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Abstract

Process Integration and

Automated Multi-Objective

Optimization Supporting

Aerodynamic Compressor Design

Akin Keskin

keywords: compressor design, aerodynamics, multi-objective optimization,

process integration

Nowadays industrial aerodynamic compressor design is based on mature com-

puter programs developed during several decades. State of the art is to split

the complex design process into subsequent design subtasks which are solved by

different experts via time-consuming parameter studies. Isolated design of sub-

problems based on human intuition, however, will result in sub-optimal solutions

only. Due to the increasing demand on higher aero engine performance and design

cycle time reduction the aspects of process integration and automation as well as

numerical optimization become more and more important in today’s aerodynamic

compressor design.

The intention of this work is to show how process integration and optimization

can be used efficiently to support engineering design work in optimal solution find-

ing. Since the aerodynamic compressor design is characterized by many design

parameters, multiple constraints and contradicting objectives, multi-objective op-

timization is used to find Pareto-optimal solutions from which the design engineer

can choose trade-offs for his particular design problem. The improvements in

terms of process acceleration and design optimization are demonstrated for three

selected, but typical industrial engineering design tasks required in three different

design phases of the aerodynamic compressor design process, namely preliminary

design, throughflow off-design, and blading procedure.



Kurzfassung

Prozessintegration und

automatisierte Mehrkriterien-Optimierung

zur Unterstützung des aerodynamischen

Verdichterentwurfs

Akin Keskin

Schlüsselwörter: Verdichterauslegung, Aerodynamik, Mehrkriterien-Optimierung,

Prozessintegration

Der aerodynamische Verdichterentwurf wird heutzutage in der Industrie mit Hilfe

von ausgereiften Computerprogrammen durchgeführt, die über Jahrzehnte entwi-

ckelten wurden. Stand der Technik ist es, den komplexen Entwurfsprozess in meh-

rere einzelne Entwurfsaufgaben aufzuteilen, welche durch zeitaufwändige Parame-

terstudien von unterschiedlichen Experten gelöst werden. Ein isolierter Entwurf

basierend auf menschlicher Intuition führt jedoch nur zu sub-optimalen Lösungen.

Auf Grund der ansteigenden Anforderung an die Leistung eines Flugtriebwerks

und der Reduzierung der Entwicklungszeiten gewinnen die Aspekte der Prozes-

sintegration und -automatisierung als auch der numerischen Optimierung in dem

heutigen Verdichterentwurfsprozess an stärkerer Bedeutung.

Die Intention dieser Arbeit ist es, Möglichkeiten aufzuzeigen, wie Prozessinte-

gration und Optimierung effizient genutzt werden können, um die Entwurfsauf-

gabe des Ingenieurs durch automatische Lösungssuche zu unterstützen. Da der

aerodynamische Verdichterentwurfsprozess durch eine Vielzahl von Entwurfspara-

metern, mehreren Nebenbedingungen und gegensätzlichen Entwurfszielen charak-

terisiert ist, wird die Mehrkriterien-Optimierung zum Auffinden Pareto-optimaler

Lösungen verwendet, von denen der Entwurfsingenieur Kompromisslösungen für

seine spezielle Entwurfsaufgabe auswählen kann. Anhand von drei ausgewählten,

typisch industriellen Entwurfsaufgaben aus drei unterschiedlichen Entwurfspha-

sen der aerodynamischen Verdichterauslegung wie der Mittelschnittsrechnung,

des Stromlinienkrümmungsverfahrens sowie des Schaufelentwurfs werden verbes-

serte Ergebnisse in Bezug auf Prozessbeschleunigung und optimierten Entwurf

demonstriert.
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NOMENCLATURE IX

Ns number of stages

P admissible design space

P pressure

PMXC position of maximum thickness

Pt parent population

Qt offspring population

r radius, radial coordinate

Re Reynolds number

Rt overall population

S pitch

SM surge margin

T temperature, thickness

t tangential coordinate, spline parameter

Tu turbulence intensity

u circumferential velocity

w relative velocity, weighting

WR working range

x axial coordinate

Greek Symbols

α flow angle, step size

β metal angle

χ pressure loss coefficient factor

δ clearance

ε accuracy

η efficiency

γ artificial objective, ratio of specific heat capacities

κ curvature

λ Lagrange multiplier

μ wedge angle, Lagrange multiplier

ω pressure loss coefficient

Π pressure ratio

Ψ stage loading



X NOMENCLATURE

σ stiffness, solidity σ = C/S

τ tangential angle

ξ stagger angle

Vectors and Matrices

B substitute of inverse Hessian matrix

b vector of control points

d search direction

f vector of objective functions

G matrix for search direction

g vector of inequality constraints

H Hessian matrix, H = ∇2f

h vector of equality constraints

I identity matrix

K knot vector

p vector of design parameters

Subscripts

0 total

c compressor

datum of datum design

E exit

eff effective

geom geometric

I inlet

i stage

isen isentropic

poly polytropic

WR at working range

Superscripts
0 design point
C casing
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Δ difference

˙ derivative
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L left
l lower
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PS pressure side
R right
∗ optimal
SS suction side
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u upper

Symbols
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∇ Nabla operator
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′ relative frame

˜ artificial
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1 Introduction

The increasing globalization and the prosperity of the world population drives

the air traffic to become more and more the major means of transportation.

The trend shows that passenger kilometers will be doubled in the next 15 years,

Walther et al. (2000). However, this demand is in conflict to the global con-

cern for resource preservation and reduction of energy consumption. The Advi-

sory Council for Aeronautics Research in Europe (ACARE) published a proposal

called ”European Aeronautics: A Vision for 2020“ pointing out several key ele-

ments, including noise and exhaust emission reduction, travel delays, and safer

air transport, ACARE (2001). In order to address these issues, aero engine com-

panies need to improve the design technology of their products in terms of higher

efficiency and less emissions.

The design of an aero engine is a highly complex and time-consuming multi-

disciplinary engineering task driven by many different objectives and require-

ments. Nowadays the overall design process is subdivided into component based

subtasks, where different design tools in different disciplines are involved and

used in order to fulfill the design targets, Keskin and Bestle (2004). The overall

performance that can be achieved for an aero engine is mainly given by the de-

sign quality of its components, namely the compressor, the combustor, and the

turbine, Figure 1.1. Therefore, efforts are taken to improve the component design

and to accelerate the time-consuming highly-iterative design process.

The compressor as one of the most important and challenging components

within an aero engine is responsible for 50-60% of the engine length, 40-50% of

its weight, and 35-40% of the manufacturing costs, Steffens and Schäffler (2000).

The highly complex and multi-disciplinary compressor design process is built up

1
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compressor

combustor

turbine

Figure 1.1: Major components of an aero engine demonstrated for Rolls-Royce

BR715 (Printed by courtesy of Rolls-Royce Deutschland)

from several separate design phases, Figure 1.2. Starting with a conceptional

study according to the market requirements a preliminary analysis of possible

compressor designs is performed. The most promising design is chosen for a

performance investigation where additional parameters for the subsequent multi-

disciplinary design process are prescribed. This is followed by time-consuming

inner iterations between the three main disciplines aerodynamics, design, and

stress which are performed in order to find the best compressor design fulfilling

all constraints and objectives of the design task. Finally, the process ends with

the manufacturing process and the assembly with other components of the aero

engine.

Aerodynamics plays a significant role in the whole compressor design process

since it is the initial step of an iterative multi-disciplinary design procedure where

the performance requirements are conducted into the inner design loop. The

aerodynamic process itself basically consists of several design steps with increasing

complexity and different design tools. The process is rather time-consuming due

to many design iterations within and between these individual tools. Therefore,
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manufacturing

COMPRESSOR
DESIGN

aerodynamics

designstress

conceptional
study

performance

Figure 1.2: Compressor design process

an automation of the process is desired which would have a positive influence to

the entire design task leading to shorter design cycles.

The aerodynamic compressor design process is based on technically sophis-

ticated programs developed during several decades. State of the art is to split

the individual design processes into several subtasks which are solved by different

experts via time-consuming parameter studies. Isolated design of subproblems

based on human intuition, however, will result in sub-optimal solutions only. The

increasing demand on aero engine performance and design cycle time reduction

requires process flow automation and design optimization. Therefore, process

integration, process automation and numerical optimization become more and

more important.

1.1 Aerodynamic Compressor Design

The aerodynamic compressor design process basically consists of meanline pre-

diction calculation, throughflow calculation, and blading procedures, Figure 1.3.

The complexity of the design model, i.e. the number of design parameters, in-

creases during the process flow. In an industrial design process typically a new

design always starts on the basis of an existing compressor design.

The meanline prediction is the first step within compressor design. It is a

simple one-dimensional calculation of flow parameters along the mid-height line

of the compressor where global parameters as the annulus geometry, the number
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meanline
prediction

throughflow
calculation (S2)

3D-blading

2D-blading
(S1)

w
E

w
I

u
E

c
E

c
I

u
I

Figure 1.3: Aerodynamic compressor design process

of stages, and the stage pressure ratios are scaled or adapted to the new design

problem. Based on the velocity triangles, flow parameters as flow velocities,

flow angles, pressure and temperature values are determined at specific axial

positions. Mature programs also provide several correlations for loss assumptions

and blockage prediction which are important to capture as much flow effects as

possible in order to be closer to the real flow field.

The goal at this design phase is to find adequate flow parameter distributions

along the one-dimensional mid-height streamline of the compressor which fulfill

the performance requirements for the design point and the off-design character-

istics as good as possible. The quality of a compressor design is quantified by

global parameters as efficiency, surge margin, overall pressure ratio, and design

mass flow. The individual stages and sometimes even the single rows are assessed

based on design rules and quantities such as the de Haller number, diffusion num-

ber, Koch parameter, and stage loading. If design goals are not fulfilled, these

parameter distributions may help to detect problems of the compressor design.

The meanline prediction process as it is performed today is a very quick and
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reliable method for compressor preliminary design. Beside the assessment for

design flow conditions, the low calculation effort makes it efficient to predict also

off-design characteristics of the compressor design. By varying shaft speed and

compressor exit pressure it is possible to obtain an overview of the compressor

performance capability which is summarized in a compressor map. This is an

important aspect since it allows to predict a compressor map at such an early

design phase and to judge the compressor design according to design and off-

design conditions.

Typically, the results of the preliminary process are obtained by time-

consuming manual parameter studies based on engineering intuition or experi-

ence. The final one-dimensional solution is used as an initial guess for the subse-

quent design process, e.g. for throughflow calculations. According to Wu (1952)

the highly three-dimensional flow in compressors can be split into two separate

but interrelated two-dimensional surfaces, Cumpsty (2004). Figure 1.4 shows

the intersecting surfaces where S1 denotes blade-to-blade surfaces which are sur-

faces of revolution running from blade suction to blade pressure side, and the

meridional plane S2 which is extending from hub to casing. The benefit of this

approach is that the complex three-dimensional flow problem can be tackled by

less complicated two-dimensional flow analyses. The meanline calculation can be

seen as a computation along the intersecting line between the meridional plane

S2 and the S1 surface at mid-height radial position.

Hence, the results of the meanline prediction are directly used as input for the

subsequent throughflow calculation in the S2 plane, Figure 1.3. Within this design

phase the input parameters are extended in radial direction according to some

design rules or design experiences, and the two-dimensional flow field is typically

solved based on a streamline curvature method. The throughflow design process

is a time-consuming and highly iterative process since each parameter modifi-

cation requires a full flow analysis typically consisting of 21 radially distributed

streamlines. If inconsistencies in the design parameters exist, the determination

of the streamline distributions often fails which makes the process sometimes

more difficult. However, the throughflow calculation is important since it is the

point where the initial annulus geometry is smoothed and, if desired, additional

contouring features at the hub or casing are introduced. Beside the radial distri-

butions of the design parameters and velocity triangles, i.e. gas inlet and outlet
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S1

S1

S1

x

S2

r

hub

casing

Figure 1.4: Meridional plane (S2) and blade-to-blade surface (S1) definition ac-

cording to Wu (1952)

whirl angles and velocities, streamline geometries are obtained.

Based on the throughflow results, the subsequent 2D-blading process as a next

level of design refinement is performed, Figure 1.3. Starting with blade section

geometries of an adequate earlier design, the two-dimensional flow field in each

corresponding S1 stream surface is solved based on a blade-to-blade flow calcu-

lation program. For stationary inlet flow conditions the two-dimensional blade

geometries are varied and the flow field around each section is calculated. The

results include Mach number and pressure distributions on the section surfaces as

well as blade exit whirl angle, velocity, and pressure loss. For an axial compressor

the throughflow calculation relates the blade-to-blade flow in radial direction by

solving the radial equilibrium equation. The aim of the 2D-blading process is

to find blade geometries which match flow angles and flow conditions from the

throughflow calculation on each S1 stream surface appropriately. A typical num-

ber of radial stream surfaces is 21, however, the 2D-blading is only performed on

a smaller number of radial positions of each blade, e.g. 11, 9, or only 7, in order

to keep computational costs small. Nevertheless the 2D-blading process remains

a very time-consuming task especially for a multi-stage application.

After 2D-blading the resulting blade sections are radially stacked along a spe-

cific stacking line of the blade and additional design principles as sweep and
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dihedral are introduced to the three-dimensional blade geometry in order to re-

duce secondary flow losses, Gümmer (2000). As a final step, highly sophisticated

three-dimensional CFD calculations are performed for individual blade rows as

well as for the whole compressor often including bleed air extraction and shroud

leakage flow. The results may be used to update the aerodynamic design models

of an earlier phase or to perform the subsequent design and stress analysis.

As can be seen in Figure 1.3, the aerodynamic compressor design process is

not straight forward. If design goals cannot be achieved in one of the design

tasks it is often required to step back to one of the earlier design phases and to

make modifications on design parameters or design assumptions. It is also usual

practice to update an earlier model by more accurate results of subsequent design

analyses in order to increase the accuracy of the overall design process. Many

design iterations within and in between the individual design steps are needed

where the final design always reflects a compromise. A good design can only be

found by many time-consuming iterations leading to undesired high development

times.

1.2 State of the Art in Aerodynamic Optimiza-

tion

In the last decades a lot of scientific investigations have been carried out dealing

with the aspect of aerodynamic optimization in turbo machinery design. This

includes compressor design as well as turbine design from which methods and

experiences can be reflected to other component designs.

In the field of preliminary design, Dornberger et al. (2000) published a multi-

objective optimization approach which is applied to a preliminary turbine design

process. Based on parameter modification of the flow path and blade chord

lengths, an improvement in aerodynamic turbine efficiency and reductions of

estimated stresses and costs are pursuit simultaneously. The design problem

is solved with a genetic algorithm with the fundamental property of generating

Pareto-optimal solutions. A three-dimensional surface of Pareto-optimal points

is found which provide trade-off solutions.

The work of Müller-Töws (2000) aims to develop a throughflow design process
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for multi-stage axial compressors in combination with numerical optimization

strategies based on deterministic and stochastic methods. Compressor annulus

geometry as well as further design parameters are optimized where multiple de-

sign goals are combined in an aggregated function using the weighted-objective

approach. Oyama and Liou (2002) present an application of multi-objective opti-

mization to a four-stage throughflow compressor design with design modifications

made in terms of radial blade parameter variations resulting in 80 design para-

meters. The design problem is solved as a real multi-objective problem with an

evolutionary algorithm resulting in hundreds of reasonable and uniformly dis-

tributed Pareto-optimal solutions that outperform the baseline design in both

objectives, namely overall compressor efficiency and total pressure rise. A fur-

ther method for improving axial compressor design in the throughflow design

phase is presented by Ahmed and Lawerenz (2004). The optimization problem

is solved with a combination of a global single-objective optimization strategy

and a surrogate approximation model where design modifications are performed

on annulus and blade geometries yielding 625 design parameters. The optimiza-

tion process requires 23 hours on a cluster with 13 processors for improving the

compressor efficiency.

Since the blade design problem is highly complicated and time-consuming

due to many design parameters and uncertainties in the function evaluation,

a lot of researchers try to tackle the design problem by applying automated

optimization strategies. Trigg et al. (1999) present an automated process for

a single-objective optimization of two-dimensional steam turbine blades on the

basis of a genetic algorithm. The geometry is described by Bézier-curves with

17 independent design parameters where the flow around the blade section is

calculated by a viscous blade-to-blade solver. The authors report on significant

reduction in blade losses of 10-20% compared to the datum designs. The intention

of Köller et al. (2000) is to develop a new family of subsonic compressor airfoils

by using an automated blade design process combining a geometric code for

airfoil description based on spline representations, a viscous blade-to-blade flow

solver, and a numerical optimization algorithm. In order to solve the multi-

objective design problem with a combination of random search and a gradient

based optimization method, the objectives are transferred into a scalar utility

function using the weighted-objective approach. A reduction in total pressure
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loss at design flow conditions and a simultaneous increase in working range of

the blade are achieved. Few years later Sieverding et al. (2004) solve the multi-

objective blade design problem proposed by Köller et al. (2000) with a single-

objective genetic algorithm. The optimization is performed on a computer with

a single processor where the optimization process for one blade section typically

requires two weeks for the evaluation of 400 generations. For all investigated

blade sections the loss is reduced significantly and the working range is increased

compared to the datum NACA 65 blade design.

In some research work the focus lies more in a better flow calculation in or-

der to catch as much flow phenomena as possible in the two-dimensional blading

process. In the investigation of Dennis et al. (2001) a combination of genetic

algorithm and constrained gradient based method is used for optimizing a two-

dimensional blade geometry with respect to total pressure loss. The authors use

a higher sophisticated Navier-Stokes flow solver with an integrated turbulence

model for better flow evaluation where the blade geometry is parameterized us-

ing B-splines. A significant reduction of the total pressure loss is reported. In a

further investigation of Sonoda et al. (2003) a compressor blade section is opti-

mized with respect to the pressure loss at design flow and working range using

two different numerical optimization methods, an evolutionary strategy and a

multi-objective genetic algorithm. The two-dimensional geometry is described by

non-uniform third order rational B-splines leading to 42 design variables and a

Navier-Stokes flow solver including a transition and turbulence model is chosen

for design evaluation. Both optimization algorithms achieve reasonable improve-

ments in the objective function values. At the same time Burgubur et al. (2003)

develop a single-objective optimization process to design compressor and turbine

blading geometries in turbo machinery using a gradient based method which is

coupled to a Navier-Stokes flow solver. Three different investigations considering

two- and three-dimensional blade geometries are carried out. As a new approach

the geometry variations are described by Spline representations and parameter-

ized deformation functions. In all investigations a loss reduction of 1% at design

flow conditions is achieved.

In different scientific investigations it is shown that the experiences in the

pure two-dimensional blade optimization process can be used to design a three-

dimensional blade geometry. The emphasis of these investigations is to use only
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two-dimensional flow solvers in order to design multiple two-dimensional blade

sections which are finally stacked in radial direction. Chung and Lee (2002)

publish a shape optimization approach applied to a transonic compressor blade

design (NASA rotor 37) where geometry variations are performed at three pre-

selected blade sections at 30, 50, and 70% blade height. Two objective functions

are employed to maximize the blade section efficiencies which are obtained by

a quasi-three-dimensional Navier-Stokes solver with an appropriate two-equation

turbulence model at design operating conditions. The deterministic optimiza-

tion requires approximately 8 hours for convergence resulting in 1% efficiency im-

provement for each investigated approach. Büche et al. (2003) propose a method

where a complete compressor blade is designed by three individually optimized

blade sections. In this work a multi-disciplinary aspect is considered where mul-

tiple design criteria as well as aerodynamic and mechanical constraints are ag-

gregated together in an objective function which is minimized by an evolutionary

optimization strategy. The blade optimization process requires 12 hours for 4000

designs on a cluster with four processors. The results show a 15% working range

improvement compared to the initial design where the loss is not reduced.

In the latter investigations blade optimization is performed on multiple two-

dimensional sections which are evaluated by a two-dimensional flow solver. In the

work of Benini (2004), however, the quasi-three-dimensional blade design is calcu-

lated by a full three-dimensional flow analysis. Based on a transonic compressor

rotor, multi-objective geometry optimization is performed with a multi-criterion

evolutionary algorithm in order to maximize the isentropic efficiency and the pres-

sure ratio at design point. Geometry modifications are performed on camber line

and thickness distributions at three different blade sections with 23 parameters

in total, from which a three-dimensional geometry is interpolated. The three-

dimensional CFD calculation is performed on a parallel four-processor machine

leading to an overall turn around time of about 2000 hours. The final results

show trade-off solutions with an efficiency improvement at equal pressure ratio

and a higher pressure ratio at a reasonable efficiency level.

The significant increase of computational power and the availability of com-

puter clusters in the last years allow to optimize three-dimensional blade geome-

tries directly. More recently Sasaki et al. (2006) publish a multi-objective ap-

proach for optimizing a three-dimensional compressor stage which is embedded



1.3 CONTENTS AND STRUCTURE OF THE THESIS 11

in a four-stage axial compressor. In this research the parameterized stage geom-

etry is optimized to improve aerodynamic performance in terms of efficiency,

blockage and loss, while satisfying four aerodynamic constraints to maintain the

flow similar to a baseline geometry. In order to identify trade-off solutions with

a reasonable number of function evaluations, a multi-objective genetic algorithm

is adopted as optimizer where only 320 design evaluations are carried out. The

final geometries show only slight improvements in the objective values while the

computational cost is about 5 hours for one design evaluation on a coarse CFD

grid.

