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Fitting an ecological process model to a set of data is frequently done by minimizing the
residual sum of squares (RSS) between data and model output. However, we may need to
consider many component elements of an ecological process when simulating a model rather

than just one, and the RSS may not be an appropriate metric for simulation assessment.

For this dissertation, a multi-objective Evolutionary Algorithm (EA) was used to fit a com-
plex ecological process model. As an example, a model of successive hourly shoot growth
of a forest tree was used. First, single-objective methods were tried with the RSS; however,
the simulation results did not capture the measured data well, especially contraction peri-
ods. The current simulated growth is affected by that of the previous hours because the
model includes a regression term. Thus, the fitting result could be improved if there was

information about the relation between each data.

The multi-objective optimization method allows us to consider contraction and extension
periods separately, and these are an important phenomenon in shoot growth. Since we can
set more than one objective function, each focused on particular data features. Also, if there
is difficulty in achieving some criteria at the same time, analysis of differential effectiveness

in capturing contraction and extension, if it occurs, could help to find what and where the



deficiency of the model is. These effects of considering more than one objective function

motivated using a multi-objective optimization method.

Since the model is complex, many objective functions were required. I implemented elitism,
a process to keep the best individuals to the next generations, but this needed to be different

from that used in other EAs and obtained the following results:

crossover/mutation rate should be determined dynamically for an efficient search.

from analysis of the results, deficiencies of the model were identified;

with the revised model, accuracy of achievement at contraction periods was improved;

the model reduced bias, but the error did not become small; more biological informa-

tion about contraction and expansion is needed.
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Chapter 1

INTRODUCTION

Fitting an ecological process model to a set of data is frequently done by minimizing the
residual sum of squares (RSS) between data and model output. However, we may need to
consider many component elements of an ecological process when simulating a model rather
than just one, and the RSS may not be an appropriate metric for simulation assessment. In
this work, I used a multi-objective Evolutionary Algorithm (EA) to fit an ecological model
to data. Generally, EAs are a type of algorithm used to solve optimization problems. The
algorithms imitate evolution in the natural world; to find solutions, EAs evolve the optimal
value of a predetermined number of parameterizations, iterating processes called selection

and reproduction (crossover and mutation) (Schoenauer et al. [41]).

As an example, I used a model for the successive hourly shoot growth of a forest tree. To fit
the model to data, first, I tried the single-objective optimization method with the RSS, but
the resulting parameterizations very much depended on the initial ones; some sets of initial
parameter values resulted in reasonable solutions, but others did not converge. Also, the
simulated data did not fit the measured data very well for some periods. I decided to use
a multi-objective optimization method, instead of a single-objective optimization method
because solutions by this search method can consider more than one criterion at the same

time, which might help simulated data fit the measured data better.

I used a type of multi-objective EA program, Pareto_FEvolve, for the shoot growth model.
Pareto_Evolve is a Genetic Algorithm, a type of EA. T analyzed the results of Pareto_Evolve,

and introduced several techniques to improve the search software. In my example, I used



more assessment criteria than is usual for general multi-objective optimization problems.
Deb et al. [10] used two objective functions as a test problem. Zitzler et al. [45] compared
the results of the 0/1 Knapsack Problem from several different multi-objective EAs, and the
maximum number of knapsacks are four. In general, we need to consider many factors for
complex ecological models. These factors are usually used as objective functions to assess
how good simulation results are. The higher the dimension of the objective function space,
the more variety of solutions obtained. Because of the larger number of objective functions,
I decided it would be more effective if the rate of preserving good individuals (elites) and
of reproducing individuals from individuals in two different ways (crossover and mutation)

were determined dynamically, which are usually fixed.

The task is to achieve as many criteria as possible with reasonable parameterizations; i.e.,
the search should not only end in a good fit, but resulting parameter values should also
be reasonable biologically. The first problem I encountered in using Pareto_Evolve was de-
generation of the solution set as the search proceeded. In order to resolve this problem,
I introduced the process called elitism into the original Pareto_Evolve. Elitism allows the
“best” individuals to be carried over from iteration to iteration of the search. The best
individuals perform better in a given environment, and this is measured by fitness (Section
2.2.1). However, the elitism that I found to be suitable to my problem is considerably differ-
ent from the elitism generally used. I choose elites depending directly on their assessment

vector calculated from the objective function values. I explain this in Chapter 5.

From the results of searches with elitism, I found drawbacks to the initial approach I had
used such as no guarantee of better assessment vectors than those of the previous generation
and keeping too many elites. Refining the method revealed that crossover and mutation,
which are the main procedures of EAs for evolving the population of parameterization, need
to be assigned by different rates from ones in classical EAs for the efficient search; the rate

is determined dynamically, instead of being a constant.

This thesis discusses the changes in methods I introduced and how I analyzed results to



achieve these improvements. Chapter 2 introduces EAs and how they work. Then the ex-
planation of the software Pareto_Evolve, which I used to solve the shoot growth simulation
problem, follows. Chapter 3 explains the data and shows the results of single-objective meth-
ods, which motivated use of the multi-objective EAs. Chapter 4 defines the problem that I
worked on. Chapter 5 explains elitism and how it works. Chapters 5-8 show refinements to
the software Pareto_Evolve for effective searches and the results of each modification. From

those results, some problems were found, and what they were is explained in Chapter 9.

I modified Pareto_Evolve as well as changed the search criteria. However, I could not obtain
simulation results capturing the measured data well with many achieved criteria. From the
results, I concluded that the model was deficient. The last chapter (Chapter 10) shows the
results of a modified model and introduces what should be done for the more appropriate

model.



Chapter 2

EVOLUTIONARY ALGORITHMS AND PARETO _EVOLVE

In this Chapter, I describe Evolutionary Algorithms (EAs) and how they work. The EA
software Pareto_Evolve, which was developed to assess and fit complex ecological models,

is introduced.

2.1 Different Types of Evolutionary Algorithms

Evolutionary Algorithms (EAs) are algorithms to solve optimization problems imitating evo-
lution in the natural world. In the 1960’s, three different types of implementation appeared
independently: Genetic Algorithms (GAs), Evolution Strategies (ESs) and Evolutionary Pro-
gramming (EP). Genetic Programming (GP) was developed relatively recently (Pefia-Reyes
et al. [34]). Although there are similarities in structure between all EAs, these four types
developed separately.

There are similarities in structure between all EAs. First, the generation number is set
g = 0, and population R is initialized. The two basic procedures of stochastic optimization,
selection and reproduction (crossover and mutation) are repeatedly applied to population
F, of potential solutions until a maximum allowed number of generations is reached or
the objective values used in the optimization satisfy conditions predetermined by the user.
Crossover is used to produce one or more offspring from two or more parents, which were
individuals selected by the selection procedure. This is not implemented in EP. There are
different types of crossover depending on which encoding and which EAs are used. In GA,
ES, and GP, after crossover, mutation takes place. The purpose is to make a small change
in individual information. In EP, mutation is the only genetic operator. The terminologies

for EAs are explained in next section.



GAs were introduced by Holland [21]. In order to apply this algorithm to a problem, we
need to decide how each individual is encoded to a chromosome (genotype) and how their
information is represented (phenotype). The encoding and representation very much depend
on the problem. First, the initial set (population), consisting of individuals with “genes”,
is created. The vector of parameter values for each individual is in genotype space and
produces model results giving a new vector in phenotype space. The two fundamental pro-
cedures for GAs, selection and reproduction, repeatedly take place until the solutions are
obtained (Holland [22]); selection is implemented in phenotype space, and reproduction is
implemented in genotype space. The genotype was originally expressed as a binary string.
The Multi-Objective 0/1 Knapsack Problem, was solved by various types of GAs (Zitzler et
al. [45]).

In contrast to GAs, each individual used in ESs is expressed by a real-valued vector consist-
ing of parameter values and associated standard deviations (Béck et al. [1]). Reproduction is
by crossover and mutation. For (u, A\)-ES, A offspring are generated from p parents, and the
u population members for the next generation is chosen only among A offspring. Since it is
not guaranteed that offspring are better than parents, the population of the next generation
may not be as good as that of the current generation. Thus, this is a “non-elitist” method.
On the other hand, for (x+ A)-ES, p population members for the next generation are chosen
among both p parents and A offspring generated from the u parents. Therefore, this case

is an “elitist” method. A multi-objective version of ESs is explained in Kursawe [27].

EP was designed to develop artificial intelligence and to evolve finite state machines (L.
Fogel [14]). As for ESs, each individual used is expressed by a real-valued vector, but repro-
duction is only by mutation. Parents are selected by tournament selection; several randomly
selected individuals are compared to determine how well they perform in the environment,
that is, how good they are as solutions. Then, the best individuals become the population
of the next generation. (Back et al. [2], D. Fogel [13]). Some transportation problems were

solved by EP (D. Fogel [11]).



GP was originally developed as an application of GAs for computer programming. In GAs,
genotype space is fixed, that is, each genotype has a fixed length. However, on solving
a problem using a computer, a hierarchical program is preferable to a fixed length string
because the size and shape of the genotype for a given problem is not known in advance;
it is desirable that they can be changed while a search proceeds. In order to achieve this,
each individual in the population has a tree-structure like LISP, instead of a set of strings
as in GAs. This hierarchical structure allows each individual to change its size and shape

easily. (Banzhaf et al. [4], Koza [26]).

The border lines between these algorithms is becoming less clear. The most recent EAs may
not fit completely into any of these four original EA types. In next section, the general idea
of EAs is discussed, and then Pareto_Evolve, software to solve multi-objective optimization
problems, is introduced. Pareto_Evolve can not be classified as any of the original four EAs
completely; however, it was developed based on a mix of ideas from GA and ESs, so I will

outline GAs as an example of EAs in next section.

2.2 General Flow of Genetic Algorithms

In this section, the terminologies for GAs, such as fitness, selection, crossover and mutation,

are explained. First, I outline how a GA solves a single-objective optimization problem:

Find an m-component vector of X = (z1,...,2,) € R™ that minimizes the

value of the function F(X) € R.

Function F(X) is called the objective function of this problem. At the beginning of a search,

an initial population of N individual X’s is randomly created: Py = {X?|i = 1,...,N}.

Figure 2.1 shows the general flow of GAs. Fitness is a measurement of how good X is as

a solution to F(X). Therefore the fitness value for each individual is usually determined



directly by its objective function value. Since the problem is a minimization problem, the

smaller the function value F/(X), the higher the fitness value.

Based on the fitness values, some individuals are probabilistically selected as parents for
the next generation in the search. This process is called selection. The selected parents
produce offspring (reproduction) by exchanging some parameter values between two parents
and changing some parameter values in small amounts for a parent. These reproduction
processes are called crossover and mutation, respectively. In GAs, these two basic pro-
cedures, selection and reproduction, are carried out for each generation, and the cycle is
repeated until at least one individual achieves each of the objective values within its spec-
ified tolerance or a maximum allowed number of generations is reached. At generation g,
each individual X7 (i = 1,2,..., N) in population P, does not have to have distinct values
from all other individuals for all parameters; it can have the same value for one or more

parameters (but not all) as another individuals.

2.2.1 Fitness

Fitness measures how well an individual performs in the environment. For a single-objective
minimization problem, if individual X{ gives a smaller objective value than that of X§, X7
is considered to be better than X3; thus, the fitness value of X7 is higher than that of
X§. Therefore the smaller the function value, the higher the fitness value. The fitness
value for each individual is usually determined directly by its objective function value for

single-objective cases.

An individual with a higher fitness value will be considered as “better”, and it has a higher
chance to participate in reproduction. At each generation g, the fitness values for all pop-

ulation members X7’s are calculated preceding selection process, which is explained next.



g = 0: initialize Py

Calculate fitness

gi=g+1 Y Y

Selection End

Y

Crossover

Y

Mutation

Figure 2.1: General flow of GAs. First, set generation number ¢ = 0 and initialize a
population Py. Check whether ¢ < gmax, where gmax is the maximum allowed number of
generations; stop if so; otherwise, go to the next step. Evaluate each individual; stop if
the objective values used in the optimization satisfied the predetermined condition by the
user; otherwise, go to the next step. Calculate fitness of each individual in the population.
Select parents from the population depending on the fitness values. They are to reproduce
offspring for the population at the next generation. Apply crossover operator to the parents
selected to be crossed over. Then, apply mutation operator to the parents chosen to be
mutated. Add one to the generation counter, and repeat the process.



2.2.2 Selection

Selecting individuals for the next generation corresponds, in the natural world, to select-
ing genotypes for breeding. After calculating the fitness value for each individual X7 in
population F, individuals are selected as parents according to the fitness value to produce
offspring. The higher the fitness value, the more chance the individual has to be selected
as a parent. An individual can be selected multiple times. The selected individuals are
then bred by crossover and mutation to produce new individuals that will make the next
generation. If only “fitter genotypes” are chosen at this point, premature restriction to a
local optimum could occur; that is, only individuals close to a local optimum could become
parents. To avoid this, diversity within the population has to be maintained. Thus, some

individuals with lower fitness are also stochastically chosen.

For selection, the process of passing “fitter” individuals into the next generation is often
used. Since crossover and mutation are stochastic processes, the objective function value
of a created offspring is not always better than that of its parent. Therefore, even if all
individuals with higher fitness values are selected as parents to participate in reproduction,
it is not guaranteed that objective values of the created offspring are as good, or better
than, those of the parents. This means that the new population may not be as good as
the old one. To avoid this, some individuals with relatively fitter genes, elites, are kept for
the next generation. This procedure is called elitism. There are different types of elitism

(Rudolph [39], Zitzler et al [45]), and I will introduce how it generally works later.

There are different types of selection methods. For ranking selection, parents are selected
depending on just the rank of their fitness values. All N individuals in the population are
ranked as 1 to N with respect to their fitness values. Depending on the rank, probability
is assigned to each individual, and N parents are selected probabilistically (Baker [3]). For
tournament selection, the individual with the best fitness is selected as a parent from a pre-
determined number of randomly selected individuals; this tournament process is repeated

until the selection pool is filled (Goldberg et al. [18], Horn et al. [23]).
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Roulette wheel selection (Srinivas et al. [42]), used in Pareto_Evolve, randomly chooses
individuals for reproduction in proportion to their relative fitness (Fogel [13]); i.e., the

probability that individual X; is chosen as a parent is:

f(Xi)
S f(Xx)

where f is the fitness function, and N is the size of the population. After the probabil-

pi = p(X;) = (2.1)

ity is calculated for all X; (z = 1,2,...,N), range [0,1] is divided into N ranges: [0, p1],
(p1,p1 + p2), -- (Zk | Pk, 1] (note: Z,]::lpk = 1). Then the “roulette” is constructed
using this portion. Each range corresponds to an individual; X; corresponds to range
(>t o1 Dk 22:1 Pk)- A number picked randomly on [0, 1] indicates a position on the roulette,
and the corresponding individual becomes one of the parents to be bred; e.g. if the picked

random number is on (p1+p2+ps, p1+p2+p3+pal, then individual Xy is selected as a parent.

Actually, the roulette wheel selection method may cause a rapid loss of diversity if there is
a markedly unequal fitness among individuals. For example, if the probability of selection
for individual X7 is 0.9, then probability that any of Xs,..., X are chosen becomes very

low. This is possibly prematurely restricting diversity of the population.

After parents are selected, offspring are created from those parents by crossover and muta-

tion. How many parents are crossed over or mutated also needs to be considered.

2.2.8 Crossover

Crossover is used to produce one or more offspring from two or more parents. In some GAs,
not all parents are crossed over; for instance, if crossover probability is 0.25, each parent
has a 25% probability of crossing over, that is, only an average 25% of parents are crossed
over (Michalewicz [28]). Crossover probability is typically fixed for the entire search and
commonly proposed setting is over 0.6 to 0.95 (Fogel [12]).
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Different types of crossover are used depending on the Evolutionary Algorithm (EA) being
used (Béck et al. [2]). T introduce an example of one-point crossover to generate two offspring
Z1 and Zy from two parents Y; and Ys. A position between two randomly determined
consecutive parameters is used as the crossover point. In this example, it is between the
k-th and (k+1)-th parameters. Offspring Z; is generated by concatenating the left substring
of parent Y7 and the right substring of parent Y5 at the crossover point and offspring Z5 is
created by concatenating of the left substring of parent Y3 and the right substring of parent

Y1 at the crossover point.

Before crossing over:

Sr—‘

. 1,1 1.1
Parent Yi: T &gy Ty Ty 1y &

SN)

. 2 .2 2 .2
Parent Ys: T TGy Ty Ty 1y &

After crossing over:

: R B | 1,2 2
Offspring Z1: 1, %3, , T, Ty 15+, Tpy
: .2 2 2 .1 1
Offspring Zs: 1,235, , Tjy, T 1y -+ » Ty

Multi-point crossover determines more than one crossover point. The number of the points
is fixed or random. An example of two-point crossover generating two offspring from two

parents follows:

Before crossing over:

. 1.1 11 1o, 1
Parent Yi: Z1,Tgy s Thys Thyt1r- -3 Lhys Lhot1r -+ -1 Lm
. 2 ,.2 2 .2 2 .2 2
Parent Ys: T, X5y -3 Thys Thy 1o+ 3 Thys Thot 10+ -1 L
After crossing over:
3 . 1 .1 1 2 2 1 1
Offspring Z1:  @1,%3,- -, T Ty 110+ » Thy» Thy i 15+ -+ Ty
: .2 2 2 1 1.2 2
Offspring Zo:  Z1,Z5,-- -, T T, 110+ » Thys Thyy1r- - » Ty
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2.2.4 Mutation

The purpose of mutation is to make a small change in parameter values of an individual.
This is thought valuable for locally searching the objective space. It is done by changing
the values of some parameters; for example, adding or subtracting small values or selecting
a parameter randomly, picking up a random number on its defined range, and replacing the

parameter value with the randomly picked value.

Before mutating:

Parent Y: T1,22,...,Tm

After mutating;:

Offspring Z: x1 +¢€1,22,-.-Tk—1,Tk + €k, Tht1y-- - Tm,

where ¢; > 0 and z; + ¢; is in the ¢-th parameter search range. In this example, only two

parameters are randomly chosen for mutation, the first and the k-th parameters.

Deciding which individuals undergo mutation is part of the problem design. For exam-
ple, only offspring produced by crossover may have a chance to be mutated (Beasley et
al. [5]) or, after crossover operators are applied, all individuals have a chance to be mutated
(Michalewicz [28]). Or, as in Pareto_Evolve, only individuals not undergoing crossover are

mutated.

As for crossover probability, mutation probability is typically fixed for the entire search and
is very small compared to crossover probability. Common settings are from 0.001 to 0.01 of

the population size (Fogel [12]).

2.3 Multi-Objective Optimization and the Pareto Frontier

Multi-objective problems consider more than one objective function for each individual:
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Find an m-component vector X = (z1,..., %) € R™ that minimizes the values

of functions F; (X),...,F(X) € R

Usually, multi-objective optimization problems cannot be solved because we cannot find a
solution X that minimizes all of the functions Fi, ..., F, at the same time. I will explain

what kind of solutions we need to look for. Before that, I introduce some terminology.

Definition: X dominates X', or X' is dominated by X if and only if

Fi(X) <

=

(X') Vi, 1<i<n  and (2.2)

Ji, 1 <i < n, suchthat F;(X) # F;(X'). (2.3)
Also, X is codominant to X' if and only if
3, j, i #j suchthat F;j(X) < F;(X') and F;(X') < F;(X). (2.4)

The Pareto set is the set of all non-dominated solutions, that is, solutions which are mu-
tually codominant and are not dominated by any other X on the search range. For a
multi-objective optimization problem, the goal is to describe the Pareto optimal set, i.e.,
the Pareto frontier, also known as the tradeoff surface or efficiency frontier (Keeney et

al. [24]).

For example, we consider the case with n = 2. We wish to minimize:
(2.5)

As we can see in Figure 2.2, there is no solution that minimizes both functions at the same
time. For z < 2’ < 0, Fi(z') < Fi(z) and Fy(z') < Fy(z); thus ' dominates z. On the
other hand, for 2 < z < z/, Fi(z) < Fi(2') and Fy(z) < Fy(z'); thus, z dominates z'.
However, for 0 < x < 2, while F; gets larger if z increases, F becomes smaller. Therefore,
for this problem, {z | 0 < z < 2} is the Pareto set, and {(Fi(z), Fa(z)) | 0 < z < 2} is the

Pareto frontier.
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Figure 2.2: Functions Fi(z) = 2% and Fy(z) = (= — 2)%.

2.4 Brief Explanation for Original Pareto_Evolve Software

Pareto_Evolve was developed to assess and fit complex ecological models. It solves multi-
objective optimization problems using a type of Evolutionary Algorithm (EA), the Non-
Dominated Sorting Genetic Algorithm (NSGA) (Srinivas et al. [42]). The software is de-
signed to find the Pareto frontier and its corresponding Pareto set (the set of parameteri-

zations). It was developed to assess and fit complex ecological models (Reynolds [37]).

In this section, I explain how the original Pareto_Evolve program works. The flowchart
of the whole process is shown in Figure 2.3. The flow of Pareto_Evolve is similar to the
case for the single-objective optimization case introduced in Section 2.2. First, population
Py = {X?li = 1,...,N} (N is a population size) is initialized. In each generation g, fit-
ness is calculated based on performance, the fitness value is assigned to each individual
in population F,, parents are then selected depending on their fitness values, and genetic

operators (crossover or mutation) are applied to the parents to produce offspring. These
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Figure 2.4: Example of Pareto-ranked solutions in the two-dimensional objective function
space.

processes are repeated while ¢ < gmax (gmax 18 the maximum allowed number of genera-

tion) and none of the population members satisfies the predetermined condition by the user.

