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High-speed milling (HSM) provides an efficient method for accurate discrete part 

fabrication. However, successful implementation requires the selection of appropriate 

operating parameters. Balancing the multiple process requirements, including high 

material removal rate, maximum part accuracy, chatter avoidance, and adequate surface 

finish, to arrive at an optimum solution is difficult without the aid of an optimization 

framework.  

Despite the attractive gain in productivity that HSM offers, full realization of the 

benefits is dependent on the proper selection of cutting parameters. Parameters selected 

must achieve the required productivity while maintaining an acceptable accuracy. Milling 

models are used to aid in the proper selection of these cutting parameters. They provide 

information on whether a cutting condition is stable and/or predict the surface accuracy. 

However, this selection is rather tedious, costly and time consuming and might not even 
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provide an optimum solution. Parameters are selected based on experience until a point is 

found that provide the productivity and surface accuracy required. Difficulties 

encountered in this selection process include sensitivity of surface accuracy to cutting 

parameters, uncertainties in several parameters in the milling model and the 

computational effort needed to account for stability and surface accuracy. Therefore, 

balancing the multiple requirements, including high material removal rate, minimum 

surface location error and chatter avoidance, to arrive at an optimum solution is difficult 

without the aid of optimization techniques. 

In this dissertation a robust optimization algorithm that accounts for the inherent 

process uncertainty and surface location error sensitivity is developed. Two optimization 

criteria are considered, namely, surface location error and material removal rate under the 

stability constraint. The trade off curve of surface location error versus material removal 

rate is calculated for the mean values of input parameters, as well as for a confidence 

level in the stability boundary. An experimental validation of the robust optimization 

algorithm is also conducted, including an experimental validation of the variation of the 

cutting forces as a function of spindle speed. The confidence level in the axial depth limit 

and surface location error prediction is found using two methods: 1) sensitivity analysis; 

and 2) sampling methods. The sensitivity study highlights the most significant factors 

affecting process stability and surface location error. The effect of input parameters 

correlation is included in the confidence level predictions using Monte Carlo and Latin 

Hyper-Cube sampling methods. 
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CHAPTER 1 
INTRODUCTION 

Justification of Work 

Intense competition in manufacturing places a continuous demand on developing 

cost-effective manufacturing processes with acceptable dimensional accuracy. High-

speed milling, HSM, offers these benefits provided appropriate operating parameters are 

selected. Some typical applications include, but are not limited to, orthopedic surgery [1], 

end milling (pocketing) of airframe panels [2] and ball end milling of stamping dies [3, 4] 

in automotive manufacturing. Equation Chapter 1 Section 1 

Despite the attractive gain in productivity that HSM offers, full realization of the 

benefits is dependent on the proper selection of cutting parameters. Parameters selected 

must achieve the required productivity while maintaining an acceptable accuracy. Milling 

models are used to aid in the proper selection of these cutting parameters. They give us 

information on whether a cutting condition is stable and/or they predict the surface 

accuracy. However, this selection is rather tedious, costly and time consuming and might 

not even provide an optimum solution. Parameters are selected based on experience until 

a point is found that provides the productivity and surface accuracy required. Difficulties 

encountered in this selection process include sensitivity of surface accuracy to cutting 

parameters, uncertainties in several parameters in the milling model and the 

computational effort needed to account for stability and surface accuracy. Therefore, 

balancing the multiple requirements, including high material removal rate, MRRf , 
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minimum surface location error SLEf  and chatter avoidance, to arrive at an optimum 

solution, is difficult without the aid of optimization techniques. 

Literature Review 

The literature review proceeds with a summary of previous implementations of 

optimization methods in machining, with particular attention to high-speed milling and 

multi-objective optimization. Also, a review of milling models for stability and surface 

location error is provided. 

Optimization in Machining 

Previous research in machining process optimization [5] has focused on 

mathematical modeling approaches to determine optimal cutting parameters with regard 

to various objective functions. Three main objectives have been recognized: 1) maximum 

production rate or minimum cycle time [6-9]; 2) minimum cost [10-21]; and 3) maximum 

profit [12, 22], or a combined criterion based on a weighted sum of these [23, 24]. 

The machining optimization problem can be formulated using deterministic and 

probabilistic approaches [11, 25]. Several optimization techniques were used to handle 

both formulations. For the deterministic approach they include linear and nonlinear 

programming techniques [9, 15, 26, 27], while for the probabilistic approach chance-

constrained programming can be used [17, 28]. Other optimization techniques used in 

machining include graphical optimization [12, 22], polynomial geometric programming 

[6, 18-20, 29, 30], geometric programming [10] based on quadratic posylognomials 

(QPL) [31], goal programming with linear [32, 33] and nonlinear [34] goals, fuzzy 

optimization [35], and global search methods such as particle swarm optimization [21] 

and simulated annealing [16].  
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The machining optimization literature can also be classified according to different 

constraints and design variables handled. Several authors [7, 14] considered cost 

optimization for single-pass milling and turning [10, 17, 19, 20, 29]. The range of 

constraints considered are machine tool constraints, such as cutting speed and feed rate, 

tool dynamics constraints such as cutting force, power and stability, and product 

constraints such as surface roughness.  In reference, [17] some of the constraints 

considered are of probabilistic nature. Also, multi-pass peripheral and end milling to 

maximize production rate are considered [8] under a range of constraints with relevance 

to rough milling such as the machine tool limiting power, torque, feed force and feed-

speed boundaries while in another work. In addition to the previous constraints, arbor 

rigidity and deflection are used [6].  

High-speed Milling Optimization 

Few references are found on optimization of high-speed milling. The concept of 

adaptive learning (polynomial network) [16] is used to construct a machining model. 

Simulated annealing was then used to minimize production cost for rough high-speed 

machining operations for three cutting condition parameters namely cutting speed, chip 

load and axial depth of cut. A similar study was done for low speed milling [21] where an 

artificial neural network was used to build the machining model. However, particle 

swarm optimization was used to optimize production cost under machine, tool and 

product constraints. 

Multi-objective Optimization 

Multi-objective optimization (MOO) addresses the issue of competing objectives 

using concepts first introduced by Edgeworth [36] then expanded and developed by 

Pareto [37], the French-Italian economist who established an optimality concept in the 
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field of economics based on multiple objectives. A Pareto front [38] is generated that 

allows designers to trade off one objective against another. 

In the area of machining, Jha [24] studied two objective function optimization 

based on cost and rate of production where example constraints were machine power, 

cutting speed limitations, depth of cut, and table feed. The two objectives were combined 

using weights. Koulams [28] studied single-pass machining considering the influence of 

tool chatter failure where a tool failure probability function effect was added as a penalty 

cost function to the objective function. 

Stability and Surface Location Error 

As explained earlier, the full exploitation of HSM demands mathematical models to 

predict stability and surface location error. An unstable milling process is caused by a 

phenomenon called chatter.  Among the first to describe chatter is Taylor, [39] who 

described chatter as “the most obscure and delicate of all problems facing the machinist.” 

Chatter [40] is a self-excited vibration that occurs if the chip width is too large with 

respect to the dynamic stiffness of the system. It causes undulations in the machined 

surface (poor surface finish) and could result in tool breakage.  Extensive work has been 

done to generate stability boundaries or lobes. The lobes define a region below which 

chatter is nonexistent. Two approaches are used to generate these lobes: 1) analytical [41] 

with a continuous cutting model or with an interrupted cutting model [42]; and 2) time 

domain simulation [43, 44]. 

Surface location error is defined as the error in the placement of the milling cutter 

teeth when the surface is generated. This error depends on the interaction of work-

piece/tool dynamic stiffness and the cutting forces. The correct prediction of this error 

depends on correct prediction of the cutting forces and resulting deflections. Mechanistic 
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models can be used to estimate these forces. The cutting force is found by summing the 

forces acting on incremental sections of a helical cutting edge [45, 46], then the surface 

location error is computed based on the static stiffness of the tool [47]. However, the 

effect of the deflection of the cutter on the cutting forces is not included. In an 

improvement of the previous model, the static deflection is fed back to correct the cutting 

forces [48, 49]. A more realistic regenerative force model [50] considered the effect of 

undulations in the surface generated by previous tooth passage on the next tooth passage. 

In this model the dynamic deflection of the tool imprints waviness on the generated 

surface. Using time domain simulation, surface location error, cutting forces and stability 

lobes are predicted. An improvement on this model considered [42, 51-53] interrupted 

cutting as a factor influencing the stability lobes and surface location error. A newly 

developed method uses time finite element analysis (TFEA) to model the governing time 

delayed differential equation [54-58]. Regenerative cutting forces and dynamic deflection 

of the tool are all implicitly included in the governing differential equation. The 

advantage of this method is that it concurrently provides surface location error and 

stability information on the milling process in a semi-analytical manner.  In this method 

the governing differential equation is modeled by dividing the time in the cut into a 

number of elements, where displacement and velocity continuity are enforced between 

each element. A discrete linear map is formed by mapping the time in the cut to free 

vibration. The eigenvalues of the discrete map determine the stability boundaries, 

whereas fixed points of the dynamic map determine surface location error ( SLEf ).  
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Scope of Work 

The purpose of this dissertation is to use optimization as a tool to efficiently 

determine preferred and robust operating conditions in HSM, considering multiple 

objectives. Although known optimization methods and machining models will be applied, 

there are a number of innovative aspects of this research. First, proper formulation of the 

objective functions to account for practical application of the preferred conditions is 

necessary. The formulation should account for uncertainty in the milling model and 

sensitivity of objective(s) to process variables. Uncertainty has not previously been 

considered. Second, two objectives are simultaneously optimized: surface location error 

SLEf  and material removal rate, MRRf . Stability and side bounds of design variables are 

considered as constraints. Prior research has focused only on the empirical tool life, not 

the unavoidable milling dynamics and the inherent limitations they impose. The tradeoff 

curve (Pareto front) [38, 59] of MRRf  and SLEf  is generated based on nominal 

experimental model parameters. Experimental case studies are conducted to verify the 

validity of the Pareto front. The uncertainty in the milling model is addressed using 

Monte Carlo simulation and/or sensitivity analysis, where a confidence interval is applied 

to the stability limit. The uncertainty of different input parameters such as cutting force 

coefficients, tool/work-piece dynamic parameters and milling process parameters are 

considered in the uncertainty prediction. This uncertainty is used in the selection of a 

robust design that would allow a venue for the practical application of the stability lobe 

theory at the shop floor. 



7 

 

 The dissertation organization proceeds as follows: Chapter 2 gives a general 

description of multi-objective optimization; Chapter 3 describes Pareto front generation 

formulation of the optimization problem, optimization methods and case studies; Chapter 

4 provides the uncertainty analysis of stability and surface location error; Chapter 5 

describes the robust optimization algorithm and presents some practical case studies to 

verify stability lobes and selected design points on the Pareto front. Chapter 6 

summarized the results and outlines future work in this area.
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CHAPTER 2 
MULTI-OBJECTIVE OPTIMIZATION 

Fundamental Concepts in Multi-Objective Optimization 

Optimization is an engineering discipline where extreme values of design criteria 

are sought. However, quite often there are multiple conflicting criteria that need to be 

handled.  Satisfying one of these criteria comes at the expense of another. Multi-objective 

optimization deals with such conflicting objectives. It provides a mathematical 

framework to arrive at an optimal design state which accommodates the various criteria 

demanded by the application. Equation Chapter 2 Section 1 

This chapter begins with a comparison of single- and multiple-objective 

optimization. Next, the definition of the multi-objective optimization problem and terms 

are explained. Then, a summary of multi-objective optimization methods is presented. 

Finally, reasons are given for the choice of the multi-objective optimization method. 

Single and Multi-objective Optimization 

In single objective optimization one is faced with the problem of finding the 

optimum of the objective function. For example considering the decision making 

involved in an investment (Figure 1). There are several possible designs in the feasible 

domain (A, B and 1-6). These designs are mapped from the design space Figure 1 (b) into 

the criteria space Figure 1 (a). In the design space there are two design variables x1 

(spindle speed) and x2 (axial depth) where the feasible domain is limited by the 
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constraint. If we are only concerned about profit with no regard to risk (profit is our 

single objective), then point B would correspond to the maximum profit optimum design. 

A risk averse investor would choose risk as an objective function. The optimum design 

for the risk objective would correspond to point A. Depending on the objective function, 

constraints, and design variables, different techniques are used to solve for the single-

objective optimum. However, in multi-objective optimization, a vector of objectives 

needs to be optimized. For the investment example, two objectives are considered. In this 

two objective case there is no unique optimum, rather a set of optimum solutions is 

found. In Figure 1, for instance, points A, B and 5-6 are all candidate solutions. 

Depending on the decision maker’s risk aversion, a single solution can be chosen from 

that set. 

Profit

R
is

k

A

B

12

3
4

$1000 $5000

10%

90%

Feasible domain

5

6

Feasible domain

x1

x2

1
2 3

4
B

5
A

6criteria space

design space

constraint

(a)                         (b)  
Figure 1. (a) Typical Pareto front in the criteria space (b) Design variables x1 and x2, and 

constraint in the design space. 

The similarity between single- and multi-objective optimization makes it possible 

to use the same optimization algorithms as for the single-objective case. The only 
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required modification is to transform the multi-objective problem into a single one. This 

may be accomplished in a number of ways, such as introducing a vector of preferences, 

wr , to get a single objective as a weighted sum, or by solving one of the objectives for a 

different set of limits on the other objectives [60-62]. In any case, a set of optimal 

solutions are found rather than a single one. It is worth noting, however, that when the 

objective functions are non-conflicting, the optimal set reduces to a single solution rather 

than a set. This can be related to the commodity example. For instance, if we want to 

maximize both cost and quality, then solution B is the only one. 

Definition of Multi-Objective Optimization Problem 

The mathematical representation of the multi-objective optimization problem is 

formulated as follows: 

 

( ) ( ) ( ) ( )
( )

( )

1 2 , ,...,

   0,      1, 2,...,             ,

                 0,      1,2,...,                

T
k

j

l

Minimize F x F x F x F x

subject to g x j m

h x l e

= ⎡ ⎤⎣ ⎦

≤ =

= =

r r r r

r

r
    (2.1) 

where subscript k denotes the number of objective functions F , m is the number of 

inequality constraints and e is the number of equality constraints; and nE∈x  is the 

vector of design variables, where n is the number of independent design variables. 

Definition of Terms 

The feasible design space (inference space), X
r

, is defined as the set of design 

variables that satisfy the constraint set, or 

 ( ) ( ){ }0,      1, 2,..., ;  and 0,      1, 2,...,     .j lx g x j m h x l e≤ = = =
r r r  (2.2) 
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The feasible criterion space, Z
r

, (often called the cost space or attainable set) is 

defined as the set of cost functions ( )F x
r r  such that xr  maps to a point in the feasible 

design space X
r

 or  ( ){ }.F x x X∈
r rr r  

The preferences refer to the decision maker’s opinion in terms of points in the 

criterion space. The preferences can be set a priori (before solution set is obtained) or a 

posteriori (after solution set is obtained). 

The preference function is an abstract function of points in the criterion space 

which perfectly satisfies the decision maker’s preferences. 

The utility function is an amalgamation of individual utility functions of each 

objective that approximates the preference function, which typically cannot be expressed 

in mathematical form. The formation of a utility function requires insight into the 

physical aspects of each objective. This may require finding the Pareto front (explained 

next) in order to properly formulate the utility function. 

A utopia point is a point 0 kF Z∈ that satisfies ( ){ }0
i iF minimum F x x X= ∈

rr r   for 

each 1, 2..., .i k=  

Pareto Optimality 

The multi-objective optimization problem has more than one global optimum. The 

predominant concept in defining an optimal point is that of Pareto optimality [37] which 

is defined as follows: a point, x X∗ ∈
r

, is Pareto optimal if there does not exist another 

point, x X∈
r

, such that ( ) ( )F x F x∗≤
r r

, and ( ) ( )i iF x F x∗<  for at least one function. 

That is the set of Pareto optimal points dominates any other optimal set. This can be 

defined by the domination relation [60], where a vector 1xr  dominates a vector 2xr  if: 1xr  is 
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at least as good as 2xr  for all the objectives, and 1xr  is strictly better than 2xr  for at least 

one objective. To better understand the domination relation, or Pareto optimality, an 

example is provided [63] (Figure 2). A two-objective problem of maximizing f1 and 

minimizing f2 is addressed. Table 1 presents the set of solutions, classified with respect to 

each other. A solution P is designated as +,- or = depending on whether it is better, worse 

or equal to a solution Q for the corresponding objective. For example, comparing 

solutions A and B, we find that solution A is worse for f1 (maximizing f1) compared to B, 

therefore it is designated as (-) for objective f1. Also, comparing objective f2 we find that 

solution A is worse than B (-). Now for a solution to belong to the non-dominated set it 

must be as good as the other solutions for both objectives and it must be strictly better for 

at least one objective. Considering solution A in Figure 2 we see it is worse than all other 

solutions (dominated); solution B is also worse than C for both objectives (dominated). 

Solution C is not dominated by point E (couple (+,-) at the intersection of the row E and 

the column C) and it does not dominate point E (couple (-,+) at the intersection of the row 

C and the column E), therefore points C and E are non-dominated. Solution D is worse 

than C for both objectives therefore solution D is dominated.  

Multi-objective Optimization Methods 

As explained earlier the solution to a multi-objective optimization problem is a 

Pareto optimal set that gives a tradeoff between the different objective functions 

considered. Depending on the decision maker’s preferences, a solution is selected from 

that set. Therefore multi-objective optimization methods can be categorized according to 

how the designer articulates his preferences (by order or by importance of objectives). 

This includes three cases: a priori, a posteriori, and progressive articulation of 
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preferences. A brief overview of the methods used is outlined. For a detailed description 

of the methods the reader is referred to reference [64]. 

Table 1. Classification of solutions 

Solutions A B C D E 
A  (-,-) (-,-) (-,-) (-,-) 
B (+,+)  (-,-) (-,=) (-,=) 
C (+,+) (+,+)  (+,+) (-,+) 
D (+,+) (+,=) (-,-)  (-,=) 
E (+,+) (+,=) (+,-) (+,=)  
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EDB

A

 

Figure 2. Pareto optimality and domination relation. 
 
Methods with a Priori Articulation of Preferences using a Utility Function 

In these methods, the decision maker’s preferences are incorporated as parameters 

in terms of a utility function a priori. Typically these parameters can be coefficients, 

exponents, constraint limits, etc. These parameters determine the tradeoff of objectives 

before implementation of the optimization method. The optimum solution found would 
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reflect the tradeoff made a priori. Depending on whether the solution found turned out to 

satisfy the preferences or not, the decision maker can re-adjust the parameters to get a 

better solution. However the beauty of these methods is that they do not require doing a 

multi-objective optimization problem since the a priori preferences and utility function 

reduce the optimization to a single one. 

Weighted global criteria method 

In this method, all objective functions are combined to form a single utility 

function. The weighted global criterion is a type of utility function U  in which 

parameters are used to model preferences. The simplest form of a general utility function 

can be defined as 

 ( ) ( )
1

,       0 ,    or
k P

i i i
i

U w F x F x i
=

= > ∀⎡ ⎤⎣ ⎦∑  (2.3) 

 ( ) ( )
1

,       0 ,
k P

i i i
i

U w F x F x i
=

= > ∀⎡ ⎤⎣ ⎦∑  (2.4) 

where wr  is the vector of weights set by the decision maker such that 0w ≥
r  and 

1
1k

ii
w

=
=∑ . The difference between the two above formulations is related to conditions 

required for Pareto optimality.  Complete discussion can be found in reference [64]. 

 
Weighted sum method 

This is a special case of the weighted global criteria method in which the exponent 

P is equal to one; that is, 

 ( )
1

.
k

i i
i

U w F x
=

= ∑  (2.5) 

The method is easy to implement and guarantees finding the Pareto optimal set, 

provided the objective function space is convex. However, a uniformly distributed set of 
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weights does not necessarily find a uniformly distributed Pareto optimal set, which makes 

it difficult to obtain a Pareto solution in a desired region of the objective space. 

Exponential weighted criterion 

It is defined as follows: 

 ( ) ( )

1
1 ,ii

k
pF xpw

i
U e e

=

= −∑  (2.6) 

where the argument of the summation represents an individual utility function for ( )iF x . 

Weighted product method 

To avoid transforming objective functions with similar significance and different 

order of magnitude, one may consider the following formulation [65]: 

 ( )
1

,
iwk

i
i

U F x
=

= ⎡ ⎤⎣ ⎦∏  (2.7) 

where iw  are weights indicating the relative significance of the objective functions.  

Conjoint analysis 

This method [66, 67] uses a concept borrowed from marketing, where a product is 

characterized by a set of attributes, with each attribute having a set of levels. An 

aggregated utility function is developed by direct interaction with the customer/designer; 

the designer is asked to rate, rank order, or choose a set of product bundles. In 

engineering design studies, we can assume that people will choose their most preferred 

product alternative. Conjoint analysis takes these sets of attributes and converts them into 

a utility function that specifies the preferences that the customer has for all of the 

product’s attributes and attribute levels. The advantage of this method is that it 

automatically takes into account marginal diminishing utility (i.e., no cost is expended in 

a design that does not really have practical utility). 
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Methods with a Priori Articulation of Preferences without using a Utility Function 

Lexicographic method 

Here the objective functions are arranged in a descending order of importance [68]. 

The highest preference objective is optimized with no regard to the other objectives, and 

then a single objective problem is solved consecutively (in order of preference of 

objectives) for a set of limits on the optimums of previously solved for objectives. This 

can be defined as 

 

( )

( ) ( )
 

,     1, 2,..., 1, 1,

1,2,...,

i

j j j

Minimize F x

subject to F x F x j i i

i k

∗≤ = − >

=

 (2.8) 

where i represents the function’s position in the preferred sequence and ( )*
j jF x  

represents the optimum of the jth objective function found in the jth iteration. 

Goal programming methods 

Here, goals jb  are specified for each objective function ( )jF xr [69]. Then the total 

deviation from the goals, 
1

k

j
j

d
=

∑ , is optimized, where jd  is the deviation from the goal 

jb  for the jth objective.  

Methods for an a Posteriori Articulation of Preferences 

The inability of the decision maker to set preferences a priori in terms of a utility 

function makes it necessary to generate a Pareto optimal set after which an a posteriori 

articulation of preferences is made; such methods are sometimes referred to as cafeteria 

or generate-first-choose-later. These methods however require the generation of the 

Pareto optimal set which may be prohibitively time consuming. It is worth noting that 

repeatedly solving the weighted sum approaches presented earlier can be used to find the 
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entire Pareto optimal solution for convex criteria space; however, these methods fail to 

provide an even distribution of points that can accurately represent the Pareto optimal set.  

Bounded objective function method 

In this method [70], the single most important objective function, ( )sF xr , is 

minimized, while all other objective functions are added as constraints with lower and 

upper bounds such that ( ) ,   1,2,..., ,i i il F x i k i sε≤ ≤ = ≠
r . A variation of this method is 

theε − constraint [71] or trade-off method in which the lower bound il  is excluded and 

the Pareto optimal set is obtained using a systematic variation of iε . This method is 

particularly useful in finding the Pareto optimal solution for convex or non-convex 

objective spaces alike. However, choice of the constraint vector εr  must lie within the 

minimum and maximum of the objective function considered; otherwise, no feasible 

solution will be found. Also the distribution of the Pareto optimal solution will usually be 

non-uniform for the objective function(s) minimized.  

Normal boundary intersection (NBI) method 

This method  provides a means for obtaining an even distribution of Pareto optimal 

points for a consistent variation in parameter vector of weights [72, 73], even with a non-

convex Pareto optimal set (a deficiency found in weighted sum method). For each 

parameter weight the NBI problem is solved to find an optimum point that intersects the 

criteria feasible space boundary, however, for non-convex problems, some of the 

solutions found can be non Pareto optimal. Details of the method can be found in the 

references. 
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Normal constraint (NC) method 

This method uses normalized objective functions with a Pareto filter to eliminate 

non-Pareto optimal solutions [74]. The individual minima of the normalized objective 

functions are used to construct the vertices of the utopia hyper-plane. A sample of evenly 

distributed points on the utopia hyper-plane is found from a linear combination of the 

vertices with consistently varied weights in criterion space. Each Pareto optimal point is 

found by solving a separate normalized single-objective function with additional 

inequality constraints for the remaining normalized objective functions. 

Homotopy method 

In this method the convex combination of bi-objective functions ( ) 1 21 f fα α− +  is 

optimized for an initial value of the parameterα . Then homotopy curve tracking methods 

are used to generate the Pareto optimal solution curve for [ ]0,1α ∈  whenever the curve is 

smooth [75, 76] or even non-smooth [62, 77] at points corresponding to changes in the 

set of active constraints.  

Choice of Optimization Method 

The ease of implementation of the ε -constraint method [71] for a bi-objective 

problem makes it a good candidate method. In this method, one of the objectives is 

optimized for systematic variation of limits ( 1 2, ..., iε ε ε ) on the second objective. A 

uniform distribution of the Pareto optimal set can be found for the constrained objective. 

There is no limitation on the convexity or non-convexity of the objective space in finding 

the Pareto optimal set. However, choice of the constraint set of limits ( 1 2, ..., iε ε ε ) must 

lie within the minimum and maximum of the objective function considered; otherwise, no 

feasible solution would be found. In our case the material removal rate ( MRRf ) and 
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surface location error ( SLEf ) are the bi-objective criteria. The material removal rate 

objective would be a better choice for the constrained objective, since the set of limits 

( 1 2, ..., iε ε ε ) of MRRf  constraint can be more easily constructed according to designer’s 

preference, whereas that would be difficult for the SLEf  objective. 
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CHAPTER 3 
MILLING MULTI-OBJECTIVE OPTIMIZATION PROBLEM 

Introduction 

In this chapter, a description of the milling problem and solution method used to 

solve the mathematical model is presented. Two optimization methods of interest are 

briefly described. These methods are then applied to the multi-objective optimization 

problem and a discussion of results is provided. Equation Chapter 3 Section 1 

Milling Problem 

Milling ModelEquation Chapter 3 Section 1 

The schematic for a two degree-of-freedom (2-DOF) milling process is shown in 

Figure 3 (repeated here). With the assumption of either a compliant tool or a structure, a 

summation of forces gives the following equation of motion: 

ky
cy

kx

cx

x

y

θ

Ω

 
Figure 3. Schematic of 2-DOF milling tool 
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where the terms mx, cx, kx and my, cy, ky are the modal mass, viscous damping, and 

stiffness terms, and Fx, and Fy are the cutting forces in the x and y directions, respectively. 

A compact form of the milling process can be found by considering the chip thickness 

variation and forces on each tooth (a detailed derivation is provided in references [54-58] 

and Appendix A): 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )  ,X t X t X t t b X t X t + f t boτ+ + = − −
rr r r r r&& &M C K Kc  (3.2) 

where ( ) ( ) ( ) TX t x t y t⎡ ⎤⎣ ⎦=
r

is the two-element position vector and M, C, and K are the 

2x2 modal mass, damping, and stiffness matrices, Kc and 0f
r

 (function of the cutting 

force coefficients) are defined in Appendix A, b is the axial depth of cut, τ = 60/(NΩ) is 

the tooth passing period in seconds, Ω is the spindle speed given in rev/min (rpm), and N 

is the number of teeth on the cutting tool. As shown in Eq. (3.2), the milling model is 

dependent on modal parameters of the tool/work-piece combination and the cutting force 

coefficients. 

Solution Method 

As described in Chapter 1, a solution of Eq. (3.2) can be completed using numerical 

time-domain simulation [43, 44, 50] or the semi-analytical TFEA [54-58]. Compared to 

the first approach, TFEA can obtain rapid process performance calculations of surface 

location error, SLEf , and stability. The computational efficiency of TFEA compared to 

conventional time-domain simulation methods makes it the most attractive candidate for 

use in the optimization formulation. In this method a discrete linear map is generated that 
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relates the vibration while the tool is in the cut to free vibration out of the cut. Stability of 

the milling process can be determined using the eigenvalues of the dynamic map, while 

surface location error (see Appendix A) is found from the fixed points of the dynamic 

map. Details can be found in references [54-58]. An added advantage of TFEA is that it 

provides a clear and distinct definition of stability boundaries (i.e., eigenvalues of the 

milling equation with an absolute value greater than one identify unstable conditions).   

Problem Specifics  

In this section, the calculation of the stability boundary is analyzed, the continuity 

of surface location error and stability boundary is addressed, TFEA convergence is 

described, and sensitivity of the milling model to cutting force coefficients is defined. 

Stability Boundary 

In order to find the axial depth limit, blim, of neutral stability at corresponding input 

parameters, the bi-section method is used in the TFEA algorithm to solve for blim at 

which the maximum characteristic multiplier is equal to one (stability limit) 

 max 1g λλ = ≤
r

 (3.3) 

where λ
r

 is the eigenvalues of the dynamic map. An absolute error is used as a criterion 

for convergence 

 1i i

i

b b
b

ε−−
≤  (3.4) 

where ε  corresponds to the error tolerance and ib is the root corresponding to  

max 1λ =
r

 at iteration i. The value of ε  is set based on the numerical accuracy required 

in the calculation of blim. A value of 1 3eε = − can be adequate for the calculation of blim. 
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Surface location error and stability boundary: C1 discontinuity 

Correct use of an optimization method depends on its limitations. Gradient-based 

methods, for example, depend on C1 continuity (the first derivative of the function is 

continuous) of the objective functions ( MRRf  and SLEf ) and stability constraint (Eq. (3.3)). 

The objective MRRf  is defined analytically in Eq. (3.6), where it is clear that it is C1 

continuous. However, the SLEf  and stability ( gλ ) functions are only found numerically 

using TFEA. A graphical description of both functions provides some insight into the 

continuity of these functions.  Figure 4 depicts the variation of SLEf   and SLEf  as a 

function of spindle speed for a typical set of cutting parameters. Although SLEf  is C1 

continuous in the region where it is defined (stable region), SLEf  is C1 discontinuous. 

This can be easily verified analytically by considering the functions ( )f x x=  and 

{ }( )      0 and     0f x x x for x x for x= = > − < . The absolute function is clearly C1 discontinuous 

at 0x = . The same argument can be made for the near-zero SLEf  range shown in Figure 4.  

In Figure 5 the variation of stability function gλ  versus spindle speed shows lobe peaks 

where C1 (slope) discontinuity of gλ  is also observed. C1 discontinuity makes 

convergence of gradient-based optimization algorithms near the discontinuity rather 

difficult. This requires the use of multiple initial guesses in order to converge to even a 

local optimum. 
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Figure 4. Surface location error and its absolute. Discontinuity of the absolute surface 

location error is apparent in the lower insert. 
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Figure 5. A typical stability boundary. The cusps where 1C  discontinuity in the stability 

boundary are depicted. 

TFEA convergence 

The convergence of TFEA depends on the cutting parameters. A higher number of 

elements must be used when convergence is not achieved. Either SLEf  or the stability 

boundary gλ  can be used to check for convergence. A typical procedure to test for the 

convergence of finite element meshes is to compare the change in the estimated value ( gλ  

or SLEf ) as the number of elements is increased (mesh refinement). In Figure 6, the 
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dependence of convergence on the spindle speed is shown for a randomly selected cutting 

condition of 5% radial immersion (percentage of radial depth of cut to tool diameter) and 

18 mm axial depth. As seen in Figure 6, the flawed convergence for a small number of 

elements (=1) would give the impression of a sufficient number of elements. However, 

further increasing the number of elements (=12) shows poor convergence for the low 

speed. This can be due to the fact that as the spindle speed decreases, the time in the cut 

increases, which requires a higher number of elements to achieve convergence. The fact 

that the optimization algorithm will pick milling parameters within the design space 

makes it necessary to choose a rather high number of elements to ensure convergence 

anywhere in the design space. However, a penalty in computational time is incurred.  

0 10 20 30 40
-20

0

20

40

No. of elements

g λ - 
1

2 4 6

0

10

20

30

40

50

No. of elements

g λ - 
1

20 25 30 35 40
0

2

4

6

8

10

No. of elements

g λ - 
1

10 15 20
0

1

2

3
x 10

4

No. of elements

g λ - 
1

500 (rpm)
1000

 
Figure 6. Convergence of stability constraint for 5% radial immersion and different spindle 

speeds for an 18 mm axial depth. We can see that convergence at lower speeds 
require substantially more number of elements. 
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Optimization Method 

Optimization methods can be categorized according to the searching method used 

to find the optimum [78]. They are either direct where only the values of the objective 

function and constraints are used to guide the search strategy, or gradient-based, where 

first and/or second order derivatives guide the search process. Particle swarm 

optimization (PSO) and sequential quadratic programming (SQP) will be used to test the 

feasibility of both methods, respectively, for the problem at hand. 

Particle Swarm Optimization Technique 

Particle swarm optimization is an evolutionary computation technique developed 

by Kennedy and Eberhart  [79, 80]. It can be used for solving single or multi-objective 

optimization problems. To find the optimum solution, a swarm of particles explores the 

feasible design space. Each particle keeps track of its own personal best (pbest) fitness 

and the global best (gbest) fitness achieved during design space exploration. The velocity 

of each particle is updated toward its pbest and the gbest positions. Acceleration is 

weighted by a random term, with separate random numbers being generated for 

acceleration toward pbest and gbest. 

In order to accommodate constraints, Xiaohui et al. [79]  presented a modified 

particle swarm optimization algorithm, where PSO is started with a group of feasible 

solutions and a feasibility function is used to check if the newly explored solutions satisfy 

all the constraints. All the particles keep only those feasible solutions in their memory 

while discarding infeasible ones.   
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Sequential Quadratic Programming (SQP) 

The basic idea of this method is that it transforms the nonlinear optimization 

problem into a quadratic sub-problem around the initial guess.  The nonlinear objective 

function and constraints are transformed into their quadratic and linear approximations.  

The quadratic problem is then solved iteratively and the step size is found by minimizing 

a descent function along the search direction. Standard optimization algorithms may be 

used to solve the quadratic sub-problem.  