These investigations show that there is still a huge demand in process accel-

eration and automation in turbo machinery design. Especially the benefits of

application of multi-objective optimization to the preliminary design phase is not

well understood. The investigations in the field of blade design show that there is

no standard procedure for solving the design problem. Since it is recognized that

multiple goals have to be achieved simultaneously, multi-objective optimization

methods have to be used providing trade-off solutions from which the design engi-

neer can finally choose. The pure two-dimensional blade design process is investi-

gated by several researches with different emphasis resulting in good optimization

results. However, in terms of process acceleration a lack in the problem definition

can be identified which may be solved by a re-definition of the two-dimensional

blade design problem. In terms of three-dimensional blade design, a complete

blade shape modification and optimization is still too time-consuming due to the

numerical flow evaluation. A multi-objective optimization process would require

thousands of design evaluations for a proper determination of trade-off solutions.

Probably the best compromise between computational cost and design model ac-

curacy is shown by the presented quasi-three-dimensional blade design methods

where the blade geometry is obtained by multiple two-dimensional blade section

optimizations which make it worth for further investigations.

1.3 Contents and Structure of the Thesis

The emphasis of this work is to apply the aspects of process integration and au-

tomation to the industrial aerodynamic compressor design process of the Rolls-

Royce Company. The goal is to analyze, evaluate and accelerate the time-
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consuming design process and to use validated Rolls-Royce design tools without

any modifications in order to be as close as possible to the real engineering work

flow. Since the individual design tasks in the complex aerodynamic design process

are typically solved by human designers with highly iterative manual parameter

studies, it is a further goal to formulate optimization problems which can be

solved by numerical optimization. The aim is to use multi-objective optimization

methods to find better compressor designs and to support the design engineer

in his decision making by providing trade-off solutions between the contradicting

design goals. Three typical engineering design tasks in different phases of the

aerodynamic compressor design process, namely preliminary design, throughflow

calculation, and blading procedure are selected to be analyzed in order to demon-

strate the improvements in term of process acceleration and optimization.

This thesis is organized in six chapters. Following the introduction, Chapter 2

gives an overview of the theoretical background for several important aspects used

in this work. It contains the principles of process integration as well as an in-

troduction to parameterization methods of design quantities using Bézier-curves

and B-splines. Additionally, numerical optimization will be discussed including

single- and multi-objective optimization methods, scalarization strategies, and

an overview of optimization algorithms used in this thesis. The following three

chapters are presenting the application of process integration, automation, and

multi-objective optimization to aerodynamic compressor design problems start-

ing with the one-dimensional meanline process in Chapter 3, the throughflow

off-design calculation task in Chapter 4, and the time-consuming two- and three-

dimensional blading process in Chapter 5. Conclusions and an outlook for future

work in the field of aerodynamic compressor optimization will complete the the-

sis.



2 Theoretical Background

Typical engineering design problems are characterized by many design parame-

ters, multiple constraints and objectives which have to be solved with different

design tools running separately on different platforms leading to a time-consuming

work flow. This chapter introduces process integration as an efficient method to

accelerate the design process flow, and design parameterization which is impor-

tant to reduce the number of design parameters without reducing the design

freedom too much. Finally, an introduction to numerical optimization covering

single- and multi-objective optimization is provided for supporting the design

engineer in his solution finding, and an overview of the algorithms used in this

thesis is given.

2.1 Process Integration

Today’s industrial design process is characterized by a heterogeneous tool set

running on different computers with different operating systems. Big companies

use in-house codes developed by themselves during several decades for solving

particular design tasks. They are essential for the design process since they in-

corporate the expertise, knowledge, and design rules of the company which are

gathered and implemented into such programs over years. The benefits are a

good adaption to the computational environment, connection to data bases, and

the link to other in-house codes within the process chain. However, developing,

supporting, and adapting such codes to new purposes is often too expensive for

the companies why more and more commercial applications in different areas are

used. It is also a well known fact that commercial codes provide better sup-

13
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port, a more professional software development, and the availability on different

operating systems.

The increasing demand on design time reduction drives the requirement of

process flow automation by integrating in-house as well as commercial codes on

heterogeneous platforms in a common environment. This demand can be ad-

dressed by using commercial software packages as iSight (2004) or modeFRON-

TIER (2006) which are generic shell software applications for process integration

and automation. The thesis is based on iSight which basically consists of a task

manager, a process integration module, the solution process module, and the

solution monitor module, Figure 2.1.

Process
Integration

� task flow
management

� file parsing

� parameter
management

Solution
Process

� design
optimization

� parameter
list

Solution
Monitor

� charts

� tables

� Pareto-plots

Task
Manager

� design
exploration

Figure 2.1: iSight modules

Once the design process flow is known, the individual programs can be in-

tegrated by the process integration module. It provides the possibility to link

programs together on heterogeneous platforms and invoke them sequentially or

parallelly. The input and output files for each program can be parsed in order to

apply parameter modifications as well as to extract results from an analysis code.

The data flow is also managed within the process integration module where input

and output parameters of the individual programs are defined. Additionally, it is

possible to do some simple parameter calculations within a calculation module.

After the process flow is set up in the process integration module, the design

problem is solved in the solution process. In this module iSight provides design
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exploration techniques as Design of Experiments (DoE) or Monte-Carlo Simula-

tion (MCS) in order to explore the design space for parameter sensitivities. The

results can be used either for parameter reduction, design problem approximation

based on surrogate models or as an initial step for design optimization. For the

latter case, deterministic and stochastic optimization algorithms are provided and

can be chosen individually or in combination to define an optimization strategy

based on sequential optimization methods. Furthermore, the design parameters,

constraints, and objectives have to be selected from the parameter list and re-

quired bounds have to be made in this module. As a final step a solution monitor

can be started where important design parameters and optimization objectives

can be monitored by graphical charts or in a tabulated manner.

2.2 Design Parameterization

In terms of numerical optimization many design parameters, multiple design ob-

jectives, and high number of constraints lead to an unmanageable task and raise

the computational time dramatically. Hence, appropriate parameterization meth-

ods have to be used in order to decrease the number of design parameters without

reducing the design freedom and additionally to guarantee technical feasibility of

the obtained design. Parameterization smoothes the design problem, reducing

the chance to be trapped in a local minimum, and thus increases the possibility

of finding a global optimum of the design problem.

Parameterization should be done carefully, since it is imposing implicit con-

straints on the design problem and could lead to sub-optimal solutions. A trade-

off between the maximum design freedom and the minimum parameter number

has to be found. The decision on the parameterization method and the number

of parameters have a major influence on the final result. In this work two differ-

ent methods are used in order to parameterize design parameter distributions in

2D-space which will be discussed in the following.

2.2.1 Bézier-Curves

Bézier-curves and -surfaces are one of the most frequently used representations

in computer graphics. The theory was independently discovered and developed
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by Pierre Bézier in 1962, an engineer for Rénault, and Paul de Casteljau in 1959

working for the Citroën automotive company. Being competitors, both French

companies were very secretive about their work, and although de Casteljau’s

work was slightly earlier than Bézier’s, it was never published. Consequently, the

field retains Bézier’s name. However, the fundamental algorithm which forms the

basis for the construction and calculation of Bézier-curves is now credited to de

Casteljau, Farin (1990).

The bases of all spline curves are the blending functions. For Bézier-curves

they are called Bernstein polynomials Bn
k which are defined as

Bn
k (t) =

(
n

k

)
tk(1 − t)n−k, k = 0(1)n, (2.1)

with the curve parameter t ∈ [0, 1] running along the curve, the curve degree n,

the Bernstein index k and the binomial coefficient(
n

k

)
=

⎧⎪⎨⎪⎩
n!

k!(n − k)!
for 0 ≤ k ≤ n

0 else.

(2.2)

Bernstein polynomials are easy to calculate and are defined for the entire domain

of the curve index t. They have the property of nonnegativity, Bn
k (t) ≥ 0 ∀ k, n

and partition of unity,
∑n

k=0 Bn
k (t) = 1, Piegl and Tiller (1997).

The Bézier-curve b(t) in a two-dimensional space can be determined as

b(t) =

[
bn
x(t)

bn
y (t)

]
=

n∑
k=0

bkB
n
k (t) (2.3)

which is a linear combination of control point positions bk ∈ R
2 and the corre-

sponding Bernstein polynomials (2.1). An example for a Bézier-curve represen-

tation is given in Figure 2.2 showing on the left hand side the distribution of the

Bernstein polynomials of degree n = 4 for a Bézier-curve with five control points

and on the right hand side the position of the control points bk which determine

the resulting Bézier-curve.

In general, Bézier-curves are practicable for geometric representation of com-

plex curves using a low number of parameters. If the complexity of the curve

increases, a more flexible Bézier-curve can be created by just adding one or more
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Figure 2.2: Bernstein polynomials of degree n = 4 (left) and Bézier-curve de-

fined by five control points bk, k = 0(1)4 (right)

control points. In fact, mathematically an upper limit to this number does not

exist. However, due to the dependence of the control point number n + 1 on the

polynomial degree n, it will be observed that Bézier-curves with many control

points tend to oscillate. In practice, it is therefore not recommended to use Bézier-

curves with more than 10 control points, Farin (1990). Nevertheless, if complex

geometries have to be parameterized, multiple Bézier-curves may be joined to-

gether while additional requirements concerning continuity and curvature should

be considered at their linking positions in order to guarantee smoothness of the

entire curve, Keskin (2001).

It should be noticed that beside their benefits some critical drawbacks of

Bézier-curves exist. Typical advantages and disadvantages of Bézier-curves are

provided in the following:

Advantages

• Bernstein polynomials are easy to calculate and are defined for the entire

curve index t.

• Bézier-curves can be manipulated by modifying their control point posi-

tions.

• Bézier-curves lie in the convex hulls of their defining control points.

• The first and last control point coincide with the endpoints of the curve.
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• Derivatives of Bézier-curves are also Bézier-curves with a reduction in the

polynomial order.

Disadvantages

• Polynomial order is linked to the control point number which may cause

numerical instabilities for high order polynomials.

• Modification of one control point influences the whole Bézier-curve, i.e. no

local curve control is possible.

• If complex curves or distributions are represented by multiple Bézier-curves,

additional conditions at their joining positions have to be used.

Due to these drawbacks of Bézier-curves it is sometimes recommended to

use another representation like B-splines which is equipped with more flexibility

without loosing generality.

2.2.2 B-Splines

Curves consisting of just a single polynomial segment like Bézier-curves are in-

adequate if local control is required. A solution to this problem is the usage

of B-splines consisting of piecewise polynomial curves. The name B-spline was

coined by the Romanian mathematician Schoenberg (1946) and is the shortcut

for basis spline.

The idea behind B-splines is to use basis polynomials which are defined within

a specific curve segment only in order to enable local shape control. The basis

polynomials Nm
k can be evaluated by a recursive scheme:

N0
k (t) =

⎧⎨⎩1 if tk ≤ t < tk+1

0 else

N j
k(t) =

t − tk
tk+j − tk

N j−1
k − t − tk+j+1

tk+j+1 − tk+1

N j−1
k+1 , j = 1(1)m (2.4)

where the maximum polynomial degree is m, the spline parameter t ∈ [0, 1] runs

along the curve, the index k denotes the corresponding basis polynomial and with
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the definition 0/0 =: 0. The valid segment for each basis polynomial depends on

the number of control points n+1 and the polynomial order m+1 and is defined

by a knot vector

K = [a, . . . , a︸ ︷︷ ︸
m+1

, tm+1, . . . , tl−m−2, b, . . . , b︸ ︷︷ ︸
m+1

]T (2.5)

of length l = (m + 1) + (n + 1) with monotonically increasing elements. In order

to achieve endpoint interpolation of the B-spline curve, the knot vector has to be

chosen in such a way that a = 0 and b = 1. If the inner knots (tm+1, . . . , tl−m−2)

are equidistant, the resulting spline is uniform, otherwise it is called non-uniform.

Analogously to the Bézier-curve definition (2.3) the resulting B-spline b(t) is

given by

b(t) =

[
bn
x(t)

bn
y (t)

]
=

n∑
k=0

bkN
m
k (t) (2.6)

as a linear combination of control point positions bk and basis polynomials Nm
k ,

respectively. Important to distinguish, however, is that the number of control

points n + 1 and the polynomial degree m of the basis functions Nm
k are now

independent from each other. This leads to the fact that on the one hand low

order basis polynomials can be chosen being more stable in terms of numerical

behavior, and on the other hand the number of control points can be increased

independently in order to adapt to the complexity of the curve to be represented.

A sample for a distribution of cubic basis polynomials as well as a B-spline

defined by five control points is shown in Figure 2.3. As can be seen, not all basis

polynomials are non-zero within the whole definition range [0, 1] of curve index

t, each of them is defined within its particular segment given by the knot vector

K. In this particular case a uniform knot vector K = [0, 0, 0, 0, 0.5, 1, 1, 1, 1]T is

chosen which drives the first basis polynomial N3
0 from t = 0 to t = 0.5 and the

last basis polynomial N3
4 from t = 0.5 to t = 1. In terms of local control this

means that the first and last control point b0, b4 are influencing the B-Spline

curve only at the first and last 50% of the curve length, respectively. Furthermore,

if the distribution of the Bernstein polynomials in Figure 2.2 is compared with

the basis polynomials for B-splines in Figure 2.3, it can be observed that the
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Figure 2.3: Basis polynomials of degree m = 3 (left) and cubic B-spline defined

by five control points bk, k = 0(1)4 (right)

function values at equal t-positions are different. The higher values of the basis

polynomials are responsible for the B-Spline curve being closer to its control

points.

Summarizing, some important benefits and drawbacks of B-Splines are the

following, Piegl and Tiller (1997):

Advantages

• B-splines are numerically stable, because polynomial degree m of the basis

functions is independent of the number n + 1 of control points.

• B-splines provide local shape control due to the knot vector K describing

the influencing range of each control point.

• First and last control point coincide with endpoints.

• B-spline lies in the convex hull of defining control points.

• Derivative of a B-spline is also a B-spline with a reduction in the polynomial

order.

• If n = m and a = 0, b = 1, the B-spline becomes a Bézier-curve.
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Disadvantage

• Time consuming determination of the piecewise defined basis functions

based on recursive scheme.

In terms of curve parameterization, cubic B-splines with a uniform knot vector

K should be the first choice, Farin (2000). They are a good compromise between

curve smoothness (C2 continuity, i.e. continuous in first and second derivatives)

and computational cost for determination of the cubic basis polynomials, Harries

(1998). In general, the design freedom can be varied by adding or subtracting

further control points which makes them more flexible and suitable for various

applications.

2.3 Numerical Optimization

In the last century, optimization has become more and more popular. Optimiza-

tion is used within various disciplines and for miscellaneous purposes. Airlines

are using mathematical optimization extensively in order to optimize the sched-

ule of the pilots, the flight attendants, and the flight plan itself. In the field of

transportation optimization solves logistical problems where the goal is to mini-

mize the time or the costs for transporting freight or passengers from one point to

another. Companies are optimizing their products in terms of quality, reliability,

costs, and efficiency.

The enormous development in the field of computer technology and the im-

provements of numerical algorithms in the last decades are responsible for the

growing acceptance of numerical optimization. In order to use optimization prop-

erly, first the optimization problem has to be analyzed and the design goals have

to be identified. They can be profit, time, efficiency, loss, or any other quantity

or combination of quantities that can be evaluated by a number. Unknown goals

are often used as objectives which have to be minimized or maximized whereas

known goals or restrictions are typically treated as equality or inequality con-

straints during the optimization process.

The objectives, and sometimes the constraints as well, are functions which

depend on certain parameters, called design variables or parameters that are to be

modified. The purpose of optimization is to find optimal values for these design
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parameters which minimize or maximize the objective function values. Often

design variables or any other parameters have to be restricted or constrained in

some way in order to guarantee feasible solutions, e.g. quantities such as mass or

length have to be positive.

The process of identifying objectives, design variables and constraints for a

given problem is probably the most important step in setting up the optimization

problem. If constraints are ignored or bounds on design parameters are made

poorly, optimization will not provide useful insight into the problem. On the

other side, if parameters are too restricted, optimization will find only sub-optimal

solutions or in the worst case it may become too difficult to solve the optimization

problem at all.

Another important point is a proper choice of the optimization algorithm. It

depends significantly on the properties of the optimization problem to be solved.

Hence, a classification of the optimization problem is extremely useful from the

computational point of view since there are many special methods available for

solving these particular classes of problems efficiently, Rao (1996). Depending

on whether or not constraints exist in the problem, any optimization task can

be classified as constrained or unconstrained problem. A further classification

can be done based on the mathematical expressions for the objective function

and the constraints. According to this, the optimization problem could be dis-

tinguished between linear, nonlinear, and quadratic programming problems. An

essential question is, however, the number of objective functions involved in the

optimization problem. This leads to the point where single- and multi-objective

optimization problems have to be distinguished.

2.3.1 Single-Objective Optimization

If the optimization task consists of one objective only, the design problem is called

mono- or single-objective problem. Mathematically speaking, single-objective

optimization is the minimization or maximization of an objective function f de-

pending on its design variables summarized in the design vector p subject to K

equality constraints h, J inequality constraints g and bounds on the design para-

meters or the objective function itself. The optimization problem can be written
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as

opt
p∈Rn

f(p)

subject to

gj(p) ≤ 0, j = 1, 2, . . . , J,

hk(p) = 0, k = 1, 2, . . . , K,

pl ≤ p ≤ pu

(2.7)

where a maximization of the objective function is equal to the minimization of

its negative function value, i.e.

min f(p) = − max (−f(p)) . (2.8)

An optimum to the problem is found if the following optimality conditions

are fulfilled:

1. The necessary condition for unconstrained problems is defined as

∇f(p∗) = 0 (2.9)

where p∗ is a local minimizer of the function f(p) and ∇f is the gradient

of f containing the partial derivatives with respect to the components of

the design vector p.

2. The sufficient condition for unconstrained problems requires that addition-

ally the Hessian matrix H = ∇2f as the matrix of second partial derivatives

of the function f(p) evaluated at p∗ is positive definite when p∗ is a mini-

mum point.

For constrained optimization, the Lagrange function

L(p, λ, μ) = f(p) −
K∑

k=1

λkhk(p) −
J∑

j=1

μjgj(p) (2.10)

is introduced coupling the objective function f with the equality and inequality

constraints to a new function L with the Lagrange multipliers λ and μ. The nec-
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essary conditions for constrained optimization have been formulated by Karush

and Kuhn-Tucker, Fletcher (2000), and are defined as

∂f

∂p
−

K∑
k=1

λk
∂hk

∂p
−

J∑
j=1

μj
∂gj

∂p
= 0, (2.11)

g(p) ≤ 0, (2.12)

h(p) = 0, (2.13)

μ ≤ 0, (2.14)

μjgj(p) = 0 (2.15)

or with the Lagrange function, Bestle (1994), as

∂L

∂p
= 0,

∂L

∂λ
= 0,

∂L

∂μ
≥ 0, μ ≤ 0, μjgj(p) = 0. (2.16)

2.3.2 Multi-Objective Optimization

Most real-world design or decision problems are multi-objective or vector prob-

lems which involve simultaneous optimization of multiple objectives. Generally

speaking, the goal of a multi-objective optimization problem is to optimize the

design parameter vector p characterized by the minimization or maximization

of M objective functions f and associated equality and inequality constraints.

Mathematically the multi-objective optimization problem can be stated in its

general form as

opt
p∈Rn

f(p)

subject to

gj(p) ≤ 0, j = 1, 2, . . . , J,

hk(p) = 0, k = 1, 2, . . . , K,

pl ≤ p ≤ pu

(2.17)

Despite the fact that the mathematical formulation of the optimization prob-

lem looks quite similar to single-objective optimization, multi-objective optimiza-

tion is very different. Beside the design space in which each combination of design
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parameters is available a second space with the attainable objective function val-

ues exist. Figure 2.4 shows the mapping process of a design represented by the

design vector p as part of the feasible design space P to the attainable objective

space F of a bi-criterion design problem.

p
2

design space

p

f
2

f
1

objective space

p
1

f p( )

� �

Figure 2.4: Illustration of design space and objective space for a bi-criterion

design problem

As described in the previous Section 2.3.1, the aim of a single-objective optimiza-

tion is the attempt to obtain the best solution to the problem, which is usually

the global minimum or the maximum. In case of multiple objectives the contra-

diction between individual objectives leads to the problem that there may not

exist solely one solution which is best with respect to all objectives of the design

problem. In a typical multi-objective optimization problem there exists a set of

solutions which are superior to the rest of solutions in the search space when all

objectives are considered but are inferior to other solutions in the space in at least

one objective. Mathematically speaking, in multi-objective optimization a design

p1 is better than p2 in the case of minimization, if the corresponding objective

functions f1 := f(p1) and f2 := f(p2) are related as

f1 < f2, i.e. (f1
i ≤ f2

i ∀ i ∈ M) ∧ (f1 �= f2), (2.18)

Bestle (1994). These solutions are known as non-dominated solutions or Pareto-

optimal solutions, where the rest of the solutions are called dominated solutions.

