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ABSTRACT 

MULTIOBJECTIVE GENETIC ALGORITHM APPROACHES TO PROJECT 

SCHEDULING UNDER RISK 

 

In this thesis, project scheduling under risk is chosen as the topic of research. 

Project scheduling under risk is defined as a biobjective decision problem and is 

formulated as a 0-1 integer mathematical programming model. In this biobjective 

formulation, one of the objectives is taken as the expected makespan minimization and 

the other is taken as the expected cost minimization. 

As the solution approach to this biobjective formulation genetic algorithm (GA) is 

chosen. After carefully investigating the multiobjective GA literature, two strategies 

based on the vector evaluated GA are developed and a new GA is proposed. For these 

three GAs first the parameters are investigated through statistical experimentation and 

then the values are decided upon. The chosen parameters are used for the computational 

study part of this thesis.  

In this thesis three improvement heuristics are developed also to further improve 

the GA solutions. The aim of these improvement heuristics is to decrease the expected 

cost of the project while keeping the expected duration of the project fixed. These 

improvement heuristics are implemented at the end of the proposed GA and used to 

improve the results of the proposed GA. 

Finally the GAs and improvement heuristics are tested on three different sets of 

problems. The results are evaluated by pairwise comparisons of algorithms and of 

heuristics. Also an approximation of the true Pareto front is generated using the 

commercial mathematical modelling program, GAMS©. The results are compared to 

that approximation and they seem comparable to that solution. The results of the 

improvement heuristics are also compared against each other and the performance of 

the heuristics is reported in detail.  
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ÖZET 

R�SK ALTINDA PROJE Ç�ZELGELEME PROBLEM�NE GENET�K ALGOR�TMA 

ÇÖZÜM YAKLA�IMLARI 

 

Bu tezde risk altında proje çizelgeleme problemi ele alınmı�tır. Risk altında proje 

çizelgeleme problemi iki amaçlı karar problemi olarak tanımlanmı� ve 0-1 tamsayılı 

matematiksel programlama modeli olarak formüle edilmi�tir. �ki amaçlı bu modelde, bir 

amaç beklenen proje süresinin en küçüklenmesi di�er amaç ise beklenen proje 

maliyetinin en küçüklenmesidir. 

Bu probleme çözüm yakla�ımı olarak genetik algoritma (GA) seçilmi�tir. Çok 

amaçlı GA literatürü detaylı olarak incelendikten sonra vektör de�erlendirmeli GA 

üzerine iki strateji ve ayrıca yeni bir GA önerilmi�tir. Bu GAlar için parametreler 

üzerinde yapılan istatistiki deneyler sonucunda uygun parametre de�erleri seçilmi�tir. 

Seçilen parametreler yapılan çalı�malarda kullanılmı�tır. 

Bu tezde ayrıca GA sonuçlarını geli�tirmek üzere üç tane sezgisel yöntem 

önerilmi�tir. Bu sezgisel yöntemlerin amacı, beklenen proje süresini sabit tutarken 

beklenen proje maliyetini azaltmaktır. Sezgisel yöntemler önerilen GA’nın sonuna 

eklenmi� ve bu algoritmanın sonuçlarını geli�tirmek amacıyla kullanılmı�tır. 

Son olarak, GAlar ve sezgisel yöntemler üç farklı problem sınıfı üzerinde 

sınanmı�tır. Sonuçlar üzerinden algoritmaların ve sezgisel yöntemlerin ikili 

kar�ıla�tırmaları yapılmı�tır. Ayrıca GAMS© ticari matematiksel programlama yazılımı 

kullanılarak Pareto yüzeyinin bir yakla�ımı yapılmı�tır. Önerilen GA’nın sonuçlarının 

bu yakla�ımla da yakın oldu�u görülmü�tür. Sezgisel yöntemlerin ise ikili 

kar�ıla�tırması yapılmı� ve bu kar�ıla�tırmaların sonuçları rapor edilmi�tir. 
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1. INTRODUCTION AND PROBLEM DEFINITION 

The aim of this thesis is to develop an effective solution to the problem of project 

scheduling under risk. Project scheduling under risk has not been studied extensively in 

the literature (Ulusoy, 2002). The model for project scheduling under risk can be 

summarized as follows. 

Each task (activity) contains different number of risks and each risk has an impact 

and a probability of occurrence associated with it. Risks only affect the duration of the 

related task when they occur. A project manager can decrease the probability of 

occurrence and impact of each risk by taking some preventive measures. These 

preventive measures have a cost. A penalty cost based on the tardiness of the project, an 

overhead cost based on the project duration and a labor cost based on the daily labor 

needs of each task are the components of the cost function of the model. The model has 

no resource constraints. The risks are assumed to be independent with their impacts 

being additive.   

There are a number of objectives in project scheduling and most project managers 

are trying to achieve more than one objective simultaneously. Hence, multiobjective 

approach to this problem has been adopted in this thesis. Makespan minimization and 

cost minimization objectives are chosen as the two objectives to be adopted by the 

decision maker.  

Chapter 2 of the thesis summarizes the basic concepts of the deterministic project 

scheduling problem elements. Chapter 3 of the thesis summarizes the basics of 

multiobjective optimization and introduces the multiobjective evolutionary algorithms. 

Chapter 4 explains the problem and the proposed solution approaches. Chapter 5 gives 

the details of the computational study and the results of this study. Chapter 6 includes 

the conclusion and the proposed future research directions.   
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2. DETERMINISTIC PROJECT SCHEDULING 

2.1. Elements of Project Scheduling Problem (PSP) 

2.1.1. Activities 

Activities are non-divisible parts of project. Activities are also called as jobs, 

operations and tasks. Each activity must be completed in order to finish the project. 

Activities may have modes, which determine duration, resource and cash flows. 

2.1.2. Precedence Relations 

For some reason, some tasks may need a set of tasks to be completed in order to 

start. For example, these precedence relations may occur according to technological 

requirements. Consider, e.g., a building project. Clearly, activity “roof tiling” may only 

be started if another activity “erecting walls” has been finished. The precedence 

relations are given by sets of immediate predecessors indicating that an activity may not 

be started before each of its predecessors is completed (Hartmann, 1999). 

Also some activities may have some other type of precedence relations. To handle 

these situations generalized precedence relations (GPRs) are defined. These are named 

as start-start (SS), finish-finish (FF), finish-start (FS) and start-finish (SF). Minimal 

time lag and maximal time lag are other features to describe the precedence relationship 

between two or more tasks. 
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Most of the time, the statement of the project is in the form of a set of activities 

and the immediate precedence relations among them. If activity u precedes activity v, it 

is written as u�  v (Elmaghraby, 1995). 

In some cases GPRs are also used to define the relationship between two 

activities. While defining GPRs start times of activities (i.e. start time of activity a s(a)) 

and finish times of activities (i.e. finish time of activity b f(b)) must be identified. Some 

examples of GPRs can be stated as follows: 

s(b) ≥ s(a) + 1   (SS; denotes, b can start one time unit after a starts) 

s(b) ≥ f(a) + 3   (FS; denotes, b can start three time unit after a finishes) 

f(b) ≥ f(a) + 5    (FF; denotes, b can finish five time units after a finishes) 

f(b) ≥ s(a) + 2   (SF; denotes, b can finish two time units after a starts)  

2.1.3. Resources 

Material, money, manpower, which are needed to perform the tasks of the project 

are called the resources. Resources are very important in project scheduling since they 

define the type of the problem. If at least one of the resources is constrained, the 

problem is called resource-constrained project scheduling problem (RCPSP). Resources 

are mostly classified according to category. Category based classification includes four 

type of classes, which are renewable, nonrenewable, doubly constrained and partially 

renewable classes (Kolisch and Padman, 2001). 

2.1.3.1. Renewable Resources 

Renewable resources are constrained on a period basis only. That is, regardless of 

the project length, each renewable resource is available for every single period. 

Examples of this class are machine, manpower and equipment. 

2.1.3.2. Nonrenewable Resources 

Nonrenewable resources are limited over the entire planning horizon, with no 

restrictions within each period. The classic example is the budget of a project. 
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2.1.3.3. Doubly Constrained Resources 

Doubly constrained resources are constrained both on the period and planning 

horizon basis. Budget constraints that limit capital availability for the entire project as 

well as limiting its consumption over each time period are an example of this type of 

resource.  

2.1.3.4. Partially Renewable Resources 

Partially renewable resources limit the utilization of some resources within a 

subset of planning horizon. An example is that of a planning horizon of a month with 

workers whose weekly working time, not the daily time, is limited by the working 

contract. It has been shown that partially renewable resources can depict both renewable 

and nonrenewable resources. 

2.2. Objectives Employed in Project Scheduling Problems 

2.2.1. Makespan Minimization 

In this type of PSP, the objective is to minimize the makespan (i.e. the time span 

between the starting time and the ending time of the project). The solution of this type 

of problems generates a time-critical path. 

2.2.2. Net Present Value Maximization 

Maximization of the net present value (NPV) of cash flows throughout the project 

is taken as the objective in these types of problems. Expenses and payments are types of 

cash flows and the timing of these cash flows occur depending on contract types. For 

example, expenses might be paid at the beginning of tasks and progress payments might 

occur at the end of a defined set of tasks. 
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2.2.3. Quality Maximization 

Maximizing the quality of the project is one of the more important objectives for 

project managers. That is why quality maximization is also taken as an objective in 

PSPs. The problem with this objective is its quantitative definition and the agreement of 

different stakeholders on this definition. 

2.2.4. Cost Minimization 

In the type of problems with this objective, costs such as those occurring from the 

realization of an activity, resource usage and earliness / tardiness penalties are to be 

minimized. 

Besides these well-known objectives, some other objectives are also employed. 

These performance measures are represented based on timing of activities. Some 

examples of such objectives are “minimizing the total earliness of activities” and 

“minimizing the total tardiness of activities”. The combinations of these objective 

functions are also employed in project scheduling leading to multiobjective project 

scheduling problems. In this thesis, cost minimization and makespan minimization are 

chosen as the objectives to achieve. 

2.3. Network Representation of Projects 

In general, two representations, activity-on-arc (AOA) and activity-on-node 

(AON), have been commonly used to capture project networks, resulting in an event-

based or activity-based representation, respectively. In the AOA representation, nodes 

represent events and arcs represent activities. Dummy activities are used to preserve the 

precedence relations and dummy nodes capture the start and completion of the project. 

In the AON representation, activities are represented by nodes and precedence relations 

are represented by directed arcs (Kolisch and Padman, 2001). 

In Figure 2.1(a) and (b), AOA and AON representations of a project, which has 

four activities (a,b,c,d) and the following precedence relations are illustrated 

respectively. 
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∅ �  a, b; a �  c, d; b �  d;  c, d �  ∅ .  

 

 

 

 

  (a)       (b) 

Figure 2-1 (a) The AON representation; (b) AOA representation. 

 

The AON representation of a project is more direct, more frugal and unique. On 

the other hand, AOA representation has some advantages against AON representation. 

These advantages can be summarized from two points of view. 

From representational point of view, it is easy to graphically identify the events of 

the project in AOA representation. It is easier to visually identify the finished activities 

up to occurrence of an event. Finally, AOA representation is preferred when it is desired 

to give a visual representation of the duration of the activities, and then the arc length is 

made proportional to the duration of the activity (Elmaghraby, 1995). 

From analytical point of view, it is easy to capture the information of more 

complex precedence relationships such as generalized precedence relationships. AOA 

type of representation is also advantageous when one tries to construct mathematical 

models that depend on the definition of nodes, such as linear models for optimal time-

cost trade-off. 
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3. MULTIOBJECTIVE OPTIMIZATION PROBLEM 

Most real world problems have multiple objectives to achieve. This situation 

creates a set of problems in Operations Research (OR) called multiobjective 

optimization problems (MOPs). In order to deal with MOPs, plenty of techniques have 

been developed in OR. Many approaches have been suggested, going all the way from 

naively combining objectives into one to the use of game theory to coordinate the 

relative importance of each objective. The fuzziness of this area lies in the fact that there 

is no accepted definition of "optimum" as in the single-objective optimization. Hence, it 

is difficult to even compare the results of one method to another method’s results 

because, normally, the "best" answer corresponds to the most preferable solution by the 

so-called decision maker (DM) (Coello, 2000). 

3.1. Statement of the Multiobjective Optimization Problem (MOP) 

Multiobjective (also called multiperformance, multicriteria or vector) optimization 

can be defined as the problem of finding a vector of decision variables which satisfies 

constraints and optimizes a vector function whose elements represent the objective 

functions. These functions form a mathematical description of performance criteria 

which are usually in conflict with each other. Hence, the term "optimize" means finding 

such a solution which would give the values of all the objective functions acceptable to 

the designer (Coello, 2000). 

Formally, we can state the problem as follows (in this thesis, if not otherwise 

stated, all the objectives of MOP are taken as minimization): 

[ ]1 2( ) ( ), ( ),..., ( )
T

kMin f X f X f X f X=                                                                        (3.1) 

subject to: 

( ) 0 1,2,...,ig X i m≥ =         (3.2) 
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( ) 0 1,2,...,ih X i p= =                                                                   (3.3) 

where X=[X1, X2,…, Xn]T is the n dimensional vector of decision variables and T stands 

for the transpose. In the formulation, k represents the number of objectives, m is the 

number of inequality constraints and p is the number of equality constraints. 

Some terms need to be defined to further investigate the MOP. 

3.1.1. Ideal Vector and Ideal Decision Vector 

Assume that we have k objective functions fi(X) (i=1,2,…,k) which can be solved 

on the decision vector space X separately. Let fi
0 be the optimum for the ith objective. 

The decision vector X0(i) corresponding to this solution is denoted by:  

0( ) 0( ) 0( ) 0( )
1 2, ,...,

Ti i i i
nX X X X� �= � �                                                                                   (3.4) 

where 0( )i
jX is the decision variable (j=1,2,…,n) of 0( )iX . 

For this multiobjective problem, set of optimum solutions constitutes a vector of 

optimum solution values (f0) in k dimensional space and this vector is called the ideal 

vector. 

0 0 0 0
1 2, ,...,

T

kf f f f� �= � �                                                                                                  (3.5) 

The solution vector corresponding to this ideal set of solutions called the ideal 

decision vector. 

3.1.2. Pareto Optimum 

X* is Pareto optimal, if there exists no feasible vector X that decreases some 

criterion without causing a simultaneous increase in at least one other criterion. 

Formally, X* is Pareto optimal, if for every X∈F (where F denotes the feasible region of 

the problem), either (Coello, 2000) 

))()(( *

),...1{

XfXf ii
ki

=∧
∈

          (3.6) 

or there is at least one i∈{1,…k} such that 

)()( *XfXf ii > .                                 (3.7) 

where ∧  means some. 
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Another formal description can be given as follows; X* is Pareto optimal if there 

is no X∈F such that (Ehrgott, 2000) 

)()( *XfXf ii ≤    for i =1,2,…k                  (3.8) 

and 

)()( *XfXf jj <    for some j∈{1,2,…k}                          (3.9)

 The set of Pareto optimum solutions is called the set of noninferior or 

nondominated solutions, also called the Pareto set. 

3.1.3. Pareto Front 

Pareto front is the union of all nondominated solutions of the problem. For 

example, in a biobjective problem if the problem is solveable in the continuous domain 

Pareto front would be a continuous curve. Most of the time it is not possible to find an 

analytical representation of the Pareto front. In such a case, an adequate number of 

solutions are calculated to represent the Pareto front through a discrete set of points. 