Usually SQP leads to identification of only local optima. In order to better 

converge to the global optimum, a number of initial guesses is used to scan the design 

space and the optimum of these local optima is close to the global optimum. 

Problem Formulation 

In this section, the multi-objective optimization problem is defined and then a 

description of the tradeoff method is given. The problem solution is then presented in the 

order it has been addressed in the robust optimization section. Finally, discussion of the 

simulation results is provided. 

Problem Statement 

The problem of minimizing surface location error SLEf and maximizing material 

removal rate MRRf is stated as follows: 

 
( ) ( )

( ) ( )

                           , , , , , , , , , ,

 :          , , , , 1

SLE MRRmin f a b c N f a b c N

subject to g b max a b Nλ λ

⎡ ⎤Ω − Ω⎣ ⎦

Ω = Ω ≤
r  (3.5) 

where gλ  is the stability constraint obtained from the dynamic map eigenvalues, SLEf  is 

found from the fixed points, and the mean MRRf is given as: 

 MRRf abcN= Ω , (3.6) 
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where a, b, c, N and Ω  are radial depth of cut, axial depth of cut, feed per tooth (chip 

load), number of teeth, and spindle speed, respectively (Figure 7). From Eq. (3.5) it can 

be seen that only the stability constraint is not a function of the feed per tooth. In Eq.(3.5)

, SLEf  and MRRf  are explicitly stated as a function of cutting conditions (a, b, c, N and Ω ). 

This reflects the relative ease by which these conditions can be adjusted to achieve 

optimality of the objectives. 

 

Chip load, c 

N=2 Axial  
depth, 
b 

Radial depth
of cut, a

x

y

Slotting

x

y

Up milling

x

y

Down milling

φex

φex=π

φ

φst=0 φst=0

φex=π

φst

a R

 
Figure 7. Schematic of milling cutting conditions and various types of milling operations. 

Tradeoff Method 

To address the multi-objective problem the constraint method is used, where the 

two-objective problem is transformed into a single objective problem of minimizing one 

objective with a set of different limits on the second objective. Each time the single 

objective problem is solved, the second objective is constrained to a specific value until a 

sufficient set of optimum points are found. These are used to generate the Pareto front 

[38] of the two objectives. In the case that SLEf  is chosen as the objective function to be 

minimized then Eq. (3.5) is transformed to: 
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Where the cutting conditions: a, b, c, N and Ω  are the design variables. On the other 

hand if MRRf  is chosen as the objective function to be maximized, then Eq. (3.5) is 

transformed to: 
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                         , , , , , , 1,
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λ λ

− Ω

Ω ≤ =

Ω = Ω ≤
r

SLEf .

 (3.8) 

It should be noted that applying Eq. (3.7) using the SQP method is more 

straightforward than Eq. (3.8). The reason is that in order to use a number of initial 

guesses along the SLEf  contour in Eq. (3.8), the axial depth corresponding to that SLEf  

needs to be found, whereas in Eq. (3.7) the axial depth can be explicitly expressed found 

as shown in Eq. (3.6). 

Robust Optimization 

Problem solution 

In the first iteration of the problem, only axial depth (b) and spindle speed ( Ω ) are 

considered as design variables. Other cutting conditions are held fixed (Table 2) for a 

down milling cut. Modal parameters for a single degree-of-freedom tool with one 

dynamic mode in x and y directions are used (Table 2). The nominal values of the 

tangential (Kt) and normal (Kn) cutting force coefficients are 550 N/mm2
 and 200 N/mm2, 

respectively. The SQP method is used to find the Pareto front using the formulation in 

Eq. (3.7). Here SLEf  is minimized for a set of limits on MRRf . As mentioned earlier, the 
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SQP method is a local search method that is highly dependent on C1 continuity of the 

objective function and constraints. To obtain a global optimum, a number of initial 

guesses are used along each MRRf  constraint limit. A set of optimum points are obtained 

for these initial guesses. The minimum of these optimum points is nominated as a global 

optimum. The number of initial guesses is increased and another run of the optimization 

simulation is made to check the validity of that global optimum.  

Table 2. Cutting conditions and modal parameters for Tool used in optimization 
simulations 

M (kg) C (Ns/m) K (N/m) 
0.056 0

0 0.061
 

3.94 0
0 3.86

 
6

6

1.52 10 0
0 1.67 10
×

×
 

Tool diameter (mm) c (mm) a (mm)  N 
19.05 0.178 0.76 2 

Kt (N/m2) Kn (N/m2) Kte (N/m) Kne (N/m) 
550 x 106 200 x 106 0 0 

 
 

In this formulation, the minimum SLEf  points were found to favor spindle speeds 

where the tooth passing frequency is equal to an integer fraction of the system’s natural 

frequency (Figure 8), which corresponds to the most flexible mode (these are the 

traditionally-selected ‘best’ speeds which are located near the lobe peaks in stability lobe 

diagrams). Because SLEf can undergo large changes in value for small perturbations in Ω  

at these optimum points, the formulation provided in Eqs. (3.7) and (3.8) leads to optima 

which are highly sensitive to spindle speed variation (Figure 8) . To show the sensitivity 

of these optimum points, a typical optimum point is superimposed on a graph of SLEf vs. 

Ω  in Figure 9. It is seen that the optimum point is located in a high SLEf slope region. 
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Figure 8. Stability, SLEf   and MRRf contours with optimum points overlaid. The figure 
shows that optimum points occur in regions sensitive to spindle speed variation 
(Table 2). 
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Figure 9. A typical optimum point found; optimum point sensitivity with respect to 

spindle speed is apparent (Table 2). 
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Reformulation of problem 

The optimization problem was redefined in order to avoid convergence to spindle 

speed-sensitive optima. Two approaches were applied: 1) an additional constraint was 

added to the SLEf  slope; and 2) the SLEf  objective was redefined as the average of three 

perturbed spindle speeds. The latter proved to be more robust than the former. This is due 

to the difficulty in setting the value of the SLEf slope constraint a priori. The spindle 

speed perturbed form of the problem transforms Eqs. (3.7) and (3.8) to 

( ) ( ) ( )

( )
( ) ( ) ( ){ }

, , ,

3
                         ,

 :       , ,                 1 ... 

                        , , , 1,
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f b f b f bSLE SLE SLEmin
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g b g b g b
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δ δ
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,SLEverage perturbed f

   

         (3.10) 

where δ is the spindle speed perturbation selected by the designer (a typical value for our 

analyses was 50 rpm). A study of spindle speed perturbation selection is provided in the 

next section. 

The validity of the perturbed SLEf  average as a convergence criteria can be seen in 

Figure 10. In this figure the perturbed average SLEf  is plotted with SLEf , where points A 

and B correspond to highly and moderately spindle speed-sensitive SLEf , respectively. 
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The average perturbed SLEf  at point A (high slope point) is shown to be higher than at 

point B. Therefore, using the perturbed average SLEf as an objective function criteria can 

avoid convergence to spindle speed sensitive SLEf (such as SLEf region near point A).  
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Figure 10. Perturbed average of SLEf  validation as optimization criterion that avoids 

spindle speed sensitive SLEf . Shown in the figure are points A (close to steep 

slope region of SLEf  ) and B (close to moderate slope region of SLEf ), the 

perturbed average of SLEf  near A is higher than at B. Therefore, using the 
perturbed average as an optimum criterion is valid. 

The SQP method is used to solve Eqs. (3.9) and (3.10). In case Eq. (3.9) is 

implemented then initial guesses of Ω  and b (design variables) are made along the MRRf  

contour. In the other case (Eq. (3.10)) the initial guesses of Ω  and b are made along SLEf  
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contour. The number of initial guesses along the constraint is made such that convergence 

is towards a global optimum. The initial guesses for the spindle speed are increased in 

625 rpm increments for the corresponding spindle speed range considered. Also, the PSO 

method is used to solve Eq. (3.8). When using PSO, the optimum points do not tend to 

converge to spindle speed sensitive optimums. Therefore, there is no need to solve the 

reformulated form of the problem in PSO. This leads to a fewer number of evaluations of 

SLEf  and is a computationally more efficient optimization method. 

A comparison of the three optimization schemes is shown in Figure 11 and Figure 

12. Figure 11 shows the optima for each approach superimposed on the corresponding 

stability lobe diagram. In Figure 12, the Pareto fronts for the three methods are shown. 

The optimum points found using the two SQP formulations closely agree with the PSO 

method (Figure 12). 

 
Figure 11. Stability, SLEf , and MRRf  contours with optimum Pareto front points found 

using PSO and SQP (average perturbed spindle speed formulation). The figure 
shows that optimum points are not in regions sensitive to spindle speed (Table 2). 
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Figure 12. Pareto front showing optimum points found using three optimization 

algorithms/formulations; the same trends are apparent. However, the SQP 
methods required additional computational time (Table 2). 

 Although the PSO points show the same trend, some improvement in the fitness is 

still possible relative to the SQP results. Because the PSO search inherently avoided 

optimum points that are spindle speed insensitive, there is no need to use average 

perturbed fSLE as with SQP, which leads to a decreased number of fSLE evaluations in 

PSO. However, narrow optimum points may go undetected when using PSO. 

As noted, when comparing the Pareto fronts in Figure 12, it is seen that the PSO 

approach did not converge to the same fitness as SQP method. A check of the optimum 

points which correspond to a value of SLEf = 4 µm, for example, shows that PSO 

converged to 100 mm3/s, while SQP converged to 150 mm3/s. To better understand this 
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result, the design space was divided between the two design vectors, b and Ω, for SQP 

and PSO using a factor, a, that was normalized between 0 and 1. The PSO and SQP 

optimums were normalized to a = 0 and 1, respectively. Next, the stability constraint 

( gλ ), MRRf , and  SLEf  were plotted against that ratio. In Figure 13 it is seen that 

discontinuities exist in the SLEf  constraint and the first derivative of the eigenvalue 

constraint within this region. Although PSO is not significantly affected by a 

discontinuity in the derivative constraint, it can be affected by a discontinuity of the SLEf  

constraint, where the discontinuity tends to narrow the search region of the swarm. 
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Figure 13. Variations in the eigenvalues, surface location error, and removal rate for PSO 
and SQP optima, where MRRf  is the objective for both. The discontinuities in the surface 
location error cause PSO to not converge on the SQP optimum. 
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Bi-objective space 

In this section, the bi-objective domain (the feasible space of the objective 

functions) of average perturbed SLEf and MRRf  for the set of input parameters listed in 

Table 3 for an up milling case is provided. Figure 14 shows the objective contours in the 

design space of spindle speed ( Ω ) and axial depth ( b ). The respective bi-objective space 

is shown in Figure 15 and Figure 16. In Figure 15 the contours of constant axial depth are 

shown, while the contours of constant spindle speeds are shown in Figure 16. These 

figures give an idea of the feasible design and bi-objective space. It can be seen that the 

bi-objective feasible space can be non-convex (not all points on a straight line connecting 

two points in the feasible domain belong to that domain). This makes the choice of using 

the tradeoff method as a multi-objective optimization approach a suitable one, since this 

method can handle both convex and non-convex problems. A good observation can be 

made from Figure 15, where it can be seen that for the high MRRf  region with high b 

values, the relative sensitivity of  SLEf  increases compared to the lower MRRf  region. 

Table 3. Cutting conditions, modal parameters and cutting force coefficients used in bi-
objective space simulations 

M (kg) C (Ns/m) K (N/m) 
0.44 0

0 0.35
 

83 0
0 90

 
6

6

4.45 10 0
0 3.55 10
×

×
 

Tool diameter (mm) c (mm) a (mm)  N 
25.4 0.1 21.8 1 

Kt (N/m2) Kn (N/m2) Kte (N/m) Kne (N/m) 
700 x 106 20 x 106 46 x 103 33 x 103 
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Selection of spindle speed perturbation bandwidth 

In Figure 10, it was shown that the average perturbation of SLEf  provided an 

adequate optimization criteria. However, the choice of the spindle speed perturbation step 

size or bandwidth, 2δ , depends on the designer preference. Any spindle speed 

perturbation in SLEf  would avoid convergence to sensitive SLEf  optima. Depending on 

the machining center spindle drive accuracy, the perturbation bandwidth can be set 

accordingly. The average perturbed SLEf  contours of 100 and 300 rpm bandwidth are 

shown in Figure 17 (use Table 3 parameters). The high slope region of average SLEf  in 

the 100 rpm bandwidth case is replaced by higher values of average SLEf , making the 

optimization formulation favor insensitive spindle speed SLEf . 
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Figure 14. Average surface location error contours for 300 rpm bandwidth perturbation, 

stability boundary and material removal rate (see Table 3). 
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Figure 16. Contour lines corresponding to constant spindle speed in feasible region of bi-

objective space (see Table 3). 
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Figure 17. Average surface location error contours for 100 and 300 rpm band width, 

stability boundary and material removal rate contours (see Table 3). 
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 Case Studies 

As opposed to the previous analysis of two design variables ( Ω  and b), two cases 

of an added third design variable were analyzed. The first one was for radial immersion 

(a) and the second one was for chip load (c). These cases are compared to the two design 

variable case. 

Radial immersion (a) 

Previous simulations considered spindle speed and axial depth of cut as design 

variables. Another simulation was completed using radial immersion as a third design 

variable for an up milling cut. It was compared to a two design variable case where radial 

immersion was held constant at 0.508 mm in a 25.4 mm tool (Table 4). Figure 18 shows 

the Pareto front for these two cases. It is seen that adding radial immersion as a third 

design variable improved the value of perturbed average SLEf with respect to the constant 

radial immersion case. The optimum radial immersion found was 0.58 mm for all 

optimum points up to 500 mm3/s. In both simulations the same spindle speed perturbation 

( 170δ = rpm) was used. As seen in Figure 18, a better calculation of the Pareto front 

(smoother than Figure 12) is found by using small increments in the spindle speed (each 

100 rpm) initial guesses. However, the SLEf  found in Figure 18 appear to be 

unrealistically small which may warrant further analysis. 

Table 4. Cutting conditions, modal parameters and cutting force coefficients used in 
radial immersion case study 

M (kg) C (Ns/m) K (N/m) 

0.25 0
0 0.23

 
34.4 0

0 27.0
 

61.30 10 0
60 1.20 10

×

×
 

Tool diameter (mm) c (mm) a (mm)  N 
25.4 0.1 0.508 2 

Kt (N/m2) Kn (N/m2) Kte (N/m) Kne (N/m) 
700 x 106 210 x 106 0 0 
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Chip load (c) 

To study the effect of chip load on surface location error, it is added as a third 

design variable in addition to spindle speed and axial depth. The parameters used in this 

study are listed in Table 5 for a down milling case. For the two design variable case (0.1 

mm/tooth chip load), the Pareto optimal points are found for two different bandwidths, 

100 rpm and 400 rpm, respectively (Figure 20). It is noted that Ω  of the optimum points 

is almost constant up to 700 mm3/s ( 31,325 rpm) where it changes to another almost 

constant Ω  (29,500 rpm) for the higher MRRf  range. Also the effect of bandwidth size 

does not show significant effect on the optimum points found. Figure 19 shows the Pareto 

front for a constant chip load of 0.1 mm/tooth compared to the three design variable case, 

where the chip load (3rd design variable) side constraints are from 0.01 mm/tooth to 0.2 

mm/tooth. An improvement in the average perturbed SLEf  can be seen. It should be noted 

here that for the latter case, Ω  is also found to be constant (31,325 rpm same as two 

design variable case) while the chip load increased from 0.16 to 0.2 mm/tooth. The effect 

of adding the chip load is therefore seen as an improvement in the fitness of average 

perturbed SLEf  objective, where further improvement is possible while eliminating the 

need to switch to a lower speed (29,500 rpm) where the SLEf  error is much higher. This 

explains the agreement between the two design variables case and three design variable 

case in the MRRf  range below 600 mm3/s. When higher MRRf  is needed the two design 

variable case fails to account for the MRRf  constraint at the same spindle speed. However 

the three design variable case (with chip load) can accommodate this by increasing the 

chip load while keeping the spindle speed unchanged. This makes the SLEf  in the three 

design variable case substantially lower. 
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Figure 18. Pareto front for spindle speed and axial depth as design variables with radial 
immersion 0.508 mm, compared to the case where radial immersion is added as a 
third design variable. The optimum radial immersion for the latter case is 0.58 
mm up to 500 mm3/s (see Table 4). 

Table 5. Milling cutting conditions, modal parameters and cutting force coefficients used 
in chip load study case 

M (kg) C (Ns/m) K (N/m) 
0.027 0

0 0.03
 

7 0
0 2

 
6

6

1.0 10 0
0 1.6 10
×

×
 

Tool diameter (mm) c (mm) a (mm)  N 
12.7 0.1 0.635 2 

Kt (N/m2) Kn (N/m2) Kte (N/m) Kne (N/m) 
600 x 106 180 x 106 0 0 
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Figure 19. Pareto front using chip load as a third design variable compared to spindle 
speed and axial depth as design variables. For the three design variable case, an 
improvement in the average surface location error can be seen (see Table 5). 
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Figure 20. Stability, perturbed average SLEf , and MRRf  contours with optimum Pareto front points found using 100 rpm and 400 rpm 
                 bandwidth. This case study shows the difficulty in selecting optimum points based on experience (Table 5).
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Discussion 

The formulations provided in Eqs. (3.9) and (3.10) proved adequate in finding the 

Pareto optimal set insensitive to spindle speed variation, provided an appropriate number 

of initial guesses is made. Also, the Eq. (3.9) formulation is easier to apply using the SQP 

method, where the initial guesses are made along the MRRf  contour.  

The generation of the Pareto front for the multi-design variable case can be rather 

time-consuming. However, if the designer is given that freedom of choice, it might be a 

necessity. For example, the effect of adding chip load or radial immersion as a third 

design variable gave a substantial improvement in the surface location error in 

comparison to the two design variable case. This is counterintuitive to using a lower 

value of c or a as means of reducing the surface location error.  

The effect of spindle speed perturbation bandwidth on the sensitivity of optimum 

points is rather complex. Qualitatively, in Figure 17 it is shown that increasing the 

bandwidth from 100 rpm to 300 rpm had the same effect of increasing the value of  SLEf  

near the sensitive region. Further investigation is needed to establish a quantitative 

relation between bandwidth and sensitivity of optimum points. 
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CHAPTER 4 
UNCERTAINTY ANALYSIS 

In Chapter 3, optimization was used to find preferable designs for two objectives: 

material removal rate (MRR) and surface location error [48, 81, 82] (SLE), with a Pareto 

front, or tradeoff curve, found for the two competing objectives.  Although the milling 

model used in the optimization algorithm is deterministic (time finite element analysis), 

uncertainties in the input parameters to the model limit the confidence in the optimum 

predictions. These input parameters include cutting force coefficients (material- and 

process-dependent), tool modal parameters, and cutting conditions. By accounting for 

these uncertainties it is possible to arrive at a robust optimum operating condition.  

In previous studies [83-85], uncertainty in the milling process was handled from a 

control perspective. The uncertainty in the cutting force was accommodated using a 

control system. The force controller was designed to compensate for known process 

effects and accounted for the force-feed nonlinearity inherent in metal cutting operations. 

In this study, the uncertainties in the milling model are estimated using sensitivity 

analysis and Monte Carlo simulation. This enables selection of a preferred design that 

takes into account the inherent uncertainty in the model a priori. 

This chapter begins with a description of the milling model and continues with a 

discussion of stability lobes and surface location error analysis with regard to their 

numerical accuracy. Sensitivity analysis is discussed in the next section. Then, case 

studies for the numerical accuracy of the sensitivities of the maximum stable axial depth, 

blim, and SLE are presented for a typical two degree-of-freedom tool.  This enables us to 
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carry out the stability lobe and surface location error sensitivity analysis in the next two 

sections. Sensitivity is used to determine the effect of input parameters on blim and SLE. 

This enables the determination of which parameter(s) is the highest contributor to 

stability enhancement and SLE reduction. The uncertainties in blim and SLE predictions 

are then calculated using two methods 1) the Monte Carlo simulation; and 2) the use of 

numerical derivatives of the system characteristic multipliers to determine sensitivities. 

The uncertainty in axial depth effects a reduction in the MRR, and the SLE uncertainty 

provides bounds on SLE mean expected value. This allows robust optimization that takes 

into consideration both performance and uncertainty. Equation Chapter 4 Section 1 

Milling Model 

A schematic of a two degree-of-freedom milling tool is shown in Figure 21. The 

tool/work-piece dynamics and cutting forces are used to formulate the governing delay 

differential equation for the system. Solution of the delay differential equation is found 

using time finite element analysis (TFEA) [54-56]. This method provides the means for 

predicting the milling process stability and quality (SLE). However, the uncertainty in the 

input parameters to the solution method places an uncertainty on the stability and SLE 

prediction. These parameters are divided into two groups; 1) uncertainty from lack of 

knowledge of the tool modal matrices, K, C and M, and the cutting force coefficients 

(mechanistic force model); and 2) uncertainty in other machining parameters, such as 

spindle speed, chip load and radial depth. To estimate the parameters in the former, 

modal testing is used to measure the dynamic parameters while cutting tests are 

completed to estimate the cutting force coefficients. In the modal parameter estimation 

the peak amplitude method is used to fit the measured frequency response function. In 

this method [86, 87], the peak of the magnitude of the frequency response function 
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corresponds to the natural frequency. From this the half power frequencies are used to 

estimate the damping ratio. Table 6 lists the mean modal values for 25.4 mm diameter 

endmill having a 12o  helix angle with 114 mm overhang length and the corresponding 

cutting force coefficients for 6061 aluminum (assuming a mechanistic force model, see 

Chapter 5). The cutting conditions are also listed in the table. These parameters will be 

used in the simulations in this chapter for a down milling cut. 

Kx

x

Ky

Cx

Cy

y

Feed

SLE

 

Figure 21. Schematic of 2-D milling model. Surface location error (SLE) due to phasing 
between cutting force and tool displacement is also shown. 

Table 6. Cutting force coefficients, modal parameters and cutting conditions of milling 
process. 

M  (kg) K (N/m x10 6 ) C (N.s/m)
x 0.44 4.45 83 0.030
y 0.44 3.55 90.9 0.036

K t (N/m 2 x10 6 ) K n (N/m 2 x10 6 ) K ne (N/m x10 3 )
600 180 6

Tool diameter (mm) radial depth,a (mm) chip load, c (mm/tooth)
25.4 0.508 0.1

K te (N/m x10 3 )
12
N
1

ζ
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Stability and Surface Location Error Analysis 

The stability lobes are used to represent the stable space of axial depth (b) and 

spindle speed Ω  of a milling process. In TFEA [54-57], a discrete map is used to match 

the tool-free vibration while out of the cut, with the tool vibration in the cut. The system 

characteristic multipliers ( λ
r

) of the map provide the stable cutting zone where max λ
r

  

is less than one.  

TFEA provides a field of max λ
r

 in the design space of b and Ω. The limit of 

stability, blim can be found using root-finding numerical techniques. Here we use the bi-

section root-finding method. The convergence criterion of the bi-section method should 

account for the amplification of numerical noise induced by sensitivity estimation. It 

should be noted that the number of elements affects the accuracy of the estimation. 

For calculation of SLE in TFEA, the numerical noise is only due to the number of 

elements. In this section we will discuss the effect of both the convergence criterion and 

the number of elements on the sensitivity estimation of blim and SLE. 

Bi-section Method Convergence Criterion 

As described in Chapter 3 the axial depth limit, blim, was calculated using the bi-

section method (Eq. (3.4)). Although a relatively large value of ε  can be adequate for the 

calculation of the stability lobes, a tighter limit is needed to calculate the sensitivities. 

This is attributed to amplification of numerical noise in the derivative calculation. This 

comparison is made in the Case Studies section. 

Number of Elements 

The accuracy of TFEA prediction of stability and SLE is highly dependent on the 

number of elements used. The effect of the number of elements is even more apparent 
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when calculating the sensitivity of the prediction, where a higher number of elements is 

needed to eliminate numerical noise from the sensitivity calculation. 

Numerical Sensitivity Analysis 

The sensitivity of axial depth to input parameters ( )/b Xi∂ ∂  is cumbersome to 

compute analytically using the TFEA method; therefore, a numerical derivative is used 

by implementing a small perturbation.  

Factors which affect accurate calculation of sensitivity to inputs include: 1) central 

difference truncation error; and 2) step size selection. Therefore, a balance needs to be 

achieved in determining the sensitivity that provides a stable estimate of the sensitivity 

while maintaining computational efficiency. In the following, we describe these factors 

and their consideration in the calculation of stability and SLE sensitivities. 

Truncation Error 

The central difference method is used in the sensitivity calculation. The formula for 

this method is 

 ( )21 1 ,
2i

b bb O h
X h

−−∂
= +

∂
 (4.1) 

where h denotes the step size in input parameter Xi, ( )1 ib b X h= + , ( )1 ib b X h− = −  and 

O(h2)  is the 2nd order truncation error. A higher order formula with 4th order truncation 

error O(h4) can also be used. However, as shown in Eq. (4.2), it is two times more 

computationally expensive than Eq. (4.1), 

 ( )42 1 1 28 8
12i

b b b bb O h
X h

− −− + − +∂
= +

∂
. (4.2) 
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In order to help decide whether the higher truncation error formula need be applied 

(Eq. (4.2)), the sensitivity of blim with respect to modal stiffness Kx   is calculated as a 

function of step size h. This comparison is made in the Case Studies section. 

Step Size 

The step size, h, in Eqs. ((4.1) and (4.2)) should be carefully chosen. This is 

especially important when there is numerical noise in the calculated blim due to the 

convergence criterion (Eq. (1)). The step size should be large enough to be out of the 

numerical noise range, however, not so large that the non-linear variation in the output 

(blim or SLE) takes effect. The following section illustrates this idea. 

Case Studies 

 
In this section, numerical estimations of the sensitivity are made based on different 

variations of convergence criterion, number of elements, sensitivity analysis formula (Eq. 

(4.1) and Eq. (4.2)), and step size. The comparisons are made for a 10 krpm spindle 

speed, 10 elements and 43 10xε −=  unless otherwise noted. The logarithmic derivative can 

be used in making these comparisons by evaluating the percentage of change in an output 

(axial depth, b) due to a percentage change in the input, Xi. It is expressed as 

 ( )
( )

ln
ln

i

i i

b X b
X b X

∂ ∂
=

∂ ∂
 (4.3) 

To illustrate the effect of convergence criterion, the logarithmic derivative of blim 

with respect to Mx (the X direction modal mass) is calculated for two error limits as a 

function of step size percentage ( )% / 100i ih X X= ∆ × , see Figure 22. It can be seen that a 

tighter error limit nearly eliminates the numerical noise in the derivative calculation. 
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The effect of the number of elements on SLE sensitivity is illustrated in Figure 23, 

where the SLE sensitivity with respect to Kx is calculated. The / xSLE K∂ ∂  is used to 

illustrate the effect of the number of elements because it is known that the SLE does not 

depend on the Kx stiffness (tool feeding direction being the x-axis). Therefore 

/ 0xSLE K∂ ∂ = , which would amplify and illustrate more clearly the effect of the number 

of elements on the sensitivity estimation. The higher number of elements provides a 

larger stable region of sensitivity. It should be noted that the 2nd order finite difference 

method is used in this sensitivity comparison and the bi-section convergence criterion is 

not applicable here since SLE is found from fixed points of the dynamic map (see Eq. 

(A.18) in Appendix A) when the cutting conditions provide a stable cut. 
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Figure 22. The effect of error limit in the bisection method on numerical noise in the 

sensitivity calculation (see Table 6). 
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Figure 23. Sensitivity of SLE with respect to Kx. The higher number of elements, E, 
provides more stable sensitivity estimation. The second order finite difference 
formula is used here (see Table 6). 

Figure 24 shows the effect of the central difference truncation error. A finite step 

size percentage is needed to reach a stable value of the derivative for both formulas. It 

can be seen that Eq. (4.2) gives a wider range of step sizes at which the sensitivity 

calculation is stable. However, the improved stability range, or reduction in numerical 

noise, is not significant to sacrifice computational efficiency for its usage. 
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Figure 24. Comparison between 2nd and 4th order central difference formulas. The 4th 

order formula shows a wider stable region for step size, but higher computation 
time (see Table 6). 

The importance of step size selection can be illustrated by Figure 25, which shows 

the logarithmic derivative of axial depth with respect to input parameters versus step size 

percentage. It can be seen that the step size should be chosen high enough to be out of the 

numerical noise range but not so high so that the non-linear variation is included (in this 

range of %h only Ω  is non-linear). The figure also indicates the relative sensitivity of 

axial depth to each input parameter, spindle speed having the largest effect followed by 

modal mass and stiffness. 
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Figure 25. The logarithmic derivative of axial depth with respect to input parameters 

versus step size percentage (see Table 6). 

From Figure 24 and Figure 25 it can be seen that h=0.2% provides a stable 

sensitivity estimation. To verify that a typical step size of 0.2%, convergence limit 

43 10ε −= × , E=10, and the 2nd order finite difference approximation give correct 

calculation of sensitivity, the variations of b to modal parameters and cutting coefficients 

are plotted in Figure 26 and Figure 27, respectively. Also, the slope predicted using Eq. 

(4.1) with h=0.2% is superimposed on the same plot. The suitable selection of h is 

indicated by the tangency of the predicted slope to the functional variation. On the other 

hand, it can be seen that when the variation is linear, the linear approximation can be 

accurate for a large variation of the input parameter.  
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Figure 26. The variation of axial depth blim with respect to a 10% change in nominal input 
parameters. The sensitivity of blim with respect to each parameter is superimposed. 
Linearity and non-linearity of blim(Xi)  can be observed (see Table 6). 
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Figure 27. The variation of blim with respect to a 10% change in Kt and Kn. The sensitivity 

of blim with respect to each parameter is superimposed. Linearity of blim(Xi) can be 
observed (see Table 6). 
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 Stability Sensitivity Analysis 

In this section, calculations of the sensitivity of blim to the input parameters are 

provided. The parameters used in the sensitivity calculations are provided in Table 7. In 

Figure 28 a comparison between the sensitivities of stiffness, K, and modal mass, M, are 

compared in the x (feed) and y-directions of the tool. As can be seen in the figure, the 

sensitivities in the x and y-directions are comparable in magnitude; however, the 

sensitivity in the y-direction is inaccurate near discontinuities in the system characteristic 

multipliers. This will be explained in the Uncertainty section with a graphic depicting 

these discontinuities. 

Table 7. Parameters used in sensitivity analysis. 

h (%) E Central difference ε  
0.2 10 2nd order 43 10−×
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Figure 28. Sensitivity of axial depth blim to changes in modal mass M and modal 
stiffness K in the x and y-directions (see Table 6). 
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In Figure 29, the effect of damping on the stability is shown to be minimal 

compared to the modal stiffness and mass. This is a somewhat counter-intuitive result, 

but can be explained by regeneration (undulations in the cut surface experienced by the 

tooth in the current cut that are caused by the tooth vibration in the previous cut), which 

is a primary physical phenomenon that causes instability. The modal mass and stiffness 

have a great effect on the system’s natural frequency, which has a significant effect on 

regeneration. This also explains the result shown in Figure 30, where the sensitivity of 

axial depth blim to a change in spindle speed is significant and comparable to modal mass 

and stiffness. The effect of cutting force coefficients is shown in Figure 31, where the 

tangential cutting force coefficient, Kt, has more effect on the axial depth limit than the 

normal direction coefficient, Kn. 
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Figure 29. Sensitivity of axial depth blim to changes in modal damping C in the x and y-

directions. The damping sensitivity is compared to modal stiffness sensitivity in 
the x-direction (see Table 6). 



60 

 

5 10 15 20
-250

-200

-150

-100

-50

0

50

100

150

Ω (rpm x103)

∂ l
n(

b lim
)/∂

ln
(X

i)

Ky

My

rpm

C1 discontinuities in blim

 
Figure 30. Sensitivity of axial depth blim to changes in spindle speed. The spindle speed 

sensitivity is compared here to the modal mass and stiffness in y-direction (see 
Table 6). 
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Figure 31. Sensitivity of axial depth blim to changes in force cutting coefficients in the 

tangential Kt and normal directions Kn. Higher sensitivity can be seen for Kt (see 
Table 6). 
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 Surface Location Error Sensitivity Analysis 

The sensitivity of surface location error, SLE, to changes in input parameters is 

examined here. The parameters listed in Table 6 are used with b=1 mm and down milling 

case. In Figure 32, the sensitivity of SLE to changes in modal parameters in the y-

direction is shown. Again, it can be seen that changes in Ky and My contribute more than 

Cy to a change in SLE. In Figure 33, the effect of cutting force coefficients is shown, 

where it is observed that the highest contributors to SLE sensitivity are Kt and Kte. Also, 

in Figure 34, SLE sensitivity to spindle speed and radial depth, rstep, is shown. Substantial 

sensitivity to spindle speed can be seen. This is due to the dependence of SLE on the 

relationship between the tool point frequency response and the selected spindle speed. As 

the spindle speed changes, it tracks different parts of the response. 
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Figure 32. Sensitivity of surface location error SLE to changes in modal parameters in y-

direction (see Table 6). 
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Figure 33. Sensitivity of SLE to cutting force coefficients (see Table 6). 
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Figure 34. Sensitivity of SLE to spindle speed and radial depth of cut (see Table 6). 
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 Uncertainty of Stability Boundary and Surface Location Error 

Input Parameters Correlation Effect 

The correlation between the input parameters can have significant effect on the 

prediction of uncertainty. Neglecting the correlation can result in erroneous estimation of 

the uncertainty, especially when the input parameters are highly correlated. Inclusion of 

the covariance matrix between parameters is necessary in this case. The input parameters 

can be classified into three groups: dynamic modal parameters of the tool (work-piece 

assumed rigid), cutting force coefficients and machining parameters (e.g., radial step and 

spindle speed). In Chapter 5, estimation of the correlation between parameters of the first 

two groups is explained and used in the uncertainty prediction. 