Figure 2.5 shows an example of an objective space for a bi-criterion minimiza-

tion problem with conflicting objectives f1 and f2. A sorting among the solutions
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A to E can be done using the principle of dominance. In this particular case,

solution D is dominated by solution A and B, while E is dominated by solution

C and B since they are better in both or at least in one objective without being

worse in the other. However, since none of the solutions in the non-dominated

set A-C is absolutely better than any other, i.e. better in both objectives, each

of them is an acceptable solution to the multi-objective minimization problem.
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Figure 2.5: Principle of dominance for a bi-criterion minimization problem

In this particular case where both objectives are being minimized, the Pareto-

optimal solutions are located at the lower left border of the attainable objective

space. For a different combination of minimization and maximization of objec-

tives the Pareto-optimal front varies. In Figure 2.6 four possible borders for

two-objective optimization problems are indicated.

The benefit of multi-objective optimization compared to the classical single-

objective problem is to provide different solutions to the design problem from

which the engineer or designer can choose. The choice of one solution over the

other requires problem knowledge or additional decision criteria which are not

explicitly formulated in the design task. Thus, one solution selected by a designer

may not be acceptable to another designer. Therefore, it may be useful to have

knowledge about as much trade-offs as possible within Pareto-optimal solutions,

i.e. a wide set of non-dominated solutions from which one or more solutions can

be chosen after the optimization process according to some decision-makers.
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Figure 2.6: Location of the Pareto-optimal solutions for a bi-criterion optimiza-

tion problem: a) minimizing f1 and maximizing f2, b) maximizing

both objectives, c) minimizing both objectives, d) maximizing f1

and minimizing f2

Hence, in multi-objective optimization two goals are pursued simultaneously, Deb

(2001):

1. finding a set of solutions as close as possible to the Pareto-optimal front,

2. finding a set of solutions as diverse as possible.

Figure 2.7 illustrates three different results for the same multi-objective opti-

mization problem. As can be seen for the first case, Figure 2.7a, the fairly good

solutions found by the optimizer are placed at the Pareto-front, however, a huge

gap between the solutions exists and the diversity is rather poor. The results

shown in Figure 2.7b are distributed more homogeneously, but the convergence

towards the Pareto-front is rather poor, and therefore these solutions would not

be acceptable. The ideal case is shown in Figure 2.7c, where all solutions are

located along the Pareto-front and are uniformly distributed.
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Figure 2.7: Diversity (a) and convergence (b) problems as well as ideal solu-

tion (c) for a bi-criterion minimization problem

2.3.3 Classical Scalarization Methods

One way to solve a multi-objective optimization problem is to transform the vec-

tor of objectives into a single substitute problem. This method is called scalariza-

tion and the purpose of this approach is to create an alternative objective function

leading to a new scalar problem which can be solved with a classical optimization

algorithm. In the following, different scalarization methods will be introduced

and their benefits and drawbacks will be discussed. Since each maximization

problem can be transferred to a minimization problem according to (2.8), the

case of minimization is considered in the following without loosing generality.

2.3.3.1 Method of Weighted-Objectives

Probably the most common and simplest of all classical scalarization techniques is

the method of weighted-objectives which is also known as weighted sum method.

This approach is characterized by one composite or utility function F declared

by aggregating multiple objective functions fm with individual weighting factors

wm. The multi-objective optimization problem (2.17) can be re-defined for the

case of minimization as

min
p∈Rn

F (p) (2.19)

with F (p) =
M∑

m=1

wmfm(p), wm > 0.

The individual objectives are typically normalized, and since the minimum of
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the above problem does not change if all weights are multiplied by a constant

value, it is usual practice to choose weights such that their sum is equal to one,∑M
m=1 wm = 1, Deb (2001).

The application of the weighted-objectives method on a bi-criterion minimiza-

tion problem is demonstrated in Figure 2.8. Since the composite function F is

a linear combination of the objectives f1 and f2, its contour lines are straight in

the objective space and the slope of the solution levels are defined by the ratio

−w1/w2 of the weighting factors, Figure 2.8a. The task of the minimization pro-

cedure is to find the minimum function value of F obtained by the contour line

which is tangential to the feasible solution space at the bottom-left corner. Hence,

Point A is a Pareto-optimal solution of the minimization problem corresponding

to the chosen weighting factors.

It is clear that the preference of an objective can be changed by modifying

the corresponding weighting factor which leads to another solution point. This

effect can be used in order to find the Pareto-front by obtaining different points

on the curve with different combinations of weighting factors, Figure 2.8b. A

sequential variation with small incrementing steps of some weighting factors can

be used to find as much trade-off solutions as possible. This technique works fine

for convex Pareto-fronts only, while for non-convex cases multiple solutions for

constant weighting factors could exist and not all points on the Pareto-front can

be determined, Figure 2.8c.
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Figure 2.8: Illustration of the method of weighted-objectives: a) contour lines

of composite function, b) results for different weighting factors for a

convex Pareto-front, c) multiple solutions for a non-convex Pareto-

front while solutions in between A and B cannot be determined
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2.3.3.2 Distance Method

The distance method is a further scalarization technique where the individual

distances between function values fm(p) and the ideal solution f0 are used as a

new criterion. The minimization problem with the single objective function F

derived from multiple objectives is defined as

min
p∈Rn

F (p) (2.20)

with F (p) =

(
M∑

m=1

∣∣fm(p) − f 0
m

∣∣r)1/r

, 1 ≤ r < ∞.

The distance depends on the metric r where typically the Taxicab metric r = 1,

the Euclidean metric r = 2, and the Chebyshev metric r → ∞ also known as

maximum metric are commonly applied, Bestle (1994).

In Figure 2.9 the principle of the distance method applied to a bi-criterion

minimization problem is shown. The Chebyshev metric produces squares for the

contour lines of F (p) in the objective space with different diameters depending on

the composite function value F , Figure 2.9a. The solution that will be obtained

typically lies at the corner point A of the square which is touching the Pareto-

front. For the Euclidean metric, function value levels are represented by circles

with different radii, Figure 2.9b. Again the solution is given by the touching point

A between the Pareto-front and the corresponding circle. It should be noticed

that the solution points may vary for different metrics dependent on the Pareto-

front distribution. As can be seen in Figure 2.9c, for a non-convex Pareto-front

the Euclidean metric can produce several touching points A, B which lead to

multiple solutions while solutions in between these points cannot be found.

Generally, the distance method is very similar to the method of objective

weighting, but two differences can be figured out:

1. In the distance method the ideal or a target solution for each objective func-

tion is required to be known whereas in the method of weighted-objectives

the relative importance of each objective is required à priori.

2. A convex Pareto-front can be found with the distance method by varying f0

whereas for the method of weighted-objectives a variation of the weighting

factors can be used.
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Figure 2.9: Principle of distance method for a bi-criterion minimization prob-

lem: a) Chebyshev metric at convex Pareto-front, b) Euclidean

metric at convex Pareto-front, c) Euclidean metric at non-convex

Pareto-front

2.3.3.3 Compromise Method

The idea of the compromise method, which is also named ε-constraint method,

is that only one of the original objectives is being optimized whereas the others

are taken into account as inequality constraints during the optimization process.

The multi-objective minimization problem for a freely chosen objective fr(p),

r ∈ [1, . . . , M ] and upper bounds f̂j for the M − 1 remaining criteria fj can be

re-written as

min
p∈Rn

fr(p)

subject to

fj(p) ≤ f̂j, j �= r.

(2.21)

The compromise method is very useful and can give a good insight to the

optimization problem. By relaxing the bounds for the constraints, a further min-

imization of the objective function is possible whereas more restricted constraints

are increasing the objective function value, respectively. An iterative process with

sequentially relaxing or restricting the bounds can be used to find additional solu-

tions on the Pareto-front. In order to resolve the whole Pareto-curve, very small

step-sizes for the bounds have to be chosen. It is interesting to know that on the

one hand this method works for convex as well as for some non-convex solution

spaces depending on their complexity, Deb (2001), and on the other hand that
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a substitution between the objective and any other constraint is also possible

relying on the user’s preferences, see Figure 2.10.
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Figure 2.10: Principle of the compromise method for a bi-criterion minimiza-

tion problem: a) minimization of f1 with variable bound f̂2, b)

minimization of f2 with variable bound f̂1

2.3.3.4 Min-Max Method

In principle this method is different than the above three methods. Within this

scalarization technique an artificial parameter γ is introduced which is the new

objective to be minimized and all original objectives are considered as inequality

constraints. The parameter γ is both an additional design parameter and the

upper bound for all objectives. A suitable mathematical formulation of the min-

max method is as follows

min
(p,γ)∈Rn

γ

subject to

fj(p) ≤ γ, j = 1, 2, . . . , M.

(2.22)

The idea behind this method is to let the optimization algorithm reduce the

value of γ during the optimization process, and due to the inequality constraints

the original objectives are reduced as well. The optimization stops if no further

reduction of γ is possible without violating the constraints, and hence the solution

is bounded by the constraint bounds and the Pareto-front, see Figure 2.11.
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Figure 2.11: Progress of min-max optimization for a bi-criterion minimization

problem: a) loose bounds as optimization starts, b) more re-

stricted bounds during optimization, c) final bounds and solution

at Pareto-front

2.3.3.5 Discussion about Scalarization Methods

In all of the above mentioned scalarization methods, multiple objectives are com-

bined to form one objective by using some knowledge on the problem being solved.

The optimization of the single-objective may guarantee a Pareto-optimal solution

for a convex Pareto-front, but results in a single solution point only.

In real-world technical problems, engineers often need different alternatives or

trade-offs for decision making. Moreover, if some of the objectives are noisy, have

discontinuous variable space, or the Pareto-optimal solution front is non-convex,

these methods may not work effectively. The most profound drawbacks of these

methods are that

1. they require knowledge of individual optima or the attainable objective

space at all prior to starting the optimization,

2. solutions obtained largely depend on the method settings, e.g. underlying

weight-vector for the method of weighted-objectives, the chosen metric for

distance method, and the step sizes for compromise method,

3. the same problem needs to be solved a number of times with variable pa-

rameter settings in order to find as much points on the Pareto-front as

possible.

Nevertheless, using scalarization methods is sometimes a good choice if a quick
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single solution to the problem is required or a classical single-objective optimiza-

tion method is available only. It is always the user’s responsibility to choose a

proper method and proper settings according to the problem definition.

2.3.4 Optimization Algorithms

Once objective, design parameters, and constraints are formulated an optimiza-

tion algorithm must be chosen for solving the problem. There is no universal

optimization algorithm, rather there are numerous algorithms available which

are tailored to particular types of optimization problems. The choice of an ap-

propriate algorithm is an important one; it determines whether the problem is

solved rapidly or slowly and, indeed, whether the solution is found at all.

Figure 2.12 shows a simple minimization problem with a smooth and contin-

uous function depending on a single variable. In spite of its simplicity, different

extrem values for the non-convex objective function f exist, and in terms of

numerical optimization, finding the best solution to this particular multi-modal

problem is not as trivial as it seems to be. Indeed, various optimization algorithms

will behave in a different manner and the right choice of the optimization method

is rather important for finding the optimum. Algorithms which are searching

based on descend directions would typically find the next local minimum to the

starting point which is not necessarily the global minimum, whereas global opti-

mization algorithms have a strategy based on a stochastic approach which makes

them able to find the global minimum to the problem.

In the last decades a tremendous number of publications has been pub-

lished presenting new optimization algorithms, variants of existing methods

as well as hybrid methods which combine two or more algorithms. In some

classical text books, Bestle (1994), Coello Coello et al. (2002), Fletcher (2000),

Gill et al. (1995), Rao (1996), Moré and Wright (1994), classifications and de-

scriptions of optimization algorithms are available which give an overview of

existing methods, and which can basically help choosing the right algorithm for

a specific type of optimization problem. In the following section one of these

classifications will be discussed in more detail.
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Figure 2.12: Illustration of global and local minima for a simple one-

dimensional function

2.3.4.1 Classification of Optimization Algorithms

One possible method of classifying optimization algorithms can be derived from

their working principles. An optimization procedure starts typically from an

initial design characterized by the design vector p(1). During optimization a

series of designs are created which decrease the objective function value (for the

case of minimization) step by step, i.e. f(p(k+1)) < f(p(k)). The general form of

this series is given by

p(k+1) = p(k) + α(k)d(k), (2.23)

with the step size α(k) ≥ 0 and the search direction d(k). In general, optimization

algorithms differ in how they determine the next design vector p(k+1). They can be

globally distinguished as deterministic or stochastic algorithms, see Figure 2.13.



36 2 THEORETICAL BACKGROUND

Gradient Based
Methods

Derivative-Free
Methods

Stochastic
Methods

Optimization Algorithms

Deterministic
Methods

Evolutionary
Algorithms

Simulated
Annealing

Figure 2.13: Classification of optimization algorithms

2.3.4.2 Deterministic Algorithms

Deterministic algorithms search according to clearly defined rules based on alge-

braic or analytical schemes. The optimization procedure can be described by the

following steps:

1. Start with a given design vector p(k) and evaluate its corresponding function

value f(p(k)).

2. Determine a search direction d(k).

3. Solve a one-dimensional line search problem in order to find the right step

size α(k).

4. Calculate the new design vector by p(k+1) = p(k) + α(k)d(k) and its function

value f(p(k+1)).

5. Repeat steps 2-4 with the new design point until convergence is achieved.

Most deterministic algorithms are working based on this concept. The dif-

ferences between the individual methods rely on the determination of the search

direction and on the line search procedure. In the past, much effort was un-

dertaken for a precise determination of the step size α(k), where the line search

procedure has been formulated as an independent minimization task within the

optimization step. This time-consuming process is not required in today’s al-

gorithms where typically the line search is performed on simple techniques as
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the Armijo-rule, the golden section method and sometimes on spline or parabola

approximation models, Bestle (1994). It has been shown that a better determi-

nation of the search direction is more important than the line search in terms of

higher convergence rates and better solution finding. Therefore, it is better to

distinguish the different algorithms based on their search direction determination.

In general, deterministic algorithms can be subdivided into gradient based

methods which compute the search direction on the basis of calculated or ap-

proximated gradients and sometimes even on curvature information, and the more

simple search methods or derivative-free methods which determine the search di-

rection by evaluating function values only.

Derivative-Free Methods

The most common derivative-free methods are the Pattern-Search-Methods,

Lewis et al. (2000), the Simplex-Method developed by Nelder and Mead (1965),

the Hooke-Jeeves-Method, Hooke and Jeeves (1961), and the Conjugate-

Directions-Method, Fletcher and Reeves (1964). Their advantage in comparison

with other methods is that they are not requiring any gradient or curvature infor-

mation. Their search algorithm is based on evaluation of the objective function

value only while in some cases even the actual numeric value of the objective func-

tion is unimportant, but it is sufficient to know whether a design is better than

another or not, Birk (2003). This makes them suitable for optimization problems

with expensive and noisy objective functions where an approximation of the gra-

dients is too costly or too inaccurate. These search methods were used in the past

and are still used for solving specific types of real-world optimization problems.

Today, however, these methods are not the best choice for solving engineering

applications which are characterized by a huge number of design variables and

constraints, and where the entire optimization time for solving the design task

plays an essential role.

Gradient Based Methods

Better approaches in terms of optimization time are the more sophisticated gradi-

ent based methods which are superior to derivative-free methods to some extent.

They are used to solve a whole bunch of engineering design problems due to their
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higher convergence rate which is mainly driven by the knowledge of local proper-

ties of the objective function reflected by the gradient and curvature information.

As mentioned before, the main idea of gradient based methods is to determine

the search direction d at each iteration by evaluating the derivatives ∇f of the

objective function with respect to the design variables p. It can be shown that

many gradient based methods can be specified in the following manner:

p(k+1) = p(k) − α(k)G(k)∇f (k) (2.24)

where α(k) is again a step size parameter, G(k) is a positive definite matrix, and

∇f (k) is the gradient for p(k). First order gradient based methods require only

first derivatives of the objective function in order to evaluate Equation (2.24)

where second order models additionally have to evaluate second derivatives.

The question that arises at this point is how to calculate the derivatives? If

the objective function is given by an analytical function, the derivatives can be

calculated exactly. This is the best and most accurate way, however, in many

engineering applications an explicit formulation for the objective function is not

available, and therefore derivatives have to be approximated numerically. The

simplest approach for obtaining derivatives is using finite differences which are

based on a Taylor series expansion truncated after a specific term, Chapra and

Canale (2001).

The first derivative of the objective function f about the point p0 can be

approximated by forward differences

∂f

∂pi

∣∣∣∣
p0

≈ f (p0 + Δp ei) − f (p0)

Δp
, i = 1(1)n, (2.25)

where ei is the unit vector in i direction, and Δp is a small parameter pertur-

bation. The approximation error due to truncation of the Taylor series after the

first term is linear, i.e. halving the parameter perturbation yields halved trun-

cation error. A better way for approximating the first derivatives is the central

difference method

∂f

∂pi

∣∣∣∣
p0

≈ f (p0 + Δp ei) − f (p0 − Δp ei)

2 Δp
, i = 1(1)n, (2.26)
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which is more accurate. In contrast to the forward difference approximation the

truncation error here would be quartered for halving the perturbation.

Applied to an optimization problem the number of function evaluations in-

creases significantly with the number of design parameters. For a full determina-

tion of the gradient ∇f by using forward differences, n + 1 function evaluations

are necessary for a n-dimensional design problem, and for the more accurate cen-

tral differences 2n+1 calculations are required at each optimization step. Besides

this, it is essential that the objective function exists for all perturbed designs, i.e.

that e.g. iterative computations converge and yield results, the objective is not

too noisy, and the parameter perturbation is chosen appropriately.

A further important point to consider is that in gradient based methods the

objective function as well as constraints are assumed to be smooth which means

that they are twice continuously differentiable. The problem in most engineering

applications, however, is that this property is often à priori unknown, but nev-

ertheless it is common practice to assume smoothness and to check later if the

algorithm converges properly and produces reasonable results.

At this point some of the most common gradient based algorithms should be

discussed. A more detailed overview of existing algorithms and comparisons with

other methods can be found in classical text books like Gill et al. (1995) and

Fletcher (2000).

Probably one of the best known first order gradient based algorithms is the

method of Steepest Descent in which it is assumed that the best search direction

is where the objective function value decreases most rapidly. This is given by

the negative gradient at each step k, i.e. d(k) = −∇f (k). If the positive definite

matrix G(k) is set equal to the identity matrix I, Equation (2.24) with the step

size α(k) becomes

p(k+1) = p(k) − α(k)∇f (k). (2.27)

Despite their linear convergence property these type of methods usually exhibit a

quick convergence at the beginning which then leads to oscillatory or zig-zagging

behavior, and usually the algorithms terminate far from the solution owing to

round-off effects. Therefore in practice they are inefficient and unreliable, Fletcher

(2000).
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More powerful are the Newton or Newton-Raphson type second order gradient

based methods which are based on the gradient as well as on curvature informa-

tion. Within these methods, the positive definite matrix G(k) is set equal to the

inverse Hessian matrix H(k)−1
, with H(k) = ∇2f (k), and the next design point is

determined by

p(k+1) = p(k) − α(k)H(k)−1∇f (k). (2.28)

The benefit of these second order algorithms is that they show quadratic con-

vergence, and hence they are the fastest known methods. In contrast to the

Steepest Descent Methods, the computational costs for the Hessian matrix is a

major drawback of these algorithms and, especially if the second order derivatives

are also approximated by finite differences, the computational time for evaluating

the objective function f increases extremely, Birk (2003).

A good compromise between the first and second order gradient based meth-

ods are the Quasi-Newton Methods which are characterized by a good conver-

gence rate and relatively low computational costs for the search direction. The

idea behind these types of methods is to avoid the expensive determination of

the exact Hessian matrix at every step either by calculating the Hessian only

every few steps or by approximating the Hessian or its inverse by a symmetric

positive definite matrix B. In the latter approach, the matrix B is initially set

equal to the identity matrix I and while the optimization proceeds it is corrected

or updated from iteration to iteration using an appropriate update scheme. The

key point is that most update schemes are using the information of first deriva-

tives only which has positive influence on the overall computational time. The

Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS)

update schemes should be mentioned at this point as common methods within

numerous algorithms, Fletcher (2000).

The gradient based algorithms described up to this point are basically de-

veloped for unconstrained optimization problems. However, some methods exist

to use them also if constraints are introduced. One possibility is by replacing

the constrained optimization problem with an unconstrained one by adding a

penalty function to the objective function that depends on the value of the vio-

lated constraints. This method is called Penalty-Method and depending on the
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formulation of the penalty function, it can be distinguished between interior and

exterior Penalty-Methods. In general, these methods provide an easy way to con-

sider constraints in an optimization problem which makes them suffice for special

purposes. Nevertheless, some major drawbacks exist why they are not suitable

for general applications, Bestle (1994).

