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AbstractThis thesis investigates the evolution and use of abstract data types within Genetic Pro-gramming (GP). In genetic programming the principles of natural evolution (�tness basedselection and recombination) acts on program code to automatically generate computerprograms. The research in this thesis is motivated by the observation from software engi-neering that data abstraction (e.g. via abstract data types) is essential in programs createdby human programmers. We investigate whether abstract data types can be similarly ben-e�cial to the automatic production of programs using GP.GP can automatically \evolve" programs which solve non-trivial problems but fewexperiments have been reported where the evolved programs explicitly manipulate memoryand yet memory is an essential component of most computer programs. So far work onevolving programs that explicitly use memory has principally used either problem speci�cmemory models or a simple indexed memory model consisting of a single global sharedarray. Whilst the latter is potentially su�cient to allow any computation to evolve, itis unstructured and allows complex interaction between parts of programs which weakentheir modularity. In software engineering this is addressed by controlled use of memoryusing scoping rules and abstract data types, such as stacks, queues and �les.This thesis makes �ve main contributions: (1) Proving that abstract data types (stacks,queues and lists) can be evolved using genetic programming. (2) Demonstrating GP canevolve general programs which recognise a Dyck context free language, evaluate ReversePolish expressions and GP with an appropriate memory structure can solve the nestedbrackets problem which had previously been solved using a hybrid GP. (3) In these threecases (Dyck, expression evaluation and nested brackets) an appropriate data structureis proved to be bene�cial compared to indexed memory. (4) Investigations of real worldelectrical network maintenance scheduling problems demonstrate that Genetic Algorithmscan �nd low cost viable solutions to such problems. (5) A taxonomy of GP is presented,including a critical review of experiments with evolving memory. These contributionssupport our thesis that data abstraction can be bene�cial to automatic program generationvia arti�cial evolution.
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Chapter 1Introduction
In both natural evolution and human endeavour, complex problems are solved by assem-bling solutions to parts of the problem into a complete solution. Whilst this is highly suc-cessful, it requires limited interaction between components. The building block hypothesis[Goldberg, 1989] states the same is true for arti�cial evolution. While doubts concerningthe building block hypothesis have been expressed in general (e.g. [Beyer, 1995]) and forgenetic programming (GP) in particular [O'Reilly and Oppacher, 1995], if complex so-lutions are to be evolved then it must be possible to assemble complete solutions fromprogram fragments which solve parts of the problem. Where program components havecomplex interactions progress is more di�cult, since improvement in one aspect will a�ectmany others in an unpredictable and so usually negative way. Global memory allows suchcomplex interactions. In software engineering complex interactions via global memory canbe tackled by controlling programmers use of memory with scoping rules and abstractdata types, such as stack, queues, �les etc.The thesis is that data structures can be used within the automatic production of com-puter programs via arti�cial evolution and that appropriate data structures are bene�cial.1.1 What is Genetic Programming?Genetic programming [Koza, 1992] is a technique which enables computers to solve prob-lems without being explicitly programmed. It works by using genetic algorithms to auto-matically generate computer programs.Genetic algorithms (GAs) were devised by John Holland [Holland, 1992] as a way ofharnessing the power of Darwinian natural evolution for use within computers. Naturalevolution has seen the development of complex organisms (e.g. plants and animals) fromsimpler single celled life forms. Holland's GAs are simple models of the essentials of naturalevolution and inheritance. 21



22 The growth of plants and animals from seeds or eggs is primarily controlled by thegenes they inherited from their parents. The genes are stored on one or more strands ofDNA. In asexual reproduction the DNA is a copy of the parent's DNA, possibly with somerandom changes, known as mutations. In sexual reproduction, DNA from both parents isinherited by the new individual. Often about half of each parent's DNA is copied to thechild where it joins with DNA copied from the other parent. The child's DNA is usuallydi�erent from that in either parent.Natural evolution arises as only the �ttest individuals survive to reproduce and so passon their DNA to subsequent generations. That is DNA which produces �tter individualsis likely to increase in proportion in the population. As the DNA within the populationchanges, the species as a whole changes, i.e. it evolves as a result of selective survival ofthe individuals of which it is composed.Genetic algorithms contain a \population" of trial solutions to a problem, typicallyeach individual in the population is modelled by a string representing its DNA. Thispopulation is \evolved" by repeatedly selecting the \�tter" solutions and producing newsolutions from them (cf. \survival of the �ttest"). The new solutions replace existingsolutions in the population. New individuals are created either asexually (i.e. copying thestring, possibly with random mutations) or sexually (i.e. creating a new string from partsof two parent strings). The power of GAs (to �nd optimal or near optimal solutions)is being demonstrated for an increasing range of applications; �nancial, imaging, VLSIcircuit layout, gas pipeline control and production scheduling [Davis, 1991].In genetic programming (GP) the individuals in the population are computer programs.To ease the process of creating new programs from two parent programs, the programsare written as trees. New programs are produced by removing branches from one tree andinserting them into another. This simple process, known as crossover, ensures that thenew program is also a tree and so is also syntactically valid (see Figure 1.1). Thus geneticprogramming is fundamentally di�erent from simply shu�ing lines of Fortran or machinecode.The sequence of operations in genetic programming is given in Figure 1.2. It is fun-damentally the same as other genetic algorithms. While mutation can be used in GP, seeSection B.4.6, often it is not. For example it is only used in Appendix D in this thesis.GP has demonstrated its potential by evolving programs in a wide range of applica-tions including text classi�cation or retrieval [Masand, 1994; Dunning and Davis, 1996],performing optical character recognition [Andre, 1994c], protein classi�cation [Handley,
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241993], image processing [Daida et al., 1996], target identi�cation [Tackett, 1993], elec-tronic circuit design [Koza et al., 1996b] and car monitoring for pollution control [Hampoet al., 1994]. At present published applications in everyday use remain rare, however Oak-ley's [Oakley, 1994] use of evolved medical signal �lters and the BioX modelling system[Bettenhausen et al., 1995] are practical applications.1.2 Goals of this workThere are three main goals of this work. Firstly to show that data structures, other thansimple random access indexed memory, can be used within genetic programming. Secondlyto show that appropriate data structures can be bene�cial when evolving programs and�nally to show that appropriate data structures can be evolved as needed. As we shallsee, the �rst two goals have been achieved. While we shall show it is is possible to evolvedata structures on their own, and it is believed evolving them as needed is achievable(Section 6.2.5 o�ers some support) this has yet to be demonstrated.1.3 Contribution of this WorkThis thesis makes �ve main contributions:1. Proving that abstract data types (stacks (Chapter 3), queues (Chapter 4) and lists(Chapter 5)) can be evolved using genetic programming.2. Demonstrating, on a number of di�erent problems, an appropriate abstract datatype is bene�cial (Chapter 6).3. Demonstrating GP can evolve general programs which recognise a Dyck contextfree language (Section 6.2) and evaluate Reverse Polish Notation (RPN) expressions(Section 6.3).The nested bracket problem had previously been solved by hybrid arti�cal neuralnetworks and genetic programming approaches. These previous solutions forced thesolution to use a stack. In our approach (Section 6.1) the GP was free to use memoryand evolved a general solution to the nested bracket problem which did not use astack and was conceptually simplier.4. A taxonomy of GP is presented (Appendix B), including a critical review of experi-ments with evolving memory (Section 6.4).



255. Investigations of real world electrical network maintenance scheduling problems (Ap-pendices C and D) demonstrate that Genetic Algorithms can �nd low cost viablesolutions to such problems.These contributions support our thesis that data abstraction can be bene�cial to au-tomatic program generation via arti�cial evolution.1.4 Plan of ThesisFollowing this introductory chapter, Chapter 2 describes in general terms the geneticprogramming technique and then covers in some detail the speci�c techniques used in theremainder of the thesis. The next four chapters describe experiments.Chapter 3 describes in detail an experiment which shows it is possible to automati-cally generate programs which implement general stack data structures for integers. Theprograms are evolved using genetic programming guided only by how well candidate solu-tions perform. NB no knowledge of the internal operation of the programs or comparisonwith an ideal implementation is used. The two trees per individual in the populationintroduced by [Koza, 1992, Sections 19.7 and 19.8] is extended to �ve trees, one per stackoperation. Chapters 5 further extends it to ten trees plus shared automatically de�nedfunctions (ADFs). Chapter 3 concludes by considering the size of the test case (in termsof its information content in the [Shannon and Weaver, 1964] sense) and the size of theevolved programs. The general solutions evolved are smaller than the test case, i.e. theyhave compressed the test case.Chapter 4 describes a series of experiments which show genetic programming cansimilarly automatically evolve programs which implement a circular \First-In First-Out"(FIFO) queue. Initially memory hungry general solutions evolved but later experimentsshow that adding resource consumption as a component of the �tness function enablesmemory e�cient solutions to be evolved. The �nal set of experiments show FIFO queuescan be evolved from basic primitives but considerably more machine resources are required.Mechanisms are also introduced to constrain the GP search by requiring evolving functions(ADFs) to obey what a software engineer would consider sensible rules.In Chapter 5 the last data structure, an integer list, is evolved. A list is a generalisationof both a stack and a queue but more complex than either. A controlled iteration loopand syntax rules are introduced. The evolution of the list proves to be the most machineresource intensive of the successful experiments in this thesis. Chapter 5 also describesa model for the automatic maintenance of software produced by GP. In one experiment



26considerable saving of machine resources is shown.Chapter 6 is the crux of the thesis. It shows in three cases GP can bene�cially use ap-propriate data structures in comparison to using random access memory. The three prob-lems are the balanced bracket problem, a Dyck language (i.e. balanced bracket problembut with multiple types of brackets) and evolving a reverse polish expression calculator.Chapter 7 stands back from the experiments and considers in some detail the dynamicsof GP populations using the runs from Chapter 3 as an example. Chapter 7 starts byconsidering the application of results from theoretical biology. It concludes Price's theoremof selection and covariance can, in general, be applied to genetic algorithms and geneticprogramming but the standard interpretation of Fisher's fundamental theorem of naturalselection cannot. The remainder of Chapter 7 investigates the reasons behind the smallproportion of successful runs in the stack problem. It concludes the presence of easily found\deceptive" partial solutions acts in many cases via �tness based selection to prevent thediscovery of complete solutions. Partial solutions based upon use of memory are readilydisrupted by language primitives which act via side-e�ects on the same memory. Thisleads to selection acting against these primitives, which in most cases causes their completeremoval from the population. However where complete solutions are found, they requirethese primitives and thus in most runs complete solutions are prevented from evolving bythe loss of essential primitives from the population. While the details of the mechanism arespeci�c to the stack problem, the problem of \deceptive" �tness functions and languageprimitives with side-e�ects may be general.The stack populations are also at variance with published GP results which showvariety in GP populations is usually high (in contrast to bit string genetic algorithmpopulations which often show convergence). With the stack populations in many casesthere are multiple identical copies within the population. This is due to the discoveryof high �tness individuals early in the GP run which contain short trees. With shorttrees many crossover operations produce o�spring which are identical to their parents andthese tend to dominate the population so reducing variety. This e�ect may be expectedin any GP population where high �tness solutions contain short trees but are fragile, inthat most of their o�spring have a lower �tness. The presence of code within the treeswhich does not a�ect the trees performance (variously called \
u�", \bloat" or \introns")may conceal this e�ect as trees need not be short and many o�spring may be functionallyidentical to their parents (and so have the same �tness) but not be genetically identical.Should these dominate the population then it will have high variety even though many



27individuals within it are functionally the same.The concluding chapter, Chapter 8, is followed by an extensive bibliography and thenappendices. Appendix A tabulates the resources consumed in terms of number of trialsolutions processed by the previous experiments. Appendix B contains an extensive surveyof genetic programming and glossary of terms (page 295). This is followed by Appendices Cand D, which details experiments using �rstly a permutation based genetic algorithm andsecondly genetic programming, to produce low cost schedules for preventive maintenance ofthe high voltage electrical power transmission network in England and Wales (the NationalGrid). The �nal appendix contains notes on the code implementation.
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Chapter 2Genetic Programming
In the �rst section (2.1) of this chapter we position this thesis by brie
y surveying GP.(Appendix B contains a much fuller survey and an extensive bibliography is contained in[Langdon, 1996c]). Section 2.2 explains in detail general GP concepts which are used inlater chapters, while Section 2.3 describes more specialist techniques, some of which are in-troduced into GP by this thesis. In later chapters, where we �rst use one of these concepts,we will refer back to the appropriate subsection within Section 2.2 or 2.3. Appendix Balso contains a glossary of terms (starting at page 295).2.1 Background to this ThesisOn commencement of this work almost all GP work concentrated upon the evolution ofsimple functions. While Koza [Koza, 1992] had performed small demonstration experi-ments on recursion, iteration and evolvable memory these areas (plus a fourth, evolvingprograms containing primitives of more than one type) were largely unexplored. Eventoday this remains largely true with research work concentrating upon the evolution offunctions, e.g. for classi�cation, however there has been work in all four areas. Progresson memory and iteration or recursion (and probably on all four areas) is required if ge-netic programming is to be capable of evolving general (i.e. Turing complete) programs.However this thesis concentrates upon the issues surrounding the evolution of the use ofmemory within GP.2.1.1 Previous work on Evolving Memory in GPSome of Koza's examples include limited storage which is used via side e�ects [Koza, 1992;Koza, 1994]. This is in contrast with Cramer's work where a small number of globalintegers within the evolving program form the framework for input and output but arealso available for storage [Cramer, 1985]. 29



30 Teller was the �rst to show the evolution of general memory in GP. In [Teller, 1994a]evolving programs can freely use 20 small integer storage cells via read and write primitives.The demonstration problem, a mobile robot simulation problem, was chosen because ithas not been solved (either by genetic or human programming) without some form ofstorage. Teller's read and write primitives have also been used by Andre [Andre, 1994b]and [Jannink, 1994]. More recent uses of Teller's read and write primitive are describedin Section 6.4.[Montana, 1995] uses a similar approach in his Strongly Typed Genetic Programming(STGP is described more fully in Section B.4.1). In STGP primitives SET-VAR-i andGET-VAR-i are used to set and read a particular variable's (i) value. The variable maybe of a compound type, e.g. a vector.Teller's primitives (if iteration or recursion are also included) extend GP so that thelanguage used by evolving programs is Turing complete [Teller, 1994c]. While in theory,any computable function can be evolved using such a language, the lack of structure inthe memory model makes it seem inherently di�cult to produce solutions to complexproblems in practice. This thesis is motivated by the observation that even if considerableintelligence (in the form of people, either singularly or in teams) is available to guide thesearch for a program which solves a problem, then the search is easier and more likelyto be successful if the program's use of memory is structured or controlled, rather thanif random or unconstrained access to all memory is allowed. From this starting point weinvestigate if the same is true for genetic programming, where the unintelligent search isguided only by the �tness function. The thrust of the rest of this thesis is to show thatthis is indeed true.2.1.2 Simultaneous WorkSome con�rmation of the experimental results of Chapters 3 and 4 is provided by [Bruce,1995; Bruce, 1996]. ([Bruce, 1996, page 269] says it \was developed independently andwithout knowledge of Langdon's work" and describes [Langdon, 1995b] as \independent ofthe work described in" his thesis [Bruce, 1995, page 287]. The work which forms Chapters3 and 4 was �rst published as [Langdon, 1995c] and subsequently as [Langdon, 1995b].Although Bruce casts his work in an object orientated light rather than in terms ofdata structures there is much that is similar to this thesis. The details of the data objectsin Bruce's experiments on evolving stack and queue data objects are similar to the stackand queue data structures in Chapters 3 and 4. They di�er principally by the inclusion



31of a \Full?" object method and the lack of top or front operations. Bruce also considersthe evolution of a \priority queue". While this has some similarities with the list datastructure evolved in Chapter 5 it is signi�cantly simpler with only �ve data methods ratherthan the ten simultaneously evolved in Chapter 5.The details of the genetic programming system Bruce uses are similar to those usedin Chapters 3, 4 and 5. For example one tree per data method (making a total of �vetrees per individual, see Section 2.3.5), separating pointers from main indexed memory(cf. Section 2.3.4), and use of tournament selection (cf. Section 2.3.1) with a steady statepopulation (cf. Section 2.3.2). However a population size of 1,000 is used throughoutrather than increasing to 10,000 for the more di�cult problems.Bruce conducts six experiments per object type in which he investigates the impact of,evolving the data methods one at a time rather than simultaneously, allowing the inspec-tion of the internal operation of the programs and the impact of using strongly typedgenetic programming. As might be expected, evolving one thing at a time, including acomparison of evolved program behaviour with a prescribed ideal implementation in the�tness function, and ensuring the evolved program is type correct, all make the GP's taskeasier. If all three are avoided (as in our experiments), which he labels experiments \3a",then his GP was unable to evolve the data structure in 20 runs. (Typically the experimentsin Chapters 3 to 5 involve about 60 independent runs).2.2 General GP Concepts2.2.1 Basic Steps[Koza, 1994] says there are six preliminary steps to solving a problem using genetic pro-gramming. These are choosing the terminals (1), the functions (2), the �tness function (3),the control parameters (4), the termination criterion (5) and determining the programs'architecture (6).In Koza's terminology, the terminals (1) and the functions (2) are the components ofthe programs. In Figure 1.1 (page 23) the junctions (or internal nodes) in the tree areformed from the functions +, � and �. In Figure 1.1 the tree leafs (or end nodes or externalnodes) are formed by the only terminal, x. The connections between the terminals andfunctions indicate the order in which operations are to be performed. For example thetop left tree in Figure 1.1 shows a program which calculates (x � x) + (x+ (x� x)). Notehow the brackets, which denote the order of evaluation, correspond to the structure of thetree.



32 The choice of components of the program (i.e. terminals and functions) and the �t-ness function (3) largely determine the space which genetic programming searches andconsequently how di�cult that search is and ultimately how successful it will be.The control parameters (4) include the size of the population, the rate of crossover etc.The termination criterion (5) is simply a rule for stopping the GP run. Typically the ruleis to stop either on �nding a program which solves the problem or after a given numberof generations.In the �nal step the evolving programs' architecture (6) is chosen. In Koza's workthis means de�ning the number of automatically de�ned functions (ADFs), the numberof arguments they take, and which may call which and which may be called by the mainprogram (see Section 2.2.6). More recent work [Koza and Andre, 1995a] has shown thearchitecture itself can be evolved during a GP run. The choices involved with multi-treeprogram architectures (cf. Section 2.3.5) are analogous to step (6).2.2.2 Choosing Terminals (1) and Functions (2)The �rst requirement when deciding the terminals and functions that the evolved programswill be composed from, is to ensure that they are capable of expressing the solution to theproblem. Koza [Koza, 1992, page 86] calls this the su�ciency property. Having ensuredit is possible to express the solution, the next task is far harder. We want to choose themso that it is likely that a solution will evolve.The terminals and functions form the language which represents the trial solutions.The genetic operators (crossover, mutation etc.), ADFs, �tness function and selectionscheme combine to form a transmission function which transforms the population of in-dividuals written in the representation language. Over successive generations we wantthe transmission function to evolve the population towards, and eventually to reach, anacceptable solution. Design of a successful (let alone optimal) transmission functions isnot trivial. [Kinnear, Jr., 1994c, page 12] advises \always pick the most powerful anduseful seeming functions from the problem domain that you can think of". However itwould also seem wise to avoid complicated primitives, e.g. with side-e�ects or that havecomplicated special cases.ClosureKoza [Koza, 1992, page 81] de�nes closure as being satis�ed when each of the functionsis able to accept as its arguments any value or data type that might possibly be returned



33by any function (including itself) or be taken by any terminal. If the terminals andfunctions have this property then new o�spring trees can be created by crossover insertingarbitrary subtrees at arbitrary points and the result will be both syntactically correct andexecutable. In traditional GAs, closure is not needed as the chromosome is not treated asan executable program.Closure is often achieved by requiring all terminals, functions and function argumentsto be of the same type, e.g. integers. However special cases may also need to be considered.For example divide by zero is not normally de�ned, but if closure is to be satis�ed, a dividefunction must still return a valid value even if the divisor is zero. (In this thesis DIVreturns 1, if its second argument is zero). In special cases, we could de�ne a particularprimitive to evaluate to a special value, such as \bad", but then all functions would needto be able to process \bad" values. Functions which trap illegal argument values andreturn valid answers are known as protected functions.An alternative to closure which allows GP to manipulate trees containing a mixtureof types is Strongly Typed Genetic Programming (STGP), discussed in Section B.4.1.In the experiments in this thesis the terminals, functions' arguments and functions'return values are all of the same type. This is in keeping with almost all genetic pro-gramming. In most GP experiments there is an \obvious" way of achieving closure forthe particular problem. However this may not be true for more complicated programs.Closure in
uences the choice of terminals and functions and so the problem representationand thus problem di�culty. Little work has been reported on this important aspect ofclosure.2.2.3 Fitness Function (3)Ultimately the �tness function drives the evolution of the GP population. It is vitalthat the �tness function not only gives a high reward to the correct solution, but also itpreferentially rewards improved solutions throughout the GP run, from the creation ofthe initial population to the discovery of the �nal solution. To some extent preferentialrewarding is easier if the �tness function has a small grain size, so any small improvementin solution is rewarded on average by some non-zero improvement in �tness.It is possible to design a combination of �tness function and representation that is de-ceptive [Goldberg, 1989]. That is, together they drive the population away from optimalsolutions, towards local optima, i.e. towards programs of relatively high �tness that do notsolve the problem. While \deception" has been studied in linear genetic algorithms [Gold-



34berg, 1989; Whitley, 1991; Grefenstette, 1993; Goldberg et al., 1992] it does not appear tohave been generally recognised as a problem in genetic programming (exceptions are [Tack-ett, 1995a, page 286] and [Taylor, 1995]). Unfortunately it has been encountered in severalexperiments described in this thesis. Where detailed analysis was performed (Chapter 7)the problem seems to have been associated with the choice of language primitives, i.e. therepresentation rather than the �tness function.In most cases determining the �tness of trial solutions consumes the vast proportionof the GP's run time and so the e�ciency of the �tness function is also important. Runtime may become excessive if the evolved programs can use either iteration or recursion.In many cases the �tness function is based upon executing the evolved programs on oneor more prescribed test suites. In principle the test suites can be devised in the same wayas those used when testing traditional manually produced programs. So techniques suchas, regression testing, \special case" tests (such as data points at ends of legal ranges), codetest coverage metrics and performance testing, might be used. However it is recognisedthat exhaustive testing of man made programs is impossible and there is always a risk,no matter how clever the tester is, that a program which passes all its testing will stillcontain errors. In the case of evolving programs even more care is needed. GP is guidedonly by the �tness function and GP population are adept at exploiting de�ciencies in thetest suite. The situation is made worse by the volume of testing that is being attempted.In most GPs, every new individual is run on the complete test suite. I.e. instead of runninga few hand built programs, thousands or even millions of programs are run. Usually thishas the e�ect of requiring all testing to be automated and secondly, to ensure GP runtime remains feasible, the size of the test suite is severely restricted. [Kinnear, Jr., 1994c,page 9] describes some pit falls to avoid when creating the �tness function.Fixed Fitness CasesExcept in a few special cases, in the experiments presented in the following chapters,the �tness of each individual within the population is determined when it is created byrunning it against a �xed test case. In Chapter 3 experiments were initially conductedusing random test sequences, however there were problems with this approach:� The random nature made it di�cult to spot bugs.� It was di�cult to design random test cases which adequately tested the trial solu-tions.



35� It was relatively easy to score well with some cases but harder with others. Thiscaused the �tness of individuals to depend dramatically upon the tests being run.When these were changed, the �tness of programs which have already been testedwas not directly comparable with that of new programs.For these reasons all �tness testing has used �xed �tness test cases. This is not todenigrate work using variable test cases but this is a research topic in its own right andso better not mixed with investigations into data structures.Dynamic Fitness FunctionsFixed test cases are widely used in GP, e.g. [Koza, 1994, page 658]. However advantageshave been claimed for dynamic �tness tests. For example [Hillis, 1992; Angeline andPollack, 1993; Jannink, 1994; Siegel, 1994]; [Koza, 1992, Chapter 16]; [Tettamanzi, 1996]use co-evolution of the �tness function or competitive selection, while [Beasley et al., 1993b]suggest a technique for derating the �tness function in regions \near" known solutions.[Kinnear, Jr., 1993a] used a small number (15) �xed set of tests. However a second,more exhaustive, sequence of tests (556) is applied to the solutions produced by GP afterthe GP run has completed to test the generality of the evolved solutions.Program Size as Part of FitnessIn many modelling problems, solutions which not only �t the data but which are short(and therefore potentially easier to understand) are required. If unchecked, GP solutionstend to grow in length and so it is common to include a \parsimony pressure" in the �tnessfunction to encourage the evolution of shorter solutions.[Kinnear, Jr., 1993b] claims advantages for adding a term inversely proportional to theprogram's length to its �tness. This yields shorter and more general programs. Others[Zhang and M�uhlenbein, 1993; Iba et al., 1994b] have used other techniques to includeprogram size or complexity penalties into a single scalar �tness function. Interestingly[Koza, 1992, page 613] presents a counter example, \when parsimony (program size) isincluded in the �tness measure for this problem (6-Multiplexor), considerably more indi-viduals must be processed in order to �nd a 100%-correct and parsimonious solution thanwhen parsimony is not considered."[Blickle, 1996] compares four means of exerting parsimony pressure on discrete andcontinuous symbolic regression problems. He concludes that all four are capable of evolving



36accurate and parsimonious regression formulae but that an adaptive parsimony (i.e. basedon program length) component of �tness worked best overall.Section 2.3.8 describes a means whereby multiple objectives can used in a �tness func-tion without combining them into a single scalar value. Experiments in Chapters 5 and 6include selection pressure to reduce program run time rather than size.2.2.4 Control Parameters (4)There are many control parameters, however the one of most interest is the population size.Whilst [Goldberg et al., 1991] give a population sizing rule for certain genetic algorithms, itwould appear that most GP populations are smaller than their optimum being constrainedby the available machine resources [Koza, 1994, page 617] [Kinnear, Jr., 1994c, page 14].The default values for parameters used in the experiments in this thesis are given inSection E.3. Where non-default parameter values are used, the actual values are given intables with each experiment (for an example, see Table 3.2 on page 62).2.2.5 Termination Criterion (5)The most common termination criterion is to stop the evolution of genetic programs wheneither an exact or approximate solution is found or 50 generations (or generation equiv-alents, cf. Section 2.3.2) is reached. The motivation for this follows from the observationthat on many problems the GP seems to \run out of steam" before generation 50. So thatcontinuing the GP run only marginally increases the chance of a solution being found.[Koza, 1992, page 564] argues that in many cases it is more e�ective to run a GP severaltimes rather than increase the number of generations used by any one run.Most runs in this thesis terminate either when an individual passes the whole of the�tness test case or the maximum number of individuals have been created. (This is usuallyeither 50 or 100 times the population size. I.e. 50 or 100 generation equivalents). In a fewexperiments, the GP does not stop once the whole test case has been solved but continuesuntil the limit on number of individuals is reached. This allows the possibility of evolvingimproved solutions (e.g. faster or more general) to be investigated.2.2.6 Automatically De�ned Functions (6)\An automatically de�ned function (ADF) is a function (i.e., subroutine, procedure, mod-ule) that is dynamically evolved during a run of genetic programming and which may becalled by a calling program (e.g., a main program) that is simultaneously being evolved"[Koza, 1994, page 1]. Koza and Rice introduced ADFs in order to tackle the scaling prob-



37lem, i.e. to help GP scale up to and solve more complex problems. [Koza, 1994] containsmany examples where GP with ADFs solves problems faster than plain GP or is able tosolve bigger problems than plain GP. ADFs are used in many of the experiments in thisthesis from Chapter 4 onwards.The ADFs used in this thesis are of the �rst type introduced by [Koza, 1994], i.e. theyhave a �xed (rather than evolvable) architecture and crossover only moves code betweenthe same ADFs or between main programs (result producing branches). That is, crossoverbetween di�erent ADFs and between ADFs and main programs is forbidden ([Koza, 1994]calls this branch typing). Thus in terms of genetic operations and representations, ADFsare identical to the multi-tree architecture to be described in Section 2.3.5.In this thesis evolved program are executed by a high speed interpreter (GP-QUICK[Singleton, 1994]). The basic implementation of GP-QUICK was extended for this thesisin several ways, in particular so that it supports ADFs. It treats ADFs as (imperativelanguage) function calls. On encountering an ADF function, the interpreter evaluates theADF's arguments (if any) and passes these to the ADF as it starts interpreting the ADF.(This is the standard way ADFs handle arguments, [Spector, 1995] describes an alternative(\Automatically De�ned Macros", ADMs) in which the arguments are passed unevaluatedto the evolving module. The ADM evaluates the arguments as it needs to). When theinterpreter has �nished interpreting the ADF, it returns the value it has calculated for theADF to the point it had reached when it called the ADF and continues execution fromthat point. This calling mechanism supports recursion but recursion is not used in thisthesis. Details of the argument passing mechanism are given in Section 4.6.While ADFs are the most popular means of providing evolvable functions, other mech-anisms have also been proposed. In the Module Acquisition (MA) approach [Angeline,1993] fragments of evolving programs are randomly chosen for inclusion in a library ofcode. The original program is modi�ed so as to replace the encapsulated code by a singlefunction call (to the original code, now in the library). Expansion of library functioncalls to their components is also possible. Once code has been encapsulated it cannot bedisrupted by crossover. [Kinnear, Jr., 1994a] contains a comparison of ADFs, MA andGP on the \even-4-parity problem". \ADFs causing a signi�cant improvement and MAhaving no apparent e�ect" [Kinnear, Jr., 1994a, page 119].The Adaptive Representation through Learning (ARL) [Rosca and Ballard, 1996] hassome similarities with Angeline's MA but uses information from the run time performanceof individual programs, comparisons between parents and o�spring and population statis-



38tics to guide which code to encapsulate or remove from the library and when to do so.2.3 Further GP Concepts2.3.1 Tournament SelectionIn evolutionary algorithms there are many di�erent techniques in use for deciding whichindividuals will reproduce, how many children they will have and which individuals willdie (i.e. be removed from the population). The general characteristic is to reward bettersolutions with more o�spring (and possibly also with longer life). However the questionof how much to reward good individuals is important. If a single very good individual hasmany children then the genetic diversity of the population may fall too much. But if everyindividual has about the same number of children then there is little selection pressure onthe population to evolve in the desired direction.Various �tness re-scaling schemes have been used to rescale �tness values, so that thee�ective �tness of potential parents and so the number of children they are expected tohave is within some prescribed \reasonable" range. For example, the rescaled �tness ofthe best member of the population might be twice that of the worst. Other schemes orderpotential parents by their �tness and use their position or \rank" within the population todetermine how many children they will have. This can produce a prescribed reproductionpattern across the population, which is largely independent of the numerical �tness valuesreturned by the �tness function (all that is important is whether �tness scores are biggeror smaller than others, not by how much). Arguably independence from numerical valuesmakes the �tness function easier to produce.The above schemes require information from the whole population. With small, cen-tralised (i.e. not distributed), generational populations, this is not too bad a problem.However with large or distributed or dynamic (i.e. steady state, see next section) popu-lations, maintaining global �tness data for selection becomes more onerous. Tournamentselection has become increasingly popular as it performs (albeit noisy) rank selectionbased selection using only local information. As it does not use the whole population,tournament selection does not require global population statistics.In tournament selection, a number of individuals (the tournament size) are chosen atrandom (with reselection) from the breeding population. These are compared with eachother and the best of them is chosen. As the number of candidates in the tournament issmall, the comparisons are not expensive. An element of noise is inherent in tournamentselection due to the random selection of candidates. Many other selection schemes are



39also stochastic (i.e. contain an element of chance), in which case the level of \noise" theyhave on the selection process may be considered important. [Blickle and Thiele, 1995]compares features (including selection noise) of various commonly used selection schemes.2.3.2 Steady State PopulationsIn a traditional GA [Holland, 1992], evolution proceeds via a sequence of discrete gener-ations. These do not overlap. An individual exists only in one generation, it can onlyin
uence later generations through its children. This is like many species of plants (andanimals) which live only one year. In the spring they germinate from seeds, grow duringthe summer and produce their own seeds in the autumn. These survive the winter by lyingdormant, but their parents die. These new individuals start growing again in the nextspring. Thus the species as a whole continues through many years but no one individuallives longer than a year.In contrast many plants and animals live many years and there is no distinct boundarybetween generations. In steady state GAs [Syswerda, 1989; Syswerda, 1991b] new childrenare continually added to the population and can immediately be selected as parents fornew individuals. Usually as each new individual is added to the population an existingmember of the population is removed from it. This ensures the population remains at aconstant size.To ease comparisons between steady state and generational GAs, the term generationequivalent is used. It means the time taken to create as many new individuals as there arein the population. Thus a generation equivalent represents the same computational e�ort(in terms of number of �tness evaluations) as a single generation in a traditional GA withthe same sized population.Steady state populations are increasingly popular. All the genetic programming ex-periments in this thesis use steady state populations.2.3.3 Indexed memoryThe indexed memory model used in this thesis is based upon [Teller, 1994a]. The indexedmemory consists of 2l+1 memory cells (numbered �l : : : + l), each of which holds a singlevalue. Attempts to access memory outside the legal range either cause the program to beaborted or the data being written to be discarded and a default value of zero returned.Details are given with each of the experiments. In contrast, Teller avoids the address rangeproblem by reducing the address index modulo the size of the memory (which is addressed0 : : : m� 1). In [Teller, 1994a] 20 memory cells addressed 0 : : : 19 are used.
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Figure 2.1: One Individual { One Program: Five Operations { Five TreesNote, like other functions, write returns a value. We follow Teller's example and de�neit to return the original value held in the store it has just overwritten. Many of the evolvedprograms exploit this behaviour.Some experiments also use a swap function. This takes two arguments which it treatsas addresses within index memory of two data values. It swaps them, so they now occupythe other address in indexed memory. Table 5.4 (page 133) de�nes swap in detail.2.3.4 Scalar MemoryIn addition to indexed memory the experiments make use of one or more scalar memorycells known as auxiliary variables. Depending upon the experiment there are primitivesto set, read, increment and decrement them.2.3.5 Multi-tree programsIn Chapters 3 to 5 and Section 6.3 the evolved program must perform more than oneaction. This is represented by allocating an evolvable tree per action. When the programis used, e.g. during its �tness testing, then the tree corresponding to the desired action iscalled. For example, when evolving a stack in Chapter 3 there are �ve di�erent operationsthat a stack data structure must support. Each of these is allocated its own evolvabletree. So each individual within the population is composed of �ve trees, see Figure 2.1.This multiple tree architecture was chosen so that each tree contains code which hasevolved for a single purpose. It was felt that this would ease the formation of \buildingblocks" of useful functionality and enable crossover, or other genetic operations, to assem-ble working implementations of the operations from them. Similarly complete programscould be formed whilst each of its trees improved.The genetic operations, reproduction, crossover and mutation are rede�ned to copewith this multi-tree architecture. While there are many di�erent ways of doing this [Raikand Durnota, 1994], we de�ne the genetic operations to act upon only one tree at a time.The other trees are unchanged and are copied directly from the �rst parent to the o�spring.
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Crossover

Figure 2.2: Crossover in One Tree at a timeGenetic operations are limited to a single tree at a time in the expectation that this willreduce the extent to which they disrupts \building blocks" of useful code. Crossing liketrees with like trees is similar to the crossover operator with \branch typing" used by Kozain most of his experiments involving ADFs in [Koza, 1994].In the case of reproduction, the only action on the chosen tree is also to copy it, inother words each new individual is created by copying all trees of the parent program.When crossing over, one type of tree is selected (at random, with equal probability,e.g. 1/5). This tree in the o�spring is created by crossover between the tree in each parentof the chosen type in the normal GP way [Koza, 1992]. The new tree has the same root asthe �rst parent (see Figure 2.2). Each mating produces a single o�spring, most of whosegenetic material comes from only one of its parents.In the �rst set of experiments in this thesis, all trees have identical primitives. In laterexperiments, each tree has its own set of primitives from which it may be composed, seeSection 4.9.Should the o�spring program exceed the maximum allowed length, the roles of the twoparents are swapped, keeping the same crossover points. Given that the parents are oflegal length, this ensures the o�spring will be legal.This use of multiple trees and entry points appears to have been \invented" severaltimes. The �rst use of multiple trees is probably [Koza, 1992, Sections 19.7 and 19.8]where there are two distinct branches in the same program with di�erent terminal sets.Unlike the trees in Figure 2.2, the branches are not equal. One branch is subservient tothe other, in that it is always called before the start of the main branch, and so there isonly one entry point. However the two branches used in [Andre, 1994b] are more equal,with each having its own ADFs, while [Taylor, 1995] used three separate trees and alsoallowed each an ADF. Multi agent programs have also been evolved using this approach,with a tree per agent [Haynes et al., 1995a]. While [Reynolds, 1994a] has a single agent,



42the agent has two very di�erent behaviours. In some experiments these are forced intoseparate code branches. Due to the high variation between runs and the use of mutation,it is unclear if syntactically separating the behaviours is bene�cial on its own. Bruce's onetree per data method has been described above in Section 2.1.2.The CoacH system [Raik and Durnota, 1994] allows the user to specify multiple treeswithin a single individual in the population. (Each individual represents a team and eachtree corresponding to a team member within the team). This approach is slightly di�erentin that it allows the user to specify how many trees participate in crossover and whethercrossover must be between trees (team members) of the same type.2.3.6 Directed CrossoverThis section surveys approaches in which the standard random genetic operators havebeen modi�ed to direct or bias the location within parent programs on which they act.However before we consider exotic techniques we shall explain the standard one.[Koza, 1992, page 114] and most others (including this thesis) use a crude aspect ofprogram syntax (based on di�erentiating between functions and terminals, i.e. internalnodes and leaf nodes) to stochastically guide the location of crossover points. Crossoveris biased to increase the proportion of times it moves subtrees headed by functions, asthese are larger than those headed by terminals (which contain a single leaf node). In[Koza, 1992] on average 90% of crossovers exchange functions. In this thesis the propor-tions are governed by the GP-QUICK parameter pUnRestrictWt; pUnRestrictWt governsthe proportion of crossover points that can be either terminals or functions compared tothose that must be functions. In large binary trees (where the number of terminals is ap-proximately equal to the number of functions), the default value of pUnRestrictWt (70%)corresponds to (100% � 70%) + 70%=2 = 65% of crossovers inserting trees larger than asingle terminal. (Table 7.5 (page 211) shows the actual value can be quite close to 65% inpractice).[Angeline, 1996a, page 27] argues \that no one constant value for leaf frequency isoptimal for every problem". While this seems likely to be true, we need to consider the partmutation and other non-standard techniques play in his experiments. Also determiningoptimal values for any problem is expensive, therefore we have retained the GP-QUICKdefault.The remainder of this section describes more sophisticated techniques for guiding GPevolution. While such approaches could be used with mutation, work has concentrated



43upon the choice of crossover points. We start with the work in this thesis and thenbrie
y consider work by others. Most experiments in this thesis use the standard choiceof crossover points described above. However Chapters 4 and 5 contain techniques toprobabilistically bias the choice of crossover points. Two methods are used; �rstly ensuringo�spring obey various semantic (described in Section 4.10.3) or syntactic (Section 5.4.2)restrictions. If these conditions are not met, the o�spring is aborted and a replacementis generated by performing another crossover. The second approach (Section 5.6) activelydrives the choice of crossover points using performance data gathered during �tness testingof the parents.A number of papers show bene�ts in directing or biasing the operation of the crossoveror other genetic operators. For example [Whigham, 1995a; Whigham, 1995b] uses a gram-mar to constrain the evolving trees but the grammar itself evolves based on the syntax ofpreviously successful programs (in fact the best of each generation). The grammar doesnot become more constrictive but instead the rules within it are allocated a �tness whichbiases (rather than controls) the subsequent evolution of the population. [Whigham, 1996,page 231] says \recently there has been increasing interest in using formal grammars torepresent bias in an evolutionary framework" and gives an overview of grammatically bi-ased learning. LOGENPRO [Wong and Leung, 1995] and Generic Genetic Programming(GGP) [Wong and Leung, 1996] are also based upon formal grammars, while [Gruau, 1996]argues strongly that GP workers should be forthright in using program syntax to guide theGP and shows improved GP performance by using an external grammar to de�ne moretightly the syntax of the evolving programs.[D'haeseleer, 1994] describes methods, based upon the syntax of the two parent pro-grams, for biasing the choice of crossover locations so that code at similar physical locationswithin programs is more likely to be exchanged. The motivation is such code may be morelikely to be similar than random code and so changes introduced may be smaller and somore likely to be bene�cial. The assumption is that large changes are more random andso, in a complex problem, more likely to be harmful.An approach to protect code from crossover is the use of genetic libraries ([Angeline,1993] and [Rosca and Ballard, 1996], described in Section 2.2.6). The ETL group [Ibaand de Garis, 1996] is also active in this area, work on their COAST system is reportedin [Hondo et al., 1996b] and summarised in [Hondo et al., 1996a]. Also \introns" aresuggested to protect code from crossover [Nordin et al., 1996] but [Andre and Teller,1996, page 20] concludes \that introns are probably damaging", while the EPI system



44[Wineberg and Oppacher, 1996] relies upon them. ([Blickle, 1996] reports explicit intronsmay sometimes caused performance degradation on a boolean problem). [Angeline, 1996b]advocates evolving the probability of crossover occurring at di�erent points in the programalong with the program itself. He also suggests multiple crossovers to produce an o�spring.[Teller, 1995b] includes a library of callable code plus the co-evolution of \smart" crossoveroperators. The evolving \smart" crossover operators are free to select crossover points asthey choose whilst they create o�spring for parents in the main population.[Blickle and Thiele, 1994, Section 4] claims improved performance by marking treeedges when they are evaluated and ensuring crossover avoids unevaluated trees, howeverthe improvement is problem dependent. In [Blickle, 1996] a deleting crossover operatorwhich removes unevaluated trees is shown to give more parsimonious solutions on a discreteproblem.The \soft brood" approach in [Tackett, 1995a] is di�erent, in that the genetic operatoritself is not biased, instead improved o�spring are produced by producing multiple o�-spring per parent pairing and using a (possibly simple) �tness function to ensure only thebest are released into the population and so able to breed. [Crepeau, 1995, Section 2.2.1]uses a similar technique. It could also be argued that �tness functions which rewardparsimony (i.e. short code) are also biasing the genetic search process. The phrase Mini-mum Description Length (MDL) is also used to describe this approach [Iba et al., 1994b;Zhang and M�uhlenbein, 1995c].There has been increasing interest [Haynes et al., 1995b; Haynes et al., 1996; Bruce,1996] in the use of \type" information to guide the creation of the initial population and itssubsequent evolution via crossover since Strongly Typed Genetic Programming (STGP)was introduced by [Montana, 1993; Montana, 1994] (see Section B.4.1). While [Montana,1995] argues the reduction in search space is important, a more convincing explanationfor the power of STGP is the use of type information to pick a better route through thesearch space by keeping to the narrow path of type correct programs.2.3.7 DemesVarious means to divide GA populations into subpopulations have been reported in con-ventional GAs [Stender, 1993; Collins, 1992] and genetic programming [Tackett, 1994;Ryan, 1994; D'haeseleer and Bluming, 1994; Koza and Andre, 1995b; Juille and Pollack,1995]. Dividing the population limits the speed at which it converges and so may reducethe impact of premature convergence (i.e. when the population converges to a local opti-



45mum rather than the global optimum) and improve the quality of the solutions produced.(If the population is split, with very little genetic communication between its components,the population need never converge).Demes are used in various experiments in this thesis (notably in Chapters 4, 5 and 6).In this work, where direct comparisons were made, the use of a structured population, i.e. ofdemes, always proved to be bene�cial in comparisons with simple non-demic, i.e. panmicticpopulation. However in some cases better results were obtained by using �tness niches(see Section 2.3.8). Where demes are used, the model described in this section is used.In this model (which is based upon [Collins, 1992]) the whole population is treated as arectangular grid of squares with two individuals in each square. Crossover can occur onlybetween near neighbours, i.e. within (overlapping) demes. To avoid edge e�ects the gridis bent into a torus, so that each edge of the rectangle touches the opposite one.In addition to crossover, reproduction is used. As usual two tournaments are con-ducted, the �rst chooses which individual (within the deme) to replace, and the secondchooses which to copy.Before a selection tournament occurs, the candidates for selection must be chosen.Without demes individuals are selected at random from the entire population. This leadsto the population being well mixed, which is known as a panmictic population. Whendemes are used, all members of the selection tournament come from the same deme,i.e. a small part of the population. Figure 2.3 shows the sequence of selection events.This technique di�ers in detail from [Collins, 1992, Section 2.4.1] in that there are twoindividuals per grid square (rather than one), reverse tournament selection (rather thanrandom) is used to select the individual to be replaced and tournament candidates arechosen with uniform probability from a square neighbourhood. [Collins, 1992] uses arandom walk process to approximate a gaussian distribution centered about the individualto be replaced.Demes have some similarities with cellular automata, in that (apart from its contents)each deme is the same as every other deme. Also the new population in a deme is relatedto its current population and the populations of its neighbours. This is similar to theway the next state of a cell within a cellular automata is determined by its current stateand the states of its neighbours. However there are important di�erences: the contentsof each deme is one or more programs, as the number of potential programs is huge, thenumber of states a deme may be in is also enormous. In a cellular automata usuallythe number of states is small. New programs are created stochastically, so given the



46populations in a deme and its neighbours, the new population in the deme can be oneof a huge number of di�erent possibilities. Each possible new population has in generala di�erent probability, being given by the �tnesses of the individuals in the deme andsurrounding demes. Classically cellular automata operate in parallel, while demes areupdated sequentially and stochastically.
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1 3�3 deme chosen at random, choose an-other 3 candidates for replacement at ran-dom from deme. (The centre of the deme isshown with bold edges and the four chosenindividuals are shown shaded). 2 Select worst candidate for replacement.(The upper triangles represent individualswhich are being considered for deletion).