While an objective function value is used for a fitness value for single-objective problems,
for multi-objective case the fitness value of each individual is a function of both its Pareto
ranking (or non-dominated ranking) and niche count. For individual X;, and Xj, in the
current population, if X;, dominates X;,, then it is natural that X;, should have a higher
probability of participating in the reproduction process than X;,. Thus, all population
members are ranked by domination. First, all non-dominated individuals are ranked as 1.
Among the remaining non-ranked population members, i.e., the individuals excluding ones
ranked as 1, non-dominated individuals are assigned rank 2. This procedure is repeated
until all members are ranked. This ranking is called Pareto ranking or non-dominated rank-
ing (Srinivas et al. [42]). Figure 2.4 shows an example of Pareto-ranked solutions in the

two-dimensional objective function space.

Niche count, which defines crowding around an individual in the objective space, is also used
to calculate the fitness value. In order to avoid convergence to local optimal solutions, it is

desirable to have diversity within the population. Thus, to describe the full Pareto frontier,
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individuals whose objective vectors are close to each other’s should have reduced fitness in
order to force the search to spread out. Crowding around an individual in the objective
space is calculated as its niche count, and the niche count will be used to decrease fitness
if an individual is close to other individuals. To define niche count for each individual, a

sharing function is first calculated (Goldberg et al.[19]):

1- ( dij )2 if dij < Oshare
Sh(dij) = Oshare 7 (2.6)

0 otherwise,

where d;; denotes the Euclidean distance between objective vectors of two distinct individ-

uals X; and X, that is,

with
F= (FlaF27"' aFn)a

and Ogpare 18 the maximum allowed sharing distance (i.e., neighborhood radius), which is
a predetermined user-defined number. Then, niche count, n; for each individual X; is

determined as

ni= Y Sh(dy). (2.8)
1§j ;'égiN

In the original NSGA (Srinivas et al. [42]), distances d;; are calculated between two indi-
viduals of the same rank only in terms of their distance in parameter space (genotype). On
the other hand, in initial Pareto_Evolve software, d;;’s are calculated for all pairs (X;, X;)
of individuals and the distance is between objective vectors, instead of between parame-
terizations. It is useful to force objective function values to spread out along the frontier
because this produces a variety of Pareto groups. Also, in general, the problems solved by
the original Pareto_Evolve did not always have parameters that were commensurable with
each other; they could not be compared directly since some parameters had different units

from the others. On the other hand, objective vectors share a common scale, 0 or 1 for the

binary case and [0, 1] for the continuous case. Those two factors are the reasons why the
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distance is calculated between objective vectors, instead of parameterizations for all pairs
of individuals.
After the maximum niche count ng)ax for individuals ranked in r is found, baseline fitness

(dummy fitness in the NSGA) b, for individuals ranked r is calculated as follows:

by = 100
1 (2.9)

b, = br—1-W/n$£;X) forr =2,3,---,p,

where 0 < W < 1 (WGT in the code). Then, fitness of each individual X; in rank r is
defined as
br / n;. (2.10)

Parameter W decreases the previous baseline. Fitness for individuals of rank r (r =
2,3,---,p) has to be lower than that for individuals of rank » — 1. To satisfy this, pa-
rameter W should be determined as 0 < W < 1; if W = 1, then there could exist an
individual of rank r whose fitness value is equal to that with the smallest fitness of rank
r—1, because b, = br_l/ng;xl) is the smallest fitness value of rank r — 1. Although W = 0.5

in the code, the user can change the value.

To consider the definition of fitness value in more detail, we consider an individual X; and
assume that there are many individuals X; whose objective vectors are very close to that of
X;. Then, by equation (2.6), the values of Sh(d;;) are close to 1 because d;; < Oghare- If this
holds, then the niche count takes a large value by equation (2.8). Therefore, by equation
(2.10), we see that the fitness value for X; is small. This shows that fitness is low if space

is crowded around the objective function vector of Xj.

By the result of the fitness calculation, N individuals are randomly chosen from population
F, as parents for crossover and mutation. Each individual can be selected more than once.
For this selection, roulette wheel selection method, which was introduced in Section 2.2.2,

1s used.
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In Pareto_Evolve, each parent is assigned either a crossover operator or a mutation oper-
ator. Also, for Pareto_Evolve, it is preferred that crossover/mutation probability changes
as a function of the generation number. Generally, population members at later genera-
tions are expected to approach reasonable solutions. Thus, mutation, which makes small
changes in some parameter values of an individual for a local search, has been considered
more important than crossover at later generations. In the Pareto_Evolve, the probability of
receiving crossover, which is set at 2/3 at generation 0, decreases linearly as the generation
number increases to reach to 0 at generation gmax. On the other hand, the probability of

mutation increases linearly from 1/3 to 1 with generation number.

Crossover occurs done by a method called uniform crossover (Syswerda [43]); the number
of the crossover points, as well as crossover points themselves, is chosen randomly. Nonuni-
form mutation, introduced in Michalewicz [28], is used: each parameter zj is determined
randomly whether the value is changed or not; if yes, z}, is changed to z},, which is defined

as

zr + A(g,UB — x if addition

zr — A(g, z — LB) if subtraction
with the lower bound LB and upper bound UB of the domain, and function A. The
probability of the step size defined by function A gets closer to 0 as generation g becomes

larger so that the larger the generation becomes, the more locally the space is searched by

mutation. Michalewicz [28] defined A as:

Ag,y) =y- (1 —~ q(l‘g/"ma")ﬁ) : (2.12)

where ¢ is randomly chosen from [0, 1] whenever A is called, gmax and g are the maximal
and current generation numbers, respectively, and £ is a system parameter determining the
degree of dependency on generation number g. The larger 3, the smaller A, so for a large
value of 3, the change of the parameter value by mutation is small. The value of 3 is set at
5, which was used by Michalewicz [28]; however, it can be changed by the user. Whether

addition or subtraction is applied is determined by a pseudo-coin-toss.
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After reproduction, the generation number is checked. If it has reached the maximum, the

search is over. Otherwise, the algorithm goes back to the procedure to calculate fitness.

The original Pareto_Evolve code has an external memory, Historical Pareto Frontier. This
is a set of non-dominated individuals found from the initial population up to the previous
population, and all individuals are codominant with the others in the set. As shown in
Figure 2.3, after calculating the fitness, the set is updated; if there is a individual in the
Historical Pareto Frontier dominated by a non-dominated individual of the current genera-
tion, it is replaced by the non-dominated individual in the current population. This process
was designed to maintain a complete record of the full Pareto frontier as discovered during
the search, rather than to simply rely on the Pareto frontier retained in the final generation
search results. Also, if there are offspring matching any of the individuals in the Historical
Pareto Frontier, they are mutated until they differ from all of the individuals in the Histor-

ical Pareto Frontier to reduce redundant searches.

Since I considered the simulation result captured the measured data better if the more cri-
teria were achieved, I defined elitism to keep individuals achieving many criteria. What I
emphasized was a program to retain and utilize the best individuals throughout the search
rather than to simply keep a record of external to the search. I refined Pareto_Evolve so that
an individual better than those of the previous generation can survive as an elite (Chapter
5), which allows us to keep some individuals without any modification. I added this new

process and removed the process of the Historical Pareto Frontier from the original code.
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Chapter 3

INTRODUCTION TO THE MODEL

My goal is to fit an ecological model to shoot growth data using a multi-objective Evolu-
tionary Algorithm (EA), Pareto_Evolve. This chapter first introduces the data collection
and then explains the model construction. Then, I show the results of fitting using three
different types of single-objective methods; this motivates the use of the multi-objective

method.

I tried the simplex methods and simulated annealing method to minimize the residual sum
of squares (RSS), but the results depended on the initial parameterizations. Also, the sim-
ulated data did not fit the measured data very well for some periods. These two issues
motivated the use of a different method. I chose multi-objective EAs because they can

consider more than one criterion, potentially improving the fit of the simulated data.

This problem was chosen because while the data has very high measurement accuracy, it
shows some complex variation. The question I ask is whether the proposed model can
explain the important features of the data. I may consider changing the model and/or
changing the assessment criteria for features of the data, but, as I will show, the principal
requirement is develop a more effective search by Pareto_Evolve and to make the model the

data well.

3.1 Collected Data

The response of plants to environmental change can be complex. One reason is that envi-
ronmental change often involves a number of factors. For example, a change from sunny

to cloudy weather is likely to produce decreased radiation, decreased temperature and de-
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creased vapor pressure deficit. A second reason is that biological systems comprise a set of
interacting processes that may respond in different ways to change. For example, a change
from sunny to cloudy weather on a plant may affect photosynthesis through a change in
light, growth and through a change in temperature, and transpiration through a change in
vapor pressure deficit. Furthermore, the rates of these processes may interact. A change in
transpiration can affect the internal water potential of a plant and affect both the growth

process and photosynthesis. The plant-environment system is dynamic and nonlinear.

While direct experimentation can produce useful results, it has important limitations. Ex-
perimentation is most effective when a few components of a system are manipulated and
this can limit what is discovered about dynamic interactions. Furthermore, for the plant-
environment system, experiments are most effective when made with small plants, but
important components of dynamics are directly affected by plant size, as in the water re-
lations of trees. For these reasons, constructing models of the direct responses of plants
in naturally fluctuating environments is important in the scientific investigation of the
plant-environment system. Practical problems of model development and assessment of
an environment-to-plant response provide the motivation for the EA system developed in

this work.

Investigations were made of the day-to-day increment of shoot extension in a Sitka spruce
plantation in southwest Scotland (Ford et al. [16] [17]). Measurements were made from a
marked point on non-growing wood to the shoot apex at 9 am BST every day with a ruler.
At the same time, daily totals for radiation and mean daily temperature were made. The
advantage of this simple measurement system was that many shoots could be measured, and
so variation in response within trees could be defined. Ford et al. [16] showed that shoots
at the lowest levels in the canopy started growth earliest by just a few days, but shoots in
the upper levels in the canopy continued growth for substantially longer. From the end of
May, leading shoots grew for some 90 days while branches within the canopy only grew for
40 days. However, as far as the accuracy of the measurements could show, the patterns of

day-to-day fluctuation in growth were similar between all shoots although the amplitude
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of change was greater for those shoots that grew most overall, i.e., the leading shoots and

shoots of the upper branches.

An exploratory investigation of daily weather changes on shoot extension rates was made
using time series analysis. Serial auto and cross-correlation analysis showed variation in
detrended shoot increments was related to previous changes in solar radiation and temper-
ature. For the first half of the growing season, autoregressive models were fitted (Box et
al. [6]). These showed delays in the influence of temperature and solar radiation. A typical
model, using parsimony as a guiding principle in model identification, and where T} is daily
mean temperature in centigrade, R; radiation in Mega Jules, and S; is detrended shoot

extension at time ¢, is
St =0.133 - T3 1 — 0.042 - T;_5 + 0.0107 - R;_5 + 0.0150 - Ry 3. (3.1)

This model raised many questions. How could the effect of temperature at t —2 be negative?
Was the lag of solar radiation really over a 2 and 3 day period? These are important ques-
tions for tree physiologists because answers to them tell things about the dynamic process
of tree response to the environment. However, a difficulty with this work was that the time
interval and accuracy of measurement was felt to limit what could be found out. Scientists
measuring the shoots felt that considerable contraction of shoots was taking place on sunny
days, and this could be a response to transpiration and did not affect “real” growth. In-
deed the lag in positive response to solar radiation might be due to a recovery time for this

contraction.

To obtain better data, a shoot extension sensor was constructed (Milne et al. [31]). This sys-
tem sensed the top of the growing shoot using a light emitting diode and gave measurement
accurate to better than 1 mm. The sensor was positioned on the shoot continuously and
was scanned every 20 minutes. The results used are hourly sums based on those 20 minutes
scans (Figure 3.1). Concurrent with the measurements of shoot extension, measurements
of temperature, radiation and vapor pressure deficit were also made (Figure 3.2 (a) and

(c))- From research into canopy transpiration (Milne et al. [30]), canopy conductance was
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Figure 3.1: Hourly measured shoot growth rate of the terminal shoot of a 14 year plantation
growth tree of Sitka spruce in southwest Scotland from Julian day 171 through 194 in 1976.
During the period from day 177 onwards, the shoot has substantial contractions (negative
growth) during the middle of the day and most rapid growth during the night.
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Figure 3.2: Hourly (a) measured temperature, (b) calculated transpiration and (c) solar
radiation from Julian day 171 through 194. Hourly measured shoot growth rate are shown
for reference (gray bars).
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estimated and so hourly estimates of transpiration (Figure 3.2 (b)) could be calculated for
the period that shoot extension was measured. Additionally, measurements of soil water po-
tential were made, which in conjunction with moisture release curves were used to calculate
soil water loss. The most apparent fluctuation in the hourly estimates of shoot extension
is the diurnal cycle of contraction and expansion, which is related to changes in tree water

potential (Milne et al. [29] [31]).

In this model, the water lost due to transpiration is balanced by water taken up from the
soil. This was studied at this site by Deans [9]. Secondly, there is a lag between water being
lost from the needles and shoots and it being replaced from the soil and possibly from the
trunk (Milne et al. [29] [31]). Two things need to be considered in calculating the effects of

water deficit on shrinking and contraction:

1. an increase in deficit has a more rapid effect on contraction than the equivalent de-
crease in deficit has an expansion; there is a hysteresis in the drying and rewetting
cycle effect on tissue size. Consequently, two parameters x5 for the effect during

contraction and zg for the effect during remodel of the deficit were estimated.

2. the shrinkage and expansion of tissue does not affect the complete length of shoot
that has grown because secondary shrinking of xylem trochoids stiffens the shoot
progressively from the base. Here the water deficit change is applied to the amount

of shoot that grew over the last twenty-four hours.

From the perspective of modeling, I have a dynamic system, but one with a number of com-
ponents. Clearly, a starting point in model construction should be the model constructed
for daily changes, and I should add to this a dynamic for the removal of water from the tree

during the day due to transpiration and the recharge from the soil at night.
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3.2 Model Construction

The model I used to find the best fit to the shoot growth data by Pareto_Evolve was

constructed based on the previous section:

24 48
St = I1- (ZTt_k> /24 — T2 (Z T;g_k> /24
k=1 k=25

48 72
+ =3 ZRtfk + T4 - ZRtfk

k=25 k=49

( 24
z5- DY Sh (%)

k=1

- 9

24
w6 MDY Sp (xx)

\ k:l

with
AtD = Dt — Dt_1 = Wt — Ut = Wt — T Dt—l;

where variables are defined in Table 3.1 and parameters are explained in Table 3.2. This
shows the shoot growth at time ¢. The coefficients of the first and second terms are the
average temperature for the previous 24 hours and two 24-hour periods before, respectively.
The coeflicients of the third and fourth terms are the total solar radiation for two and three
24-hour periods before, respectively. The last sums are the total growth for the previous
day, and the previously calculated simulated rates are used. For t < 24, I used the mea-
sured data instead since the simulated ones are not available. Term (*) is selected if current

hourly water deficit is less than one for the previous hour, i.e., Ay D < 0, and (**) otherwise.

3.3 Single-Objective Optimization Methods

Before I introduce the results of Pareto_Evolve using the model constructed in the previous

section, I show the results from fitting using the single-objective optimization methods. I
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Table 3.1: Variables used in the shoot growth model for forest trees.

Wi

U;

hour(s) from when simulation started; for example, if current time
is hour A on day d, and simulation started from hour Ay on day

do, then ¢ = (d — do) * 24 + (h — ho);

hourly simulated growth rate (mm/hour) at time ¢;
temperature (°C) at time ¢;

hourly solar radiation (MJ/m?/hour) at time ¢;
hourly water deficit (mm/hour) at time ¢,

hourly simulated growth rate (mm/hour) at time ¢ on the previous

day,
hourly water transpiration (mm/hour) at time ¢;

hourly water uptake (mm/hour) from the soil at time ¢.
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Table 3.2: Definitions of the parameters 1, ..., z7 used in the model and their approximate
feasible ranges.

x1 rate of extension per average temperature for the past 24 hours; the
value is about four times as z (Ford et al. [17]); unit: mm/°C; search

range: [0,0.4];

To rate of extension per average temperature between the past 48 hours

through 24 hours; unit: mm/°C; search range: [0,0.1];

x3 rate of extension per total radiation between the past 48 hours through

24 hours; unit: 108(mm)3/MJ/360; search range: [0,0.1];

x4 rate of extension per total radiation between the past 60 hours through

48 hours; unit: 10%(mm)3/MJ/360; search range: [0,0.1];

x5 rate of extension per increment of product of previous hourly water
deficit and previous daily growth increment when the current hourly

deficit is less than one for the previous hour; z5 < 1 since x5 is to
24

downsize A;D - ZS}: to calculate Sy; unit: hour/mm; search range:
k=1
[0, 1];

Tg¢ same rate as x5, but when current hourly deficit is greater than one for

the previous hour; unit: hour/mm; search range: [0, 1];

x7 rate of water deficit for the previous hour; since Uy = z7 - Wy_1, and

0 < U; < W;_1; no unit; search range: [0, 1].
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solved the problem by three different methods: the Nelder-Mead simplex method, the Pow-

ell’s version of the simplex method and the simulated annealing method.

Using the three methods, I minimized the residual sum of squares (RSS) between the mea-
sured and simulated data. I chose the RSS as an objective function because it is commonly
used and T considered it is the simplest single-objective function. For the simulated data,
I used the model introduced in the previous section and the period of seven days, Julian
day 178 through 184. The shorter the period to be simulated, the easier the search. Thus,
I worked on the seven day period, instead of the entire twenty-four day period. I decided
to use this period since it contains both contraction and extension parts. The results show

that it is not appropriate to use single-objective methods for this particular type of problem.

3.3.1 Nelder-Mead Simplex Method

The Nelder-Mead simplex method (Nelder et al. [33]) solves optimization problems with-
out constraints. It does not use any derivatives, but it requires continuity of the objective
function. Strictly speaking, I should not have used this method for the problem; the model
is not defined by a continuous function, so the objective function RSS is not continuous
either. However, since the method requires only continuity of the objective function, and

the RSS is piecewise continuous, I tried it to see how well the model fit the data.

I used the program for the Nelder-Mead simplex method by Press et al. [36]. For an m-
dimensional minimization problem, the method generates m + 1 points that give smaller
objective values than those at current m + 1 points. To start a search, m + 1 initial points
are required. For this case, we need eight different sets of initial points for search since there

are seven distinct parameters.

I set the eight initial points to
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where

z1 =040, Z2=0.1la, 2z3=0.1la, 2Z4=0.1c, Z5=1.0q,

.’f?s = 1.004, .’i7 = 1.0c.

I set the value of each z; (i = 1,...,7) to the product of @ and the upper limit of the search

range for Pareto_Evolve, where a = 107',1072 or 1073.

The resulting eight sets of solutions, @1, Q2, ..., Qs, and the RSS for o = 101,102,103

were as follows:

a=10"" RSS
= (0.0710, 0.0413, 0.0410, 0.0235, 0.1064, 0.2709, 0.5668)  76.2596
= (0.0709, 0.0412, 0.0410, 0.0236, 0.1065, 0.2710, 0.5670)  76.2596
= (0.0709, 0.0411, 0.0410, 0.0235, 0.1065, 0.2708, 0.5669)  76.2596
Q4 = (0.0709, 0.0412, 0.0409, 0.0236, 0.1065, 0.2710, 0.5671)  76.2596
= (0.0711, 0.0414, 0.0410, 0.0235, 0.1065, 0.2706, 0.5667)  76.2596
= (0.0709, 0.0413, 0.0410, 0.0236, 0.1065, 0.2711, 0.5672)  76.2596
Q7 = (0.0710, 0.0413, 0.0410, 0.0236, 0.1065, 0.2710, 0.5673)  76.2596
= (0.0711, 0.0414, 0.0410, 0.0235, 0.1066, 0.2709, 0.5669)  76.2596
a=10"2 RSS

@1 = (0.0709, 0.0413, 0.0410, 0.0236, 0.1063, 0.2710, 0.5669)  76.2595
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Q@2 = (0.0710, 0.0413, 0.0409, 0.0237, 0.1065, 0.2709, 0.5669)  76.2595

Q@3 = (0.0709, 0.0413, 0.0410, 0.0236, 0.1064, 0.2711, 0.5671)  76.2595

Q4 = (0.0707, 0.0411, 0.0409, 0.0237, 0.1063, 0.2710, 0.5668)  76.2595

Qs = (0.0709, 0.0413, 0.0410, 0.0237, 0.1062, 0.2706, 0.5663)  76.2595

Qs = (0.0706, 0.0410, 0.0410, 0.0237, 0.1062, 0.2709, 0.5669)  76.2596

Q7 = (0.0709, 0.0413, 0.0410, 0.0236, 0.1064, 0.2711, 0.5669)  76.2596
( )

Qs = (0.0707, 0.0410, 0.0411, 0.0236, 0.1063, 0.2710, 0.5669)  76.2595

a=10"3 RSS

= (0.1444, 0.0636, 0.0157, —0.0112, 0.1149, 0.2190, 0.4930)  86.8733

= (0.1443, 0.0636, 0.0157, —0.0112, 0.1150, 0.2191, 0.4929)  86.8734

= (0.1444, 0.0637, 0.0157, —0.0111, 0.1148, 0.2188, 0.4926)  86.8734
Q4 = (0.1444, 0.0636, 0.0157, —0.0111, 0.1149, 0.2188, 0.4927)  86.8734
= (0.1444, 0.0636, 0.0157, —0.0111, 0.1149, 0.2190, 0.4926)  86.8734

= (0.1445, 0.0637, 0.0157, —0.0111, 0.1148, 0.2190, 0.4929)  86.8734
Q7 = (0.1444, 0.0636, 0.0157, —0.0111, 0.1149, 0.2189, 0.4927)  86.8734
= (0.1444, 0.0637, 0.0157, —0.0111, 0.1147, 0.2187, 0.4925)  86.8734.