The current state of the art for solving constrained optimization problems

with gradient based methods are the Lagrange-Newton type methods which are

also known as Sequential Quadratic Programming (SQP) algorithms due to their

mathematical background. The basic idea of these algorithms is to find an op-

timal search direction d(k) by solving a quadratic subproblem considering linear

constraints in each iteration. Compared to a simple search method, the determi-

nation of the search direction based on solving quadratic subproblems requires

significantly more computational effort. However, these methods show a very

quick convergence and are highly efficient in solving engineering optimization

problems, Birk (2003).

2.3.4.3 Stochastic Algorithms

The idea of stochastic algorithms is generally different compared to deterministic

methods. They use a stochastic approach in order to find a better design in-

stead of any gradient information. This property makes them capable to find a

global optimum to the design problem and not to be trapped in a local optimal

solution. Since the determination of the next design parameters is usually not

pure random, these types of algorithms are also called semi-stochastic or heuris-

tic algorithms. Their benefit compared to gradient based methods is basically

that they are able to cope with a wide range of features in optimization problems

like discrete and continuous design variables, noisy or discontinuous objective

functions, and multi-modal problems. However, Stochastic Algorithms are also

considered to be computationally expensive in terms of the required number of

evaluated solutions for convergence, Büche (2004). In the following, Simulated

Annealing and Evolutionary Algorithms as two well known representations of

stochastic algorithms will be discussed.
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Simulated Annealing

Simulated Annealing methods are stochastic algorithms which mimic the recrys-

tallization of a liquid metal during annealing. Heated up to high temperatures,

the atomic structure becomes disordered which makes the atoms capable of mov-

ing around in the melt. The melt is kept near its thermodynamic equilibrium

when it is slowly cooled down. This drives the individual atoms to reach the

minimum energy state and the nearly perfect crystalline structure is formed, i.e.

the global minimum is found. The initial situation as well as the cooling process

itself are important factors within the annealing procedure. If the initial tem-

perature is too low or the cooling process too fast, the structure becomes frozen

before it reaches the desired minimum energy state and a local minimum to the

problem is found, Birk (2003).

Transferred to an arbitrary engineering optimization problem, Simulated An-

nealing methods try to find the global optimum to the design problem by a

sequence of numerical steps. The algorithm starts with an initial temperature

T (k=0) and an initial design point which in the beginning is also the best known

solution p∗ ≡ p(k=0). A new design is created randomly in the neighborhood of

the best point while the random disturbance is larger for higher temperatures.

The function value of the new design is compared with the best solution and if it

is better, i.e. Δ = f(p(k+1))−f(p∗) < 0, then this is taken as new best design and

the next iteration can start with a lower temperature T (k+1) < T (k) resulting in a

smaller random disturbance. Otherwise the new design is accepted as best design

only with a lower probability depending on the temperature. The algorithm pro-

ceeds until the minimum temperature level is found, Kirkpatrick et al. (1983). In

contrast to deterministic optimization algorithms, new designs with higher func-

tion values are accepted with some probability which is the reason why Simulated

Annealing is able to leave already established local minima to reach the global

minimum.

Evolutionary Algorithms

Another group of stochastic methods are called Evolutionary Algorithms. In gen-

eral these algorithms are inspired by the principles of natural evolution to find

an optimal solution to a problem. Natural evolution is driven by the principles



2.3 NUMERICAL OPTIMIZATION 43

of selection, recombination and mutation of genetic information. Individuals in a

population which are well adapted to their environment have a higher probability

to survive in the nature, known as ’survival of the fittest’. These individuals are

declared with a higher fitness value and are chosen in order to become parents

(selection) which produce offsprings for the following generation. The genetic

information of the offspring is either a direct copy of the genes of just one sin-

gle parent, which differs from the natural evolution, or results from the mating

process of multiple parents (recombination or crossover). In the latter case the

gene of the offspring is arranged form gene sequences of both parents. Addition-

ally, a randomly generated mutation can modify the genetic information of the

offsprings (mutation) and the best solutions are selected in the selection process.

Figure 2.14 shows the principle work flow of an evolutionary algorithm consisting

of crossover, mutation, and selection.

Mutation

Selection

Converged?

Crossover

New
Population

Start
Optimization

Finish
Optimization

yes

no

Figure 2.14: Principle work flow of an evolutionary algorithm

Applied to engineering design problems, the genetic information corresponds

to the design variables which specify the properties of a solution to the engineering

optimization problem, and the fitness of a solution is either determined directly

by the objective function or by a combination between the objective function

value and the constraints.

It should be mentioned that Evolutionary Algorithms (EA) are building an up-

per class of algorithms containing the subgroups of Genetic Programming (GP),

Genetic Algorithms (GA), and Evolutionary Strategies (ES), Bäck et al. (1997).

Genetic Algorithms were firstly proposed and applied by Holland (1975) while

Rechenberg (1973) developed Evolutionary Strategies independently and applied
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them to some engineering design problems. Although based on a similar idea,

both approaches were different in some aspects at the beginning of their devel-

opment. In Genetic Algorithms an individual is represented by a string of bits

and the evolutionary process is based on selection, recombination, and mutation

techniques. In contrast to this, in Evolutionary Strategies each individual of the

population is represented by a vector of real design variables and the evolution-

ary process is characterized by selection and mutation techniques only. However,

nowadays modern algorithms are mixed up with both ideas and hence it is often

not simple to classify them anymore.

2.3.4.4 Algorithms Used in this Thesis

Since all of the described strategies have their strengths and weaknesses, different

types of algorithms have been chosen to solve the optimization problems within

this thesis. Especially for complex design problems like aerodynamic compressor

design it is not à priori known which method will work best. Thus, one goal of

the thesis is to gather experience in the behavior of different strategies on the

various subtasks. The selected optimization algorithms are as follows:

Lagrange-Newton Method NLPQL

The Nonlinear Programming with Quadratic Line Search algorithm (NLPQL)

was developed by Schittkowski (1986). It is a Lagrange-Newton type algorithm

for solving smooth, nonlinear, constrained optimization problems, i.e. minimiz-

ing a nonlinear objective function subject to nonlinear equality and inequality

constraints. It is assumed that all model functions are continuously differen-

tiable. The internal algorithm is a SQP method with a quadratic approximation

of the Lagrange function and a linearization of the constraints. Each iteration

step starts with a determination of the search direction by solving a quadratic

programming subproblem with an approximation of the Hessian matrix using

the BFGS update scheme and a subsequent line search which is performed for

determination of the step length α, Schittkowski (1981).
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Single-Objective Stochastic Method MIGA

When genetic algorithms are applied to an engineering design application, they

require many generations and a large number of individuals in the population in

order to obtain good solutions. The idea of the Multi-Island Genetic Algorithm

(MIGA), Miki et al. (2000a), which is a single-objective optimization algorithm,

is to accelerate the solution finding process by dividing the large population into

smaller sub-populations like on islands and to execute traditional genetic opera-

tions on each sub-population separately. The algorithm then periodically selects

individuals from each sub-population and moves them to other sub-populations in

an exchange called migration. Two parameters are basically driving the migration

process: the migration interval which is the number of generations between each

migration process, and the migration rate which is the percentage of individuals

selected for migration from each sub-population at the time migration occurs.

The emigrants are selected randomly in their sub-populations and the migration

topology is typically selected as a ring with random destinations where each sub-

population has one destination and the destinations are determined randomly at

every migration period, Kaneko et al. (2000).

In general it can be shown that genetic algorithms with a distributed popu-

lation show better performance in terms of convergence and fitness values than a

single population GA. Furthermore, this approach is suitable to be implemented

on parallel computers, because the communication between the processors occurs

only in the migration phase. Therefore, if each sub-population is assigned to

one processor of a parallel computer, a nearly linear reduction in speed can be

expected, Miki et al. (2000b).

Multi-Objective Stochastic Method NSGA-II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a multi-objective

genetic algorithm developed by Deb et al. (2000) and is a revised version of

NSGA, Srinivas and Deb (1995). In most aspects, the algorithm does not have

much similarity with the original NSGA, but the authors kept the name NSGA-II

to highlight its genesis and place of origin.

Figure 2.15 shows the basic idea of the algorithm. In NSGA-II the offspring

population Qt which is created by the parents and the parent population Pt
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itself are combined together to form an overall population Rt. A non-dominated

sorting algorithm based on the vector criterion of each individual is performed

on Rt. The new population Pt+1 is filled by solutions of different non-dominated

fronts Fi starting with the best non-dominated front F1 and continuing with

the next ones until the generation size is maintained. It may happen that the

number of individuals in the last considered solution front is bigger than the

available slot size. Instead of arbitrarily discarding some members from the last

front, a crowding algorithm is performed which estimates the distance of these

solutions to each other. The solutions of the last front with the highest diversity,

i.e. widely spread in the objective space, are included in the new population

Pt+1 whereby the rest of them are rejected. The next offsprings Qt+1 are created

based on the new population Pt+1 by tournament selection, recombination and

mutation operators, Deb (2001).
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Figure 2.15: Illustration of the NSGA-II procedure, Deb (2001)

The NSGA-II is currently one of the most popular multi-objective genetic al-

gorithms. It basically consists of two major aspects: an elite-preserving operation

and a crowding algorithm. The non-dominated sorting algorithm carries over the

best solutions denoted as the elite of a generation to the next generation. Hence,

the fitness and the corresponding values of the objective functions of the best

solutions do not deteriorate and furthermore the best solutions found early in the

optimization process will never be lost unless a better solution is discovered. The

crowding algorithm is important to drive the required diversity of non-dominated

solutions and to distribute the solutions on the Pareto-front. Both aspects to-

gether makes the NSGA-II robust, reliable and applicable to many engineering

design problems.



3 Optimization Based

Preliminary Design

The aerodynamic compressor design process starts with the preliminary design

phase, where new design ideas or philosophies are investigated in terms of fea-

sibility and improvement. The calculation results, which are generally based on

analytical equations, give a rough overview on performance and stability criteria

that can be achieved for a specific compressor design. The calculation time is

rather short, however, a complete investigation of different design studies is man-

ually too expensive due to the huge number of design parameters and constraints.

On the basis of a given Rolls-Royce preliminary design tool, process integra-

tion and automation is applied in order to accelerate the meanline prediction

process and to support the design engineer in time-consuming parameter studies.

Numerical optimization is performed with the MIGA, NLPQL, and NSGA-II al-

gorithms to improve a given design of a 9-stage high pressure research compressor,

Klinger (2004), with respect to conflicting design goals as efficiency, surge margin

and overall pressure ratio. Based on design conditions, design changes are made

with respect to the annulus geometry and the stage pressure ratio distribution.

3.1 Introduction

Meanline prediction is the first step of the complex aerodynamic compressor de-

sign process. The goal is to provide a robust and reliable instrument for a first

guess and proper choice of design parameters for design and off-design condi-

tions. The performance that can be achieved by a well-designed multi-stage axial

47
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compressor is mainly determined by the choices made for a number of global

parameters. No amount of subsequent development effort can correct a poor de-

sign where the basic selection of global parameters is inconsistent with the design

objectives. On account of this, meanline prediction as a preliminary design pro-

cedure setting the values of these global parameters is one of the very essential

steps of the entire aerodynamic compressor design process, Keskin and Bestle

(2005).

Within the preliminary design phase, calculations are performed along the

mid-height line of the compressor and the main aerodynamic and geometric pa-

rameters are determined, Figure 3.1. The process typically starts based on an

old initial axial compressor design and new performance requirements. Operating

conditions and geometric constraints in term of minimum or maximum radii of

the annulus or even sometime the maximum compressor length are à priori given

or restricted and have to be adjusted or adapted to the new design problem. Ba-

sically, the goal is to find appropriate design parameter distributions along the

one-dimensional mid-height streamline of the compressor which fulfill the design

requirements and constraints as good as possible.

The entire suite of available parameters describing the whole compressor

model can be split into design variables which are assumed to be adjustable

within the design process in order to fulfill design requirements, and system con-

stants which are invariant during the design calculation. The selection of the

design variables and the system constants depends on the design goals, the sensi-

tivities of the objective functions on parameter variations, and obviously on the

knowledge and expertise of the design engineer.

If a manual search for a good design is performed, only few parameters are

taken into account and small variations on the design variables are applied. Ob-

viously, it is too complicated for a human design engineer to understand the

dependence of the outputs on the inputs and if a large number of design pa-

rameters are changed simultaneously and many criteria and constraints have to

be considered. This manual search technique is rather time-consuming and the

success depends significantly on the experience of the engineer.

Therefore, it should be the overall aim to implement the preliminary design

process into a common design environment and to accelerate the design process

by automation of the engineering work flow. Due to the rather complex design
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process with a huge number of design parameters and a high number of design

criteria for design and off-design conditions, it is more realistic at present to im-

prove the design process by partial automation of a specific work flow. When the

design process runs automated and the design parameters, objectives, and con-

straints are defined properly, numerical optimization can be applied to support

the design engineer in solution finding and decision making. Especially if conflict-

ing criteria exist, multi-objective optimization methods can find Pareto-optimal

trade-offs from which the design engineer can choose one or more solutions for

the particular design problem afterwards.

3.2 Design Problem

As already mentioned, many different design goals and a huge number of con-

straints have to be pursued in parallel in order to achieve a good preliminary

aerodynamic compressor design. It depends on the problem formulation if pa-

rameters as the compressor length, the number of stages, the overall pressure

ratio, and many more have to be considered as constraints or as objectives to

be optimized in this design task. The most important aerodynamic parameters,

however, are the efficiency and the stability of the compressor reflected by the

surge margin value which always have to be maximized at reasonable pressure

ratio levels.

Efficiency, surge margin, and overall compressor pressure ratio are conflict-

ing criteria in the design process and an optimization based on one objective

only would typically reduce the others, Keskin and Bestle (2005). In terms of

aerodynamic compressor design it is better to consider all three criteria in a multi-

objective manner or at least to introduce lower bounds to one or two of them in

order to achieve acceptable objective levels.

Based on a Rolls-Royce preliminary design tool a 9-stage high pressure com-

pressor is being optimized. The three major design criteria in the following in-

vestigations are

• overall polytropic efficiency ηc,poly (A.5),

• overall compressor pressure ratio Πc (A.8), and
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• surge margin SM (A.10).

It should be mentioned that all three objectives are direct results of the Rolls-

Royce meanline prediction calculation program and that especially the surge mar-

gin calculation is based on correlations.

Beside these criteria, which are maximized, some constraints have to be con-

sidered with respect to blade loading, flow conditions and stability measures in

order to achieve reasonable solutions. More precisely, the

• stage loadings (A.9) have to be kept below a user-defined value Ψ̂ for all

Ns = 9 stages, i.e.

Ψi ≤ Ψ̂, i = 1(1)Ns, (3.1)

• relative rotor and absolute stator inlet Mach numbers should not be too

high in order to avoid shock losses, i.e.

M ′R
I,i ≤ M̂ ′R

I , i = 1(1)Ns, (3.2)

MS
I,i ≤ M̂S

I , i = 1(1)Ns, (3.3)

• compressor exit Mach number has to be limited to avoid flame-out in the

combustion chamber, i.e.

MS
E,Ns

≤ M̂E, (3.4)

• the Koch parameter (A.6) should not exceed a user defined stability margin,

i.e.

Ch,i ≤ Ĉh, i = 1(1)Ns, (3.5)

• rotor and stator diffusion numbers (A.3) have to be bounded by a constant

value guaranteeing flow stability, i.e.

DFR
i ≤ D̂F , i = 1(1)Ns, (3.6)
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DF S
i ≤ D̂F , i = 1(1)Ns, (3.7)

• and rotor and stator de Haller numbers (A.1) have to be higher than a

specific constant value required for flow stability, i.e.

DHR
i ≥ D̂H, i = 1(1)Ns, (3.8)

DHS
i ≥ D̂H, i = 1(1)Ns. (3.9)

For a 9-stage compressor this would sum up to 73 inequality constraints which

have to be taken into account by the optimization routine. Depending on the

optimization algorithm applied to this problem alternative definitions of the con-

straints may be used. If the optimizer uses an active set strategy, which is the

case with most SQP algorithms, the constraints can be used as defined, because

the algorithm will concentrate on active and violated constraints automatically.

Else, it is better to group the constraints by minimization and maximization over

all stages which means that only the maximum or minimum value of a parameter

is considered, respectively. This reduces the number of constraints dramatically

and may help the optimizer to find the solution to the problem quicker. The

possible non-smoothness of such an approach does not hurt especially if genetic

algorithms are used for optimization.

The entire multi-objective optimization problem can then be defined by sum-

marizing the objectives and constraints as

max
p∈Rn

⎡⎢⎢⎢⎣
ηc,poly

SM

Πc

⎤⎥⎥⎥⎦ (3.10)

subject to
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max
i

Ψi ≤ Ψ̂ max
i

DFR
i ≤ D̂F

max
i

M ′R
I,i ≤ M̂ ′R

I max
i

DF S
i ≤ D̂F

max
i

MS
I,i ≤ M̂S

I min
i

DHR
i ≥ D̂H

max
i

Ch,i ≤ Ĉh min
i

DHS
i ≥ D̂H

MS
E,Ns

≤ M̂E

where the vector p contains the free design parameters within the optimization

problem which can be modified by the optimization algorithm.

3.3 Parameterization

As already mentioned two categories of input parameters exist, the design para-

meters which are changeable by the optimization algorithm in order to achieve the

design goals, and system constants which are invariant parameters or settings re-

quired for the calculation. Typical design variables within the preliminary design

process are the

• coordinates (x, r) of the annulus geometry,

• axial distribution of the stage pressure ratio Πi of each stage,

• number of blades Nb,i for each rotor and stator,

• corresponding blade aspect ratios Hi/Ci for each blade row,

• blade solidities σi for each blade row,

• maximum thickness to chord ratios Ti/Ci for each blade row and

• tip or hub clearances δi for each blade row, respectively.

Some of these variables are redundant, e.g. the solidity of a given blade can

be determined by its corresponding mid-height radius and the number of blades

and vice versa. The blade aspect ratios are typical design variables, however,

they could also be calculated by the blade inlet and exit positions, the mean

annulus height, and the clearance values. The design engineer can choose which
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parameters should be used as variable based on his experience or the availability

of the data.

The system constants are parameters describing the compressor inlet flow

conditions, i.e.

• inlet mass flow ṁc,I ,

• inlet total pressure P0,c,I ,

• inlet total temperature T0,c,I ,

• inlet whirl angle αc,I ,

and additional parameters regarding the operating conditions of the compressor:

• shaft speed,

• number of bleeds,

• position of bleeds,

• bleed mass flow.

These values are à priori given and are characterizing the design point conditions

of the compressor.

The Rolls-Royce preliminary design program provides different models for the

surge and the loss assumptions which can be chosen through the model parameter

settings within the input file. Depending on the selection, appropriate equations

and correlations are used and applied to the aerodynamic compressor design

problem within the meanline prediction calculation process.

Figure 3.1 shows compressor design parameters for the meanline prediction

calculation. In the upper part of the figure important parameters for the annulus

geometry definition as well as geometric parameters such as blade height H and

blade clearances δ are demonstrated for a single stage of a multi-stage compressor

design. In the lower part velocity triangles for the same single stage are shown

for each blade inlet and outlet position which describe the velocity relation in the

relative and absolut frame, where α and α′ are the velocity angles in the absolute

and relative frame, respectively, c and w are the corresponding absolute and rela-

tive velocities, and u is the circumferential velocity. Furthermore, some important
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Figure 3.1: Input parameters for meanline prediction design

geometric parameters such as chord length C, maximum blade thickness T and

blade pitch S are shown which are considered for different calculations.

One of the most time-consuming design tasks within the preliminary design

procedure is the annulus geometry design. The annulus shape is described by

coordinates for the inner hub
(
xH , rH

)
and outer casing

(
xC , rC

)
geometry line,

respectively. The number of coordinates depends on the number of blade rows
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while each row consists of four coordinates describing the blade corner points.

The annulus geometry for a compressor with Ns stages would thus be described

by 8Ns corner points or in 2D-space by 16Ns design parameters.

Some restrictions on the preliminary calculation program reduce the number

of parameters describing the annulus geometry. For the used calculation pro-

gram contractions of the annulus inner and outer lines are possible within blade

inlet and exit positions only. Thus, the radial coordinates of the downstream

inlet blade row are equal to the exit radial coordinates of the previous row, i.e.

rH
E,i = rH

I,i+1 and rC
E,i = rC

I,i+1, see Figure 3.1. Additionally, tapering of the blades

is not considered within the calculation which means that the axial coordinates

of the outer annulus line are equal to the corresponding inner coordinates at each

axial position, xC
i = xH

i . Altogether these restrictions reduce the number of de-

sign parameters to 10Ns which is, however, still a rather large number and may

cause problems.