The combined standard uncertainty uc can be found using sensitivities of output 

(blim or SLE) to input parameters. For the case of axial depth limit, uc is given as [88]: 

 ( ) ( ) ( )
2 1

2 lim lim lim
lim

1 1 1

2 ,
m m m

c i i j
i i ii i j

b b bu b u X u X X
X X X

−

= = =

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂⎝ ⎠

∑ ∑∑ , (4.4) 

where u(Xi) refers to the standard uncertainty in the input parameter Xi, u(Xi,Xj) is the 

estimated covariance between parameters Xi and Xj,. and m is the number of input 

parameters. The degree of the correlation between Xi and Xj is characterized by the 

correlation coefficient 

 ( ) ( )
( ) ( )

,
, i j

i j
i j

u X X
r X X

u X u X
= . (4.5) 

In the Monte Carlo and Latin Hype-Cube sampling methods (described next), the 

multivariate normal distribution can be used to estimate the confidence level, in which 

case the covariance matrix between parameters controls the random sampling procedure.  
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Monte Carlo Simulation 

The combined standard uncertainty, uc, of the stability boundary (blim) and surface 

location error (SLE) can be predicted using Monte Carlo simulation. In this method, a 

random sample of size n is selected from the population of each input parameter. A 

normal distribution of the input parameters is assumed. In the sample n, the nominal 

value and standard deviation of each input parameter are used to generate the sample. 

The axial depth limit and surface location error are then calculated using TFEA for each 

point in the sample. The standard deviation of the predicted blim and SLE is then 

calculated from sample output for the range of spindle speeds of interest. It should be 

noted here that in doing so, no correlation between the input parameters is assumed, 

which is a common, and sometimes erroneous, approach.  

To illustrate the effect of uncertainty in the input parameters on stability boundary 

uncertainty, standard uncertainties of 5%, 0.5%, 0.001% and 0.5% are assigned to 

nominal values of the cutting force coefficients, modal parameters, radial step, and 

spindle speed, respectively. The values of the standard uncertainties assigned correspond 

to practical variation in the parameters involved. The parameters are assumed to be 

uncorrelated here. A sample size of 1000 is used. The stability boundary uncertainty is 

found, as shown in Figure 35, for one standard deviation interval around the neutral 

stability boundary. 
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Figure 35. Confidence in stability boundary due to input parameters uncertainties using 

Monte Carlo simulation (see Table 6). 

Sensitivity Method 

 
The combined standard uncertainty uc in axial depth limit while neglecting 

correlation between input parameters can be obtained from Eq. (4.4) as       

 ( ) ( )
2

lim
lim

1

m

c i
i i

bu b u X
X=

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

∑ , (4.6) 

where u(Xi) refers to the standard uncertainty in the input parameter Xi (same used for 

Monte Carlo method), and m is the number of input parameters. Although this relation 

assumes no correlation between input parameters it should be noted that cutting force 



66 

 

coefficients (Kt, Kn, Kte, Kne) and modal parameters (K, C, M) may be correlated in 

practice.  

The same standard uncertainty is assumed in the input parameters as in previous 

sections and the confidence level in axial depth limit is calculated for an interval of ± 2 

uc(blim). Figure 36 shows the close agreement found using the two methods. However, it 

should be noted that the sensitivity method can be inaccurate near points where the 

function (blim) is C1 discontinuous. Figure 37 shows the direct correspondence between 

the inaccurate sensitivity and C1 discontinuity in λ
r

. The C1 discontinuity in blim leads to 

inaccurate estimation of uc(blim) (see Eq. (4.6)). 
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Figure 36. Uncertainty boundary in axial depth limit using two standard deviation 

confidence interval. Uncertainty is calculated using sensitivity method and Monte 
Carlo method (see Table 6). 
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Figure 37. Uncertainty in axial depth using sensitivity and Monte Carlo methods. 

Inaccuracies in the sensitivity method can be seen near C1 discontinuity in the real 
and imaginary part of system characteristic multipliers (see Table 6). 

It should be noted here that predicting the uncertainty by Eq. (4.6) uses a linear 

approximation. The standard uncertainties assumed earlier are small where the linear 

approximation is still valid. However, if the uncertainties in the input parameters are 

large, then that linear approximation is no longer valid. In this case, simple random 

sampling methods (such as Monte Carlo simulation) are more appropriate. 

The surface location error uncertainty is found similarly using both methods. 

However, as shown earlier (see Figure 32 and Figure 34), the SLE sensitivities are 

accurate and do not depend on the characteristic multipliers’ continuity. Since the SLE is 

only defined for stable cutting conditions (see Eq. (A.18) in Appendix A) and explains 
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the close prediction of uncertainty in SLE using sensitivity and Monte Carlo methods 

(Figure 38). 

5 10 15 20
-15

-10

-5

0

5

10

15

20

25

30

Ω (x 103)

SL
E 

± 2
u c(µ

m
)

Monte Carlo method
Sensitivity method

 
Figure 38. Surface location error uncertainty with two standard deviation confidence 

interval on the nominal SLE. Close agreement is observed (see Table 6). 

Latin Hyper-Cube Sampling Method 

This method was originally proposed as a variance reduction technique [89] in 

which the estimated variance is asymptotically lower than with simple random sampling 

(Monte Carlo method) [90, 91]. That is, for a sample size L, this method gives a lower 

estimate of the output variance than is possible with the Monte Carlo method. The basic 

idea of this method is that each value (or range of values) of a variable is represented in 

the sample, no matter which value turns out to be the most important. In this way, the 
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sampling distribution is divided into a number of strata with a random selection inside 

each stratum. The Latin Hyper-Cube method will be used in Chapter 5 for predicting the 

standard combined uncertainty of the stability and surface location error cutting tests in 

that chapter. 

Robust Optimization under Uncertainty 

In order to account for uncertainty in the axial depth stability limit, the safety factor 

design analogy is used here. The deterministic optimization algorithm implemented in 

Chapter 3 (Eq. (3.9)), repeated here, can be modified to account for the axial depth 

uncertainty. 
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Therefore, the axial depth b used in the stability constraint is set equal to an uncertainty 

inflated value. That is, b is replaced by b+ Ue, where ( )e cU ku b=  is the expanded 

uncertainty, k is a factor that estimates the uncertainty confidence interval and uc(b)  is 

the combined standard uncertainty in  the axial depth. Therefore Eq. (4.7) becomes 
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Discussion 

In this chapter, the sensitivities of axial depth limit and surface location error to 

model input uncertainties were studied. Numerical estimation of the sensitivities can be 

challenging, where several factors contribute to the accuracy of the estimation. Step size 

is one of the significant factors that affect the accuracy of the estimation. 

The sensitivity analysis aids in identifying the relative contribution of the milling 

model input parameters to the sensitivity of either axial depth limit or surface location 

error. For the case of axial depth, the spindle speed, followed by modal stiffness and 

mass, is the most significant contributor. In the case of cutting force coefficients, the 

tangential cutting force coefficient is found to contribute more to the sensitivity than the 

normal cutting force coefficient. As for the surface location error sensitivity, the same 

trend can be observed. However, for the cutting force coefficients, the edge tangential 

cutting force coefficient significantly contributes to the SLE.  

The uncertainty in axial depth and surface location error was predicted using two 

methods: the sensitivity method and the Monte Carlo simulation approach. Comparable 

agreement is shown. However, the sensitivity method is more efficient computationally. 

For example, in the case of SLE uncertainty prediction, Monte Carlo simulation required 

9.34 hours, while the sensitivity method needed only 0.26 hours (36 times more 

efficient). It is noted that for the uc(SLE) case, when the milling parameters are well into 

the stable region, the accuracy of the sensitivity method is not sacrificed at the cost of 

efficiency as is the case for uc(b) at discontinuities in the characteristic multipliers. 

Finally, the optimization algorithm introduced in Chapter 3 was modified to 

account for confidence levels in the axial depth limit. This allows robust optimization to 
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account for inherent uncertainty in the mean values of the input parameters. In Chapter 5 

an implementation of this algorithm is demonstrated.
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CHAPTER 5 
EXPERIMENTAL RESULTS

The milling model accuracy depends on reliable determination of cutting force 

coefficients and tool or work-piece modal parameters. These values are found 

experimentally and their uncertainties contribute to the uncertainty of the model 

prediction. In this chapter, the experimental procedure used to determine these 

parameters is described and then the optimization algorithm is executed using the 

experimentally determined input parameters to find the Pareto optimal points. Another set 

of experiments is completed to validate/invalidate these optimal points. Using the 

optimization algorithm, the strength and weakness of the mathematical model or solution 

method can be obtained. Equation Chapter 5 Section 1 

Cutting Force Coefficients 

Milling Forces 

The average milling forces during one tooth period in the x and y-directions are [92, 

93], 
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Nbc NbF K K K K

Nbc NbF K K K K

φ

φ

φ

φ

φ φ φ φ φ
π π

φ φ φ φ φ
π π

⎧ ⎫⎡ ⎤= − − + − +⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤= − + − +⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

(5.1) 

where teK  and neK  are the tangential and normal edge cutting force coefficients, 

respectively. In slotting tests (see Figure 7), the entry and exit angles of the cutter are 
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0stφ =  and exφ π= , respectively. The average forces per tooth period for this case are 

found to be: 

 4

4

x n ne

y t te

Nb NbF K c K

Nb NbF K c K

π

π

= − −

= +
. (5.2) 

Equation (5.2) can be written as a function of chip load (c) as: 

 ( )   , , .q qc qeF F c F q x y z= + =  (5.3) 

The experimental procedure consists of completing multiple cutting tests at varying 

chip loads and recording the cutting forces. For each chip load increment, the average 

cutting forces in the x and y-directions are measured, and then a linear regression of the 

data points is made to extract the cutting coefficients using Eqs. (5.2) and (5.3): 

 

4
,         

4 ,      .

yc ye
t te

xc xe
n ne

F F
K K

Nb Nb
F FK K

Nb Nb

π

π

= =

= − = −

 (5.4) 

For radial immersions less than the cutter diameter, the entry and exit angles differ 

from the slotting case. For up-milling (see Figure 7) the entry and exit angles of the cutter 

are 0stφ =  and 1cos 1-  ex
a
R

φ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where a is the radial depth of cut. Substituting in Eq. 

(5.1) gives: 

 

( ) ( ) ( ) ( )cos 2 1 2 sin 2 sin cos 1
8 2x t ex n ex ex te ex ne ex
Nbc NbF K K K Kφ φ φ φ φ

π π
⎡ ⎤ ⎡ ⎤= − − − + − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

  (5.5) 

Factoring Eq. (5.5) in terms of chip load c gives: 
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 x xc xeF F c F= +  (5.6) 

 
( ) ( )

( ) ( )

cos 2 1 2 sin 2
8

sin cos 1 .
2

xc t ex n ex ex

xe te ex ne ex

NbF K K

NbF K K

φ φ φ
π

φ φ
π

⎡ ⎤= − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤= − + −⎡ ⎤⎣ ⎦⎣ ⎦

 (5.7) 

Similarly, the following equations are obtained for the y-direction. 

( ) ( ) ( ) ( )2 sin 2 cos 2 1 cos 1 sin
8 2y t ex ex n ex te ex ne ex
Nbc NbF K K K Kφ φ φ φ φ

π π
⎡ ⎤ ⎡ ⎤= − + − − − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

  (5.8) 

 y yc yeF F c F= +  (5.9) 

 
( ) ( )

( ) ( )

2 sin 2 cos 2 1
8

cos 1 sin
2

yc t ex ex n ex

ye te ex ne ex

NbF K K

NbF K K

φ φ φ
π

φ φ
π

⎡ ⎤= − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤= − − +⎡ ⎤⎣ ⎦⎣ ⎦

 (5.10) 

Writing Eqs. (5.7) and (5.10) in matrix form to solve for the cutting coefficients the 

final equation can be expressed as shown in Eq. (5.11). 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

cos 2 1 2 sin 2 0 0
2 sin 2 cos 2 1 0 08

sin cos 10 0
1 cos sin0 0 2

ex ex exxc t

ex ex exyc n

xe teex ex

ye neex ex

NbF K
F K
F KNb
F K

φ φ φ
φ φ φπ

φ φ
φ φπ

⎡ ⎤− − +⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪− − ⎣ ⎦⎪ ⎪ ⎢ ⎣ ⎦ ⎥ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥− −⎡ ⎤⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥⎢ ⎥⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥− − ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎣ ⎦⎣ ⎦

  (5.11) 

The same procedure can be used to solve for the cutting coefficients in the down-

milling case (Figure 7). 

Experimental Procedure 

Proper selection of a suitable dynamometer to measure the dynamic cutting forces 

is important. Some of the factors that need to be addressed are the calibration range of the 
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dynamometer and its dynamic response. Simulation of the cutting forces helps in 

addressing the issue of cutting force magnitude range. Using time-domain simulation of 

the cutting forces and approximate cutting coefficient values, an estimate of the typical 

range of cutting forces can be found. Euler integration is used to solve for the tool 

displacement during the cut in the 2nd order differential equation (Eq. (3.2)) and find the 

corresponding cutting forces in the x and y-directions. An example is shown in Figure 39. 

It is seen that a dynamometer with the 0 kN to 5 kN range is acceptable, although the 

force levels are relatively small compared to the full scale value. A Kistler 9257A 

dynamometer with 5 kN range was available for these tests. One requirement for this 

dynamometer is that the cutting force is applied to the dynamometer not more than 25 

mm above the top surface of the dynamometer. 
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Figure 39. Example simulation of cutting forces to facilitate proper selection of 

dynamometer. 
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A 25 mm thick 6061-T6 aluminum work-piece was sized to 100 mm x 85 mm, then 

faced and drilled to fit the dynamometer hole pattern as shown in Figure 40. Slotting 

cutting tests were made for a 25.4 mm diameter end mill with a 145 mm overhang and a 

single 12o  helix insert for chip load range of 0.1-0.24 mm/tooth in 0.02 mm/tooth steps. 

The cutting forces in x and y-directions were measured for each chip load using an axial 

depth of 0.4 mm. Two sets of measurements were made for a 1000 rpm spindle speed. To 

address the influence of spindle speed on cutting coefficients, the above two sets were 

repeated for {5000, 10000, 15000 and 20000} rpm. The average value of the measured 

cutting forces was inserted into Eq. (5.4) to solve for the cutting coefficients. Average 

cutting coefficients of the two sets of measurements at each spindle speed are listed in 

Table 8. 

Work-piece

Dynamometer

 
Figure 40. Work-piece, dynamometer and tool setup 
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A regression analysis of the cutting force coefficients as a function of spindle speed 

was carried out. For Kt and Kn, a linear regression with logarithmic transformation of 

spindle speed indicates a statistically significant relation with a P-Value of less than 

0.007. Figure 41 and Figure 42 show the trend line for this regression for both Kt and Kn, 

respectively. For the edge cutting force coefficients Kne and Kte the regression doesn’t 

indicate a significant statistical relation between Kne or Kte and spindle speed. The P-

Value for the slope of the regression was 0.39 and 0.55, respectively.  

Table 8. Cutting coefficients for 1 insert endmill for slotting cutting tests 

Ω  
(krpm) 

Kt 
(N/mm2

) 

Kn 
(N/mm2)

Kte 
(N/mm) 

Kne 
(N/mm) 

1 1321 379 28 32 
5 832 183 47 34 
10 841 62 37 38 
15 655 34 52 33 
20 670 65 37 26 
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Figure 41. Cutting coefficient in tangential direction (Kt) 
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y = -268.84x + 369.14
R2 adj = 0.93
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Figure 42. Cutting coefficient in normal direction (Kn) 

A similar set of measurements were made using partial radial immersion (up 

milling) for a 15000 rpm spindle speed. Equation (5.11) was used to find the cutting 

coefficients in this case. The results are provided in Table 9. 

Table 9. Up milling cutting coefficients for 12% radial immersion 

Kt( N/mm2) Kn( N/mm2) Kte( N/mm) Kne( N/mm)
833 431 6 8 

 
 

To verify the fit, the cutting coefficients obtained were used in a time-domain 

simulation of the cutting forces. The measured forces were then overlaid on the simulated 

forces. Figure 43 shows a case for 0.12 mm/tooth chip load and 1000 rpm. Also Figure 

44 and Figure 45 show the fit for higher spindle speeds of 5000 and 20000 rpm, 

respectively. 
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Figure 43. Simulated and measured forces for 0.12 mm/tooth chip load and 1000 rpm. 

0 0.02 0.04 0.06 0.08 0.1 0.12

0

50

100

Time (secs)

F x (N
)

0 0.02 0.04 0.06 0.08 0.1 0.12
-80

-60

-40

-20

0

20

40

Time (secs)

F y (N
)

Simulated force
Measured force

Simulated force
Measured force

 
Figure 44. Simulated and measured cutting forces for 0.2mm/tooth chip load, b=0.4 mm 

and 5000 rpm. 
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Figure 45. Simulated and measured forces at 20 krpm and b=0.4 mm for slotting. 

Covariance Matrix (Linear Multi-Response Model) 

The regression analysis performed in the previous section is a single response 

analysis. However, the measured responses are the forces in both the x and y-directions 

during a single measurement (dynamometer). Obviously this is a multi-response 

measurement. Therefore analysis of the data should take into consideration the 

multivariate nature of the data. The interrelationship existing between the variables could 

render univariate investigations meaningless. The development for a multi-response 

model follows the description in [94]. If we let Q be the number of experimental runs and 

r be the number of response variables measured for each setting (two in our case, i.e., Fx 

and Fy) of a group of variables (chip load only in our case). The ith response model can be 

written in vector form as 
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     1, 2,...,i i i iY Z i rβ ε= + =  (5.12) 

where Yi is an 1Q× vector of observations in the ith response, Zi is an iQ p×  matrix of 

rank pi (for the simple linear model pi = 2), iβ  is a 1ip × vector of unknown constant 

parameters, and iε  is an 1Q×  random error vector associated with ith response. The 

assumption of simple linear regression apply here, that is ( ) 0iE ε =  and ( )i ii QVar =ε σ I . 

However, the covariance matrix between the responses is not zero, 

 
( )
( )

            1, 2,...,

,      , 1, 2,.., ;
i ii Q

i j ij Q

Var i r

Cov i j r i j

= =

= = ≠

ε σ

ε ε σ

I

I
 (5.13) 

We denote the r r×  covariance matrix whose (i,j) th element is ( ), 1, 2,...,ij i j rσ =  

by Σ . For the case of two responses, Eq. (5.12) can be written in matrix form as: 

 

01
1 1 1
1 2 111

022 2 2
1 2 1

12

Z
Q Q Q

Q Q Q

Y Z

Y

β
ε

β
β ε
β

× × ×

× × ×

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎣ ⎦

0

0
 (5.14) 

where 

 1 2 1 1
1

Q Q
Z Z c

× ×

⎡ ⎤= = ⎢ ⎥⎣ ⎦
 (5.15) 

where c represents the chip load vector (see Eq. (5.3)) and the left hand side vector of Eq. 

(5.14) represents the observed average cutting forces in the x and y-directions. From Eq. 

(5.13) it can be seen that ε  has the following variance-covariance matrix, 

 ( )Var∆ = = ⊗Σε QI  (5.16) 

where ⊗  is a symbol for the direct (or Kronecker) product of matrices. The direct 

product of two matrices Σ  and QI  both of size r r×  gives an 2 2r r×  matrix which is 
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partitioned as ijσ QI  where ijσ  is the (i,j)the element of matrix Σ . The best linear unbiased 

estimate of β  is given by [95] 

 ( ) 11 1ˆ −− −′ ′= ∆ ∆ %β Z Z Z Y  (5.17) 

where Y%  is the left hand side of Eq. (5.14). The variance-covariance matrix of the 

estimated vector β̂  is 

 ( ) ( ) 11ˆVar
−−′= ∆β Z Z  (5.18) 

Since Σ  is usually unknown, it is estimated using the following equation [95] 

 
( ) ( )1 1

ˆ

, 1, 2,...,

i N i i i i N j j j j j

ij

Y Y

Q
i j r

σ

− −⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=

=

I Z Z Z Z I Z Z Z Z
 (5.19) 

It should be noted that ˆijσ  is computed from the residual vectors which result from 

ordinary least-squares fit of the ith and jth single response models to their respective data 

sets. Using this estimate for Σ  in Eq.(5.19), an estimate of the variance of β̂  can be 

obtained. The cutting force coefficients are determined using a linear transformation 

 [ ] [ ] ˆK A ⎡ ⎤= ⎣ ⎦β  (5.20) 

where the matrix A for slotting (see Eq. (5.4)) is 

 

0 0 0

40 0 0
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Nb

NbA

Nb

Nb

π

π
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⎢ ⎥
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= ⎢ ⎥
⎢ ⎥
⎢ ⎥
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 (5.21) 



83 

 

Therefore the variance-covariance matrix of cutting force coefficients can be found 

as 

 { }( ) [ ] ( )[ ]ˆ' .Var K A Var A= β  (5.22) 

Using the procedure outlined above, the cutting force coefficients and their 

corresponding correlation matrices are calculated and listed in Table 10 for cutting tests 

carried out according to the same procedure described earlier, noting that the correlation 

matrix is obtained directly from the covariance matrix (see Eq. (4.5)) As indicated in 

Table 10, a high correlation between Kt  and Kte , and Kn and Kne is found. This high 

correlation is justified since both of the corresponding cutting coefficients (Kt and Kte or 

Kn and Kne) are obtained from the same regression fit and cutting force direction. 

However, a small correlation between the x and y-directions of the forces is found 

(between Kt and Kn or Kne) which may be due to experimental error. 

Table 10. Estimated cutting force coefficients and their correlation matrix for 7475 
aluminum and a 12.7 mm diameter solid carbide endmill with 4 teeth and 30 
degree helix angle. 

Kt (N/m2) Kn (N/m2) Kte (N/m) Kne (N/m)
Mean 8.41E+08 2.53E+08 1.27E+04 1.01E+04
Standard deviation 2.19E+07 2.66E+07 1.70E+03 2.07E+03
Coefficient of variation 0.03 0.11 0.13 0.20
P - Value 2.E-08 8.E-05 3.E-04 3.E-03
Correlation Coeff. Matrix Kne Kn Kte Kt
Kne 1.00
Kn -0.93 1.00
Kte -0.13 0.12 1.00
Kt 0.12 -0.13 -0.93 1.00  
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Compliant Tool Modal Parameters 

The cutting tests were conducted on a Makino V55 vertical milling machining 

center located at Techsolve, an Ohio-based not-for-profit manufacturing research 

organization. The cutting tool was a 12.7 mm diameter solid carbide end mill 

(CRHEC500S4R30-KC610M) with 100 mm overall length (OAL), 70 mm over-hang 

length, 30o  helix angle, and 4 flutes. A relatively long tool over-hang length was used in 

order to obtain a compliant tool that could reasonably be modeled as single degree of 

freedom. Four measurements of the frequency response function of the tool (Figure 46) 

were made after running the spindle for 30 seconds at a specific spindle speed then 

completing a tap test in the x-direction, then running the spindle for another 30 seconds 

and taking a tap test in the y-direction, then removing the holder from the machine, and 

replacing and repeating the above procedure for a different speed. This measurement 

procedure enabled the estimation of the variation of the modal parameters due to the 

spindle thermal effect and holder replacement effect. Figure 47 and Figure 48 show the 

frequency response measurement of the tool in the x and  y-directions respectively. Table 

11 lists the fitted tool modal parameters obtained by the peak amplitude method (see 

Milling Model section in Chapter 4) with their average and standard deviation, and Table 

12 lists the correlation coefficient matrix. The correlation coefficient between Mx and Kx, 

for example, is calculated according to 

 
( )( )

( ) ( )

4

1
4 42 2

1 1

i i

x x

i i

x x x x
i

M K

x x x x
i i

M M K K
r

M M K K

=

= =

− −
=

− −

∑

∑ ∑
 (5.23) 
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The values shown in Table 12 indicate strong correlation coefficients for 
x xM Kr and 

y yM Kr . 

This is expected since the natural frequency of the tool is constant so that Kx or Ky depend 

entirely on Mx or My, respectively. Also, since the tool is symmetric the correlations for 

y xM Mr  and 
y xK Kr  are also expected to be high, which is the case for 0.86

y xM Mr = . As for 

the correlation coefficient, 0.75
y xC Cr = , some correlation is expected since the tool-holder 

interface damping is ideally symmetric for the round tool. The minimal correlation 

indicated between the damping and other modal parameters can be justified since there is 

no direct relationship between damping and mass or stiffness. 

 The mean, standard deviation and the correlation matrix are used to generate the 

random sample of input modal parameters in order to estimate uncertainty. 

Table 11. Tool modal parameters in x and y-directions. 

measurement state M (kg) C (N.s/m) K (N/m) M (kg) C (N.s/m) K (N/m)
static 0.03 24.34 4.8E+06 0.03 29.09 4.3E+06
5 krpm and replacement 0.03 22.05 4.4E+06 0.02 37.25 2.6E+06
10 krpm and replacement 0.03 22.66 4.3E+06 0.02 29.54 2.9E+06
20 krpm and replacement 0.02 24.18 3.9E+06 0.02 29.85 3.4E+06
mean 0.03 23.31 4.4E+06 0.02 31.43 3.3E+06
standard deviation 0.002 0.976 3.16E+05 0.004 3.368 6.60E+05
coefficient of variation (CV) 0.07 0.04 0.07 0.20 0.11 0.20

x y

 

Table 12. Correlation coefficient matrix for modal parameters. 

Correlation Coefficient Mx Cx Kx My Cy Ky
Mx 1.00
Cx 0.23 1.00
Kx 0.99 0.13 1.00
My 0.86 0.69 0.80 1.00
Cy -0.09 -0.75 -0.05 -0.50 1.00
Ky 0.66 0.88 0.58 0.95 -0.64 1.00  
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Figure 46. Modal analysis test equipment typically used in machine tool structures. 
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Figure 47. Frequency response function measurement of tool in x-direction. Four sets of 

measurements are made to estimate spindle thermal and holder replacement 
effects. 
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Figure 48. Frequency response function measurement of tool in y-direction. Four sets of 

measurements are made to estimate spindle thermal and holder replacement 
effects. 

 Stability Lobe Validation 

In this section the stability lobe diagram for the 70 mm over-hang length compliant 

tool is verified. First the stability limit uncertainty is predicted using Latin Hyper-Cube 

and Monte Carlo sampling, then a description of the experimental procedure is provided 

and results are discussed. 

Stability Lobe Uncertainty 

Due to the relatively high uncertainty in input parameters (Table 11), the sensitivity 

method cannot be used because of the nonlinearity of the axial depth limit to the 

respective parameters. The alternative random sampling methods (Latin Hyper-Cube and 

Monte Carlo) are used instead. The stability lobes are generated using TFEA. A random 

sample of size L=1000 is generated from the normal distribution for each input parameter 
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group (cutting force coefficients and modal parameters) using their corresponding 

standard deviation, mean values and covariance matrix. Latin Hyper-Cube sampling is 

used to generate the samples for the cutting force coefficients and modal parameters 

groups. Also, a random sample of the same size is generated for the radial immersion and 

spindle speed using Monte Carlo Simulation with no correlation assumed. This random 

sample of input parameters is used to generate the stability lobe diagram uncertainty 

intervals. Figure 49 shows the boxplot (a plot used to show variation and measures of 

central tendency for a sample) of axial depth as a function of spindle speed. The grey 

boxes indicate the range of minimum and maximum axial depths, the black boxes 

indicate the lower 2.5 percentile and upper 97.5 percentile (95 % confidence interval), 

while the two lines indicate the median and mean of the sample. It is seen that the median 

and mean lines do not match, which indicates the distribution is skewed. Examination of 

the histogram at selected spindle speeds (see Figure 50) validates this conclusion. At 

10000 rpm the distribution appears close to normal, however, in checking the normality 

of the distribution at this speed (see Figure 51) we find that it is in fact not normal with a 

P-value of less than 0.005. This is illustrated by the deviation of the observations from 

the normal probability line. 
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Figure 49. Boxplot of stability lobes boundary uncertainty. The minimum and maximum 

values are shown for each spindle speed (grey boxes), the mean and median of 
axial depth limit are indicated by the line and circles respectively, also shown is 
the 2.5 and 97.5 percentiles (black boxes). 
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Figure 50. Histograms of axial depth limit distributions for various spindle speeds. 



90 

 

Axial Depth Limit (mm)

Pe
rc

en
t

76543210-1

99.99

99

95

80

50

20

5

1

0.01

Mean 3.054
StDev 1.009
N 1000
AD 3.835
P-Value <0.005

Probability Plot for 10000 rpm

 
Figure 51. Probability plot of axial depth limit distribution at 10000 rpm spindle speed. 

Experimental Procedure 

The stability lobes were verified experimentally for 25% partial radial immersion 

down milling and 0.1 mm/tooth chip load. The same tool with modal tool parameters 

listed in Table 11 was used. A 7475 aluminum work-piece was mounted (see Figure 52) 

to a Makino V55 vertical machining center table. Cutting tests with different axial depths 

were conducted at a range of spindle speeds from 10000 rpm to 20000 rpm in 1000 rpm 

steps. The stability of each cutting operation was determined by recording the sound 

signal of the cut. The Fast Fourier Transform was used to transform the sound time-

domain sound signal into the frequency domain. An analysis of the signal frequencies 

identified the chatter frequency, if one existed (i.e., significant content was seen at 

frequencies other than the runout and tooth passing frequencies). It was observed that the 
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chatter frequency when it existed was always slightly higher than the tool natural 

frequency, as expected. 

Tool

Machine
Spindle

Data Acquisition

Stability test Workpiece
x

z

y  
Figure 52. Schematic of stability tests for partial radial immersion cutting conditions. 

Results 

The cutting test conditions are shown in Figure 53 with the boxplot of axial depth 

limit uncertainty. Also, the stability lobe boundary is overlaid using mean values of input 

parameters. In order to identify the stability of each cut, as noted previously, the sound 

signal was analyzed. In Figure 54 we can see some of these signals in the frequency 

domain. As noted previously, the chatter frequency occurs near the natural frequency of 

the tool. The natural frequency of the tool is approximately 2000 Hz 

( 1
/

2
f K Mn y ymean meanπ

= , see Table 11). For 13000 rpm and a 1.52 mm axial depth, 

and 14000 rpm and 3.05 mm, for example, the chatter frequencies occur near 2100 and 

2200 Hz, respectively. It should be noted that the chatter frequencies were difficult to 
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identify when the tooth passing frequency or one of its harmonics are near the tool 

natural frequency. This is evident from the cutting test at 10000 rpm and 16000 rpm 

where there is high amplitude near the tool natural frequency. In that case, examinations 

of the cut surface of the workpiece help in identifying chatter (due to the corresponding 

rough surface finish). 

In Figure 53, the stability of the cutting conditions agreed well with the median of 

stability prediction almost everywhere along the spindle speed. However, near fractions 

of the tool natural frequency ( 60 / 15 30000 rpmn nf N fΩ = = = ), poor agreement 

between prediction and experimental result is observed. This may be attributed to 

confidence in the modal fitting near the natural frequency of the tool 
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Figure 53. Stability lobe generated using mean values of input parameters with 

experimental results overlaid, also shown the boxplot corresponding to each 
spindle speed used in the measurements. 
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Figure 54. Fast Fourier Transform (FFT) of sound signals for selected stability tests. 

Pareto Front Validation 

This section begins with the calculation of the Pareto Front for a specific single 

degree of freedom tool considering confidence levels in the axial depth limit, blim, (see 

Robust Optimization section in Chapter 4), after which the experimental procedure of the 

tests is described, followed by the results. 

Pareto Front Simulation Results  

The Pareto front for SLE and MRR is generated for the same material (7475 

aluminum) and tool used in the stability tests (Table 11 and Table 12) and the same 

cutting conditions of radial immersion and chip load. Two cases are considered: 1) no 

uncertainty in the input parameters; and 2) uncertainty in input parameters or axial depth 

limit, blim, where an uncertainty of ( )limcU u b=  is used. The robust optimization 

algorithm (Chapter 4) is used to generate the Pareto front for the input parameters 
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uncertainty case. Figure 55 and Figure 56 illustrate the Pareto front for the 

aforementioned cases. It can be seen that the uncertainty designs predict higher SLE for 

the same MRR compared to the mean value one. Also, in Figure 56 the knee in both 

Pareto Fronts indicate the design beyond which the SLE increases at a higher rate, which 

makes that knee a preferred design point. In considering Figure 56, the SLE difference 

between uncertainty and without uncertainty cases is larger at higher MRR than at lower 

MRR. This is attributed to the fact that as higher MRR is required, the axial depth, b, 

approaches blim. Here, the predicted uncertainty in blim changes the design variables (b or 

Ω ) substantially to account for the uncertainty. This penalizes the SLE for the 

uncertainty case and makes it significantly larger than the no uncertainty case at higher 

MRR. However, at lower MRR the axial depth b is far from blim and is therefore less 

affected by uc(blim). 
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Figure 55. Stability boundary using mean values in the input parameters Pareto optimal 

designs are overlaid for two cases: mean values and uncertain input parameters. 
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Figure 56. Pareto Front of perturbed average SLE and MRR. The Pareto Front with 

uncertainty in axial depth is compared to the one with no uncertainty. 