The numbers of iterations to get those results are 602, 988, 781 for o = 107,102,103,

respectively.

The errors, that is, the ratios of the RSS to the total sum of squares of hourly measured
data for the period of seven days are 13.36% for o = 107!,1072 and 15.22% for o = 1073.
The parameterizations of the first two results (o = 1071,102) very similar to each other.
However, the parameterizations of Q1, ..., Qg for @ = 102 are quite different from those of
the other two results. This happened probably because the search reached the local optimal
solution before the space was searched widely enough; since all initial points were too close
to each others the searched range was narrower than the other two cases. As is generally
known for many optimization methods, the solution depends on the initial points. Thus, if

« is small, or the initial points are close to each others, then the RSS may not be minimized



33

(a) Measured and Simulated Data
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Figure 3.3: Results of the Nelder-Mead simplex method with o = 107!, (a) The simulated
data using the RSS for the period of seven days, from Julian day 178 through 184 (solid
line), and the measured data (bar). (b) The ratio of the RSS between the measured and
simulated data to the total sum of squares of the measured data for the period of seven
days, day 178-184. Errors for contraction periods (6:00-18:00) and extension periods (18:00-
6:00+) are plotted separately. Extension periods on the first and last day are 0:00-6:00 and
18:00-0:00, respectively. The overall error is quite small (13.3628%), but we can see that
the model is biased to the extension periods; the errors for contraction periods are larger
than those for extension periods.
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efficiently.

The fit of the search for « = 10~! are shown in Figure 3.3(a). Figure 3.3(b) shows that
the simulated data does not fit well for the contraction periods, which means the model is

biased against the contraction period when I use the simplex method.

3.8.2  Powell’s Version of Simplex Method

There is a modified version of the Nelder-Mead simplex method, which solves nonlinear
optimization problems with constraints (Powell [35]). I tried this method to see if I would

obtained different results.

For this method, I used subroutine “NLPNMS” of software “SAS/IML” to find the solu-
tion minimizing the RSS (SAS Institute [40]). NLPNMS requires us to set only one initial
point and allows us to set constraints. The constraints for the problem are the boundary

conditions, and they are the ones shown in Table 3.2.

I found that the method is quite robust because no matter what the initial point was, the

results were the same. The set of parameterizations I obtained as the solution is
(0.070962, 0.041340, 0.041006, 0.023611, 0.106384, 0.270735, 0.566824).

This is very similar to those obtained using the Nelder-Mead simplex method. The value of
the RSS and the ratio of the RSS to the squared sum of hourly measured data for the period
of seven days, Julian day 178 through 184, are 76.259439197 and 13.3627%, respectively.
These values show that the results of this method are as good as those of the Nelder-Mead

simplex method.

For Powell’s version of the simplex method, if the step size for parameters is too small, a
search requires more iteration and I sometimes could not obtain solutions. In addition to

this problem, the method still requires continuity of the objective function, and so is not
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appropriate for this problem.

3.3.3 Simulated Annealing Method

The last method I tried is the simulated annealing method (Kirkpatrick et al. [25]). When
a substance such as metal is liquefied with high temperature, molecules move freely. If the
substance cools down slowly from this condition, the atoms form a pure crystal. This con-
dition is stable with minimum energy, that is, the substance is strong. On the other hand,
quick cooling does not bring this state but instead produces an amorphous state with higher

energy. The simulated annealing method adopts this principle for finding global minima.

We consider an m-dimensional minimization problem. Search starts from high tempera-
ture. At fixed temperature, like the simplex method, the generates m + 1 points which
give smaller objective values than those at the current m + 1 points. After it reaches the
thermal equilibrium, temperature is dropped a little, and the same processes are repeated.
If we could make temperature decrease infinitesimally and repeatedly keep up this process,
the global minimum would certainly be found. However, in reality, both the decrement of
temperature and the number of repetition of the process have to be finite. Therefore, we

need to set practical cooling schedule.

This method is often used for the traveling salesman problem for finding the shortest way to
visit designated cities. The method can solve minimization problems not only for discrete
parameter spaces but also continuous ones (Press et al. [36]). As for the simplex method,

it does not require any derivatives.

For the method, I again used a program by Press et al. [36]. As I mentioned above, for an
m~dimensional minimization problem, m + 1 initial points are required. Therefore I needed
eight different sets of the initial points to solve my problem using the simulated annealing

method because there are seven distinct parameters.
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I tried initial temperature 10* with two different sets of the initial parameterizations:

9 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
9 =1(0.0, 29, T3, &4, Ts, T6, T7)
g = (%1, 0.0, T3, 4, Z5, T¢, T7)
2 = (Z1, Z9, 0.0, Z4, Z5, T¢, T7)
g = (571, 572, 5‘3, OO, -%53 576, -%7)
g = (571’ Zo, I3, T4, 0.0, Zg, fi'?)
0 = (&1, &9, &3, T4, &5, 0.0, F7)
S = (%1, %9, T3, 44, Ts5, T6, 0.0),

where

i1 =04q, & =0.la, #3=0.la, %4 =0.le, 75=10aq,

ie = 1.0a, &7 = 1.0a,

with o = 102,103,

The resulting RSS’s are 76.259492 and 230.430525 for oo = 10~2,10 3, respectively, and the

parameterizations are as follows, respectively:

(0.070972, 0.041459, 0.041037, 0.023700, 0.106354, 0.270681, 0.566628),
(0.058095, 0.044864, 0.041309, 0.017170, 0.141898, 0.014240, 0.004390).

The resulting parameterization for « = 1072 is again very similar to those by the simplex
methods. For two different sets of results with o = 1072,1073, we again see that the solu-
tions depended on the initial points. As for the Nelder-Mead simplex method, the search
reached a local optimal solution before the space was searched widely enough. This is prob-
ably because all optimal points were too close to each others. Also, with o = 1072, I tried
initial temperature 102, and the RSS was 235.187483, which implies the initial temperature

is too low. Thus, this cooling schedule is not appropriate for the problem.
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3.8.4 Motivations of Using Multi- Objective Methods

As we saw, the results of the three methods I tried were affected by the initial points, which
is commonly known for single-objective optimization methods. Also, the parameterizations

of the best result for each of the three methods were similar to each others.

Since the model includes a regression term, the current growth is affected by that of the
previous hours. Thus, I considered that the fitting result could be improved if I had the
information about the relation between hourly data. The RSS is not informative enough to
express this. Also, from the result shown in Figure 3.3(b), if I think about contraction and
extension periods separately, I may find a set of parameterizations that makes the simula-
tion result capture the measured data for contraction periods better. The multi-objective
optimization method allows us to consider contraction and extension periods separately
since we can set more than one objective function, each focused on particular data features.
Also, if there is difficulty in achieving some criteria at the same time, analysis could help to
find what and where the deficiency of the model is. These effects of considering more than

one objective function motivated using a multi-objective optimization method.



38

Chapter 4

DEFINITION OF THE PROBLEM

In order to use Pareto_Evolve for a simulation model, I need to define the criteria to be
used. Then, using these criteria, Pareto_Evolve solves the problem or finds the fit with
as many achieved criteria as possible, constructing iteratively a Pareto set, i.e., a set of
non-dominated individuals. The Pareto set is expected to satisfy more criteria as the search

evolves.

In Section 3.2, I attempted to fit the model using single-objective methods and the re-
sults revealed drawbacks: dependency on the initial points and no relation between hourly
data. These results motivated using multi-objective methods and led to selection of par-
ticular criteria. This chapter introduces the criteria and, after discussing some aspects
about Pareto_Evolve, gives results calculated using the original Pareto_Evolve (Reynolds et

al. [38)).

4.1 Criteria for the Problem

As criteria, I use the differences between measured and simulated growth data at the times
when the measured growth data take their daily maximums and minimums, because the
single-objective methods could not express the relation hourly data, which I considered to
be helpful for better fitting. T used the same period of seven days as for the single-objective
methods. We might consider it is more informative for a search if we could use more objec-
tive functions; thus, all 168 (24 hours x 7 days) hourly differences could be used as criteria.
However, the search would take longer, and the number of Pareto groups (members of the
Pareto frontier) might be very large because the more objective functions, the more Pareto

groups. Figure 4.1 shows that increasing the number of objective functions makes the trade-
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(a) One Objective Function (b) Two Objective Functions

X F,

Figure 4.1: Pareto frontiers for minimization problems. Points “x”’s represent the members
of the Pareto frontiers. (a) For a single-objective case, the solution set is one-dimensional.
(b) For an m-objective (n > 1) case, the Pareto frontier can be n-dimensional. In this
example, n = 2.

offs more complicated. Therefore, I decided to take only two objective functions for each day.

The ideal solution for my example is that all fourteen differences between measured and
simulated data are 0. Thus, I could have set all fourteen target values at zero for the
search and used a continuous error measure (distance) for each criteria. However, we might
imagine that it is hard to make all fourteen differences zero, and I can ignore some small
differences in outputs for my problem. Therefore, I decided to use binary error measures
(Reynolds et al. [38]). Under a binary error measure, if the prediction output is within
the predetermined objective target range, the criterion corresponding to that difference is

considered to be achieved; otherwise, the criterion is unachieved.

Initially, and to examine how the method could be used, twelve-hour sums were used as
objective functions, which would capture the pattern of diurnal change and the trends over

time. The periods for the sum were:

period 1:  6:00 on day 178 — 18:00 on day 178
period 2: 18:00 on day 178 —  6:00 on day 179
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period 3:  6:00 on day 179 — 18:00 on day 179

period 14: 18:00 on day 184 —  6:00 on day 185.

Thus, the following are the objective functions:

17 23 5 17 23 5

Do | Doty oy | D day, s | Y drt ) dy |
j=6 j=18 j=0 j=6 j=17 j=0

where d;; is the absolute difference between measured and simulated growth data from time

7 to 7+ 1 on the i-th day. When time j = 23, we consider j 4+ 1 as time 0 on the next day.

The trend of the sums of measured data for twelve-hour period with starting time 6:00 is
shown in Figure 4.2. These sums capture the diurnal cycle and the general trend over the
period. The value increases and decreases by turns, showing the contraction and expansion

phases.

For each of the objective functions for twelve-hour sums, I used the target range [0,5]. If
the sum of absolute differences between measured and simulated data is less than five, the
zigzag pattern remains detectable. That was the reason why I set the target range at [0, 5].
terms of the hourly difference, I divided five (width of the target range) by twelve (hours
for the sum), and then obtained the value 0.42. I considered the sum of absolute differ-
ences, so the new objective search could be set at [—0.42,0.42]. However, I set it with half
a [—0.21,0.21] for each criteria, which is more stringent, since not all absolute differences

were positive or negative at the same time.

I introduced parameter search ranges in Table 3.2 and set the step size for the search for

all parameters at 102 because the objective ranges are to two decimal places.
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Figure 4.2: Twelve-hour sums of measured shoot growth data. The first period is from 6:00
through 18:00 on day 178 and the last period is from 18:00 on day 184 through 6:00 on day
185. The upper and lower parts include expansion and contraction periods, respectively.

4.2 Aspects of Pareto_Evolve that Need to Be Investigated

There are a number of choices for the user of Pareto_Evolve: population size, generation
number, fitness parameters defined in Section 2.4 such as ognare, W, and mutation param-
eter . There are also a number of features that the user cannot modify in the original
version of the software: the definition of fitness, crossover/mutation probability, methods
of crossover and mutation, and selection method. All of these features likely influence the
resulting solutions, Pareto set, but to different degrees. However, as I will show, if I mod-
ify the selection method and crossover/mutation probability, the search can more efficient,
that is, Pareto groups achieving many criteria will be found faster and kept to the next
generations. After showing the results from the original version of Pareto_Evolve in next

section, I will show in the later chapters how these modifications were executed.

The population size and maximum generation number require careful thought. Small popu-
lation size can result in low “genetic” diversity. The population may not change much with

just a few generations. On the other hand, too large a population or too many generations
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may not be realistic since run time could become prohibitive. The relation between pop-
ulation size and generation number is the task we need to consider. The result of several
different combinations of population size and generation number are shown in next section.
Therefore, increasing the number of criteria increases the dimension of the Pareto frontier;
more codominant individuals are obtained (Figure 4.1). We can assume that the population

size needs to be increased if a criterion is added.

In my example, all criteria are commensurable, so if more criteria are achieved with rea-
sonable parameterizations, I expected the resulting simulation would capture the measured
data well. However, I found that the number of achieved criteria did not result in a good fit
to the measured data. Actually, exploring the Pareto frontier revealed a deficiency of the

model (Chapter 10).

Other selection methods are also worth examining since, as discussed in Section 2.2.2,
roulette wheel selection, which is defined by the fitness for each individual, could have a
drawback on the probability of selecting parents if there is an individual with very high
selection probability. In selecting parents, elitism is also an issue to be considered: how to

define elites and how long to set the proportion of elites within the population.

Whether I should hardcode parameter crossover/mutation probability may depend on the
problem being investigated. Since we expect that the population converges to the solution
set as the generation number increases, the probability of making a smaller change rather
than a larger change in a value of an individual should increase with generation number.
That is why the crossover probability decreased while the mutation probability increased
in the original version of Pareto_Evolve as the generation number increased. However, if
the crossover/mutation rate is changed dynamically depending on the performance of the
Pareto frontier, search may become more effective. 1 investigated this thought, and the

results are shown in Chapter 6.
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4.3 Results of the Original Pareto_Evolve

We saw that parameterizations by single-objective methods did not fit the model very well.
I could not tell if that happened because of selection of the search method, the objective
function or the model itself. I chose the RSS as the objective function since it is commonly
used for single-objective methods, but some other function could be used; such as the sum
of hourly differences between measured and simulated data with weights. I tried three
different single-objective methods, and as long as the initial points were chosen properly,
similar results were obtained; thus, the search methods were probably not the problem in
this case. Another possibility is inadequacy of the model. This problem will be discussed

with an analysis of the Pareto frontiers that result from Pareto_Evolve in Chapter 10.

Actually, the search by the original Pareto_Evolve did not work well either. I encountered
two problems when using the original Pareto_Evolve. The first concerned the resulting
Pareto frontier and this is illustrated by considering the trends in the maximum and min-
imum number of achieved criteria of two trials (Figure 4.3). For my example, if a Pareto
group achieves many criteria, [ wish to keep it because it may produce a good fit. I suc-
ceeded in finding Pareto groups that achieved ten criteria out of fourteen. However, the
maximum number of the achieved criteria by a Pareto group was not guaranteed to keep
or increase its value when the generation number increased. As shown in Figure 4.3, the
maximum number sometimes decreased, which means that the Pareto frontier degenerated.
For example, consider a typical case where the maximum number of achieved criteria is nine
at generation 50, that is, each of the Pareto groups achieves at most criteria, and there is
at least one Pareto group that achieves nine criteria. At the next generation, generation 51,
there is no guarantee that at least one Pareto group achieves nine or more criteria; it could
happen that all Pareto groups achieve at most only eight criteria, i.e., the “best” one could

be lost from the previous generations.

I executed the original Pareto_Evolve ten times with a population size of 100 and a genera-

tion number of 500. Figure 4.4 shows it is not guaranteed that the more criteria achieved,
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Figure 4.3: Maximum number of achieved criteria by a Pareto group (upper lines) and
minimum number (lower lines) out of fourteen criteria for two trials; if the maximum and
minimum are 3 and 9, respectively, then each Pareto group achieves at most nine and at
least three criteria, and there is at least one Pareto group that achieves nine criteria and
one that achieves three criteria. The y-axis indicates the number of the achieved criteria.
Population size is 100. The maximum number sometimes decreases, which means that the
Pareto frontier degenerates.

the better the simulated data fit the measured data. Simulated growth data by an individual
corresponding to a Pareto group achieving only four criteria (Figure 4.4(b)) had a smaller
error (ratio of the RSS between the measured and simulated data to the total sum of squares
of the measured data) than that achieving the most criteria (Figure 4.4(a)). For example,
in Figure 4.4(a), the eleventh criterion, where the measured growth takes the minimum on
day 183, was achieved, but the simulated results did not capture the measured data during
the contraction period on day 183. This is because achieving criterion 11 did not guarantee
a good fit at the next time to criterion 11. Also, the smallest error among all ten trials was

26.6689%, which is much larger than that of the single-objective methods.

Second, the obtained parameter values were not stable. Figure 4.5 shows values for each of
the seven parameters of non-dominated individuals at each generation for trial 1. Values of
z1, T, T¢ and x7 became stable before or around generation 300. On the other hand, values
of parameter zo, 3 and x4 did not become stable even after a large number of generations;
the search did not stop showing considerable fluctuation of their values. I show a result
of only one trial in Figure 4.5, but the trend was similar to those of other trials; although
the range of values of each parameter around the last generation was different from trial by

trial, values of =1, x5, g and 7 became stable, but values of parameter x5, z3 and x4 did
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(a) Pareto Group (01110111111010) with Error = 63.6342%
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Figure 4.4: The simulated data for the period of seven days (solid line), and the measured
data (bar). Population size is 100, and generation number is 500. (a) Simulated data by
the individual corresponding to the Pareto group which achieved the number of criteria
with the smallest error (ratio of the RSS between the measured and simulated data to the
total sum of squares of the measured data) among all ten trials. (b) Simulated data by the
individual corresponding to the Pareto group with the smallest error among all ten trials.
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Figure 4.5: Parameter values of all non-dominated individuals found, by generation, for trial
1. Population size is 100. Values of z1, x5, z¢ and z7 stabilize before or around generation
300, or they do not change values; however, values of parameter zs, £3 and x4 do not become
stable, even after a large number of generations. Although there are two distinct ranges of
values for parameters xzg and x7, they may represent values belonging to different Pareto
groups.

not become stable.

I also doubled and halved the error measure intervals for all fourteen criteria ([—0.42, 0, 42]
and [—0.105,0.105], respectively) to see how that impacts the stability of the parameter
values. While values of z1, x5, ¢ and 7 became stable before or around generation 300,
values of parameter z9, x3 and x4 did not become stable even after a large number of
generations although the range of values of each parameter around the last generation was
from trial by trial. Thus width of error measure intervals does not affect the stability of the

parameter values.

In an attempt to fix degeneration of the Pareto frontier and instability of some parameter
values , I introduced elitism into the original Pareto_Evolve, where the “best” individuals

are carried over from generation to generation; they are just copied to the next generation
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until better ones join the population. The best individuals are usually considered to be ones
having the highest fitness values that are reasonable for univariable optimization problems.
However, one of my goals for elitism differs in that it concentrates on making the Pareto
frontier non-degenerate; the maximum number of achieved criteria never decreases. There-
fore, T choose elites depending directly on their objective values, instead of their fitness
values. By this elitism, the Pareto frontier increases the number of achieve criteria or at
least keeps it, and once the Pareto frontier reaches the state that it cannot be improved
anymore, we expect that the Pareto groups do not change much. Then, the parameter
values become stable. Therefore, with this technique, I expect to obtain a Pareto frontier,

with as many achieved criteria as possible, faster.

To see how the Pareto frontier changes depending on population size and generation num-
ber, I ran Pareto_Evolve with five different sets of population size and generation number;

the product of population size and generation number is fixed at 200000:

Population size 10 50 100 200 500
Generation number 20000 4000 2000 1000 400.

The results are plotted in Figure 4.6. I tried five times for each of the five combinations
(5% 5 runs). Box and whisker plots show the distributions of the number of achieved criteria
by a Pareto group for each the five trials (Figures 4.6(a)-(e)). If the size was very small,
10, then even though the search took place longer, each of the Pareto groups achieved only
a small number of criteria (Figure 4.6(a)). If the population was large enough, 50 or more,
then the larger the population size, the larger the maximum number of achieved criteria
by a Pareto member (Figures 4.6(b)-(e)). The maximum number of achieved criteria was
affected by population size more than by generation number since it increased as the pop-
ulation size became larger, but not as the generation number became larger. On the other
hand, minimum number of achieved criteria was not much affected by the population size

or generation number.
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Figure 4.6: Change of the Pareto frontier for five different sets of a population size and
generation number; the product of population size and generation number is fixed at 200000.
(a)-(e) Box and whisker plots of the number of achieved criteria by a Pareto group for each
of the five different trials. Each box represents a range between the first and third quartiles.
Symbol “0”’s shows the smallest and largest values, and “x”s represent the median. (f)
Range of the number of distinct Pareto groups by a trial.
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Also, the number of distinct Pareto groups by a trial increased as population size increased
(Figure 4.6(f)). Up to population size 100, the number of distinct Pareto groups was almost
proportional to population size; however, from population size 100 to 500, the ratio became
smaller. This may have happened because the number of Pareto groups reached the limit.
Since both the number of criteria achieved by a Pareto group and the number of distinct
Pareto groups by a trial were affected by population size more than by generation number,
I concluded that increasing population size is more effective than running for many gener-

ations.



50

Chapter 5

INTRODUCING ELITISM TO PARETO _EVOLVE

5.1 Elitism

As T explained in Section 2.2.2, an elite is a “good” individual for the next generation.
For the elitism used in some single-objective optimization methods, the ratio of elites to
the population size is fixed for all generations, and the population members that have the
highest fitness are copied to the next generation; for Das et al. [7] set the ratio at 20%,
which means 20% of the population will be copied to the next generation as elites, and
the ratio varies between 0% and 70% in Grefenstette [20]. In elitism by De Jong [8] and

Moilanen [32], only the single best individual is copied to the next generation.