Firstly, in terms of numerical optimization many design parameters, multiple

design objectives, and high number of constraints lead to an unmanageable task

and rise the computational time dramatically. Secondly, free choice of the x and r

coordinates may cause technically infeasible or rapidly changing annulus geome-

tries. Hence, it is better to use smoothing parameterization methods in order to

decrease the number of design parameters without reducing the design freedom

too much, and additionally to guarantee technical feasibility of the resulting de-

sign. This will also reduce the chance to be trapped in a local minimum and thus

increases the possibility of finding a global optimum to the design problem.

Parameterization should be done carefully, since it is imposing implicit con-

straints on the design problem and thus could lead to sub-optimal solutions.

Therefore, a trade-off between the maximum design freedom and the minimum

number of parameters has to be found.

For the current investigation Bézier-curves (2.3) with n + 1 control points are

chosen to parameterize the annulus geometry and the total pressure ratio distrib-

ution which are curves in 2D-space. The mathematical simplicity and the proper-

ties regarding continuity and differentiability of Bézier-curves guarantee smooth

distributions which are desired in particular for the annulus geometry. As already

mentioned, the annulus geometry is determined by two curves, the inner hub line

rH(x) and the outer casing line rC(x). The two curves may be parameterized
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in different ways: the easiest way is to use independent spline representations

for the inner and outer line, respectively. The drawback of this method is that

constraints have to be introduced to avoid intersection of the two lines without

restricting their degree of freedom. As a second approach a parameterization of

either the inner or outer annulus line and a further spline describing the thickness

distribution Δr(x) = rC(x) − rH(x) of the annulus would be possible. For this

approach a constraint is also needed which ensures that the thickness does not

become negative, however, this is much easier to implement. The same constraint

is required for the third approach which is associated with classical blade profile

parametrization, where the annulus geometry is determined by a superposition

of a parametric annulus mid-height line rM(x) =
(
rC(x) + rH(x)

)
/2 and a para-

metric annulus thickness distribution Δr(x), see Figure 3.2. If we compare the

last two, the benefit of latter approach is that a aerodynamic engineer is usually

more familiar with such kind of description.

In the following investigation the mid-height and thickness lines are described

by

bM(t) =

[
x(t)

rM(t)

]
=

n∑
k=0

[
bM
x,k

bM
y,k

]
Bn

k (t) (3.11)

and

bΔ(t) =

[
x(t)

Δr(t)

]
=

n∑
k=0

[
bΔ
x,k

bΔ
y,k

]
Bn

k (t) (3.12)

with Bn
k (t) according to (2.1) and t ∈ [0, 1]. The x-coordinates of the control

points for bM(t) and bΔ(t) are chosen independently in order to have full design

freedom. This approach results in 4(n+1) design parameters describing the whole

annulus geometry. If restrictions are imposed on the inlet and outlet position

and height of the compressor annulus for compatibility with the low pressure

compressor and combustion chamber, this can be easily handled by fixing the

very left and right control point positions, i.e.[
xM

0

rM
0

]
=

⎡⎣ xI

rC(xI) + rH(xI)

2

⎤⎦ (3.13)
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[
xM

n

rM
n

]
=

⎡⎣ xE

rC(xE) + rH(xE)

2

⎤⎦ (3.14)

[
xΔ

0

rΔ
0

]
=

[
xI

rC(xI) − rH(xI)

]
(3.15)[

xΔ
n

rΔ
n

]
=

[
xE

rC(xE) − rH(xE)

]
(3.16)

where xI and xE are given inlet and outlet axial coordinates of the compressor

and rH(xI), r
C(xI), r

H(xE), rC(xE) are given radial coordinates.

As a result of this approach, Figure 3.2 shows the parametric annulus mid-

height (a) and thickness (b) distributions each parameterized by a Bézier-curve

with n + 1 = 5 control points. The resulting smooth annulus geometry and its

meanline distribution is demonstrated in Figure 3.2c.

This annulus geometry, however, cannot be used directly with the Rolls-Royce

preliminary design program. The hub and casing annulus lines have to be trans-

ferred into discrete point string data indicating the blade inlet and outlet posi-

tions. The problem here is that for given axial positions x the required radial

positions r have to be determined from the parameterized curves x(t), r(t).

This problem can be solved using a Newton method. Based on a given x-

coordinate x̄ of a blade inlet or exit position, the corresponding t-parameters

t̄M , t̄Δ of the parameterized mid-height and thickness curves are found from

x(t̄M,Δ)
!
= x̄, where x(t) is the first coordinate of the Bézier-curves (3.11) and

(3.12), respectively. The corresponding radii are computed from the second co-

ordinates of the Bézier-curves by

rC(x̄) = rM(t̄M) + Δr(t̄Δ)/2 (3.17)

rH(x̄) = rM(t̄M) − Δr(t̄Δ)/2. (3.18)

Figure 3.2d shows the final annulus geometry as it is used as input to the meanline

prediction program.

Beside the annulus geometry other parameters as the overall pressure ratio

play an important role in aerodynamic compressor design. However, the design

task of the engineer within the aerodynamic design process is not only to guar-

antee the achievement of the required overall value, but it is more or less the
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Figure 3.2: Annulus geometry definition by annulus mid-height line (a) and

annulus thickness (b), resulting annulus geometry (c) and point

string data (d) for a 9-stage compressor

search for the best distribution of the pressure rise without violating the loading

constraints for each row.

For the given 9-stage, high pressure compressor application nine individual

stage pressure ratio values have to be taken into account which leads to nine

additional design parameters. If Equation (A.8) for a given overall pressure ratio

is taken into account, the number of design parameters can be reduced to eight.

An individual definition of each stage pressure ratio, however, does not guaran-

tee the required smooth parameter distribution. Hence, a parameterization of

this non-geometric curve based on the same kind of Bézier-curve as for the an-

nulus line definition can be used which implies smooth and continues properties

of the parameter distribution, Figure 3.3. The parametric stage pressure ratio
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distribution can be determined by

bΠ(t) =

[
s(t)

Π(t)

]
=

n∑
k=0

[
bΠ
x,k

bΠ
y,k

]
Bn

k (t) (3.19)

where s ∈ [1, Ns] ⊂ R is a continuous stage variable. For getting a complete

distribution running through the whole compressor, the first and last control

point has to satisfy the conditions

s(0) = 1, s(1) = Ns. (3.20)

Figure 3.3a shows the stage pressure ratio distribution of the 9-stage high pressure

compressor parameterized with a Bézier-curve given by five control points. In

order to define the pressure ratios of the individual stages, the values of Π(t) have

to be taken at discrete points t = ti where s(ti) = i, i = 1(1)Ns, Figure 3.3b.
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Figure 3.3: Stage pressure ratio parametrization (a) and distribution (b)
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3.4 Process Integration

The Rolls-Royce meanline prediction process is a typical example for a computer-

aided engineering design task. The preliminary design tool has been developed

and validated by the company over the last decades supporting the engineer in his

preliminary aerodynamic design activities. The classical engineering work flow

starts with initial design parameters of an existing compressor provided by an

input file. The preliminary design program is manually executed and the results

are gathered in an output file from which the design criteria and constraints are

extracted. If the design goals are missed, adjustments on the input parameters

are made and the evaluation process is repeated until the design objectives are

fulfilled.

In order to speed up this human driven design process, the meanline program

has changed from a batch-program on a mainframe to an interactive analysis and

design tool guiding the engineer through graphical user interfaces. In terms of

process integration and automation, however, it is necessary to step back to batch-

capable versions of the analysis program. If different design tools are involved

within the design process, it is fundamental to define interfaces in order to convert

different data formats and to execute the evaluation tools without time-consuming

user interactions. The aim is to map the user actions onto transparent, flexible,

and well-defined flow charts. Therefore, the commercial process integration and

automation program iSight is used enabling to integrate the given Rolls-Royce

meanline prediction program into a common design environment.

Figure 3.4 shows how the Rolls-Royce meanline prediction process is inte-

grated in iSight. The whole process can be split into the process flow, the design

evaluation, and the external programs used within the process. The automated

engineering work flow starts with an initialization where required model and de-

sign parameters are prepared for the following optimization procedure. If the

whole analysis process is done manually, many iterations my be necessary and

the design loop has to be run several times with different adjusted design para-

meters. In the current integrated approach the process flow has to be run only

once, while the optimization routine interacts with the design evaluation process

several times in order to find an optimal design. The process flow as well as the

design evaluation flow are defined and controlled by the iSight process integration



3.4 PROCESS INTEGRATION 61

module. When the optimization algorithm requires a new design evaluation, a

Matlab script is started automatically by iSight which calculates the new annulus

geometry and stage pressure ratio distribution based on the new design parame-

ters. This information is transferred into the meanline prediction input file and

the Rolls-Royce meanline prediction program is invoked. After the calculation

has converged, the results are bundled in an output file, where iSight extracts

basic information required for further parameter evaluation. Based on the results,

a second Matlab script is used for post-processing and calculation of the criteria

and constraints. The optimization loop proceeds with a new design parameter

vector until the desired optimized design is found.

iSight file parser input

iSight file parser

objectives

constraints

design analysis
meanline

prediction

output

• annulus line calc.

• stage pressure

ratio distribution

Matlab

• criteria calculation

Matlab

post-processing

external programs

start

optimized

design

optimization

design definition

process flow

initialization

design evaluation

Figure 3.4: Integration of the meanline prediction process flow
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3.5 Results and Discussion

In order to demonstrate the potential of process integration, automation and

multi-objective optimization on preliminary aerodynamic compressor design, the

annulus geometry of a given 9-stage high pressure compressor design is opti-

mized. The goal of this investigation is to find an improved compressor design by

modifying the annulus geometry only, but keeping the inlet and outlet annulus

coordinates constant. In a first investigation the annulus geometry is parame-

terized according to Equations (3.11) and (3.12) with n + 1 = 4 control points,

respectively, leading to a design vector

p =
[
bM
x,1, b

M
x,2, b

M
y,1, b

M
y,2, b

Δ
x,1, b

Δ
x,2, b

Δ
y,1, b

Δ
y,2

]T
.

The multi-objective optimization problem (3.10) originally consisting of three

individual objectives is transferred by the compromise method (2.21) to a scalar

optimization problem where the main objective to be maximized is the overall

compressor polytropic efficiency ηc,poly. The surge margin at design point SM

is considered as an inequality constraint with an user-defined lower bound ŜM ,

and the overall pressure ratio Πc is kept constant since it is determined uniquely

by the given pressure ratio distribution. In order to create feasible solutions, all

design constraints in (3.10) are taken into account resulting in

max
p∈Rn

ηc,poly (3.21)

subject to

max
i

Ψi ≤ Ψ̂ max
i

DFR
i ≤ D̂F

max
i

M ′R
I,i ≤ M̂ ′R

I max
i

DF S
i ≤ D̂F

max
i

MS
I,i ≤ M̂S

I min
i

DHR
i ≥ D̂H

max
i

Ch,i ≤ Ĉh min
i

DHS
i ≥ D̂H

MS
E,Ns

≤ M̂E SM ≥ ŜM

with i = 1(1)9

The scalar optimization problem is solved with the Multi-Island Genetic Al-

gorithm, see Section 2.3.4.4, with a population size of 20 individuals on each
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of the 20 islands and the evolution process proceeds over 20 generations. The

results of this first investigation are shown in Figure 3.5. Despite the fact that

this investigation is a scalar optimization only, the resulting feasible solutions are

plotted in the bi-criterion space in order to provide some insight in the original

vector optimization problem. The non-dominated solutions in the upper right

corner of the cloud of feasible solutions are obtained by a non-dominated sorting

algorithm and can be interpreted as a rough estimation of the Pareto-front. A

comparison of the best solution found by MIGA with the baseline design which

is indicated as Human Design shows that this approach is not able to outperform

the initial design in terms of polytropic efficiency.
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Figure 3.5: Annulus line optimization using Bézier-splines with 4 control points

The reason for this phenomenon lies in the parameterization of the annulus

geometry. A detailed investigation shows that four control points are not sufficient

to provide the required flexibility to the annulus line geometry. In application of

parameterization, the desired minimum number of design parameters is always

in conflict with the requirement of maximum flexibility. In this particular case

the parameterization was to restrictive implying constraints to the optimization

problem which drive the numerical optimization to produce sub-optimal solutions.

The optimization task (3.21) is solved again where the design freedom is in-
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creased by introducing an additional control point to both parametric annulus

definition curves (3.11) and (3.12), i.e.

p =
[
bM
x,1, b

M
x,2, b

M
x,3, b

M
y,1, b

M
y,2, b

M
y,3, b

Δ
x,1, b

Δ
x,2, b

Δ
x,3, b

Δ
y,1, b

Δ
y,2, b

Δ
y,3

]T
.

The results of this investigation are shown in Figure 3.6 where the number of

generations is increased to 40 due to the increased design freedom.
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Figure 3.6: Annulus line optimization using Bézier-splines with 5 control points

Compared with the previous result, the increased design freedom leads to clearly

better solutions. The front of non-dominated results becomes more dense and

the overall number of feasible solutions is increased due to the higher generation

count. If the pseudo Pareto-solutions are compared with the initial design, supe-

rior solutions can be observed. A closer look in the region of interest of Figure 3.6

shows improved designs with respect to both efficiency and surge margin, Fig-

ure 3.7. If the efficiency plays an important role, a solution with absolutely 0.11%

points improvement can be found without loosing any surge margin, and on the

other side if more surge margin is desired, an improvement of absolutely 3.2%

points is possible at a constant efficiency level. These two solutions represent

individually best solutions in terms of efficiency and surge margin, respectively.
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Further solutions exist lying in between of these two points which are slightly

better in both objectives compared to the datum design.
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Figure 3.7: Optimal trade-off results with MIGA

The result of this investigation looks very promising. The front of non-

dominated solutions offers the design engineer a good basis to discuss on trade-offs

between polytropic efficiency and surge margin. However, it should be reem-

phasized that this investigation is done based on a single-objective optimization

algorithm only and obviously it can not be expected that the non-dominated so-

lutions are really representing the Pareto-front. Beside this major problem two

more issues can be addressed. Firstly, the result shown in Figure 3.6 contains

undesired gaps in the non-dominated solution front, and secondly a huge number

of solutions are generated in a region which is not really of interest. Therefore,

it should be the goal to find more solutions at the Pareto-front, to close the gaps

and to avoid undesired solutions.

In order to address these issues, another investigation based on the same annu-

lus line parameterization is done. The optimization problem (3.21) is solved again

using the gradient based algorithm NLPQL, see Section 2.3.4.4. The difference

between this approach and the previous one is that 40 individual optimizations

are performed with an increasing lower bound on the surge margin ŜM in order
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to create a more dense non-dominated solution front. All individual optimization

runs are started from the same initial human design point. The overall compres-

sor pressure ratio, as the third objective, is kept invariant due to a constant stage

pressure ratio distribution which makes this investigation comparable with the

previous one.

Figure 3.8 shows the feasible solutions obtained by all 40 individual NLPQL

optimization runs. It can be seen that the gradient based algorithm produces

solutions closer to the Pareto-front. Compared with the MIGA investigation the

solutions are significantly improved and due to the application of the compromise

method with moving bound a clearly better Pareto-front can be observed. Fur-

thermore, the gaps within the frontier are reduced which is basically driven by

the small step sizes of the inequality surge margin constraint. This is basically

an important point in terms of discussing trade-off solutions.
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Figure 3.8: NLPQL results in comparison with MIGA

The improvement of the annulus design can be better seen in Figure 3.9 where

the design engineer can choose between a compressor design with an increased

polytropic efficiency by 0.16% points at constant surge margin, a design which

has a 4.4% points higher surge margin at the equal efficiency level, or one of the

well distributed trade-offs with better surge margin and efficiency.
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Figure 3.9: Pareto-optimal results with NLPQL

Summarizing, Figure 3.10 compares the non-dominated solution fronts for the

presented three investigations. In general one can say that the optimal solutions

found by the deterministic method are obviously more reliable than results from

the stochastic approach and that the solution depends significantly on the design

freedom. It is obvious that additional control points to the annuls line parame-

terization lead to more flexibility and thus to better designs, however, from the

practical point of view a trade-off between flexibility and computational costs has

to be found.

It should be mentioned that more competitive Pareto-fronts would be deter-

mined by the stochastic approach if the MIGA algorithm would be repeated by

means of the compromise method with variable surge margin steps. However, in

general genetic algorithms need too many function evaluations and the determina-

tion of the Pareto-front would be too expensive in term of overall computational

time.
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Figure 3.10: Comparison of non-dominated solutions

As mentioned before, the annulus geometry optimization is obviously one of

the key elements in compressor preliminary design especially due to the number

of design parameters and the requirements for smoothness which always have

to be considered. Nevertheless, the performance of the compressor depends also

on other parameter values and especially on their appropriate distribution along

the compressor mid-height. Hence, in a further investigation the stage pressure

ratio distribution as an additional design quantity beside the annulus geometry

is introduced. In order to guarantee required smoothness, the stage pressure

ratio distribution is also parameterized by a Bézier-curve with five control points

according to Equation (3.19) which can be also seen in Figure 3.3. The number

of design parameters rises up to 20 consisting of 12 for the parametric annulus

description and 8 for the stage pressure ratio distribution, i.e.

p =
[
bM
x,1, b

M
x,2, b

M
x,3, b

M
y,1, b

M
y,2, b

M
y,3, b

Δ
x,1, b

Δ
x,2, b

Δ
x,3, b

Δ
y,1, b

Δ
y,2, b

Δ
y,3, . . .

. . . , bΠ
x,1, b

Π
x,2, b

Π
x,3, b

Π
y,0, b

Π
y,1, b

Π
y,2, b

Π
y,3, b

Π
y,4

]T
.

The multi-objective optimization problem (3.10) is solved by using the overall

polytropic efficiency as solely objective and transferring the surge margin to an



3.5 RESULTS AND DISCUSSION 69

inequality constraint with a single lower bound ŜM . In this particular case the

overall compressor pressure ratio Πc is not restricted to the desired quantity rather

it is just calculated by Equation (A.8) depending on the individual stage pressure

values according to their distribution. However, restrictions of the control point

positions for the stage pressure ratio parameterization is necessary in order to

obtain feasible solutions. The multi-objective optimization problem (3.10) is then

transferred by the compromise method as

max
p∈Rn

ηc,poly (3.22)

subject to

max
i

Ψi ≤ Ψ̂ max
i

DFR
i ≤ D̂F

max
i

M ′R
I,i ≤ M̂ ′R

I max
i

DF S
i ≤ D̂F

max
i

MS
I,i ≤ M̂S

I min
i

DHR
i ≥ D̂H

max
i

Ch,i ≤ Ĉh min
i

DHS
i ≥ D̂H

MS
E,Ns

≤ M̂E SM ≥ ŜM

2 ≥ bΠ
y,k ≥ 1, with i = 1(1)9, k = 1(1)5

Figure 3.11 shows the feasible solutions in the criterion space obtained by

the genetic algorithm MIGA. Due to the increased design freedom the number of

function evaluations is adopted to a population size of 30 individuals distributed

on each of the 30 islands and evolved over 60 generations. The results of the

three-criterion problem are shown in a two-dimensional plot where the overall

pressure ratio as the third criterion is indicated by the color.

The amount of function evaluations leads to a high number of feasible solutions

which are distributed within the criterion space. The improvement of overall

pressure ratio for reduced efficiency levels is a confirmation for the contradiction

of the objectives. A further interesting point here is that compressor designs exist

where this improvement is correlated with higher surge margin values. These

results can be used to understand the design problem better and to find new

innovative solutions. In order to quantify the goodness of this investigation, the

solutions may be compared with the datum design. A closer look around the

datum design and a filtering of the results with respect to surge margin and
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Figure 3.11: Multi-criterion optimization with respect to efficiency, surge mar-

gin and overall pressure ratio

overall pressure ratio based on the datum design values shows that improved

designs with respect to all three objectives can be found, Figure 3.12.

In Figure 3.13 the annulus geometries as well as the stage pressure ratio dis-

tributions for three extreme designs from Figure 3.12 are shown. The maximum

efficiency design shows an unload of the first stage which is covered by the last

three stages. The overall pressure ratio and surge margin are quite similar to the

initial design and the efficiency is improved by 0.16% points. For the second case

the surge margin is increased by 4.9% points at reasonable efficiency values and

the overall pressure ratio is also slightly improved. In the last case a reduction of

the stage pressure ratio at the three front stages and an increase of other stages

can be observed which leads to an improvement of 2% in overall pressure ratio in

comparison to the datum design without loosing surge margin and efficiency. In

comparison with the initial design it can be recognized that all annulus geome-

tries differ form each other. In particular the front region is characterized by a

higher annulus height and the rear part by an increased radial coordinate of the

mid-height line. From the corresponding stage pressure ratio plots in general a

redistribution of the loading is visible.
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Figure 3.12: Results of multi-criterion optimization with respect to three ob-

jectives

Due to the increased design freedom, new designs can be found. An interesting

point here is that a lot of new designs exist with higher overall pressure ratio and

surge margin values at the cost of polytropic efficiency. This is typical for multi-

criterion optimization problems with contradicting objectives.

