
Abstract

KUMAR, SUJAY, VIJAYA. Vitri - A Generic Framework for Engineering Decision

Support Systems on Heterogeneous Computer Networks. (Under the direction of Dr. John

W. Baugh)

Vitri is an object-oriented framework implemented in Java for high-performance distributed

computing. Using Vitri, applications can engage in cooperative problem solving by dividing

their tasks among heterogeneous clusters of workstations and PCs. Vitri’s features include

basic support for distributed computing and communication, as well as visual tools for

evaluating run-time performance, and modules for heuristic optimization. It balances loads

dynamically using a client-side task pool, allows the addition or removal of servers during a

run, and provides fault tolerance transparently for servers and networks. Among its more

powerful features are modules for heuristic optimization and decision support tools such

as modeling to generate alternatives (MGA). Vitri also provides an asynchronous global-

parallel genetic algorithm that is particularly suited for coarse-grained tasks executing on

processors with large variations in processor speeds. By using dataflow techniques, in which

computations are explicitly based on the availability and forwarding of data, the usual end-

of-generation synchronization points are removed from the algorithm. The tools in Vitri

are applied to a number of different applications from the civil engineering domain. The

results indicate the adaptability of Vitri to various problems and its utility as a tool for

managing engineering decision support systems.
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1

Chapter 1

Introduction

Scientists, engineers, and decision makers are typically faced with problems that have sig-

nificant social and economic impacts. The process of designing and selecting management

strategies for such problems is a complex process. Traditional engineering design focuses

on finding strategies that meet the regulatory standards for the problem at hand. The ac-

ceptance of a strategy in practice, however, typically depends on a number of other factors

such as cost, equity, reliability, political, social, and legal constraints. Incorporating these

intangibles often makes the design process challenging. The purpose of this thesis is to

develop a computing framework to assist the engineering design and analysis process. The

framework is called Vitri (a Sanskrit word meaning “distributed”). This chapter describes

some of the issues associated with the engineering design process and addresses the need for

incorporating new generation of tools, technologies and concepts that motivated the design

of Vitri.

There are numerous analysis and computer packages that assist a typical engineer-

ing design process. A structural analysis program, for instance, can calculate parameters

such as deflection, stresses, etc., associated with different types of structures. A structural

engineer involved in a design typically follows an iterative procedure adjusting the design

parameters until a feasible solution is found. The procedure is often repeated to incorpo-

rate other criteria of interest in a real-life situation. Such a brute-force or trial-and-error

approach can be ineffective and expensive when the problems increase in complexity and

size. Further, the routine invocation of a variety of tools with iterative simulation runs on
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a single workstation can be computationally prohibitive.

The idea of using high performance computing resources to handle computation-

ally intensive problems has been reported in the area of problem solving environments

(PSEs) [5]. A PSE is a system that provides a complete, usable and integrated set of

high level facilities for solving problems in a specified domain. Gallopoulos et al. [5] define

a PSE to be a computer system that provides all the computational facilities needed to

solve a target class of problems. PSEs allow users to define and modify problems, choose

solution strategies, and manage the required computational resources. PSEs may provide

expert tools such as algorithms, software tools, hardware resources, etc., for complex prob-

lem solving domains. The use of PSEs allows rapid prototyping of applications without

the specialized knowledge of underlying computer hardware or software. The idea of de-

veloping PSEs have been reported as early as the 1960s [4], with the early efforts mostly

focusing on the development of scientific software libraries to facilitate the reuse of high

quality software. These early PSEs had severe limitations in their ability to handle large

scale problems mainly due to the lack of adequate computing resources. The recent ad-

vances in computing technologies have resulted in the ability to use powerful computing

resources for solving a wide range of problems. As a result, modern PSEs aim to make use

of high performance computing resources, coupled with advances in hardware and software

tools [11] such as high-speed workstations, parallel architectures and software, windowing

environments, high-level languages, etc.

The concept of a high performance computing environment acting as a backbone

for computational support has strongly influenced the design of Vitri. One of the powerful

components of Vitri is a high performance computing environment for distributed comput-

ing that harnesses the resources of a network of computers to provide adequate computing

power to deal with various problems. This environment with convenient access to hetero-

geneous distributed computing resources facilitates problem solving without the overheads

associated with low-level parallel/distributed application development.

The limitations associated with the traditional design process have also led to the

use of a number of new algorithmic tools. Formal tools and concepts such as optimization-

based techniques help in searching for strategies that optimize certain desired goals while
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meeting user imposed constraints. Such tools help in eliminating ineffective enumeration

of potential solutions and finding good solutions that are difficult to identify using a trial-

and-error approach. Vitri provides a number of formal computational approaches such as

heuristic optimization techniques that incorporate domain knowledge to improve efficiency

over random search. These techniques provide generic capabilities that are suitable for

dealing with difficult, ill-behaved problems.

Although similar, the activities of problem solving and decision making are slightly

different. Problem solving typically involves defining goals and suitable courses of action

to achieve them, whereas decision making involves choosing appropriate strategies from the

available alternatives. Decision support systems (DSSs) are formal approaches for computer

assisted decision making. Adelman [1] defines a DSS as an “interactive computer system

which utilizes analytical methods, such as decision analysis, optimization algorithms, pro-

gram scheduling routines, etc., for developing models to help decision makers formulate

alternatives, analyze their impacts, and interpret and select appropriate options for im-

plementation.” The environmental decision support system (EDSS) [6] developed by the

MCNC Environmental Programs Group in cooperation with US EPA and NC State Univer-

sity is such a system that helps scientists and environmental planners model and evaluate

environmental quality issues and make decisions at different levels of granularity. A number

of applications of DSSs in the engineering domain has also been reported. A spatial DSS

for vehicle routing was developed by Keenan [7] that provides techniques to assist in the

routing and scheduling of vehicles. Loucks and Costa [8] presented a summary of interactive

computer technologies and DSSs for studying water resources problems. DSSs for applica-

tions to solid waste [9], structural design [2], transportation [3], and automotive safety [10]

applications have been developed by researchers at NC State University.

Researchers have also identified the need for integrated modeling and decision

making approaches to gain better understanding of real-life systems [12]. Collaborative

approaches that integrate the knowledge of interdisciplinary approaches and the use of

knowledge and tools of multiple disciplines have helped bridge the gap between the decision

making and problem solving processes. Though a powerful modeling or problem solving

environment would benefit a modeler, it may not explicitly satisfy the needs of a decision
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maker. A decision maker, for instance, might be interested in details such as the tradeoffs

between cost and certain regulatory standards, the effect of uncertainties on solutions,

efficient management practices in a given scenario, etc. Formal tools and concepts can be

used in an iterative decision making process to assist with such what-if analyses. Tools

based on optimization can not only be used to find optimal solutions, but also to find

good alternatives. For instance, Vitri provides a genetic algorithm-based tool, modeling to

generate alternatives (MGA), that generates a small set of slightly sub-optimal solutions

that are different in decision space. The MGA tool helps in generating alternatives that can

be valuable in a decision making scenario. Vitri also provides multiobjective optimization

algorithms that help in exploring potential tradeoff relationships among different objectives.

In the early stages of dealing with a problem, designers often brainstorm the ideas

and come up with simple prototypes to gain a better understanding. It can be observed that

both PSEs and DSSs emphasize the importance of a framework with capabilities for rapid

prototyping so that the designer/decision maker can learn about the problem incrementally

and quickly. A prototyping framework that helps in applying different tools and techniques

rapidly to a number of design scenarios becomes essential in the modern design and analysis

process. Technologies such as component-based modeling and object-oriented tools help in

developing modular systems that are flexible and extensible. The use of such prototyping

systems helps designers in learning about the relationships between the parameters involved

and in enhancing the overall effectiveness of the design process. The design of Vitri is based

on object-oriented principles, allowing it to be a flexible, extensible system. As a result, the

tools in Vitri can be reused for testing different prototypes and applications.

The combination of a high performance computing component to overcome compu-

tational limitations and the optimization-based tools in Vitri helps in bringing DSSs closer

to realizing the decision making power of a true joint-cognitive system. Vitri not only facil-

itates an iterative decision making process, but also helps the decision maker incrementally

learn about the problem at hand. The improved knowledge allows the refinement of existing

designs and models and the flexible use of DSS capabilities facilitates the development of

future prototypes. By providing tools and resources to assist problem solving, and insu-

lating the user from the complexities of underlying hardware and software, Vitri facilitates
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rapid prototyping of various applications.

1.1 Organization of Thesis

The thesis is organized into three main parts. The first part describes the design of the

basic features of Vitri such as the distributed computing environment and the distributed

genetic algorithms (GA). The use of Vitri on substantial applications is described next,

followed by the description of its advanced features, MGA and multiobjective optimization

tools.

Chapter 2 describes various components of Vitri and their design using object-

oriented principles. The chapter describes the issues involved in the design and the ratio-

nale behind using a specific language, tools, and protocols. The design of the distributed

computing system and the connectivity of various algorithms are described with the help

of UML diagrams.

The implementation of the asynchronous distributed GA (ADGA) is described in

Chapter 3. This chapter also presents a comparative study of the performance of ADGA

with a synchronous distributed GA (SDGA). The performance study involves comparison

using both fine grained and coarse grained problems.

The application of distributed GA tools in the reliable design of water distribution

systems is presented in Chapter 4. This problem is also used to compare the performance

of ADGA and SDGA. Chapter 4 also presents a new approach for incorporating a formal

notion of redundancy in water distribution system design.

Chapter 5 and 6 compare the performance of the multiobjective optimization tools

in Vitri when applied to a number of challenging problems. Various performance measures

are used to compare the performance of the algorithms with other well established algo-

rithms. The incorporation of these algorithms in Vitri is discussed in Chapter 2.

Chapter 7 describes the implementation of the MGA tool. The applicability of the

technique is illustrated using sample problems, including an application in seismic perfor-

mance evaluation.

The appendix A describes a sample execution of Vitri. The command line options
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for both client and server executions are explained, along with the methods to select simu-

lation variables for the distributed GAs. Appendix B describes the graphical tools in Vitri

that can be used to monitor the performance of the distributed environment. A summary

of the application of Vitri to various problems is presented in Appendix C. It lists a table

of all the applications, including problems that were used as experiments and prototypes.
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Chapter 2

Design of Vitri

Vitri is an object-oriented framework implemented in Java for high-performance distributed

computing. Using Vitri, applications can engage in cooperative problem solving by dividing

their tasks among heterogeneous clusters of workstations and PCs. Vitri provides a number

of tools which can be broadly classified as:

• High Performance Computing and Communications (HPCC) Mod-
ule:

Vitri can utilize a heterogeneous distributed network of computers, providing

computational resources to solve complex problems. The low-level implementa-

tion details associated with communication between processors are encapsulated

through well defined interfaces.

• Optimization Modules:
Optimization is the use of various mathematical algorithms to minimize or max-

imize certain objectives subject to a set of constraints. Heuristic optimization

techniques such as genetic algorithms (GA) and simulated annealing (SA) are

increasingly used to solve large combinatorial optimization problems that are

encountered in engineering design and analysis. Vitri incorporates distributed

versions of GAs, for both single and multiple objective problems. Vitri also in-

cludes an asynchronous global parallel GA that is particularly suited for coarse

grained tasks executing on processors with large variations in processor speeds.

This algorithm uses dataflow techniques to remove the usual end-of-generation
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latencies associated with synchronous global parallel GAs.

• Modeling to Generate Alternatives (MGA) Tool:
The solution found by the optimization algorithm may not be adaptable in a

real situation because many objectives and constraints may not be specified in

the mathematical formulation. The idea behind MGA [2] is to use optimization

techniques to generate a set of solutions similar in the modeled objective space

but very different in decision space. Vitri includes MGA modules based on GA.

• Visual Tools:
Vitri also includes a number of graphical interfaces to evaluate and monitor the

runtime performance of the distributed system.

The design of the various components of Vitri is influenced by a number of tech-

nologies. The following sections describe those components and the tools and principles

that facilitate their implementation.

2.1 Object Oriented Frameworks

Components in Vitri are implemented using object oriented design principles. Vitri in-

tegrates these components into a framework that facilitates their effective use in solving

various problems. The use of object-oriented principles help Vitri’s flexibility and reusabil-

ity, thereby enabling rapid prototyping of new applications.

An object oriented approach to software development is based on modeling objects

from the real world. It is a way of thinking abstractly about a problem using real world

concepts. The structure of an object oriented program mirrors the structure of the problem

domain. This approach speeds the development of new programs, and if properly used,

improves maintenance, reusability, and modifiability of software.

An object oriented framework represents a software system in a certain domain

and provides reusable design for applications within that domain [9]. The major advan-

tage of frameworks is their ability to reuse a proven software architecture. The reusable,

“semi-complete” nature of the object oriented frameworks makes it easier to build correct,

portable, efficient, and inexpensive applications. Application developers in the past have
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invested a lot of time and effort in developing complex applications from scratch since there

were no “off-the-shelf” frameworks available. In addition to conserving time and money, the

use of a framework simplifies the creation of domain-specific, intelligent tools. The primary

features of object oriented application frameworks are modularity, reusability, extensibility

and inversion of control [5].

• Modularity
Frameworks enhance modularity by encapsulating volatile implementation de-

tails. This prevents a program from becoming so interdependent that a small

change will effect propagating changes. Encapsulation helps in changing the im-

plementation of an object without affecting the applications that use it. Though

encapsulation is not unique to object oriented languages, the ability to combine

data structure and behavior in a single entity makes the approach more powerful

than would be with imperative programming languages.

• Reusability
By developing generic components, the existing framework can be used to de-

velop entirely new applications. The reusability of components helps developers

combine features of the existing system instead of developing applications from

scratch.

• Extensibility
Frameworks define stable interfaces that can be extended by new applications.

Extensibility helps in timely customization of new application services and fea-

tures.

• Inversion of Control
The “inversion of control” property defines the difference between a framework

and a traditional software library. In a framework, the framework classes call

application classes, in contrast to the usual class libraries that are called from

the application. Therefore, the framework can often be seen as a skeleton appli-

cation, implementing the most important design decisions at an abstract level.

An object-oriented framework normally provides a number of points of flexibility in the

design, called “hot spots” [10]. Hot spots are abstract classes or methods that must be
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implemented in order to use the framework for a specific application. The parts of a

framework that cannot be altered are called the kernel or frozen spots. The kernels are

constant parts in each instance of the framework. Thus, the use of hot spots provides

implicit reuse of high quality and proven software.

Since the object-oriented design is considered as the modeling of the referent sys-

tem, a graphical tool for specifying, visualizing, and constructing software systems can be

used to convey the structure of the program effectively. The Unified Modeling Language

(UML) [7] provides a formal graphical notation for modeling the artifacts of a software sys-

tem. It unifies many object oriented design and analysis methods such as those developed

by Booch, Rumbaugh (OMT), and Jacobson. UML is accepted in industry as a standard

tool for the modeling and design of software systems. The UML notation is used in the

following sections to describe the object oriented design of Vitri.

2.2 Distributed Computing Systems

A distributed system is an infrastructure that allows the use of a collection of autonomous

computers connected by an interconnection network. The computers do not usually share

memory, but coordinate and share resources by communicating over the network. With im-

provements in microprocessor technology and high-speed networks, distributed computing

is fast emerging as cost-effective alternative to tightly-coupled multiprocessors and parallel

computers. Some of the properties and issues associated with a distributed system can be

summarized as:

• Resource Sharing
The set of computers connected by a network shares physical and computational

resources. The resources could be hardware or software. For instance, given

a network of workstations, workstation A may want to use the idle computing

cycles of workstations B and C to enhance the speed of a particular computation.

Distributed databases are examples of sharing of software resources, where a

large database may be stored on several host machines, and consistently updated

or queried by a number of agent processes.
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• Communication
Distributed systems typically use two main programming paradigms for commu-

nication: message passing and shared memory. Message passing is a technique

in which processors communicate with each other through messages. These mes-

sages are normally commands, event notifications, data, etc. In a distributed

shared memory system, all the computers in the network share a common ad-

dress space. Instead of sending data over the network, the computers share

information by writing to the common memory space.

• Heterogeneity
The individual processors in a distributed system may consist of diverse comput-

ing hardware, operating systems, or software. Some of the heterogeneity issues

are handled by the use of standard message passing standards and low-level

protocols that can be readily implemented across different platforms.

• Concurrency
Each processor in a distributed system acts independently of all other processors

and operates concurrently with them. At times it is necessary to coordinate the

activities of processors, especially in situations such as concurrent updates, to

preserve the integrity of the system.

• Fault Tolerance
There are many possibilities of failure in a distributed system compared to a

single computer. It is essential that distributed systems incorporate measures

to enhance their fault tolerance to prevent the breakdown of the system in case

of failures such as a failed node.

• Load Balancing
To maximize throughput in a heterogeneous network, load balancing is required

to keep the servers busy by efficiently distributing the workload. There are many

methods to achieve load balancing. The simplest method is static load balancing,

where a problem is decomposed and subtasks are assigned to processors only

once. This partition normally occurs in the early stages of the application. This

scheme can be effective in a dedicated, homogeneous system. A dynamic method
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of load balancing is normally used when the computational loads vary and when

a heterogeneous system is in place.

• Scalability and Extensibility
Compared to tightly-coupled multiprocessors, distributed systems can be ex-

panded by adding more processors if and when they are available. It is important

that the distributed system incorporates the additional resources efficiently.

2.2.1 Types of Parallelism

There are typically three types of parallelism associated with parallel/distributed appli-

cations. Applications that can be subdivided into sets of tasks that require little or no

communication are called perfectly parallel applications, whereas data parallel applications

have the same operations performed on different data elements in parallel. The third type

of parallelism is called control parallelism, where different operations are performed simul-

taneously on different processors.

2.2.2 HPCC Module

The HPCC module in Vitri is designed to exploit the concurrency in mainly perfectly

parallel and data parallel programs. The purpose of this module is to provide a framework

that can be easily adapted to handle concurrent applications. The framework is designed

to shield the user from the intricacies of concurrency and message passing in a distributed

system. This section discusses how the issues associated with the design of a distributed

system are addressed in Vitri.

Load Balancing in Vitri

As mentioned earlier, the performance of a distributed system can be enhanced by load

balancing that ensures that each processor is doing its fair share of work. Since a dynamic

load balancing method is more effective for a heterogeneous network of workstations, Vitri

employs a popular dynamic scheme called the “Pool of Tasks” paradigm [8]. The essential

idea behind this paradigm is to divide the overall computation into a collection of tasks
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which are then scheduled dynamically among a number of processors. This is typically

implemented as a client server program where the client manages a set of tasks as shown in

Figure 2.1. The servers request tasks from the client as they become idle. Once the servers

perform the required computations on the task, the results are sent back to the client.

The pool of tasks paradigm provides automatic dynamic load balancing. This

paradigm is especially effective in situations where the servers have very different compu-

tational capabilities, because the least loaded or more powerful servers do more work than

the slower ones and all the servers stay busy until the end of the problem. Since the faster

processors end up completing more tasks than the slower ones in a given amount of time,

the idle times of the servers are minimized, improving the throughput of the distributed

system

Fault Tolerance in Vitri

In contrast to the traditional approach in which a client initiates communication with

servers, the roles of client and servers are reversed. In Vitri, the client waits for the servers

to connect to it and the servers can connect or disconnect at any time, simplifying fault

tolerance. Whenever a server fails, the task performed by that server is simply returned to

the pool and subsequently requested by another server. In the implementation, this feature

is handled by catching the appropriate exception thrown by the program when a socket

connection fails.

The reversed client-server architecture is shown in Figure 2.2. The client opens a

Java ServerSocket and waits for incoming connections from the servers. When a connection

from a server is accepted, the server gets a port bound to it which can be used for commu-

nication with the client. The client also gets a new port bound to the accepted connection,

while the original ServerSocket keeps listening for new connections. Information is passed

between the client and servers with non-blocking writes and blocking reads.

Concurrency Issues in Vitri

The concurrent updates done by the processors in Vitri occur in the pool of tasks implemen-

tation. The process of removing a task from the pool is referred to as a “critical section,”
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Figure 2.1: The Pool of Tasks Paradigm

which mitigates race conditions in processes or threads that execute concurrently and share

memory. This is required to avoid the duplicate evaluation of tasks due to violation of

mutual exclusion in a critical section problem.