Figure 3.1 demonstrates the concept of Pareto front in a biobjective problem, where the 

Pareto front is marked with a bold line. 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Pareto front of a biobjective problem            
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3.2. Multiobjective Optimization 

Multiobjective optimization techniques, as it is mentioned, typically result in more 

than a single solution. For this reason, to decide on the optimum, we need a DM who is 

capable of choosing the right solution from the set of solutions. This selection is one of 

the most challenging activities in multiobjective optimization. Three types of 

multiobjective optimization solution technique are available depending on the timing of 

the DM’s selection.  

Priori Preference Articulation: DM combines the differing objectives into a scalar 

cost function. This effectively makes the MOP singleobjective prior to optimization. 

Progressive Preference Articulation: Decision making and optimization are 

intertwined. Partial preference information is provided upon which optimization occurs, 

providing an “updated” set of solutions for the DM to consider.  

Posteriori Preference Articulation: DM is presented with a set of Pareto optimal 

candidate solutions and chooses from that set (Van Veldhuizen and Lamont, 2000a). 

3.2.1. Weighted Sum Approach 

This method consists of adding all the objective functions together using 

weighting coefficients for each one. As a result, the multiobjective optimization 

problem is transformed into a scalar optimization problem and the problem is 

represented in the following form (Coello, 2000). 

1

( )
k

i i
i

Min w f X
=
�          (3.10) 

subject to: 

( ) 0 1,2,...,ig X i m≥ =                  (3.11) 

( ) 0 1,2,...,ih X i p= =       (3.12) 

where wi ≥ 0 are the weighting coefficients. 

It is usually assumed that 1
1

=�
=

k

i
iw . But these weighting coefficients do not 

proportionally reflect the relative importance of the objectives, but are only factors 

which, when varied, locate points in the Pareto set. 
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If we want wi to closely reflect the relative importance of the objective functions, 

we need to normalize the objective functions. This normalization  is achieved by using a 

multiplier ci (ci = 1/fi
o). After this normalization, the objective function becomes: 

ii

k

i
i cXfw )(min

1
�

=

                    (3.13) 

subject to constraints as represented in Equations 3.11 and 3.12.  

3.2.2. Goal Programming 

In goal programming (GP), DMs have to assign targets or goals (bi) that they wish 

to achieve for each objective. Then, these bi values and the associated objectives are 

used to form a constraint. In order to represent the constraints in equality form, the 

positive (ni) and the negative (pi) deviation variables are added to constraints. Thus the 

problem is transformed to the following form: 

)(
1

i

k

i
i pnMin +�

=

                    (3.14) 

subject to: 

( ) 1,2,...i i i if X n p b i k+ − = =                                                   (3.15) 

X∈F   n≥ 0  p≥ 0 

The aim in GP is to minimize the deviations between the achievements of the 

goals.  The achievement process can be accomplished with different methods. Each one 

of these methods leads to a GP variant. Three variants, weighted goal programming 

(WGP), lexicographic goal programming (LGP) and MINMAX GP are mentioned 

below (Romero, 1991). 

3.2.2.1. Weighted Goal Programming 

In WGP, different than GP the objective function is generated from the sum of 

weighted deviations. To form the objective function of the WGP, the DM must assign 

different weights to the negative and positive deviations. After these additions to the 

GP, the objective function for WGP becomes the following, where the other constraints 

remain the same as in GP. 
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 )(
1

i

k

i
iii pnMin�

=

+ βα          (3.16) 

Obviously, the weights β will be zero when the desired achievement of the goal is 

greater than the established target. Similarly, the weights α will be zero when the 

desired achievement of the goal is less than the established target. 

3.2.2.2. Lexicographic Goal Programming 

In LGP, the DM generates a lexicographic objective function that has an 

importance ranking of objective function deviations. At each phase of LGP solution, the 

element of lexicographic objective function at this rank tried to be achieved. 

The lexicographic objective function of the general MOP is as follows (assuming 

that lexicographic objective function has q elements).  

1 2( , ), ( , ),... ( , )qLex Min a h n p h n p h n p� �= � �                 (3.17) 

 The LGP is solved through multi-phase approach. At first step the first element is 

minimized, at this level some variables are fixed and then second model is solved. This 

operation goes until the solution of q models has been made. If there are resources in the 

problem, the solution process may stop when the resources are exhausted. The model 

for solution’s first step is given below as an example.    

First Step Model of Solution: 

),(1 pnhMin                      (3.18) 

subject to: 

iiii bpnXf =−+)(   i = 1,2,…k      (3.19) 

X∈F   n≥ 0  p≥ 0 

3.2.2.3. MINMAX Goal Programming 

In this GP variant, the aim is to minimize the upper level of total weighted 

deviation for all of the objectives. The following model summarizes the aim of the 

MINMAX GP at a glance. 

dMin                      (3.20) 

subject to: 
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dpn iiii ≤+ βα   i = 1,2,…k                 (3.21) 

iiii bpnXf =−+)(   i = 1,2,…k      (3.22) 

X∈F   n≥ 0  p≥ 0 

3.2.3. Goal Attainment 

In this approach, DM decides on two vectors: The weight vector 

[ ]1 2, ,..., kw w w w= and the goal vector [ ]1 2, ,..., kb b b b= . To find the best compromise 

solution X*, we solve the following problem: 

αMin                       (3.23) 

subject to: 

0)( ≤Xg j    j = 1,2,…,m                 (3.24) 

0)( =Xhl    l = 1,2,…,p      (3.25) 

( )i i ib w f Xα+ ≥   i = 1,2,…,k      (3.26) 

where α is a scalar variable and is unrestricted in sign. The weights are positive and are 

normalized as follows: 

1

1
k

i
i

w
=

=�           (3.27) 

Figure 3.2 describes how this approach behaves in the context of a biobjective 

problem. It is obvious from the Figure 3.2, that the solution to the MOP by goal 

attainment approach occurs at the intersection point of the feasible region and the sum 

vector (Coello, 2000). 
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Figure 3-2 Goal attainment approach sample graph (Coello, 2000) 

3.2.4. The εεεε-Constraint Method 

This method is based on minimizing one (the most preferred or primary) objective 

function and considering the other objectives as constraints bound by some allowable 

levels εi. The method may be formulated as follows: 

1) Find the minimum of the rth objective function, i.e., find X* such that 
*( ) ( )r r

X F
f X Min f X

∈
=          (3.28) 

subject to additional constraints of the form 

ii Xf ε≤)(   for i=1,2,…,k   and   i ≠ r     (3.29) 

where εi are assumed values of the objective functions, which we do not wish to exceed. 

2) Repeat step (1) for different values of εi. The information derived from a well-chosen 

set of εi can be useful in making the decision. The search is stopped when the decision 

maker finds a satisfactory solution. 

It may be necessary to repeat the above procedure for different indices of r 

(Quagriella and Vicini, 1998). 

F 
f1

* 

w 
b1 

f1 

f2 

b+αw  
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b2 f2
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3.2.5. Genetic Algorithm Based Solution Approaches to MOP  

GA solution approach to multiobjective optimization is one of the most widely 

used in the OR literature. GAs constitute approximately 70% of the metaheuristic 

approaches published between 1991 and 2000 (Jones et al. 2002). 

There are a large number of GA based solution approaches for MOPs. These 

approaches will be summarized in the following sections. 

3.2.5.1. Vector Evaluated Genetic Algorithm  

Vector evaluated genetic algorithm (VEGA) is the first algorithm which is 

presented to solve MOPs. In this algorithm, k subpopulations of (N/k) individuals are 

created where N is the total population size and k is the number of objectives. An 

individual in subpopulation j is evaluated according to the performance on jth objective 

function to form its fitness value. After this step all the individuals in sub-populations 

are shuffled together and genetic operators are applied to these to form the next 

generation. VEGA is demonstrated in Figure 3.3 for a better understanding of the 

algorithm. 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3-3 Schematic of VEGA selection (Coello, 2000) 

VEGA is an easy algorithm to implement. On the other hand, it has some 

problems. This problem is speciation, which is described as “the evolution of species 
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within a population that excels in some respect” in genetics. This problem arises 

because this technique selects individuals who excel in one dimension without looking 

at other dimensions. The potential danger is that we could evolve with middling 

performance individuals. Middling implies an individual with acceptable performance, 

perhaps above average in all objectives, but not outstanding when measured by any 

particular function. Speciation is undesirable because it is opposed to goal of finding a 

compromise solution (Coello, 2000). 

In some GAs genders are also used to model the subpopulation based fitness 

assignment of VEGA. In these algorithms, each individual is assigned one of the k 

different genders at initial population. Fitness values of the individuals are calculated 

according to their genders just as in VEGA. For mating, sexual attractors are used to 

model the sexual attraction that occurs in nature. The mutation operator is restricted 

only slightly, to avoid changes in the sex of an individual. The reproduction operator 

does not change the sex of the individual that is copied (Coello, 2000). 

3.2.5.2. Nash Genetic Algorithms: Noncooperative Approach 

For an optimization problem with k objectives, a Nash strategy consists of k 

players, each optimizing its own criterion. However, each player has to optimize his 

criterion given that all the other criteria are fixed by the rest of the players. When no 

player can further improve its criterion, it means that that the system reached a state of 

equilibrium called Nash equilibrium. For a biobjective problem, let E be the search 

space for the first criterion and W the search space for the second criterion. A strategy 

pair (X,Y) ∈ ExW is said to be a Nash equilibrium if and only if: 

),(),( inf YXfYXf E
EX

E
∈

=         (3.30) 

( , ) ( , )infW W
Y W

f X Y f X Y
∈

=         (3.31) 

where inf means inferior or nondominated. 

Figure 3.4 describes how this approach works in the context of a biobjective 

problem. 

It is obvious that exchanges between players must be as frequent as possible to 

speed up the convergence of the algorithm (Périaux et al., 1998). 
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Figure 3-4 Noncooperative Nash genetic algorithm (Périaux et al., 1998)   

3.2.5.3. Weighted Min-Max Approach Based GA 

In this approach, the first generation is generated randomly. Chromosomes are 

formed to represent a solution and a corresponding weight list for objectives. For each 

generation min-max optimum solution procedure, described below, is processed. 

A point X* is min-max optimal, if for every X (where FX ∈ ) the following 

recursive formula is satisfied. 

Step 1: 
*

1( ) { ( )}i
X F i I

v X z XMinMax
∈ ∈

=                 (3.32) 

and then I1 ={i1}, where i1 is the index for which the value of zi(X) is maximal where 

zi(X) is described as follows. 

'
( )

( )
o

i i
i o

i

f X f
z X

f

−
=               (3.33-a) 

''
( )

( )
( )

o
i i

i
i

f X f
z x

f X

−
=             (3.33-b) 

where zi
’(X) and zi

’’(X) are relative deviations from the objectives’ optimum value and  

zi(X) found from the formula below. 
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' ''( ( )) { ( ), ( )}i I i i iz X Max z X z X∈∀ =      (3.34) 

If there is a set of solutions FX ⊂1 that satisfies Step 1, then apply: 

Step 2: 

1 1

*
2

,

( ) { ( )}i
X X i I i I

v X z XM in M ax
∈ ∈ ∉

=      (3.35) 

and then I2 ={i1, i2}, where i2 is the index for which the value of zi(X) in this step is 

maximal. 

After the intermediate steps the kth step is as follows. 

Step k: 

11 11

*

,

( ) { ( )}
k k

k i
X X i I i I

v X z XM in M ax
− −∈ ∈ ∉

=      (3.36) 

where {v1(X*), … , vk(X*)} is the set of optimal values of fractional deviations ordered 

nonincreasingly. 

 After this solution procedure is employed for all of the chromosomes, the 

following utility function U is used to evaluate the fitness of the chromosomes. 

�
=

=
k

i i

i
i F

F
WU

1
*      (3.37) 

where Fi
* are the scaling parameters for the objective criterion, k is the number of 

objective functions and Wi are the weighting factors for each objective function Fi. 

 In this approach, a sharing function with the form below is also used.  

�
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�
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α

     (3.38) 

where normally α=1, dij is a metric indicative of the distance between designs i and j, 

and σsh is the sharing parameter that controls the extent of sharing allowed. The fitness 

of a chromosome i is then modified to 

( )

1

( )

i
s i M

ij
i

f
f

dφ
=

=
�

                (3.39) 

where M is the number of chromosomes located in the vicinity of the ith chromosome. 

 The performance of the algorithm is closely related to the parameter values that 

are chosen. The authors use α=1 and chose a value between 0.01 and 0.1 for σsh.  

 Finally a mating restriction is used not to make crossover between chromosomes 

within a certain radius. It is also suggested not to make crossover between individuals in 
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a radius of 0.15 (σmat=0.15 where σmat represent the radius of mating restriction) (Coello, 

2000). 

3.2.5.4. Two Variations of the Weighted Min-Max Strategy 

These two variations of Min-Max based approach are given as parts of 

Multiobjective Optimization of Systems in the Engineering Sciences (MOSES) by 

Coello and Christiansen (1999). First of these variants is described by the following 

steps. 

1. The initial population is formed such a way that none of the individuals are 

infeasible. 

2. The user should give a list of weights for k objectives and a generation is solved by 

the min-max optimum approach. For each of the weight lists provided by the user, a 

generation is solved and the best compromise solution is selected to list for the DM. 

Different from the weighted Min-Max based GA in this variant the weights are not 

coded as a part of the chromosomes, they are given by the user for each generation.  

3. After the n processes are employed (n=number of weight combinations provided by 

the user, also number of generations), a final file is generated for the DM containing 

n best results. 

 This algorithm uses crossover and mutation, which are not restricted to give only 

feasible solutions.  If an operator (crossover or mutation) gives an infeasible solution, it 

is replaced by one of its parents. 

 Second variant employed in MOSES can be summarized by the similar following 

steps. Different from the first variant the second variant uses sharing and binary 

tournament selection.  

1. The initial population is formed such a way that none of the individuals are 

infeasible. 

2. By exploring the population at each generation, the local ideal vector is produced. 

This is done by comparing the values of each objective function in the entire 

population. 

3. The binary tournament selection is done by comparing the two individuals with the 

local ideal vector. The individual, which is less deviated from the local ideal vector, 
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wins the tournament. If a tie occurs sharing is used to decide the winner. The 

individual, which is in a less crowded region, wins the tournament in case of a tie.  

 Just as in the first variant this algorithm also gives n best solutions to the DM to 

decide on (Coello and Christiansen, 1999). 

3.2.5.5. The Contact Theorem to Detect Pareto Optimal Solutions 

This algorithm is based on the contact theorem to determine relative distances of a 

solution vector with respect to the Pareto set. A solution is initially generated at random, 

and is considered to be Pareto optimal. Its fitness is 1d , which is an arbitrarily chosen 

value called the starting distance. Then more solutions are generated and a distance 

value is computed according to the formula below. 

1

( )
( )

k
il i

l
i il

f X
z X

f
φ

=

� �−= � �
� �

�   for l=1,2,…lp     (3.40) 

where lp is the number of Pareto optimal solutions found so far, φi(X) is the solution’s ith 

objective value and fil is the ith objective value for lth Pareto solution. 

In the following step, the minimum value of the set { })( Xz l  and its 

corresponding index l* are found. This value is called )(* Xz
l

. The procedure identifies 

the Pareto solution closest to the newly generated solution. If the generated solution is 

Pareto optimal, the fitness is assigned according to the formula below.  

