
in the problem;

e the user that selected this expression, symbolically manipulated it and tried
to interpret it.

The first two sources are automated, while the third step critically depends on a
user that tries to distill meaning out of the proposed relationship. The explicit use
of the units of measurement helped in finding a link between the expression and the
physical world. Several of such tentative relationships have been proposed above.

5.3 Summary

The method of using coercion rather than strong typing was first introduced in (Kei-
jzer and Babovic, 1999), where it was applied to the problem of inducing expressions
in the language of units of measurement. The particular combination of typing as
coercion on problems involving units of measurement is called ‘Dimensionally Aware
GP’, abbreviated to DAGP. The details of the calculation of the coercion error
in (Keijzer and Babovic, 1999) are slightly different from those presented here.

Even though DAGP is capable of optimizing well, it has a drawback in that it relies
on a multi-objective search strategy to balance fitting capability and coercion error.
The computational complexity of this multi-objective search strategy (NSGA-II) is

5.3. SUMMARY 55

quadratic in the population size. For practical applications, this limits the population
size that can be used. The specific calculation of the coercion error used here is in
the worst case exponential in the depth of the tree. In practice upper bounds on
the number of coercions that are maintained can be employed: this is not likely to
have adverse effects, as a tree with a large number of potential coercions, will have
a very large coercion error. The pressure on minimizing this coercion error helps in
avoiding such large computations, but a maximum number can be easily set to cull
expressions with an excessive amount of possible coercions.

To investigate the capabilities of DAGP in contrast with a dimensionally correct
approach, an implementation of a strongly typed genetic programming is needed.
As was shown in Section 4.4, systems that can handle only context-free constraints
or that use typing through inheritance are not capable of expressing the language
of units of measurement in full generality. A form of parametric polymorphism that
allows explicit type calculations is needed.

To achieve this a new genetic programming system is defined. This is called an
Adaptive Logic Programming system and will be introduced in Chapter 6. It is
based on a developmental genetic programming system called Grammatical Evolu-
tion (O'Neill and Ryan, 2001), but is extended to handle arbitrary logic programs
instead of context-free grammars only. Section 7.1.3 will contrast the untyped
crossover used in ALP, with a typed crossover on problems involving units of mea-
surement.

The experiment performed here is anecdotal in nature. It highlights some issues
that arise when using the DAGP method of inducing dimensioned equations, in
particular the Pareto front that is produced by this method. Although it is easier
to use a system that produces a single best answer, it is thought that particularly
in an exploratory endeavour such as scientific discovery the many alternatives that
are explicitly delivered makes the system more useful for the scientist using it.

With the definition of this strongly typed genetic programming system in Chapter 6
and its scope in Chapter 7, it is then finally possible to compare symbolic regression,
dimensionally aware genetic programming and strongly typed genetic programming
on the problem of finding empirical equations on data. This comparison involving
four real-world unsolved problems can be found in Chapter 8.

56 CHAPTER 5. DIMENSIONALLY AWARE GENETIC PROGRAMMING

57

Chapter 6

An Adaptive Logic
Programming System

Logic Programming makes a rigorous distinction between the declarative aspect
of a computer program and the procedural part (Burke and Foxley, 1996). The
declarative part defines the meaning of the program: the set of all facts that can
be deduced. The procedural part aims at derives these facts.

The programming language Prolog is a concrete implementation for the Logic Pro-
gramming paradigm, where the procedural aspect is implemented using a depth-first
search-strategy through the rules (clauses) defined by a logic program (Sterling and
Shapiro, 1994).

Due to its declarative nature, logic programming is very suitable for defining com-
puter languages and constraints on them. Such a logic program then consists of a
definition of all valid computer programs. In effect, the logic program defines both
a parser and a generator for the language. The language can take the form of sim-
ple algebraic expressions; a robot steering language; constrained languages such as
algebraic expression in the language of physical units of measurements and matrix
algebra; as well as logic programs themselves. If the latter is the case, one normally
speaks of Inductive Logic Programming (ILP) (Muggleton and Raedt, 1994).

When such a logic program is run using the Prolog search strategy, it will enumerate
all possible computer programs in the domain defined by the logic program. When
the search is for that particular computer program that performs best on some
problem, and the number of possible programs is large, such an enumeration is not
a viable search strategy.

An alternative for the depth-first search strategy of Prolog is examined here. A
variable length genetic algorithm is used to specify the choice to make at each
choice-point in the derivation of a query. This hybrid of a variable length genetic
algorithm operating on logic programs is given the name Adaptive Logic Program-
ming.

58 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

head body
'pred(functor(Varl, Var2))‘: — pred(Varl) , pred(Var2) .

literal literal

.

e

clause

Figure 6.1: The structure of a clause in a logic program.

6.1 Logic Programming

The basic construct in logics programs is a term. A term is a constant, a variable or
a compound term. Constants denote particular elements such as integers, floating
point values and atoms, while variables denote a single but unspecified element.
The symbol for an atom can be any sequence of characters. It can be quoted to
avoid confusion with other symbols (such as variables). Symbols for variables are
distinguished by beginning with an uppercase letter or an underscore.

A compound term comprises a functor and a sequence of one or more terms called
arguments. A functor is characterized by its name, which is an atom, and its arity
or number of arguments. Constants are considered functors of arity 0. Syntactically
functors have the form f(t1,ts,...,%¢,) where the functor has the name f and is
of arity n. The ¢;'s are the arguments. A functor f of arity n is denoted f/n.
Functors with the same name but different arities are distinct. Terms are ground
if they contain no variables; otherwise they are non-ground. Goals are atoms or
compound terms, and are generally non-ground.

A logic program consists of clauses consisting of a head and a body. See Figure 6.1
for the structure of a clause. Clauses themselves can be thought of as compound
terms in their own right, they are characterized by their principal functor : -/2. The
head and the body are the two arguments for this functor. The terms occurring as
principal functors in the body are called literals, to emphasize that they are literally
used i.e., they are evaluated. A clause with an empty body is called a fact. The
term predicate is reserved for a set of clauses that share the same functor (name
and arity) in the head of the clause. Finally a logic program is defined as a set of
such predicates.

With all the definitions and notational conventions in place, consider the logic
program

sym(x) .
sym(y) .
sym(X + Y) :- sym(X), sym(Y).
sym(X * Y) :- sym(X), sym(Y).

which recursively defines the predicate sym/1. The derivation functor :-/2 should
be read as the implication sign <—. This program declares the complete and infinite
set of legal expressions containing the atoms x and y and the functions of addition
+/2 and multiplication */2. This logic program is equivalent with the context free
grammar:

6.1. LOGIC PROGRAMMING 59

<sym> ::= X.
<sym> ::=y.
<sym> ::= <sym> + <sym>.
<sym> ::= <sym> * <sym>.

Logic programming has its roots in predicate logic. Clauses are universally quantified
over the variables. The third clause in the program above can be translated in
predicate logic as

VX,Y :sym(X +Y) < sym(X) Asym(Y)
(6.1)

Thus: X+Y is a sym if X and Y are syms. This is the declarative reading of the clause.
The procedural reading would be: to show that sym(X+Y) is valid, show that both
sym(X) and sym(Y) are valid. In contrast with the program, a query consists of a
term where the variables are existentially quantified. For example, the query

7- sym(X).

can be interpreted as the inquiry 3X : sym(X) i.e., is there such an X? When
running this query in Prolog it produces the following sequence of solutions:

= x;
=y;

=X + X3

X+y;

(x + x);

(x +y);
(x + (x + x));

B4 B4 B4 B Bd bd e
I
+ 4+ +

X
= X
X

From this sequence, the general operation of the depth first clause selection in
Prolog can be inferred. It first examines the first clause of the program: sym(x) .
Binding the variable X to the atom x gives the first instance of the sequence. A
binding such as this is usually described in a substitution format: [x/X]. When
the user asks for the next solution, the system backtracks: a flag gets set at this
clause, the binding of X is undone and Prolog will examine the next clause: sym(y) .
This will result in the substitution [y/X]. Backtracking for a second time involves
substituting X with X1 + X2 (Prolog will provide fresh variables wherever a conflict
might arise). This is denoted as: [(X1 + X2)/X]. The goal stack is updated with
two new goals: sym(X1) and sym(X2). The Prolog engine will now try to resolve
these two goals, in the first instance resulting in the bindings [x/X1] and [x/X2].
The full set of bindings will then be: [x/X2] [x/X1] [(X1 + X2)/X] , which can
be simplified to [(x+x)/X]. The return value will thus be X = x + x.

Extrapolating this sequence it is easy to see that without bounds on the depth or
size of the derivation, the depth-first clause selection strategy employed in Prolog

60 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

will never generate an expression that contains the multiplication character. If such
limits are employed, Prolog will eventually generate such expressions, though this
can take a long time.

A logic program as such does not define how to obtain solutions, it simply defines all
possible expressions of this simple computer language. One of the many interesting
features of logic programming is that there is no strict definition of input and output.
The same program can be used both for generating expressions as well as for parsing
expression. When running the query 7- sym(x + x * y) in Prolog, the program
will return with the answer yes, indicating that indeed, the expression x + x * y
is a member of the set sym. The parsing and generating parts can be mixed: the
query sym(X + X*Y) would enumerate all possible bindings for the variables X and
Y.

Although in this example program input and output can be mixed, not all predicates
can be written that way. This leads to the definition of the mode of the variablesin a
predicate. A variable occurring in the head of a clause can be input, output, or both.
The mode is strictly speaking not a part of the Prolog language, though several
variants have been defined to use the mode of predicates to produce more efficient
code. In some logic programs that are used to generate sentences in Chapter 7, the
notion of mode will be used to write more efficient programs.

Logic programming is a convenient paradigm for specifying languages and con-
straints. A predicate can have several arguments that can be used as attributes.
These attributes can be used to constrain the search space. For example, the logic
program and query

sym(x,1).
sym(y,1) .
sym(X+Y,S) :-
sym(X,S51), sym(Y,S2), S is S1+S2+1.
sym(X*Y,S) :-
sym(X,S1), sym(Y,S2), S is S1+S2+1.

7-sym(X, S), S<5.
Program 6.1.1: Logic program defining a set of expressions together with their size.

specifies all expressions of size smaller than 5. The descriptive power of a logic
program, makes it an ideal candidate for implementing attribute logic and constraint
logic programming. It is this convenient representation of data, program structures
and constraints that the genetic algorithm will try to exploit in this work.

Formally, a Logic Programming system is defined by Selected Literal Definite clause
resolution (or SLD-resolution for short), and an oracle function that selects the next
clause or the next literal. This oracle function is in Prolog implemented as:

o Select first clause

o Select first literal

e Backtrack on failure

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 61

(X1 +X2) /X

sym(X1), sym(X2)

WU X1 (X3 + X4) / X1

sym(X3), sym(X4), sym(X2)

X1 X2 (X5 + X6) / X2 x /X3 (X7 + X8) / X3

sym(X5), sym(X6)

X=(X+X)
(X9 + X10) / X5

Figure 6.2: The search tree spanned by the logic program containing the clauses
sym(x) and sym(X+Y) :- sym(X), sym(Y) Prolog will always choose the leftmost
branch first.

Prolog thus tries to enumerate the entire domain with a depth first strategy, but it
can get trapped in an infinite derivation. Figure 6.2 presents the search tree that is
spanned by a simple logic program containing the fact x/0, and the function +/2.
In this case all the solutions are present on the left side of the tree, thus Prolog can
enumerate them. Changing the order of the clauses would transfer all the solutions
to the right side of the tree, and without a depth limit, Prolog would not be able
to derive a single instance of the set.

Due to the non-deterministic definition of the expressions, Logic Programming is
a convenient paradigm to define constrained expressions. Parsing expressions and
generating expressions can in principle be done with the same program. The goal
of this approach is to generate expressions from some constrained set of computer
programs. In particular the goal is to generate that computer program that performs
best on some objective function. Prolog is capable of enumerating all computer
programs given their definition in a logic program. When the number of possible
solutions grows, this enumeration is not a viable search strategy, especially since
the ordering of the clauses in the program determine the enumeration order. In
the examples above, expressions containing a multiplication operator can only be
generated after all valid expressions containing the other operators are generated.

To realistically search in the space of expressions defined by a set of predicates,
the Adaptive Logic Programming system is introduced. It replaces the first clause
rule in Prolog with a string of choices that represents an arbitrary path through the
search tree. A variable length genetic algorithm is used to search this space of paths
through the logic program.

6.2 An Adaptive Logic Programming System

Grammatical Evolution (O’Neill and Ryan, 2001) aims at inducing arbitrary com-
puter programs based on a context-free specification of the language. It employs a
variable length integer representation that specifies a sequence of choices made in

62 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

(0) sym(x) .

(1) sym(y).

(2) sym(X + Y) :- sym(X), sym(Y).

(3) sym(X * Y) :- sym(X), sym(Y).

goal stack substitutions codon value
7- sym(X).

7- sym(X1), sym(X2). [(X1 + X2)/X] 2
7- sym(X2). [y/x1] 1
7- sym(X3), sym(X4). [(X3 * X4)/X2] |3
7- sym(X4). [x/X3] 0
7- Ly/Xx4] 1

Table 6.1: Deriving a solution from a logic program by guiding the selection of
clauses by a string of integers.

the context-free grammar. This sequence of choices represents a path through the
context-free grammar and thus a sentence in the language the grammar defines.
Due to the specific representation of a sequence of choices no type information
needs to be maintained in the evolving strings. Furthermore, no custom mutation
and crossover operators need to be designed: simple variable length string operators
are used. In the GE-system, the choices are called codons to emphasize a biological
analogy with triplets of nucleotides encoding a choice for a specific protein.

In the Adaptive Logic Programming system (ALP) we similarly use a sequence of
codons as the base representation, but rather than choosing between the production
rules of a context-free grammar, the codons are used to make a choice between the
clauses in a logic program. The sequence of choices thus represents the clause-
selection function operating together with SLD-resolution on the logic program. It
defines a path through the search tree.

To give an example of the process, consider Program 6.1, and a sequence of choices
[2,1,3,0,1]. The derivation of an instance is shown in Table 6.1. The initial query
is sym(X) . By choosing clause 2 — the addition clause — two new goals are induced
and a variable binding is made that introduces two new logic variables. At every
step in the derivation, the first literal in the goal stack is selected. When a fact is
selected, no new literals appear in the goal stack and a logic variable is bound to a
ground term.

The result of this process is a list of variable substitutions:
[(X1 + X2)/X1[y/X11[(X3 * X4)/X2]1[x/X3]1[y/X4].

which ultimately leads to the unification: X = y + x*y. This symbolic expression
is produced in the form of a parse tree, not unlike the S-expressions used in LISP,
and they can readily be accessed and evaluated'. The depth-first clause selection
of Prolog is thus replaced by a guided selection where choices are drawn from the
genotype. The genotype represents a path through the search tree (an example of

IThe algebraic notation used to present these programs are supported by Prolog for notational
convenience.

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 63

Selection Prolog Modification
Clause First Found From Genotype
Literal First Found From Genotype
On Failure | Backtrack Restart

Table 6.2: Possible modifications to the selection function. The ALP system used
here is identified in boldface.

such a search tree can be found in Figure 6.2). The first unresolved literal is chosen
to be the first to derive. It is possible to replace this with guided selection as well,
be it in the same string or in a separate string. Together with a choice whether to do
backtracking or not, this leads to Table 6.2 which gives an overview of the parts of
the Prolog engine that can be replaced. Table 6.2 thus defines a family of adaptive
logic programming systems. Here we will focus on the system that corresponds with
modified clause selection using backtracking. This was compared with a setup that
did not employ backtracking, and it was shown that for more constrained programs,
backtracking is indeed helpful (Keijzer et al., 2001a).

There are some practical problems associated with replacing literal selection. In
many applications, a logic program consists of a mix of non-deterministic predicates
(such as the sym/1 and sym/2 predicates above) and deterministic predicates (such
as numerical assignment and comparison operators). The deterministic predicates
often assume some variables to be bound to ground terms, evaluating them out of
order would lead to runtime errors. The system studied here, which uses backtrack-
ing, encapsulates the Prolog language as a special case: the string containing an
(infinite) number of zeros is equivalent with running the program through Prolog.

A logic program is thus used as a formal specification of a set of parse trees, the
sequence of choices is used to steer the search process to derive a parse tree, and
a small external program is used to evaluate the parse trees. See Figure 6.3 for the
typical flow of information. The scope of the system are then logic programs where
there is an abundance of solutions that satisfy the constraints, which are subse-
quently evaluated for performance on a problem domain. In some circumstances,
when the objective function can be efficiently evaluated in Prolog, the external
program is not necessary.

6.2.1 Representation and the Mapping Process

Like Grammatical Evolution, the ALP system studied here is a member of the family
of Developmental GP systems (DGP) (Banzhaf et al., 1998)(pp. 250-255). In DGP
a distinction is made between the representation the variation operators act upon
and the computer program that is encoded by this representation. Using a biological
analogy, the internal representation is called the genotype and the computer program
the phenotype. The mapping process to go from a genotype to a phenotype is then
seen as a developmental process, hence the name developmental GP. In the case of
ALP, the developmental process that is used to derive a computer program takes
itself place in the context of a full-fledged programming environment: the execution
of a logic program.

64 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

Genetic Algorithm Derivation

I4
fitness genotype /evaI(E) = sym(X), c_eval(X, E).

sym(x).
sym(y)-
sym(X +Y) = sym(X), sym(Y).

sym(X *Y) := sym(X), sym(Y).

N

Fitness Evaluation

y+xy‘/

E =sum (t - (x+xy))"2

Figure 6.3: Overview of the ALP system: the sequence of choices is used in the
derivation process to derive a specific instance for sym(X), this instance is passed
to the evaluation function. The calculated objective function value is returned to
the genetic algorithm.

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 65

The representation that is used in the ALP system is a variable length string consist-
ing of integers called codons — named such to emphasize another biological analogy
— Given n predicates, each having the number of clauses C' = [c1, ca, ..., ¢,], the
value of the integers are restricted to lie in the range [0,]]; ¢;). the product ap-
pears for reasons given below. When there is a single predicate in the program, the
integers decode simply to a clause in the predicate. As an example, consider the
simple program:

(0) sym(x).
(1) symX + Y) :- sym(X), sym(Y).

Because the number of clauses in this program equals 2 and there is only one
predicate involved, the genotype is equivalent with a bitstring, where a 0 denotes
the terminal x and 1 denotes the addition function. This program was already
encountered above in Figure 6.2. It is now clear that the codons encode a choice
for the path to take through the search tree: 0 encodes a choice for the left branch,
1 encodes a choice to the right. When using such a simple program that contains a
single predicate without additional constraints, there is a one-to-one correspondence
between the string of codons and the form of the resulting expression:

1 1 0 0 Of(1 O
+ + XX X X |+ X

Table 6.3: Correspondence between a path through a logic program and the symbols
that are induced.

the parse tree of the resulting program will then be:

This direct correspondence holds for any single-predicate program that does not
introduce additional constraints on the expressions that are induced.

The two extra bits at the tail of the bitstring in Table 6.3 are unexpressed in the
resulting program. They will be kept in the genotype as they might get expressed
after a crossover or mutation event. It is quite possible that the program is not
finished when there are no more choices left in the string. In that case, one of
several mechanisms can be employed:

1. destruction: the string gets the worst possible performance value;
2. repair: the string is extended with random integers until it finds a solution;

3. reuse: the string gets wrapped and the reading restarts at the beginning until
some maximum level of wrappings is reached (O'Neill and Ryan, 2001);

4. Prolog: the string is extended with an infinite number of zeros (i.e., the
unfinished logic program is executed using Prolog).

66 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

From these choices the first one, destruction, is used here. Destructing the genotype
will result in a failure rate for the algorithm. The destruction method is mainly
chosen for its simplicity: the repair method would involve changing the genotype
in the mapping process, and it would have the disadvantage that when considering
more constrained programs a large runtime overhead can be induced. It has this
in common with the Prolog method. This overhead occurs when the unfinished
expression is located in a branch of the search tree that does not contain solutions,
or only contains equations that are too long. Escaping such a branch involves
examining all possible paths in that branch until the search depth is exceeded,
backtracking would then be employed to find another branch.

The wrapping method has as a disadvantage that it is not guaranteed to finish.
In particular, when using a simple program such as the one above, the wrapping
method is guaranteed not to finish as the same unfinished tree would be used
repeatedly.

There are thus three possible outcomes of the mapping process: (i) the string is
completely mapped into an expression with no spare codons left, (ii) the string is
mapped into an expression with spare codons left, or (iii) the string is mapped into
a partially completed expression. The last outcome is considered a failure.

Properties of the encoding for simple programs.

Consider a simple (Koza-style) language consisting of ¢ terminals [z1,..., %], u
unary functions [hy,...,h,], and b binary functions [f1,..., fs]. The language of
parse trees can then be modelled by the single predicate logic program:

expr (z1) .

expr (x;)

expr(hy (X)) :- expr (X) .
é;pr(hu(x)) - expr (X) .
expr(fi(X, Y)) :- expr(X), expr(Y).
'e'x'pr(fb(X, Y)) :- expr(X), expr(Y).

Program 6.2.1: General program for performing 'Koza’'-style genetic programming.
Inclusion of higher arity functions is straightforward.

every codon in a string will now decode into a specific clause if it is used in the
context of the query 7- expr (X) . Obviously, ternary and higher arity functions can
be catered for as well.

As there is a one-to-one correspondence to an element in the string and the clause
in the logic program it encodes for, the size of the goal stack during the generation
of an expression can be written in terms of the codons of the string. Define the
function:

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 67

b(z) = number of literals in the body of clause z minus one

thus:
-1 ifz <t : terminal
b(z) = 0 ift<z<t+u : unary (6.2)
1 ift+u<e : binary

Define the function g, the number of literals on the goal stack after & codons are
used from string s as:

k
g(s,k) = go + Z b(s:) (6.3)

Where gy is the initial state of the goal stack (usually 1). Then a string s of length
N will decode to a complete expression when the following condition is satisfied:

Jk <N :g(s,k) =0 (6.4)

The validity of this condition can be checked using the correspondence between
the function g and the number of literals on the goal stack. Initially, there are go
literals on the goal stack. When a binary function is added, one literal is popped
from the goal stack, and two are added. For a terminal, one literal is removed and
for a unary function, one is removed and one is added. Finally, when there are no
literals left i.e., the goal stack is empty, g equals zero and the query (and thus the
expression) is finished.

In effect, using programs of this simple form, the string of integers is simply a prefix
encoding of the parse trees under consideration, with the possibility of not fully
specifying the complete parse tree.

Initialization and the Gambler’s Ruin Model Given these logic programs, it is
important to know what the probability is of generating a legal string, given that we
randomly generate choices. This obviously depends on the proportion of variables,
unary functions and binary functions that are present in the program. These are
denoted here by t, u and b respectively, and the total number by C' = ¢t + u + b.
Examining Equation 6.4 for string length 0, there is 1 unresolved literal, the original
query. For each codon we add to the string, this number can increase, decrease or
stay the same, depending on what value is drawn (Equation 6.2). If the number of
unresolved literals drops to zero at any point, Equation 6.4 defines that the string
will encode a legal expression regardless of the codons that appear after that point.

This situation is much like the situation of a gambler in a casino. The gambler has
a starting fortune, and can place bets, that are won or lost. Given a fixed probability
of winning a bet p and of losing a bet ¢, what is the probability that the gambler
would be ruined? This is known as the gambler’s ruin model.

Generating a string of random codons with a fixed probability is equivalent with
successively placing bets; the pay-off function is given by Equation 6.2. A bet

68 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

is lost when a terminal is drawn, while a bet is won when a binary function is
drawn. Drawing a unary function does not change the fortune (i.e., the number of
unresolved literals in the goal stack). The gambler starts with an initial fortune of
go = 1 unresolved literal, the initial goal. When the gambler runs out of literals, the
fortune is lost and the gambler is ruined. In this case the gambler's ruin corresponds
with the ALP system’s gain: it successfully derived an expression.