A simple signal and continue (or wait and notify) monitor is used in Vitri to handle

the critical section. In this type of monitor, a thread that owns the monitor can suspend

itself inside the monitor by executing a wait command and enters a wait set. The thread

will stay suspended until some time after another thread executes a notify command inside

the monitor. When the notifying thread releases the monitor, the waiting thread will be

resurrected and reacquire the monitor.
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Figure 2.2: Reversal of Client and Server Roles

Heterogeneity, Scalability, Extensibility of Vitri

The reversal of the roles of client and servers allows for a fluctuating pool of workstations.

As a result, the servers can be used for computations depending on their availability. When

a server is available, it can be added to the pool and disconnected when it needs to be used

for some other purpose. Thus, Vitri provides a scalable, extensible framework that can

incorporate a heterogeneous set of workstations.

2.3 Programming Environment

This section describes the programming environment employed in the design and applica-

tion of Vitri. There are many programming languages that facilitate the development of

object-oriented frameworks. Further, the development of a distributed computing frame-

work requires the use of a network environment, appropriate protocols for communication,

etc. The motivation behind using a specific language and protocols in Vitri are explained
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in the following sections.

2.3.1 Programming Language - Java

In recent years, the Java programming language and its virtual machine environment have

attracted the attention of the scientific community. Java is a modern object-oriented lan-

guage and includes a number useful features, such as concurrency constructs, portable

machine independent interpretation, etc. Java provides a robust, secure language because

of the strict type checking at both compile and run times. Java also provides a number of

technologies such as object serialization, RMI, etc., for networking applications. The object

serialization technology can be used to incorporate checkpointing facilities in the program.

Java has been used in a number of HPCC applications [3, 13]. Since Java uses an inter-

preting system, the programs suffer in performance compared to those written in languages

such as C and Fortran. However, modern techniques such as just-in-time compilation can

eliminate most of the interpretation overheads. Further, since the tools in Vitri mostly

deal with coarse grained problems, the interpretation overhead for simply coordinating the

evaluation these tasks, which are typically executions of commercial software packages, can

be considered to be minimal. In Java, the garbage collection takes place primarily when

the program is idle, such as waiting for user input. As a result, Java’s performance during

execution is not affected compared to other garbage-collected languages. Java also simplifies

the use of multiple operating systems within a single execution due to its portability. For

instance, Windows, Unix and Linux workstations can co-exist and participate in a single

run. The use of Java provides easy application development due to the ever growing wealth

of class libraries it provides for newer application domains. These advantages of Java out-

weigh the disadvantages for the type of applications intended to be used by Vitri. As a

result, Java is chosen as the programming language for the implementation of Vitri.

2.3.2 Communication Mechanism - Sockets

There are a number of “off-the-shelf” distributed computing systems and programming

libraries that can be used for customized applications. Technologies such as MPI [6] and

PVM [1] are widely used in the scientific community. These paradigms have various features
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that make them attractive for certain types of applications and platforms. However, they

also have a number of limitations. For instance, PVM provides few tools for security and

load balancing, and provides no support for self describing objects, whereas MPI works only

on homogeneous clusters and does not include features such as fault tolerance.

In Vitri, Java sockets are chosen to implement interprocess communication fea-

tures. A socket [12] is a unique interface used for transmission of information in a network.

Sockets are an accepted industry standard, and are implemented on a variety of platforms.

They are also inexpensive for the application in terms of memory and performance. Java

provides a class, Socket, that implements one side of a two-way connection between two

Java programs. Additionally, Java also includes a ServerSocket class that implements a

socket that servers can use to listen for and accept connections to clients. Most of the ex-

isting distributed computing environments use sockets as their underlying communication

mechanism.

In a traditional client-server system, a client tries to rendezvous with the server

by making a connection request on a specific port that is bound to a socket on the server.

If the request is accepted, the server gets a new socket bound to a different port. On the

client side, if the connection is accepted, a socket successfully gets created and the client

can use the socket to communicate with the server. The client and server communicate

with each other by reading from and writing to their sockets.

2.3.3 Communication Protocol - TCP

Java sockets using the transmission control protocol (TCP) over the internet protocol (IP)

are used for interprocess communication in Vitri. TCP is a connection-oriented protocol

as opposed to the user datagram protocol (UDP), which is connectionless. TCP provides

reliable communication and guarantees that the data are not corrupted during transmission.

Although UDP has much less startup latency compared to TCP, it does not guarantee

reliable communication.
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2.3.4 Communication Medium - Ethernet

Ethernet is a local area network (LAN) technology that is used to transmit information

between computers on a network. The Ethernet system consists of three basic elements:

(1) the physical medium used to carry Ethernet signals between computers, (2) a set of

protocols that allows multiple computers to arbitrate access fairly to a shared Ethernet

channel, (3) an Ethernet frame that consists of a standardized set of bits used to carry data

over the system. Ethernet uses the CSMA/CD ( carrier sense multiple access with collision

detection ) protocol to determine which host gets access to the network. In CSMA, each

host must wait until there is no signal on the channel, then it can begin transmitting. If

some other interface is transmitting, there will be a signal on the channel, which is called

carrier. All other interfaces must wait until the carrier ceases before trying to transmit. It is

possible for two hosts to sense that the network is idle and to start transmitting their frames

simultaneously. When this happens, the Ethernet has a way of detecting the “collision”

of signals, at which point the transmission is stopped and the frames are resent after a

random delay. The CSMA/CD protocol provides fair access to the shared channel so that

all stations get a chance to use the network.

2.4 Software Architecture

The following sections describe the software architecture of the major components of Vitri.

The design is conveyed using UML diagrams and skeletal code wherever necessary.

The various modules in Vitri are organized as different packages as shown in Fig-

ure 2.3. The vitri.ga package refers to the GA related code repository. vitri.net contains

the pool of tasks implementation, vitri.df contains the generic dataflow representations, and

vitri.dist contains abstractions such as a representation of a distributed program. The dot-

ted lines represent the dependencies between different packages in which an arc from A to

B indicates that package A uses package B. The vitri.ga package uses the dataflow imple-

mentation for the asynchronous GA, and uses the vitri.net and vitri.dist packages for the

distributed implementation of GAs.
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dist df

netga

vitri

Figure 2.3: Package structure of the code repository

2.4.1 HPCC module

This section begins with the vitri.net package, which implements the most basic aspects of

the system. This package contains the lowest level of abstractions and does not depend on

any other module for execution.

Figure 2.4 illustrates the design of the pool of tasks in Vitri. The pool of tasks

structure is implemented by the Pool class, which contains the queues in which tasks are

stored while they are awaiting evaluation and while they are getting evaluated. The Pool

upon construction, initiates a PoolThread class, which manages the connections to different

servers. This is achieved by opening a ServerSocket and waiting for servers to connect to

it. Once a server is connected, a ConnectThread is spawned that starts communicating with
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the server through a TCP/IP socket connection.

The Job class implements objects that can be placed in the pool of tasks and it

contains the object to be evaluated and the result of the evaluation. Objects to be evaluated

must implement the Task interface and the objects that are returned as the result of a server

side evaluation must implement the Result interface. The CustomSerializable interface pro-

vides methods to implement customized marshalling and unmarshalling of objects written

to the socket’s I/O streams by means of writeSerializable and readSerializable methods.

Originally, the object serialization mechanism in Java was used in Vitri instead

of customized marshalling and unmarshalling of objects. Object serialization supports the

encoding of objects and the objects reachable from them into a stream of bytes and it

supports the complementary reconstruction of the object graph from the stream. The use

of object serialization, however, is not efficient when a large number of objects are constantly

written in and out of the socket streams. The implementation of Java’s ObjectOutputStream

maintains the mapping of objects written to it, that might otherwise be unreachable by an

application, can result in a situation of running out of memory. A customized marshalling

and unmarshalling in which the required data is converted to a stream of bytes and the

corresponding reconstruction, instead of the entire object, can be used to eliminate this

problem.

Figure 2.5 shows how the pool of tasks implementation is integrated with the client

server model. Client and Server classes represent the implementation of client and server,

respectively. The Program class is an abstract representation of a distributed program

that provides methods to add a job to the pool of tasks, and to block for the result of an

evaluation. The Client and Server classes are frozen spots that use instances of a custom

Program, Task, and Result classes to manage a distributed environment.

2.4.2 Hot Spots provided by the HPCC module

A distributed version of a perfectly parallel program can be implemented by using the

hot spots provided by the HPCC module. Classes representing the task that need to be

computed and the result of the computation, need to be implemented (say CustomTask and

CustomResult, respectively). These two classes implement the interfaces Task and Result,
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respectively. Skeletal code for these classes are shown below. Customized marshalling and

unmarshalling can be implemented in these classes.

public class CustomTask implements vitri.net.Task {
//define constructor, variables
public CustomTask( .. ){

...
}
// implement the actual computation performed on the task
public Result runTask(){

...
}
// customized marshalling and unmarshalling if needed
public void writeSerializable( ObjectOutputStream out ){

...
}
public void readSerializable (ObjectInputStream in ){

...
}

}
public class CustomResult implements vitri.net.Result{

//define constructor, variables
public CustomResult( .. ){

...
}
// customized marshalling and unmarshalling if needed
public void writeSerializable( ObjectOutputStream out ){

...
}
public void readSerializable (ObjectInputStream in ){

...
}

}

These classes are used in a main program (say CustomProgram), that implements

the run method of the Program class. The skeletal code for the CustomProgram is shown

below.

public class CustomProgram extends vitri.dist.Program{
//default constructor
public CustomProgram( .. ){

...
}
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public Object run(boolean distributed){
//create tasks that need to be placed in the pool

...
new CustomTask();

...
//add them to the pool as jobs
addJob( ... );
//block for the results if needed
block( ... );
//process results if required
}

}

2.4.3 Optimization Modules

The optimization modules in Vitri are based on GAs. Vitri provides two distributed ver-

sions of GAs: a synchronous distributed GA (SDGA) and an asynchronous distributed GA

(ADGA). Both GAs are based on client server models so that they can be integrated with

the HPCC module.

Figure 2.6 shows the overall structure of the distributed GA implementations. The

GeneticAlgorithm class is an abstract representation of a simple GA. The SyncGeneticAlgo-

rithm and AsyncGeneticAlgorithm classes represent the SDGA and ADGA, respectively and

they both extend the GeneticAlgorithm class. The population classes SyncPopulation and

AsyncPopulation, which are subclasses of Population, correspond to the SDGA and ADGA,

respectively. The Population class contains an aggregation of a number of Organisms. The

Fitness class represents the implementation of a fitness of an organism. The Fitness class

allows the user to define the variables to be returned after fitness evaluation, as typically

information other than the fitness values are required to assess the quality of solutions

generated by a GA.

More details of the ADGA are shown in Figure 2.7. The Node and the Arc classes

correspond to operators and data dependencies in a dataflow program, respectively. The

genetic operations in the ADGA are represented as nodes in a program by extending the

Node class (Compete, Compare, Mate and Evaluate). In Figure 2.7, these four classes are

represented by GAOperation. Evolve is a special node that executes the genetic operations
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and updates the subsequent population. The Arc class is used as a wrapper for the Organism

class in an ADGA. The data dependencies in the dataflow graph are satisfied when the nodes

in the graphs are linked together by the appropriate arcs (or the correct organism).

The overall connectivity of the GAs with the distributed architecture is shown

in Figure 2.8. As explained above, to implement a distributed version of an algorithm,

a main class that extends Program and customized versions of Task and Result classes

need to be implemented. In the case of a distributed GA, the main class is a program

(SyncGeneticAlgorithm for SDGA, AsyncGeneticAlgorithm for ADGA) that initializes the

GA populations and computes the genetic operations. In a GA, the inherent parallelism

comes from the fact that the fitness evaluations of organisms are independent of each other.

The Organism class implements the Task interface since it is the object that needs to be

evaluated, and the Fitness class implements the Result class since it is the result of the

evaluation.

2.4.4 Hot Spots for the Optimization Module

Vitri provides a number of hot spots for the distributed GAs so that they can be adapted

easily for a specific problem. Customization is achieved by implementing a class that pro-

vides the genetic representation, recombination, and mutation operators along with the

fitness evaluation method for the specific Organism. Further, a customized class that ex-

tends the Fitness must be implemented. This class includes the variables that are returned

after the fitness evaluation in the server. Other classes such as SyncGeneticAlgorithm, Async-

GeneticAlgorithm, Population, etc., are defined as frozen spots.

Sample code for a specific GA organism implementation is shown below.

public class CustomOrganism extends vitri.ga.Organism{
//define a representation, variables

...
//define constructors

...
//randomly create a new organism
public void randomize(){

...
}
//create the recombination operation
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public void crossover(){
...

}
//create the mutation operation
public void mutate(){

...
}
//define how fitness evaluation is carried out
//and return the appropriate Fitness class
public Fitness evaluate(){

...
}
//define a clone method
public Object clone(){

...
}
}

The custom implementation of a Fitness class can be defined as:

public class CustomFitness extends vitri.ga.Fitness{
//define attributes that need to be returned after
//a fitness evaluation

...
//define constructors

...
//define clone method

...
}

2.4.5 Multiobjective Optimization Tools

Vitri provides a number of multiobjective optimization tools based on the methods presented

by Ranjithan et al. [11] and Chetan [4]. Vitri provides implementations of two multiobjective

optimization algorithms: (1) The aggregate weighting method-based approach called the

noninferior surface tracing evolutionary algorithm (NSTEA) and (2) a constraint-based

approach called constraint method based evolutionary algorithm (CMEA). The structure

of these tools in Vitri are shown in Figure 2.9.

The NSTEAGeneticAlgorithm and CMEAGeneticAlgorithm represent the main pro-

grams corresponding to NSTEA and CMEA, respectively. The multiobjective GAs use
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a custom implementation of the MultiObjectiveOrganism class. Both NSTEA and CMEA

involve repeated executions of GAs to determine the set of noninferior solutions. Each of

these executions can be done in a distributed fashion, using either the SDGA or ADGA. As

a result, the multiobjective GAs can also be executed in a distributed fashion. Since the

MultiObjectiveOrganism class extends the Organism class, the custom organisms are forced

to implement the Task, similar to the case with ADGA and SDGA.

The hot spots provided in the multiobjective GA algorithms are similar to that

of the single objective GAs. In order to use the multiobjective GA algorithms, a custom

organism class that extends MultiObjectiveOrganism need to be implemented. A custom

organism class for multiobjective GAs must implement the getZmethod (in addition to other

methods of Organism class described earlier) that returns the values of different objectives

considered.

2.4.6 MGA Tool

The MGA techniques are embedded in the SDGA implementation by providing a number

of methods in various GA classes. The software architecture of the MGA implementation

is shown in Figure 2.10.

To obtain MGA solutions for a certain problem, an organism class that extends

the MGAOrganism class must be implemented. The MGAOrganism class requires the imple-

mentation of a method that calculates the difference criteria, which are used to determine

the relative distance between solutions in the decision space. Further, if a problem-specific

criterion is used to choose MGA solutions, it can be implemented in the getMGACriteria

method.

The MGA solutions can be generated by running the SDGA either sequentially

or by using a distributed system. Similar to the case with SDGA and ADGA, the custom

organism and fitness classes must implement the hot spots to use the distributed environ-

ment.
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2.4.7 Summary

The software architecture of Vitri reveals many properties and features of object oriented

frameworks. The components of Vitri are modeled as a set of classes with capabilities for

customizable extensions. The reusable features in Vitri enable it to share components for

different applications. From the UML diagrams presented in earlier sections, it can be seen

that Vitri creates a number of skeleton designs using inheritance. Further, polymorphism

allows users to redefine methods and classes. Vitri offers the prospect of reusing designs

and code for future applications. The modularity of the designs allows Vitri to hide the

idiosyncrasies of working with different architectures and heterogeneous machines and to

extend the framework for different applications. Vitri employs the “inversion of control”

property by acting as a skeleton application, allowing different applications to execute using

the features it provides.
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Chapter 3

Asynchronous Genetic Algorithms for

Heterogeneous Networks using Coarse-Grained

Dataflow

(Chapter 3 is a reprint of the manuscript submitted to IEEE Transactions on Evo-

lutionary Computation)

by John Baugh and Sujay Kumar

Abstract

Genetic algorithms (GAs) are an attractive class of techniques for solving a variety of complex search

and optimization problems. Their implementation on a distributed platform can provide the nec-

essary computing power to address large-scale problems of practical importance. On heterogeneous

networks, however, the performance of a global parallel GA can be considerably limited by syn-

chronization points during the computation, particularly those between generations. We present a

new approach for implementing asynchronous GAs based on the dataflow model of computation —

an approach that retains the convergence features of global parallel GAs. Our implementations are

developed on a custom fault-tolerant distributed framework that also provides automatic load bal-

ancing. A simple analytical model in terms of parameters such as communication and computation

cost is developed for predicting performance in other computer and networking contexts. Experi-

ments conducted with an air quality optimization problem and others show that the performance of
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GAs can be improved considerably through dataflow-based asynchrony.

3.1 Introduction

Recent advances in desktop computers and networking technology have lead to an enormous

increase in affordable computing power. This revolution in computing technologies has

provided the means to solve otherwise computationally intractable problems. Beowulf-class

distributed computing provides a viable alternative to supercomputers by integrating the

use of hardware systems, software tools and generic programming approaches. Distributed

systems consist of loosely coupled autonomous processors that exchange information over

a network. Distributed systems are useful since they are flexible in terms of expansion and

scalability of resources and they improve performance through parallelism. Problems that

require more resources than a single workstation can often be solved using the combined

computational power of a distributed system.

Optimization problems typically form an important class of the engineering de-

sign and application domain. Large combinatorial optimization problems (NP-complete)

are difficult to solve by analytic or simple enumeration methods. Moreover, traditional

heuristics that are used to find sub-optimal solutions are not always satisfactory since they

can converge to local optima. Genetic algorithms (GAs) offer a unique heuristic approach

based on the principles of natural evolution and genetics and are well suited for difficult

combinatorial optimization problems. Unfortunately GAs are computationally intensive

and parallelizing them help to reduce the total execution time.

The notion behind parallel programs is to divide the tasks in hand into a number

of subtasks and solve them simultaneously using multiprocessors. GAs can be parallelized

in many different ways depending on how the subtasks are defined and assigned to the

processors. One of the simple implementations of parallel GAs is a global master-slave GA.

This class of GAs typically employs a single population without locality considerations. In

the master-slave type of parallel GAs, a master processor stores the population and executes

the genetic operators, with the fitness evaluations being carried out by the slave processors.

The degree to which GAs can exploit the resources of a networked environment de-
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pends on a number of design decisions that affect the parallelism available. In a synchronous

distributed GA (SDGA) implementation, for instance, the computation waits until all the

fitness evaluations in a particular generation are complete before proceeding to the next

generation. In a heterogeneous network, slow processors can impede the progress of the

program at the synchronization points by leaving faster processors idle while the slower

ones are finishing their computations. The speedup gained by parallel processing can be

significantly constrained by these synchronizations between generations. An asynchronous

approach that removes these bottlenecks has been developed by applying the dataflow model

of computation to GAs. The resulting asynchronous distributed GA (ADGA) improves the

performance of the GA by eliminating the end-of-generation synchronization points.

In this paper, implementation of the ADGA is presented. The ADGA and SDGA

are both applied to the same two problems, for comparison with respect to parameters

such as execution time, speedup, and efficiency. A theoretical model that predicts the

performance characteristics of the GA implementations is also presented. In addition to

the performance parameters mentioned above, scalability is also considered. Scalability

identifies the suitability of an algorithm for solving laborious problems and gives a measure

of the cost of running the algorithm for the expected level of success.

3.2 Related Work

GAs were developed by John Holland [20] and have been widely studied, experimented with

and applied in many engineering and scientific problems. GAs are modeled loosely on the

principles of evolution and genetics, employing a population of individuals or candidate

solutions. The individuals undergo selection in the presence of variation inducing operators

such as recombination and mutation. The individuals are evaluated according to some

predefined quality criterion called fitness.

There have been several studies on parallel implementations of GAs [27]. Many of

these studies tried to exploit the inherent parallelism in GAs to achieve better performance.

One of the ways to parallelize GAs is called global parallelization, where the evaluations

of individuals are done in parallel [9]. This method can achieve significant speedups if the
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communication costs are small compared to the computation costs. Kwok and Ishfaq [23]

describe a parallelized version of a GA, in which the population is divided into a number of

evolving subpopulations. Using an Intel Paragon processor, they report near linear speedups

in solving the problem of scheduling allocation and sequencing of tasks on the processors.