Experimental Procedure and Results 

As a first step in conducting the surface location error tests, the work-piece was 

machined to a specified dimension (nominally 40 mm width) using shallow axial depth 

slotting cuts (see Figure 57). Careful attention was paid to minimizing positioning errors 

of the machine by feeding from the same direction prior to cutting (i.e., minimize the 

influence of reversal errors). The cutting conditions of two mean value Pareto optimal 

designs were selected from Figure 56 for the case of no uncertainty. The first point 

corresponds to the knee design point in the figure and the second point corresponds to the 

maximum MRR for the case that uncertainty was not considered.  For these two design 

conditions of axial depth and spindle speed, four additional cuts were made for each case 

by varying the spindle speed around the selected design (see Table 13). The purpose of 

these extra cuts was to check the sensitivity of the stability and surface location error to 
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spindle speed. The work-piece webs, shown in Figure 57, were milled from both sides. A 

coordinate measuring machine (CMM) was used to measure the base of the web 

(dimension a) and the top portion (dimension b). The measured surface location error was 

then taken to be 3.175 mm,
2

a bSLE −⎛ ⎞= −⎜ ⎟
⎝ ⎠

where the commanded radial depth was 3.175 

mm. Each dimension (a and b) was measured 15 times in order to evaluate the CMM 

machine measurement repeatability. The 15 measurements had a maximum standard 

deviation of 2 mµ (the machine accuracy is estimated at < 5 mµ  based on recent 

calibration tests). The measured SLE for the set of cutting tests is shown in Figure 58 and 

Figure 59. It should be noted here that all cuts were stable. Therefore, all SLE results are 

shown in the figures. The error of the reference dimension (a=40 mm) is also shown in 

these figures. This would identify if there is a trend in the measured SLE due to the errors 

in the reference dimension. The standard deviation of the reference dimension is 4 mµ  

and 8 mµ  for 4.45 mm and 2.12 mm axial depth cuts, respectively.  

To illustrate the effect of the helix angle of the tool (30o ) on the SLE, the CMM 

measurement was repeated for distances of {1, 2, 3, and 3.4} mm from the top surface of 

the work-piece web along the tool axis. Figure 61 shows that the SLE varies along the 

axial depth of the cut. This variation corresponds with previous SLE studies [40] where 

similar variation of SLE was observed. 

Although the measured SLE does not agree well with the mean predicted value 

(Figure 62), there is some agreement in the trend of median of SLE (Figure 60) and the 

measured SLE (Figure 59). Also the measured SLE is within the uncertainty bounds on 

SLE (Figure 60). The disagreement between the measured and predicted SLE can be 

attributed to: 1) the milling model used in the prediction assumed straight cutter teeth (the 
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actual tool had a 30o  helix angle) which would yield higher SLE; 2) the cutting force 

coefficients used in the prediction were measured for 8900 rpm, while the SLE cuts were 

made for around 15000 rpm. At higher spindle speeds the cutting force coefficients 

(cutting forces) tend toward lower values. These two factors explain the high prediction 

of SLE for the 1400 mm3/s case relative to the measured one. However, for 700 mm3/s 

case they fail to explain the difference. This may highlight model weaknesses at this level 

of axial depth (2.12 mm).  
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Figure 57. Surface location error experiment schematic. 
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Figure 58. Measured surface location error of b=2.12 mm and the reference dimension 

(A) error. 
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Figure 59. Measured surface location error of b=4.45 mm and the reference dimension 

(A) error. 
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Figure 60. Boxplot of SLE uncertainty at spindle speeds for 4.45 mm axial depth case. 

The upper tail of the SLE uncertainty is not present due to the undefined SLE in 
the unstable region. 
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Figure 61. Measured surface location error of b=4.45 mm case. The CMM probe 

measurement is repeated along the axial depth of the tool with {1, 2, 3, and 3.4} 
mm from the top surface of the work-piece web. 
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Table 13. Surface location error cutting conditions for two Pareto optimal designs with no 
uncertainty considered. 

Tool # (100 mm OAL)
Cut No. b (mm) Ω (rpm) MRR (mm3/s) SLE (µm)

1 2.12 15617
2 2.12 15667
3 2.12 15767
4 2.12 15567
5 2.12 15517
6 4.45 14853
7 4.45 14803
8 4.45 14753
9 4.45 14903
10 4.45 14953

CRHEC500S4R30-KC610M

700 1.2

93.41400
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Figure 62. Surface location error of preferred design conditions with no uncertainty 

considered in the optimization. Optimum spindle speeds are indicated in the 
figure. 
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Conclusions 

The uncertainty in axial depth limit, blim, and SLE indicates a non-normal 

distribution, although for convenience a normal distribution was used to estimate the 

confidence levels of blim and SLE. This non-normality predicates the use of different 

measures of uncertainty bounds in order to account for a specific confidence interval.  

There is good agreement between the prediction of stability and the experimental 

results. It is shown that there is a distinct ‘grey region’ of neutral stability boundary 

(marginal stability) rather than a ‘black and white’ step change between stable and 

unstable zones as suggested by the single stability boundary typically indicated in 

stability lobe diagrams. Also, the uncertainty identified in the blim boxplot indicates that 

the distribution is skewed to higher blim values near the tool system natural frequency. 

This was also confirmed by the experimental results where higher axial depths were 

generally feasible. 

The measured surface location error of the Pareto design points didn’t show high 

sensitivity to spindle speed variation. This shows the validity of the optimization 

algorithm selection of a design that mitigates the effect of spindle speed on SLE.  

In this worst case scenario of uncertainty in modal parameters (thermal effects and 

dynamic variations due to tool removal and replacement), there was substantial 

uncertainty seen in blim and SLE. Reduction of uncertainty in the input parameters may be 

necessary to fully realize the benefits of high-speed milling. This may be done by 

conducting more tests to lessen the uncertainty bounds and/or completing modal tests of 

the tool-holder assembly each time it is removed and replaced. 

Although no experimental verification of robust optimum designs was done, it is 

interesting to note that the predicted robust optimum design corresponding to 700 mm3/s 
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had approximately the same value of measured SLE (Figure 55 and Figure 56). This is 

due to the fact that the robust design selected a design with spindle speed that was 1000 

rpm lower than the measured one (with no uncertainty considered). Also, in considering 

uncertainty (see Figure 55), the 1400 mm3/s was not realizable. This may be due to an 

overestimation of the uncertainty in the input parameters. As mentioned previously, this 

requires more testing in order to better estimate the uncertainty of input parameters. 
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CHAPTER 6 
SUMMARY 

This chapter provides a summary of the work completed in this dissertation with a 

detailed procedure on how to implement the robust optimization algorithm. Then the 

limitations of the milling model are addressed with suggestions for future research. 

Robust Optimization Algorithm 

In order to implement the robust optimization algorithm for a specific compliant 

tool/work-piece system, the following steps should be taken: 

1. Measure the tool/work-piece frequency response and complete a modal fit to the 
measured response. The confidence levels in the fitted modal parameters are 
estimated by repeating the measurement at different thermal states of the machining 
spindle. In case this measurement cannot be repeated each time the tool/holder 
assembly is removed from the spindle, then several measurements should be made 
wherein the tool/holder assembly is removed from the spindle and replaced. This 
will account for the dynamic non-repeatability due to tool/holder replacement. The 
mean, standard deviation, and correlation between the modal parameters are 
calculated. Equation Chapter 6 Section 1 

2. Measure the cutting force coefficients for the tool/workpiece material. Chapter 5 
gives the procedure used in estimating the mean values of these coefficients and 
details the regression analysis needed to estimate the mean values, standard 
deviation, and correlation between these coefficients. 

3. The confidence levels in the spindle speed and radial depth can be either estimated 
from experience or machine manufacturer data. 

4. These steps enable estimation of the mean values, confidence levels (standard 
deviation), and correlation in the input parameters to the milling model. Depending 
on the confidence levels in these parameters, an uncertainty prediction method can 
be used to estimate the confidence levels in the stability boundary and SLE. Two 
methods can be used: 1) the sensitivity method; 2) the sampling methods (Monte 
Carlo and Latin Hyper-Cube). If the coefficient of variation in the input parameters 
(especially K or M) is larger than 1%, then the sensitivity method cannot be used 
due to the non-linearity of axial depth limit to these parameters. Chapter 5 gives an 
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example on how to use the sampling methods to assign confidence levels on the 
stability boundary and SLE. 

5. The stability boundary confidence level, U, obtained in step 4 is used in the robust 
optimization algorithm. The algorithm formulation is repeated here 
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 (6.1) 

The spindle speed perturbed SLE average is used to account for SLE  
 sensitivity to spindle speed. A typical value for the perturbation is    
 50 rpm to 100 rpmδ = . In order to calculate the trade-off curve between  SLE 
and MRR, the optimization algorithm is run for a series of limits on the  
 MRR objective. 

6. The trade-off curve is used to select optimum cutting conditions that match the 
designer preferences. Typically a knee in the curve would indicate a preferential 
design where the highest MRR can be achieved for a moderate SLE. 

This completes the description of the selection of robust cutting conditions. 

Limitations and Future Research 

In this section, the limitations of this research are discussed as well as the 

recommendations for future research. The limitations and recommendations are as 

follows: 

1. Further efforts should account for the potential variation of the cutting force 
coefficients as a function of spindle speed. This entails a significant amount of 
experimental testing.  

2. The peak amplitude method used to obtain the fitted modal parameters of the 
tool/workpiece system does not perform well near the system natural frequency. 
This makes the model predictions poor at regions where more accuracy is actually 
needed. 

3. A weakness in the solution method (TFEA) was observed at shallow axial depths of 
cut (2 mm in our tests). Further testing at this condition is needed to verify this 
discrepancy and account for it. 
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4. The solution method (TFEA) assumes straight cutter teeth while most cutters have a 
helix angle. This makes the model predictions more conservative and can over 
predict the SLE. 
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APPENDIX A 
TIME FINITE ELEMENT ANALYSIS 

Mechanical Model  

A schematic diagram of two degree of freedom milling process is shown in Figure 

1 (repeated here). With the assumption of either a compliant structure or tool, a 

summation of forces gives the following equation of motion: 

Equation Chapter 1 Section 1 

ky
cy

kx

cx

x

y

θ

Ω

 
Figure 1. Schematic of 2-DOF milling tool 
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where the terms mx,y, cx,y, kx,y and Fx,y are the modal mass, damping, spring stiffness, and 

cutting forces in the flexible directions of the system. The x and y cutting force 

components on the pth tooth are given by: 

 
( ) cos ( ) sin ( ) ( )

( ) ,
( )( ) sin ( ) cos ( )

F t t t F txp p p tpg tp F tF t t t npp pyp

θ θ

θ θ
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⎨ ⎬
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 (A.2) 

 
where gp(t) acts as a switching function It is equal to one if the pth tooth is active and zero 

if it is not cutting  [54]. The tangential and normal cutting force components, Ftp(t) and 

Fnp(t), respectively, are considered to be the product of linearized cutting coefficients Kt 

and Kn, the nominal depth of cut b, and the instantaneous chip thickness wp(t): 
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 (A.3) 

 
where wp(t) depends upon the feed per tooth, h, the cutter rotation angle θp, and 

regeneration in the compliant structure directions: 

 [ ] [ ]( ) sin ( ) ( ) ( ) sin ( ) ( ) ( ) cos ( ).w t h t x t x t t y t y t tp p p pθ τ θ τ θ= + − − + − −  (A.4) 

Here τ = 60/NΩ is the tooth passing period, Ω is the spindle speed given in rpm, h 

is chip load (used instead of c to differentiate it from cos pθ  defined later) and N is the 

total number of cutting teeth. The angular position of the pth tooth for a cutter with evenly 

spaced teeth is θp(t)=(2ΠΩ/60)t+p2Π/N. 

    The total cutting force equations are found by summing the forces on each 

cutting tooth in Eq. (A.2) and substituting Eqs. (A.3) and (A.4) into Eq. (A.2): 
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where s = sin θp(t) and c = cos θp(t). A more compact form for the equation of motion is 

realized by making the following substitutions: 
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Using Eqs. (A.5), (A.6) , and (A.7), Eq.(A.1) can be written as: 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )  ,X t X t X t t b X t X t + f t boτ+ + = − −
rr r r r r&& &M C K Kc  (A.8) 

where ( ) ( ) ( ) T
X t x t y t= ⎡ ⎤⎣ ⎦
r

is the two-element position vector and M, C, and K are the 

2 2x  mass, damping, and stiffness matrices of Eq.(A.1). 

 
Time Finite Element Analysis (TFEA) 

The dynamic behavior of the milling process is governed by Eq.(A.8). Since this 

equation does not have a closed form solution, an approximate solution is sought to 

understand the behavior of the system. One such approximation technique used for 

dynamic systems is TFEA [54]. An approximate discrete linear map is constructed using 

time finite elements in the cut to exact mapping of free vibration out of the cut, where 

mapping is performed on displacement and velocity components of vibration [54-57]. 

The formulation of the dynamic map for the multiple degree of freedom systems closely 
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follows the discretization procedure outlined in references [54], but has been presented 

here for completeness.  

Free Vibration 

 When the tool is not in contact with the work-piece, the system is governed by the 

equation for free vibration. The cutting forces then become zero: 

 ( ) ( ) ( )X t X t X t+ + =
r r r&& &M C K 0,  (A.9) 

and the exact solution for the free vibration can be written with a state transition matrix 

( ),f c ct t tΦ +  where ct  is that the time the tool leaves the material and ft  is the duration 

of free vibration. Exact mapping of displacement and velocity components can be written 

in terms of state transition matrix as: 
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Vibration during Cutting 

 When the tool is in the cut, its motion is governed by a time delayed-differential 

equation. Since this equation does not have a closed form solution, an approximate 

solution for the tool displacement is assumed for the jth element of the nth tooth passage as 

a linear combination of polynomials [54]: 

 ( )( )4
( )  .

1
nX t a tji i ji

φ σ= ∑
=

r r  (A.11) 

Here ( )
1

1

j
t t n tj kk

σ τ
−
∑= − −
=

is the “local” time within the jth element of the nth period, the 

length of the kth element is tk and the trial functions Фi(σj(t)) are cubic Hermite 

polynomials defined in Eq. (A.12), 
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Substitution of the assumed solution of Eq. (A.11) into the equation of motion (Eq. 

(A.8)) leads to a non-zero error. The error from the assumed solution is “weighted” by 

multiplying by a set of test functions and setting the integral of the weighted error to zero. 

Two test functions are chosen to be a constant ψ1(σj)=1 and ψ2(σj)= σj/tj-1/2 (linear). The 

integral is taken over the time for each element, tj=tc/E, thereby dividing the time in the 

cut tc into E elements. The resulting two equations are 
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where Kc(σj) and ( )fo jσ
r

 have been used in place of previously defined Kc(t) and ( )fo t
r

 

to explicitly show the dependence on local time. 

  In Eq. (A.13), the index j refers to the number of elements and the index i refers 

to the corresponding Hermite polynomial. The displacement and velocity at tool entry 

into the cut are specified by the coefficients of the first two basis functions on the first 

element: 11
nar and 12

nar . The relationship between the initial and final conditions during free 

vibration can be mapped through the state transition matrix as 

 ,

1
311

12 4

nn aa E
a aE

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪

⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

−

= Φ  (A.14) 

where E is the total number of finite elements in the cut and the last term in Eq. (A.14) is 

the displacement and velocity of the element as it leaves the cut. For the remainder of the 

elements in the cut, a continuity constraint is imposed to set the position and velocity at 

the end of one element ( 13ar and 14ar for the 1st element) equal to the position and velocity 

at the beginning of the next element ( 21ar and 23ar  for the 2nd element), see Figure 63. 
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j refers to number of elements
i refers to Hermite coefficient

Ω

 
Figure 63. Slotting cut with time in the cut divided into two elements. Transition matrix 

maps the position and velocity exactly in free vibration zone, while elements map 
them in cutting zone. 

 
 Equations (A.13) and (A.14) can be arranged into a global matrix mapping the 

position and velocity of each tooth passage in terms of the previous one. Equation (A.13) 

maps the cutting zone approximately, while Eq. (A.14) maps the free vibration zone 

exactly. The following expression is for the case when number of elements E = 3 
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where the sub-matrices and elements of the sub-matrices for the jth element are 
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 Equation (A.15) describes a discrete dynamical system, or map, that can be 

written as 

 
[ ] [ ]

[ ]

A = B +   ,-1
or

= Q +   .-1

a a Cn n

a a Dn n

rr r

rr r
 (A.18) 

 



114 

 

Stability Prediction 

The eigenvalues of the transition matrix Q=A-1B are called characteristic 

multipliers (CMs) and take on a discrete mapping analogy to the characteristic exponents 

that govern stability for continuous systems. The condition for stability is that the 

magnitudes of the CMs must be in a modulus of less than one for a given spindle speed 

(Ω) and depth of cut (b) for the milling process to be asymptotically stable.  

Surface Location Error 

 
Surface location error is defined as the error in the placement of the milling cutter 

teeth when the surface is generated. When the milling process is stable, the surface 

location error can be obtained by extracting the position of the tool when the surface is 

generated. At steady state, the displacement and velocity coefficients are constant and are 

found from fixed points ( *an
r  ) of the dynamic map: 

 *  .1a a an nn= =−
r r r  (A.19) 

 
Substitution of Eq. (A.19) into Eq. (A.18) gives the fixed point map solution or 

steady state coefficient vector: 

        

 ( )* -1= - D  .an I Q
rr  (A.20) 

 
Since Q and D

r
can be computed for the milling parameters, the fixed point 

displacement solution can be found and used to specify surface location error as a 

function of machining process parameters. 
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APPENDIX B 
MATLAB CODE 

Robust Optimization Code  

Main program  

% M. Kurdi (12/1/2004) 
% surface location error and MRR robust optimization 
clc; clear all; close all; pack; 
global Min_speed Max_speed Min_depth Max_depth MRR_c band; 
warning off all; 
band =500; 
Min_speed = 10e3; Max_speed = 20e3; 
Min_depth = 1e-6; Max_depth = 18e-3; 
nteeth = 1; 
tic 
% 
%         %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%         % Finding the initial guess 
%         %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%         % MRR_c     MRR constraint in mm^3/s 
% 
Max_MRR = 400; 
hand = waitbar(0,'Please wait'); 
for MRR_c = 100:100:Max_MRR 
    delete('MULTIPOINT OPTIMUMS.m') 
    fid2 = fopen('MULTIPOINT OPTIMUMS.m','a'); 
    speed_vec = 0:.1:1.0; % spindle speed 
    radial_vec = linspace(.03,1,11); % radial depth 
    for i=1:length(speed_vec)  % loop for spindle speed 
        x0(2) = speed_vec(i); 
        for j=1:length(radial_vec) % loop for radial depth 
            x0(3) =  radial_vec(j); 
            % figure 
            %   contour_plot; 
            % obj_mrr; 
            % hold on; 
            a = x0(3) * 25.4e-3; % radial depth of cut 
            h = 0.1e-3; % feed per tooth 
            % calculate initial depth, using MRR constraint and initial speed 
            rpm = x0(2) * (Max_speed - Min_speed) + Min_speed; 
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            b = MRR_c / (a * rpm * h * nteeth / 60 * 1e9); 
            disp('axial depth(m)    speed (rpm)        radial immersion (m)'); 
            design_point = [num2str(b),'              ',num2str(rpm),'              ',num2str(a)]; 
            disp(design_point); 
            x0(1) = (b - Min_depth) / (Max_depth - Min_depth); 
            lb = [0 0 0.01]; 
            ub = [1 1 1]; 
            options = optimset('LargeScale','off','MaxFunEvals',50);%,'Display','iter'); 
            %fprintf(fid,'SLE_depth      depth       speed\n'); 
            [x,fval,EXITFLAG] = fmincon(@obj,x0,[],[],[],[],lb,ub,@confun,options); 
            [c,ceq] = confun(x); 
            if EXITFLAG > 0  % solution found 
                depth = x(1) * (Max_depth - Min_depth) + Min_depth; 
                rpm = x(2) * (Max_speed - Min_speed) + Min_speed; 
                a = x(3); 
                sle_exact = sle([rpm depth a]); 
                % multipoint optimum file 
                fprintf(fid2,'%e   %e     %e     %e     %e      %e      %e      %e         
      %e\n',depth,rpm,x(3),fval,sle_exact,c(1),c(2),c(3),c(4)); 
            end % end if loop 
        end % end radial loop 
    end % end spindle speed loop 
    % finding minimum of all solutions found 
    fclose(fid2); 
    fid2 = fopen('MULTIPOINT OPTIMUMS.m','r'); 
    xx = fscanf(fid2,'%e %e %e %e %e %e %e  %e  %e\n',[9 inf]); 
    xx = xx'; 
    fclose(fid2); 
    %         find minimum value of sle_depth for the range of speed initial 
    %         guesses and a particular MRR 
    [minimum_sle,index]=min(xx(:,4)); 
    fid3 = fopen('OPTIMUM POINTS.m','a'); 
    %         Optimum points file 
    fprintf(fid3,'%e        %e      %e      %e      %e      %e      %e      %e      %e        
 %e\n',MRR_c,xx(index,1),xx(index,2),xx(index,3),xx(index,4),xx(index,5),xx(ind
 ex,6),xx(index,7),xx(index,8),xx(index,9)); 
    fclose(fid3); 
    waitbar(MRR_c/Max_MRR,hand); 
 
end % end of MRR loop 
fclose(hand) 
 
Constraint Function 

% objective function for SLE / depth of cut 
function [c, ceq] = confun(x) 
global Min_speed Max_speed Min_depth Max_depth MRR_c band; 
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x1 = x(1) * (Max_depth - Min_depth) + Min_depth; 
x2 = x(2) * (Max_speed - Min_speed) + Min_speed; 
% MRR constraint on the first perturbed point 
c1 = confun1([x1 x2-band x(3)]); 
c2 = confun1([x1 x2 x(3)]); 
c3 = confun1([x1 x2+band x(3)]); 
% MRR constraint 
h = 0.1e-3;   % m/tooth 
% b = x(1) ; 
% x(2) rpm 
% x(3) radial step 
a           = x(3)*.0254; % radial depth in m 
nteeth      = 1; 
MRR = a .* x1 * h * nteeth .* x2 / 60 * 1e9; 
c4 = MRR_c - MRR; 
c = [c1 c2 c3 c4]; 
ceq = []; 
 
% objective function for SLE / depth of cut 
function c = confun1(x) 
% Input: 
%   rpm      speed (rpm) 
%   E        number of elements 
% Output: 
%   CM       eigen value for rpm and doc 
%   b        transition depth of cut (m) 
% 
b = x(1); 
rpm = x(2); 
E       = 25;               % number of elements 
Kt      = 1295.9e6*(rpm/1000)^-0.2285; % N/m2 
Kn      = ((rpm/1000)^2*1.8485-54.604*(rpm/1000)+423.77)*1e6; 
Kte = ((rpm/1000)^2*-0.1335+3.2431*(rpm/1000)+27.216)*1e3;       % N/m 
Kne = ((rpm/1000)^2*-0.0821+1.4447*(rpm/1000)+30.202)*1e3; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%        CUT PROCESS DESCRIPTION GEOMETRY/IMMERSION/PROCESS 
PARAMETERS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
h           = 0.1e-3;                          % feed per tooth 
nteeth      = 1;                                    % number of teeth 
Diam        = 1;                                  % inches 
rstep       = x(3);                                % radial immersion (inches) 
TRAVang     = acos(1-rstep/(Diam/2));               % angular travel during cutting 
LAGang      = 2*pi/nteeth;                          % separation angle for teeth 
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rho         = acos(1-rstep/(Diam/2))/(2*pi);        % fraction of time in cut 
IMMERSION   = rstep/Diam; 
opt         = 'up'; 
if TRAVang>LAGang   % MULTIPLE TEETH ARE IN CONTACT 
    teethNcontact = floor(TRAVang/LAGang) +1; 
else                % SINGLE TOOTH IN CONTACT 
    teethNcontact = 1; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       LOAD SYSTEM IDENTIFICATION MATRICES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% load SYSTEM_ID_1mode 
Kx =  4.4528e+006; 
Ky =  3.5542e+006; 
Mx =   0.4362; 
My =    0.3471; 
Cx =   82.5955; 
Cy =   89.8606; 
% zeta_x = .02996; zeta_y = 0.02576; 
% freq_x = 362.75; freq_y = 362.71; 
% Kx = 1.308e6; Ky = 1.194e6; 
% Mx = Kx/(freq_x*2*pi)^2; 
% My = Ky/(freq_y*2*pi)^2; 
% Cx = zeta_x * 2 * Mx * 2*pi * freq_x; 
% Cy = zeta_y * 2 * My * 2*pi * freq_y; 
M   =[Mx zeros(size(Mx)); zeros(size(Mx)) My]; 
C   =[Cx zeros(size(Mx)); zeros(size(Mx)) Cy]; 
K   =[Kx zeros(size(Mx)); zeros(size(Mx)) Ky]; 
lmx = length(Mx(1,:)); 
lmy = length(My(1,:)); 
lmx=1; lmy=1; DOF=2; Mx=M(1,1); My=M(2,2); 
DOF = lmx+lmy; 
V       = [ones(1,lmx) zeros(1,lmy); zeros(1,lmx) ones(1,lmy)]; 
A       = zeros((E+1)*2*DOF,(E+1)*2*DOF); 
B       = A; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       BEGIN LOOP CALCULATIONS OVER RPM vs DOC FIELD 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
speed   = rpm; 
omega   = speed/60*(2*pi);              % radians per second 
T       = (2*pi)/omega/nteeth;          % tooth pass period 
TC      = rho*T*nteeth;                 % time a single tooth spends in the cut 
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tf      = T-TC;                         % time for free vibs 
tj      = TC/E;                         % time for each element 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       SET CUTTER ROTATION ANGLE FOR UP/DOWN-MILLING 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
switch opt 
    case 'up' 
        t0mat   = [0 tj*(1:(E-1))];             % upmilling 
        locat   = 2*DOF+lmx+1:3*DOF; 
    case 'down' 
        tex     = pi/omega; tent=tex-TC;          % downmilling 
        t0mat   = [tent tent+tj*(1:(E-1))];     % downmilling 
        locat   = (E+1)*2*DOF-DOF-lmy+1:(E+1)*2*DOF-DOF; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       STATE TRANSITION MATRIX 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
G1  = [zeros(size(M)) M; eye(size(M)) zeros(size(M))]; 
G2  = [K  C; zeros(size(M)) -eye(size(M))]; 
G   = -G1\G2; 
PHI = expm(G*tf); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       N & P are used to create A & B which then become Q in..... a_n = Q a_n-1 + D 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for e=1:E, 
    t0 = t0mat(e); 
    C1 = V'*[ -1/4*b*(-h*Kt*cos(2*t0*omega+2*omega*tj)+2*h*Kn*omega*tj-
h*Kn*sin(2*t0*omega+2*omega*tj)+4*Kte*sin(t0*omega+omega*tj)-
4*Kne*cos(t0*omega+omega*tj)+h*Kt*cos(2*t0*omega)+h*Kn*sin(2*t0*omega)-
4*Kte*sin(t0*omega)+4*Kne*cos(t0*omega))/omega; 
        1/4*b*(2*h*Kt*omega*tj-
h*Kt*sin(2*t0*omega+2*omega*tj)+h*Kn*cos(2*t0*omega+2*omega*tj)-
4*Kte*sin(t0*omega+omega*tj)+4*Kne*cos(t0*omega+omega*tj)+h*Kt*sin(2*t0*ome
ga)-h*Kn*cos(2*t0*omega)+4*Kte*sin(t0*omega)-4*Kne*cos(t0*omega))/omega]; 
    C2 = V'*[ 1/8*b*(-
h*Kt*sin(2*t0*omega+2*omega*tj)+h*Kt*cos(2*t0*omega+2*omega*tj)*omega*tj+h*
Kn*cos(2*t0*omega+2*omega*tj)+h*Kn*sin(2*t0*omega+2*omega*tj)*omega*tj+8*K
te*sin(t0*omega+omega*tj)-4*Kte*cos(t0*omega+omega*tj)*omega*tj-
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8*Kne*cos(t0*omega+omega*tj)-
4*Kne*sin(t0*omega+omega*tj)*omega*tj+h*Kt*sin(2*t0*omega)-
h*Kn*cos(2*t0*omega)-
8*Kte*sin(t0*omega)+8*Kne*cos(t0*omega)+h*Kt*tj*cos(2*t0*omega)*omega+h*Kn*
tj*sin(2*t0*omega)*omega-4*Kte*tj*cos(t0*omega)*omega-
4*Kne*tj*sin(t0*omega)*omega)/tj/omega^2; 
        -
1/8*b*(h*Kt*cos(2*t0*omega+2*omega*tj)+h*Kt*sin(2*t0*omega+2*omega*tj)*omeg
a*tj+h*Kn*sin(2*t0*omega+2*omega*tj)-
h*Kn*cos(2*t0*omega+2*omega*tj)*omega*tj-
8*Kte*sin(t0*omega+omega*tj)+4*Kte*cos(t0*omega+omega*tj)*omega*tj+8*Kne*co
s(t0*omega+omega*tj)+4*Kne*sin(t0*omega+omega*tj)*omega*tj-
h*Kt*cos(2*t0*omega)-h*Kn*sin(2*t0*omega)+8*Kte*sin(t0*omega)-
8*Kne*cos(t0*omega)+h*Kt*tj*sin(2*t0*omega)*omega-
h*Kn*tj*cos(2*t0*omega)*omega+4*Kte*tj*cos(t0*omega)*omega+4*Kne*tj*sin(t0*o
mega)*omega)/tj/omega^2]; 
    P11 = [  1/8*b*(-
3*Kt*sin(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kn*omeg
a^4*tj^4+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*sin(2*t0*ome
ga+2*omega*tj)+3*Kt*sin(2*t0*omega)-
3*Kn*cos(2*t0*omega)+2*Kt*cos(2*t0*omega)*omega^3*tj^3+2*Kn*sin(2*t0*omega)
*omega^3*tj^3+3*Kt*omega*tj*cos(2*t0*omega)+3*Kn*omega*tj*sin(2*t0*omega))/o
mega^4/tj^3,  1/8*b*(-3*Kt*cos(2*t0*omega+2*omega*tj)-
3*Kn*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^4*tj^4-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*cos(2*t0*omega+2*om
ega*tj)+3*Kt*cos(2*t0*omega)+3*Kn*sin(2*t0*omega)-
2*Kt*sin(2*t0*omega)*omega^3*tj^3+2*Kn*cos(2*t0*omega)*omega^3*tj^3-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3; 
        1/8*b*(-3*Kt*cos(2*t0*omega+2*omega*tj)-3*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^4*tj^4-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*cos(2*t0*omega+2*om
ega*tj)+3*Kt*cos(2*t0*omega)+3*Kn*sin(2*t0*omega)-
2*Kt*sin(2*t0*omega)*omega^3*tj^3+2*Kn*cos(2*t0*omega)*omega^3*tj^3-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3, -
1/8*b*(-
2*Kn*omega^4*tj^4+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*s
in(2*t0*omega+2*omega*tj)-
3*Kt*sin(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kt*cos(2*
t0*omega)*omega^3*tj^3+2*Kn*sin(2*t0*omega)*omega^3*tj^3+3*Kt*omega*tj*cos(
2*t0*omega)+3*Kn*omega*tj*sin(2*t0*omega)+3*Kt*sin(2*t0*omega)-
3*Kn*cos(2*t0*omega))/omega^4/tj^3]; 
    P12 =[  
1/48*b*(6*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+6*Kt*omega*tj*cos(2*t0*ome
ga+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kt*sin(2*t0*omega+2*omega*tj)+9*Kn*cos(2*t0*omega+2*omega*tj)+12*Kn*ome
ga*tj*sin(2*t0*omega)+12*Kt*omega*tj*cos(2*t0*omega)-
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6*Kt*omega^2*tj^2*sin(2*t0*omega)+6*Kn*omega^2*tj^2*cos(2*t0*omega)+9*Kt*si
n(2*t0*omega)-9*Kn*cos(2*t0*omega))/tj^2/omega^4, -
1/48*b*(9*Kt*cos(2*t0*omega+2*omega*tj)+9*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^4*tj^4+6*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)+12*Kt*omega*tj*sin(2*t0*omega)+6*
Kn*omega^2*tj^2*sin(2*t0*omega)+6*Kt*omega^2*tj^2*cos(2*t0*omega)-
9*Kt*cos(2*t0*omega)-12*Kn*omega*tj*cos(2*t0*omega)-
9*Kn*sin(2*t0*omega))/tj^2/omega^4; 
-
1/48*b*(2*Kt*omega^4*tj^4+6*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+9*Kt*cos(
2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)+9*Kn*sin(2*t0*omega+2*omega*tj)+1
2*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega^2*tj^2*sin(2*t0*omega)+6*Kt*omega^
2*tj^2*cos(2*t0*omega)-9*Kt*cos(2*t0*omega)-12*Kn*omega*tj*cos(2*t0*omega)-
9*Kn*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-
6*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kn*cos(2*t0*omega+2*omega*tj)+9*Kt*sin(2*t0*omega+2*omega*tj)-
12*Kt*omega*tj*cos(2*t0*omega)-
12*Kn*omega*tj*sin(2*t0*omega)+6*Kt*omega^2*tj^2*sin(2*t0*omega)-
6*Kn*omega^2*tj^2*cos(2*t0*omega)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega))/tj^2/omega^4]; 
    P13 =[  1/8*b*(2*Kn*omega^4*tj^4-
3*Kn*cos(2*t0*omega+2*omega*tj)+3*Kt*sin(2*t0*omega+2*omega*tj)-
3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
2*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
3*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega)-
3*Kt*sin(2*t0*omega)-3*Kt*omega*tj*cos(2*t0*omega)-
3*Kn*omega*tj*sin(2*t0*omega))/omega^4/tj^3,  
1/8*b*(2*Kt*omega^4*tj^4+2*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
2*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kt*cos(2*t0*omega+2*omega*t
j)+3*Kn*sin(2*t0*omega+2*omega*tj)+3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
3*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)-3*Kt*cos(2*t0*omega)-
3*Kn*sin(2*t0*omega)+3*Kt*omega*tj*sin(2*t0*omega)-
3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3; 
        -
1/8*b*(2*Kt*omega^4*tj^4+2*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kn
*omega*tj*cos(2*t0*omega+2*omega*tj)-3*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
3*Kt*cos(2*t0*omega+2*omega*tj)+3*Kn*sin(2*t0*omega)+3*Kt*cos(2*t0*omega)-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3,  
1/8*b*(2*Kn*omega^4*tj^4+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kn*omega^3*tj^3
*sin(2*t0*omega+2*omega*tj)-
3*Kt*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj
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)+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*sin(2*t0*omega+2*o
mega*tj)-
3*Kn*cos(2*t0*omega)+3*Kt*sin(2*t0*omega)+3*Kt*omega*tj*cos(2*t0*omega)+3*
Kn*omega*tj*sin(2*t0*omega))/omega^4/tj^3]; 
    P14 =[ -1/48*b*(6*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
6*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kn*cos(2*t0*omega+2*omega*tj)+9*Kt*sin(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*sin(2*t0*omega)-
6*Kt*omega*tj*cos(2*t0*omega)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-2*Kt*omega^4*tj^4-
12*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+12*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+6*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+6*Kn*sin(2*t0*omega+2
*omega*tj)*omega^2*tj^2-9*Kt*cos(2*t0*omega+2*omega*tj)-
9*Kn*sin(2*t0*omega+2*omega*tj)-
6*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega*tj*cos(2*t0*omega)+9*Kt*cos(2*t0*o
mega)+9*Kn*sin(2*t0*omega))/tj^2/omega^4; 
        1/48*b*(2*Kt*omega^4*tj^4-
12*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+12*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+6*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+6*Kn*sin(2*t0*omega+2
*omega*tj)*omega^2*tj^2-9*Kt*cos(2*t0*omega+2*omega*tj)-
9*Kn*sin(2*t0*omega+2*omega*tj)-
6*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega*tj*cos(2*t0*omega)+9*Kt*cos(2*t0*o
mega)+9*Kn*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-
12*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-9*Kn*cos(2*t0*omega+2*omega*tj)-
2*Kn*omega^4*tj^4-6*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+6*Kn*cos(2*t0*omega+2*omega*tj)*o
mega^2*tj^2+9*Kt*sin(2*t0*omega+2*omega*tj)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega)-6*Kn*omega*tj*sin(2*t0*omega)-
6*Kt*omega*tj*cos(2*t0*omega))/tj^2/omega^4]; 
    P21 =[ -1/80*b*(-15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
15*Kn*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+60*Kt*cos(2*t0*omega+2*omega
*tj)+60*Kn*sin(2*t0*omega+2*omega*tj)+4*Kn*omega^5*tj^5+60*Kt*omega*tj*sin(2
*t0*omega)-
10*Kn*omega^3*tj^3*cos(2*t0*omega)+15*Kn*omega^2*tj^2*sin(2*t0*omega)+15*K
t*omega^2*tj^2*cos(2*t0*omega)+10*Kt*omega^3*tj^3*sin(2*t0*omega)-
60*Kn*omega*tj*cos(2*t0*omega)+10*Kn*sin(2*t0*omega)*omega^4*tj^4+10*Kt*co
s(2*t0*omega)*omega^4*tj^4-60*Kn*sin(2*t0*omega)-
60*Kt*cos(2*t0*omega)+60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*cos(2*t0*omega+2*omega*tj))/omega^5/tj^4, -1/80*b*(-
60*Kn*cos(2*t0*omega)+60*Kt*sin(2*t0*omega)-
15*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kt*sin(2*t0*omega+2*omega
*tj)*omega^2*tj^2+60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
60*Kt*sin(2*t0*omega+2*omega*tj)+60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+
60*Kn*cos(2*t0*omega+2*omega*tj)+10*Kt*omega^3*tj^3*cos(2*t0*omega)-