Béck et al. [1] introduced the Evolutionary Strategies (ESs), which are also elitist methods,
but with a different type of elitism. For a (i + A)-ES, p parents produce A offspring, and
among those p + A individuals, the best p individuals are selected as parents for the next

generation.

In contrast to the single-objective case, when comparing two individuals in multi-objective
optimization, we cannot always determine which individual is better. For example, on mini-
mizing two objective functions F;(z) = z? and Fy(z) = (z—2)? (Figure 2.2), it is impossible
to determine whether the superior solution is z = 0.5 or z = 1.5 because F}(0.5) < F;(1.5)
and F5(1.5) < F(0.5). Thus, if we assume that the number of elites is set to be p and that
there are v non-dominated individuals with v > y, how should we choose the y elites from
among v individuals? In order to use a constant number or proportional elitism method,
we would need to order individuals having the same rank. If so, we could choose u best

individuals among v non-dominated individuals as elites. For instance, an individual could
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Crossover & Mutation
Parents Offspring

Generation g-1

l

Selection Pool Select N Best Individuals
for Parents

N parents + N offspring
Generation g

Figure 5.1: Elitism for the Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II).
At generation g —1, N parents produce N offspring, and then N best individuals are chosen
from those 2N individuals (N parents and N offspring) at generation g. N parents are
selected among those N best individuals by tournament selection, and crossover and/or
mutation operators are applied to the parents to produce N offspring.

be assigned a high probability of being selected as an elite if the normalized Euclidean dis-
tance in the parameter space between it and its closest individual having the same rank is

large; if the distance is small, then it has low probability.

Different types of elitism are used in multi-objective optimization. Here I introduce two ex-
amples. In the Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) (Figure 5.1)
introduced by Deb et al. [10], parents of the current generation are selected among parents

and offspring of the previous generation. At generation g, first, the parents and offspring of
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generation g — 1 are combined. Then the individuals in the combined set are divided into
groups with respect to Pareto ranking (Section 2.4); F, denotes the set of individuals with
rank r. From r = 1, all individuals in F,. are added to the pool for parents as long as the
total number of individuals does not exceed population size N; QQ = {F1,..., Fy} is the pool
for parents. If the size of @) is N, then () becomes the set of parents. Otherwise, members
with the largest “crowding distance” (Section 7.1) in Fj,1; are added to ) until the parents
population is fulfilled. From @, individuals are selected by tournament selection, and then
are crossed over and/or mutated to produce offspring. Since parent generation participates

in selection, this is an elitist method.

The Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler et al. [45] uses another
method (Figure 5.2). A number y is chosen in advance, and the greatest p of the non-
dominated individuals that were created from generation 0 are stored as elites externally,
like the Historical Pareto Frontier. At each generation g, all non-dominated individuals of
the current population F, are copied to the external non-dominated set P’, and all domi-
nated and duplicate individuals are removed from P’. If the size of P’ exceeds u, the extra
individuals are removed by means of “clustering”, which is defined depending on crowded-
ness. Fitness of a member X’ of P’ is proportional to the number of individuals of F; that
are dominated by or identical to X’. On the other hand, for an individual X of F,, fitness is
calculated by summing the fitness values of members of P’ that dominate or are identical to
X. One is added to the sum so that individuals of P’ have better fitness values than those of
F,. Thus, fitness of an individual of the current population F, is evaluated depending only on
the external non-dominated set P’ with y elites. Parents are selected from P’ and F,. Thus,
elites also participate in evolution, instead of just being copied as population members of
the next generation. For test problems for the SPEA, only a few objective functions were
used (Zitzler et al. [45] [44]). However, if there are many objective functions, then many

different Pareto groups are obtained. In that case, it is hard to keep diversity if u is too small.

For both NSGA-IT and SPEA, elites participate in evolution. The difference in elitism be-

tween these two methods is in the selection pool for parents; while they are selected from
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Figure 5.2: Elitism for the Strength Pareto Evolutionary Algorithm (SPEA). First, all
non-dominated individuals in the current population F, are copied to the external set P’
for elites. Then, the dominated individuals in P’ are removed. After that, if the number
of individuals in P’ exceeds prefixed number y, some individuals are removed until the
number of individuals in P’ reaches to u; this reduction is done using “clustering”. N of
the individuals are selected as parents from the current population F, and the external set
P’. Crossover and mutation operators are applied to the parents to produce N offspring.

parents and offspring of the previous generation for NSGA-II, for SPEA, they are chosen

from the current population members and the external set.

Test problems for NSGA-IT and SPEA did not have as many objective functions as my case.
As T mentioned before, generally, the more objective functions used in a search, the more
non-dominated individuals and Pareto groups occur due to the geometry of the objective
space (Figure 4.1). My problem has fourteen objective functions, which means many Pareto
groups with a small number of corresponding individuals could be obtained. If elitism of

NSGA-II is used, there may be more than N non-dominated individuals in the selection pool
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Choose parents
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Offspring R,  Elites E, Parents Qg Offspring Rg
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Figure 5.3: Elitism for Pareto_Evolve. Elites are selected from the current population F,
under certain conditions, which will be introduced later for each experiment. The number
of elites is not restricted but is determined depending on performance of Pareto frontier.
Parents are chosen from F, so the total number of the elites and the parents becomes the
population size N. Each of the parents is crossed over or mutated. The resulting offspring
and elites become the population for the next generation.
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with 2N individuals (N parents and N offspring), and individuals with only Pareto groups
achieving a small number of criteria might be selected as elites. For elitism of SPEA, the
similar thing could happen because NV best individuals from the current population By and
the external non-dominated set P’ again could be individuals with Pareto groups achieving
only a small number of criteria. Thus, I defined the elitism depending on performance
of Pareto groups. Unlike NSGA-II or SPEA, elites do not participate in reproduction.
However, although elites are not bred, individuals chosen as elites still have a chance to
participate in reproduction since they may be selected as parents. Figure 5.3 shows how

the new elitism works; Qg, Ry and E, denotes sets parents, offspring and elites, respectively.

I started with elitism with simple conditions. I analyzed the results and refined the elitism
so that better results could be obtained. In the first of the following experiments, I define
three conditions for elitism; a non-dominated individual becomes an elite if it satisfies one
of them. However, two of them turned out to produce almost no elites, and only several
individuals were selected as elites under the third condition at each generation. Since this
experiment did not work as effectively as I had expected, I revised it for the second experi-
ment. Section 5.1.1 explains the problems of the first experiment, and Section 5.1.2 explains

the revision.

5.1.1 FEzperiment One: Three Initial Criteria for Defining Elites

This procedure compared the current Pareto groups to the previous ones to see whether
improvements in achieving assessment criteria had been made. If a Pareto group satisfied

one of the following three conditions, I defined its corresponding individuals as elites:

1. Tt achieved a criterion that had not been achieved by any of the Pareto groups of the

previous generation.

2. It achieved more criteria than the maximum number of criteria achieved by a Pareto

group of the previous generation.
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3. It is better than at least one of the Pareto groups of the previous generation. (Note:
P, is better than P, means the corresponding individuals of P; dominate those of P,

and that is denoted by P, >, P.

It seems the third condition includes the second one. However, it is important to note that
a Pareto group satisfying the second condition does not always meet the third one. For

instance, at generation g — 1, if the obtained Pareto frontier consists of three groups Pfﬁ1

(i=1,2,3):
Criterion
Pareto 1 9 3 4 5 6 7 8 9 10 11 12 13 14
group
P/ X X X0 X X0 0 0 X0 0 0 X
P/ X X0 XX 00 0 0 0 0 0 0 0
PF* X 0 0 XX 00 000 X 0 00

where 0 and X denotes unachieved and achieved, respectively. At the current generation g,

we have three members PY (i = 1,2, 3):

Criterion
Pareto 1 9 3 4 5 ¢ 7 8 9 10 11 12 13 14
group
Py 0 X X X X X0 00 X X 0 0 X
P& X X 0 X X0 0 0 0 0 0 0 0 0
P& X 0 0 X X 0 00 00 X 0 0 0

In this case, neither P§ nor Py is selected for elitism since P -l = PJ and P:_;?_l = PJ, but
P} is selected by the second condition because the maximum number of criteria achieved

by a Pareto group at generation g — 1 is 7, and 8 for generation g.

Results of two trials from among ten using the three conditions for selecting elites are pre-

sented in Figure 5.4. Population size is 100 and generation number is 500 for both trials. In
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Figure 5.4: Results of two different trials in Experiment One with a population size of
100. (a) The number of non-dominated individuals changes generation by generation. (b)
The number of elites fluctuates. I can infer from this that it is very likely that the Pareto
frontier improves and degenerates alternatively because an improved Pareto frontier results
in more elites. (c) As for the results of the search without elitism, the Pareto frontier often
degenerates; i.e., the maximum number of achieved criteria by a Pareto group decreases.
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Figure 5.5: The number of elites fluctuates even though the maximum number of generation
increases.

a successful search, parameterizations would converge, and the number of non-dominated
individuals and elites would become stable. However, the number of non-dominated in-
dividuals changed generation by generation (Figure 5.4(a)), and the number of the elites
fluctuated (Figure 5.4(b)) between 0 and 7. Thus, although some elites were succeeded from
the previous generation but not many are selected as elites at the current generation, then
the succeeded elites could die out. For the above example, corresponding individuals of P/
will be copied to generation g + 1; however, Plg will not select for elitism, so even though
P was good, it could die out. Even though I increased the maximum generation number
to 1000, 2000 and 5000, the number of elites still fluctuated (Figure 5.5). Thus, I suspected

that this elitism did not work effectively.

Also, in some cases, as for the result of the search without elitism, I found that the Pareto

frontier degenerated; i.e., the maximum number of achieved criteria by a Pareto group
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sometimes decreased (Figure 5.4(c)). Actually, by the second condition, it is guaranteed
that the Pareto frontier improves only if the maximum number of achieved criteria becomes
larger than that at the previous generation. So, if there is no elite selected under condition
2, the Pareto frontier is not guaranteed to improve. As mentioned above, such elites were
not obtained very often. That is why the degeneration happened. These fluctuations also

suggest that this procedure for elitism does not work effectively.

The Pareto frontier and the Historical Pareto Frontier of trial 1 at the last generation, gen-
eration 500 are plotted in Figure 5.6. The Historical Pareto Frontier at generation 500 is the
set of Pareto groups that were obtained at each generation up to generation 500. From those
results, we can also see that the elitism did not work well because P >, P00, pp00 p300
and P5; >, P%. Therefore, elitism in Experiment One does not guarantee that the better

Pareto groups are kept.

As shown in Figure 5.7, the parameter values are also unstable with Experiment One. As
for the search without elitism (Figure 4.5), values of parameter x1, x5, g and z7 became
stable as generation increased, but for zo, 3 and x4, values fluctuated. Even though, the
maximum generation number is increased, this phenomena remain the same (Figure 5.8(a)
and 5.8(b)). This implies that the elitism used in this experiment did not increase stability

of parameter values.

Although I only presented two results here, all of the ten trials showed similar results. Thus,
I considered these conditions for elitism to have problems. By direct examination, I found
that the first condition did not contribute to the selection of many elites. At a very early
generation, there may have been a few criteria unachieved by any Pareto groups, but soon
there were none left unachieved. The second condition was rarely used because the max-
imum number of achieved criteria out of fourteen, did not increase very often. The third
condition selected several non-dominated individuals as elites; so, only this condition was
effective for Experiment One. I concluded that this method of elitism was ineffective. In

next section, I experiment with a revised method.
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Figure 5.6: The Pareto frontier (top left) and Historical Pareto Frontier at generation 500
(other three) for trial 1 in Experiment One. Three numbers 4, a?%°, ¢?°° presented on the left
of the plot for the Pareto frontier are index of Pareto group P, the number of achieved
criteria by Pi500, the number of corresponding individuals to PZ-500, respectively. Three
numbers %, azf , czf on the left of three plots for the Pareto Historical Frontier are similar to
those on the plot for the Pareto frontier. Black and white squares represent achieved and

unachieved, respectively.
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Figure 5.7: Parameter values of all non-dominated individuals found, by generation, for
trial 1 in Experiment One. Population size is 100, and the maximum generation number is
500. As for the search without elitism (Figure 4.5), values of parameter 1, =5, r¢ and z7
stabilize as generation increases, but values of zo, 3 and z4 still fluctuate. This shows that
the elitism used in Experiment One does not contribute stability of parameter values.

5.1.2  Ezxperiment Two: Elitism to Produce a Non-Degenerate Pareto Frontier

Since I found that the first and second selection conditions for Experiment One did not work
effectively, I changed them. The second condition accepted as elites only non-dominated
individuals that corresponded to Pareto groups achieving more criteria than the maximum
number of the criteria already achieved by an existing Pareto group of the previous genera-
tion. Since the maximum number of the criteria achieved by a Pareto group rarely increased,
there usually existed no elites selected under condition 2. Also, condition 1 and 3 did not
affect the number of achieved criteria. Therefore, if there are no individuals condition 2,
we may obtain a degenerate Pareto frontier, i.e., the number of maximum achieved criteria
by a Pareto group may decrease. So, I changed this condition for selecting elites so that

all of the non-dominated individuals corresponding to the Pareto groups that achieve the
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Figure 5.8: Parameter values of all non-dominated individuals found, by generation, for
trial 1 in Experiment One. Population size is 100, and the maximum generation number
is 1000 (top) and 5000 (bottom). As for the search with the maximum generation number
500 (Figure 5.7), values of parameter z1, x5, z¢ and z7 stabilize as generation increases, but
values of z9, z3 and x4 still fluctuate. This shows that those three parameters values are
not stabilized even though the maximum generation number is increased. This implies that
increasing the maximum generation number does not help stability of those three parameters
values.
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most criteria at the current generation are selected. This condition guarantees that the
Pareto frontier does not degenerate since the maximum number of the achieved criteria by
a Pareto group at the current generation is larger than or equal to the maximum number at
the previous generation. This is the first condition for Experiment Two. If there are more
than one Pareto groups achieving the maximum criteria, all of them are selected for elitism.
This condition brings less chance that the problem found on comparing the Pareto frontier
and the Historical Pareto Frontier (Figure 5.6) happens; the Pareto groups of the Pareto
frontier are no worse than those of the Historical Pareto Frontier as long as they achieved
the most criteria. The second condition is the third condition of Experiment One, which

had been found useful.

As the third condition for Experiment Two, I accept as elites the non-dominated individuals
achieving the criteria unachieved by any elite selected under the first and second conditions.
This guarantees that all criteria are achieved by at least one Pareto group at the next gen-

eration as long as they are achieved at the current generation.

Therefore, the definition of elitism for Experiment Two is as follows: if a Pareto group
satisfied one of the following three conditions, I defined its corresponding individuals as

elites:

1. It achieved the most criteria in the Pareto frontier of the current generation.

2. It is better than at least one of the Pareto groups of the previous generations.

3. It achieved a criterion unachieved by any Pareto groups that were chosen under the

above conditions 1 and 2.

Experiment Two is different from Experiment One in that a selected Pareto group could
keep being chosen for more than one generation because of the the first condition. For

Experiment One, none of the selected Pareto group was chosen at the next generation.
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After this refinement, the number of elites at each generation was at least one because at
least one elite was selected under condition 1. With this method of elitism, Pareto groups
satisfying the first and second condition are chosen first. Then, I checked if all criteria are
achieved by at least one of the the selected Pareto groups. If not, we look for members meet-
ing the third condition. So, if all criteria are achieved by at least one Pareto group at the

current generation, it is guaranteed that all criteria are achieved at the next generation, too.

This selection system for elites was run in ten trials with population size 100 and generation
number 500. Results of two of the trials are presented in Figure 5.9. As we expected, the
Pareto set did not degenerate (Figure 5.9(c)); the maximum number of the criteria achieved
by a Pareto member never decreased. However, both the number of non-dominated indi-
viduals and elites nearly or completely reached 100 (i.e., population size) around generation
300 (Figure 5.9(a) and 5.9(b)), so, almost all of the population became non-dominated in-
dividuals, and almost all of them were copied to succeeding generations. Therefore, after
generation 300, the population did not evolve much or at all. This means that too many

elites were selected. I solved this problem in Chapter 7.

As we can see in Figure 5.10, parameter values for trial 1 became stable before generation
300. This is because the search stopped around generation 300 due to selection of too many

elites.

The simulated data with the smallest error (the ratio of the RSS to the total sum of squares
of hourly measured data for the period of seven days) among ten trials is plotted in Figure
5.11. Compared to the results of the three single-objective optimization methods, the RSS
is much larger. I will show how the simulated data changed by refinement of the search

method.
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Figure 5.9: Results of two different trials in Experiment Two with a population size of
100. (a) Around generation 300, the number of the non-dominated individuals nearly or
completely reaches 100; i.e., most of the population becomes non-dominated individuals.
(b) Most of the non-dominated individuals are selected as elites around generation 300,
so almost all of the population members are copied to succeeding generation. (c) As I
designed, the maximum number of the criteria achieved by a Pareto group never decreases,
which means that the Pareto frontier does not degenerate, i.e., the maximum number of
achieved criteria by a Pareto group does not decrease.
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Figure 5.10: Parameter values of all non-dominated individuals found, by generation, for
trial 1 in Experiment Two. Population size is 100. All of the parameter values stabilize
before generation 300. This is because the search stopped around generation 300 since too
many elites were selected.
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Figure 5.11: The simulated data by the individual corresponding to the Pareto group with
the smallest error among all ten trials for Julian day 178 through 184 (solid line), and the
measured data (bar). Population size is 100, and the maximum generation number is 500.
The error is 20.2264%, which is much larger than those by the single-objective methods
(about 13%).
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5.2 Effect of Population Size

In Experiment Two in Section 5.1.2, all parameter values stabilized. This is because the
search halted. I tried Experiment Two again with different population sizes to see how the
population size affects the number of elites or the end of a search. The population size I
used in Experiment Two in Section 5.1.2 was 100 for all ten trials. I examined population
size 25, 50 and 200 to see a population of 100 is reasonable, not too large or small, for the
search. The maximum generation number remains 500 because the number of elites reached

the population size before generation 500. I have ten trials for each case.

With a population size of 25, all ten trials showed similar results. I present two trials
here. Figure 5.12(a) and 5.12(b), respectively, show that both the number of elites and
non-dominated individuals nearly or completely reached 25, the number of the population
size, before generation 100. Since the population size is small, the number of Pareto groups
is small, too. Thus, because of the definition, many Pareto groups could be accepted for
elitism. This is probably the reason why the number of elites reached the population size at a
very early generation. The maximum number of criteria achieved by a Pareto group (Figure
5.12(c)) was less than that with a population size of 100 (Figure 5.9(c)) because the search

stopped before Pareto groups achieve as many criteria as those with population size 100 did.

I found another difficulty with this small population size. For some of the ten trials, more
than twenty Pareto groups were obtained. Since there were only 25 individuals in the
population, the correspondence between non-dominated individuals and Pareto groups was
one-to-one in most of the cases. I cannot judge whether parameter values are stable local
or global optima if I have only a few individuals per Pareto group. Thus, I concluded that
population size 25 is too small to obtain reasonable solutions to this optimization problem

although the search does not stop because the number of elites reaches the population size.

With a population size of 50, as for a population size 25, for trial 1, the number of elites

reached the population size at an early generation; on the other hand, for trial 2, prob-
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Figure 5.12: Results of two different trials with elitism as specified in Section 5.1.2 with a
population size of 25. (a) As for a population size of 100 (Figure 5.9(a)), all population
members become non-dominated, but this happens before generation 100, which is much
earlier than the case with a population size of 100. (b) The number of elites reached 25
before generation 100, so all of the population are copied to succeeding generation. (c)
The maximum number of criteria achieved by a Pareto group was less than that with a
population size of 100 shown in Figure 5.9(c).
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Figure 5.13: Results of two different trials with elitism as specified in Section 5.1.2 with
a population size of 50. (a) For both of the two trials, the number of non-dominated
individuals reached 50, but the time is different; one is at around generation 100, and
the other is at around generation 250. (b) The number of elites behaves about the same
way as the number of non-dominated individuals in Figure (a). It is considered that the
difference depends on the time when the number of elites reaches the population size; as
with a population size of 25, for trial 1,that happens at an early generation; for trial 2,
individuals move in the search space more actively before the search stops because of the
number of elites. It is probably hard to obtain consistent results with a population size 50.
(c) For trial 1, the search stopped around generation 100; so the maximum number cannot
increase. However, for trial 2, the search is active until around generation 250 as I see in
Figure (a) and (b); thus, the maximum number can increase.
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ably individuals moved in the search space more actively before that (Figure 5.13). For
the case like trial 2, we have a large maximum number of achieved criteria by a Pareto
group at a very early generation, so we may obtain the Pareto frontier whose member has
a large number of achieved criteria; because it is guaranteed that the Pareto frontier does
not degenerate. Compared to the case with a population size of 25, the population size
was doubled. Thus, more combinations of parameter values were obtained, which could
bring the Pareto frontier with the large maximum number of achieved criteria at an early
generation. However, as we can see in trial 1 in Figure 5.13(c), we do not guarantee the
Pareto frontier with a large number of achieved criteria at an early generation. Therefore, if
the number of elites reaches the population size, then it is very likely that we do not obtain

a Pareto frontier with the large maximum number of achieved criteria at an early generation.

The number of Pareto frontier members in the Pareto frontier varied between twenty-one
and thirty-eight in the ten trials. As for a population size of 25, most Pareto groups had
only one or a few corresponding individuals. Therefore, I concluded that population size
50 is also insufficient to obtain solution to the optimization problem. It is difficult to tell

which solutions are robust.

For all ten trials with a population size of 200, the number of non-dominated individuals
and elites nearly or completely reached the number of population size, at around generation
300 (Figures 5.14(a) and 5.14(b)). This is a slightly later generation number than with
a population size of 100, which is probably because a larger population size brings more

Pareto groups.