Kim and Zeigler [21] present an architecture with hierarchically arranged clusters each solv-

ing different degrees of abstracted problems on a Motorola MPC-2000 workstation. Fogarty

and Huang [14] describe a distributed-memory architecture to evolve a set of rules for a

pole balancing application. Hauser and Manner [18] describe a global parallel GA on three

different parallel computers, but report good speedups only on a NERV multiprocessor,

which has very low communication overhead. All the schemes mentioned above are based

on the use of high performance, tightly coupled parallel computers.

Several GA implementations using a network of workstations (NOWs) have been

reported [26, 33]. Kumar et al. [22] present a distributed GA using PVM (Parallel Virtual

Machine) to solve various network scheduling problems on a LAN of HP-UX workstations.

Easton and Mansour [13] describe a distributed GA on a network of message passing work-

stations to solve labor scheduling problems. Calegari et al. [8] present an island-based

distributed GA with a network consisting of 80 Sparc workstations and report near linear

speedups. A parallel GA on a distributed network of workstations for analyzing biologi-

cal sequences is described by Anbarasu et al. [3]. The approach was implemented on the

PARAM 1000, a parallel computer with a cluster of workstations and they obtained signifi-

cant improvements over a sequential GA. Bevilacqua et al. [7] apply a distributed GA, on a

heterogeneous network of workstations to a problem of parameter optimization in medical

image analysis.

Numerous researchers have studied the performance characteristics of distributed

GAs. The performance of a distributed GA that incorporates parallel cooperative-competitive

genetic operators was studied by Aguirre et al. [2]. They performed simulations with an

island-GA and reported significant speedups and convergence. Sekanina and Dvorak [29]

performed simulations to assess performance characteristics such as efficiency and speedup

for a ringed GA, a type of island-based GA with a particular topology.

Though there are many techniques to parallelize GAs, it is important that paral-
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lelization not affect the quality of solutions. Techniques other than global parallelization

introduce fundamental changes in the structure of the GA [9]. For example, multiple pop-

ulation GAs involve the use of a number of subpopulations, which necessarily interact with

each other. In this class of GAs, the individual subpopulations may converge to an inferior

solution if the subpopulations are not interacting well enough (i.e., if the interaction param-

eters are not tuned along with other GA parameters). The level of interaction is usually

required to be above a certain threshold, which is mostly problem specific. Gordon and

Whitley [16] compared a number of different parallel GAs for a wide range of optimization

functions. The performance of the simple global parallel GA was comparable to that of

island-based approaches.

The limitations of global parallel GAs due to synchronization points have been

studied by a number of researchers. Schleuter [28] proposed an asynchronous implemen-

tation to eliminate the synchronizations and exploit more parallelism. This approach was

based on a spatial population with communication happening between any two nodes in the

network. Mayurama et al. [25] developed a fine grained ADGA and assessed its performance

on a tightly coupled multiprocessor as well as on workstations connected by a local area

network. Experiments on function optimization and graph partitioning produced linear

speedups on both types of platforms. The parallelism of GAs was also examined by Gordon

et al. [17] using implicitly parallel programming languages such as Sisal. The steady-state

GA has also been proposed as a type of asynchronous GA [32]. In this paradigm, only

a single population of individuals is maintained at any given time. The newly generated

individuals are returned to the single population by a replacement operator, which selects

the individuals to be removed. This approach also introduces fundamental changes in the

GA and has been known to suffer from problems such as premature convergence.

The execution time of a parallel GA can be influenced by two factors: the time

taken for the execution of tasks and the time taken for communication. For coarse grained

problems, the execution times are greater than the communication times and for fine grained

problems, the communication times are significant. Cantu-Paz [9] showed that the perfor-

mance of a fine grained GA is considerably affected by the communication time and that

coarse grained GAs show a great improvement in performance with increasing paralleliza-
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tion. Many optimization problems in scientific and engineering applications are computa-

tionally intensive and coarse grained in nature. Keeping these factors into account, the

distributed GAs are implemented as global parallel GAs.

3.3 Distributed GA Framework

The distributed GA implementations described in this paper are implemented on a generic,

custom fault-tolerant, distributed computing framework called Vitri. Vitri provides a dis-

tributed environment to solve problems by dividing the tasks among heterogeneous clusters

of workstations and PCs. By defining the subproblems for a specific application, Vitri can

be used for various approaches such as Monte Carlo simulation and simulated annealing,

as well as the GA implementations described in this paper. This section provides a brief

description of Vitri’s features.

As a result of the recent improvements in microprocessor and networking technolo-

gies, computer networks have emerged as viable alternative to supercomputers for many

applications. Anderson et al. [4] note that the case for workstation clusters is stronger than

ever, given (1) the growing availability of switched networks that scale well with the number

of servers, (2) the extraordinary performance of modern workstations, and (3) the I/O bot-

tleneck that makes “memory over the network” less costly than disk I/O. The suitability of

distributed computing on NOWs has been demonstrated in previous studies. Skordos [31]

presented an approach to simulate subsonic fluid dynamics on a cluster of non-dedicated

HP Apollo workstations. Abramson et al. [1] developed a tool called Nimrod for performing

parameterized simulations over a network of loosely coupled workstations. Studies such as

those by Sharma and Baugh [30] and Chadha and Baugh [11] have shown that distributed

computing on non-dedicated heterogeneous hardware is a practical approach in diverse ap-

plication areas, including finite element analysis and vehicle routing and scheduling.

In a distributed system, parallelism is achieved by breaking up tasks into smaller

tasks, assigning them to different processors, and coordinating the operations of the proces-

sors. The motivation behind developing Vitri, a generic distributed computing framework,

is to provide an environment for solving independent subproblems in a distributed manner.
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Vitri uses the Pool of Tasks paradigm [19] in which servers request tasks from the client’s

task pool, perform the necessary computations, and send the results back to the client, as

shown in Figure 3.1. To maximize throughput in a heterogeneous network, load balancing is

required to keep servers busy by efficiently distributing the workload. The use of a task pool

is effective in achieving automatic load balancing by minimizing the idle times of servers,

since faster servers request more tasks than slower ones.

In contrast to the traditional client-server approach, in which a client initiates

connections with its servers, the roles of client and servers are reversed. In Vitri, a client

waits for servers to connect, and servers may connect or disconnect at any time. This feature

helps in using idle workstations as they become available by initiating server processes on

them. The reversal of client and server roles also enhances fault tolerance: Whenever a

server fails, the task being performed by that server is returned to the pool and subsequently

requested by another server.

Vitri is an object-oriented framework that implements concurrency and distributed

patterns for a set of problems. An object-oriented framework is a reusable design of a

software system described by a set of generic classes and the way they collaborate. A

framework provides reusability by providing hooks for the features that are problem specific.

Hence, frameworks developed for applications within a specific problem domain lead to

savings in cost and time invested in developing future applications.

Vitri is implemented in the Java programming language. Java sockets using the

Transmission Control Protocol (TCP) over Internet Protocol (IP) are used for passing

messages between clients and servers since it provides reliable connection-oriented commu-

nication. Information is passed between the client and the servers with non-blocking writes

and blocking reads.

3.4 Dataflow Principles

As mentioned earlier, the ADGA implementation presented in this paper is based on the

dataflow principles. Dataflow [12] is a term that refers to algorithms or machines whose

order of execution is based on the availability and forwarding of data.
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Figure 3.1: Pool of Tasks Paradigm

A dataflow program is a directed graph with nodes that represent operators and

directed arcs that represent data dependencies. Nodes are computational tasks, and may

be primitive machine-level instructions or arbitrarily complex functions. As a result, the

dataflow model is applicable to fine- or coarse-grained parallelism. In addition to supporting

varying levels of parallelism, the dataflow model also supports various types of parallelism.

For instance, vectorizing and pipelining are simply special cases of standard flow graphs.

In the dataflow model, data values are carried on tokens, which travel along arcs.

These arcs are first-in, first-out (FIFO) queues of unbounded capacity. The status of nodes

can be determined by a simple firing rule: A node is said to be firable when the data it
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needs are available. When a node is fired, its input tokens are absorbed. The computation

is performed and the result is sent to its output arcs for other nodes to use. There is no

communication between tasks—each task simply receives and outputs data.

The dataflow model has the following properties [5]:

• parallelism—nodes may execute in parallel unless there is an explicit data de-

pendence between them;

• determinacy—results do not depend on the relative ordering in which nodes

execute.

The natural parallelism in dataflow occurs because it does not force over-specification of

an algorithm. The firing rule only says when a node can fire. It does not require that it

be executed at any particular time. Controlling node execution is generally based on one

of two schemes: data-driven or demand-driven. In the data-driven approach, the results

of a computation at a node are immediately made available to its output arcs (and hence

other nodes). Each node is fired as its input becomes available until all possible firings

have occurred. In contrast, a demand-driven scheduler waits until a request is made for

data. If the data are available, they are simply returned; otherwise the request propagates

backward through the graph, causing the execution of nodes that will fulfill the initial

request of data. Thus, data-driven execution is like demand-driven execution where all

data have been requested.

3.4.1 Control Flow in a Global Parallel GA

Typically the steps involved in a GA are as follows:

• Start with a randomly generated population, select individuals in the next gen-

eration by using some selection algorithm.

• Perform genetic operators such as crossover and mutation to simulate genetic

variation in the population.

• These steps are continued until a specified termination condition is met.

The selection scheme used in the SDGA is a competition based process referred to as

“tournament selection.” In this scheme, two randomly selected individuals are chosen and

fitter of the two is chosen as the winner. To generate a new population from an old one, the
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selection is done P/2 times, where the population size is P . The crossover and mutation

operators are then applied to each of the P individuals and the whole process is continued.

The control flow in the SDGA is that of an imperative program, where data depen-

dencies are implicit. In an SDGA, the program proceeds to the next generation only after

all evaluations in the current generation are finished. These synchronizations at the end of

each generation cause the speedup gained by parallel processing to be limited by the slow-

est server. To remove this data dependency, we present a new asynchronous distributed

GA (ADGA) that combines loop unrolling with the asynchronous instruction scheduling

implemented as a dataflow graph. The asynchronous approach performs precisely the same

computations as the synchronous one except that the data dependencies between genera-

tions are eliminated.

3.4.2 Using Dataflow for Asynchronous Genetic Algorithms

The ADGA is implemented by unrolling the loops in a typical GA and representing the

synchronous instruction scheduling as a dataflow graph. The numerical computations in a

GA remain the same in the asynchronous implementation. The individuals in a population

are generated as a result of applying the genetic operators to the members of the previous

population. As a result, creation of a specific individual is dependent only on the individuals

from which the selection is made. In the ADGA implementation, the arcs are implemented

as “in-place buffers”. Further, the ADGA uses a data driven implementation.

This precedence relationship is represented as a dataflow graph in Figure 3.2. This

figure shows the overall GA process with four generations. For simplicity, a population size

of 10 is used in the Figure. In the Figure 3.2, G1, G2, etc., represent different generations.

The boxes D11, D12, etc., represent the dataflow graphs. In a particular generation, there

are P/2 such graphs, where the population size is P . The solid boxes (such as D13) represent

graphs that are yet to produce output individuals. The inputs to each dataflow graph are

the individuals that will be used in the genetic operations. For instance, the input to the

dataflow graph D11 are individuals 2, 5, 8, and 1 from generation 1 (G1). The shaded

ovals denote the availability of individuals in the corresponding generation. For instance,

the positions 5 and 6 in generation 2 are yet to be filled by the computations of graph D13
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and hence appear vacant.

Each of the dataflow graphs consists of four Copy nodes, four Evaluate nodes, four

Compare nodes, two Compete nodes and one Mate node. For example, Figure 3.3 shows

one of the dataflow graphs produced. Individuals in a population are randomly selected and

are inputs to the Copy nodes. Once the individuals become available for selection, the Copy

nodes get fired. The Evaluate nodes evaluate the fitness of the organisms. The Compare

nodes compare each individual to the best solution. The selection process actually takes

place in the Compete nodes. The selected individuals are inputs to the Mate node, where

the genetic operations are carried out. The outputs of Mate nodes are the new individuals

in the next generation. Each of the P/2 dataflow graphs in a generation and the nodes

within each of them are executed in parallel. In a SDGA, a slow server might impede the

progress of the GA by making faster processors wait until it finishes its fitness evaluations.

Since the Copy nodes in each generation get fired as soon as their inputs become available,

the processes in the new generation need not wait until the old generation is complete. This

approach to introducing asynchrony helps to exploit maximum parallelism by eliminating

synchronizations between generations. Since the basic structure of the GA remain the same,

the convergence properties of the GA remains the same as that of a synchronous approach.

It can be seen that the calculations in subsequent generations proceed in ADGA

as soon as the data depedencies are satisfied. Figure 3.4 displays the number of “active”

generations when a given generation is still evaluating organisms. The individuals in a

certain generation are created by the dataflow graphs in the previous generation. When

all the individuals in a certain generation are created, the number of active subsequent

generations is determined. This value is considered to be the number of active generations.

Figure 3.4 shows that when all the individuals in generation 1 are created, there are 3

active subsequent generations. A sample distribution of the organisms at a given instant

is shown in Figure 3.5. It shows that when all the individuals in generation 1 are created,

approximately half of the individuals in generation 2 have been created, along with some

individuals in generation 3 and 4. These plots give a measure of the amount of unrolling

occuring in the ADGA.
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3.5 Theoretical Analysis of Distributed GAs

There are many different ways to characterize the performance of a parallel algorithm [15].

The total execution time is a typical measure used to evaluate the performance of an

algorithm. However, as the execution times vary with problem sizes, execution times must

be normalized when comparing the performance of an algorithm at different problem sizes.

Speedup and efficiency of an algorithm are such performance metrics. In this paper, a

theoretical model to predict parameters such as execution time, speedup and efficiency of

SDGA and ADGA is presented.

During the execution of the GA, each server spends some time in communicating

with the client, some time in executing a task and some time it remains idle. The computing

time normally depends on factors such as problem size, characteristics of the server, etc. The

communication time normally depends on the physical bandwidth of the communication

medium linking the client and the server and on the amount of data being transmitted. The

idle times are often caused by the lack of available tasks for the servers. The availability

of tasks is dependent on the relative ordering in which servers perform the tasks. In Vitri,

the individuals of a particular population are placed in the “pool of tasks” to be evaluated

and the servers pick up tasks from the pool. The idle times are relatively small when tasks

are instantly available to the servers for evaluation. As the end of a generation approaches

in a SDGA, the number of tasks in the pool decreases. If a slow server happens to be

evaluating the last task in a generation, all the servers will wait for the slow server to

complete its evaluation before proceeding to the next generation. Thus, slow servers can

act as bottlenecks and considerably slow down the execution.

The performance model considered here predicts the performance metrics for the

distributed GA implementations as a function of the number of generations (G), population

size (P ), total number of processors used (N), the average execution time (tcomp) for a single

fitness evaluation and the average time for communication (tcomm) with the client for the

execution of a single task. The theoretical model also predicts the performance metrics

when a homogeneous as well as heterogeneous set of computers are used.

The performance metrics – execution time, speedup, and efficiency – are defined
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as follows: The total execution time of a distributed GA is the total time taken for a GA

execution. The total execution time (T1) for a sequential GA can be estimated as:

T1 = P G tcomp (3.1)

TN is used to denote the total execution time for a distributed GA with N servers. Effi-

ciency can be considered as the fraction of time that processors spend doing useful work.

Efficiency provides a measure of the effectiveness with which algorithms use the computa-

tional resources. Efficiency is defined as:

e =
T1

N TN
(3.2)

The speedup, which is the factor by which execution time is reduced by using N processors,

can be defined as :

s = Ne (3.3)

3.5.1 Homogeneous System of Servers

In this case, a network of computers consisting of N identical processors is considered. In

a GA, for a single generation to complete, P organisms are evaluated. It is assumed that

all of the N processors start simultaneously, and that each of them takes tcomp to execute

a fitness evaluation and tcomm for communication with the client. The GA execution can

be assumed to be taking place as a number of blocks, with each block representing the set

of tasks performed by the N servers as shown in Figure 3.6. The pattern of blocks repeats

itself each generation. At the end of a generation, assume that there are only n tasks left

to be evaluated and as a result, N −n processors will be idle at the end of each generation.

Since in each block N tasks get evaluated, the total number of blocks in a generation is

equal to � P
N �. From the figure, the time taken for a single generation (Tg) and the total

time taken for the SDGA (Tsync) can be estimated as:

Tg = �P

N
�(tcomp + tcomm) (3.4)

Tsync = TgG

= �P

N
�(tcomp + tcomm)G

(3.5)
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The predicted efficiency and speedup can be written as:

ehom
sync =

Ptcomp

� P
N �N(tcomp + tcomm)

(3.6)

shom
sync =

Ptcomp

� P
N �(tcomp + tcomm)

(3.7)

In the case of an ADGA, the servers are not constrained by the lack of available tasks at

the end of a generation, assuming that tasks in subsequent generations can be evaluated.

The total number of tasks in an ADGA evaluation is PG. Since there are N servers the

total time taken by the ADGA (Tasync) can be written as

Tasync =
PG(tcomp + tcomm)

N
(3.8)

Neglecting the time lost in communication, the efficiency and speedup can be estimated as:

ehom
async =

tcomp

(tcomp + tcomm)
(3.9)

shom
async = N

tcomp

(tcomp + tcomm)
(3.10)

3.5.2 Heterogeneous System of Servers

To simulate a heterogeneous system, ns identical slow servers are introduced in a system

of N servers. For simplicity, it is assumed that the (N − ns) fast servers are also identical.

Further, each of the ns processors is assumed to be slower than the each of the (N −ns) fast

ones by a factor f . Similar to the homogeneous case, the SDGA execution takes place as a

pattern of recurring blocks. The cumulative value of tcomp and tcomm is considered in this

model to simplify the task-ordering model. A “block” in this case is considered to be one

which corresponds to the execution of a slow server (Figure 3.7). t and tslow represents the

sum of tcomp and tcomm for a fast and slow server, respectively. Figure 3.7 shows a sample

execution pattern with f being 4. It can be observed that the total time taken to complete

a generation is clearly influenced by the slow server. In the time a slow server does one

evaluation, a fast server does 4 evaluations. The number of blocks in a generation can be

estimated as:

nb = � P

f(N − ns) + ns
� (3.11)
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Depending on the ordering of tasks, the number of tasks that remains at the end of gener-

ation becomes important. The number of tasks present in the final block in a generation

(δ1) can be estimated as:

δ1 = (P − (nb − 1)(f(N − n) + n)) (3.12)

If there are more tasks in the last block of a generation than the number of fast servers, the

slow servers will receive tasks to evaluate. Taking these factors into account, the execution

times can be estimated as:

Tsync =



(nb − 1)f tG+ tG if δ1 ≤ (N − ns)

nb t f G otherwise
(3.13)

Since the end-of-generation synchronizations are eliminated in an ADGA, the whole GA

execution can be considered to be the ordering of PG tasks among the processors. The

number of blocks is estimated as:

nb = � PG

f(N − ns) + ns
� (3.14)

At the end of the GA execution, if the last block in the GA execution contains more tasks

than the number of fast processors, the slow processors will be involved in the end-of-GA

computations. The number of tasks present in the final block of GA execution δ2 can be

estimated as:

δ2 = PG − (nb − 1)(f(N − ns) + ns) (3.15)

The estimated time of ADGA can be estimated as:

Tasync =



(nb − 1)ft+ t if δ2 ≤ (N − ns)

nb t f otherwise
(3.16)

The speedup and efficiencies can be estimated in the same way as explained in the foregoing

section.

3.6 Results and Analysis

The distributed GA implementations are applied to two different problems to analyze the

performance of the algorithms, namely the 0/1 knapsack problem from the OR litera-
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ture [24] and an air quality management problem. The knapsack problem and the air

quality optimization problem are used as examples of fine grained and coarse grained prob-

lems, respectively. The results are presented comparing the run time and efficiency of each

distributed implementation, varying the number of processors. All the studies have been

conducted with varying number of workstations consisting mainly of Sun Sparc5 and UL-

TRA10 processors running Solaris 2.6. The results are compared with a theoretical model

presented above.