123 

 

15*Kt*omega^2*tj^2*sin(2*t0*omega)-
10*Kt*sin(2*t0*omega)*omega^4*tj^4+10*Kn*cos(2*t0*omega)*omega^4*tj^4+15*K
n*omega^2*tj^2*cos(2*t0*omega)+60*Kt*omega*tj*cos(2*t0*omega)+10*Kn*omega^
3*tj^3*sin(2*t0*omega)+60*Kn*omega*tj*sin(2*t0*omega)+4*Kt*omega^5*tj^5)/ome
ga^5/tj^4; 
        1/80*b*(60*Kn*cos(2*t0*omega)-
60*Kt*sin(2*t0*omega)+15*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-60*Kn*cos(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)+10*Kt
*sin(2*t0*omega)*omega^4*tj^4-10*Kn*cos(2*t0*omega)*omega^4*tj^4-
15*Kn*omega^2*tj^2*cos(2*t0*omega)-60*Kt*omega*tj*cos(2*t0*omega)-
10*Kn*omega^3*tj^3*sin(2*t0*omega)-
60*Kn*omega*tj*sin(2*t0*omega)+4*Kt*omega^5*tj^5)/omega^5/tj^4, -1/80*b*(-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*omega*tj*cos(2*t0*omega)-
10*Kn*sin(2*t0*omega)*omega^4*tj^4-10*Kt*cos(2*t0*omega)*omega^4*tj^4-
15*Kt*omega^2*tj^2*cos(2*t0*omega)-
10*Kt*omega^3*tj^3*sin(2*t0*omega)+10*Kn*omega^3*tj^3*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*ome
ga)-
60*Kt*cos(2*t0*omega+2*omega*tj)+4*Kn*omega^5*tj^5+60*Kn*omega*tj*cos(2*t0
*omega+2*omega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin
(2*t0*omega+2*omega*tj)*omega^2*tj^2-60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj))/omega^5/tj^4]; 
    P22 = [ 1/480*b*(-2*Kn*omega^5*tj^5-180*Kt*cos(2*t0*omega+2*omega*tj)-
180*Kn*sin(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+30*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*sin(2*t0*ome
ga+2*omega*tj)*omega^2*tj^2-
225*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+225*Kn*omega*tj*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^3*tj^3*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*cos(2*t0*omega)-
120*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5, -
1/480*b*(135*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)+2*Kt*o
mega^5*tj^5+30*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*cos(2*t0*omega)+120*Kn*omega^2*tj^2*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*sin(2*t0*omega)+225*Kt*omega*tj*cos(2*t0*omega)+225*Kn*
omega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5; 
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        -
1/480*b*(135*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)-
2*Kt*omega^5*tj^5+30*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*cos(2*t0*omega)+120*Kn*omega^2*tj^2*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*sin(2*t0*omega)+225*Kt*omega*tj*cos(2*t0*omega)+225*Kn*
omega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5, -1/480*b*(2*Kn*omega^5*tj^5-
180*Kt*cos(2*t0*omega+2*omega*tj)-180*Kn*sin(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+30*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*sin(2*t0*ome
ga+2*omega*tj)*omega^2*tj^2-
225*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+225*Kn*omega*tj*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^3*tj^3*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*cos(2*t0*omega)-
120*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5]; 
    P23 = [ -1/80*b*(-4*Kn*omega^5*tj^5-60*Kt*cos(2*t0*omega+2*omega*tj)-
60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin(2*t0*omega
+2*omega*tj)*omega^2*tj^2-
10*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*sin(2*t0*o
mega+2*omega*tj)+10*Kt*omega^4*tj^4*cos(2*t0*omega+2*omega*tj)+10*Kn*omeg
a^3*tj^3*cos(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*omega)+
60*Kn*omega*tj*cos(2*t0*omega)-15*Kt*omega^2*tj^2*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega))/omega^5/tj^4, -1/80*b*(-
60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kn*cos(2*t0*omega+2*omega*tj)-
10*Kt*omega^4*tj^4*sin(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*cos(2*t0*o
mega+2*omega*tj)-10*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
4*Kt*omega^5*tj^5-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*cos(2*t0*omega+2*omega
*tj)*omega^2*tj^2-
15*Kn*omega^2*tj^2*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)-
60*Kt*omega*tj*cos(2*t0*omega)-60*Kn*omega*tj*sin(2*t0*omega)-
60*Kt*sin(2*t0*omega)+60*Kn*cos(2*t0*omega))/omega^5/tj^4; 
        -1/80*b*(-60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kn*cos(2*t0*omega+2*omega*tj)-
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10*Kt*omega^4*tj^4*sin(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*cos(2*t0*o
mega+2*omega*tj)-
10*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+4*Kt*omega^5*tj^5-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*cos(2*t0*omega+2*omega
*tj)*omega^2*tj^2-
15*Kn*omega^2*tj^2*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)-
60*Kt*omega*tj*cos(2*t0*omega)-60*Kn*omega*tj*sin(2*t0*omega)-
60*Kt*sin(2*t0*omega)+60*Kn*cos(2*t0*omega))/omega^5/tj^4,   
1/80*b*(4*Kn*omega^5*tj^5-60*Kt*cos(2*t0*omega+2*omega*tj)-
60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin(2*t0*omega
+2*omega*tj)*omega^2*tj^2-
10*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*sin(2*t0*o
mega+2*omega*tj)+10*Kt*omega^4*tj^4*cos(2*t0*omega+2*omega*tj)+10*Kn*omeg
a^3*tj^3*cos(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*omega)+
60*Kn*omega*tj*cos(2*t0*omega)-15*Kt*omega^2*tj^2*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega))/omega^5/tj^4]; 
    P24 = [ -
1/480*b*(2*Kn*omega^5*tj^5+180*Kt*cos(2*t0*omega+2*omega*tj)+180*Kn*sin(2*t
0*omega+2*omega*tj)+225*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
225*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)-
120*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
120*Kn*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+30*Kn*omega^3*tj^3*cos(2*t0*o
mega+2*omega*tj)+135*Kt*omega*tj*sin(2*t0*omega)-180*Kn*sin(2*t0*omega)-
180*Kt*cos(2*t0*omega)-
135*Kn*omega*tj*cos(2*t0*omega)+30*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kn*o
mega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5, -
1/480*b*(225*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+225*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)-
30*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)-
30*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^5*tj^5+120*Kt*sin(
2*t0*omega+2*omega*tj)*omega^2*tj^2-
120*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*omega^2*tj^2*cos(2*t0*
omega)-
30*Kt*omega^2*tj^2*sin(2*t0*omega)+135*Kt*omega*tj*cos(2*t0*omega)+135*Kn*o
mega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5; 
        1/480*b*(-225*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
225*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+180*Kt*sin(2*t0*omega+2*omega*tj
)-
180*Kn*cos(2*t0*omega+2*omega*tj)+30*Kt*omega^3*tj^3*cos(2*t0*omega+2*ome
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ga*tj)+30*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^5*tj^5-
120*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+120*Kn*cos(2*t0*omega+2*ome
ga*tj)*omega^2*tj^2-
30*Kn*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^2*tj^2*sin(2*t0*omega)-
135*Kt*omega*tj*cos(2*t0*omega)-135*Kn*omega*tj*sin(2*t0*omega)-
180*Kt*sin(2*t0*omega)+180*Kn*cos(2*t0*omega))/tj^3/omega^5, -
1/480*b*(2*Kn*omega^5*tj^5-180*Kt*cos(2*t0*omega+2*omega*tj)-
180*Kn*sin(2*t0*omega+2*omega*tj)-
225*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+225*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+120*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+120*Kn*sin(2*t0*o
mega+2*omega*tj)*omega^2*tj^2+30*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)
-30*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+135*Kn*omega*tj*cos(2*t0*omega)-30*Kt*omega^2*tj^2*cos(2*t0*omega)-
30*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5]; 
    P11 = [P11(1,1)*ones(lmx,1) P11(1,2)*ones(lmx,1); P11(2,1)*ones(lmx,1) 
P11(2,2)*ones(lmx,1)]*V; 
    P12 = [P12(1,1)*ones(lmx,1) P12(1,2)*ones(lmx,1); P12(2,1)*ones(lmx,1) 
P12(2,2)*ones(lmx,1)]*V; 
    P13 = [P13(1,1)*ones(lmx,1) P13(1,2)*ones(lmx,1); P13(2,1)*ones(lmx,1) 
P13(2,2)*ones(lmx,1)]*V; 
    P14 = [P14(1,1)*ones(lmx,1) P14(1,2)*ones(lmx,1); P14(2,1)*ones(lmx,1) 
P14(2,2)*ones(lmx,1)]*V; 
    P21 = [P21(1,1)*ones(lmx,1) P21(1,2)*ones(lmx,1); P21(2,1)*ones(lmx,1) 
P21(2,2)*ones(lmx,1)]*V; 
    P22 = [P22(1,1)*ones(lmx,1) P22(1,2)*ones(lmx,1); P22(2,1)*ones(lmx,1) 
P22(2,2)*ones(lmx,1)]*V; 
    P23 = [P23(1,1)*ones(lmx,1) P23(1,2)*ones(lmx,1); P23(2,1)*ones(lmx,1) 
P23(2,2)*ones(lmx,1)]*V; 
    P24 = [P24(1,1)*ones(lmx,1) P24(1,2)*ones(lmx,1); P24(2,1)*ones(lmx,1) 
P24(2,2)*ones(lmx,1)]*V; 
    N11 = -C+1/2*K*tj+P11; 
    N12 = -M+1/12*K*tj^2+P12; 
    N13 = C+1/2*K*tj+P13; 
    N14 = M-1/12*K*tj^2+P14; 
    N21 = M/tj-1/10*K*tj+P21; 
    N22 = 1/2*M-1/12*C*tj-1/120*K*tj^2+P22; 
    N23 = -M/tj+1/10*K*tj+P23; 
    N24 = 1/2*M+1/12*C*tj-1/120*K*tj^2+P24; 
    N1  = [N11 N12; N21 N22]; 
    N2  = [N13 N14; N23 N24]; 
    P1  = [P11 P12; P21 P22]; 
    P2  = [P13 P14; P23 P24]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    % BUILD GLOBAL MATRICES 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    A(1:2*DOF,1:2*DOF) = eye(2*DOF); 
    A(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+1:2*DOF*(e-1)+2*DOF) = N1; 
    A(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+2*DOF+1:2*DOF*(e-
1)+2*DOF+2*DOF) = N2; 
    B(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+1:2*DOF*(e-1)+2*DOF) = P1; 
    B(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+2*DOF+1:2*DOF*(e-
1)+2*DOF+2*DOF) = P2; 
    B(1:2*(DOF),E*2*(DOF)+1:(E+1)*2*(DOF)) = PHI; 
    Cvec(1:2*DOF,1) = zeros(2*DOF,1); 
    Cvec(2*DOF*e+1:2*DOF*e+DOF,1) = C1; 
    Cvec(2*DOF*e+DOF+1:2*DOF*e+2*DOF,1) = C2; 
end; % end # of elements loop 
Q           = A\B; 
[vec,lam]   = eig(Q); 
CM          = max(abs(diag(lam))); 
D          = A\Cvec; 
N1 = zeros(2*DOF,2*DOF); N2 = N1; 
P1 = N1; P2 = P1; 
c = CM - 1; 
return 
%save TFEA_STABSLE_LOW ss zz CM ee IMMERSION SLE 
% NOTES 
% ss - spindle speeds 
% zz - depth of cut 
% CM - charistic multipliers or eigenvalues 
% SLE- surface location error 
 
Objective Function 

% 
% average surface location error 
% % Input: 
% x(1) depth 
% x(2) speed 
% x(3) radial 
function SLE_AVER = obj(x) 
global Min_speed Max_speed Min_depth Max_depth MRR_c band; 
x1 = x(1) * (Max_depth - Min_depth) + Min_depth; 
x2 = x(2) * (Max_speed - Min_speed) + Min_speed; 
% MRR constraint on the first perturbed point 
sle1 = obj1([x1, x2-band ,x(3)]); 
sle2 = obj1([x1, x2, x(3)]); 
sle3 = obj1([x1, x2+band ,x(3)]); 
SLE_AVER = (sle1+sle2+sle3)/3; 
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% objective function for SLE  
function SLE = obj1(x) 
% Input: 
% x(1) depth 
% x(2) speed 
% x(3) radial 
 b = x(1); 
 rpm = x(2); 
 rstep       = x(3);                                % radial immersion (inches) 
 E       = 25;               % number of elements 
  % adjust cutting coefficients to spindle speed 
    Kt      = 1295.9e6*(rpm/1000)^-0.2285; % N/m2         
 Kn      = ((rpm/1000)^2*1.8485-54.604*(rpm/1000)+423.77)*1e6;  
 Kte = ((rpm/1000)^2*-0.1335+3.2431*(rpm/1000)+27.216)*1e3;       % N/m 
 Kne = ((rpm/1000)^2*-0.0821+1.4447*(rpm/1000)+30.202)*1e3;   
  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %        CUT PROCESS DESCRIPTION GEOMETRY/IMMERSION/PROCESS 
PARAMETERS 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 h           = 0.1e-3;                          % feed per tooth 
 nteeth      = 1;                                    % number of teeth 
 Diam        = 1;                                  % inches 
 TRAVang     = acos(1-rstep/(Diam/2));               % angular travel during cutting 
 LAGang      = 2*pi/nteeth;                          % separation angle for teeth 
 rho         = acos(1-rstep/(Diam/2))/(2*pi);        % fraction of time in cut       
 IMMERSION   = rstep/Diam; 
 opt         = 'up'; 
 if TRAVang>LAGang   % MULTIPLE TEETH ARE IN CONTACT 
        teethNcontact = floor(TRAVang/LAGang) +1; 
 else                % SINGLE TOOTH IN CONTACT 
        teethNcontact = 1; 
 end 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %       LOAD SYSTEM IDENTIFICATION MATRICES  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  load SYSTEM_ID_1mode 
    Kx =  4.4528e+006; 
    Ky =  3.5542e+006; 
    Mx =   0.4362; 
    My =    0.3471; 
    Cx =   82.5955; 
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    Cy =   89.8606; 
% zeta_x = .02996; zeta_y = 0.02576; 
% freq_x = 362.75; freq_y = 362.71; 
% Kx = 1.308e6; Ky = 1.194e6; 
% Mx = Kx/(freq_x*2*pi)^2; 
% My = Ky/(freq_y*2*pi)^2; 
% Cx = zeta_x * 2 * Mx * 2*pi * freq_x; 
% Cy = zeta_y * 2 * My * 2*pi * freq_y; 
M   =[Mx zeros(size(Mx)); zeros(size(Mx)) My]; 
C   =[Cx zeros(size(Mx)); zeros(size(Mx)) Cy]; 
K   =[Kx zeros(size(Mx)); zeros(size(Mx)) Ky]; 
lmx = length(Mx(1,:));  
lmy = length(My(1,:));  
lmx=1; lmy=1; DOF=2; Mx=M(1,1); My=M(2,2); 
DOF = lmx+lmy;  
 V       = [ones(1,lmx) zeros(1,lmy); zeros(1,lmx) ones(1,lmy)]; 
 A       = zeros((E+1)*2*DOF,(E+1)*2*DOF); 
 B       = A; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %       BEGIN LOOP CALCULATIONS OVER RPM vs DOC FIELD 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 speed   = rpm; 
 omega   = speed/60*(2*pi);              % radians per second 
 T       = (2*pi)/omega/nteeth;          % tooth pass period 
 TC      = rho*T*nteeth;                 % time a single tooth spends in the cut 
 tf      = T-TC;                         % time for free vibs 
 tj      = TC/E;                         % time for each element 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %       SET CUTTER ROTATION ANGLE FOR UP/DOWN-MILLING 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 switch opt 
 case 'up' 
 t0mat   = [0 tj*(1:(E-1))];             % upmilling 
 locat   = 2*DOF+lmx+1:3*DOF; 
 case 'down' 
 tex     = pi/omega; tent=tex-TC;          % downmilling 
 t0mat   = [tent tent+tj*(1:(E-1))];     % downmilling 
 locat   = (E+1)*2*DOF-DOF-lmy+1:(E+1)*2*DOF-DOF; 
 end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 %       STATE TRANSITION MATRIX 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 G1  = [zeros(size(M)) M; eye(size(M)) zeros(size(M))]; 
 G2  = [K  C; zeros(size(M)) -eye(size(M))]; 
 G   = -G1\G2; 
 PHI = expm(G*tf); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %       N & P are used to create A & B which then become Q in..... a_n = Q a_n-1 
+ D 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for e=1:E, 
t0 = t0mat(e); 
C1 = V'*[ -1/4*b*(-h*Kt*cos(2*t0*omega+2*omega*tj)+2*h*Kn*omega*tj-
h*Kn*sin(2*t0*omega+2*omega*tj)+4*Kte*sin(t0*omega+omega*tj)-
4*Kne*cos(t0*omega+omega*tj)+h*Kt*cos(2*t0*omega)+h*Kn*sin(2*t0*omega)-
4*Kte*sin(t0*omega)+4*Kne*cos(t0*omega))/omega; 
   1/4*b*(2*h*Kt*omega*tj-
h*Kt*sin(2*t0*omega+2*omega*tj)+h*Kn*cos(2*t0*omega+2*omega*tj)-
4*Kte*sin(t0*omega+omega*tj)+4*Kne*cos(t0*omega+omega*tj)+h*Kt*sin(2*t0*ome
ga)-h*Kn*cos(2*t0*omega)+4*Kte*sin(t0*omega)-4*Kne*cos(t0*omega))/omega]; 
C2 = V'*[ 1/8*b*(-
h*Kt*sin(2*t0*omega+2*omega*tj)+h*Kt*cos(2*t0*omega+2*omega*tj)*omega*tj+h*
Kn*cos(2*t0*omega+2*omega*tj)+h*Kn*sin(2*t0*omega+2*omega*tj)*omega*tj+8*K
te*sin(t0*omega+omega*tj)-4*Kte*cos(t0*omega+omega*tj)*omega*tj-
8*Kne*cos(t0*omega+omega*tj)-
4*Kne*sin(t0*omega+omega*tj)*omega*tj+h*Kt*sin(2*t0*omega)-
h*Kn*cos(2*t0*omega)-
8*Kte*sin(t0*omega)+8*Kne*cos(t0*omega)+h*Kt*tj*cos(2*t0*omega)*omega+h*Kn*
tj*sin(2*t0*omega)*omega-4*Kte*tj*cos(t0*omega)*omega-
4*Kne*tj*sin(t0*omega)*omega)/tj/omega^2; 
 -
1/8*b*(h*Kt*cos(2*t0*omega+2*omega*tj)+h*Kt*sin(2*t0*omega+2*omega*tj)*omeg
a*tj+h*Kn*sin(2*t0*omega+2*omega*tj)-
h*Kn*cos(2*t0*omega+2*omega*tj)*omega*tj-
8*Kte*sin(t0*omega+omega*tj)+4*Kte*cos(t0*omega+omega*tj)*omega*tj+8*Kne*co
s(t0*omega+omega*tj)+4*Kne*sin(t0*omega+omega*tj)*omega*tj-
h*Kt*cos(2*t0*omega)-h*Kn*sin(2*t0*omega)+8*Kte*sin(t0*omega)-
8*Kne*cos(t0*omega)+h*Kt*tj*sin(2*t0*omega)*omega-
h*Kn*tj*cos(2*t0*omega)*omega+4*Kte*tj*cos(t0*omega)*omega+4*Kne*tj*sin(t0*o
mega)*omega)/tj/omega^2]; 
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P11 = [  1/8*b*(-
3*Kt*sin(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kn*omeg
a^4*tj^4+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*sin(2*t0*ome
ga+2*omega*tj)+3*Kt*sin(2*t0*omega)-
3*Kn*cos(2*t0*omega)+2*Kt*cos(2*t0*omega)*omega^3*tj^3+2*Kn*sin(2*t0*omega)
*omega^3*tj^3+3*Kt*omega*tj*cos(2*t0*omega)+3*Kn*omega*tj*sin(2*t0*omega))/o
mega^4/tj^3,  1/8*b*(-3*Kt*cos(2*t0*omega+2*omega*tj)-
3*Kn*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^4*tj^4-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*cos(2*t0*omega+2*om
ega*tj)+3*Kt*cos(2*t0*omega)+3*Kn*sin(2*t0*omega)-
2*Kt*sin(2*t0*omega)*omega^3*tj^3+2*Kn*cos(2*t0*omega)*omega^3*tj^3-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3; 
  1/8*b*(-3*Kt*cos(2*t0*omega+2*omega*tj)-3*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^4*tj^4-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*cos(2*t0*omega+2*om
ega*tj)+3*Kt*cos(2*t0*omega)+3*Kn*sin(2*t0*omega)-
2*Kt*sin(2*t0*omega)*omega^3*tj^3+2*Kn*cos(2*t0*omega)*omega^3*tj^3-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3, -
1/8*b*(-
2*Kn*omega^4*tj^4+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*s
in(2*t0*omega+2*omega*tj)-
3*Kt*sin(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kt*cos(2*
t0*omega)*omega^3*tj^3+2*Kn*sin(2*t0*omega)*omega^3*tj^3+3*Kt*omega*tj*cos(
2*t0*omega)+3*Kn*omega*tj*sin(2*t0*omega)+3*Kt*sin(2*t0*omega)-
3*Kn*cos(2*t0*omega))/omega^4/tj^3]; 
P12 =[  
1/48*b*(6*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+6*Kt*omega*tj*cos(2*t0*ome
ga+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kt*sin(2*t0*omega+2*omega*tj)+9*Kn*cos(2*t0*omega+2*omega*tj)+12*Kn*ome
ga*tj*sin(2*t0*omega)+12*Kt*omega*tj*cos(2*t0*omega)-
6*Kt*omega^2*tj^2*sin(2*t0*omega)+6*Kn*omega^2*tj^2*cos(2*t0*omega)+9*Kt*si
n(2*t0*omega)-9*Kn*cos(2*t0*omega))/tj^2/omega^4, -
1/48*b*(9*Kt*cos(2*t0*omega+2*omega*tj)+9*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^4*tj^4+6*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)+12*Kt*omega*tj*sin(2*t0*omega)+6*
Kn*omega^2*tj^2*sin(2*t0*omega)+6*Kt*omega^2*tj^2*cos(2*t0*omega)-
9*Kt*cos(2*t0*omega)-12*Kn*omega*tj*cos(2*t0*omega)-
9*Kn*sin(2*t0*omega))/tj^2/omega^4; 
 -
1/48*b*(2*Kt*omega^4*tj^4+6*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+9*Kt*cos(
2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)+9*Kn*sin(2*t0*omega+2*omega*tj)+1
2*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega^2*tj^2*sin(2*t0*omega)+6*Kt*omega^
2*tj^2*cos(2*t0*omega)-9*Kt*cos(2*t0*omega)-12*Kn*omega*tj*cos(2*t0*omega)-
9*Kn*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-
6*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
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6*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kn*cos(2*t0*omega+2*omega*tj)+9*Kt*sin(2*t0*omega+2*omega*tj)-
12*Kt*omega*tj*cos(2*t0*omega)-
12*Kn*omega*tj*sin(2*t0*omega)+6*Kt*omega^2*tj^2*sin(2*t0*omega)-
6*Kn*omega^2*tj^2*cos(2*t0*omega)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega))/tj^2/omega^4]; 
P13 =[  1/8*b*(2*Kn*omega^4*tj^4-
3*Kn*cos(2*t0*omega+2*omega*tj)+3*Kt*sin(2*t0*omega+2*omega*tj)-
3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
2*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
3*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega)-
3*Kt*sin(2*t0*omega)-3*Kt*omega*tj*cos(2*t0*omega)-
3*Kn*omega*tj*sin(2*t0*omega))/omega^4/tj^3,  
1/8*b*(2*Kt*omega^4*tj^4+2*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
2*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kt*cos(2*t0*omega+2*omega*t
j)+3*Kn*sin(2*t0*omega+2*omega*tj)+3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
3*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)-3*Kt*cos(2*t0*omega)-
3*Kn*sin(2*t0*omega)+3*Kt*omega*tj*sin(2*t0*omega)-
3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3; 
 -
1/8*b*(2*Kt*omega^4*tj^4+2*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kn
*omega*tj*cos(2*t0*omega+2*omega*tj)-3*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
3*Kt*cos(2*t0*omega+2*omega*tj)+3*Kn*sin(2*t0*omega)+3*Kt*cos(2*t0*omega)-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3,  
1/8*b*(2*Kn*omega^4*tj^4+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kn*omega^3*tj^3
*sin(2*t0*omega+2*omega*tj)-
3*Kt*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj
)+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*sin(2*t0*omega+2*o
mega*tj)-
3*Kn*cos(2*t0*omega)+3*Kt*sin(2*t0*omega)+3*Kt*omega*tj*cos(2*t0*omega)+3*
Kn*omega*tj*sin(2*t0*omega))/omega^4/tj^3]; 
P14 =[ -1/48*b*(6*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
6*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kn*cos(2*t0*omega+2*omega*tj)+9*Kt*sin(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*sin(2*t0*omega)-
6*Kt*omega*tj*cos(2*t0*omega)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-2*Kt*omega^4*tj^4-
12*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+12*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+6*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+6*Kn*sin(2*t0*omega+2
*omega*tj)*omega^2*tj^2-9*Kt*cos(2*t0*omega+2*omega*tj)-
9*Kn*sin(2*t0*omega+2*omega*tj)-
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6*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega*tj*cos(2*t0*omega)+9*Kt*cos(2*t0*o
mega)+9*Kn*sin(2*t0*omega))/tj^2/omega^4; 
  1/48*b*(2*Kt*omega^4*tj^4-
12*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+12*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+6*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+6*Kn*sin(2*t0*omega+2
*omega*tj)*omega^2*tj^2-9*Kt*cos(2*t0*omega+2*omega*tj)-
9*Kn*sin(2*t0*omega+2*omega*tj)-
6*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega*tj*cos(2*t0*omega)+9*Kt*cos(2*t0*o
mega)+9*Kn*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-
12*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-9*Kn*cos(2*t0*omega+2*omega*tj)-
2*Kn*omega^4*tj^4-6*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+6*Kn*cos(2*t0*omega+2*omega*tj)*o
mega^2*tj^2+9*Kt*sin(2*t0*omega+2*omega*tj)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega)-6*Kn*omega*tj*sin(2*t0*omega)-
6*Kt*omega*tj*cos(2*t0*omega))/tj^2/omega^4]; 
P21 =[ -1/80*b*(-15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
15*Kn*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+60*Kt*cos(2*t0*omega+2*omega
*tj)+60*Kn*sin(2*t0*omega+2*omega*tj)+4*Kn*omega^5*tj^5+60*Kt*omega*tj*sin(2
*t0*omega)-
10*Kn*omega^3*tj^3*cos(2*t0*omega)+15*Kn*omega^2*tj^2*sin(2*t0*omega)+15*K
t*omega^2*tj^2*cos(2*t0*omega)+10*Kt*omega^3*tj^3*sin(2*t0*omega)-
60*Kn*omega*tj*cos(2*t0*omega)+10*Kn*sin(2*t0*omega)*omega^4*tj^4+10*Kt*co
s(2*t0*omega)*omega^4*tj^4-60*Kn*sin(2*t0*omega)-
60*Kt*cos(2*t0*omega)+60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*cos(2*t0*omega+2*omega*tj))/omega^5/tj^4, -1/80*b*(-
60*Kn*cos(2*t0*omega)+60*Kt*sin(2*t0*omega)-
15*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kt*sin(2*t0*omega+2*omega
*tj)*omega^2*tj^2+60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
60*Kt*sin(2*t0*omega+2*omega*tj)+60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+
60*Kn*cos(2*t0*omega+2*omega*tj)+10*Kt*omega^3*tj^3*cos(2*t0*omega)-
15*Kt*omega^2*tj^2*sin(2*t0*omega)-
10*Kt*sin(2*t0*omega)*omega^4*tj^4+10*Kn*cos(2*t0*omega)*omega^4*tj^4+15*K
n*omega^2*tj^2*cos(2*t0*omega)+60*Kt*omega*tj*cos(2*t0*omega)+10*Kn*omega^
3*tj^3*sin(2*t0*omega)+60*Kn*omega*tj*sin(2*t0*omega)+4*Kt*omega^5*tj^5)/ome
ga^5/tj^4; 
   1/80*b*(60*Kn*cos(2*t0*omega)-
60*Kt*sin(2*t0*omega)+15*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-60*Kn*cos(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)+10*Kt
*sin(2*t0*omega)*omega^4*tj^4-10*Kn*cos(2*t0*omega)*omega^4*tj^4-
15*Kn*omega^2*tj^2*cos(2*t0*omega)-60*Kt*omega*tj*cos(2*t0*omega)-
10*Kn*omega^3*tj^3*sin(2*t0*omega)-
60*Kn*omega*tj*sin(2*t0*omega)+4*Kt*omega^5*tj^5)/omega^5/tj^4, -1/80*b*(-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*omega*tj*cos(2*t0*omega)-
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10*Kn*sin(2*t0*omega)*omega^4*tj^4-10*Kt*cos(2*t0*omega)*omega^4*tj^4-
15*Kt*omega^2*tj^2*cos(2*t0*omega)-
10*Kt*omega^3*tj^3*sin(2*t0*omega)+10*Kn*omega^3*tj^3*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*ome
ga)-
60*Kt*cos(2*t0*omega+2*omega*tj)+4*Kn*omega^5*tj^5+60*Kn*omega*tj*cos(2*t0
*omega+2*omega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin
(2*t0*omega+2*omega*tj)*omega^2*tj^2-60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj))/omega^5/tj^4]; 
P22 = [ 1/480*b*(-2*Kn*omega^5*tj^5-180*Kt*cos(2*t0*omega+2*omega*tj)-
180*Kn*sin(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+30*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*sin(2*t0*ome
ga+2*omega*tj)*omega^2*tj^2-
225*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+225*Kn*omega*tj*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^3*tj^3*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*cos(2*t0*omega)-
120*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5, -
1/480*b*(135*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)+2*Kt*o
mega^5*tj^5+30*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*cos(2*t0*omega)+120*Kn*omega^2*tj^2*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*sin(2*t0*omega)+225*Kt*omega*tj*cos(2*t0*omega)+225*Kn*
omega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5; 
 -
1/480*b*(135*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)-
2*Kt*omega^5*tj^5+30*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*cos(2*t0*omega)+120*Kn*omega^2*tj^2*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*sin(2*t0*omega)+225*Kt*omega*tj*cos(2*t0*omega)+225*Kn*
omega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5, -1/480*b*(2*Kn*omega^5*tj^5-
180*Kt*cos(2*t0*omega+2*omega*tj)-180*Kn*sin(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+30*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*sin(2*t0*ome
ga+2*omega*tj)*omega^2*tj^2-
225*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+225*Kn*omega*tj*cos(2*t0*omega)-
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120*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^3*tj^3*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*cos(2*t0*omega)-
120*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5]; 
P23 = [ -1/80*b*(-4*Kn*omega^5*tj^5-60*Kt*cos(2*t0*omega+2*omega*tj)-
60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin(2*t0*omega
+2*omega*tj)*omega^2*tj^2-
10*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*sin(2*t0*o
mega+2*omega*tj)+10*Kt*omega^4*tj^4*cos(2*t0*omega+2*omega*tj)+10*Kn*omeg
a^3*tj^3*cos(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*omega)+
60*Kn*omega*tj*cos(2*t0*omega)-15*Kt*omega^2*tj^2*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega))/omega^5/tj^4, -1/80*b*(-
60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kn*cos(2*t0*omega+2*omega*tj)-
10*Kt*omega^4*tj^4*sin(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*cos(2*t0*o
mega+2*omega*tj)-10*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
4*Kt*omega^5*tj^5-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*cos(2*t0*omega+2*omega
*tj)*omega^2*tj^2-
15*Kn*omega^2*tj^2*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)-
60*Kt*omega*tj*cos(2*t0*omega)-60*Kn*omega*tj*sin(2*t0*omega)-
60*Kt*sin(2*t0*omega)+60*Kn*cos(2*t0*omega))/omega^5/tj^4; 
 -1/80*b*(-60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kn*cos(2*t0*omega+2*omega*tj)-
10*Kt*omega^4*tj^4*sin(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*cos(2*t0*o
mega+2*omega*tj)-
10*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+4*Kt*omega^5*tj^5-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*cos(2*t0*omega+2*omega
*tj)*omega^2*tj^2-
15*Kn*omega^2*tj^2*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)-
60*Kt*omega*tj*cos(2*t0*omega)-60*Kn*omega*tj*sin(2*t0*omega)-
60*Kt*sin(2*t0*omega)+60*Kn*cos(2*t0*omega))/omega^5/tj^4,   
1/80*b*(4*Kn*omega^5*tj^5-60*Kt*cos(2*t0*omega+2*omega*tj)-
60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin(2*t0*omega
+2*omega*tj)*omega^2*tj^2-
10*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*sin(2*t0*o
mega+2*omega*tj)+10*Kt*omega^4*tj^4*cos(2*t0*omega+2*omega*tj)+10*Kn*omeg
a^3*tj^3*cos(2*t0*omega+2*omega*tj)-
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60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*omega)+
60*Kn*omega*tj*cos(2*t0*omega)-15*Kt*omega^2*tj^2*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega))/omega^5/tj^4]; 
P24 = [ -
1/480*b*(2*Kn*omega^5*tj^5+180*Kt*cos(2*t0*omega+2*omega*tj)+180*Kn*sin(2*t
0*omega+2*omega*tj)+225*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
225*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)-
120*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
120*Kn*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+30*Kn*omega^3*tj^3*cos(2*t0*o
mega+2*omega*tj)+135*Kt*omega*tj*sin(2*t0*omega)-180*Kn*sin(2*t0*omega)-
180*Kt*cos(2*t0*omega)-
135*Kn*omega*tj*cos(2*t0*omega)+30*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kn*o
mega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5, -
1/480*b*(225*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+225*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)-
30*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)-
30*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^5*tj^5+120*Kt*sin(
2*t0*omega+2*omega*tj)*omega^2*tj^2-
120*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*omega^2*tj^2*cos(2*t0*
omega)-
30*Kt*omega^2*tj^2*sin(2*t0*omega)+135*Kt*omega*tj*cos(2*t0*omega)+135*Kn*o
mega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5; 
 1/480*b*(-225*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
225*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+180*Kt*sin(2*t0*omega+2*omega*tj
)-
180*Kn*cos(2*t0*omega+2*omega*tj)+30*Kt*omega^3*tj^3*cos(2*t0*omega+2*ome
ga*tj)+30*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^5*tj^5-
120*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+120*Kn*cos(2*t0*omega+2*ome
ga*tj)*omega^2*tj^2-
30*Kn*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^2*tj^2*sin(2*t0*omega)-
135*Kt*omega*tj*cos(2*t0*omega)-135*Kn*omega*tj*sin(2*t0*omega)-
180*Kt*sin(2*t0*omega)+180*Kn*cos(2*t0*omega))/tj^3/omega^5, -
1/480*b*(2*Kn*omega^5*tj^5-180*Kt*cos(2*t0*omega+2*omega*tj)-
180*Kn*sin(2*t0*omega+2*omega*tj)-
225*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+225*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+120*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+120*Kn*sin(2*t0*o
mega+2*omega*tj)*omega^2*tj^2+30*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)
-30*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+135*Kn*omega*tj*cos(2*t0*omega)-30*Kt*omega^2*tj^2*cos(2*t0*omega)-
30*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5]; 
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P11 = [P11(1,1)*ones(lmx,1) P11(1,2)*ones(lmx,1); P11(2,1)*ones(lmx,1) 
P11(2,2)*ones(lmx,1)]*V; 
P12 = [P12(1,1)*ones(lmx,1) P12(1,2)*ones(lmx,1); P12(2,1)*ones(lmx,1) 
P12(2,2)*ones(lmx,1)]*V; 
P13 = [P13(1,1)*ones(lmx,1) P13(1,2)*ones(lmx,1); P13(2,1)*ones(lmx,1) 
P13(2,2)*ones(lmx,1)]*V; 
P14 = [P14(1,1)*ones(lmx,1) P14(1,2)*ones(lmx,1); P14(2,1)*ones(lmx,1) 
P14(2,2)*ones(lmx,1)]*V; 
P21 = [P21(1,1)*ones(lmx,1) P21(1,2)*ones(lmx,1); P21(2,1)*ones(lmx,1) 
P21(2,2)*ones(lmx,1)]*V; 
P22 = [P22(1,1)*ones(lmx,1) P22(1,2)*ones(lmx,1); P22(2,1)*ones(lmx,1) 
P22(2,2)*ones(lmx,1)]*V; 
P23 = [P23(1,1)*ones(lmx,1) P23(1,2)*ones(lmx,1); P23(2,1)*ones(lmx,1) 
P23(2,2)*ones(lmx,1)]*V; 
P24 = [P24(1,1)*ones(lmx,1) P24(1,2)*ones(lmx,1); P24(2,1)*ones(lmx,1) 
P24(2,2)*ones(lmx,1)]*V; 
N11 = -C+1/2*K*tj+P11; 
N12 = -M+1/12*K*tj^2+P12;  
N13 = C+1/2*K*tj+P13; 
N14 = M-1/12*K*tj^2+P14; 
N21 = M/tj-1/10*K*tj+P21; 
N22 = 1/2*M-1/12*C*tj-1/120*K*tj^2+P22; 
N23 = -M/tj+1/10*K*tj+P23; 
N24 = 1/2*M+1/12*C*tj-1/120*K*tj^2+P24;  
    N1  = [N11 N12; N21 N22]; 
    N2  = [N13 N14; N23 N24]; 
    P1  = [P11 P12; P21 P22]; 
    P2  = [P13 P14; P23 P24];  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    % BUILD GLOBAL MATRICES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    A(1:2*DOF,1:2*DOF) = eye(2*DOF); 
    A(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+1:2*DOF*(e-1)+2*DOF) = N1; 
    A(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+2*DOF+1:2*DOF*(e-
1)+2*DOF+2*DOF) = N2; 
    B(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+1:2*DOF*(e-1)+2*DOF) = P1; 
    B(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+2*DOF+1:2*DOF*(e-
1)+2*DOF+2*DOF) = P2; 
    B(1:2*(DOF),E*2*(DOF)+1:(E+1)*2*(DOF)) = PHI; 
    Cvec(1:2*DOF,1) = zeros(2*DOF,1); 
    Cvec(2*DOF*e+1:2*DOF*e+DOF,1) = C1; 
    Cvec(2*DOF*e+DOF+1:2*DOF*e+2*DOF,1) = C2; 
end; % end # of elements loop 
 Q           = A\B; 
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            [vec,lam]   = eig(Q); 
   CM          = max(abs(diag(lam))); 
   D          = A\Cvec; 
   % Extract SLE coefficients  
    