When uniformly generating codons from the range [0, C), the probabilities of win-
ning respectively losing are: p = b/C and ¢ = t/C. It is well known that with
a starting capital of gy and a stopping capital of 7', the gambler goes home with
capital 7" with probability

(2)" -1 when p # ¢
Bjlegal =4 (3)"-1 (6.5)
& when p = ¢

In our case, the start capital is 1 unresolved literal, while the gambler never stops
without any bounds on the size of the genotype. The probability of the tree not
finishing is then

4_1 .
. 0 ifg>p
. = B
Piltegal = ,Him 77— = { L —g/p fg<p (6.6)
p
and if p = ¢,
1

Pillegal = Jim 7 =0 (6.7)

Thus if the probability of drawing a terminal is equal or larger than the probability of
drawing a binary function, the probability of ending up with a string that encodes a
legal parse tree will tend to 1. However, when there are more binary functions than
terminals, the probability of obtaining a legal string will converge to g/p. Thus if no
limits on the tree are employed only a fraction of the trees can ever be generated.

The expected change in the size of the goal stack after randomly selecting a clause
is simply p — ¢, the goal stack is thus expected to grow when there are more binary
functions than terminals. Without bounds on the size or depth of the trees, the
expected size of the trees is thus infinite when p >= ¢, as it grows at every step.
When p < ¢, the expected size is the point where we expect the goal stack to be
of size 0, this is simply ﬁ.

The process of creating a random tree and its influence on the size of the goal
stack is depicted in Figure 6.4. The small graph depicts the size of the goal stack
(the function g(s, k) from Equation 6.3) with increasing string length for some
random choices. As the graph of the size of the goal stack in these simple predicate
programs contain all information about the shape of the parse tree that is produced,
this graph will be called the shape graph. When and if the size of the goal stack
drops to zero, the query is completed and a valid expression is obtained. The shape
of the expression that results is depicted on the right of Figure 6.4.

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 69

s
t
a f
c /\
k f X
s
i Pl
Z X h
e 1 - |
X

string length

Figure 6.4: Creating a tree using a random walk. Depicted are the shape graph
with the corresponding tree. The tree is created in a depth first manner.

By making the probabilities of selecting the clauses in the program dependent on
the length of the string, in principal an expected shape graph can be enforced on
an initial population.

Ripple crossover It was stated above that to create a child, the crossover used
in ALP grafts a randomly chosen suffix of one string upon a randomly chosen prefix
of another, the points are chosen independently in the expressed part of the string.
In the context of the programs defined in Table 6.2.1, this crossover has a very
clear effect on the parse trees that are encoded by the strings. This effect was
termed ripple crossover (Keijzer et al., 2001b). Although it resembles a variable
length one-point crossover from genetic algorithms, the term one-point crossover
has been used to describe a very different operator for genetic programming (Poli
and Langdon, 1998). Therefore, the term ripple crossover will be used henceforth
to designate the specific crossover used in the GE and ALP systems.

Consider the program:

(0) expr(x).
(1) expr(f(X,Y)) :- expr(X), expr(Y).

The string of choices will be constructed from the two letter alphabet [0, 1] with
the mapping defined by the definition above. A string maps into a parse tree in the
following way:

fi
f2 fo
[171717170707070717070] —?encodes /\ N
f3 rg L0 ZTil
/\
fa T7
N

Ts Te

70 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

prefix J_r,_ﬂ
suffix
e unexpressed code

ON=—- X O+ W0

string length

Figure 6.5: Splitting a tree into a prefix and suffix.

The symbols in the expression are subscripted with the location in the genotype
that is used to encode them. Splitting the tree after the fifth position will result in
an unfinished tree and a set of subtrees:

fi
fZ X9
[1,1,1,1,0] —encodes TN
f3 XS
Ja X7
N
I5 X@
fa
[0,0,0,1,0,0] —encodes L1 T2 T3 N
Is Te

where the uppercase logic variables X ... Xy indicate that the expression is unfin-
ished. The crossover point occurring after x5 has the effect of removing all subtrees
to the right of the point. Figure 6.5 depicts the splitting process in terms of the
shape graph. Cutting the string thus results in cutting all the subtrees to the right
of the string, leaving in this case 4 unfinished subtrees. The suffix of the string en-
codes these subtrees. When another string is spliced in a similar way, swapping the
tails results in grafting missing subtrees from one tree upon the other tree. When
the number of subtrees encoded by the tail is smaller than the number demanded
by the head of the string, the resulting tree will encode an unfinished tree.

The example given here used a string that decodes to a full tree without any spare
codons. In practice, there is often a tail of unexpressed code for any given string. If
the string [0,0,0, 1,0, 0] from above would be used as a genotype, it would encode
the expression z and would have three spare subtrees that can get expressed when
needed. This is depicted in Figure 6.5 as well, where the suffix is used as a tree
in its own right: the minimum value of the goal stack function g(s, k) lies at —3:
there are therefore three unexpressed subtrees present. The tail of unexpressed code
can then function as a buffer of spare subtrees.

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 71

Thus, under the operation of ripple crossover, the genotype falls apart in two pieces:
a prefix that encodes an unfinished parse tree, and a suffix that encodes a collection
of subtrees.

A Bias induced by Ripple Crossover It is possible to show some bias that is
induced by ripple crossover when there is no tail of unexpressed code. Equation 6.3
defined the number of goals in the goal stack for a string after & codons were
translated, as:

k
g(s, k) = go + Z b(si)

where the function b returns the number of literals in the body of the clause minus
1 and gp is the initial state of the goal stack. Ripple crossover selects crossover
points at random in the string and subsequently splits the string in a prefix and a
suffix. If the size of the goal stack for the prefix string is larger than the number
of subtrees contained in the suffix string, the mapping process will not be able to
produce a complete expression.

To clarify the relationship between the size of the goal stack (the shape graph
defined by the function g(s,k)) and the shape of the encoded tree, two extreme
cases are examined here: left-skewed and right-skewed binary trees. Consider a left
skewed tree with corresponding shape graph:

f
e m
f X
N
f X

The prefix encoding of this tree is [f, f, f,z,z,z,x]. Furthermore, consider the
right skewed tree:

f
- _FLI_LW_‘
X f

N

X f

whose prefix encoding is [f,z, f,z, f,z,z]. In terms of the goal stack (and thus
the shape graph), a left skewed tree needs a larger stack than a right skewed tree.
When crossing these trees using ripple crossover, the shapes are crossed over as well
(Figure 6.7).

72 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

0.3

Failure Rate

0 10 20 30 40 50 60 70 80 90 100
Generation

Figure 6.6: Typical failure rate with a ripple crossover that creates a single child.

The ripple crossover used in previous work (Keijzer et al., 2001b; Keijzer et al.,
2001a), created one child only, and put it back in the population without regard to
it being legal or not. This typically leads to a high failure rate in the beginning of
the run. Figure 6.6 depicts the typical shape of the failure rate during a run. In
the first generation, the failure rate rises sharply, depending on the program that
is used lying between 1/4 to 1/3 of all crossovers. Subsequently, when a tail of
unexpressed code forms, the failure rate drops, but as can be seen in the graph,
even at generation 100, the failure rate is still significant.

In principle this could be remedied by (i) choosing the point for the suffix depending
on the size of the goal stack at the point chosen for the prefix, or (ii) create two
children, one using the first parent as prefix, the other using the second parent as the
prefix. For the type of programs studied here, it would then be guaranteed to create
at least one valid offspring because for two strings s; and sy with crossover points
k1 and ks it holds that g(s1, k1) — g(s2, k2) <0, and/or g(s2, ke) — g(s1,k1) < 0.
The equality holds when both are valid. Thus for two given crossover points, there
is always an offspring that is valid.

It was chosen to use this second method as the first method is not guaranteed to
succeed: the size of the goal stack for the first point can demand more subtrees
than the second parent can deliver. This could again be fixed by choosing the points
in an even more restricted fashion, but one of the purposes of ripple crossover is
to have a simple, untyped and unrestricted crossover. Although the information
about the size of the goal stack could be used to guide the crossover points, it
was chosen to use the simple method of creating two offspring given two crossover
points, putting the first one that succeeds in decoding to an expression back in the
population.

Figure 6.7 shows the effect of this crossover in terms of the shape graph of the
individuals. When one offspring is invalid, the other individual is necessarily valid

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 73

valid

I_IJ_LLI

Figure 6.7: The effect of ripple crossover on the shape graph for two parents not
containing any unexpressed code. The crossover points are indicated with a small
circle. If one offspring is invalid, the other is necessarily valid and will have a tail of
unexpressed code.

and will have a tail of unexpressed code. By selecting the valid offspring always,
no invalid individuals can enter the population. A side-effect of the procedure is
that the tail of unexpressed code quickly forms and that it will consist of code that
has undergone selection. This is an important difference from generating a tail
at random, as there is then for example no guarantee that the tail encodes valid
subtrees.

Using this procedure will guarantee legal offspring when using single predicate pro-
grams without additional constraints, but the bias towards right-skewed trees used
as the prefix remains. However, left-skewed trees are very suitable to be used as
suffixes, simply because they encode for more subtrees then their right-skewed coun-
terparts. They will initially become unexpressed, but are stored in the population
and due to ripple crossover and mutation can soon become expressed again.

In the presence of a symmetric function set, this bias towards right-skewed expres-
sions has no repercussions for the ability to express solutions. In effect, there is
a memory advantage in preferring right-skewed expressions as the size of the goal
stack is kept at low values. The effect of ripple crossover on asymmetric function
sets is a left for future study.

For the sake of completeness, a balanced tree with corresponding shape graph is
depicted below.

f
f f
P P
f f f f

74 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

ON=—- X O+ W0

o

Figure 6.8: The effect of a mutation on the goal stack. The mutation point is
indicated with a circle.

Ripple Mutation Many mutations can be defined, but here we focus on a single
point mutation. A point is chosen in the string and replaced with a random integer
from the admissible range. This mutation also has a rippling effect on the expression
tree that is encoded in the string. Consider again the string and mapping:

fi
fa fo
[171717170707070717070] —encodes /\ N
f3 g T10 T11
/\
fa Ty
PN
Is Ie
Replacing the fourth element 1 with a 0, results in:
fi
/\
f2 Ty s
9
[1717170707070|0717070] —encodes fg/\l’@ Zs N
P 10 ZT11

T4 Is

All variable to the right of the mutation point have shifted their location in the
tree, and the last four codons have become unexpressed. If one were to mutate a
terminal into a binary function however, parts of the tail of unexpressed code would
get expressed again. In the absence of such a tail however, the resulting expression
would be invalid. In the early generations when there is no or little unexpressed
code, ripple mutation would thus be biased to sample expressions that are shorter
than the parent. As it would create unexpressed code in that process, this effect
will lessen in later stages of the run.

One of the characteristics of ripple crossover and ripple mutation is the disregard

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 75

for the structure of the trees that are derived (i.e. the shape graph). Because
of this changes propagate to the right of the tree, in particular the second and
subsequent arguments of the root node are subject to change relatively easily. The
ripple variation operators are then expected to be fairly destructive.

Multiple predicates and polymorphism.

Until now the programs that are considered used a single predicate without addi-
tional constraints, but multiple predicates are an obvious extension. Consider the
program:

expr (x) .
expr(X) :- binop(X, Al, A2), expr(Al), expr(A2).

binop(X + Y, X, V).
binop(X * Y, X, Y).

Here we have two predicates expr/1 and bin_op/2, each having two clauses. There
are several options for encoding such a program in a string of choices. For context-
free grammars which translate directly to a logic program such as the one above,
O’Neill and Ryan defined an upper bound for the codons in the string (usually 256)
(O'Neill and Ryan, 2001) . Given a set of n predicates with a corresponding number
of clauses [ci,...,c,] and given a predicate r, the mapping rule used is (O’Neill
and Ryan, 2001):

choice(r) = codon mod ¢, (6.8)

This modulo rule makes sure that the codon value is mapped into the interval [0, ¢,)
and thus represents a valid choice for a clause. As the codons themselves are drawn
from the interval [0,256), the mapping rule is degenerate: many codon values map
to the same choice of rules. Unfortunately, in the case of the program considered
here, this mapping rule introduces a linkage between the clauses of the different
predicates. As we have two predicates, each having two clauses, the modulo rule
will map all even codon values to the first clause and all odd values to the second
clause, regardless of the predicates that are used. Above it was shown that the
crossover and mutation operators can shift the location of the subtrees when using
a single predicate. In the case of multiple predicates, this shift in location can also
result in a shift in predicates: a codon value that previously encoded for a clause
in one predicate can be re-interpreted to encode for a clause in another predicate.
This property of this developmental genetic programming system is called intrinsic
polymorphism (Keijzer et al., 2001b).

As Program 6.2.1 induces a fixed mapping for even and odd codon values, we
can restrict our attention to bitstrings. In the context of the two predicate logic
program, we can have the following mapping:

76 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

expr
[1,0,1,1,0,0,0] encodes P
+ expr X
¥ x x

Where the name expr is used to denote the use of the recursive expr/1 clause. The
function symbols + and % have been put at the location where they are derived.
The string of choices then corresponds again with a depth first traversal of the
derivation tree. Due to Prolog's operator handling, the actual parse tree that is
produced by the query will look like:

Mutating the third element of the string will result in:

expr
[170707 1707070] —?encodes /’\
+ X expr
T
+ X X

This is quite a significant change. This single mutation event changed the expression
((x*z)+x) into (z+ (x+x)). Itisinstructive to inspect what happened. Changing
the third element left the first two elements intact. The third element used to
encode for the recursive expr rule, but is replaced by the non recursive rule, the
terminal . Because of this change, the fourth element of the string which used to
encode for the multiplication clause of the string is re-interpreted as an encoding
for the recursive expr clause. Similarly, the fifth element that used to encode for
the terminal expr is changed into the addition operator as it is evaluated in the
context of the predicate bin_op.

Thus by changing a single element in the string, the string is again split into a prefix
and a suffix. This time the suffix is reinterpreted. Changing the third element from
expr to x changes the derivation tree and the suffix that will be reinterpreted to:

expr

T 1000)

where the variable labelled F5 indicates that the derivation is not complete until a
subtree starting with the expr/1 predicate is produced. The codon that used to
encode for the second clause of the bin_op predicate (multiplication) will now be
re-interpreted as the second clause of the expr predicate, thus:

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 7

expr
+ X expr [000]
B, Es; E;

The next codon to insert into the derivation tree used to encode for the first clause
in the expr predicate, but the search process has reached the bin_op predicate at
this point in the derivation. Hence the first clause in this predicate will be used, the
addition.

expr
+ X expr [00]
+ E; Eu

The rest of the derivation process will not demand any re-interpretations, thus the
remaining codons can be simply inserted as terminating z's.

In this case, the modulo rule thus defines a fixed transition when the codons are
interpreted in the context of different predicates. The terminal = implicitly encodes
for the addition operator + and vice versa, while the recursive expr clause is linked
to the multiplication operator in the bin_op predicate. This linkage depends on the
ordering of the clauses as well as the number of clauses per predicate?.

This linking between clauses of different predicates in the context of the variation
operators introduces a bias in the search process. This bias is undesirable because
it depends on the layout of the program and its impact on the search is not clear.
In effect this means that the order in which the clauses are defined are expected to
make a difference to the search efficiency.

To remove this bias the mapping rule is changed. Given again our set of clauses for n
predicates [ci, ..., ¢,], the codon values are now taken from the interval [0, [T} ¢;).
The mapping rule is subsequently changed to:

codon

r—=1
i=1 Ci

choice(r) = mod ¢, (6.9)

This rule is simply the standard method for mapping multi-dimensional matrices into
a contiguous array of values. The predicates form the dimensions, with the number
of clauses as the coordinates. With this rule, every legal codon value encodes a
unique set of clauses, one from each predicate. In the program discussed here,

2When using two predicates having 2 and 3 clauses, together with codons drawn from [0, 6) all
transitions are possible.

78 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

there are two predicates, each having two clauses. The codons are thus drawn from
[0,4). Each codon value now encodes for a unique set of clauses:

codon | expr bin_op | expr bin_op
0 0/1=0 mod 2 0/2=0 mod 2 X +
1 1/1=1 mod2 1/2=0 mod 2 | expr +
2 2/1=0 mod2 2/2=1 mod 2 X *
3 3/1=1 mod2 3/2=1 mod2 | expr *

By using this mapping rule, the representation in effect becomes polyploid: the
single string of integers is isomorph with a set of n strings, each encoding the
clause to choose when it is evaluated in the context of each predicate. The active
element is determined by which predicate is active in that part of the execution
of the logic program generating the expression. All other elements at the same
location are recessive, mutations on them do not have an effect on the resulting
expression.

For an example of this polyploidity, consider the following encoding:

+
N
1,033,220 < | <Pr: [LOLLO0OI] &
y Uy Dy)y &y &y - bin_opt [070,1,1,1,1,0] P
X X

where the elements in bold are the active elements of the set of strings. As in this
particular program we have three terminating clauses and one recursive one, only
the recursive clause determines how the rest of the string is interpreted.

If we again consider a mutation in the third element, several things can happen.
If we mutate the integer 3 to the integers 0 or 2, the clause encoded for changes
from the recursive expr (clause 2) to the terminal expr (clause 1), by virtue of the
mapping rule defined in Equation 6.9. Given that the change happens be 3 — 0,
the individual will ultimately decode to:

+
N
_ | expr: [1,0,0,1,0,0,0] X *
[1,0,0,3,2,2,00= | . on: 0,0.0.1,1,1,0] | P
X X

Because the clauses belonging to different predicates are independently encoded,
the integer on the fifth position now encodes both the terminal expr and the
multiplication bin_op. When the integer 3 at the third position is changed to the
integer 1 however, nothing changes directly in the phenotype, as the third element
will still encode for the recursive expr. The mutation is thus neutral. Even though
the coding is degenerate as many integer values decode to the same clause, there
is no redundancy: if the codon would be used in a later generation in the context
of the predicate bin_op, it would encode for the addition function rather than the
multiplication.

Thus, every location in the genotype can encode for a unique clause for each predi-
cate. This gives the genotype in principle the opportunity to encode many different
trees, which tree is derived depends on the context it is used in. Whether this
capability is helpful in search and optimization needs to be ascertained. What it
does achieve is make the system independent of the order in which the clauses are
defined by removing linkages between the order of clauses in different predicates.

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 79

Ripple crossover does not look at the names of the predicates to pick crossover
points. It is thus quite common that it will select a prefix that ends in one predicate
and a suffix that used to start with another predicate. This re-interpretation of
genetic material will then happen quite often. It is left for future work to examine
the worth of this intrinsic polymorphism.

Context-Sensitive Programs

A logic program is capable of using context-sensitive information. Consider Pro-
gram 6.2.2 that calculates the bounds of an expression.

interval(x, 1, 10).
interval(y, -5, 5).

interval(X + Y, L, U) :-
interval(X,Lx, Ux),
interval(Y, Ly, Uy),
L is Lx + Ly,
U is Ux + Uy.

interval(-X, L, U) :-
interval (X, Lx, Ux),
L is -Ux,
U is -Lx.

interval(X * Y, L, U) :-
interval(X,Lx, Ux),
interval(Y, Ly, Uy),
Bl is Lx * Ly, B2 is Lx * Uy,
B3 is Ux * Ly, B4 is Ux * Uy,
L is min(min(B1, B2), min(B3,B4)),
U is max(max(B1, B2), max(B3,B4)).

interval(l1 / X, L, U) :-
interval(X,Lx, Ux),

catch(A is 1/Lx,_,fail), % fail on math exceptions
catch(B is 1/Ux,_,fail), % idem
sign(A) + sign(B) =\= 0, % make sure the interval

% does not contain zero
L is min(A,B),
U is max(A,B).

interval(sqrt(X), L, U) :-
interval(X,Lx, Ux),
Lx >= 0,
L is sqrt(Lx), U is sqrt(Ux).

Program 6.2.2: A context-sensitive program that calculates the the numerical in-
terval for an expression and only derives those expressions that are well-defined

80 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

This logic program is capable of generating expressions that are guaranteed to
avoid a division by zero or taking the square root of a negative number, given the
specified range of the terminals. It will furthermore calculate bounds on the range
of the expression. In this program, the lower and upper bound L and U are used
as attributes in the program and their values are used in the clause that handles
division to make sure that no expression will be derived that can theoretically divide
by zero. This is done by checking whether the bounds of the argument contain
zero. Likewise the square root function is protected by checking whether the lower
bound of the argument is smaller than zero. This is one example of the convenience
of the logic programming paradigm to specify constraints.

When increasing the number of constraints, care must be taken that it is still feasible
to derive numerous solutions. The aim of the ALP system is not to find a single or
a small set of feasible solution, but to find the best expression under a number of
relatively mild constraints.

In the example program, a query of the form 7- interval(X, 0, 1). would ask
the system to find a program that lies exactly within the specified interval. The
find a feasible solution is then a search problem in its own right, let alone finding
an expression that will fit some data well.

It is again instructive to see what happens with the function trees when a mutation
or crossover event occurs. As Program 6.2.2 uses a single predicate, the genotype
phenotype mapping is monomorph, there is no re-interpretation of genetic material.
Consider the mapping:

[+, %, 2,9, 5qrt,] —encodes TY + VT

and

[+7 +,$,y75qrta$] —encodes T+ Y + \/E

For reasons of clarity, the integers in the string have been replaced with the symbols
for the functors they encode for3. Now suppose the first string is cut after the fifth
position, leaving [+, *,z,y, sqrt] and the second is cut after the first position, thus
leaving [+, z,y,sqrt,x]. After merging the parts, the complete string will read:
[+, *, z,y,sqrt, +, x,y,sqrt,z]. Without the additional constraints on the square
root function, this string would encode for:

[+, *, &, Y, sqrt, +, z, y|sqrt, €] =encodes TY + VT +y

where the tail [sqrt, z] is unexpressed. However, when using this string of codons
in the logic program 6.2.2, the following situation would occur:

interval(sqrt(X), L, U) :-
interval(X,Lx, Ux), % X gets bound to x+y
% Then Lx = -4, Ux = 15
Lx >= 0, ... % fail! Lx equals -4

3This can be done because there exists a one-to-one mapping between codon value and the
clause that is selected.

6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 81

The clause thus fails because the subtree sqrt(x + y) can possibly include a math-
ematical error. The backtracking mechanism will now try to redo the last goal that
succeeded, which was in this case interval(y,-5,5). Reading the next codons
from the genotype would result in generating sqrt(x), which, when added to x leads
to a correct expression. The real mapping would thus be:

[+7 *7x7yvsqrt7 +7£7Y7Sqrt7$] —?encodes TY + \/ T+ \/5

The codon encoding y above thus disappears from the derivation, and the subtree
at the back is used in its place. By using backtracking, performing a crossover is
not an all or nothing proposition: if a constraint gets violated in a crossover, there
is still a possibility of creating a valid expression by simply trying to apply the next
codon. In Section 7.1.1 it will be shown that it is possible to effectively use this
mechanism to constrain the search space without removing the effectiveness of the
variation operators.

6.2.2 Backtracking

To enable backtracking, the system maintains a list of clauses that have been tried at
each point in the resolution process. Once a failure occurs because some constraints
have been violated or a maximum depth is reached, the system extract a new codon
from the genotype, and the mapping rule is applied. When the codon decodes to
an untried clause the process continues. However, when the codon decodes to an
already tried clause — that has already proven to fail — the codon will decode to
the next untried clause that is applicable. If there is no such clause, the procedure
will start at the beginning of the list of applicable clauses. When no more choices
remain, thus all clauses are tried and all failed, the system will backtrack to the
previous level.

With this procedure, the ALP system is equivalent with Prolog when it is run in
the context of a genotype containing only zeros. When a failure occurs, the second
clause is tried, and so on.

6.2.3 Initialization

Initialization is performed by doing a random walk through the grammar, maintain-
ing the choices made, backtracking on failure or when a specified depth limit is
reached. After a successful derivation is found, the shortest, non-backtracking path
to the complete derivation is calculated. An occurrence check is performed and if
the path is not present in the current population, a new individual is initialized with
this shortest non-backtracking path. Individuals in the initial population will thus
consist solely of non-backtracking derivations to sentences.