3.6.1 0/1 Knapsack Problem

The 0/1 knapsack problem is representative of the large class of problems known as com-

binatorial optimization problems. In the knapsack problem, the objective is to maximize

the obtained profit without exceeding the capacity of the knapsack. The problem can be

described mathematically as follows:

Maximize P (x) =
n∑

j=1

xjpj (3.17)

Subject to
n∑

j=1

wjxj ≤ C (3.18)

where P is the total profit associated with the knapsack, pj is the profit of placing item

j in the knapsack, wj is the weight of item j, and C is the capacity of the knapsack, and

x = (x1, x2, ...., xn) ∈ {0, 1}n such that xj = 1 if selected and = 0 otherwise, and n is

the number of available items. The knapsack problem is a fine grained problem since the

fitness evaluation is comparatively a less costly operation. The communication times in a

distributed GA execution for the knapsack problem would be significant compared to the

computation times.

3.6.2 Air Quality Optimization

The second problem considered in this paper is used to analyze the distributed GA imple-

mentations is an air quality management problem. Tropospheric ozone formed from the

emissions of vehicles and industrial sources is considered a major pollutant. Ozone is a

major component of photochemical smog and is responsible for many respiratory irritations
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and damage to vegetation. GAs can be used to identify cost effective strategies for meeting

target ozone levels. When exploring control strategies for a region with hundreds of sources,

each in turn having thousands of processes, it is impractical to search the entire feasible

region enumerating each strategy. GA-based optimization provides a means for efficiently

searching the decision space for potential control strategies. An ambient least cost (ALC)

model [6] is an optimization formulation that incorporates source marginal control costs

and emission dispersion characteristics to compute the source emissions at the least cost.

The available models to predict the complex transport and chemistry range in sophistica-

tion. The Empirical Kinetic Modeling Approach (EKMA), a Lagrangian box model, can be

used to obtain approximate ozone concentrations. The ALC optimization can be performed

using EKMA as the air quality model. This problem is coarse grained since each evaluation

of fitness requires the execution of EKMA and for this problem, the computational cost

is significantly greater than the communication costs. The case studies involve air quality

optimization with EKMA for an urban region around Charlotte, North Carolina.

3.6.3 Scalability Issues with distributed GAs

Scalability analysis of a distributed algorithm requires two specifications: characteristics

of an algorithm and characteristics of the distributed environment. Cantu-Paz and Gold-

berg [10] describe the scalability issues associated with parallel GAs. In this discussion, the

factors limiting the performance of a global parallel GA is explored. The scalability issues

are addressed by two measures:

• Size scalability defines the scalability of the system with an expectation of lin-

early increased performance with incremental expansion of the number of pro-

cessors.

• Problem scalability defines a measure of the speedup with increase in problem

size.

The scalability issues associated with synchronization strategies in a global parallel GA are

addressed in this paper. Analyzing the scalability of an algorithm means predicting its

potential elapsed times for varying inputs. The scalability analysis also help in capturing

the critical parameters affecting the performance and their impact on the overall elapsed
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time. In the following sections, the performance of the algorithm will be examined for the

two types of scalability discussed above.

3.6.4 Empirical Results

Knapsack Problem

The SDGA and ADGA implementations are used to solve the 0/1 knapsack problem with

the number of processors varying from 3 to 30. To study the effect of problem scalability, the

fitness evaluation times are artificially varied to achieve four different levels of granularity.

The ratio of tcomp to tcomm is considered as a measure of problem granularity. tcomm is

measured to be approximately 250 milliseconds and so the tcomp times are artificially set to

be 250, 500, 750 and 1000 milliseconds to create four levels of granularity. The GA runs

are conducted for a population size of 100 for 200 generations. To simulate a heterogeneous

system, a slow server is introduced with f being 5.

Figure 3.8 shows a typical plot of the execution times of the GAs with increasing

number of processors for a fixed problem size, for both homogeneous and heterogeneous

systems. The typical speedup and efficiency curves are shown in Figures 3.9 and 3.10,

respectively. It can be observed from the graphs that the measured values are close to

the values predicted by the theoretical model. The execution times of SDGA follow a step

function pattern implying that in between each step, there is no reduction in the execution

time for using a higher number of processors, also implying a decrease in efficiency. The

same behavior is exhibited by the speedup curves for SDGA.

The use of a higher number of processors lead to increasing gains in execution

times for both GAs. It can also be observed that the SDGA performance is considerably

affected by the heterogeneity in the system, whereas the ADGA is not severely affected.

The speedups and efficiencies of both GAs decrease in going from a homogeneous to a

heterogeneous system. The decrease is marginal in case of the ADGA, whereas the SDGA

parameters are reduced significantly by the heterogeneity.

The effect of increasing the problem granularity is examined by analyzing the

performance parameters with increase in problem size. As expected, the execution times
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increase significantly with increase in problem granularity as shown by the Figure 3.11.

The trends in speedup and efficiencies with increasing granularity are shown in Figures 3.12

and 3.13. The efficiency and speedups of both GAs increase with increase in problem

size. These figures illustrate the increased impact of heterogeneity on SDGA performance

compared to that of ADGA. Further, the difference in performance of ADGA and SDGA

increases with increasing problem granularity.

Air Quality Optimization

In this section, the GA implementations are applied to the air quality management problem

discussed earlier. The study included with a network of workstations (1-19). In each

problem, the GA was run for 50 generations using a population size of 50. This problem

can be considered to be fairly coarse grained since the tcomm is small compared to tcomp.

Hence, tcomm is ignored in the analysis presented below. To simulate a heterogeneous

system, a slow processor with f factor 5 is used.

The performance parameters, the execution time, speedup, and efficiency, mea-

sured for both homogeneous and heterogeneous systems are found to be in close agreement

with the values predicted by the theoretical model. Figures 3.14 to 3.16 compares the effect

of introducing a slow server on the performance of SDGA and ADGA. Similar to the trends

observed with the knapsack problem, the SDGA is considerably slowed by the introduction

of a slow server, whereas the performance of the ADGA is only marginally affected by the

heterogeneity (Figure 3.14). With an increase in the number of processors, the ADGA

in a heterogeneous system even outperforms the corresponding SDGA in a homogeneous

system. This fact is also evident from the Figures 3.15 and 3.16, where the ADGA in a

heterogeneous system shows better speedup and efficiencies than the corresponding ADGA

in a homogeneous system, as the number of processors increases.

The EKMA model used in the above analysis is a simple photochemical model

to predict the ozone formation. A Eulerian numerical model called Urban Airshed Model

(UAM) incorporates more complex chemical reactions and dispersion equations than EKMA

and is computationally more intensive. A single simulation of UAM requires approximately

20 minutes on a Sun ULTRA10 workstation. The ALC optimization with a regulatory-
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scale model such as UAM is an extremely coarse grained problem. The distributed GAs

are applied to the above case study for the Charlotte region. The GA runs were made

with a population size of 100, up to 90 generations, using only 3 Sun ULTRA10 machines.

A comparison of the computational times are presented in Table 3.1. These runs were

conducted with only relatively minor down times of the servers. It can be observed that the

ADGA provides an improvement of approximately 10% with only three processors. With

the use of a higher number of processors, the substantial improvements in performance can

be achieved as evident from the study using EKMA.

Table 3.1: Computational times for the UAM runs

Time taken by Time taken by Time taken by
Sequential GA SDGA ADGA
(estimated) (measured) (measured)

time (months) 4.06 1.735 1.551

3.6.5 Scalability Analysis

Scalability with Fixed Problem Size

One approach to quantifying scalability is to determine how the execution time and efficiency

vary with an increase in the number of processors. This analysis helps in determining

parameters such as the optimum number of processors required to solve a specific problem

within a certain time, efficiency of using a certain set of computers, etc. In some cases,

there are no improvements in efficiency or the total execution time for an increase in the

number of processors. As a result of the scalability analysis, the number of processors for

a specific platform which provides the best efficiency can be determined. In contrast to the

SDGA, the asynchronous speedup curves display more linearity, implying that an increase

in number of processors contributes directly to improvements in performance. From the

graphs representing the efficiencies, it can be seen that using a larger number of processors

with SDGA may not necessarily provide a higher efficiency and can actually lead to lower
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efficiencies.

The following observations about the performance of the distributed GAs can be

made:

• The total execution times decrease with N and it tends to get bounded when

the number of servers increases to a point when availability of tasks gets limited.

The SDGA is also constrained heavily by the way tasks are scheduled. For a

SDGA in a heterogeneous system, the scheduling of tasks is dependent on how

the slow servers finish their evaluations. As a result, the slow servers limit the

speedup that can be gained by using a larger number of fast processors.

• Speedup increases with N . However, the speedup curves for SDGA exhibit a

step function behavior similar to that of the execution times as explained above.

• The efficiencies are mainly dependent on N and P . They do not display a

monotonically increasing or decreasing trend. However, the ADGA exhibits

higher efficiencies compared to the SDGA. This type of behavior underlines

the importance of scalability analysis in choosing the parameters for optimum

performance.

• An algorithm is considered highly scalable if the amount of computation scales

with the number of processors to keep the efficiency constant. From the effi-

ciency curves, it can be observed that for the ADGA with a homogeneous set

of processors, the efficiencies remain constant, implying that the algorithm is

highly scalable. Also, in the heterogeneous cases, efficiencies tend to become

constant when higher number of processors are employed. In case of the SDGA,

it can be seen that efficiencies tend to decrease with the number of processors.

Scalability with Scaled Problem Size

Another factor in considering the performance of an algorithm is the problem size under

consideration. Parameters such as P , G, tcomp, tcomm can be considered as parameters

characterizing problem size. Similar to the analysis with fixed problem size, the analysis

with a scaled problem size helps in analyzing the tradeoffs in performance for scaled problem

sizes.
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The following observations can also be made for problem scalability of the dis-

tributed GAs.

• The total execution times increase with P , G, tcomp and tcomm. This is equivalent

to the fact that with increase in problem size, the total execution time also

increases.

• The speedup and efficiencies increase with problem size for both SDGA and

ADGA, and ADGA scales better.

These observations provide insights into the behavior of both types of GAs and

help the user in the choice of the algorithm parameters for a particular problem. From

the analysis, the performance characteristics such as the execution times, speedups and

efficiency of a particular implementation on a specific platform can be predicted. The

tradeoffs in performance with changes in parameters such as the number of processors,

problem size etc., can also be determined from the scalability analysis.

3.7 Conclusions

In all our results, number of generations has been used as the termination condition for GAs.

In both SDGA and ADGA, the computations performed are very similar although their

timings are offset. The solution quality from both types of GAs are quite close to each other.

The results presented in this paper demonstrate that the distributed GA implementations

can be used to gain considerable improvements in performance over a sequential GA. The

ADGA provides additional gains in performance with the elimination of end-of-generation

latencies associated with the SDGA. The results show that ADGA is highly suitable for

problems that are highly coarse grained such as the air quality optimization problem using

UAM, and when a large number of servers are available. Further, performance of the SDGA

suffers in a heterogeneous network and the ADGA performs much better than the SDGA.

Using the theoretical model presented in this paper, it can be seen that an ap-

propriate choice of parameters for the best performance of SDGA can be determined. For

example, for a given number of processors, the optimum population size that provides the

best computational performance for SDGA can be calculated. However, in the case of
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ADGA, all the available servers can be utilized without having to compromise the per-

formance. In a non-dedicated network, where the availability of servers throughout the

execution is not guaranteed, the SDGA performance could suffer if some of the servers are

removed in the middle of an execution. The ADGA is especially suitable in such a situation

because of its dynamic ordering of tasks.
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Chapter 4

Optimal Design of Redundant Water Distribution

Networks using a Cluster of Workstations

( Chapter 4 is a reprint of the manuscript submitted to ASCE Journal of Water

Resources Planning and Management. )

by Sujay V. Kumar, Troy. A. Doby, John. W. Baugh Jr., E. Downey Brill, and S. Ranji Ran-

jithan

Abstract

A genetic algorithm (GA)-based method for the least cost design of looped pipe networks for vari-

ous levels of redundancy is presented in this paper. Redundancy constraints are introduced in the

optimization model by considering the number of pipes assumed to be out of service at any one

time. Using this approach, tradeoff relationships between cost and redundancy are developed. The

GA-based approach is computationally intensive and implementations on a custom fault-tolerant

distributed computing framework, called Vitri, are used to satisfy the computational requirements.

The design methodology is applied to two water distribution networks of different sizes. A com-

parison of the performance of the distributed GAs for the design problems is also presented. We

conclude that a GA-based approach to obtaining cost-effective, redundant solutions for the least cost

design of looped pipe networks can be effectively used on a heterogeneous network of non-dedicated

workstations.

Keywords: Genetic algorithms, optimization, water distribution networks, distributed computing,

redundancy
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4.1 Introduction

Water distribution systems constitute a vital part of civil infrastructure. The purpose of a

water distribution system is to ensure the supply of water to users at specified demands.

The design of urban water distribution systems typically involves the identification of least

cost systems that meet the hydraulic requirements of flow and pressure.

Over the years, the design of least cost models for water distribution systems have

progressed from designing branched to looped systems [1, 11]. Loops are included in a water

distribution system to provide redundancy in flow paths. The loops may help in meeting

the service demands in case of outages due to pipe failures or maintenance and also for

critical needs such as fire fighting.

Numerous formal and informal approaches [14] have been developed for designing

cost effective looped systems. The formal methods however, tend to produce cost effective

looped network designs with minimal pipe sizes, which do not necessarily ensure meeting the

flow and pressure requirements when there is an outage. An example of a formal approach is

the enforcement of these hydraulic constraints for different pipe configurations that represent

different combinations of pipe outages. A formal notion of redundancy considerations,

using a GA-based water distribution design approach, has been demonstrated in a previous

article [13].

The design of water distribution systems with loops is complex due to the consid-

eration of a wide range of criteria and parameters. Requirements in a typical design model

call for the system’s ability to deliver a given flow at a specified pressure at the nodes of

the system. The loop equations defining flow within the pipes and the cost equations of the

pipes are typically nonlinear. Further, the least cost design of a water distribution system

using discrete pipe sizes has been shown to be an NP-hard problem [28]. These, coupled

with the consideration of additional design requirements, such as redundancy, introduce

additional constraints in the design, making it even more complex.

Genetic algorithms (GAs) provide generic search capabilities that are suitable for

dealing with such ill-behaved problems that are hard to solve by conventional methods. GAs

typically do not rely upon local or gradient information, and are able to deal with complexi-
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ties in the problem domains such as local optima and discontinuities. A GA can also handle

discrete decision variables and non-linearity in the simulation models effectively, making

it an attractive technique for problems such as the optimal design of water distribution

systems.

GAs, however, typically require the evaluation of thousands of simulation runs

to obtain a solution, making them computationally intensive. For example, in the least

cost design of water distribution systems context, a number of different network designs

need to be analyzed and checked for feasibility in terms of flow and pressure requirements.

In addition, the formal approach for considering redundancy, as presented in this paper,

requires the analysis of a number of pipe outage scenarios for each network design. The

number of analyses required increases dramatically when higher levels of redundancy are

considered, imposing significant computational requirements.

Distributed computing has been used widely in the scientific and engineering com-

munity as a tool to harness idle computational resources for dealing with problems that

require considerable computing effort [25, 5]. To meet the computational requirements for

the proposed design methodology, we use GA implementations in a distributed computing

framework.

In this paper we describe the use of distributed GAs and a heterogeneous network

of workstations to obtain cost-effective, redundant network designs. The distributed GAs

are implemented using an existing high performance computing framework called Vitri,

which provides basic support for distributed computing and communication for inherently

parallel applications. The procedure is demonstrated using two problems from the literature:

the “Hanoi problem” with 34 links and “Sioux Falls problem” with 253 links. Computational

requirements are discussed, illustrating the potential of the approach as a tool in water

distribution planning and design.

4.2 Related Work on water distribution system design

There have been numerous studies on the least cost design of water distribution networks.

Lansey and Mays (1989) summarized a number of optimization approaches reported up to



83

1988, and Simpson et al. (1994) presented a review of subsequent works. The traditional

methods of water distribution system design consist of trial-and-error search often aided

by commercially available simulation packages. Gessler (1985) proposed a design approach

using selective enumeration of possible combinations of pipe sizes for each pipe. Alperovits

and Shamir (1977) and Quindry et al. (1979a) presented two linear programming approaches

for the least cost design of pipe networks. A number of nonlinear programming approaches

have also been reported, including approaches using the reduced gradient technique to

identify a local optimum (Murtagh and Saunders 1987, Liebman et al. 1986). These

methods, however, do not handle discrete pipe sizes and they have limitations on the size

of the networks that can be analyzed.

Many efforts to incorporate reliability in the water distribution system design have

also been reported. Su et al. (1987) defined reliability of the network as the probability of

satisfying nodal demands and pressure heads for various pipe failures in the water dis-

tribution system. They applied a nonlinear programming formulation to optimize looped

networks with reliability constraints. A separate model was used to compute the reliability

of the distribution system. The method is limited because it can not incorporate network

elements such as storage tanks, pumps and valves. Several methods have been developed to

design a cost-effective system with alternate paths to each demand node, including heuristic

and nonlinear approaches (Morgan and Goulter 1982, Morgan and Goulter 1985, Ostfield

and Shamir 1996).

In recent years, GAs have been used as a heuristic search technique to solve the

looped network design problem, and have been shown to perform well [24]. Goldberg and

Kuo (1987) illustrated the application of GAs in the approximate solution of a pipeline

engineering optimization problem. Savic and Walters (1997) developed a GA-based com-

puter model for the least cost design of water distribution networks. As mentioned above, a

GA-based approach for including redundancy considerations in the design formulation was

presented in a previous article (Kumar et al. 2000).
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4.3 Distributed GA Framework

GA implementations in a distributed computing framework are used in this study to support

computationally intensive design simulations. A generic distributed computing framework,

Vitri, solves a group of independent subproblems in a distributed manner by dividing its

tasks among heterogeneous clusters of workstations and PCs. By defining the subproblems

for a specific application, Vitri can be used for various approaches such as Monte Carlo

simulation and simulated annealing, as well as the GA implementations used in this paper

for designing redundant water distribution networks.

The design of Vitri is based on the Pool of Tasks paradigm [10], which divides

the overall computation into a collection of tasks that are scheduled dynamically among a

number of processors. It is implemented as a client-server program, where the client manages

a set of tasks, and the servers retrieve tasks from the pool when idle. This paradigm is useful

in achieving an efficient distribution of tasks to servers of unequal processing speeds since

the faster servers request more tasks than the slower ones and hence balance loads overall.

In contrast to the traditional approach, where a client initiates connections in the

servers, the roles of client and servers are reversed in Vitri. The client waits for servers

to connect to it, and servers can connect or disconnect at any time. This feature allows

the owners of potential servers to exercise control in the degree to which they are used in a

given problem instance. The reversal of client and server roles also simplifies fault tolerance.

Whenever a server fails, the task being performed by that server is simply returned to the

pool where it waits to be retrieved by another active server.

Vitri is implemented in the Java programming language. Java sockets using the

Transmission Control Protocol (TCP) over Internet Protocol (IP) are used for passing mes-

sages between clients and servers since that approach provides reliable connection-oriented

communication. Information is passed between the client and the servers with non-blocking

writes and blocking reads.

Vitri is used in this research to support a GA-based stochastic search process,

which is based on the principles of Darwinian survival of fittest notion. GAs employ a

population of potential solutions, each of which is represented by a set of values symbolizing
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the problem’s decision variables. A fitness value is associated with each solution, reflecting

its ability to satisfy the constraints and objectives of the problem. GAs apply operators

such as selection, recombination and mutation to the population of potential solutions. The

selection operator simulates the “survival of the fittest” behavior. The individuals with

higher fitnesses are preferentially selected to be present in the subsequent populations. As

a result, solutions with good traits survive, eliminating the bad traits. The recombination

operator creates two new solutions by combining the “genes” of the parent solutions. The

mutation operator is used to infuse the population with gene values that may not be present

in the population. GAs require no knowledge or gradient information about the decision

space, and the discontinuities in the decision space have little effect on the overall search

performance. GAs perform fairly well for large-scale problems and can be adapted easily

to a wide variety of optimization problems.

The inherent parallelism in a GA is attributed to fact that fitness evaluations

can be carried out independently. Distributed GAs can be implemented in several ways.

One of the ways to parallelize GAs is through global parallelization, where the evaluations

of individuals are done in parallel (Cantu-Paz 1997, Kumar et al. 1996). This method

can achieve significant speedups if the communication costs are small compared to the

computation costs.