3 Choose 4 candidates for 1st parent fromnew deme centered on the individual to bereplaced. 4 Choose 2nd tournament group of 4 can-didates for 2nd parent from same deme.

5 Create new program by crossing overtournament winners. 6 Replace loser from �rst tournament withnew program.Figure 2.3: Selecting Parents and Individual to be Replaced in a Demic Population



48Limiting ConvergenceUsing this deme structure a �t individual's in
uence within the population is limited byhow fast it can move through the population. The following analysis shows this dependsupon how much better it is than its neighbours.If a program is consistently better than its neighbours (and so too are its o�spring),then its in
uence (i.e. its o�spring) is expected to spread at a high rate across the popu-lation (NB this means its number grows quadratically, rather than exponentially). Eachtime it produces a new o�spring, the new o�spring will be about 1=2pD=2 from its parent(where there are D grid points in the deme, see Figure 2.4). When considering how theindividuals spread we need only consider those at the edge. When these reproduce onlyabout 50% of their o�spring will be outside the previously occupied area.In a rectangular population of size M with each grid point containing P individuals,each deme is within 1=2qMRP of every other (see Figure 2.5). (R denotes the ratio ofthe rectangle's sides). The in
uence of a program that is consistently of above average�tness can be expected to spread throughout the whole population in about 21=2pMRP1=2pD=2 =2p2MR=DP time steps.
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Figure 2.4: In a square demecontaining D grid points, 50%points lie within 12qD2 of thecenter Figure 2.5: In a rectangular population ofM individ-uals, aspect ratio R and P individuals per grid point,each individual is within 12qMRP of any other
The time taken to dominate the whole population is proportional to the program'sreproduction rate, which in turn depends upon how much �tter it is than its neighbours.With tournament selection the �ttest individual in a deme will win every tournamentit is selected to be a candidate in. In demes on the edge of the program's in
uence,i.e. demes that don't yet contain many descendants of the individual, their chance of



49winning a selection tournament (of size t) is approximately t bigger than that of theaverage individual (see Section 7.4.2 page 201). With a crossover rate of pc there are onaverage 1 + pc tournaments per o�spring created. Thus the maximum reproduction rateof an individual is about t(1 + pc)=M . However in GP, crossover is asymmetric, withone parent usually contributing more genetic material than the other (see Figure 2.2).If we consider only those parents, the maximum reproduction rate is t=M . Thus theshortest time for a very �t individual to dominate the whole population is � 2tp2MR=DPgeneration equivalents. (If M = 10; 000, D = 9, P = R = 2, t = 4, this is approximately24 generation equivalents).If a program is only slightly better than its neighbours, it can be expected to haveabout one o�spring per generation equivalent. This will be placed within the same demeas its parent, but in a random direction from it. Thus the original program's in
uencewill di�use through the population using a \random walk", with a step size of about1=2pD=2 (see Figure 2.4). The absolute distance travelled by a random walk is expectedto be step size � pno. steps. Thus the number of time steps required is (no. of stepsrequired) squared. The number of generation equivalents it can be expected to take tospread through the whole population is 2MRDP (If M = 10; 000, D = 9, P = R = 2, thenthis is approximately 2200 generation equivalents).Where selection is from the whole population, the chance of a program being selectedto crossover with itself, is very small. However when each random selection is equallylikely to be any member of a small (3�3) deme, the chance of any program being selectedmore than once is quite high. Possibly the increased chance of crossover between the sameor similar programs may also be bene�cial.2.3.8 Pareto OptimalityExisting GPs (and indeed genetic algorithms in general and other search techniques) usea scalar �tness function where each individual is given a single measure of its usefulness.An alternative, explored later in this thesis, is to use a multi-dimensional �tness measurewhere each �tness dimension refers to a di�erent aspect of the trial solution.In several experiments in this thesis there is more than one task which the evolvedprogram is to perform. For example when evolving a data structure there are multipleoperations that the data structure must support. In the �rst experiments (Chapter 3) asingle �tness measure is produced by combining the performance of the individual opera-tions. Later work (particularly in Chapters 4, 5 and Section 6.3) separates the performance
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xFigure 2.6: Two Dimensional Example of Pareto Optimality and the Pareto Frontof each operation, each contributing a dimension to the overall multi-dimensional �tnessmeasure. In some cases penalties for excessive CPU or memory usage also contribute adimension to the �tness. (Since �tness testing often requires more than one operation tobe active, e.g. when testing that operations work together, a total separation between �t-ness dimensions is not possible. Nevertheless a multi-objective �tness function does allowsome measure of which parts of the program are working well to be recorded).Pareto optimality [Goldberg, 1989, page 197] o�ers a way of comparing individualswithin the population using multiple criteria without introducing an arbitrary means ofcombining them into a single �tness. Evidence for the e�ectiveness of Pareto Tournamentselection is given in [Fonseca and Fleming, 1993] and [Louis and Rawlins, 1993]. [Fonsecaand Fleming, 1995] contains a review of multi-objective optimisation techniques used in-conjunction with various evolutionary computing algorithms. In a Pareto approach �tnessvalues are compared dimension by dimension. If a �tness value is no worse than the otherin every dimension and better in at least one dimension then it is said to dominate theother. For example in Figure 2.6, point 2 dominates B but does not dominate A.Pareto scoring means individuals which make an improvement on any part of theproblem tend to be preferred, whereas a scalar �tness will tend to require each improvementto match or exceed any deterioration in all other parts of the problem. Whether animprovement is more important than a deterioration is given by scaling parameters withinthe �tness function. Consequently setting them is complex and must be done with care.To some extent Pareto �tness avoids this problem.With \�tness sharing" [Goldberg, 1989], the �tness of individuals which are \close" toeach other is reduced in proportion to the number of individuals. This creates a dispersivepressure in the population, which counteracts the GAs tendency to converge on the best
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Figure 2.7: Number of di�erent non dominated �tness values in a list population (Chapter5) with and without a comparison set (no niche sharing, not elitist, pop=10,000, no demes)�tness value in the population. So the number of occupied niches remains high.An alternative approach is to impose a �xed number of niches. [Yang and Flock-ton, 1995] describes dynamic niches, containing clusters of individuals which move acrossthe representation space as the population evolves. Hill climbing, via mutation, providese�ective local search within each niche. However keeping track of such niches is computa-tionally expensive [page 196].In the case of a multi-objective �tness measure there is also a tendency for the numberof niches to fall however �tness sharing can again be used to create a dispersive pressureand keep the number of occupied niches high [Horn et al., 1993]. [Horn et al., 1993]suggests a method of �tness sharing based upon estimating an individual's Pareto rankby comparing it with a random sample of the whole population, known as the comparisonset. (The implementation used in this thesis is described in the next subsection).Figure 2.7 shows the evolution of the number of occupied points on the Pareto optimalsurface in two runs starting from the same initial population. (The two runs were prelim-inary experiments on the list problem, cf. Chapter 5). We see the use of a comparison setleads to the retention of a large number of occupied niches, each of which is the best onsome combination of criteria. However without it, the number of niches falls.[Oei et al., 1991] considered linear GAs with complete generational replacement andstate the \naive" use of tournament selection to spread a GA population across equally �t



52niches will cause the population to behave chaotically. They predict [page 5] the numberof niches, n, within a population of equally �t individuals will fall, being given by theformula: n = 11n0 + 2G�2M (2.1)where n0 is the initial number of niches, G number of generations and M is the popu-lation size.It can be seen that Equation 2.1 does not �t the lower curve in Figure 2.7 well.The derivation of Equation 2.1 made several assumptions that don't hold for Figure 2.7,perhaps the most important is that the �tness niches are static, whereas in Figure 2.7each �tness value ceases to be a niche when a new solution which dominates is found.Nevertheless Figure 2.7 shows a general downward trend in the number of di�erent non-dominated �tness values in the population (i.e. niches) after the initial high rate of �tnessimprovement slows and the population becomes more stable. The loss of variation withtime in �nite populations of equally �t individuals is also known as \genetic drift".Both �tness sharing and demes encourage retention of genetic diversity. Demes pro-mote breeding of nearby individuals (which are likely to be genetically similar) while �tnesssharing retains a large �tness variation in the population. As the population has a large�tness diversity, it may also have a large genetic diversity, so �tness sharing promotesbreeding between genetically diverse individuals.Fitness Sharing Pareto Tournament SelectionPareto optimality can be readily combined with tournament selection. In all the GPexperiments described in this thesis a small number (4) of programs are compared and thebest (or worst) is selected. With scalar �tness this is done by comparing each program inthe tournament group with the current best. If it is better, then it becomes the new best.With Pareto selection, we need to consider the case where neither program is better thanthe other.With Pareto ranking, instead of maintaining a unique \best so far" individual in thetournament, a list of \best so far" individuals is kept. Each member of the tournamentgroup is compared with each member of the best so far list. If it is better than a \best sofar" individual, that individual is removed from the list. If it is worse, then it is discarded.If after comparing with the whole list, it has not been discarded, it is added to the list.



53After comparing all candidates, the winner is taken from the \best so far" list. If thereis more than one individual in the list and �tness sharing is not being used then thetournament winner is chosen at random from those in the list.To reduce the size of the \best so far" list and so the number of comparisons, if acandidate has identical �tness to a member of the list, the candidate is discarded. Thisintroduces a bias away from programs with identical scores, as it prevents them increasingtheir chances of selection by appearing multiple times in the \best so far" list.Where a tournament group contains two, or more, non-dominated individuals (i.e. the\best so far" list contains more than one individual at the end of the tournament) theremainder of the population can be used to rank them. Thus an individual which isdominated by few others will be ranked higher than one dominated by many. NB thisexerts a divergent selection pressure on the population as individuals are preferred if thereare few others that dominate them. Following [Horn et al., 1993] the pareto rank isestimated by comparison with a sample of the population rather than all of it. Typically,in this thesis, a sample of up to 81 individuals is used.ElitismUsing a conventional scalar �tness function and tournament selection a steady state pop-ulation is elitist. That is the best individual in the population is very unlikely to be lostfrom the population. This is because it is very unlikely to be selected for deletion. Thiscould only happen if the best individual was selected to be every member of a deletiontournament. The chance of this is M�k (where M is the population size and k is thekill tournament size). If there is always a unique best individual then the chance of everdeleting it is 1 � (1 �M�k)g where g is the number of individuals deleted. AssumingMk � g then we can approximate this with gM�k. If G is the number of generationequivalents, then this becomes GM�(k�1). With M = 10; 000, k = 4 and G = 100, thechance of deleting the unique best member of the population is � 10�10. If there aremultiple individuals with the highest �tness score then the chance of deleting any one ofthem is much higher, but then there will be at least one more individual in the populationwith the same high score.Where the population is separated into demes the chance of deleting the unique bestmember of the population is much higher, however the best member will reproduce rapidlyand so is unlikely to remain unique for long. The chance of selecting a deme containing thebest individual is 1=M � No. overlapping demes = D=M (due to the implementation of



54overlapping demes, the number of individuals at each grid point need not be considered).The chance of selecting the best individual to be a candidate in a selection tournamentis 1=D but for it to be deleted, it needs to be the only candidate, i.e. it needs to beselected k times. The chance of this is D�k. Thus the chance the best individual will bedeleted by any one kill tournament is D=M �D�k = D1�kM�1. (If M = 10; 000, D = 9,k = 4, this is approximately 0:14 10�6). If there is always a unique best in the population(which need not always be the same individual) the chance of it ever being lost from thepopulation is 1�(1�D1�kM�1)g = 1�exp(g log(1�D1�kM�1)) � 1�exp(�gD1�kM�1)= 1 � exp(�G=Dk�1). (If G = 100, D = 9, k = 4, this is approximately 0:13. I.e. in asteady state demic population in the worst case (where there is always only one copy ofthe best individual in the population) there is a small chance of deleting the best memberof the population).The combination of Pareto �tness and tournament selection is no longer elitist. This isbecause with the introduction of Pareto scoring there may be more than one, indeed many,individuals within the population which are the \best", in the sense that there is nonebetter. The population will tend to converge to these \best" individuals, i.e. their numberswill grow. It is possible for the whole of the tournament group to consist entirely of \best"individuals in which case one of them must be selected for deletion. With Pareto scoring,these need not have identical scores, only scores that were not dominated by the deletedprogram. In this way programs which appear to have the best score so far can be lostfrom the population. Figure 4.26 (page 119) shows several cases where the program withthe highest total score (i.e. the total number of tests passed) is lost from the population,resulting in a fall in the simple sum of �ve of the six �tness measures.Figures 2.8 and 2.9 show the advance of the \best in the population" Pareto front tohigher �tness as the population evolved (albeit projected onto just two dimensions). Thetwo populations come from runs of the queue problem (Section 4.10). Note these graphsonly plot scores on two of the criteria (dequeue and front), the other criteria account forsome concavities in the front.
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Figure 2.8: Evolution of the Pareto front (successful run of queue problem, cf. Section 4.10)
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Chapter 3Evolving a Stack
The stack is one of the simplest and widest used abstract data types [Aho and Ullman,1995, page 312]. Uses include, evaluating arithmetic expressions, parsing computer lan-guages and, in most computer languages, storing function arguments and local data asprograms are executed. Since they are so widely used many digital computers includeexplicit machine code support for one or more stacks. This chapter shows that geneticprogramming can automatically synthesise an integer stack from randomly addressablememory when guided by a �tness function that considers only the outputs of the stackand does not consider its implementation.3.1 Problem StatementThe operation of a stack is shown in Figure 3.1 while a slightly more formal de�nition isgiven in Table 3.1. The stack can be thought of as like a pile of coins. We can add newcoins to the top of the pile and remove coins from the top of the pile but we cannot accesscoins within the pile except by �rst removing those above it.At �rst sight not being able to immediately access every part of the pile seems like aTable 3.1: Pseudo Code De�nition of the Five Stack OperationsOperation Code Commentmakenull sp := maxlength + 1; initialise stackempty empty := (sp > maxlength); is stack empty or not?top top := stack[sp]; top of the stackpop pop := stack[sp]; return top of stacksp := sp + 1; and remove itpush(x) sp := sp � 1; place x on top of stackstack[sp] := x; 57
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59disadvantage, as indeed it would be if we need access to all previously stored data, howeverthere are many problems where only data referring to the most recently encountered partof the problem is needed however when we �nish processing that we need to return to aprevious part of the problem and continue using data we have already saved for it. At thispoint we discard the current data, remove it from the top of the pile and so have accessto the previous data. Such problems may be recursive.3.1.1 Example Use of a StackA simple example where we need to store data but need access only to the most recent dataitem is passing through a maze (without loops). Figure 3.2 contains an example maze. Topass through the maze e�ciently we need to remember which parts of the maze we havealready searched for the exit. An e�cient strategy is rather than record every point in themaze as we pass it, is to only record the points at which we had to make a decision whetherto take the right or left branch. When we reach a dead end we return to the last decisionpoint and take the unexplored branch. If we have explored both options we retrace oursteps to the decision point before the one we have just reached and continue from there.The right hand side of Figure 3.2 shows this exploration strategy as an inverted tree. Asimple strategy in which, when confronted with a new branch, we always take the leftbranch �rst is shown as a dotted line.We need only record information about the branch points we have partially explored.Once both options have been taken we can discard the information we have gatheredabout that part of the maze and all the parts of the maze it leads to. We know they don'tlead to the exit, so we are no longer interested in them. This means we need only keepinformation about the branch points between are current position and the start of thebranching tree. Thus the maximum amount of data we need to keep is given by the heightof the tree which could be very much less than the total size of the maze. However totake advantage of this saving in space we need a data structure which allows us to discardinformation on fully explored branches, including all the data we have accumulated aboutother branch points further down that branch.A stack data structure does this naturally. As we reach a new branch point we pushdata about in onto the stack (all we need to know is which branch we are going to takenext). Should this branch not lead to the exit, we return to the branch point, examinethe top of the stack and explore the other branch, and record that we are doing so onthe top of the stack. If this too leads to a dead end we return to the branch point. Now
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1. 2. 3.Contents of stack at each of the decision points on the left �rst strategy.1. At (2,0) push left, to indicate we are exploring the left branch.2. At (4,1) push left again.3. On reaching the dead end at (3,2) we retrace our steps to (4,1). We now update thetop of the stack to right. This indicates we are exploring the right branch and havealready explored the left branch, thus if we reach a dead end in the right branchthe top of the stack will indicate we have explored branch point (4,1) fully and weshould return to (2,0).Figure 3.2: Solving a Maze Problem Using a Stackwhen we examine the top of the stack. It tells us we have fully explored this branch. Wecan discard all we have learnt about this branch by simply popping the top of the stack.We now return to the previous branch point. Note that as we have popped the stack, thetop of the stack now contains data on the branch point we have just returned to. Thisis exactly the information we need to make our next decision! So not only is a stack acompact way of storing the data we need but it automatically structures the data in away which makes it easy to use.3.1.2 Evolving a StackHaving shown an example where a stack helps us to solve a problem, we return to the taskof evolving a stack using genetic programming.



61It is anticipated that the �tness test cases would have to cover each part of the func-tionality that is to be evolved. Thus reducing the functionality can be expected to reducethe complexity of the �tness testing. This in turn reduces the CPU time to complete�tness testing and makes it easier to devise the test cases. Therefore the de�nition of astack given in [Aho et al., 1987] was simpli�ed by removing the checks for stack under
owor over
ow. These checks are not part of the essential operation of a stack, instead theyare included to make the system more robust by providing some \defensive programming"which traps and safely handles some user or coding errors.The correctness of each trial solution is to be established using only the values returnedby the stack operations, i.e. no account is taken as to how the memory is used. In [Aho etal., 1987] only two (top and empty) of the �ve operations return values. It was felt thatnot being able to directly check in any way the correctness of three of the operations waspossibly too much and so the de�nition of pop used requires it to return the current topof the stack as well as removing it. This common alternative de�nition [Aho and Ullman,1995, page 308] allows at least some level of correctness of pop to be directly assessed.Note that the stack problem requires the GP to evolve �ve operations so together theyimplement a stack. That is, we are requiring the GP to simultaneously co-evolve �veoperations.As with most programming problems, there are many possible implementations but asthe evolution proceeds we do not measure each trial solution's conformance to an imposed\correct" implementation. We don't impose a speci�c implementation. Instead evolution,guided only by how well the operations work together, must �nd an implementation whicheach operation is compatible with.In any implementation of a stack there must be a limit on its size [Aho and Ullman,1995, page 307]. This is represented by maxlength in Figure 3.1 and Table 3.1. A limit often integers is su�cient to demonstrate the idea. In fact the programs evolved scale up tostacks of any required depth.3.2 ArchitectureThe multi-tree architecture and multi-tree crossover described in Section 2.3.5 was chosenas this allows each individual within the population to simultaneously implement trial so-lutions to each of the �ve operations that form the complete stack program; see Figure 3.3.
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pop pushtopmakenull empty

Figure 3.3: Each individual within the population is a trial implementation of the wholeof stack and so implements each of the �ve operations that a stack supports (makenull,top, pop, push and empty). Each operation is programmed by its own tree. The completeindividual is composed of one tree for each operation making a total of �ve trees.
Table 3.2: Tableau for Evolving a StackObjective To evolve a pushdown stackArchitecture Five separate treesPrimitives +, �, 0, 1, max, arg1, aux, inc aux, dec aux, read, write, write AuxFitness Case 4 test sequences, each of 40 tests (see Tables 3.3 to 3.5)Fitness Scaling 1.0 for each test passedSelection Scalar tournament of 4Hits n/aWrapper (page 66) makenull result ignoredtop no wrapperpop no wrapperpush result ignoredempty result > 0) TRUE, otherwise FALSEParameters Population = 1000, G=101, program size <= 250Success Predicate Fitness >= 160:0



633.3 Choice of PrimitivesPrimitives like those a human programmer might use, were chosen. Firstly this ensures asolution is possible, i.e. a program which solves the problem can be written using only theseprimitives. (The need for the available primitives to be powerful enough so that a solutionto the problem can be express using them is called the su�ciency requirement [Koza,1992, page 86]). Secondly as some constructs are useful to human programmers it wasexpected that corresponding primitives might be useful to the GP. For example primitiveswere included that aid maintenance of a stack pointer, although their functionality couldin principle be evolved using combinations of the other primitives.The following primitives were available to the GP:� arg1, the value to be pushed on to the stack. When arg1 is used by any of theoperations except push it has the value zero. Evolving programs can read arg1 butthey can not change it.� arithmetic operators + and �.� constants 0, 1 and the maximum depth of the stack, max (which has the value 10).� indexed memory functions read and write.� primitives to help maintain a stack pointer; aux, inc aux, dec aux and write Aux(cf. Section 3.3.2).(We use the name \write Aux" even though it has slightly odd capitalisation asit is the actual name of the primitive used in the GP system. Similarly we use theactual names of all the other primitives. All these names are case sensitive. Howeversimilar primitives are grouped together in the index, so names in the index need notbe identical to those in the main text).It was decided to evolve a stack of integer values as integers are naturally compatiblewith addressing operations required with indexed memory and the arithmetic requiredwith a stack and so all primitives can be of the same type (i.e. 32-bit signed integers).This naturally meets the closure requirement (Section 2.2.2).No restrictions were placed upon which primitives could be used by which operation.That is the terminal and function sets were identical for each of the �ve trees. Apart fromdi�erences caused by primitives having di�erent numbers of arguments, each primitivewas equally likely to be used in the initial random population.



643.3.1 Indexed Memory63 integer memory cells (numbered �31 : : : 31) were available (see Section 2.3.3 for adiscussion of indexed memory). This is more than su�cient for a stack of no more thanten integers. The symmetric addressing range allows evolving stacks to implement either apush-up or a push-down strategy and avoids some bias towards one or other. (As Figures3.4 to 3.11 show solutions using both implementations were evolved.)read's and write's �rst argument speci�es which of the 63 cells to use. If it yields anillegal value (i.e. outside the legal range �31 : : : 31) �tness testing of the trial program isaborted. There are several other strategies that may be adopted:1. Reduce the range of integer values to just those that are legal memory addresses.This means changing the closure so that every function returns reduced integervalues. In particular the arithmetic operators would have to ensure their outputremained within the reduced range. This approach has been adopted by both Teller[Teller, 1994a, page 202] and Andre [Andre, 1995b].2. De�ne behaviour for read and write following an address error. This could be tocoerce the address to be legal, e.g. using modulus, or to discard the data to bestored and provide a default value when reading.3. Increase the range of legal memory addresses to the range of legal integers.4. Allow more than one type in the evolving programs; 32-bit integers for data valuesand contents of memory cells and a restricted integer for memory addressing.One of the motivations for studying the evolution of data structures is to investigatehow GP can handle software engineering problems. A frequent problem is range checkingor more particularly what happens when an index is used outside its valid range. There-fore options 1. and 3. were rejected (even with virtual memory 3. would not be feasiblewith 32-bit integers, but might be feasible with 16-bit integers). In this chapter the unso-phisticated option of stopping the program was used, however in later chapters option 2.is investigated.Strongly typed GP [Montana, 1995] is a relatively immature �eld so option 4. wasrejected as it might have distracted from the primary interest { the evolution of datastructures.



653.3.2 RegisterIn addition to the addressable memory a single auxiliary variable \aux" was providedwhich, like each indexed memory cell, is capable of storing a single 32-bit signed integer.The motivation for including it and the primitives that manipulate it was that it could beused as a stack pointer, holding addresses to be used with the index memory. However, aswith all the other primitives, the GP is not forced to use it in any particular way or evenuse it at all.There are four associated primitives:1. aux, which evaluates to its current value.2. inc aux, which increases the current value by one and returns the new value.3. dec aux, which decreases the current value by one and returns the new value.4. write Aux, which evaluates its argument and sets aux to this value. It behaveslike write in that it returns the original value of aux rather than the new one,cf. Section 2.3.3. Later chapters use the simpler Set Aux functions, which return thenew value.3.4 Fitness FunctionThe �tness of each individual program is evaluated by calling its constituent operations(i.e. the trees: makenull, top, pop, push and empty) in a series of test sequences andcomparing the result they return with the anticipated result. If they are the same theindividual's �tness score is incremented. Calling the operation and the subsequent com-parison is known as a �tness test. NB all testing is black box, no information about theprogram's internal behaviour such as use of memory is used. However programs whichread or write outside the available memory are heavily penalised because their testingstops immediately. They retain their current �tness score but are not tested further andso can't increase their �tness.The two operations makenull and push do not return an answer. Since we don't have a\correct" implementation to measure them against, they can only be tested indirectly byseeing if the other operations work correctly when called after them. They are both scoredas if they had returned the correct result, which means each makenull or push operationsuccessfully completed (i.e. without memory bound error) increments the program's score.



66This is useful because it means in general makenull and push operations which don'tviolate the memory bounds have better scores than those that do.The empty operation returns either true or false (cf. Table 3.1) however, like the otherfour operations, it is composed of signed integer functions and terminals and the evolvedcode returns a signed integer. Therefore their answer is converted to a boolean valuebefore �tness checks are performed ([Koza, 1992, page 134] calls the output interface codea wrapper). The wrapper chosen splits the space of signed integers approximately in half,with positive numbers being taken to mean true and the rest as false (see Table 3.2. Wefollow [Koza, 1992, page 137] and summerise the key features of each GP problem in atable with a format similar to Table 3.2. These are referred to as the tableau for theproblem). Although intended to be unbiased, because of the strong relationship betweena stack pointer and whether the stack is empty or not, it is possible this choice lead toa bias in favour of stacks adopting a push-down strategy. If a simple push-down stackstarts at zero then a non-empty stack will have a negative stack pointer. Although morepush-down stacks than push-up stacks were evolved, the di�erence can be explained byrandom 
uctuation, i.e. the di�erence is not statistically signi�cant.As was explained in Section 3.1, the stack is de�ned to exclude error checks and so the�tness test case was designed to avoid causing the logical errors that these checks wouldtrap. I.e. it never caused stack over 
ow or under 
ow, top is never called when the stackshould be empty and the stack is always initialised by makenull before any other operationis used.All storage, i.e. the indexed memory and aux, is initialized to zero before each testsequence is started. This ensures all potential inputs are in a known state before testingbegins, this means the test case may be re-run and the same result reached and alsoprevents \leakage" of information from one member of the population to any other. It wasfelt initializing at the start of each test sequence, i.e. a total of four times per programtested, might help discriminate between programs early in the evolutionary process as thisgives imperfect programs three more tries to pass some of the tests from a clean backgroundstate. ([Spector and Luke, 1996] avoids re-initialising memory between �tness testing ofindividuals and so information may pass between them apart from by inheritance. [Spectorand Luke, 1996] call this \cultural" transmission of information. They present exampleswhere it is bene�cial, but on [page 213] they note that on some variations of their problemscultural transmission is not bene�cial).



67Table 3.3: Number of each the �ve stack operations in the four test sequences which formthe �tness test case for the stack problem.Test Sequence makenull top pop push empty Totals1 2 2 14 14 8 402 14 3 2 13 8 403 6 2 7 12 13 404 3 18 5 8 6 40Totals 25 25 28 47 35 160Table 3.4: Number of each the �ve stack operations used in the �tness test case at eachdepth in the stack.Stack length makenull top pop push empty Totalsunde�ned 4 40 11 27 15 531 5 6 14 15 9 492 5 7 9 3 5 293 6 3 2 2 134 6 2 4 125{10 0Totals 25 25 28 47 35 1603.4.1 Test CaseThe �tness of each trial stack program was determined using the same �xed test case forall trial programs, cf. Section 2.2.3. The test case comprised four �xed test sequences eachof which called 40 operations and checked the value returned. The four test sequencescontain di�erent proportions of each of the �ve operations. For example, the second testsequence was designed to test makenull by containing a large number of makenull andpush calls (see Table 3.3).Although the stack was de�ned to operate with stacks of up to ten integers, as Table 3.4shows, it was not necessary for the �tness test case to cover the deeper stacks. In fact the�tness function tested only as far as depths of four items.The integer data values pushed onto the stack (i.e. the values of arg1) were generatedat random uniformly in the range �1000 : : : 999. The 47 actual values used are given inTable 3.5.



68Table 3.5: Data values pushed onto the stack in each of the four test sequences which formthe �tness test case for the stack problem.Test Values pushed No. PushSequence calls1 658 544 923 -508 709 560 816 810 149 -179 -328 1 490 -451 142 -23 -365 814 -464 -885 -702 123 -248 -284 828 177 635 -588 133 557 113 942 -918 -233 616 223 -95 238 -634 -262 590 124 217 539 496 -377 -848 -239 -233 331 83.5 ParametersThe default values for parameters given in Section E.3 were used except for, the populationsize, the maximum program length and the length of each run (101 generation equivalents,cf. Table 3.2). In these experiments a homogeneous population of 1,000 trial solutions waschosen, which proved to be adequate.Each genetic program is stored in a �xed length pre�x/jump-table (cf. Section E.1).The �ve program trees (one for each operation) are stored sequentially within the table.There are no restrictions on each tree's size, however their combined lengths must sum tono more than the size of the jump-table. The jump-table (and so the maximum programsize) was chosen to be 250. This is �ve times the GP-QUICK (cf. Section E.3) default of50, which itself is several times more than su�cient to code each of the �ve operations.Figures 3.15 and 3.16 show individual programs within the population were typically muchshorter than this and so its e�ects, in these experiments, can be neglected. In 50 of the60 runs conducted, including all successful runs, this limit had no e�ect at all. Of theremaining ten runs, typically there was no e�ect until after generation 90. Even in therun with largest number of e�ected crossovers, there was no e�ect before generation 44,when a few crossovers per generation reached the limit. This rose to a maximum of 2% ofcrossovers in generation 96.3.6 ResultsWith the above parameters four runs, in a group of 60, produced successful individuals.The �rst program, from each successful run, that passed all 160 �tness test cases is shownin Figures 3.4 to 3.11. As was expected each successful program is a di�erent solution tothe problem of passing the test cases. Although coded di�erently, the �rst three adopted
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Figure 3.5: Simpli�ed Stack 1the same strategy of using aux as a stack pointer for a push-down stack with makenullinitialising aux to one. The fourth also uses aux as a stack pointer but initialises it tominus one and adopts a push-up strategy.In two respects the evolved solutions are better than might have been anticipated.Firstly, in all cases they not only pass all the �tness test cases but analysis of their codeshows they are general solutions to the problem de�ned in Section 3.1. That is they wouldpass any set of tests that are consistent with the problem.Secondly, the de�nition in Section 3.1 speci�cally limited the operation of the stackto a depth of ten, however all the solutions correctly implement a general stack (withinthe limits of the available memory). That is, given su�cient memory, each implements aninteger stack of any size. So not only has genetic programming found solutions but it hasbeen able to generalise from the limited information in the �tness tests.Each program contains redundant code, i.e. code that can be removed yielding a shorterprogram but with the same functionality. The essential code is shown within the shadedboxes in Figures 3.4, 3.6, 3.8 and 3.10. The equivalent simpli�ed code is given in Figures3.5, 3.7, 3.9 and 3.11 (QROG2 is de�ned on page 85).As has already been mentioned only four of the 60 runs yielded solutions. The �tnessof the best solution found by each run is plotted by the frequency histogram in Figure3.12. This shows that most runs produced partial solutions which pass about 130 of the160 �tness tests. Figures 3.13 and 3.14 show that typically the highest �tness score wasfound by generation 6 and no further improvement in the best score was made before theend of the run, 94 generations later. They also show the population as a whole rapidlyconverges to the best value with a few individuals having very low �tness values.
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Figure 3.13: Evolution of �tness in a typical stack run.
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Figure 3.14: Evolution of �tness, means of 60 stack runs. The four solutions to the stackproblem are also shown.
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u�", \bloat" and \introns") have been widely reported in other GP work [Angeline,1994, page 84], [Nordin et al., 1996]. However in one extended run of the Boolean 6-multiplexor problem [Koza, 1992, page 617] also reports such growth but says the program
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76are composed of randomly selected primitives they will on average also contain about 313nodes. Thus such a tree will on average contain about 16 � ((2 � 1) � 313 + 1) + 1 = 7013nodes. That is on average a tree of maximum height composed of randomly selectedprimitives will contain about 70 nodes.While the above analysis assumes random trees which is highly unrealistic, it doeshighlight the importance of low numbers of branches per function node and the way thismay cause even small trees to be unexpectedly tall. Returning to [Koza, 1992, pages 617{618] we see that Figure 25.23 and the example program presented also give some weight tothe argument that the tree height limit is constraining growth of program size. Figure 25.23shows the population mean of the program size in one run of the 6-multiplexor problemlying near 110 from generation 50 to 200. This is close to the value of 70 we would expectif the population was composed of random trees whose growth was only restricted by thetree height limit. Secondly the height of the example large program (242 nodes) is 14, i.e.only three short of the maximum tree height.Bloat in Variable Length RepresentationsOnce the GP has stopped �nding improved solutions, the best an individual can do is toproduce o�spring with the same �tness as itself. [Angeline, 1994], [Nordin et al., 1996]etc. suggest that this explains why programs tend to get bigger; programs are bigger thanothers with the same �tness because they contain more \junk code" or \introns", i.e. codewhich, although it may be executed, has no impact on the program's �tness. Crossoverpoints are chosen at random, so the larger a portion of code is the more likely it is tobe chosen as a crossover point. [Nordin et al., 1996] suggests this leads to an \implicitparsimony pressure" for �tness a�ecting parts of programs to be as small as possible (andso less likely to be the target for crossover and so be disrupted by it, i.e. the o�springnot being as �t as its parents) and for introns to occupy as much space in the program aspossible. This explanation assumes that on average non-�tness a�ecting code will continueto have no impact on �tness after it has been changed by crossover.A slightly more general way of looking at bloat is in general there are many more waysto code long programs which have a particular �tness than short programs. Since theyhave the same �tness, �tness selection does not guide the search and the search is random.In a random search we expect to �nd solutions which occur often in preference to thosethat are rare. Thus growth of program size, once discovery of higher �tness individualshas slowed or stopped, can be explained as due to GP preferentially discovering short
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Figure 3.17: Fitness v. Program Size, Typical stack run. (To improve presentation onlyextrema and 10% of the data are plotted).and therefore rare solutions initially followed by random discovery of longer and morecommon ways of expressing the same solution with consequent growth of program size inthe population. In general, unless there is some factor which prefers shorter solutions, wewould expect bloat to occur in all stochastic search techniques which use a variable lengthrepresentation.Initial Fall in Program SizeWhile growth in program size is a common, the initial reduction was unexpected (cf. Fig-ures 3.15 and 3.16). A possible explanation for the fall is that initially shorter programsare �tter but, as Figures 3.17 and 3.18 show there is little correlation between an initialprogram's �tness and its size. Instead program size falls because initially crossover pro-duces �tter programs which are shorter than average. This may be because it is easierfor shorter programs to be more general (and so �tter) or because they are closer to thelength of actual solutions found. Indeed it is possible that better performance might beachieved by starting with an initial population composed of shorter programs.3.7 SummaryThis chapter (which was published, in part, in [Langdon, 1995b]) shows that geneticprogramming can automatically synthesise general implementations of an integer stack
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Figure 3.18: Fitness v. Program Size, Stack 2. (To improve presentation only extremaand 10% of the data are plotted).from randomly addressable memory when guided only by a small number of �xed testcases which examine the external behaviour of trial solutions, i.e. without considerationof how they try to implement a stack. Whilst [Andre, 1995b] has demonstrated twocommunicating programs co-evolving, the stack problem (excluding work described inlater chapters) was unique in requiring the co-evolution of �ve independent operations tosolve it ([Bruce, 1996] also uses �ve independent operations). As with Andre's approach,the GP architecture used treats each separate individual within the population as a multi-part program, each part operating and evolving independently but communicating viashared memory and co-evolving to solve the problem by working together.The relative ease with which GP solved the stack problem may be due to the decision toprovide stack pointer manipulation primitives. Certainly experience with more complexdata structures indicates the importance of higher level index operations, even thoughthese can in theory be fabricated from lower level primitives (cf. Section 4.10).There are many ways to implement a program which will pass the test cases. Ifwe regard automatic programming as a search process, then the existence of multipleimplementations means there are multiple solutions (or optima) in the search space. Ina random search this would make the search easier. However the requirement for co-operation means multiple implementation might make the search harder.1. The �ve operations are initially created independently of each other, so multiple



79possible implementations reduce the chance of the operations in a single individualbeing compatible with each other.2. It is reasonable to speculate that crossover between individuals which use incompat-ible implementations will be less likely to lead to superior o�spring.These may be contributory factors to the tendency for GP population to become trappedat suboptimal solutions. The bulk of the population converging to a partial solution foundearly in the run and little or no improvement in �tness occurring subsequently.On this problem, genetic programming has been shown to be more successful thanrandom search, which has never produced a program that passed all the �tness test cases,let alone a general one.From an information theory perspective, genetic programming has converted the in-formation held in the test cases (the speci�cation) into the information held in a program(the solution). The information content of the test cases is about 886.9 bits, whereas thatof the solutions (including redundant code) is much less, e.g. 57.4 bits for stack 1. That isthe GP has lost information, however this is exactly what we want it to do! We want thesolutions to be more general than the test cases. Not only has GP produced less speci�c(i.e. containing less information) programs it has chosen the correct information to retainfrom which it has produced correct general solutions. Since this has been done withoutexplicit guidance, we can conclude that, in this case, GP has some correct implicit bias(possibly via the function and terminal sets). However it seems reasonable to speculatethat similar implicit biases will apply to other programming problems and so we may hopeGP will evolve other general solutions to speci�c test cases.
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Chapter 4Evolving a Queue
Like the stack, the queue is an important data structure based upon the list data model. Acommon use of queues is to hold data requiring processing until a service provider is ableto process it. Data for each new request enters the queue at its rear and waits until datain front of it has been processed and removed from the front of the queue. When it reachesthe front of the queue, it too is processed and removed from the front queue. Queues arealso known as \FIFO" (First-In First-Out) lists [Aho and Ullman, 1995, page 318].This chapter shows that genetic programming can automatically synthesise a queue ofinteger values from randomly addressable memory. In contrast to the stack, when GP wasguided by a �tness function that considers only the behaviour of the queue and did notconsider its implementation at all, resource hungry solutions were evolved. Whilst thesemay be considered \correct" they are not practical. However GP can evolve practicalimplementations when the �tness function includes consideration of the resources used.As with the stack, apart from resources consumed, evolution was not guided by consideringthe implementation used.4.1 Problem StatementThe de�nition of a queue is given in Table 4.1. Note the use of the function \addone".Table 4.1 is analogous to the de�nition of a stack given in Table 3.1 on page 57. A circularbu�er implementation of a queue is shown in Figure 4.1. As with the stack (Section3.1), the de�nition given in [Aho et al., 1987] was simpli�ed to reduce the complexity ofthe �tness testing by removing the checks for under
ow and over
ow. Such checks aresometimes included to safely handle coding or user errors however they are not part of theessential operation of a queue [Aho and Ullman, 1995, page 318].As in Chapter 3, the correctness of each trial solution is established using the valuesreturned by the operations and in the de�nition given in [Aho et al., 1987] only two of the81
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83Table 4.1: Pseudo Code De�nition of the Five Queue OperationsOperation Code Commentaddone (i) addone := (i + 1) % maxlength; cyclic increment functionmakenull head := 0; initialise queuetail := maxlength � 1;empty empty := (addone (tail) = head); is queue empty?front front := queue[ head ]; front of queueenqueue(x) tail := addone (tail); add x to queuequeue[ tail ] := x;dequeue dequeue := queue[ head ]; return fronthead := addone (head); and remove it�ve operations return values. As in Section 3.1, it was felt that not being able to directlycheck in any way the correctness of three of the operations was possibly too much and sothe de�nition of dequeue (cf. pop) requires it to return the current front of the queue aswell as removing it. This alternative de�nition [Aho and Ullman, 1995, page 318] allowsat least some level of correctness of dequeue to be directly assessed.Note that the queue problem, like the stack, requires the GP to evolve �ve operationsso together they implement an abstract data type. That is, again we are requiring the GPto simultaneously co-evolve �ve operations.A queue can be implemented in at least three fundamentally di�erent ways, packedarray (where the data is moved from the rear to the front of the array), linked list andcircular bu�er (see Figure 4.1). There are many possible implementations of each of these.As with the stack, a trial solution's �tness is not assessed by how well its implementationconforms to any speci�c implementation. Instead evolution, guided by how well the op-erations work together, must �nd an implementation which each operation is compatiblewith. Whilst the GP is free to choose to use any implementation of any of the threedi�erent types, the index primitives (Section 4.9) were included speci�cally for circularqueue implementations.From a practical point of view any implementation of a queue data type will have somerestriction on the amount of data it can contain. maxlength (cf. Table 4.1) was chosen tohave the same value as in the stack experiments, i.e. ten. However in order to allow theevolution of circular implementations of a queues (like that given in [Aho et al., 1987])which require a gap between the head and tail of the queue, the number of items in the



84queue is limited to nine, i.e. ten less one for the gap. The presence of this gap shows thereis something in the queue, whilst its absence indicates the queue is empty (rather than allavailable slots are used).4.2 ArchitectureThe multi-tree architecture and multi-tree crossover described in Section 2.3.5 was chosenas this allows each individual within the population to simultaneously implement trialsolutions to each of the �ve operations that form the complete queue program. All theexperiments reported in this chapter use Automatically De�ned Functions (ADFs, seeSection 2.2.6). Each ADF is represented by an additional tree following the �ve operationtrees.4.3 Choice of PrimitivesThe experiments described in this chapter used di�erent combinations of primitives. Thedetails are given in Tables 4.4, 4.5, 4.7 and 4.10. The reasons for the di�erences betweeneach experiment are discussed later with each experiment, however all the primitives usedin this chapter are described in this section.The choice of which primitives are available to the GP follows the reasoning of thestack problem (Section 3.3) i.e. primitives like those a human programmer might use toimplement a queue were chosen. This ensures a solution can be coded using the availableprimitives and, as some constructs are useful to human programmers, it was expectedthat corresponding primitives might be useful to the GP. For example primitives wereincluded that aid maintenance of pointers to the front and rear of the queue, althoughtheir functionality could in principle be evolved using combinations of the other primitives.The following primitives were used in the experiments in this chapter:� arg1, the value to be added to the end of the queue or the argument of the ADF.When arg1 is used by any of the operations except enqueue it has the value zero.Evolving programs can read arg1 but they can not change it.� arithmetic operators + and � and the \protected" modulus operator, mod. modis included to support the manipulation of pointers required by a circular bu�er(cf. function addone in Table 4.1).In mathematical terms the modulus of a number modulo zero is not de�ned andoften computer implementations of the modulus operator have ill de�ned behaviour



85Table 4.2: Implementation of \Protected" Modulus Functiona = �rst argument;b = abs ( second argument );if (b = 0) return a;else return (a % b + b) % b;or create run time exceptions if the divisor is zero. To avoid this we follow commonGP practice and insist that the modulus function be able to accept any value (i.e.including zero, this is known as \closure", see Section 2.2.2) and use a \protected"modulus function which returns a well de�ned legal value for every legal input.The protected modulus function, mod, returns the �rst argument modulo the secondunless the second is zero, in which case it returns value of �rst argument.In the C programming language, which was used to implement these experiments, thebehaviour of the modulus operator (%) with negative arguments is implementationdependent[Kernighan and Ritchie, 1988, page 205]. It is important that the resultsof these experiments should be reproducible which requires the behaviour of allprimitives to be known, therefore the behaviour of mod is de�ned for negative inputs.Unless the divisor is zero, mod is de�ned to yield a non-negative result no matterwhat sign its arguments have. This is implemented by using the absolute value ofthe divisor (see Table 4.2). Other protected modulus function have been used [Koza,1992, page 400] and [Jannink, 1994].� constants 0, 1 and max (which has the value ten).� indexed memory functions read and write.� primitives to help maintain pointers; aux1, aux2, aux3, Inc Aux1, Inc Aux2, Inc Aux3,Dec Aux1, Dec Aux2, Dec Aux3, Set Aux1, Set Aux2, Set Aux3, MInc1, MInc2,and MInc3 (Implementation of MIncn given in Table 4.3).� Functions that simply link subtrees together; PROG2 evaluates both its argumentsand returns the value of the second, whilst QROG2 evaluates its two arguments butreturns the value of the �rst.� The Adf1 primitive provides the mechanism for calling the Automatically De�nedFunction (see Sections 2.2.6 and 4.6).