As a maximum depth limit is used, the possible problem of not creating viable
offspring indicated in Section 6.2.1 is not encountered. By making uniform random
choices in the initialization procedure, it is however sensitive to the distribution
of terminal and binary functions in the logic program. It is not clear at this point
what the repercussions of changing this initialization procedure are when using more

82 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

heavily constrained programs than the ones considered in Section 6.2.1. Therefore,
it was chosen to use the initialization procedure described here to create a reference
implementation that produces a fully viable initial population without clones. This
reference implementation can be used to check possible improvements against.

6.2.4 Performance Evaluation

The performance of expressions (computer programs) is typically calculated in a
special module, written in a compiled language such as C. This program walks
through the tree structure and evaluates each node. This is however not necessary
if the performance can be readily evaluated in the logic program itself. The query
investigated typically has the form: find that derivation for expression(X), such
that eval(X, F') returns the maximal or minimal F'. Typically, the top level predicate
for this system will have the form:

objective(F) :- expression(X), eval(X,F).

This predicate is called by the system with a non-grounded (free) F. The predicate
expression/1 will derive a parse tree, the eval/2 predicate will evaluate the parse
tree and bind the objective function value to F.

6.2.5 Special Predicates

All Prolog built-in clauses such as assignment (is/2) are evaluated in Prolog di-
rectly. This is done as often such clauses are deterministic and depend on the Prolog
depth-first search strategy, or they expect some variables to be bound to ground
terms. Calls to external libraries are evaluated directly as well.

Often, there is a need for arbitrary real valued and integer constants to appear
in the expressions. A prime example is symbolic regression. In previous work, a
recursive logic program was used to derive and evaluate such constants (Keijzer
et al., 2001a).

In the current implementation of the ALP system, two special predicates are used
that can retrieve integer and floating point values. These are called ext_int/2 and
fp/1 respectively. Those values are stored in a separate string, which is kept at the
same length as the string of choices. Although this involves storing many values
that are not expressed, for the current purposes the additional memory overhead
does not present difficulties.

The derivation engine recognizes these predicates, and retrieves values from the
genotype. This way, variation operators can be defined on those constants, which
then co-evolve with the string of choices.

6.3 Summary

In the preceding sections, the ALP system is outlined, discussing programs using a
single predicate, programs using multiple predicates and programs that have addi-
tional, context sensitive constraints. Some variation operators have been discussed,

6.3. SUMMARY 83

Backtracking

Tail of unexpressed code

pred 1
pred 2
pred 3

values

= Coding Element

L Unexpressed/Recessive Element

. llegal Element

Path Through the Genotype

Figure 6.9: Overview of the genotype used in the ALP system for a program con-
sisting of three predicates. It uses a separate string for each predicate in the pro-
gram (although this is in the implementation packed in a single string) together
with a string of floating point values. The choices made in the resolution of the
logic program determine a path through the genotype, while it is possible that
constraint-violating codons get ignored. Usually a tail of unexpressed code evolves,
that contains unexpressed genetic material. The expressed code is in general a small
fraction of the complete genetic code.

together with backtracking and initialization. Figure 6.9 depicts the genotype of
the individuals that are used in the ALP system. The representation undergoing
variation and selection is depicted with multiple strings, one for each predicate
in the program. In practice these strings are packed in a single string, using the
linearization formula from Equation 6.9.

There can be a massive amount of unused information in such an individual: at every
location there is only one coding element, when the string is finished decoding into
a complete expression, the rest of the string is ignored.

Prefixes and suffixes are central in the ALP system. Not only does ripple crossover
explicitly manipulate these structures, they also have a straightforward interpretation
in terms of the search tree for the logic program. A prefix determines a partial path
through the search tree; it thus effectively sets the starting point for the search.
The suffixes on the other hand encode continuations of these search paths. When
working with recursively defined programs, these continuations encode for similar
paths in different contexts.

The mapping process that defines how the genotype gets translated into a com-
puter program is depicted in Figure 6.10. The genotype gets implicitly translated
into a string of integers that represents the shortest non-backtracking path to the
goal-state. When inducing computer programs, the goal-state is equivalent to a
successfully induced computer program given the constraints.

Although it is possible to find some biological analogies between this mapping pro-
cess and the translation-transcription cycle in DNA, these are not engineered into

84 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

Interpretation in a Logic Program
Computer Progran

iy S S Sy Sy Sy

Non Backtracking Path to the Goal State

Figure 6.10: Overview of the mapping process. The multiple strands represent a
selection from one of the predicates in the program, this selection process results in
a single string of choices. This string of choices is translated into a parse tree.

the system with the purpose of mimicking their biological counterparts in the vague
hope that when nature uses such constructs they might be useful, but are direct
consequences of the choice to induce arbitrary length search paths through a logic
program. The design choices are made to enhance the optimization process in ALP,
not to mimic any natural phenomenon. Multiple strands of genetic material ap-
peared when the linkages between clauses belonging to different predicates were
removed. A logical result of this choice is that the "translation” at one part of the
string influences the "transcription” further to the right.

The emergence of unexpressed code is a logical consequence of the use of ripple
crossover. Ripple crossover operates very unlike any variation operator appearing in
nature, it is however a relatively easy and sensible operator to apply to the recursively
defined programs considered here. The appearance of illegal strands of code that do
not get expressed is caused by the use of a backtracking mechanism. Backtracking
is used because it proved to be invaluable when using context sensitive constraints
(Keijzer et al., 2001a).

6.4 Related Work

Wong and Leung (Wong and Leung, 1997) hybridized logic programming and ge-
netic programming in their system LOGENPRO. In LOGENPRO, one defines a
grammar consisting of syntactic and semantic definitions in the form of a Definite
Clause Grammar (DCG). This grammar is transformed into a logic program by au-
tomatic means in such a way that next to the parse tree for the expressions that
are evaluated, a parse tree of information about the derivation is generated. This
second parse tree describes the rules that are applied and the variable substitutions
that are made. This is the structure that is manipulated by the variation operators.

6.4. RELATED WORK 85

Due to the semantic constraints, some fairly intricate subtree crossover and muta-
tion operators are used. Even then, a semantic validation — checking whether the
newly created parse tree is accepted by the logic program — needs to be performed.

Ross (Ross, 1999) describes a similar system that uses Definite Clause Translation
Grammars (DCTG). The difference between a DCTG and a DCG lies in the explicit
separation between syntax and semantics in the DCTG, while the DCG mixes the
syntax and semantics in the body of the clauses. Like in (Wong and Leung, 1997),
the DCTG in (Ross, 1999) is translated into a logic program and parse trees of
the derivation process are manipulated. The crossover described in (Ross, 1999)
seems to only use type information contained in the predicate names and arity at
the heads of the clauses and swaps derivation subtrees that contain the same head.
A semantic verification (running the Prolog program on the derivation tree), is
subsequently performed.

In both approaches the variation operators are strongly typed, and subsequently the
number of allowable crossover pairs in the parse trees can be significantly reduced.
This is in stark contrast with the ALP system, where all parts of the string can
be subject to crossover with any other part of any other string. Another differ-
ence between these approaches and the ALP system lies in the method of creating
expressions. Especially in the approach outlined by Ross (Ross, 1999), the strict
separation between context-free syntactic rules used to generate sentences and the
semantic validation used to validate the expressions can lead to a wasteful generate
and test cycle in the algorithm. The LOGENPRO system on the other hand tries
to push the test-cycle inside the crossover operator, leading to a potentially more
efficient system. However, the net effect of both approaches is that crossover is
restricted to swapping subtrees that directly lead to a valid program. The crossover
operator is thus strongly typed.

The ALP system on the other hand is not constrained to use logic grammars as it
works with logic programs directly. Although a logic program is eminently suitable
to define a logic grammar, logic programs can also take more direct, constructive,
approaches towards generating structures. The use of untyped variation operators
together with a fault tolerant mapping method is also very different from the tree
based genetic programming systems described above.

As an example of the difference between a grammatical approach and a constructive
approach, consider the problem of generating a permutation of a list of items. Such
a permuted list can be needed as a subtask for a larger programming task. It is
already not perfectly clear how to approach this problem using a grammar as we
want to transform one sequence into another sequence. Grammars are usually used
to define legal sentences, not transformations. Assume for the sake of simplicity
however that the object is to create a permutation of a fixed length list [1,2, ..., 10].
In a grammatical approach, one approach would be to define the syntax to be a list
of length 10, where the elements are numbers. In a DCG this would look like

number (1) .
ﬁgmber(lo).
list([1, 0).

list([NIL], Sz) — number(N), list(L, S), { Sz =:=S + 1 }.
list10(L) — list(L, 10).

86 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

Which would define all lists containing the numbers 1 to 10. The curly brackets are
used to indicate the semantic checks, the functor =:=/2 denotes arithmetic equality.
The important thing to notice is that it presents a syntactical definition, which is
eminently suitable for parsing lists. The check for the size is a small semantic
component. However, we are interested in a permutation, thus there is a need to
check if a number already occurs in the list. A straightforward implementation of
this would be to simply check if the number already occurred:

perm 1ist([],0).

perm list([N|L], Sz) — number(N), permlist(L, S),
{not (member (N,L)), Sz =:= S+1}.

perm_list10(L) — perm1list(L,10).

This will indeed define all possible permutations, but in the process of generating
them, it would generate all possible sublists, discarding the illegal lists. This is not a
problem when parsing a possible permutation, but when generating such a list it can
be very wasteful. Although possibly less wasteful ways of defining a grammar for
this problem are imaginable, the main point to be made is that many constructions
such as permuted lists are not best modelled by a grammar, making a distinction
between a context-free syntax together with semantic constraints. Although for
parsing sentences the grammatical approach is sufficiently powerful, for generating
sentences a more procedural approach seems to be needed. ALP can deliver such
a constructive approach: in a logic program, it is possible to define a permutation
procedurally

int (0,.).
int(N,Z) :- int(N1,Z), N is Ni1+1, N < Z.

permute([1,[1).
permute(List, [PermHead |PermRest]) :-
length(List, L),

L>o0,
int(Choice,L), % choose an integer
nthO(Choice, List, PermHead), % get the choice and

% make it the head
deletenth0(Choice, List, Smaller), % create smaller list
permute(Smaller,PermRest) .

The predicate permute/2 transforms an arbitrary list into a permuted version of
the same list. It does this by making an arbitrary choice from the input list and
putting that one at the head of the output list. The element that is chosen gets
deleted from the input list and the algorithm recurses. It ultimately hinges on the
predicate int/2, that selects an integer bounded above by the length of the list*.
The program thus defines a procedural way of permuting a list, it is difficult to
identify grammatical elements in this small program. Furthermore, this program
is generic, it does not make any assumption about the contents of the list. The
predicate permute/2 is set up to do a permutation of any list.

*When randomly generating strings, the int/2 predicate is heavily biased towards sampling
the lowest numbers. Therefore ALP uses the special predicate ext_int/2 (See Section 6.2.5) that
retrieves an integer from the genotype.

6.4. RELATED WORK 87

This example also illustrates some possible problems with typed crossovers in con-
strained domains. In the 1ist/2 predicate defined above, even though the definition
is recursive, the check for the size of the list implies a very stringent constraint for
a subtree crossover. Only crossovers that swap lists of the same size are valid, all
other crossovers are invalid. ALP, using an inherently more messy mapping process,
would however be able to migrate any part of the string encoding a list to any other
part, as long as it can decode to a list of the proper length. The tail of unexpressed
code would be helpful to achieve this.

Subtree and substring crossovers in the ALP system It is however possible to
implement a subtree crossover in the ALP system by utilizing information gathered
about the evolution of the goal stack and the predicate that was used at every point
in the derivation. Selecting a crossover point ki, its subtree is spanned by the first
point ks > k; such that:

g(sak2) = g(sakl) -1

Where ¢(s, k) is the goal stack function defined in Equation 6.3. The point ks
is the point where all the unresolved literals pushed on the stack by the predicate
encoded by si, are resolved and removed from the goal stack, which in turn means
that all arguments needed by the predicate used at point k; have been bound to
ground terms.

The condition can be simplified to

k2 k1
g(svk2)_g(svk1) = 90+Zb(81)—go—zb(5j):
i=0 Jj=0

k2
> ob(si) = -1

i=k1

The condition that it is the first point that has this property makes sure that we
swap a single subtree. Subtree crossover is then a special case of a general structure
preserving two-point crossover on strings, where given two strings s; and s» with
crossover points k1 < ky and [< o

g(s1,k1) — g(s1,k2) = g(s2,11) — g(s2,12)

Interpreted in terms of the goal stack, this condition simply states that the dif-
ferences in goal stack size for the substrings must be equal to each other. When
swapping substrings that abide this constraint, the integrity of the goal stack is guar-
anteed and no tail of unexpressed code is needed. This does however not necessarily
work for programs with multiple predicates and context-sensitive constraints.

In terms of the shape graph, a subtree is simply the first point to the right that is
located one notch lower than the current level. In terms of the shape graph and
the parse tree this can be depicted as

88 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

s

L T

FaGHCI

Figure 6.11: Subtree crossover on the shape graph.

f

P
f X

™

With the additional provision that two subtrees can only be exchanged when they
encode for a clause in the same predicate, this subtree crossover is equivalent with
the subtree crossover outlined by Ross (Ross, 1999). It has the additional benefit
that instead of having a semantical validation check and possible direct failure in
the case of context-sensitive constraints, the derivation process would still be able
to re-interpret the rest of the string and possibly return a complete expression.

Figure 6.11 depicts the process of subtree crossover in terms of the shape graph.

6.5 ALP, ILP and CLP

Inductive Logic Programming (ILP) aims at inducing logic programs. based on
data (Muggleton and Raedt, 1994). As logic programs themselves can be readily
expressed as parse trees in a logic program®, ALP could conceivably be used to
induce logic programs. Even in that case, a large difference between ILP and ALP
would remain: ILP usually works by transforming an overly specific logic program
(the set of all positive and negative examples) into a more general program, using
various heuristics to ascertain which generalizations are allowed.

5logic programming shares this ability with LISP

6.6. SUMMARY 89

ALP usually operates in a constructive way, creating a parse tree (in this case a logic
program) out of an inductive definition of possible parse trees (logic programs).
However, due to ALP’s ability to use transformations and procedural rules as well,
it might be possible to constrain ALP in such a way that it will only use those rules
that are used in ILP. In that case ALP can be used merely as an alternative to depth
first search in a highly constrained search space. The worth of this approach is not
explored further here.

Constrained Logic Programming (CLP) tries to find solutions in heavily constrained
search domains defined by logic programs (Jaffar and Maher, 1994). Here the object
of search is usually a single or small set of solutions that abide the constraints. ALP
is is general not capable of significantly optimizing expressions when generating
a single solution is a difficult search problem in its own right. Creating the first
generation should then already solve the problem. ALP works best when there is an
abundance of solutions of different merit — which is the case in program induction.
However, in Section 7.1.2 and Chapter 8, it will be shown how in some circumstances
declarative (hard) constraints can be transformed to preferential (soft) constraints.
Using a multi-objective search then provides a viable approach to optimize in the
presence of difficult constraints.

6.6 Summary

In this chapter the adaptive logic programming system has been outlined. Particular
attention was given to the mapping process from a string of codons (a path through
a logic program) and the resulting parse tree that defines the computer program.
The effect of the variation operators on the string of codons was examined in the
context of simple programs, syntactically constrained programs and semantically
constrained programs.

The shape graph was introduced to visualize the shape of a parse tree generated
by a path through a logic program. This shape graph is defined as the number
of literals on the goal stack for each point in the tree generation process. In the
case of simple single predicate programs without constraints, the shape graph gives
all information needed to implement structure preserving one point and two point
Crossovers.

ALP, being not bound to a grammatical formalism but to the capabilities of a
Turing-complete programming environment, might have promise as a powerful and
robust approach to the problem of automatic program induction in the context of
syntactic and semantic constraints. The next chapter is devoted to a feasibility
study of ALP’s untyped variation operators and to some limited case studies in
problems involving a variety of constraints.

90 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM

91

Chapter 7

Applications for the ALP
System

The ALP system is implemented using SWI-Prolog®. SWI-Prolog defines a two-way
C API, that allows to call Prolog from C (used by the resolution engine) and C from
Prolog (used for evaluation of parse trees). The genetic algorithm is implemented
using the evolutionary objects library?>. The system is capable of performing multi-
objective optimization, using the elitist non-dominated sorting algorithm NSGA-II
(Deb et al., 2000).

The general optimization cycle in the algorithm that is used consists of a variation
step in which the population is doubled in size, using a tournament selection of size
2 to obtain the parents, and a subsequent selection step in which the population is
sorted and halved. In evolutionary strategy terminology this is a (u+u) strategy with
an additional tournament selection step. In the case of multi-objective optimization,
the sorting is based on linear ranking, consisting of an integer value that designates
which front the individual belongs to, and a fractional value that is used to break
ties. This fractional value represents the uniqueness of the individual in its front
of non-dominated solutions. The NSGA-II algorithm improved upon the original
NSGA algorithm by removing the dependence on a sharing parameter (Deb et al.,
2000).

This algorithm is strongly elitist as a new individual has to improve upon at least
one individual in the previous generation in order to be included in the breeding
population for the current generation. One of the ramifications of this choice is
that there is no straight reproduction in the system, all newly added individuals will
have undergone some form of variation.

7.1 Applications

Here we will examine the feasibility of the ALP system on various applications
with varying constraints. First a small experiment showing how some background

http:/ /www.swi.psy.uva.nl/projects/SWI-Prolog
2http://www.sourceforge.net/projects/eodev

92 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

Strategy (1w +)
Population Size () 500
No. of Generations 100
No. of runs 100
Crossover Probability 0.97
Constant Mutation 0.03
Maximum depth at init 6
Maximum depth 15

Table 7.1: Parameters for the ALP system used for nearly all experiments.

knowledge about the function set on the artificial ant problem can be used to remove
various source of redundancy. Secondly, the system is used to find an equation that
is well-adapted to some data set, while at the same time is constrained to find
equations that produce outputs that are provably in the right domain. The program
uses interval arithmetic to achieve this. Thirdly, the system is tried upon the problem
of finding a dimensionally correct equation. Finally the system is constrained to
produce equations in the language of matrix algebra.

The main aim of these experiments are to give a proof of principle that the adaptive
logic programming system introduced here is capable of dealing with a wide range
of applications. The applications involving interval logic, units of measurement and
matrix algebra are important to make genetic programming more suitable for use
in scientific and engineering settings. The artificial ant problem is more of a toy
problem, but points to the possibility of extending the power of genetic programming
by disallowing some a priori bad or redundant constructs.

Each of the programs studied here have context-sensitive constraints. Where the
performance between subtree crossover and ripple crossover are compared, the sub-
tree crossover is modified to have a second try with new crossover points if a
crossover does not produce a valid offspring. This to level the field somewhat3.
The comparative experiments performed here are mainly used as evidence on the
large difference between ripple crossover and subtree crossover when applied to
inducing expressions subject to context-sensitive constraints.

7.1.1 A Sensible Ant on the Santa Fe Trail

The artificial ant problem has been studied intensively in (Langdon and Poli, 1998)
which showed that it is a difficult problem with multiple ridges and local optima.
The goal is to find a computer program that steers an ant over a trail of food
pieces, eating as much food as possible. The trail that is used is the well-known
Santa Fe trail that contains 89 pieces of food. The success criterion for an artificial
ant program is then to steer the ant to eat these 89 pieces of food within 600 steps.

The logic program that defines the space of allowable ant programs can be stated
as follows.

3As described in Section 6.2.1 ripple crossover was modified to attempt a reversal of roles for
prefixes and suffixes in case of failure.

7.1. APPLICATIONS 93

ant (move)
ant (left)
ant (right)
ant (iffoodahead(X,Y)) :- ant(X), ant(Y).
ant(seq(X,Y)) :- ant(X), ant(Y).

Program 7.1.1: Program for inducing an artificial ant.

The move atom indicates a move forward by the ant, left and right turn the ant
90 degrees on the grid, the iffoodahead instruction branches on the information
whether there is a food pellet present in the cell the ant is facing, while the seq
operator simply applies its arguments in sequence. A program consisting of these
instructions is iteratively applied until time runs out.

In the usual genetic programming notation of terminal and function sets, this logic
program above can be described by: 7' = { move/0, left/0, right/0} and F' =
{ iffoodahead/2, seq/2 }. The Program 7.1.1 will be extended to implement a
few context-sensitive constraints.

The space of possible ant programs contains many ineffective pieces of code that
can be identified even before trying to find a program for a specific trail. It is for
example ineffective to let the ant move left and subsequently move right without any
commands in between as its overall state would not have changed. Furthermore,
directly nesting iffoodahead/2 calls is also ineffective as the outcome of the check
is already known. This embodies knowledge about the semantics of the function
set. We might also assume that if there is food ahead, moving toward the food
seems to be a good idea.

These constraints are readily implemented in the ALP system. For this an ant/3
predicate will be used. As usual, the first argument will be used to induce the com-
puter program that is evaluated. The second argument is used to specify the input
constraints, constraints that are imposed by the caller, while the third argument
is used to specify some output constraints: constraints subsequent clauses need to
abide.

The start clause is of the form ant/1 that calls ant/3, not demanding any con-
straints on the program (signified by the empty list [1), and ignores the output
constraints (the underscore symbol). Thus:

ant(X) :- ant(X,[]1,.).

The sequence operator is used to propagate the constraints.

ant(seq(X,Y),In,0ut) :- ant(X, In, C), ant(Y, C, Out).

The two additional arguments In and Out get imposed on the arguments of the
sequence operator. The intermediate variable C is used to propagate the constraints
from the first subexpression to the other.

94 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

The clause that induces the move atom is defined as follows

ant (move, C, []) :- \+ member(no_move, C).

where \+ is the Prolog symbol for negation by failure: it will only succeed when
the execution of its argument fails. The member/2 function is a built-in clause, and
is executed in Prolog directly. This clause constrains the move atom to be only
applicable when the set of constraints does not contain the no_move atom. A move
furthermore removes all constraints, it thus returns the empty list [1. Turning to
left:

ant(left, C, [no_right]) :- \+ member(no_left, C).

Is applicable only when there is no no_left constraint. It imposes a no_right
constraint to the next action. So when the ant turns left, it will not immediately
turn right, because:

ant(right, C, [no_left]) :- \+ member(noright, C).

For the iffoodahead function the following constraints are imposed:

ant (iffoodahead(X, Y), In, Out) :-
\+ member (no_if, In),
ant (X, [no_left, no_right, no_if], OutLeft),
ant(Y, [nomove, no_if], OutRight),
intersection(QutLeft, OutRight, Out).

The first literal in the body of the clause imposes the constraint that the clause can
only be used when there is no no_if constraint pending. Furthermore it specifies
that when food is spotted, turning is not allowed, which will necessarily lead to
a move as the next action (note that due to the propagating of constraints any
number of intermediate sequence operators can occur as long as the first action
that is applied is a move). When there is no food ahead however, moving is not
allowed: this will mean that a construction such as ‘iffoodahead (seq(move,X),
seq(move,Y))" is not allowed, as this could equivalently (and shorter) be speci-
fied as ‘seq(move,iffoodahead(X,Y))". For both branches, it is not allowed to
immediately check for food again. The clause will return the intersection of the
constraints imposed by the two branches, thus if both branches end with imposing
the same constraint(s) these will be propagated to the next action.

This in effect implements information about some immediate redundancies in the
function set for the artificial ant problem. It reduces the search space by disallowing
specific combinations of code. No knowledge about the trail is included in the
program, the constraints are imposed to remove redundancies and to take one
maybe sensible action: when there's food spotted, eat it.

7.1. APPLICATIONS 95

The effects of subtree crossover and ripple crossover in the context of these con-
straints are expected to be quite different. In the case of subtree crossover, at-
tempting to move a subtree to an illegal context will result in a failure. Consider
for example inserting the subtree

seq into location X of seq
left move right X

thus trying to form the tree

seq

right seq

left move

The constraint against turning would make this tree invalid. When using ripple
crossover however, the backtracking operator would simply skip the left action
and the intermediate tree would become

seq
right seq

/\
move Y

Which is as such invalid. If there is however still genetic material left, possibly in
the tail of unexpressed code, the resolution process would use that to fill in the
value of Y and then create a valid tree. As the constraints in this grammar only
exclude certain pairs of actions or conditions, the backtracking operator is expected
to be relatively successful in creating valid offspring.