In Vitri, distributed GAs are implemented as global parallel GAs. The degree

to which GAs can exploit the resources of a networked environment depends on a number

of design decisions that affect the parallelism available. In a synchronous distributed GA

(SDGA) implementation, for instance, the program waits for computations in each genera-

tion to be completed before proceeding to the next generation. In a heterogeneous network,

slower processors can impede the progress of the program at the synchronization points by

leaving faster processors idle while the slower ones are finishing their computations. The

speedup gained by parallel processing can be significantly constrained by these synchro-

nizations between generations. An asynchronous approach that removes these bottlenecks

has been developed by applying the dataflow model of computation [3] to GAs. The result-

ing asynchronous distributed GA (ADGA) [2] has been used effectively to solve the design

problems discussed in this paper.
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The ADGA is implemented by unrolling the loops in a typical global parallel GA

and representing the synchronous instruction scheduling as a dataflow graph. Dataflow

models use graphs to represent the flow of data and control, with the execution based solely

on the availability and forwarding of data. Thus, the inter-generational data dependencies

are captured so that the evaluation of individuals in subsequent generations is constrained

only by the availability of data.

4.4 GA Formulation for Reliable System Design

The population of potential solutions undergoes a series of probabilistic operations in a

GA. Figure 4.1 depicts a flow chart showing the order of execution of GA operations during

optimization. In the selection operation, pairs of individuals are chosen from the GA pop-

ulation such that those individuals that are more fit are more likely to be selected. Each

pair of selected individuals may then undergo recombination. From the two parent indi-

viduals, two new individuals are created that are random recombinations of the genes of

their parents, and are placed in a new population. The mutation operator is used to infuse

the population with gene values that may not have existed in the initial population or that

may have been lost through selection and recombination. Mutation can be accomplished

by randomly selecting a small number of genes in the population, and replacing their values

with new, randomly-generated values. The recombination and mutation rates define the

probability of crossover between any two pairs and the probability of a gene undergoing mu-

tation, respectively. To ensure that the best solution in any generation is not lost through

the probabilistic GA search operators, elitism is used after mutation. The elitist strategy

ensures that the best solution from the previous generation is compared with the worst

solution in the current generation, replacing the current generation’s solution if better.

Each individual in the GA is a potential solution to the pipe network optimization

problem. The solution consists of a vector of pipe sizes, corresponding to each link in the

network. The representation of a potential solution is shown in Figure 4.2.

The least cost design of a water distribution network can be viewed as the pro-

cess of determining the combination of pipe sizes that minimizes the overall cost subject to
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hydraulic constraints. The topology, connectivity, and the imposed flow and pressure re-

quirements at different nodes are assumed to be known. The cost of a particular candidate

solution is determined by summing the costs of all the pipes in the network. The pipe sizes

of the component pipes vary within a specified discrete set.

The function to calculate the fitness of each individual gives a measure of how

well a particular solution minimizes cost and meets all the constraints. The simulation of

network flows is conducted using EPANET [22] for each potential solution and a penalty for

any violation of the constraints is included in the fitness function. The form of the fitness

function used is:

f =
1

TC + TP

where f is the fitness value, and TC and TP are the cost and penalty terms, respectively.

TC is defined as:

TC =
M∑

j=1

c(dj)× Lj

where M is the total number of links, c(dj) is the cost per unit length for link j with a

diameter dj , and Lj is the length of link j. TP is defined as:
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TP = p × 〈maxN
i=1[max(Hmin

i − Hi, 0)]〉

where p is a penalty on the maximum violation of the head constraints among N nodes. Hi

is the head at node i, Hmin
i is the minimum head required at node i, and N denotes the

total number of nodes.

The following constraints considered in the formulation are enforced by EPANET.

• For each junction node in the network, continuity of flow should be maintained.
∑

Qin
i − ∑

Qout
i = Di

where Qin
i and Qout

i are the flow in and out of node i respectively, and Di is

the external demand at node i. Steady state flow conditions in the network are

assumed.

• The total head loss around a loop must be zero.
∑

hf − ∑
Ep = 0

where Ep is the energy put in by a pump and hf is the head loss along a pipe.

• The head loss along a pipe is dependent on the hydraulic properties of the pipe,

its length, diameter, and the flow in the pipe. The Hazen-Williams or Darcy-

Weisbach equations [27] can be used to predict the head loss. Pumps can be

used to provide positive head increases.

The minimum cost design for a given layout will drive the system towards a

branched layout. However, because pipe sizes are selected from a discrete set (which does

not contain a zero diameter), the existence of loops is ensured. Although in this case, the

water distribution systems are designed with loops, many pipes will be of the minimum size

allowed. As a result, the hydraulic requirements may be inadequate.

We define different levels of redundancy as follows: The minimum cost solution is

termed a Level-0 redundant solution since it does not consider performance constraints in

the event of a pipe failure. The GA formulation for the Level-0 case can be easily extended

to consider redundancy requirements. A Level-1 redundant solution meets the flow and

pressure requirements in the event of any single pipe outage in the network. Similarly, a

Level-2 solution meets the requirements in the event of any two pipe outages. To obtain

a minimum cost Level-1 solution using a GA, each of the cases with a single pipe out of
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service must be analyzed to ensure that the hydraulic constraints are met. This is done

by enumerating each feasible single pipe outage in the network. If the removal of a link

causes nodes to become isolated, the possible removal of that link is not considered. As

in the Level-0 case, the penalties for violations of head constraints for each scenario are

incorporated in the fitness function.

To obtain a cost-effective Level-2 solution, every two possible pipe outages in the

network are enumerated and analyzed, and appropriate penalties are included in the fitness

functions. As in the Level-1 case, an outage of a given pair of pipes in the Level-2 case is

not considered if it would isolate nodes. This working definition of redundancy makes it

possible to incorporate a common understanding of the need for looped networks within a

formal search procedure intended to obtain a cost effective design. A cost effective design is

a minimum cost solution that will meet flow and pressure requirements with a link(s) out

of service.

4.5 Example Applications and Results

The GA-based design process described above is illustrated using two water distribution

networks presented in the literature. The first network is a planning problem for a water

distribution trunk network for the city of Hanoi, Vietnam [7]. The second system is a

skeletonized network for a planning problem based on information for Sioux Falls, South

Dakota (Quindry et al. 1979b). The first network is a relatively small system. Small

additions similar to this system are frequently appended to existing water distribution

systems. The second network demonstrates our approach on a larger system.

The various GA analyses of both networks use an elitist strategy with a mutation

rate of 0.005 and a recombination rate of 0.9. All GA runs have a population size of 100.

Several test runs are used to determine an appropriate penalty for the fitness function. The

convergence in a GA run is assumed when the number of generations exceed a fixed value.
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Figure 4.3: Hanoi water distribution network

4.5.1 Hanoi Example

Fujiwara and Khang (1990) considered the network planning problem shown in Figure 4.3.

The network consists of 32 nodes, 34 pipes, and 3 loops. No pumping facilities are consid-

ered. The commercially available pipe sizes for the problem are 12, 16, 20, 24, 30, and 40

inches, and the cost of each pipe per unit length is defined as 1.1×D1.5
i . A Hazen-Williams

coefficient of 162.5 is assumed. The acceptable pressure requirement for all the nodes is

considered to be 30 m above ground level in all cases.

The Level-1 analysis considers 29 feasible single pipe outage scenarios, and there

are 276 feasible Level-2 scenarios. Figure 4.4 shows a typical plot for the average and

best fitnesses in each generation as the GA progresses. Figure 4.5 shows the average and

best cost values in each generation. The best cost values obtained for various levels of
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Figure 4.6: Tradeoff between cost and redundancy level for the Hanoi network

redundancy are shown in Figure 4.6. The optimum pipe diameters for these solutions are

shown in Table 4.1. It can be observed that for each additional level of redundancy, there is

a clear trend towards increased pipe diameters and cost. The optimum diameters of some of

the links, however, actually decreased with an increase in redundancy level. For example,

the diameter of pipe 31 decreased from 20 to 16 in going from Level-0 to Level-1, while

the diameter of pipe 34 increased. The pipe sizes of links 16, 17, 18, and 19 increased in

going from Level-0 to Level-1, but decreased from Level-1 to Level-2. In the latter case, the

increase in the diameter of pipe 15 allows the demands at nodes 17, 18, and 19 to be met

with smaller diameters in the other pipes. The application of these changes and analysis of

corresponding systems with EPANET confirmed the changes to be cost-effective, and not

simply artifacts of the heuristic GA search process.

The results of the Hanoi network problem are averaged over three runs using the

ADGA. For comparison, results obtained using the SDGA are also presented. A network

consisting of three Pentium III machines running Redhat 6.2 Linux on a 10BaseT Ethernet
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Table 4.1: Pipe Diameters (in.) for Solutions to Hanoi problem

Link Level-0 Level-1 Level-2
1 40 40 40
2 40 40 40
3 30 40 40
4 30 30 40
5 30 40 40
6 30 30 40
7 24 30 40
8 24 30 40
9 24 30 40
10 24 24 24
11 24 24 24
12 24 24 20
13 20 40 40
14 16 30 40
15 24 30 40
16 30 40 24
17 30 40 24
18 30 40 24
19 30 40 24
20 30 40 30
21 16 20 40
22 12 24 40
23 30 40 40
24 20 40 40
25 12 40 40
26 12 40 40
27 20 40 30
28 16 40 30
29 24 24 40
30 20 20 40
31 20 16 40
32 16 16 40
33 16 16 40
34 12 20 40
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Table 4.2: Computational times for the Hanoi network analysis

Type of Time taken by Time taken by Time taken by Number of
Analysis sequential GA SDGA ADGA analysis

(estimated) (measured) (measured)
Level-0 (minutes) 66.68 27.3 25.07 500,000
Level-1 (hours) 32.22 14.98 12.55 14,500,000
Level-2 (days) 14.01 5.91 5.28 138,000,000

LAN was used for the analysis. The estimated time for a sequential GA and the measured

times of the SDGA and ADGA runs are presented in Table 4.2. All the runs were conducted

for 500 generations. Since the total number of analysis runs is known for a fixed number of

generations, the required time for a sequential GA run can easily be estimated.

It can be observed that the computational requirements increase dramatically with

higher levels of redundancy as expected given the large increase in the number of analyses

required (Table 4.2). Figure 4.7 demonstrates the exponential increase in execution times

and how the use of distributed GAs helps in reducing the total execution times considerably.

The linear execution time shown in Figure 4.7 is the predicted time assuming the use of

three machines. The results show that the execution times decrease nearly in proportion to

the number of processors, implying that the speedups are nearly linear. The ADGA further

reduces the execution times of the SDGA by approximately 10%.

4.5.2 Sioux Falls Problem

The network shown in Figure 4.8, which is taken from Quindry et al. (1979b), represents a

planning model of a water distribution system for Sioux Falls, South Dakota, for the year

2010. The network consists of 253 pipes and 186 nodes.

Table 4.3 presents the list of commercially available diameters and the correspond-

ing costs per meter of pipe length that are used in the analysis. The acceptable pressure

requirements for all the demand nodes are again considered to be 30 m above ground level

in all cases. The Level-1 analysis considered 227 possible single pipe outage scenarios and

Level-2 considered 26,476 possible pairs of outages. As a result, the analysis of this problem

requires considerable computational resources. The Sioux Falls problem was solved using

a heterogeneous network of workstations running Linux, Solaris, and Windows operating
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systems. The number of machines involved in the analysis varied from 5 to 25. The experi-

ence with the Hanoi problem led to the use of ADGA for this problem. The estimated time

for a sequential GA and actual computational times required for various runs are shown

in Table 4.4. The Level-0 and Level-1 analysis was conducted for 500 generations, and the

Level-2 analysis for 200 generations. It can be seen that the use of a distributed GA leads

to considerable improvements in the execution times.

The optimum costs obtained for various levels of analysis are shown in Table 4.5,

and the optimum pipe diameters are shown in Table 4.6. Once again, with an increase in

redundancy requirements, the pipe diameters tend to increase, but many exceptions can be

observed. The tradeoff between cost and various levels of redundancy is shown in Figure 4.9.
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Table 4.3: Cost data for pipes for the Sioux Falls system

Diameter Cost
(in.) (dollars)
1 2
2 5
3 8
4 11
6 16
8 23
10 32
12 50
14 60
16 90
18 130
20 170
22 300
24 550

Table 4.4: Computational time requirements for the Sioux Falls network design

Type of Number of Time taken by Time taken by
Design Processors sequential GA ADGA

(estimated) (measured)
Level-0 (hours) 11 2.08 0.21
Level-1 (days) 5–10 19.70 2.86

Level-2 (months)
(for 200 generations) 5-25 16.35 1.82

Table 4.5: Costs of solutions for the Sioux Falls problem

Type of Cost
Design (in Million Dollars)

Level-0 Redundant 1.113
Level-1 Redundant 1.974
Level-2 Redundant 3.035
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4.6 Conclusions

A GA-based approach can be used to enforce commonly understood requirements for re-

dundancy and to obtain cost effective designs. The approach is generic and can be applied

to various types of networks. The two networks considered in this paper did not include

hydraulic elements such as valves, pumps, and tanks. This, however, does not pose a limi-

tation on the approach since EPANET, which is used for the hydraulic analysis, can model

water distribution systems that contain these elements.

The results presented in this paper show that the design of water distribution

networks under considerations of redundancy can be computationally intensive and can

be effectively handled using distributed GA approaches. Vitri provides a multi-tasking,

fault-tolerant, and scalable distributed platform which can be used effectively to harness

idle CPU cycles of workstations and PCs. The Vitri platform is also flexible enough to

incorporate a heterogeneous system of computers with various processing speeds, running

different operating systems. It can be observed that the use of ADGA on the Vitri dis-

tributed platform has been used to meet some of the computational requirements. The use

of a larger number of servers is expected to improve the execution times.
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The technique developed in this paper provides a framework for incorporating

other measures of redundancy or reliability in the analysis. The definition of an outage could

be modified based on the locations of valves in an actual network. Probabilities of failures

of component pipes could also be included if the information is available. A Monte Carlo

simulation could be used to determine the level of reliability for a given candidate solution.

Using the GA approach, the fitness function could be modified to include a requirement for

a given level of reliability. By varying this level, a tradeoff between cost and reliability could

be obtained. The introduction of such criteria will increase the computational requirements

and the success of such design formulations is dependent upon the availability of adequate

computational resources.

The Vitri framework could also be used to examine more complex variations of

the water distribution design problem. For instance, including measures of water quality

constraints is currently being investigated [6].

Table 4.6: Pipe Diameters (in.) for Solutions to the Sioux
Falls problem

Link Level-0 Level-1 Level-2 Link Level-0 Level-1 Level-2
1 6 24 24 31 14 4 4
2 8 2 2 32 16 12 12
3 18 20 20 33 24 4 4
4 18 14 14 34 14 18 18
5 12 24 24 35 12 14 14
6 3 4 4 36 3 6 6
7 22 18 18 37 8 16 16
8 2 10 10 38 1 14 14
9 24 14 14 39 3 22 22
10 14 12 12 40 1 6 6
11 16 6 6 41 3 8 8
12 18 6 6 42 22 14 14
13 18 12 12 43 18 8 8
14 8 14 14 44 3 8 8
15 8 18 18 45 8 10 10
16 20 12 12 46 6 10 10
17 22 14 14 47 1 14 14
18 20 3 3 48 4 4 4
19 10 18 18 49 4 12 12
20 2 16 16 50 20 14 14
21 1 10 10 51 12 16 16
22 3 4 4 52 10 12 12
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Table 4.6: Pipe Diameters (in.) for Solutions to the Sioux
Falls problem

Link Level-0 Level-1 Level-2 Link Level-0 Level-1 Level-2
23 3 8 8 53 1 10 10
24 22 14 14 54 8 8 8
25 24 12 12 55 20 12 12
26 16 10 10 56 18 6 6
27 8 4 4 57 22 10 10
28 4 6 6 58 3 22 22
29 8 6 6 59 6 10 10
30 8 3 3 60 18 8 8
61 20 14 14 100 14 8 8
62 1 3 3 101 14 16 16
63 18 1 1 102 2 2 2
64 6 3 3 103 12 8 8
65 2 4 4 104 22 22 22
66 20 8 8 105 8 18 18
67 22 6 6 106 8 14 14
68 18 1 1 107 2 10 10
69 22 3 3 108 3 14 14
70 12 2 2 109 1 4 4
71 16 14 14 110 16 10 10
72 6 4 4 111 24 3 3
73 18 10 10 112 24 8 8
74 4 12 12 113 3 6 6
75 16 8 8 114 3 14 14
76 14 16 16 115 6 8 8
77 20 8 8 116 8 4 4
78 18 16 16 117 16 16 16
79 18 22 22 118 10 10 10
80 4 6 6 119 4 6 6
81 2 4 4 120 20 1 1
82 22 10 10 121 22 12 12
83 20 14 14 122 3 10 10
84 10 4 4 123 2 10 10
85 14 3 3 124 6 6 6
86 10 10 10 125 10 1 1
87 14 1 1 126 18 6 6
88 16 6 6 127 22 4 4
89 4 4 4 128 3 4 4
90 10 18 18 129 10 12 12
91 8 16 16 130 6 6 6
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Table 4.6: Pipe Diameters (in.) for Solutions to the Sioux
Falls problem

Link Level-0 Level-1 Level-2 Link Level-0 Level-1 Level-2
92 6 14 14 131 1 3 3
93 22 2 2 132 1 3 3
94 18 22 22 133 8 14 14
95 18 18 18 134 18 3 3
96 16 16 16 135 22 12 12
97 12 10 10 136 10 18 18
98 6 2 2 137 3 14 14
99 16 6 6 138 16 22 22
139 12 12 12 178 6 8 8
140 10 4 4 179 6 4 4
141 8 14 14 180 14 20 20
142 12 14 14 181 4 16 16
143 20 12 12 182 8 20 20
144 2 20 20 183 6 16 16
145 18 6 6 184 24 4 4
146 16 6 6 185 3 14 14
147 3 8 8 186 18 16 16
148 18 14 14 187 18 18 18
149 8 10 10 188 2 12 12
150 8 10 10 189 2 4 4
151 6 2 2 190 18 10 10
152 1 10 10 191 12 10 10
153 1 12 12 192 16 10 10
154 16 10 10 193 22 8 8
155 3 4 4 194 4 8 8
156 24 3 3 195 12 14 14
157 24 2 2 196 6 14 14
158 16 6 6 197 6 12 12
159 14 8 8 198 20 14 14
160 10 8 8 199 12 16 16
161 8 6 6 200 20 10 10
162 3 20 20 201 24 14 14
163 16 18 18 202 8 16 16
164 4 10 10 203 18 14 14
165 14 6 6 204 16 10 10
166 18 20 20 205 12 4 4
167 8 12 12 206 18 14 14
168 2 8 8 207 10 2 2
169 24 6 6 208 2 8 8
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Table 4.6: Pipe Diameters (in.) for Solutions to the Sioux
Falls problem

Link Level-0 Level-1 Level-2 Link Level-0 Level-1 Level-2
170 6 14 14 209 8 14 14
171 20 6 6 210 1 3 3
172 16 6 6 211 20 10 10
173 14 1 1 212 6 14 14
174 18 6 6 213 22 12 12
175 12 8 8 214 4 18 18
176 12 6 6 215 2 16 16
177 6 4 4 216 20 8 8
217 22 1 1 236 16 16 16
218 2 6 6 237 14 12 12
219 3 6 6 238 22 16 16
220 4 12 12 239 4 12 12
221 8 8 8 240 8 14 14
222 10 3 3 241 18 16 16
223 8 12 12 242 14 20 20
224 6 6 6 243 6 12 12
225 3 6 6 244 1 12 12
226 12 3 3 245 1 10 10
227 10 14 14 246 10 10 10
228 6 14 14 247 3 4 4
229 12 12 12 248 18 14 14
230 20 20 20 249 8 10 10
231 3 18 18 250 10 10 10
232 8 14 14 251 1 6 6
233 24 2 2 252 8 4 4
234 6 14 14 253 8 20 20
235 8 16 16
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Chapter 5

Comparative Study of the Constraint

Method-based Evolutionary Algorithm (CMEA)

with Other Evolutionary Algorithms for

Multiobjective Optimization

( Chapter 5 is reprint of the manuscript submitted to IEEE Transactions on Evo-

lutionary Computation )

by Sujay Kumar and Ranji Ranjithan

Abstract

In the operations research literature, the ε-Constraint Method has been demonstrated to be a useful

approach for generating noninferior solutions for multiobjective problems. Further, the use of this

method in conjunction with mathematical programming procedures has shown that the noninferior

set can be generated more efficiently by using a noninferior solution as a starting point to find

the adjacent noninferior solution. The Constraint Method-based Evolutionary Algorithm (CMEA)

embodies these proven concepts into an evolutionary computation framework to offer a new multi-

objective evolutionary algorithm (MOEA). This paper reports the results from a study comparing

the performance of CMEA with those of other commonly reported MOEAs. A suite of 2-objective

test problems, representing a range of complexities in the decision space as well as in the objective

space, is chosen from the MOEA literature. In addition to comparing graphically the noninferior

solutions obtained by the different MOEAs, quantitative performance metrics for accuracy, coverage,

and spread are also used in the comparisons. For the problems considered in this paper, CMEA

performs as well as or better than the other MOEAs tested.