)(** XzdFitness
ll

+=           (3.41)

 After the first generation, 
l

d is defined using the maximum value of the distances 

from all existing Pareto solutions. If the newly generated solution is not a Pareto 

solution, then its fitness is computed using 

)(** XzdFitness
ll

−=          (3.42) 

and Fitness=0 in case a negative value results from this expression (Coello, 2000). 

3.2.5.6. A Nongenerational Genetic Algorithm 

A nongenerational GA uses nongenerational selection in which fitness of an 

individual is calculated incrementally. The idea comes from the learning classifier 
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systems, where it was shown that a simple replacement of the worst individual in the 

population followed by an update on the fitness of the rest of the population works 

better than a traditional (generational) GA. In this approach, the MOP with k objective 

functions is transformed into a biobjective problem. One of the objectives is the 

minimization of domination count (weighted average of the number of individuals that 

have dominated this individual so far when the individual is compared with a random 

group of individuals) and the other is the minimization of the moving niche count 

(weighted average of the number of individuals that lie close according to a sharing 

function). This biobjective optimization problem is then transformed into a single 

objective optimization problem by taking a linear combination of these two objectives 

(Coello, 2000).    

3.2.5.7. Randomly Generated Weights and Elitism 

This algorithm uses randomly generated weights and elitism to solve the MOP. 

Randomly generated weights transform the MOP objectives to a scalar objective to 

form fitness and by the help of elitism some part of the nondominated set is passed to 

the next generation. The algorithm uses the following steps to solve the MOP. 

1. Generate the initial population randomly. 

2. Compute the values of k objectives for each individual in the population. Then 

determine the nondominated solutions and keep them in the set NOND and keep 

the other solutions in the set CURRENT. 

3. If L represents the number of individuals in NOND and M is the size of CURRENT, 

then select (M-L) individuals for crossover using the procedure below. 

• Let r1, r2,…, rk random numbers in the interval [0,1]. The fitness function for each 

individual is 

�
=

=
k

i
ii XfwXf

1

)()(         (3.43)

 and wi is  
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=
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.        (3.44) 

• Select a parent with probability: 
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min      (3.45) 

where fmin(CURRENT) is the minimum fitness in the current population. 

4. Apply crossover to the selected (M-L) pairs of parents. Apply the mutation to the 

newly generated solutions. 

5. Randomly select L solutions from NOND. Then add L solutions to the (M-L) 

solutions generated in the previous step to construct a population of size M. 

6. Go to step 2, if stopping condition is not satisfied. If stopping condition is satisfied, 

report the solutions (Coello, 2000). 

3.2.5.8. Multiple Objective Genetic Algorithm 

The Multiobjective Optimization Genetic Algorithm (MOGA) developed by 

Fonseca and Fleming (1993) is an algorithm which uses Pareto ranking and sharing on 

fitness values.  

In this algorithm, an individual’s rank corresponds to the number of individuals in 

the current population by which it is dominated (Fonseca and Fleming, 1995). Consider, 

for example, an individual Xi of generation t dominated by pi
(t) individuals in the current 

generation (Coello, 2000). 
)(1),( t

ii ptXrank +=                     (3.46) 

Nondominated individuals are, therefore, all assigned the same rank, while 

dominated ones are penalized according to the population density in the corresponding 

region of the trade-off surface. Fitness is assigned by interpolating, for instance, 

linearly, from the best to the worst individuals in the population, and then averaging it 

between individuals with the same multiobjective rank.  

By combining Pareto dominance with partial preference information in the form 

of a goal vector in MOGA, Fleming and Fonseca have also provided a means of 

evolving only a given region of the trade-off surface. While the basic ranking scheme 

remains unaltered, the now Pareto-like comparison of the individuals selectively 

excludes those objectives that already satisfy their goals. Specifying fully unattainable 

goals causes objectives never to be excluded from comparison, which is the original 

Pareto ranking. Changing the goal values during the search alters the fitness landscape 
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accordingly and allows the DM to direct the population to zoom in on a particular 

region of the trade-off surface (Fonseca and Fleming 1995).    

MOGA pseudocode is given in the Appendix-A in Figure A.1. 

3.2.5.9. Nondominated Sorting Genetic Algorithm 

Nondominated sorting genetic algorithm (NSGA) is based on the ranking of 

nondominated solutions. Beside this ranking concept, in NSGA, a “dummy fitness” is 

also defined. In NSGA, the initial population is generated randomly and the 

nondominated solutions of this population are assigned rank 1. After this step, rank 1 

individuals are temporarily taken out and the nondominated solutions are identified 

which are assigned rank 2. This ranking mechanism (Figure 3.5) continues until all the 

individuals in the population are ranked. According to their ranking all the individuals 

are assigned a dummy fitness value starting from N (N=population size) for rank 1 and 

smaller values as the rank increase (Bagchi, 1999). 

 

 

 

 

 

 

 

 

 

Figure 3-5 NSGA ranking mechanism for a biobjective problem 

NSGA also employs fitness sharing and niche formation techniques. In NSGA, 

individuals are sharing the dummy fitness according to a niche count. The niche count 

mi is an estimate of how crowded is the neighborhood (niche) of an individual i (Horn et 

al., 1994). So, the niche count for an individual is based on the distance between the 

individual and the others. Distance (dij) may be defined in two possible ways. The 

phenotypic distance between two individuals is measured based on the difference in the 

decoded problem variables while their genotypic distance is measured based on the 
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difference in the coded problem variables between those two individuals (Bagchi, 

1999). The shared fitness and niche count calculations for NSGA are as follows: 

iii mff /' =           (3.47) 

where fi
’ is the shared fitness function, fi is dummy fitness value and mi is niche count. 

� �
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jiiji XXdShdShm

1 1

)),(()(        (3.48) 

Sh (dij) is the sharing function. Sharing function (Sh (dij)) is a decreasing function 

of dij, such that Sh (0)=1 and Sh [d ≥ σshare]=0. For such a sharing function σshare is called 

niche radius. A typical sharing function is the triangular sharing function given as 

follows (Horn et al., 1994). 

Sh [d] = 1 – d/σshare  for    σshare ≥ d      (3.49) 

Sh [d] = 0   for    σshare < d      (3.50)

 A detailed flowchart that explains how NSGA works is given in Figure 3.6. 

NSGA does not use elitist strategy to reach a nondominated set. Unlike NSGA, 

elitist nondominated sorting algorithm (ENGA - an enhancement of NSGA) uses elitist 

strategy. Like NSGA, ENGA uses nondominated sorting, niche formation, and sharing 

of fitness based on Pareto ranking. Also like NSGA, ENGA first produces the progenies 

through crossover and mutation but it uses a different selection procedure. It first ranks 

the candidate constituents of the next generation by performing an additional 

nondominated sorting of the combined parents and progenies pool. A controlled fraction 

of the individuals in this combined pool is then selected to form the next generation, 

ready to mate and propagate their nondominating schema characteristics. Thus each 

generation may end up containing several members of the parent chromosomes if they 

are good enough to outrank (in the nondomination sense) some of the newly created 

progenies. This selection procedure let the good parents live in the next generation and 

this makes the algorithm elitist (Bagchi, 1999). 

NSGA pseudocode is given in the Appendix-A as Figure A.2. 
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Figure 3-6 The nondominated sorting genetic algorithm (Bagchi, 1999) 

3.2.5.10. Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II 

NSGA-II is a multiobjective GA based on NSGA. However, Deb et al. (2002) 

called this algorithm as NSGA-II. This new algorithm differs from NSGA in a number 

of different points. In NSGA-II, nondominated sorting mechanism has been changed, 

density estimation and crowded comparison operator is used instead of niche formation 

and finally elitist strategy is added to algorithm. These new concepts should be 

summarized as follows. 

In NSGA-II, for sorting purposes, we calculate two entities: (1) domination count 

np, the number of solutions which dominate the solution p; and (2) Sp, a set of solutions 

that the solution p dominates. 

All solutions in the first nondominated front will have their domination count as 

zero. For each solution p with np=0, each member (q) of the set Sp is visited and their 

domination count is reduced by one. In doing so, if for any member q the domination 
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count becomes zero, it is put in a separate list Q. These members belong to the second 

nondominated front. This process continues until all fronts are identified. 

In NSGA-II, density estimation metric and the crowded comparison operator are 

used to preserve diversity. Density estimation metric provides an estimate of the density 

of the solutions surrounding a particular solution in the population and is calculated as 

the average distance of two points on the either side of this point along each of the 

objectives. This quantity idistance serves as an estimate of the perimeter of the cuboid 

formed by using the nearest neighbors as the vertices (crowding distance). In Figure 3.7, 

the crowding distance of the ith solution in its front (marked with solid circles) is the 

average side length of the cuboid (shown in a dashed box). In the figure, points marked 

in filled circles are solutions of the same front.   

 

 

 

 

 

 

 

 

 

Figure 3-7 Crowding distance calculation (Deb et al., 2002) 

The crowding distance computation requires sorting the population according to 

each objective function value in ascending order of magnitude. Thereafter, for each 

objective function, the boundary solutions (the solutions with smallest and largest 

function values) are assigned an infinite distance value. All other intermediate solutions 

are assigned a distance value equal to the absolute normalized difference in the function 

values of the two adjacent solutions. This calculation is continued with other objectives. 

The overall crowding distance value is calculated as the sum of individual distance 

values corresponding to each objective. Each objective function is normalized before 

calculating the crowding distance. A solution with a smaller value of this distance 

measure is, in some sense, more crowded by other solutions. 

Crowded comparison operator ( n� ) guides the selection process at the various 

stages of the algorithm toward a uniformly spread-out Pareto optimal front. Assume 
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every individual i in the population has two attributes: (1) nondomination rank (irank) and 

(2) crowding distance (idistance). 

A partial order of n� can be defined as follows. 

ji n�   if (irank< jrank) or; 

irank = jrank  and (idistance> jdistance)   

That is, between two solutions with differing nondomination ranks, the solution 

with a better rank is chosen. Otherwise, if the two solutions belong to the same front, 

then we prefer the solution that is located in a less crowded region.  

The algorithm starts with a randomly generated population (P0). Each solution is 

assigned a fitness (or rank) equal to its nondomination level and minimization of the 

fitness is assumed. At first, by using binary tournament selection, recombination, and 

mutation operators, an offspring population of Q0 is created with a size N (population 

size). After this step elitist strategy is implemented (Deb et al., 2002). 

For a generation (t), first a combined population of Rt = Pt ∪ Qt is formed with a 

size of 2N. Then the Rt is sorted according to nondomination and grouped. Best 

nondominated set is called F1, second best set is called F2 and so on. The first set (Fj) 

that the sum of individuals (beginning from F1) is determined. The set Fj is sorted 

according to crowding distance and k of the individuals of Fj (where �
−

=

=
1

1

j

i
iFk ) is 

passed to generation t+1. (Figure 3.8) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8 NSGA-II procedure (Deb et al., 2002) 
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NSGA-II pseudocode is given in the Appendix-A in Figure A.3. 

3.2.5.11. Niched Pareto Genetic Algorithm  

The Niched Pareto Genetic Algorithm (NPGA) is an approach that employs 

fitness sharing and niche formation techniques. In NPGA, to avoid convergence and 

maintain multiple Pareto optimal solutions, tournament selection is altered in two ways. 

Firstly, Pareto domination tournament is added and then, actually when a tie occurs, 

sharing is implemented to determine the winner. 

In Pareto domination tournaments, two candidates for selection are picked at 

random from the population. These two candidates are compared with a sample set of 

solutions, which is randomly selected from the population. If one candidate is 

dominated by the comparison set (with a size tdom) , and the other is not, the latter is 

selected for reproduction. If neither or both are dominated by the comparison set, then 

sharing is used to choose the winner.  

Sharing which is employed in NPGA is not different from the technique that is 

employed in NSGA, but in NPGA the fitness function decision is left to the person who 

implements the algorithm, i.e., there is no defined fitness function. Horn et al. (1994) 

suggest triangular sharing, but different functions can also be employed. NPGA 

degrades the fitness to the shared fitness in the same manner that is used in NSGA 

( iii mff /' = ).  

When the candidates are either both dominated or both nondominated, it is likely 

that they are in the same equivalence class, i.e., in the partial order induced by the 

domination relation. Since the purpose is to maintain diversity it is not necessary to 

degrade the fitness function if the tournament selection is used. The niche count will be 

used to order the two candidates. The candidate with a lower niche count will be the 

winner of the tournament. This type of sharing is called equivalence class sharing. 

The performance of the NPGA is somewhat sensitive to the amount of domination 

versus sharing pressure applied. This means the parameters tdom and σshare play a critical 

role in the success of NPGA (Horn et al., 1994). 

In NPGA-II, Pareto ranking and tournament selection are used. Niche counts in 

the NPGA-II are calculated using individuals in the partially filled next generation. This 

is called continuously updated fitness sharing (Coello et al., 2002). 
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NPGA and NPGA-II pseudocodes are given in the Appendix-A in Figure A.4 and 

Figure A.5, respectively. 

3.2.5.12. Strength Pareto Evolutionary Algorithm 

The Strength Pareto Evolutionary Algorithm (SPEA) uses an archive containing 

nondominated solutions previously found (so called the external nondominated set). At 

each generation, nondominated individuals are copied to the external nondominated set. 

For each individual in this external set, a strength value is computed. This strength is 

similar to the ranking value of MOGA, since it is proportional to the number of 

solutions to which a certain individual dominates. The fitness of each member of the 

current population is computed according to the strengths of all external nondominated 

solutions that dominate it. Additionally, a clustering technique called “average linkage 

method” is used to keep diversity (Zitzler and Thiele, 1999, Coello et al., 2002). 

SPEA-II has three main differences with respect to its predecessor. First, it 

incorporates a fine grained fitness assignment strategy which takes into account for each 

individual the number of individuals that dominate it and the number of individuals by 

which it is dominated. Second, it uses a nearest neighbor density estimation technique, 

which guides the search more efficiently. Third, it has an enhanced archive truncation 

method that guarantees the preservation of boundary solutions (Zitzler et al., 2001, 

Coello et al., 2002).  

SPEA and SPEA-II pseudocodes are given in the Appendix-A in Figure 8.6 and 

Figure 8.7, respectively. 

3.2.5.13. Pareto Archived Evolution Strategy 

Pareto archived evolution strategy (PAES) consists of a (1+1) evolution strategy 

(i.e., a single parent that generates a single offspring) in combination with a historical 

archive that records some of the nondominated solutions previously found. This archive 

is used as a reference set against which each mutated individual is being compared, just 

like the tournament competitions that are used in NPGA. 

PAES also uses a novel approach to keep diversity, which consists of a crowding 

procedure that divides objective space in a recursive manner. Each solution is placed in 
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a certain grid location based on the values of its objectives. A map of such grid is 

maintained, indicating the number of solutions that reside in each grid location. Since 

the procedure is adaptive, no extra parameters are required except for the number of 

divisions of objective space. Furthermore, the procedure has a lower computational 

complexity than traditional niching methods (Coello et al., 2002). 

PAES pseudocode is given in the Appendix-A in Figure A.8. 

3.2.5.14. Pareto Envelope-based Selection Algorithm 

Pareto envelope-based selection algorithm (PESA) uses a small internal 

population and a larger external (or secondary) population. PESA uses the same 

hypergrid division of phenotype space to maintain diversity. However, its selection 

mechanism is based on the crowding measure used by the hypergrid previously 

mentioned. This same crowding measure is used to decide what solutions to introduce 

into the external population (i.e, the archive of nondominated vectors found along the 

evolutionary process). 