The effect of using these constraints is dramatic in the ability of ALP to find
solutions to the problem. Figure 7.1 shows the cumulative probability of success
over the generations for both ripple crossover and subtree crossover for both logic
programs. The success rate for solving the problem goes to 97% for ripple crossover,
while subtree crossover’s performance goes to 80%. On the standard formulation
of the problem, success rates are much lower. We cannot conclude that ripple
crossover together with backtracking is better suited to handle the constraints,
as the success rates on the standard formulation of the problem already show a
significant advantage for ripple crossover. It appears that for this type of problem
the more destructive variation applied through ripple crossover has a benefit over
the more localized changes of subtree crossover. This is especially pronounced in
the later stages of the run, where cumulative success for subtree crossover levels
off, while the runs using ripple crossover keep finding solutions.

It is however instructive to examine the failure rate of both methods. These are
depicted in Figure 7.2. Initially the failure rates of both methods peak when the
first illegal crossovers occur. Very soon however, the tail of unexpressed code begins
to form and together with the backtracking mechanism, the failure rate of ripple
crossover drops to very low values. The failure rate of subtree crossover on the
other hand initially rises and levels off at a rate of 5%. In both cases the crossover
operators have two tries in creating a valid individual. Due to the elitist truncation
selection method that is used, invalid individuals only slow down the search. The

96 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

Subtree ——
Ripple ---x---

Subtree (sensible) ---*--- .:::nn
Ripple (sensible) &
IH.-
08 ol

Prob. Success
o
(o2}
T

o
IS
T

Generation

Figure 7.1: Probability of success in eating 89 pieces of food scattered on the
Santa Fe trail for subtree crossover and ripple crossover using the straightforward

Program 7.1.1 and the 'sensible’ ant program.

0.06 T T T
Subtree Crossover —+—
Ripple Crossover ---x---

0.05

0.04

0.03

Failure Rate

0.02

0.01

Generation

Figure 7.2: Failure rates of subtree crossover and ripple crossover on
artificial ant problem.

the sensible

7.1. APPLICATIONS 97

80 T T T T T T T T
Subtree —+—
Ripple ---<---
Subtree (sensible) ---*---
70 Ripple (sensible) &
60 |-
50 |
[}
N
[}
% 40
[
>
<
30 |
20 |
10
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Generation

Figure 7.3: The evolution of the average size of the population on the artificial ant
problems.

5% invalid individuals that are created by subtree crossover would mean that the
genetic algorithm effectively processes 475 individuals per generation rather than
500.

It is clear from this experiment that the ‘sensible’ program helps in solving the
problem faster than the straightforward program, regardless of the variation operator
that is used. The ‘sensible’ program uses context-sensitive constraints to introduce
some a priori information to exclude redundant subexpressions.

By reducing the search space to exclude certain constructs, an implicit bias towards
shorter solutions is introduced. It was estimated in (Langdon and Poli, 1998) that
the space of possible ant programs has a high density of solutions of a relative short
size. Figure 7.3 shows the evolution of the size of the population undergoing both
crossover operators. The 'sensible’ ant constraints induce populations containing
programs that are significantly shorter than when using the unconstrained definition
of possible ant programs.

Concluding the Experiment

Although the ‘sensible’ ant-problem studied here is a toy problem, the way the
constraints are introduced point to a more general application: disallowing certain
constructs because they are redundant or meaningless. This can often be identified
just examining the definition and description of the function set. It proved to be
fairly easy to disallow some commonly occurring fragments from the ant programs,
the reduced search space allowed to search with great success. Many function
sets have known redundancies or allow nonsensical combinations. By using a logic

98 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

programming approach it is possible to disallow specific constructs. This can be
contrasted with a pure syntactical approach (context-free grammars), where it is
only possible to express what is allowed.

A possible application of this technique in symbolic regression would be to specifi-
cally disallow nesting of some functions. For example, the clause

expr (exp(X),C) :- \+ member (no_exp,C), expr(X, [no_expl|C]l).

would disallow nested exponentiation functions. In the practice of performing sym-
bolic regression it occurs fairly often that such nested expressions appear, and their
presence makes it usually difficult to interpret the equation. When using a subtree
crossover using such a grammar, any attempt of inserting a subtree containing an
exp function underneath an exp function that is already present would lead to a
failure. Using ripple crossover with backtracking, such an offending operation would
simply be skipped and the next instruction would be read from the genotype. Which
of the two approaches is the best cannot be answered conclusively at this point.

7.1.2 Interval Arithmetic

The solutions provided by genetic programming in the area of symbolic regression
can exhibit several types of overfitting behaviour; the most destructive ones occur
when arithmetical errors are induced. When the function sets include functions that
are not defined in the full range of possible inputs such as division and the square
root function, the operators are usually protected (Koza, 1992) to return default
values in the case of an error. Unfortunately, this protection only works well when
the arithmetical error occurs in the training set: if errors occur on a different set,
the default values are plainly returned, which might lead to strange behaviour of the
expressions. For the division operator, protecting just a division by zero does not
solve the problem of ill-defined expression: consider Figure 7.4 where an expression is
trained on the indicated data points and subsequently evaluated over the full range.
It induces an asymptote and the usual protection mechanism will only protect the
point where the actual division by zero occurs. Values close to this point will lead
to a prediction of arbitrary large values.

A method to avoid mathematical errors and calculate the domain of an expression
is to use interval arithmetic that calculates upper and lower bounds for each part in
the expression. Interval arithmetic is readily expressed in the ALP system, the logic
program 6.2.2 that was used to illustrate the use of backtracking implements this.
The program calculates the theoretical upper and lower bounds of an expression.

The logic program that generates expressions and their bounds while avoiding math-
ematical exceptions is used on a sediment transportation problem which has been
described in Section 3.1. Here we are interested in inducing an empirical formula
that predicts the concentration of sediment near the bed of a stream. A concen-
tration cannot have arbitrary values, it is constrained to lie within 0 and 1, where
1 means complete saturation. To implement such constraints, we can use the logic
program 6.2.2 defined in Section 6.2.1.

7.1. APPLICATIONS 99

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure 7.4: An automatically induced expression using the indicated points as the
training set. It is evaluated over the full domain. Note that the usual protection
mechanism of disallowing a division by zero would not eliminate the asymptote
itself. This leads to wildly inaccurate values in the neighbourhood of the invalid
point.

The terminals for this problem will be the variables # and ¢’ that are dimensionless
variables (Shields parameters) that are derived from measured variables. The lower
and upper bounds for these variables are empirically determined by examining the
dataset, but in principle these could be set to theoretical values. Because the lower
bounds are close to zero for the dependent and independent variables, they were
set to 0. Now the object of search is an expression that (i) fits the data well, and
(ii) keeps within bounds. This is easiest to set up with a multi-objective search,
especially considering the fact that the interval predicate calculates worst case
bounds*. It was however not tried to calculate better bounds in the grammar for
fear of overcomplexifying the logic program.

This leads to the following setup:

“4Consider for example a variable = with a data range of [—1, 1], and the expression x * z. The
interval that is calculated for this expression would be [—1, 1], while in reality, the minus sign would
always cancel out, leaving the tighter bounds of [0, 1].

100 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

interval(theta, 0, 6.08).
interval (theta_p, 0, 1.98).

* Rest of the interval/3 predicate, see Program 6.2.2 x\

interval _error(0, L, U) :-
0 is abs(L-0) + abs(U-0.55). 9% bounds for cb [0,0.55]

objective([01,02]) :-
interval (X, L, U),
eval (X,01), % evaluate on data
interval_error(02, L, U). % calculate the interval error

where the objective/1 predicate is called by the resolution engine. The rest of the
definition of the interval/3 predicate can found in Program 6.2.2 which defines the
interval arithmetic for addition, multiplication, subtraction, division and the square
root function. It returns two objective values that will be handled by the NSGA-II
algorithm (Deb et al., 2000). Not only will ALP try to induce an expression that
follows the data range, the use of Program 6.2.2 also removes the need of using
protected algebraic operators, as the expression is guaranteed to be valid in the
domain defined by the input variables.

Results

To obtain a baseline measure of the performance of the system, first a set of 100
runs are performed where the second objective is not used. Here the operators are
protected in the data range, thus divisions by zero are impossible and square roots
of negative numbers can also not occur, but there is no selection pressure towards
expressions that follow the desired data range. The errors on the data are reported
as normalized root mean squared errors.

Next to this experiments are performed that use the second objective: the interval
error. All runs are performed on the same training data for the sediment transporta-
tion problem. As the multi-objective run ends up with a front of non-dominated
solutions, in a post-processing step a choice must be made from this front. It was
decided that the best performing expression on the data that had an interval error
smaller than 0.1 would be selected. It was not insisted to have an exact match on
the bounds because the bounds calculated in the logic program are not tight.

Although no conclusive evidence can be expected from applying a system on a
single problem, two questions will be investigated. The first question is concerned
with the optimization ability: does the addition of a second objective help or hinder
the search for a well-fitted expression? The second question is concerned with
the performance of the expressions on the test-set: does the addition of a second
objective optimized on the data range help in avoiding overfitting?

Figure 7.5 shows the evolution of the training performance for subtree and ripple
crossover on both the multi- and single objective problems. The use of a single

7.1. APPLICATIONS 101

0.5

0.48 -

0.46 -

NRMS

0.44

0.42 -

04 1 1 1 1
0 20 40 60 80 100

Generations

Figure 7.5: Evolution of the mean performance on the training set for the multi-
objective and single objective runs. The mean performance is calculated as an
average over the performance of the best expression in a generation.

objective leads to significantly better results on the training set than the multi-
objective setup. Table 7.2 shows the results of a two-tailed t-test on the mean
performance at the final generation.

When evaluating the expressions on the test set however, these differences disappear.
Figure 7.6 shows the performance of the selected expressions from each run on the
testset. Even though the best of those are very similar in their ability to generalize,
the worst performing expressions taken from the single objective runs do however
show a large overfit. Note that with the normalized RMS measure used here, an
error of 1.0 would be produced by an expression that has a constant value — the
mean of the target signal. Expressions that on the test set score worse than an error
of 1.0 are thus worse than the performance of a constant. This level of overfitting

| Subtree MO Ripple MO Subtree Ripple

Subtree MO 0.62 10°° 107
Ripple MO 0.62 1076 107
Subtree 106 10-6 0.29
Ripple 1077 1077 0.29

Table 7.2: Probability that the difference in observed mean performance in the final
generation is caused by random effects using a two tailed t-test on the training
set. The label ‘MO’ designates the multi-objective runs. There's no significant
difference between subtree crossover and ripple crossovers; the differences between
the multi-objective runs and the single objective runs is however significant.

102 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

N
B

Subtree MO +
Ripple MO x
Subtree *
Ripple O
*
15 1
*
O
*
%]
E 1k K .
z o

0 ! ! ! !

0 20 40 60 80 100
Sorted Expressions

Figure 7.6: Performance of the selected expressions of the multi-objective and single
objective runs on the testset. The error measure that is used is the normalized RMS
error, which is defined in such a way that an error of 1 is achieved by a correct
prediction of the target average.

can be called destructive. The use of a second objective that selects expressions on
their ability to be valid in a prespecified output range seems to help in reducing the
level of destructive overfitting behaviour.

Concluding the Experiment

The interval program used here is a general approach to symbolic regression where
the issue of protected mathematical operators is solved. If the ranges on the input
variables are set correctly, there is no possibility that mathematical exceptions occur.

If the bounds are set to theoretically known values, it is likewise guaranteed that the
expressions induced by this program are well-defined for all possible input values.

Here an approach was examined where the correct range of the output interval
was used as a second objective in a multi-objective search. The constraints, thus
imposed, did not hamper the search for a well-fitting equation by much. It did
however help in avoiding overfitted equations. This is to be expected as the outputs
of the expressions that are induced in this way are guaranteed to lie within a certain
data range.

The use of interval arithmetic in symbolic regression can take many forms. Primarily
it can take care of avoiding the induction of destructive under and overflows in the
input-output mapping. By guiding the search to find expressions that produce
outputs in the appropriate data range, destructive overfitting can be avoided. The
resulting expressions are then provably in the right range for all possible inputs.

7.1. APPLICATIONS 103

A multi-objective approach might also not be the only approach that can achieve
this. As often, a tailor made wrapper can help. By using the program for interval
arithmetic, the output bounds of each induced expression are known. It is then
a fairly simple matter to find a slope and an intercept such that the bounds of
the expression coincides with the desired output range. This can for instance be
achieved with the following clause:

scaled_interval (I+S*X) :-
interval (X,L,U),
catch(S is 0.55/(U-L),_,fail), % 0.55: new range
I is - L*0.55/(U-L).

Which will induce expressions that are always in the right domain. It is up to the
genetic algorithm to find an expression subject to this scaling that will fit the data
well.

Although the constraints imposed by interval arithmetic are fairly simple and can
be programmed into a regular genetic programming system without much trouble,
the use of the logic programming representation made it possible to use it without
any changes to the search engine. It shows the versatility of the approach, where a
change in the definition of logic programs can help in finding more reliable solutions.

7.1.3 Units of Measurement

In the physical sciences, data represents careful observations of a physical system
under study. Apart from the raw numbers that are collected, units of measurement
of the observed variables provide additional information about the physical process.
In Chapter 5 a method was proposed that utilized the information in the units of
measurement in a preferential manner: a multi-objective strategy was used to min-
imize both the error on the data and the error in the dimensions of the evolving
expressions. The expressiveness of the ALP system can however be used to declar-
atively constrain the search such that only dimensionally correct formulations will
be considered. In fact, tackling problems involving units of measurement was the
main inspiration for defining the ALP system.

A comparison between declarative and preferential methods of formula induction in
the context of units of measurements can be found in chapter 8.

The problem used here involves the sediment transport problem, already encoun-
tered in Chapters 3 and 5. In contrast with the approach outlined in Chapter 5, the
system is constrained to generate only dimensionally correct equations. It thus uses
a declarative bias towards the use of units of measurements. Another approach for
this class of problems is studied in (Ratle and Sebag, 2000) where a context free
grammar is generated that models a subset of the language of units of measurement.

Implementation of the units of measurement system in a Logic Program

The constraints imposed by the units of measurement can be effectively imple-
mented in a logic program. In order to implement the system a predicate uom/2 is

104 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

defined. The first argument of the predicate provides the algebraic expression and
the second argument a list containing the exponents of the units such that the fact
‘uom(ws, [1,-11)' for example denotes an input variable ws stated in the units of
length over time: a velocity.

For addition and subtraction, the program needs to ensure that both arguments are
of the same type, thus:

uom(X + Y, UOM) :-
uom(X, UOM),
uom(Y, UOM).

Although this clause can be used for both modes (input and output) of the second
(UOM) argument of the predicate, the behaviour of the ALP system will be different
for each mode. If the UOM argument is bound to a ground term i.e., it specifies the
need for a particular unit of measurement, the recursive calls to find the arguments
X and Y will be constrained to be stated in these measurements. If on the other
hand the UOM argument is not grounded, the recursive procedure to find the X part
of the addition is unconstrained. However, after the induction of this first part,
the UOM argument will have been bound to a ground term: the units of the first
argument. The search for the Y part of the expression is then constrained to be
stated in the same units as the first part of the expression. In this case no special
cases needed to be considered, but below the meta-logical predicate ground/1 will
be used to check for groundedness or non-groundedness of the inputs.

For multiplication and division, two clauses need to be defined: one when the U0OM
variable is defined (grounded) and another when it is not defined. This is necessary
because in the case when the units are known beforehand, a different calculation
needs to be performed then when they are induced by the arguments of the expres-
sions. It was chosen to implement this using a helper predicate multiplication/3,
to make it possible for the genotype to code for the operation, and subsequently let
backtracking help in choosing the appropriate clause. The following set of clauses
implements multiplication (implementation of division is similar):

7.1. APPLICATIONS 105

uom(X*xY, UOM) :-
multiplication(X,Y,UOM).

multiplication(X, Y, UOM) :-
ground (UOM) , % is UOM set to a value?
uom(X, UOMx), % get the units for the first argument
call(minus(UOM, UOMx, UOMy)), % calculate the units for the
% second argument
% such that y = output - x
uom(Y, UOMy). % constrain the expression
% to be of units UOMy

multiplication(X, Y, UOM) :-

not (ground (UOM)) , % is UOM unknown?
uom (X, UOMx),
uom(Y, UOMy), % Do not constrain the units

call(plus(UOMx, UOMy, UOM)). % Calculate the output units:
% output = x + y

The predicates minus/3 and plus/3 perform subtraction and addition on lists of
exponent values. They are wrapped inside Prolog’s built-in call/1 predicate to
make sure that they are evaluated in Prolog directly (See Section 6.2.5). The
ground/1 predicate checks whether the variable is bound to a ground term. In the
first clause, that only applies when the units are grounded, the first argument for
the multiplication is found in an unconstrained way. Subsequently, the difference
between the output and this argument’s units is calculated, the result are the units
the second argument needs to be stated in to obtain a consistent formulation. When
no units are demanded, both the first and the second argument are induced without
constraints on the units they're stated in. They are added together to calculate
the output units. The two clauses for applying multiplication are thus defined for
different modes.

In the experiments described below one additional function is used, sqrt/1, defined
as:

uom(sqrt(X), UOM) :-
square_root (X,UOM) .

square_root (X, UOM, C) :-

ground (UOM) , % is UOM set to a value?
call(mult(UOM, 2.0, UOMx)), % multiply by two
uom(X, UOMx) . % constrain the operand

square_root (X, UOM, C) :-
not (ground (UOM)) , % is UOM unknown?
uom(X, UOMx), % find an operand (unconstrained)
call(mult(UOMx, 0.5, UOM)). % calculate the output UOM

Where the mult/3 predicate calculates a multiplication with a scalar value.

Together with clauses defining the variables and retrieving constant values (which

106 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

are constrained to dimensionless units in order to disallow arbitrary coercions), this
logic program implements the system in full generality. The ALP system evolves
paths through the logic program that result in correctly typed expression, which are
subsequently subject to evaluation on the available observations.

The Sediment Transport Problem
For the first set of experiments the sediment transport problem is revisited. The in-

puts for this program are the independent variables, together with their dimensions,
represented as a list of exponents.

uom(X,U) :- leaf(X,U).

leaf(nu, [2,-1]). % kinematic viscosity

leaf (uf, [1,-11). % shear velocity

leaf (uf_p, [1,-1]). 7% sheer vel. related to skin friction
leaf(ws, [1,-1]1). % settling velocity

leaf (d50, [1,0]). % median diameter of sand grains

leaf(9.81, [1,-2]). ¥% gravity acceleration
leaf(C, [0,0]) :- % dimensionless constant
fp(C). % obtain float from genotype

This logic program declaring the uom then defines a search where most constraints
are context-sensitive. Because of this, subtree crossover will find it difficult to
exchange subtrees, as it does not have a fallback mechanism in case constraints are
violated. Apart from the case where there is no desired output unit and the entire
expression consists of non-linear operators, subtree crossover will only be able to
exchange subtrees that are stated in the same units. It will then be constrained to
only search in the space of units that are present in the initial generation.

The untyped ripple crossover however will be able to exchange expressions stated
in arbitrary units. The backtracking mechanism helps in reinterpreting the remain-
der of the string to induce a correct formulation. By using the helper predicate
multiplication/3, division/3 and square_root/2 that define the operation
of the program in the case of differing modes, the backtracking mechanism will
work as intended. When a multiplication is chosen for instance, selecting the clause
for the wrong mode (for instance the clause that checks for groundedness when the
UOM is ungrounded), would only lead to skipping a single codon, the next codon
will automatically code for the proper clause.

It is unfortunately not clear what consequences breaking up the program in several
predicates has for subtree crossover. Subtree crossover will exchange subtrees start-
ing with the same predicate, and thus when selecting a multiplication/2 predi-
cate in one tree, it will search for the same predicate in the other tree. When such
a tree is found, but the modes of the predicates differ, the crossover will fail. The
selection of subtrees is done randomly, thus the probability of selecting a predicate
will be determined by its frequency of occurrence in the tree. Whigham (Whigham,
1996a) advocates setting a priori probabilities for the selection of different non-
terminals (predicates) in a context-free grammar. This would however add another

7.1. APPLICATIONS 107

set of parameters to the system. The impact of these parameters on the search is
difficult to determine, as it is quite likely that their importance depends on the state
of the population.

This program is designed with the possibility of backtracking in mind and is thus
tilted in favour of the untyped variational operator called ripple crossover. The main
drawback for typed subtree crossover is however not easily solvable: due to it mostly
exchanging subtrees of the same type (units), it will be heavily biased towards the
types present in the initial population. The units of measurement language has an
infinitude of possible types, leading to the assumption that subtree crossover will
be ineffective in this domain. This a priori drawback of subtree crossover on the
unit of measurement problem was the primary motivation that lead to creating the
ALP system. With this system in place, together with an implementation of subtree
crossover, it is finally possible to check whether this assertion is founded.

The desired output for this problem is a dimensionless quantity, a concentration.
Two experiments were performed, one where the desired output is given and one
experiment where no desired output is given. The second experiment thus seeks
for a dimensionally consistent formulation stated in any units. It is quite common
for empirical equations to multiply the resulting equation with a constant stated in
some units to obtain an equation stated in the desired units of measurement?®, this
is usually a residual coefficient that tries to describe some unmodelled phenomena.
In that case the search is for an expression that is internally consistent, without
necessarily inferring the desired dimension. In the logic program this is accomplished
with the following goals:

(1) ?- uom(X,[0,0]).
(2) 7- uom(X, _).

Where the underscore symbol ‘_' denotes an unnamed variable. The experiments
were run for 300 generations.

From Figure 7.7 and Figure 7.8 it can be inferred that subtree crossover is not
capable of optimizing well on this problem. In contrast with this, ripple crossover
searches reasonably well, the average performance is in both experiments signifi-
cantly better than subtree crossover, even the less constrained subtree crossover
experiment is not able to improve upon the fully constrained ripple crossover runs.

On the problem setup where the expression can be stated in arbitrary units (i.e. the
goal statement is of the second form), ripple crossover is capable of outperforming
the human-induced equation on average®.

Settling velocity of Faecal Pellets

To investigate if the lack of search capabilities when employing a subtree crossover
is structural or coincidental, a second experiment is performed using a different
dataset. The object of search in this case is to find a dimensionally correct expression
that describes the settling velocity of faecal pellets. This problem is defined with
the following variables and query:

5A famous example is Chezy's roughness coefficient, stated in the unit m'/2/s.
6This is however the performance on the training set only.

108 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

' ' ' ' S'ubtree —
Ripple ---<---
1r Human -------- b
0.6 - i 8
%)
=
4
04 E
0.2 - E
O 1 1 1 1 1
50 100 150 200 250 300

Generation

Figure 7.7: The evolution of the average performance for subtree crossover and
ripple crossover on the sediment transportation problem. The problem setup requires
the expressions to be stated in dimensionless units. The performance of a human-
proposed alternative formulation is depicted with a straight line.

leaf(1, [1,0,0]). % length of the pellet
leaf(w, [1,0,0]). % width of the pellet
leaf (rhos, [-3,0,1]). % density of sea water
leaf (flrhos, [-3,0,1]). % density relative to fresh water
leaf(9.81, [1,-2,01). % gravity acceleration
leaf (X, [0,0,0]) :- % dimensionless constant

fp(X)

?7- uom(X,[1,-1,0]).

than the sediment problem described above purely from the perspective of obtaining
legal expressions. Not only is the dimension of mass added, there's no obvious way
to manipulate the variables in length units with the variables stated in density units.
In order to produce a valid expression, the gravity acceleration term must be used.
The simplest expression that abides all constraints is of the form /gl or Vgw. The
only degree of freedom that is allowed is multiplying this basic expression with an
arbitrary expression stated in dimensionless units.

Due to the highly constrained nature of this problem, it was necessary to increase the
depth at initialization to 8. This to allow the creation of 500 unique individuals in
the first generation. Figure 7.9 shows the average performance of the two systems.
Again, subtree crossover gets stuck at a suboptimal performance fairly early in the
run.