From the industrial point of view it is interesting to notice that apart from the

improved designs the process integration and automation leads to an acceleration

of the design process. This fact can be proved in Table 3.1 where an overview

of the calculated cases in terms of function evaluations, convergence, feasibility

rate, and overall optimization time is given. It can be seen that the number of

function evaluations is increased with the design freedom and that evolutionary

algorithms require more function evaluations than deterministic methods. The

genetic algorithm is rather robust against non-convergent performance evaluation

where the high percentage of defective designs results from the stochastic nature

of the search strategy. Gradient based methods would not work with such a high

failure rate resulting in non-smooth performance evaluations. Therefore, the

NLPQL algorithm was forced to use small parameter variations for the numerical

gradient calculation resulting in a rather high convergence rate.
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Figure 3.13: Annulus geometry (left) and stage pressure ratio distribution

(right) of multi-criterion optimization with respect to efficiency,

surge margin and overall pressure ratio

For a better comparison between NLPQL and the corresponding MIGA case

the resulting numbers for one step of the compromise method are additionally

shown in the lower row. The total time for finding the best efficiency value on

a specific surge margin level can be reduced if only one point of the Pareto-

curve is desired. Finally, it should be mentioned that a human designer requires

approximately 2 minutes for a function evaluation based on the interaction with

the slow graphical user interface. The time for one function evaluation of the

automated process is less than 10 seconds, resulting in a process speed-up factor

of 12.
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Table 3.1: Function evaluation and optimization time for meanline process

function converged feasible total time
evals solutions solutions [h]

MIGA (annulus, 4CP) 8000 90% 58% 19.3

MIGA (annulus, 5CP) 16000 86% 40% 30.5

NLPQL (annulus, 5CP) 10768 99% 8% 18.2

MIGA (annulus+Π, 5CP) 54000 79% 28% 94.1

NLPQL (annulus, 5CP)

1 compromise step 151 100% 24% 0.28

During post-processing a surprising issue with the surge margin prediction of

the meanline analysis tool was detected. It turned out that the correlation based

prediction of the design point surge margin is not valid for geometry variations

as performed in the presented investigations. Therefore, the preliminary design

process was extended by an additional evaluation step. For each design multiple

meanline prediction calculations with variable compressor exit pressure values are

performed in order to determine the design speed characteristic of the compressor

from which the surge margin value is extracted according to Equation (A.12). The

determination of the compressor design point efficiency as an objective of the

optimization process is also based on the results of the characteristic calculation.

In a first investigation the multi-objective optimization design problem (3.21)

is solved based on the NLPQL algorithm as part of the compromise method

consisting of 25 inequality surge margin steps where design variations are made

by annulus geometry modifications only. Figure 3.14 shows all feasible results in

the criterion space and furthermore the obtained non-dominated solutions after a

sorting algorithm. The values for surge margin and efficiency of the datum design

are shown which are also determined with the same new calculation approach in

order to make the solutions comparable with each other. It can be seen that

NLPQL produces a lot of better solutions compared with the datum design in

term of polytropic efficiency as well as for surge margin values and that trade-offs

between the two objectives can be made.
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Figure 3.14: NLPQL results for extended process in comparison with datum

design

A closer look around the human design is given in Figure 3.15 where an

improvement in efficiency of about 0.12% points is achieved without loosing any

surge margin or an increase in surge margin of 2.1% points at an equal efficiency

level. A comparison with the previous investigation based on the former surge

margin definition, Figure 3.9, shows that the relative improvement in efficiency

is fairly similar whereas the improvement in surge margin is reduced. The reason

for this is due to the new definition of the surge margin, however, the trend in

the improvement is also repeated for both objectives in this investigation.

Obviously, the drawback of the extended process is that the overall evaluation

time is slightly higher due to additional calculations required for the surge margin.

However, the new definition is not correlation based anymore and the whole

design speed characteristic is available for postprocessing. Figure 3.16 shows a

comparison of the design speed characteristics between the datum design with the

best efficiency and best surge margin points from Figure 3.15. If we concentrate

on the pressure ratio distributions, Figure 3.16b, it can be observed that all

three curves are intersecting each other at the design point which means that

the flow function and the pressure ratio at the design point is equal as it is
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Figure 3.15: Non-dominated solutions of NLPQL for extended process

required from the pressure constraint. The improvement of the best surge margin

design is mainly driven by a higher total pressure ratio at low flow function

values, whereas the comparison of the best efficiency design with the datum design

shows no significant deflection. In terms of polytropic efficiency, Figure 3.16a, the

distributions show that the improvement of the best efficiency design is reflected

for the whole flow function range which means that this solution is absolutely

better for the entire design speed characteristic. Additionally, it is interesting to

notice that the best surge margin design also produces higher efficiency values

for lower flow functions.

In order to be sure that the obtained non-dominated solutions by the gradient

based method are good approximations of the real Pareto-front, an investigation

based on the multi-objective genetic algorithm NSGA-II, see Section 2.3.4.4, is

performed. Since the aim is to capture the Pareto-front as good as possible,

the diversity of the solution is driven by a high number of individuals in the

population, namely 100, whereas the convergence towards the Pareto-optimal

front is obtained by an evolution process over 200 generations.

The resulting non-dominated solutions of both investigations for the annulus

line optimization are compared in Figure 3.17. As can be seen, the resulting
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Figure 3.16: Comparison of polytropic efficiency (a) and pressure ratio (b) dis-

tributions

points are well distributed and both non-dominated frontiers are lying very close

to each other. The biggest deflection can be found for low efficiencies where the

genetic algorithm obtains about 0.5% points higher surge margin values compared

to the gradient based method. It can be generally observed that the NSGA-II

produces better solutions and hence it outperforms NLPQL. This holds true for

the optimization performance, however, if the optimization time and the num-

ber of required function evaluations are considered, the trend turns towards the

gradient based method which is shown in Table 3.2.

Comparing the number of function evaluations shows that the gradient based

approach is much quicker reflected by only 28% function evaluations of the genetic

algorithm. The number of converged solutions are quite similar whereas NLPQL

produces less feasible solutions as known from the previous investigation. From

the industrial point of view the process performance is of major importance which

is reflected by the total optimization time which shows that the gradient based

method is faster than the genetic algorithm by a factor of 3.6. Hence, if the

analysis tools are robust, i.e their convergence rate is high, and the design space
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Figure 3.17: Comparison of non-dominated solutions based on alternative surge

margin definition

is smooth, gradient based methods with an appropriate scalarization technique

are always preferable for the Pareto-front determination.

Table 3.2: Function evaluation and optimization time for extended meanline

process

function converged feasible total time
evals solutions solutions [h]

NLPQL (annulus, 5CP) 5655 99% 12% 9.6

NSGA-II (annulus, 5CP) 20100 98% 58% 34.5



4 Optimization Applied to

Throughflow Calculation

The throughflow calculation is an extension of the previous meanline calculation

in radial direction. It requires more calculation time and is too complex to be

fully integrated in an optimization process. Therefore, the throughflow off-design

calculation as a subproblem of the throughflow process is taken as a demon-

stration how process integration and optimization can be applied to industrial

design problems for solving typical time-consuming design tasks. The emphasis

is to accelerate the throughflow off-design process and to provide automated opti-

mization methods and techniques for finding solutions which support the human

engineer.

4.1 Introduction

The throughflow calculation is the second step within the aerodynamic compres-

sor design process. In this design phase appropriate radial distributions of flow

parameters in the meridional plane have to be found which fulfill the overall

compressor requirements. For this reason the results of the meanline prediction

calculation are used as initial solution to the throughflow calculation. Parame-

ters along the mid-height line as blade solidities, losses, stage pressure ratios,

and flow angles are expanded at specific axial positions in radial direction based

on engineering expertise and design rules. The annulus geometry as well as the

predicted blockage distribution are also transferred into the new design model.

Throughflow equations for the flow in a compressor or turbine can be solved

78
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with a streamline curvature method. The central part of this method involves

the radial equilibrium equation which is a non-linear ordinary differential equa-

tion relating the radial static pressure gradient of a general swirling flow to the

streamline geometry. In the early use of this equation simplifying assumptions

had to be made in order to integrate it analytically. However, with the devel-

opment of high speed computers it has become possible to solve the equation

using a streamline curvature method without the very restrictive simplifications

needed before. In the streamline curvature method the radial equilibrium equa-

tion is solved iteratively once the inlet mass flow, the blockage assumption, and

the annulus geometry is given. Basically, the throughflow calculation starts with

an approximation of the streamline geometry on 7 to 21 radial positions. The

static pressure is obtained by integrating the radial equilibrium equation which

is then used to derive a new approximation to the streamline geometry. This

iterative procedure is repeated until the result converges and the flow field in the

S2 plane is obtained. The results of the throughflow calculation process are on

one hand radially distributed aerodynamic parameters at each axial blade inlet

and outlet position and on the other hand the streamline distribution itself within

the annulus geometry.

Once, the design throughflow calculation is performed, operating phases re-

flecting take-off or climb situations have to be investigated in order to judge the

feasibility and reliability of the compressor design at off-design flight conditions.

The overall performance requirements for the compressor at these conditions are

à priori given and have to be fulfilled by making assumptions on blade losses and

blade exit whirl angle deflections.

Figure 4.1 shows the general work flow for obtaining an off-design throughflow

solution. The process starts with a necessary design point throughflow calculation

which is used as an initial solution to the off-design problem. Thereupon the

engineer has to apply the off-design conditions which include the off-design shaft

speed, inlet total temperature, inlet total pressure, and inlet mass flow. If bleeds

and variable stators exist in the compressor design, the bleed air mass flow as well

as the variable stator angles have to be adapted to the design problem too. The

next step is to run the throughflow calculation with these off-design parameter

settings. Unfortunately, in some cases where the off-design is far away from the

initial design point solution, it may happen that the throughflow calculation does
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not converge. The reason for this is that the blade loss and exit whirl angle

assumptions are not set properly to the problem.

The problem in such a case is that no solution file exists from which objective

function values could be extracted. Therefore, it is necessary to use the inlet

mass flow as a temporary design parameter in order to achieve some intermediate

converged off-design solution. Since the calculation converges, objective values

can be extracted and compared with the required compressor performance data.

During the off-design solution finding process, obviously, the inlet mass flow has

to be driven back to the correct value.

Application of
Off-Design Flow

Conditions

Throughflow Design
Point Calculation

Off-Design
Calculation

Converged?
no Adjust Compressor

Inlet Mass Flow

Performance
Values Achieved?

no Adjust Design
Parameters

yes

yes

Off-Design
Finished

Figure 4.1: Off-design preparation
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The throughflow off-design calculation is a highly iterative process which can

be accelerated by means of process integration and automation. In order to fulfill

the multiple performance requirements, the throughflow off-design problem can

be formulated as a multi-objective design problem.

4.2 Off-Design Optimization Problem

The throughflow off-design problem can be transferred into a rather small opti-

mization problem consisting of two design variables and three objectives. The

first design parameter reflects the increase or in some specific cases the decrease

of the pressure losses at each blade row at off-design flow conditions. It is de-

fined as an additional loss assumption factor χ ∈ R which is multiplied on all

rotor and stator blade radial loss distributions, respectively. The second design

parameter describes the change in exit flow angle also caused by off-design flow

conditions. The parameter is denoted by ΔD ∈ R and it is assumed that the

deflection is radially constant and equal for all rotor and stator blade rows. Both

design parameters are typically restricted by user defined bounds in order to avoid

convergence problems of the throughflow calculation program due to physically

unrealistic values. Summarizing, the design vector for the throughflow off-design

calculation process can be expressed by

p = [χ, ΔD]T .

As already mentioned, the aim of the throughflow off-design calculation

process is to match required performance parameters. These parameters are the

overall compressor pressure ratio Πc, the isentropic compressor efficiency ηc,isen

and the compressor exit total temperature T0,c,E. Due to the fact that it is often

not possible to hit all three values exactly, an off-design calculation is being ac-

cepted when the difference in polytropic efficiency and overall compressor pressure

ratio is less or equal 1% and the deflection in compressor exit total temperature

is less or equal 1K compared to the given performance values. The objectives of

the throughflow off-design calculation can be formulated in such a way that all

three terms are in the same order of magnitude. The first objective
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Π̂c =
ΔΠc

Πc

· 100% (4.1)

describes the relative deviation of the overall compressor pressure ratio from the

required value, the second objective

η̂c,isen =
Δηc,isen

ηc,isen

· 100% (4.2)

describes the relative deviation of the isentropic compressor efficiency, and the

third objective

T̂0,c,E = ΔT0,c,E (4.3)

uses the absolute deviation of the compressor total exit temperature. Summariz-

ing, the multi-objective throughflow off-design problem can be expressed by

min
p∈Rn

⎡⎢⎢⎢⎣
Π̂c

η̂c,isen

T̂0,c,E

⎤⎥⎥⎥⎦ (4.4)

subject to

χl ≤ χ ≤ χu

ΔDl ≤ ΔD ≤ ΔDu

with upper and lower bounds for the design parameters.

4.3 Throughflow Off-Design Process Integra-

tion

The Rolls-Royce off-design calculation process is also integrated in an automated

environment using iSight as process integration and automation tool, Figure 4.2.
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The process starts based on a design throughflow solution where the new design

conditions have to be applied à priori according to the off-design case in an

initialization process. The chosen optimization algorithm provides a set of design

parameters p which are parsed in the throughflow input file and the throughflow

calculation program is invoked. The results are written in an output file from

which the objective function values are extracted. If the required performance

values are not achieved, the next optimization step starts with a new design

vector p.

external programs

iSight file parser input

iSight file parser

objectives

constraints

design analysis
throughflow

calculation

output

post-processing

start

optimized

design

optimization

process flow

initialization

design evaluation

Figure 4.2: Integration of the throughflow off-design process flow

For some off-design cases where the convergence rate of the throughflow calcu-

lation is very low, it is required to firstly use a pattern method, which explores the

design space for a promising point from where the overall optimization process

can start. Especially, if the calculations do not converge around the starting point

this step becomes essential for gradient based algorithms, because non-converged
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calculations do not provide any confident information and hence the determina-

tion of gradient information becomes very problematic. Furthermore, if a good

starting point is used the chance of finding the global optimum increases for any

deterministic method. If a pattern method is desired in the automated through-

flow off-design calculation process, it can be simply chosen in the process flow

environment of iSight.

4.4 Results and Discussion

In this section results of a throughflow off-design problem based on a 6-stage high

pressure compressor model with five bleed positions and two variable stator blade

rows are presented. All investigations are run at maximum take-off operating

conditions and differ basically with respect to the objective function definition.

Due to the fact that the off-design case converges properly in a wide range of the

design space, the gradient based algorithm NLPQL is chosen and the required

gradients for the search direction are calculated numerically based on forward

differences with an appropriate small parameter perturbation. The pressure loss

coefficient factor χ and the additional exit whirl angle ΔD are bounded by

0.5 ≤ χ ≤ 1.5

1◦ ≤ ΔD ≤ 2◦

In the first investigation the off-design throughflow problem is solved by trans-

ferring the multi-objective problem (4.4) to a single-objective problem using the

weighted-objective scalarization approach (2.19). Since the individual objectives

may become negative, absolute values are considered which makes the approach

equivalent to the distance method with the metric r = 1, see Section 2.3.3.2. The

new compound function F to be minimized reads as

min
p∈R2

F (p) (4.5)

with F (p) =
∣∣∣Π̂c

∣∣∣+ |η̂c,isen| +
∣∣∣T̂0,c,E

∣∣∣ .
Taking absolute values implies non-smoothness in the objective function which

can lead to convergence problems of the optimization algorithm. Hence, a second
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investigation with a smooth objective function F is run by means of the distance

method (2.20) with the metric r = 2, i.e.

min
p∈R2

F (p) (4.6)

with F (p) =

√(
Π̂c

)2

+ (η̂c,isen)2 +
(
T̂0,c,E

)2

.

In order to find the best approach for the throughflow off-design optimization,

a third investigation based on the min-max method (2.22) is performed. An

artificial parameter γ is introduced as new objective and the original ones are

considered as inequality constraints bounded by γ. Since it is also a design

variable, the design parameter space is enlarged, i.e. p = [χ, ΔD, γ]T , leading to

the min-max optimization problem

min
p∈R3

γ

subject to ∣∣∣Π̂c

∣∣∣ ≤ γ

|η̂c,isen| ≤ γ∣∣∣T̂0,c,E

∣∣∣ ≤ γ.

(4.7)

The results of all three investigations, denoted by case 1 to case 3, are sum-

marized in Table 4.1. For a general comparison two major aspects can be distin-

guished: the process performance described by the required number of function

evaluations, feasible solutions and overall optimization time, and the optimization

performance indicated by the obtained optimization solutions.

It can be seen, that all three formulations are able to solve the throughflow

off-design problem properly. If we compare the process performance of the three

cases, only small differences are identifiable. The number of required function

evaluations is fairly equal, but case 3 produces less feasible solutions during the

optimization procedure which is mainly driven by the additional constraints of

the min-max formulation, and has no influence on the overall optimization time.

If we compare the process performance, no favorite can be declared. The opti-

mization performance which is reflected by the best obtained solution shows that
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the min-max formulation yields very low values for all three objective functions.

Compared to the human design, it outperforms the manual search procedure sig-

nificantly. The weighted-objective method as well as the distance method show

improvements in the efficiency and temperature criteria compared to the human

design, while the total pressure ratio could not be improved. Hence, both ap-

proaches provide trade-off solutions to the multi-objective throughflow off-design

problem.

In order to judge the process acceleration and the quality of the final solutions,

results achieved by a manual search procedure of a human design engineer are also

shown in the table. It can be seen that the min-max formulation is significantly

better in terms of process performance and optimization performance. Despite

the fact that the automated optimization processes require twice more function

evaluations as the human engineer, the overall process time is reduced for all

three cases by more than 80%. The reason for this lies in the acceleration of

the time consuming throughflow input file preparation by the automated parsing

functionality of iSight.

Table 4.1: Function evaluation and optimization time for throughflow off-design

calculation

human case 1 case 2 case 3 case 4
engineer (weighted-obj.) (distance) (min-max)

function evals 23 46 44 43 21

feasible runs - 44 42 19 19

total time [h] 8.0 1.52 1.42 1.40 0.67

time/eval [min] 20.87 1.98 1.94 1.95 1.91∣∣∣Π̂c

∣∣∣ [%] 0.220 0.653 0.334 0.048 0.446

|η̂c,isen| [%] 0.530 0.336 0.035 0.069 0.069∣∣∣T̂0,c,E

∣∣∣ [K] 0.830 0.030 0.230 0.060 0.810

optimal χ 1.020 0.945 0.964 0.970 0.972

design ΔD -0.590 -0.633 -0.590 -0.582 -0.567

At this point it should be mentioned that this comparison is not really fair.

In the three investigated cases the optimization algorithm is seeking for the best
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solution to the problem where the human engineer usually stops his search at

the point where all three objective values are below the required bounds. Hence,

a fourth investigation is performed on the basis of the distance method (4.6)

where the optimization procedure is stopped according to the same bounds being

used by the human engineer. The results of case 4 shows that the number of

required function evaluations can be reduced which has a positiv influence on

the process performance. A comparison with the original case 2 shows that

using the stopping criteria saves 53% computational time. The more interesting

comparison, however, is between the solutions of the human engineer and case 4.

Here, the process performance is increased and the overall computational time is

reduced by 92% which is equivalent to a process acceleration factor of 12.

A further interesting point is the number of required optimization steps where

each consists of search direction determination and the line search procedure.

Figure 4.3 shows that the weighted-objective method requires seven, the distance

method and the min-max formulation six, and the truncated distance method

only four iteration steps, respectively.
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Figure 4.3: Convergence distribution for throughflow off-design cases

In order to analyze the complexity of this particular off-design problem and
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to demonstrate how close the solutions are to each other, a design space matrix is

calculated where both design parameters are modified within their feasible bounds

in 21 equidistant steps. This results in 441 throughflow calculations illustrated

in Figure 4.4 where a converged solution is indicated by a single point and the

corresponding objective function value according to (4.5) by the gray scale. Non-

converged solutions in the right lower corner are indicated by the hatched region.

It can be seen that the design space is pretty smooth with increasing values for the

objective function F in the upper left and lower right corner. Furthermore, a flat

valley can be found with just a single optimum indicating the desired minimum

of the objective function. The solutions of all cases are in the vicinity of this

optimum, and in particular the design vectors for case 2, 3, and 4 are very close

to each other.
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Figure 4.4: Throughflow off-design results according to objective (4.5) in the

design space

From the optimization point of view it can be summarized that this through-

flow off-design problem is not very challenging. The obtained results show that

this smooth problem can be solved with elementary scalarization techniques and

the best solution is obtained with the min-max formulation while the computa-
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tional costs for seeking the best solution is equivalent for all three techniques.

From an industrial point of view, however, it is interesting to notice that the

engineering work is accelerated significantly by means of process integration and

automation. If additional stopping constraints are introduced to the process in

order to come closer to the real engineering work flow, a further improvement of

the process performance can be observed and the overall process is accelerated

by a factor of 12.