Figures 5.15(a)-(d) show the distributions of the number of achieved criteria by a Pareto
group for each of the ten trials with population sizes 25, 50, 100, 200, respectively. The
mean and the maximum numbers of achieved criteria by a Pareto group became larger as the
population size was doubled up to 100, but from 100 to 200, there was not much difference
compared to the previous two comparisons. In Figure 5.15(e), we see that the range of the

number of Pareto groups with population size 50 is about double to that with population
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Figure 5.14: Results of two different trials with elitism as specified in Section 5.1.2 with a
population size of 200. (a) The number of non-dominated individuals almost or completely
reached 200, or all of the population members become non-dominated individuals at around
generation 300, which is slightly later than that with a population size of 100. (b) The
number of elites reached 200 at around generation 300, which is also slightly later than the
case with a population size of 100. (c) The maximum number of achieved criteria by a
Pareto group is as large as that with a population size of 100.
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size 100. This is because Pareto groups with more achieved criteria were obtained when the
population size was 100, which made the total number decreased. For population size 200,
the range did not became wider or larger although the population size was doubled. From

these results, population size 100 is appropriate enough with the maximum generation 500.

The maximum number of achieved criteria by a Pareto group was as good as that with a
population size of 100 (Figure 5.14(c)). The maximum and minimum numbers of Pareto
groups were twenty-four and seven, respectively, among the ten trials, and with a popula-
tion size of 100, twenty and three, respectively. The Pareto frontier of each of the ten trials
varies, but, generally, I obtained more Pareto groups with a population size of 200 than
those with a population size of 100. Although it is likely to obtain more Pareto groups on
the Pareto frontier with a population size of 200, it is much less than double of those with

a population size of 100. Thus, I use population size 100 in the next research problem.
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Chapter 6

INFLUENCE OF CROSSOVER AND MUTATION ON A SEARCH

Introduction of elitism prevented reduction of Pareto groups maximizing the number of
criteria achieved. However, the research is not complete because the maximum number of
criteria in one member is ten, whereas there are fourteen criteria, and the fitting was not
as good as that with the single-objective methods. The crossover/mutation probability I
used so far is linear with generation number, and mutation probability becomes higher as
the generation number increases. I considered that this probability could affect the result.
In order to see the role of crossover and mutation, I ran Pareto_Evolve with crossover only

and mutation only.

Up to this point, the probability of crossover and mutation decreased and increased linearly
with the generation number, respectively. The idea behind this method was that crossover
would produce wide exploration of the search space, and mutation would produce a grad-
ual refinement of parameterizations selected as parents. I considered that the crossover
and mutation probability should be made dynamic on the progress toward solutions, i.e.,
upon the development of the Pareto frontier. For example, if a parent selected to be bred
was already chosen as an elite, it is probably more efficient to apply crossover rather than
mutation to it. The probability of applying crossover also has to be designed so that an
offspring locates its objective values where it is not close to those of parents in objective
space if it reaches a locally optimal solution. Generally, it is difficult to judge where a
local optimum is; however, if there is the field in the parameter search space where many
individuals are clustered, it may be a local or global optimum. These clustered individuals
should be given a high probability to be crossed over. If it is a global optimum, it is very
likely that not all of the individuals die out because elitism is designed so that good genes

can survive. On the other hand, if the clustered individuals are locally optimal, individuals
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Figure 6.1: The number of non-dominated individuals by searches (a) crossover only and
(b) mutation only. Population size is 100. The results of two trials among ten are presented
for both cases.

whose assessment vectors are better than theirs may appear; they will not be elites, so they
will be crossed over, and eventually, the clustered point should disappear because crossover

allows individuals to jump to a different area from the original one.

Before modifying the crossover/mutation probability, I will illustrate the effect of the dif-
ferences between crossover and mutation on the search process. I tried ten trials with
population size 100 and generation number 500 for each of two experiments; search with
crossover only and mutation only. The numbers of non-dominated individuals, elites and
the maximum and minimum achieved criteria by a Pareto group for two representative
trials among ten for both experiments are plotted in Figure 6.1, 6.2 and 6.3, respectively.
The numbers of elites reached the population size (Figure 6.2), and around the same time,
the numbers of non-dominated individuals did, too (Figure 6.1). This happened probably

because the current elitism selects too many elites as I mentioned in Section 5.1.2.
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Figure 6.2: The number of elites by searches (a) crossover only and (b) mutation only.
Population size is 100. The results of two trials among ten are presented for both cases. (a)
The generation when the number of elites stabilize is quite different from trial by trial with
crossover only (generation 150-320); the earliest and latest are shown above. Crossover
exchanges some of parameter values between two parents, so the created offspring are not
so close to their parents in the search space. The generation when the number reaches the
population size varies depending on the “jump” in the search space. (b) The generation
when the number of elites stabilize varies much less for mutation only (generation 240-275).
Since mutation changes some of parameter values of a parent by small amounts, the parent
and its created offspring are close to each other in search space. Hence, the solutions are
very likely to converge to the field in search space where there exist many solutions. This is
probably the reason why the rate of convergence varies much less than that for crossover.
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Figure 6.3: The numbers of maximum and minimum achieved criteria by a Pareto group
by searches (a) crossover only and (b) mutation only. The maximum numbers are as large
as the case shown in Section 5.1.2 (Figure 5.9(c)).

The first thing I should mention is the difference in generation number where the number
of elites reached the population size. With crossover only, the generation where that hap-
pened differed considerably from trial to trial (generation 150-320), but varied much less

for mutation only (generation 240-275).

As introduced in Chapter 2, crossover exchanges at least one parameter value, out of seven,
but not all, between two parents. Thus, an offspring produced by crossover usually has a
objective vector which is not so close to that for the parents. Thus, we can expect that
even though the parents are dominated, offspring can be non-dominated. I use nonuniform

mutation used in Pareto_Evolve, and it is defined as follows:

For each parameter z; of an individual selected for mutation, randomly deter-

mine whether the value is changed or not. If it is to be changed, zj is changed
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Figure 6.4: Function value of step size A for mutation with [LB,UB] = [0, 1], gmax = 500,
B = 5 random number (a) ¢ = 0.1 and (b) ¢ = 0.9. The left plots are for addition and
the right one is for subtraction. The plots are at six different generations; ¢ is 0, 25, 50,
100, 200 and 400. The slope become smaller exponentially as generation increases. For
other value of ¢ € [0, 1], we obtain a different scale for A, but a similar shape. The value of
A becomes smaller as the generation number increases, which shows that mutation in the
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Pareto_Evolve produces gradual refinement of parameterizations for selected parents.
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to

, zr + A(g,UB — i) if addition

Xy =
zr — A(g,zp — LB) if subtraction

with the lower bound LB and upper bound UB of the search range for parameter

Tk, and function A:

Alg,y) =y - (1 _ q(l—g/gmax)") ,

where ¢ is randomly chosen from [0, 1], gmax is the maximum generation number,
and ( is a system parameter determined by the user. Whether addition or

subtraction is applied, is determined randomly; the probability is fifty-fifty.

For the original Pareto_Evolve, § = 5 based on Michalewicz [28]. Currently, LB = 0 for all
seven parameters and UB is 0.4 for z1, 0.1 for zo, 3, 4 and 1.0 for x5, x4, 7. By definition,
the step size defined by function A gets closer to 0 as ¢ — gmax generation number so that

mutation searched more locally (Figure 6.4).

I explained the difference of the role for crossover and mutation. We can see it from Figure
6.5 and 6.6. Before the search stops, that is, the number of elites reached to the population
size, values of each parameter are scattered for the case of crossover only because offspring
produced by crossover are generally not close to their parents in search space. On the other

hand, the parameterizations for mutation-only case are close to each other.

Figures 6.1 and 6.2 show the different behaviors of change of non-dominated individuals
and elites by search with crossover only and mutation only. For both cases, the number of
non-dominated individuals and elites sometimes decreases during the search. I will show

next why this happened.
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Figure 6.5: Parameter values of all non-dominated individuals found, by generation, for (a)
trial 1 and (b) trial 2 by searches with crossover only. Population size is 100. Parameter
values for trial 2 stabilized much earlier than those for trial 1. The difference comes from
the generation when the number of elites reached the population size.
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Figure 6.6: Parameter values of all non-dominated individuals found, by generation, for a
search with mutation only. Population size is 100.

6.1 Search by Crossover Only

For trial 1 by the search with crossover only, the number of non-dominated individuals sud-
denly decreased around generation 210, and then increased until the search ended (Figure
6.1(a)). In this section, I investigate how the number of non-dominated individuals and

elites changed around generation 210.

Recall the three conditions for elitism. The assessment vector of an elite has to

1. achieve the most criteria in the Pareto frontier of the current generation or

2. be better at least one of the Pareto groups of the previous generation or

3. achieve a criterion unachieved by any Pareto groups which were already chosen under

above conditions 1 and 2.
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Table 6.1: The number 7, of non-dominated individuals and the number e, of elites at
generation g = 205,...,209 for trial 1 by the search with crossover only. Population size
is 100. The number of elites under each of three conditions is also presented. We see that
condition 3 is the main contributor to the total number, apart from at generation 208.
The number 7, of non-dominated individuals decreases after generation 205, and starts to
increase again from generation 209.

Generation
205|206/ 207| 208|209

number

Non-dominated

individuals 74 82| 76) 63) 21} 29

Elites e, 82| 52| 82| 3|19
Condition 1 1) 1) 1] 1| 1
(max number of criteria)

Condition 2 0 3| 2| 2| 3
(domination)
Condition 3 81| 48| 49| 0| 15

(unachieved criteria)

The number 724 of non-dominated individuals and the number e, of elites under each of the
three conditions are shown in Table 6.1 for generation g = 205,...,209 of trial 1 (Figure
6.1(a)). The number 74 of non-dominated individuals decreased from generation 206, and

started to increase again from generation 209.

At generation 205, only Pareto group P29 was selected under the first condition for elitism,
and it had only one individual (Figure 6.7). There did not exist any elites under the second
condition. Since P?% unachieved criterion 1, 2, 5, 7 and 12, condition 3 required all the
other Pareto groups to be selected for elitism because they achieved at least one of those

five unachieved criteria. Thus, all 82 non-dominated individuals became elites.

At generation 206, more than 80% of the population members were copied as elites from

the previous generation; thus I may expect that the population did not change much from
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that at the previous generation. However, the Pareto frontier was improved by three
Pareto groups. They are better than some Pareto groups of the previous generation:
P06, s PS5 p6 5 p5 und P 5 P05 P25 The number of individuals
copied from the previous generation is {(c32° + c3%) + 2P + (c33° + 33°)} = 13, and those

thirteen individuals were dominated by individuals with the three Pareto groups.

The three new Pareto groups were created by crossover. Assessment vectors of offspring
created by mutation are generally the same as those of parents due to general continuity of
the objective functions and the use of binary error ranges. In the original Pareto_Evolve, it
is preferred that crossover probability decreases and mutation probability increases as the
generation number becomes large. However, this may not be appropriate for this problem.
Even though the generation number is large, a higher crossover probability can be consid-
ered more efficient after many elites are selected at the previous generation since elites are

just copied to the next generation under the elitism I am using.

Each of the three new Pareto groups P?% (i = 6,9,17) had only one corresponding indi-
vidual. In addition, I obtained only four new non-dominated individuals; one belonged to
a new Pareto group, P2%, and the other three belonged to PZ® = P2%. Those three were

copied as elites.

At this point, the numbers of individuals are

Copied as elites from generation 205 82
Copied as elites but dominated under condition 2 13
New 443=7
Non-dominated at generation 205 82

206 82 -134+7=176

At generation 207, only 50% of the population members were copied as elites. This al-
lowed new individuals to join the population. There were eight new Pareto groups P27
(i = 3,4,10,13,15,16,17,19), each with one individual. P27 and PX7 satisfied condition 2;

PRT >, {P205, p206  p206} and P07 >, P206. Those three Pareto groups were not selected
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for elitism at generation 206.

Pareto groups P29 and P27 each had one individual, and they appeared as P’ and PXS,
respectively. However, since these corresponding individuals were not selected as elites, each
parameterization for P97 and P27 was different from those for Pi% and P2. Also, one

new individual belonging to P27 joined the population.

At this point, the numbers of individuals are:

Copied as elites from generation 206 52
New 8+2+1=11
Non-dominated at generation 206 76

207 52+ 11 =63
At generation 208, as for the previous generation, about half of the population was copied
as elites. Since Pareto groups selected under condition 1 and 2 satisfied all criteria, there
was no Pareto group selected under condition 3, making the number of elites only three.
New Pareto group P2%® with an individual selected under condition 2 is better than P
and PX7, which had 25 and 13 individuals, respectively, decreasing the number of non-
dominated individuals by thirty-eight. Pareto group P2%8, selected for elitism under condi-
tion 2, is better than P27, but P27 was not selected for elitism at generation 207, thus the
number of individuals corresponding to P27 did not affect to the calculation of the number

of non-dominated individuals shown below. Only seven parameterizations newly joined to

the population with new Pareto groups.

At this point, the numbers of individuals are:

Copied as elites from generation 207 52
Copied as elites but dominated under condition 2 38
New 7
Non-dominated at generation 207 63

208 52 -38+T7=21

Pareto group P2%® helped the search escape from a local optimum by being better than
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two Pareto groups which had many individuals that had been copied as elites from the
previous generation. However, the corresponding individuals of P2%® are not guaranteed to
survive after the next generation because P2’® may not be selected for elitism under the
current definition. If it is not selected as an elite, it could die out; disappear or change to a
completely different parameterization by crossover. Therefore, if elitism is modified so that
these small number of individuals can survive longer, the Pareto group can remain until a

better one appears or some further convergence takes place. The results by this modified

elitism is shown in Section 8.3.

6.2 Search by Mutation Only

Figure 6.1(b) shows that the number of non-dominated individuals for trial 1 by the search
with mutation only increased and then decreased around generation 250. This happened
because a Pareto group having a lot of individuals within the Pareto frontier stopped being

selected as elites. I explain why next.

The number 74 of non-dominated individuals at generation g and the total number e; of
elites selected using the three conditions for determining elites for generation g = 251, ...,255
of trial 1 (Figure 6.1(b) and 6.2(b)) are presented in Table 6.2. As for the crossover-only
search, e, depends mainly on the third condition; e, decreased by about half from gen-
eration 252 to 253 because the number of elites selected under condition 3 decreased by
half. This is similar to the process described in Section 6.1, at generation 208 for trial 1
in the search with crossover only. Many individuals with Pareto groups from the previous

generation were dominated by only one individual with a new Pareto group.

Figure 6.8, where Pareto groups are plotted for generation g = 251, 252, 253, 254, shows
that Pareto group P>l = P2%? = P25 = P2% increased in size (number of corresponding
individuals) one by one through generation 253, but lost most of them at generation 254; it

changed 34 — 35 — 36 — 5. Actually, it lost all of them, and new individuals were created
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Table 6.2: The number 7, of non-dominated individuals and the number e, of elites at
generation g = 251,...,255 for trial 1 by the search with mutation only. Population size is
100. The number of elites under each of three conditions is also presented. The number e,
of elites is driven by condition 3. The number 7, of non-dominated individuals decreases
after generation 251, increasing again from generation 255.

Generation

251(251| 253| 254|255
number

Non-dominated
92| 78| 74| 52| 61

individuals 7,

Elites eq4 66| 77| 38| 43| 59
Condition 1 10| 11} 11| 11| 12
(max number of criteria)

Condition 2 2( 3 1, 2| 1
(domination)
Condition 3 54| 57| 26| 30| 46

(unachieved criteria)

as offspring. None of the individuals corresponding to P6253 was copied because P6253 did

not satisfy any of the three conditions for elitism. However, since it had many individuals,
some of them were probabilistically selected as parents. The resulting offspring had the
same assessed vector as the parents because the current mutation changes parameter values

only a little.

We saw that mutation with small function value of A defined in Section 2.4 brought an off-
spring which had the same assessed vector as its parent did. As I mentioned before, in the
original Pareto_Evolve, as generation number increases, crossover probability becomes low
and mutation probability becomes high. However, since my elitism just copies individuals
to the next generation, an individual should be either crossed over or mutated with large
value of A if it is selected not only as an elite but as a parent. Since the assessed vectors
of the elites are copied to the next generation, it is undesirable to obtain the same assessed

vector by evolution. I expect this can be avoided by crossover or mutation with large value



89

of A because crossover makes an individual to jump out from its field, and mutation with

large A changes its parameter values in quantity.

6.3 Conclusion about Crossover/Mutation Probability

In Section 2.4, I introduced crossover and mutation in Pareto_Evolve. For crossover, uniform
crossover is used; the number of the crossover points, as well as crossover points themselves,
are chosen randomly. For mutation, each parameter zj is determined randomly whether

the value is changed or not; if yes, zj is changed to

zr + A(g,UB — xy) if addition
z — A(g,z — LB)  if subtraction

with the lower bound LB and upper bound UB of the domain, and function A. Since
E(A) — 0 as g — gmax (F(A) denotes the expected value of A), the search becomes local-

ized.

Sections 6.1 and 6.2 suggest some points that should be considered in deciding the proba-

bility of choosing genetic operator crossover/mutation.

e If many parents are crossed over at a late generation, their offspring may just keep

jumping around in the search space.

e Elites are selected first, and then parents are chosen (Figure 5.3). Thus, if a selected
parent has been already chosen as an elite, applying crossover or mutation with large
value of A to it is more efficient because this produces offspring that are likely to have

different assessment vectors from their parents.

e Since the probability of mutation (i.e., probability of selecting mutation operator)
linearly increases with decreasing value of A, applying mutation to many individuals
which are close to each other in parameter space and belong to the same assessment

vector is inefficient. (This is for binary error measure, and for continuous measure
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case, it may help to obtain an offspring dominating the parent.) Since A becomes
smaller and smaller as generation number increases, we can scarcely expect that at
a late generation these individuals change their values in quantity or have different

assessment vectors than their parents.

Therefore, I redefine the probability of taking crossover or mutation as follows.

e Parents to be bred which have been already selected as elites should have either high
crossover probability or mutation probability with a large step size A so that they can

produce offspring further away in parameter space.

6.4 DModification to Elitism

I have been trying to find how many criteria can be achieved among fourteen criteria. If it
is determined, which criterion is hard to achieve with which criterion needs to be examined
so that I can know the model is biased against some criteria. Therefore, Pareto groups
achieving the criterion which is hard to achieve also should be kept. Thus, I need to define
the elitism not only to keep Pareto groups with many achieved criteria but also not to ignore

Pareto groups achieving criteria which is difficult to achieve.

Sections 6.1 and 6.2 showed that the number of elites was very dependent on the third
condition of my definition of elitism: the individual achieves a criterion unachieved by any
Pareto groups which were chosen under the other two conditions. If the number of criteria
unachieved by any Pareto groups selected under the first and second condition is large, as
is likely in the early generations of a search, most Pareto groups could be chosen under
the third condition, and then their non-dominated individuals become elites, which means
they are copied to the next generation. If this happens, then the population members may
not change much because most of the non-dominated individuals can be copied to the next

generation. Therefore, the current elitism should be modified so that not many individuals
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selected under the third condition as elites.

Also, at the end of Section 6.1, I found that elitism should be changed so that if the Pareto
group that achieves most criteria corresponds to only small number of individuals, these
should survive until a Pareto group achieving more criteria appears. In next section, I will

show the results of Pareto_Evolve using this modified elitism.
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Chapter 7

EXPERIMENT THREE: ELITISM PRESERVING SUPERIOR
INDIVIDUALS

Experiment Two, with crossover only, demonstrated a drawback in my definition of elitism
(Section 6.1). A Pareto group at the current generation which is better than those at the
previous generation (condition 2) is not guaranteed to survive to the next generation. If I
obtain a new Pareto group which has only one individual and is better than a Pareto group
at the previous generation, it will pass to the next generation by elitism. We assume that,
at the next generation, it remains a Pareto group with only one individual. Then it may not
satisfy any of the conditions of elitism because its corresponding individuals have been just
copied. Since it has only one corresponding individual, the probability that the individual
will be selected as a parent and produce an offspring having the same assessment vector is

low.

To solve this problem, I modified the selection of elites in the following way. A Pareto group
at the current generation which is better than one at the previous generation should survive
until a better one appears. However, we do not need too many individuals to represent one
Pareto group. In order to achieve this, I will set the maximum number of individuals copied
as elites per Pareto group. They should be chosen widely from within those members. In

order to establish how to select individuals within a Pareto group, a distance is introduced.

I also had a problem in the third condition for the selection of elites. In Experiment Two
(Section 6.1), all Pareto groups were selected at generation 205 by elitism. Therefore, too
many individuals can be copied to the next generation by elitism. To avoid this, after Pareto
groups achieving the criterion unachieved by any Pareto groups selected under condition 1

and 2 are chosen, only ones achieving the most criteria among them will be selected; e.g., we
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assume criterion 1 is not achieved by any Pareto group of generation 50 but it is achieved
by three Pareto groups PP!, P9' and P! of generation 51; if PP, PPl PJ! achieves 4,
7, 10 criteria, respectively, then only Py! is considered to meet the condition. Since fewer
Pareto groups tend to be chosen by this method than by the previous one, less individuals

are copied to the next generation.

7.1 Definition of the New Procedure for Selecting Elites

If a Pareto group satisfies one of the following four conditions, some of its corresponding

individuals are defined as elites:

1. Tt achieves the most criteria in the Pareto frontier of the current generation.

2. It is better than at least one of the Pareto groups of the previous generation.

3. It belongs to the external pool for the Pareto groups selected under condition 2 before
the current generation; the external pool is to let an elite survive until a better one
appears. All elites selected under condition 2 are stored in the external pool at each
generation. They are compared with the Pareto frontier at the beginning of the next

generation, and if there are better ones, then those are removed.