The revised form of PESA is also generated as PESA-II, the only difference of 

PESA-II is that it uses region-based selection. In region-based selection, the unit of 

selection is a hyperbox rather than an individual. The procedure consists of selecting a 

hyperbox and then randomly selecting an individual within such hyperbox.  

PESA pseudocode is given in the Appendix-A in Figure A.9. 

3.2.5.15. The Micro-Genetic Algorithm for Multiobjective Optimization 

A micro-genetic algorithm is a GA with a small population size and 

reinitialization process. The way in which micro-GA works is illustrated in Figure 3.9. 

First, a random population is generated. This random population feeds the population 

memory, which is divided into two parts: a replaceable and a non-replaceable portion. 

The non-replaceable portion of the population memory never changes during the entire 

run and is meant to provide the required diversity for the algorithm. In contrast, the 

replaceable portion experiences changes after each cycle of the micro-GA. 
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Figure 3-9 Micro-GA for multiobjective optimization (Coello et al., 2002) 

The population of the micro-GA at the beginning of each of its cycles is taken 

from both portions of the population memory so that there is mixture of randomly 

generated individuals (non-replaceable portion) and evolved individuals (replaceable 

portion). During each cycle micro-GA undergoes conventional genetic operators. After 

the micro-GA finishes one cycle, two nondominated vectors are chosen from the final 

population and they are compared with the contents of the external memory. If either of 

them remains as nondominated after comparing it against the vectors in this external 

memory, then they are included there. This is the historical archive of nondominated 

vectors. All dominated vectors contained in the external memory are eliminated.  

The micro-GA uses three forms of elitism: (1) retain nondominated solutions 

found within the internal cycle of the micro-GA, (2) use a replaceable memory whose 
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content is partially refreshed at certain intervals and (3) replace the population of the 

micro-GA by the nominal solutions produced, i.e., the best solutions found after a full 

internal cycle of the micro-GA. 

3.2.6. Multiobjective Evolutionary Algorithm Performance Metrics 

What metrics might adequately measure a Multiobjective Evolutionary 

Algorithm’s (MOEA) results or allow meaningful comparison of specific MOEA 

implementations? Appropriate metrics must be selected upon which to base MOEA 

performance claims, and as the literature offers few quantitative MOEA metrics, 

proposed metrics must be carefully defined to be useful. Additionally, no single metric 

can entirely capture total MOEA performance, as some measure algorithm effectiveness 

and others efficiency. Temporal effectiveness and efficiency may also be judged, e.g. 

measuring a MOEA’s progress each generation. All may be considered when judging a 

MOEA against others. Following are possible metrics developed for use in analyzing 

these experiments, but they should not be considered as a complete list (Coello et al., 

2002). 

3.2.6.1. Error Ratio (ER) 

Error ratio is the ratio of the number of solutions that are in the true nondominated 

front (PFtrue) and to the number of solutions in the algorithm’s nondominated front 

(PFknown). The following is the mathematical formula of error ratio. 

1

n

i
i

e
ER

n
==
�

                                                                                                                 (3.51)  

where n is the number of solutions in PFknown and  

0 if solution , 1,...,

1 otherwise.
true

i

i PF i n
e

∈ =
= �
�

     (3.52) 
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3.2.6.2. Two Set Coverage (CS) 

Two set coverage is a comparative metric, which can be termed relative 

coverage comparison of two sets. Consider X, Y ⊆ X as two sets of phenotype of 

decision vectors. CS is defined as the mapping of the order pair (X,Y) to the interval 

[0,1].  

{ }; :
( , )

a Y b X b a
CS X Y

Y

∈ ∃ ∈ ≥
=                                                                           (3.53) 

where b a≥  means b dominates a. 

If all the points in Y are dominated or are equal to points in X, then by definition 

CS=1. CS=0 implies the situation when none of the points in Y is dominated by X 

(Knowles and Corne, 2001). 

3.2.6.3. Generational Distance (GD) 

This metric is a value representing in the average how far PFknown is from PFtrue 

and is defined as : 

1/

1

( )
n

p p
i

i

d
GD

n
==
�

                                                                                                       (3.54) 

where n is the number of vectors in PFknown. For the case of p=2 and di is the Euclidean 

distance in the objective space between each vector and the nearest member of PFtrue. 

GD = 0 indicates that PFtrue= PFknown; any other value of GD indicates that PFknown 

deviates from PFtrue with a higher value of GD implying higher deviation.  

Also, the kernel can be modified as (drel(i)-dave) for a relative comparison where 

drel(i) is the relative distance between two consecutive PFknown fronts for the last two 

generations. Here, dave is the average of the distances drel(i) across a region. This is 

similar to an empirical convergence metric. 

3.2.6.4. Maximum Pareto Front Error (ME) 

It is difficult to measure how well a set of vectors compares to another. For 

example, in comparing PFknown to PFtrue, one wishes to determine how far apart the two 
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sets are and how well they conform in shape. This particular metric determines a 

maximum error band which, considered with respect to PFknown, encompasses every 

vector in PFtrue. Put in another way, this is the largest minimum Euclidian distance 

between each vector in PFknown and the corresponding closest vector in PFtrue. This 

metric is defined as: 

1/
1 1 2 2max(min ( ) ( ) ( ) ( ) ) ,

p pi j i j p

ij
ME f X f X f X f X= − + −                                       (3.55) 

where i=1,…,n1 and j=1,…,n2 index vectors respectively in PFknown and PFtrue, and p=2. 

A result of ME=0 indicates PFknown ⊆  PFtrue; any other result indicates at least one 

vector in PFknown is not in PFtrue. 

3.2.6.5. Average Pareto Front Error 

This metric also attempts to measure the convergence property of an MOEA by 

using distance to PFtrue. From each solution in PFknown, its perpendicular distance to 

PFtrue is determined by approximating PFtrue as a combination of piecewise linear 

segments with the average of these distances defining the metric value. 

3.2.6.6. Spacing (S) 

This metric aims to measure the spread (distribution) of vectors throughout 

PFknown. Spacing is proposed to measure the range (distance) variance of neighbouring 

vectors in PFknown. Spacing is defined as: 

2

1

1
( ) ,

1

n

i
i

S d d
n =

= −
− �                                                                                               (3.56)  

where ( )1 1 2 2min ( ) ( ) ( ) ( ) , , 1,..., ,i j i j
i jd f X f X f X f X i j n d= − + − =  is the mean of 

all di and n is the number of vectors in PFknown. A value of zero for this metric indicates 

all members of PFknown are equidistantly spaced. Note that the vectors composing PFtrue 

in objective space may not be uniformly spaced. 
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3.2.6.7. Distributed Spacing (DS) 

Distributed spacing is similar to spacing and it aims to measure how well a 

MOEA has distributed Pareto optimal solutions over a nondominated region. This 

metric is defined as: 

1
1/

1

( ( ) )
q

p pi i

i i

n n
DS

σ

+

=

−= �                                                                                          (3.57) 

where q is the number of desired optimal points and the (q+1)th subregion is the 

dominated region, ni is the actual number of individuals in the ith subregion of the 

nondominated region, in  is the expected number of individuals in the ith subregion of 

the nondominated region, p=2 and 2
iσ  is the variance of the individuals serving the ith 

subregion of the nondominated region. For this metric, a low performance measure 

characterizes an algorithm with a good distribution capacity. 

3.2.6.8. Hyperarea and Hyperarea Ratio (H, HR) 

Hyperarea (H) metric calculates the hyper volume of the multi-dimensional region 

enclosed by the PFknown and a “reference point”, hence computing the size of the region 

PFknown dominates. Hyperarea calculation for a biobjective minimization problem is 

given in Figure 3-10. 

 

 

 

 

 

 

 

Figure 3-10 Hyperarea calculation for a biobjective minimization problem            
(Knowles & Corne, 2001) 

 

Hyperarea ratio is the ratio of the hyperarea of PFknown (H1) to the hyperarea of the 

PFtrue (H2).  
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1

2

.
H

HR
H

=                                                                                                                   (3.58)  

3.2.6.9. Overall Nondominated Vector Generation and Ratio (ONVG, ONVGR) 

Most MOEAs add PFcurrent to PFknown each generation, possibly resulting in 

different cardinalities for PFknown. This metric then measures the total number of 

nondominated vectors found during MOEA execution and is defined as: 

knownONVG PF=                                                                                                        (3.59)  

It is difficult to specify what good values for ONVG might be. PFknown’s 

cardinality may change for different MOPs. Reporting the ratio of PFknown’s cardinality 

to the discretized PFtrue’s gives some feeling for the number of nondominated vectors 

found versus how many exist to be found. This metric is then defined as: 

.known

true

PF
ONVGR

PF
=                                                                                                    (3.60) 

3.2.6.10. Generational Nondominated Vector Generation (GNVG) 

This metric tracks how many nondominated vectors are produced at each MOEA 

generation and is defined as: 

( ) .currentGNVG PF t=                                                                                                  (3.61) 

3.2.6.11. Nondominated Vector Addition (NVA) 

As globally nondominated vectors are sought, one hopes to add new 

nondominated vectors to PFknown at each generation t. This metric is then defined as: 

( ) ( 1) .known knownNVA PF t PF t= − −                                                                             (3.62) 

However, this metric may be misleading. A single vector added to PFknown(t)’s 

size may also remain constant for several successive generations even if GNVG ≠ 0. 
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4. PROBLEM DEFINITION AND SOLUTION APPROACHES 

4.1. Problem Description 

In the problem under consideration, project scheduling under risk is modelled in 

order to represent the effects of identified risks that may occur during activities. The 

model is a mixed integer programming model whose aim is to minimize the expected 

cost of the project.  

The model contains different elements when it is compared to traditional project 

scheduling models. In the hierarchical order, the model contains depicted elements in 

Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 Project scheduling model elements 

In this model, the activities of the project have identified risks. These risks 

represent the events that may occur during the activities and it is assumed that these 

events affect only the duration of the activities.  
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As is the case in real life, the model also covers the preventive measures that may 

be taken against the risks. These preventive measures are modelled by the states of the 

risks. States have a probability of occurrence and an impact. In the model, if there is no 

preventive measure taken against the risk, this situation is represented by choosing state 

1. In the model, increasing the level of preventive measure corresponds to increasing the 

index of the state chosen which decreases the level of the risk.  

The cost function of the model covers four different costs that may occur during 

the project, these are overhead cost, labor cost, risk reducing cost and penalty cost. 

These cost functions are explained in greater detail in the mathematical formulation of 

the model. 

4.2. Mathematical Formulation of the Problem 

The problem is formulated here as an optimization problem to minimize the 

expected project cost under risks. It is assumed that the risks are independent and their 

impacts are additive at the activity level. It is further assumed that all the risks 

associated with an activity are identified and the risks are static throughout the project 

life. The problem is represented on an activity-on-node (AON) network with one 

starting and one ending node. 

For a complete understanding of the model, first the notation is explained, then 

the complete model is stated and finally the important parts of the model are explained 

step by step.  

Notation: 

{J}: Set of activities j=1,…,J; 

{Pj }: Set of immediate predecessors of activity j; 

{Lj}:  Set of resource types for activity j; 

{Nj}:  Set of risks n assigned to activity j; 

dj:  Duration of activity j with no risks involved; 

Cp:  Unit penalty cost of being late; 

Co:  Unit cost of overhead; 

Tplan: Due date set for the project; 

Kjn:  Number of states for the probability of occurrence of risk n on activity j; 



 

39                                       

Pjnk:  Probability of  risk n’s occurrence, for activity j at state k; 

Ijnk:  Impact of risk n, if it occurs, for activity j at state k; 

Clj:  Unit cost of resource type lj; 

Cjnk :  Cost of reducing the risk level from state 1 level to state k level for risk n at 

activity j; 

Wlj: Number of workers of type lj assigned to activity j; 

E(TC): Expected total cost; 

ESTj:  Earliest start time of activity j; 

EFTj:  Earliest finish time of activity j; 

EFTJ: Expected makespan of the project;   

dj
’:  Expected duration of activity j under risk; 

y: Expected lateness of project; 

1, if the state is chosen for risk of activity
0, otherwise

th th th

jnk

k n j
X

 

= � 	
� �

; 

Model: 
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1 1 1 1 1
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p jnk jnk o J l j l
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= + + +��� ��                (4.1) 

subject to: 

1 0EST =                                              (4.2) 

{ } 2,...,j i jEST Max EFT i P j J= Ι ∈ =                   (4.3) 

' 1,...,j j jEFT EST d j J= + =                   (4.4) 

'

1 1
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= + =��                   (4.5) 

1 0 1,..., ; 1,...,jn jC j J n N= = =      (4.6) 
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0, otherwise
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y
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= � 	
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        (4.8) 

{0,1} 1,..., ; 1,..., ; 1,...,jnk j jnX j J n N k K∈ = = =  

This is a 0-1 integer programming model which aims to minimize expected total 

cost (Equation 4.1) of the project. This cost is represented as the sum of four cost 

components. The first cost component is the penalty cost and formulated as the product 
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of unit penalty cost and lateness. Second component of the cost function is the risk 

reducing cost. The third component is the overhead cost and it is the product of unit 

overhead cost and makespan. Final component is the labor cost of the project.  

Equations through 4.2 to 4.4 are the critical path method (CPM) equations for 

forward recursion.  

Equation 4.5 is used to calculate the expected duration of an activity. While 

calculating the expected duration of an activity, the additional risk related durations are 

added to normal activity duration. As an example, assume we have an activity having 

one risk and three states (Table 4.1) where TU and MU stand for time unit and 

monetary unit, respectively. The expected duration of the activity can be calculated as 

follows, if the second state is chosen.  

d’
x= 20 + 0.6 * 0.5 * 20 = 26 TU 

Table 4-1 Risk states for an activity 

Activity X Duration (d): 20 (TU) 1XL =  W1X = 3 

State Probability of Occurrence 
(Pjnk) 

Impact 
(Ijnk) 

Cost (MU) 
(Cjnk) 

1 0.7 0.5 0 
2 0.6 0.5 150 
3 0.6 0.4 300 
 

As it is seen in Table 4.1 and stated by Equation 4.6 the first state of the risks has 

a zero cost and this state is named as the base case. This corresponds to the real life 

situation of taking no preventive measures against a risk. Thus no cost is incurred.  

Finally, Equation 4.7 assures the selection of one and only one state for each of 

the risks. 

The decision variables for the model are 0-1 variables. There are  (
1 1 1

1
j jnN KJ

j n k= = =
��� ) 

number of variables. For small sized problems, it is straightforward to solve such a 

problem with a mathematical programming solver. But for large problems, this problem 

is a computationally costly problem to solve. The solution approach suggested for this 

problem is the topic of next section.  
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4.3. Solution Approach 

The problem solved in this thesis is biobjective. The first objective is to minimize 

the expected total project cost. The second objective to achieve is the minimization of 

the expected makespan. These two objectives are obviously conflicting. Equations 4.9 

and 4.10 represent the two objectives to be achieved.  

'

1 1 1 1 1

( ) * * * * *
j jn j

j j

j

N K LJ J

p jnk jnk o J l j l
j n k j l

MinE TC y C C X C EFT W d C
= = = = =

= + + +��� ��           (4.9) 

max( ) JMinE C EFT=          (4.10) 

 

Multiobjective optimization with posteriori preference articulation is a developing 

topic in the OR literature. GAs constitute a popular solution procedure for this group of 

problems. As evidence of this popularity is that approximately 70% of the metaheuristic 

approaches suggested and published between 1991 and 2000 are GAs (Jones et al., 

2002). Since GA uses parallel search techniques and multiobjective optimization 

problems have several nondominated solutions, this problem class and the solution 

procedure make a perfect match. Because of this reason, in this thesis, GAs are used to 

solve the problem.  