5 Blade Design

The blading process consist of two-dimensional blade section design as well as the

more complex three-dimensional blade geometry generation. From the industrial

point of view it is a rather complex process since it involves a geometry generation

tool and a numerical flow analysis for the determination of the blade geometry.

The emphasis of this chapter is to show possibilities in industrial process integra-

tion and automation for accelerating the time-consuming blading process. Since

in blade design multiple goals have to be pursued simultaneously, the application

of multi-objective optimization is demonstrated based on the stochastic NSGA-II

optimization method. Furthermore, two alternative problem definitions for the

two-dimensional blade design problem will be introduced and discussed which

consider aerodynamic and geometric constraints for the optimization process.

Finally, a method for three-dimensional blade design will be presented which is

based on multiple two-dimensional optimized blade sections.

5.1 Introduction

The blade design process is the final step within the aerodynamic compressor

design. The goal is to find three-dimensional blade geometries for all rotor and

stator blades within the compressor which fulfill the requirements of the previous

throughflow calculation in terms of flow turning with a minimum in loss pro-

duction for defined aerodynamic design and off-design flow conditions. This is

basically one of the most time-consuming and challenging design steps within the

aerodynamic compressor design.

Nowadays, there is no straightforward approach to design three-dimensional

90



5.2 BLADE DESIGN PROBLEM 91

blade geometries directly, since the design freedom is too high and the flow in an

aero engine is too complicated. Even on today’s computers 3D-flow analysis based

on Navier-Stokes equations is too expensive why the three-dimensional blade de-

sign problem is approximated according to Wu (1952) by a set of two-dimensional

design problems defined on several radially distributed axis-symmetric stream sur-

faces S1. In these subtasks two-dimensional blade section geometries have to be

found iteratively which are finally stacked along a specific stacking line in order

to obtain the three-dimensional blade geometry.

It is obvious that the aerodynamic performance of the final airfoils, and there-

fore of the whole compressor design, depends significantly on the design quality

of the individual blade sections. Hence, a major part in today’s engineering work

is related to the iterative two-dimensional blade profile design.

It can be shown that the industrial requirement for automated determination

of blade section geometries can be overcome by implementing the individual de-

sign programs into a common environment. Since the engineering work flow is

integrated and automated, numerical optimization can be used in order to find

appropriate blade geometries with respect to the design targets. Furthermore,

the application of multi-objective optimization can support the engineer in his

decision making by providing trade-off solutions between conflicting objectives.

5.2 Blade Design Problem

The goal of the two-dimensional blade design process is to find blade section

geometries which fulfill the flow turning requirements from the previous design

point throughflow calculation with a minimum loss production at given inlet

flow conditions as inlet velocity cI , inlet flow angle αI , and inlet pressure PI ,

Keskin et al. (2006b). The loss that a blade section produces depends on its

geometry and the inlet flow conditions. As demonstrated in Figure 5.1, the

total pressure loss coefficient ω defined in Equation (A.13) increases for a given

geometry for a deviated inlet flow angle αI as it occurs for different operating

conditions. At design flow conditions α0
I the flow around the blade section is

smooth and the loss production is typically rather small. If the flow angle is

reduced the stagnation point moves towards the suction side and the flow around

the leading edge gets highly accelerated. A separating bubble on the pressure side
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may occur and a further reduction of the flow angle drives the flow to separate

on the pressure side leading to higher losses. On the other side an increase of the

flow angle also produces higher losses due to suction side flow separation.
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Figure 5.1: Pressure loss coefficient distribution for inlet flow angle variation

Hence, blade geometry design pursues multiple design objectives simultane-

ously. The first objective is to minimize the loss ω0 = ω (α0
I) at design flow

conditions, where the other objective is to maximize the blade working range

WR defined in such a way that the loss does not exceed a prescribed loss level

ωWR due to inlet flow angle variation, Figure 5.2. This level is typically set to

ωWR = 2ω0.

In order to guarantee feasible blade designs, geometric and aerodynamic con-

straints have to be taken into account during the optimization process. It is of

major importance for the compressor design process that the blade design fulfills

elementary geometric requirements in order to be accepted from the subsequent

stress analysis process and to keep the design iteration with the aerodynamics

as small as possible. Thus, the position of maximum blade thickness PMXC is

bounded by reasonable values, and inequality constraints are defined to keep the

cross section area A and the thickness to chord ratio T/C defined in Figure 5.5

above the values of the datum design, respectively.
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Figure 5.2: Definition of design point loss ω0 and working range WR

From the aerodynamic point of view further design constraints have to be

considered. In order to guarantee constant performance of the following blade

rows, the exit flow angle αE has to be preserved by the new design within an

accuracy of ε = 0.25◦, and the separation that may occur on the blade suction

side has to be avoided. In industrial design the boundary layer shape factor H

which describes the relation between the displacement thickness to the momentum

thickness of the boundary layer is used as a criteria for flow separation where it

is required that the shape factor HSS
E on the suction side at the trailing edge is

smaller than 2.5, Castillo et al. (2004).

Summarizing, the multi-objective blade design problem can be formulated as

the minimization of the pressure loss coefficient at design flow conditions ω0 and

the maximization of the working range WR which is equivalent to the minimiza-

tion of (−WR). This has to be achieved by variation of the blade geometry

parameters summarized in the design vector p taking into account geometric and

aerodynamic constraints:

min
p∈Rn

⎡⎣ ω0

−WR

⎤⎦ (5.1)
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subject to

20% ≤ PMXC ≤ 60%

A ≥ Adatum

T/C ≥ [T/C]datum

HSS
E ≤ 2.5

αE − αE,datum ≤ 0.25

A big issue of solving the multi-objective two-dimensional blade design prob-

lem (5.1) is the determination of the working range value WR. The standard pro-

cedure is to vary the inlet flow angle αI and to determine the loss curve in order

to find the two intersection points ωL = ω
(
αL

I

)
= ωWR and ωR = ω

(
αR

I

)
= ωWR.

This, however, requires small changes of the inlet flow angle in order to determine

the loss curve accurately which is leading to a rather time-consuming procedure.

In order to release design evaluation from the need of computing the whole

loss curve and searching for the two intersection points, two alternative meth-

ods for solving the two-dimensional blade design problem can be formulated,

Keskin et al. (2006a). In both formulations only three points on the loss curve

are required. The first objective for all cases is the minimization of the loss ω0

at design inlet flow conditions α0
I which is obtained by one single flow analysis.

In the first alternative method the inlet flow angle deviations ΔαL
I and ΔαR

I

are introduced as additional artificial design variables defining the flow angles

αL
I = α0

I − ΔαL
I and αR

I = α0
I + ΔαR

I , respectively. The sum ΔαL
I + ΔαR

I then

declares the working range value ŴR. During optimization ŴR is not necessarily

corresponding with the real working range value of the blade section design,

Figure 5.3. However, a maximization of the working range ŴR will force the

optimization algorithm to increase the distance between the two points αL
I and

αR
I and hence pushes the losses ωL = ω

(
α0

I − ΔαL
I

)
and ωR = ω

(
α0

I + ΔαR
I

)
towards the required upper bound ωWR. Thus, for the first approach the blade

design problem (5.1) is redefined as

min
p,ΔαR

I ,ΔαL
I

⎡⎣ ω (α0
I)

− (
ΔαL

I + ΔαR
I

)
⎤⎦ (5.2)
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subject to

20% ≤ PMXC ≤ 60% ΔαL
I ≥ 0

A ≥ Adatum ΔαR
I ≥ 0

T/C ≥ [T/C]datum ωL ≤ ωWR

HSS
E ≤ 2.5 ωR ≤ ωWR

αE − αE,datum ≤ 0.25

where ΔαL
I and ΔαR

I have to be bounded in order to guarantee positiv values

and ωL and ωR have to be kept below an user defined tolerance for the upper

working range loss ωWR.
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Figure 5.3: First approach for solving the blade design problem by maximizing

ŴR = ΔαL
I + ΔαR

I at constant working range loss level ωWR

As a second alternative method the blade design problem can be solved by

pre-defining the two inlet flow angle deviations ΔαL
I and ΔαR

I according to the

needs on the working range, i.e. ŴR = ΔαL
I + ΔαR

I = const. The design goal

is then to minimize the two losses ωL and ωR as demonstrated in Figure 5.4.

This problem definition has now three objectives which have to be minimized

simultaneously and may be solved by applying the min-max formulation (2.22)

to the minimization of the two outer losses ωL and ωR by introducing γ as an
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artificial objective:

min
p,γ

⎡⎣ ω (α0
I)

γ

⎤⎦ (5.3)

subject to

20% ≤ PMXC ≤ 60% ωL ≤ γ

A ≥ Adatum ωR ≤ γ

T/C ≥ [T/C]datum

HSS
E ≤ 2.5

αE − αE,datum ≤ 0.25
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Figure 5.4: Second approach for solving the blade design problem by minimizing

ωL and ωR for given working range ŴR

It should be noticed that in both alternative methods some drawbacks can

be pointed out. Firstly, the number of design parameters is increased by artifi-

cial parameters which typically increases the number of required function eval-

uations. This, however, is not a real drawback since the significant reduction

to only three required loss point calculations in both definitions accelerates the

determination process of the objective function values tremendously. Moreover,
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few more design parameters have a very low influence on the overall optimiza-

tion time, particularly if genetic algorithms are used. It may be also a drawback

that in the alternative definitions the working range values are artificial quantities

which make them not directly comparable with the original definition of the blade

design problem. However, with supplementary effort during the postprocessing

phase this drawback can be covered and comparable working range values can

be provided afterwards. Hence, they are chosen for all following investigations as

both definitions are showing promising properties.

5.3 Blade Parameterization

For the blade parameterization and modification the Rolls-Royce program Para-

blading is used, Gräsel et al. (2004). This is a blade geometry generation tool for

describing three-dimensional blade shapes on the basis of radially stacked two-

dimensional blade sections. The blade sections are parameterized on S1 stream

surfaces according to the previous throughflow calculation. The parameterization

is flexible and offers enough design freedom for a large variety of section geome-

tries by a low number of design parameters. Parablading provides an interactive

graphical use interface, but can also be run in batch mode which is important in

terms of process integration and automation.

Each individual blade section is split into four segments consisting of blade

leading and trailing edges plus blade suction and pressure sides. The segments

are joined together at the blend points using tangency conditions, Figure 5.5. In

total 28 parameters are required for describing a complete blade section geometry

with circular edges where the set of parameters can be split into 3 leading edge,

3 trailing edge, 10 suction side, 10 pressure side, and 2 global parameters.

The section build up process starts with the determination of the tangential

angles τSS
I , τPS

I at the blend points bSS
0 , bPS

0 by trigonometrical relations between

the metal angle βI , wedge angle μI , and the radius rI of the leading edge circle.

As a next step the global parameters, i.e. stagger angle ξ and chord length C, in

combination with the blade exit metal angle βE, exit wedge angle μE, and trailing

edge radius rE are used for the determination of the blend points bSS
7 , bPS

7 and

the tangential angles τSS
E , τPS

E at the trailing edge. Suction and pressure sides of

the blade sections are parameterized each by a cubic B-spline (2.6) with 8 control



98 5 BLADE DESIGN

points bi, i = 0(1)7, demonstrated for the suction side in Figure 5.6. The control

point bSS
0 and bSS

7 are the starting and end points of the curve corresponding to

the B-spline parameters t = 0 and t = 1.
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The points bSS
0 , bSS

1 , and bSS
2 are related. Point bSS

0 is the given blend point

connecting the suction side with the leading edge circle while bSS
1 is determined

by a free parameter lSS
I describing the distance along the tangential direction τSS

I .

The control point bSS
2 can be determined by the position of the first two points

and additionally the curvature κSS
I = κSS(0) and the stiffness σSS

I = σSS(0) at

the blend point bSS
0 where the curvature and the stiffness at each curve position

t can be determined by

κ(t) =
ẋ(t)ÿ(t) − ẍ(t)ẏ(t)√

[ẋ(t)2 + ẏ(t)2]3
(5.4)

σ(t) =
ẋ(t)ẍ(t) + ẏ(t)ÿ(t)√

ẋ(t)2 + ẏ(t)2
, (5.5)

Bronstein et al. (2005). In the same way the points bSS
5 , bSS

6 , and bSS
7 are de-

termined by the trailing edge parameters lSS
E , τSS

E , κSS
E = κ(1), and σSS

E = σ(1),

respectively. The inner points bSS
3 and bSS

4 can be chosen freely by tangential

coordinates tSS
I , tSS

E and normal coordinates nSS
I , nSS

E in a local x′-y′-coordinate

system. The pressure side control points bPS
i , i = 0(1)7, are determined analo-

gously to the suction side procedure.

5.4 Blade Design Process

The two-dimensional blade design process consists basically of two steps, geom-

etry generation and design evaluation. Generally these steps are separated and

performed manually leading to a rather time-consuming design task. As a first

goal of this investigation the bade design process is accelerated and automated

by the use of iSight as a front end and control tool to integrate the two design

programs into one common blading process.

Figure 5.7 illustrates the blading process as it is integrated into the iSight

environment. When the optimization algorithm requires a new design evaluation,

the file parsing functionality in iSight is used in order to substitute values of the

design parameters in the input file of the blade geometry generation program
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Figure 5.7: Illustration of the automated 2D-blade optimization process

Parablading. After the program is invoked, a new geometry is generated according

to the input parameters which is stored in an output file needed for the subsequent

two-dimensional flow simulation code Mises.

Before the time-consuming flow analysis is started, basic geometric parame-

ters are extracted from the Parablading output file and checked if the new blade

geometry fulfills sufficient geometric constraints as for example minimum cross

section area or thickness to chord ratio. If at least one of the geometric constraints

is violated the design process starts again from the beginning with a new blade

section design. This is an important step, since genetic algorithms randomly gen-

erate blade profiles which may violate even elementary properties required for a

smooth flow. Furthermore, this step helps to keep the number of flow simulations
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as low as possible which has an positive impact to the overall optimization time.

In case of a well behaving geometry the flow domain is discretized with a

structured H-type computational grid which along the flow consists of 60 grid

lines in the inlet region, 70 grid lines on the blade section surface, and 45 lines in

the outlet region, Figure 5.8. In order to resolve high gradient regions the stream

lines are clustered in the computational domain, i.e. the spacing between grid

lines varies. Across the flow 16 grid lines are used which are clustered towards

the blade surface, and at the leading edge the streamlines are more dense due to

the high local curvature.

16

60

70

45

Figure 5.8: Computational grid used for the numerical flow analysis

The flow around the blade section is calculated with the flow solver Mises,

Drela (1986). It is a zonal approach coupling an inviscid outer flow with viscous

boundary layers over blades and in wakes. The inviscid flow is modeled by the

steady state Euler equations which are solved on a streamline grid of nodes.

Viscous and inviscid flow equations are solved simultaneously with an iterative

Newton-Raphson technique. The turbulence intensity is set to Tu = 4% in
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order to simulate turbo machinery environment, and the Abu-Ghannam/Shaw

transition model, Abu-Ghannam and Shaw (1980), is used to calculate the free

transition position on suction and pressure side, Youngren and Drela (1991).

The results of the Mises calculation are stored into an output file from which

iSight extracts the required information to evaluate objectives and constraints.

The overall optimization proceeds until an optimal design is found or the maxi-

mum number of function evaluations is achieved. Finally, the results and trade-

offs may be visualized in both the design and the criterion space in order to

support the design engineer in his decision making.

5.5 Results and Discussion

In a first investigation a comparison of the two-dimensional blade design problem

definitions (5.2) and (5.3) is performed according to the process flow in Figure 5.7.

On the basis of an initial Rolls-Royce stator blade mid-section design, geometry

modifications are performed at leading edge and suction side of the blade section

geometry only, resulting in a vector of 12 free design variables

p =
[
βI , μI , l

SS
I , κSS

I , σSS
I , tSS

I , nSS
I , tSS

E , nSS
E , lSS

E , κSS
E , σSS

E

]T
where the leading edge circle radius rI is kept fixed at a reasonable minimum

value. The leading edge and the suction side parameters are chosen due to their

major influence on the blade performance according to engineering experience.

Additionally, parameter reduction as it is performed here keeps the design freedom

small and the required number of function evaluations low. The calculations are

performed with constant inlet flow conditions for both investigated definitions,

Table 5.1, where the outlet parameters are results of the flow analysis which have

to be matched to the predefined outlet flow conditions given by a throughflow

calculation.

The Non-dominated Sorting Genetic Algorithm (NSGA-II), Section 2.3.4.4, is

used with an initial population size of 50 individuals running over 124 generations

which is equivalent to 6200 function evaluations. Each evaluation step requires 3

flow computations with Mises according to the loss evaluation at the three inlet
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Table 5.1: Inlet flow conditions for 2D-blading

MI αI ReI P0,I PI cI

value 0.776 46.83 1.1E06 438.7 295.2 310.1

unit [ - ] [deg] [ - ] [kPa] [kPa] [m/s]

flow condition points.

Figure 5.9 shows the admissible designs in the criterion space for the first

design problem (5.2). Altogether these are 40.7% feasible solutions of the 6200

possible design modifications generated by the genetic algorithm which fulfill all

constraints. According to problem definition (5.2) the optimal trade-offs lie at

the upper left border which are indicated as non-dominated solutions. As can be

seen, most of the the designs generated by the optimization algorithm are clearly

better than the datum design, and especially the non-dominated solutions show

clearly better performance with respect to both objectives, loss at design point

and working range.

Datum Design

Solutions, (5.2)

Non-dominated Solutions
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Figure 5.9: Criterion space and non-dominated solutions for blade design prob-

lem (5.2)

In Figure 5.10 the criterion space for the second problem definition (5.3) is

shown. Each point is indicating a feasible solution while according to the problem
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definition the optimal trade-offs can be found in the lower left corner indicated

as non-dominated solutions. In this case 94.9% of 6200 function evaluations

converged and 51.4% feasible solutions are obtained. It can be seen that the trade-

offs are concentrated in the lower left corner and that the differences are rather

small. Due to the fact that no real Pareto-curve exists it can be assumed that

this problem definition leads to a single optimal solution which corresponds to the

point in the lower left corner. Unfortunately, a direct comparison of the solutions

with the datum design or the results of problem (5.2) is not possible, because

γ is a problem specific value which is not contained in the other definitions.

However, a comparison of the real working range values is possible from which

the improvements in the design can be extracted.

Solutions, (5.3)

Non-dominated Solutions
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Figure 5.10: Criterion space and non-dominated solutions for blade design prob-

lem (5.3)

Thus, for the non-dominated solution of design problem (5.2) which provides

the highest artificial working range value ŴR and the solution of (5.3) which

provides the minimum losses, full loss curve calculations are performed. In Fig-

ure 5.11b a comparison of the loss curves of these two non-dominated solutions

with the datum design is shown. It can be seen that both optimized designs show

similar loss distributions with an improvement in working range. At a reasonable
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loss level of 4% a working range rise of about 1.0◦ with respect to the datum

design is achieved. Additionally, a reduction of the loss at design point is observ-

able reflected by approximately 6% for both optimized designs. The increased

performance can also be concluded from the higher static pressure rise coefficient

cp =
PE − PI

P0,I − PI

(5.6)

with the exit and inlet static pressure PE, PI and the inlet total pressure P0,I

in Figure 5.11a at stall and choke region. A comparison of the blade section

geometries confirms that both optimized designs are very close to each other and

only tiny changes in the geometry can be found, Figure 5.12.

In general, the optimized designs show more front loading reflected by a wider

inlet wedge angle and a position of maximum thickness which is moved towards

the leading edge. If we summarize the results of this first investigation, an im-

provement of a two-dimensional blade section design with respect to working

range and pressure loss has been achieved. Both alternative formulations of the

original blade optimization problem definition show promising results whereby

no clear favorite can be pointed out.

In Table 5.2 an overview of the process performance related parameters is

given. For an equal number of function evaluations, problem definition (5.2)

shows a higher convergence rate which is important in terms of process time.

The reason for this is that each non-converged solution requires more process time

since the flow solver is running until the maximum number of its inner iterations is

reached or for the worst case the flow solver or even the grid generator is crashed.

This effect is substantiated by the lower overall optimization time for problem

definition (5.2) due to its higher convergence rate. Hence, if the process time is

considered in a comparison, definition (5.2) shows slightly better performance.

Table 5.2: Comparison of process performance parameters

function converged feasible total time
evals solutions solutions [h]

definition (5.2) 6200 97.5% 40.7% 88.1

definition (5.3) 6200 94.9% 51.4% 99.7
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Figure 5.11: Comparison of static pressure rise (a) and pressure loss coeffi-

cient (b) between datum design and selected optimized solutions

of problem definition (5.2) and (5.3)

In a second investigation the two-dimensional blade section optimization prob-

lem is solved with an increased number of design freedom. Beside the leading edge

and suctions side parameters, geometry modifications on trailing edge and pres-

sure side are considered. Furthermore, the stagger angle ξ as a global parameter

is part of the new design vector

p =
[
βI , μI , l

SS
I , κSS

I , σSS
I , tSS

I , nSS
I , tSS

E , nSS
E , lSS

E , κSS
E , σSS

E , . . .