4. For the case where a criterion remains unachieved by any of the Pareto groups chosen
under conditions 1, 2 and 3, and if there exist Pareto groups satisfying this criterion,
the one that achieves the most criteria is chosen among them. For instance, we as-
sume only P?%® was selected for elitism under condition 1, 2 and 3 in Figure 6.7 in
Section 6.1; it does not achieve criterion 1, 2, 5, 7 or 12; seven Pareto groups Pi208
(i = 3,4,5,8,9,10,12) achieve criterion 1; while P?% (; = 3,4,5) achieves six criteria,
P28 (; = 8,9,10,12) achieves five; thus for criterion one, only P?%® (i = 3,4,5) are

accepted under this condition.



94

While the Historical Pareto frontier is to keep the non-dominated individuals up to and
including the previous generations, the external pool in this elitism is for Pareto groups
with small numbers of corresponding individuals. Since we do not need many individuals
that are numerically close to each other and have the same assessment vectors, I limited
the number of corresponding to each Pareto group selected under one of the above four

conditions by
[ = {population size} / {number of Pareto groups in the current Pareto frontier}.

If the number of corresponding individuals to a Pareto group is smaller than or equal to
the limit [, all of the individuals are accepted. Otherwise, only [ individuals depending
on crowdedness, which will be explained later, are chosen. Since I obtained many Pareto

groups (Figure 7.7), [ did not become too large.

Elites are created only when generation 2 < g < gmax, where g is the current generation
and gmax is the maximum generation number. For Pareto frontier f’g, set Qg of external

Pareto groups, set E4 of elites and set Ry of offspring, Pareto_Evolve is executed as follows:

Step 0 Set g := 0, randomly create the initial population P, and ini-
tialize f’g, Qg and Eg; f’g =0, Qq:=0, E; :=0.

Step 1 Select population, evaluate individuals, calculate assessment
vector and calculate Pareto frontier f)g.

Step 2 Update Qg; delete all members in Qg4 which are worse than any
current Pareto groups in 139.

Step 3 Find the Pareto groups in 159 satisfying condition 1, and add
them to E, if they have not been added yet.

Step 4 Find the Pareto groups in 159 satisfying condition 2, and add
them to Qg.

Step 5 Add all of the members in Q4 to E, if they have not been added
yet. (condition 3)

Step 6 Find the Pareto groups in 159 satisfying condition 4, and add
them to E, if they have not been added yet.
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Step 7 Calculate the crowding distance dgg) (explained later) for indi-
vidual X! corresponding to each Pareto group in E,.

Step 8 Select [ corresponding individuals as elites for each Pareto

(9)

group in E,. If there are [ or fewer individuals, d;”" <[, accept
all of them as elites. Otherwise, [ of X’s with the first [ largest
dl(g) are selected. (See below for dz(-g ))

Step 9 Selects v = N — p (|Eg4| = p) of parents from population Py,
apply a crossover or mutation operator to produce v of offspring
for R,.

Step 10 Set Pyy1 := Eg URy, Qgi1 := Qg, Egt1 := 0, Pyyy := 0 and

g := g+ 1; then go back to Step 1 if g < gmax. Stop otherwise.

Current Generation g Current Generation g
population population  Copy non-dominated
External set

individuals satisfying
the conditions for elitism.

Remove some individuals
compared to the Pareto frontier.

External set Qg

i External set Qg

Population at generation g +1

Current i ; .
population P, Parents ! Offspring Ry Elites Egq

Select elites
deperiding on
***************** their trowding distance.

Figure 7.1: Elitism for Experiment Three. First, the non-dominated individuals satisfying
the four conditions for elitism are selected from the current population Py and are stored
in external set Qg (Step 3 - Step 6). Crowding distance are calculated for individuals in
Qg (Step 7), and depending on the distance, some individuals are selected as elites from Q,
(Step 8). The number v = N — i of parents are chosen from the current population Py, and
v of offspring are produced (Step 9). The selected elites and produced offspring become the
population of the next generation g + 1 (Step 10).
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Xgp frovee, x
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X31 X1 %1 X5y Xgy

Figure 7.2: An example to calculate the crowding distance.

After calculating the new Pareto frontier 159, individuals of members in Q; may not be
non-dominated anymore. That is why Qg has to be updated in Step 2. The selection of
individuals in Step 8 is done depending on “crowding distance” calculated in Step 7, which
is introduced in Deb et al. [10] to select the exact number of elites for the method NSGA-II.
Figure 7.1 shows how this elitism (Step 3 - Step 10) works.

)

I now explain how crowding distance dz(-g is calculated. It is the measurement for crowded-
ness around each individual in the parameter space; if the value is large, it is not crowded
around the individual, and it is crowded if the value is small. We assume that there are
p corresponding individuals X7 = (zi1, Zi2, ..., Zim) (1 = 1,2,...,p) for a Pareto group in

159. In my case, m = 7 since there are seven different parameters. I rank those individuals
(9)

depending on their crowding distance d;

Step 0 Setj:1,andletdz(g):()forizlﬂ,...,p.
Step 1 Sort z;; (i =1,2,...,p) in ascending order, and let the sorted
index i for k =1,2,...,p.

Step 2 Calculate crowding distance:
4 = d¥ = oo
dl(-z)ngz)—l—% fork=2,...,p—1.
TH

Step 3 Set j:=j+ 1. If 5 < m, go back to Step 1. Stop otherwise.
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In Step 2, wfj‘]ax and :cg.’]in are maximum and minimum values of the j-th parameters, re-
spectively; thus, the normalized distance between z;; and its two neighboring points in
the j-th space (j = 1,2,...,m) of the search space is calculated, and it is added to dgg)
(1=1,2,...,p). I show a simple example of calculation of crowding distance. As shown in
Figure 7.2, there are five points in 2-dimensional plane (m = 2, p = 5), X; = (1, zi2) for
i=1,...5, and I calculate the distance for Xy = (z11,%12). First, z;; and z;5 are sorted in
ascending order, that is, z31, 11, 21,251,241 and 39, T42, T12, T52, T2z, respectively (Step

1). From the figure,

IR
o = o
o = o,

and two neighboring points of 11 and z12 are {z31, %21} and {z42, 52}, respectively. Thus

the crowding distance of X1 = (z11,z12) is

dy = To1 — T31 n T52 — Ta2
T41 — T31  T22 — T32
In the same manner,
d2 = 0Q,
d3 = 0Q,
d4 = 0Q,

T41 — T21 Z22 — T12
ds = + .
T41 — T31 22 — I32

Thus,

ds < dy < do =d3 =dy = 0.

Since ds has the shortest crowding distance, (z51,z52) is the least crowding point among

the five points.
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Deb et al. [10] defined this crowding distance to rank each individual with respect to its
crowdedness. In their Step 2, objective function values are used, while I am using parameter
values. Since it is desirable to obtain parameterizations which are not close to each other

in search space, I chose to use parameter values, instead of objective values.

7.2 Results of Experiment Three

In Experiment Three, I implemented Pareto_Evolve with elitism introduced in the previ-
ous section. As for Experiment Two, I executed ten trials with population size 100 and
generation number 500. For all those trials, I obtained similar results; the number of elites
were about the same as the number of non-dominated individuals, which means almost
all non-dominated individuals were elites. Also, most of the population members became
non-dominated. These phenomena were seen in Experiment Two. The results of two trials

are shown in Figure 7.3.

The minimum number of achieved criteria became stable even if the number of non-dominated
individuals and elites still increased (Figure 7.3(c)). This phenomenon was not seen in Ex-
periment Two. I can infer that new Pareto groups achieving the small number of criteria
were rarely obtained because of condition 4 of elitism. Thus, the minimum number of
achieved criteria became stable before the number of non-dominated individuals and elites

did.

Each parameter value over 500 generations for trial 1 is plotted in Figure 7.4. The result is
very different from Experiment Two. The range of parameter values remained similar over
500 generations. This is because many or most individuals were copied to the next genera-
tion by elitism. The population does not change much. Therefore the obtained parameter

values are considered to be dependent on the population at early generations.

Figure 7.5(a) shows the resulting simulated data. The smallest error of the simulated data
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Figure 7.3: Results of two different trials in Experiment Three with a population size of
100. (a) Most of the population become non-dominated individuals before the maximum
generation 500, but the time is different; around 300 for trial 1 and around 425 for trial 2. (b)
Most of the non-dominated individuals are selected as elites around generation 300 for trial
1 and generation 425 for trial 2, so almost all of the population members are copied to the
succeeding generation. This is same as the results of Experiment Two. (c) Even though the
number of non-dominated individuals and elites still increase, the minimum number settles
down, which is different from the results of Experiment Two. This is probably because
new Pareto groups achieving the small number of criteria are rarely obtained because of
condition 4 of elitism.



100

. T Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500
Generation Number

Figure 7.4: Parameter values of all non-dominated individuals found, by generation, for trial
1 in Experiment Three. Population size is 100. All of the parameter values stagnate before
generation 300, around generation when the number of elites reached almost the population
size. The range of each parameter value stays quite wide; it does not converge to a narrow
range as for Experiment Two.

by a non-dominated individual is 15.663%, which is much better than that in Experiment
Two (Section 5.1.2) but not as good as those by single-objective methods. The errors for
the extension periods were as small as those by the Nelder-Mead simplex method except on
the first and last days, but the errors for the contraction periods were fairly large compared

to the results of the simplex method (Figure 7.5(b)).

The Pareto groups at generation 0, 100, 250 and 500 for trial 1 in Experiment Two and
trial 1 in Experiment Three are shown in Figure 7.6 and 7.7, respectively. For Experiment
Two, the number of elites completely reached the population size before generation 300;
therefore the Pareto frontier did not change at all after that. For Experiment Three, the
number of elites almost reached the population size, but not completely, so only one Pareto
group joined to or disappeared from the Pareto frontier after the number of elites reached

the maximum.
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(a) Simulated Data by an Individual with Pareto Group (11000000000101)
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Figure 7.5: Results of Experiment Three. (a) The simulated data for the period of seven
days, from Julian day 178 through 184 (solid line), and the measured data (bar). Population
size is 100, and generation number is 500. Simulated data is by the individual corresponding
to the Pareto group with the smallest error among all ten trials. (b) The ratio of the RSS
between the measured and simulated data to the total sum of squares of the measured data
for day 178-184. Errors for contraction periods (6:00-18:00) and extension periods (18:00-
6:00+) are plotted separately. Extension periods on the first and last days are 0:00-6:00 and
18:00-0:00, respectively. Except those two, the errors are as small as those by the Nelder-
Mead simplex method; however, the errors for the contraction periods are larger than those
by the simplex method except on the last day (Figure 3.3(a)).
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In Experiment Three, once a Pareto group was stored in the external pool, it was not re-
moved as long as a better one appeared.; thus, all of the corresponding individuals were
copied to the next generation as elites under condition 3. This is the reason why the number
of parents to be crossed over was very small, which, made the slow. Therefore, the number
of individuals preserved needs to be restricted for breeding (crossover and mutation). In
next section, I will show how changed the elitism and the results of Pareto_Evolve with the

modified elitism.
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Figure 7.6: Pareto frontiers {P/|i = 1,2,...} at generation g = 0, 100, 250 and 500 for trial 1 by Experiment Two. Population
size is 100. Black and white squares represent achieved and unachieved, respectively. Three numbers ¢, af , cf presented on the
left of each plot are index of Pareto group P{, number of achieved criteria by PY, number of corresponding individuals to Pig,
respectively. The number of Pareto groups is not very large, but there exists one Pareto group which has a lot of corresponding
individuals. The number of elites completely reached the population size before generation 300 (Figure 5.9(b)); after that, the

Pareto frontier did not change at all.
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Figure 7.7: Pareto frontiers { P/|i = 1,2,...} at generation g = 0, 100, 250 and 500 for trial 1 by Experiment Three. Population
size is 100. Black and white squares represent achieved and unachieved, respectively. Three numbers 4, af, ¢/ presented on
the left of each plot are index of Pareto group P, number of achieved criteria by P{, number of corresponding individuals to
P?, respectively. Compared to the result by Experiment Two (Figure 7.6), much more variety of Pareto groups are obtained.
However, after the number of elites reached the maximum, only one Pareto group joined to or disappeared from the Pareto

frontier.
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Chapter 8

IMPLEMENTING DYNAMIC CROSSOVER/MUTATION RATE
WITH LIMITED DURATION ELITISM

8.1 Introduction

In this chapter, I introduce use of a dynamic crossover/mutation rate. The rate I experi-
mented with previously was linear in relation to the generation number. As the generation
number increased, the crossover probability linearly decreased from 2/3 to 0, the mutation
probability linearly increased from 1/3 to 1. However, I considered that the search may be-

come more effective if the probability is dynamic, depending on the obtained Pareto frontier.

8.2 Experiment Four: Simple Dynamic Rate

In Experiment Four, first, I tried a simple dynamic crossover/mutation rate with the elitism
of Experiment Three (described in Section 6.3). If a parent has been already selected as
an elite, it is inefficient to mutate it with small step size A defined in Section 2.4. Since
mutation changes some parameter values by A, the created offspring stays numerically close
to the parent in search space if A is small. Binary error measure is used for my problem, so
it is efficient to apply crossover to the parent so that the search becomes broad; crossover
usually makes an offspring jump far from its parent in search space. If a parent was not
selected as an elite, it takes mutation. In Experiment Four, T used the same step size A for

mutation as Experiment Three.

I tried ten times with population size 100 and generation number 500. The changes of
the number of non-dominated individuals and elites are shown in Figure 8.1(a) and 8.1(b),

respectively. The trials behave similarly, but differently from the trials in the experiment
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Figure 8.1: Results of a trial with the elitism as specified in Chapter 7 and the simple
dynamic crossover/mutation (Experiment Four) and linear crossover/mutation (Trial 1 of
Experiment Three in Figure 7.3). Population size is 100. (a) Differently from the result of
Experiment Three (bottom), the number of non-dominated individuals of Experiment Four
(top) does not reach the population size 100. (b) The number of elites behaves about the
same way as the number of non-dominated individuals in Figure (a). (c) The maximum
number of achieved criteria increases after search for some generations, but the minimum
does not change much, which is similar to that of Experiment Three.
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Figure 8.2: Parameter values of all non-dominated individuals found, by generation, for a
trial with a simple dynamic crossover/mutation rate (Experiment Four). Population size is
100. As with the linear crossover/mutation probability (Experiment Three, Figure 7.4), the
range of each parameter value does not change much from beginning to end. The number
of individuals shown in the graph is less than those with the linear crossover/mutation
probability because the number of non-dominated individuals is less than that with linear
crossover/mutation probability.

with linear crossover/mutation probability (Experiment Three); either the numbers of non-
dominated individuals or elites did not reach 100, the population size, in generations. Since
the number of elites is more than half of the size at late generations, many parents are
expected to already have been selected as elites. This means that many parents had a high

probability of crossover.

As it was, the maximum number of achieved criteria increased when generation number
became larger, and the minimum did not change much (Figure 8.1(c)). These phenomena

are similar to those with the linear crossover/mutation probability (Experiment Three).

Seven parameter values are plotted in Figure 8.2. As with the linear probability in Figure

7.4, each parameter value took about the same value almost from the beginning to the end.
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However, the distribution of each parameter value was not as wide as that in Figure 7.4.

This is consistent to the fact that the number of non-dominated individuals was less (Figure

7.3(a)).

Figure 8.3 shows that the change of the Pareto frontier is also similar to that with linear
probability (Figure 7.7); I obtained a large number of Pareto groups. Therefore, this simple

dynamic crossover/mutation rate also brought many different Pareto groups.

Either the numbers of non-dominated individuals or elites did not reach the population size
with Experiment Four (Figures 8.1(a) and 8.1(b)); many parents were already selected as
elites, so most of them were crossed over to produce offspring which were dominated. After
the number of elites stopped increasing, i.e., around generation the Pareto frontier did not
changed much. Since the number of parents was too small due to the large number of elites,

individuals with new Pareto group were not produced.

8.3 Limited Duration Elitism

Under Experiment Four with the dynamic crossover/mutation rate, once a non-dominated
individual dominates one at the previous generation, it can survive as an elite until it is
dominated. We saw in Section 7.2 that this allowed too many individuals to become elites.
Therefore, as I mentioned, preserving those elites until they are dominated may be too
strong a condition. In order to see if the results are affected by the length of duration, I set
the maximum generation for which each Pareto group can be kept in external pool Qg for

Pareto groups.

I tried the maximum generation g, = 5, 20,50, 100 and 250; if a non-dominated individual
is selected as an elite to be preserved, it will be preserved for at most g, generations. The
number of non-dominated individuals is shown in Figure 8.4. As we can expect, the variance

of the number of non-dominated individuals becomes smaller, especially as value of g, is
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Experiment Three, the Pareto frontier consists of many Pareto groups (Figure 7.7).
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Figure 8.4: The number of non-dominated individuals with g, = 5,20, 50,100 and 250,
where g, is the maximum generation for which each elite can be preserved. The variance
becomes smaller, especially at late generations, as the value of g, gets large.
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8.4), it stagnates as the values of g, increases.
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Figure 8.6: The maximum and minimum numbers of achieved criteria with gy,
5,20,50,100 and 250, where gy, is the maximum generation for which each elite can be
preserved. The maximum generation g, does not affect either maximum or minimum num-
ber of achieved criteria.
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Figure 8.7: Parameter values of all non-dominated individuals found, by generation, with
gpr = 20, where gy, is the maximum generation for which each elite can be preserved in the
external set Q. The values of x2, 3 and z4 do not stabilized.
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Figure 8.8: Parameter values of all non-dominated individuals found, by generation, with
gpr = 50. All values are stable through the search.

increased at late generations.

The number of elites behaves the same way as the number of non-dominated individuals
(Figure 8.4 and 8.5). On the other hand, maximum and minimum number of achieved
criteria do not seem to be affected by the maximum generation g, (Figure 8.6). For both
Experiment Three and Four, the maximum number of achieved criteria increased when gen-
eration number became larger, and the minimum did not change much (Figures 7.3(c) and

8.1(c)). Thus, it is not surprising that g, does not affect to the results.

The seven parameter values of all non-dominated individuals with g, = 20 and g, = 50
are plotted in Figure 8.7 and Figure 8.8, respectively. we saw that the values for zs, x3 and
x4, which fluctuated in Experiment One (Section 5.1.1), again fluctuated for g, = 20, but
not for g, = 50. The results are consistent with those of the number of non-dominated
individuals (Figure 8.4) and elites (Figure 8.5) because they also became stable as gpr got

large. This also means that the search gets inactive or slow as g, becomes large.
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The Pareto frontiers at generation 0, 100, 250 and 500 with g, = 20 and g, = 50 are
plotted in Figure 8.9(a) and 8.9(b), respectively. The number of Pareto groups for g, = 20

is about the same as that for g, = 50.

I examined how the search is affected with different values of g,,. We saw that the range
of the numbers of the achieved criteria are not affected by g, and the Pareto frontiers are
not so different between g, =20 and 50. However, while some of the parameters fluctuated

with gpr =20, any of them did not change their values much at late generations with gy =50.



115

Chapter 9

RESULTS OF ADDING A NEW CRITERION

I showed the results of several modifications of Pareto_Evolve to make search efficient to
find the best fit to the data with many achieved criteria in the previous chapters. However,
the error of the simulated data, i.e., the ratio of the residual sum squares (RSS) to the total
sum of squares of hourly measured data, did not become smaller than 15%. This could
be because of an inappropriate choice of objective functions or parameter search ranges.
Actually, each of the simulated data sets with the smallest error (the ratio of the RSS to
the total sum of squares of hourly measured data) were due to an individual with a Pareto
group achieving only four criteria. Thus the simulation results did not capture the mea-
sured data well. This may be because the set of the fourteen criteria attempted to make the
simulated data fit the measured data at only the fourteen points but not the other points.
To fix this problem, I added one criterion to make the simulated data stay close also at the
other points. As a new function, I used the RSS. This chapter shows the results of adding

this criterion.

9.1 Search Criterion Using the Residual Sum of Squares

In order to see if adding the RSS as a criteria would help simulation results fit the measured
data for the entire period, I added one more criterion. The objective function I used for the
new criterion was the one used for the single-objective methods. T selected the RSS as the
fifteenth criterion because I considered that it would help the simulated data stay close to

the measured data not at the fourteen points but also at the other points.

The population size and generation number remained same, 100 and 500, respectively. For

the parameter search ranges, I again set the ranges as shown in Table 3.2. For the first
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Figure 9.1: The numbers of (a) non-dominated individuals and (b) elites of a trial with
three criteria, i.e., criterion 7, 8 and the RSS. Population size is 100. Both of them reached
about half of the population size, which means most of the non-dominated individuals are
copied as elites from the previous generations.

fourteen objective functions, I used the same criteria as the previous experiments; differ-
ences between measured and simulated growth data at the time when the measured growth
data take their daily maximums and minimums. In Section 8.3, we saw that the parameters
did not change their values much at late generations with g, = 50, fifty generations for
the duration of elites; thus I set g,r = 50. Since the single-objective methods Section 3.3
returned the value than 80 as the objective function value, I set the objective target range

at [0,90] for the RSS.