86 In some experiments it is possible for one operation to call another as a function.When the called operation is �nished, execution control returns to the calling op-eration rather than terminating the evolved program as it would normally do. Themechanism used to implement this is the same as that used to implement ADFs.The corresponding primitives have the same name as the operation (except the �rstletter is capitalised). Thus the Front terminal (front takes no arguments) providesthe means for other operations to use the front operation. (We have adopted theconvention of using the actual names of the primitives and trees used in the code,including the case of the letters. The code uses the convention that the names ofprimitives which invoke other operations contain only lowercase letters, while thenames of the corresponding program tree are capitalised).Once again all of the above function accept 32-bit signed integers and the both thefunctions and terminals yield 32-bit signed integers.In the �rst experiments all primitives were used in all trees but in later ones the syntaxwas made more sophisticated allowing each tree (i.e. operation or ADF) to have its ownset of primitives. As in all the experiments in this thesis, apart from di�erences caused byprimitives having di�erent numbers of arguments, if a primitive is included in the syntaxfor a particular tree, it is as likely as any other legal primitive to be used in that tree inthe initial random population.4.3.1 Indexed MemoryThe memory structure used for the stack was retained (cf. Sections 2.3.3 and 3.3.1) whichprovides 63 32-bit signed integer memory cells (numbered �31 : : : 31). The symmetricaddressing range allows the GP additional implementation freedom. Array and circularbu�er implementations for such a queue are relatively memory e�cient (requiring n andn+ 1 memory cells respectively) and so easily �t into the 63 cells available. A linked listimplementation requires 2n or 3n (if a double link chain is used). Thus 63 cells is morethan su�cient for all of the common implementations of a queue of up to nine integers.As Section 4.7 will describe, memory hungry partial solutions can arise. One of theways used to discourage these was to reduce the memory available so that such partialsolutions reach the limit of the available memory earlier. This allows evolution to exploreother solutions when it might otherwise have been trapped by the population convergingto a memory hungry partial solution. In the �nal experiments in this chapter (Section4.10) the memory was reduced to �15 : : : 15. Although there is still su�cient memory for



87linked list implementations, they were not observed in any of these experiments.In the �rst experiments presented in this chapter, attempts to access, via read or write,memory cells outside the legal range cause �tness testing to stop, as described in Section3.4. In later experiments, �tness testing was allowed to continue on addressing errors bywrite discarding the data to be stored (in which case it returns zero) and providing adefault value of zero when reading from an illegal address.In the initial population the �rst argument of read and write (like all functions' argu-ments) is random code and so will yield a random value. In practice this is likely to benear zero but could be anything. If it is outside the range �31 : : : 31 then �tness testingwill stop and the program containing the read or write will probably have a low �tness.If a function consistently causes programs containing it to have below average �tness thenumber of times the function appears in the population will fall, eventually being removedentirely (see Section 7.1 for a discussion of Price's theorem). It was felt that this mightbe happening and so be the cause of poor GP performance. However if read and writeare allowed to continue following a memory addressing error (i.e. �rst argument > 31 or< �31) the current test may fail but the program will get the opportunity of running othertests which it may pass. Thus the negative impact of random code on read and write maybe reduced allowing the population to retain them for longer, which may enable evolutionto provide useful arguments for them. As was expected, programs evolved which rely onhow memory addressing errors are dealt with (e.g. Figure 4.9).4.3.2 RegistersIn addition to the addressable memory two or three auxiliary variables, \auxn", wereprovided. The motivation for including them and the primitives that manipulate themwas that they could be used as pointers, holding addresses to be used with the indexmemory. However, as with all the other primitives, the GP is not forced to use them inany particular way or even use them at all.There are �ve primitives associated with each variable (however not all �ve are usedin all experiments):1. auxn, which evaluates to the current value of register n.2. Inc Auxn, which increases the current value of register n by one and returns its newvalue.3. Dec Auxn, which decreases the current value by one and returns the new value.



88 Table 4.3: Implementation of Modulo Increment Terminalsauxn++;auxn = mod( auxn, 10); (NB max = 10)return auxn;4. Set Auxn, which evaluates its argument and sets register n to this value. Unlikewrite Aux (cf. Section 3.3.2) it returns the new value.This change was made after it was noted that the GP could exploit the implicit stor-age in the write Auxn primitives, to ease the formation of \shu�er" type solutions(Section 4.8).5. MIncn, Modulus Increment, sets register n to one plus its current value reducedmodulo max and returns its new value (see Table 4.3).A key ingredient to successfully evolving circular bu�er implementations of queuedata structures seems to be the manipulation of pointers to the two access pointsfor the data structure, i.e. the front and back. Experiments in Section 4.9 includedthe MIncn terminals to provide this functionality. In other experiments the GP wasrequired to evolve this functionality from the other primitives.4.4 Fitness FunctionsThe �tness of each individual program is evaluated by calling its constituent operations(i.e. the trees: makenull, front, dequeue, enqueue and empty) in a series of test sequencesand comparing the result they return with the anticipated result. Only if they are thesame is the individual's �tness increased. NB whilst all testing is black box with no infor-mation about the program's internal implementation being used, following the discoveryof memory hungry solutions (Section 4.7) the �tness function was modi�ed to includepenalties for excessive resource (i.e. memory) usage and we show that memory e�cientimplementations can be evolved (see Sections 4.8, 4.9 and 4.10.5).The two operations makenull and enqueue do not return an answer. As with the stackmakenull and push operations, they can only be tested indirectly by seeing if the otheroperations work correctly when called after them. They are both scored as if they hadreturned the correct result.As with the empty operation in the stack data structure, the empty operation returnseither true or false (cf. Table 4.1) however, like the other four operations, it is composed



89of signed integer functions and terminals and the evolved code returns a signed integer.Therefore a wrapper is used to convert the signed integer to a boolean value before �tnesschecks are performed. The wrapper converts a zero value to true and all other values tofalse. The evolved code can compare two values using subtraction (no explicit comparisonoperators are provided). If they are equal, subtracting them yields zero which the wrapperconverts to true. This wrapper also avoids the potential bias in the wrapper used withthe empty stack operation (Section 3.4).As was explained in Section 4.1, the queue is de�ned to exclude error checks and sothe �tness test case is designed to avoid causing the logical errors that these checks wouldtrap. I.e. they never try to enqueue more than nine integers, never uses dequeue or frontwhen the queue should be empty and the data structure is always initialised by makenullbefore any other operation is called. All storage (i.e. the indexed memory and the auxiliaryregisters) is initialized to zero before each test sequence is started.Initially the �tness function was identical to that used for the stack, with the supposi-tion of enqueue for push etc. (cf. Section 3.4). However unlike the stack, various programswere evolved which passed the whole test case but did not correctly implement a FIFO(First-In First-Out) list. As these were produced the �tness test case was changed, toinclude more tests, di�erent test orders and to enqueue di�erent numbers.Initially the �tness function, like the stack, was simply the sum of the number of testspassed. Di�erent �tness scalings were tried, which gave less weight to \easy" tests. In theexperiments in Sections 4.7 and 4.8, makenull and enqueue tests are equivalent to only5% of dequeue, front and empty tests. In later experiments a single �tness value for eachprogram was replaced by \Pareto" scoring (See Sections 2.3.8 and 4.10.1). The details ofeach �tness function used are described with each experiment.4.4.1 Test CaseInitially the �tness test case, like the rest of the �tness function, was identical to thatused for the stack, with the supposition of enqueue for push etc. and so the argument ofenqueue was identical to that used with push (Table 3.5, page 68), i.e. an integer between�1000 and 999. As memory was initialised to zero and all enqueued data is non-zero(cf. Table 3.5) an e�ective test of whether a memory cell has been used or not is to see if itcontains a non-zero value. In the case of the queue, partial solutions were produced whichexploited this and used it to estimate whether the queue was empty or not. Such solutionscould fail if tested on a queue containing the value zero. The GP found and exploited this



90and a few similar \holes" in the test sequences to produce high scoring individuals whichsolve the test case rather than the queue problem. Therefore (from Section 4.8 onwards)the test data values were changed to increase the proportion of small integers and a �fthlong test sequence was added to test for memory hungry solutions.A possible explanation for why additional measures were needed in the �tness testingof the queue that were not required with the stack is that without appropriate cursorprimitives (such as MIncn), the queue is a harder problem and the absence of a solutionallows the GP to explore the �tness function more fully and then exploit \holes" in it.4.5 ParametersThe default values for parameters given in Section E.3 were used except: the populationsize, the maximum program length, the length of each run and the use of a �ne graineddemic population (see Section 2.3.7). The values of these parameters were changed betweenthe various experiments described in this chapter, details are given in Tables 4.4, 4.5, 4.7and 4.10.4.5.1 Population sizeInitial runs with a population of 1,000 were very disappointing. Whilst the initial �tnessfunction, the initial primitives used or loss of genetic diversity caused by premature con-vergence (i.e. when the population converges to a local optimum rather than the globaloptimum) may have contributed to this, it was decided to follow advice in [Kinnear, Jr.,1994c] and [Koza, 1994, page 617] and make the population as big as possible. All thequeue experiments described in this chapter have a population size of 10,000.4.5.2 Maximum Program SizeAs was discussed with the stack problem (see Section 3.5) each genetic program is com-posed of six trees (cf. Section 4.2) which must �t into a �xed length table (cf. Section E.1).There are no restrictions on each tree's size, however their combined lengths must sum tono more than the size of the table. The table size was the same as in Chapter 3, despitehaving an additional tree (adf1). This is reasonable as [Koza, 1994, page 644] suggestsusing an ADF generally reduces the total size of the program.As Figures 4.28 and 4.29 show individual programs within the population typicallygrew towards the maximum available space and so its e�ects can not be neglected. Section2.3.5 described how the crossover operator ensures this limit is not violated.



91Random queue programs are bigger on average than random stack ones (compare Fig-ures 4.28 and 4.29 with Figures 3.15 and 3.16 (pages 74 and 75)) principally because ofthe higher proportion of functions with two arguments amongst the primitives (45% ver-sus 25%, cf. Table 4.10 and Table 3.2 (page 62)). Random trees are created from theroot (using the \ramped-half-and-half" method [Koza, 1992, page 93]) so the higher thenumber of branches (i.e. function arguments) at each level the bigger the tree will be and(when using the grow mechanism) the greater the chance of growing to another level. Thusthe limit on total tree size (i.e. program length) is more of a constraint in this chapter thanit was in Chapter 3. (Alternative means of creating random trees for the initial populationare proposed in [Bohm and Geyer-Schulz, 1996] and [Iba, 1996b]).[Gathercole and Ross, 1996] consider the impact of restrictions on program size in thecase of programs consisting of a single tree and shows the standard GP crossover operatorcan lead to loss of diversity at the root of the tree. Whilst the analysis does not includemulti-tree programs or treat in details restrictions on total program size rather than treeheight, it may be the case that the restriction on total program size does cause problems inthese experiments. There is some evidence that roots of trees in this chapter may convergeto inappropriate primitives which the GP then has to work around to evolve operationalcode.When the initial random population is created, the trees within the individual arecreated sequentially. As each primitive is added to the current tree the code ensures thatthe individual remains within the total restriction on program size. Thus the total sizelimit has little impact on the �rst trees created but as each new tree makes the totalprogram longer, the size limit has a disproportionate e�ect on the last tree to be created(i.e. adf1). If as a random program is being created, its length nears the length limit,the chance of adding a terminal (rather than a function) to the program is increased torestrict the addition of new branches to the tree and thus constrain its growth. This leadsto asymmetric trees. (Section 5.7 introduces a per tree restriction on program size whichensures the e�ects do not fall disproportionately on the last tree). The crossover operatorused (Section 2.3.5) ensures the o�spring will never exceed the total size limit and so thee�ect of the size limit does not fall unduly on the last tree after the creation of the initialpopulation.



924.6 Automatically De�ned FunctionsThe failure of early trials without Automatically De�ned Functions (ADFs) and Koza'sstrong advocacy of them [Koza, 1994, page 646] lead to the decision to implement ADFswithin the GP-QUICK frame work (cf. Section E.2).The initial implementation was very much like that used by Koza but contained norestrictions upon the primitives that could be used within the ADF tree. I.e. each primitivecould occur in each of the operations and the ADF. In Koza's ADFs the function andterminal set are usually di�erent from those in the main tree (in his terminology, \theresult producing branch"). Typically his ADFs do not have primitives that enable themto access the actual variables of the problem, instead access is indirect via the ADFs'arguments [Koza, 1994, page 75].Subsequently the implementation was extended to allow each tree to have uniqueterminal and function sets. NB each operation (\result producing branch") can also havea unique set of primitives (Section 4.9).In later experiments described in this chapter the ADF concept was extended in threeways:1. The �ve operations may themselves be treated as evolving functions and be calledby other operations. When they �nish processing instead of causing the program tohalt, control returns to the caller, which continues execution.This new ability was introduced because sometimes the requirements of one opera-tion can be a subset on another's. For example front's functionality is a subset ofthat required of dequeue (cf. Table 4.1) and so in later experiments (Sections 4.9and 4.10) dequeue is allowed to treat front as an ADF. Whilst this would seem intu-itively reasonable, in principle it means more analysis must be performed before theproblem is given to the GP. An alternative could be to use an ADF which the twooperations could share. This would be more general in that it allows the operationsto have common functionality, rather than one being a subset of the other but thiswould require the co-evolution of three program trees rather than two.2. As the name implies, automatically de�ned functions are normally viewed as com-puting a function of their inputs which they return to their caller. However theirpurpose in GP is to ease the evolution of functionality, especially where it is repeat-edly required. If the ADF is restricted to returning its answer but the functionalityrequires some variable to be updated, then code to transfer the ADF's answer to the



93variable must be used whenever the ADF is called.For example if, as part of a bigger program, we wish to evolve code that incrementsone of a number of variables. We would expect a parameterised ADF to be helpful.The ADF can simply increment its argument and then the ADF can be called witheach variable as its argument. But if the ADF can only read its arguments, it mustreturn the value of the variable plus one and rely on code at each point where it wascalled to update the correct variable with the new value.It is expected that generally it will be harder to evolve such multiple instance of code(which may deal with di�erent variables and could be in di�erent trees, and thuscannot share genetic material at crossover, Section 2.3.5) than if a single instanceof code to update the ADF's argument, which automatically ensures the correctvariable is modi�ed, could be evolved once within the ADF.In traditional programming languages, this is done by passing the variable to thefunction by reference so the function can manipulate the variable directly. Whenthe function is called a check is often made that the function's argument is indeed avariable and a reference for it exists. Whilst it would be possible to build such a checkinto GP crossover (and other genetic operators), thus ensuring only legal programsare generated, this means making a distinction between variables and constants.In normal GP there is no such distinction, all genetic material has the same type.Whilst such distinctions can be made, as discussed in Section 3.3.1, this is a �eld ofresearch in its own right and would have been too much of a distraction from thisthesis. Therefore the genome interpreter was made su�ciently robust to cope witharbitrary code as the argument of ADFs that use pass-by-reference. Should morethan one variable occur in the the ADF's argument, the reference of the last is used.If there are only constants, the ADF does not try and update them.Instead of introducing primitives to explicitly update ADF arguments, it was decidedthat such ADFs should implicitly update their argument by setting it to the �nalvalue calculated by the ADF as it returns to its caller. The ADF also returns thecalculated value. Whilst this is straightforward and reduces the volume of codein the ADF it means it is impossible for an ADF with more than one argumentto update them independently. For our purposes this was not necessary and theimplementation only allows an ADF's �rst argument to be passed by reference.Section 4.10.4 describes one case where this feature was used.



94 3. Syntactic and semantic restrictions on the ADF were also introduced. These aredescribed in Section 4.10.3.There has been only a limited amount of work on allowing recursion within geneticprogramming; [Koza, 1992, page 473], [Brave, 1996c], [Sharman and Esparcia-Alcazar,1993], [Whigham and McKay, 1995, page 19], [Nordin and Banzhaf, 1995a] and [Wong andLeung, 1996]. Recursion and GP is a big and important research topic which would be toomuch of a distraction from this thesis. Therefore, whilst recursive calls are implemented,recursion is not allowed in any of the experiments in this thesis. In Sections 4.7 and 4.8recursion is prevented by a run time check which aborts �tness testing (in the same wayas memory address errors in Section 3.3.1). In all other experiments the syntax of theevolving programs is designed to prevent recursion occurring.4.7 Evolved Solutions { CaterpillarIn a group of 66 runs (ignoring those that aborted due to time constraints) four partialsolutions were found. All four passed all 160 tests, but subsequent analysis showed thattwo were not general and had exploited the fact that the test case did not simultaneouslyenqueue more than four integers (cf. Table 3.4 page 67). I.e. they were able to pass allthe tests whilst only implementing a queue of four items and so could fail if �ve or moreitems were simultaneously in the queue. However two programs (e.g. Figure 4.3) evolvedwhich, given su�cient memory, correctly implement a queue.These are known as \caterpillar" solutions (see Figure 4.2) because they enqueue newitems in front of the last item in the queue (the caterpillar's head) thus causing thecaterpillar to grow one cell. Data is dequeued from the other end of the queue (thecaterpillar's tail) causing the caterpillar to shrink as its tail moves one cell, in the samedirection as the head moves. The distance between the head and the tail grows as itemsare enqueued and decreases as they are dequeued but the caterpillar as a whole movesforward. Unfortunately to be general such a solution requires in�nite memory as it alwayscrawls forward and never wraps round as a circular implementation of a queue would.Note although adf1 is available it is not used.See Table 4.4 for details of the primitives and parameters used in these runs. The�tness case was identical to that used with the stack, except front replaced top, dequeuepop and enqueue replaced push (cf. Tables 3.3, 3.4 and 3.5, pages 67 and 68).
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Table 4.4: Tableau for Evolving a Queue: Caterpillar solution foundObjective To evolve a �rst-in �rst-out queueArchitecture Five separate trees, plus a single ADFPrimitives +, �, 0, 1, max, mod, arg1, aux1, Inc Aux1, Dec Aux1, aux2,Inc Aux2, Dec Aux2, read, write, Set Aux1, Set Aux2, Adf1Fitness Case Test case as for the stack; replacing push by enqueue etc. I.e. 4 testsequences, each of 40 tests (see Tables 3.3 to 3.5)Memory errors or recursive adf1 calls abort programFitness Scaling 1.0 for each front, dequeue and empty test passed plus 0.05 for eachmakenull and enqueue test passed.Selection Scalar tournament of 4Hits n/aWrapper makenull result ignoredfront no wrapperdequeue no wrapperenqueue result ignoredempty result = 0) TRUE, otherwise FALSEadf1 n/aParameters Population = 10,000, G=50, program size � 250Success Predicate �tness � 91.5999, i.e. all 160 tests passed
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aux2aux2 aux1Figure 4.2: Execution of \caterpillar" program. Labels in bold indicate current values,dotted show previous values. Shaded cells hold queue. The heavy arrow indicates thegeneral movement of the caterpillar as data items are added to the queue. As items areremoved from the head of the queue it moves to the right, i.e. it acts like the tail of acaterpillar.
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974.8 Evolved Programs { Shu�erAfter the \caterpillar" runs described above, a number of changes were made with a viewto discouraging caterpillar like programs and encouraging circular queue implementations(see also Table 4.5):� The number of tests run was doubled from 160 to 320 by adding a 5th test sequenceof 160 tests. This prevents caterpillar like solutions by adding su�cient enqueueoperations to ensure a caterpillar will run into the end of the indexed memory.� However after the addition of the 5th test sequence, it was noted that in some casesthe population still converged to caterpillar like partial solutions. Until they ran outof memory these were �tter than the rest of the population and so dominated it butthe 5th test sequence prevents them from passing all the tests.To discourage memory hungry partial solutions early in the population's evolution,a memory penalty was introduced. This reduced an individual's �tness by 2.0 perword of indexed memory used, above 15 words. 15 was chosen to allow for a circularqueue implementation (10) and to allow the two pointers to be stored in indexedmemory (2) plus a few spare.The penalty is calculated from the maximum memory used across the �ve test se-quences. Memory usage need not be symmetric but it is assumed to be contiguous,i.e. the penalty is based upon the index number of the highest memory cell usedminus that of the lowest cell used plus 1.Whilst penalising caterpillar like solutions it may also have penalised memory in-tensive solutions such as linked lists but (as the next section will show) it does notprevent other implementations such as packed arrays which make e�cient use ofmemory.� It was noted that various partial solutions exploited holes in the test sequences, suchas the lack of small values (particularly zero) in the queue. Therefore the distributionof values in the queue was changed from uniform to a \tangent" distribution. Atangent distribution is produced by generating random numbers uniformly between0 and � and taking their tangent. The answer is multiplied by a scaling factor,F . 50% of the numbers generated are expected to be in the range �F � � � + F(ignoring rounding to integers). The other 50% can be very large or very negative,



98 Table 4.5: Tableau for Evolving a Queue: Shu�er solution foundObjective To evolve a �rst-in �rst-out queueArchitecture Five separate trees, plus single ADFPrimitives +, �, 0, 1, max, mod, arg1, aux1, Inc Aux1, Dec Aux1, aux2,Inc Aux2, Dec Aux2, read, write, Set Aux1, Set Aux2, Adf1Fitness Case 4 test sequences like those for the stack (see Tables 3.3 and 3.4)plus 5th test sequence of 160 tests, use of tan argument distribution(F = 31.4)Memory errors or recursive adf1 calls abort programFitness Scaling 1.0 for each front, dequeue and empty test passed, plus 0.05 for eachmakenull and enqueue test passed, less 2.0 for each word of indexedmemory used above 15.Selection Scalar tournament of 4Hits n/aWrapper makenull result ignoredfront no wrapperdequeue no wrapperenqueue result ignoredempty result = 0) TRUE, otherwise FALSEadf1 n/aParameters Population = 10,000, G=50, program size � 250Success Predicate �tness � 187, i.e. all 320 tests passedsee Figure 4.4. In this section F was set to 31.4, so approximately half the valuesenqueued correspond to legal memory indices.In a group of 379 runs, one run found a solution which passes all 320 tests (see Figures4.5 and 4.6. Many partial solutions (i.e. which passed many of the tests) of this type werealso found and a few solutions which pass the whole test case were found by runs withslightly di�erent parameters or primitives).As Figure 4.5 shows, this solution correctly implements a �rst in �rst out queue of upto nine items. Unexpectedly it does this by physically moving the contents of the memorycells. I.e. as each item is removed from the queue, all the remaining items are moved (orshu�ed) one place down. Thus the front of the queue is always stored in a particularlocation. One of the auxiliary variables is used to denote the newest item in the queue.This is also the number of items in the queue and so can be used directly by empty todecide if the queue is empty or not. The other variable is used by dequeue as scratchstorage. It is always zero when not being used by dequeue. adf1 has the \trivial" use of
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1014.9 Circular Bu�er { Given Modulus IncrementWhilst the \shu�er" solution is an entirely correct solution to the queue problem, it isa very rare one (in that it was found only once in 379 runs). The experiments in thissection are designed to test the feasibility of evolving circular queue implementations withthe �tness function when given primitives which perform the appropriate increment oper-ations. The \modulus increment" (MIncn) terminals correspond to inc aux and dec auxused in the stack experiments (cf. Section 3.3.2). They take the value of the correspondingauxiliary variable, increase it by one, reduce it modulo max (i.e. 10) and store the newvalue back into the auxiliary variable (cf. Table 4.3). The complete parameters are givenin Table 4.7, and Table 4.8 contains all the changes between these experiments and thosethat produced the Shu�er solution.In one set of runs of the 11 runs that completed, 5 produced solutions which passedthe whole test case (another 7 aborted due to run time constraints). Figure 4.9 showsthe simplest. This program can be simpli�ed to Figure 4.10 using the facts that in thisprogram aux3 is always 1 and noting that for these test sequences twice the next item tobe dequeued (i.e. the front of the queue) is always an address outside the used part ofthe index memory and so is always zero. (In the runs described in this section, readingoutside the indexed memory returns zero rather than aborting the program).The probability of a successful run P (104; 42) is estimated as 5=11, i.e. 5 successesin 11 trials. (A pessimistic estimate includes all the runs and assumes the runs whichran out of time would have failed, i.e. P (104; 42) = 5=18). Using Equation 3.1 (Section3.6.1) the number of runs required to be assured (to within probability 1%) of obtainingat least one solution is 8 (pessimistically 15). This requires 8� 10; 000 � 42 = 3; 360; 000(pessimistically 6,300,000) individuals to be processed.
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Table 4.6: Number of each the �ve queue operations used in the �tness test case for eachlength of queue. (Test case used in experiments where \Modulus Increment" was providedand where it was evolved).Queue length makenull front dequeue enqueue empty Totalsunde�ned 5 50 10 27 16 531 4 9 14 18 7 522 4 12 11 8 7 423 9 6 7 5 274 4 6 11 215 4 11 9 3 276 8 9 11 5 337 10 11 9 3 338 3 9 4 169 5 4 2 11Totals 23 64 81 104 48 320
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Figure 4.8: Execution of \Modulus Increment" program. Data are enqueued in front ofcell indicated by aux1 and dequeued from cell in front of that indicated by aux2. Labelsin bold indicate current values, dotted show previous values.
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Table 4.7: Tableau for Evolving a Queue: Given Modulus Increment PrimitivesObjective To evolve a �rst-in �rst-out queueArchitecture Five separate trees, plus single ADFPrimitives makenull +, �, 0, 1, max, mod, PROG2, QROG2, aux1, aux2,aux3, Set Aux1, Set Aux2, Set Aux3, Inc Aux1, MInc1,Inc Aux2, MInc2, Inc Aux3, MInc3, Dec Aux3, read,write, Adf1front +, �, 0, 1, max, mod, PROG2, QROG2, aux1, aux2,aux3, read, Adf1dequeue +, �, 0, 1, max, mod, PROG2, QROG2, aux1, aux2,aux3, Inc Aux1, MInc1, Inc Aux2, MInc2, Inc Aux3,MInc3, Dec Aux3, Adf1 read, write, Adf1, Frontenqueue +, �, 0, 1, max, mod, PROG2, QROG2, aux1, aux2,aux3, Inc Aux1, MInc1, Inc Aux2, MInc2, Inc Aux3,MInc3, Dec Aux3, read, write, Adf1, arg1empty +, �, 0, 1, max, mod, PROG2, QROG2, aux1, aux2,aux3, read, Adf1adf1 +, �, 0, 1, max, mod, PROG2, QROG2, arg1Fitness Case 4 test sequences of 40 tests and one of 160 (Table 4.6). Values en-queued as Table 4.9 except F = 15.7 rather than 5.0No program abortsFitness Scaling Pareto comparison with each operation and a memory penalty con-tributing separately. Operations score 1 per test passed and eachmemory cell used (above 15) scores �1.Selection Pareto tournament of 4Hits No. tests passedWrapper makenull result ignoredfront no wrapperdequeue no wrapperenqueue result ignoredempty result = 0) TRUE, otherwise FALSEadf1 n/aParameters Population = 10,000, G=50, program size � 250Success Predicate 320 hits, i.e. all tests passed
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105Table 4.8: Changes between Shu�er experiment and evolving a queue given MIncnThe six trees that form each program were split into various categories:� those that initialise things (makenull)� those that change the queue (makenull, dequeue, enqueue),� subroutines (adf1).Using these categories the primitives were restricted to particular trees:� Set Auxn can only be used by makenull� The primitives which change things (write, Inc Auxn, Dec Auxn, MInc Auxn) canonly appear in tree where change is expected� Allow arg1 only in trees which have arguments, i.e. enqueue and adf1.� adf1 contains only primitives which perform calculations (+, �, max, mod, PROG2,QROG2). I.e. do not have side e�ects.� dequeue can call frontAdd a third variable Aux3 and associated primitives (i.e. Set Aux3, Inc Aux3 and MInc3).Add PROG2 and QROG2. dequeue requires two actions to be performed (return resultand remove item from queue), QROG2 naturally allows this and allows the �rst actionto be the one yielding the overall result.Dec Aux1 and Dec Aux2 are removed. By removing decrement it was hoped to avoidclashes when crossing over between similar programs whose exact operation was incom-patible. I.e. one program causes queue head to move up one enqueue but a similar onecauses it to move down and to encourage \hybrid" solutions in which:� aux3 can be used as a count of queue length as it has both increment and decrementprimitives.� Aux1 and Aux2 can still be used as head and tail pointers.� PROG2 and QROG2 can readily link together partial solutions. It had been notedthat many partial solutions used primitives (especially mod) to link together partialsolutions where the primary e�ect of the primitive appears to be a nuisance).No memory abortPareto �tness scaling, see Section 4.10.1Change to 5th test sequence to produce a more even spread of queue lengths (Table 4.6).Change to range of values in the queue (by changing F from 31.4 to 15.7, see Section 4.8)A new individual is not inserted in the population if it is worse than the member ofthe population it is replacing. This change later removed, as it seemed to encouragepremature convergence.



1064.10 Circular Bu�er { Evolving Modulus IncrementIn this section we describe an experiment which shows that it is possible to evolve a queueas we did in the previous section, however in this experiment we do not provide the GPwith problem speci�c primitives. Instead we show that such primitives can be evolved,using ADFs, as the GP solves the problem. However �rst it is necessary to explain someof the techniques used. (Complete parameters are given in Table 4.10 and Table 4.11summarises the changes between this experiment and those in the previous section).4.10.1 Pareto FitnessThe �tness function should be able to discriminate accurately between programs throughout the evolution of the population. That is both at the beginning, when the populationcontains random (poor) programs and later when the population should contain betterprograms. To do this the test case was designed to cover all parts of the trial programswith tests of a range of di�culties. So early on the easy tests would discriminate betweenpoor and very poor programs (all programs failing the harder tests). Later on, when betterprograms have evolved, it is expected that most programs will pass the easy tests and sothe harder tests will be used to discriminate.A future area for research would be to investigate dynamically choosing which tests touse, so as to accurately discriminate between programs. Potentially far fewer tests needbe run to discriminate between members of a tournament, rather than between membersof the whole population. This could be incorporated into tournament selection so �tnessevaluation was at selection rather than when new trial programs are created. The tradeo�between accurately assessing the value of an individual (and the number of �tness teststhat it must execute) and how well the evolutionary process performs is also worthy ofinvestigation. [Nordin and Banzhaf, 1995b] suggest noisy �tness value evaluation need notbe too detrimental. (This seems reasonable since genetic algorithm selection techniques,such as roulette wheel selection, are inherently noisy [Blickle and Thiele, 1995]). Co-evolution provides a mechanism for automatically dynamically changing which �tnesstests are used. Whilst an active research area [Hillis, 1992], [Angeline, 1993, page 136],[Reynolds, 1994a], [Koza, 1991], [Siegel, 1994] co-evolution and pre-de�ned dynamic �tnessfunctions [Fukunaga and Kahng, 1995] are �elds of research in their own right and wouldhave been too much of a distraction from this thesis which uses only �xed �tness functions.A single �tness function is used to decide how well all components of a program areperforming and produce a single objective value for this. It has already been noted that



107certain parts of the problem (i.e. makenull and enqueue) are easier than others and so ascaling factor (0.05) was included to increase the impact of more di�cult parts of the testcase. Despite this it was noted that sometimes the GP population traded improvementon one part of the test case against improvement on others. That is improvement in onepart of the program was lost from the population as it was displaced by improvement inanother which produced a higher �tness. If the �rst improvement is critical for an overallsolution the GP is forced to rediscover it later. Rather than explore increasing complexweightings for the various components of the �tness function it was decided to use Pareto�tness.Pareto optimality (cf. Section 2.3.8) o�ers a way of comparing individuals within thepopulation using multiple criteria without introducing an arbitrary means of combiningthem into a single �tness. Six criteria are used:1. number of makenull tests passed2. number of front tests passed3. number of dequeue tests passed4. number of enqueue tests passed5. number of empty tests passed6. number of memory cells (above a minimum) used (NB this is a penalty)(In this section the whole test case is always used, i.e. programs don't abort, so allprograms pass all makenull and enqueue tests therefore criteria 1. and 4. don't help todi�erentiate between programs).Whilst Pareto �tness has been used with linear chromosome GAs this is the �rst useof it with genetic programming. (Experiments in later chapters include explicit nichingmeasures to reduce population convergence but they were not used here).4.10.2 Demic PopulationsIn this and the previous section the GP population is divided into separate demes whichconstrain parents to be near to each other. Dividing the population limits the speed atwhich it converges and so may reduce the impact of premature convergence and improvethe quality of the solutions produced. The technique used is described in Section 2.3.7.



108Figures 4.11 to 4.14 show the spread of programs with a certain useful characteris-tic through the population. The characteristic chosen, is that adf1 should perform anoperation like modulus increment.For the purposes of these graphs, a cycle length is de�ned. Each adf1 is called withthe value it returned previously starting with zero, until either it returns a value outsidethe legal range of memory addresses (in which case the cycle length is zero) or a value ithas already returned. In the latter case the cycle length is the number of calls required tomake adf1 return the same value as before. If the program uses adf1 as a simple modulusincrement operator, a cycle length of at least 10 is required to pass all 320 tests. Therefore,it was felt, this would be a good metric. Indeed all the solutions do have a cycle length 10or more. However as Figure 4.11 shows, it is possible for a GP to fail to solve the problemeven after it has evolved this building block.Figure 4.13 does shows the \adf1 cycle length" building block spreading through neigh-bouring demes. An alternative view is it lay hidden (perhaps within \introns") and atabout generation 50 changes in the population made it bene�cial to express it. (Figure4.11 shows it was present in reasonable numbers in the initial population).Figure 4.13 shows separate regions of the population but the separation is not asmarked as described in [Collins, 1992, page 128] where large homogeneous regions formwithin the population, separated by narrow \hybrid bands". The lack of clear separationmay be an advantage since \almost no evolution" occurs within the homogeneous regionsbut instead \almost all the genetic diversity and evolutionary innovation occurs in thehybrid bands". If the bands are very small they occupy only a small part of the populationand so much e�ort is wasted on breeding in the homogeneous regions. The best compromisebetween avoiding the whole population converging to a single solution and the populationforming very well de�ned regions separated by narrow hybrid bands may be (as we havehere) ill de�ned regions with large overlaps.There are many di�erences between this work and [Collins, 1992, Figure 7.6]; thepopulation is smaller (which makes it harder for demes to achieve isolation) and the lengthof the evolutionary process is shorter but also the GP is not obliged to choose betweentwo complementary genotypes. Collins' demes are similar but were designed to achievehigh performance on a particular parallel machine architecture (Connection Machine-2).
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Figure 4.11: Evolution of adf1 cycle length in two runs of the Queue problem (whenevolving modulus increment). The successful run produced Queue 2. (Graphs plot meancycle length of the 1% of population with the longest cycles).
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Figure 4.13: Spread of individuals whose adf1 has a cycle length � 10 near end of successfulrun (2) of Queue problem (when evolving modulus increment).
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1114.10.3 Good Engineering PracticeThere is increasing interest in directing the GP genetic operators to increase the viabilityof o�spring, a number of active approaches have been described in Section 2.3.6. Thissection describes measures taken to ensure the ADF is \sensible". (The use of a �tnesspenalty for excessive memory usage was described in Section 4.8). Both creation of theinitial random population and the crossover operator were changed to ensure every adf1has the following properties:� It does not yield a constant i.e. the same value regardless of its argument� It transforms its input, i.e. its output is not equal to its input.These constraints are implemented by testing the adf1 part of a whole program inde-pendently of the rest of the program. (This can readily be done, as adf1's primitives donot have side e�ects.) These tests are in addition and separate to the �ve test sequencesalready described. adf1 is tested with the values 0, 1, ... 9 and each answer given by adf1with these values. I.e. if (adf1 9) = 10, then adf1 will also be tested with a value of 10.The proposed adf1 tree is rejected (so causing a new one to be generated for testing) ifeither:� all the answers returned by adf1 are the same, or� any value returned by adf1 is the same as its input4.10.4 Pass by ReferenceIn order to allow a primitive modulus increment primitive (cf. MIncn) subroutine to evolve,adf1 was changed to use the pass-by-reference mechanism described on pages 92{93 whichallows it to update its the argument.Examples:1. If initially aux2 has the value 8 and adf1 increments its argument (adf1 aux2) wouldchange aux2 to have the value 9.2. (adf1 (QROG2 (ADD (read 1) 1) aux2)) passes the value of the expression \store[1] + 1"to adf1. When adf1 has �nished its calculations on this value, the result will be bothstored in store[1] and returned by adf1.



112Table 4.9: Range of data values enqueued (F = 5.0) when evolving \Modulus Increment"enqueue arguments< -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 >No. 9 1 3 1 2 2 1 1 4 3 18 5 8 8 5 6 3 2 2 20Total 104
Table 4.10: Tableau for Evolving a Queue: Circular bu�er solution foundObjective To evolve a �rst-in �rst-out queueArchitecture Five separate trees, plus single ADFPrimitives makenull +, �, 0, 1, max, mod, PROG2, QROG2, aux1, aux2,read, write, Set Aux1, Set Aux2front +, �, 0, 1, max, mod, PROG2, QROG2, aux1, aux2,readdequeue +, �, 0, 1, max, mod, PROG2, QROG2, aux1, aux2,read, write, Adf1, Frontenqueue +, �, 0, 1, max, mod, PROG2, QROG2, aux1, aux2,read, write, Adf1, arg1empty +, �, 0, 1, max, mod, PROG2, QROG2, aux1, aux2,readadf1 +, �, 0, 1, max, mod, PROG2, QROG2, arg1Fitness Case 4 test sequences, of 40 tests and one of 160 (Tables 4.6 and 4.9)No program abortsFitness Scaling Each operation scored independently using Pareto comparison (1 pertest passed), Memory usage above minimum (12 cells) penalizedSelection Pareto tournament of 4Hits Test passedWrapper makenull result ignoredfront no wrapperdequeue no wrapperenqueue result ignoredempty result = 0) TRUE, otherwise FALSEadf1 n/aParameters Population = 10,000, G=100, program size � 250, deme = 3� 3Success Predicate 320 hits, i.e. all tests passed
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Figure 4.15: Execution of Queue program 2. Data are enqueued in cell indicated by aux1.Data is dequeued from the cell indicated by aux2 by �rst copying them to cell zero. (Cellzero is overwritten as the data values are extracted from it). Labels in bold indicatecurrent values, dotted show previous values.4.10.5 ResultsIn one set of 57 runs, six passed the whole test case. Subsequent analysis shows thatthree of these are entirely general solutions to the stack problem, i.e. will pass any legaltest sequence. Further, given suitable rede�nition of max and su�cient memory, all threecould implement an integer queue of any reasonable length.Analyzing the other three programs shows that whilst they pass all 320 tests, theyexploit holes in the test sequences. That is, they are not general and other test sequencescould be devised, which they would fail.Figures 4.15 to 4.21 show two of the correct programs. Figure 4.17 and 4.21 showsimpli�cations of them and Figure 4.15 shows how the �rst implements a circular queueof up to nine integers. The second (Figure 4.18) allows ten integers.Figures 4.23 and 4.24 show one of the programs that passes all the tests but whichcould fail a di�erent test sequence. The program contains a small bug which the test casedid not detect. The bug arises because the Front tree access aux1 directly but doesn'tallow for the wrap-round required in a circular queue. If it had evolved to use adf1 this bugwould not have appeared. Figure 4.25 shows a simpli�cation of this imperfect programand Figure 4.22 shows its operation.Using the formula for the number of runs required (Equation 3.1 page 72) and � = 0:01and P (104; 100) = 3=57 yields 86. I.e. 86 independent runs, with each generating up to1,000,000 trial solutions, will (assuming the probability of solution is 3=57 i.e. 1=19) ensurethat the chance of producing at least one solution is better than 99%. This would requirea total of up to 1; 000; 000 � 86 = 86; 000; 000 trial programs to be tested.
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Figure 4.26: Evolution of the number of �tness tests passed in a typical run of the Queueproblem (when evolving modulus increment).
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Figure 4.28: Evolution of program size in a typical run of the Queue problem (whenevolving modulus increment).
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Table 4.11: Changes between experiments evolving a queue given MIncn and evolving itThe population is divided in to 3 � 3 overlapping demes (Section 4.10.2). As this slowsthe rate of convergence, runs were continued for 100 generation equivalents (rather than50).Replace MIncn and Inc Auxn primitives by the following changes to adf1 and how it isused.� Each new adf1 is checked to see it is \sensible" (Section 4.10.3).� adf1 uses pass by reference (Section 4.10.4)� As adf1 now changes its argument, it is no longer allowed in the front or emptytrees (which are restricted to use only read-only primitives, Section 4.9).� Allowing adf1 to be used by makenull seemed to be causing a con
ict with its useby dequeue and enqueue. As it is not required by makenull, makenull was changedso that it could no longer call it.� Cache of results of calling adf1 is maintained. This produced a reduction in runtime of about 30%.� Reduce F from 15.7 to 5.0. This may be too small, as each of the \buggy" programswhich pass the whole of the test case, are only able to do so because a critical elementin the queue has the value zero.� Apply memory penalty above 12 words of indexed memory used, rather than on 16or above.� When applying the memory penalty only include cells actually written to ratherthan counting all cells between the highest and lowest address used (either read orwritten). It was hoped that this would allow looser patterns of memory usage andso ease the evolution of the corresponding adf1.� Reduce number of memory cells from 63 to 31.Remove Aux3.