After solving the biobjective problem some of the solutions need further 

improvement for decreasing expected total cost while keeping the critical path fixed. 

For this reason, three improvement heuristics are proposed.  

4.3.1. Genetic Algorithms Employed 

4.3.1.1. The Chromosome Representation and the Management of the Genetic 
Algorithms Employed  

In this study, direct representation is used for encoding a solution to the problem. 

Each gene corresponds to a risk in the chromosome and the number in the gene 

represents the state that will be chosen for this risk.    
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The number of risks in the problem determines the number of genes in the 

chromosome and an extra three bit portion is added to display the expected makespan, 

expected total cost and fitness values. The chromosome representation is depicted in 

Figure 4.2. 

 

 

 

 

 

 

Figure 4-2 Chromosome representation 

 

Decoding: The number in the gene represents the state that will be chosen for the 

risk.   

Selection Mechanism: Random wheel selection is used. The fitness values of all 

individuals are summed up and the fitness of each individual is normalized by dividing 

to this total. Then a random number is chosen and this random number is used to find 

out which individual will be selected. 

Crossover: One point crossover is used for the GA. A number is chosen between 

one and the number of risks. This is used as the cutting point, where the two 

chromosomes are cut. The parts that have been generated by cutting operation are 

crossed and two new individuals are generated. 

Mutation: Bit mutation is used. The value on the randomly chosen gene of the 

chromosome is replaced with another value also randomly generated. 

Generation Cycle: First generation is generated randomly. Then the later 

generations are generated based on this first generation. 

While generating the later generations an operator is chosen with the specified 

probabilities (i.e. crossover is chosen with a probability of Pc, mutation is chosen with a 

probability of Pm and reproduction is chosen with a probability of (1-(Pc+Pm))). Then 

the chromosome(s) is (are) chosen according to the operator. Finally, the chosen 

operator is applied to the chosen chromosome(s). 

Different than the traditional GA approach these operators are applied in a parallel 

fashion rather than the serial application of the crossover and mutation operators.  

Gene

.   .   . 

Number of risks is equal to number of genes. Exp. Cmax, Exp. 
Cost, Fitness  
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After defining how the GA routine works, multiobjective GA’s can be defined. 

Before applying the improvement heuristics to the problem, two strategies based on the 

VEGA (Vector Evaluated Genetic Algorithm) and a new genetic algorithm are used. 

These algorithms are explained in greater detail in the following subsections.  

4.3.1.2. VEGA Based Strategies 

In the original VEGA (see section 3.2.5.1), the fitness function is calculated after 

dividing the population into subpopulations. Subpopulations contain equal number of 

individuals and these individuals are evaluated according to the objective of the 

corresponding subpopulation they are in. This evaluating frame has a drawback called 

speciation. This problem arises because this technique selects individuals who excel in 

one dimension without looking at other dimensions. The potential danger is that the 

procedure evolves without generating middling performance individuals. Middling 

refers to an individual with acceptable performance, perhaps above average in all 

objectives, but not outstanding when measured by any particular function. This problem 

is depicted in Figure 4.3. In the figure, filled circles are identified by VEGA; others 

represent the middling individuals, which could not be identified. 

 

 

   

 

 

 

 

 

 

 

Figure 4-3 Middling individuals in VEGA  
 

Middling individuals are the results of VEGA and this type of a solution is 

undesirable. To avoid the middling problem of VEGA two strategies are proposed here. 

These strategies bring a dynamic subpopulation sizing to the algorithm. Rather than 

dividing the population equally, they divide the population according to a parameter. 

f1 

f2 
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In these strategies, firstly, the problem is solved for each of the objectives. The 

values of these solutions constitute a basis for comparison. When the problem is solved 

with the objective of minimizing expected total project cost, a solution with a cost value 

C* is obtained. When the problem is solved with the objective of minimizing expected 

project duration, a solution with a makespan value Cmax
* is obtained. These two values 

are called the ideal values of the objectives.  

The two strategies based on VEGA are developed to avoid clusters on the 

endpoints of the Pareto front. The distance from ideal points of the objectives are 

measured for each generation and the next generation’s subpopulation sizing is done 

according to these distances. The distance calculation method determines the strategy. 

4.3.1.2.1. Strategy 1 

In the first proposed strategy, the distance between the ideal value of the objective 

and generation’s best individual for this objective (Cmax
b,Cb) value is measured. The 

following formula represents the distances for the objectives, d1 represents the distance 

for the expected total cost and d2 represents the distance for the expected makespan. 

1

*

*

bC C
d

C
−=                  (4.11-a) 

*
max max

2 *
max

bC C
d

C
−=                 (4.11-b) 

After calculating the distances, the normalized distances are Nd1 and Nd2 

calculated as shown below. 

1
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+
                            (4.12-a) 
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d
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d d
=

+
                 (4.12-b)

 Assume these values are calculated in generation t and the generation size for the 

genetic algorithm is N. Then for generation t+1, subpopulation sizes become Nd1*N and 

Nd2*N, respectively. So, in generation t+1, (Nd1*N) individuals will be evaluated 

according to objective one; (Nd2*N) individuals will be evaluated according to objective 

two. 
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4.3.1.2.2. Strategy 2 

Second strategy is based on the same intuition with the first strategy, only differs 

in the distance measurement. Assume population size for GA is N. The following 

formulas show the difference. 
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4.3.1.3. Proposed Genetic Algorithm 

This new algorithm is a mixture of NSGA-II and NPGA. For each generation 

generated, fitness is calculated by the help of two components. First component is 

similar to the Pareto domination tournament of NPGA. But in this algorithm we do not 

compare an individual with a group of individuals; rather we compare the individual 

with the entire population. The number of individuals dominated by the individual is 

represented by Ndom. The ratio of domination, Rdom, represents the first component. 

1
1

dom
dom

pop

N
R

N
+=
+

         (4.14) 

  The second component called the nearest neighbourhood radius, NNR, is given 

below which is the division of nearest individual’s distance (dnearest) to the maximum 

distance in the generation (dmaxgen). 

max

nearest

gen

d
NNR

d
=          (4.15) 

The product of these two components becomes the fitness value. 

* domFitness NNR R=          (4.16) 

Rdom is used to evaluate the fitness of an individual in nondomination sense. By the 

help of Rdom, in each generation individuals are compared with all individuals.   

NNR behaves like a sharing function in this algorithm. Similar to but simpler than 

NSGA-II, NNR finds the nearest individual for all individuals and divides the distance 

between them to the maximum distance in the population. So, if an individual is closer 

to its nearest neighbour, it is assumed that, it is in a crowded region.  
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By multiplying Rdom and NNR fitness of an individual in the nondomination sense 

and the sharing concept are combined. 

In the proposed GA, elitism is employed as well. During the evolution process, 

the nondominated individuals in each generation are carried to the next generation and 

the other individuals are formed by using the mutation and crossover operators. 

4.3.2. Heuristics to Improve the GA Results 

The GA result to the problem gives a makespan and a cost value. The expected 

cost values may not be satisfactory if it tells us to invest on reducing risk in noncritical 

activities.  

Assume we have project consisting of seven activities with the following network 

(Figure 4.4). For one solution, the activities on thick lined arcs (1-2-5-7) are on the 

critical path.  

 

1 

2 

3 

5 

4 

6 

7 

 

Figure 4-4 Example project network (AON) 

For such a solution, the aim of the heuristic is to avoid investing more money than 

needed to the non-critical activities to reduce their risks, while not changing the risk 

structure of the activities on the critical path and hence, the makespan.  

In this problem, we specify a limit on expected project duration and fix modes of 

some activities on the critical path that have been chosen by GA. Then we try to 

minimize the expected cost while preserving the critical path. This problem is a special 

case of discrete time/cost trade-off problem, which is shown to be NP hard by De et al. 

(1997). In their paper, they have shown that under a due date constraint multi-mode 

project scheduling problem with the cost minimization as the objective, is an NP hard 

problem. This problem is similar to the problem that we are trying to solve. 
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First we need to transform our problem to the multi-mode project scheduling 

problem. This process can be done by choosing every possible combination of states to 

different modes. Assume we have an activity with two risks having two states each. For 

such an activity we can find (2*2) four modes. Then for increasing the solvability of the 

problem we can also perform a domination search along the modes and we can 

eliminate the dominated modes. Table 4.2 demonstrates the mode generation and 

nondominated mode selection. 

Table 4-2 Mode generation and nondominated mode selection 

Mode 
No 

State chosen 
for Risk 1 

State chosen 
for Risk 2 Cost Duration Domination Statue  

1 1 1 5443.20 38.88 Dominated (by mode 2&4) 
2 1 2 5034.60 33.39 Nondominated 
3 2 1 5587.00 31.05 Dominated (by mode 4) 
4 2 2 5178.40 25.56 Nondominated 

 

For the modes of activities the duration column represents the expected durations 

of activities when these states are chosen. The cost for an activity represents the sum of 

expected labor cost and the risk reducing costs, which constitute a local trade-off with 

the expected duration. After identifying the nondominated modes we have a discrete 

time/cost trade-off problem, whose critical activities have only one mode. Since the 

multi mode project scheduling problem under a due date with the cost minimization as 

the objective is NP hard, we can say that our problem is also NP hard. Different than the 

discrete time/cost trade-off problem in our problem the critical activities have only one 

mode. 

Exact solution approaches to this problem are given by Demeulemeester et al. 

(1996). These solution approaches seemed computationally very costly so that heuristics 

are tried to be generated. The following sections describe the various heuristics 

proposed to solve our problem. 

4.3.2.1.  An Improvement Heuristic Based on Continuous Cost vs Duration Model  

Continuous form of project crashing problems has been widely studied. A large 

number of methods are proposed. Among others Fulkerson (1961) used network flows 

to generate the project cost curve, Siemens (1971) generated a heuristic by defining 

effective cost slopes for activities, Goyal (1975) improved Siemens’ approach and 
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Robinson (1975) used dynamic programming to solve the problem. Nowadays these 

problems can be solved by computers optimally and very quickly. 

In this continuous cost vs. duration model based (CCDM) improvement heuristic, 

first, all the nondominated modes of the problem are identified and they are scattered on 

a graph as given below. After identifying all the modes and scattering we try to fit a 

linear curve to these modes. By doing so we can transform our problem to a continuous 

project crashing problem, which is easier to solve.  
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Figure 4-5 Example activity graph. 

 

The continuous form of the problem is represented by the following mathematical 

model if all the activities of the project can be approximated by a line segment as seen 

in Figure 4.5.  

Notation: 

{J}: Set of activities j=1,…,J; 

{Pj }: Set of immediate predecessors of activity j; 

{K}: Set of critical activities k (subset of J);  

{U}: Set of non-critical activities u (subset of J); 

ESTj:  Earliest starting time of activity j; 

EFTj:  Earliest finishing time of activity j; 

pk: Duration of the activities on the critical path; 

su: Slope of the curve for noncritical activities (note that slope is negative); 

tu: Duration of the activities on the noncritical path; 

au: The endpoint of curve, smallest duration; 
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bu: The endpoint of curve, largest duration; 

CPL: Critical path length; 

Model: 
'( )*u u u

u U

Min d a s
∈

−�           (4.17) 

subject to: 

1 0EST =           (4.18) 

max{ } 2,...,j i jEST EFT i P j J= Ι ∈ =       (4.19) 

' 1,...,j j jEFT EST d j J= + =       (4.20) 

'
k kd p for k K= ∈        (4.21) 

 JEFT CPL≤           (4.22) 

'
u u ua d b for u U≤ ≤ ∈       (4.23) 

  

This model is valid for the situations where the modes can be represented by a 

single line segment. Most of the time, this line segment would not be adequate to 

represent all the modes of an activity accurately. For such cases, the modes of the 

activity is tried to be represented by a piecewise linear function. For projects containing 

such activities another model is needed. The following model is used for the situations 

where the cost function of the activities are represented by piecewise linear functions 

(see Figure 4-6). 

For piecewise linear function generation, first a continuous curve is fitted on the 

nondominated modes (gray line in Figure 4-6). Then the continuous curve is 

approximated by three connected line segments (black line segments on Figure 4-6). 

This approximation of the continuous curve by a piecewise linear function is based on 

one of the methods proposed by Wei and Wang (2003). In this method, authors propose 

to use tangents to the continuous curve. The first line is drawn tangent to the curve at 

the beginning point and the last line is drawn tangent at the ending point. The other lines 

are drawn tangent at the points between the beginning and ending point, which are 

equally away from other tangent points. The intersection points of the tangent lines 

constitute the beginning and ending points of segments. As the number of segments 

increases the precision of the piecewise linear approximation increases. 
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Figure 4-6 Example of piecewise linear curve fitting on an activity  

Notation: 

{J}: Set of activities j=1,…,J; 

{Pj }: Set of immediate predecessors of activity j; 

{K}: Set of critical activities k (subset of J);  

{U}: Set of noncritical activities u (subset of J); 

ESTj:  Earliest starting time of activity j; 

EFTj:  Earliest finishing time of activity j; 

pk: Duration of the critical activity k; 

su
m: Slope of the mth segment of curve for noncritical activities (note increasing 

negative slope as m increases ); 

d’
u: Duration of the noncritical activity u; 

au
m: The endpoint of mth segment of curve, smallest duration of segment; 

bu
m:  The endpoint of mth segment of curve, largest duration of segment; 

Mu:  The number of segments of the cost curve for activity u; 

Xu
m:  Duration on segment m of noncritical activity u;    

CPL:  Critical path length; 

Model: 

1

*
uM

m m
u u

u U m

Min X s
∈ =
��          (4.24)  

subject to: 

1 0EST =                      (4.25) 

max{ } 2,...,j i jEST EFT i P j J= Ι ∈ =                            (4.26) 



 

51                                       

' 1,...,j j jEFT EST d j J= + =                 (4.27) 

' fork kd p k K= ∈       (4.28) 

 0 ( ) for ; 1,...,m m m
u u u uX b a u U m M≤ ≤ − ∈ =     (4.29) 

' 1

1

for
uM

m
u u u

m

d a X u U
=

= + ∈�       (4.30) 

JEFT CPL≤           (4.31) 

The appropriate model is solved by using GAMS©. The durations for noncritical 

activities are taken from the GAMS© solution and then the modes are found. To find the 

modes of noncritical activities, for each noncritical activity, if the duration found 

corresponds to a nondominated mode’s duration, then we assign this mode to that 

activity. Otherwise, we find the nondominated mode with the closest but smaller 

duration and assign this mode to that activity. Then, for each noncritical activity, we 

calculate the slacks and the earning per duration value that will result if the activity is 

performed at its next higher duration mode. Starting with the highest earning per 

duration activity, we expand the activities without violating the slacks. These operations 

(the operations after finding the mode from appropriate model solution – starting point 

assignment) are repeated until no slack exists or there is no further mode to expand to.  

The earning per duration ratio is the ratio of the expected cost decrease to 

expected duration increase between the respective nondominated modes of the activity. 

For the activity shown in Table 4-2, this value is (from mode 4 to mode 2) 18.37 

(=(5178.4-5034.6)/(33.39-25.56)).  