7.1. APPLICATIONS 109

' ' ' ' S'ubtree —
Ripple ---<---
1 Human -~ -
0.8 % -
0.6 4
%)
=
4
0.4 -
0.2 B
O 1 1 1 1 1
50 100 150 200 250 300

Generation

Figure 7.8: The evolution of the average performance for subtree crossover and
ripple crossover on the sediment transportation problem. The problem setup allows
the expressions to be stated in any units, as long as they are internally consistent.
The performance of a human-proposed alternative formulation is depicted with a
straight line.

110 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

0.9 T T T T T T T

' SubtreeI —
Ripple ---<---

0.88

0.86

0.84

RMS

0.82

0.8

0.78

0.76 ! ! ! ! ! ! ! ! !

Generation

Figure 7.9: The evolution of the average performance for subtree crossover and
ripple crossover on the settling velocity of faecal pellets problem. The problem
setup requires the expressions to be stated in velocity units.

To appreciate the difficulty in searching in this constrained space, consider the
failure rates depicted in Figure 7.10. For both crossovers, failure rates are high.
Interestingly enough, the failure rate of subtree crossover is much lower than the
failure rate of ripple crossover. This quite obviously does not mean that subtree
crossover searches more effectively as it's final performance is much worse than that
of ripple crossover.

Inspection of the resulting expressions for the subtree crossover runs showed that
more than half of the expressions produced at the end of the run are of the particular
form /gw + gw. These runs converged on this expression fairly rapidly as legal
crossovers on this structure produce very often clones. As there was no mutation
present, this expression forms a local optimum in the search. The runs employing
ripple crossover were able to induce a diversity of well-performing expressions.

Concluding the Experiments

It has been verified that the ALP system in combination with ripple crossover is
capable of searching in the area of dimensionally correct equations. The use of
a subtree crossover is however problematic. The existence of a great diversity of
possible types in this type of problem prevents subtree crossover from searching
well.

Again, no mutation was used. As ripple crossover is capable of creating new types,
whereas subtree crossover is not, the comparison is not completely fair. However,
implementing a typed mutation in this highly constrained set of possible expressions

7.1. APPLICATIONS 111

08 T T T T T T T T T
Subtree —+—
x Ripple -——x---

0.7 X .
X

06l % _
ok
P

05 X 4
X
3 X

0.4 | X 1

Failure Rate

0 ! ! ! ! ! ! ! ! !

0 10 20 30 40 50 60 70 80 90 100
Generation

Figure 7.10: The evolution of the failure rate for subtree crossover and ripple
crossover on the settling velocity of faecal pellets problem.

is not without problems itself. A typed subtree mutation routine would involve the
fresh initialization of a subtree starting from a specific context. For the pellets
problem, this initialization was in itself a non-trivial task. Experiments with an
initialization operator used as a mutation showed that a significant runtime penalty
is associated with using this operator. It relies heavily on backtracking to find an
expression in the constrained domain and suggests the use of extra parameters to
control the speed and quality of the operator.

Ripple crossover has a high mutation flavour. Individuals undergoing ripple crossover
are subject to re-interpretation of genetic material and have a tail of unexpressed
code that can become used again. This tail is a store of genetic material that at
least in one context has lead to a finished expression. The runtime penalty for
using the tail is lower than that of using a strongly typed mutation operator. The
strings involved are always finite: if the end of the string is reached during the
derivation process, the individual is marked invalid. As the individuals here are
initialized without a tail, this tail is formed exclusively from genetic material that
has undergone selection. In particular this means that the string of integers in the
tail encode for at least one finishing derivation in one particular context. Revisiting
that context enables the re-creation of that expression.

7.1.4 Matrix Algebra

Matrix algebra defines a set of very powerful mathematical expressions. It allows
grouping of for instance spatial and temporal data into a small set of variable
symbols. There have been a few attempts at inducing expressions in matrix algebra

112 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

by means of evolutionary computation (Montana, 1995; Martin et al., 1999), but
either no experimental results were given (Martin et al., 1999), or the proposed
implementation did not implement the constraints in a general fashion, and were
able to only induce expressions within a given set of matrix dimensions (Montana,
1995).

The use of logic programming in specifying the constraints allows writing a program
that is capable of inducing correct matrix expressions given arbitrary sized input
matrices.

The problem studied here is a problem in the induction of a rainfall-runoff model
for the Orgeval river, located in France. The model uses past precipitation and tries
to predict the discharge, the amount of water flowing through the river at a certain
point in time. This data was sampled at hourly intervals. It was chosen to limit
the precipitation data to one week of observations prior to the predictions. In effect
this means that there are 7 x 24 = 168 inputs for each prediction.

In this setting, regular symbolic regression would have to cope with 168 terminals,
even disregarding the use of moving averages that are sensible to add in a prepro-
cessing step (See for instance (Whigham and Crapper, 1999) where some moving
averages were introduced for a rainfall-runoff application). In contrast with this,
using the language of matrix algebra, these 168 terminals are replaced by a single
terminal: a vector of 168 observations. The system is allowed to index the vector
and to apply summation and averaging operators, leading to the inclusion of all po-
tential moving averages and lump sums in the space of possible programs. The use
of vectors and matrices allows a concise symbolic formulation of a solution involving
all input variables.

The operations that are used are split in several groups:

1. matrix algebra (sum, matrix product, vectorized product)
2. aggregating (sum, mean)

3. concatenation

4. indexing (select a range of values from an input variable)

5. non-linear unary operators (sqrt, log, exp)

The implementation of these operators is non-trivial, and the ALP system is pushed
to its limits in accommodating for them. Here we will discuss the key clauses. The
main predicate is matrix/3. As usual, the first argument to the function is the
symbolic expression that is to be generated. The second an third arguments are
the dimensions of the matrix: the number of rows and the number of columns.
As we are interested in the a single value as output, the toplevel query will be
matrix(X,1,1).

There are a number of binary functions defined that only work properly on matri-
ces of the same size. These are addition and subtraction, but also element-wise
multiplication and division. These all have the form:

matrix(f(X,Y), R, C) :- matrix(X, R, C), matrix(Y, R, C).

7.1. APPLICATIONS 113

where £ is the function in question (the function name £ does not appear in the
logic program, it is used here to indicate a number of clauses, all varying on this
same theme). For matrix multiplication the number of rows of the first arguments
needs to be equal to the number of columns in the second arguments. In a clause
this becomes:

matrix(X * Y, R, C) :- matrix(X, R, N), matrix(Y, N, C).

The output dimensions are thus the outer dimensions of the input matrices. The
inner dimensions are unconstrained, but once set (by inducing an expression for X),
they function as a constraint. There is an exception to these rules: when one of
the matrices is a scalar, all operations are again allowed:

matrix(f(S,X), R, C) :- matrix(S, 1, 1), matrix(X, R, C).

Where £ now ranges over all functions defined so far.

Aggregating values by applying an average or a summation is fairly intricate. It
was tried to mimic the language used by specialized matrix algebra languages such
as Matlab and Octave. In these language an average operator is defined so that if
both the number of rows and columns are larger than one (i.e., it is a matrix), it will
produce a row vector, applying the aggregation operator to the individual columns,
while if the input is a vector it will return a scalar value. The logic program was
enhanced to accommodate for these special cases.

The transpose of a matrix is simply defined as
matrix(transpose(X), R, C) :- matrix(X, C, R).

Matrix based languages usually also accommodate concatenation of smaller matrices
such that they form larger matrices. This is again only allowed when a regular
matrix can be formed. Thus depending on the type of concatenation — vertical
or horizontal — either the rows or the columns of the two arguments need to be
the same. Concatenation and accompanying constraints are implemented in the
program by checking these requirements.

Indexing the variables can be used to create moving averages. The syntax for a
moving average of the first 20 elements with a stepsize of 2 for a column vector
prec would be mean (prec(1:2:20,:)). The dimensions of this vector would be
10 x 1. A fairly intricate mechanism is used here to make sure that a variable is
selected and that the indices selected are in the proper range. Also here special
cases for different modes of the matrix dimensions are used.

Because such moving averages can be seen as an extension of the terminal set, an
additional mechanism is used that changes the program while deriving the expres-
sion, such that at any point, the system can add such an indexed expression and
subsequently re-use it. This mechanism uses the meta-logical function assert/1,
that can add clauses to a logic program. These are thus automatically defined ter-
minals, and the algorithm is then capable of changing the program while running
It.

114 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

Nonlinear operators such as log and exp are included as well. As they do not
manipulate the dimensions, but are just applied elementwise, no special care has
to be taken to use them. If this application leads to mathematical exceptions, the
expression is marked invalid. There is thus no interval arithmetic applied here.

The overall program defining the matrix expressions is quite intricate and although
it works reasonably well, efforts are underway to improve upon it.

The system is trained using a sequence of 1000 hourly measurement points where
the only input variable is defined as:

matrix(prec,168,1)

Identifying the precipitation of the last week such that prec(1,1) is the current
precipitation and prec(168,1) is the precipitation one week in the past.

Results

One of the best performing expressions on the training set was:

-46.281 + 17.157 * exp(mean(prec).*
mean ([prec(7:1:57);
sum([prec(64:9:151);
sum(prec(3:1:27))1)1))

Due to its shortness, it was selected and it achieved admirable performance on the
testing data. The program critically makes use of the square bracket operator that
denotes concatenation. The semi column means that the concatenation is performed
over the rows. The inner term of sum([prec(64:9:151) ; sum(prec(3:1:27)]1)
calculates a sum on a vector of dimensions 11 x 1, the first 10 elements are taken
from the range starting at 64 hours in the past with stepsize 9, while the 11th and
final element is in itself a sum of the more recent rainfall. The nested sums are a
summation of 10+ 24 = 34 different rainfall observations, that are concatenated to
the prec(7:1:57) term. The mean that is calculated of this vector of dimension
51 x 1 thus includes as its 51st term, these 34 observations lumped together. It
calculates a weighted average with the short term rain fall and the long term rainfall
being more important than the medium term. The whole average is multiplied with
the mean rainfall in the week before and exponentiated to give the final prediction.

To appreciate the difficulty in creating such a model it is instructive to compare the
graph of the precipitation with the predicted and actual flows in Figure 7.11. Al-
though there’s an obvious connection between rainfall intensity and the subsequent
runoff in the Orgeval river, it is by now means a straightforward relationship due
to the spiked distribution of precipitation. In particular, the model is capable of
predicting the peaks with admirable accuracy. This is important when forecasting
floods. The method introduced here shows promise in inducing equations that can
model such relationships. It does this without preprocessing of the data other than
setting the maximum history (a week).

The expression that is described above provides an additional view of the main
characteristics of the Orgeval catchment. The moving averages and moving sums
propose some specific intervals of observing the rainfall for the fast flow of the

7.1. APPLICATIONS

115

35 |

25

rainfall
N
T

15

05 |

0 . I M} L ” I
0 500 1000

1500
time in hours

2000

2500

T
prediction
actual
end of training

discharge
N
T

1500
time in hours

3000

Figure 7.11: Graph of (a) the precipitation and (b) the predicted and actual dis-

charge on the rainfall-runoff problem.

116 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

catchment (from 3 hours to 27 hours in the past), the medium flow of the catchment
(7 hours to 57 hours), and the low flow (larger than 64 hours in the past). Breaking
up the flows in a catchment in a couple of such ‘reservoirs’ is standard practice in
building a conceptual model. Here this breakup in the number of reservoirs and
their temporal effect on the runoff of the river has been automatically found.

Concluding the Experiment

The experiment performed for the rainfall-runoff problem is a first experiment into
the domain of matrix algebra using the expressiveness of the ALP system. This
experiment already provided a reasonable performance, but it is conjectured here
that better performance is possible by including some domain knowledge. Hardly
any of the runs used the matrix product. It seemed not necessary to use this to
induce the models. It was included in the function set because it was thought that it
would make it possible to perform filtering. It did not seem to be helpful. A possible
avenue of further research might be to simplify the language to first let the evolving
programs set up some moving averages, lump sums, maxima and minima based on
indexing the available data, and subsequently let it induce a symbolic expressions
that combines these proposed aggregate variables. A second approach could be to
perform a simple linear regression on these variables.

These approaches are however left for future work. The experiment described here
showed that it is possible to induce expressions in the very promising area of matrix
manipulations.

7.2 Discussion

The ALP system was originally developed to be able to search in the area of dimen-
sionally correct expressions. The use of untyped variation operators was hypothe-
sized to be necessary to be able to search in this area. The experiments performed
on two real-world problems in this area in Section 7.1.3 seem to confirm this.

The main problem with a typed crossover operator lies in its non-explorative nature
in the space of types: it is only capable of swapping subtrees that are of exactly
the same type: in the case of typing with units of measurement, the number of
possible types is very large and subsequently the number of legal crossover points
can drop dramatically, leaving subtree crossover to focus on a small region of the
search space. The experiments did not employ a typed mutation operator to create
new subtrees and possibly new types. The reason for not including such an operator
lies in the runtime performance penalties associated with this operator.

Ripple crossover works robustly on these problems. However, it cannot be ruled
out at this point that its main search capabilities come from it being simply a
good global randomization operator. Even in that case, one advantage of a ripple
randomizer is that the genetic material used in this randomization are contained in
the genotype. The computational effort in creating new solutions is then known.
There exists some selection pressure on this ‘randomizing’ material to encode for
a computation that finishes before it reaches the end; genotypes that do not have
this ability will on average produce more failures and will have greater difficulty in

7.3. THE ART OF GENETIC PROGRAMMING 117

multiplying. In domains where initialization is already a non-trivial problem in itself
this property of encoding for completing the resolution process is important in its
own right.

The experiments in this chapter tried to highlight these differences between the
use of a typed and an untyped crossover operator. It also showed that an untyped
operator such as ripple crossover is feasible to use as a variation operator in highly
constrained domains. It is however left for future work to implement and investigate
the use of typed mutation operators to help in searching more efficiently.

7.3 The Art of Genetic Programming

In the book " The Art of Prolog” (Sterling and Shapiro, 1994) Sterling and Shapiro
state that writing an elegant and powerful Prolog program is a skill that can only be
learned through practice. Recognizing a concise logic program is one thing, writing
one quite another.

Compared to the programs used for the ALP system, writing a program for execution
in Prolog is comparatively easy, as the execution path of the system is deterministic.
For the ALP system, this does not hold. The genetic programmer using the ALP
system has to take into account that the programs will be executed using any
path through the search tree, and also that these paths are finite. Also the effects
of backtracking need to be considered in writing a logic program for generating
computer programs. Fortunately, when deterministic calculations are needed, a
direct call can execute statements in the Prolog resolution model. This allows to
use the efficiency of Prolog whenever that is needed. Determining what to calculate
deterministically and what to generate by the genetic algorithm is another issue in
writing a logic program in the ALP system.

In this chapter several logic programs were used, some with more success than
others. The program for the sensible ant was maybe fortunate: the way the con-
straints were imposed reduced the search space considerably. The program for
interval arithmetic was relatively straightforward, but transforming constraints on
the range for the output to something manageable for a genetic algorithm involved
a multi-objective search. It also showed the convenience of the system in setting
up wrappers.

The program for generating expressions that are valid in the language of units of
measurement and in the language of matrix manipulations involved creating clauses
for multiple modes: clauses that handle the case when the values of the attributes
are known (grounded) and clauses when the values are unknown. It is expected
that especially the matrix algebra program will undergo considerable refinement
in the future. An interesting extension to this work would be the combination of
interval constraints, units of measurements constraints and matrix constraints in a
single program, in order to induce short expressions that are mathematically stable,
dimensionally correct and can be applied to massive amounts of data.

Investing time in setting up a program such that the ALP system can search effec-
tively can be very rewarding: these programs are used to generate expressions in
problem domains, not just for single problem instances. The art of genetic program-
ming lies in the declaration of a generative program that is optimally attuned to the

118 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEM

underlying genetic algorithm. Once such a program has been written, subsequent
application of the system involves setting up some specific information for a problem
instance: the variables and desired outputs. It is expected that both the genetic
algorithm and the programs themselves need to undergo considerable refinement.

The experiments and discussion presented in this chapter indicate that the combi-
nation of logic programming to define problem domains and a genetic algorithm to
find optimal expressions for problem instances is a sensible approach to the problem
of automatic induction of computer programs to solve hard problems.

119

Chapter 8

Experiments in Scientific
Discovery

Chapter 4 outlined the main goal of the work: to use the information in the units of
measurement in a problem description to make the expressions produced by genetic
programming more amenable to interpretation and analysis. To achieve this two
main approaches have been defined: Dimensionally Aware Genetic Programming
(Chapter 5) that uses a preferential bias towards dimensionally correct expressions;
and an Adaptive Logic Programming system (Chapter 6), where a declarative bias
is implemented that can reduce the search space to only those expressions that
are dimensionally correct. The logic program that implements the language of
dimensionally correct expression was presented in Chapter 7.

In order to intercompare performance a number of experiments are carried out,
using the following settings:

e Strongly Typed (STGP), using the program described in Section 7.1.3.

e Dimensionally Aware GP (DAGP), using a program to induce symbolic ex-
pressions and the coercion calculation described in Section 5.1.1.

e Symbolic Regression GP (SRGP), using the same program as DAGP, but
without the coercion calculation.

These three settings have each been applied to four different problems, all using
the ALP system. Each problem involves a largely unsolved scientific problem in its
own right. The problems are described below. The four problems have a rather
diverse range of specifications: the available data vary from very sparse (57 cases)
to abundant (4800 cases), while the specification of the uom varies from poor to
descriptive. These choices were driven by the intention to examine the robustness
of the methods and the quality of the provided solutions.

120 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

8.1 Problem 1: Settling Velocity of Sand Particles

The settling velocity of sand grains is an important parameter in the study of sedi-
mentary processes in a coastal environment. A number of different settling velocity
equations have been presented in the literature. This case study concentrates on
the settling velocity of sand grains.

Background

Sand grain settling velocity data has been gathered and presented by Hallermeier
(Hallermeier, 1981). The data (see also Table 8.1) consists of the sand grain
diameter d, the fluid kinematic viscosity v , and the relative density defined as
v = (p — ps)/ps. The data were organized in different ranges of the calculated

non-dimensional Archimedes Buoyancy Index, defined as A = (% — 1) 91%3. It is
quite obvious that only d and v represent raw observations, whereas 7' and A are
derived from other raw observations (such as p and p;) which were not directly
available. It should be noted that such a preprocessing of raw observations into
derived quantities inevitably introduces a degree of bias. The authors opted to
use raw observations and to avoid the use of derived quantities whenever possible.
However, in this case the observation of the density of sand p is not available, and
the derived quantities are employed instead. The data were limited to 115 different

laboratory experiments.

variable description uom

d sand grain diameter cm

v kinematic viscosity em? /s

A Archimedes Buoyancy Index dimensionless
~' relative density dimensionless
g gravity acceleration: 981cm/ s>

W settling velocity cm/s

Table 8.1: uom of the independent and the dependent variables for the problem of
determining the settling velocity of sand.

Human proposed relationships

A large number of settling velocity equations for sand particles have been proposed.
Here, we present only the most accurate one proposed by Hallermeier (Hallermeier,
1981). The Hallermeier equations were fitted using settling data involving fine to
coarse sand grains. These equations (in the cgs unit system and for varying ranges
of A) read:

w, = LLle=es) A< 39

o= (5 1)) " () weazw

we = (((£-1) ¢4%) 10* < A < 3 x 10°

Pr

8.2. PROBLEM 2: SETTLING VELOCITY OF FAECAL PELLETS 121

8.2 Problem 2: Settling Velocity of Faecal Pellets

The settling velocity of faecal pellets produced by marine organisms contributes to
different oceanic processes including sedimentation rates, geochemical cycles and
nutrient availability. Because faecal pellets are aggregates of smaller particles, the
pellet sinking rates can be much larger than the rates of the individual particles.
This increases the sedimentation flux and possibly the rate of particle deposition.
Faecal pellets influence sediment transport processes in the benthic boundary layer,
and an evaluation of faecal pellet settling rates contributes to the study of sediment
mobility on the sea floor.

Background

Faecal pellet settling velocity equations have been presented in the literature for
both pelagic and benthic organisms. Significantly larger pellets with higher settling
velocities are produced by these benthic organisms. The present case study concen-
trates on faecal pellets of benthic origin produced by the benthic feeder Amphicteis
scaphobranchiata.

Human proposed relationships

The existing settling velocity equations for faecal pellets of benthic origin are based
on measured faecal pellet settling velocity data (Tahgon et al., 1984). Two main
approaches are typically adopted by human analysts when approximating this data
set: (i) either equations are fitted to the data or (ii) equations are based on the
description of natural sedimentary processes.

A number of equations presented in the literature (Tahgon et al., 1984), (Komar
and Taghon, 1985) have been fitted to the data. (Tahgon et al., 1984) calcu-
lated the nominal diameter (d,,) based on the equal volume sphere. They analyzed
two separate groups of data: Group 1 (where 37 < Re < 178) consisted of
pellets produced by feeding on < 61um sediment fraction and Group 2 (where
45 < Re < 117) consisted of pellets produced by feeding on 61- 250 um sed-
iment fraction. Here Re denotes the Reynolds number calculated as Re = “sfu
Taghon et al. (Tahgon et al., 1984) used a regression analysis to yield (in the cgs
unit system):

ws = 1.30d,, + p — 9.08 (8.1)

(Komar and Taghon, 1985) used the pellets nominal diameter (d,,) to produce the
following:

3 0.2
ws = 0.275 (M> (8.2)

14

where py; denotes the difference between the densities of fresh water and salt water.
(Komar and Taghon, 1985) also found a relationship between the pellet settling

122 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

velocity (ws) and the settling velocity (w;) of the ‘equivalent’ sphere i.e., the sphere
defined by the pellets nominal diameter. w; was calculated either using (Gibbs et al.,
1971) or (Davies, 1945). They presented the following (in cm/sec) using (Gibbs
et al., 1971)

w, = 0.824w- 767 (8.3)

and using (Davies, 1945)

ws = 1.08wY-586 (8.4)

Although the original settling velocity data were measured in sea water it appears
that (Komar and Taghon, 1985) used freshwater conditions in developing the above
equations.

In addition to these equations which were purely fitted to data, a number of natural
sedimentary particle settling velocity equations have also been developed. How-
ever, the accuracy of these equations is orders of magnitude worse than the fitted
equations. A full inter-comparison falls outside of the scope of the paper and these
equations are not analyzed here in further detail. Instead, the interested reader is
referred to (Babovic et al., 2001) for a more thorough survey and discussion.

Data

The measured faecal pellet data (see Table 8.2) include length (1), width at widest
point (w), density (p) and measured settling velocity (w,) for each individual pellet.
Settling velocities were measured in sea water.

variable description uom

l pellet length cm

w pellet width at the widest point cm

Ps density of salt water g/em?

P density difference between salt and fresh water g/cm?

d,, nominal diameter cm

csf Corey shape factor csf = \/% dimensionless
g gravity acceleration 981cm/s*

W settling velocity m/s

Table 8.2: uom of the independent and the dependent variables for the problem of
determining the settling velocity of pellets.

8.3 Problem 3: Concentration of sediment near bed

The description of the sediment problem can be found in Chapter 3, here only the
inputs and desired output is repeated.

8.4. PROBLEM 4: ROUGHNESS INDUCED BY FLEXIBLE

VEGETATION 123
Name uom description
v m?/s kinematic viscosity
uf m/s sheer velocity
u’f m/s sheer velocity related to skin friction
ws m/s settling velocity
dso m median grain diameter
g 9.81m/s? gravity acceleration
Cp dimensionless concentration of suspended sediment

Table 8.3: Dimensioned terminal set for the sediment transport problem.

8.4 Problem 4: Roughness induced by flexible veg-
etation

The influence of rigid and flexible vegetation on flow conditions is not well under-
stood. Some laboratory experiments using physical scale modeling have been per-
formed (Tsujimoto et al., 1993), (Larsen et al., 1990) but only over a limit range
and with variable success. Similarly, although field experiments are continuing, the
data availability remains poor.