Keywords: Multiobjective optimization, evolutionary algorithm, ε-constraint method, non-
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inferior set, Pareto set.

5.1 Introduction

Many design optimization problems in engineering applications inherently involve consid-

eration of multiple, non-commensurate, and often competing criteria that reflect various

design specifications and constraints. For such multiobjective optimization problems, the

examination of non-inferior tradeoffs among different objectives require the identification

of efficient, Pareto-optimal solutions. Evolutionary algorithms (EAs), which are becoming

increasingly more applicable in solving real world engineering problems [10], continue to be

extended to incorporate multiobjective optimization.

An array of MOEAs have been reported in the literature, and extensive sum-

maries are provided by Deb [7], Coello [3] and Van Veludhizen and Lamount [15]. More

recently, Ranjithan et al. [14] presented an approach called the constraint method-based

evolutionary algorithm (CMEA). This method is based on the underlying concepts used

in the ε-constraint method that is described in the mathematical programming and multi-

objective optimization literature( [5], [1], [13]). CMEA is an evolutionary algorithm-based

approach that achieves Pareto optimality via the ε-constrained method coupled with bene-

ficial population seeding in the intermediate iterations of the algorithm.

While the previous work by Ranjithan et al. [14] tested CMEA using a few illus-

trative test problems, this paper presents an extensive testing and comparison of CMEA.

Numerous 2-objective test problems representing different complexities (e.g., number and

type of variables, and degrees of constraints) in the search space are used in this study.

Several performance metrics are used to compare the performance of CMEA with those of

commonly reported MOEAs, for example, non-dominated sorting genetic algorithm (NSGA-

II) [8], strength pareto evolutionary approach (SPEA) [17], pareto envelope-based selection

algorithm (PESA) [6], and micro-GA [4]. The results demonstrate that CMEA performs

consistently well for this wide range of multiobjective problems.
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5.2 Background

The description of the CMEA approach and its implementation is described in Ranjithan

et al. [14]. CMEA is a procedure that integrates the ε-constraint method for multiobjec-

tive optimization (MO) within an evolutionary computation framework. In the traditional

ε-constraint method, the MO problem is converted into a number of single objective opti-

mization problems by treating all but one objective as constraints. The noninferior solutions

are obtained by solving a series of these single objective optimization problems that are de-

fined by varying levels of constraints corresponding to the other objectives. This approach of

solving a number of independent single objective optimization problems to generate the non-

inferior set becomes less attractive if obtaining each noninferior solution is computationally

intensive. Some mathematical programming procedures that implement the ε-constraint

method improve the search for a new noninferior solution by seeding the starting solutions

based on the previously generated adjacent noninferior solution. This approach works well

for those classes of problems in which the noninferior solutions adjacent in the decision

space map to adjacent points in the objective space.

CMEA couples this adjacency mapping property and the concepts of the ε-constraint

method within an MOEA framework to generate the noninferior set. CMEA achieves Pareto

optimality in an implicit manner by ensuring that the population migrates along the nonin-

ferior surface. At each iteration, the algorithm finds a noninferior solution by converging the

population to the optimal solution to the following single objective optimization problem.

Maximize Zh(x) (5.1)

Subject to gi(x) ≤ 0 ∀i = 1, 2, ...,m (5.2)

Zl(x) ≥ Zt
l ∀l = 1, 2, ..., k; l �= h (5.3)

x ∈ X (5.4)

Without loss of generality, it can be assumed that all the objectives in this problem are

being maximized, where Zh is one of the k objectives, Zt
l (l = 1, 2, ..., k; l �= h) is the

constraint value for objective l(�= h), x = {xj : j = 1, 2, ....., n} represents the decision

vector, X represents the decision space, m is the total number of constraints, and gi(x) is
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the ith constraint. Zt
l is varied incrementally, thereby making the search migrate from one

noninferior solution to an adjacent solution, eventually tracing the noninferior surface.

The steps involved in CMEA are shown in Figure 5.1. Any appropriate stopping

criteria for single objective EA search can be used to determine convergence of the inner

loop of the algorithm. In the study reported in this paper, convergence in each individual

EA run is determined when the number of generations exceeds a maximum value or if the

best solution does not improve within a specified number of generations. The outer loop

of the algorithm drives the generation of a sequence of noninferior solutions by altering the

ε-constraint values for all but one objective in the search problem solved in the inner loop.

Starting from an extreme point (corresponding to a single objective solution), the constraint

values are systematically incremented to trace the noninferior set.

5.3 Testing and Evaluation of CMEA

CMEA is applied to a number of test problems with different degrees of difficulty and

characteristics. Deb et al. [9] presented a tunable test problem generator, which can be used

to obtain constrained test problems with desired level of difficulty. They also presented

simulation results obtained using the NSGA-II approach. The constrained test problems

described by Deb et al. (2001) are used in this paper to compare the performance of CMEA

with NSGA-II.

While Deb’s test functions represent problems in continuous space, the extended

0/1 multiobjective knapsack problem presented by Zitzler and Thiele [17] represents a prob-

lem in a combinatorial search space. This problem is a constrained, binary problem. Perfor-

mance comparisons of several MOEAs in solving this problem that were presented by Zitzler

and Thiele [17] are used in comparing the performance of CMEA. In addition, a noninferior

set is generated using a mathematical programming model for the extended 0/1 knapsack

problem. This model is solved using the binary linear programming solver CPLEX r©.

Further, the non-convex, unconstrained multiobjective optimization test problem

defined by Kursawe [12] is used to compare the performance of CMEA with results obtained

using the micro-GA presented by Coello and Pulido [4]. The applicability of CMEA in



112

START

Initialize Population
intervalNo =1

Initialize constraint values
generation =1

Evaluate Fitness

Apply Selection 
Operator

Apply Mutation
Operator

Apply Crossover

Operator

STOP intervalNo >  maxIntervals−

N

Y

Y N

Update Mutation rate

Update Population
generation           generation +1

generation = 1

Update constraint values

Reinitialize mutation rate

intervalNo         intervalNo +1

convergence criteria

Figure 5.1: Flowchart for CMEA
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solving problems with different characteristics (constrained vs. unconstrained, continuous

vs. combinatorial, convex vs. nonconvex) is examined by applying it to these different

problems. To test the robustness of the algorithm, the problems are solved repeatedly

for different random seeds. As the results for the different random seeds were similar, a

representative solution is used in the comparisons below.

5.4 Performance Metrics

The following performance criteria for 2-objective problems are used to evaluate CMEA,

and to compare it with other approaches.

• Accuracy criterion is used to determine how close the generated noninferior

solutions are to the best available prediction. Two different parameters are

used to characterize the accuracy of an algorithm: The S factor used by Zitzler

and Thiele [17] to compare accuracy, and the approach used by Knowles and

Corne [11] to characterize the degree to which one noninferior set outperforms

another. The same number of radial sampling lines used in the metric reported

by Knowles and Corne [11] is used in the comparisons presented in this paper.

An either-or criterion is used to determine if the noninferior set obtained by one

MOEA dominates that obtained by another; the closeness of the two points of

intersection are not differentiated statistically.

• Spread criterion determines the maximum range of the noninferior surface cov-

ered by the generated solutions. The spread parameters reported by Chetan [2]

and Ranjithan et al. [14] are used in comparing CMEA with other MOEAs (a

larger value of this metric indicates better spread of solutions). Using the il-

lustration in Figure 5.2, points A and B refer to the two extreme noninferior

solutions (corresponding to the single objective optima for each objective). The

maximum range covered by the MOEA generated noninferior solutions repre-

sented by the ordered set C = {Ch,∀h ∈ {1, .., q}} is (ZCq

1 −ZC1
1 ) and (ZC1

2 −Z
Cq

2 )

in Z1 and Z2 objective space, respectively. The spread metrics in objective space

Z1 and Z2 are defined as (ZCq

1 −ZC1
1 )/(ZB

1 −ZA
1 ) and (ZC1

2 −Z
Cq

2 )/(ZA
2 −ZB

2 ),
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respectively.

• Coverage criterion represents how many different noninferior solutions are gen-

erated and how well they are distributed in the objective space. The Euclidean

distance between adjacent noninferior points in the objective space is used as a

quantitative measure to represent the distribution of the noninferior solutions

generated by an MOEA. Two coverage metrics V1 and V2 are defined ([2],[14])

to characterize the coverage within the range of noninferior region defined by

(1) the extreme noninferior solutions A and B, and (2) by the extreme solutions

(C1 and Cq) generated by that MOEA, respectively. Using the notations from

Figure 5.2, V1 is defined as Max{dh,∀h ∈ {0, 1, ..., q}}, and V2 is defined as

Max{dh,∀h ∈ {1, ..., q−1}}. A smaller value of V1 (or V2) implies more closely

spaced noninferior solutions, thus indicating better coverage.

5.5 Results

The test problems considered in this paper are summarized in Table 5.1. These MO prob-

lems are solved using CMEA with algorithm-specific parameters shown in Table 5.2.

5.5.1 Comparison of Noninferior Solutions

Figures 5.3 to 5.8 compare the noninferior sets generated by NSGA-II and CMEA for

CTP2-CTP7. The NSGA-II results are obtained from Deb et al. [9].

As shown in Figure 5.3, both algorithms are able to find solutions in the discon-

nected regions of the Pareto-optimal solutions for the CTP2 problem. CTP3 problem has

only one solution in each disconnected Pareto-optimal region, and CMEA and NSGA-II

are able to find solutions close to the true Pareto-optimal solutions. In CTP4, the problem

definition parameters are chosen such that transition from continuous to discontinuous fea-

sible region is far away from the Pareto-optimal region. It can be observed that NSGA-II

did not perform well for CTP4, while CMEA is able to find solutions closer to the true

noninferior set. For CTP5, the true Pareto-optimal solutions are scattered non-uniformly

in the objective space, representing discrete and continuous regions. Both NSGA-II and



115

Z
  

(m
a
x

im
iz

e
)

2

M
a
x

im
u

m
 r

a
n

g
e
 i

n
 Z

  
  

o
b

je
c
ti

v
e
 s

p
a
c
e

2

A (Z  , Z    )
A
1 2

A

Z  (maximize)
1

Maximum range in Z   objective space1

d

d

d

d

d

0

1

2

q−1

q

C

C

C

1

2

q

C in Z   objective space
Range covered by solution set

1

se
t 

C
 i

n
 Z

  
 o

b
je

c
ti

v
e
 s

p
a
c
e

2

R
a
n

g
e
 c

o
v

e
re

d
 b

y
 s

o
lu

ti
o

n

B (Z  , Z    
1 2
B B

)

− noninferior solutions generated
    by an MOEA
− extreme noninferior solutions 
    corresponding to the single 
    objective problem

Figure 5.2: An example two-objective noninferior tradeoff to illustrate the computation of
Spread and Coverage metrics.



116

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z2

Z1

CMEA
NSGA II

Figure 5.3: A comparison of the noninferior sets obtained using CMEA and NSGA-II for
CTP2



117

CMEA are able to handle these complexities, and CMEA performs better at the extreme

points in the objective space. CTP6 and CTP7 are problems where discontinuities in the

search space are introduced. CTP6 has a search space with infeasible regions parallel to the

Pareto-optimal front. Both MOEAs are able to converge to the correct feasible region and

close to the true Pareto-optimal solutions. In CTP7, the infeasible regions in the search

space are perpendicular to the Pareto-optimal front. Compared to NSGA-II, CMEA per-

forms better in generating noninferior solutions more uniformly along the Parto-optimal

front.

As shown in Table 5.1 and Figure 5.9, Kursawe [12] introduced a two-objective

multiobjective optimization problem with discontinuous noninferior set that also includes

concave and convex regions. The results of applying CMEA to this problem is shown in

Figure 5.9 along with the results from Micro-GA developed by Coello and Pulido (2001).

Zitzler and Thiele [17] used in their work a knapsack problem that extends the

traditional single objective knapsack problem by incorporating two knapsacks that can be

filled by items selected from a larger collection of items. Similar to the traditional knapsack

problem, the allocation of items to a knapsack is limited by its capacity, and each item

in a knapsack has an associated payoff. The goal is to determine the allocation of items

such that the the payoffs in each knapsack is maximized without exceeding the capacity

constraints. This multiobjective problem is defined mathematically in Table 5.1. This

binary MO problem is solved for two knapsacks (i.e., k = 2) with 250 items, and with 750

items. The results reported here correspond to n = 750 and k = 2. The data for the

problems solved were adapted from Zitzler and Thiele [17].

The extended knapsack problem is solved by CMEA for the parameter setting

shown in Table 5.2. In addition, by modeling the problem as a binary linear programming

(BLP) model, the noninferior set is generated by solving this model using the binary linear

programming solver, CPLEX r©. In Figures 5.10 to 5.12, these results are shown along with

the results reported by Zitzler and Thiele [17] for the following MOEAs: SPEA, NSGA-II,

and PESA. The results from SPEA, NSGA-II and PESA required approximately 480,000

function evaluations (Zitzler and Thiele [16]), while CMEA required typically 270,000 func-

tion evaluations.
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It can be seen that the solutions generated by CMEA, SPEA, NSGA-II and PESA

are close to the BLP model-based estimate of the noninferior set, the best available for

this problem. Although some of the noninferior solutions generated by SPEA, PESA, and

NSGA-II dominate CMEA solutions in the middle region of the objective space, CMEA is

able to provide better coverage by identifying good noninferior solutions that are broadly

distributed over the objective space.

5.5.2 Comparison using Performance Metrics

The performance metrics for accuracy, coverage, and spread that were described earlier are

computed for the noninferior solutions reported above. A summary of the performance

metrics for the various problems discussed are shown in Tables 5.3 to 5.6. Based on the

accuracy parameter defined by Knowles and Corne (2000), CMEA outperforms the other

MOEAs in all comparisons (Table 5.3) considered in this paper. The S factor values

generated by CMEA for the CTP problems are comparable or better than that of NSGA-II

(Table 5.4). As shown in this table, CMEA outperforms Micro-GA in Kursawe’s problem,

and NSGA-II, SPEA, and PESA in the Knapsack problem.

The spread metric for the different problems is compared in Table 5.5. The values

of CMEA and NSGA-II are comparable for CTP2, CTP3, CTP5, and CTP6. For problems

CTP3 and CTP7, the spread of the noninferior sets generated by CMEA is considerably

better than that of NSGA-II. The broader spread and even coverage of the CMEA solutions

for the extended 0/1 knapsack problem compared to that of SPEA, NSGA-II, and PESA

is reflected in the spread metric and the coverage metrics compared in Tables 5.5 and 5.6.

When the coverage (V1) is measured in consideration of the extreme noninferior solutions,

CMEA performs better in all instances. Measuring the coverage (V2) of an MOEA within

the range of only the noninferior solutions generated by that MOEA, the other MOEAs

provide better coverage compared to that by CMEA. This implies that while other MOEAs

are able to find many closely spaced noninferior solutions within a narrower range, CMEA

is better at finding more evenly distributed noninferior solutions over a broader range of the

noninferior space. This result is reflected in the coverage metric values for the Knapsack

problem, where SPEA, NSGA-II and PESA provide better distribution (based on V2 metric)
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within the narrower noninferior range represented by their solutions, and CMEA provides

the best coverage of solutions in the entire noninferior range (based on V1 metric).

5.6 Summary and Conclusions

This paper presents a comparative study of CMEA that is founded upon the ε-constraint

method, which has been well established in the multiobjective optimization literature within

operations research. The convergence of this method is enhanced by beneficial seeding of the

population within the subiterations of the algorithm, a notion borrowed from mathematical

programming-based MO analysis. Unlike other commonly reported MOEAs that attempt to

converge the population of solutions simultaneously to the noninferior set, CMEA attempts

to converge first the population of solutions to an extreme noninferior solution and then

incrementally migrate the population to trace the noninferior surface. As no new algorithm-

specific operators or special encoding are needed, the structure of the algorithm enables easy

integration with existing implementation of evolutionary algorithms for an optimization

problem. This is important when analyzing large-scale realistic problems for which much

effort is already spent on configuring and implementing the base evolutionary algorithms.

To evaluate the performance of CMEA in solving MO problems, it was applied to

a number of test problems with different characteristics and levels of difficulty. The test

problems included problems involving continuous as well as combinatorial decision space,

unconstrained as well as constrained optimization, real as well as binary variables, and

concave as well as convex Pareto optimal sets. The performance of CMEA was compared

with that of other commonly reported MOEAs (namely, NSGA-II, SPEA, PESA, and Mi-

croGA). To characterize the performance of the algorithms, several metrics quantifying

accuracy, spread, and coverage were used. Solutions were generated for several different

random seeds, and CMEA showed robust behavior in generating the noninferior solutions.

Overall, CMEA performed well with respect to these criteria and for the different problems

tested. CMEA showed consistently good coverage and spread of solutions in the nonin-

ferior space. While SPEA, PESA, and NSGA-II performed better in a narrower range of

the noninferior solutions for a few test problems, CMEA performed better over a broader
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range of the noninferior set. For the problems tested in this paper, the number of function

evaluations (used as an approximate surrogate for computational effort) was less than those

reported for the other MOEAs.

Further testing is needed to evaluate the effectiveness of applying CMEA to higher-

order MO problems (i.e., more conflicting objectives). Preliminary results from a few 3-

objective test cases show highly promising outcome. Increases in computational require-

ments as the number of objectives are scaled up need further investigation. Scale up effect,

however, is expected to be comparable with other MOEAs, which must increase the pop-

ulation size to handle higher dimensional MO problems. CMEA is currently being applied

to several real-world engineering problems that require MO analysis. The practicality of

these realistic applications is being assessed and will be reported later.
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Table 5.1: Test problems used in this study. The objective functions are denoted by Zl(x),
1 ≤ l ≤ k, where k denotes the number of objectives and N the number of decision variables.

N Domain Objective Functions Constraints

CTP2-CTP7 by Deb et.al [9]

5 [-5.12:5.12]N Minimize Z1(x) = x1 c(x) ≡ cos(θ)(Z2(x)− e)−
Minimize Z2(x) = g(x)(1− Z1(x)

g(x) ) sin(θ)Z1(x) ≥ a|sin(bπ
where g(x) = 10n (sin(θ)(Z2(x)− e)
+

∑n
i=1(x

2
i − 10cos(2πxi))

+cos(θ)Z1(x))c)|d
CTP2: θ = −0.2π, a = 0.2, b = 10, c = 1, d = 6, e = 1
CTP3: θ = −0.2π, a = 0.1, b = 10, c = 1, d = 0.5, e = 1
CTP4: θ = −0.2π, a = 0.75, b = 10, c = 1, d = 0.5, e = 1
CTP5: θ = −0.2π, a = 0.75, b = 10, c = 2, d = 0.5, e = 1
CTP6: θ = 0.1π, a = 40, b = 0.5, c = 1, d = 2, e = −2
CTP7: θ = −0.05π, a = 40, b = 5, c = 1, d = 6, e = 0

Kursawe’s Function by Kursawe [12]

3 [-5:5]N Minimize Z1(x) = Unconstrained∑n−1
i=1 (−10exp(−0.2

√
x2i + x2i+1))

Minimize Z2(x) =∑n
i=1(|xi|0.8 + 5sin(xi)3)

Multiobjective Knapsack Problem (Zitzler and Thiele [17])

750 {0, 1}N Maximize Zl(x) =
∑n

j=1 wl,jxj ≤ cl∑n
j=1 pl,jxj ∀l = 1, 2, ..., k

∀l = 1, 2, ..., k
Zl(x) is the total profit associated with knapsack l, pl,j = profit of placing item j
in knapsack l, wl,j = weight of item j when placed in knapsack l, cl = capacity
of knapsack l, x = (x1, x2, ...., xn) ∈ {0, 1}n such that xj = 1 if
selected and = 0 otherwise, n is the number of available items, and k is the
number of knapsacks.
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Table 5.2: CMEA parameters and settings used in solving the test problems

Problem Variable CMEA parameters
Type No.of Pop. Encoding Crossover

intervals size
CTP2-CTP7 Real 100 100 20 bit Binary Uniform
Kursawe Real 100 100 20 bit Binary Uniform
Knapsack Binary 100 100 Binary Uniform

Table 5.3: Accuracy comparison, based on the metric defined by Knowles and Corne [10], of
CMEA with NSGA-II, SPEA, PESA, and Micro-GA for different test problems; The best
is shown in bold.