1224.11 Discussion: Building Blocks and IntronsIn this section we return to the shu�er solution evolved in Section 4.8 and then discusspossible reasons for \introns" (i.e. code within the trees which does not a�ect the treesperformance) and implications for a GP \building block hyposthesis". The shu�er solutionevolved in Section 4.8 is interesting for several reasons:1. GP solved the problem in an unexpected way, i.e. a way we would not expect ahuman programmer to use. However the solution is entirely correct.2. As Figure 4.5 shows, the shu�er solution correctly implements a �rst-in �rst-outqueue of up to nine items. However unlike the other correct evolved solutions pre-sented in this thesis, it is not generic, i.e. it cannot implement queues of arbitarylength. The code is composed of a �xed number of repeating units, and this num-ber determines the maximum queue length. Presumably, should longer queues berequired, they could be readily evolved from this solution.3. The program is clearly composed of repeating units (write Inc Aux2), cf. Figure 4.6.As each unit is added, the solution is able to correctly process longer queues and sopass more of the �tness test case. I.e. each unit increases the �tness of the solution.It appears the solution has evolved by being assembled from \building blocks" bycrossover.Many evolved solutions in this thesis contain repeated units of code but usually onlyone instance of the unit contributes to the operation of the program and the others haveno e�ect of �tness, i.e. they are introns. For example the makenull tree of queue 4 (seeFigure 4.19) contains the subtree (Set Aux1 aux2) eight times but only one of these isimportant to the operation of the solution. The other seven are introns. The subtree(Set Aux1 aux2) in the makenull tree is vitally important to the �tness of the wholeprogram and so can be expected to be positively correlated with �tness. Thus we wouldexpect crossover and selection to ensure that the subtree was spread rapidly through thepopulation. In a �xed representation genetic algorithm this would mean, increasing thenumber of members of the population which contain the building block, but in a variblelength representation such as GP, there is an alternative; increasing the number of timesthe building block occurs in each individual. Often repeating a code fragment in a singleprogram will have a deleterious e�ect on the program's �tness and individuals carryingmore than one instance of the code will be swept from the population by selection. However



123when it is not harmful, the number of copies of it can be expected to grow. In a few cases,such as (write Inc Aux2) in the shu�er, the additional code can be bene�cial and so willspread both into more individuals and also each individual will contain more copies ofit. However in most case, it appears the best that can be expected is that, the codefragment is not harmful. NB this does not prevent it spreading. Provided it is useful atsome point in the program, multiple useless copies of it (i.e. introns) can be expected.The observation that multiple units of code are seldom bene�cial implies that such unitscannot be thought of a \building blocks". Chapter 7 shows the correlation between codefragments and �tness can be used to quantitatively predict how many copies of the codecan be expected in subsequent generations.While nature does occasionally duplicate genes, this seems to be a relatively rare event,in contrast in GP duplication of code seems to be rampant. It would be interesting toconsider forms of crossover which discourage or even prevent code duplication. This couldtake the form of a rule which prevented crossover inserting code which duplicated codealready in the tree. This would add a bias away from very small crossover fragments (assingle terminal are likely to exist in most trees). A check that a large fragment was notcarrying repeating smaller fragments might also be needed.4.12 SummaryThis chapter (which was published in part in [Langdon, 1995b]) has presented a series ofexperiments which show genetic programming can automatically generate programs whichimplement integer queue data structures from randomly addressible memory when guidedby a small �xed test case. Further each of the correct solutions evolved (in Section 4.10)is generic, in that they could (with su�cient memory and change of parameters) providethe abstract data structure of any size.Conceptually a queue is scarcely more complex than a stack and yet GP has found itfar harder to evolve implementations of queues than was the case with stacks. There aremany reasons why this may be the case; the perceived di�erence (938,000 trial programsversus 86,000,000 in the last experiment in this chapter) may be due to the details of thetwo experiments, e.g. some aspect of the �tness function suits the stack but the �tnessfunctions used in this chapter were not well suited to the queue. However other possibilitiesare:� In the stack problem the GP was provided with appropriate cursor primitives (i.e.inc aux and dec aux) and these made the task very much easier. A comparison



124 of Section 4.9 and 4.10 provides support for this argument. In Section 4.9 cursorprimitives suitable for a circular queue implementation were provided and the GPfound programs which passed all the tests much more readily than in Section 4.10where it was obliged to evolve such primitives.� The small di�erence in apparent problem di�culty may not be the cause of thedi�erence, instead the important di�erence may be the number of di�erent ways ofsolving (or partially solving) the problem. In Chapter 3 there are two similar basicways to implement a solution (either a push-down or a push-up stack). Howeverthere are three fundamentally di�erent ways to implement a queue (circular bu�er,packed array and linked list) as well as the \caterpillar" partial solutions foundin Section 4.7. Each of which can be implemented in two or more distinct wayscorresponding to the push-up push-down choice.This could be viewed as meaning there are more solutions (any one of which wouldbe acceptable) in the search space and so the problem is easier. But what seemsto happen is the GP population converges to a partial solution which has initiallyrelatively high �tness and �nds it di�cult to evolve past this to complete solutions.� Genetic programming scales badly so a slightly more di�cult problem becomes verymuch more di�cult for GP.From an information theory perspective, genetic programming has converted the in-formation held in the test cases (the speci�cation) into the information held in a program(the solution). The information content of the test cases is about 1436 bits, whereas thatof the solutions (including redundant code) is less, e.g. 405 bits for queue 2 (this reduces to160 bits if the simpli�ed code is considered). So as with the stack, the GP has produced amore concise de�nition of the problem than the test case it was given. The di�erence is notas great as was the case with the stack as the evolved program contains redundant code.(The queue programs may contain more redundant code simply because the solutions tooklonger to �nd which gave greater time for redundant code to form and spread).An implementation which incorporates \pass by reference" into the ADF frameworkhas been described.This chapter has shown \good engineering practice" can be incorporated into GP, viathe test function, syntax and genetic operations.It has shown results can be obtained using Pareto optimality within GP.



125Table 4.12: Di�erences Between Stack and Final Queue Experiment PagePareto scoring, including excessive memory usage penalty (to discouragecaterpillar) 106Population of 10,000 rather than 1,000 (4.5.1). 90Use of 3� 3 demes rather than completely mixed population (4.10.2). 107Wrapper on empty true is de�ned as 0 rather than > 0 (4.4). 8931 memory cells instead of 63 (to discourage caterpillar). 121Continue on memory error (4.3.1). 87320 tests rather than 160. Additional test sequence to discourage caterpillar. 97Last test sequence ensures all legal queue lengths are tested (Tables 3.4 and 4.6). 102enqueue argument given by 5:0 tan rand(�) rather than rand(2000)�1000 (4.8). 97New primitives (4.3)� Aux2� (no inc aux or dec aux)� Write Auxn replaced by Set Auxn� mod� PROG2, QROG2
84

Primitives restricted as to which tree they may occur in (4.6). 92Automatically De�ned Functions (4.6) (including pass by reference 4.10.4). 92, 111Front callable by dequeue (4.3). 85Check adf1 is \sensible" (4.10.3). 111adf1 cache (Table 4.11 and Section E.6) 121In these experiments the GP showed a marked tendency to converge to non-optimalsolutions even with the large (10,000 individuals) populations. Thus these problems wouldappear to be \GP deceptive".This chapter provides additional support for partitioning large populations. The modelused is that of demes.
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Chapter 5Evolving a List
The list is one of the basic data models used in computer programs [Aho and Ullman,1995, page 286]. This chapter shows it is possible using genetic programming (GP) toevolve a list data structure from basic primitives. There are many ways in which a listcan be implemented ([Aho et al., 1987] suggest three fundamentally di�erent ways, eachof which has many variations) but GP is able to co-evolve all the list components so theyform a single working implementation.This chapter describes a case where loops have been successfully evolved. A CPUpenalty component of a niched Pareto �tness function (Section 5.5.1) was introduced tocontained run time which otherwise might have become excessive. Similarly syntax re-strictions were used to limit run time, e.g. by preventing nested loops (Section 5.4.2) and,inconjunction with execution directed crossover (Section 5.6), to guide the genetic search.A call by reference mechanism is introduced to GP and used inconjunction with Automat-ically De�ned Functions (Section 5.3). The last experiment in this chapter (Section 5.9)presents a candidate model for maintaining evolved software and demonstrates it on thelist problem.5.1 Problem StatementAn integer list data structure [Aho et al., 1987] has ten component operations whichare summarised in Table 5.1. Whilst each of the ten operations is relatively simple, thecomplete problem represents a sizable increase in complexity from Chapter 4. Note thata list is a generalization of a stack and a queue (which we met in Chapters 3 and 4). Astack can be formed from a list by restricting access to just one end of it, while a queueis a special type of list where access is restricted to both ends. Items being added to oneend of the list and removed from the other.The immediate goal is to evolve a list which works correctly with a limited number of127



128 Table 5.1: De�nitions of the Ten List OperationsMakenull Make the list an empty list and return position given by End.Retrieve(p) Return the element at position p.Insert(x, p) Insert x at position p, moving elements at p and following positions to thenext higher position.Delete(p) Delete the element at position p, moving elements at p+1 and followingpositions to the previous lower position.End Return the position following the last element of the list.First Return the position of the �rst position. If the list is empty, return theposition given by End.Next(p) Return the position following position p.Previous(p) Return the position before position p.Locate(x) Return the position of the �rst element containing value x. If x is not inthe list at all then return the position given by End.Printlist Print the elements in their order of occurrence.elements. Nine (NB the same as Chapter 4) was chosen as su�cient to demonstrate theprinciple but as we shall see (in Section 5.8) GP is capable of evolving lists of any �nitesize.5.2 ArchitectureThe multi-tree architecture and multi-tree crossover described in Section 2.3.5 and suc-cessfully used in Chapters 3 and 4 was extended to include ten trees (one for each of theten list operations) plus �ve other trees, one for each Automatically De�ned Function(ADF).5.3 Automatically De�ned FunctionsWork on the queue has shown that co-evolving code which has some functionality incommon can be eased if there is a shared ADF which can evolve to provide common codefor the common functionality. This appears to be far easier than expecting the samefunctionality to evolve twice in separate locations (Section 4.10). (See Section 2.2.6 for anintroduction to ADFs).Analysing Table 5.1 we see a common requirement is for an addressing scheme forthe list elements, however End, First, Next and Previous already collectively provideaddressing actions. To take advantage of this, other parts of the list are allowed to call



129Table 5.2: Summary of the Properties of List Operations and ADFsTreat asADF Returns value Arguments Pass-by-reference Directlytestable Su�cienttestingMakenull � pRetrieve � p 1 p pInsert � � 2Delete � � 1End p p pFirst p p pNext p p 1 p pPrevious p p 1 p pLocate � p 1 pPrintlist � � p pAdf1 p p 1 �Ins adf p p 1 �Del adf p p 1 �Loc adf p p 1 �Prt adf p p 1 �
them, i.e. their code both implements the operation and is an ADF (cf. Front, Section4.3). Chapter 4 indicates that it may be bene�cial for functions which calculate the nextvalue of their argument to use a pass by reference calling mechanism (Sections 4.6 and4.10.4). This avoids evolving code to write the return value into the argument after everycall. Therefore all of the operations that can be treated as ADFs and that have arguments(i.e. Next and Previous) update them directly using the pass by reference mechanism(Table 5.2 summarises characteristics of operations and the ADFs).Again from Table 5.1 we see four operations (Insert, Delete, Locate and Printlist) mayneed to process multiple elements of the list. A single ADF was provided in the hope thatit would evolve to meet this common need. As each operation processes list elements di�er-ently the ADF is parameterised, using a private ADF for each operation (see Figure 5.1).When the main ADF is called, it is passed a reference to the corresponding private ADF,which it in turn may call (using the reference). To avoid additional arguments each privateADF may have access to the arguments of its operation as well as its own (e�ectively it isin the scope of its operation). As before (cf. Section 4.6) the ADF hierarchy was chosenso recursion cannot arise.
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Operations

Shared ADF

Private ADFs

Adf1

Ins_adf Del_adf Loc_adf Prt_adf

DeleteInsert PrintlistLocate

Figure 5.1: ADF Calling Hierarchy Available to Solve the List Problem5.4 Choice of PrimitivesThe terminals and functions were chosen to make the task of evolving a list as easy aspossible and follow on from those used when solving the queue problem. Tables 5.3 and5.4 show where they may be used and describe what they do.Thirty one memory cells are provided, which should su�ce for lists of up to nineelements. These are numbered �15 : : : 15, which allows evolved code to use negative aswell as positive addresses. Code may also use the auxiliary variable (aux1), possibly tostore the length of the list.5.4.1 IterationThe requirement to process multiple list elements means the GP must support iteration(loops) or recursion, either implicitly (e.g. using block memory move functions) or ex-plicitly. It was decided not to use high level functions but instead to require the GP toexplicitly evolve iterative structures. Fears that the loop primitive, forwhile, could causeexcessive run time lead to: forbidding nested loops; loops only being allowed where theyappear to be required (i.e. Adf1); and a limit (32) on the number of iterations. The limitwas set as low as possible but still allows loops to span all the available memory.The fear of long or inde�nite loops appears to have restricted the use of iterationin GP, with [Huelsbergen, 1996] reporting \for the most part : : : GP solutions are re-stricted to non-iterative (non-looping) programs". However there are a number of paperswhere programs containing loops have been successfully evolved. They used a numberof techniques to address the problem of inde�nite loops; [Cramer, 1985] aborts any pro-gram that fails to stop within a speci�ed time, [Teller, 1994b] proposes two solutions:



131\popcorn" which allows �tness testing to continue whilst it continues to do somethinginteresting (which may increase its �tness) but imposes a maximum waiting time be-tween interesting events, once this expires �tness testing stops. In contrast the \anytime"algorithm requires the program to have its best estimate available on demand. Oncea �xed time limit has expired the program is stopped, even if it is in the middle of aloop, and its �tness is based upon this answer (which is extracted from an indexed mem-ory cell). Teller's uses the anytime system in his PADO work [Teller and Veloso, 1996;Teller and Veloso, 1995c; Teller and Veloso, 1995d; Teller and Veloso, 1995b; Teller, 1995a;Teller, 1995b; Teller, 1996; Teller and Veloso, 1995a]. [Nordin and Banzhaf, 1995a,page 324] enforces a limit on the total number of times loops within a program maybe executed while [Koza, 1992, Chapter 18] applies both a limit on the total number ofiterations (100) and a limit for each loop primitive (15 or 25). The same approach is usedin [Kinnear, Jr., 1993a] but with larger limits (200 and 2000). In [Koza, 1994, Chapters 18and 20] the inde�nite loop problem is side stepped by prede�ning the loop and its limits sothe loop contents are evolved but not its start or terminating conditions. While Maxwell'sco-routine model [Maxwell III, 1994] avoids loop timeouts by allowing selection betweenexecuting programs (those that are stuck in an in�nite loop are expected to have a low�tness and thus to be removed from the population even though they are still executing).5.4.2 Syntax RestrictionsSyntax rules were imposed with the aim of aiding the evolutionary process by forbid-ding exploration of apparently infeasible programs without the cost of evaluating their�tness and also ensuring essential primitives are not lost from the population. (Section5.6 describes other work on using syntax rules to aid GP.)Whenever a new individual is created (i.e. either by crossover or in the initial randompopulation) it is compared with the syntax rules. If it violates any of them, it is discardedand a new one is created to replace it. If crossover creates an illegal individual then thenew one is created by re-selecting crossover points within the same tree within the sameparents. In contrast to Section 4.10.3, these rules are enforced by analysing the programsource code and it is not necessary to execute any part of the program to verify they areobeyed. The rules were:� Prt adf must contain at least one print function.� The loop index, i0, may only appear inside the third argument of forwhile, i.e. theloop.
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Table 5.3: Tableau for Evolving a ListObjective To evolve a listArchitecture Ten separate trees, plus �ve ADFsPrimitives Makenull PROG2, write, Set Aux1, EndRetrieve arg1, readInsert PROG2, aux1, adf1, Next, ARG1, ARG2, writeDelete PROG2, aux1, adf1, Next, ARG1, PrevEnd aux1First aux1Next arg1Previous arg1Locate adf1, First, ARG1Printlist adf1, FirstAdf1 arg1, aux1, forwhile, i0, FUNC, EndIns adf arg1, swapDel adf arg1, swap, ARG1, NextLoc adf arg1, ARG1, readPrt adf arg1, read, printAll trees may contain +, �, 0, 1 and maxFitness Case 538 trees run in 21 sequences. 167 consistency tests. Tangent testdata distribution (F = 15).Fitness Scaling Each tree scored independently using Pareto comparison, memoryusage above minimum (12 cells) and CPU usage above 120 per testrun are Pareto �tness penalties.Selection Elitist Pareto Tournament group 4, Niche population sample size 81.Hits Number of consistency checks passedWrapper Insert, Delete and Printlist result ignored, otherwise no wrapper.Parameters Population = 10,000, G=100, program size � 500, Max initial treesize 50, 90% directed crossover.Success Predicate 167 hits, i.e. all tests passed
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Table 5.4: Actions Performed by Terminals and FunctionsPrimitive Purposemax constant 10 (� max list size).PROG2(t,u) evaluate t; return uarg1 argument of current operation or ADF, but:ARG1, ARG2 arguments of Insert, Delete, Locate or Printlist.aux1 an auxiliary variable (i.e. in addition to indexed memory).Set Aux1(x) aux1 = x; return aux1forwhile(s,e,l) for i0 = s; i0 � e; i0++if timeout (32) exit loopif l returns zero exit loopreturn i0FUNC call private ADF of operation which called Adf1.print(d) if room in print bu�er (10) copy d into it; return number of items in itelse evaluate d; return 0Indexed memory is held in store[ �l : : : +l ], where l = 15, i.e. a total of 31 cells.read(x) if jxj � l return store[x]else return 0write(x,d) if jxj � l store[x] = d; return original contents of store[x]else evaluate d; return 0swap(x,y) if jxj � l and jyj � l exchange contents of store[x] and store[y]if jxj > l and jyj � l store[y] = 0if jxj � l and jyj > l store[x] = 0return 1



134� Loops may not appear inside the third argument of other loops (i.e. no nested loops).� Adf1 must contain at least one loop, which must contain at least one i0.� It would appear to be sensible for code to use its arguments. Where feasible, syntaxchecks are used to encourage this. Thus Retrieve, Next, Previous, Adf1, Ins adf,Del adf, Loc adf and Prt adf must contain at least one arg1 terminal and Adf1 mustcontain at least one FUNC (cf. Table 5.4) primitive.5.5 Fitness Function5.5.1 Pareto Optimality and NichesPareto �tness was described in Section 2.3.8 and used in some queue experiments (cf.Section 4.10.1). Pareto scoring means individuals which make an improvement on anypart of the problem tend to be preferred, whereas a scalar �tness will tend to requireeach improvement to match or exceed any deterioration in all other parts of the problem.Whether an improvement is more important than a deterioration is given by scaling pa-rameters within the �tness function. Consequently setting them is complex and must bedone with care. To some extent Pareto �tness avoids this problem.With Pareto scoring, a single population can contain several hundred di�erent �tnessvalues (or niches) each of which is the best in the sense of not being dominated by anyother member of the population. This encourages crossover between individuals that aregood at di�erent parts of the problem, which may produce o�spring that are relatively�t on more of the problem. However unless there is some selection pressure to maintainmultiple niches, the population will tend to reduce the number of niches it occupies. Thisis an aspect of \genetic drift" is particularly important in small populations [Horn et al.,1993]. To maintain a large number of niches the �tness sharing scheme described in Section2.3.8 was used.Where a selection tournament is unable to discriminate between two or more candidates(either because they have identical �tness or no �tness value dominates all the others) thenthese candidates are compared with a sample of the rest of the population. The one that isdominated by or has identical �tness to the fewest other members of the population winsthe tournament. This creates a secondary selection pressure in favour of individuals thatoccupy relatively unpopulated niches, which tends to prevent the population convergingand instead it contains many di�erent non-dominated �tness niches.Figure 5.2 shows a typical run of the list experiment. When �tness sharing is used the
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13 Figure 5.2: Evolution of the number of �tness niches occupied with and without compari-son with the rest of the population (3 indicates run without comparison set). Typical listruns (starting from identical initial populations). All plots, except the maximum numberof tests passed, are plotted on a log scale.number of non-dominated �tness values within the population (i.e. occupied points on thePareto surface) evolves to be about 100{150, with on average 6{9 programs per niche. Incontrast where comparison with the rest of the population is not used the number of non-dominated �tness values in the population falls rapidly, stabilising at about 10. Howeverthe population eventually converges to a few of these so that they contain about 34 of thepopulation. Without comparison with the rest of the population, the proportion of thepopulation with one of the best �tness values is also more erratic.5.5.2 Fitness Test CaseThe �tness of each individual is determined by running it on 21 �xed test sequencescontaining in total 538 operations. Tests are grouped into (a total of 167) subsequenceswhich call several operations and cross check the values returned by them. If the checksare passed we increase the program's �tness along each dimension corresponding to anoperation in the subsequence. However if a check is not passed no further tests fromthe test sequence are made and the next sequence is started. This has the advantage ofreducing run time by reducing the number of operations that are executed but perhapsencourages premature convergence by stressing the tests that occur at the start of eachsequence which tend to be easier and possibly susceptible to solution by simple but highly



136test speci�c code.No preset design or pattern of memory usage is imposed by the �tness tests. Thisundoubtedly makes the problem more di�cult but we wish to show an implementationcan be automatically generated. This 
exibility makes testing more complex as often it isimpossible to say the answer returned by an operation is correct, until it can be comparedwith answers returned by other operations (cf. column six in Table 5.2).As in Chapters 3 and 4, the tests only cover correct operation of the list. I.e. errortrapping, such as detecting the deletion of non-existing list elements, is not covered.Again like Chapters 3 and 4 all storage, i.e. the indexed memory and aux1, is initializedat the start of each test sequence (i.e. 21 times). In half the test sequences the indexedmemory is initialized to zero (aux1 is always set to zero). In the other half (unlike Chapters3 and 4) the indexed memory is initialized to a random but �xed data pattern, whichis di�erent for each test sequence. This is to discourage the GP from evolving partialsolutions which exploit the value zero to indicate memory cells are unlikely to have beenwritten to and so are empty. In earlier experiments (cf. Section 4.4.1) such programshad been found, they appeared to work until they inserted zero into the data structure.The random data patterns have the same distribution of values as that inserted into thelist. In most other published work indexed memory is initialised to zero (as in Chapters3 and 4) however [Jannink, 1994, page 436] describes a regular non-zero initializationpattern. [Crepeau, 1995, page 132] \memory locations (are) initially �lled with random 8bit values" as this makes it \highly probably" that problem speci�c values needed to solvethe problem \are somewhere in memory".Test Data ValuesValues to be entered into the list are speci�ed in the test sequence. The \tangent" distri-bution of test data values with its wide range of positive and negative values both largeand small, described in Section 4.8 was used again. The scaling factor F was set to 15, sothat about half the data values inserted in the list lie in the range of legal memory indexes(i.e. �15).5.5.3 CPU and Memory PenaltiesCPU PenaltyThe number of instructions (i.e. function calls and terminals evaluated) are counted aseach individual is tested. The mean number per operation used is calculated and becomes



137a penalty component in the Pareto �tness. However individuals which use less than 120instructions per operation have zero penalty.This scheme was introduced as it was anticipated that the forwhile loop could leadto very time consuming �tness evaluations and so excessively long run times. Figure 5.3shows when the CPU penalty is applied most program evolve to use less than or near tothe CPU threshold during their �tness testing. As each program takes less CPU to testthe total run time is reduced. The penalty also causes the evolution of near parsimoniouscode (Figure 5.8). This is in dramatic contrast to the queue (which had no CPU orspace penalties, cf. Figure 4.29, page 120) where programs rapidly grew to the limit ofthe available space. This growth is widely seen in GP and is often referred to as \bloat"[Tackett, 1995b, page 31]. However the threshold was chosen with care to avoid overpenalizing constructs (like loops) which have a high CPU cost but may not appear to helpachieve higher �tness levels until later in the evolutionary process. Therefore the thresholdwas deliberately set high at about 8 � fastest program that might evolve.This is thought to be the �rst use of an explicit CPU penalty in the �tness function,however both Teller's PADO and [Maxwell III, 1994] include implicit run time as partof �tness evaluation and there are many case where program size is included as part ofthe �tness calculation, e.g. [Iba et al., 1994b; Zhang and M�uhlenbein, 1995a] (where thelanguage does not include program branching, subroutines or iteration, program size andnumber of primitives evaluated are the same, i.e. a CPU penalty is equivalent to a sizepenalty).Memory PenaltyWhen evolving a queue, memory hungry partial solutions evolved (cf. Section 4.7). There-fore an excessive memory usage penalty was introduced to dissuade the population fromevolving down this blind alley. A threshold of using 12 cells must be passed before thispenalty applies (12 being su�cient for queue of nine items). This penalty was retainedfor the list and such memory hungry behaviour has not been observed. This might meanthe penalty is working or such solutions are not common in which case the penalty maybe unnecessary or too restrictive.Increased Penalties Following Finding a SolutionIn order to search for faster solutions or ones that use less memory, after the �rst solutionhas been found in a run, both penalties are increased by setting their thresholds to zero.
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Figure 5.3: Evolution of the number of primitives executed during �tness testing on theList problem, means of 56 runs. Error bars indicate one standard deviation either side ofthe population mean. The fastest solutions evolved during the two successful runs and thepopulation mean of the threshold above which the CPU penalty is applied are also shown.The minimum number of instructions are executed by relatively unsuccessful programs asthese are run on few tests.The new �tness function is applied to members of the existing population as well as newlycreated individuals.5.5.4 Locating Errors with Fitness TestingIn any multi-component problem there will be some ambiguity between which parts areperforming well and which contain errors, however the �tness tests were designed to tryand reduce this by indicating those operations which pass su�cient tests so that they areprobably correct. That is, failure to pass the whole test case is probably due to errorselsewhere in the program. This has the potential advantage of reducing the number ofactive dimensions in the �tness function and the information is also used in the followingsection.Various points in the test case were chosen to indicate one or more operations havebeen tested su�ciently so that if no errors have occurred up to this point we are con�dentthey are working correctly. Naturally this must be done with care so operations are notsaid to be correct when they still contain errors. This is implemented by marking thechosen points in the �tness test sequences with the operation's name. If they are reachedwithout any errors occurring this is taken to mean testing of that operation is complete.



139Regardless of any subsequent errors (which are assumed to be the fault of one of the otheroperations) the operation is given its maximum possible score (i.e. the score it would haveif every consistency check was passed). This is applied to Retrieve, End, First, Next,Previous and Printlist. This does not change the execution of the �tness test case but inprinciple this information could be used to avoid retesting operations which are believedto be correct. (However often it is necessary to run \correct" operations again in order tobe able to test other parts of the code).5.6 Directed CrossoverAs Figures 5.4 and 5.5 show, GP solves the di�erent parts of the list problem at di�erenttimes. If it were known that a fragment of code was working well it would seem wasteful toperform crossover in it. Of course GP does not know for certain if code is correct, howeverthe crossover location can still be guided by the program's current behaviour (as this maybe misleading 10% remain unguided). As discussed in Section 2.3.6 a number of papersshow (albeit on very di�erent problems) bene�ts in using either current behaviour [Roscaand Ballard, 1996] program syntax [Gruau, 1996; D'haeseleer, 1994] or evolving programsyntax [Whigham, 1995b] to bias crossover or other genetic operators. Our mechanismsucceeds in dynamically redistributing crossover locations to code in need of improvementas the population evolves. It only considers code at the level of individual operations orADFs but could be re�ned.The mechanism uses knowledge of the �rst parent's �tness and the number of timesthe trees in it were executed and whether they appeared to be successful or not to proba-bilistically bias the choice of which tree the crossover occurs in. It avoids trees which arebelieved to be correct (as de�ned in Section 5.5.4), that have never been executed (NB ifthe only di�erence between a parent and its o�spring is in non-executed code, then thatcode will not be executed in the o�spring either and the o�spring will behave identicallyto the parent) or those that passed all their �tness tests. Otherwise it is biased to choosetrees that appear to fail most often (details given in [Langdon, 1995a]).An alternative worth exploring would be a more incremental approach aiming programmodi�cation at code that is closest to working, avoiding code that is performing badlyuntil other code is working. However such an approach was not taken as being morecomplex but also for fear that it would encourage the evolution of specialist programswhich could not evolve to solve the entire problem.
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1415.7 ParametersThe default values for parameters given in Section E.3 were used except for, the populationsize (10,000), the maximum program length (500), maximum size of each individual treein the initial population (50) and the length of each run (� 100 generation equivalents,cf. Table 5.3).5.8 ResultsIn a group of 56 runs, two produced solutions which passed all the tests. All runs completedat least 100 generation equivalents with the promising ones being continued (the longestrun being 300 generations).Like the stack and the queue, solutions have been found which not only pass all thetests, but subsequent analysis shows to be correct and general, i.e. given su�cient memorywould correctly implement a list of any �nite size. Figure 5.6 shows the �rst program topass all the test case (evolved after 95.7840 generation equivalents) which is also a generaland generic solution to the list problem.Figure 5.7 contains simpli�ed equivalent pseudo code for four of the operations andshows GP has implemented the list as an array, with Insert opening a gap for the newdata element by moving part of the list up one memory element. Delete moves the toppart of the list down one element overwriting the element to be deleted.Solutions were also found which exploit the �nite size of the test set, in that they areable to pass all of the tests but are not entirely general. Interestingly the same GP runfound solutions which are general less than �ve generations later. Each program containsredundant code, i.e. code that can be removed yielding a shorter program but with thesame functionality. In Figure 5.6 the essential code is highlighted by shaded boxes.On continuing the evolutionary process, shorter solutions with reduced CPU cost werefound, see Figures 5.3 and 5.8. (The data after generation 100 are more sparse. To avoidexcessive variability in Figures 5.3, 5.5 and 5.8 only data referring to �fteen or more runsare plotted). In the �rst successful run reductions of 20% in program length and 30% inthe number of instructions required to complete the test sequences were produced. In thesecond case the changes were more dramatic with program length falling by two thirdsand number of instructions to about a quarter of the �rst solution found. The shortestsolutions reported by both runs have similar lengths and execute about the same numberof primitives during the �tness test case. The evolution of solutions which use fewer in-
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143Insertaux1++for i0=ARG2; i0� aux1; i0++swap 0 i0store[ARG2] = ARG1Deleteaux1��for i0=ARG1; i0� aux1; i0++swap i0 (i0 + 1)
Printlistfor i0=1; i0� aux1; i0++print store[i0]
Locatefor i0=1; i0� aux1; i0++if store[i0] = ARG1 return i0return aux1 + 1Figure 5.7: Simpli�ed Pseudo Code Equivalent to First Evolved Solution to List Problemstructions is exactly what the increase in the CPU penalty (described in Section 5.5.3) wasdesigned to achieve. However if the penalty was not increased there was some reductiondue to random 
uctuations. The increase in penalty produced bigger e�ects in these runsbut it is not known if this is generally true.Figure 5.9 shows the number of various primitives in a typical population as it evolvesrelative to their abundance in the initial random population. It shows a number of prim-itives become very rare and indeed nine are lost entirely from the population. In 27 runsout of the 56 after 100 generations less than 10% of the population contained a primitiverequired in the solutions that were found. Of these 27, 16 runs lost all of one or moresuch primitives. That is in about half the runs loss (or scarcity) of one or more primitivesprevents (or makes unlikely) �nding a solution similar to those found. (Chapter 7 discusseswhy primitives may become extinct).From Figure 5.8 a crude estimate of the probability of a solution being found by genera-tion 200 when using a population of size 10,000, can be estimated at 2/56. Using Equation3.1 (page 72) the number of GP runs required to be assured (with 99% probability) ofobtaining at least one solution can be estimated to be 127. This would require a total ofup to 2 106 � 127 = 2:54 108 trial programs. NB this must be treated as an estimate, notan exact �gure.
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1455.9 Software MaintenanceSoftware maintenance is the problem of ensuring existing code continues to operate ef-fectively. This may involve correcting bugs in existing code or adapting code to newrequirements. In the software industry maintenance is a major task but has as yet at-tracted little interest from GP. [Petry and Dunay, 1995] is one exception and [Andre,1994c] considers using GP to extend the functionality of human written optical characterrecognition programs (i.e. maintain them).Automatically generated code (such as produced by a high level language compiler)may be di�cult to maintain at the code level and it is common practice to change theinputs to the code generator (i.e. the source code) and run it again. It is anticipatedthat evolved code will also be di�cult to maintain, so maintenance may be performed bychanging the inputs to the automatic code generator (i.e. the GP) and running it again.This section uses the list problem to demonstrate the following model for maintainingevolved code:1. Start with the original �tness function and the population that contained the solutionto the original problem (this should avoid solving the new, possibly harder, problemfrom scratch),2. Write additional �tness tests for the new functionality,3. Expand the existing individuals within the population to include random code forthe new functionality,4. Evolve the expanded population with both the original and new �tness tests.To use the list problem as a test bed for this model, it is split into two, one partrepresenting the original problem and the other the new requirements. The �rst is all theoperations except Locate and Delete, which represent the new requirements. Locate andDelete were chosen in the expectation that once Insert and Printlist operations are working,being similar, Locate and Delete could be readily added. As they are also the most di�cultoperations (see Figures 5.4 and 5.5), removing them from the �rst phase should have theadvantage of speeding it up allowing more time to be spent on the maintenance phase.Each GP run starts as before (Sections 5.2 to 5.8) except in the �rst phase the new�tness function does not test either Delete or Locate (it comprises 14 test sequencesand a total of 426 operation calls and 118 consistency checks). After a solution to thesmaller problem has been found, solutions are allowed to spread through the population by



146continuing the run until at least 1,000 other individuals which solve the smaller problem(i.e. pass all 118 checks) have been found before proceeding to the second phase.At the start of the second phase the trees for Delete and Locate (and their associatedADFs) in every individual in the population are re-created at random. The other eleventrees in each individual are not changed. So we start the second phase with every individualbeing a hybrid of code that is adapted to the smaller problem (but need not be an exactsolution to it) and random code. In the second phase, the �rst 14 test sequences areaugmented by 7 more designed to test Delete and Locate, they contain 113 operation callsand 41 consistency checks. The population is allowed to evolve as before. The directedcrossover mechanism (Section 5.6) ensures crossovers are allowed in every tree but areweighted towards the newly introduced random code.This use of a substantially adapted population as a starting point can be comparedto Perry's [Perry, 1994] use of an initial population which is primarily random but alsocontains a small number of partially adapted individuals. On a learning task (rather thanmaintenance) he shows it gives a performance improvement. [Ferrer and Martin, 1995]also reports improved performance from seeding the initial population with previouslyfound good solutions. While [Kraft et al., 1994] construct the initial population to containa high proportion (80% or more) of terminals which the user has chosen as likely to berelevant.5.9.1 ResultsIn a group of 59 runs, �ve produced solutions which passed the �rst set of tests. In these�ve, evolution was allowed to continue for between 40 and 88 generations, during whichtwo runs found programs which pass the second phase of testing. Both runs producedgeneral programs which implement a list and have a similar structure to those producedin the �rst experiment. As with the �rst experiment, on continuing the evolutionaryprocess (with increase CPU and memory penalties) both runs found shorter solutions andsolutions which took fewer instructions to complete the test cases.From �nding the �rst solution to the �rst part of problem to starting the second tookbetween 3.8 and 7.2 generation equivalents and the �rst solutions to the whole problemappeared 8.2 and 13.4 generations later (i.e. 16.3 and 25.8 after the �rst solutions to the�rst part).The probability of a solution being found by generation 25.8 when using a populationof size 10,000, is estimated to be 2/5 (further work is needed to verify this estimate).



147Using this, the number of individuals which need to be evaluated in order to be 99% sureof at least one solution is 2:58 106. Or 1=100th of the e�ort to solve the whole problem.Whilst [Bruce, 1996] does not deal with program maintenance, he reports a similarimpressive reduction e�ort required to evolve a complete solution when individual (�ve)components are evolved sequentially rather than simultaneously. However unlike our ap-proach, to e�ect sequential evolution the action of each operation on internal memory isspeci�ed by the user and forms part of the �tness function.5.10 DiscussionWhile genetic programming appears to �nd the list problem hard, in terms of the num-ber of individuals generated, it is only about three times more di�cult than the queue,despite requiring the co-evolution of ten operations rather than �ve. There are many dif-ferences between the GPs used to solve these problems (such as the syntax restrictions,Section 5.4.2) which no doubt play a part in the di�erence; none the less so small a risein problem di�culty given the change in size is interesting.It is tempting to ascribe the GP's di�culty in �nding solutions to the many caseswhere vital primitives are removed by evolution from the population. The size of thepopulation makes it very unlikely that the complete loss of a primitive from the population(Section 5.8) is due to random chance (known as \genetic drift"). However this should beregarded as a symptom of a deeper problem: they are not justifying their presence in thecurrent population.Their loss indicates they have below average �tness, i.e. in many populations, the�tness function is being deceptive and leading the GP towards some local optima andaway from correct solutions. Thus simply adding more of them to the population viaa mutation operator would not be expected to solve this problem directly. (Howevermutation might be bene�cial by allowing the population to retain them whilst it evolvesbeyond the deceptive local optima or via other e�ects such as incorporating an elementof hill climbing, see [O'Reilly and Oppacher, 1996] and [Iba et al., 1994c]). Their belowaverage �tness may be associated with the CPU penalty, which introduces a small selectionpressure against \introns" (see [Nordin et al., 1996]) or code of no immediate purposeand this may eventually succeed in removing all of certain primitives.Measures to retain population diversity such as �tness niches or demes appear to benecessary to give the evolutionary process time to assemble the primitives into high valuebuilding blocks from which complete solutions can be assembled so enabling it to escape



148from local optima. Overlapping demes, which constrain mates to be selected only fromnear neighbours (similar to those in [Tackett and Carmi, 1994]) succeeded in delaying thelost of primitives but spreading the population out across the �tness landscape using a\�tness sharing function" [Horn et al., 1993] was more e�ective in delaying the losses forlonger and so was used.While �tness niche appear to combat the e�ects of deceptive �tness functions to someextent, the many non-dominated solutions within the population mean the primary selec-tion pressure is to �nd relatively unpopulated �tness niches, rather than better ones. Italso means almost all crossovers occur between disparate individuals. It is unclear howbene�cial this is. [Ryan, 1994] suggests bene�ts for disassortive mating, while [Harvey,1992] suggests (for a variable length but linear GA) better results may be obtained bybreeding between similar programs. He suggests this will produce smaller improvementsat each stage but more progress in the long run.One of the lessons, for multi-part programs, from the queue was while ADFs are useful,it may be better to ensure the evolutionary pressures on them do not pull in more than onedirection by avoiding an ADF being used in two completely di�erent ways. For examplein the queue problem the enqueue and empty operations have little in common, whenthey shared the same ADF it appeared to try and satisfy both and so failed to developany clear functionality and no overall solutions were found. Accordingly the use of ADFswas constrained (Table 5.3). This up front GP design and the use of syntax restrictions(Section 5.4.2) was intended to help the GP, it would be interesting to see how far the GPwould get with fewer restrictions.5.11 ConclusionsThe importance of abstract data structures to software engineering is well recognised.Our experiments (which were published in part in [Langdon, 1996d]) show genetic pro-gramming, using indexed memory, can automatically implement integer list structures,co-evolving all ten components simultaneously. The list data structure is a generalisationof the stack and the queue data structures (which have already been evolved) however itis more complex than either.As with earlier work, generic programs have been automatically created that not onlysolve the problem on which they were trained but which (with su�cient memory) imple-ment the abstract data structure of any size.A model for maintaining evolved software based on population re-use has been demon-



149strated and (in one example) considerable savings shown compared to evolving a solutionto the new requirement from scratch.Program execution time can be included as a Pareto component of �tness and leadsto shorter and more e�cient programs. It has been shown that a genetic programmingpopulation using Pareto tournament selection, in conjunction with comparison with (asample of) the rest of the population can stably support many �tness niches.Whilst this work has shown �tness niches, CPU penalties and biased choice of crossoverpoints were e�ective when evolving a list, further work is required to demonstrate to whatextent they are generally useful.
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Chapter 6Problems Solved Using DataStructures
In this chapter we show that data abstraction can be bene�cially used within geneticprogramming (GP). Work so far [Teller, 1994a; Andre, 1994b; Brave, 1995; Jannink, 1994]shows GP can automatically create programs which explicitly use directly addressable(indexed) memory to solve problems and Chapters 3, 4 and 5 demonstrate that GP canautomatically generate abstract data structures such as stacks, queues and lists. In thischapter we show that GP can evolve programs which solve problems using such datastructures. In two cases we show better GP performance when using data structurescompared to directly addressable memory. In the remaining case (which is the �rst problempresented) the evolved solution uses an unexpected data structure which is appropriateto the problem rather than indexed memory when both are available. Section 6.4 reviewspublished GP work where explicit memory is used and concludes that in most successfulcases data structures appropriate to the problem have been provided for the GP (althoughthe experimenter may not have used the term \data structure").Three example problems are presented. In each the task is to induce a program whichprocesses a context free language given training samples of the language. We chose prob-lems that should be solvable using stack data structures as stacks were the easiest of thedata structures investigated in Chapters 3, 4 and 5 to evolve. In general, data structuresat least as powerful as stacks are required to process context free languages.In Section 6.1 GP evolves a program which classi�es sequences of brackets as beingcorrectly or incorrectly nested. Section 6.2 evolves programs which classify sequences ofmultiple types of bracket as being correctly nested or not (a Dyck language) and Section6.3 evolves programs which evaluate Reverse Polish (post�x) expressions. The structureof Sections 6.1, 6.2 and 6.3 is based on the structure of Chapters 3, 4 and 5. For exampleSections 6.1.1, 6.2.1 and 6.3.1 each contain the problem statement for one of the three151



152problems. Section 6.5 summarises this chapter.6.1 Balanced Bracket ProblemOther work on GP evolving language recognizers has concentrated upon using GP toevolve tree based speci�cations for abstract machines, such as �nite state machines [Dunayet al., 1994], deterministic pushdown automata [Zomorodian, 1995], machines composedof simple Turing machines [Dunay and Petry, 1995; Petry and Dunay, 1995] or specialmemory nodes within the tree [Iba et al., 1995]. However [Koza, 1992, page 442] recastsa simple language recognition problem in terms of classifying DNA sequences as intronsor exons and shows GP can evolve a correct program for this task and [Wyard, 1991;Wyard, 1994; Lucas, 1994] use GAs operating on formal grammar rules of various types toinduce grammars for a number of regular and context free languages. In contrast we wishto use the task of evolving a language recogniser to investigate the impact of providingdata structures versus indexed memory, and so we follow normal GP practice and our GPexecutes the GP tree directly i.e. treats it as a program.In this section we show GP can solve the balanced bracket problem directly whengiven an appropriate data structure ([Zomorodian, 1995] previously solved this problemusing GP to evolve a speci�cation for a pushdown automaton, [Wyard, 1991] used a GAoperating on formal grammar rules to induce a grammar for it and [Lankhorst, 1995]used a �xed representation GA to specify a pushdown automaton, while [Sun et al., 1990]solved it by training a neural network in combination with a stack). The balanced bracketlanguage is a context free language and so can be recognised by a pushdown automaton(which implies use of a stack) and not a regular language, which could be recognised by a�nite state machine. However a pushdown automaton is not required, the balanced bracketlanguage can be recognised by an intermediate machine, a �nite state automaton with acounter. The solution found by GP was of this form. In a run where both index memoryand register memory were available, the evolved solution used the register memory, NBGP selected the appropriate data structure for the problem.6.1.1 Problem StatementThe balanced bracket problem is to recognise sentences composed of sequences of twosymbols, ( and ), which are correctly nested. E.g. (()) is correctly nested but ()) is not.A limit of ten symbols per sentence was assumed.