More recently, a numerical model has been developed with the intention of deepen-
ing the understanding of the underlying processes (Kutija and Hong, 1996). This
model is a one-dimensional vertical model based on the equations of conservation
of momentum in the horizontal direction. This numerical model is used here as an
experimental apparatus in the sense that this fully deterministic model is used as
a source of data. It is here further processed in order to induce a more compact
model of the additional bed resistance induced by vegetation.

The model takes into account the effects of shear stresses at the bed and the addi-
tional forces induced by flow through vegetation. For a more detailed description
and a discussion of the specifics of the model, the reader is referred to (Kutija and
Hong, 1996).

Data

The Kutija-Hong model, was in effect used as a truthful representation of a physical
reality, while providing the conveniences of fast calculation and an ability to produce
results with any degree of scale refinement.

The model has been run with a wide range of input parameters in order to create
training data. Altogether, some 4800 training data were generated. The input
data were varied in the ranges: 2.5 < h,, < 4.0; 0.25 < h, < 2.25; 50 < m < 350;
0.001 < d <0.004;,04 <p<1.0.

This problem is rather different from the three case studies already described. On
one side this is the only problem where data were abundant (see Table 8.5). On
the other side, even at the outset it is obvious that no observations about the
flexibility of the vegetation are provided (for example in a form of Young's modulus

124 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

of elasticity). So, it can already be stated that the problem is well covered by
the observations, but not by the uom, since nothing can be postulated about the
structural properties of the vegetation (whether it is grass, bamboo or a tree).

variable description uom
hw water depth m
hy reed height m
d reed diameter m
m number of reed shoots per unit area dimensionless
P eddy-viscosity approximation and its relation to the dimensionless
vegetated layer height
Cth theoretical value of Chezy's coefficient m°5 /s
in the absence of vegetation
gravity acceleration 9.81m/s?
c measured value of Chezy's coefficient m%3 /s

Table 8.4: uom of the independent and the dependent variables for the problem of
determining the Chezy roughness coefficient.

8.5 Experimental Setup

For all problems the same setup was chosen. As the basic strategy, the elitist,
non-dominated sorting GA 1l (NSGA-II) (Deb et al., 2000) was selected. When a
single objective is used, this algorithm reduces to an elitist (i + A) strategy. Table
8.6 specifies the various parameters used in the experiments. It was chosen to
experiment with a minimal function set consisting only of basic arithmetic and a
square root function, regardless of the data. Table 8.5 summarizes the availability
of data. The error function used here is the normalized root mean squared error.

8.6 Quantitative Results

Comparing the three approaches is not a straightforward task, as we are concerned
with two different objectives. On the one hand, an expression with a low generaliza-
tion error is required. On the other hand, the expressions need to be interpretable
in the symbol system used in physics. However, strict adherence to the uom system
might not be the best approach in all cases, as the measured data may not provide

Experiment | Train Test Total
sand 78 37 115
pellets 38 19 57

sediment 171 86 257
roughness 3200 1600 4800

Table 8.5: Data availability.

8.6. QUANTITATIVE RESULTS 125

Objective 1 Minimize the normalized RMS
Objective 2 Minimize the dimension error
Function Set {+, -, %, /,sqrt}
Either with or without type constraints
Population Size 250
No. of Runs 50
No. of Generations 400
Crossover Prob. 0.8
Mutation Prob. 0.2
Tournament Size 2
Strategy elitist (250 + 250)
Multi Objective strategy NSGA Il
Size of Training Set 2 of the full set
Size of Test Set remaining % of the full set
Output type Problem dependent

Table 8.6: The parameters for the experiments

a complete description of all relevant phenomena in the problem. Sometimes, when
no adequate fit with a dimensionally correct formulation can be obtained, it might
be more prudent to select a formulation that has a good fit and a non-zero coercion
error. As DAGP produces a front of non-dominated solutions rather than a single
solution, a selection from the front needs to be made. Therefore the following three
post-processing rules are used:

e Select the best fitting equation (DAGP-FIT). This choice produces results
that are comparable with the symbolic regression runs. No explicit interest
in the dimensional correctness of the expression is enforced since the selected
equations are from the high goodness-of-fit and low goodness-of-dimension
edge of Pareto front. This choice is made in order to investigate whether
the use of uom improves or hinders the search for finding well generalizing
expressions.

e Select the best fitting equation with a coercion error of 0 (DAGP-DIM). This
choice restricts the accepted solutions to dimensionally correct expressions
only. These results are directly comparable to STGP.

e Select the best fitting equation with a coercion error smaller than 1 (DAGP-
MID). This allows to tolerate a small coercion error if this helps the fitting
capability.

These three post-processing rules mechanize the selection of expressions from the
Pareto front, making comparisons more objective. Table 8.7 summarizes the com-
parison between the three DAGP post-processing rules and their adversaries. The
table highlights systems that result in significantly better average performance on
the test sets for the four problems. This is therefore a measure of the reliability of
the method to produce good results.

The first column in Table 8.7 compares the two methods that are capable of pro-
ducing dimensionally correct formulations. For the sand and roughness problems

126 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

Experiment Correct Almost Correct Not Correct
(STGP DAGP-DIM) (STGP DAGP-MID) (DAGP-FIT SRGP)
sand DAGP DAGP none
pellets none DAGP none
sediment none DAGP none
roughness DAGP DAGP none

Table 8.7: Results on the four problems, comparing the (50 run) average NRMS
over the test set using a two-tailed t-test with a significance level of 5%. The
label denotes the setting that was significantly better than its adversary, and ‘none’
when there was no significant difference. ‘Correct’ denotes the test using only
dimensionally correct formulations. ‘Almost Correct’ denotes a test between STGP
and the best fitting formulation on the training set that has a coercion error lower
than 1. ‘Not Correct’ denotes the test between the best fitting expressions on the
training set from DAGP and SRGP (Symbolic Regression GP), without any regard
to the coercion errors the expressions made.

| STGP DAGP-DIM | DAGP-MID | DAGP-FIT SRGP

sand 036 /036 032/028 | 028/025 | 027 /024 025/ 024
pellets 0.73 /057 0.80/0.60 | 0.64 /044 | 0.62 /044 057 /0.74
sediment | 0.63/0.65 0.60 /062 | 0.49 /0.56 | 0.42 / 0.55 0.41 / 0.55
roughness | 0.48 / 0.48 0.40 / 0.40 | 0.30 / 0.30 | 0.29 / 0.29 0.26 / 0.27

Table 8.8: Comparison of the train / test errors. Average NRMS over 50 runs.

DAGP produces significantly better results, while for the others no significant differ-
ence is found. If a small dimension error is tolerated (DAGP-MID), DAGP performs
equivalently to or better than STGP on all four problems. The comparison between
DAGP-FIT and symbolic regression in Table 8.7 shows that neither produces signif-
icantly better results. The preferential bias in DAGP does not prevent finding good
expressions. Figure 8.1 provides a plot of the performance on the test set of the 50
selected individuals.

In order to investigate the performance the different systems achieve on the test
set, Table 8.8 summarizes the errors on both the training and the testing set.

8.6.1 Bias/Variance Analysis

Even a quick reference to Tables 8.7 and 8.8 reveals that DAGP seems to be a
reasonable approach for this class of scientific discovery problems. In order to learn
where this performance originates and to explain the fitting capabilities of the various
typing systems, an additional analysis was carried out by decomposing the errors
into bias and variance terms (Geman et al., 1992; Keijzer and Babovic, 2000a).
Given N data points and M models, the decomposition is based on the following
equality:

8.6. QUANTITATIVE RESULTS 127

sand pellets
1 T T T 1 T T T
STGP + STGP +
DAGP-DIM ~ x DAGP-DIM ~ x
DAGP-MID * DAGP-MID ¥ '
DAGP-FIT & DAGP-FIT o
SRGP ® SRGP
08 q 08 q
'
ll.
XX
P LLL
L] L *]
0 o0 xxxxxxxxxxxxx;u;xxwx******”.. X
0 0 <X +++HH+ LIl §§D
b3 b3 HMHHHH L *
: e r T ITERL
H TEEELELEES
04r crrrrrprbietd Y T TL L LLLLLELLE 1
HH+H++++++++++++ “
RS xxg¥ly
+++*++ M xxxxxxxxgﬁ"!**:‘]
XXX PLELE
3gggﬁﬁmnumﬁﬁ!iﬂﬁm""“““"a o
02‘ ||llllll.ll.l 1 02]
LLLL
0 I I I I I 0
5 10 15 20 2 0 3B 40 45 50 5 10 15 20 2% 30 3% 40 45 50
Sorted Expressions Sorted Expressions
d d
() (d)
sediment roughness
1 T T T T 1 T T T T
STGP + * STGP +
DAGP-DIM ~ x DAGP-DIM ~ x
DAGP-MID ¥ DAGP-MID *
DAGP-FIT o DAGP-FIT o
SRGP ® P SRGP ®
08 + *q 08 1
P 4
P "y
x;*xxx
*”xu**im Easg;nn X
08t H”+H++;W*xmxx MIEE!I.i — 06 - A
0 i+mxxHHX”DDDDDEHEEIII“" ” Wt
S xkrkx ngn"ﬁini' s et Cxx XX
¥ -] i T ot X
z ajfEarnas z JESSa S XX o
. +t
o4l] 04l +++*H+H X XXXXXXXXX ***n:,
Lepetrt xxxxx **;DDDI
++ XX XXX xXxgHAiOoD0 e
*)XXXKXXX P L LTI L
XXX P TIT A
. numlmmmﬁn.-------
02} — I LHHL 1
.
0 I I I I I I I I I 0 I I I I I I I I I
5 10 15 2 2% 30 3% 40 45 50 5 10 15 20 2 0 3B 40 45 50
Sorted Expressions Sorted Expressions

Figure 8.1: Overview of the 50 best performing expressions on the test set for the
four problems described in the text. (a) Settling velocity of sand. (b) Settling
velocity of faecal pellets. (c) Concentration of sediment. (d) Roughness induced by
flexible vegetation.

128 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

1 XM 1 1 XM
ar 2o 2ty = 5 Y (=)+ DY (@i —vi)? (85)
i=1 j=1 i=1 | i=1 j=1
mean sqLElred error bias® varlgnce

where t; denotes the desired output, y;; the ith output of the jth model, and

gi=1/M Z;W yij is the average model calculated as the average of all predictions
for input 4. The variance term does not depend on the desired output and measures
the variability in the predictions of the expressions. The bias error measures the
performance of the ensemble, and is an indication of the intrinsic capability of
the method to model the phenomenon under study. The equality (8.5) is the
empirical version of the decomposition; the theoretical version defined over infinite
data includes a term addressing the noise in the data. In the empirical equation,
the noise is absorbed by the bias term.

It is important to emphasize that the error due to bias is different from the bias
of the system. The bias of the system entails the tendency to sample certain kind
of solutions more regularly than others. A heavily biased method will have a small
error due to bias if and only if the introduced bias is appropriate for the problem.
With an inappropriate bias, the error will grow. An unbiased method on the other
hand will always have a low bias error — however, it is the error due to variance
that explains the fitting capability.

In an ideal setting, one can expect that biased methods generally have low variance
error, while the level of bias error determines the appropriateness of the bias to
the problem at hand. This can be exemplified by considering a maximally biased
method that produces the same answer regardless of the data that is available.
Such a method will always have zero variance error as its predictions are always
the same. The performance of the system is then completely determined by its
bias error, having a low bias error when the expression happens to fit the data, and
having a large bias error otherwise.

An unbiased method on the other hand can be identified by a low bias error, though
a significant variance error due to overfitting will remain. A prototypical example
of such a method is a nearest neighbour method, that uses the value of the most
similar point in the data to make a prediction. This method is unbiased as near the
stored points the average of all nearest neighbour models will produce the correct
answer. The error due to variance will however be equal to the noise in the data as
each individual prediction will return a stored, noisy, data point. When predictions
are made further away from the stored data, this error due to variance will increase.

However, these are the two extremes. In realistic circumstances the methods under
study can exhibit various ranges of biased/unbiased behaviour. The STGP system
is expected to have a significant bias, since it only samples dimensionally correct
equations, and from these it tries to find the best fitting one. At the same time,
the SRGP method is expected to have a low bias, due to the ability to fit the
data in whatever way, using the set of functions that are available. DAGP tries to
strike some middle ground by allowing incorrectly typed expressions to proliferate in
addition to correctly typed expressions. The bias introduced in DAGP is thus hoped
to be less stringent than the bias of STGP, possibly leading to lower bias error.

8.6. QUANTITATIVE RESULTS 129

| STGP DAGP-DIM | DAGP-MID | DAGP-FIT SRGP
sand 0.23 (0.19) 0.07 0.06 0.06 (0.04) 0.04
pellets 0.28 0.30 0.19 0.19 10* (0.20)
sediment | 0.34 (0.29) 0.30 0.26 0.27 0.24
roughness | 0.14 0.10 0.06 0.05 0.03

Table 8.9: Errors due to bias, normalized using the variance of the target vari-
able. Errors between brackets have been calculated using the middle 90% of the
predictions, and are reported when they differ from the unprocessed values.

| STGP DAGP-DIM | DAGP-MID | DAGP-FIT SRGP

sand 0.41 (0.30) 0.05 (0.01) | 0.06 (0.01) | 0.14 (0.01) 0.94 (0.03)
pellets 0.11 (0.06) 0.08 (0.05) | 0.07 (0.04) | 0.07 (0.04) 10° (0.06)
sediment | 0.26 (0.03) 0.09 (0.06) | 0.06 (0.03) | 0.13 (0.03) 6.33 (0.03)
roughness | 0.12 (0.07) 0.04 (0.02) | 0.02 (0.01) | 0.02 (0.01) 0.04 (0.02)

Table 8.10: Errors due to variance, normalized using the variance of the target
variable. Errors between brackets have been calculated using the middle 90% of the
predictions.

In order to estimate the errors due to bias and variance, a new batch of 500 runs was
set up for each system and problem. The same test set as before was held back, but
for each run, a new training set of the same size was created using a bootstrapped
sample drawn with replacement from the original training set. This is done to avoid
overestimating the error due to bias and subsequently underestimating the error due
to variance that can be expected when using a fixed training set for all runs.

Tables 8.9 and 8.10 provide an overview of the errors due to bias and variance
respectively. These errors are normalized using the variance of the targets. It has
been reported (Keijzer and Babovic, 2000a) that for modelling algebraic expressions
on the basis of data, genetic programming can quite regularly produce out of range
predictions. In order to obtain a more robust measure of the bias, Tables 8.9
and 8.10 also show post-processed values for the bias and variance errors between
brackets whereby the highest and lowest 5% of the predictions were excluded from
the calculation in Equation 8.5.

8.6.2 Settling velocity of sand particles

Examination of the errors due to bias and variance, reveals that for the sand prob-
lem, for STGP both terms are much higher than for the other systems. This is a
strong indication that the bias introduced by the uom is not the most appropriate
for this problem. It forces STGP to sample solutions that are on average not fitting
well (high bias error) and, given different bootstrapped training data sets, evolves
solutions that are different from each other (high variance error). Figure 8.1(a)
shows the performance on the test set for the 50 resulting expressions. These re-
sults show that STGP invariably produces equations with similar poor performance.
The three statistics: high bias error, high variance error when trained on different
data sets, together with level performance when trained on the same data, indicate

130 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

that STGP might suffer from premature convergence due to broken ergodicity (see
Section 4.5.1). Inspection of the history of the runs confirms this. At the initializa-
tion stage, the declarative bias forces STGP to sample a specific kind of solution (in
this case of the general form \/dgc where ¢ is some dimensionless term). The re-
mainder of the run time is used to enhance the fit of this general solution by adding
various dimensionless terms. This increases the variance error. It appears that the
constraints that are enforced partition the search space which drastically reduce the
number of admissible solutions. Strongly influenced by initialization, throughout the
run STGP continues to sample only admissible sections of the search space without
exploring the search space well enough. This results in premature convergence and
sub-level performance.

On this same problem, the bias and variance errors for DAGP-DIM, which produces
expressions from the same set as STGP, are comparable to the less constrained
expressions. This further reinforces the suspicion that STGP suffers from premature
convergence as it clearly shows that the constrained search space does contain good
solutions.

8.6.3 Settling velocity of faecal pellets

For the pellets problem Figure 8.1 shows a clear division between correctly and
incorrectly typed results; the latter perform much better. The main cause for this
behaviour can again be attributed to the error due to bias. The pellets problem is
the only problem with the presence of mass units (Table 8.2) which in turn increases
the set of constraints. A possible reason for the inability of any of the dimensionally
correct expressions to provide an adequate fit might lie in a poor connection between
the units of the measured data and the data itself. The uom themselves are also
poorly connected: the gravitational acceleration g was needed to make it even
possible to represent dimensionally correct expressions (see Table 8.2). Since there
are only two density units present, p; and py;, there is only one way to use those in
a dimensionally correct equation, which is to divide them by each other. The pellets
problem seems to be underspecified both with respect to coverage by data and with
respect to the choice of measurements. Only when coercion errors are tolerated a
reasonable fit can be obtained. The poor data coverage enables SRGP to overfit
the data, while the DAGP results remain remarkably regularized. Examination of
the evolution of the size of the equations (Figure 8.2) shows that SRGP in general
evolves much larger solutions than either STGP or DAGP. On the average, the
SRGP expressions contain more functions than data points available.

8.6.4 Concentration of suspended sediment near bed

For the sediment problem, not much difference between the constrained results can
be found. Both approaches perform well in modelling the data. Analysis on the
test set reveals that the constrained approaches are as capable in fitting the data
as the unconstrained methods. However, the fashion in which the unconstrained
methods arrive at these results is instructive: there is a much smaller decline in error
from the train to the test set than for the unconstrained solutions. It appears that,
for the sediment problem, the information contained in the uom helps in obtaining
solutions that generalize well. It has been stated already in the problem description

8.6. QUANTITATIVE RESULTS 131

(Section 8.3) that the data set covers all relevant physical phenomena. In this setup
it seems that the knowledge provided by the uom is well correlated with the data.

8.6.5 Additional roughness induced by vegetation

The roughness problem is characterized by abundance of systematically sampled
data with fixed increments over the entire range of inputs. However, it has been
argued earlier (Section 8.4) that the measurements were not complete as nothing
has been recorded about the flexibility of the vegetation. As the information about
the uom does not cover all aspects of the problem, it can be expected that the more
heavily biased methods would not benefit as much or could even be hindered by this
information. Table 8.9 confirms this: STGP has the highest bias error, followed by
DAGP-DIM, DAGP-MID, DAGP-FIT and ultimately SRGP, which has the lowest
error due to bias. The significantly better results of DAGP-DIM over STGP can for
the largest part be attributed to the lower variance error.

8.6.6 Summary of the quantitative analysis

Quantitatively speaking, for the four problems, it seems that the inclusion of knowl-
edge about the uom is best done through expressing a preference rather than im-
posing syntactical constraints. The preferential bias of DAGP does not exhibit the
problems related to broken ergodicity that characterize the syntactical approach.
Moreover, DAGP appears to be able to find good solutions even when the uom
information is only partially relevant. Furthermore, the declarative bias in STGP
seems not only to introduce a high bias error when the constraints are not par-
ticularly relevant, but it also has a high error due to variance. STGP thus shows
disadvantages for being biased (a high bias error when the bias is not appropri-
ate) and being an unbiased method (a high variance error). DAGP only shows the
disadvantage due to its biased nature, as its error due to variance is quite low.

The comparison between DAGP and standard symbolic regression is clear cut: the
inclusion of the additional objective based on coercion error does not preclude DAGP
of searching well. More importantly, the additional objective seems to have an
regularizing effect on the produced solutions. Table 8.10 shows a considerably
smaller tendency of DAGP to produce destructively overfitted expressions. This is
also confirmed by inspection of Figure 8.1 where the SRGP runs routinely produce
overfitted equations.

The regularizing effect can be most clearly seen in the errors due to bias and variance.
Though the errors due to bias are comparable between SRGP and DAGP-FIT, the
errors due to variance are significantly higher for SRGP. This is in accordance with
findings reported in (Keijzer and Babovic, 2000a). However, it should be emphasized
that regularization is not caused by the introduction of units of measurements per
se, but rather the fashion in which uom are introduced.

Furthermore, and as illustrated in Figure 8.2, DAGP generally considers smaller
solutions than either STGP and SRGP. This preference to parsimonious solutions
seems to be another side-effect of using the uom in a multi-objective setting and
has been noted elsewhere (Keijzer and Babovic, 1999), which might partially explain
the observed regularization effect.

132 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

pellets roughness

STGP ——

DAGP-DIM ----- kKKK Ky
SRGP -5

T

TGP ——
DAGP-DIM -~
SRGP ---%- R B Rk

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Generations Generations
Figure 8.2: Evolution of the average size for the pellets and roughness problems.
The evolution of the size on the other two problems exhibit a similar trend as the
graph for the roughness problem.

8.7 Qualitative Results

In order to provide an indication of the quality of the solutions that are generated,
a short analysis is provided below. This is an inherently subjective process as it
involves the interpretation of the equations, and even more subjective reasons such
as aesthetic appeal. Judgements need to be made regarding the expressions in
order to determine whether the proposed interactions are meaningful or coincidental.
However, since the amount of knowledge about the physical processes is very limited
no definite statements about the physics should be expected from the hypothesis
induction engines.

The expressions below are selected by taking the best performing expressions over
the entire data set using both the training and testing sets. These expressions
are inspected for their value in describing the problem itself, with the aim to learn
something about the interactions occurring in the processes under study and possibly
to guide further data collection campaigns. For each method, only one expression
is examined. In a more realistic setting a short-list of interesting expressions would
be selected and analyzed further. This is not done here, as it would increase the
already high degree of subjectivity.

The problems considered in this paper are from highly specialized sub-fields of
hydraulics and the authors feel ill-equipped to address them here appropriately.
Such a discussion would also fall outside the scope of the present work. The aim
of this analysis is not to select the ultimate expression, but rather to point out the
interpretability in these equations. The expressions are simplified and in constants
the first three significant digits are presented.

The quantitative results have already revealed that there is a trade-off between the
information contained in the data (the numbers) and the information contained in
the units of measurements. Since dimensionally aware GP produces equations that
more-or-less abide the constraints, it is possible to investigate the expressions them-
selves and possibly learn something about these discrepancies in order to understand

8.7. QUALITATIVE RESULTS 133

the problem more fully.

8.7.1 Interpretability of unconstrained expressions

Consider the best expression produced by symbolic regression (SRGP) for the sed-
iment problem in Formulation box 8.7.1. Although this formulation has the best
performance over the training as well as over the test set of all expressions induced
in this experiment, it would prove tough if not impossible to interpret this expres-
sion. It is not only the sheer size of the formulation which makes the exercise almost
impossible, but also the dimensionally inconsistent fashion in which the variables are
combined, provides no help in determining the physical interactions for this problem.

¢+ oy
~ 0.284 tw)? (uh — < + ' > Bt
ch ((uf wy) (uf 9) g — g us

1
ul
(g +13.0 (ws + g% up weup (g + jc) > up
1 A
!

gu
“}_11'37)(2_92 g+ | dso +
uf — w,

—1\ —1
Yo 2
29+ —+u—uy —ws +g
Ws

Formulation 8.7.1: The best expression for the sediment problem produced by
symbolic regression (SRGP). Even though this formulation produces the best fit to
the training and test data (NRMS 0.36), it is very hard to distill some information
out of this equation.

This “formula” is taken as an indication of the sort of expression unconstrained
genetic programming induces. Space restrictions prevent us from presenting the
best expressions SRGP produces for the other problems. It will suffice to state that
these do not provide a brighter picture.

As has been stated in the introduction, one can also perform a dimensional analysis
and transform all dimensioned variables to dimensionless groups of numbers. Using
this approach one would avoid problems related to units of measurement, but cer-
tainly not guarantee creation of solutions of lower complexity (Babovic and Keijzer,
2000). Formulation 8.7.1 clearly demonstrates the need for constraints if one wants
to use GP in a knowledge discovery setting.