Figure 4.7 explains this improvement heuristic more explicitly. 
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Figure 4-7 CCDM improvement heuristic procedure 

4.3.2.2. An Improvement Heuristic Based on GA Results 

In this GA results based (GAB) improvement heuristic, rather than finding the 

starting points for the noncritical activities with a continuous model, the GA results are 

taken as the starting points. The GA may result with the dominated modes for 

noncritical activities. In these situations, the nondominated mode with a lower duration 

is found and these are taken as starting points for the heuristic. From this point on, this 

heuristic is the same as the continuous model based heuristic. First, the earning per 

duration values and slacks are calculated. Then beginning from the highest earning per 

duration value, we expand the activity durations. The operations after the starting point 

assignment are repeated until no slack exists or there is no further mode to expand to. 

A step by step procedure for the GAB improvement heuristic is given in Figure 

4.8. 

 

Step 1 - For each noncritical activity, 

 Determine the nondominated modes. 

   Fit a continuous curve to these nondominated modes. 

  Determine a piecewise linear underestimator for the continuous curve. 

Step 2 - Using the appropriate model, solve a minimum cost problem keeping the                                   

project duration fixed. 

Step 3 - For each noncritical activity, if the duration found corresponds to a 

nondominated mode’s duration, then assign this mode to that activity. 

Otherwise, find the nondominated mode with the closest but smaller duration 

and assign this mode to that activity (starting point assignment). 

Step 4 - For each noncritical activity, calculate the slack and the earning per duration 

value that will result if the activity is performed at its next higher duration 

mode. 

Step 5 - Starting with the highest earning per duration activity, expand the activity 

without violating the slacks. 

Step 6 - If there are other activities whose slacks are appropriate for expansion, go to 

step 4; else stop.    
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Figure 4-8 GAB improvement heuristic procedure 

4.3.2.3. From Start Improvement Heuristic 

In this from start (FS) improvement heuristic, the starting point assignment is 

done from scratch. Every noncritical activity is assigned the nondominated mode with 

the lowest duration as the starting mode. From this point on this heuristic is the same as 

the others. First, the earning per duration values and slacks are calculated. Then 

beginning from the highest earning per duration value we expand the activity durations. 

The operations after the starting point assignment are repeated until no slack exists or 

there is no further mode to expand to. 

The procedure for FS improvement heuristic is given in Figure 4-9. 

 

 

 

 

 

 

 

Step 1 - For each noncritical activity, 

  Determine the mode in which GA results. 

If the mode is nondominated assign it as the starting point for this 

activity, 

 else if the mode is dominated, find the nondominated mode with a 

 lower but closest duration value. 

Step 2 - For each noncritical activity, calculate the slack and the earning per duration 

value that will result if the activity is performed at its next higher duration 

mode. 

Step 3 - Starting with the highest earning per duration activity, expand the activity 

without violating the slacks. 

Step 4 - If there are other activities, whose slacks are appropriate for expansion, go to 

step 2; else stop.    
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Figure 4-9 FS improvement heuristic procedure 

Step 1 - For each noncritical activity, 

Find the nondominated mode with the lowest duration and assign this 

mode as starting point for this activity. 

Step 2 - For each noncritical activity, calculate the slack and the earning per duration 

value that will result if the activity is performed at its next higher duration 

mode. 

Step 3 - Starting with the highest earning per duration activity, expand the activity 

without violating the slacks. 

Step 4 - If there are other activities, whose slacks are appropriate for expansion, go to 

step 2; else stop.    
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5. TESTING AND COMPUTATIONAL STUDY 

Parameter setting for GAs has been a difficult issue in most of the GA 

implementations. For problems, which have a single objective, it is easier to compare 

the results of different parameters. But in multiobjective optimization problems, as it is 

mentioned in the Section 3.2.6, it is difficult to compare the results of different 

algorithms or the different sets of parameters for the same algorithm. Since the results 

are needed to be compared, first a multiobjective performance metric is defined. Then 

the determined parameter sets are compared according to this metric. Finally, as the 

computational study, the algorithms and improvement heuristics are examined on a set 

of problems. 

5.1. Performance Metric 

As the performance metric, “extreme hyperarea ratio (EHR)” is developed based 

on the idea of hyperarea ratio. In hyperarea ratio, the hyperarea resulting from the use of 

the algorithm is divided to the hyperarea of the true Pareto front. This metric is a 

subjective but good measure to compare the results of the problems whose true Pareto 

fronts are known. But if the problem’s true Pareto front is not known, it is impossible to 

use this metric. 

For the problems used in this thesis the true Pareto fronts are not known, so 

another metric is needed to be developed. This metric is the ratio of the hyperarea of the 

front (Figure 5.1(a)) to the area bounded by the origin and maximum points of the two 

objective (Figure 5.1(b)). 

As it is depicted on Figure 5.1, the EHR becomes as follows. 

H
EHR

A
=           (5.1) 

 



 

56                                       

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 5-1(a) Hyperarea of the front, (b) maximum area bounded by origin and 
maximum points. 

 

This ratio is used to determine the parameters of the GAs and to compare the 

different algorithms. 

5.2. Parameter Setting  

For determining GA parameters, first a bound is determined for the number 

individuals that will be generated. This is defined as the point, after which 

nondominated solutions will be found seldomly. A large number of experiments are 

done on a project with twenty-five activities. After these experiments a conservative 

bound of fifty thousand is determined. 

After determining the total number of individuals that will be generated, some 

probabilities for crossover and mutation are determined. Also to determine the effect of 

population size and the number of generations these values are also tested in parameter 

setting experiments. For the determined values a set which contains sixty experiments is 

considered for parameter setting tests. These experiment parameters are given in the 

Appendix-B in Table B.1.   

These experiments are done for a set of fifteen problems which contains five 

problems of projects with fifteen activities, five problems of projects with twenty-five 

activities and five problems of projects with thirty-five activities. 

f1 

f2 

H 
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(maximum of f1 and f2) 
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After solving the problems with three algorithms (VEGA Strategy 1, Strategy 2 

and proposed GA) the statistical testing is done on the EHR values. 

For statistically testing the significance Systat© is used. As the method to 

determine the significance one-way ANOVA is used. In one-way ANOVA the 

experiments are taken as factors and the corresponding EHR values for problems are 

taken as dependent variables. This test determines whether the means of the 

experiments are different at a statistically significant level. Based on the results of the 

tests the parameters of GAs are chosen. 

For VEGA strategies, after applying ANOVA, the results of experiments did not 

differ statistically. So, the best average valued set is chosen for further experimentation. 

For the proposed GA the results differ at a confidence level of 5%. This shows 

that results are different but the different samples are identified on pairwise comparison. 

Since it is not possible to compare all sixty experiment results, the best average valued 

set is chosen for the proposed GA. 

The chosen parameters for the algorithms are given in Table 5.1. 

Table 5-1 Parameters chosen for GAs 

 VEGA Strategy 1 VEGA Strategy 2 Proposed GA 
Probability of Crossover 0.30 0.75 0.15 
Probability of Mutation 0.60 0.15 0.75 
Generation Size  100 100 250 
Population Size 500 500 200 

 

Although a conservative bound of fifty thousand evaluations has been determined 

for the chromosomes to be generated, the parameter setting experiments showed that as 

the size of the search space increases further exploration is needed. After determining 

this need, an increase for the number of chromosomes to be generated has been applied. 

Table 5.2 shows the population size and generation size for the problem groups and for 

the different algorithms. As can be observed in Table 5.2, as the number of activities 

increases, so does the number of evaluations performed in each GA. But the number of 

evaluations given in Table 5.2 does not represent the real number of evaluations for the 

proposed GA. For the proposed GA, the number of evaluations is less than the number 

of evaluations given in Table 5.2 because the proposed GA uses elitism. The individuals 

that are nondominated in a generation are carried into the next generation, so the 

number of individuals generated by the operators is less than the population size for 
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each generation. Depending on the problem the number of individuals evaluated is 

nearly 20 percent less than the number given in Table 5.2.  

Table 5-2 Population size and generation sizes for different problem groups and 
for different algorithms 

VEGA Strategy 1 VEGA Strategy 2 Proposed GA Number of 
Activities in 

Problem Pop. Size Gen. Size Pop. Size Gen. Size Pop. Size Gen. Size 

15 500 100 500 100 200 250 
25 500 150 500 150 200 375 
35 500 200 500 200 200 500 

5.3. Comparison of GAs 

The GAs that are used to solve the problem are tested on 60 problems. These 60 

problems include equal number of problems consisting of fifteen, twenty-five and 

thirty-five activities.  

For comparing GAs, EHR is used. EHR is calculated for each of the problems. 

EHR may be used for comparing the algorithms but it does not evaluate the 

performance of the algorithm with the true Pareto front. Since an exact evaluation for 

the algorithm is needed an approximation of the true Pareto front is found and proposed 

GA is compared with it. 

5.3.1. Comparison with the Approximation of the True Pareto Front 

The approximation of the true Pareto front is done by using the mathematical 

programming software GAMS©. For approximating the true Pareto front, beginning 

from the maximum makespan the makespan objective is added to the model as a 

constraint. Since makespan is added as a constraint to the model, the model becomes a 

single objective model.  

First, maximum makespan is taken as the constraint and the model is solved for 

the objective of cost minimization. Then, the result of the solved model is taken and the 

makespan is decreased by 0.01 from the result level and added as constraint again. This 

procedure is repeated until the minimum makespan reached.  
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The approximation of the true Pareto front founded by the GAMS© and the results 

gained from the 60 experiments of the proposed GA runs are plotted on the graphs. 

These figures showed that proposed GA is comparable to the GAMS© solution 

procedure. The following three figures (Figures 5.2 - 5.4) show the results that are 

obtained from these comparisons. 

Figure 5.2 shows that the GA results are comparable to approximation of the true 

Pareto front.   
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Figure 5-2 Comparison of proposed GA results with approximation of true Pareto front  

In Figure 5.3, the GA results perform better than GAMS© results. This seems 

impossible but since GAMS© has some tolerances to stop the search for some problems 

this may be possible. Also decreasing the makespan constraint by 0.01 may lead to skip 

some solutions in between. 
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Figure 5-3 Comparison of proposed GA results with approximation of true Pareto front  
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 Figure 5-4 Comparison of proposed GA results with approximation of true Pareto front  

 

Figure 5.4 shows that the approximation of the true Pareto front may also 

dominate the GA results. The problem results shown in this graph belongs to a problem 

with thirty-five activities. On the other hand, Figures 5.2 and 5.3 are the results of 

problems with fifteen activities. This may lead to the conclusion that as the size of the 

problem increases the need for exploration in GA increases. 
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The EHR values for the approximation of the true Pareto front are also calculated. 

The average EHR value for the true Pareto front approximation is 0.2573. This value is 

very close to the average EHR value of proposed GA, which is 0.2404. When the EHR 

values are investigated one by one for all the problems, most of the time EHR value of 

the approximation is too close to the proposed GA’s EHR value. These values are given 

in Table A.2 in the Appendix-B.    

When the EHR values of the approximation of the true Pareto front and GAs are 

statistically analysed, it is observed that they differ in a statistically significant way. In 

Table 5.3, percent deviations of GAs from the approximation of the true Pareto front are 

given. 

The values in Table 5.3 show that VEGA Strategies 1 and 2 lead to similar results 

when compared to the approximation of true Pareto front. The results of the proposed 

GA are significantly better than the VEGA strategies and comparable to the 

approximation of true Pareto front.  

Table 5-3 Percent deviations of the GAs from the approximation of true Pareto front  

Problem 
Type 

VEGA     
Strategy 1 

VEGA    
Strategy 2 Proposed    GA 

Overall 24.26 23.67 6.44 
15 Activities  18.50 19.05 5.62 
25 Activities  23.88 21.82 4.74 
35 Activities  30.40 30.14 8.97 

5.3.2. Pairwise Comparison of GAs 

GA results are compared according to the runs that are made on 60 problems with 

the selected parameters. For each problem-GA pair the EHR values are calculated and 

these values are used to compare the algorithms. EHR values for each problem and the 

algorithm is given in Table B.2 in the Appendix-B. Average EHR values for the 

problem classes are given in Table 5.4. 
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Table 5-4 EHR values for problem classes 

Problem 
Type 

VEGA     
Strategy 1 

VEGA    
Strategy 2 Proposed    GA 

Overall 0.1951 0.1964 0.2404 
15 Activities  0.2177 0.2161 0.2522 
25 Activities  0.1918 0.1968 0.2395 
35 Activities  0.1757 0.1763 0.2295 

  

The ANOVA is applied to the GA results, which shows that these three 

algorithms differ at zero confidence level. This result leads us to make pairwise 

comparisons.   

5.3.2.1. Comparison of VEGA Strategies 

For comparing VEGA strategies the EHR values of 60 problems are used. These 

values are used to decide whether the strategies differ in a statistically significant way. 

The results show that the difference of these two strategies is not statistically 

significant. The mean values for these strategies are also too close to differentiate. The 

mean EHR values for Strategy 1 and Strategy 2 are 0.1951 and 0.1964 respectively. 

5.3.2.2. Comparison of VEGA Strategy 1 with the Proposed GA 

When the VEGA Strategy 1 is compared with the proposed GA, the results show 

that proposed GA is better than the VEGA Strategy 1. The applied hypothesis test is 

also a proof of this statement. These two algorithms differ at zero confidence level. 

Their mean EHR values are 0.1951 and 0.2404 for VEGA Strategy 1 and proposed GA 

respectively. 

5.3.2.3. Comparison of VEGA Strategy 2 with the Proposed GA 

The applied hypothesis test showed that, up to zero confidence level these two 

algorithms have different results. The mean EHR values are 0.1964 and 0.2404 for 
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VEGA Strategy 2 and proposed GA respectively. So we can conclude that proposed GA 

performs better than VEGA Strategy 2. 

5.4. Comparison of the Improvement Heuristics 

The improvement heuristics are implemented at the end of the proposed algorithm 

and the nondominated solutions found by the algorithm are further improved by these 

heuristics. The results for the improvement heuristics are compared according to two 

criteria: Average value of the improvement (expected cost decrease) and the ratio of the 

number of improved solutions to the number of nondominated solutions found. 

Average value of improvement (AI) is the average of expected cost decrease from 

the nondominated GA solution level to improvement heuristic result level expressed in 

percentage. 

1

( )*100 /
GA Hl
i i

GA
i i

C C
AI l

C=

−= �                                                                                         (5.1) 

where l is the number of Pareto optimal solutions, Ci
GA is the expected cost of ith Pareto 

optimal solution in which GA resulted, Ci
H is the expected cost after the improvement 

heuristic is applied to the Pareto solution i. 

5.4.1. FS Improvement Heuristic Results 

The early computational results showed that FS improvement heuristic almost 

surely does not improve the quality of the results. The solutions of the thirty problems 

are analyzed and FS improvement heuristic has not improve any of the solutions. Based 

on these unsatisfactory results, further investigation of this heuristic is terminated at this 

point. 

The results for CCDM improvement heuristic and GAB improvement heuristic 

are given in Table B.3 in the Appendix-B.  
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5.4.2. CCDM Improvement Heuristic Results 

This improvement heuristic has improved most of the solutions. On the other 

hand, since an exact linear underestimator to the modes of the problem has not been 

used, some of the expected cost values increased instead of decreasing. Table 5.5 shows 

the overall results and the results according to problem classes. 