1536.1.2 ArchitectureTwo automatically de�ned functions (ADFs) (see Section 2.2.6 for an introduction toADFs) are available to assist the main result producing branch (or tree). The �rst, adf1,has no arguments and has the same terminal and function sets as the main tree. Howeveras it does not have any arguments, it does not use the primitive arg1.The second, adf2, has one argument but cannot contain terminals and functions withside e�ects. This allows a cache of previous values returned by it to be maintained, thusreducing run time. (Caches of ADF values were also used in Chapter 4, cf. Table 4.11(page 121). See also Section E.6).6.1.3 Choice of PrimitivesTable 6.1 shows the parameters used and the terminals and functions provided, NB theyinclude indexed memory but not stacks.For ease of comparison the same sized indexed memory and stacks were used in allthree sets of experiments in this chapter. Both were deliberately generously sized to avoidrestricting the GP's use of them. The indexed memory consisted of 127 memory cells,addressed as �63 : : : + 63, and the stack allowed up to 99 32-bit signed integers to bepushed. As in the previous chapters, memory primitives had de�ned behaviour whichallows the GP to continue on errors (e.g. popping from an empty stack or writing to anon-existent memory cell). All stored data within the program is initialised to zero beforethe start of each test sentence. Table 6.9 (page 175) gives the actions of terminals andfunctions used in this chapter.6.1.4 Fitness FunctionThe �tness of each trial program was evaluated on a �xed set of 175 example sentencescontaining both correctly nested (positive tests) and incorrectly nested brackets (negativetests). The test case includes all the positive cases up to a length of ten symbols and all thenegative examples up to a length of four. The number of negative examples grows rapidlywith sentence length and so above a length of four a limited number negative exampleswere chosen at random (see Table 6.2). The program is run once for each symbol in thesentence. Thus each program is run 1403 times (674 for ( and 729 with an argument of ) ).The value returned by the program on the last symbol of the sentence gives its verdictas to whether the sequence is correctly nested, i.e. the value returned by the program isignored, except on the last symbol of each test sentence.



154 Table 6.1: Tableau for Balanced Bracket ProblemObjective Find a program that classi�es sequences of ( (represented by1) and ) (-1) as being correctly nested or not.Architecture Main tree, adf1 (no arguments) and adf2 (one argument)Primitives (any tree) ADD, SUB, PROG2, IFLTE, Ifeq, 0, 1, -1, max, forwhile, i0(rpb, adf1) adf2, aux1, read, write, swap, Set Aux1(rpb, adf2) arg1(rpb only) adf1Max prog size 4 � 50 = 200. In initial population each tree is limited to 50primitives.Fitness case 175 �xed test examples, cf. Table 6.2Fitness Scaling Number of test examples correctly classi�ed (scalar).Selection Tournament group size of 4 used for both parent selection andselecting programs to be removed from the population. Steadystate population (elitist).Hits Number test sentences correctly classi�edWrapper Zero represents False (i.e. not in language) otherwise True.Parameters Pop = 10,000, G = 50, 3�3 demes, no CPU penalty, no aborts.Success predicate Fitness � 175This test case and the test cases used in Sections 6.2.4 and 6.3.4 are available via anony-mous ftp, node ftp.io.com, directory pub/genetic-programming/code �le GPdata gp96.test.tar.Z6.1.5 ParametersThe default values for parameters given in Section E.3 were used except the populationsize and the maximum program length. The parameters used are summarised in Table 6.1.Earlier work (cf. Chapter 4) had shown even a large population had a great ten-dency to converge to partial solutions which e�ectively trapped the whole populationpreventing further progress. In this (and the following section) the population was par-titioned into demes so crossover is restricted to near neighbours in order to reduce thespeed of convergence (see Section 2.3.7). As in Chapter 4 the population is treated asa 50 � 100 torus with two members of the population per square on its surface. Eachtime a new individual is created, a 3 � 3 square neighbourhood on the torus (knownas a deme) is selected at random. Parents and the individual their o�spring will re-place are selected from this deme rather than from the whole population [Tackett, 1994;Collins, 1992].



155Table 6.2: Number of correctly nested and incorrectly nested bracket test sentences ofeach length used in the nested bracket test case. Longer incorrect sentences were chosenat random from all the possible incorrect sentences of the same length.Length Positive Negative1 all 22 all 1 all 33 all 84 all 2 all 145 random 46 all 5 random 57 random 58 all 14 random 149 random 1410 all 42 random 42Totals 64 1116.1.6 ResultsIn the �rst run a general solution was produced by generation 19, which contained 88primitives. This is shown in Figure 6.1 and a simpli�ed version is shown in Figure 6.2.In contrast to earlier work [Zomorodian, 1995], where GP was obliged to evolve push-down automata, the evolved solution is e�ectively a �nite state machine with a counter(NB less powerful than a pushdown automaton). The evolved solution (cf. Figure 6.2)only uses a single integer memory cell (aux1), in which it counts the depth of nesting.At the end of a legal sentence this count must be zero. Further, should the brackets beunbalanced before the end is reached, this is recognised and aux1 is also used as a 
agindicating this. This solution not only passes all the �tness tests and is a general solutionto the problem but (given suitable rede�nition of max) is a solution for sequences of anylength.To �nd the solution given in Figure 6.1 required 19� 10; 000 = 190; 000 individuals tobe processed. This is similar to that required in [Zomorodian, 1995] where a solution wasfound in generation 24 with a population of 3,000. (24 � 3; 000 = 72; 000).Given the readily found general solution did not exhibit stack like behaviour it wasdecided not to repeat this problem with a GP that had stack primitives.
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Figure 6.1: Solution to Bracket Problem
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1576.2 Dyck LanguageIn this section we apply genetic programming to a solve a new problem, that of recognisinga Dyck language. Two sets of experiments were conducted, the �rst provided the GPwith primitives which implement a stack for it and the second provided indexed memoryand other primitives like those from which it has been shown GP can evolve stack datastructures, cf. Chapter 3. The same �tness function, population size and other parameterswere used in both sets of experiments. Solutions were readily found when the GP wasprovided with a stack data structure but no solutions have been found when using indexedmemory.The Dyck problem was chosen as Dyck languages are context free languages and requiremachines at least as powerful as pushdown automata (i.e. stacks) to solve them. Dycklanguages are generalisations of the balanced bracket problem to multiple types of bracket.6.2.1 Problem StatementThe problem is to recognise which sentences are correctly bracketed, however there arenow four types of bracket pairs, (, ), [, ], f, g, `, '. E.g. fg[] is correctly bracketed but[g is not. As with the nested brackets problem, a limit of ten symbols per sentence wasassumed.6.2.2 ArchitectureIn the �rst experiments (stack given) no ADFs were used, whilst in the second there arethree ADFs, having 0, 1 and 0 arguments. It was hoped that these could evolve to operatelike pop, push and top. Each could be called from the main tree, additionally the third(which it was hoped might evolve to act like top) could be called by the �rst.6.2.3 Terminals, Functions and ParametersThe terminals, functions and control parameters used in these two experiments are asSection 6.1 except where given in Table 6.3. The di�erences between the two experimentsin this section are shown in the middle and right hand columns of Table 6.3.The �ve stack primitives are based on the de�nition of a stack given in Table 3.1(page 57), however they have been made more rugged by ensuring their behaviour isde�ned in all circumstances, i.e. including errors such as popping from an empty stack.Their behaviour is de�ned at the end of this chapter in Table 6.9.



158 Table 6.3: Tableau for Dyck Language ProblemObjective Find a program that classi�es sequences of four types of bracket(( (represented as 5), ) (71), [ (13), ] (103), f (31), g (137), ` (43)and ' (167) ) as being correctly nested or not.Primitives Common Stack Given Index MemoryAll trees: ADD, SUB, PROG2,IFLTE, Ifeq, 0, 1, max,aux1 Makenull, Empty,Top, Pop, Push read, write,inc aux1, dec aux1rpb: as all plus ifopen, ifmatch,ARG1, Set Aux1 adf1, adf2, adf3adf1: as all plus adf3adf2: as all plus arg1, arg2Max prog size Initial tree limit 50 50 4� 50 = 200Fitness Case 286 �xed test examples, cf. Table 6.4Fitness Scaling Number of correct answers returned.Selection Tournament size 4 (After �rst solution CPU penalty used giving atwo dimensional �tness value, �tness niching used with a sampleof up to 81 (9� 9) nearest neighbours.)Hits Number test symbols correctly classi�ed.Wrapper Zero represents True (i.e. in language) and all other values False.Parameters Pop = 10,000, G = 50, Pareto, 3 � 3 demes, CPU penalty onlyafter �rst solution found, Abort on �rst error in sentence.Success predicate: Hits � 1756, i.e. all answers correct.This problem is more complex than that in Section 6.1 and so the test case is longer.To constrain the increase in run time, forwhile loops were not used.6.2.4 Fitness FunctionThe �tness of every trial program is determined by presenting it with a series of symbolsfrom test sentences and counting how many times it correctly classi�es each as to whetherit is the last of a correctly balanced sequence. All memory is initialised to zero before thestart of each test sentence.Test CaseThe number of possible test sentences of a particular length is much larger than in Section6.1 and so it was not practical to include sentences longer than eight symbols and evenfor lengths of six and eight symbols it was necessary to select (at random) positive testexamples to include.In a correctly matched sentence there will be equal numbers of opening and closing



159brackets of each type but this is unlikely to be true in a random sequence of brackets. If theonly negative examples are random sequences of symbols, a program could correctly guessmost answers just by considering if there are equal numbers of each pair of bracket. Weanticipate that such programs can be readily evolved, for example the program that evolvedin Section 6.1 does this. However it may be anticipated that evolving complete solutionsfrom such partial solutions will be very di�cult. (Chapter 7 suggests the evolution ofcorrect stacks is made harder by the presence of \deceptive" partial solutions.) To penalisesuch partial solutions the test case included examples where there are equal numbers butwhich are not correctly nested (referred to as \balanced" in Table 6.4).As before it was not practical to include all cases and so longer negative examples(both balanced and not balanced) were selected at random. Even so the �tness tests aremuch longer than that in Section 6.1 and so to keep run time manageable the number oftimes each program must be run was reduced by:� Only using the �rst half of the test case (i.e. tests up to length six). However ifa program passes all the shorter tests then it was also tested on test sentences oflength seven and eight. Thus most of the time the second half of the test case is notused. It is only used by programs that are nearly correct, which evolve later in theGP run.� In the �rst experiments in this chapter, each program is only tested at the end ofeach test sentence. In these experiments the value returned for each symbol is used.If a wrong answer is returned the the rest of the sentence is ignored. This reducesrun time as in many cases only part of the test sentence is processed.Some shorter sentences are identical to the start of longer ones and so they neednot be tested explicitly as the same actions will be performed as part of a longertest. Therefore such duplicates were removed from the test case. The test case afterremoving such duplicates are summarised in the right hand side of Table 6.4.Symbol CodingInitially brackets were coded as �1;�2;�3;�4 but general solutions proved di�cult to�nd. Instead, despite the use of \balanced" negative examples, partial solutions basedupon summing up symbol values dominated. Since the purpose of the experiment was toinvestigate learning correct nesting of symbols rather than learning which symbols matcheach other the problem was simpli�ed by providing the GP with two new primitives



160Table 6.4: Number of correctly and incorrectly nested test sentences in the Dyck languagetest case. The incorrect test sentences are divided into those with the correct number ofeach type of bracket but which are in the wrong order (referred to as \balanced") andothers (referred to as \random"). Longer sentences were chosen at random. The righthand side of the table gives the number in each category actually used in the Dyck testcase, i.e. after removing duplicates.Len- Positive Negative After Removing Duplicatesgth Balanced Random Positive Balanced Random Score1 all 8 02 all 4 all 60 9 183 16 10 304 all 32 all 24 16 27 16 1725 16 16 806 random 32 random 32 32 32 32 32 5767 16 16 1128 random 32 random 32 32 32 32 32 768Totals 91 112 83 1756(ifmatch and ifopen, cf. Table 6.9) which say which symbols match each other. To furtherdiscourage partial solutions based on summing symbol values the symbols were recodedas prime values with no simple relationships between them (cf. Table 6.3).Evolving Improved SolutionsThe combination of Pareto �tness, a CPU penalty and �tness niches introduced in Chapter5 (Section 5.5.3) was used in these experiments. Brie
y after an individual which passes allthe tests is found the GP run is allowed to continue using a modi�ed �tness function whichincludes a CPU penalty. Each program's �tness now contains two orthogonal terms, theoriginal score and the bmeanc number of instructions run per program execution. Tourna-ment selection is still used for reproduction and deletion but now uses Pareto comparison(see Section 2.3.8), so passing tests and using little CPU are equally important. The�tness sharing scheme described in Section 5.5.3 was used. This introduces a secondaryselection pressure to be di�erent from the rest the population so allowing high scoring andhigh CPU programs to co-exist with programs with lower scores but using less CPU. Thismay reduced premature convergence.6.2.5 ResultsIn three runs given the stack primitives general solutions were evolved by generation 7to 23 (in three identical runs but using simple non-demic (normal) populations, two runs
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uence of the CPU penaltyfaster but still general solutions were found (see Figure 6.3). Figure 6.4 shows the �rstsolution to evolve in a run using demes and Figure 6.5 shows one of the fastest solutionsproduced in the same run after 50 generations. As in Section 6.1 the solutions are notonly general solutions to the given problem, but given a deep enough stack would workwith any sentences of any length.As all runs given stack primitives and using demes succeeded in �nding a solution thebest (i.e. most likely) estimate of the number of runs required to be assured (with 99%probability) of obtaining at least one solution is one. This would require a total of up to23� 104 � 1 = 2:3 105 trial programs.In contrast none of 15 runs using the indexed memory primitives passed all the tests.(The probability of the di�erence between the two experiments being due to chance is� 0.1%). Some of the more promising runs were extended beyond 50 generations up to140 generations without �nding a solution. The best (produced after 84 generations) stillfailed 3 tests (on sequences of up to six symbols). It showed some stack like behaviourwhich enables it to pass 13 of the tests of length seven and eight but also showed some
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Figure 6.5: One of the Fastest Solutions to the Dyck Problem evolved after 50 Generationssigns of over �tting to the speci�c test case used rather than having learnt to solve thegeneral problem.A program which always returns zero (i.e. True) has a �tness of zero because it willalways fail on the �rst symbol of each test sentence (a sentence of odd length must beunbalanced). In contrast a program which never returns zero will always be correct onthe �rst symbol of each sentence and so will get the opportunity to be tested on thesecond symbol which it may also pass. For the actual test case used a program whichnever returns zero has a �tness of 714. While aborting a test sentence on the �rst errorreduces the number of times programs are run, it may also make it more di�cult to evolvea solution. In both experiments the GP population quickly learns not to return zero, butwhen using indexed memory it appears to be more di�cult than when given a stack toescape this local optima and learn to return zero at some points.6.3 Evaluating Reverse Polish ExpressionsIn this section we describe the �nal comparison of appropriate data structures and indexedmemory. Once again solutions are readily evolved when the appropriate data structure isprovided but no solutions have been found when using indexed memory.Two sets of experiments were made, the �rst provided the GP with primitives whichimplement a stack for it and the second provided primitives like those from which it has



163been shown GP can evolve stack data structures.6.3.1 Problem StatementIn this section the GP evolves a four function (+, �, = and �) calculator, i.e. evaluatesinteger arithmetic expression. The problem is simpli�ed by presenting the expressionin Reverse Polish Notation (post�x), which avoids consideration of operator precedenceand by avoiding expressions which include division by zero. No limit on the length ofexpressions was assumed, however the expressions tested were between three and �fteensymbols long (see Table 6.6).6.3.2 ArchitectureThe multi-tree architecture and multi-tree crossover described in Section 2.3.5 and em-ployed in Chapters 3, 4 and 5 was used. This allows trees within each individual to evolveto specialise in solving one of the operations that form the complete calculator program.Each individual within the population consists of �ve separate trees (num, plus, minus,times and div) plus either zero or two ADFs. As in sections 6.1 and 6.2 each test sentenceis presented a symbol at a time to the GP, however in this case the appropriate tree isselected. E.g. if the symbol is an integer, then the num tree is executed with the integeras its argument. Each tree returns a value as the current value of the expression (num'sanswer is ignored).In the �rst experiments (stack given) no ADFs were used, whilst in the second thereare two ADFs, having 0 and 1 arguments respectively. It was hoped that these couldevolve to operate like pop and push. Both ADFs could be called from the �ve main trees.6.3.3 Terminals, Functions and ParametersThe terminals, functions and control parameters are as Section 6.2 except where given inTable 6.5.Fears that run time might prove to be excessive led to the decision to remove someunnecessary primitives from the function and terminal sets. Since all storage including thesupplied stack is initialised before the evolved programs can use it, the Makenull operationis not needed. Therefore the terminal set was simpli�ed by not including Makenull andEmpty (which is also not needed) in these experiments.
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Table 6.5: Tableau for Reverse Polish Notation (RPN) Expression Evaluation ProblemObjective Find a program that evaluates integer Reverse Polish (post�x) arith-metic expressions.Primitives Common Stack Given Index Memory+��= trees: ADD, SUB, MUL,DIV, PROG2, 0, 1,aux1, Set Aux1 Top, Pop, Push read, write, inc aux1,dec aux1, adf1, adf2num: as ops plus arg1adf1: as ops but no adfsadf2: as ops but no adfs and add arg1adf3: as ops but no adfs and add arg1, arg2Max prog size Initial tree limit 50 5� 50 = 250 7� 50 = 350Fitness Case 127 �xed test expressions, cf. Tables 6.6, 6.7 and 6.8.Fitness Scaling Number of correct answers returned.Selection Pareto tournament size 4, CPU penalty (initial threshold 50 peroperation), �tness niching used with a sample of up to 81 othermembers of the population.Hits Number of correct answers returned.Wrapper Value on num ignored. No wrapper on other trees.Parameters Pop = 10,000, G = 100, Pareto, no demes, CPU penalty (in-creased after 1st solution found), abort on �rst wrong answer givenin expression.Success predicate Fitness � 194, i.e. a program passes all tests.



1656.3.4 Fitness FunctionIn each individual in the population a separate score is maintained for its �ve operations(num, plus, minus, times and div) plus a CPU penalty. Each time the individual returnsthe correct answer (and it is checked) the score for each of its operations that has beenused since the last time its result was checked is incremented. As in Section 6.2, thesescores are not combined and each contributes as a separate objective in multi-objectivePareto selection tournaments.Test CaseThe �xed test case was created before the GP was run. Part of the test case was devised byhand and the remainder was selected at random. However randomly selected data values(from the range �99 : : : +99) proved to be unsatisfactory for expressions containing \/"because division of two randomly selected integers has a high chance of yielding zero or aninteger near it and therefore data values were changed by hand. (Less than one in eightdivisions of randomly chosen values will yield a value of 4 or more or �4 or less).The following rules were used to create the test case:� It was expected that as minus and divide are not commutative they would be themost di�cult operations to evolve and therefore the test case include a higher pro-portion of minus and divide than the other two arithmetic operations (cf. Table 6.7).� The test case was designed to include deeply nested expressions (cf. Table 6.8) as itwas anticipated otherwise non-general partial solutions only able to evaluate simpleexpressions, which could be evaluated without using a stack, would predominate.� To avoid consideration of exception handling, and its associated complexity, divideby zero was deliberately excluded from the test case.� Randomly generated data values were manually changed so that only a few divisionsyield values in the range �3 : : : + 3.� To avoid problems with over
ow, randomly generated expressions did not allow:arguments to addition or subtraction outside the range �108 : : : +108 or argumentsto multiplication or division outside the range �65535 : : : + 65535.� Also to avoid over
ow problems, data values set by hand were chosen so neither theproduct of two arguments of divide nor the square of the second argument exceeded2,147,483,647.



166Table 6.6: Length of reverse polish expressions at each point where answers are checkedin the �tness test case.length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TotalNo. of cases 10 3 55 27 44 2 36 1 5 8 3 194� Most test expressions were well formed, with exactly the right number of data valuesfor the number of operators (and vice-versa). (Since all four operators are binary thismeans there is one more data value than the number of operators in the expression.)However, to test generality, one expression with fewer arithmetic operations wasincluded. In this case there should be multiple data values left after evaluating theexpression.As before it was necessary to constrain run time. This was done by checking answersduring the evaluation of each expression and aborting evaluation following the �rst errordetected and removing test examples which essentially duplicated others. This left 127test expressions which include 194 points where the trial program's answer is checked.CPU PenaltyThe long run times encountered with these experiments led to the decision to includea CPU penalty of bmeanc number of primitives executed per program run. Unlike theprevious section, this CPU penalty was applied from the start of each run. Howeverinitially only programs with long run times are penalised (by ignoring the penalty whereit was � 50. This was implemented by setting the penalty is zero for such fast programs).Should a program be evolved which passes the whole �tness test case then the CPU penaltyis increased by applying it to all programs.6.3.5 ResultsIn eleven runs using stack primitives, six produced solutions which passed all the tests,these were found between generations 11 and 23 (see Figure 6.6). In four cases the �rstprograms to pass all the tests were also general solutions to the problem. In the othertwo the �rst solutions failed special cases such as 1 � 1 and x=y = 0 (which were notincluded in the test case), however in both runs general solutions were evolved less than12 generations later (before 34 generations).Under the action of the increased CPU penalty, solutions which took about one third



167Table 6.7: Number of times each tree occurs in reverse polish expression (RPN) test caseand the score it has when the whole test case is passed.Operation No. Max Scorenum 550 163plus 67 58minus 103 85times 85 64divide 156 127420Totals 970 497Table 6.8: Number of symbols (i.e. operators or numbers) used in the RPN test case foreach level of expression nesting. (Depth of nesting calculated after the symbol has beenprocessed). depth 1 2 3 4 5 6 TotalNo. of cases 387 390 149 31 12 1 970of the CPU time of the �rst solution found were evolved. Figure 6.7 shows one of the �rstgeneral solutions to be evolved and Figure 6.8 shows one of the fastest solutions evolvedat the end of the same run.In 59 runs with stack primitives replaced by indexed memory (see right hand side ofTable 6.5) no program passed all the tests. (NB the probability of the di�erence betweenthe two experiments being due to chance is � 1%). The highest number of tests passed(148 of 194) was achieved by a program which used the �rst ADF to implement DIVR(i.e. standard divide but with the arguments in reversed order, see Table 6.9) and thesecond to approximate both push and pop on a three level stack. Other unsuccessful trialsincluded adding a third ADF (with two arguments) in the hope that this might evolvethe DIVR functionality leaving the other ADFs free to implement push and pop (best 102in 33 runs, of which 16 ran out of time before 50 generations) and supplying SUBR andDIVR functions (in place of SUB and DIV) where the best score was 116, in 38 runs.The probability of a general solution being found by generation 23 when given thestack primitives is best estimated at 4=11. Using Equation 3.1 (page 72) the number ofGP runs required to be assured (with 99% probability) of obtaining at least one solutionis 11. This would require a total of up to 23� 104 � 11 = 2:53 106 trial programs.
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170primitive in the function set but may also be due in part to the problem requiring moreprimitives to solve it (fastest evolved solution 29.1 per test versus 7.0 for the calculator).6.4 Work by Others on Solving Problems with MemoryThis section brie
y reviews published work on solving problems using GP which includesmemory primitives. In most successful cases data structures appropriate to the problemhave been used although the term \data structure" may not have been. The principleexception is Teller's signal processing system PADO. This section groups publicationsaccording to memory structure, starting with the simplest and �nishes with considerationof PADO.6.4.1 Scalars[Cramer, 1985] showed programs which use simple scalar memory could be evolved, how-ever the paper concentrates upon program representation not use of memory. [Huelsber-gen, 1996] solved the same problem, albeit with di�erent primitives etc., but also usessimple scalar memory. Huelsbergen also shows the problem can be solved by randomsearch in a practical time.[Koza, 1992, page 470] presents an example where a single variable is used to maintain arunning total during execution of a loop. While in [Koza, 1994, page 512] a small number ofvariables are used in a protein classi�cation problem where the program processes proteinssequentially, a residue at a time. The variables provide the ability to store informationabout previous parts of the protein which is expected to be useful in this classi�cationproblem. NB in both cases programs were evolved using memory appropriate to theproblem.6.4.2 One Indexed MemoryMost of the published work on using GP where use of memory is explicitly evolved follows[Teller, 1993; Teller, 1994a] which introduced \indexed memory", i.e. a single multiplecelled directly addressable memory, to GP. For example [Raik and Browne, 1996] useindexed memory to show that on a reactive task, GP with explicit memory performsbetter than GP with implicit memory. Indexed memory, as it allows random access,provides little \structure" and could be problem independent, however in [Andre, 1994b;Andre, 1995b; Andre, 1995a] the indexed memory is made problem speci�c by treatingit as two dimensional and sizing it so that it is isomorphic to a small problem \world".



171That is the memory is given a structure appropriate to the problem. A similar approachis taken in [Brave, 1996c] where memory is isomorphic to a full binary tree \world".The simple indexed memory used in [Crepeau, 1995] is not obviously structured in aproblem speci�c manner. The author suggests the success of GP at evolving a \Hello.World"program by manipulating (a subset of) Z80 machine code may in part be due to initialisingmemory with random 8 bit values. Thus it is \highly probable" [Crepeau, 1995, page 132]that the needed ascii values are initially in the indexed memory.Another GP system which evolves machine code, based this time on the SUN RISCarchitecture, allows large amounts of directly addressable memory, however [Nordin andBanzhaf, 1995a] does not describe experiments using it. [Nordin and Banzhaf, 1996]describes experiments using the system for sound compression where indexed memory andstructured memory (a stack) were tried. In these experiments \programs took longer timeto evolve and performed worse in �tness but had a softer sound with less overtones" thanexperiments without memory. However other changes were simultaneously made whichmay have made the task more di�cult. Therefore it is di�cult to draw any conclusionsregarding the bene�ts or otherwise of data structures from this paper.[Jannink, 1994] includes 16 memory cells in one experiment to evolve programs whichgenerate \random" numbers. This is said to give \the best average validation score",i.e. better than when the programs were not given access to memory. Details of how theevolved programs use memory are not given and no comparison with other memory sizesor structures is provided.6.4.3 Case Base[Spector and Alpern, 1995] presents a system which attempts to evolve music-makingprograms, speci�cally producing jazz improvisation responses to supplied \single-measurecalls". \While we (Spector and Alpern) have not yet succeeded in inducing and reca-pitulating the deep structure of jazz melody" promising music generating programs havebeen evolved and the authors \believe that our framework holds promise for the eventualachievement of this goal."While the authors refer to their memory system as \indexed memory" it is problemdependent. Consisting of 31 identical data structures, each of which is designed to hold amelody (expressed as 96 MIDI values). One data structure holds the input, another theoutput (i.e. the program's jazz \response") and the rest form a one dimensional array of29 elements containing a case base of human written music. Only the output structure



172may be written to. Various problem dependent functions are provided for cutting andsplicing segments of melodies but data values within the data structures cannot be directlymanipulated.6.4.4 Strongly Typed Genetic Programming[Montana, 1995] presents two examples where GP is provided with local variables whichit uses to solve problems (the two other examples don't allow explicit use of evolvablememory). The use of the strong typing framework means the variables must be typed. Inboth examples the variables are lists, which are either of the same type as the input orthe same type as the output. That is with strongly typed GP data structures appropriateto the problem are readily chosen (STGP also prevents some kinds of abuse of the datastructures).6.4.5 Graph Data Structures[Brave, 1995; Brave, 1996a] shows GP using a graph data structure which provides prim-itives to connect nodes and follow connections. Using this data structure the GP wasable to solve a navigation problem which requires it to form a mental model of its world.This builds on [Andre, 1994b] but replaces a predetermined isomorphism between indexedmemory and the problem \world" by a more complex data structure that is appropriateto the problem.6.4.6 Linked List Data Structure[Haynes and Wainwright, 1995] requires GP to evolve control programs for agents whichhave to survive in a simulated world containing mines. The agent's memory is a dynami-cally allocated linked list, with a new list element representing the current location beingautomatically allocated each time the agent enters a new location in the world. Read andwrite access is with respect to the current location, e.g. the current memory cell, the cellrepresenting the location north of here, the cell north-east of that and so on. The listkeeps track of the agent's path allowing it to backtrack along its path. (Since its path liesin a mine�eld a safe option is always for the agent to retrace its steps). NB the memoryis structured in an appropriate fashion for the problem.6.4.7 Tree Structured Memory for Temporal Data Processing[Iba et al., 1995] introduces \special `memory terminals', which point at any nonterminalnode within the tree." The value given by a memory terminal is the value at the indicated



173point in the tree on the previous time step. While this structure is applicable to a rangeof signal processing problem, once again memory has been constrained for the GP into astructure appropriate to the problem.[Sharman et al., 1995; Esparcia Alcazar and Sharman, 1996] similarly use memoryterminals to hold values previously calculated at nodes within the program tree, howeverthe mechanism for connecting terminals to inner nodes is di�erent; explicit \psh" functionswithin the program tree save the value at that point in the tree by pushing it onto a stack.The stack is non-standard as \psh" writes to the current stack whereas \stkn" terminalsprovide a mechanism to read the stack created on the previous time step. The stack isalso non-standard in that the \stkn" terminals non-destructively read data inside the stack(rather than from just the top of stack).
6.4.8 PADOPADO [Teller and Veloso, 1995c; Teller and Veloso, 1995d; Teller and Veloso, 1996; Tellerand Veloso, 1995b; Teller, 1995a; Teller, 1995b; Teller and Veloso, 1995a; Teller, 1996] isa GP based learning architecture for object recognition and has been shown to be able tocorrectly classify real world images and sounds far better than random guessing (albeitwith less than 100% accuracy). PADO is a complex system with many non-standard GPfeatures (the classi�cation system is built from a hierarchy of individual programs whichmay use libraries of evolving code as well as ADFs similar to Koza's, repeated execution ofprograms within a �xed execution time, programs are represented by a directed graph ofexecution nodes rather than as trees and the genetic operators used to create new programare themselves evolved). The programs it generates are large and their operation is poorlyunderstood.PADO was deliberately designed not to use domain knowledge and so only the simplestmemory structure (indexed memory) is used. It has been applied to complex ill behavedproblems where there is no obvious data structure. GP could in principle build problemspeci�c structures on top of indexed memory which the complexity and size of the evolvedprograms might conceal, however there is no evidence that this is happening. The betterthan random performance of PADO may be due to its many other features rather thanits simple memory structure.



1746.5 SummaryThe experiments described in Sections 6.1 to 6.3 (which were reported in part in [Langdon,1996b]) have shown GP can solve two new problems. In Section 6.2 we showed GP caninduce programs which correctly classify test sentences as to whether they are in a Dycklanguage or not and in Section 6.3 we showed GP evolving code which evaluates ReversePolish Notation (RPN) expressions. In Section 6.1 we showed GP can solve the nestedbracket problem without requiring an intermediate step generating an abstract machine.All three examples were solved by GP using the appropriate data structure for theproblem. The two more complex examples (Dyck language and RPN) proved to be moredi�cult for GP when provided with indexed memory rather than when provided with astack. Despite indexed memory being more powerful than stacks or simple scalars, noneof the three problems has been solved using indexed memory.Section 6.4 reviewed the current GP literature where problems have been solved usingevolvable memory. It shows many cases where appropriate data structures have beenused to solve problems. The principle counter example, where problem speci�c datastructures have not been provided, is PADO, where better than random performance hasbeen achieved on classi�cation problems with no obvious structure.It has often been argued, e.g. [Kinnear, Jr., 1994c, page 12], that functional primitivesused with GP should be as powerful as possible, in these examples we have shown appro-priate data structures are advantageous, that is GP can bene�t from data abstraction.These experiments have not provided evidence that existing GP can scale up and tacklelarger problems. If they had shown GP solving problems by evolving the required datastructures \on the 
y" as it needed them this would have been powerful evidence. Howeverthis was not demonstrated. The failure of GP to solve the problems when provided withthe more general (i.e. more powerful) directly addressable memory data structure showsthat data structures should be chosen with care and it may not be su�cient to simplyover provide, with more powerful structures than are needed.



175Table 6.9: Actions Performed by Terminals and FunctionsPrimitive PurposeDIV(x,y) if y 6= 0 return x=yelse return 1SUBR(x,y) DIVR(x,y) As SUB and DIV except yield y�x and y=x, i.e. operands reversed.max constant 10 (� max input size).PROG2(t,u) evaluate t; return uARG1, arg1, arg2 arguments of current operation or ADFaux1 an auxiliary variable (i.e. in addition to indexed memory).Set Aux1(x) aux1 = x; return aux1forwhile(s,e,l) for i0 = s; i0 � e; i0++if timeout (128) exit loopif l returns zero exit loopreturn i0i0 Yields value of loop control variable of most deeply nested loop orzero if not in a loop in current tree. NB loop control variable inone tree cannot be accessed in another (e.g. an ADF).IFLTE(x,y,t1,t2) if x � y return t1else return t2Ifeq(x,y,t1,t2) if x = y return t1else return t2ifopen(x,t1,t2) if x = 5, 13, 31 or 43 return t1 //i.e. opening symbolelse return t2ifmatch(x,y,t1,t2) if x = 5, 13, 31 or 43 evaluate y //i.e. opening symbolif (x,y) = (5,71), (13,103), (31,137) or (43,167) return t1else return t2 //x and y don't matchelse return t2Makenull clear stack; return 0Empty if stack is empty return 0; else return 1Top if stack is empty return 0; else return top of stackPop if stack is empty return 0; else pop stack and return poppedvaluePush(x) Evaluate x;if < 99 items on stack push x; return xelse return 0Indexed memory is held in store[ �l : : : +l ], where l = 63, i.e. a total of 127 cells.read(x) if jxj � l return store[x]else return 0write(x,d) if jxj � l store[x] = d; return original contents of store[x]else evaluate d; return 0swap(x,y) if jxj � l and jyj � l exchange contents of store[x] and store[y]if jxj > l and jyj � l store[y] = 0if jxj � l and jyj > l store[x] = 0return 1
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Chapter 7Evolution of GP Populations
In this chapter we investigate in detail what happens as GP populations evolve. We start inSection 7.1 by showing Price's covariance and selection theorem can be applied to arti�cialevolution. Following the proof of the theorem with experimental justi�cation using the GPruns on the stack problem described in Chapter 3. Section 7.2 brie
y describes Fisher'sfundamental theorem of natural selection and shows in its normal interpretation it doesnot apply to genetic algorithms. The failure of most GP runs on the stack problem to�nd programs which pass the whole �tness test is explained in Section 7.3 by the presenceof \deceptive" high scoring partial solutions in the population. These cause a negativecorrelation between necessary primitives and �tness. As Price's theorem predicts, theirfrequency falls, eventually leading to their extinction and so to the impossibility of �ndingsolutions like those that are evolved in successful runs.Section 7.4 investigates the evolution of variety in GP populations. While simplegeneral models are developed they fail to predict in detail the evolution of variety inthe stack populations and instead detailed measurements reveal loss of diversity causingcrossover to produce o�spring which are copies of their parents. Section 7.5 concludes withmeasurements that show in the stack population crossover readily produces improvementsin performance initially but later no improvements at all are made by crossover.7.1 Price's Selection and Covariance TheoremPrice's Covariance and Selection Theorem [Price, 1970] from population genetics relatesthe change in frequency of a gene in a population from one generation to the next, to thecovariance of the gene's frequency in the original population with the number of o�springproduced by individuals in that population (see Equation 7.1). The theorem holds \fora single gene or for any linear combination of genes at any number of loci, holds for anysort of dominance or epistasis (non-linear interaction between genes), for sexual or asexual177



178reproduction, for random or non-random mating, for diploid, haploid or polyploid species,and even for imaginary species with more than two sexes" [Price, 1970]. In particular itapplies to genetic algorithms (GAs) [Altenberg, 1994].�Q = Cov(z; q)z (7:1)Q = Frequency of given gene (or linear combinations of genes) in the population�Q = Change in Q from one generation to the next.qi = Frequency of gene in the individual i (more information is given in Section 7.1.1below).zi = Number of o�spring produced by individual i.z = Mean number of children produced.Cov = Covariance7.1.1 Proof of Price's TheoremIn this section we follow the proof of Price's Theorem given in [Price, 1970] (which assumessexual reproduction) and show it applies to Genetic Algorithms. In the next section (7.1.2),we extend the proof to cover asexual reproduction. This more general proof also applies toGenetic Algorithms, including GAs with asexual reproduction (i.e. copying and mutation).Firstly we de�ne the additional symbols we shall use.P1 = Initial populationP2 = Population at next generation (for purposes of the proof generations are assumedto be separated)N = Size of initial population.nz = \Zygotic ploidy of the species for the gene". E.g. in natural species nz may be 2,i.e. the gene can exist on two chromosomes.In traditional GAs chromosomes are not paired so nz is 1. In GP there is still onlyone chromosome but the same gene (primitive) can occur multiple times within it.For GP we de�ne nz to be unity.gi = Number of copies of gene in individual iqi = Frequency of gene in the individual i. That is the number of times the gene appearsin individual i divided by the \zygotic ploidy" of the species for the gene (i.e. 1 ifhaploid, 2 if diploid). qi = gi=nzWhen nz is unity (e.g. most GAs and GP) qi becomes the number of copies of thegene in individual i (i.e. qi = gi). So gene frequencies are de�ned to be relative tonumber of individuals in the population rather than per available loci.q = Arithmetic mean of qi in population P1



179Q1 = Frequency of given gene (or linear combinations of genes) in the population.I.e. number of copies of gene in population divided by the number of chromo-somes it could occupy.Q2 = Frequency of gene in population P2nG = \Gamete ploidy for the gene". In natural species nG is typically 1, i.e. the genecan exist on one chromosome in the gamete (germ cell).In traditional GAs there is no separate germ cell and whether the chromosomefragment can contain the gene depends upon whether the locus of the gene ispresent in the fragment or not.In GP there is still only one chromosome but there are no �xed loci and the samegene (primitive) can occur multiple times within a crossover fragment.zi = Number of o�spring produced by individual i. Note this is the same as the numberof successful gametes it produces. (In GA terminology the number of chromosomefragments produced from i which occur in individuals in the next population).z = Mean number of children produced.g0i = Number of copies of the gene in all the successful gametes produced by individuali.In traditional linear chromosome GAs, g0i is the number of chromosome fragmentscopied from individual i that are passed to the next generation which contain thegene's location and where the location contains the gene. (NB the value at thegene's location has not been changed by mutation).If a traditional GA, with zero mutation rate, the expected value of g0i is zi=2.With mutation g0i is reduced proportionately to the gene mutation rate.In GP, g0i is the number of copies of the gene that are copied from i and passedto the next generation.q0i = Frequency of gene in the o�spring produced by individual i. De�ned byq0i = g0izinG , if zi 6= 0= qi , otherwise�qi = q0i � qiProof of Price's Theorem with Sexual ReproductionWe shall start with the frequency of the gene in the current population, Q1. Then �ndthe frequency in the subsequent generation, Q2. Subtracting them yields the change infrequency, which we shall simplify to give Price's Theorem.Q1 = P ginzN= PnzqinzN= qEach individual in the new population is created by joining one or more \gametes"(in GAs and GP by joining crossover fragments) and the number of each gene in theindividual is the sum of the number in each of the gametes from which it was formed.Thus the number of genes in the new population is equal to the number in the successfulgametes produced by the previous generation.



180Similarly the number of chromosomes in an individual is the sum of the number ineach of the gametes which formed it, nG. Thus if nG is the same in all cases:Q2 = P g0iP zinG (7.2)= P zinGq0iP zinG= P ziq0iNz (7.3)= P ziqiNz + P zi�qiNz= P ((zi � z)(qi � q) + z qi + ziq � z q)Nz + P zi�qiNz= 1N P(zi � z)(qi � q) + z 1N P qi + q 1N P zi � 1N P z qz + P zi�qiNz= 1N P(zi � z)(qi � q) + z q + q z � z qz + P zi�qiNz= 1N P(zi � z)(qi � q) + q zz + P zi�qiNz= Cov(z; q)z + q + P zi�qiNz�Q = Cov(z; q)z + P zi�qiNz\If meiosis and fertilization are random with respect to the gene, the summation termat the right will be zero except for statistical sampling e�ects (`random drift'), and thesewill tend to average out to give equation 7.1." I.e. the expected value of P zi�qi is zero.So while survival of an individual and the number of children it has may be relatedto whether it carries the gene, it is assumed that the production of gametes (crossoverfragments) and their fusing to form o�spring is random. In GA terms selection for re-production is dependent upon �tness and in general dependent on the presence of speci�cgenes but selection of crossover points is random and so independent of genes (Section7.1.4 discusses this further for GPs).7.1.2 Proof of Price's Theorem with Asexual ReproductionThe proof of Price's theorem given in [Price, 1970] (reproduced above) assumes sexualreproduction. For it to be applied to GAs and GP it needs to be extended to cover asexualreproduction (i.e. copying and mutation). Before doing so, we de�ne further symbols weshall use.



181g0a i = Number of copies of the gene in the o�spring created asexually by individual i.g0x i = Number of copies of the gene in all the successful gametes (n.b. sexual reproduc-tion) produced by individual i.ai = Proportion of o�spring of individual i created asexually (in GAs mutation or directcopying). ai = g0a i=g0ia = P aizi=N zxi = Proportion of o�spring of individual i created sexually, i.e. by crossover.xi = g0x i=g0ix = Pxizi=N zq0a i = Frequency of gene in the o�spring produced asexually by individual i. De�ned byq0a i = g0a iaizinz , if aizi 6= 0= qa i , otherwiseq0x i = Frequency of gene in the o�spring produced sexually by individual i. De�ned byq0x i = g0x ixizinG , if xizi 6= 0= qx i , otherwiseSo Equation 7.2 becomesQ2 = P g0a i + g0x iP aizinz + xizinG= P aizinzq0a i + xizinGq0x iP aizinz + xizinGIf reproduction type (sexual or asexual) is independent of the gene then the expectedvalues of the gene frequencies, q0a i and q0x i will be equal (and equal to q0i) and so in largepopulations Q2 = P aizinzq0i + xizinGq0iP aizinz + xizinG= P aizinzq0i + xizinGq0iN az nz +N xz nGIf reproduction type is independent of the gene then in large populationsQ2 = P azinzq0i + xzinGq0iN z(anz + xnG)= P ziq0iN zThe rest of the proof (i.e. from Equation 7.3 onwards) follows.