. . . , lPS
I , κPS

I , σPS
I , tPS

I , nPS
I , tPS

E , nPS
E , lPS

E , κPS
E , σPS

E , βE, μE, ξ
]T
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Datum Design

Optimized, (5.2)

Optimized, (5.3)

Figure 5.12: Comparison of datum design with optimized blade section geome-

tries

which consists of 25 design parameters. Again, leading and trailing edge radii

rI , rE are kept fixed during the design process which is performed according to

Figure 5.7. The NSGA-II optimization algorithm is chosen with 50 individuals

in each population while the number of generations is increased to 200 due to

the extended design parameter vector. Optimization problem definition (5.2) is

chosen due to the promising results from the previous investigation.

The results of this investigation are shown in the criterion space, Figure 5.13,

where beside the feasible solutions trade-offs are indicated for comparison with the

datum design. In general, it can be observed that the distribution of the solution

points as well as the position and expansion of the non-dominated solution front

looks very similar to the previous investigation where leading edge and suction

side parameters are modified only, Figure 5.9. A detailed comparison of the

non-dominated solutions of both cases shows that the increased design freedom

on blade modification results in a slightly higher value for the potential working

range.

In order to validate and compare the results of the non-dominated solutions

which provide the highest working range value, the corresponding designs of the

previous and the current investigation are selected and loss curve calculations

are performed within the range of ±10◦ deflection to the datum inlet flow an-
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Figure 5.13: Criterion space and non-dominated solutions for blade section op-

timization with 25 parameters

gle. The resulting pressure rise coefficient and loss distributions are shown in

Figure 5.14 where additionally the results of the datum design are included for

better comparison.

As can be seen, the optimized designs are better with respect to both objec-

tives, working range and loss at the design flow angle, compared with the datum

design. If all blade section parameters can be changed, an increase in static pres-

sure for higher inlet flow angles, i.e. in the stall region, can be achieved. This

is reflected in a gain of working range whereas in the choke region the improve-

ment with respect to the datum design is rather small. In case of leading edge

and suction side geometry modification only, the improvement in working range

is mainly obtained for lower relative inlet flow angles driven by a higher static

pressure rise. In general, the loss curves of both optimized designs are slightly

shifted to each other, but the level of improvement is rather equal. In terms of

loss at design flow angle both show a reduction of about 6% compared to the

datum design whereas the improvement in working range is approximately 1.0◦

at a reasonable working range loss level of ωWR = 4%.

If the resulting blade section geometries are compared, Figure 5.15, only tiny
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Figure 5.14: Comparison of static pressure rise (a) and pressure loss coefficient

(b) between datum and optimized designs

deflections in the geometry can be found. Both optimized designs are very close

to each other, in particular the redistribution of the cross section area caused by

a higher inlet wedge angle and the movement of the maximum blade thickness

towards the leading is equivalent. In other words, compared with the datum

design both optimized sections show a more front loaded behavior which is the

reason for the improvement in working range.

This effect can be better seen from a comparison of the isentropic Mach num-

ber distributions, Figure 5.16, which are calculated based on the pressure relation
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Figure 5.15: Comparison of optimized blade section geometry

Misen =

√√√√√√ 2

γ − 1

⎛⎜⎝(P0

P

)γ − 1

γ − 1

⎞⎟⎠ (5.7)

where P is the static pressure on the blade surface, P0 the total pressure and γ the

ratio of specific heat capacities. Each Mach number distribution shows two peaks

close to the blade leading edge which are results of the curvature discontinuity at

the two leading edge blend points, and increasing Mach number values due to flow

acceleration at the blade suction side. It can be observed that both optimized

designs show a stronger flow acceleration on the suction side and hence a higher

Mach number compared to the datum design. It is also fact that the axial position

of this maximum Mach number is located more at the front of the blade section

according to the described geometry modifications. Furthermore, the loading near

the leading edge is increased and decreased in the middle part, while it appears

almost unchanged at the trailing edge. It is interesting to notice that in spite of

the fact that the higher supersonic Mach numbers of both optimized cases cause

more shock losses the overall loss is reduced for both. Generally this investigation

confirms that front-loaded blade designs typically lead to wider working ranges.
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Figure 5.16: Isentropic Mach number distributions for datum and optimized

blade sections

Summarizing, the results of these two investigations have shown that a com-

pressor blade section can be designed automatically and design improvements

with respect to multiple objectives can be made. The application of a multi-

objective optimization strategy additionally provides multiple solutions which

can be used to discuss trade-offs and from which the design engineer can choose

a solution depending on additional decision criteria.

A complete three-dimensional blade geometry can be found by designing sev-

eral two-dimensional blade sections which are radially stacked. Therefore, it

is obvious to use the demonstrated automated blade design and optimization

process also for finding the other desired blade section geometries. In order to

demonstrate the general feasibility, the presented approach for automated blade

design is applied to further blade sections of the same Rolls-Royce high pressure

compressor stator blade design. In this particular case, the blade is divided into

21 sections starting with section 01 at the hub and ending with section 21 at

the casing, where section 11 describes the mid-section of the blade. Based on

the already optimized mid-section, six further sections are selected for improve-

ment, three between mid-section and hub and three towards the casing where

sections close to hub and casing are avoided due to possible flow solver instabil-

ities. The multi-objective design problem is solved based on problem definition
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(5.2) with the NSGA-II algorithm where 50 individuals in each population are

treated over 200 generations. All parameters for leading and trailing edge, suc-

tion and pressure side as well as the stagger angle are variable for each section

during the optimization process where the bounds for the design parameters are

selected according to the minimum and maximum values of the datum design.

The boundary conditions for the flow solver are also adapted for each section

optimization.

Figures 5.17 and 5.18 show the resulting static pressure rise coefficient and loss

distributions for the upper sections 17, 15, and 13 as well as for the lower sections

09, 07, and 05, respectively. In general, an improvement in working range and

loss at design flow conditions can be observed for all optimized section designs.

The increase in working range is mainly driven by better choke properties and in

some particular cases even by higher pressure rise at stall. Section 17 shows the

highest working range improvement of approximately 2◦ at a reasonable working

range loss level ωWR = 4% whereas the improvements for the other sections lie

between 0.5◦ and 1.5◦. Furthermore, it can be seen that almost each loss curve

is symmetric around the design inlet flow angle which is an additional property

of the problem definition. Hence, beside the improvement in loss at design flow

conditions, in almost each optimized section a decrease in loss production at

off-design conditions can be observed.

The biggest differences in the loss curves and static pressure rise distribution

can be found on section 05 where the datum design is shifted in horizontal di-

rection, Figure 5.18b. The intention of the design engineer is to gain more stall

margin by a re-definition of the design inlet flow angle in choke direction. This

is a common and very easy method for achieving more stall margin in a manual

compressor blade design process. However, this increases also the losses at de-

sign inlet flow conditions and is not an optimal solution to the design problem.

The optimized section 05 which shows a symmetrical loss distribution around

the design inlet flow angle can be interpreted as a trade-off solution between

lower losses and lower stall margin. If the loss reduction is mainly pursuit, the

current optimized design would be the choice. If more stall margin is desired,

the optimization problem has to be adapted. This, however, is not a big issue

since a simple extension of the optimization problem definition by an additional

constraint would ensure the required value.
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Figure 5.17: Static pressure rise coefficient and loss distribution for selected

blade sections - part 1



114 5 BLADE DESIGN

�
[

]
%

��
I
[deg]

c
p

[-
]

0.3

0.35

0.4

0.45

0.5

0.55

Datum Design

Optimized, section 07

-6 -4 -2 0 2 4 6
0

1

2

3

4

5

6

7

(a) Blade section 07

�
[

]
%

c
p

[-
]

��
I
[deg]

0.3

0.35

0.4

0.45

0.5

0.55

Datum Design

Optimized, section 05

-6 -4 -2 0 2 4 6
0

1

2

3

4

5

6

7

(b) Blade section 05

Figure 5.18: Static pressure rise coefficient and loss distribution for selected

blade sections - part 2

Figure 5.19 presents a summary of the radial distributions of the design point

loss ω0 and the working range WR at a comparable working range loss level of

ωWR = 4% for the datum and the seven optimized blade sections. The comparison

shows that the application of automated two-dimensional blade design optimiza-

tion to all blade sections produces promising results. In general, a reduction in

pressure loss at design inlet flow conditions and an increase in working range can

be observed for each optimized blade section design. It should be noticed that

all these results are taken just as one out of a set of non-dominated solutions

which provide various optimal solutions in terms of multi-objective optimization.

The optimal designs in Figure 5.19 represent the best non-dominated solutions

with respect to the working range criteria, however, if the pressure loss at design

point is more important, other optimal design points can be chosen from the set

of available non-dominated solutions resulting in a different radial distribution

for the objective functions.
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Figure 5.19: Comparison of radial distributions of pressure loss coefficient (a)

and working range (b) at ωWR = 4% for seven optimized blade

sections with datum design

If the optimized blade sections from Figure 5.19 are stacked along a radial

stacking line, a three-dimensional blade geometry is obtained which can be seen in

Figure 5.20. The comparison with the datum design shows that the new geometry

differs significantly. The sections 17, 13, 11, 09, and 05 look rather smooth

whereas sections 15 and 07 produce undesired wiggles in the three-dimensional

blade geometry. In particular, the trailing edge shows the biggest deflection which

is mainly caused by the corresponding stagger angles.

In terms of industrial design, this three-dimensional blade geometry would not

be acceptable since the required radial smoothness is not fulfilled. The reason for

this is that each optimized section is chosen independently based on its maximum

working range value only. Hence, it would be better to select the blade sections

from their set of non-dominated solutions depending on an additional criterion

which considers the neighboring section geometries in order to obtain a smooth

three-dimensional blade design. This is just one simple method which can be

implemented easily in the current process, however, the better approach would
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(left) and optimized design (right) obtained by seven individual

multi-objective blade section optimization runs

be to consider the required radial smoothness of the blade geometry during the

multi-objective blade optimization process.



6 Conclusions and Outlook

This thesis illustrates some possibilities of process integration and automated op-

timization for supporting the aerodynamic compressor design process. It demon-

strates that time consuming design tasks can be automated and significant reduc-

tions in the overall design cycle time are achievable. In most aerodynamic design

problems multiple contradicting design goals have to be pursuit simultaneously

and many constraints have to be considered. The multi-objective optimization

strategy is a method for solving these kind of problems in an accurate way and

provides trade-off solutions from which the design engineer can choose depend-

ing on his experience and his final decision. It is clear that setting-up the design

process and choosing appropriate optimization algorithms are prerequisite for the

success, and expertise in process definition, problem formulation and optimization

algorithms is essential.

As a first demonstration for the benefits that can be achieved by process inte-

gration and optimization, the highly iterative annulus design task which is part of

the preliminary design process was automated and numerical optimization meth-

ods were performed on the basis of stochastic and deterministic methods. In order

to achieve feasible solutions, constraints on typical compressor design parameters

have been considered. Based on a Rolls-Royce 9-stage high pressure compressor

design, a significant increase in conflicting design objectives, namely efficiency,

surge margin, and overall compressor pressure ratio, as well as an improvement

in process acceleration, resulting in a speed-up factor of 12, are shown. Beside

the process improvements, automated design can find limits and admissibilities

of the problem definition and of the design tools. As an important result of this

investigation, an issue in the reliability of the preliminary analysis tool is pointed
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out. Since the process integration is flexible, an adaption of the automated pre-

liminary design process by including an additional analysis for the determination

of the surge margin value was performed. Non-dominated solutions are achieved

with a deterministic optimization method using the compromise approach and

a stochastic multi-objective optimization algorithm where improvements in com-

pressor efficiency and surge margin can be observed.

The benefits of process integration and automation are presented also on the

throughflow off-design calculation which is a subtask of the throughflow calcula-

tion process. Based on a Rolls-Royce 6-stage high pressure compressor design,

a gradient based optimization algorithm is used to find solutions to the multi-

objective throughflow off-design problem where three different scalarization tech-

niques are applied in order to transfer the multiple goals into a single-objective

design problem. Improved solutions to the design problem are found and the

required design time is accelerated by a factor of 12 compared to the manual

solution finding process.

In the last part of this work the compressor blade design problem was con-

ducted. As an important step the two-dimensional blade design problem was

re-formulated and two alternative problem definitions were provided which are

characterized by a lower number of required function evaluations compared to the

standard procedure. Multi-objective optimizations based on a Rolls-Royce stator

blade mid-height section show promising results with significant improvements in

pressure loss at design flow conditions and working range with a multi-objective

genetic optimizer considering aerodynamic and geometric constraints. The de-

sign process is accelerated by factor of at least 10 since the manual procedure

of finding the working range by at least 30 individual flow calculations is re-

duced to only three points. In a final step a method for three-dimensional blade

design optimization was introduced based on multiple individual blade section

designs. The automated blade design process was applied to further radially dis-

tributed blade sections and improved designs are selected to be compound to a

three-dimensional blade shape.

It is obvious that the aerodynamic compressor design process is too compli-

cated to cover all aspects in this work. From the industrial point of view it is

required to implement more tools and more processes in order to come closer to

the real engineering work flow.
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In the demonstrated preliminary design process improvements for design point

conditions are achieved only. However, a compressor has to work also for different

operating conditions which makes the design process more complicated. As an

outlook for further work an extension of the presented design tasks by introducing

more design parameters is possible. This increases the design freedom and the

chance to find better solutions to the design problems, but also requires a longer

optimization time or an adaption of the optimization algorithms and strategies.

Furthermore, an extension of the design problems by considering more objectives

and constraints can be done in order to cover additional design aspects in the

preliminary design phase.

The proposed three-dimensional blade design approach based on several ra-

dially stacked optimized blade sections is one possible design method. However,

flow around a blade is highly three-dimensional and very sensitive in term of

surface smoothness which was not considered in the presented approach directly.

As an possible extension of the blading process an additional design criteria for

the blade section determination could be used to guarantee radial smoothness of

the blade geometry. It is also worth to investigate new parameterization meth-

ods describing three-dimensional blade shapes which imply parameter reduction

and geometry smoothness with a maximum of design freedom. In order to catch

as much flow phenomena as possible, in particular at the blade hub and cas-

ing region, the usage of a more sophisticated CFD method with an appropriate

turbulence model is recommended.



Appendix: Aerodynamic

Compressor Design Parameters

The appendix presents brief descriptions and definitions of important aerody-

namic compressor design parameters which are used in this thesis.

A.1 De Haller Number

The de Haller number DH is a simple indicator for endwall loading, i.e. separation

of the boundary layer at the endwall, de Haller (1953). It is defined as fraction

of the outlet velocity wE to the inlet velocity wI :

DH =
wE

wI

. (A.1)

De Haller deduced that the velocity out of a blade row should not be less than

about 0.75 times the inlet velocity if the performance is to be satisfactory. This

limit is determined empirically and therefore it is not really fix. Due to different

design philosophies and new technologies it is possible to reduce this value down

to 0.6.

A.2 Blockage

The blockage BL is a result of viscous flow phenomena within the compressor.

It is defined as the relation between the effective cross section area Aeff due to

annulus wall boundary layer evolution and the geometrically available flow area

Ageom:
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BL =

(
1 − Aeff

Ageom

)
· 100%. (A.2)

hub

m
c,I

casing

A
eff

A
geom

rotor stator

boundary layer

Figure A.1: Definition of blockage

A.3 Diffusion Factor

The diffusion factor DF was derived by Lieblein et al. (1953) and is an assess-

ment for the blade loading. It relates empirically the peak velocity on the suction

side of the blade to the velocity at the trailing edge:

DF = 1 − wE

wI

+
Δwu

2 σ wI

(A.3)

The first term is the one-dimensional deceleration of the flow equivalent to

the de Haller number (A.1) whereas the second term describes the loading due

to flow turning correlated with the blade solidity where Δwu is the change in the

circumferential component of the relative velocity and σ is the solidity. The flow

is critical for DF > 0.5 and values more then 0.6 indicate blade stall, Cumpsty

(2004).
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A.4 Efficiency

In compressor design two efficiency values are distinguished. The compressor

isentropic efficiency ηc,isen is a value where it is assumed that the process of flow

compression is performed adiabatic and reversible. It can be calculated by

ηc,isen =

(
P0,c,E

P0,c,I

)γ − 1

γ − 1

T0,c,E

T0,c,I

− 1
(A.4)

where γ is the ratio of specific heat capacities, P0,c,E and P0,c,I are the compressor

exit an inlet total pressures while T0,c,E and T0,c,I are the exit and inlet total

temperatures.

The isentropic efficiency is not a real indicator to compare the aerodynamic

quality of two compressor designs. Due to definition (A.4) the isentropic efficiency

of compressors with identical aerodynamic quality gets lower when the overall

pressure ratio is increased and this trend may be confusing or misleading, Cump-

sty (2004). This can be avoided by using the polytropic efficiency which removes

the penalty for higher pressure ratio so that compressors of equal aerodynamic

quality but significantly different pressure ratio would have the same polytropic

efficiency though a different isentropic efficiency. The compressor polytropic effi-

ciency can be determined by

ηc,poly =
γ − 1

γ
·
ln

(
P0,c,E

P0,c,I

)
ln

(
T0,c,E

T0,c,I

) . (A.5)

A.5 Koch Parameter

A prediction of compressor instabilities in the early design phase is absolutely

essential. Koch (1981) published a reliable method for assessing the stall margin

capability of a new compressor design during the early preliminary design phase

by estimating the pressure rise at stall. Based on the use of the large General
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Electric data base of measurements on compressors he defined the Koch parameter

as an enthalpy-equivalent static pressure rise coefficient of a stage i as

Ch,i =
ΔH0,i − 1

2

((
uR

E,i

)2 − (
uR

I,i

)2
)

1
2

((
wR

I,i

)2
+
(
cS
I,i

)2
) . (A.6)

The major idea is to correlate the basic rectilinear diffusor parameters length

L and exit height H2 with the geometry of a compressor blade passage described

by the camber line length L and the exit passage width H2, Figure A.2. The

enthalpy-equivalent static pressure rise coefficient Ch is compared with the max-

imum static pressure rise of two-dimensional diffusors based on the correlations

found by Sovran and Klomp (1967). In axial compressor design it is required

to keep the actual Koch parameter Ch below the maximum static pressure rise

coefficient of the rectilinear diffusor in order to avoid stall.

H1

L

H2

H1 H2

L

rectilinear diffusor blade passage

Figure A.2: Correlation between rectilinear diffusor and compressor blade row

A.6 Stage Pressure Ratio

The stage pressure ratio Πi is defined as the total pressure at stage exit (stator

exit) related to the total pressure at the stage inlet (rotor inlet) position:
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Πi =
P S

0,E,i

PR
0,I,i

. (A.7)

A.7 Overall Pressure Ratio

The overall pressure ratio Πc is defined as the product of all stage pressure ratios

Πi where Ns denotes the total number of stages:

Πc =
Ns∏
i=1

Πi. (A.8)

A.8 Stage Loading

The stage loading Ψ is defined as ratio of the total enthalpy rise ΔH0 of a stage

with respect to the square of the circumferential speed u. Since the total enthalpy

can be calculated by the total temperature T0 and the specific heat capacity cp

according to H0 = cpT0, the stage loading becomes

Ψ =
ΔH0

u2
=

cp T0,E − cp T0,I

u2
. (A.9)

It should be noticed that u can either be taken as the blade tip speed or the

speed at mid-height radius which is more common, and the enthalpy change can

be the static or total enthalpy depending on the context where the total is more

common, Cumpsty (2004).

A.9 Surge Margin

There are many different ways of defining surge margin, but one of the most

simple is illustrated in Figure A.3:

SM =
Πs − Πc

Πc

· 100% (A.10)
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where Πc is the compressor design point pressure ratio on the working line for

the given shaft speed and Πs is the predicted pressure ratio on the surge line for

the same mass flow function which is generally defined as

FLF =
ṁc,I

√
T0,c,I

P0,c,I

. (A.11)

In a multistage compressor for use in a turbojet engine, it is normal to insist

on a surge margin of about 25%, Cumpsty (2004). If the complete compressor

map is not available, it is more appropriate to determine the surge margin from

parameters obtained from a single shaft speed. This leads to another very com-

mon surge margin definition for the design point based on the maximum and

working line pressure ratios and the corresponding flow function values at this

single speed line given by

SM =

⎛⎜⎜⎜⎝
Π̃s

FLFs

Πc

FLFc

− 1

⎞⎟⎟⎟⎠ · 100%. (A.12)
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Figure A.3: Definition of compressor surge margin
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A.10 Total Pressure Loss Coefficient

In the field of turbo machinery, different possible blade loss definitions exist which

describe the pressure reduction between blade exit and inlet position. A common

definition is given as

ω =
P0,E,isen − P̄0,E

P0,I − PI

(A.13)

where P0,E,isen is the exit total pressure for an isentropic case, P̄0,E the averaged

exit total pressure, and P0,I , PI are the inlet total and static pressures, respec-

tively.
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