    if CM<1 
                    SLE_vec     = inv((eye(size(Q))-Q))*D; 
                    SLE         = abs(sum(SLE_vec(locat))); 
    else 
                   SLE          = 100; 
    end 
            N1 = zeros(2*DOF,2*DOF); N2 = N1; 
   P1 = N1; P2 = P1;  
return; 
 

Uncertainty Analysis Code 

Stability Uncertainty, Sensitivity Method 

% M. Kurdi (1/26/2005) 
% Function to find uncertainty in axial depth to change in cutting 
% coefficients, dynamic parameters, and cutting process variables 
% Input: 
%       b:      depth of cut (m) 
%       rpm:    spindle speed 
%       rstep:  radial step (inches) 
%       Kt 
%       Kn 
%       Kte 
%       Kre 
%       DELTA_Kt    finite change in Kt 
%       DELTA_b     finite change in b 
%       system_ID:  Modal parameters 
% The derivative of Max eigen value is found for a miniscule perturbation 
% in input parameters, then its effect on the change of axial depth is  
% found. 
clear all; close all; clc;tic; 
% function uncer 
% percentage of uncertainty in cutting coefficients, dynamic parameters 
% and process parameters 
% tic; 
percent_Kcut = 0.05; % cutting coefficents uncertainty 
percent_Dyn = 0.005; % modal parameters uncertainty 
percent_rstep = 0.0001; % radial step uncertainty 
percent_rpm = 0.005; % spindle speed uncertainty 
% nominal values of process parameters and their calculated uncertainty 
rstep = 0.2; 
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rpm_vec = 10000:200:30000; 
DELTA_rstep = percent_rstep*rstep; 
% cutting coefficient uncertainty 
Kt = 6e8; 
DELTA_Kt = percent_Kcut*Kt; 
Kn = .3*Kt; 
DELTA_Kn = percent_Kcut*Kn; 
Kte=0; 
DELTA_Kte = percent_Kcut*Kte; 
Kne=0; 
DELTA_Kne = percent_Kcut*Kne; 
% nominal values of dynamic parameters and their calculated uncertainty 
Kx =  4.4528e+006;  
Mx = 0.4362; 
Cx = 83; 
% Y direction parameters 
Ky = 3.5542e+006;  
My = 0.4362; 
Cy = 89.9; 
DELTA_Mx = Mx*percent_Dyn; 
DELTA_My = My*percent_Dyn; 
DELTA_Kx = Kx*percent_Dyn; 
DELTA_Ky = Ky*percent_Dyn; 
DELTA_Cx = Cx*percent_Dyn; 
DELTA_Cy = Cy*percent_Dyn; 
% to calculate the numerical derivative with respect to each input  
% variable set the miniscule change in each input 
% set miniscule change in input parameters to estimate the derivative 
step_percent = 0.002; 
dKt = step_percent*Kt; % N/m2 
dKn = step_percent*Kn; % N/m2 
dKte = step_percent*30; % N/m 
dKne = step_percent*30; % N/m 
drstep = step_percent*rstep; % inch 
dKx = step_percent*Kx; % N/m 
dKy = step_percent*Ky; % N/m 
dCx = step_percent*Cx; %  
dCy = step_percent*Cy; 
dMx = step_percent*Mx; % Kg 
dMy = step_percent*My; % Kg 
h = waitbar(0,'Please wait...'); 
% computation here % 
for i=1:length(rpm_vec) 
    waitbar(i/length(rpm_vec),h); 
    rpm = rpm_vec(i); 
    drpm = step_percent*rpm; % rpm 
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    DELTA_rpm = percent_rpm * rpm; 
    % Find depth of cut corresponding to stability boundary using nominal 
    % settings of input parameters 
    [b(i)] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); % depth at 
 boundary 
    % Find numerical derivative of maximum eigenvalue with respect to input 
    % parameters 
    % perturb cutting coefficient Kt by dKt 
     
    [b1] = bisection(rpm,rstep,Kt-dKt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    [b2] = bisection(rpm,rstep,Kt+dKt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen matrix w.r.t cutting coefficient Kt 
    d_b_Kt(i) = (b2-b1)/dKt/2; 
    b1 =[]; b2 =[]; 
    % perturb cutting coefficient Kn by dKn 
    [b1] = bisection(rpm,rstep,Kt,Kn-dKn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    [b2] = bisection(rpm,rstep,Kt,Kn+dKn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
%  
%     % derivative of eigen matrix w.r.t cutting coefficient Kt 
    d_b_Kn(i) = (b2-b1)/dKn/2; 
    b1 =[]; b2 =[]; 
    % perturb cutting coefficient Kte by dKte 
    [b1] = bisection(rpm,rstep,Kt,Kn,Kte-dKte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    [b2] = bisection(rpm,rstep,Kt,Kn,Kte+dKte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen matrix w.r.t cutting coefficient Kt 
    d_b_Kte(i) = (b2-b1)/dKte/2; 
    b1 =[]; b2 =[]; 
    % perturb cutting coefficient Kne by dKne 
    [b1] = bisection(rpm,rstep,Kt,Kn,Kte,Kne-dKne,Mx,Kx,Cx,My,Ky,Cy); 
    [b2] = bisection(rpm,rstep,Kt,Kn,Kte,Kne+dKne,Mx,Kx,Cx,My,Ky,Cy); 
   % derivative of eigen matrix w.r.t cutting coefficient Kne 
    d_b_Kne(i) = (b2-b1)/dKne/2; 
    b1 =[]; b2 =[]; 
%     
    % perturb depth of cut rstep by drstep 
    [b1] = bisection(rpm,rstep-drstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    [b2] = bisection(rpm,rstep+drstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen value w.r.t rstep of cut 
    d_b_rstep(i) = (b2-b1)/drstep/2; 
    b1 =[]; b2 =[]; 
    % perturb spindle speed by drpm 
    [b1] = bisection(rpm-drpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    [b2] = bisection(rpm+drpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen value w.r.t rpm 
    d_b_rpm(i) = (b2-b1)/drpm/2; 
    b1 =[]; b2 =[]; 
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%      perturb Kx by dKx 
    [b1] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx-dKx,Cx,My,Ky,Cy); 
    [b2] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx+dKx,Cx,My,Ky,Cy); 
%     derivative of eigen value w.r.t Kx 
    d_b_Kx(i) = (b2-b1)/dKx/2; 
    b1 =[]; b2 =[]; 
     % perturb Ky by dKy 
    [b1] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky-dKy,Cy); 
    [b2] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky+dKy,Cy); 
%  
    % derivative of eigen value w.r.t Ky 
    d_b_Ky(i) = (b2-b1)/dKy/2; 
    b1 =[]; b2 =[]; 
     % perturb Cx by dCx 
    [b1] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx-dCx,My,Ky,Cy); 
    [b2] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx+dCx,My,Ky,Cy); 
    % derivative of eigen value w.r.t Cx 
    d_b_Cx(i) = (b2-b1)/dCx/2; 
    b1 =[]; b2 =[]; 
    % perturb Cy by dCy 
    [b1] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy-dCy); 
    [b2] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy+dCy); 
    % derivative of eigen value w.r.t Cy 
    d_b_Cy(i) = (b2-b1)/dCy/2; 
    b1 =[]; b2 =[]; 
      % perturb Mx by dMx 
    [b1] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx-dMx,Kx,Cx,My,Ky,Cy); 
    [b2] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx+dMx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen value w.r.t Mx 
    d_b_Mx(i) = (b2-b1)/dMx/2; 
    b1 =[]; b2 =[]; 
     % perturb My by dMy 
    [b1] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My-dMy,Ky,Cy); 
    [b2] = bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My+dMy,Ky,Cy); 
%  
%     % derivative of eigen value w.r.t My 
    d_b_My(i) = (b2-b1)/dMy/2; 
    b1 =[]; b2 =[]; 
%     
DELTA_b(i) =( (DELTA_Kt * d_b_Kt(i))^2 + (DELTA_Kn * d_b_Kn(i))^2 + ... 
           (DELTA_Kne * d_b_Kne(i))^2 + (DELTA_Kte * d_b_Kte(i))^2 +... 
           (DELTA_Kx * d_b_Kx(i))^2 + (DELTA_Mx * d_b_Mx(i))^2 + ... 
            (DELTA_Cx * d_b_Cx(i))^2 + (DELTA_Ky * d_b_Ky(i))^2 +... 
             (DELTA_My * d_b_My(i))^2 + (DELTA_Cy * d_b_Cy(i))^2+...  
             (DELTA_rstep * d_b_rstep(i))^2 + (DELTA_rpm* d_b_rpm(i))^2)^0.5; 
end 
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close(h); 
% d_b_rpm 
% % Find the uncertainty in depth of cut for a corresponding uncertainty in 
% % input paramters 
%  
% save uncer_march_10_smallconverror 
figure 
plot(rpm_vec*1/60/(sqrt(Ky/My)/2/pi),b*1000,'-g') 
%  
% set(gca,'fontname','times','fontsize',16); 
% xlabel('\Omega (x10^3 rpm)','fontsize',14) 
% ylabel('b (mm)','fontsize',14) 
% legend('Stability boundary, nominal input','Stability boundary uncertainty'); 
% axis([5 20 0 15]) 

 

Stability Uncertainty, Monte Carlo and Latin Hyper-Cube 

%  
% M. Kurdi (6/17/05) 
% 4 OAL TOOL 
% Program to complete LatinHyper and Monte simulation for TFEA stability lobes 
% clear all; close all; 
% function LatinHyper 
% tic; 
% chip_load=0.1e-3;% chip load 
% nteeth = 4; 
% Diam =0.5; 
% E=15; 
% N = 1000; % number of iterations 
%  
%  
% % AL 6061 
% % percent_Kt = 7.13/100; % cutting coefficents uncertainty 
% % percent_Kn = 8.09/100; 
% % percent_Kte = 30.3/100; 
% % percent_Kne = 23.9/100; 
%  
% % 5 OAL TOOL UNCERTAINTIES 
% % percent_KX = 0.054; % modal parameters uncertainty 
% % percent_CX = .286; 
% % percent_MX =.045; 
% %  
% % percent_KY = 0.054; % modal parameters uncertainty 
% % percent_CY = .173; 
% % percent_MY =.055; 
% % 4 OAL TOOL UNCERTAINTIES due to thermal effect only 
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%  percent_MX = 0.074; 
%  percent_CX = 0.042; 
%  percent_KX = 0.073 ; 
%  percent_MY = 0.2; 
%  percent_CY = 0.107; 
%  percent_KY = 0.2 ; 
% percent_rstep = 0.0005; % radial step uncertainty  
% percent_rpm = 0.005; % spindle speed uncertainty 
% % speed_min = str2num(input('Min_speed = ','s')); 
% % speed_max = str2num(input('Max_speed = ','s')); 
% % speed = speed_min:200:speed_max; 
% speed = 10000:100:20000; 
% h = waitbar(0,'Please wait...'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%5 
% % Cutting Coefficients %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
% % AL 6061 
% % mean_Kt =7.06E+08; % N/m2 
% % mean_Kn = 2.50E+08; 
% % mean_Kte = 1.29E+04; % N/m; 
% % mean_Kne = 6.57E+03; 
% % AL 7475 
% mean_Kt =  690480868.527357; 
% mean_Kte = 12022.3004909002; 
% mean_Kn = 142535991.092323; 
% mean_Kne =11281.4601645315; 
% std_Kn=4009843*4.45; % N 
% std_Kne=310.909*4.45; 
% std_Kte=200.731*4.45; 
% std_Kt=2588583*4.45; 
% % std_Kt = percent_Kt*mean_Kt; 
% % std_Kn = percent_Kn*mean_Kn; 
% % std_Kte = percent_Kte*mean_Kte; 
% % std_Kne = percent_Kne*mean_Kne; 
% % Kne Kn Kte Kt 
% % AL  6061 
% % SIGMA_K = [1.480E+07 -1.778E+11 -8.216E+06 9.871E+10; 
% %             -1.778E+11 2.458E+15 9.871E+10 -1.365E+15; 
% %             -8.216E+06 9.871E+10 9.163E+07 -1.101E+12; 
% %             9.871E+10 -1.365E+15 -1.101E+12 1.522E+16 
% %             ]; 
%  
% % AL 7475 
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%    SIGMA_K = [ 42157610.7365206         -506483170409.775         -
3598978.12573119          43238262783.6325; 
%          -506483170409.775     7.00379474676691e+015          43238262783.6325          
-597911116174549; 
%          -3598978.12573128          43238262783.6335          17574719.1179838          -
211143357093.21; 
%           43238262783.6335          -597911116174562          -211143357093.21     
2.91975098408051e+015]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% % Modal Parameters 
% % X %%%%%%%%%%%%%%%%  
% % 5 OAL TOOL 
% % mean_Kx =  2.64E+06;  
% % mean_Mx = 0.049; 
% % mean_Cx = 8.972; 
%  % dynamic parameters for 4 OAL tool 
%          mean_Mx = 0.027 ; 
%          mean_Cx=  23.309; 
%          mean_Kx= 4359275.000 ; 
% std_Cx = percent_CX*mean_Cx; 
% std_Kx = percent_KX*mean_Kx; 
% std_Mx = percent_MX*mean_Mx; 
% % Mx Cx Kx My Cy Ky 5 OAL 
% % SIGMA = [3.85E-06 4.03E-03 2.48E+02 2.40E-06 -3.18E-03
 1.31E+02; 
% %         4.03E-03 5.27E+00 2.69E+05 4.08E-03 -3.32E+00
 2.19E+05; 
% %         2.48E+02 2.69E+05 1.61E+10 1.67E+02 -2.07E+05
 9.15E+09; 
% %         2.40E-06 4.08E-03 1.67E+02 4.23E-06 -1.88E-03
 2.24E+02; 
% %         -3.18E-03 -3.32E+00 -2.07E+05 -1.88E-03 2.71E+00 -
1.04E+05; 
% %         1.31E+02 2.19E+05 9.15E+09 2.24E+02 -1.04E+05
 1.19E+10 
% %             ]; 
% % Mx Cx Kx My Cy Ky 4 OAL 
% SIGMA = [4.04188E-06 0.000450265 631.110625 7.25563E-06 -0.000584252
 878.998125; 
% 0.000450265 0.953490935 38828.325 0.00283473 -2.467636648
 567721.5525; 
% 631.110625 38828.325 1.00042E+11 1068.011875 -51720.94813 1.21332E+11; 
% 7.25563E-06 0.00283473 1068.011875 1.76519E-05 -0.007067488
 2638.261875; 
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% -0.000584252 -2.467636648 -51720.94813 -0.007067488 11.34481701 -
1426512.396; 
% 878.998125 567721.5525 1.21332E+11 2638.261875 -1426512.396
 4.36003E+11]; 
% % % Y %%%%%%%%%%%%%%%%%%%%%%%%%% 
% % 5 OAL TOOL 
% % mean_Ky = 2.26e+006;  
% % mean_Cy = 10.651; 
% % mean_My = 0.042; 
% % Y direction parameters 4 OAL TOOL 
% mean_Ky = 3301775.000;  
% mean_My =  0.021; 
% mean_Cy = 31.432;    
% std_My = percent_MY*mean_My; 
% std_Ky = percent_KY*mean_Ky; 
% std_Cy = percent_CY*mean_Cy; 
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % % Radial step inches 
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% mean_rstep = 0.25*.5; 
% std_rstep = percent_rstep*mean_rstep; 
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% randn('state',0) 
% Mode = lhsnorm([mean_Mx mean_Cx mean_Kx mean_My mean_Cy 
mean_Ky],SIGMA,N);  
% % Mode(:,1) is Mx random vector 
% % Mode(:,2) is Cx random vector 
% % Mode(:,3) is Kx random vector  
% % Mode(:,4) is My random vector 
% % Mode(:,5) is Cy random vector 
% % Mode(:,6) is Ky random vector 
% Cut_Coeff = lhsnorm([mean_Kne mean_Kn mean_Kte mean_Kt],SIGMA_K,N); 
% % Cut_Coeff(:,1) Kne 
% % Cut_Coeff(:,2) Kn 
% % Cut_Coeff(:,3) Kte 
% % Cut_Coeff(:,4) Kt 
% sample = randn(N, 2); 
% for j=1:length(speed) 
% waitbar(j/length(speed),h) 
% for i=1:N 
% % Unless otherwise specified, all dimensions in m 
% % Define input parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % Cutting coefficients 
% Kt = Cut_Coeff(i,4); 
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% Kn = Cut_Coeff(i,2); 
% Kte = Cut_Coeff(i,3); 
% Kne = Cut_Coeff(i,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % milling parameters 
% % Spindle speed 
% mean_rpm = speed(j);  
% std_rpm = percent_rpm*mean_rpm; 
% rpm = mean_rpm + std_rpm*sample(i,1); 
% % rstep 
% rstep = mean_rstep + std_rstep*sample(i,2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % Dynamic parameters 
% % X direction is feed direction 
% Kx =Mode(i,3); 
% Mx = Mode(i,1); 
% Cx = Mode(i,2); 
% % Y direction parameters 
% Ky = Mode(i,6); 
% My = Mode(i,4); 
% Cy = Mode(i,5); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % Calculate axial depth corresponding to input paramters 
% % that is on the stability boundaries 
% b(i,j) = 
bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Cx,Kx,My,Cy,Ky,chip_load,nteeth,Diam,E); 
% end % i end monte loop for one spindle speed 
% end % j end spindle speed range 
% std_dev = std(b) 
% b_mean = mean(b) 
% time=toc; 
% save Latin_AL7475 std_dev speed b_mean b time 
% close(h); 
% hold on; 
% h1 = plot(speed/1000,(mean(b)-2*std(b))*1000,'-r') 
% hold on; 
% h2 = plot(speed/1000,mean(b)*1000,'g-'); 
% hold on; 
% h3 = plot(speed/1000,(2*std(b)+mean(b))*1000,'-r'); 
% legend([h1,h2,h3],'lower boundary','mean','upper boundary') 
figure 
plot(speed/1000,std(b)*2*1000) 
% 
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% Function to stability lobe using bisection method. 
% Input: 
%  rpm ; 
%  rstep:      radial immersion (inches) 
%   Output: 
%   b   depth of cut (m) 
function [b] = 
bisection(rpm,rstep,Kt,Kn,Kte,Kne,Mx,Cx,Kx,My,Cy,Ky,h,nteeth,Diam,E) 
% E 
%     h                                     % feed per tooth 
%  nteeth                                         % number of teeth 
%  Diam                                          % inches 
 TRAVang     = acos(1-rstep/(Diam/2));               % angular travel during cutting 
 LAGang      = 2*pi/nteeth;                          % separation angle for teeth 
 rho         = acos(1-rstep/(Diam/2))/(2*pi);        % fraction of time in cut       
 IMMERSION   = rstep/Diam; 
 opt         = 'down'; 
 if TRAVang>LAGang   % MULTIPLE TEETH ARE IN CONTACT 
        teethNcontact = floor(TRAVang/LAGang) +1; 
 else                % SINGLE TOOTH IN CONTACT 
        teethNcontact = 1; 
 end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %       LOAD SYSTEM IDENTIFICATION MATRICES  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 M   =[Mx zeros(size(Mx)); zeros(size(Mx)) My]; 
 C   =[Cx zeros(size(Mx)); zeros(size(Mx)) Cy]; 
 K   =[Kx zeros(size(Mx)); zeros(size(Mx)) Ky]; 
 lmx = length(Mx(1,:));  
 lmy = length(My(1,:));  
 DOF = lmx+lmy;  
 V       = [ones(1,lmx) zeros(1,lmy); zeros(1,lmx) ones(1,lmy)]; 
 A       = zeros((E+1)*2*DOF,(E+1)*2*DOF); 
 B       = A; 
 b_r = [1e-10 100e-2]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  %       BEGIN LOOP CALCULATIONS OVER RPM vs DOC FIELD 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  while (abs(b_r(1) - b_r(2)) / b_r(1) > 1e-6) 
        warning off MATLAB:singularMatrix; 
        warning off MATLAB:nearlySingularMatrix; 
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  b = (b_r(1) + b_r(2)) / 2; 
  speed   = rpm; 
  omega   = speed/60*(2*pi);              % radians per second 
  T       = (2*pi)/omega/nteeth;          % tooth pass period 
  TC      = rho*T*nteeth;                 % time a single tooth spends in the cut 
  tf      = T-TC;                         % time for free vibs 
  tj      = TC/E;                         % time for each element 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  %       SET CUTTER ROTATION ANGLE FOR UP/DOWN-MILLING 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  switch opt 
  case 'up' 
  t0mat   = [0 tj*(1:(E-1))];             % upmilling 
  locat   = 2*DOF+lmx+1:3*DOF; 
  case 'down' 
  tex     = pi/omega; tent=tex-TC;          % downmilling 
  t0mat   = [tent tent+tj*(1:(E-1))];     % downmilling 
  locat   = (E+1)*2*DOF-DOF-lmy+1:(E+1)*2*DOF-DOF; 
  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  %       STATE TRANSITION MATRIX 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  G1  = [zeros(size(M)) M; eye(size(M)) zeros(size(M))]; 
  G2  = [K  C; zeros(size(M)) -eye(size(M))]; 
  G   = -G1\G2; 
  PHI = expm(G*tf); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  %       N & P are used to create A & B which then become Q in..... a_n = 
Q a_n-1 + D 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 for e=1:E, 
 t0 = t0mat(e); 
C1 = V'*[ -1/4*b*(-h*Kt*cos(2*t0*omega+2*omega*tj)+2*h*Kn*omega*tj-
h*Kn*sin(2*t0*omega+2*omega*tj)+4*Kte*sin(t0*omega+omega*tj)-
4*Kne*cos(t0*omega+omega*tj)+h*Kt*cos(2*t0*omega)+h*Kn*sin(2*t0*omega)-
4*Kte*sin(t0*omega)+4*Kne*cos(t0*omega))/omega; 
   1/4*b*(2*h*Kt*omega*tj-
h*Kt*sin(2*t0*omega+2*omega*tj)+h*Kn*cos(2*t0*omega+2*omega*tj)-
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4*Kte*sin(t0*omega+omega*tj)+4*Kne*cos(t0*omega+omega*tj)+h*Kt*sin(2*t0*ome
ga)-h*Kn*cos(2*t0*omega)+4*Kte*sin(t0*omega)-4*Kne*cos(t0*omega))/omega]; 
 C2 = V'*[ 1/8*b*(-
h*Kt*sin(2*t0*omega+2*omega*tj)+h*Kt*cos(2*t0*omega+2*omega*tj)*omega*tj+h*
Kn*cos(2*t0*omega+2*omega*tj)+h*Kn*sin(2*t0*omega+2*omega*tj)*omega*tj+8*K
te*sin(t0*omega+omega*tj)-4*Kte*cos(t0*omega+omega*tj)*omega*tj-
8*Kne*cos(t0*omega+omega*tj)-
4*Kne*sin(t0*omega+omega*tj)*omega*tj+h*Kt*sin(2*t0*omega)-
h*Kn*cos(2*t0*omega)-
8*Kte*sin(t0*omega)+8*Kne*cos(t0*omega)+h*Kt*tj*cos(2*t0*omega)*omega+h*Kn*
tj*sin(2*t0*omega)*omega-4*Kte*tj*cos(t0*omega)*omega-
4*Kne*tj*sin(t0*omega)*omega)/tj/omega^2; 
 -
1/8*b*(h*Kt*cos(2*t0*omega+2*omega*tj)+h*Kt*sin(2*t0*omega+2*omega*tj)*omeg
a*tj+h*Kn*sin(2*t0*omega+2*omega*tj)-
h*Kn*cos(2*t0*omega+2*omega*tj)*omega*tj-
8*Kte*sin(t0*omega+omega*tj)+4*Kte*cos(t0*omega+omega*tj)*omega*tj+8*Kne*co
s(t0*omega+omega*tj)+4*Kne*sin(t0*omega+omega*tj)*omega*tj-
h*Kt*cos(2*t0*omega)-h*Kn*sin(2*t0*omega)+8*Kte*sin(t0*omega)-
8*Kne*cos(t0*omega)+h*Kt*tj*sin(2*t0*omega)*omega-
h*Kn*tj*cos(2*t0*omega)*omega+4*Kte*tj*cos(t0*omega)*omega+4*Kne*tj*sin(t0*o
mega)*omega)/tj/omega^2]; 
 P11 = [  1/8*b*(-
3*Kt*sin(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kn*omeg
a^4*tj^4+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*sin(2*t0*ome
ga+2*omega*tj)+3*Kt*sin(2*t0*omega)-
3*Kn*cos(2*t0*omega)+2*Kt*cos(2*t0*omega)*omega^3*tj^3+2*Kn*sin(2*t0*omega)
*omega^3*tj^3+3*Kt*omega*tj*cos(2*t0*omega)+3*Kn*omega*tj*sin(2*t0*omega))/o
mega^4/tj^3,  1/8*b*(-3*Kt*cos(2*t0*omega+2*omega*tj)-
3*Kn*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^4*tj^4-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*cos(2*t0*omega+2*om
ega*tj)+3*Kt*cos(2*t0*omega)+3*Kn*sin(2*t0*omega)-
2*Kt*sin(2*t0*omega)*omega^3*tj^3+2*Kn*cos(2*t0*omega)*omega^3*tj^3-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3; 
  1/8*b*(-3*Kt*cos(2*t0*omega+2*omega*tj)-3*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^4*tj^4-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*cos(2*t0*omega+2*om
ega*tj)+3*Kt*cos(2*t0*omega)+3*Kn*sin(2*t0*omega)-
2*Kt*sin(2*t0*omega)*omega^3*tj^3+2*Kn*cos(2*t0*omega)*omega^3*tj^3-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3, -
1/8*b*(-
2*Kn*omega^4*tj^4+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*s
in(2*t0*omega+2*omega*tj)-
3*Kt*sin(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kt*cos(2*
t0*omega)*omega^3*tj^3+2*Kn*sin(2*t0*omega)*omega^3*tj^3+3*Kt*omega*tj*cos(
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2*t0*omega)+3*Kn*omega*tj*sin(2*t0*omega)+3*Kt*sin(2*t0*omega)-
3*Kn*cos(2*t0*omega))/omega^4/tj^3]; 
 P12 =[  
1/48*b*(6*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+6*Kt*omega*tj*cos(2*t0*ome
ga+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kt*sin(2*t0*omega+2*omega*tj)+9*Kn*cos(2*t0*omega+2*omega*tj)+12*Kn*ome
ga*tj*sin(2*t0*omega)+12*Kt*omega*tj*cos(2*t0*omega)-
6*Kt*omega^2*tj^2*sin(2*t0*omega)+6*Kn*omega^2*tj^2*cos(2*t0*omega)+9*Kt*si
n(2*t0*omega)-9*Kn*cos(2*t0*omega))/tj^2/omega^4, -
1/48*b*(9*Kt*cos(2*t0*omega+2*omega*tj)+9*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^4*tj^4+6*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)+12*Kt*omega*tj*sin(2*t0*omega)+6*
Kn*omega^2*tj^2*sin(2*t0*omega)+6*Kt*omega^2*tj^2*cos(2*t0*omega)-
9*Kt*cos(2*t0*omega)-12*Kn*omega*tj*cos(2*t0*omega)-
9*Kn*sin(2*t0*omega))/tj^2/omega^4; 
 -
1/48*b*(2*Kt*omega^4*tj^4+6*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+9*Kt*cos(
2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)+9*Kn*sin(2*t0*omega+2*omega*tj)+1
2*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega^2*tj^2*sin(2*t0*omega)+6*Kt*omega^
2*tj^2*cos(2*t0*omega)-9*Kt*cos(2*t0*omega)-12*Kn*omega*tj*cos(2*t0*omega)-
9*Kn*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-
6*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kn*cos(2*t0*omega+2*omega*tj)+9*Kt*sin(2*t0*omega+2*omega*tj)-
12*Kt*omega*tj*cos(2*t0*omega)-
12*Kn*omega*tj*sin(2*t0*omega)+6*Kt*omega^2*tj^2*sin(2*t0*omega)-
6*Kn*omega^2*tj^2*cos(2*t0*omega)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega))/tj^2/omega^4]; 
P13 =[  1/8*b*(2*Kn*omega^4*tj^4-
3*Kn*cos(2*t0*omega+2*omega*tj)+3*Kt*sin(2*t0*omega+2*omega*tj)-
3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
2*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
3*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega)-
3*Kt*sin(2*t0*omega)-3*Kt*omega*tj*cos(2*t0*omega)-
3*Kn*omega*tj*sin(2*t0*omega))/omega^4/tj^3,  
1/8*b*(2*Kt*omega^4*tj^4+2*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
2*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kt*cos(2*t0*omega+2*omega*t
j)+3*Kn*sin(2*t0*omega+2*omega*tj)+3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
3*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)-3*Kt*cos(2*t0*omega)-
3*Kn*sin(2*t0*omega)+3*Kt*omega*tj*sin(2*t0*omega)-
3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3; 
 -
1/8*b*(2*Kt*omega^4*tj^4+2*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kn
*omega*tj*cos(2*t0*omega+2*omega*tj)-3*Kn*sin(2*t0*omega+2*omega*tj)-