8.7.2 Settling velocity of sand particles

The best expressions for the sand problem can be found in Formulation 8.7.2. In all
three expressions a distinct pattern emerges revealing a commonly appearing sub-
expression 1/gv'd. This is not only dimensionally correct and physically relevant but

134 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

STGP wy

1

1.09
Vay'd|1.223 — —
7 (m)

DAGP-DIM w, ~ 0.447\/gy'd\/ A3~y'% —1.93

17
32

!

v

”y'%d§g% 143 - | ————
A4 =)

DAGP-MID w, ~ 0.170 (gdv))

Formulation 8.7.2: Hypotheses generated using STGP, DAGP-DIM and DAGP-
MID for the sand problem. The NRMS errors of these equations are 0.26, 0.28 and
0.22 respectively.

it also reduces the NRMS error to 0.40 when evaluated as is. In order to increase
accuracy while remaining dimensionally correct, this basic expression is scaled by
the dimensionless terms A and +'. The grain diameter d cannot be involved in
this scaling without sacrificing dimensional correctness. However, since DAGP-MID
allows small dimensional errors, it can use the variable d and succeeds in significantly
reducing the error by manipulating d, A and +’. Internal consistency for DAGP-MID
remains; only the output units are different from the desired uom.

Another structure that emerges in these experiments reveals that it is beneficial to
take repeated roots of the variable A, most often three times, resulting in the term
V/A. Further examination of the range of A reveals that v/A ~ e x log(A). Taking
these bits of information together could lead to an experiment where the desired
output is divided by the term +/gvy'd and a symbolic regression experiment including
the logarithm in the function set in order to find the optimal scaling factor.

These considerations and manipulations are described to indicate how this approach
fits in scientific work. Scientists generally approach discovery from various angles:
proposing tentative formulations, scrutinizing them based on first principles and also
by manipulating expressions both symbolically and numerically. The induction of
dimensioned expressions using GP can provide a fertile ground for such experimen-
tation.

8.7.3 Settling velocity of faecal pellets

The expressions for the pellets problem can be found in Formulation box 8.7.3.
STGP models the relationship by taking the square root of two terms relating g
and a length term [, while DAGP-DIM produces a short expression relating the
settling velocity to the rectangular surface of the pellets [x w, scaled by the ratio
of densities. The equation indicates that the faecal pellet settling velocity increases
with increased values of the nominal diameter and the differential (or floating)
density. This general relationship has also been developed for the settling velocities
of other types of particles. The general equation describing these relationships is
given as:

8.7. QUALITATIVE RESULTS 135

STGP wy

1

1 2
\/% gw —0.0189 ¢ (0.764111 — 0.664 M)

Ps

DAGP-DIM w, ~ 0.144,/5 ¢ 2211

Ps
13 49 -1
B, 88
DAGP-MID w, ~ YIY 9°pa*ie
10 ' 100p, %

Formulation 8.7.3: Hypotheses generated using STGP, DAGP-DIM and DAGP-
MID for the pellets problem. The NRMS errors of these equations are 0.58, 0.60
and 0.54 respectively.

Equation | A B

Stokes Settling (Low Re) - Sphere | 1 2 1
High Re - Sphere 05 05 05
Equation (8.2) 06 08 06

Table 8.11: Typical parameters for various settling parameters

ws ~ ag*d? (m) (8.6)
Pr

where values for A, B, and C are given in Table 8.11.

The faecal pellet data examined here are in the intermediate Reynolds number range
(37 < Re < 178), which explains why the semi-empirical Equation 8.2 has values
for A, B and C lying between the range of the values for Stokes and High Re settling.

Comparing Equation 8.2 with the expression induced with DAGP-DIM reveals that
the dependence of the settling velocity on the geometrical properties is essentially
the same (albeit in the DAGP-DIM case the dependence is on [and w and not d,,).
Also, the power value is lower for the ratio of the relative density to the fluid density
than in Equation 8.2. Nevertheless, it can be concluded, that the DAGP-DIM
equation has the same general form as other particle settling velocity equations. It
is only the dependence of the settling velocity on the geometrical properties and the
relative particle density that is slightly different from other cases.

DAGP-MID produces an equation that fits better than other approaches although
in this case it does not remain internally consistent. Taking this equation as a pro-
totypical example of a GP-generated hypothesis, it is possible to further manipulate
the expression manually. The purpose is to demonstrate how a domain specialist
can use additional insights and symbolic gymnastics to distill some meaning out of
tentative formulations such as the one above. For example, the power of the py
variable of magnitude 49/32 is rather close to the ‘nicer’ power of 48/32 = 1.5. In
the same spirit, one can change the p;w/w term to p;24/16 = p; 15 After these
manipulations, which in effect reduce the error, the density term becomes a true

136 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

ratio and their uom disappear in the overall expression. The simplified expressions
reads:

Wlw

Ws

=10 100

which has an NRMS error of 0.53, however with a coercion error. The two terms
do point at separate effects in the physics of the settling of the pellets. The first
term depends on the width, while the second term depends on the length and the
densities. Note that the STGP solution has a similar form, thus reinforcing a ‘theory’
that such a decomposition represents a valid approach.

8.7.4 Concentration of suspended sediment near bed

2
(u} — ws) ws2u}

dso uf g (GwS2 +6u}2 — 5u)’c ws)

2

STGP ¢, ~ 0.0132

uj (987 x 10 % uy — 1.27 x 10~ * uy)

DAGP-DIM ¢, ~ -
gdso
2 1
(ws—u}) (up —ws)¥®
DAGP-MID ¢, ~ 0.0143 — T
guf§u}§ws4

Formulation 8.7.4: Hypotheses generated using STGP, DAGP-DIM and DAGP-
MID for the sediment problem. The NRMS errors of these equations are 0.46, 0.46
and 0.42 respectively.

For the sediment problem, DAGP-DIM produces an elegant formulation balancing
the shear forces with the median diameter of the settling particles. No reference
to the settling velocity w, is made which makes this formula more parsimonious
than the STGP formulation. At this point one can also forward an argument of a
different nature. The first two case studies were concerned with finding reasonable
expressions for wy itself, which is intrinsically difficult to measure and characterize,
and consequently inevitably polluted by noise. It appears that DAGP provides a
high quality fit with ‘smoother’ expressions (or at least depending on ‘smoother’
variables).

Finally and very importantly, it should be noted that all equations presented in For-
mulation box 8.7.4 provide a higher degrees of accuracy than the human-generated
formula 3.17. Furthermore, equation 8.7.4 was fitted on entire data set with result-
ing NRM S = 0.47.

8.7. QUALITATIVE RESULTS 137

1
V2h, +2d+ hy +4dm

N s s

2 (hw - hr) h%up
md h?

STGP ¢~ 3hygh !

DAGP-DIM ¢~ 1.58 {/g

Gl
=

w

|
Q

(B (R + d))¥ (hy — By)

DAGP-MID ¢~ 1.87 -
hE (dm)

e

Formulation 8.7.5: Hypotheses generated using STGP, DAGP-DIM and DAGP-
MID for the roughness problem. The NRMS errors of these equations are 0.27,
0.26 and 0.20 respectively.

8.7.5 Additional roughness induced by vegetation

The formulations for the roughness problem are presented in Formulation box 8.7.5.
The STGP expression shows that using the uom does not necessarily lead to un-
derstandable formulations. In the denominator it adds water depths and diameters
of the reeds to form its dimensionally correct expression. It is difficult to imagine
the physical significance of this addition.

The best formulations for DAGP-DIM and DAGP-MID came from the same run,
and closer inspection reveals a high degree of similarity in the results. Rewriting the
equations in the form of a product of simple terms raised to a certain power reveals
structural similarity. Ignoring the constant terms, for DAGP-DIM and DAGP-MID
respectively this formatting results in the following expressions:

hé’ (hw_hr)i]ﬁm—%d—ih;%
hulh = d)8 (h = he) opfem=td-th,

The two equations written in this form reveal a high degree of similarity. The powers
of the second — dimensionally incorrect — expression are rather close to the correct
powers in the first expression. The main difference between the dimensionally correct
and the dimensionally incorrect equation lies in the v/h,, term, that appears in the
DAGP-DIM equation. The dimensionally incorrect expression uses </ hqy,(hy — d).
Furthermore, removing the d variable from this expression does not increase the
error. Replacing the v/h,, term in the dimensionally correct equation with v/h,, and
rescaling the formula, indeed reduced the NRMS error from 0.26 to 0.20. This is a
similar procedure as outlined in Section 8.7.3, where ‘strange’ powers are rounded
to nearest ‘nice’ powers. The output units of this expression would however still be
stated in incorrect units. If this h,, term was stated in surface units however, the
expression would be dimensionally correct. One possibility to consider is that the
term is used as a proxy for a variable that is stated in surface units which has values
proportional to h,,.

138 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

8.7.6 Summary and scope of GP-based scientific discovery

The overall process described in this study forms in the authors' opinion a first
iteration of applying genetic programming in the domain of scientific discovery. As
the results produced by genetic programming are knowledge-rich, the hypotheses
induced can be used to further refine the experimental setup or inspire a new set of
experiments in an iterative fashion. In this study, the raw data were taken at face
value and the expressions were induced and post-processed by automatic means. We
firmly believe that the post-processing should be carried out by domain specialists
that can use their background knowledge and sense of aesthetics to judge which of
the proposed hypotheses is the most appropriate formulation. Such a judgement is
not offered here; related work (Babovic, 1996; Babovic and Keijzer, 1999; Babovic
et al., 2001; Babovic and Keijzer, 2000) does attempt to select an appropriate
formulation and sets up a small theory of worth of the expressions produced by GP.
These ‘theories’ are set up after examining the hypotheses generated by GP and
provide ground for discussion and further experimentation. The qualitative analyses
given above gave a few examples on how to use the hypothesis generated by GP
to increase the usability of the expressions and how they fit into scientific work.
Specifically it was shown that the scientist using systems like these can:

e Exploit numerical similarity. A persistent repetition of consecutive roots
taken of a single variable in Section 8.7.2 lead to the discovery of a numerical
near equivalence with a logarithmic relation in the domain. This inspired the
proposal of a new experiment using GP that would include this logarithmic
relation. Entering this different sub-expression into the equation can also be
done manually.

e Exploit syntactic similarity to existing equations. Section 8.7.3 showed
that one of the GP-induced expressions was quite similar to an existing,
human-proposed expression, even though it used different variables. This
GP-induced equation used measurable variables rather than approximations.
This can reinforce the acceptance of the existing equation and, by virtue of
the new equation being stated using different variables, suggest an extension
of this equation to a family of related equations — applicable to different
measurement collection campaigns.

e Use symbolic manipulations for manual improvement. Section 8.7.3 also
presented an possibility to improve a GP-induced equation by manual inter-
vention. By changing the powers of an expression we were able to improve
both the goodness of fit of the equation and its aesthetic appeal. A scientist,
intimately familiar with the domain, is even more likely to use such manipu-
lations to provide genuine advances in model elegance and ability to explain
the data.

e Use within-run syntactic differences to examine the descriptiveness of
the data. In Section 8.7.5, the difference between a well-fitting expression
that was dimensionally incorrect and a less accurate expression that was di-
mensionally correct could be narrowed down to a difference in a single term.
These expressions evolved in the same run using DAGP. The term in question
depended on a single variable stated in length units. It was possible to make
the well-fitted expression dimensionally correct by verifying that the variable

8.8. DISCUSSION 139

stated in length units was used as a proxy for a variable, proportional to
the original, stated in surface units. The definition of such a variable and a
subsequent new measurement campaign to measure this variable could lead
to enhanced understanding of the physical process. This is a very good ex-
ample of the worth of more-or-less correct expressions as they can point to
discrepancies in the problem description.

e Produce expressions that perform better than human-proposed ones.
Finally and very importantly, GP is capable of producing expressions that are
better than those developed by a scientist. From the four problems, there was
only one instance (the sediment problem), where a human-proposed expression
was stated solely in terms of available data. This allowed a direct comparison
between the GP-induced expressions and the human-proposed expression on
their ability to fit the data (Section 8.7.4). The GP-induced expressions did
not only perform better, they were also stated in more basic units, making
interpretation easier.

The main advantage of using genetic programming in scientific discovery is its
ability to generate a large number of different, yet meaningful hypotheses in a very
short amount of time. These hypotheses are based on the experimental data while
satisfying constraints and are stated in a language that is considered well suited for
these problems: mathematics. GP contains no notion about the problem other than
the constraints and the available data. GP is thus able to propose solutions that are
non-intuitive and sometimes provocative. The time scale of human invention runs
on the scale of months, if not years. Using a hypothesis generator can considerably
accelerate this process, once the scientist is able to interpret these hypotheses. The
use of uom to constrain or bias the search has proven to be very helpful in this
setting.

8.8 Discussion

Many issues have surfaced in the preceding sections. Although it is clearly possible to
evolve dimensionally correct equations based on data a trade-off has been observed.
Allowing small dimensional errors can improve the ability to provide well fitting
equations, sometimes with radically better results. This principally occurs when
the uom of the problem definition does not provide a complete coverage of the
dynamics of the system under study.

Genetic programming is an opportunistic search algorithm: it provides expressions
that fit the data while satisfying the constraints. Since the only feedback from the
problem domain is in the form of error functions, the algorithm produces expressions
that model the relationship in whatever fashion that reduces this error. When the
numerical values of a particular measurement are indicative of some other underlying
phenomenon that could be stated in different uom, the genetic programming system
uses the measurements in a very different way than the uom prescribe. It is thus
susceptible of modelling by association, where a set of numerical values are used
as a proxy for an underlying phenomenon. This holds in general for any form of
data-driven modelling. The use of the uom serves two purposes: to reduce this
modelling by association, and to aid in interpreting the expressions.

140 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY

The resulting front of non-dominated solutions produced by DAGP makes it possible
to examine the differences between the correct and the more-or-less correct expres-
sions. As the expressions are usually related — they share the same evolutionary
history — it is insightful to examine the trade-off between the coercion error and
the fit on the data. For the roughness problem this trade-off was used to improve
upon the expressions.

Even though with STGP the search space is vastly reduced in comparison to SRGP,
no evidence is found that the reduction of the search space leads to the evolution of
better solutions in a shorter amount of time. On the contrary, the relaxation of the
constraints helped in evolving better fitting equations. This might be an artifact of
this particular application and use of units of measurement. Still it offers a strong
case against the prevailing intuition that the reduction of the search space helps in
solving problems faster.

141

Chapter 9

Conclusion

This work introduced several approaches that enhance genetic programming to be
able to induce symbolic expressions on data while taking care of the units of mea-
surement. The goal of this approach is to automatically induce expressions that can
be analyzed with numerical and symbolic means by an informed user.

It was shown in Chapter 3 that symbolic regression as such does not provide much
benefit over other methods of regression. The use of the symbolic nature of the
expressions induced by standard GP as a vehicle for obtaining insight appears to be
problematic. As the only feedback supplied to standard GP is the (numerical) error,
the expressions are then mostly numerical recipes to reduce this error.

To obtain interpretable expressions, an approach that exploits the symbolic nature
of of genetic programming is developed. It critically uses units of measurement
as a method of typing the expressions. A completely typed result in this system
corresponds with a fully dimensioned mathematical relation. The derivative scales
that are proposed by such an expression attempt to establish some relationship
between a physical process and the automatically induced expression.

Chapter 4 showed that units of measurement can be implemented using a type
system where the exponents of the units are used as separate types. Mathematical
operations on the values then correspond with operations on the types. It was shown
that context-free grammars cannot model the system of units of measurement in
full generality. A method based on parametric polymorphism enhanced with explicit
type arithmetic seems to be needed. It was argued that to provide maximal aid
in the explorative field of scientific discovery, rigorously abiding this type system
is not necessarily the optimal approach. Two main problems with using the units
of measurement as a formal system, subject to purely formal manipulations, have
been identified.

e Formally correct expressions can be meaningless.
Units of measurement can not exhaustively specify an experimental setup.
There are then several ways how meaningless expressions can be formed.
A basic example of a meaningless expression would be the formally correct
application of an arcsine on a ratio of two weight measurements. Formally

142 CHAPTER 9. CONCLUSION

this would produce an angular measurement, physically this manipulation is
meaningless.

This might be considered a pathological example, but in one of the case
studies the following situation was encountered. In the roughness problem,
two length measurements were used in an addition: one measurement was
the mean diameter of a plant, the other the water depth. It is questionable
what the physical meaning is of this addition as not only the scales of the two
variables differ enormously, the measurements themselves apply to different
directions in the experimental setting.

e Formally incorrect expressions can be meaningful.

Because physical experiments are limited in scope and because it is unknown
in advance what variables need to be combined to provide the answer, many
possibly relevant variables are not measured, or are kept at constant values.
The values that are measured can then be equivalent (up to a multiplicative
constant) to a whole set of phenomena stated in different units. A length mea-
surement can be proportional to a velocity if all measurements are performed
using a constant period of time. A length measurement can be proportional
to a rectangular surface measurement if the length at the other axis is kept
constant.

The case study on the roughness problem is again illustrative for the potential
meaningfulness of formally incorrect equations. In this problem, a formally
incorrect expression was induced that compared to its formally correct counter-
part ‘misused’ a length measurement, the water depth, as if it were a surface
measurement. In the experimental setup, there was however no measurement
of the width of the channel or the blocking surface of the plants. As the data
was produced by a numerical model, this width is likely to be kept constant,
maybe even implicitly. The increase in accuracy of the incorrect expression
over its formally correct counterpart seems to support an hypothesis that in
the roughness problem, a ‘blocking surface’ measurement might be needed in
the formulation of an empirical equation. Regardless of whether this hypothe-
sis is true, without considering formally incorrect expressions, such alternative
views of the meaning of the variables in the experimental setup are impossible.

It is then unlikely that a purely formal approach will be the ultimate tool in scientific
discovery. A formal approach is only likely to give the optimal answer if the user can
a priori state that each measurement can be combined according to formal rules to
form meaningful results. This situation seems to be only obtainable in the context
of a predictive theory or an empirical equation; such a theory is exactly what is
being searched for.

It is therefore claimed here that the designation of the input data in appropriate
units of measurement is as much part of the process of scientific discovery as the
formulation of combinations of this data. It is important to note that the argu-
mentation does not dispute the worth of units of measurement in forming models
of physical processes, but merely points at the difficulties a purely formal view of
scientific discovery brings.

Apart from considerations about the nature of units of measurement, the exact way
to search the space of dimensionally (in)correct expressions through the means of

143

genetic programming has been researched. Two possible ways of biasing the search
of a genetic programming system have been identified. One is the inclusion of the
units of measurement as a declarative bias, where the space of possible expressions
is reduced to those that are dimensionally correct. The other is the implementation
of a preferential bias: here dimensional correctness is not seen as an all or nothing
proposition, but a gradation between the severity of constraint violations is used
to induce a set of expressions that balance accuracy on the data and dimensional
(in)correctness.

Two different systems have been developed and described that implement these dif-
ferent biases. The method that uses a preferential bias is described in Chapter 5. It
critically depends on a multi-objective search strategy to balance goodness-of-fit and
dimensional correctness. The general method is based on coercion of types, applied
to the induction of expressions using units of measurement it is called Dimensionally
Aware GP (DAGP).

The system that implements the declarative bias is introduced in Chapter 6 and
is applied to the induction of dimensionally correct expressions in Chapter 7. It
is used as a strongly typed genetic programming system (STGP). Although this
STGP system uses a genetic algorithm as the main search engine, it is envisioned
that other weak search algorithms such as simulated annealing can be applied as
well. This in contrast with the DAGP system, where the multi-objective search that
is central to its operations quite likely prevents a non population based search to
be applicable.

The comparative study between straightforward symbolic regression, dimensionally
aware GP and strongly typed (dimensionally correct) GP in Chapter 8 showed that
on four real-world problems, a trade-off exists between the information contained in
the observations and the information contained in the units of measurement. The
use of units of measurement actually hinders the search for accurate formulations,
even though it helps in interpreting them. This was shown through the means of
a bias-variance analysis, where the error due to bias for dimensionally correct ex-
pressions was found to be structurally higher than the bias error for less constrained
expressions. Even worse, the strongly typed (declarative) approach to the induction
of dimensionally correct expressions showed on one of the four problems that it
can combine a high bias error with a high variance error, thus exhibiting very poor
search performance. It is hypothesized that this is caused by problems with the
ergodicity of the search space. The dimensionally aware approach does not exhibit
this problem, but rather shows a graceful degradation when constraints are hard to
satisfy.

Purely from the perspective of search towards dimensionally correct expressions, the
DAGP approach already appears to be better suited for these types of problems than
the STGP approach.

Furthermore, if one compares the dimensionally aware approach with standard sym-
bolic regression on the basis of purely the fitting capability, no significant difference
between the two methods is found. This indicates that the multi-objective search
that implements the preferential bias does not prevent the system of fitting the
data equally well as an unbiased system. The balance between obtaining a good
fit on the data and presenting a dimensioned expression is thus able to give a good
sample of the range of possible expressions. On the one hand, the best fitted ex-
pressions are not worse than what can be obtained from using a technique such as

144 CHAPTER 9. CONCLUSION

symbolic regression, while on the other hand the dimensionally correct formulations
are not worse (and sometimes better) than what can be obtained using a strongly
typed system. This balance between well-fittedness and dimensional correctness is
dynamically established during the search.

The implementation of the preferential bias in a multi-objective search toward a
front of non-dominated solutions helped in regularizing the solutions. A side-effect
towards parsimonious solutions was observed and it is hypothesized that this is one
of the causes for the regularizing effect. The method employing declarative bias
does not exhibit these side-effects.

It appears that the approach based on coercion achieves the best balance amongst
satisfying the constraints, fitting the data and regularization of the induced expres-
sions. The (im)balance between the constraints and the fitting ability explicitly
catered for in this dimensionally aware GP provides additional insights into the
problem.

Using DAGP and STGP, several expressions have been found that provide a con-
sistent hypothesis of the main characteristics of the physical process. This demon-
strates the value of the expressions that use units of measurement to help in the
interpretation of the results. It is this possibility of directly interpreting the results
that distinguishes genetic programming from other methods. The modifications
to genetic programming presented here can deliver this interpretability in a more
profound way than straightforward symbolic regression.

The overall goal of the work — aiding in the interpretation of the symbolic results
produced by genetic programming — has been achieved. By using additional infor-
mation, units of measurement, as a type system, the genetic programming system
is forced to produce expressions that have some limited semantic content. This se-
mantic content can however not be extracted without any effort. The user is critical
in relating the application of arithmetic with the derivation of physical concepts.

In the perspective of measurement theory, the use of these systems without addi-
tional human effort is unsound. Measurement theory prescribes the process of sub-
stituting numbers for observables and ultimately substituting equations for physical
processes as a one way street: an arithmetical operation on two measurements can
be performed if and only if there is a meaningful physical analogy of this operation
in the physical process. Examples of this can be found in the experiments studied
here. In the roughness problem: subtraction of the reed height from the water
depth is a meaningful operation as it describes the length in the channel where
water can flow unhindered by vegetation. However, adding the water depth to the
reed diameter appears to be meaningless, even though the operation is formally
correct.

There is thus no formal guarantee that a well-fitted dimensionally correct expression
proposes a meaningful relation, hence the unsoundness of merely using units of
measurements to make equations meaningful. However, an informed user — the
domain specialist — can use the equations to find meaningful relations. As the
equations are well-fitted to the data, there is a high likeliness that the relationships
that are proposed have some connection with the physical process that is modeled.
It is shown in this work that such connections, can be found by examining the
resulting equations. In particular, it was shown that by not insisting on dimensional
correctness at all times (DAGP), better fitting expressions can be found, without
necessarily sacrificing this interpretability.

145

The main benefit of these methods then lies in proposing well-fitted equations that
can be used to obtain a better insight in the physical process that underly the
data. Rather than having the human scientist research all possible combinations
of variables and derivative measurements, while at the same time trying to obtain
accuracy (a low error), the systems here automatically induce expressions with high
accuracy and tentative relations. The scientist trying to interpret the expressions
functions as a reality check. In the absence of a formal syntax and semantics of
physical reality this human influence is necessary.