1827.1.3 Price's Theorem for Genetic AlgorithmsWhere the population size is unchanged, as is usually the case in GAs and GP (and twoparents are required for each individual created by crossover), z = pr + pm + 2pc (wherepr = copy rate, pm = mutation rate and pc is the crossover rate. Since pr + pm + pc = 1,the mean number of children z = 1 + pc and Equation 7.1 becomes:�Q = Cov(z; q)1 + pc (7:4)7.1.4 Applicability of Price's Theorem to GAs and GPsThe simplicity and wide scope of Price's Theorem has lead Altenberg to suggest thatcovariance between parental �tness and o�spring �tness distribution is fundamental tothe power of evolutionary algorithms. Indeed [Altenberg, 1995] shows Holland's schematheorem [Holland, 1973; Holland, 1992] can be derived from Price's Theorem. This andother analysis, leads [Altenberg, 1995, page 43] to conclude \the Schema Theorem has noimplications for how well a GA is performing".While the proof in [Price, 1970] assumes discrete generations the result \can be appliedto species with overlapping, inter-breeding generations". Thus the theorem can be appliedto steady state GAs [Syswerda, 1989; Syswerda, 1991b] such as we use in Chapters 3, 4, 5and 6.For the theorem to hold the genetic operations (crossover and mutation in GA terms)must be independent of the gene. That is on average there must be no relationship betweenthem and the gene. In large populations random e�ects will be near zero on average butin smaller populations their e�ect may not be negligible. In GAs selection of crossover andmutation points is usually done independently of the contents of the chromosome and soPrice's theorem will hold (except in small GA populations where random 
uctuations maybe signi�cant). In GP populations are normally bigger (and the number of generationssimilar) so random e�ects, \genetic drift", are less important.In standard GP it is intended that the genetic operators should also be independent,however in order to ensure the resultant o�spring are syntactically correct and not toobig, genetic operators must consider the chromosome's contents. This is normally limitedto just its structure in terms of tree branching factor (i.e. the number of arguments afunction has) and tree depth or size limits. That is, they ignore the actual meaning of anode in the tree (e.g. whether it is MUL or ADD) but do consider how many argumentsit has. Thus a function with two arguments (e.g. MUL) and a terminal (e.g. max) may



183be treated di�erently.It is common to bias the choice of crossover points in favour of internal nodes (e.g. inthe GP experiments in this thesis internal points in program trees are deliberately chosen30% of the time, the other 70% are randomly chosen through the whole tree, c.f. Section2.3.6). This reduces the proportion of crossover fragments which contain only a singleterminal. Once again the genetic operators ignore the meaning of nodes within the tree.In a large diverse population these factors should have little e�ect and Price's Theoremshould hold. However when many programs are near the maximum allowed size a functionwhich has many arguments could be at a disadvantage since the potential o�spring con-taining it have a higher chance of exceeding size limits. Therefore restrictions on programsize may on average reduce the number of such functions in the next generation comparedto the number predicted by considering only �tness (i.e. by Price's Theorem). [Altenberg,1994, page 47] argues Price's theorem can be applied to genetic programming and we shallshow experimental evidence for it based on genes composed of a single GP primitive.7.1.5 Application of Price's Theorem to the GP Stack ProblemIn this section we experimentally test Price's Theorem by comparing its predictions withwhat actually happened using GP populations from the 60 runs of the stack problemdescribed in Chapter 3. Firstly we consider the change in numbers of a single primitiveand then we examine the change in frequency versus �tness for all primitives in a typicaland in a successful run.In GAs the expected number of children each individual has is determined by its �tness.On average the expected number is equal to the actual number of o�spring z (as used inPrice's theorem, i.e. in Equations 7.1 and 7.4). For example when using roulette wheelselection the expected number of children is directly proportional to the parent's �tness.When using tournament selection (as in Chapters 3 to 6) the expected number of childrenis determined by the parent's rank within the population and the tournament size (seeSection 7.4.2). The remainder of this section uses the expected number of o�spring aspredicted by the parents �tness ranking within the current population in place of z.Price's theorem predicts the properties of the next generation. In a steady state popu-lation it can be used to predict the average rate of change. However in general subsequentchanges to the population will change the predicted rate of change. For simplicity weassume that during one generation equivalent (i.e. the time taken to create as many newindividuals as there are in the population, cf. Section 2.3.2) such e�ects are small and base
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Figure 7.1: Evolution of the number of the terminal \1" in the makenull tree plus predictedchange and actual change in next generation, in typical stack (51) run.the predicted properties of the new population on linear extrapolation using the predictedrate of change.The 60 runs of the stack problem use identical parameters and di�er only in theinitial seed used by the [Park and Miller, 1988] pseudo random number generator. Forconvenience individual runs are numbered (1) to (60).The solid line in Figure 7.1 plots the evolution of the number of a particular primitive ina particular tree in the population for a typical run. (As there is no crossover between treesof di�erent types, primitives of the same type but in di�erent trees are genetically isolatedfrom each other and so Equation 7.4 can be applied independently to each tree). Thechange from one generation equivalent to the next is plotted by crosses which show goodagreement with the change predicted by linearly extrapolating the rate of change predictedby Price's theorem. Some discrepancy between the actual change and the predicted changeis expected due to \noise". That is the number of children an individual has is a stochasticfunction of its �tness (see Figure 7.6). However non-random deviations from the predictionare to be expected as linear extrapolation assumes the rate of change will not changeappreciably in the course of one generation equivalent (such as happens at generations 6and 8).Figures 7.2 to 7.5 plot the covariance of primitive frequency with normalised �tnessagainst the change in the primitives frequency in the subsequent generation (equivalent).



185While these plots show signi�cant di�erences from the straight line predicted by Equa-tion 7.4, least squares regression yields best �t lines which pass very close to the originbut (depending upon run and primitive) have slopes signi�cantly less than 1 + pc = 1:9(they lie in the range 1.18 to 1.79, see Table 7.1).Random deviations from the theory are expected but should have negligible e�ectwhen averaged by �tting the regression lines. The fact that regression coe�cients di�erfrom 1.9 is explained by the fact that we are recording changes over a generation, duringthis time it is possible for the population to change signi�cantly. We would expect thise�ect to be most noticeable for primitives with a high rate of change since these a�ectthe population! A high rate of change may not be sustainable for a whole generationand so the actual change will be less than predicted by extrapolating from its initial rateof change. However large changes have a large e�ect on least squares estimates so theseoutliers can be expected to reduce the slope of the regression line.Regression coe�cients can be calculated after excluding large values leaving only thesmaller changes. However this makes the calculation dependent on small values with highnoise. This may be exacerbated if the primitive quickly became extinct as there are fewdata points left. (When considering a typical run (51) of the stack problem and excludingcovariances outside the range �0:1 : : : +0:1 regression coe�cients were often e�ected bythis noise and lie in the range �0:96 : : : 6:28 for the twelve primitives in the empty tree).In conclusion Price's Theorem gives quantitative predictions of the short term evolutionof practical GP populations, however such predictions are a�ected by sampling noise in�nite populations and may be biased if predictions are extrapolated too far in rapidlyevolving populations. The theorem can also be used to explain the e�ects of �tnessselection on GP populations.
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188Table 7.1: Least squares regression coe�cients of covariance of primitive frequency and�RiN �4 � �Ri�1N �4 with change in frequency in the next generation for a typical (51) stackrun.Primitive makenull top pop push empty� Frequency { Intercept : GradientADD -0.026 : 1.26 -0.007 : 1.39 -0.007 : 1.33 0.035 : 1.34 0.010 : 1.78SUB -0.017 : 1.21 -0.016 : 1.44 0.006 : 1.75 -0.017 : 1.30 0.006 : 1.830 -0.001 : 1.35 0.002 : 1.46 0.011 : 1.50 0.031 : 1.34 -0.002 : 1.411 -0.015 : 1.18 -0.001 : 1.34 -0.018 : 1.17 -0.003 : 1.76 -0.002 : 1.24max 0.001 : 1.52 -0.017 : 1.34 -0.008 : 1.44 0.007 : 1.73 -0.009 : 1.79arg1 0.000 : 1.50 -0.008 : 1.60 0.018 : 1.74 0.012 : 1.39 0.001 : 1.17aux -0.025 : 1.20 0.003 : 1.61 -0.004 : 1.31 0.004 : 1.37 -0.024 : 1.29inc aux 0.006 : 1.38 0.004 : 1.67 -0.002 : 1.49 -0.011 : 1.50 -0.012 : 1.19dec aux -0.002 : 1.51 -0.001 : 1.40 -0.005 : 1.72 0.004 : 1.26 -0.001 : 1.40read -0.020 : 1.21 -0.002 : 1.40 -0.015 : 1.71 0.009 : 1.38 -0.037 : 1.54write -0.003 : 1.42 -0.002 : 1.30 0.008 : 1.46 0.015 : 1.30 -0.038 : 1.54write Aux -0.001 : 1.30 -0.011 : 1.20 -0.011 : 1.58 0.011 : 1.39 0.049 : 1.33
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Figure 7.6: Rate of producing o�spring v. �RiN �4��Ri�1N �4 in typical stack (51) run. Datacollected every generation equivalent.



1897.2 Fisher's Fundamental Theorem of Natural SelectionFisher's fundamental theorem of natural selection states \The rate of increase in �tness ofany organism at any time is equal to its genetic variance in �tness at that time" [Fisher,1958, page 37]. \Under the usual interpretation the theorem is believed to say that therate of increase in the mean �tness of a population is equal to the population's additivevariance for �tness". Since the variance can never be negative \natural selection causes acontinual increase in mean �tness of a population. This interpretation of the theorem isonly true when the population mates randomly and there is no dominance or epistasis"[Frank, 1995, page 382].An example of this usage is given in [Tackett, 1995a, page 289] which claims \Accordingto Fisher's fundamental theory" (emphasis added) \of natural selection the ability of apopulation to increase in �tness is proportional to the variance in �tness of the populationmembers."We would certainly expect epistasis (non-linear interaction between genes) to occur inmost GAs and so would not expect this interpretation of the theorem to hold. Figure 7.7shows the evolution of a stack population's �tness for one run. The error bars indicatea standard deviation either side of the mean population �tness. From Figure 7.7 we cansee the standard deviation through out the bulk of the run is consistently close to 20, i.e.the variance of the population's �tness is near 400 (20 � 20). The usual interpretation ofFisher's theorem predicts the mean �tness will continually increase but obviously this isnot the case as it remains fairly constant throughout the run and even falls occasionally.We conclude that under the usual interpretation Fisher's theorem does not normallyapply to GAs. This is important because this interpretation of Fisher's theorem has beenused as an argument in favour of GA selection schemes which produce a high variance inpopulation �tness [Tackett, 1995a, pages 272 and 290]. (There may be other reasons forpreferring these selection methods. A high �tness variance may indicate a high degree ofvariation in the population, which might be bene�cial).[Price, 1972] makes the point that Fisher's publications on his fundamental theoremof natural selection \contains the most confusing published scienti�c writing I know of"[page 134] leading to \forty years of bewilderment about what he meant" [page 132]. [Price,1972] and [Ewens, 1989; Ewens, 1992b; Ewens, 1992a] argue that the usual interpretation ofFisher's theorem is incorrect and his \�tness" should be considered as just the componentof �tness which varies linearly with gene frequency. All other e�ects, such as \dominance,epistasis, population pressure, climate, and interactions with other species { he regarded
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Figure 7.7: Evolution of Fitness in a typical stack run (51)as a matter of the environment" [Price, 1972, page 130]. Price and Ewens both give proofsfor this interpretation of Fisher's theorem but conclude that it is \mathematically correctbut less important than he thought it to be" [Price, 1972, page 140].7.3 Evolution of Stack Problem PopulationsIn this section we return to the stack problem of Chapter 3 and investigate why most runsfailed to �nd a solution. Investigation of the evolved solutions shows which primitives areessential to the correct operation of all the evolved solutions and in most runs one or moreof these becomes extinct, thus preventing the evolution of a solution like those found. Theloss of these primitive is explained using Price's Theorem by the negative covariance oftheir frequency with their �tness. Similar covariances are found in successful runs andwe conclude success requires a solution to be found quickly, before extinction of criticalprimitives occurs.Table 7.2 contains an entry for each of the �ve program trees (which each trial stackdata structure comprises) and the primitives that the tree can use (see Sections 3.2and 3.3). Where the primitive is essential to the operation of one of the four stack so-lutions found, the entry contains the number(s) of the solutions. If the primitive is notessential to the correct operation of any of the four evolved solutions (in the particulartree) the entry is blank. Primitives ADD and max are omitted as they are always blank.



191Table 7.2: Primitives Essential to the Operation of Evolved Stack ProgramsTree/Primitive Essential to Evolved Stack SolutionsTree SUB 0 1 arg1 aux inc dec read write writeaux aux Auxmakenull 4 4 1 2 3 4 1 2 3 4top 1 2 3 1 2 3 4 1 4pop 1 2 4 1 2 3 4 3 1 2 4 3push 1 2 3 4 4 1 2 3 1 2 3 4empty 4 4 1 3 4 2Table 7.3: Stack Primitives Essential to All Evolved SolutionsTree Primitive Lostmakenul 1 14makenul write Aux 7top read 21push arg1 6push write 29
Tree Alternative Primitives Both Losttop aux or write Aux 12pop inc aux or dec aux 27pop read or write 15push inc aux or dec aux 40empty aux or write Aux 9(The essential primitives are shown within shaded boxes in Figures 3.4, 3.6, 3.8 and 3.10(pages 69{71). NB in the stack problem each tree can use all of the primitives).From Table 7.2 we can identify �ve primitives which are essential to the operation ofall four evolved solutions and �ve pairs of primitives where one or other is required. Theseare shown in the two halves of Table 7.3 together with the number of runs where theywere removed from the population by 21 generation equivalents (i.e. by the point whereall four solutions had evolved).After the equivalent of 21 generations in 43 of 60 runs, the number of one or more ofthe tree-primitives shown in the lefthand side of Table 7.3 had fallen to zero. That is thepopulation no longer contained one or more primitives required to evolve a solution (likethe solutions that have been found). In 12 of the remaining 17 populations both of one ormore of the pairs of primitives shown on the right hand side of Table 7.3 had been removedfrom the population. Thus by generation 21 in all but 5 of 60 runs, the population nolonger contained primitives required to evolve solutions like those found. In four of these�ve cases solutions were evolved (in the remaining case one of the essential primitives wasalready at a low concentration, which fell to zero by the end of the run at generation 101).



192Figure 7.8 shows the evolution of six typical stack populations (runs 00, 10, 20, 30,40 and 51). For each run the �rst essential primitive (or pair or primitives) that becomesextinct is selected and its covariance of frequency with �tness in the population is plot-ted. Figure 7.8 shows the covariance is predominantly negative and thus Price's theorempredicts the primitives' frequencies will fall. Figure 7.10 con�rms this. In most cases theybecome extinct by generation nine.Figure 7.9 shows the evolution of frequency, �tness covariance for the same primitivesin a successful run (1) (Figure 7.11 shows the evolution of their frequency). While two ofthe primitives (Push/arg1 and Push/dec aux) have large positive covariances for part ofthe evolution the other four are much as the runs shown in Figure 7.8 where they werethe �rst essential primitive to become extinct. That is, in terms of correlation betweenpopulation �tness ranking and essential primitives, successful and unsuccessful runs aresimilar. It appears there is a race between �nding high �tness partial solutions on which acomplete solution can evolve and the removal of essential primitives from the populationcaused by �tness based selection. I.e. if �nding a critical building block had been delayed,it might not have been found at all as one or more essential primitives might have becomeextinct in the meantime.In successful stack run (1) by generation �ve, a solution in which top, pop and pushe�ectively use aux, write Aux, inc aux and dec aux to maintain aux as a stack pointer hasbeen discovered (c.f. Figure 7.11). This is followed by the �tness of Pop/inc aux increasingand whereas its frequency had been dropping it starts to increase preventing Pop/inc auxfrom becoming extinct, which would have prevented a solution like the one found fromevolving. This maintenance of aux as a stack pointer requires code in three trees to co-operate. An upper bound on the chance of this building block being disrupted in theo�spring of the �rst program to contain it can be calculated by assuming any crossoverin any of the three trees containing part of the building block will disrupt it. This yieldsan upper bound of 3pc=5 = 54%. In other words on average at least pr + 2pc=5 = 46%of the o�spring produced by programs containing this building block will also containthe building block and so it should spread rapidly through the population. With manyindividuals in the population containing functioning top, pop and push trees, evolution ofworking makenull and empty trees rapidly followed and a complete solution was found.
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Figure 7.8: Evolution of the covariance of primitive frequency and �RiN �4 � �Ri�1N �4 forthe �rst critical primitive (or critical pair) to become extinct. Six typical stack runs.
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Figure 7.10: Evolution of number of primitives in the population for �rst critical primitive(or critical pair) to become extinct. Six typical stack runs.
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1957.3.1 DiscussionThe loss of some critical primitives in so many runs can be explained in many cases by theexistence of high scoring partial solutions which achieve a relatively high score by savingonly one item in aux. In such programs write Aux, inc aux and dec aux may destroy thecontents of aux and are likely to be detrimental (i.e. reduced �tness). As the number ofsuch partial solutions increases write Aux, inc aux and dec aux become more of a liabilityin the current population and are progressively removed from it. Thus trapping thepopulation at the partial solution. This highlights the importance of the �tness functionthroughout the whole of the GP run. I.e. it must guide the evolution of the populationtoward the solution in the initial population, as well as later, when recognisable partialsolutions have evolved.Section 5.10 has described similar loss of primitives in the list problem and discussedpotential solutions such as mutation, demes and �tness niches to allow multiple diversepartial solutions within the population and potentially slow down the impact of �tnessselection on the population. Other approaches include: improving the �tness function (soit is no longer deceptive) e.g. by better design or using a dynamic �tness function whichchanges as the population evolves. A dynamic �tness function would aim to continuallystretch the population, keeping a carrot dangling in front of it. (This is also known asthe \Red Queen" [Carroll, 1871] approach where the population must continually improveitself). A dynamic �tness function could be pre-de�ned but dynamic GP �tness functionsare often produced by co-evolution [Hillis, 1992; Angeline and Pollack, 1993; Angeline,1993; Angeline and Pollack, 1994; Koza, 1991; Jannink, 1994; Reynolds, 1994a; Ryan, 1995;Davis, 1994]. Where it is felt certain characters will be required in the problem's solutionthe initial population and crossover can be controlled in order to ensure individuals withinthe population have these properties (Sections 4.10.3 and 5.4.2 have described ways inwhich this can be implemented).An alternative approach is to avoid specialist high level primitives (particularly wherethey interlock, so one requires another) and use only a small number of general purposeprimitives. Any partial solutions are likely to require all of them and so none will becomeextinct. This is contrary to established GP wisdom [Kinnear, Jr., 1994c, page 12], howeverrecently (at the fall 1995 AAAI GP symposium) Koza advocated the use of small functionsets containing only �ve functions (+;�;�;� and a conditional branch).



1967.4 Loss of VarietyWe de�ne variety as the number of unique individuals within the population. For exampleif a population contains three individuals A, B and C but A and B are identical (butdi�erent from C) then the variety of the population is 2 (A and B counting as one uniqueindividual). ([Koza, 1992, page 93] de�nes variety as a ratio of the number of uniqueindividuals to population size). These de�nitions have the advantage of simplicity butignore several important issues:� Individuals which are not identical may still be similar.� Individuals which are not identical may be totally di�erent, but variety makes nodistinction between this and the �rst case.� The di�erences between individuals may occur in \introns". That is in parts of theprogram tree which have no e�ect upon the program's behaviour, either becausethat part of the tree is never executed or because its e�ects are always overriddenby other code in the program. For example, the value of a particular subtree mayalways be multiplied by zero which yields a result that is always zero no matterwhat value the subtree had calculated. Two such di�erent programs have identicalbehaviour and �tness (but their o�spring may not be the same, even on average).� Behaviour of di�erent program trees may be identical, either in general or in thespeci�c test cases used to assign �tness. That is genetically diverse individuals maybehave similarly, or even identically.As [Rosca, 1996] points out, in the absence of side e�ects, diverse programs withidentical behaviour can be readily constructed if the function set contains functionsthat are associative or commutative by simple reordering of function arguments.� Even if programs behave di�erently, in general or when evaluating the given testcases, the �tness function may assign them the same �tness value. E.g. the �tnessfunction may be based upon the number of correct answers a program returns sotwo programs which pass di�erent tests but the same number of tests will have thesame �tness.Faced with the above complexity we argue that variety has the advantage of simplicityand forms a useful upper bound to the diversity of the population. That is if the varietyis low then any other measures of genetic, phenotypic or �tness diversity must also be



197low. The opposite does not hold when it is high. (Other de�nitions include �tness basedpopulation entropy [Rosca and Ballard, 1996, Section 9.5] and using the ratio of sum ofthe sizes of every program in the population to the number of distinct subtrees within thepopulation [Keijzer, 1996]).In this section we consider the variety of GP populations using the 60 runs on thestack problem as examples. Firstly (Section 7.4.1) we show how the number of uniqueindividuals evolves and then in Section 7.4.2 we present simple but general models of theevolution of variety. While these give some explanation they don't predict some importantfeatures. Detailed measurements of the stack population are presented in Section 7.4.3.These are used to give better, but more problem speci�c, explanations of the populations'behaviour. The low variety of stack populations is shown to be primarily due to thehigh number of \clones" (i.e. o�spring which are identical to their parents) produced bycrossover, which is itself a re
ection of the low variety. Thus low variety reinforces itself.In one run (23) variety collapses to near zero but in most cases it eventually hovers near60% of the population size. This is low compared to reports of 80% to 95% in [Koza, 1992,pages 159, 609 and 614] and [Keijzer, 1996].7.4.1 Loss of Variety in Stack PopulationsMeasurements show variety starts in the initial population at its maximum value withevery member of the population being di�erent. This is despite the fact there is nouniqueness check to guarantee this. Once evolution of the population starts variety fallsrapidly, but in most cases rises later to oscillate chaotically near a mean value of about60% (see Figures 7.12 to 7.15). However in one run (23) variety does not increase and thepopulation eventually converges to a single genotype and four of its o�spring (i.e. of the1000 individuals in the population there are only �ve di�erent chromosomes, with about970 copies of the �ttest of these �ve).The number of duplicate individuals created by reproduction rises rapidly initiallybut then hovers in the region of 8.5% of the population size (see Figure 7.16 on page206). This means initially most duplicate individuals are created by reproduction but thisfraction falls rapidly as more duplicates are produced by crossover so after the seventhgeneration only about a quarter of duplicate individuals in the population were created byreproduction and the remaining three quarters are created by crossover (see Figure 7.12).In stack populations, crossover produces more duplicates shortly after each new improvedsolution is found (see Figure 7.17 on page 206).
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Figure 7.12: Number of di�erent individuals in stack populations and proportion of sub-sequent duplicates produced by crossover in stack selected runs.
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Figure 7.14: Change in number of di�erent individuals in stack populations.
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2007.4.2 Evolution of Variety in a Steady State GAThe GA used in the experiments in this thesis is GP-QUICK [Singleton, 1994], which im-plements a steady-state GA [Syswerda, 1989; Syswerda, 1991b]. In GP-QUICK crossoverproduces one o�spring at a time rather than two which is immediately inserted into thepopulation displacing another, rather than collecting o�spring until a complete replace-ment population has been produced, i.e. the generation gap is one [De Jong and Sarma,1993]. A separate tournament is held to decide which member of the population to remove.De�nitionsN = Population sizeUi = A unique chrome in populationv = Number of unique chromes in populationfi = Fitness of chrome UiCi = Number of copies of Ui in populationFi = Number of individuals in population with �tness fi (Fi � Ci)g = Number of unique �tness values in population (g � v)R0 = 0Ri = Rank of Ui. ThusR1 = F1R2 = F1 + F2Ri = Pij=1 FjRg = Pgj=1 Fj = Nt = Tournament size (4 in the experiments presented in Chapters 3 to 6).k = Kill tournament size (also 4)pr = Proportion of o�spring created by reproduction (0.1)pc = Proportion of o�spring created by crossover (0.9)pr + pc = 1Tournament Selection in Steady State GAThe �tness distribution of individuals selected by tournament selection (Ri=N)t�(Ri�1=N)tcan be derived following [Blickle and Thiele, 1995, page 15]:� The chance the winner of a tournament will have �tness � fi is the same as thechance all members of the tournament have �tness � fi (if any of them have a�tness greater than fi then they would have won the tournament instead).� The chance of selecting an individual with �tness � fi = Ri=N .� As each member of the tournament is selected at random and independently fromthe others, the chance they all have �tness � fi = (Ri=N)t.



201� The chance the winner will have �tness � fi�1 = (Ri�1=N)t.� Thus the chance the winner will have �tness fi = (Ri=N)t � (Ri�1=N)t.For the kill tournament:� the chance the loser of a tournament will have �tness � fi is the same as thechance all members of the tournament have �tness � fi. The chance of selectingan individual with �tness � fi is the number of such individuals divided by thepopulation size, i.e. (N �Ri�1)=N .� Thus the chance the loser of the kill tournament will have a �tness� fi = �N�Ri�1N �k.� The chance the loser will have �tness � fi+1 = �N�RiN �k.� Thus the chance the loser will have �tness fi = �N�Ri�1N �k � �N�RiN �k :The extremes are interesting. Provided the number of individuals with the highest�tness value is small, i.e. Fg � N , the chance of selecting an individual with the best �tnessis 1��N�FgN �t � tFgN (i.e. t � random) and the chance of breeding from an individual withthe worst �tness is �F1N �t (i.e. randomt). Similarly the chance of removing an individualwith the worst �tness value (assuming F1 � N) is 1� �N�F1N �k � kF1N (i.e. k � random)and the chance of removing an individual with the best �tness is �N�Rg�1N �k = �FgN �k(i.e. randomk). Similarly when the proportion of individuals with the same �tness issmall, i.e. Fi � Ri then (using the binomial expansion of (Ri=N � Fi=N)t and droppingterms in (Fi=N)2 and above)�RiN �t � �Ri�1N �t = �RiN �t � �Ri � FiN �t� �RiN �t � �RiN �t + t�FiN ��RiN �t�1= t�FiN ��RiN �t�1That is the chance the winner of a tournament will have �tness fi is approximately(proportion of population with �tness fi) �t� �RiN �t�1. Similarly the chance the loser ofthe kill tournament will have a �tness fi is approximately (the proportion of populationwith �tness fi) �k � �N�RiN �k�1.Figure 7.6 on page 188 shows the actual rate of producing o�spring (i.e. the numberof children each individual has divided by its age) for a typical stack run. We see in mostcases the actual rate lies close to the expected rate. (Data points are concentrated at either



202end of the possible range since due to the convergence of the population most individualsare either of the highest �tness or are of low rank. Raising the rank to the third powerfurther concentrates low rank data points).Loss of VarietyNew individuals are created either by crossover or reproduction (mutation is not used inthe experiments described in Chapters 3 to 6). In reproduction a new copy of an existingindividual is created and inserted into the population. If the new individual replaces acopy of itself then the population is unchanged, if it replaces a non-unique individual(i.e. one for which the population contains copies) then the variety is unchanged. Howeverif the deleted individual was unique then the variety falls by one. NB reproduction cannever increase variety.The o�spring created by crossover can either be unique or they can be a copy ofindividuals in the population. If crossover produces a unique o�spring but the individualit replaces is also unique then there is no change in the number of unique individuals inthe population, i.e. the variety does not change. However if the population contains oneor more copies of the deleted individual then its variety increases by one. If crossoverproduces an individual which is not unique then its e�ect is just as reproduction, i.e. itmay reduce variety by one or leave it unchanged, depending upon whether the replacedindividual was unique or not.Loss of Variety { Due to reproductionExpectedchange in variety = �p(�v = �1)= �p(deleted unique) + p(parent unique & replace self) (7.5)In large populations (which are not separated into smaller demes) the chance of an indi-vidual being selected both as a parent and as the individual to be replaced will be smalland so we can drop the second term. Initially there will be no relationship between the�tness of an individual and whether it is unique or not sop(delete unique) = vN (7:6)As evolution proceeds we would expect the higher �tness individuals to have morecopies and those of lower �tness, which are more likely to be replaced, to have fewer copies,i.e. have a higher chance of being unique. Thus Equation 7.6 should be an underestimate,



203Table 7.4: Change in Variety After Creating an Individual by CrossoverO�spring Deleted IndividualUnique Uniqueno yes(1� vN ) vNno 1�Xu 0 �1yes Xu +1 0even so it should be a reasonable estimate unless the population becomes very anisotropic(when v will be low). p(�v = �1) � pr vN (7:7)I.e. the expected change in v is approximately �pr vN where N is large this discretecase can be approximated by a di�erential equation which can be solved to yield expectedv = A exp(�prG) where A is the variety in the initial population and G is the numberof generation equivalents since the initial population was created. As Figure 7.13 showsthis formula �ts the measured variety well for a few generation. However it is necessaryto consider crossover to explain later behaviour.Change in Variety { Due to CrossoverThere are four distinct cases: the individual to be deleted is unique or not and the o�springcreated is unique or not (see Table 7.4). We de�ne Xu to be the chance of crossoverproducing a unique o�spring.Once again we assume the chance of an o�spring replacing one of its parents (which isunique) can be neglected so we can again ignore terms like the second one in Equation 7.5.In a typical population we would expect it to be reasonable to treat the uniqueness of theo�spring and that of the individual it is to replace as independent of each other so wecan approximate the probability of the two events occurring together with the product ofeach's probability (cf. Equations 7.8 and 7.9).p(�v = �1) � pc(1�Xu) vN (7.8)p(�v = +1) � pcXu(1� vN ) (7.9)



204Combining 7.8 and 7.9 with 7.7 yields the expected change in variety�v � pcXu(1� vN )� pc(1�Xu) vN � pr vN= pcXu � pcXu vN � pc vN + pcXu vN � pr vN= pcXu + vN (�pcXu � pc + pcXu � pr)�v = pcXu � vN (7.10)
Constant Chance of Crossover Producing a Unique O�springIf we further assume that the chance of crossover producing a unique o�spring is constantthen we can integrate Equation 7.10 and it predicts variety will fall exponentially to anasymptotic value of pcXu and further that should variety fall below this limit then it willrise exponentially to the same limit (see Equation 7.11).While this crude model does predict some aspects of variety's behaviour it fails topredict the \overshoot" as variety initially falls below its long term value and its collapsein run (23). A slightly more sophisticated quadratic model is developed in the next section.Let x = pcXu � vN then �x = � 1N�v = � 1N xFor large N we can approximate this discrete case with a di�erential equationdx = � 1N xdgWhose solutions are of the form x = Ae� gNx = pcXu � vNpcXu � vN = Ae� gNvN = pcXu �Ae� gNFor simplicity de�ne g = 0 to be the start of the evolution of the population. FromFigure 7.12 we have v(0) = N . So1 = pcXu �AA = pcXu � 1v = N �pcXu � (pcXu � 1) e� gN � (7.11)



205It is obvious from Figure 7.12 that the assumption that Xu is constant is not valid forthe stack populations. However the initial fall in variety can be reasonably be predicted byassuming Xu � 1, in which case v = N(pc + pre� gN ) and dv=dg = �pr=Ne� gN so initiallydv=dg = �pr=N . However variety does not behave in the predicted exponential decay butin many runs \overshoots" in the �rst �ve generations or so before recovering and climbingback up. Such overshooting also appears in [Koza, 1992, page 159] on the arti�cial ant andon the six-multiplexor problems [pages 609 and 614] and in a simple symbolic regressionin [Keijzer, 1996, Figures 13.5 and 13.6] when hill climbing is used.
Quadratic Chance of Crossover Producing a Unique O�springAs an alternative to assuming the chance of crossover producing a unique o�spring isconstant this subsection investigates solutions of Equation 7.10 assuming it depends uponthe variety. As crossover uses two parents a quadratic model is tested.Analytic solutions to Equation 7.10 are obtained which also predict asymptotic decaybut there are now two asymptotes, i.e. the population can converge to two di�erent stablevariety levels. These solutions predict variety will evolve to whichever asymptote is closestto its current value. The quadratic assumption can thus model the behaviour of varietyin run (23), where it converges to near zero, by choosing appropriate constants. However,like the constant model, the quadratic model fails to predict the \overshoot" where varietyfalls below its long term limit and then rises back towards it.The failure of the two models is perhaps primarily because of their very simplicity whichignores the role of �tness in the evolution of the stack populations. As Figure 7.16 shows,apart from the �rst few generations, the number of duplicate individuals produced by thereproduction operator (copying) in stack populations remains fairly constant at slightlyless than prN so the major source of changes in variety is crossover. It appears that atcritical points in the evolution of stack populations crossover produces far fewer di�erentindividuals which are �t enough to be retained in the population and then gradually theproportion of diverse high �tness individuals increases.Typically (see Figure 7.17) �nding a solution with a higher �tness is followed by alarge fall in variety. However once the new solution has been spread, crossover producesdiverse individuals with the same high �tness which are thus retained in the populationand variety gradually rises again while the maximum �tness remains unchanged.
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Figure 7.16: Number of duplicate individuals in stack populations that were produced byreproduction in selected runs.
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Figure 7.17: Number of di�erent individuals in stack populations and change in maximum�tness in a typical stack run (51).



207Let y = vN and Xu = NPc �a+ �b+ 1N � y + c y2� so using Equation 7.10:�y = �vN= pc NPc �a+ (b+ 1=N) y + c y2�� yN= �a+ (b+ 1=N) y + c y2�� y=N= a+ b y + c y2dy = (a+ by + cy2) dg (7.12)Provided b2 � 4ac (i.e. there is at least one value of y at which dy = 0) then solutions toEquation 7.12 have the formy = �b�pb2 � 4ac tanh� (pb2�4ac)(�g�C1)22c (7.13)where C1 is an integration constant �xed by the boundary conditions. Notice that 7.13gives two solutions for y. As x� 1 or x� �1 tanhx! �1 so Equation 7.13 predicts ywill converge to limg!1 y = �b�pb2 � 4ac2c (7.14)If a � 0, i.e. when variety is very small most crossovers don't produce unique o�spring,then 7.14 becomes limg!1; a!0 y = �bc andlimg!1; a!0 y = �b+qb2(1� 4acb2 )2c= �b+ bq(1� 4acb2 )2c� �b+ b(1� 2acb2 )2c= �abNow from Figure 7.12 we know v is initiallyN and v falls initially at a rate of about 0.1,i.e. y(0) = 1 and y0(0) = �pr=N (Equation 7.15). Note Equation 7.15 is consistent with theobservation that initially almost all crossovers produce di�erent o�spring, i.e. Xu(1) = 1.



208Figure 7.12 also shows that in most cases v tends towards 600 i.e. limg!1 y = 0:6 (Equa-tion 7.16). Also should the variety fall to a very low rate we would expect it would provemore di�cult for crossover to create di�erent o�spring thus we expect a � 0 but a � 0(Equation 7.17). a+ b+ c = �pr=N (7.15)�bc = 0:6 (7.16)�b = 0:6ca = 0 (7.17)0 +�0:6c+ c = �pr=N0:4c = �pr=Nc = �pr=0:4Nc = �2:5pr=N (7.18)b = 1:5pr=N (7.19)So Equation 7.13 becomesy = �1:5pr=N �p2:56p2r=N2 + 10apr=N tanh� (p2:56p2r=N2+10apr=N)(�g�C1)2�5pr=Ny = 0:3�q0:09 + 0:4aN=pr tanh�(p2:56p2r=N2 + 10apr=N )(�g � C1)2 (7.20)Equation 7.20 predicts v will converge to either � 0:6N or � zero with a time constantof 2(2:56p2r=N2 + 10apr=N)�1=2 � 2(2:56p2r=N2)�1=2 = 2(1:6pr=N)�1 = 12:5N .If we include insisting that crossover does not introduce variety into the populationonce it has become homogeneous then Xu(0) = 0 and a = 0 and solutions to Equation7.12 have the simpler form y = bebg�cebg + bC2 ory = 0Using the same initial gradient and limit values as before implies b and c have thesame values (i.e. as given by (7.18) and (7.19)) gives the following solutions



209
y = (1:5pr=N)e1:5prg=N(2:5pr=N)e1:5prg=N + C3= 1:5e1:5prg=N2:5e1:5prg=N + C4= 0:6e1:5prg=Ne1:5prg=N + C5 or (7.21)y = 0The integration constant C5 can be �xed from the boundary conditions by de�ningg = 0 at the start of the evolution of the population when V = N , i.e. y(0) = 1. SoC5 = �0:4 and the solutions (7.21) becomey = 0:6e1:5prg=Ne1:5prg=N � 0:4 or (7.22)y = 0In Figure 7.18 the evolution of variety predicted by Equation (7.22) is superimposedon the actual variety for selected stack populations (cf. Figure 7.12).
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Figure 7.18: Variety predicted by quadratic crossover model and actual variety in selectedstack runs.



2107.4.3 Measurements of GP Crossover's E�ect on VarietyThe poor performance at intermediate points in the evolution of the stack populations ofthe general models described in the previous section leads to a detailed examination ofthe role of crossover in reducing variety in the stack populations. We discover there aretwo main causes; crossover which just involves swapping terminals and crossover whichentails replacing whole trees. Where variety is low both lead to further production ofclones of the �rst parent. Quantitative models of these two e�ects are in close agreementwith measurements.Figure 7.19 shows the proportion of cases where the o�spring produced by crossoverare identical to one or other of its parents. (In a typical stack run all o�spring which areduplicates of other members of the population are identical to one or other parent). Ina typical run of the stack problem about one third of crossovers produce o�spring whichare identical to their �rst parent. Table 7.5 gives the total number of o�spring producedby crossover during the run that are clones for various size of crossover fragments.
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Figure 7.19: Proportion of crossovers that yield o�spring identical to one or other parents,typical stack (51) run (Also shows proportion where the two parents are identical).For crossover to produce a clone of the �rst parent the fragment of code that is lostmust be identical to that copied from the second parent. As crossover fragments which aretaller are generally larger we would expect the chance of this happening to reduce rapidlywith fragment height. Whilst Table 7.5 shows this is generally true, it is de�nitely not the



211Table 7.5: Number of crossovers of each height of subtree inserted in a typical stack run(51) and number of these crossovers which produced a non-unique o�spring.Fragment height Identical toTotal % mum dad both either %1 28,783 32 9,513 38 128 9,679 322 28,277 31 18,644 60 305 19,009 623 15,360 17 1,060 79 28 1,167 44 3,884 4 303 42 6 351 15+ 13,784 15 202 33 10 245 .8Totals 90,088 100 29,722 252 477 30,451 100Percent 33 .3 .5 34case for fragment height 2.In stack run 51 18,644 individuals are produced by crossover which are identical to their�rst parent and where the inserted subtree had a height of 2, i.e. fragments consisting ofone function and its arguments which are all terminals. Of these 18,644, there were 16,536individuals where the tree in which crossover occurred contained only one function andso crossover entailed replacing the whole tree with another from the other parent, whichturned out to be identical to the �rst. In this regard the stack problem is atypical, normallytrees or ADFs will have multiple functions and we would expect few clones to be producedby crossover of trees with a of height 2. In this run of the stack problem most of theclones are produced by crossover in trees which are short (height of 2) and identical inboth parents. Thus we see clones (which reduce variety) being caused by lack of diversityin the population.Production of Clones by Crossover in Full Binary TreesIn a full binary tree of height h there are 2h � 1 nodes of which 2h�1 are terminals and2h�1 � 1 are internal nodes. Consider crossover between two identical trees where eachnode is distinct. For crossover to produce an individual which is identical to its parents thecrossover points selected in both parents must be the same. The chance of this happeningwould simply be (2h � 1)�1 if nodes were chosen at random. However the parameterpUnRestrictWt (cf. Section 2.3.6) means only 70% of crossover points are chosen totallyat random. In the remaining 30% of cases the chosen point must be an internal tree node.From Equation 7.24 we see for large trees pUnRestrictWt's e�ect is to increase the chanceof producing a clone by 9%. The probabilities for smaller trees are tabulated in Table 7.6.



212p(clone) = p(Tree1 internal)� p(Tree2 same internal) +p(Tree1 external)� p(Tree2 same external)=  (1� pany) + pany 2h � 1� 2h�12h � 1 !� p(Tree2 same internal) +pany 2h�12h � 1 � p(Tree2 same external)=  (1� pany) + pany 2h�1 � 12h � 1 !� p(Tree2 same internal) +pany 2h�12h � 1 � p(Tree2 same external)=  (1� pany) + pany 2h�1 � 12h � 1 !�  (1� pany) + pany 2h�1 � 12h � 1 ! =(2h�1 � 1) +pany 2h�12h � 1 � pany 2h�12h � 1=2h�1= �(1� pany) + pany 2h�1�12h�1 �2(2h�1 � 1) + �pany 2h�12h�1�22h�1 (7.23)As h increases p(clone) � (1� pany=2)2(2h�1 � 1) + p2any=42h�1� (1� pany=2)22h�1 + p2any=42h�1= (1� pany=2)2 + p2any=42h�1= 1� pany + p2any=4 + p2any=42h�1= 1� pany + p2any=22h�1Since pany = 0:7 for large h = 1:09 2�hp(clone) � 1:09 (2h � 1)�1 (7.24)The chance of producing a clone from two identical trees in a real GP population maynot be exactly as given by Equation 7.23. This is because: the trees may not be full binarytrees, i.e. they will be smaller if there are terminals closer to the root than the maximumheight of the tree, or if functions have one argument rather than two. Conversely trees canbe also be larger if functions have three or more arguments. Also the chance of producinga clone is increased if actual trees contain repeated subtrees.



213In the case of two identical trees of height two and crossover fragments of height twothe chance of producing a clone is equal to the chance of selecting the root in the �rst treewhich depends upon the number of arguments the tree has. For n arguments, the chanceof producing a clone is (1� pany) + pany=(n+1) = 1� n pany=(n+1) which is 65%, 53%,48% and 44% for n = 1; 2; 3 and 4. In other words given a population where the bestsolution found has a height of two and the inserted crossover fragment is also of heighttwo and there is a high chance of selecting (copies of) the individual to be both parents weexpect the o�spring to be a clone between 53% and 65% of the time, which is consistentwith the �gure of 16,536 such clones produced in a typical stack run (cf. page 211).Thus one of the major causes of the fall in variety in the stack populations can betraced to �nding partial solutions early in the evolution of the population with relativelyhigh �tness where trees within it are short. As the whole individual is composed of �vetrees, its total size need not be very small. Figure 3.16 (page 75) provides additionalevidence for this as it shows on average stack individuals shrink early in the run to 23.3at generation six. I.e. on average each tree contains 4.7 primitives and as there must bemany trees shorter than this, many trees must have a height of two or less.Production of Clones by Crossover Swapping TerminalsThe other major reason for crossover to produce clones in the stack runs is crossoverfragments which contain a single terminal (cf. Table 7.5). The proportion of clones thesecrossovers produce can be readily related to lack of diversity. The proportion of crossoverfragments which are a single terminal depends upon the depth and bushiness of the treeswithin the population, which in turn depends upon the number of arguments requiredby each function in the function set and how the distribution of functions evolves. TheTable 7.6: Chance of o�spring being identical to parents when crossing two identical fullbinary treesTree height Chance of clone pany = 11 1 1.000 1.0002 �(1� pany) + pany 13�2 + (pany 23 )22 0.393 .3333 ((1�pany)+pany 37)23 + (pany 47 )24 .160 .1434 ((1�pany)+pany 715 )27 + (pany 815 )28 .074 .0675 ((1�pany)+pany 1531 )215 + (pany 1631 )216 .035 .032



214Table 7.7: Chance of selecting a terminal as a crossover fragment in a full binary treeHeight Both parents1 100 % 100 %2 47 % 22 %3 40 % 16 %4 37 % 14 %1 35 % 12.25 %proportion of crossover fragments which are a single terminal is clearly problem dependentand changes with run and generation within the run, however as a �rst approximation inthe stack problem it can be treated as a constant for each type of tree (cf. Figure 7.21).For a full binary tree of height h the chance of selecting a terminal as a crossoverfragment is pany2h�1=(2h � 1) and the chance of crossover swapping two terminals is�pany2h�1=(2h � 1)�2. Table 7.7 gives the numerical values for trees of di�erent heights.Note the chance of selecting a terminal converges rapidly to 35% for large trees.If parents were chosen at random the chance of selecting the same terminal in twotrees would be simply the sum of the squares of their proportions in the population. Thusif the terminals are equally likely (as would be expected in the initial population) thechance of selecting two the same is just the reciprocal of the number of terminals and thisrises as variety falls eventually reaching unity if all but one terminal are removed fromthe population. Figure 7.20 shows how this measure evolves for each tree in a sample ofstack runs. Note in run (23) all �ve trees quickly converge on a single terminal. In manyof the other runs the population concentrates on one or two terminals, so the chance ofan o�spring produced by changing a single terminal being a clone of one of its parents ismuch increased.Typically 15.8% of crossovers replace one terminal with another terminal (cf. Ta-ble 7.8). This is near the proportion expected for full binary trees with a height of threeor more. Table 7.8 shows reasonable agreement between the predicted number of clonesproduced by crossover inserting a single terminal and the actual number averaged over atypical run of the stack problem.The second major source of crossover produced reduction in variety (cf. Table 7.5) isthus explained by the fall in terminal diversity, itself a product of the fall in variety. Soagain we see low variety being reinforced by crossover, i.e. the reversal of its expected roleof creating new individuals.
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Figure 7.20: Evolution of (Terminal Concentration)2 in each operation tree, for six typicalstack runs and run (23).
Table 7.8: Number of clones produced by changing a terminal in run (51) of the stackproblemTree No. Crossovers Terminal Only P(term conc)2 Predicted Actualmakenull 18,020 3,326 .924424 3,074.6 3,075top 17,914 3,022 .798273 2,412.4 2,684pop 18,013 4,895 .565901 2,770.1 2,819push 18,021 2,306 .318201 733.8 740empty 18,120 668 .511968 342.0 339Totals 90,088 14,217 9,334.9 9,657
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Figure 7.21: Proportion of crossovers where a terminal is inserted for six typical stackruns and run (23) (averaged across all �ve trees within each individual).7.5 Measurements of GP Crossover's E�ectsIn this section we analyse how successful crossover is at �nding new solutions with higher�tness and conclude in the case of the stack problem, crossover quickly tires and the rateof �nding improvements slows rapidly so after generation eight very few are found andtypically no improvements are found after generation 16. Note this includes all crossoversnot just those that produce o�spring that are better than anyone else in the population.Table 7.9 gives the number of crossovers which produced an o�spring �tter than bothits parents, for run (23), six typical runs and the four successful runs. The successful runsproduce about 50% more successful crossovers than typical runs. The parents of success-ful crossovers and their o�spring are plotted in Figures 7.22 and 7.23 for a typical and asuccessful run respectively. However the number of successful crossovers is more than thenumber of di�erent �tness values, that is there are �tness values which have been \dis-covered" by multiple successful crossovers. Clusters of particularly popular �tness valuesthat were \rediscovered" many times can be seen in Figures 7.22 and 7.23. E.g. �tnessvalue 128 is discovered 22 times in run (51) (22 is 13% of all the successful crossovers).The proportion of successful crossovers in six selected stack runs is shown in Fig-ure 7.24. Note the number of crossovers that produce improved o�spring is small andquickly falls so after generation 16 there are almost no crossovers that improve on bothparents (or indeed improve on either).