Table 5-5 Result summary of CCDM improvement heuristic 

Problem 
Type 

Number of 
Nondominated 

Solutions 

Average 
Improvement 

(%) 

Number of 
Solutions 
Improved  

Ratio of 
Improved 

Solutions (%) 
Overall 2546 0.50 1948 76.51 

15 Activities 717 0.16 422 58.86 

25 Activities 848 0.63 693 81.72 

35 Activities 981 0.71 833 84.91 

  

The results show that as the problem size increases the performance of the 

improvement heuristic gets better. This may be the result of the deteriorating 

performance of GA as the problem size increases. Since GA can not explore the search 

space adequately, there remains more area for the improvement heuristic. 

5.4.3. GAB Improvement Heuristic Results 

GAB improvement heuristic has improved more solutions than the CCDM 

improvement heuristic but the quality of the results differ slightly. Table 5.6 represents 

the performance of the GAB improvement heuristic. 

Table 5-6 Result summary of GAB improvement heuristic 

Problem 
Type 

Number of 
Nondominated 

Solutions 

Average 
Improvement 

(%) 

Number of 
Solutions 
Improved  

Ratio of 
Improved 

Solutions (%) 
Overall 2546 0.27 2039 80.09 

15 Activities 717 0.19 421 58.72 

25 Activities 848 0.32 723 85.26 

35 Activities 981 0.30 895 91.23 
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This improvement heuristic has not decreased the expected cost of the solutions as 

much as the CCDM improvement heuristic but the number of solutions improved are 

higher for this heuristic, and hence the ratio of improved solutions.  

The average improvement values of the GAB improvement heuristic are not as 

high as the CCDM improvement heuristic. This may be the result of the starting points 

of the two improvement heuristics. Since GAB improvement heuristic starts from the 

GA result, which may be a local optimum, the GAB improvement heuristic might not 

be able to move away from this local optimum.  

It might be conjectured that CCDM improvement heuristic may be more effective 

if a more precise piecewise linear underestimator is used. But as the precision of the 

estimator increases, the effort to generate the underestimator and to solve the continuous 

model will increase. This leads to a trade-off to be resolved between the computational 

cost and decreased cost by the CCDM improvement heuristic. 

When considering the improvement results of both heuristics these results may 

seem unsatisfactory and thus the improvement heuristics may seem unnecessary. The 

improvement heuristics serve the purpose of finding the cost savings associated with 

some noncritical activities in the final solution and thus avoiding a trivially inferior 

solution. The risks associated with some noncritical activities might have been reduced 

at a cost. But expected duration of these activities might be further increased without 

affecting the critical path length. Thus savings can be realized by reducing the states of 

the associated risks and allowing for longer expected activity duration.  

5.5. Computational Times of the Study 

The computational times of the GAs, CCDM improvement heuristic and true 

Pareto front approximation (TPFA) are given in Table 5.7. These values are the average 

of five problems’ computational times from each problem class. The computational 

times of GAB improvement heuristic cannot be given since they are very small and thus 

cannot be measured accurately. 
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Table 5-7 Computational times of the study in milliseconds 

Problem 
Type 

Vega 
Strategy 1 

Vega 
Strategy 2 

Proposed 
GA TPFA CCDM 

15 Activities 1768 3807 6339 167075 17588 

25 Activities 4472 7658 10094 443936 23385 

35 Activities 8907 12964 16291 849036 27976 
  

As it is clearly seen from the Table 5.7 the computational times of the TPFA are 

very high compared to GAs. TPFA is computationally costly in these relatively small 

problems. For big problems it may be very costly to generate the TPFA because of 

excessive computational time and limitations of mathematical programming softwares. 

When GAs are compared, it is clear that VEGA strategies have smaller 

computational times compared to the proposed GA. As it is seen from the Table 5.7 as 

the problem size increases, the difference between computational times of VEGA 

strategies and the proposed GA decreases. 
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6.  CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

6.1. Conclusion 

According to limited computational study made on three different sets of 

problems, the results give the opportunity of giving some conclusions on the 

performance of the algorithms and improvement heuristics. 

The GAs that are used in solving the problem of project scheduling under risk can 

not be compared with the true Pareto front, since true Pareto front is not known. Thus 

results are compared with the approximation of the true Pareto front and the results of 

GAs are compared with each other. 

The graphs given for the approximation of true Pareto front and the GA results 

show that these two are comparable. Even for some cases, GA results in better solutions 

because of the early termination of GAMS© due to the tolerance employed on the 

objective function value obtained. These results show that the proposed GA results are 

comparable to the approximation of the true Pareto front. 

When VEGA strategies are compared with each other the results show that these 

two algorithms did not differ statistically. The hypothesis test applied to the results of 

these algorithms show that their performances do not differ. Also the means of the 

results for these two algorithms are too close to differentiate. 

The proposed GA seems better than the two VEGA strategies. When pairwise 

comparisons of VEGA strategies are made with the proposed GA, the hypothesis test 

results show that the proposed GA performs better than the two VEGA strategies. The 

mean values and the robust difference between EHR values of these algorithms prove 

that the proposed GA is better. 

When the improvement heuristics are tried to be compared, it is difficult to come 

up with a performance criterion for comparison. There are three improvement heuristics 

proposed, one of which has been eliminated because of the unsatisfactory results. 
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FS improvement heuristic is eliminated from computational study after the 

unsatisfactory results that are taken from the early computational studies. 

The CCDM improvement heuristic and GAB improvement heuristic are compared 

according to two criteria. One of them is the average improvement for the 

nondominated solutions and the other is the ratio of solutions improved, i.e., with their 

expected costs decreased. When these two criteria are taken together it is impossible to 

compare the results. When the performance criteria are taken one by one, it then 

becomes possible to compare. The CCDM improvement heuristic is better when the 

results are compared according to the average improvement. When the heuristics are 

compared according to the ratio of solutions improved, the GAB improvement heuristic 

seems to perform better. 

6.2. Future Research Directions 

 

Two possible research directions are proposed here. One of them is related with 

the problem formulation and the other is related with the solution approach.  

6.2.1. Solution Approach Related Future Research 

There may be different approaches other than GAs for solving multiobjective 

optimization problems. Those methods will be the other metaheuristic methods which 

need posteriori preference articulation. Also the methods with priori preference 

articulation and the methods with progressive preference articulation may be used, in 

case, real problem data and decision maker preference data are available.  

The other future work topic may be the use of GAs for comparison purposes, for 

which promising results have been reported. One such algorithm is NSGA-II. 

Comparing the proposed algorithm with NSGA-II is another future research direction. 

For the problem solved, another solution approach may be using the modes 

instead of risks to select. For this approach first the nondominated modes will be 

identified then the search may be done along these modes. This approach may also 

decrease the size of search space and increase the quality of the results. 
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6.2.2. Problem Formulation Related Future Research 

For problem formulation related future research there are two possible directions. 

The first is related with the content of problem. The second direction is related with an 

extension of the formulation. 

 The problem formulation may be extended by using dependent risks instead of 

independent risks. The risks may be replaced with the risks that affect other risks. This 

formulation will be more realistic to represent the real life situations. 

Adding resource constraints to the formulation is another topic that will make the 

problem formulation more realistic. 

The impacts and probability of occurrences are assumed to be discrete in the 

problem formulation. However, these may be formulated using continuous functional 

forms.  

 



 

70                                       

REFERENCES 

1. Bagchi, T,P., Multiobjective Scheduling by Genetic Algorithms. Kluwer 
Academic Publishers, Boston, 1999. 

2. Coello Coello, C.A., An Updated Survey of GA-Based Multiobjective 
Optimization Techniques. ACM Computing Surveys, Vol: 32-2, 109-143, 2000. 

3. Coello Coello, C.A.; Christiansen, A.D., MOSES : A Multiobjective 
Optimization Tool for Engineering Design. Engineering Optimization, Vol: 31, 
337-368, 1999. 

4. Coello Coello, C.A.; Van Veldhuizen, D.A.; Lamont, G.B., Evolutionary 
Algorithms for Solving Multi-Objective Problems, Kluwer Academic Publishers, 
New York, 2002. 

5. De, P.E.; Dunne, J.; Ghosh, J.B.; Wells, C.E., Complexity of the Discrete Time-
Cost Tradeoff Problem for Project Networks. Operations Research, Vol: 45-2,  
302-306, 1997. 

6. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A Fast and Elitist 
Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on 
Evolutionary Computation, Vol: 6-2, 182-197, 2002.  

7. Demeulemeester, E.L., Herroelen, W.S., Elmaghraby, S.E., Optimal Procedures 
for the Discrete Time/Cost Tradeoff Problem in Project Networks. European 
Journal of Operational Research, Vol: 88, 50-68, 1996. 

8. Ehrgott, M., Multicriteria Optimization. Springer Verlag, Berlin, 2000. 

9. Elmaghraby, S.E., Activity Nets: A Guided Tour Through Some Recent 
Developments. European Journal of Operational Research, Vol: 82, 383-408, 
1995. 

10. Fonseca, C.M.; Fleming, P.J.; An Overview of Evolutionary Algorithms in 
Multiobjective Optimization. Evolutionary Computation, Vol: 3-1, 1-16, 1995. 

11. Fulkerson, D.R., A Network Flow Computation for Project Cost Curves. 
Management Science, Vol:7, 167-178, 1961. 

12. Goyal, S.K., A Note on “A Simple CPM Time/Cost Tradeoff Algorithm”. 
Management Science, Vol: 21-6, 718-722, 1975.  

13. Hartmann, S., Project Scheduling Under Limited Resources, Springer Verlag, 
Berlin, 1999.  

14. Horn, J.; Nafpliotis, N.; Goldberg, D.E., A Niched Pareto Genetic Algorithm for 
Multiobjective Optimization, in Proceedings of the First IEEE Conference on 
Evolutionary Computation, edited by Michalewicz, Z., IEEE Press, Piscataway 
NJ, 1994. 



 

71                                       

15. Jones, D.F.; Mirrazavi, S.K.; Tamiz, M., Multiobjective Metaheuristics: An 
Overview of the Current State-of-the-Art. European Journal of Operational 
Research, Vol: 137-1, 1-9, 2002. 

16. Knowles, J.; Corne, D., On Metrics for Comparing Non-Dominated Sets. In 
Congress on Evolutionary Computation (CEC'2002), Vol: 1, 711-716, IEEE 
Service Center, Piscataway, New Jersey, 2002. 

17. Kolisch, R.; Padman, R., An Integrated Survey of Deterministic Project 
Scheduling. Omega, Vol: 29, 249-272, 2001. 

18. Périaux, J.; Sefriou, M.; Mantel, B., GA Multiple Objective Optimization 
Strategies for Electromagnetic Backscattering, in Genetic Algorithms and 
Evolution Strategies in Engineering and Computer Science, edited by 
Quagliarella et al., John Wiley & Sons, Chichester, 1998. 

19. Quagriella, D.; Vicini, A., Coupling Genetic Algorithms and Gradient Based 
Optimization Techniques, in Genetic Algorithms and Evolution Strategies in 
Engineering and Computer Science, edited by Quagliarella et al., John Wiley & 
Sons, Chichester, 1998.  

20. Robinson, D.R., A Dynamic Programming Solution to Cost-Time Tradeoff for 
CPM. Management Science, Vol: 22-2, 158-166, 1975. 

21. Romero, C., Handbook of Critical Issues in Goal Programming, Pergamon 
Press, Oxford, 1991. 

22. Siemens, N., A Simple Time/Cost Tradeoff Algorithm. Management Science, 
Vol: 17-6, 354-363, 1971.  

23. Ulusoy, G., Proje Planlamada Kaynak Kısıtlı Çizelgeleme, in Yöneylem 
Ara�tırması Halim Do�rusöz’e Arma�an, edited by Erkip, N., Köksalan M.; 
ODTÜ Basım ��li�i, Ankara, 2002. 

24. Van Veldhuizen, D.A.; Lamont, G.B., Multiobjective Evolutionary Algorithms: 
Analyzing The State-Of-The-Art. Evolutionary Computation, Vol: 8-2, 125-147, 
2000a. 

25. Wei, C.C.; Wang, C.M.F., Efficient Approaches of Linearization in Project 
Compression. Computers & Industrial Engineering, Vol: 44, 695-706, 2003. 

26. Zitzler, E.; Thiele, L., Multiobjective Evolutionary Algorithms: A Comparative 
Case Study and Strength Pareto Approach, IEEE Transactions on Evolutionary 
Computation, Vol: 3-4, 257-271, 1999. 

27. Zitzler, E.; Laumanns, M.; Thiele, L., SPEA2: Improving the Strength Pareto 
Evolutionary Algorithm. Technical Report 103, Computer Engineering and 
Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) 
Zurich, Zurich, Switzerland, 2001. 



 

72                                       

REFERENCES NOT CITED 

1. Brooke, A.; Kendrick, D.; Meeraus, A.; Raman, R.; GAMS© A User’s Guide. 
GAMS Development Corporation, Washington, 1998. 

2. Chang, C.K.; Christensen, M.J.; Zhang, T., Genetic Algorithms for Project 
Management. Annals of Software Engineering, Vol: 11, 107-139, 2001. 

3. Elmaghraby, S.E., On Criticality and Sensitivity in Activity Networks. 
European Journal of Operational Research, Vol: 127, 220-238, 2000. 

4. Gardiner, P.D.; Stewart, K., Revisiting the Golden Triangle of Cost, Time and 
Quality: The Role of NPV in Project Control, Success and Failure. International 
Journal of Project Management, Vol:18, 251-256, 2000. 

5. Goldberg, D.E.; Genetic Algorithms in Search, Optimization & Machine 
Learning, Addison Wesley Longman Inc., Reading, Massachusetts, 1989. 

6. http://www.lania.mx/~ccoello (November, 2002) 

7. http://gal4.ge.uiuc.edu/pubarch.html (November, 2002) 

8. http://gal4.ge.uiuc.edu/technreprts.html (November, 2002) 

9. Klein, R., Scheduling of Resource Constrained Projects. Kluwer Academic 
Publishers, New York, 1999. 

10. Laumanns, M.; Thiele, L.; Deb, K.; Zitzler, E., Combining Convergence and 
Diversity in Evolutionary Multiobjective Optimization, Evolutionary 
Computation, Vol: 10-3, 1-21, 2002. 

11. Phillips, S., Project Management Duration/Resource Tradeoff Analysis: An 
Application of the Cut Search Approach. Journal of the Operational Research 
Society, Vol: 47, 697-701, 1996. 

12. Vanhoucke, M.; Exact Algorithms for Various Types of Project Scheduling 
Problems. PhD Dissertation, Katholieke Universiteit Leuven, Leuven, 2000. 

13. Van Veldhuizen, D.A.; Lamont, G.B., On Measuring Multiobjective 
Evolutionary Algorithm Performance. In 2000 Congress on Evolutionary 
Computation, vol.1, pp. 204-211, IEEE Service Center, Piscataway, New Jersey, 
2000b. 

14. Zitzler, E.; Thiele, L.; Deb, K., Comparison of Multiobjective Evolutionary 
Algorithms: Empirical Results. Evolutionary Computation, Vol: 8-2, 173-195, 
2000. 