The MOEAs Compared Problem (P1,P2): (Percentage number of times MOEA1

(MOEA1 vs. MOEA2) instance outperforms MOEA2, Percentage number of times
MOEA2 outperforms MOEA1)

Number of Sampling Lines
108 507 1083

(CMEA vs NSGA-II) CTP2 (55.55, 44.44) (55.82, 44.18) (55.87, 44.12)
(CMEA vs NSGA-II) CTP3 (78.57, 21.43) (77.44, 22.56) (77.20, 22.80)
(CMEA vs NSGA-II) CTP4 (100.0, 0.0) (100.0, 0.0) (100.0, 0.0)
(CMEA vs NSGA-II) CTP5 (69.70, 30.30) (69.97, 30.02) (69.97, 30.02)
(CMEA vs NSGA-II) CTP6 (76.32, 23.68) (74.57, 25.42) (74.54, 25.46)
(CMEA vs NSGA-II) CTP7 (100.0, 0.0) (100.0, 0.0) (100.0, 0.0)
(CMEA, Micro-GA) Kursawe (86.24, 13.76) (89.94, 10.06) (90.12, 9.88)
(CMEA, SPEA) Knapsack (95.37, 4.63) (95.46, 4.54) (95.94, 4.06)

(CMEA, NSGA-II) Knapsack (94.50, 5.50) (94.28, 5.72) (94.36, 5.63))
(CMEA, PESA) Knapsack (95.41, 4.59) (95.07, 4.93) (95.11, 4.89)
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Table 5.4: Accuracy comparison, based on the S factor (Zitzler and Thiele [14]), of CMEA
with NSGA-II, SPEA, PESA and Micro-GA for different test problems. A larger value
indicates better performance; the best is shown in bold.

The MOEAs Compared Problem (S1,S2): (S factor for MOEA1 data set,
(MOEA1 vs MOEA2) instance S factor for MOEA2 data set)

(CMEA vs NSGA-II) CTP2 (0.6123, 0.6075)
(CMEA vs NSGA-II) CTP3 (0.5931, 0.5823)
(CMEA vs NSGA-II) CTP4 (0.7808, 0.6004)
(CMEA vs NSGA-II) CTP5 (0.5997, 0.5923)
(CMEA vs NSGA-II) CTP6 (0.5593, 0.5663)
(CMEA vs NSGA-II) CTP7 (0.6563, 0.1543)
(CMEA vs Micro-GA) Kursawe (0.4011, 0.3976)
(CMEA vs SPEA) Knapsack (0.7075, 0.6068)

(CMEA vs NSGA-II) Knapsack (0.7075, 0.6235)
(CMEA vs PESA) Knapsack (0.7075, 0.6025)

Table 5.5: Spread comparison of CMEA with NSGA-II, SPEA, PESA and Micro-GA for
different test problems. A larger value indicates better performance; the best is shown in
bold.

The MOEAs Compared Problem (Z1 spread for MOEA1, (Z2 spread for MOEA1,
(MOEA1 vs MOEA2) instance Z1 spread for MOEA2) Z2 spread for MOEA2)

(CMEA vs NSGA-II) CTP2 (1.0045, 1.0044) (1.0173, 1.3510)
(CMEA vs NSGA-II) CTP3 (0.9977, 0.9962) (1.1837, 1.3695)
(CMEA vs NSGA-II) CTP4 (0.9830, 0.4971) (1.0351, 1.4375)
(CMEA vs NSGA-II) CTP5 (0.9927, 0.9952) (1.0203, 1.3756)
(CMEA vs NSGA-II) CTP6 (0.9995, 0.9744) (1.1453, 0.9735)
(CMEA vs NSGA-II) CTP7 (0.9895, 0.0364) (1.3353, 0.2337)
(CMEA vs Micro-GA) Kursawe (0.9984, 0.9985) (0.9964, 0.9984)
(CMEA vs SPEA) Knapsack (0.9224, 0.3428) (0.9207, 0.3512)

(CMEA vs NSGA-II) Knapsack (0.9224, 0.2691) (0.9207, 0.2960)
(CMEA vs PESA) Knapsack (0.9224, 0.2087) (0.9207, 0.2610)
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Table 5.6: Coverage comparison of CMEA with NSGA-II, SPEA, PESA and Micro-GA for
different test problems. A smaller value indicates better performance; the best is shown in
bold.

The MOEAs Compared Problem (V 1 for MOEA1, V 1 for (V 2 for MOEA1,V 2 for
(MOEA1 vs MOEA2) instance MOEA2) (includes the MOEA2) (excludes the

known extreme points known extreme points
for each objective) for each objective)

(CMEA vs NSGA-II) CTP2 (0.0965, 0.3500) (0.0965, 0.1029)
(CMEA vs NSGA-II) CTP3 (0.1713, 0.3601) (0.1619, 0.1332)
(CMEA vs NSGA-II) CTP4 (0.2501, 1.1779) (0.1811, 0.7159)
(CMEA vs NSGA-II) CTP5 (0.1942, 0.3675) (0.1942, 0.1592)
(CMEA vs NSGA-II) CTP6 (0.1525, 0.0383) (0.0916, 0.0355)
(CMEA vs NSGA-II) CTP7 (0.4249, 1.5907) (0.4249, 0.0070)
(CMEA vs Micro-GA) Kursawe (0.2050, 0.1762) (0.2050, 0.1762)
(CMEA vs SPEA) Knapsack (0.0890, 0.5399) (0.0666, 0.0224)

(CMEA vs NSGA-II) Knapsack (0.0890, 0.5870) (0.0666, 0.0175)
(CMEA vs PESA) Knapsack (0.0890, 0.6743) (0.0666, 0.0108)
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Chapter 6

Noninferior Surface Tracing Evolutionary

Algorithm in Vitri

6.1 Introduction

This chapter describes the Noninferior Surface Tracing Evolutionary Algorithm (NSTEA)

in Vitri. Chetan [1], in addition to introducing the technique, also presented the evaluation

of NSTEA to a number of multiobjective optimization problems. This chapter presents

the results of applying NSTEA to a suite of constrained test problems presented by Deb

et al. [3]. The performance of the algorithm is evaluated by using the quantitative metrics

presented in the previous chapter.

6.2 Background

The NSTEA algorithm is implemented by incorporating the concepts of the mathe-

matical programming-based weighting approach into an evolutionary algorithm framework.

Similar to an objective aggregation approach, a linearly weighted function of all objective

functions is used to evaluate fitness at each intermediate step to enforce Pareto optimality of

a solution. To maintain generality, normalized objective function values are used. NSTEA

attempts to identify the noninferior set by varying the weight vectors throughout the ex-

ecution of the evolutionary algorithm. A linearly weighted fitness function Zag, computed
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as:

Zag =
k∑

i=1

wiZ̄i (6.1)

where, w = {wi : i = 1, 2, ....k} is the weight vector, wi is the ith weight and Z̄i is the ith

normalized objective function value. The weight wi is a fractional number such that

k∑
i=1

wi = 1 (6.2)

The key steps of NSTEA is shown as a flowchart in Figure 6.1. Similar to the CMEA,

NSTEA exploits the basic concept that for some class of problems, adjacent solutions in the

decision space map to adjacent solutions in the objective space. This enables the beneficial

use of the final population corresponding to the current noninferior solution to seed the

search of an adjacent noninferior solution. The new search is conducted with updated

weight vector w to represent an adjacent noninferior point in the objective space. When

the new selection pressure manifesting from the updated weight vector is applied on the

previous population, the population quickly migrates to an adjacent noninferior solution.

A systematic update of the weight vector enables an efficient mechanism for incrementally

tracing the noninferior set. This incremental population migration approach significantly

reduces the computational burden compared to that required when solving each single

objective EA as independent search problems.

6.3 Testing and Evaluation of NSTEA

In the previous chapter, a suite of test problems presented by Deb et al [3] was used to

compare the performance of CMEA. The same suite of Deb’s functions are used in this

chapter to evaluate the performance of NSTEA. The results obtained by the NSTEA are

compared with those reported using the NSGA-II approach.

Figures 6.2 to 6.7 compare the noninferor set of solutions obtained by NSGA-II and

NSTEA for problems CTP2-CTP7. Table 6.1 represents the algorithm-specific parameters

used in solving the problems.

As shown in Figure 6.2, 6.3, and 6.5, the NSGA-II was able to find all disconnected

noninferior solutions for the CTP2, CTP3, and CTP5 problems, whereas the noninferior
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generation = 1
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intervalNo =1
generation =1
Initialize weights

Update weights

Figure 6.1: Flowchart for NSTEA

Table 6.1: NSTEA parameters and settings used in solving the test problems

Variable NSTEA parameters
Type No.of Pop. Encoding Crossover

intervals size
Real 100 100 20 bit Binary Uniform
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Table 6.2: Accuracy comparison, based on the S factor (Zitzler and Thiele [4], of CMEA
with NSGA-II, for the test problems. A larger value indicates better performance; the best
is shown in bold.

Problem (S1,S2): (S factor for NSTEA data set,
instance S factor for NSGA-II data set)

CTP2 (0.5617, 0.6075)
CTP3 (0.5418, 0.5823)
CTP4 (0.6741, 0.6004)
CTP5 (0.5365, 0.5923)
CTP6 (0.5161, 0.5663)
CTP7 (0.6525, 0.1543)

solutions generated by NSTEA was slightly away from the true noninferior solutions. It can

be observed from Figure 6.4 that NSGA-II did not perform well for the CTP4 problem. The

NSTEA, however, was able to generate solutions closer to the true noninferior set. CTP6

and CTP7 are problems where discontinuities in the search space are introduced. Further,

these problems have search spaces with infeasible regions parallel and perpendicular to the

search space, respectively. As can be seen from Figure 6.6, both NSGA-II and NSTEA are

able to find solutions closer to the correct feasible region and closer to the true noninferior

set of solutions. For CTP7, NSTEA produced a set of noninferior points more uniformly

distributed in the objective space compared to NSGA-II.

6.3.1 Performance Comparison

A summary of the performance metrics for Deb’s suite of multiobjective optimization prob-

lems is presented in Tables 6.2 to 6.5.

The S factor [4] values generated by NSTEA and NSGA-II are very similar (Ta-

ble 6.2), with the values of NSTEA being marginally better. However, in comparing the

Knowles and Corne [2] parameter for accuracy, the NSGA-II outperforms NSTEA in all

problems except CTP4 and CTP7 (Table 6.3). The spread values generated by both algo-

rithms, shown in Table 6.4, are similar for problems CTP2, CTP3, CTP5, and CTP6. For
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Table 6.3: Accuracy comparison, based on the metric defined by Knowles and Corne [2], of
NSTEA with NSGA-II, for the test problems; The best is shown in bold.

Problem (P1,P2): (Percentage number of times NSTEA
instance outperforms NSGA-II, Percentage number of times

NSGA-II outperforms NSTEA)
Number of Sampling Lines

108 507 1083
CTP2 (15.29, 84.71) (13.97, 86.04) (13.80, 86.20)
CTP3 (2.83, 97.17) (2.24, 97.76) (3.80, 97.62)
CTP4 (100.0, 0.0) (100.0, 0.0) (100.0, 0.0)
CTP5 (30.00, 70.00) (29.20, 70.80) (29.38, 70.62)
CTP6 (40.00, 60.00) (44.72, 55.28) (45.19, 54.81)
CTP7 (75.00, 25.0) (100.0, 0.0) (100.0, 0.0)

Table 6.4: Spread comparison of CMEA with NSGA-II, for the test problems. A larger
value indicates better performance; the best is shown in bold.

Problem (Z1 spread for NSTEA, (Z2 spread for NSTEA,
instance Z1 spread for NSGA-II) Z2 spread for NSGA-II)

CTP2 (0.9967, 1.0044) (1.0100, 1.3510)
CTP3 (0.9990, 0.9962) (0.8608, 1.3695)
CTP4 (0.9912, 0.4971) (1.0356, 1.4375)
CTP5 (1.0026, 0.9952) (0.7251, 1.3756)
CTP6 (0.9959, 0.9744) (0.9432, 0.9735)
CTP7 (0.6247, 0.0364) (1.522, 0.2337)
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Table 6.5: Coverage comparison of CMEA with NSGA-II for the test problems. A smaller
value indicates better performance; the best is shown in bold.

Problem (V 1 for NSTEA, V 1 for (V 2 for NSTEA, V 2 for
instance NSGA-II) (includes the NSGA-II) (excludes the

known extreme points known extreme points
for each objective) for each objective)

CTP2 (0.2678, 0.3500) (0.2678, 0.1030)
CTP3 (0.1116, 0.3601) (0.1349, 0.1332)
CTP4 (0.3743, 1.1779) (0.3743, 0.7159)
CTP5 (0.2563, 0.3675) (0.2671, 0.1592)
CTP6 (0.1405, 0.0383) (0.1405, 0.0355)
CTP7 (0.8992, 1.5907) (0.8992, 0.0070)

problems CTP6 and CTP7, the spread of noninferior sets generated by NSTEA was better,

indicating a better spread of solutions in the objective space. The coverage metric for the

two algorithms is compared in Table 6.5. When the coverage (V2) is measured excluding

the extreme noninferior points, NSGA-II outperforms NSTEA in all cases. However, when

the extreme noninferior points are considered in measuring coverage (V1), NSTEA performs

better in most cases. This indicates that NSTEA is able to find solutions in a broader range

in the objective space.

6.4 Summary

The results presented in this chapter compares the performance of NSTEA on a set of con-

strained multiobjective test problems. Several random trials were performed when solving

each problem. Overall, NSTEA performed well for all problems tested with respect to dif-

ferent quantitative measures considered. The spread and coverage of noninferior solutions

obtained using NSTEA were better than those of NSGA-II and the NSTEA outperformed

NSGA-II for those problems, where NSGA-II had difficulties.

The NSTEA approach has some known limitations. The computational efficiency

gain obtained in NSTEA is premised on the existence of similarities in noninferior solutions

that correspond to adjacent points in the objective space. For problems where this may
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not hold true strongly, the search implemented by NSTEA becomes analogous to solving

a number of independent single objective optimization problems, and therefore, may not

realize any significant computational gain. As the underlying search mechanism for a Pareto

optimal solution uses an incrementally varying aggregate function, the amount of each

weight increment would dictate the number of noninferior solutions found. If this increment

is relatively large, it is possible to miss some of the noninferior solutions, thus affecting the

coverage. As a result, NSTEA with relatively large weight increments will likely miss

noninferior solutions that lie within any linear segment of the noninferior tradeoff. For a

problem with more than two objectives, incrementally updating the weight vector to obtain

an adjacent point is not necessarily as straightforward as is for the two-objective cases

presented here.
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Chapter 7

MGA Tool in Vitri

Many real world problems involve competing objectives and constraints that are difficult

to quantify in a mathematical model. Further, the existence of unmodeled and unquan-

tifiable objectives may make results of mathematically determined optimal solutions less

than optimal in a practical sense. These unmodeled issues, however, can affect the eventual

acceptance of a solution from a decision making perspective. Examples of such unmodeled

issues can be factors such as aesthetics, socio-economic impacts, and political issues.

MGA is a technique developed to address such issues. The basic idea behind

MGA is to generate a small number of different solutions when dealing with such complex,

incompletely defined problems. The solutions produced by MGA are allowed to be slightly

sub-optimal with respect to modeled objectives and are forced to be different from each other

in decision space. MGA solutions provide a decision maker with a number of alternatives so

that human judgment can be used to determine which alternative best satisfies unmodeled

objectives and constraints.

This chapter presents the modules provided by Vitri to generate MGA solutions

using specialized operators in conjunction with a GA. The implementation is based on

the approach presented by Loughlin et al. [9]. The GA-based approach uses a restrictive

mating scheme along with a number of specialized operators to force the evolution of a GA

population to diverge into a small number of subpopulations. The approach presented in

this chapter also includes a specialized operator [8] that encourages the evolution of different

niches in a GA population. The implementation and the evaluation of the technique using



152

two problems are also described in the following sections.

7.1 Background

The applications of MGA tools to many engineering problems have been reported [1, 7].

These approaches were based on mathematical programming. However, modeling a complex

system with mathematical programming tools is not always feasible. As emphasized in

earlier chapters, heuristic techniques such as GAs offer effective means to solve complex

problems by incorporating domain knowledge to improve the efficiency of search procedures.

A number of GA-based MGA techniques have been reported in the literature.

Harrell and Ranjithan [6] presented a GA-based approach to identify different reservoir

management scenarios. They followed an iterative methodology to find MGA solutions

by solving different optimization problems that explicitly force the search to find different

solutions.

Since a GA deals with a number of solutions simultaneously, some researchers

have explored the possibility of forcing a GA to converge to multiple, different solutions.

These approaches mainly included niching schemes such as sharing [5] and crowding [3].

These approaches were mainly focussed on developing techniques to handle multiobjective

optimization using a GA.

In this chapter, a population-based approach that forces a GA to evolve into differ-

ent, slightly sub-optimal niches is presented. The MGA technique is implemented by using

an approach that is similar to the neighborhood constraint method (NCM), encouraging

and maintaining diversity within a GA population by combining special operators with a

restrictive mating scheme.

7.2 MGA implementation

The MGA approach is embedded in a GA by using a number of specialized operators,

such as: identification of potential MGA solutions, boosting the fitness of MGA organisms,

strategic placement of the MGA solutions in a population, and a neighborhood restrictive
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mating scheme. These operators force the GA population to converge to distinct subpopu-

lations and thus help in exploring different areas of decision space in search of alternative

solutions. The order of execution of these operators in a GA is shown in Figure 7.1.

7.2.1 Population Indexing

The individuals in a population are given an index number from 1 to n, where n is the

size of a population. The population can be considered to be a linear array of candidate

solutions with an index representing the position of a particular solution. The population

indexing is done as the initial population is created.

7.2.2 Neighborhood Mating Scheme

Neighborhood mating schemes restrict the mating of individuals to those within a specified

“neighborhood” [9] of each other. The population is divided into m subpopulations, where

m is the number of MGA solutions required. The individuals in a subpopulation mostly

mate with other individuals in the same subpopulation, with mating across different sub-

populations occurring only with a low frequency. This selective mating scheme encourages

the GA population to converge into distinct and different subpopulations.

7.2.3 Identification of Alternative Solutions

The purpose of this step is to identify a set of m good, yet different solutions in the popu-

lation. From the individuals in the population, the set of solutions that perform nearly as

well as the current best solution are identified. A number of criterion can be used to identify

the set of solutions. For instance, if the fitness value is used as the criteria, all the solutions

having fitness values within a specified percentage (say 90%) of the best, can be selected.

Other problem specific measures such as cost can also be used as the selection criteria.

Once the best solutions are assembled, m solutions different from each other are selected.

Phenotypic or genotypic formulations can be used to measure the difference between two

solutions. The candidate solution most different from the current best is considered to be

“MGA-1”, the solution most different from the current best and MGA-1 is considered to
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be MGA-2 and so on.

7.2.4 Boosting the Fitness of MGA solutions

Once the MGA solutions are identified, their fitnesses are increased to that of the current

best solution. This operation increases the probability of MGA solutions getting selected

over other solutions.

7.2.5 Strategic Placement of MGA solutions

The MGA solutions are strategically placed in different locations in the population. The

locations are chosen such that each MGA solution is placed in its own “neighborhood”,

where it is the best solution. The placement of the solutions is done in two different ways

depending on the progress of the GA.

7.2.6 Placement Method 1

Once the MGA solutions are identified, the index of the placement locations are determined

as follows: The population is divided into m equal subpopulations. Let p denote the size

of a subpopulation. MGA-1 is placed at location p/2. MGA-2 is the one which is most

different from the current optimal solution and MGA-1, and it is placed at (m−1)×p+p/2.