The system described in this work is envisioned to be a source of additional infor-
mation, to be used next to the measurements themselves. The scientist can use
the additional set of equations to more accurately describe the physical process
under study. Ultimately, the goal is to form an empirical equation together with a
justification for its use. The system is capable of providing highly compressed views
on this data in the form of symbolic expressions. By balancing forces, velocities
and length measurements, the equations produced by the system are not necessarily
black box models whose performance can only be measured in their ability to reliably
‘explain’ the variance in the data, but can be inspected by the scientist and used as
a vehicle for interpretation and as a form of inspiration for alternative views of the
problem. By combining the power of an automated system to produce equations,
and the ingenuity of a human observer to form hypotheses from these equations, it
is thought that the best of two worlds are combined: fast exploration of the space
of symbolic descriptions by automatic means and the creativity of a human mind
to find a justification or a refutation for the well-fittedness of these expressions.

This combination of data-driven search and knowledge-driven justification is hoped
to lead to new advances in science. The unbiasedness of data-driven search might
lead the knowledge-driven process of theory-formation to consider novel concepts
or novel combinations of existing concepts.

146 CHAPTER 9. CONCLUSION

List of Tables

21

31

3.2

41

51

6.1

6.2

6.3

7.1

Example of evaluating a function induced by genetic programming
on the available data, where ¢ is the target variable.

Units of measurement of the independent and the dependent vari-
ables for the problem of determining the concentration of sediment
nearthebed.. oo

Comparison of the benchmark formulation produced by scientists and
the formulations found by symbolic regression (SR) using the raw
values or the pre-proccesed values. The error measure that is used is
the Root Mean Squared Error (RMS). The benchmark formulation
was induced using all data, the split in test and training set presented
here was used in the symbolic regression experiment.

The type system defined by the physical units of measurement. It
defines constraints in the case of addition and subtraction where the
units of the operands need to be the same, in the case of trigono-
metric, hyperbolic, exponential and many other functions the units
of the operands need to be dimensionless. Multiplication, division
and the square root function are always defined, but introduce arith-
metical manipulations on the types. Finally, the power function a® is
only defined when the second operand is a constant, whose value will
influence the output type. Here the actual value of the expression
influences its type.

Dimensioned terminal set for the sediment transport problem.

Deriving a solution from a logic program by guiding the selection of
clauses by a string of integers.

Possible modifications to the selection function. The ALP system
used here is identified in boldface.

Correspondence between a path through a logic program and the
symbols that are induced. L.

Parameters for the ALP system used for nearly all experiments. . . .

147

148

LIST OF TABLES

7.2

8.1

8.2

8.3
8.4

8.5
8.6
8.7

8.8
8.9

8.10

8.11

Probability that the difference in observed mean performance in the
final generation is caused by random effects using a two tailed t-test
on the training set. The label ‘MO’ designates the multi-objective
runs. There's no significant difference between subtree crossover
and ripple crossovers; the differences between the multi-objective
runs and the single objective runs is however significant. 101

uom of the independent and the dependent variables for the problem

of determining the settling velocity of sand. 120
uom of the independent and the dependent variables for the problem

of determining the settling velocity of pellets. 122
Dimensioned terminal set for the sediment transport problem. . . . 123

uom of the independent and the dependent variables for the problem

of determining the Chezy roughness coefficient. 124
Data availability.o 124
The parameters for the experiments 125

Results on the four problems, comparing the (50 run) average NRMS
over the test set using a two-tailed t-test with a significance level
of 5%. The label denotes the setting that was significantly better
than its adversary, and ‘none’ when there was no significant differ-
ence. ‘Correct’ denotes the test using only dimensionally correct
formulations. ‘Almost Correct’ denotes a test between STGP and
the best fitting formulation on the training set that has a coercion
error lower than 1. 'Not Correct’ denotes the test between the best
fitting expressions on the training set from DAGP and SRGP (Sym-
bolic Regression GP), without any regard to the coercion errors the
expressions made. Lo 126

Comparison of the train / test errors. Average NRMS over 50 runs. 126

Errors due to bias, normalized using the variance of the target vari-
able. Errors between brackets have been calculated using the middle
90% of the predictions, and are reported when they differ from the
unprocessed values. 129

Errors due to variance, normalized using the variance of the target
variable. Errors between brackets have been calculated using the
middle 90% of the predictions. 129

Typical parameters for various settling parameters 135

149

List of Figures

2.1

22

2.3

2.4

51

52

6.1
6.2

6.3

6.4

6.5

Creating a tree. Empty spots (denoted by #) are recursively filled

in until the tree is completed. 10
Example of a subtree crossover where the parents on the left produce
the children on the right by exchanging the two circled subtrees. . . 10

An estimate of the Pareto optimal set using two objectives. The
objectives are: o =z and oy = (x —2)% 15

C++ snippet for performing vectorized evaluation. It assumes a
properly defined container class and a method of storing and re-
trieving a growing number of these containers. In this example, the
container class needs to be able to perform vectorized evaluation,
but this can also be done in the code itself. 18

A typical front of non-dominated solutions produced in a single run
of the dimensionally aware system. Almost invariably, a balance
between goodness-of-fit and coercion error exists in the front of
solutions. L. 53

Overview of all fronts of non-dominated solutions produced by 50
independent runs of a dimensionally aware genetic programming sys-
tem. The front of this set is depicted with additional circles. 54

The structure of a clause in a logic program. 58

The search tree spanned by the logic program containing the clauses
sym(x) and sym(X+Y) :- sym(X), sym(Y) Prolog will always choose
the leftmost branch first. 0L 61

Overview of the ALP system: the sequence of choices is used in the
derivation process to derive a specific instance for sym(X), this in-
stance is passed to the evaluation function. The calculated objective
function value is returned to the genetic algorithm. 64

Creating a tree using a random walk. Depicted are the shape graph
with the corresponding tree. The tree is created in a depth first
MANNEr. et e e e e e e 69

Splitting a tree into a prefix and suffix. 70

150

LIST OF FIGURES

6.6

6.7

6.8

6.9

6.10

6.11

7.1

7.2

7.3

7.4

7.5

7.6

Typical failure rate with a ripple crossover that creates a single child. 72

The effect of ripple crossover on the shape graph for two parents not
containing any unexpressed code. The crossover points are indicated
with a small circle. If one offspring is invalid, the other is necessarily
valid and will have a tail of unexpressed code. 73

The effect of a mutation on the goal stack. The mutation point is
indicated with acircle. oo L 74

Overview of the genotype used in the ALP system for a program
consisting of three predicates. It uses a separate string for each pred-
icate in the program (although this is in the implementation packed
in a single string) together with a string of floating point values.
The choices made in the resolution of the logic program determine
a path through the genotype, while it is possible that constraint-
violating codons get ignored. Usually a tail of unexpressed code
evolves, that contains unexpressed genetic material. The expressed
code is in general a small fraction of the complete genetic code. . . 83

Overview of the mapping process. The multiple strands represent a
selection from one of the predicates in the program, this selection
process results in a single string of choices. This string of choices is
translated into a parse tree. 84

Subtree crossover on the shape graph. 88

Probability of success in eating 89 pieces of food scattered on the
Santa Fe trail for subtree crossover and ripple crossover using the
straightforward Program 7.1.1 and the ‘sensible’ ant program. . . . 96

Failure rates of subtree crossover and ripple crossover on the sensible
artificial ant problem.o oo, 96

The evolution of the average size of the population on the artificial
ant problems.o 97

An automatically induced expression using the indicated points as
the training set. It is evaluated over the full domain. Note that the
usual protection mechanism of disallowing a division by zero would
not eliminate the asymptote itself. This leads to wildly inaccurate
values in the neighbourhood of the invalid point. 99

Evolution of the mean performance on the training set for the multi-
objective and single objective runs. The mean performance is calcu-
lated as an average over the performance of the best expression in
ageneration. 101

Performance of the selected expressions of the multi-objective and
single objective runs on the testset. The error measure that is used
is the normalized RMS error, which is defined in such a way that an
error of 1 is achieved by a correct prediction of the target average. . 102

LIST OF FIGURES

151

7.7

7.8

7.9

7.10

7.11

8.1

8.2

The evolution of the average performance for subtree crossover and
ripple crossover on the sediment transportation problem. The prob-
lem setup requires the expressions to be stated in dimensionless units.
The performance of a human-proposed alternative formulation is de-
picted with a straight line.

The evolution of the average performance for subtree crossover and
ripple crossover on the sediment transportation problem. The prob-
lem setup allows the expressions to be stated in any units, as long
as they are internally consistent. The performance of a human-
proposed alternative formulation is depicted with a straight line.

The evolution of the average performance for subtree crossover and
ripple crossover on the settling velocity of faecal pellets problem.
The problem setup requires the expressions to be stated in velocity

The evolution of the failure rate for subtree crossover and ripple
crossover on the settling velocity of faecal pellets problem.

Graph of (a) the precipitation and (b) the predicted and actual dis-
charge on the rainfall-runoff problem..

Overview of the 50 best performing expressions on the test set for
the four problems described in the text. (a) Settling velocity of sand.
(b) Settling velocity of faecal pellets. (c) Concentration of sediment.
(d) Roughness induced by flexible vegetation.

Evolution of the average size for the pellets and roughness problems.
The evolution of the size on the other two problems exhibit a similar
trend as the graph for the roughness problem.

. 109

152 LIST OF FIGURES

153

Bibliography

Babovic, V. (1996). Emergence, Evolution, Intelligence: Hydroinformatics.
Balkema, Rotterdam.

Babovic, V. and Keijzer, M. (1999). Data to knowledge - the new scientific
paradigm. In Savic, D. and Walters, G., editors, Water Industry Systems:
Modelling and Optimisation Applications, pages 3-14. Research Studies Press,
Exeter.

Babovic, V. and Keijzer, M. (2000). Genetic programming as a model induction
engine. Journal of Hydroinformatics, 2(1):35-60.

Babovic, V., Keijzer, M., Aguilera, D. R., and Harrington, J. (2001). Analysis of
settling processes using genetic programming. D2K Technical Report 0501-1,
http://www.d2k.dk.

Banzhaf, W. (1994). Genotype-phenotype-mapping and neutral variation — A case
study in genetic programming. In Davidor, Y., Schwefel, H.-P., and Manner,
R., editors, Parallel Problem Solving from Nature Ill, volume 866 of LNCS,
pages 322-332, Jerusalem. Springer-Verlag.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998). Genetic Pro-
gramming — An Introduction; On the Automatic Evolution of Computer Pro-
grams and its Applications. Morgan Kaufmann, dpunkt.verlag.

Buckingham, E. (1914). On physically similar systems: lllustrations of the use of
dimensional equations. Physical Review, IV (4):345-376.

Burke, E. and Foxley, E. (1996). Logic and Its Applications. Prentice Hall.

Cramer, N. L. (1985). A representation for the adaptive generation of simple se-
quential programs. In Grefenstette, J. J., editor, Proceedings of an Interna-
tional Conference on Genetic Algorithms and the Applications, pages 183-187,
Carnegie-Mellon University, Pittsburgh, PA, USA.

Darwin, C. (1859). On the Origin of the Species by Means of Natural Selection, or
the Preservation of Favoured Races in the Struggle for Life.

Davies, C. (1945). Definitive equations for the fluid resistance of spheres. Proceed-
ings of the Physical Society, 57(322).

154 BIBLIOGRAPHY

de Jong, E. D., Watson, R. A., and Pollack, J. B. (2001). Reducing bloat and
promoting diversity using multi-objective methods. In Spector, L., Goodman,
E. D., Wu, A., Langdon, W. B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M.,
Pezeshk, S., Garzon, M. H., and Burke, E., editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECC0-2001), pages 11-18, San
Francisco, California, USA. Morgan Kaufmann.

Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T. (2000). A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii.
In Schoenauer, M., editor, Proceedings of PPSN-6, pages 849-858. Springer-
Verlag.

Einstein, H. A. (1950). The bed-load function for sediment transport in open channel
flow. Technical Bulletin 1026, U.S. Department of Agriculture, Washington,
D.C.

Fogel, L., Owens, A., and Walsh, M. (1966). Artificial Intelligence through Simu-
lated Evolution. John Wiley.

Garcia, M. and Parker, G. (1991). Entrainment of bed sediment into suspension.
Journal of Hydraulic Engineering, 117(4):414-435.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Computation, 4:1-58.

Gibbs, R., Matthews, M., and Link, D. (1971). The relationship between sphere
size and settling velocity. Journal of Sediment Petrology, 41(1):7-18.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley.

Gruau, F. (1996). On using syntactic constraints with genetic programming. In An-
geline, P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic Programming
2, chapter 19, pages 377-394. MIT Press, Cambridge, MA, USA.

Guy, H., Simons, D., and Richardson, E. (1966). Summary of alluvial channel data
from flume experiments, 1956-61. Professional Paper 462-1, U.S. Geological
Survey, Washington D.C.

Hallermeier, R. J. (1981). Terminal settling velocity of commonly occuring sands.
Sedimentology, 28:859-865.

Handley, S. (1994). On the use of a directed acyclic graph to represent a popula-
tion of computer programs. In Proceedings of the 1994 IEEE World Congress
on Computational Intelligence, pages 154-159, Orlando, Florida, USA. IEEE
Press.

Harries, K. and Smith, P. (1997). Exploring alternative operators and search strate-
gies in genetic programming. In Koza, J. R., Deb, K., Dorigo, M., Fogel,
D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 147-155, Stanford
University, CA, USA. Morgan Kaufmann.

BIBLIOGRAPHY 155

Haynes, T. D., Schoenefeld, D. A., and Wainwright, R. L. (1996). Type inheritance
in strongly typed genetic programming. In Angeline, P. J. and Kinnear, Jr.,
K. E., editors, Advances in Genetic Programming 2, chapter 18, pages 359-376.
MIT Press, Cambridge, MA, USA.

Holland, J. H. (1980). Adaptation in Natural and Artificial Systems. University of
Michigan Press.

Holland, J. H., Halyoak, K. J., Nisbett, R. E., and Thagard, P. R. (1986). Induction,
Processes of Inference, Learning and Discovery. The MIT Press.

Iba, H., de Garis, H., and Sato, T. (1994). Genetic programming using a minimum
description length principle. In Kinnear, Jr., K. E., editor, Advances in Genetic
Programming, chapter 12, pages 265—284. MIT Press.

Jaffar, J. and Maher, M. J. (1994). Constraint logic programming: A survey. Journal
of Logic Programming, 20:503-581.

Keijzer, M. (1996). Efficiently representing populations in genetic programming. In
Angeline, P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic Program-
ming 2, chapter 13, pages 259-278. MIT Press, Cambridge, MA, USA.

Keijzer, M. and Babovic, V. (1999). Dimensionally aware genetic programming. In
Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela,
M., and Smith, R. E., editors, Proceedings of the Genetic and Evolutionary
Computation Conference, volume 2, pages 1069-1076, Orlando, Florida, USA.
Morgan Kaufmann.

Keijzer, M. and Babovic, V. (2000a). Genetic programming, ensemble methods and
the bias/variance tradeoff - introductory investigations. In Poli, R., Banzhaf,
W., Langdon, W. B., Miller, J. F., Nordin, P., and Fogarty, T. C., editors,
Genetic Programming, Proceedings of EuroGP'2000, volume 1802 of LNCS,
pages 7690, Edinburgh. Springer-Verlag.

Keijzer, M. and Babovic, V. (2000b). Genetic programming within a framework of
computer-aided discovery of scientific knowledge. In Whitley, D., Goldberg, D.,
Cantu-Paz, E., Spector, L., Parmee, |., and Beyer, H.-G., editors, Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2000), Las
Vegas, Nevada, USA. Morgan Kaufmann.

Keijzer, M., Babovic, V., Ryan, C., O'Neill, M., and Cattolico, M. (2001a). Adaptive
logic programming. In Spector, L., Goodman, E. D., Wu, A., Langdon, W. B,
Voigt, H.-M., Gen, M_, Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H., and
Burke, E., editors, Proceedings of GECCO 2001. Morgan Kaufmann.

Keijzer, M., Ryan, C., O'Neill, M., Cattolico, M., and Babovic, V. (2001b). Ripple
crossover in genetic programming. In Miller, J. F., Tomassini, M., Lanzi,
P. L., Ryan, C., Tettamanzi, A. G. B., and Langdon, W. B., editors, Genetic
Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS, pages 74—
86, Lake Como, Italy. Springer-Verlag.

Keith, M. J. and Martin, M. C. (1994). Genetic programming in C++: Implemen-
tation issues. In Kinnear, Jr., K. E., editor, Advances in Genetic Programming,
chapter 13, pages 285-310. MIT Press.

156 BIBLIOGRAPHY

Komar, P. D. and Taghon, G. L. (1985). Analysis of settling velocities of faecal
pellets from the subtidal polychaete amphicteis scaphobronchiate. Journal of
Marine Research, 43(3):605-614.

Kompare, B. (1995). The Use of Artiticial Intelligence in Ecological Modelling. PhD
thesis, University of Copenhagen, Denmark.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Kutija, V. and Hong, H. (1996). A numerical model for addressing the additional
resistance to flow introduced by flexible vegetation. Journal of Hydraulics
Research, 34(1):99-114.

Langdon, W. B. (1999). Size fair and homologous tree crossovers. Technical Report
SEN-R9907, Centrum voor Wiskunde en Informatica, CWI, P.O. Box 94079,
Kruislaan 413, NL-1090 GB Amsterdam, The Netherlands.

Langdon, W. B. and Poli, R. (1998). Why ants are hard. Technical Report CSRP-
98-4, University of Birmingham, School of Computer Science. Presented at
GP-98.

Langley, P., Simon, H. A., Bradshaw, G. L., and Zytkow, J. M. (1987). Scientific
Discovery, Computational Explorations of the Creative Processes. The MIT
Press.

Larsen, T., Frier, J., and Vestergraard, K. (1990). Discharge/stage relation in veg-
etated danish stream. In International Conference on River Flood Hydraulics.

Luke, S. and Panait, L. (2001). A survey and comparison of tree generation al-
gorithms. In Spector, L., Goodman, E. D., Wu, A., Langdon, W. B., Voigt,
H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H., and Burke,
E., editors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2001), pages 81-88, San Francisco, California, USA. Morgan
Kaufmann.

Martin, L., Moal, F., and Vrain, C. (1999). Declarative expression of biases in
genetic programming. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., and Smith, R. E., editors, Proceedings of the Genetic
and Evolutionary Computation Conference, volume 1, pages 401-408, Orlando,
Florida, USA. Morgan Kaufmann.

Maynard-Smith, J. (1975). The Theory of Evolution. Penguin Books, third edition.

Montana, D. J. (1995). Strongly typed genetic programming. Evolutionary Com-
putation, 3(2):199-230.

Muggleton, S. and Raedt, L. D. (1994). Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19/20:629-679.

O'Neill, M. and Ryan, C. (2001). Grammatical evolution. [EEE Transaction on
Evolutionary Compuation. Forthcomming.

Palmer, R. (1982). Broken ergodicity. Advances in Physics, 31:669-736.

BIBLIOGRAPHY 157

Park, J. and Sandberg, I. W. (1991). Universal approximation using radial basis
function networks. Neural Computation, 3(2):246-257.

Poli, R. and Langdon, W. B. (1998). On the ability to search the space of pro-
grams of standard, one-point and uniform crossover in genetic programming.
Technical Report CSRP-98-7, University of Birmingham, School of Computer
Science. Presented at GP-98.

Poli, R. and Langdon, W. B. (1999). Sub-machine-code genetic programming. In
Spector, L., Langdon, W. B., O'Reilly, U.-M., and Angeline, P. J., editors,
Advances in Genetic Programming 3, chapter 13, pages 301-323. MIT Press,
Cambridge, MA, USA.

Ratle, A. and Sebag, M. (2000). Genetic programming and domain knowledge:
Beyond the limitations of grammar-guided machine discovery. In Schoenauer,
M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J. J., and Schwefel, H.-
P., editors, Parallel Problem Solving from Nature - PPSN VI 6th International
Conference, pages 211-220, Paris, France. Springer Verlag. LNCS 1917.

Rechenberg, 1. (1965). Cybernetic solution path of an experimental problem.

Ross, B. (1999). Logic based genetic programming with definite clause transla-
tion grammars. Technical report, Department of Computer Science, Brock
University, Ontario Canada.

Rouse, H. (1939). Experiments on the mechanics of sediment transport. In Pro-
ceedings of 5th International Congress of Applied Mechanics, pages 550-554.
Cambridge, Massachusetts.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3(3):210-229.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. John Wiley & Sons.
Sterling, L. and Shapiro, E. (1994). The Art of Prolog. MIT press.

Stevens, S. (1959). Measurement, psychophysics, and utility. In Churchman, W. C.
and Ratoosh, P., editors, Measurement: Definitions and Theories, chapter 2,
pages 18-37. Wiley, New York.

Stroustrup, B. (1997). The C++ Programming Language. Addison Wesley, third
edition.

Tahgon, G., Nowell, A., and Jumars, P. (1984). Transport and breakdown of faecal
pellets: biological and sedimentological consequences. Limnological Oceanog-
raphy, 29(1):64-72.

Topchy, A. and Punch, W. F. (2001). Faster genetic programming based on local
gradient search of numeric leaf values. In Spector, L., Goodman, E. D., Wu,
A., Langdon, W. B., Voigt, H-M., Gen, M., Sen, S., Dorigo, M., Pezeshk,
S., Garzon, M. H., and Burke, E., editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECC0O-2001), pages 155-162, San
Francisco, California, USA. Morgan Kaufmann.

158 BIBLIOGRAPHY

Tsujimoto, T., Okada, T., and Omata, A. (1993). Field measurements of turbulent
flow over vegetation on flood plain of river kakehaski. Khl progressive report,
Hydraulic Laboratory, Kanazawa University.

Whigham, P. A. (1996a). Grammatical Bias for Evolutionary Learning. PhD the-
sis, School of Computer Science, University College, University of New South
Wales, Australian Defence Force Academy.

Whigham, P. A. (1996b). Search bias, language bias, and genetic programming. In
Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic
Programming 1996: Proceedings of the First Annual Conference, pages 230-
237, Stanford University, CA, USA. MIT Press.

Whigham, P. A. and Crapper, P. F. (1999). Time series modelling using genetic
programming: An application to rainfall-runoff models. In Spector, L., Lang-
don, W. B., O'Reilly, U.-M_, and Angeline, P. J., editors, Advances in Genetic
Programming 3, chapter 5, pages 89-104. MIT Press, Cambridge, MA, USA.

Wong, M. L. and Leung, K. S. (1997). Evolutionary program induction directed by
logic grammars. Evolutionary Computation, 5(2):143-180.

Yu, T. and Bentley, P. (1998). Methods to evolve legal phenotypes. In Eiben, A. E.,
Back, T., Schoenauer, M., and Schwefel, H.-P., editors, Fifth International
Conference on Parallel Problem Solving from Nature, volume 1498 of LNCS,
pages 280-291, Amsterdam. Springer.

Yu, T. and Clack, C. (1998). PolyGP: A polymorphic genetic programming system
in haskell. In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M.,
Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., and Riolo, R., editors,
Genetic Programming 1998: Proceedings of the Third Annual Conference,
pages 416-421, University of Wisconsin, Madison, Wisconsin, USA. Morgan
Kaufmann.

Zhang, B.-T. (2000). Bayesian methods for efficient genetic programming. Genetic
Programming and Evolvable Machines, 1(3):217-242.

Zhang, B.-T. and Miihlenbein, H. (1994). Synthesis of sigma-pi neural networks
by the breeder genetic programming. In Proceedings of IEEE International
Conference on Evolutionary Computation (ICEC-94), World Congress on Com-
putational Intelligence, pages 318-323, Orlando, Florida, USA. IEEE Computer
Society Press.

Zhang, B.-T. and Miihlenbein, H. (1996). Adaptive fitness functions for dynamic
growing/pruning of program trees. In Angeline, P. J. and Kinnear, Jr., K. E.,
editors, Advances in Genetic Programming 2, chapter 12, pages 241-256. MIT
Press, Cambridge, MA, USA.

Zyserman, J. A. and Fredsge, J. (1994). Data analysis of bed concentration of
suspended sediment. Journal of Hydraulic Engineering, 120(9):1021-1042.