151 

 

2*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
3*Kt*cos(2*t0*omega+2*omega*tj)+3*Kn*sin(2*t0*omega)+3*Kt*cos(2*t0*omega)-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3,  
1/8*b*(2*Kn*omega^4*tj^4+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kn*omega^3*tj^3
*sin(2*t0*omega+2*omega*tj)-
3*Kt*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj
)+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*sin(2*t0*omega+2*o
mega*tj)-
3*Kn*cos(2*t0*omega)+3*Kt*sin(2*t0*omega)+3*Kt*omega*tj*cos(2*t0*omega)+3*
Kn*omega*tj*sin(2*t0*omega))/omega^4/tj^3]; 
  
  
P14 =[ -1/48*b*(6*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
6*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kn*cos(2*t0*omega+2*omega*tj)+9*Kt*sin(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*sin(2*t0*omega)-
6*Kt*omega*tj*cos(2*t0*omega)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-2*Kt*omega^4*tj^4-
12*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+12*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+6*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+6*Kn*sin(2*t0*omega+2
*omega*tj)*omega^2*tj^2-9*Kt*cos(2*t0*omega+2*omega*tj)-
9*Kn*sin(2*t0*omega+2*omega*tj)-
6*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega*tj*cos(2*t0*omega)+9*Kt*cos(2*t0*o
mega)+9*Kn*sin(2*t0*omega))/tj^2/omega^4; 
  1/48*b*(2*Kt*omega^4*tj^4-
12*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+12*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+6*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+6*Kn*sin(2*t0*omega+2
*omega*tj)*omega^2*tj^2-9*Kt*cos(2*t0*omega+2*omega*tj)-
9*Kn*sin(2*t0*omega+2*omega*tj)-
6*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega*tj*cos(2*t0*omega)+9*Kt*cos(2*t0*o
mega)+9*Kn*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-
12*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-9*Kn*cos(2*t0*omega+2*omega*tj)-
2*Kn*omega^4*tj^4-6*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+6*Kn*cos(2*t0*omega+2*omega*tj)*o
mega^2*tj^2+9*Kt*sin(2*t0*omega+2*omega*tj)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega)-6*Kn*omega*tj*sin(2*t0*omega)-
6*Kt*omega*tj*cos(2*t0*omega))/tj^2/omega^4]; 
 P21 =[ -1/80*b*(-15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
15*Kn*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+60*Kt*cos(2*t0*omega+2*omega
*tj)+60*Kn*sin(2*t0*omega+2*omega*tj)+4*Kn*omega^5*tj^5+60*Kt*omega*tj*sin(2
*t0*omega)-
10*Kn*omega^3*tj^3*cos(2*t0*omega)+15*Kn*omega^2*tj^2*sin(2*t0*omega)+15*K
t*omega^2*tj^2*cos(2*t0*omega)+10*Kt*omega^3*tj^3*sin(2*t0*omega)-
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60*Kn*omega*tj*cos(2*t0*omega)+10*Kn*sin(2*t0*omega)*omega^4*tj^4+10*Kt*co
s(2*t0*omega)*omega^4*tj^4-60*Kn*sin(2*t0*omega)-
60*Kt*cos(2*t0*omega)+60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*cos(2*t0*omega+2*omega*tj))/omega^5/tj^4, -1/80*b*(-
60*Kn*cos(2*t0*omega)+60*Kt*sin(2*t0*omega)-
15*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kt*sin(2*t0*omega+2*omega
*tj)*omega^2*tj^2+60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
60*Kt*sin(2*t0*omega+2*omega*tj)+60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+
60*Kn*cos(2*t0*omega+2*omega*tj)+10*Kt*omega^3*tj^3*cos(2*t0*omega)-
15*Kt*omega^2*tj^2*sin(2*t0*omega)-
10*Kt*sin(2*t0*omega)*omega^4*tj^4+10*Kn*cos(2*t0*omega)*omega^4*tj^4+15*K
n*omega^2*tj^2*cos(2*t0*omega)+60*Kt*omega*tj*cos(2*t0*omega)+10*Kn*omega^
3*tj^3*sin(2*t0*omega)+60*Kn*omega*tj*sin(2*t0*omega)+4*Kt*omega^5*tj^5)/ome
ga^5/tj^4; 
   1/80*b*(60*Kn*cos(2*t0*omega)-
60*Kt*sin(2*t0*omega)+15*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-60*Kn*cos(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)+10*Kt
*sin(2*t0*omega)*omega^4*tj^4-10*Kn*cos(2*t0*omega)*omega^4*tj^4-
15*Kn*omega^2*tj^2*cos(2*t0*omega)-60*Kt*omega*tj*cos(2*t0*omega)-
10*Kn*omega^3*tj^3*sin(2*t0*omega)-
60*Kn*omega*tj*sin(2*t0*omega)+4*Kt*omega^5*tj^5)/omega^5/tj^4, -1/80*b*(-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*omega*tj*cos(2*t0*omega)-
10*Kn*sin(2*t0*omega)*omega^4*tj^4-10*Kt*cos(2*t0*omega)*omega^4*tj^4-
15*Kt*omega^2*tj^2*cos(2*t0*omega)-
10*Kt*omega^3*tj^3*sin(2*t0*omega)+10*Kn*omega^3*tj^3*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*ome
ga)-
60*Kt*cos(2*t0*omega+2*omega*tj)+4*Kn*omega^5*tj^5+60*Kn*omega*tj*cos(2*t0
*omega+2*omega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin
(2*t0*omega+2*omega*tj)*omega^2*tj^2-60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj))/omega^5/tj^4]; 
 P22 = [ 1/480*b*(-2*Kn*omega^5*tj^5-180*Kt*cos(2*t0*omega+2*omega*tj)-
180*Kn*sin(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+30*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*sin(2*t0*ome
ga+2*omega*tj)*omega^2*tj^2-
225*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+225*Kn*omega*tj*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^3*tj^3*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*cos(2*t0*omega)-
120*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5, -
1/480*b*(135*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
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180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)+2*Kt*o
mega^5*tj^5+30*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*cos(2*t0*omega)+120*Kn*omega^2*tj^2*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*sin(2*t0*omega)+225*Kt*omega*tj*cos(2*t0*omega)+225*Kn*
omega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5; 
 -
1/480*b*(135*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)-
2*Kt*omega^5*tj^5+30*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*cos(2*t0*omega)+120*Kn*omega^2*tj^2*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*sin(2*t0*omega)+225*Kt*omega*tj*cos(2*t0*omega)+225*Kn*
omega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5, -1/480*b*(2*Kn*omega^5*tj^5-
180*Kt*cos(2*t0*omega+2*omega*tj)-180*Kn*sin(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+30*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*sin(2*t0*ome
ga+2*omega*tj)*omega^2*tj^2-
225*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+225*Kn*omega*tj*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^3*tj^3*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*cos(2*t0*omega)-
120*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5]; 
 P23 = [ -1/80*b*(-4*Kn*omega^5*tj^5-60*Kt*cos(2*t0*omega+2*omega*tj)-
60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin(2*t0*omega
+2*omega*tj)*omega^2*tj^2-
10*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*sin(2*t0*o
mega+2*omega*tj)+10*Kt*omega^4*tj^4*cos(2*t0*omega+2*omega*tj)+10*Kn*omeg
a^3*tj^3*cos(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*omega)+
60*Kn*omega*tj*cos(2*t0*omega)-15*Kt*omega^2*tj^2*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega))/omega^5/tj^4, -1/80*b*(-
60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kn*cos(2*t0*omega+2*omega*tj)-
10*Kt*omega^4*tj^4*sin(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*cos(2*t0*o
mega+2*omega*tj)-10*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
4*Kt*omega^5*tj^5-
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15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*cos(2*t0*omega+2*omega
*tj)*omega^2*tj^2-
15*Kn*omega^2*tj^2*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)-
60*Kt*omega*tj*cos(2*t0*omega)-60*Kn*omega*tj*sin(2*t0*omega)-
60*Kt*sin(2*t0*omega)+60*Kn*cos(2*t0*omega))/omega^5/tj^4; 
 -1/80*b*(-60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kn*cos(2*t0*omega+2*omega*tj)-
10*Kt*omega^4*tj^4*sin(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*cos(2*t0*o
mega+2*omega*tj)-
10*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+4*Kt*omega^5*tj^5-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*cos(2*t0*omega+2*omega
*tj)*omega^2*tj^2-
15*Kn*omega^2*tj^2*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)-
60*Kt*omega*tj*cos(2*t0*omega)-60*Kn*omega*tj*sin(2*t0*omega)-
60*Kt*sin(2*t0*omega)+60*Kn*cos(2*t0*omega))/omega^5/tj^4,   
1/80*b*(4*Kn*omega^5*tj^5-60*Kt*cos(2*t0*omega+2*omega*tj)-
60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin(2*t0*omega
+2*omega*tj)*omega^2*tj^2-
10*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*sin(2*t0*o
mega+2*omega*tj)+10*Kt*omega^4*tj^4*cos(2*t0*omega+2*omega*tj)+10*Kn*omeg
a^3*tj^3*cos(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*omega)+
60*Kn*omega*tj*cos(2*t0*omega)-15*Kt*omega^2*tj^2*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega))/omega^5/tj^4]; 
 P24 = [ -
1/480*b*(2*Kn*omega^5*tj^5+180*Kt*cos(2*t0*omega+2*omega*tj)+180*Kn*sin(2*t
0*omega+2*omega*tj)+225*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
225*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)-
120*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
120*Kn*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+30*Kn*omega^3*tj^3*cos(2*t0*o
mega+2*omega*tj)+135*Kt*omega*tj*sin(2*t0*omega)-180*Kn*sin(2*t0*omega)-
180*Kt*cos(2*t0*omega)-
135*Kn*omega*tj*cos(2*t0*omega)+30*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kn*o
mega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5, -
1/480*b*(225*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+225*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)-
30*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)-
30*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^5*tj^5+120*Kt*sin(
2*t0*omega+2*omega*tj)*omega^2*tj^2-
120*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*omega^2*tj^2*cos(2*t0*
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omega)-
30*Kt*omega^2*tj^2*sin(2*t0*omega)+135*Kt*omega*tj*cos(2*t0*omega)+135*Kn*o
mega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5; 
 1/480*b*(-225*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
225*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+180*Kt*sin(2*t0*omega+2*omega*tj
)-
180*Kn*cos(2*t0*omega+2*omega*tj)+30*Kt*omega^3*tj^3*cos(2*t0*omega+2*ome
ga*tj)+30*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^5*tj^5-
120*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+120*Kn*cos(2*t0*omega+2*ome
ga*tj)*omega^2*tj^2-
30*Kn*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^2*tj^2*sin(2*t0*omega)-
135*Kt*omega*tj*cos(2*t0*omega)-135*Kn*omega*tj*sin(2*t0*omega)-
180*Kt*sin(2*t0*omega)+180*Kn*cos(2*t0*omega))/tj^3/omega^5, -
1/480*b*(2*Kn*omega^5*tj^5-180*Kt*cos(2*t0*omega+2*omega*tj)-
180*Kn*sin(2*t0*omega+2*omega*tj)-
225*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+225*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+120*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+120*Kn*sin(2*t0*o
mega+2*omega*tj)*omega^2*tj^2+30*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)
-30*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+135*Kn*omega*tj*cos(2*t0*omega)-30*Kt*omega^2*tj^2*cos(2*t0*omega)-
30*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5]; 
 P11 = [P11(1,1)*ones(lmx,1) P11(1,2)*ones(lmx,1); P11(2,1)*ones(lmx,1) 
P11(2,2)*ones(lmx,1)]*V; 
P12 = [P12(1,1)*ones(lmx,1) P12(1,2)*ones(lmx,1); P12(2,1)*ones(lmx,1) 
P12(2,2)*ones(lmx,1)]*V; 
P13 = [P13(1,1)*ones(lmx,1) P13(1,2)*ones(lmx,1); P13(2,1)*ones(lmx,1) 
P13(2,2)*ones(lmx,1)]*V; 
P14 = [P14(1,1)*ones(lmx,1) P14(1,2)*ones(lmx,1); P14(2,1)*ones(lmx,1) 
P14(2,2)*ones(lmx,1)]*V; 
P21 = [P21(1,1)*ones(lmx,1) P21(1,2)*ones(lmx,1); P21(2,1)*ones(lmx,1) 
P21(2,2)*ones(lmx,1)]*V; 
P22 = [P22(1,1)*ones(lmx,1) P22(1,2)*ones(lmx,1); P22(2,1)*ones(lmx,1) 
P22(2,2)*ones(lmx,1)]*V; 
P23 = [P23(1,1)*ones(lmx,1) P23(1,2)*ones(lmx,1); P23(2,1)*ones(lmx,1) 
P23(2,2)*ones(lmx,1)]*V; 
P24 = [P24(1,1)*ones(lmx,1) P24(1,2)*ones(lmx,1); P24(2,1)*ones(lmx,1) 
P24(2,2)*ones(lmx,1)]*V; 
N11 = -C+1/2*K*tj+P11; 
N12 = -M+1/12*K*tj^2+P12;  
N13 = C+1/2*K*tj+P13; 
N14 = M-1/12*K*tj^2+P14; 
N21 = M/tj-1/10*K*tj+P21; 
N22 = 1/2*M-1/12*C*tj-1/120*K*tj^2+P22; 
N23 = -M/tj+1/10*K*tj+P23; 
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N24 = 1/2*M+1/12*C*tj-1/120*K*tj^2+P24;  
 
    N1  = [N11 N12; N21 N22]; 
    N2  = [N13 N14; N23 N24]; 
             
    P1  = [P11 P12; P21 P22]; 
    P2  = [P13 P14; P23 P24];  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    % BUILD GLOBAL MATRICES 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
    A(1:2*DOF,1:2*DOF) = eye(2*DOF); 
    A(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+1:2*DOF*(e-1)+2*DOF) = N1; 
    A(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+2*DOF+1:2*DOF*(e-
1)+2*DOF+2*DOF) = N2; 
    B(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+1:2*DOF*(e-1)+2*DOF) = P1; 
    B(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+2*DOF+1:2*DOF*(e-
1)+2*DOF+2*DOF) = P2; 
    B(1:2*(DOF),E*2*(DOF)+1:(E+1)*2*(DOF)) = PHI; 
    Cvec(1:2*DOF,1) = zeros(2*DOF,1); 
    Cvec(2*DOF*e+1:2*DOF*e+DOF,1) = C1; 
    Cvec(2*DOF*e+DOF+1:2*DOF*e+2*DOF,1) = C2; 
end; % end # of elements loop 
  size(A) 
  Q           = A\B; 
  [vec,lam]   = eig(Q); 
  CM          = max(abs(diag(lam))); 
  D          = A\Cvec; 
  % Extract SLE coefficients  
  if CM<1 
            SLE_vec     = inv((eye(size(Q))-Q))*D; 
            SLE         = abs(sum(SLE_vec(locat))); 
  else 
           SLE          = nan; 
  end 
   
  N1 = zeros(2*DOF,2*DOF); N2 = N1; 
  P1 = N1; P2 = P1;  
  if CM < 1 
            b_r(1) = b; 
  else 
             b_r(2) = b; 
         end  
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        end % while loop depth of cut 
Uncertainty SLE, Sensitivity Method 

% M. Kurdi (3/28/2005) 
% Function to find uncertainty in SLE to change in cutting 
% coefficients, dynamic parameters, and cutting process variables 
% Input: 
%       b:      depth of cut (m) 
%       rpm:    spindle speed 
%       rstep:  radial step (inches) 
%       Kt 
%       Kn 
%       Kte 
%       Kre 
%       DELTA_Kt    finite change in Kt 
%       DELTA_b     finite change in b 
%       system_ID:  Modal parameters 
% The derivative of Max eigen value is found for a miniscule perturbation 
% in input parameters, then its effect on the change of axial depth is  
% found. 
clear all; close all; clc;tic; 
% function uncer 
% percentage of uncertainty in cutting coefficients, dynamic parameters 
% and process parameters 
% tic; 
percent_Kcut = 0.05; % cutting coefficents uncertainty 
percent_Dyn = 0.005; % modal parameters uncertainty 
percent_rstep = 0.0001; % radial step uncertainty 
percent_rpm = 0.005; % spindle speed uncertainty 
% nominal values of process parameters and their calculated uncertainty 
rstep = 0.2; 
b=1e-3; 
rpm_vec = 5500:50:5600; 
DELTA_rstep = percent_rstep*rstep; 
% cutting coefficient uncertainty 
Kt = 6e8; 
DELTA_Kt = percent_Kcut*Kt; 
Kn = .3*Kt; 
DELTA_Kn = percent_Kcut*Kn; 
Kte=0; 
DELTA_Kte = percent_Kcut*Kte; 
Kne=0; 
DELTA_Kne = percent_Kcut*Kne; 
% nominal values of dynamic parameters and their calculated uncertainty 
Kx =  4.4528e+006;  
Mx = 0.4362; 
Cx = 83; 
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% Y direction parameters 
Ky = 3.5542e+006;  
My = 0.4362; 
Cy = 89.9; 
DELTA_Mx = Mx*percent_Dyn; 
DELTA_My = My*percent_Dyn; 
DELTA_Kx = Kx*percent_Dyn; 
DELTA_Ky = Ky*percent_Dyn; 
DELTA_Cx = Cx*percent_Dyn; 
DELTA_Cy = Cy*percent_Dyn; 
% to calculate the numerical derivative with respect to each input  
% variable set the miniscule change in each input 
% set miniscule change in input parameters to estimate the derivative 
step_percent = 0.002; 
dKt = step_percent*Kt; % N/m2 
dKn = step_percent*Kn; % N/m2 
dKte = step_percent*30; % N/m 
dKne = step_percent*30; % N/m 
drstep = step_percent*rstep; % inch 
dKx = step_percent*Kx; % N/m 
dKy = step_percent*Ky; % N/m 
dCx = step_percent*Cx; %  
dCy = step_percent*Cy; 
dMx = step_percent*Mx; % Kg 
dMy = step_percent*My; % Kg 
h = waitbar(0,'Please wait...'); 
% computation here % 
for i=1:length(rpm_vec) 
    waitbar(i/length(rpm_vec),h); 
    rpm = rpm_vec(i); 
    drpm = step_percent*rpm; % rpm 
    DELTA_rpm = percent_rpm * rpm; 
    % Find depth of cut corresponding to stability boundary using nominal 
    % settings of input parameters 
    [sle(i)] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); % depth at 
boundary 
    % Find numerical derivative of maximum eigenvalue with respect to input 
    % parameters 
    % perturb cutting coefficient Kt by dKt 
    [sle1] = sle_f(b,rpm,rstep,Kt-dKt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    [sle2] = sle_f(b,rpm,rstep,Kt+dKt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen matrix w.r.t cutting coefficient Kt 
    d_sle_Kt(i) = (sle2-sle1)/dKt/2; 
    dsleKt_log(i) = d_sle_Kt(i)*Kt/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
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    % perturb cutting coefficient Kn by dKn 
    [sle1] = sle_f(b,rpm,rstep,Kt,Kn-dKn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    [sle2] = sle_f(b,rpm,rstep,Kt,Kn+dKn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
%  
%     % derivative of eigen matrix w.r.t cutting coefficient Kt 
    d_sle_Kn(i) = (sle2-sle1)/dKn/2; 
    dsleKn_log(i) = d_sle_Kn(i)*Kn/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
    % perturb cutting coefficient Kte by dKte 
     [sle1] = sle_f(b,rpm,rstep,Kt,Kn,Kte-dKte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    [sle2] = sle_f(b,rpm,rstep,Kt,Kn,Kte+dKte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen matrix w.r.t cutting coefficient Kt 
    d_sle_Kte(i) = (sle2-sle1)/dKte/2; 
    dsleKte_log(i) = d_sle_Kte(i)*Kte/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
    % perturb cutting coefficient Kne by dKne 
    [sle1] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne-dKne,Mx,Kx,Cx,My,Ky,Cy); 
    [sle2] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne+dKne,Mx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen matrix w.r.t cutting coefficient Kne 
    d_sle_Kne(i) = (sle2-sle1)/dKne/2; 
    dsleKne_log(i) = d_sle_Kne(i)*Kne/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
%     
    % perturb depth of cut rstep by drstep 
    [sle1] = sle_f(b,rpm,rstep-drstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    [sle2] = sle_f(b,rpm,rstep+drstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen value w.r.t rstep of cut 
    d_sle_rstep(i) = (sle2-sle1)/drstep/2; 
    dslerstep_log(i) = d_sle_rstep(i)*rstep/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
    % perturb spindle speed by drpm 
    [sle1] = sle_f(b,rpm-drpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    [sle2] = sle_f(b,rpm+drpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen value w.r.t rpm 
    d_sle_rpm(i) = (sle2-sle1)/drpm/2; 
    dslerpm_log(i) = d_sle_rpm(i)*rpm/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
%      perturb Kx by dKx 
    [sle1] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx-dKx,Cx,My,Ky,Cy); 
    [sle2] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx+dKx,Cx,My,Ky,Cy); 
%     derivative of eigen value w.r.t Kx 
    d_sle_Kx(i) = (sle2-sle1)/dKx/2; 
    dsleKx_log(i) = d_sle_Kx(i)*Kx/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
     % perturb Ky by dKy 
    [sle1] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky-dKy,Cy); 
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    [sle2] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky+dKy,Cy); 
    % derivative of eigen value w.r.t Ky 
    d_sle_Ky(i) = (sle2-sle1)/dKy/2; 
    dsleKy_log(i) = d_sle_Ky(i)*Ky/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
     % perturb Cx by dCx 
    [sle1] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx-dCx,My,Ky,Cy); 
    [sle2] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx+dCx,My,Ky,Cy); 
    % derivative of eigen value w.r.t Cx 
    d_sle_Cx(i) = (sle2-sle1)/dCx/2; 
    dsleCx_log(i) = d_sle_Cx(i)*Cx/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
    % perturb Cy by dCy 
    [sle1] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy-dCy); 
    [sle2] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy+dCy); 
    % derivative of eigen value w.r.t Cy 
    d_sle_Cy(i) = (sle2-sle1)/dCy/2; 
    dsleCy_log(i) = d_sle_Cy(i)*Cy/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
      % perturb Mx by dMx 
    [sle1] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx-dMx,Kx,Cx,My,Ky,Cy); 
    [sle2] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx+dMx,Kx,Cx,My,Ky,Cy); 
    % derivative of eigen value w.r.t Mx 
    d_sle_Mx(i) = (sle2-sle1)/dMx/2; 
    dsleMx_log(i) = d_sle_Mx(i)*Mx/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
     % perturb My by dMy 
    [sle1] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My-dMy,Ky,Cy); 
    [sle2] = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My+dMy,Ky,Cy); 
%     % derivative of eigen value w.r.t My 
    d_sle_My(i) = (sle2-sle1)/dMy/2; 
    dsleMy_log(i) = d_sle_My(i)*My/(sle(i))*2; 
    sle1 =[]; sle2 =[]; 
DELTA_sle(i) =( (DELTA_Kt * d_sle_Kt(i))^2 + (DELTA_Kn * d_sle_Kn(i))^2 + ... 
           (DELTA_Kne * d_sle_Kne(i))^2 + (DELTA_Kte * d_sle_Kte(i))^2 +... 
           (DELTA_Kx * d_sle_Kx(i))^2 + (DELTA_Mx * d_sle_Mx(i))^2 + ... 
            (DELTA_Cx * d_sle_Cx(i))^2 + (DELTA_Ky * d_sle_Ky(i))^2 +... 
             (DELTA_My * d_sle_My(i))^2 + (DELTA_Cy * d_sle_Cy(i))^2+...  
             (DELTA_rstep * d_sle_rstep(i))^2 + (DELTA_rpm* d_sle_rpm(i))^2)^0.5 
end 
close(h); 
% % Find the uncertainty in depth of cut for a corresponding uncertainty in 
% % input paramters 
time_total=toc; 
% save uncer_march_30_sle 
% subplot(2,1,1) 
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% plot(rpm_vec/1000,sle*1e6,'-g',rpm_vec/1000,(sle+2*DELTA_sle)*1e6,'-
k',rpm_vec/1000,(sle-2*DELTA_sle)*1e6,'-k') 
% set(gca,'fontname','times','fontsize',16); 
% xlabel('\Omega (x10^3 rpm)','fontsize',14) 
% ylabel('SLE (\mum)','fontsize',14) 
% legend('Stability boundary, nominal input','\pm2u_c(SLE)'); 
% axis([5 20 -12 28]) 
% subplot(2,1,2) 
% plot(rpm_vec/1000,d_sle_Ky*Ky*1e6,'<',rpm_vec/1000,d_sle_My*My*1e6,'>',... 
%     rpm_vec/1000,d_sle_Cy*Cy*1e6,'o',rpm_vec/1000,d_sle_rpm.*rpm_vec*1e6,'+',... 
%     rpm_vec/1000,d_sle_rstep*rstep*1e6,'^',rpm_vec/1000,d_sle_Kt*Kt*1e6,'s',... 
%     rpm_vec/1000,d_sle_Kn*Kn*1e6,'*'); 
% legend('K_y','M_y','C_y','\Omega','r_{step}','K_t','K_n'); 
% xlabel('\Omega (x10^3 rpm)','fontsize',14) 
% ylabel('x_i \partial(SLE)/\partial(x_i)'); 
% figure; 
% plot(rpm_vec/1000,dsleKy_log,'<',rpm_vec/1000,dsleMy_log,'>',... 
%     rpm_vec/1000,dsleCy_log,'o',rpm_vec/1000,dslerpm_log,'+',... 
%     rpm_vec/1000,dslerstep_log,'^',rpm_vec/1000,dsleKt_log,'s',... 
%     rpm_vec/1000,dsleKn_log,'*'); 
% legend('K_y','M_y','C_y','\Omega','r_{step}','K_t','K_n'); 
% xlabel('\Omega (x10^3 rpm)','fontsize',14) 
% ylabel('\partial(SLE)/\partial(x_i)x_i/SLE'); 
% figure; 
plot(rpm_vec/1000,abs(d_sle_Ky)*Ky*1e6,'.',rpm_vec/1000,abs(d_sle_My)*My*1e6,':',.
.. 
%     rpm_vec/1000,abs(d_sle_Cy)*Cy*1e6,'--
',rpm_vec/1000,abs(d_sle_rpm).*rpm_vec*1e6,'-',... 
%     
rpm_vec/1000,abs(d_sle_rstep)*rstep*1e6,'^',rpm_vec/1000,abs(d_sle_Kt)*Kt*1e6,'s',... 
%     rpm_vec/1000,abs(d_sle_Kn)*Kn*1e6); 
% legend('K_y','M_y','C_y','\Omega','r_{step}','K_t','K_n'); 
% figure; 
% plot(rpm_vec/1000,abs(d_sle_Ky)*Ky./abs(d_sle_My)/My) 
% legend('K_y/M_y'); 
figure  
plot(rpm_vec/1000,DELTA_sle*1e6) 
xlabel('\Omega (x10^3 rpm)','fontsize',14) 
ylabel('u_c(SLE) (\mum)') 
figure 
plot(rpm_vec/1000,DELTA_sle*1e6,'-<k') 
figure 
plot(rpm_vec/1000,sle*1e6,'-g',rpm_vec/1000,(sle+2*DELTA_sle)*1e6,'-
k',rpm_vec/1000,(sle-2*DELTA_sle)*1e6,'-k') 
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Uncertainty SLE, Monte Carlo and Latin Hype-Cube Sampling Methods 

%  
% M. Kurdi (6/17/05) 
% 4 OAL TOOL 
% Program to complete LatinHyper and Monte simulation for SLE 
clear all; 
% function LatinHyper 
tic; 
chip_load=0.1e-3;% chip load 
nteeth = 4; 
Diam =0.5; 
E=20; 
N = 1000; % number of iterations 
baxial=4.45e-3; 
% AL 6061 
% percent_Kt = 7.13/100; % cutting coefficents uncertainty 
% percent_Kn = 8.09/100; 
% percent_Kte = 30.3/100; 
% percent_Kne = 23.9/100; 
% 5 OAL TOOL UNCERTAINTIES 
% percent_KX = 0.054; % modal parameters uncertainty 
% percent_CX = .286; 
% percent_MX =.045; 
% percent_KY = 0.054; % modal parameters uncertainty 
% percent_CY = .173; 
% percent_MY =.055; 
% 4 OAL TOOL UNCERTAINTIES due to thermal effect only 
 percent_MX = 0.074; 
 percent_CX = 0.042; 
 percent_KX = 0.073 ; 
 percent_MY = 0.2; 
 percent_CY = 0.107; 
 percent_KY = 0.2 ; 
 percent_rstep = 0.0005; % radial step uncertainty  
percent_rpm = 0.005; % spindle speed uncertainty 
% speed_min = str2num(input('Min_speed = ','s')); 
% speed_max = str2num(input('Max_speed = ','s')); 
% speed = speed_min:200:speed_max; 
% speed = [   14753 14803 14853 14903 14953]; 4.45 mm 
speed = [15517 15567 15617 15667 15767]; % 2.12 mm 
h = waitbar(0,'Please wait...'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%5 
% Cutting Coefficients %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 



163 

 