In general, the MGA-i (where i �=1), is placed at (m − i + 1)× p + p/2 (Figure 7.2). This

placement is designed so that the solutions which are most different from each other will be

furthest apart.

7.2.7 Placement Method 2

This scheme is used after the subpopulations are allowed to develop and take shape. The

scheme is designed so that the placement of MGA solutions will create the minimum distur-

bance in terms of diversity in the subpopulations. Once the MGA solutions are determined,

each solution is compared with every individual in the population for difference. The cu-

mulative difference of MGA-i with subpopulation j is termed as dij . For m MGA solutions,

there are m! ways of placing them in subpopulations. Each of these scenarios is enumer-
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Figure 7.2: Placement scheme-1 for the MGA solutions
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Figure 7.3: Placement scheme-2 for the MGA solutions

ated and the cumulative difference for each scenario is calculated. The scenario with the

minimal cumulative difference is chosen as the placement scheme. The scheme is illustrated

in Figures 7.3 and 7.4 for obtaining four MGA solutions. The population is divided into

four subpopulations. The placement possibilities for four MGA solutions are emulated in

Figure 7.4. For example, if the scenario with the minimal difference turns out to be D11,

then MGA-1 is placed at location 3, MGA-2 at location 1, MGA-3 at location 4 and MGA-4

at location 2. This scheme is followed in each subsequent population.

The MGA implementation in Vitri GAs are applied to two different problems:

(1) A simple multimodal optimization problem and (2) application to seismic performance

evaluation.
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7.3 MultiModal Problem

The MGA tools are applied to a simple multimodal optimization [9] problem, as defined

below:

Maximize F = 2 + sin(19πX) + sin(19πY ) +X/1.7 + Y/1.7

s.t.

0.0 < X < 1.0

0.0 < Y < 1.0

The function is shown in Figure 7.5 has 100 peaks that are separated by valleys.

The optimal solution is (X = 0.974, Y = 0.974), where the objective function has a value

of 5.145.

The GA approach was used to identify four maximally different solutions. The

MGA alternatives were restricted to being within 15% of the fitness of the best solution.

The MGA solutions generated are shown in Table 7.1. The Euclidean distance between

two solutions is used as the parameter to measure the genotypic difference. Figure 7.6

shows some of the MGA solutions generated during the run. It can be observed that these

solutions are very different from each other and the optimum solution in the decision space,

although their objective function values are within 15% of the optimum solution. Further,

the peaks in Figure 7.5 to the left of the diagonal connecting the points (0.974, 0.026) and

(0.026, 0.974) do not meet the 15 % relaxation constraint.

7.4 Application of MGA Tools to Seismic Performance Eval-

uation

Evaluation of the performance of heterogeneous structural systems during earthquakes is a

complex problem due to competing design objectives, uncertainties in design data, and large

simulation models. The modeling of structural performance involves analysis of subsystem
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Table 7.1: MGA solutions for the multimodal problem

Objective X Y
function value

MGA-1 4.588 0.974 0.026
MGA-2 4.588 0.026 0.974
MGA-3 4.564 0.450 0.550
MGA-4 4.564 0.559 0.450
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interactions such as those between soil, building, equipment, and piping. Historically, due

to the lack of computational resources, conservative decisions were made leading to high-

cost designs. Simulation models that predict structural behavior can be used in the analysis

of piping systems. However, a brute force approach in which various design scenarios are

analyzed in an enumerative manner becomes computationally prohibitive. The heuristic

optimization techniques in Vitri are used here as part of a formal procedure for generating

optimal as well as alternative solutions.

The MGA tools are applied to a simple individual piping system to demonstrate

the applicability of the technique. For multiply supported piping systems, optimization

of support locations is a highly complex and iterative problem that can be time and cost

intensive. The piping system in the present study represents a multiply supported straight

pipe anchored at the two ends (Figure 7.7). The pipe is modeled using three-dimensional

beam elements with one degree of freedom at each node. Several valves and other equip-

ment located on the pipe are modeled as lumped masses. The design earthquake input is

considered to be a response spectrum corresponding to the El Centro-1940 S00E record [2]

uniformly applied at all support locations. The GA tools in Vitri are used to determine

the support type and location such that the total cost of all the supports in the system is

minimized. The objective function in the GA formulation incorporates a penalty for any

violation of the constraints. The formulation includes constraints on displacements, stresses

and excess of loads at the supports over the corresponding support capacities.

Traditionally, structural engineers spend significant effort and time to find alter-

native solutions in which additional supports are provided for redundancy. The localized

vibrations in valves and other equipment can cause pipe failures in the vicinity of such

equipment. Such failures are avoided in practice by providing supports directly under the

equipment, especially the heavy ones. MGA is used to develop alternate solutions for provid-

ing insights with respect to redundancy and the support locations under heavy equipment.

7.4.1 Results and Analysis

PIPESTRESS [4], a commercial piping analysis program was used to carry out the finite

element analysis of the piping system discussed above. The simulations were carried out
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Figure 7.7: Pipe System. The values of lumped masses (in Kilo lbs) are indicated in the
figure on top of corresponding location

using a network of Solaris ULTRA10 workstations.

The MGA implementation requires identification of a metric that is used to char-

acterize the difference between alternative solutions. The following difference parameter is

used to differentiate between MGA solutions

δ =
nl∑

i=1

|b1i − b2i| (7.1)

b1i, b2i =



1 if there is a support at location i

0 otherwise
(7.2)

where nl is the total number of possible support locations, b1i and b2i are binary values

indicating the presence of supports at location i, for solutions 1 and 2, respectively.

A GA run is performed to determine the optimal solution in terms of cost for the

above piping system. A second GA run is also performed in which the placement of supports

is considered to be under the lumped masses while optimizing for cost. The two solutions are

shown in Figure 7.8 (SLC refers to this “ support location constraint”). Table 7.2 indicates

the actual capacities and costs corresponding to the indices on top of each support shown

in Figure 7.8. It can be observed that the cost of the solution with all the supports under

lumped masses is approximately 30% higher than the cost without that constraint.

The MGA tools are applied to generate alternatives to the cost optimal solution

without the support location constraint. Some of the MGA alternatives generated are shown
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Table 7.2: Capacities and Costs of Supports

Index Capacity (lbs) Cost (in dollars)
1 8610 21500
2 13750 26000
3 19150 24600
4 20100 24800
5 23450 32000
6 37300 35500
7 62000 36000
8 70350 42000

Cost 269,700

Cost 207,500

Lumped Mass

Cost Optimal

Cost Optimal with SLC

7 7 7

5 5
6

6
3

6 6

1

6
3

6

1

Figure 7.8: The optimum solutions
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in Figure 7.9. The Figures show the location and capacities of the supports chosen, along

with the value of the difference metric compared to the cost optimal solution. It can be

observed that the MGA solutions are not only different from the cost optimal solution, but

also different from each other. These MGA solutions provide a pool of small number of

feasible solutions for the designer to work with.

Although the fitness function includes a penalty for any violation of displacements,

stresses, or capacity loads over the specified allowable limits, the degree of stressing in the

piping or support loads is not explicitly modeled in the the fitness function. Figures 7.10,

7.11, and 7.12 display the ratio of support loads to capacities, the maximum displacements,

and the maximum stresses, respectively, for different solutions. It can be observed that the

least cost solution has high displacements and stresses compared to other solutions. The

MGA-3 solution also displays high stresses at one end. From the Figure 7.10 it can be

seen that all the solutions contain at least one support that has a ratio of support -load-

to-capacity ratio close to 1. These ratios are low for most supports in MGA-4, followed by

MGA-2. A designer may prefer a solution with somewhat higher cost (244,800, or 247,800),

with relatively lower values of displacements, stresses, and support loads because of lower

chances of exceeding the allowable values due to uncertainty or loads greater than the design

loads.

It can be observed that the parameters such as the displacement, stresses, and

support capacity ratios can be explicitly modeled to obtain the corresponding optimal so-

lutions. However, the MGA solutions presented in Figure 7.9 can still be used to provide

insights into the trends of various design parameters. A designer can also use these solutions

as starting points for further exploration.

One unmodeled issue in these MGA solutions is the aesthetics. The location

of supports under lumped masses is preferred in practice due to its increased reliability

against observed failures. It can be seen from the Figure 7.9 that the MGA solutions

performs better than the cost optimal solution with respect to the placement of supports

under lumped masses. MGA-2 and MGA-3 solutions have 4 and 6 supports under lumped

masses, respectively. Further, the MGA solutions are more symmetrical in their placement

of supports and their capacities.
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7.5 Summary

The MGA technique in Vitri is currently implemented only within the SDGA. However, the

method can also be implemented within the ADGA by implementing the MGA operations

as separate nodes and incorporating it within the existing dataflow framework.

The results illustrate the usefulness of MGA tools in Vitri for generating solutions

that are good with respect to modeled objectives, and yet different in decision space for

complex problems with unmodeled issues. Other measures to determine the difference

between two solutions can also be used to generate solutions. This approach illustrates the

utility of MGA in helping a decision maker use experience and professional judgment to

choose among from a number of alternatives.
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Chapter 8

Conclusions and Future Directions

This thesis describes the design and application of a computational framework that supports

the engineering design and analysis process. The design of Vitri using object-oriented

principles enables the reuse of components that can be customized to meet new application

requirements as demonstrated by its use on a wide variety of applications. Vitri integrates

a number of tools within a framework that supports a set of applications in diverse areas,

from different domains, and with different design requirements. Vitri provides a platform

for computational prototyping and experimentation with new approaches to scientific and

engineering design. The modularity, adaptability, and scalability of the framework have

been used effectively in the development of solution methods and in the transparent use of

underlying software and hardware.

The software architecture of Vitri consists of a number of basic components that

facilitate the use of a distributed system and a number of components loosely built on top it.

These loosely built components are various algorithmic tools such as GAs, multiobjective

GAs, MGA tools, etc. These components share and reuse generic abstractions in Vitri. The

framework structure allows the components to be dynamically linked at runtime so that the

user is not bogged down by the size of a large number of components.

The modules in Vitri are based on existing, well-established algorithms. However,

the traditional methods and algorithms have been explored to remove their limitations. New

approaches to improve their algorithmic efficiencies have also been studied. For instance,

as described earlier, an asynchronous distributed GA approach that eliminates the end-
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of-generation bottlenecks associated with a synchronous GA has been developed. The

improvements in GA-based MGA techniques have been explored by implementing new

schemes in a GA. The multiobjective optimization algorithms have also been evaluated by

testing them using a number of problems from literature.

In addition to improvements in distributed and optimization routines, application

of tools in Vitri to various problems have led to the development of new design and analysis

approaches. The use of Vitri has enabled the development of a new approach for the least

cost design of water distribution networks with redundancy constraints. The approach is

computationally intensive, but has been effectively handled using the tools in Vitri. The

approach also provides a framework for incorporating other design measures such as water

quality and more complex variations in the analysis. Vitri has also been used to experi-

ment and learn about a problem incrementally. For instance, tools in Vitri were used to

investigate the potential tradeoffs between the total number of piping supports and the

cost of the system for the seismic performance evaluation problem. The maintenance or

lifetime cost of the system is proportional to the number of supports, whereas the instal-

lation costs of the system is assumed to be dependent on the capacities of the supports.

The knowledge on lifetime cost was extremely difficult to obtain and communication with

practicing engineers revealed that it was highly site specific. The initial optimization stud-

ies revealed no multiobjective relationships between the hardware cost and the number of

supports. When the expected lifetime cost was approximated as power functions of the

initial hardware cost, the relationship between cost and the number of supports was found

to be competing, resulting in a multi-objective scenario. This analysis was conducted for a

small system, and the increased knowledge from this study can be used in analyzing more

complex systems. Though the analyses were computationally intensive, the use of Vitri’s

distributed computing environment helped in solving problems in a reasonable amount of

time. The MGA tool, as mentioned in Chapter 7 is also used as part of the study to develop

and evaluate design scenarios for the seismic performance evaluation problem.

Some of the limitations of Vitri can be identified as follows: Vitri has been de-

signed mainly for perfectly parallel applications that have a set of tasks that require little or

no communication. Vitri is also suitable for data parallel applications that have the same
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operations performed on many data elements simultaneously. There is another class of par-

allelism called control parallelism that have different operations performed simultaneously

on different processors. Control parallel applications would require the allocation of specific

tasks to specific servers and usually are done on a dedicated network of workstations. The

pool-of-tasks structure in Vitri would require modifications to incorporate control parallel

applications effectively. The algorithms in Vitri are more suitable for coarse-grained prob-

lems with low communication costs compared to the computational costs. The performance

of the algorithms when applied to fine grained problems could suffer because of the commu-

nication overhead. Analytical studies such as the one presented in Chapter 3 can be used

to determine the suitability of using the distributed algorithms in Vitri.

Vitri has been used for rapid prototyping during various stages of different appli-

cations discussed in this thesis. The air quality optimization problem was initially studied

with a simple simulation model and later with a more complex model. The design of water

distribution system with redundancy considerations was initially studied for a simple sys-

tem. Simulations using the simple system was used to understand the trends in tradeoffs

between the objectives of interest. As mentioned above, the multiobjective optimization

and MGA tools were used to incrementally learn about the seismic performance evaluation

problem. The study is expected to be extended for more complex design scenarios. In con-

clusion, the flexible features in Vitri has allowed the plug-and-play of new models, design

prototypes, and the use of different techniques.
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Appendix A

Sample Execution of Vitri

The design of Vitri and its tools, along with the hot spots that enable the plug and play

of various applications were discussed in earlier chapters. A prototype execution of Vitri

environment and its tools are explained below.

It is assumed that a Java virtual machine environment (version 1.2 or above) is

already installed. Before running Vitri, the CLASSPATH variable needs to point to the Vitri

classes and then to JDK. The execution of Vitri can be done both from the command line

and by using a graphical interface. The command line execution is done as follows.

The client side execution of Vitri is done by instantiating the appropriate program

at the runtime and also by specifying if the execution is distributed or not.

>java Client -prgm [main program] -restart [true/false]
-distributed [true/false] -p [port]

The flags -prgm, -restart, -distributed, and -p refer to the main program that

is being executed, if the program is restarted from a previously saved state, if the distributed

environment is used, and the port number, respectively. For instance, if the SDGA is

being run, the main program can be specified as vitri.ga.SyncGeneticAlgorithm. The

execution of a server, however, is independent of the problem. A server can be instantiated

as follows.

>java Server -client [client name] -p [port]

The flag -client refer to the client from which the server requests tasks, and -p

refers to the port number where the connection to the client is made.
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The distributed GA implementations also allow the users to specify the GA pa-

rameters at runtime. A file called ga info.txt is read by the distributed GAs at run time.

A sample file is shown below.

#Name of the organism class used (fully qualified name)
Organism class : vitri.ga.KnapsackOrganism
#Name of the fitness class used (fully qualified name)
Fitness class : vitri.ga.KnapsackFitness
#Number of Generations
Number of generations : 300
#Size of a single population.
Population size : 100
#
Crossover percentage [0-1] : 0.95
#
Mutation rate [0-1] : 0.005
#
Elitism level [0-2] : 1
#
Print level[0-2] : 1
#This feature must be enabled if you want to restart from a certain stage.
Save population [true/false] : false
Save to directory : .
Graphics [true-false] : true
Mga solutions [true/false] : false
#If mga solns are needed
Number of mga solutions : 4
Niching percentage [0-1] : 0.85

The organism and fitness classes, the number of generations and population size,

the crossover and mutation rates, and the level of elitism can be specified through this file.

If the distributed GA needs to be restarted, the save feature must be enabled that saves

the population in each generation to the specified location. The graphics flag, if enabled,

allows a dynamic display of the maximum and average fitness values of each generation

(Figure A.1). If the MGA solutions are required for the GA execution, the appropriate

flags in the file can be enabled. The niching percentage specifies the limit for the selection

of MGA solutions. i.e., the solutions within the niching percentage of the best is chosen,

and the most different solutions among them are chosen as the MGA solutions.

Similar to ADGA and SDGA, the multiobjective GA tools also allow users to
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Figure A.1: Dynamic display of maximum and average fitness values for a GA execution.
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specify parameters at runtime. The multiobjective GAs read the parameters from a file

called moga info.txt. A sample file is shown below. The file specifies the number of

objectives, and the range and number of points of the objectives being constrained. The

choice of the type of GA (ADGA/SDGA) for the inner loop of the multiobjective GAs can

also be specified through the file.

Number of objectives : 2
#specify the range and number of points of the objective (for CMEA)
z2 : 1000, 25
ga type (ADGA/SDGA) : SDGA
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Appendix B

Monitoring Tools

Vitri provides a graphical user interface allowing users to select simulation variables in-

teractively, and to monitor the progress of the distributed system dynamically. The tool

allows the the user in choosing the parameters required in the execution of Vitri as shown

in Figure B.1. Snapshots of the system are shown in Figures B.2 to B.4. The interface

provides a graphical representation of the pool of tasks, the status of different servers, the

memory usage, load status of the client, etc.

Vitri also provides and interface (Figure B.4) that displays a dynamic Gantt chart

of servers indicating how much time each server spends in communicating, idling, and

executing tasks. The activity display helps in visualizing measures such as the relative

communication costs of servers, the relative speeds of different servers, etc.
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Figure B.1: Interface to choose simulation variables in Vitri
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Figure B.2: Snapshot of the Vitri’s interface
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Figure B.3: Snapshot of the Vitri’s interface
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Figure B.4: Snapshot of the Vitri’s interface
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Appendix C

Summary of Vitri Applied to Various Problems

The table C.1 lists a summary of the use of Vitri to various problems. Parameters such

as the platform, the computational intensity, problem specific parameters, the number of

machines employed, the simulation model used, etc., are listed in the table.



Table C.1: Summary of different problems solved using Vitri (SU- Sun ULTRA10, PW - Pentium III Windows, PL - PIII Linux

Problem Simulation Runtime Platform GA parameters

Model GA type Pop.size Number of Total Number of

Generations time Machines

Air Quality Optimization

ELC – < 1 second SU Seq 100 300 25 minutes 1

ALC EKMA 2 seconds SU SDGA 100 300 6.2 hours 3-5

ALC UAM 20 minutes SU SDGA 100 90 1.735 months 3

ALC UAM 20 minutes SU ADGA 100 90 1.551 months 3

Water Distribution System Design

Toy Problem Level 0 EPANET 72 milliseconds SU Seq 100 200 9 minutes 3

Toy Problem Level 1 EPANET 72 milliseconds SU Seq 100 200 1.8 hours 3

Toy Problem Level 2 EPANET 72 milliseconds SU Seq 100 200 2.7 hours 3

Hanoi Problem Level 0 EPANET 80 milliseconds PL SDGA 100 500 27.3 minutes 3

Hanoi Problem Level 0 EPANET 80 milliseconds PL ADGA 100 500 25.07 minutes 3

Hanoi Problem Level 1 EPANET 80 milliseconds PL SDGA 100 500 14.98 hours 3

Hanoi Problem Level 1 EPANET 80 milliseconds PL ADGA 100 500 12.55 hours 3

Hanoi Problem Level 2 EPANET 80 milliseconds PL SDGA 100 500 5.91 days 3

Hanoi Problem Level 2 EPANET 80 milliseconds PL ADGA 100 500 5.28 days 3

Sioux Falls Problem Level 0 EPANET 150 milliseconds SU, PL, PW ADGA 100 500 0.21 hours 5-25

Sioux Falls Problem Level 1 EPANET 150 milliseconds SU, PL, PW ADGA 100 500 2.86 days 5-25

Sioux Falls Problem Level 2 EPANET 150 milliseconds SU, PL, PW ADGA 100 200 1.82 months 5-25

Truss Design

Truss Design (Ten bar truss ) SAP 3.5 seconds PW Seq 100 200 19 hours 1

Seismic Response Analysis

Pipe Support Design PIPESTRESS 4.5 seconds SU SDGA (MGA) 100 300 3.75 hours 3-20

Knapsack Problem (simulated)

Knapsack – 0.5 seconds SU SDGA 100 100 10.42 minutes 30

Knapsack – 0.5 seconds SU ADGA 100 100 8.72 minutes 30

Multiobjective GA runs

Pipe Support Design PIPESTRESS 4.5 seconds SU SDGA 100 100 37 hours 3-15

Vehicle Routing

Routing PW SDGA 10

185