Although I ran Pareto_Evolve for ten times with the target range [0, 90] of the last criterion
(RSS), it was never achieved. Thus, I relaxed its target range; increasing the value of the
upper bound. I had to increase the value of the upper bound from 90 to 200 so that results
from some of trials constantly achieved the criterion. I considered this happened because
the first fourteen criteria were too restrictive for the search to make the last criterion to be
achieved with a narrow target range or the model had some deficiency. To see if this was
true, I reduced the number of criteria. I chose two criteria among the fourteen criteria with

the RSS. Those two are the seventh and eighth i.e., the differences at the minimum and
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Figure 9.2: Parameter values of all non-dominated individuals found, by generation for a
trial by search with the three criteria; the differences between the measured and simulated
data at the minimum and maximum growth on day 181 and the RSS.
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Figure 9.3: Parameter values of all individuals corresponding to Pareto group 001 found,
by generation for a trial by search with the three criteria. Values of parameters xo, x3 and
x4 are in wider ranges of the search ranges through the entire search.
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maximum growth on day 181. I selected this pair because the contraction period on day

181, where the point of the seventh criterion locates, was not captured well.

I set the objective range at [0,90] for the RSS this time. Although I decreased the number
of criteria, the criterion for the RSS was hardly achieved with this target range. I tried
twenty trials, but the criterion for the RSS was achieved only in one trial. When it was
achieved, either of the other two criteria were not achieved; thus, the resulting Pareto group
was 001. This implies that small differences between measured and simulated data at the
minimum and maximum growth on day 181 and the small RSS conflict. There were only
two criteria other than the RSS, but either of them were not achieved when the RSS was
achieved. This means that the simulation result could not take a close value for either of
the two points if the RSS was small or the simulation result captured the measured data
pretty well for other periods. Therefore, I considered that the model has some problem but

not the selection of criteria.

The number of non-dominated individuals and elites with the three criteria are plotted in
Figures 9.1(a) and 9.1(b). Since the number of elites reached only half of the population
size, the other half of the population were produced by breeding. However, the number of
non-dominated individuals did not increase, and parameter values of non-dominated indi-
viduals did not change much (Figure 9.2); thus, most of the non-dominated individuals were
copied as elites, and non-dominated individuals with small values of the RSS were unable

to be produced by breeding. Therefore, the search stagnated.

Figure 9.3 shows the parameter values of all individuals corresponding to Pareto group 001.
We can see that the parameterizations of xo, 3 and x4, whose values fluctuated for Experi-
ment One, were in wide ranges of the search ranges through the entire search. These ranges
were search widely, but the RSS was achieved with no other criteria. Thus, I considered
that the parameter search ranges for those three parameters were too narrow. Or the model

itself has a problem. That’s why those values cannot be fixed.
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Figure 9.4: Results with the three criteria; two criteria on day 181 and the RSS. (a) The
simulated data for the period of seven days, from Julian day 178 through 184 (solid line),
and the measured data (bar). Population size is 100, and generation number is 500. Sim-
ulated data is by the individual giving the smallest error among all twenty trials. (b) The
ratio of the RSS between the measured and simulated data to the total sum of squares of
the measured data for day 178-184 (solid line) and the ratio between the measured and
simulated data by the Nelder-Mead simplex method (dashed line, Figure 3.3(b)). Errors for
contraction periods (6:00-18:00) and extension periods (18:00-6:00+) are plotted separately.
As for the result of Experiment Three, the fit on the contraction periods was not as good
as that by the simplex methods (Figure 3.3(b)).



120

Table 9.1: Parameter search ranges and step sizes for a search to see if there is any problem
about parameter ranges of o, £3 and z4. Old values are in parentheses.

Parameter Lower | Upper B. Step Size

Bound (old) (old)
x1 0.0 0.4 0.004 (0.001)
T2 0.0 0.2 (0.1) | 0.002 (0.001)
z3 0.0 0.2 (0.1) | 0.002 (0.001)
T4 0.0 0.2 (0.1) | 0.002 (0.001)
zs 0.0 1.0 0.01  (0.001)
Ze 0.0 1.0 0.01  (0.001)
x7 0.0 1.0 0.01  (0.001)

The simulated data with the smallest error with the three criteria is plotted in Figure 9.4(a).
Since I set the maximum allowed values for the RSS small enough, the fitting was as good
as that by single-objective methods. However, Figure 9.4(b) shows that the fit on the con-

traction periods was not as good as that by the simplex methods (Figure 3.3(b)).

9.2 Relaxed Parameter Search Ranges

From the results in the previous section, we saw that the parameters x5, £3 and x4 took a
wider variety of values than the other four parameters through the entire search. In order
to see if this happened because of the parameter search ranges, I relaxed the search ranges
of these three parameters. I also made a step size for each parameter larger to allow a more

global search. The new search ranges and the step sizes are shown in Table 9.2.

I used the original fourteen objective functions as search criteria. Although I executed
Pareto_Evolve ten times, the simulated data did not capture the measured data well; the

error of the simulated data was at least 20% for each trial.
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Since relaxing the search ranges of zs, 3 and x4 did not help the error get smaller, I tried
searching with fixed values of z1, =5, ¢ and z7. The resulting parameterizations of the

simulated annealing method (Section 3.3.3) were used for the four fixed parameter values:
z1 =0.070972, x5 = 0.106354, z¢ = 0.270681, z7 = 0.566628.

I returned the search ranges of the other three parameters to the original ones (Table 3.2).
I again tried ten times, for all trials, and some Pareto groups with parameterizations gave
errors of less than 15%. However, the maximum number of achieved criteria was only five for
all ten trials. This implies that it is impossible to make the error small with many achieved
criteria. Therefore, the fourteen criteria I used do not help provide good fits although the

three parameter search ranges are relaxed or the other four parameter values are fixed.
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Chapter 10

CONCLUSION FROM THE RESULTS

10.1 Defects of the Model

From the results of the previous chapters, I found that the model might have some prob-
lems. To investigate this more carefully, I examined the result of the trial presented in
Section 8.3 with g, = 50, fifty generations for the duration of elites. Table 10.1 shows how
many Pareto groups achieved each combination of pairs of criteria at the last generation
(generation 500). From this table, we see that criterion 6 was never achieved by any Pareto
member when criterion 1 was achieved. Also, when criterion 5, 6 or 12 was achieved, there
were not many Pareto groups, i.e., other criteria were difficult to achieve with criteria 5, 6
and 12. T examined the results of all of the ten trials when those three criteria were achieved
(Tables 10.2, 10.3, and 10.4). Tables 10.2 and 10.3 show that some criteria were achieved
by more than five Pareto groups with criterion 5 or 6. For example, there are more than
five Pareto groups achieving criteria 1 and 5 at the same time in Trial 4 in Table 10.2.
However, we see that if either criterion 5 or 6 was achieved, then the other criteria were
rarely achieved. This means that criteria 5 and 6 were difficult to achieve at the same time,
but not separately. On the other hand, Table 10.4 shows that criterion 12 was difficult to
achieve in general. In ten trials, if criterion 12 was achieved, then either criterion 6 or 10

were never achieved, and criteria 4 and 8 were rarely achieved.

Criterion 12 is for the extension period from day 183 through day 184. Although we saw
that it was difficult to achieve, Figures 3.3(b), 7.5(b), and 9.4(b) show that the error at
this extension period was not high. Also, the criterion was achieved when the results with
small errors were obtained (Figures 4.4(b), 5.11, and 7.5(a)). Therefore, when an error was

small, the fit at the extension period from day 183 through day 184 was good. However, as
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Table 10.1: The numbers of Pareto groups that achieved each combination of pairs of criteria
at the last generation (generation 500). For example, number six at the left top corner shows
that there exists six Pareto groups that achieve criteria 1 and 2 at the same time.

Criteria 2 3 4 5 6 7 8 9 10 11 12 13 14
Criteria 1 6 5 4406 41 3 3 2 4 4
2 1310 5 2 9 8 4 7 7 4 910

3 11 6 4 8 8 6 9 6 51010

4 3 4785 85 099

5 023010 2 3

6 2 24 4 2 0 4 3

7 6 3 7 5 2 8 6

8 3 6 3 0 7 5

9 5 3 1 5 5

10 5 010 7

11 3 77

12 1 3

13 8

we saw above, criterion 12 was difficult to achieve in general, From this result, I considered

that the model is deficient.

To investigate how the Pareto frontier changes without criterion 12, I dropped the criterion
and executed Pareto_Evolve with thirteen criteria ten times. Although there was one less
criterion, the average number of achieved criteria by a non-dominated individual became
larger in general (Table 10.5 and Figure 10.1). However, even though it was dropped, as
before, criteria 5 and 6 were rarely achieved simultaneously (Tables 10.2 and 10.3); thus
the difficulty in criteria 5 and 6 was different from that of criterion 12. After dropping
criterion 12, the average numbers without just criterion 5 or 6 or 5 and 6 became larger

than that without just criterion 12, but those average numbers were not much different from
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Table 10.2: The numbers of Pareto groups for all ten trials that achieved the other criteria
at the last generation (generation 500) when criterion 5 was achieved. For example, in trial
1, there are four Pareto groups that achieve criterion 1 when criterion 5 is achieved.

Criteria 1 2 3 4 6 7 8 910 11 12 13 14

Trial 1 456 3023010213
2 6 6 43043206 3 2 4

3 3332022020121

4 788 30742 45 16 4

5 577207243 5 3 3 2

6 32210210001 20

7 012002100 2111

8 536 2233113143

9 345103212 2 111

10 4 6 51053 4 2 4 2 5 2

Table 10.3: The numbers of Pareto groups for all ten trials that achieved the other criteria
at the last generation (generation 500) when criterion 6 was achieved.

Criteria 1 2 3 4 5 7 8 910 11 12 13 14
Trial 1 02 4 40224 4 20 4 3
2 22 3 40121 2 0 4 2
3 24 4 50233410 5 3
4 23 7704245 30 6 5
5 11100101000 21
6 33 6 503446 6 0 6 6
7 53 4 30312 2 40 4 2
8 8 41010 2 3 6 4 8 6 010 7
9 4 4 6 702345 405 6
10 32 6 40314 2 3 0 6 5
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Table 10.4: The numbers of Pareto groups for all ten trials that achieved the other criteria
at the last generation (generation 500) when criterion 12 was achieved.

Criteria 1 2 3 4 5 6 7 8 9 10 11 13 14

Trial 1 2450202010313
2 433030200040 4

3 10201010000 O0O0

4 133110100011 2

5 1420303010201

6 245210111031 2

7 001010100O0T1O00O0

8 12101020103 11

9 1120101000000

10 02102022010 2 01

Table 10.5: The number of non-dominated individuals (top) and the average number of
achieved criteria by a non-dominated individual for ten trials at the last generation (gen-
eration 500). For example, when criteria 5, 6, and 12 are removed and Pareto_Evolve was
executed with eleven criteria, in trial 1, fifty-two non-dominated individuals were obtained
and 8.06 criteria were achieved by those individuals in average.

Trial 1 2 3 4 5 6 7 8 9 | 10
All fourteen criteria 63 | 62 | 60 | 60 | 61 | 65 | 83 | 64 | 56 | 55

6.4916.65|6.63|6.95|6.11|6.86|6.82|6.61|7.11|6.40
Without criterion 12 47 | 44 | 50 | 48 | 43 | 37 | 51 | 51 | 41 | 57

6.81|7.45(6.62|7.35|7.53|7.24|7.00 (6.59 | 7.10 | 5.98
Without criteria 5 or 12 46 | 45 | 45 | 36 | 54 | 39 | 48 | 46 | 39 | 56
7.28|7.11|7.00|7.94|6.87 |8.26 | 7.42|6.61 | 7.85|7.02
Without criteria 6 or 12 44 |1 41 | 40 | 34 | 39 | 39 | 40 | 33 | 39 | 45
7.7018.00|7.22|8.32|8.41(8.15|7.33|7.73|7.41|7.58
Without criteria 5, 6 or 12| 52 | 40 | 51 | 46 | 46 | 50 | 38 | 52 | 37 | 41
8.06|6.85(7.53|7.63|8.26|7.16|7.79(7.96 |6.41 |7.15
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Figure 10.1: Box and whisker plots of the average numbers of achieved criteria by a non-
dominated individual for ten trials at the last generation (generation 500). Each box rep-
resents a range between the first and third quartiles. Symbol “0”’s shows the smallest and
largest values, and “x”’s represent the median.

each others (Table 10.5 and Figure 10.1). Although the three criteria that had difficulty in

achievement were dropped, not all criteria were achieved by a Pareto group.

10.2 Modification of the Model

Since the modifications of the search method did not bring simulation results with smaller
values of the RSS than those by the single-objective methods, I widened the search ranges
of some parameters and changed the search criteria. From the results, I concluded that the

model was deficient. In this section, I show how I think that the model should be modified.

First, in order to see how sensitive the solar radiation parts are to the model introduced in
Section 3.2, I removed the third or fourth or both the third and fourth terms, which are the

total solar radiation for two and three 24-hour periods before the hours being considered.
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However, I did not obtain different results from before by this procedure. I also added the
total solar radiation for four 24-hour periods before, and found that the first few criteria
were sensitive, but that the value of RSS did not become smaller. Therefore, I concluded

that the model is not very sensitive to the solar radiation terms.

As I showed in Figure 7.5(b), the model seems to be biased so that it achieves extension
periods with grater accuracy than contraction periods. Thus, I next changed the last term
of the model, which is for water deficit, because it is applied separately for the extension
and contraction periods. Instead of the total sum of growth on the previous day, I tried the
total sum of growth for the previous cycle of contraction and extension periods, that is, for
24 hours from 6:00 in the morning on the previous day. However, this did not make the
model less biased so that it achieves extension periods with greater accuracy than contrac-

tion periods.

Although the last term is separated for extension and contraction periods, they have the
same form and each of the parameters has the same range. Since the shoot extends differ-
ently for extension and contraction periods, it is necessary to consider the difference between

physical reactions of extension and contraction periods to construct a less biased model.

Figure 10.2 shows the water deficit D; and the difference of water deficit A.D calculated
with the parameterizations of the smallest error (the ratio of the RSS to the total sum of
squares of hourly measured data) of the search introduced in Section 8.3 with duration of
fifty generations. From Figure 3.1, we see that the magnitudes of growth S; in extension
periods are generally larger than that in contraction periods. The last term of the model
determines the amount of addition (A;D < 0, i.e., expansion periods) and subtraction
(A:D > 0, i.e., contraction periods). Thus, the magnitude of last term for contraction peri-
ods has to be smaller than that for extension periods in general. As we see in Figure 10.2(b),
the magnitude of A¢D in extension periods are generally larger than those in contraction
periods; thus first, I changed the parameter search ranges for =5 and x4 so that magnitude

of the last term for extension periods could be larger than that for contraction periods. I
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(a) Water Deficit
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(b) Differences between Water Deficit at Current and Previous Hours

l T T T T T T
0.5F 1
€
E o
DH
|
-0.5F M
-1
178 179 180 181 182 183 184
Day

Figure 10.2: (a) Water deficit D; and (b) difference of water deficit Ay D calculated with the
parameterizations of the smallest error of the search introduced in Section 8.3 with duration

of fifty generations.
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tried two difference cases: 0 < 25 <1,0<z <05and 0.5 <z5 <1,0 <z <0.5. I ran
each trial several times. For the first case, the largest errors (the ratio of the RSS to the
total sum of squares of hourly measured data) were 50% or more, and for the second case,
many errors were more than 100%. Fits did not only become better but the bias against

the extension also was not fixed.

Next, to make the magnitude of the water deficit term for extension periods larger than
24

that for contraction periods, I squared the sum Z Sy, for contraction periods. The results
searched by the same parameter search ranges askiilTable 3.2 with one of the smallest errors
are shown in Figure 10.3. The smallest errors are much larger than those with experiments
introduced in the previous chapters, but one of the errors for contraction periods (day 180)

became smaller than that for the previous extension period. Also, I obtained a Pareto group

with eleven achieved criteria where the maximum number of achieved criteria was ten before.

Since these simple modifications did not substantially reduce the RSS, I changed the model
to represent the physical process of contraction more effectively. Contraction depends on
net growth made in the previous cycle, i.e., this defines the amount of newly made tissue
that is hardened by cell wall thickening and so may contract when water deficit increases.
On the other hand, the extension due to reduction in water deficit should operate on the

contraction that has just occurred. Therefore, I changed the last term of the model,

( 24
zs-AD-Y Sy (AD<0)
k=1
- 9
24
e * AtD : Z S;; (AtD Z 0),
\ k=1
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(a) Pareto Group (11001001010000) with Error = 43.5729%
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Figure 10.3: The sum in the last term of the model for contraction periods is squared.
The simulated data is by the parameterization with one of the smallest error among all ten
trials. (a) The simulated data for the period of seven days, from Julian day 178 through 184
(solid line), and the measured data (bar). Population size is 100, generation number is 500,
and duration is 50 generations. Simulation overestimates the measured data. (b) The ratio
of the RSS between the measured and simulated data to the total sum of squares of the
measured data for day 178-184. Errors for contraction periods (6:00-18:00) and extension
periods (18:00-6:00+) are plotted separately. Extension periods on the first and last days
are 0:00-6:00 and 18:00-0:00, respectively. Some errors in contraction periods are smaller
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than those in extension periods.
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(a) Pareto Group (10011100010100) with Error = 35.1761%
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Figure 10.4: The sums in the last term of the model for both expansion and contraction
periods are modified. (a) The simulated data for the period of seven days, from Julian
day 178 through 184 (solid line), and the measured data (bar). Population size is 100,
generation number is 500, and duration is 50 generations. (b) The ratio of the RSS between
the measured and simulated data to the total sum of squares of the measured data for day
178-184. Errors for contraction periods (6:00-18:00) and extension periods (18:00-6:00+)
are plotted separately. Extension periods on the first and last days are 0:00-6:00 and 18:00-
0:00, respectively. Some errors in contraction periods are smaller than those in extension

periods.



132

to
(

T5 - AyD - ( Z S;; — 7t—1> (AtD < 0)

AD*>0

24 6
26 AD - (Z S+ Zs;;) (AD > 0).
k=7 k=1

\

The term Z S} is the sum of growth for the period right before the current time when
AD*>0
the increment of water deficit is positive and y; = Z Sk — Yt—1- On the other hand, for

AD*>0
A¢D > 0, the sum of growth from 6:00 on the previous day to 6:00 on the current day is

used, where S;* and S} are growth rates for the previous and current days, respectively.

I ran Pareto_Evolve for ten times with population size 100, generation number 500 and
duration 50 generations. The smallest error is about 25% among the ten trials. One of
simulation result is plotted in Figure 10.4(a). Although the RSS is larger than the smallest
one calculated with the previous model, the model results are less biased against expansion
periods (Figures 7.5(b) and 10.4(b)). In constructing a model of a biological process, it
may be just as important to avoid bias as it is to minimize the RSS and multi-objective

assessment can inform us about this bias.

10.3 Conclusion

Using a multi-objective method, I tried to improve the results of fitting with single-objective
methods and I provided an analysis of for which criteria the model had difficulty with. I
thus attempted to analyze where the model was deficient. In general, for a multi-objective
optimization problem, it is hard to achieve all criteria simultaneously. I had this difficulty
in my problem, too. After some analysis, I assumed that it was from a deficiency of the

model.

First, I introduced elitism. With elitism, some individuals were selected as elites depending
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on their assessment vectors, and they were copied to the population of the next generation.
For the first three experiments (Chapter 5-7), the resulting fits were not as good as that of
single-objective methods. Also, the number of elites reached the population size before the

generation reached its maximum, which means that the search stopped at that point.

After T modified elitism, not too many elites were copied to the next generation, so the
number of produced offspring became larger than those of the previous experiments. How-
ever, the Pareto frontier did not change much at each generation, and also the resulting
fit with the smallest error, i.e., the ratio of the residual sum of squares (RSS) to the the
total sum of squares of hourly measured data, did not become better than that found using
single-objective methods. This was possibly because fitting to the measured data was con-
sidered only on the fourteen points, and the set of criteria I used does not guarantee that
the simulated data fit the measured data on the other points. Thus, I added the RSS as a
new criterion (Section 9.1). Since this new criterion with a narrow objective target range
was not achieved with the original fourteen criteria, I decreased the number of criteria; two
from the original fourteen criteria and the RSS. Execution with the three criteria brought a
smaller error than those of the previous experiments, but not smaller than those of single-
objective methods. The number of non-dominated individuals were kept at only half of the
population size, and almost all of them were just copied as elites from the previous gen-
erations. Thus, the other half of the population were produced by breeding, but they did
not become non-dominated for late generations. Also, if the RSS was achieved, the other
two criteria were not achieved, which means a small value of the RSS conflicted with fits
at the selected two points. There were only two criteria other than the RSS, but either of
them were not achieved when the RSS was achieved. Thus, the simulation result could not
take a close value for either of the two points if the RSS was small or the simulation result
captured the measured data pretty well for other periods. Therefore, I considered that the

model has some problem but not the selection of criteria.

I noticed that the parameterizations of z9, 3 and z4 had wide ranges in the experiment

with three criteria. To investigate effects of the search ranges of those three parameters, I
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relaxed the search ranges of these parameters and executed Pareto_Evolve with the original
fourteen criteria. (Section 9.2). Since errors did not become as small as those of single-
objective methods, I tried the search with some fixed parameter values. Parameters z1, s,
z¢ and x7, whose values did not fluctuate, were selected to fix. The resulting errors were
nearly as small as those of single-objective methods, and those small errors were obtained
for each of the ten trials. However, there was a problem because the maximum number of
achieved criteria was only five for all of the ten trials. Again, having a small value of the

RSS conflicts with achieving many criteria.

The smallest error I obtained by both single and multi-objective methods was more than
13%, and it did not become smaller even though I modified some search methods or changed
the set of criteria or parameter search ranges. Therefore, I considered that the error does not
become smaller with the current model introduced in Section 3.2. Thus, I reconsidered the
model. The modified model did not return results with small errors, but it was less biased
against extension periods. After modification of the model, the bias of the model became
smaller; that is, accuracy of achievement at contraction periods was improved. However,
the error did not become small. Therefore, I concluded that more biological information

about contraction and expansion is needed.