217Table 7.9: No. of Successful Crossovers, in Typical and Successful Stack RunsRun Crossover point in Tree Total Best FitnessMakenull Top Pop Push Empty23 33 32 54 18 46 183 13000 22 34 57 43 20 176 10810 27 34 85 29 24 199 10820 36 41 31 13 59 180 12830 22 25 44 21 44 156 13151 38 31 48 16 30 163 13940 63 75 50 26 90 304 15027 72 67 47 18 53 257 16032 69 56 42 25 77 269 16009 42 63 54 22 75 256 16053 33 55 44 38 25 195 160Figure 7.25 shows the �tness of individuals selected to be crossover parents. This showsthe convergence of the population with almost all parents having the maximum �tnessvalue. (The asymmetry of the �tness function makes the mean �tness of the populationlower than the �tness of the median individual).7.6 DiscussionNatural evolution of species requires variation within a population of individuals as well asselection for survival and reproduction. In the previous sections we have seen how, even onthe most basic measure, variety in the stack populations falls to low levels primarily dueto crossover producing copies of the �rst parent at high rates. Initially this is caused bythe discovery of relatively high �tness partial solutions containing very small trees whichdominate the population, reducing variety which causes feedback via crossover producedclones so keeping variety low, in one case causing it to collapse entirely. As we argued inSection 7.3, in most stack runs lack of variety with corresponding extinctions of primitivesprevents solutions like those found from evolving.In any genetic search a balance between searching the whole search space for an opti-mum and concentrating the search in particular regions is required. Some convergence ofthe population is expected as the GA concentrates on particularly fruitful areas. In moststack runs partial solutions are found which act similarly to a stack of one item and soreceive a high relative �tness and the population begins to converge to them. This would
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Figure 7.22: All crossovers that produced o�spring �tter than both parents, typical stackrun (51).
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Figure 7.23: All crossovers that produced o�spring �tter than both parents, successful run(09).
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220be �ne apart from two problems: �rstly the solutions contain short trees which causesrapid production of clones but more seriously there is no straightforward path from theirimplementation of a stack of one item to a general stack of many items. These two prob-lems are to some extent speci�c to the stack problem, the �ve tree architecture and theterminal/function set used. A smaller terminal/function set without special primitives tomanipulate \aux", having only general primitives and indexed memory, might avoid thetrapping by \deceptive solutions" but partial solutions of any sort might then not evolvein a reasonable time. (Interestingly [Bruce, 1995] adopts a similar terminal/function setin his experiments on the evolution of stacks and other data structures). In the stackproblem each terminal and function can appear in each of the �ve trees but crossoveracts only between like trees so each tree is genetically isolated from each other. (Thisis known as branch typing and is commonly used with ADFs [Koza, 1994, page 86]. Analternative point typing allows crossover to move genetic material between trees). Branchtyping means there are e�ectively 5 � 12 = 60 primitives in the stack problem. [Andre,1996] also reports GP runs with similar numbers of primitives where one or more functionseither evolved out of the population (i.e. became extinct) or became rare and suggests itwas a factor in the decision to use mutation (albeit at a low rate). However he cautionsthat further experiments are required for con�rmation.The impact of deceptive partial solutions within the population might be reduced bypartitioning the population into \demes" (c.f. Section 2.3.7), using �tness niches to ensurediverse solutions are retained (c.f. Section 2.3.8) or perhaps using co-evolution to rewardsolutions to parts of the test case which most of the population is unable to solve.Mutation could also be used to increase population diversity (as discussed in Sec-tion 5.10) but a high mutation rate might be required to escape from a deceptive localoptimum. This would increase the degree of randomness in the search but might introducea bene�cial element of \hill climbing".While other GPs may not su�er from lack of variety, convergence of some sort is re-quired if the GP is not to be random search. For example [Keijzer, 1996] shows convergencein terms of subtrees with GP populations reusing subtrees in many individuals. (GP maytake advantage of this by reducing the space taken to store the population in memory[Keijzer, 1996] and on disk (by using �le compression, see Section E.7). Where side-e�ectsare controlled, retaining information on the evaluation of common subtrees within thepopulation can also considerably reduce program execution time, c.f. Section E.5 and[Handley, 1994a]).



221Existing GP systems could be modi�ed to:1. Increase variety by disabling the production of clones by the reproduction operator,e.g. by setting pr to zero.2. Detect when an o�spring is identical to one of its parents. This information can bereadily gathered and can be used either to:(a) reduce GP run time or(b) Increase variety.In many problems (a) can be readily achieved by avoiding the �tness evaluationof the o�spring and instead just copying the �tness value of its (identical) parent.Variety can be kept high (b) by preventing the duplicate o�spring from entering thepopulation. Typically this would prevent all duplicates produced by crossover. (Itwould also be feasible to guarantee every member of the population is unique byforbidding duplicates from entering the population. Using hashing techniques thiscan be done e�ciently).Given current GP populations sizes it would appear to be sensible to ensure varietyremains high so the compromise between converging on good search location and exploringuntried areas retains a high degree of exploration. Thus both changes 1. and 2.b) shouldbe tried.The use of pr = 0:1 in this thesis stems from the decision to use parameters as similar to[Koza, 1992] as possible. It is also the supplied default value with GP-QUICK [Singleton,1994]. However the use of reproduction is not universal, for example the CGPS [Nordin,1994a; Nordin and Banzhaf, 1995a; Francone et al., 1996] does not implement it. As far asis known, GP systems do not currently detect that crossover has produced a child which isidentical to one of its parents for the purposes of either reducing run time (2.a) or increasingvariety (2.b). [Koza, 1992, page 93] ensures every member of the initial population isunique but allows duplicates in subsequent generations. While hashing allows detection ofduplicates in the whole population to be done quickly, in these experiments most duplicateswere directly related to each other and so could be readily detected without comparisonwith the whole population.It appears to be common practice for GP to \run out of steam" so after 20{30 gen-erations no further improvement in the best �tness value in the population occurs orimprovement occurs at a very low rate. Accordingly few GP runs are continued beyond



222generation 50. ([Iba et al., 1994a]'s STROGANOFF system provides a counter examplewith runs of 400 generations). It is suggested that failure of crossover to improve on thebest individual in the population may, as we saw in Section 7.5, be accompanied by ageneral failure of crossover to make any improvement. This \death of crossover" meansfurther evolution of the population is due to unequal production of individuals with thesame (or worse) �tness as their parents, in �tness terms (and possible also phenotypi-cally) at best they are copies of their parents. Typically this serves only to increase theconvergence of the population.An number of attempts to \scale up" GP have been made based upon imposing func-tional abstraction on individuals in the population [Koza, 1994; Angeline, 1993; Rosca,1995]. These have had a degree of success. Another approach is to accept that complexproblems will require many generations to solve and look to the various mechanisms de-scribed above and new techniques to allow long periods of GP evolution with controlledconvergence of the GP population and means to retain and reuse (partial) solutions.7.7 SummaryIn this chapter we discussed Price's selection and covariance theorem and showed it canbe applied to genetic algorithms and applied it to genetic programming, where we used itto explain the evolution of the frequency of various critical primitives in stack populationsincluding their rapid extinction in many cases. These extinctions are seen as the mainreason why many runs of the stack problem (described in Chapter 3) failed. In Section7.4 it was shown that the loss of these primitives was accompanied by a general loss invariety and general models were developed to try and explain this. While these predictedthe initial as well as the �nal evolution of the stack populations, they were less successfulat describing the middle portion. Quantitatively successful models based upon full binarytrees of particular heights were developed. Section 7.5 concludes by looking at just thesuccessful crossovers in the stack runs and concludes they are small in number, in manycases they \rediscover" solutions that have already been found and convergence of thepopulation is accompanied by absence of crossovers that produce o�spring �tter than theirparents as well as none that are �tter than the best existing individuals in the population.To some extent these problems are fundamental. Viewing GP as a search process thereis necessarily a trade-o� between concentrating the search in promising parts of the searchspace which increases the chance of �nding local optima versus a wider ranging searchwhich may therefore be unsuccessful but may also �nd a more remote but better global



223optimum. In GA terms a local search corresponds to a more converged population. Thestack experiments indicate, after the fact, that the search was too focused too early andso the global optima were missed in many runs. There are many techniques that can beused to ensure population diversity remains high (and so the search is defocused) suchas splitting the population into demes, �tness niches and mutation, some of which wereused in Chapters 4, 5 and 6 and Appendix D. Techniques based on biased mate selectionto preserve diversity are discussed in [Ryan, 1994].Defocusing the search means the search is more random and will take longer, if indeed itsucceeds. Other approaches to avoid getting trapped at local optima (\premature conver-gence") change the search space, for example by changing the representation by changingthe primitives from which solutions are composed or changing the �tness function.Changing the primitives can easily be done by hand. It would be interesting to discoverto what extend the problems are due to provision of the auxiliary registers which allowthe evolution of stacks but also allow ready formation of deceptive partial solutions. Ifthese were not used, would stacks still evolve? It is interesting that [Bruce, 1995] uses verysimilar additional memory in his work. Alternatively perhaps cleverer genetic operationscould avoid the trap by changing programs from using one type of memory to another ina consistent manner so new programs continue to work as before. While strongly typedGP can reduce the size of the search space [Montana, 1995], it may also transform it sothat it is easier to search.There are a number of techniques which automatically change the representation. Thefollowing three techniques co-evolve the representation as the population itself evolves;The Genetic Library Builder (GLiB) [Angeline, 1994], Automatically De�ned Functions(ADFs) [Koza, 1994] and Adaptive Representations [Rosca, 1995]. [Koza, 1994, page 619]argues ADFs and other representations provide a di�erent lens with which to view thesolution space and that ADFs may help solve a problem by providing a better lens. ADFswere used in Chapters 4, 5 and 6.The �tness function may be readily changed by hand. For example provision of anadditional test case may \plug a gap" which GP populations are exploiting to achievehigh �tness on the test case but at the expense of not generalising to the problem asa whole. Co-evolution can provide an automatic means of dynamically changing the�tness function [Siegel, 1994]. There is increasing interest in using co-evolution [Sen, 1996;Reynolds, 1994a; Ryan, 1995] and improved performance has been claimed [Hillis, 1992].However a more dynamic framework makes analysis of population behaviour harder.



224In GP runs the concentration of primitives and variety within the population shouldbe monitored (both can be done with little overhead). Should a primitive fall to low con-centration (such as close to the background level provided by mutation) or total extinctionthis should be taken as an indication of possible problems and so worthy of further inves-tigation. Similarly if the number of unique individuals in the population falls below 90%this should also be investigated. [Keijzer, 1996] provides a means to measure the concen-tration of groups of primitives (sub trees) but the implementation is not straightforwardfor most existing GP systems and the interpretation of the results is more complex.



Chapter 8Conclusions
The key to successful human produced software is using abstraction to control the complex-ity of each task in hand. I.e. in each task, being able to use objects without considering indetail how they interact. The objects are abstractions of lower level code or data, whichare in turn abstractions of still lower levels. Thus a programmer may use a �le whileknowing nothing about how to program the disk drive on which it is stored. Indeed theprogram can continue to work even if the �le is moved to another disk drive, even if it is ofa di�erent type, even a type which had not been designed when the program was written.Genetic programming, with its undirected random program creation, would appear tobe the anathema of highly organised software engineering. It is an evolutionary technique,using only information in its current population. It does not plan ahead or use a globaltop-down design but we have already seen, via ADFs and other techniques, it too can gainconsiderable bene�t from functional abstraction.While GP work to date has concentrated on functional abstraction, we argue thattechniques which allow GP to take advantage of data abstraction will be essential toenable it to scale up and tackle large real problems. Chapters 3, 4 and 5 show GP canproduce structured data types (stacks, queues and lists). In Chapter 6 we demonstrate GPcan use data abstraction, by solving three problems. For the two more complex exampleswe have shown a stack abstract data type is bene�cial. While the �rst example does notrequire a stack, a general solution was evolved which used the appropriate data structure.The failure of indexed memory to solve the two more complex problems, is disappointing,but was expected. While it is anticipated that it is possible to evolve solutions to the twoproblems using indexed memory, e.g. if increased resources are available, the richness ofinteractions supported by indexed memory allows complex interactions to arise and thesecomplicate the search space making it harder to search. This problem is a general one.The search e�ort increases rapidly with problem complexity. While other research has225



226shown changes to the representation (e.g. ADFs and more powerful primitives) can help,this work has shown that reducing the complexity of evolved programs through use of dataabstraction to control interactions within evolving programs can also be bene�cial.Appendices C and D have demonstrated that both the combination of a GA and handcoded heuristic, and a GP using the same heuristics as seeds in the initial populationcan produce low cost maintenance schedules for a real world electrical power transmissionnetwork.In many of the problems in this thesis, general scalable solutions have been evolved.This is very encouraging. Perhaps general algorithms are easier for GP to �nd? It maybe argued on the basis of the Minimum Description Length (MDL) principle or Occam'sRazor that general programs tend to be shorter than programs which are speci�c to thetest case and fail to generalise [Iba et al., 1994b; Zhang and M�uhlenbein, 1995b]. Non-general program may \memorise" the tests and need to be longer and more complex todo this. Perhaps solutions occur more frequently in the search space of shorter programsor perhaps GP is less e�ective at searching for longer programs?The idea that symbolic regression is compressing the training data into a program, canbe inverted. If a required program's size can be estimated, then so too can its informationcontent. This gives a lower bound on the information content of the training data andthus, a lower bound on the size of the training set. This indicates that the volume oftraining data will need to increase as we try and evolve more ambitious programs. If wecontinue to test all evolved programs on all the training set then GP machine resourceusage will grow at least quadratically with task complexity. However techniques such asco-evolution [Angeline and Pollack, 1993], soft brood selection [Tackett, 1995a] and sparsetraining sets [Francone et al., 1996] indicate it may not be necessary to exhaustively testevery evolved program.8.1 RecommendationsA number of practical recommendations for GP work can be made. To a large extentthe advice in [Kinnear, Jr., 1994c] and [Koza, 1992] remains sound, however a number ofadditional suggestions can be made:1. GP populations should be closely studied as they evolve. There are several propertiesthat can be easily measure which give indication of problems:



227(a) Frequency of primitives. Recognising when a primitive has been completelylost from the population (or its frequency has fallen to a low level, consistentwith the mutation rate) may help to diagnose problems.(b) Population variety. If the variety falls below 90% of the population size, thisindicates there may be a problem. However a high variety does not indicate allis well. Measuring phenotypic variation (i.e. diversity of behaviour) may alsobe useful.2. Measures should be taken to encourage population diversity. Panmictic steady statepopulations with tournament selection and reproduction and crossover appear toconverge too readily. The above metrics may indicate if this is happening in aparticular case. Possible solutions include:(a) Removal of the reproduction operator.(b) Addition of one or more mutation operators.(c) Smaller tournament sizes and/or using uniform random selection to decidewhich individuals to remove from the population. NB the latter means theselection scheme is no longer elitist. It may be worthwhile forcing it to beelitist.(d) Splitting large populations, i.e. above 1000, into semi-isolated demes.(e) Using �tness sharing to encourage the formation of many �tness niches.3. Use of �tness caches (either when executing an individual or between ancestors andchildren) can reduce run time and may repay the additional work involved with usingthem.4. Where GP run time is long, periodically save the current state of the run. Shouldthe system crash; the run can be restarted, from part way through rather than theat the start. Care should be taken to save the entire state, so restarting a run doesnot introduce any unknown variation.The bulk of the state to be saved is the current population. This can be compressed,e.g. using gzip. While compression can add a few percent to run time, reductions indisk space to less than one bit per primitive in the population have been achieved.



2288.2 Future workThere are many interesting questions raised by the work in this thesis. There are a numberof techniques that have been introduced or which are fairly new to GP which warrantfurther investigation to further explore their bene�ts or clarify the best circumstances inwhich to use them. Examples include:� Multi-objective �tness functions.� Pareto �tness.� Fitness Niches.� Fitness Sharing.� Design of primitive sets and �tness functions (particularly concerning deceptive �t-ness functions and representations).� Semantic and syntactic restrictions on evolving programs or parts of programs.� Scoping rules.� Reducing run time via caching or inheriting partial �tness information from ances-tors.However the failure of GP to evolve data structures \on the 
y" is the most important.Aspects that could be investigated include: Is the failure speci�c to the problems tried, theprimitive sets used or insu�cient resources dedicated to the task? If the later how muchextra resources are required? While these are possible explanations, it is felt that thisfailure is part of the general di�culty of scaling up GP to solve more complex problemsand so its solution would have a direct bearing on the fundamental scaling problem forGP.The addition of data structures greatly extends the power of genetic programming.GP plus data structures should be evaluated on such problems. The use of stack datastructures with other context free languages is an obvious �rst step.
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Appendix ANumber of Fitness EvaluationsRequired
Table A.1 summarises the estimated e�ort, in terms of the number of trial solutionsevaluated, required to solve (with at least 99% assurance) the problems presented in thisthesis. Where problems were not solved a lower bound has been calculated based onassuming the very next run would have succeeded by generation 25.The number of program executions required (for 99% probability of solving the prob-lem) is estimated by multiplying the number of trial solutions by the mean number oftimes each was run during its �tness testing. Where the mean number of program execu-tions per program tested is not available, the maximum is used to give an estimated upperbound. Run time reductions via: ancestor �tness re-use (cf. Section E.5), ADF caching(cf. Section E.6) and avoiding �tness evaluation of individuals produced by reproduction,are excluded.
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Table A.1: Number of trial programs that must be generated to solve problems(with � 99% assurance) and the corresponding total number of program executionsProblem Name Parameters E�ort Runs/Eval ExecutionsTable Page (�103) Max Mean (�106)Stack 3.2 62 938 160 { 150Queue: shu�er 4.5 98 383,680 320 { 123,000Given Modulus Increment 4.7 103 3,360 320 320 1,075Evolving Modulus Increment 4.10 112 86,000 320 320 27,520List 5.3 132 254,000 538 173 44,000List in two parts (Section 5.9) 5.3 132 2,580 538 406 1,050Nested Brackets (register) 6.1 154 190 1,403 1,403 266Dyck Language(stack given) 6.3 158 230 1,756 729 167(indexed memory) 6.3 158 � 18; 000 1,756 788 � 14; 000Reverse Polish Expressions(stack given) 6.5 164 2,530 970 900 2,300(indexed memory) 6.5 164 � 68; 750 970 822 � 57; 000



Appendix BGenetic Programming {Computers using \NaturalSelection" to generate programsABSTRACTComputers that \program themselves"; science fact or �ction? Genetic Programming usesnovel optimisation techniques to \evolve" simple programs; mimicking the way humansconstruct programs by progressively re-writing them. Trial programs are repeatedly modi-�ed in the search for \better/�tter" solutions. The underlying basis is Genetic Algorithms(GAs).Genetic Algorithms, pioneered by [Holland, 1992], [Goldberg, 1989] and others, is theevolutionary search technique inspired by natural selection (i.e survival of the �ttest). GAswork with a \population" of trial solutions to a problem, frequently encoded as strings,and repeatedly select the \�tter" solutions, attempting to evolve better ones. The powerof GAs is being demonstrated for an increasing range of applications; �nancial, imaging,VLSI circuit layout, gas pipeline control and production scheduling [Davis, 1991]. Butone of the most intriguing uses of GAs { launched by Koza [Koza, 1992] { is automaticprogram generation.Genetic Programming applies GAs to a \population" of programs - typically encodedas tree-structures. Trial programs perhaps in LISP, or even C, are evaluated againsta \�tness function" and the best solutions selected for modi�cation and re-evaluation.This modi�cation-evaluation cycle is repeated until a \correct" program is produced. GPhas demonstrated its potential by evolving simple programs for medical signal �lters,modelling complex chemical reactions, performing optical character recognition, and fortarget identi�cation. 263



264This appendix surveys the exciting �eld of Genetic Programming. As a basis it re-views Genetic Algorithms and automatic program generation. Next it introduces GeneticProgramming, describing its history and describing the technique via a worked examplein C. Then using a taxonomy for GP research, it surveys recent work with sections oneach of the �ve GP steps (Primitives, Fitness measure, Control Parameters, Terminationcriterion and Architecture) and lists some of the GP development tools. Finally we sur-vey pioneering GP applications with sections on Prediction and Classi�cation, Image andSignal Processing, Optimisation, Trading, Robots, Arti�cial Life and Artistic uses of GP.A glossary is also included (page 295).
Keywords { Automatic Programming, Machine Learning, Genetic Algorithms, GeneticProgramming.



265B.1 IntroductionGenetic programming is a technique which enables computers to solve problems with-out being explicitly programmed. It works by using genetic algorithms to automaticallygenerate computer programs.Genetic algorithms were devised by John Holland as a way of harnessing the power ofnatural evolution for use within computers. Natural evolution has seen the development ofcomplex organisms (e.g. plants and animals) from simpler single celled life forms. Holland'sGAs are simple models of the essentials of natural evolution and inheritance.The growth of plants and animals from seeds or eggs is primarily controlled by thegenes they inherited from their parents. The genes are stored on one or more strands ofDNA. In asexual reproduction the DNA is a copy of the parent's DNA, possibly with somerandom changes, known as mutations. In sexual reproduction, DNA from both parents isinherited by the new individual. Often about half of each parent's DNA is copied to thechild where it joins with DNA copied from the other parent. The child's DNA is usuallydi�erent from that in either parent.Natural evolution arises as only the �ttest individuals survive to reproduce and so passon their DNA to subsequent generations. That is DNA which produces �tter individualsis likely to increase in proportion in the population. As the DNA within the populationchanges, the species as a whole changes, i.e. it evolves as a result of selective survival ofthe individuals of which it is composed.Genetic algorithms contain a \population" of trial solutions to a problem, typicallyeach individual in the population is modelled by a string representing its DNA. Thispopulation is \evolved" by repeatedly selecting the \�tter" solutions and producing newsolution from them (cf. \survival of the �ttest"), the new solutions replacing existingsolutions in the population. New individuals are created either asexually (i.e. copying thestring) or sexually (i.e. creating a new string from parts of two parent strings).In genetic programming the individuals in the population are computer programs. Toease the process of creating new programs from two parent programs, the programs arewritten as trees. New programs are produced by removing branches from one tree andinserting them into another. This simple process ensures that the new program is also atree and so is also syntactically valid.As an example, suppose we wish a genetic program to calculate y = x2. Our populationof programs might contain a program which calculates y = 2x � x (see Figure B.1) and
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Figure B.2: Dad, �tness .70588, xxx�x3 � xanother which calculates y = xxx�x3 �x (Figure B.2). Both are selected from the populationbecause they produce answers similar to y = x2 (Figure B.4), i.e. they are of high �tness.When a selected branch (shown shaded) is moved from the father program and inserted inthe mother (displacing the existing branch, also shown shaded) a new program is producedwhich may have even high �tness. In this case the resulting program (Figure B.3) actuallycalculates y = x2 and so this program is the output of our GP.The remainder of this appendix describes genetic algorithms in more detail, placingthem in the context of search techniques, then explains genetic programming, its history,the �ve steps to GP, shows these steps being used in our example and gives a taxonomyof current GP research and applications, which are presented in some detail.
-

x+

x *

x xFigure B.3: Correct Program, �tness 1.0, x+ x2 � x



267

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

Figure B.4: x2 (solid), test points (dots), values returned by mum (2x � x, dashed) anddad ( xxx�x3 � x, small dashed)B.2 Genetic AlgorithmsGenetic algorithms are perhaps the closest computation model to natural evolution. Theirsuccess at searching complex non-linear spaces and general robustness has led to their usein a number of practical problems such as scheduling, �nancial modeling and optimisation.The inventor of genetic algorithms, John Holland [Holland, 1992], took his inspirationfor them from nature. Genetic algorithms contain a population of individuals, each ofwhich has a known �tness. The population is evolved through successive generations, theindividuals in each new generation are bred from the �tter individuals of the previousgeneration. The process continues through successive generations until we decide to stopit. As with the breeding of domestic animals, we choose the individuals to breed from(using a �tness function) to drive the population's evolution in the direction we want it togo. As with domestic animals, it may take many generations to produce individuals withthe required characteristics.Inside a computer an individual's �tness is usually calculated directly from its DNA(i.e. without the need to grow it) and so only the DNA need be represented. Usuallygenetic algorithms represent DNA by a �xed length vector. Where a genetic algorithm is
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Parent 00 1 1 0 11

Child 0 1 1 0 111Figure B.5: Genetic Algorithms - Mutation
Parents 1 0 1 0 11 1

.  .  .  .  .  .  . .  .  .  .

.  .  .  .  .  .  . .  .  .  .

0 01 1 0 10

Child 00 11 00 11 0 0 1Figure B.6: Genetic Algorithms - Crossoverbeing used for optimisation, each individual is a point in the search space and is evaluatedby the �tness function to yield a number indicating how good that point is. If any pointis good enough, the genetic algorithm stops and the solution is simply this point. If notthen a new population, containing the next generation, is bred.The breeding of a new generation is inspired by nature; new vectors are bred from the�tter vectors in the current generation, using either asexual or sexual reproduction. Inasexual reproduction, the parent vector is simply copied (possibly with random changes,i.e. mutations). Figure B.5 shows a child vector being created by mutating a single gene(in this case each gene is represented by a single bit). With sexual reproduction, two of the�tter vectors are chosen and the new vector is created by sequentially copying sequencesalternately from each parent. Typically only two or three sequences are used, and thepoint(s) where the copying crosses over to the other parent is chosen at random. This isknown as crossover. Figure B.6 shows a child being formed �rstly by copying four genesfrom the lefthand parent then the three remaining genes are copied from the righthandparent. Figure B.7 shows the genetic algorithm cycle.Holland in his paper \Genetic Algorithms and the Optimal Allocation of Trials" [Hol-land, 1973] shows, via his schemata theorem, that in certain circumstances genetic algo-rithms make good use of information from the search so far to guide the choice of newpoints to search. [Goldberg, 1989] gives a less mathematical treatment of the schematatheorem.Holland argues that the elements of the vector should be as simple as possible, in manycases single bits are used. Nature seems to agree, as it constructs DNA from only four(rather than two) components.
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1 0 0 1 0 10Figure B.7: The Genetic Algorithm CycleThe schemata theorem requires the vector representation and �tness function be de-signed so that the required solution can be composed of short fragments of vectors which,if present in a vector, give it a relatively high �tness regardless of the contents of the restof the vector. These are known as building blocks. They can be thought of as collectionsof genes which work well together.Given building blocks exist, genetic algorithms, even starting from a random collectionof vectors, can progressively select the vectors with building blocks and using the crossoveroperator gradually splice these together until the population contains vectors which aresubstantially correct.B.2.1 Search TechniquesThere are a large number of well established search techniques in use within the informationtechnology industry, Figure B.8 categorises them.Enumerative techniques, in principle, search every possible point one point at a time.They can be simple to implement but the number of possible points may be too large fordirect search. In some cases, e.g. game playing [Uiterwijk et al., 1989], it is possible tocurtail the search so that points in regions which cannot contain the solution are notchecked.
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Figure B.8: Search TechniquesCalculus based techniques treat the search space as a continuous multi-dimensionalfunction and look for maxima (or minima) using its derivative. Indirect methods use thatfact that at the extrema the function's derivative is zero. Where the function is smooththe volume of space where its derivative is zero can be a very small sample of the wholesearch space.Direct calculus techniques such as Fibonacci andNewton use the gradient/functionvalues to estimate the location of nearby extrema. These techniques, and others, are knownas Hill Climbing techniques because they estimate where a maximum (i.e. hill top) lies,move to that point, make a new estimate, move to it and so on until they reach the top ofthe hill. These techniques can be used upon \well behaved" problems or problems whichcan be transformed to become \well behaved".Stochastic search techniques use information from the search so far to guide theprobabilistic choice of the next point(s) to try. They are general in their scope, being ableto solve some very complex problems that are beyond the abilities of either enumerative orcalculus techniques. Simulated annealing searches for minimum energy states using ananalogy based upon the physical annealing process, where large soft low energy crystalscan be formed in some metals (e.g. copper) by heating and then slow cooling [Kirkpatricket al., 1983].



271Evolutionary algorithms are based upon Darwin's Natural Selection theory of evo-lution, where a population is progressively improved by selectively discarding the worseand breeding new children from the better. In Evolutionary Strategies points in thesearch space are represented by a vector of real values. Each new point is created byadding random noise to the current one. If the new point is better search proceeds fromit, if not the older point is retained. (Historically Evolutionary Strategies search only onepoint at a time but more recently they have become more like genetic algorithms by usinga population of points [Back et al., 1991]). In contrast, a genetic algorithm representspoints in the search space by a vector of discrete (typically) bit values. Each new child isproduced by combining parts of the bit vector from each parent. This is analogous to theway chromosomes of DNA (which contains the inherited genetic material) are passed tochildren in natural systems.B.2.2 Automatic Program GenerationA computer program can be thought of as a particular point within a search space of allsuch programs and so computer programming can be thought of as searching this spacefor a suitable program. Human programmers exercise their skills to direct their search sothey �nd a suitable program as quickly as possible. There are many tools (such as highlevel languages and code generators) which transform the search space to make it easierfor the human navigator to �nd his goal.When programming neural networks, calculus based search techniques such as backpropagation are often used. (Simulated Annealing, Evolution Strategy and Genetic algo-rithms have also been used to program arti�cial neural networks). Calculus based searchtechniques are possible because the search space has been transformed (and simpli�ed)so that it is smooth. When the search has succeeded the neural network is said to havebeen trained, i.e. a suitable combination of connection weights has been found. Note thata program (a neural network) has been automatically generated by searching for it.An alternative to implementing a general transformation that converts the vast discretespace of possible programs into a continuous one (which is su�ciently well behaved as toallow it to be searched by calculus based techniques) is to search the original space itself.The discrete nature of this space prevents the use of calculus based techniques and thevast number of possible programs make enumerative search infeasible, however there hasbeen some success with some stochastic search techniques.Table B.1 lists the stochastic search techniques used with the classes of programming



272languages. It appears work has been concentrated on using genetic algorithms. The re-mainder of the appendix concentrates on the recent success achieved by combining geneticalgorithms with traditional programming. The term genetic programming was suggestedby David Goldberg to describe the automatic production of programs by using a hierar-chical genetic algorithm to search the space of possible programs.B.2.3 GA Representation and ExecutionThe normal use of the term genetic programming implies the data structures being evolvedcan be run as computer programs. The term has also been applied to using a geneticalgorithm to evolve data structures which must be translated into another form beforethey can be executed. Both linear and tree (or hierarchical) data structures have beenused. This process can be likened to an individual (the executable program) growingaccording to the instructions held in its DNA (the genetic algorithm's data structures).The �nal form is often a neural network. Many ways of representing a network usinga genetic algorithm have been used [Polani and Uthmann, 1993; Romaniak, 1993; Zhangand M�uhlenbein, 1993; Harvey et al., 1993]. An especially powerful way of representinga network is cellular encoding [Gruau, 1993]. [Gruau, 1993] shows cellular encoding,inconjunction with a hierarchical genetic algorithm, can automatically produce complexneural networks with a high degree of modularity. Cellular encoding has also been usedto specify �nite state automata [Brave, 1996b] and electronic circuits [Koza et al., 1996b;Koza et al., 1996a]. [Kodjabachian and Meyer, 1994] summaries various approaches toevolving arti�cial nervous systems.B.3 Genetic ProgrammingB.3.1 HistoryThe idea of combining genetic algorithms (GAs) and computer programs is not new, itwas considered in the early days of genetic algorithms. However John Holland's work oncombining genetic algorithms and production languages, rather than tradition computerlanguages, was more actively pursued. This work led to classi�ers.Richard Forsyth's BEAGLE [Forsyth, 1981] evolves programs (rules) using a (GAlike) algorithm. The rules are tree structured boolean expressions, including arithmeticoperations and comparisons. BEAGLE's rules use its own speci�c language, howeverForsyth did suggest at some point in the future Lisp might be used. BEAGLE is nowcommercially available as an expert system (see Section B.5.1).
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Table B.1: Automatic Programming using Stochastic SearchClass of Programming LanguageSearch Technique Traditional Logic (e.g.Prolog) ExpertSystems(Rule based) Finite StateMachinesSimulated Annealing 1.Evolution Strategy EvolutionProgramGenetic Algorithms GeneticProgramming 2. BEAGLEClassi�ers 3. 4.While the above table shows most work on automatically producing programs by applyingstochastic search to programming languages has been on genetic programming, classi�ersor evolutionary programming, some work has been carried out in other areas. The numbersin the following list refer to those in cells in the above table.1. [Andrews and Prager, 1994; O'Reilly and Oppacher, 1994] show some problems canbe solved using simulated annealing (SA) and stochastic iterated hill climbing searchtechniques with a GP (i.e. tree) representation. While [O'Reilly, 1996] suggestsSA can be advantageous in program search, [Sharman and Esparcia-Alcazar, 1993]suggest a hybrid where SA is used to tune numerical constants within GP programs.2. Nachbar has demonstrated evolving programs written in Mathematica [Nachbar,1995] and some work has been done on using genetic programming with Prolog[Nordin, 1994b].3. In Classi�ers [Holland et al., 1986] a genetic algorithm, plus other techniques, isused to automatically generate both a rule base and its interconnections. [Feldman,1993], amongst others, has used genetic algorithms to evolve aspects of Fuzzy Logicsystems.4. [Dunay et al., 1994] evolved �nite state automata which recognised simple reg-ular languages. Later work [Dunay and Petry, 1995; Petry and Dunay, 1995]evolved Turing Machines which recognised simple regular and context free languages,while [Zomorodian, 1995] evolved push down automata for recognising the balancedbracket context free language. Self demonstrated a genetic algorithm evolving aTuring Machine which recognised three bit even parity but had less success withother more complex problems [Self, 1992].



274Nichael Cramer also applied genetic algorithms directly to special computer program-ming languages [Cramer, 1985] but it was John Koza [Koza, 1992] who successfully appliedgenetic algorithms to Lisp and showed that in this form genetic algorithms are applicableto a range of problems. Techniques like his have come to be known as \genetic program-ming". Koza claims [Koza, 1992, page 697] genetic programming to be the most generalmachine learning paradigm.A simple approach of breeding machine code and even FORTRAN source code whichignores the syntax fails because the programs produced are highly unlikely to compile orrun, let alone approach the required solution [De Jong, 1987] (however see Section B.4.1).There are countless examples of apparently minor syntax errors causing programs to mis-behave in a dramatic fashion. These two facts foster the common belief that all computerprograms are fragile. In fact this is not true; many programs are used and yield economicbene�t despite the fact that they are subject to many minor changes, introduced duringmaintenance or version upgrades. Almost all programs are produced by people makingprogressive improvements.Genetic programming allows the machine to emulate, to some extent, what a persondoes, i.e. to make progressive improvements. It does this by repeatedly combining pairs ofexisting programs to produce new ones, and does so in a way as to ensure the new programsare syntactically correct and executable. Progressive improvement is made by testing eachchange and only keeping the better changes. Again this is similar to how people program,however people exercise considerable skill and knowledge in choosing where to change aprogram and how; genetic programming, at present, has no such knowledge and must relyon chance and a great deal more trial and error.Many variations of the basic genetic algorithm have been tried; in genetic program-ming the �xed length vectors are replaced by programs. Usually, a tree (or structured orhierarchical) representation of the program is used and individuals in the population areof di�erent sizes. Given the new representation, the new genetic operators such as treecrossover must be used. As Figure B.9 shows tree crossover acts within branches of thetree to ensure that the the programs it produces are still trees and have a legal syntax.Thus genetic programming is fundamentally di�erent from simply shu�ing lines of For-tran or machine code. The sequence of operations in genetic programming is essentiallyas that for other genetic algorithms (see Figure B.10).
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Figure B.9: Genetic Programming Crossover:x2 + (x+ (x� x)) crossed with 2x2 to produce 2x2 + x.
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277B.3.2 Basic ChoicesKoza says there are �ve preliminary steps to solving a problem using genetic program-ming; choosing the terminals (1), the functions (2), the �tness function (3), the controlparameters (4) and the termination criterion (5). (In his later work [Koza, 1994], Kozaadds a sixth step; determining the architecture in terms of the program's automaticallyde�ned functions (ADFs). However he also shows that it can be possible (but not neces-sarily easy) for correct programs to be evolved even with arbitrary choices for his sixthstep. ADFs are discussed in Sections B.4.5 and 2.2.6).In Koza's terminology, the terminals (1) and the functions (2) are the components ofthe programs. In Figure B.9 functions +, � and � are used, they form the junctions inthe tree. In Figure B.9 the only terminal is x which forms the end leafs. The connectionsbetween the terminals and functions indicate the order in which operations are to beperformed. For example the top left tree in Figure B.9 shows a program which calculates(x � x) + (x + (x � x)). Note how the brackets, which denote the order of evaluation,correspond to the structure of the tree.The choice of components of the program (i.e. terminals and functions) and the �tnessfunction (3) largely determine the space which genetic programming searches, consequentlyhow di�cult that search is and ultimately how successful it will be.The control parameters (4) include the size of the population, the rate of crossoverand mutation etc. The termination criterion (5) is simply a rule for stopping. Typicallythe rule is to stop either on �nding a program which solves the problem or after a givennumber of generations, e.g. 50.B.3.3 ExampleIn this subsection we will outline a very simple example of genetic programming. We willuse it to perform symbolic regression on a set of test values. That is we will �nd a formula(symbolic expression, program) whose result matches the output of the test values.One use of symbolic regression is prediction, for once such a formula has been found,it can be used to predict the output given a new set of inputs. E.g. given a history ofstock prices, symbolic regression may �nd a formula relating the price on the next day toearlier ones, so allowing us to predict the price tomorrow.In our very simple example the test values are related by the formula y = x2. (TheC code for this example is available via anonymous ftp from cs.ucl.ac.uk, directory genetic.The interested reader is invited to copy this code and try their own examples. Similar



278polynomials e.g. x3, x+x2, x4�x3+x2�x may be produced by changing the test valuesand possibly population size).Following the �ve steps outlined in the previous section:1. The leafs (terminals) on our programming trees will be the input value, x.2. Our program will use the four 
oating point arithmetic operators +, �, � and �.Our choice is guided by the expectation that output will be a simple polynomial ofx. If we guess wrongly then it may not be possible to devise a correct program givenour functions and terminals. We can add others but this will increase the numberof possible programs to search, which might slow down the search.The terminals and functions are chosen so that any function can have as any of itsarguments any terminal or any function call. This allows programs to be assembledfrom any mixture of terminals and functions (this property is known as closure, seealso Section B.4.1). In our case all terminals and functions are of type \float".To avoid divide by zero errors, we de�ne divide by zero to be unity. Note as allthe functions have two operands, the programs evolved will each have the form of abinary tree.3. Fitness is calculate by executing each program with each of nine x values and com-paring each answer with the corresponding y value. The nine (x; y) pairs are chosenso that y = x2. They are shown as dots in Figure B.14. To yield a number whichincreases as the program's answer gets closer to the y value, 1.0 is added to the ab-solute di�erence between the programs value and the corresponding y and the resultis inverted. (Adding 1.0 avoids the possibility of divide by zero). The �nal �tness isthe mean of all nine calculations.If the program is within either 0.01 or 0:01�y we call this a hit, indicating that thisis close enough.4. We chose control parameters so that:� there are 16 individuals in the population;� on average 60% of new individuals are created by crossover;� of the other 40%, 99% are direct copies from the previous generation and� 1% (i.e. .004) are mutated copies;
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Figure B.12: Dad, �tness .70588, xxx�x3 � x� our programs contain no more than 25 nodes (i.e. no more than 12 functionsand 13 terminals).5. We stop when we have a found a program that correctly matches all nine test points(i.e. there are nine hits) or when we reach 50 generations.On one run the following 100% correct code was generated:float gp( float x ){ return ((x+(x)*(x))-(x));} By noting x-x is zero and removing excessive brackets it can be seen that the returnstatement is equivalent to return (x*x); i.e. C code to calculate x2.This 100% correct program is shown in Figure B.13. It was produced by crossoverbetween the two programs shown in Figures B.11 and B.12, both of which were of aboveaverage �tness. The subtrees a�ected by the crossover are shown shaded. It can be seenthat the net e�ect of crossover is to replace the middle x with a subtree which calculatesx2 and this yields a program which is exactly equivalent to x2.
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Figure B.14: x2 (solid), test points (dots), values returned by mum (2x � x, dashed) anddad ( xxx�x3 � x, small dashed)Figure B.14 shows the values calculated by the two parent programs against the testpoints (which their o�spring calculates exactly).B.3.4 TaxonomyTable B.2 shows how the �eld of genetic programming is expanding. Several strands canbe seen:1. The adoption of exotic genetic algorithm techniques by genetic programming (Sec-tion B.4.7).2. Various changes to the syntax of the programs to be evolved (Section B.4.1).3. Incorporating state or database information within a genetic program (Section B.4.1).