 

73                                       

APPENDIX - A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1 MOGA pseudocode 

 

 

 

 

 

 

 

 

 

 

 

 

Initialize population 
Evaluate objective values 
Assign rank based on pareto dominance 
Compute niche count 
Assigned linearly scaled fitness 
For i=1 to G 

Selection via stochatic universal sampling 
Single point crossover 
Mutation 
Evaluate objective values 
Assign rank based on pareto dominance 
Compute niche count 
Assign linearly scaled fitness 
Assign shared fitness 

End loop 
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Figure A-2 NSGA pseudocode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-3 NSGA-II pseudocode 

 

Initialize population 
Evaluate objective values 
Assign rank based on pareto dominance in each wave 
Compute niche count 
Assigned shared fitness 
For i=1 to G 

Selection via stochatic universal sampling 
Single point crossover 
Mutation 
Evaluate objective values 
Assign rank based on pareto dominance in each wave 
Compute niche count 
Assign shared fitness 

End loop 

Initialize population 
Generate random population – size M 
Evaluate objective values 
Assign rank based on pareto dominance – “sort” 
Generate child population 

  Binary tournament selection 
  Recombination and mutation 
For i=1 to G 

With parent and child population 
 Assign rank based on pareto dominance – “sort” 
 Generate Sets of nondominated fronts 

Loop (inside) by adding solutions to next generation starting from the 
“first” front until M individuals found 
Determine crowding distance between points on each front 

Select points (elitist) on the lower front (with lower rank) and are outside a 
crowding distance 
Create next generation 
 Binary tournament selection 
 Recombination and mutation 
Increment generation index 

End loop 
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Figure A-4 NPGA pseudocode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-5 NPGA-II pseudocode 

 

 

 

 

 

Initialize population 
Evaluate objective values 
For i=1 to G 

Specialized binary tournament selection 
 Only candidate 1 dominated : Select candidate 2 
 Only candidate 2 dominated : Select candidate 1 

Both candidates dominated or both not dominated : 
 Perform specialized fitness sharing 

Return candidate with lower niche count 
Single point crossover 
Mutation 
Evaluate objective values 

End loop 

Initialize population 
Evaluate objective values 
For i=1 to G 

Specialized binary tournament selection 
Using degree of domination as rank  
Only candidate 1 dominated : Select candidate 2 
Only candidate 2 dominated : Select candidate 1 
Both candidates dominated or both not dominated 

Perform specialized fitness sharing 
  Return candidate with lower niche count 
Single point crossover 
Mutation 
Evaluate objective values 

End loop 
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Figure A-6 SPEA pseudocode 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-7 SPEA-II pseudocode 

 

 

 

 

 

 

 

Initialize population 
Create empty external set E 
For i=1 to G 

Copy nondominated members of P to E 
Remove elemets from E which are covered by any other member of E 
Prune E (using clustering) when the maximum capacity of E has been exceeded 
Compute fitness of each individual in P and in E 
Use binary tournament selection with replacement to select individuals from P+E 
(multiset union) until the mating pool is full 
Apply crossover and mutation  

End loop 

Initialize population 
Create empty external set E 
For i=1 to G 

Compute fitness of each individual in P and E 
Copy all nondominated individuals in P and E to E 
Use the truncation ooperator to remove elements from E when the capacity of the 
file has been extended 
If the capacity of E has not been exceeded then use dominated individuals in P to 
fill E 
Perform binary tournament selection with replacement to fill the mating pool 
Apply crossover and mutation to the mating pool  

End loop 
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Figure A-8 PAES pseudocode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-9 PESA pseudocode 

 

 

 

 

 

 

Repeat 
Initialize single population parent p & add to archive      (line 2) 
Mutate p to produce child c and evaluate fitness 

If p dominates c discard c 
Else if c dominates p 
 Replace p with c, and add c to archive 
Else if (if c is dominated by any member of the archive) 
 Discard c 
Else apply test (p, c, archive) to determine which becomes the new 
current solution and whether to add c to the archive 

Until a termination criterion is true, return to line 2.    

Generate a random (internal) population PI 
Evaluate each member of PI 
Initialize the external population PE to the empty set 
While termination criterion has not been met 

Incorporate nondominated vecors from PI into PE 
Delete the current contents of PI 
Repeat 
 With probability  Pc, select two parents from PE 
 Produce a single child with crossover 
 Mutate the child created in previous step 
 With probability (1-Pc), select one parent 
 Mutate the selected parent to produce a child 
Until the population PI is filled 

End while 
Return the members of PE as the result 



 

78                                       

APPENDIX - B 

Table B-1 Experiment parameters used in parameter setting tests 

Experiment 
No 

Population 
Size 

Number of 
Generations 

Probability of 
Mutation 

Probability of 
Crossover 

1 100 500 0.15 0.15 
2 100 500 0.30 0.15 
3 100 500 0.45 0.15 
4 100 500 0.60 0.15 
5 100 500 0.75 0.15 
6 100 500 0.15 0.30 
7 100 500 0.30 0.30 
8 100 500 0.45 0.30 
9 100 500 0.60 0.30 

10 100 500 0.15 0.45 
11 100 500 0.30 0.45 
12 100 500 0.45 0.45 
13 100 500 0.15 0.60 
14 100 500 0.30 0.60 
15 100 500 0.15 0.75 
16 200 250 0.15 0.15 
17 200 250 0.30 0.15 
18 200 250 0.45 0.15 
19 200 250 0.60 0.15 
20 200 250 0.75 0.15 
21 200 250 0.15 0.30 
22 200 250 0.30 0.30 
23 200 250 0.45 0.30 
24 200 250 0.60 0.30 
25 200 250 0.15 0.45 
26 200 250 0.30 0.45 
27 200 250 0.45 0.45 
28 200 250 0.15 0.60 
29 200 250 0.30 0.60 
30 200 250 0.15 0.75 
31 250 200 0.15 0.15 
32 250 200 0.30 0.15 
33 250 200 0.45 0.15 
34 250 200 0.60 0.15 
35 250 200 0.75 0.15 
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 Table B-1 Experiment parameters used in parameter setting tests (cont’d) 

Experiment 
No 

Population 
Size 

Number of 
Generations 

Probability of 
Mutation 

Probability of 
Crossover 

36 250 200 0.15 0.30 
37 250 200 0.30 0.30 
38 250 200 0.45 0.30 
39 250 200 0.60 0.30 
40 250 200 0.15 0.45 
41 250 200 0.30 0.45 
42 250 200 0.45 0.45 
43 250 200 0.15 0.60 
44 250 200 0.30 0.60 
45 250 200 0.15 0.75 
46 500 100 0.15 0.15 
47 500 100 0.30 0.15 
48 500 100 0.45 0.15 
49 500 100 0.60 0.15 
50 500 100 0.75 0.15 
51 500 100 0.15 0.30 
52 500 100 0.30 0.30 
53 500 100 0.45 0.30 
54 500 100 0.60 0.30 
55 500 100 0.15 0.45 
56 500 100 0.30 0.45 
57 500 100 0.45 0.45 
58 500 100 0.15 0.60 
59 500 100 0.30 0.60 
60 500 100 0.15 0.75 
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Table B-2 EHR values according to problem and algorithm, true Pareto front 
approximation (TPFA) 

Problem VEGA 
Strategy 1 

VEGA 
Strategy 2 Proposed GA TPFA 

FN1 0.2579 0.2474 0.2844 0.3022 
FN2 0.2449 0.2487 0.2854 0.3082 
FN3 0.2270 0.2227 0.2663 0.2842 
FN4 0.2463 0.2381 0.2812 0.2878 
FN5 0.2161 0.2186 0.2426 0.2519 
FN6 0.2063 0.2050 0.2277 0.2293 
FN7 0.1836 0.1982 0.2522 0.2605 
FN8 0.1980 0.1945 0.2195 0.2278 
FN9 0.1995 0.1939 0.2281 0.2333 

FN10 0.1943 0.1995 0.2339 0.2387 
FN11 0.1843 0.1846 0.2054 0.2125 
FN12 0.2241 0.2178 0.2566 0.2768 
FN13 0.2175 0.2057 0.2770 0.2868 
FN14 0.1791 0.1733 0.2274 0.2671 
FN15 0.2243 0.2283 0.2741 0.2933 
FN16 0.2572 0.2566 0.2839 0.2898 
FN17 0.2431 0.2454 0.2738 0.2832 
FN18 0.1888 0.1991 0.2227 0.2421 
FN19 0.2608 0.2563 0.2791 0.2957 
FN20 0.2014 0.1880 0.2224 0.2805 
EB1 0.1554 0.1595 0.2014 0.2027 
EB6 0.1909 0.2016 0.2425 0.2600 
EB8 0.2153 0.2169 0.2691 0.2857 

EB10 0.1707 0.1752 0.2121 0.2235 
EB11 0.1951 0.2024 0.2551 0.2720 
EB12 0.1924 0.2036 0.2416 0.2493 
EB13 0.1976 0.2046 0.2443 0.2642 
EB14 0.1688 0.1780 0.2132 0.2244 
EB18 0.2090 0.2155 0.2578 0.2652 
EB20 0.1903 0.1927 0.2385 0.2430 
EB21 0.2092 0.2200 0.2724 0.2726 
EB22 0.1739 0.1809 0.2199 0.2224 
EB23 0.1663 0.1707 0.2021 0.2055 
EB26 0.2175 0.2173 0.2690 0.2873 
EB28 0.1831 0.1825 0.2306 0.2516 
EB30 0.2682 0.2650 0.2978 0.3348 
EB33 0.1912 0.1934 0.2315 0.2497 
EB35 0.1891 0.2015 0.2467 0.2599 
EB39 0.1881 0.1772 0.2275 0.2344 
EB40 0.1633 0.1774 0.2172 0.2316 
TF1 0.1657 0.1598 0.2146 0.2307 
TF2 0.1836 0.1732 0.2305 0.2475 
TF3 0.1581 0.1573 0.2028 0.2359 
TF4 0.1785 0.1714 0.2268 0.2475 
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Table B-2 EHR values according to problem and algorithm, true Pareto front 
approximation (cont’d) 

Problem VEGA 
Strategy 1 

VEGA 
Strategy 2 Proposed GA TPFA 

TF5 0.1995 0.1938 0.2562 0.2760 
TF6 0.2111 0.2061 0.2705 0.2961 
TF7 0.1709 0.1817 0.2263 0.2409 
TF8 0.1899 0.1920 0.2369 0.2619 
TF9 0.1589 0.1662 0.2273 0.2376 

TF10 0.1858 0.1834 0.2432 0.2647 
TF11 0.1715 0.1850 0.2444 0.2671 
TF12 0.1902 0.1908 0.1911 0.2602 
TF13 0.1807 0.1747 0.2396 0.2617 
TF14 0.1919 0.1820 0.2536 0.2685 
TF15 0.1783 0.1825 0.2318 0.2779 
TF16 0.1586 0.1698 0.2214 0.2427 
TF17 0.1399 0.1410 0.1930 0.2029 
TF18 0.1678 0.1657 0.2154 0.2323 
TF19 0.1489 0.1540 0.2116 0.2229 
TF20 0.1839 0.1950 0.2522 0.2729 
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Table B-3 Results of heuristics according to the problem 

(AI stands for average improvement, NSI stands for number of solutions improved and 
RIS stands for ratio of solutions improved.) 

 

CCDM Improvement 
Heuristic 

GAB Improvement 
Heuristic Problem 

Number of 
Nondominated 

Solutions AI 
(%) NSI RIS 

(%) 
AI 
(%) NSI RIS 

(%) 
FN1 38 0.68 36 94.74 0.44 29 76.32 
FN2 38 0.10 24 63.16 0.01 18 47.37 
FN3 37 0.28 37 100.00 0.18 35 94.59 
FN4 45 -0.85 1 2.22 0.03 40 88.89 
FN5 40 0.00 19 47.50 0.00 6 15.00 
FN6 31 0.11 14 45.16 0.08 10 32.26 
FN7 22 -0.20 6 27.27 0.29 21 95.45 
FN8 39 0.14 22 56.41 0.03 11 28.21 
FN9 33 0.39 18 54.55 0.34 20 60.61 

FN10 39 0.33 25 64.10 0.20 21 53.85 
FN11 35 -0.14 6 17.14 0.02 14 40.00 
FN12 45 0.05 14 31.11 0.19 20 44.44 
FN13 42 0.43 37 88.10 0.42 37 88.10 
FN14 10 0.41 10 100.00 0.38 9 90.00 
FN15 38 0.52 34 89.47 0.52 34 89.47 
FN16 42 0.39 28 66.67 0.14 23 54.76 
FN17 30 0.25 21 70.00 0.09 25 83.33 
FN18 33 0.02 13 39.39 0.17 15 45.45 
FN19 44 0.17 33 75.00 0.08 20 45.45 
FN20 36 0.13 24 66.67 0.12 13 36.11 
EB1 45 1.18 45 100.00 0.26 45 100.00 
EB6 32 1.07 32 100.00 0.34 24 75.00 
EB8 35 0.87 35 100.00 0.41 35 100.00 

EB10 34 -0.41 12 35.29 0.31 31 91.18 
EB11 46 1.12 45 97.83 0.48 36 78.26 
EB12 35 0.61 35 100.00 0.31 35 100.00 
EB13 46 0.70 40 86.96 0.38 33 71.74 
EB14 40 0.29 24 60.00 0.25 40 100.00 
EB18 59 0.47 50 84.75 0.38 47 79.66 
EB20 45 0.53 30 66.67 0.20 40 88.89 
EB21 49 -0.20 20 40.82 0.25 13 26.53 
EB22 44 1.10 39 88.64 0.23 32 72.73 
EB23 47 0.92 41 87.23 0.47 47 100.00 
EB26 52 0.27 46 88.46 0.18 52 100.00 
EB28 26 0.43 21 80.77 0.15 16 61.54 
EB30 49 0.61 43 87.76 0.33 49 100.00 
EB33 32 0.66 28 87.50 0.16 30 93.75 
EB35 41 0.87 38 92.68 0.47 38 92.68 
EB39 49 0.16 27 55.10 0.45 49 100.00 
EB40 42 1.44 42 100.00 0.28 31 73.81 
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Table B-3 Results of heuristics according to the problem (cont’d) 

CCDM Improvement 
Heuristic 

GAB Improvement 
Heuristic Problem 

Number of 
Nondominated 

Solutions AI 
(%) NSI RIS 

(%) 
AI 
(%) NSI RIS 

(%) 
TF1 48 1.12 44 91.67 0.44 48 100.00 
TF2 61 1.32 61 100.00 0.13 60 98.36 
TF3 44 1.08 44 100.00 0.31 44 100.00 
TF4 46 0.48 34 73.91 0.33 46 100.00 
TF5 51 0.67 50 98.04 0.24 50 98.04 
TF6 37 0.97 35 94.59 0.24 35 94.59 
TF7 51 0.18 22 43.14 0.01 14 27.45 
TF8 43 0.79 43 100.00 0.28 43 100.00 
TF9 43 0.13 22 51.16 0.25 43 100.00 

TF10 47 0.03 20 42.55 0.34 47 100.00 
TF11 38 1.52 36 94.74 0.51 38 100.00 
TF12 63 0.34 46 73.02 0.02 44 69.84 
TF13 55 0.45 55 100.00 0.14 30 54.55 
TF14 47 0.40 44 93.62 0.49 47 100.00 
TF15 54 0.43 46 85.19 0.23 53 98.15 
TF16 49 0.97 42 85.71 0.40 49 100.00 
TF17 42 0.94 36 85.71 0.42 42 100.00 
TF18 56 0.76 55 98.21 0.42 56 100.00 
TF19 44 0.71 36 81.82 0.42 44 100.00 
TF20 62 0.88 62 100.00 0.36 62 100.00 

 

 

 

 