One possibility to construct a better model is selection of different type of criteria. I used
a set of simple assessment criteria with the revised model. However, if assessment criteria
themselves are used to define the model, defect of the model may be reduced. For exam-
ple, all of sums in the model, i.e., the average temperature, total solar radiation and total
growth, are based on a twenty-four hour period, but length of the period for those sums

could be defined by assessment criteria.

The single-objective methods returned the result with the smallest errors. The multi-
objective method did not give a better fit, but from analysis of its results, the model
deficiencies were found; that is, I used the multi-objective method to find what the problem

of the model was.



[1]

135

BIBLIOGRAPHY

Back, T., F. Hoffmeister, H-P Schwefel. A survey of evolution strategies. In Proceedings
of the Fourth International Conference on Genetic Algorithms, pages 2-9. Morgan

Kaufmann, 1991.

Back, T., U. Hammel, H-P. Schwefel. Evolutionary computation: Comments on the
history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3-17,

1997.

Baker, J. E. Adaptive selection methods for genetic algorithms. In Proceedings of an
International Conference on Genetic Algorithms and their Application, pages 101-111.

Lawrence Erlbaum Associates, 1985.

Banzhaf, W., P. Nordin, R. E. Keller F. D. Francone. Genetic Programming: An
Introduction: On the Automatic Evolution of Computer Programs and Its Applications.

Morgan Kaufmann, 1997.

Beasley, D., D. R. Bull, R. R. Martin. An overview of genetic algorithms: Part 1,
fundamentals. University Computing, 5:56—69, 1993.

Box, G. E. P., G. M. Jenkins. Time Series Analysis; Forecasting and Control. Holden-
Day, 1970.

Das, R., M. Mitchell, J. P. Crutchfield. A genetic algorithm discovers particle-based
computation in cellular automata. In Parallel Problem Solving From Nature III, pages

344-353. Springer-Verlag, 1994.

De Jong, K. A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, 1975.



136

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Deans, J. D. Fluctuations in the soil environment and find root growth in a young

Sitka, spruce plantation. Plant and Soil, 52:195-208, 1979.

Deb, K., S. Agrawal, A. Pratap, T. Meyarivan. A first elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the
Parallel Problem Solving from Nature VI Conference, pages 849-858. Springer, 2000.

Fogel, D. B. An evolutionary approach to the traveling salesman problem. Biological

Cybernetics, 60:139-144, 1988.

Fogel, D. B. Applying evolutionary programming to selected control problems. Com-
puters and Mathematics with Applications, 27:89-104, 1994.

Fogel, D. B. Ewolutionary Computation. IEEE Press, 2nd edition, 2000.

Fogel, L. J. Autonomous automata. Industrial Research, 4:14-19, 1962.

Fonesca, C. M., P. J. Fleming. Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In Proceedings of the Fifth International

Conference on Genetic Algorithms, pages 416-423. Morgan Kaufmann, 1993.

Ford, E. D., J. D. Deans, R. Milne. Shoot extension in Picea sitchensis 1. seasonal

variation within a forest canopy. Annals of Botany, 60:531-542, 1987.

Ford, E. D., R. Milne, J. D. Deans. Shoot extension in Picea sitchensis I1. analysis of

weather influences on daily growth rate. Annals of Botany, 60:543-552, 1987.

Goldberg, D. E., B. Korb, K. Deb. Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems, 3(5):493-530, 1989.

Goldberg, D. E., J. Richardson. Genetic algorithms with sharing for multimodal func-
tion optimization. In Proceedings of the Second International Conference on Genetic

Algorithms and their Application, pages 41-49. Lawrence Erlbaum Associates, 1987.



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

137

Grefenstette, J. J. Optimization of control parameters for genetic algorithms. IFEE

Transactions on Systems, Man and Cybernetics, 16(1):122-128, 1986.

Holland, J. H. Outline for a logical theory of adaptive systems: An introductory
analysis with applications to biology, control, and artificial intelligence. Journal of the

Association for Computing Machinery, 9(3):297-314, 1962.
Holland, J. H. Adaptation in Natural and Artificial Systems. MIT Press, 1992.

Horn, J., N. Nafpliotis. Multiobjective optimization using the niched Pareto genetic
algorithm. IIIIGAL Report 93005, Illinois Genetic Algorithm Laboratory (IIliGAL),
University of Illinois at Urbana-Champaign, July 1993.

Keeney, R. L., H. Raiffa. Decisions with Multiple objectives: Preferences and Value
Tradeoffs. John Wiley & Sons, 1976.

Kirkpatrick, S., C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Annealing.
Science, 220:671-680, 1983.

Koza, J. R. Genetic Programming: on the Programming of Computers by Means of

Natural Selection. MIT Press, 1992.

Kursawe, F. A variant of evolution strategies for vector optimization. In Parallel

Problem Solving From Nature, pages 193-197. Springer-Verlag, 1991.

Michalewicz, Z. Genetic Algorithms + Data Structures = FEwvolutionary Programs.

Springer-Verlag, 1996.

Milne, R., E. D. Ford, J. E. Deans. Time lags in the water relations of Sitka spruce.
Forest Ecology and Management, 5:1-25, 1983.

Milne, R., J. D. Deans, E. D. Ford, P. G. Jarvis, J. Leverenz, D. Whitehead. A compar-
ison of two methods of estimating transpiration rates from a Sitka spruce plantation.

Boundary Layer Meteorology, 32:155-175, 1985.



138

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Milne, R., S. K. Smith, E. D. Ford. An automatic system for measuring shoot length
in Sitka spruce and other plant species. Applied Ecology, 14:523-529, 1977.

Moilanen, A. Simulated evolutionary optimization and local search: Introduction and

application to tree search. Cladistics, 17:512-525, 2001.

Nelder, J. A., R. Mead. A simplex method for function minimization. Computer

Journal, 7:308-313, 1965.

Pena-Reyes, A., M. Sipper. Evolutionary computation in medicine: An overview.

Artificial Intelligence in Medicine, 19:1-23, 2000.

Powell, M. J. D. A direct search optimization method that models the objective and
constraint functions by linear interpolation. In Advances in Optimization and Nu-
merical Analysis: Proceedings of the Sizth Workshop on Optimization and Numerical

Analysis, Oazaca, Mezico, pages 51-67. Kluwer Academic Publishers, 1994.

Press, W. H., B. P. Flannery, S. A. Teukolsky, W. T. Vetterling. Numerical Recipes in
C: the Art of Scientific Computing. Cambridge University Press, 2nd, revised edition,
1997.

Reynolds, J. H. Multi-Criteria Assessment of Ecology Process Models Using Pareto
Optimization. PhD thesis, University of Washington, 1997.

Reynolds, J. H., E. D. Ford. Multi-criteria assessment of ecological process models.

Ecology, 80(2):538-553, 1999.

Rudolph, G. Evolutionary search under partially ordered fitness sets. In Proceedings
of the International NAISO Congress on Information Science Innovations (ISI 2001),
pages 818-822. ICSC Academic Press, 2001.

SAS Institute. SAS/IML User’s Guide, Version 8, 1999.



[41]

[42]

[43]

[44]

[45]

139

Schoenauer M., Z. Michalewicz. FEvolutionary computation. Control Cybernetics,

26(3):307-338, 1997.

Srinivas N., K. Deb. Multiobjective optimization using nondominated sorting in genetic

algorithms. Evolutionary Computation, 2(3):221-248, 1995.

Syswerda, G. Uniform crossover in genetic algorithms. In Proceedings of the Third

International Conference on Genetic Algorithms, pages 2-9. Morgan Kaufmann, 1989.

Zitzler, E., K. Deb, L. Thiele. Comparison of multiobjective evolutionary algorithms:

Empirical results. Evolutionary Computation, 8(2):173-195, 2000.

Zitzler, E., L. Thiele. Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto approach. IEEE Transactions on Evolutionary Compu-
tation, 4(3):257-271, 1999.



140

Appendix A

MANUAL OF PARETO _EVOLVE

I now explain how to use the Evolutionary Algorithm (EA) software Pareto_Evolve.
Pareto_Evolve is written in C language, and we used Microsoft Visual C++ to develop and

implement it.

The user need two sets of codes to run Pareto_Evolve. One is pareto run, which is
to execute the EA and consists of four source files (PARETO main.c, PARETO update.c,
PARETO breed.c and PARETOmisc.c) and two header files (pareto_evolve.h and
pareto_userconst.h). The other is criteria, which is for objective functions, i.e., the
functions to be optimized in pareto run. The user needs to create this set of codes. In

Section A.1, I will show how criteria should be constructed.

As introduced in Section 2.4, Pareto_Evolve works as follows.

1. Generation is set at 0, and pareto_run randomly creates initial population; those

created parameterizations are written to input file input.txt.

2. The data in input.txt are read by pareto_run, and then criteria is called to calculate
their objective function values. With the input data, those calculated values are
written to output file crit.out. Referring to the calculated objective function values,
pareto_run assign a fitness value to each individual. Then it selects parents depending
on the fitness values and applies crossover or mutation operators to these parents
to produce offspring. Finally, the parameterizations of the offspring are written to

input.txt. This is the end of the current generation.

3. The processes in a generation introduced above are repeated by pareto_run until the
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generation number reaches to the maximum allowed number or the objective function

values used in the optimization are satisfied.

A.1 The Set of Codes for Objective Functions

The set criteria of codes is to define the objective functions to optimize in pareto_run
using a multi-objective EA. The following three procedures need to be included in the source

files:

1. Read in the parameter values from input file input.txt; in the file, the parameter
names are written at the first line, and the parameterizations start from the second

line; each line has only one parameterization;

2. Using the read-in parameter values, calculate the objective function values;

3. Write the parameter names and criterion names at the first line in output file
crit.out; from the second line, print the parameterization and the calculated ob-

jective function values for each individual per line.

In Appendix B, I introduce an example of criteria. It is for the objective functions of the
ecological process model used in this thesis. In this example, shoot_growth _crit.c is the
source file of criteria, and there are three header files. Two are ones used in pareto_run,
pareto_evolve.h and pareto_userconst.h. One is data.h, which I created for the data

used in shoot_growth_crit.c.

A.2 The Set of Codes for Pareto_Evolve

A search by the multi-objective EA is executed in paretorun. As I mentioned
above, pareto run consists of four source files (PARETO main.c, PARETO update.c,

PARETO breed.c and PARETOmisc.c) and two header files (pareto_evolve.h and
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pareto_userconst.h). File PARETO main.c is for essential processes in Pareto_Evolve.
File PARETO_update.c is to assign fitness, and PARETO breed.c is for selection, crossover
and mutation. File PARETO.misc.c is for subroutines called in more than one files
or PARETO.main.c. The constants to be determined by the user are defined in
pareto_userconst.h. File pareto_evolve.h is for other fixed constants, all struc-

tures and some simple functions. Those codes are introduced in Appendix B.

Before the user starts search, it is necessary to determine several things in PARETO misc.c
and pareto_userconst.h. Next, [ explain what the user needs to determine before starting

the search and how those codes work.

A.2.1 Things to Be Set before the Search

Before starting search, the user needs to define several things in pareto_userconst.h and

PARETOmisc.c.

In pareto_userconst.h, all of the following seven constants need to be defined by the user:

BINARY If error measures are binary, BINARY = 1, and 0 if
continuous;

NUMPARAMS Number of parameters;

NUMCRITERIA Number of objective functions;

POP_SIZE Size of population;

GEN_NUM Number of the maximum allowed generation;

MAX_DURATION Number of the maximum allowed duration when elites

can be copied;
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GEN_TO_PRINT Period of the generation number when the user wishes

to see search results; e.g., if 100, then at generation

100, 200, ..., the objective function values are written
to output file crit.out100, crit.out200, ..., respec-
tively.

The following is a part of my example file pareto userconst.h where those seven variables

are defined.

2k 3k 3k ok 2k 3k 3k >k 2k 3k dk 2k >k 2k dk 3k ok 2k 3k 3k ok >k k 3k ok >k >k >k 3k dk ok >k >k 3k dk 3k ok >k k 3k 3k >k >k 2k 3k 3k 5k >k >k >k 3k dk >k >k >k 3k k 5k >k >k %k 3k 3k >k >k >k 3k %k >k %k %k %k %k

#define BINARY 1  /* =1 if error measures are binary, =0 if continuous */

#define NUMPARAMS 7 /* number of parameters */

#define NUMCRITERIA 14 /* number of criteria used in assessment */

#define POP_SIZE 100 /* number of individuals per generation */

#define GEN_NUM 500 /* maximum allowed number of generations for
a search */

#define MAX_DURATION 50 /* maximum duration for elites */

#define GEN_TO_PRINT 500 /* how often results to be written out */

2k ok 2k ok 2k ok 3k 2k 2k k dk ok k dk K ok ok 2k dk 3k ok >k dk dk ok >k %k %k k dk ok >k >k 2k dk sk ok >k %k 2k 3k >k ok 2k dk dk ok >k %k %k 3k 3k ok >k %k 2k k >k >k >k %k dk 3k >k >4k %k %k %k >k %k %k %k %k

In PARETO misc.c, the following three vectors need to be defined by the user:
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pnames Name of parameters; this consists of the number of NUMPARAMS
elements;
psearch Parameter search ranges; this consists of the number of PARAMS

vectors, and each vector has three elements; the first, second, third
elements for each parameter represent the minimum and maximum
of the search range and its step size;

assessinfo Objective target ranges or values; this consists of the number
of NUMCRITERIA vectors, and each vector has two elements; if
BINARY = 1, then the first and second elements represent the
minimum and maximum of the range for an achieved criterion; if
BINARY = 0, then the first element represents the target value to

be desired to achieve, and the second element is discarded.

The following is a part of my example file PARETO0 misc.c, where those three vectors are

defined.

s sk sk e e s ke ok ke sk sk s s s ke ke ok ks s s s sk sk sk s s s ke ok sk s s ke ke sk se s s ke ok ks s s s ok sk sk sk s ke sk sk skt s ke sk sk sk ke ok sk sk sk
/* Enter each parameter’s name used in printing out the search list.
NAMES are LIMITED to 10 characters!! x/
char pnames[NUMPARAMS] [11] = {"x1",6"x2" "x3", "x4" "x5", "x6","x7"};

double psearch[NUMPARAMS][3] = {

/* Min, Max, Min. Step Size for each parameter; each has 20 possible

values, so 20"5 combinations */



{o0.
{0.
{o0.
{o0.
{o0.
{o0.
{o0.

o o (@] o

o o o o o o o

.001},
.001},
.001},
.001},
.001},
.001},
.001}

/%
/*
/*
/*
/*
/%
/*

search
search
search
search
search
search

search

double assessinfo[NUMCRITERIA] [2]

/* If BINARY = 1, then min, max Acceptable range for each criteria;

e.g., {6, 32} */

/* If BINARY = 0, then target value, trash for each criteria;

e.g., 118,03} */

for
for
for
for
for
for

for

]
pr

param
param
param
param
param
param

param

~ [} (¢)] L) w N

*/
*/
*/

*/
*/
*/
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{-0.21,0.21}, {-0.21,0.21}, {-0.21,0.21}, {-0.21,0.21}, {-0.21,0.21},

{-0.21,0.21}, {-0.21,0.21}, {-0.21,0.21}, {-0.21,0.21}, {-0.21,0.21},

{-0.21,0.21}, {-0.21,0.21}, {-0.21,0.21}, {-0.21,0.21}

};

3k 3k 3k 3k ok 3k 3k >k ok 3k dk 3k ok ok 3k 3k 3k 2k 3k 3k ok >k 3k 3k 3k 3k >k ok 3k dk >k >k >k 3k 3k sk >k >k >k 3k 3k 5k >k >k 3k 3k 5k >k >k >k 3k k >k >k >k 3k 3k sk >k >k >k 3k 3k 5k >k >k k¢ 3k >k %k %k %k %k

After setting those variables and vectors, the user can start search. I now explain how each

routine in pareto_run works.
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A.2.2 Main Function

File PARETO main. ¢ consists of the main function main, which calls functions evaluation and
breed for essential processes of the EAs. In main, first, generation is set at 0, and function
initial_input is called from PARETO misc.c to create initial population. Then, the iteration
process starts. The main routine in PARET0 update. ¢, evaluation is called to assign fitness
to each population member. Next, the main routine in PARET0 breed.c, breed is called to
generate offspring. Generation number is increased by 1, and evaluation and breed are kept
calling until generation number reaches to the maximum allowed number or the objective

function values used in the optimization are satisfied.

A.2.3 Functions for Selection

File PARETO update.c is for routine evaluation, which is to assign fitness, and subroutines
called only in evaluation. In evaluation, first, function read_input is called to read in
parameter values and objective function values for the first individual in the current
population. Then criteria_assess assesses its objective function values; if BINARY=1, 1 is
assigned when an objective value is in its objective target range and 0 is assigned when it
is outside of the range, and if BINARY=0, the absolute distance from the objective target
value is calculated. Then, the parameter values, objective function values and assessment

vectors of the first individual are added to the list.

Subroutine read_input and crit_assess are called for other individuals in the current popula-
tion, but from the second individual, the individual is compared to the individuals in the
list. If it is not dominated by the compared individual in the list, i.e., is codominant with
or dominates the one in the list, it is added to the list before the compared individual.

This is done by subroutine ordered_add_to_current_gen.

After all individuals are added to the lexicographically ordered list, assign_fitness assigns

them fitness as defined in Section 2.4, and elites are selected by elitism as defined in
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Function: nai n

YES

Create an initial population.

generation=0? A !
initial _input

Y

Call the function for criteria
to calculate objective values.

gener ati on <stop_ge
or
pareto_fl ag#1?

generation:=generation+1
A

Assign fitness.
eval uation

|

gener ati on <GEN_NU
or
pareto_fl ag#1?

YES

Select parents and breed them.
breed

\

Call the function for criteria
to calculate objective values. Y

END

Figure A.1: Main flow of function main. The boldfaced word at the end of each box
represents the function name. Constant stop_gen is the number of generation desired to
stop the search, and GEN_NUM is the maximum allowed number of generation. If all of
the criteria are achieved, pareto_flag is 1; otherwise 0. Function initial_input, evaluation and
breed are defined in PARETO_misc.c, PARETO_update.c and PARETO _breed.c, respectively.
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Section 8.3.

A.2.4 Functions for Breeding

File PARETO breed.c is for routine breed, which is for selection, crossover and mutation,
and subroutines called only in breed. First, parents are selected by par_selector, referring to
the fitness values. A roulette introduced in Section 2.2.2 is created; then a random number
at [0,1] is picked and the corresponding individual to the values on the roulette is chosen as
a parent. These procedures are repeated for the number of parents the user needs, that is,
POP _SIZE— number of elites. Which parents will be crossed over or mutated is determined

dynamically as I explained Section 8.3, and that is done by operator_selector.

Crossover and mutation is executed by crossover and mutator, respectively. Routine
offspring_output defined in PARETO misc.c writes the parameterizations of the produced

offspring and elites to input file input.txt.
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Function: eval uati on

Read in the parameterization and criteria results for the first individual.
read_i nput

Y

Assess the first individual in the population.
criteria_assess

l

Assign fitness values to all
lexicographically ordered individuals.
assign_fitness

\i
Select elites.

Read in the parameterization and criteria results for elitism
the pcount -th individual | at est _si m ptr
read_i nput

\i
Assess | at est _sim ptr in the population.
criteria_assess

\
Add| at est _si m ptr to a lexicographically ordered list
of the current generation‘s individuals that have already been
processed. The list will be used for nondominated ranking.
ordered_add_to_current_gen

p=———
1

I_Return to mai n. :

Figure A.2: Main flow of function evaluation called in function main (Figure A.1). The bold-
faced word at the end of each box represents the function name. Variable pcount is to count
the number of individuals that have been read in to order the population lexicographically.
Individuals are ordered lexicographically ordered to assign fitness.
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Function: el iti sm

YES
gener ati on=GEN_NUM

Make the list of Pareto members and return the
number of Pareto members (num_Par et 0).
Par et o_nenber _|i st

l

gener ati on =07

YES

Add Pareto members satisfying
condition 3 to the list.
preserved_Pareto_update
copy_Pareto_nenbers

generati on> 17

_ | Add Pareto members satisfying condition 1 to the list.
o Par et 0o_nmax_achi eved

A

Add Pareto members satisfying condition 2 to the list.
Par et o_dom nati ng_previ ous

Y

Add Pareto members satisfying condition 4 to the list.
Par et o_achi eving_fail ed

Y

Select elites referring to the list of Pareto members.
elite_selection

! X 1
1Return to eval uati on.
e e e e e e e e - - a

Figure A.3: Main flow of function elitism called in function evaluation (Figure A.2). Constant
GEN_NUM is the maximum allowed number of generation.
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Function: br eed

Select (POP_SI ZE — number of elites) of parents to breed to
create offspring. The selection is random based on the fitness.
par_sel ector

Y

Determine which parents take crossover or mutation randomly.
oper at or _sel ect or

\/

Apply crossover to parents selected to cross over.
crossover

\/

Apply mutation to parents selected to mutate.
mut at or

Add the information of selected elites
to the list of offspring generated by
crossover and mutation.
elite_info

numelite>0?

Read through the list of offspring and elites to
check if they are unique. If not, mutate the
individuals so that all individuals become unique.
new_i ndi v_check

\
Write out the parameterization to file
MODEL_| NPUT_CALL. These individuals are
used as population to the next generation
of f spri ng_out put

Figure A.4: Main flow of function breed called in function main (Figure A.1). Constant
POP_NUM is the number of population. Whenever an elite is selected, num_elite is increased
by one.