% AL 6061 
% mean_Kt =7.06E+08; % N/m2 
% mean_Kn = 2.50E+08; 
% mean_Kte = 1.29E+04; % N/m; 
% mean_Kne = 6.57E+03; 
% AL 7475 
mean_Kt =  690480868.527357; 
mean_Kte = 12022.3004909002; 
mean_Kn = 142535991.092323; 
mean_Kne =11281.4601645315; 
std_Kn=4009843*4.45; % N 
std_Kne=310.909*4.45; 
std_Kte=200.731*4.45; 
std_Kt=2588583*4.45; 
% std_Kt = percent_Kt*mean_Kt; 
% std_Kn = percent_Kn*mean_Kn; 
% std_Kte = percent_Kte*mean_Kte; 
% std_Kne = percent_Kne*mean_Kne; 
% Kne Kn Kte Kt 
% AL  6061 
% SIGMA_K = [1.480E+07 -1.778E+11 -8.216E+06 9.871E+10; 
%             -1.778E+11 2.458E+15 9.871E+10 -1.365E+15; 
%             -8.216E+06 9.871E+10 9.163E+07 -1.101E+12; 
%             9.871E+10 -1.365E+15 -1.101E+12 1.522E+16 
%             ]; 
% AL 7475 
   SIGMA_K = [ 42157610.7365206         -506483170409.775         -3598978.12573119          
43238262783.6325; 
         -506483170409.775     7.00379474676691e+015          43238262783.6325          -
597911116174549; 
         -3598978.12573128          43238262783.6335          17574719.1179838          -
211143357093.21; 
          43238262783.6335          -597911116174562          -211143357093.21     
2.91975098408051e+015]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Modal Parameters 
% X %%%%%%%%%%%%%%%%  
% 5 OAL TOOL 
% mean_Kx =  2.64E+06;  
% mean_Mx = 0.049; 
% mean_Cx = 8.972; 
 % dynamic parameters for 4 OAL tool 
         mean_Mx = 0.027 ; 
         mean_Cx=  23.309; 
         mean_Kx= 4359275.000 ; 
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std_Cx = percent_CX*mean_Cx; 
std_Kx = percent_KX*mean_Kx; 
std_Mx = percent_MX*mean_Mx; 
% Mx Cx Kx My Cy Ky 5 OAL 
% SIGMA = [3.85E-06 4.03E-03 2.48E+02 2.40E-06 -3.18E-03
 1.31E+02; 
%         4.03E-03 5.27E+00 2.69E+05 4.08E-03 -3.32E+00
 2.19E+05; 
%         2.48E+02 2.69E+05 1.61E+10 1.67E+02 -2.07E+05
 9.15E+09; 
%         2.40E-06 4.08E-03 1.67E+02 4.23E-06 -1.88E-03
 2.24E+02; 
%         -3.18E-03 -3.32E+00 -2.07E+05 -1.88E-03 2.71E+00 -
1.04E+05; 
%         1.31E+02 2.19E+05 9.15E+09 2.24E+02 -1.04E+05
 1.19E+10 
%  
%             ]; 
% Mx Cx Kx My Cy Ky 4 OAL 
SIGMA = [4.04188E-06 0.000450265 631.110625 7.25563E-06 -0.000584252
 878.998125; 
0.000450265 0.953490935 38828.325 0.00283473 -2.467636648 567721.5525; 
631.110625 38828.325 1.00042E+11 1068.011875 -51720.94813 1.21332E+11; 
7.25563E-06 0.00283473 1068.011875 1.76519E-05 -0.007067488 2638.261875; 
-0.000584252 -2.467636648 -51720.94813 -0.007067488 11.34481701 -1426512.396; 
878.998125 567721.5525 1.21332E+11 2638.261875 -1426512.396
 4.36003E+11]; 
% % Y %%%%%%%%%%%%%%%%%%%%%%%%%% 
% 5 OAL TOOL 
% mean_Ky = 2.26e+006;  
% mean_Cy = 10.651; 
% mean_My = 0.042; 
% Y direction parameters 4 OAL TOOL 
mean_Ky = 3301775.000;  
mean_My =  0.021; 
mean_Cy = 31.432;    
std_My = percent_MY*mean_My; 
std_Ky = percent_KY*mean_Ky; 
std_Cy = percent_CY*mean_Cy; 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % Radial step inches 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mean_rstep = 0.25*.5; 
std_rstep = percent_rstep*mean_rstep; 
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% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
randn('state',0) 
Mode = lhsnorm([mean_Mx mean_Cx mean_Kx mean_My mean_Cy 
mean_Ky],SIGMA,N);  
% Mode(:,1) is Mx random vector 
% Mode(:,2) is Cx random vector 
% Mode(:,3) is Kx random vector  
% Mode(:,4) is My random vector 
% Mode(:,5) is Cy random vector 
% Mode(:,6) is Ky random vector 
Cut_Coeff = lhsnorm([mean_Kne mean_Kn mean_Kte mean_Kt],SIGMA_K,N); 
% Cut_Coeff(:,1) Kne 
% Cut_Coeff(:,2) Kn 
% Cut_Coeff(:,3) Kte 
% Cut_Coeff(:,4) Kt 
sample = randn(N, 2); 
for j=1:length(speed) 
waitbar(j/length(speed),h) 
for i=1:N 
% Unless otherwise specified, all dimensions in m 
% Define input parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Cutting coefficients 
Kt = Cut_Coeff(i,4); 
Kn = Cut_Coeff(i,2); 
Kte = Cut_Coeff(i,3); 
Kne = Cut_Coeff(i,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% milling parameters 
% Spindle speed 
mean_rpm = speed(j);  
std_rpm = percent_rpm*mean_rpm; 
rpm = mean_rpm + std_rpm*sample(i,1); 
% rstep 
rstep = mean_rstep + std_rstep*sample(i,2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Dynamic parameters 
% X direction is feed direction 
Kx =Mode(i,3); 
Mx = Mode(i,1); 
Cx = Mode(i,2); 
% Y direction parameters 
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Ky = Mode(i,6); 
My = Mode(i,4); 
Cy = Mode(i,5); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculate axial depth corresponding to input paramters 
% that is on the stability boundaries 
sle(i,j) = 
sle_f(baxial,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy,chip_load,nteeth,Diam,E); 
end % i end monte loop for one spindle speed 
end % j end spindle speed range 
for i=1:length(speed) 
index = find(isnan(sle(:,i))==0); 
sle_mean(i) = mean(sle(index,i)); 
std_dev(i) = std(sle(index,i)); 
end 
time=toc; 
save Latin_AL7475SLE2p12 std_dev speed sle_mean sle time 
close(h); 
% hold on; 
% h1 = plot(speed/1000,(sle_mean-2*std_dev)*1e6,'-r') 
% hold on; 
% h2 = plot(speed/1000,sle_mean*1e6,'g-'); 
% hold on; 
% h3 = plot(speed/1000,(2*std_dev+sle_mean)*1e6,'-r'); 
% legend([h1,h2,h3],'lower boundary','mean','upper boundary') 
% hold on; 
% for i=1:1000 
%      
%     plot(speed/1000,sle(i,:)*1e6,'.'); 
% end 
% % figure 
% % plot(speed/1000,std(sle)*2*1000) 
% % 
 
% % Input: 
%  rpm ; 
%  rstep:      radial immersion (inches) 
%   Output: 
%   b   depth of cut (m) 
 
function SLE = sle_f(b,rpm,rstep,Kt,Kn,Kte,Kne,Mx,Kx,Cx,My,Ky,Cy,h,nteeth,Diam,E) 
%     E=30; 
%  
%     h           = 0.1e-3;                          % feed per tooth 
%  nteeth      = 1;                                    % number of teeth 
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%  Diam        = 1;                                  % inches 
 TRAVang     = acos(1-rstep/(Diam/2));               % angular travel during cutting 
 LAGang      = 2*pi/nteeth;                          % separation angle for teeth 
 rho         = acos(1-rstep/(Diam/2))/(2*pi);        % fraction of time in cut       
 IMMERSION   = rstep/Diam; 
 opt         = 'down'; 
 if TRAVang>LAGang   % MULTIPLE TEETH ARE IN CONTACT 
        teethNcontact = floor(TRAVang/LAGang) +1; 
 else                % SINGLE TOOTH IN CONTACT 
        teethNcontact = 1; 
 end 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %        SYSTEM IDENTIFICATION MATRICES  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     M   =[Mx zeros(size(Mx)); zeros(size(Mx)) My]; 
 C   =[Cx zeros(size(Mx)); zeros(size(Mx)) Cy]; 
 K   =[Kx zeros(size(Mx)); zeros(size(Mx)) Ky]; 
 lmx = length(Mx(1,:));  
 lmy = length(My(1,:));  
 DOF = lmx+lmy;  
 V       = [ones(1,lmx) zeros(1,lmy); zeros(1,lmx) ones(1,lmy)]; 
 A       = zeros((E+1)*2*DOF,(E+1)*2*DOF); 
 B       = A; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  %       BEGIN LOOP CALCULATIONS OVER RPM vs DOC FIELD 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  speed   = rpm; 
  omega   = speed/60*(2*pi);              % radians per second 
  T       = (2*pi)/omega/nteeth;          % tooth pass period 
  TC      = rho*T*nteeth;                 % time a single tooth spends in the cut 
  tf      = T-TC;                         % time for free vibs 
  tj      = TC/E;                         % time for each element 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  %       SET CUTTER ROTATION ANGLE FOR UP/DOWN-MILLING 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  switch opt 
  case 'up' 
  t0mat   = [0 tj*(1:(E-1))];             % upmilling 
  locat   = 2*DOF+lmx+1:3*DOF; 
  case 'down' 
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  tex     = pi/omega; tent=tex-TC;          % downmilling 
  t0mat   = [tent tent+tj*(1:(E-1))];     % downmilling 
  locat   = (E+1)*2*DOF-DOF-lmy+1:(E+1)*2*DOF-DOF; 
  end 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  %       STATE TRANSITION MATRIX 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  G1  = [zeros(size(M)) M; eye(size(M)) zeros(size(M))]; 
  G2  = [K  C; zeros(size(M)) -eye(size(M))]; 
  G   = -G1\G2; 
  PHI = expm(G*tf); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  %       N & P are used to create A & B which then become Q in..... a_n = 
Q a_n-1 + D 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 for e=1:E, 
        t0 = t0mat(e); 
    C1 = V'*[ -1/4*b*(-h*Kt*cos(2*t0*omega+2*omega*tj)+2*h*Kn*omega*tj-
h*Kn*sin(2*t0*omega+2*omega*tj)+4*Kte*sin(t0*omega+omega*tj)-
4*Kne*cos(t0*omega+omega*tj)+h*Kt*cos(2*t0*omega)+h*Kn*sin(2*t0*omega)-
4*Kte*sin(t0*omega)+4*Kne*cos(t0*omega))/omega; 
       1/4*b*(2*h*Kt*omega*tj-
h*Kt*sin(2*t0*omega+2*omega*tj)+h*Kn*cos(2*t0*omega+2*omega*tj)-
4*Kte*sin(t0*omega+omega*tj)+4*Kne*cos(t0*omega+omega*tj)+h*Kt*sin(2*t0*ome
ga)-h*Kn*cos(2*t0*omega)+4*Kte*sin(t0*omega)-4*Kne*cos(t0*omega))/omega]; 
    C2 = V'*[ 1/8*b*(-
h*Kt*sin(2*t0*omega+2*omega*tj)+h*Kt*cos(2*t0*omega+2*omega*tj)*omega*tj+h*
Kn*cos(2*t0*omega+2*omega*tj)+h*Kn*sin(2*t0*omega+2*omega*tj)*omega*tj+8*K
te*sin(t0*omega+omega*tj)-4*Kte*cos(t0*omega+omega*tj)*omega*tj-
8*Kne*cos(t0*omega+omega*tj)-
4*Kne*sin(t0*omega+omega*tj)*omega*tj+h*Kt*sin(2*t0*omega)-
h*Kn*cos(2*t0*omega)-
8*Kte*sin(t0*omega)+8*Kne*cos(t0*omega)+h*Kt*tj*cos(2*t0*omega)*omega+h*Kn*
tj*sin(2*t0*omega)*omega-4*Kte*tj*cos(t0*omega)*omega-
4*Kne*tj*sin(t0*omega)*omega)/tj/omega^2; 
     -
1/8*b*(h*Kt*cos(2*t0*omega+2*omega*tj)+h*Kt*sin(2*t0*omega+2*omega*tj)*omeg
a*tj+h*Kn*sin(2*t0*omega+2*omega*tj)-
h*Kn*cos(2*t0*omega+2*omega*tj)*omega*tj-
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8*Kte*sin(t0*omega+omega*tj)+4*Kte*cos(t0*omega+omega*tj)*omega*tj+8*Kne*co
s(t0*omega+omega*tj)+4*Kne*sin(t0*omega+omega*tj)*omega*tj-
h*Kt*cos(2*t0*omega)-h*Kn*sin(2*t0*omega)+8*Kte*sin(t0*omega)-
8*Kne*cos(t0*omega)+h*Kt*tj*sin(2*t0*omega)*omega-
h*Kn*tj*cos(2*t0*omega)*omega+4*Kte*tj*cos(t0*omega)*omega+4*Kne*tj*sin(t0*o
mega)*omega)/tj/omega^2]; 
P11 = [  1/8*b*(-
3*Kt*sin(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kn*omeg
a^4*tj^4+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*sin(2*t0*ome
ga+2*omega*tj)+3*Kt*sin(2*t0*omega)-
3*Kn*cos(2*t0*omega)+2*Kt*cos(2*t0*omega)*omega^3*tj^3+2*Kn*sin(2*t0*omega)
*omega^3*tj^3+3*Kt*omega*tj*cos(2*t0*omega)+3*Kn*omega*tj*sin(2*t0*omega))/o
mega^4/tj^3,  1/8*b*(-3*Kt*cos(2*t0*omega+2*omega*tj)-
3*Kn*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^4*tj^4-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*cos(2*t0*omega+2*om
ega*tj)+3*Kt*cos(2*t0*omega)+3*Kn*sin(2*t0*omega)-
2*Kt*sin(2*t0*omega)*omega^3*tj^3+2*Kn*cos(2*t0*omega)*omega^3*tj^3-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3; 
      1/8*b*(-3*Kt*cos(2*t0*omega+2*omega*tj)-3*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^4*tj^4-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*cos(2*t0*omega+2*om
ega*tj)+3*Kt*cos(2*t0*omega)+3*Kn*sin(2*t0*omega)-
2*Kt*sin(2*t0*omega)*omega^3*tj^3+2*Kn*cos(2*t0*omega)*omega^3*tj^3-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3, -
1/8*b*(-
2*Kn*omega^4*tj^4+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*s
in(2*t0*omega+2*omega*tj)-
3*Kt*sin(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kt*cos(2*
t0*omega)*omega^3*tj^3+2*Kn*sin(2*t0*omega)*omega^3*tj^3+3*Kt*omega*tj*cos(
2*t0*omega)+3*Kn*omega*tj*sin(2*t0*omega)+3*Kt*sin(2*t0*omega)-
3*Kn*cos(2*t0*omega))/omega^4/tj^3]; 
P12 =[  
1/48*b*(6*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+6*Kt*omega*tj*cos(2*t0*ome
ga+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kt*sin(2*t0*omega+2*omega*tj)+9*Kn*cos(2*t0*omega+2*omega*tj)+12*Kn*ome
ga*tj*sin(2*t0*omega)+12*Kt*omega*tj*cos(2*t0*omega)-
6*Kt*omega^2*tj^2*sin(2*t0*omega)+6*Kn*omega^2*tj^2*cos(2*t0*omega)+9*Kt*si
n(2*t0*omega)-9*Kn*cos(2*t0*omega))/tj^2/omega^4, -
1/48*b*(9*Kt*cos(2*t0*omega+2*omega*tj)+9*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^4*tj^4+6*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)+12*Kt*omega*tj*sin(2*t0*omega)+6*
Kn*omega^2*tj^2*sin(2*t0*omega)+6*Kt*omega^2*tj^2*cos(2*t0*omega)-
9*Kt*cos(2*t0*omega)-12*Kn*omega*tj*cos(2*t0*omega)-
9*Kn*sin(2*t0*omega))/tj^2/omega^4; 
     -
1/48*b*(2*Kt*omega^4*tj^4+6*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+9*Kt*cos(
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2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)+9*Kn*sin(2*t0*omega+2*omega*tj)+1
2*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega^2*tj^2*sin(2*t0*omega)+6*Kt*omega^
2*tj^2*cos(2*t0*omega)-9*Kt*cos(2*t0*omega)-12*Kn*omega*tj*cos(2*t0*omega)-
9*Kn*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-
6*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kn*cos(2*t0*omega+2*omega*tj)+9*Kt*sin(2*t0*omega+2*omega*tj)-
12*Kt*omega*tj*cos(2*t0*omega)-
12*Kn*omega*tj*sin(2*t0*omega)+6*Kt*omega^2*tj^2*sin(2*t0*omega)-
6*Kn*omega^2*tj^2*cos(2*t0*omega)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega))/tj^2/omega^4]; 
P13 =[  1/8*b*(2*Kn*omega^4*tj^4-
3*Kn*cos(2*t0*omega+2*omega*tj)+3*Kt*sin(2*t0*omega+2*omega*tj)-
3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
2*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
3*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kn*cos(2*t0*omega)-
3*Kt*sin(2*t0*omega)-3*Kt*omega*tj*cos(2*t0*omega)-
3*Kn*omega*tj*sin(2*t0*omega))/omega^4/tj^3,  
1/8*b*(2*Kt*omega^4*tj^4+2*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
2*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kt*cos(2*t0*omega+2*omega*t
j)+3*Kn*sin(2*t0*omega+2*omega*tj)+3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
3*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)-3*Kt*cos(2*t0*omega)-
3*Kn*sin(2*t0*omega)+3*Kt*omega*tj*sin(2*t0*omega)-
3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3; 
     -
1/8*b*(2*Kt*omega^4*tj^4+2*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+3*Kn
*omega*tj*cos(2*t0*omega+2*omega*tj)-3*Kn*sin(2*t0*omega+2*omega*tj)-
2*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
3*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
3*Kt*cos(2*t0*omega+2*omega*tj)+3*Kn*sin(2*t0*omega)+3*Kt*cos(2*t0*omega)-
3*Kt*omega*tj*sin(2*t0*omega)+3*Kn*omega*tj*cos(2*t0*omega))/omega^4/tj^3,  
1/8*b*(2*Kn*omega^4*tj^4+3*Kn*cos(2*t0*omega+2*omega*tj)+2*Kn*omega^3*tj^3
*sin(2*t0*omega+2*omega*tj)-
3*Kt*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj
)+3*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+3*Kn*omega*tj*sin(2*t0*omega+2*o
mega*tj)-
3*Kn*cos(2*t0*omega)+3*Kt*sin(2*t0*omega)+3*Kt*omega*tj*cos(2*t0*omega)+3*
Kn*omega*tj*sin(2*t0*omega))/omega^4/tj^3]; 
P14 =[ -1/48*b*(6*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
6*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+2*Kn*omega^4*tj^4-
9*Kn*cos(2*t0*omega+2*omega*tj)+9*Kt*sin(2*t0*omega+2*omega*tj)-
6*Kn*omega*tj*sin(2*t0*omega)-
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6*Kt*omega*tj*cos(2*t0*omega)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-2*Kt*omega^4*tj^4-
12*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+12*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+6*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+6*Kn*sin(2*t0*omega+2
*omega*tj)*omega^2*tj^2-9*Kt*cos(2*t0*omega+2*omega*tj)-
9*Kn*sin(2*t0*omega+2*omega*tj)-
6*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega*tj*cos(2*t0*omega)+9*Kt*cos(2*t0*o
mega)+9*Kn*sin(2*t0*omega))/tj^2/omega^4; 
      1/48*b*(2*Kt*omega^4*tj^4-
12*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+12*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+6*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+6*Kn*sin(2*t0*omega+2
*omega*tj)*omega^2*tj^2-9*Kt*cos(2*t0*omega+2*omega*tj)-
9*Kn*sin(2*t0*omega+2*omega*tj)-
6*Kt*omega*tj*sin(2*t0*omega)+6*Kn*omega*tj*cos(2*t0*omega)+9*Kt*cos(2*t0*o
mega)+9*Kn*sin(2*t0*omega))/tj^2/omega^4, 1/48*b*(-
12*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-9*Kn*cos(2*t0*omega+2*omega*tj)-
2*Kn*omega^4*tj^4-6*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
12*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+6*Kn*cos(2*t0*omega+2*omega*tj)*o
mega^2*tj^2+9*Kt*sin(2*t0*omega+2*omega*tj)+9*Kn*cos(2*t0*omega)-
9*Kt*sin(2*t0*omega)-6*Kn*omega*tj*sin(2*t0*omega)-
6*Kt*omega*tj*cos(2*t0*omega))/tj^2/omega^4]; 
P21 =[ -1/80*b*(-15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
15*Kn*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+60*Kt*cos(2*t0*omega+2*omega
*tj)+60*Kn*sin(2*t0*omega+2*omega*tj)+4*Kn*omega^5*tj^5+60*Kt*omega*tj*sin(2
*t0*omega)-
10*Kn*omega^3*tj^3*cos(2*t0*omega)+15*Kn*omega^2*tj^2*sin(2*t0*omega)+15*K
t*omega^2*tj^2*cos(2*t0*omega)+10*Kt*omega^3*tj^3*sin(2*t0*omega)-
60*Kn*omega*tj*cos(2*t0*omega)+10*Kn*sin(2*t0*omega)*omega^4*tj^4+10*Kt*co
s(2*t0*omega)*omega^4*tj^4-60*Kn*sin(2*t0*omega)-
60*Kt*cos(2*t0*omega)+60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*cos(2*t0*omega+2*omega*tj))/omega^5/tj^4, -1/80*b*(-
60*Kn*cos(2*t0*omega)+60*Kt*sin(2*t0*omega)-
15*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kt*sin(2*t0*omega+2*omega
*tj)*omega^2*tj^2+60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)-
60*Kt*sin(2*t0*omega+2*omega*tj)+60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+
60*Kn*cos(2*t0*omega+2*omega*tj)+10*Kt*omega^3*tj^3*cos(2*t0*omega)-
15*Kt*omega^2*tj^2*sin(2*t0*omega)-
10*Kt*sin(2*t0*omega)*omega^4*tj^4+10*Kn*cos(2*t0*omega)*omega^4*tj^4+15*K
n*omega^2*tj^2*cos(2*t0*omega)+60*Kt*omega*tj*cos(2*t0*omega)+10*Kn*omega^
3*tj^3*sin(2*t0*omega)+60*Kn*omega*tj*sin(2*t0*omega)+4*Kt*omega^5*tj^5)/ome
ga^5/tj^4; 
       1/80*b*(60*Kn*cos(2*t0*omega)-
60*Kt*sin(2*t0*omega)+15*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-60*Kn*cos(2*t0*omega+2*omega*tj)-
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10*Kt*omega^3*tj^3*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)+10*Kt
*sin(2*t0*omega)*omega^4*tj^4-10*Kn*cos(2*t0*omega)*omega^4*tj^4-
15*Kn*omega^2*tj^2*cos(2*t0*omega)-60*Kt*omega*tj*cos(2*t0*omega)-
10*Kn*omega^3*tj^3*sin(2*t0*omega)-
60*Kn*omega*tj*sin(2*t0*omega)+4*Kt*omega^5*tj^5)/omega^5/tj^4, -1/80*b*(-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*omega*tj*cos(2*t0*omega)-
10*Kn*sin(2*t0*omega)*omega^4*tj^4-10*Kt*cos(2*t0*omega)*omega^4*tj^4-
15*Kt*omega^2*tj^2*cos(2*t0*omega)-
10*Kt*omega^3*tj^3*sin(2*t0*omega)+10*Kn*omega^3*tj^3*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*ome
ga)-
60*Kt*cos(2*t0*omega+2*omega*tj)+4*Kn*omega^5*tj^5+60*Kn*omega*tj*cos(2*t0
*omega+2*omega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin
(2*t0*omega+2*omega*tj)*omega^2*tj^2-60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj))/omega^5/tj^4]; 
P22 = [ 1/480*b*(-2*Kn*omega^5*tj^5-180*Kt*cos(2*t0*omega+2*omega*tj)-
180*Kn*sin(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+30*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*sin(2*t0*ome
ga+2*omega*tj)*omega^2*tj^2-
225*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+225*Kn*omega*tj*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^3*tj^3*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*cos(2*t0*omega)-
120*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5, -
1/480*b*(135*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)+2*Kt*o
mega^5*tj^5+30*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*cos(2*t0*omega)+120*Kn*omega^2*tj^2*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*sin(2*t0*omega)+225*Kt*omega*tj*cos(2*t0*omega)+225*Kn*
omega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5; 
     -
1/480*b*(135*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)-
2*Kt*omega^5*tj^5+30*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*cos(2*t0*omega)+120*Kn*omega^2*tj^2*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*sin(2*t0*omega)+225*Kt*omega*tj*cos(2*t0*omega)+225*Kn*
omega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5, -1/480*b*(2*Kn*omega^5*tj^5-
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180*Kt*cos(2*t0*omega+2*omega*tj)-180*Kn*sin(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+135*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+30*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*sin(2*t0*ome
ga+2*omega*tj)*omega^2*tj^2-
225*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+225*Kn*omega*tj*cos(2*t0*omega)-
120*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^3*tj^3*sin(2*t0*omega)-
30*Kn*omega^3*tj^3*cos(2*t0*omega)-
120*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5]; 
P23 = [ -1/80*b*(-4*Kn*omega^5*tj^5-60*Kt*cos(2*t0*omega+2*omega*tj)-
60*Kn*sin(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin(2*t0*omega
+2*omega*tj)*omega^2*tj^2-
10*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*sin(2*t0*o
mega+2*omega*tj)+10*Kt*omega^4*tj^4*cos(2*t0*omega+2*omega*tj)+10*Kn*omeg
a^3*tj^3*cos(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*omega)+
60*Kn*omega*tj*cos(2*t0*omega)-15*Kt*omega^2*tj^2*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega))/omega^5/tj^4, -1/80*b*(-
60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kn*cos(2*t0*omega+2*omega*tj)-
10*Kt*omega^4*tj^4*sin(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*cos(2*t0*o
mega+2*omega*tj)-10*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)-
4*Kt*omega^5*tj^5-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*cos(2*t0*omega+2*omega
*tj)*omega^2*tj^2-
15*Kn*omega^2*tj^2*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)-
60*Kt*omega*tj*cos(2*t0*omega)-60*Kn*omega*tj*sin(2*t0*omega)-
60*Kt*sin(2*t0*omega)+60*Kn*cos(2*t0*omega))/omega^5/tj^4; 
     -1/80*b*(-60*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
60*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kt*sin(2*t0*omega+2*omega*tj)-
60*Kn*cos(2*t0*omega+2*omega*tj)-
10*Kt*omega^4*tj^4*sin(2*t0*omega+2*omega*tj)-
10*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*cos(2*t0*o
mega+2*omega*tj)-
10*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+4*Kt*omega^5*tj^5-
15*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*cos(2*t0*omega+2*omega
*tj)*omega^2*tj^2-
15*Kn*omega^2*tj^2*cos(2*t0*omega)+15*Kt*omega^2*tj^2*sin(2*t0*omega)-
60*Kt*omega*tj*cos(2*t0*omega)-60*Kn*omega*tj*sin(2*t0*omega)-
60*Kt*sin(2*t0*omega)+60*Kn*cos(2*t0*omega))/omega^5/tj^4,   
1/80*b*(4*Kn*omega^5*tj^5-60*Kt*cos(2*t0*omega+2*omega*tj)-
60*Kn*sin(2*t0*omega+2*omega*tj)-
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60*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+60*Kn*omega*tj*cos(2*t0*omega+2*o
mega*tj)+15*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+15*Kn*sin(2*t0*omega
+2*omega*tj)*omega^2*tj^2-
10*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+10*Kn*omega^4*tj^4*sin(2*t0*o
mega+2*omega*tj)+10*Kt*omega^4*tj^4*cos(2*t0*omega+2*omega*tj)+10*Kn*omeg
a^3*tj^3*cos(2*t0*omega+2*omega*tj)-
60*Kt*omega*tj*sin(2*t0*omega)+60*Kn*sin(2*t0*omega)+60*Kt*cos(2*t0*omega)+
60*Kn*omega*tj*cos(2*t0*omega)-15*Kt*omega^2*tj^2*cos(2*t0*omega)-
15*Kn*omega^2*tj^2*sin(2*t0*omega))/omega^5/tj^4]; 
P24 = [ -
1/480*b*(2*Kn*omega^5*tj^5+180*Kt*cos(2*t0*omega+2*omega*tj)+180*Kn*sin(2*t
0*omega+2*omega*tj)+225*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)-
225*Kn*omega*tj*cos(2*t0*omega+2*omega*tj)-
120*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2-
120*Kn*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2-
30*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+30*Kn*omega^3*tj^3*cos(2*t0*o
mega+2*omega*tj)+135*Kt*omega*tj*sin(2*t0*omega)-180*Kn*sin(2*t0*omega)-
180*Kt*cos(2*t0*omega)-
135*Kn*omega*tj*cos(2*t0*omega)+30*Kt*omega^2*tj^2*cos(2*t0*omega)+30*Kn*o
mega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5, -
1/480*b*(225*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)+225*Kn*omega*tj*sin(2*t0
*omega+2*omega*tj)-
180*Kt*sin(2*t0*omega+2*omega*tj)+180*Kn*cos(2*t0*omega+2*omega*tj)-
30*Kt*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)-
30*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^5*tj^5+120*Kt*sin(
2*t0*omega+2*omega*tj)*omega^2*tj^2-
120*Kn*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+30*Kn*omega^2*tj^2*cos(2*t0*
omega)-
30*Kt*omega^2*tj^2*sin(2*t0*omega)+135*Kt*omega*tj*cos(2*t0*omega)+135*Kn*o
mega*tj*sin(2*t0*omega)+180*Kt*sin(2*t0*omega)-
180*Kn*cos(2*t0*omega))/tj^3/omega^5; 
     1/480*b*(-225*Kt*omega*tj*cos(2*t0*omega+2*omega*tj)-
225*Kn*omega*tj*sin(2*t0*omega+2*omega*tj)+180*Kt*sin(2*t0*omega+2*omega*tj
)-
180*Kn*cos(2*t0*omega+2*omega*tj)+30*Kt*omega^3*tj^3*cos(2*t0*omega+2*ome
ga*tj)+30*Kn*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)+2*Kt*omega^5*tj^5-
120*Kt*sin(2*t0*omega+2*omega*tj)*omega^2*tj^2+120*Kn*cos(2*t0*omega+2*ome
ga*tj)*omega^2*tj^2-
30*Kn*omega^2*tj^2*cos(2*t0*omega)+30*Kt*omega^2*tj^2*sin(2*t0*omega)-
135*Kt*omega*tj*cos(2*t0*omega)-135*Kn*omega*tj*sin(2*t0*omega)-
180*Kt*sin(2*t0*omega)+180*Kn*cos(2*t0*omega))/tj^3/omega^5, -
1/480*b*(2*Kn*omega^5*tj^5-180*Kt*cos(2*t0*omega+2*omega*tj)-
180*Kn*sin(2*t0*omega+2*omega*tj)-
225*Kt*omega*tj*sin(2*t0*omega+2*omega*tj)+225*Kn*omega*tj*cos(2*t0*omega+2
*omega*tj)+120*Kt*cos(2*t0*omega+2*omega*tj)*omega^2*tj^2+120*Kn*sin(2*t0*o
mega+2*omega*tj)*omega^2*tj^2+30*Kt*omega^3*tj^3*sin(2*t0*omega+2*omega*tj)
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-30*Kn*omega^3*tj^3*cos(2*t0*omega+2*omega*tj)-
135*Kt*omega*tj*sin(2*t0*omega)+180*Kn*sin(2*t0*omega)+180*Kt*cos(2*t0*omeg
a)+135*Kn*omega*tj*cos(2*t0*omega)-30*Kt*omega^2*tj^2*cos(2*t0*omega)-
30*Kn*omega^2*tj^2*sin(2*t0*omega))/tj^3/omega^5]; 
P11 = [P11(1,1)*ones(lmx,1) P11(1,2)*ones(lmx,1); P11(2,1)*ones(lmx,1) 
P11(2,2)*ones(lmx,1)]*V; 
    P12 = [P12(1,1)*ones(lmx,1) P12(1,2)*ones(lmx,1); P12(2,1)*ones(lmx,1) 
P12(2,2)*ones(lmx,1)]*V; 
    P13 = [P13(1,1)*ones(lmx,1) P13(1,2)*ones(lmx,1); P13(2,1)*ones(lmx,1) 
P13(2,2)*ones(lmx,1)]*V; 
    P14 = [P14(1,1)*ones(lmx,1) P14(1,2)*ones(lmx,1); P14(2,1)*ones(lmx,1) 
P14(2,2)*ones(lmx,1)]*V; 
    P21 = [P21(1,1)*ones(lmx,1) P21(1,2)*ones(lmx,1); P21(2,1)*ones(lmx,1) 
P21(2,2)*ones(lmx,1)]*V; 
    P22 = [P22(1,1)*ones(lmx,1) P22(1,2)*ones(lmx,1); P22(2,1)*ones(lmx,1) 
P22(2,2)*ones(lmx,1)]*V; 
    P23 = [P23(1,1)*ones(lmx,1) P23(1,2)*ones(lmx,1); P23(2,1)*ones(lmx,1) 
P23(2,2)*ones(lmx,1)]*V; 
    P24 = [P24(1,1)*ones(lmx,1) P24(1,2)*ones(lmx,1); P24(2,1)*ones(lmx,1) 
P24(2,2)*ones(lmx,1)]*V; 
    N11 = -C+1/2*K*tj+P11; 
    N12 = -M+1/12*K*tj^2+P12;  
    N13 = C+1/2*K*tj+P13; 
    N14 = M-1/12*K*tj^2+P14; 
    N21 = M/tj-1/10*K*tj+P21; 
    N22 = 1/2*M-1/12*C*tj-1/120*K*tj^2+P22; 
    N23 = -M/tj+1/10*K*tj+P23; 
    N24 = 1/2*M+1/12*C*tj-1/120*K*tj^2+P24;  
    N1  = [N11 N12; N21 N22]; 
    N2  = [N13 N14; N23 N24]; 
    P1  = [P11 P12; P21 P22]; 
    P2  = [P13 P14; P23 P24];  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
        % BUILD GLOBAL MATRICES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
        A(1:2*DOF,1:2*DOF) = eye(2*DOF); 
        A(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+1:2*DOF*(e-1)+2*DOF) = N1; 
        A(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+2*DOF+1:2*DOF*(e-
1)+2*DOF+2*DOF) = N2; 
        B(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+1:2*DOF*(e-1)+2*DOF) = P1; 
        B(2*DOF*e+1:2*DOF*e+2*DOF,2*DOF*(e-1)+2*DOF+1:2*DOF*(e-
1)+2*DOF+2*DOF) = P2; 
        B(1:2*(DOF),E*2*(DOF)+1:(E+1)*2*(DOF)) = PHI; 
        Cvec(1:2*DOF,1) = zeros(2*DOF,1); 
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        Cvec(2*DOF*e+1:2*DOF*e+DOF,1) = C1; 
        Cvec(2*DOF*e+DOF+1:2*DOF*e+2*DOF,1) = C2; 
    end; % end # of elements loop 
`  Q           = A\B; 
  [vec,lam]   = eig(Q); 
  CM          = max(abs(diag(lam))); 
  D          = A\Cvec; 
  % Extract SLE coefficients  
  if CM<1 
            SLE_vec     = inv((eye(size(Q))-Q))*D; 
            SLE         = (sum(SLE_vec(locat))); 
  else 
           SLE          = nan; 
  end 
  N1 = zeros(2*DOF,2*DOF); N2 = N1; 
  P1 = N1; P2 = P1;  
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