281Table B.2: Taxonomy of Genetic ProgrammingActive Topics in Genetic ProgrammingAdoptingExotic GAtechniques ProgramSyntax Incorpor-atingStateInformation EvolvingProgramModules ProgramSize andE�ciency MoreImplement-ations Increasingnumbersof Applic-ations4. Measures to allow programs to be evolved from program modules and to simultane-ously evolve the modules (Section B.4.5).5. Measures aimed at either reducing the size of the evolved programs or increasingtheir e�ciency or a combination of both (Section B.4.2).6. An increasing number of implementations, many of them in the public domain (Sec-tion B.4.8).7. An increasing number of applications (Section B.5).Section B.6 draws together some conclusions and guesses as to where genetic program-ming may lead.B.4 GP ResearchB.4.1 Program RepresentationIn most genetic programming work the programs being evolved are represented by a pre�xtree structured syntax. For the most part the LISP language is used. This section describesexperiments with other syntax.[Keith and Martin, 1994] considered pre�x, post�x and hybrid (mix�x) languages butconclude that their linear pre�x language and its jump table interpreter are the moree�cient. (The GP-QUICK interpretter used in this thesis, implements their linear pre�xjump table approach).[Perkis, 1994] uses a linear post�x language and claims some advantages over themore standard tree approach. [Banzhaf, 1993] also uses a linear approach but variousoperations convert this to a tree shaped program which is executed. However of the linearchromosome approachs perhaps the most surprising and successful is [Nordin, 1994a] inwhich the representation is a small (up to 1000 bytes) machine code program. Enormous(more than thousand fold) speed ups in comparsion with LISP are claimed. The successof Nordin's approach may be due to the use of a simple machine architecture (SUN RISC)



282which is further restricted so only some machine operations are allowed. In [Nordin, 1994a]there was considerable loss of generality: there is no branching or looping, the program is of�xed length (12 instructions), the program is speci�c to the SUN SPARK RISC instructionset and only a few instructions are used. Later work [Nordin and Banzhaf, 1995a] extendedthe system so that it was fully Turing complete, however this full functionality need notbe used [Francone et al., 1996; Nordin and Banzhaf, 1996].Extended ClosureIn almost all genetic programming work the terminals and functions are chosen so thatthey can be used with each other without restriction. This is achieved by requiring thatthe system be closed so that all terminals are of one type and all functions can operateon this type and always yield a result also of this type. For example measures are takento protect against divide by zero errors.In Montana's Strongly Typed Genetic Programming (STGP) [Montana, 1994] a geneticprogram can contain multiple di�erent types simultaneously. When manipulating theprogram (e.g. using crossover) care is taken that not only are there the correct numberof arguments for each function but that they are of the expected type. This leads to anincrease in the complexity of the rules that must be followed when selecting crossoverpoints. However Montana shows that tight type checking can considerably reduce the sizeof the search space, which he says will reduce the e�ort to �nd the solution. Generic typesare allowed in order to reduce the number of functions which must be explicitly speci�ed.Other, more active, ways of using program syntax or run time behaviour have beendiscussed in Section 2.3.6.Genetic Programming and State InformationMost computer programs make extensive use of storage, yet in almost all genetic pro-gramming examples, each genetic program is a function of its inputs and almost all stor-age requirements are dealt with by the framework used to support the genetic programs.Some of Koza's examples include limited storage which is used via side e�ects. This is incontrast with Cramer's work where a small number of global integers within the evolvingprogram form the framework for input and output but are also available for storage.[Teller, 1994a] includes explicitly 20 small integer storage cells. The programs heevolves may freely use them. This problem, a mobile robot simulation problem, waschosen because it has not been solved (either by genetic or human programming) without



283some form of storage. He states that this allows genetic programming to tackle all casesof machine learning which are turing computable. Teller's read and write primitives havealso been used by [Andre, 1994b] and [Jannink, 1994].Montana uses a similar approach in STGP (cf. previous subsection). In STGP primi-tives SET-VAR-i and GET-VAR-i are used to set and read a particular variable's (i) value.The variable may be of a complex type, e.g. a vector.B.4.2 Fitness MeasureMost genetic programming work uses a single �tness criterion namely the functionality ofthe program, ignoring issues such as size and run time. There has been some interest inusing Pareto scoring [Goldberg, 1989; Fonseca and Fleming, 1995], which allows membersof the population to be scored or compared using multiple criteria, such as functionalityand run time. Scoring systems which combine several criteria (such as functionality ande�ciency) to yield a single �tness score have been tried with some success.Program SizeMany examples attach no importance to the e�ciency or size (parsimony) of the programsproduced, the only important factor is how close the result given by the program is tobeing correct. Perhaps as a consequence many of the evolved programs are large (i.e. non-parsimonious). However in some cases, such as classi�cation, the size of the program isimportant in itself, rather than as an indicator of wasteful coding. In such cases the sizeof the program gives an indication of lack of generality or over�tting training data. Thenext subsection presents one approach to this problem.[Koza, 1992] and [Kinnear, Jr., 1993b] have combined program size with how well itworks to yield a composite �tness. In Koza's example a functionally correct program wasevolved of near theoretically minimum size. However more e�ort, that is more �tnessevaluations, were required to evolve the correct program than when program size wasignored. Kinnear found he could evolve more general solutions by adding a term inverselyproportional to program length to its �tness.Minium Description LengthOne of De Jong's arguments against the combination of traditional general purpose com-puter programming languages and genetic algorithms [De Jong, 1987] was that the be-haviour of program statements written in such languages depend upon statements before



284it. [Iba et al., 1994b] have considered the problems of symbolic regression and classi�cationusing problem speci�c languages which are better behaved with respect to changes in theorder of statements. In one case (GMDH) they show that earlier statements cannot reducethe value of latter ones. Such languages �t well with the schema theorem if we view goodsubtrees like good schema. These languages ensure that good overall individuals can beconstructed of good schema, thus we should expect a genetic algorithm to perform well.Iba etal use Quinlan's \decision trees", which are designed to classify sets of inputs.They allocate �tness based upon Quinlan's \Minimum Description Length" (MDL) whichgives a natural means of basing �tness not just upon how well the program (or decisiontree, in this case) performs but also on its size. Other investigators have used arbitrarycombinations of program size and score to calculate a composite �tness. MDL is calculatedby considering how many bits are needed to code the program and how many to code adescription of its error, i.e. those cases where it returns the wrong answer.MDL = Tree Coding Length+Exception Coding LengthwhereTree Coding Length = (nt + nf ) + nt log2 T + nf log2 Fnt is the total number of terminals and nf is the total number of function calls in thetree. T is the number of terminals in the terminal set and similarly F is the size of thefunction set.Exception Coding Length =Px2Terminals L(nx; wx; nx)The summation is taken over all leafs in the program. nx is the number of casesrepresented by the particular leaf, x, and wx is the number of such cases which are wronglyclassi�ed. L(n; k; b) is the total number of bits required to encode n bits given k are 1sand b is an upper bound on k:L(n; k; b) = log2(b+ 1) + log2( nk !)Iba etal's STROGANOFF system is used to perform symbolic regression (i.e. to �ndformulae, or programs, that adequately match the output associated with a given set ofinputs). STOGANOFF uses an MDL based �tness together with program trees composedof GMDH primitives. The GMDH terminals are the inputs on which we wish to performsymbolic regression. The GMDH functions each have a two inputs, their output is aquadratic function of the two inputs:Gz1;z2(z1; z2) = a0 + a1z1 + a2z2 + a3z1z2 + a4z21 + a5z22Good results have been obtained with both decision trees and STROGANOFF usingsmall populations (e.g. 60).



285Program E�ciencyGenetic programming determines the �tness of an individual by running it. This makesit, compared to other genetic algorithms, particularly susceptible to badly behaving indi-viduals. Badly behaved programs can be produced where there are recursive or iterativefeatures, as these promote very long or even in�nite loops. The presence of only one suchprogram in the population e�ectively halts the whole genetic programming system. Wherea program may be expected not to halt (or take a very long time) [Koza, 1992] implementsad-hoc loop limits which time out badly behaving individuals and give them poor �tnessscores.A more general mechanism to ensure programs which loop in�nitely do not hang upthe system has been suggested by [Maxwell III, 1994]. This applies an external timelimit after which programs are interrupted if they are still running, thus allowing othermembers of the population to be run. The interrupted program is not aborted but is givena partial �tness. The partial �tness is used when selecting which programs to breed fromand which are to be replaced by the new programs created. Programs which remain inthe population are allowed to run for another time interval. Looping programs are givenlow partial �tness and so are eventually removed from the population, as new programsare bred. Maxwell claims his technique \e�ectively removes arbitrary limits on executiontime (e.g. iteration limits) and yet still produces solutions in �nite time" and often it willrequire \less e�ort" and produce solutions of \greater e�ciency". Teller's PADO systemtakes an \anytime approach" which gives each program a �xed time to execute. When thisexpires the program is stopped and the results are extracted from it whether the programhad �nished or not [Teller and Veloso, 1995b, Section 2.1].
B.4.3 Control ParametersWhilst there are many possible control parameters the one of most direct interest is thepopulation size. Whilst [Goldberg et al., 1991] gives a population sizing rule for certaingenetic algorithms, it would appear that most GP populations are smaller than theiroptimum being constrained by the available machine resources [Koza, 1994]. With theincreasing use of large memory parallel machines we can expect population sizes to increaseand so consideration of what is the optimum population size will be required.



286B.4.4 Termination CriterionThe most common termination criterion is to stop the evolution of genetic program wheneither an exact or approximate solution is reached or 50 generations (or generation equiv-alents) is reached. This was used in most of Koza's original work [Koza, 1992] and hasbeen adopted widely, an exception is the work described in Section B.4.2 on MDL wheremany more generation have been used. As with population size, the number of maximumnumber of generation allowed has a large e�ect upon the machine resources used. [Koza,1992] argues that in many cases it is more e�ective to run a GP several times rather thanincrease the number of generations used by any one run.B.4.5 ArchitectureThe problems on which genetic programming has been successfully demonstrated have, inthe main been small. A common technique that people use when tackling any complexproblem is to decompose it into smaller problems and to tackle each of these independently.In computer programming, the separate solutions or modules are combined to yield a largeprogram which, all being well, solves the original problem. A high degree of skill is neededin choosing how to decompose the problem. Genetic programming has, of course, nosuch skill, however despite this there has been some success with incorporating a degreeof modularity into genetic programming. Two distinct approaches have been tried tointroduce modularity, Automatically De�ned Functions (ADF) and Encapsulation, bothwith a measure of success.Automatically De�ned FunctionsADFs are evolvable functions (subroutines) within an evolving genetic program, which themain routine of the program can call. Typically each ADF is a separate tree; consisting ofits arguments (which are the terminals) and the same functions as the main program tree(possibly plus calls to other ADFs). If side e�ects are prohibited, ADFs act as functionalbuilding blocks. Crossover acting on the main program can then rearrange these buildingblocks within the program. ADFs can also be evolved, e.g. when crossover acts upon them.The overall format of the program is preserved by ensuring crossover and other geneticoperations acts only within each ADF. That is code cannot be exchanged by crossoverbetween ADFs and the main program. (Koza has demonstrated that it is possible to relaxthis restriction allowing crossover between program branches but the rules required toensure the resulting o�spring are still syntactically correct are much more complex [Koza,



2871994]). The main program's function set is extended to allow (but not require) it to callthe ADFs.ADFs have been successfully used on problems that proved too di�cult for geneticprogramming without ADFs.EncapsulationThe Genetic Library Builder (GLiB) [Angeline, 1994] implements encapsulation by addinga complementary pair of genetic operators, compression (encapsulation) and decompres-sion which are applied to any point in the genetic program chosen at random. Compressiontakes (part of) the subtree at the given point and converts it in to a function which isstored in a library. Those parts of the subtree not included in the function become itsarguments. The original code is replaced by the function call. Decompression is the re-placement of a function with its de�nition, i.e. it reverses the compression operator. Oncecode is encapsulated in a function it is protected from dissociation by crossover or otheroperators. The functions produced may be any mixture of functions, terminals and itsown arguments. Thus they need not be modular in the software engineering sense. Inone comparison [Kinnear, Jr., 1994a], it was found the ADF approach was superior to thestandard non-ADF approach whereas no improvement was seen with encapsulation.Rosca's ARL approach is similar to GLiB but considerably more \intelligence" is usedin deciding what is placed in the library, when this is done and what is removed from it[Rosca and Ballard, 1996].B.4.6 GP MutationMutation was not used in [Koza, 1992] and [Koza, 1994], as Koza wished to demonstratemutation was not necessary and GP was not performing a simple random search. This hasin
uenced the �eld so mutation is often omitted from GP runs. E.g. mutation is not usedin this thesis, except in Appendix D. While mutation is not necessary for GP to solvemany problems, [O'Reilly, 1995] argues that, in some cases, mutation (in combination withsimulated annealing (see Section B.2.1 page 270) or stochastic iterated hill climbing) canperform as well as GP using crossover. Mutation is increasingly used in GP, especially inmodelling applications and Koza now advises use of a low level of mutation. For examplemutation is used in [Koza et al., 1996c].With linear bit string GAs, mutation usually consists of random changes in bit values.In contrast, in GP there are many mutation operators in use.



288Subtree mutation replaces a randomly selected subtree with another randomly createdsubtree [Koza, 1992, page 106].[Kinnear, Jr., 1993a] de�nes a similar mutation operator but with a restriction thatprevents the o�spring's depth being more then 15% larger than its parent.Node replacement mutation is similar to bit string mutation in that it randomly changesa point in the individual. In linear GAs the change would be a bit but in GP a nodein the tree is randomly selected and randomly changed. To ensure the tree remainslegal, the replacement tree has the same number of arguments as the node it isreplacing, e.g. [McKay et al., 1995, page 488].Hoist creates a new o�spring individual which is copy of a randomly chosen subtree ofthe parent. Thus the o�spring will be smaller than the parent and have a di�erentroot node [Kinnear, Jr., 1994b].Shrink replaces a randomly chosen subtree with a randomly created terminal [Angeline,1996a]. This is a special case of subtree mutation where the replacement tree is aterminal. As with hoist, it is motivated by the desire to reduce program size.Permutation [Koza, 1992] does not used permutation [page 106], except for one experi-ment [page 600] which shows it having little e�ect. In contrast [Maxwell, 1996] hasmore success with a mutation operator swap (which is a special case of pemutation,in that it swaps the order of arguments of binary non-commutative functions, ratherthan acting on any function).Mutating Constants at Random [Schoenauer et al., 1995] mutates constants by addinggaussianly distributed random noise to them. NB each change to a constant is a sep-arate mutation.Mutating Constants Systematically [McKay et al., 1995, page 489] uses a mutationoperator that operates on terminals, replacing input variables by constants (and viceversa). However \Whenever a new constant is introduced" : : : \a non-linear leastsquares optimisation is performed to obtain the `best' value of the constant(s)".[Schoenauer et al., 1995] also uses a mutation operator that e�ects all constants inan individual using \a numerical partial gradient ascent is achieved to reach thenearest local optimum".While [Sharman et al., 1995] uses simulated annealing to update numerical values(which represent signal ampli�cation gains) within individuals.



289Multiple types of mutation are often used simultaneously e.g. [Kraft et al., 1994] and[Angeline, 1996a].
B.4.7 GA Techniques used in GPSome genetic programming researchers have adopted a number of exotic techniques fromthe genetic algorithms world. Table B.3 (based on [Goldberg, 1989]) lists exotic geneticalgorithm techniques and indicates which have been considered or adopted by geneticprogramming researchers. As Table B.3 shows, many of these have been tried but somehave yet to be explored.Table B.3: Exotic GA Techniques Applied to Genetic ProgrammingGenetic Algorithms Technique Genetic Programming Reference ThesisFitness Scaling [Iba et al., 1994b]Rank and Tournament Selection [Angeline, 1994] [Koza, 1994] pCoevolution [Angeline and Pollack, 1993] [Siegel,1994][Koza, 1992]Steady State Populations [Reynolds, 1992] [Tackett and Carmi,1994] [Koza, 1994] pParallel processors [Singleton, 1993] [Openshaw and Tur-ton, 1994] [Andre and Koza, 1995][Juille and Pollack, 1995]Inversion and Permutation [Koza, 1992] [Maxwell, 1996]Diplodity, Dominance and Abeyance [Angeline, 1994]Introns, Segregation, Translocationand Multiple Chromosomes [Angeline, 1994] [Wineberg and Op-pacher, 1994] [Nordin et al., 1995] [An-dre and Teller, 1996]Duplication and DeletionSexual Determination andDi�erentiationSpeciation, Restrictive Mating,Demes and Niches [Tackett and Carmi, 1994][D'haeseleer and Bluming, 1994] [Ab-bott, 1991] [Ryan, 1994] pMultiobjectives pHybrids [Zhang and M�uhlenbein, 1993][Gruau, 1993]Knowledge-augmentationApproximate function evaluation [Koza, 1992]



290 Table B.4: Some Public Domain Genetic Programming ImplementationsName Author Language NotesImplementation EvolvedKoza Lisp Lisp Code from[Koza, 1992] & [Koza,1994], widely copiedSGPC Tackettand Carmi C own Can import/exportLispGPSRegress Nguyen Mathematica Mathematica Package to do sym-bolic regressionCEREBRUM Dudey Lisp ANN (in Lisp) Framework for geneticprogramming of neuralnetworksgpcplus3 Fraser C++ owngepetto Glowacki C own Similar to SGPC butwith enhancementsGP-QUICK Singleton C++ own Described in [Single-ton, 1994]GPEIST White Smalltalk 80lilgp Punch C Supports ADFs andmultiple populationsB.4.8 GP Development ToolsAlmost all of the genetic programming experiments described in this appendix have usedimplementations either written or adapted by the experimenter. Table B.4 lists the generalpurpose genetic programming implementations that have been placed in the public domain,Table B.5 list others that have been described. [Deakin and Yates, 1996] brie
y describesan evaluation of some of these tools, additionally [Tufts, 1996] may be useful.
B.5 GP ApplicationsThis section brie
y lists real applications where genetic programming has been tried.Although these are real world applications the claims for genetic programming should notbe over stated, i.e. the success of genetic programming should not be taken as implyingthere are no better techniques available for the particular application.



291Table B.5: Some other Genetic Programming ImplementationsName Author Language NotesImplementation EvolvedSTGP Montana C++ Ada/Lisp Section B.4.1STROGA-NOFF Iba, de Garis,Sato Decision TreesGMDH Section B.4.2Section B.4.2GLiB Angeline Section B.4.5SSGP CraigReynolds Steady State GPGP-GIM AndrewSingleton C++ 486 distributednetwork desk topsupercomputingDGPC David Andre C Used in recent ex-periments by Kozaand his studentsB.5.1 Prediction and Classi�cationAlthough developed before the term genetic programming was coined, BEAGLE [Forsyth,1981] may be classi�ed as a genetic programming system in that it evolves tree structuredprograms. BEAGLE is a rule-�nder program that uses a database of case histories to guidethe evolution of a set of decision rules (programs) for classifying those examples. Oncefound the rule base (knowledge base) can be used to classify new examples. BEAGLE iscommercially available and has been widely applied; e.g. in insurance, weather forecasting,�nance and forensic science [Ribeiro Filho et al., 1994]. Another modelling system is BioX[Bettenhausen et al., 1995], which has been used to model chemical reactions and river
ows.[Handley, 1993] uses genetic programming to predict the shape of proteins. He was ableto evolve programs which, using the protein's chemical composition, were able to predictwhether each part of a protein would have a particular geometric shape (an �-helix) ornot. Genetic programming was able to do this broadly as well as other techniques butall su�ered from the fact that the structure depends upon more than local composition.[Koza, 1994] reports similar success on other protein geometry problems.[Iba et al., 1993] use genetic programming to �t chaotic time series data, see Sec-tion B.4.2.[Masand, 1994] has demonstrated a genetic programming system that learned whichnews stories an automatic technique would have di�culty classifying (so that they could



292be classi�ed manually). On a de�ned set of test news stories, the best genetically producedprogram was better than the best human coded program at specifying con�dence valuesfor the automatically classi�ed news stories.Andre has successfully used genetic programming in optical character recognition prob-lems (OCR). In [Andre, 1994a] he combines genetic programming with a two dimensionalgenetic algorithm to produce an OCR program from scratch. In [Andre, 1994c] he showsgenetic programming can be used to maintain existing hand coded programs. He showsgenetic programming automatically extending an existing manually written OCR pro-gram so that it can be used with an additional font. It is perhaps on routine maintenanceproblems, such as this, that genetic programming will �nd most immediate commercialapplication.B.5.2 Image and Signal Processing[Tackett, 1993] describes the use of genetic programming to extract targets from lowcontrast noisy pictures. Various (�20) standard metrics are abstracted from the imageusing standard techniques, which are then processed by a genetic program to yield targetdetails.[Oakley, 1994] describes obtaining blood 
ow rates within human toes using laserDoppler measurement. These measurements are both noisy and chaotic. He comparesthe e�ectiveness (at removing noise but preserving the underlying signal) of special �l-ters evolved by genetic programming and various standard �lters. He concludes that acombination of genetic programming and heuristics is the most e�ective.B.5.3 Optimisation[Koza et al., 1996b] shows the automatic design of electrical circuits to meet onerous designrequirements.[Nguyen and Huang, 1994] have used genetic programming to evolve 3-D jet aircraftmodels, however the determination of which models are �tter is done manually. This workis similar to that in Section B.5.7; however the aircraft models are more complex.B.5.4 Trading[Andrews and Prager, 1994] used genetic programming to create strategies which havetraded in simulated commodity and futures markets (the double auction tournamentsheld by the Santa-Fe Institute, Arizona, USA). Their automatically evolved strategieshave proved superior to many hand-coded strategies.



293A number of commercial �rms are also active in this area.B.5.5 RobotsOne the current active strands in robot research is the development of independent mobilerobots which are programmed to react to their environment rather than to follow a globalplan [Brooks, 1991]. Until recently such robots had been hand coded however Spencerhas been able to use genetic programming to automatically generate a control programenabling a simulated six legged robot to walk [Spencer, 1994]. [Gruau and Quatramaran,1996] and [Nordin and Banzhaf, 1995b] have evolved control programs and run them onreal robots using GP.B.5.6 Arti�cial LifeArti�cial Life is the study of natural life by using computer simulations of it. There isa ready connection to autonomous robots. For example, evolving a program to control arobot's leg may be considered either as an engineering problem or as a simulation of a realinsect's leg.One aspect of Arti�cial Life is the study of natural evolution using computer simula-tion. Early simulations [Ray, 1991] relied heavily upon mutation but genetic algorithms(e.g. [Sims, 1994] and genetic programming using crossover have also been used more re-cently. For example [Reynolds, 1992] describes a simulation of herding behaviour basedupon genetic programming [Reynolds, 1994c; Reynolds, 1994b]. Reynolds' \boids" tech-nique has been used as a basis for photorealistic imagery of bat swarms in the �lms\Batman Returns" and \Cli�hanger" [Reynolds, 1996].[Handley, 1994b; Haynes et al., 1995b; Iba, 1996a; Qureshi, 1996; Raik and Durnota,1994; Luke and Spector, 1996; Zhang et al., 1996] have also applied genetic programming toautonomous agents. However various multi agent pursuit \games" in distributed arti�cialintelligence (DAI) have already been considered using genetic algorithms with a linearchromosome [Manela, 1993].B.5.7 ArtisticThere have been a number of uses of genetic programming, perhaps inspired by Dawkins'morphs [Dawkins, 1986] or Karl Sims' panspermia, which generate patterns on a computerdisplay. Singleton, with his Doodle Garden, has taken this as far as a commercial product,where the patterns grown can be used as pleasing screen savers.



294[Das et al., 1994] uses genetic programming to generate sounds and three dimensionalshapes. Virtual reality techniques are used to present these to the user. As in Section B.5.3,there is a manual �tness function, with the user indicating a preference between the fourobjects presented to him. [Spector and Alpern, 1994] have used GP to automaticallygenerate Jazz improvisations. While the music achieved high marks from an automaticcritic, they report it was not pleasing to human ears!B.6 ConclusionsThis appendix has brie
y surveyed recent work on the technique of automatic programgeneration known as genetic programming. It has presented program generation as thetask of searching the space of possible programs for a suitable one. This search space isvast and poorly behaved, which is the sort of search for which genetic algorithms are bestsuited. It is therefore reasonable to apply genetic algorithms to this search and, as thisappendix shows, this has had a measure of success.Genetic programming has been demonstrated in the arena of classi�cation (SectionB.5.1), albeit not under the name genetic programming; with at least one commercialpackage available. It is as a general technique that genetic programming is a particu-larly new and emerging research area. It has solved a number of problems from a widerange of di�erent areas. Genetic programming has also been successfully applied to realworld applications, such as optical character recognition (OCR) and signal processing(Section B.5.2).It is expected that use of genetic programming in the production of commercial softwarewill become more widespread, perhaps �rst in signal processing but perhaps also in tediousroutine maintenance problems (Section B.5.1).



295B.7 GlossaryBuilding Block A pattern of genes in a contiguous section of a chromosome which, ifpresent, confers a high �tness to the individual. According to the building blockhypothesis, a complete solution can be constructed by crossover joining together ina single individual many building blocks which where originally spread throughoutthe population.Cellular Automata A regular array of identical �nite state automata whose next state isdetermined solely by their current state and the state of their neighbours. The mostwidely seen is the game of Life in which complex patterns emerge from a (supposedlyin�nite) square lattice of simple two state (living and dead) automata whose nextstate is determined solely by the current states of its four closes neighbours anditself.Classi�ers An extension of genetic algorithms in which the population consists of a co-operating set of rules (i.e. a rulebase) which are to learn to solve a problem given anumber of test cases. Between each generation the population as a whole is evaluatedand a �tness is assigned to each rule using the bucket-brigade algorithm or othercredit sharing scheme (e.g. the Pitt scheme). These schemes aims to reward orpunish rules which contribute to a test case according to how good the total solutionis by adjusting the individual rules �tness.At the end of the test data a new generation is created using a genetic algorithmas if each rule were independent using its own �tness (measures may be taken aretaken to ensure a given rule only appears once in the new population).Coevolution Two or more populations are evolved at the same time. Often the separatepopulations compete against each other.Convergence Tendency of members of the population to be the same. May be usedto mean either their representation or behaviour are identical. Loosely a geneticalgorithm solution has been reached.Chromosome Normally, in genetic algorithms the bit string which represents the indi-vidual. In genetic programming the individual and its representation are usually thesame, both being the program parse tree. In nature many species store their geneticinformation on more than one chromosome.



296Crossover Creating a new individual's representation from parts of its parents' repre-sentations.Deme A separately evolving subset of the whole population. The subsets may be evolvedon a di�erent computers. Emigration between subset may be used (see Panmixia).Elitist An elitist genetic algorithm is one that always retains in the population the bestindividual found so far. Tournament selection is naturally elitist.Epistasis A term from biology used to denote that the �tness of an individual dependsupon the interaction of a number of their genes. In genetic algorithms this would beindicated by the �tness containing a non-linear combination of components of thestring.Evolution Programming A population containing a number of trial solutions each ofwhich is evaluated to yield an error. Typically, at the end of each generation, thebest half of the population is retained and a new solution is produced from eachsurvivor. The process is continued with the aim that the population should evolveto contain an acceptable solution.Evolutionary programming like Evolution Strategy produces new children by mu-tating at random from a single parent solution. The analogue components (e.g. theconnection weights when applied to arti�cial neural networks) are changed by agaussian function whose standard deviation is given by a function of the parent'serror called its temperature. Digital components (e.g. presence of a hidden node)are created and destroyed at random.Evolution Strategy or Evolutionsstrategie A search technique �rst developed in Berlin.Each point in the search space is represented by a vector of real values. In theoriginal Evolution Strategy, (1 + 1)-ES, the next point to search is given by addinggaussian random noise to the current search point. The new point is evaluated andif better the search continues from it. If not the search continues from the originalpoint. The level of noise is automatically adjusted as the search proceeds.Evolutionary Strategies can be thought of as like an analogue version of geneticalgorithms. In (1 + 1)-ES, 1 parent is used to create 1 o�spring. In (�+ �)-ES and(�,�)-ES � parents are used to create � children (perhaps using crossover).Finite State Automaton (FSA) or Finite State Machine (FSM) A machine which can



297be totally described by a �nite set of states, it being in one these at any one time,plus a set of rules which determine when it moves from one state to another.Fitness Function A process which evaluates a member of a population and gives it ascore or �tness. In most cases the goal is to �nd an individual with the maximum(or minimum) �tness.Function Set The set of operators used in a genetic program, e.g. +���. These actas the branch points in the parse tree, linking other functions or terminals. See alsonon-terminals.Generation When the children of one population replace their parents in that population.Where some part of the original population is retained, as in steady state GAs,generation typically refers to the interval during which the number of new individualscreated is equal to the population size.Generation Equivalent In a steady state GA, the time taken to create as many newindividuals as there are in the population.Genetic Algorithm A population containing a number of trial solutions each of whichis evaluated (to yield a �tness) and a new generation is created from the better ofthem. The process is continued through a number of generations with the aim thatthe population should evolve to contain an acceptable solution.GAs are characterised by representing the solution as an (often �xed length) stringof digital symbols, selecting parents from the current population in proportion totheir �tness (or some approximation of this) and the use of crossover as the dominatemeans of creating new members of the population. The initial population may becreated at random or from some known starting point.GA Deceptive A gene pattern which confers high �tness but is not present in the optimalsolution is said to be deceptive; in that it may lead the genetic algorithm away fromthe global optimum solution.Genetic Operator An operator in a genetic algorithm or genetic programming, whichacts upon the chromosome to produce a new individual. Example operators aremutation and crossover.Genetic Program A program produced by genetic programming.



298Genetic Programming A subset of genetic algorithms. The members of the popula-tions are the parse trees of computer programs whose �tness is evaluated by runningthem. The reproduction operators (e.g. crossover) are re�ned to ensure that thechild is syntactically correct (some protection may be given against semantic errorstoo). This is achieved by acting upon subtrees.Genetic programming is most easily implemented where the computer language istree structured so there is no need to explicitly evaluated its parse tree. This is oneof the reasons why Lisp is often used for genetic programming.This is the common usage of the term genetic programming however it has also beenused to refer to the programming of cellular automata and neural networks using agenetic algorithm.Hits The number of hits an individual scores is the number of test cases for which itreturns the correct answer (or close enough to it). This may or may not be acomponent of the �tness function. When an individual gains the maximum numberof hits this may terminate the run.In�x Notation Notation in which the operator separates its operands. E.g. (a+ b)� c.In�x notation requires the use of brackets to specify the order of evaluation, unlikeeither pre�x or post�x notations.Non-Terminal Functions used to link parse tree together. This name may be used toavoid confusion with functions with no parameters which can only act as end pointsof the parse tree (i.e. leafs) and so are part of the terminal set.Mutation Arbitrary change to representation, often at random. In genetic programming,a subtree is replaced by another, some or all of which is created at random.Panmixia When a population is split into a number of separately evolving populations(demes) but the level of emigration is su�ciently high that they continue to evolveas if a single population.Parsimony Brevity. In GP, this is measured by counting the nodes in the tree. Thesmaller the program, the smaller the tree, the lower the count and the more parsi-monious it is.Post�x Notation Reverse Polish Notation or Su�x Notation Notation in which theoperator follows its operands. E.g. a+ b� c represented as abc�+.



299Pre�x Notation Polish Notation Notation in which the operator comes before its operands.E.g. a+ b represented as +ab.Premature Convergence When a genetic algorithm's population converges to some-thing which is not the solution you wanted.Recombination as crossover.Reproduction Production of new member of population from existing members. Maybe used to mean an exact copy of the original member.Simulated Annealing Search technique where a single trial solution is modi�ed at ran-dom. An energy is de�ned which represents how good the solution is. The goal is to�nd the best solution by minimising the energy. Changes which lead to a lower en-ergy are always accepted; an increase is probabilistically accepted. The probabilityis given by exp(��E=kBT ). Where �E is the change in energy, kB is a constantand T is the Temperature. Initially the temperature is high corresponding to a liq-uid or molten state where large changes are possible and it is progressively reducedusing a cooling schedule so allowing smaller changes until the system solidi�es at alow energy solution.Stochastic Random or probabilistic but with some direction. For example the arrival ofpeople at a post o�ce might be random but average properties (such as the queuelength) can be predicted.Terminal Set A set from which all end (leaf) nodes in the parse trees representing theprograms must be drawn. A terminal might be a variable, a constant or a functionwith no arguments.Tournament Selection A mechanism for choosing individuals from a population. Agroup (typically between 2 and 7 individuals) are selected at random from the pop-ulation and the best (normally only one, but possibly more) is chosen.
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Appendix CScheduling Planned Maintenanceof the National Grid
In England and Wales electrical power is transmitted by a high voltage electricity trans-mission network which is highly interconnected and carries large power 
ows. It is ownedand operated by The National Grid Company plc. (NGC) who maintain it and wish toensure its maintenance is performed at least cost, consistent with plant safety and securityof supply. When planning preventative maintenance, the following factors must be takeninto account:� location and size of demand for electricity,� generator prices, capacities and availabilities,� electricity carrying capacity of the remainder of the network, i.e. that part not un-dergoing maintenance.There are many components in the cost of planned maintenance. The largest is thecost of replacement electricity generation, which occurs when maintenance of the networkprevents a cheap generator from running so requiring a more expensive generator to berun in its place.The task of planning maintenance is a complex constrained optimization schedulingproblem. The schedule is constrained to ensure that all plant remains within its capacityand the cost of replacement generation, throughout the duration of the plan is minimised.At present maintenance schedules are produced manually by NGC's Planning Engineers(who use computerised viability checks on the schedule after it has been produced). Thisappendix describes initial investigations into the feasibility of generating practical andeconomic maintenance schedules using genetic algorithms. Later work, using the SouthWales region as a test bed, is described in Appendix D.301



302The work to date is based upon a demonstration four node test problem [Dunnett,1993]. Section C.2 presents the �tness function devised for the four node problem andindicates changes that may be required when considering larger networks. Section C.3describes the four node problem in detail. Section C.4 considers various possible geneticalgorithms and explains why work has concentrated upon using \greedy optimizers". Sec-tion C.5 details the four optimizers that have been tried and the results achieved. Thebest of these readily produces optimal solutions. Section C.6 describes the standard GApackage, QGAME, which was used. Section C.7 considers scaling up from the demonstra-tion problem and highlights concern about the computational complexity of the greedyoptimizers.C.1 Approximating Replacement Generation CostsNGC use computer tools for costing maintenance schedules, however because of theircomputational complexity, it was felt that these were unsuitable for providing the �tnessfunction. Instead our �tness function is partially based upon estimating the replacementgeneration costs that would occur if a given maintenance plan were to be used. Theestimate is made by calculating the electrical power 
ows assuming the maintenance willnot force a change in generation. In practice alternative generators must be run to reducethe power 
ow through over loaded lines in the network. The cost of the alternativegenerators is modeled by setting the amount of replacement generation equal to the excesspower 
ow and assuming alternative generators will be a �xed amount more expensive thanthe generators they replace.As a �rst approximation issues concerning security of supply following a fault arenot covered. We plan to increase the realism of the GA as we progress. Other costs(e.g. maintenance workers' overtime, travel) are not considered.C.2 The Fitness FunctionThe GA's �tness function is composed of two parts; a bene�t for performing maintenanceplus penalties for exceeding line ratings, isolating nodes and splitting the network.C.2.1 Maintenance Bene�tsThe maintenance requirements of the di�erent components of the transmission networkvary both in terms of the number of weeks required to perform them and their urgency. Itmay be advisable to hold over less urgent maintenance until the following year. We model



303the urgency by allocating each maintenance activity a bene�t term in the �tness function.During the plan each part of the network should be maintained a small number oftimes, typically once. Each maintenance activity takes a few weeks and has a particular�tness bene�t. Should a trial maintenance plan schedule a line for maintenance for itsrequired number of weeks, that trial plan's �tness is improved by the maintenance bene�tassociated with that line. Should a line require more than one maintenance period theymust not overlap, however there may be an additional �tness bene�t if they run consecu-tively (perhaps of about 20%). Once the target number of weeks of maintenance has beenreached, there is no additional bene�t or penalty from additional maintenance. The totalbene�t is obtained by summing across all lines for the whole year.In the rest of this appendix it is assumed that each line in the network can be main-tained independently, however there are some cases where this is not so (notably \Tee"junctions). These require several items to be taken out of service simultaneously. As thereare relatively few of these they can be treated as special cases.C.2.2 Over Loading CostsIn order to calculate the line overloading costs, we must �rst determine which generatorsare to be used and when. This is done by using the available generators in strict priceorder (cheapest �rst) until the predicted demand for each week is met. This is known asthe merit order dispatch. It is �xed and therefore the same for all trial schedules.For each week of a trial schedule the predicted demand and the merit order dispatchare used in a \DC load 
ow" analysis which calculates the power 
ow through every line inthe network. The over loading cost for each line is proportional to the amount the power
ow though it exceeds its normal operating limit (it is zero if within the limit). The totalover loading costs are the sum over each week of the maintenance plan and over all linesin the network.C.2.3 Avoiding Isolating Nodes or Splitting the NetworkFrom an operational point of view, no acceptable maintenance schedule would ever isolatea generation or demand node from the rest of the network or split the network. Howeverthe GA �tness function must be able to cope with every schedule that is generated. The\DC load 
ow" algorithm cannot cope with either as they require it to invert a singularmatrix. Therefore the �tness function looks for these conditions and de�nes a �tness forthem without calculating power 
ows.



304As both represent highly un�t solutions, weeks of a schedule that cause either con-tribute a high penalty to the schedule's whole �tness. The penalty for each isolated nodeis proportional to the load or expected generation at that node. The penalty for a networksplit is even more severe; it is proportional to the total load across the whole network inthat week.C.2.4 Combined Fitness MeasureThe complete �tness measure is expressed in Megawatt weeks and is given by the followingformula:cost = XtargetKt � (1�maintenance scheduled)
+ Xweeks

0BBBBBBBBBBBBBB@
If network split thenS1� total demandElse If isolated nodes � 1 thenS2� Xisolated nodesj demand _ generation jElse Xlines If j
owj >rating thenj
owj�rating

1CCCCCCCCCCCCCCA
: (C:1)

The �rst summation being over all target maintenance (NB the trial plan's cost isincreased by Kt if the corresponding maintenance is not scheduled). The second outersummation being over each week of the maintenance plan; the �rst inner one, being overall isolated nodes, and the second, over all lines in the network.For the four node system (next section) all the constants Kt are equal and S1 and S2are equal to each other. This may not be the case in the full system.C.3 The Four Node Demonstration NetworkA small power system has been devised. The network is shown in Figure C.1. As theproblem's network contains four substations (i.e. nodes in the network multi-graph), it isknow as the \four node problem". Despite its small size, this problem includes many ofthe features, such as tight time limits, seasonal demand patterns and high power 
ows,which characterise the full network.This power system contains nine generators of di�ering capacities, availabilities andprices. The substations are linked by pairs of transmission lines (i.e. links in the networkmulti-graph) to form a square. The transmission lines are of two sorts; 1100MW and
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Electricity users Electricity users

1 2

3 4

4  500MW Generators 5  400MW Generators

Figure C.1: Four node network600MW nominal rating but all have the same impedance (nominal ratings are some 17%above normal operating limits). Table C.1 gives the transmission line nominal ratings.Table C.2 shows the predicted demand, which varies from week to week and node to node.(1 Megawatt (MW) = 1340 horsepower).Table C.1: Nominal line ratings (MW) and impedancesLine Start node End node Rating Impedance1 1 2 600 12 1 2 600 13 2 4 1100 14 2 4 1100 15 4 3 600 16 4 3 600 17 3 1 1100 18 3 1 1100 1The problem is to devise a nine week maintenance schedule which, maintains each linefor at least one week and minimises predicted line over loading costs whilst not splittingthe network or isolating nodes in it. I.e. has minimum cost.C.3.1 Determining which Generators to UseIn each week of the maintenance schedule, the demand for power (Table C.2) is met bythe cheapest available generators. Table C.3 shows which generators run, and how muchpower they generate in each week.



306 Table C.2: Predicted demand and generator price, capacity and availabilityWeek Demand Node 1 Gens Node 2 GeneratorsNode Node Total Name 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 2.53 4 Price 1.0 2.0 3.0 4.0 3.5 4.5 5.5 6.5 7.5MW MW MW Capacity 500 500 500 500 400 400 400 400 4001 1200 1300 2500 x2 1200 1600 2800 x3 1000 2000 3000 x4 1100 2300 3400 x5 1100 2400 3500 x6 1000 2500 3500 x7 900 2600 3500 x8 900 2700 3600 x9 800 3000 3800 x ) cannot produce electricity this week
We now have enough information to calculate the power 
ows in every power trans-mission line in the network in every week for any given maintenance schedule. Once wehave established the constants K and S, the �tness or cost of the schedule can be readilycalculated from the known power 
ows using (C.1).

Table C.3: Merit order generator loading (MW)Week Node 1 Generators Node 2 Generators Total1.1 1.2 1.3 1.4 Total 2.1 2.2 2.3 2.4 2.5 Total1 x 500 500 500 1500 400 400 200 0 0 1000 25002 500 x 500 500 1500 400 400 400 100 0 1300 28003 500 500 x 500 1500 400 400 400 300 0 1500 30004 500 500 500 x 1500 400 400 400 400 300 1900 34005 500 500 500 500 2000 x 400 400 400 300 1500 35006 500 500 500 500 2000 400 x 400 400 300 1500 35007 500 500 500 500 2000 400 400 x 400 300 1500 35008 500 500 500 500 2000 400 400 400 x 400 1600 36009 500 500 500 500 2000 400 400 400 400 200 1800 3800x ) cannot produce electricity this week



307C.3.2 Determining Fitness Function Parameters K and SThe constants of proportional, K and S need to be chosen so that the maintenance bene�tdominates. This was done by calculating the line costs associated with many feasibleschedules (using the heuristic given in Section C.5.1). This gave the highest feasible linecost as being 3870MW weeks. K was set to 4,000 MW weeks, so that any schedule whichfailed to maintain even one line would have a higher cost that the worst \reasonable"schedule which maintains them all.S was chosen so that isolating any node would have a high cost. The lowest de-mand/generation on a node is 800 MW. Setting S to �ve ensures that any schedule whichisolates any node will have a cost higher the worst \reasonable" schedule (800MW�5weeks= 4,000MW weeks).C.4 The ChromosomeVarious ways of representing schedules within the GA, were considered. When choosingone, we looked at the complete transmission network which contains about 300 nodesand about 500 transmission lines which are maintained over a 52 week plan. Table C.4summarizes the GA representations investigated ([Shaw, 1994] gives a bibliography of GAsused on many scheduling problems).In the linear, 2D and TSP structures every attempt should be made to keep electricallyclose lines close to each other in the representation. The graph representation has theadvantage that this can be naturally built into the chromosome.With a simple linear chromosome, Holland or multi-point crossover [Goldberg, 1989],would appear to be too disruptive to solve the problem. A simple example illustrates this.Suppose lines L1 and L2 are close together. It will often be the case that good solutionsmaintain one or the other but neither at the same time. But crossover of solutions main-taining L1 but not L2 with those maintaining L2 but not L1 will either make no changeto L1 and L2 or not maintain either or maintain both. The �rst makes no change to the�tness whilst the second and third make it worse. That is, we would expect crossover tohave di�culty assembling better solutions from good \building blocks" [Goldberg, 1989].The same problem appears in the temporal dimension and so a�ects the �rst three repre-sentations given in Table C.4. This coupled with the sparseness of the chromosome (about1 bit in 50 set) and other di�culties, has led to the decision to try a \greedy optimization"representation.
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Table C.4: Possible chromosomes for the maintenance scheduling problemOrganiz-ation Size Gene ExpectedBene�t Disadvantages SelectedReferencesLinear 25,000 bit Simple Crossover disrup-tive, Too long, Nostructure, Sparse [Goldberg, 1989]2D 500 by 52 bit Simple,Obvioustempo-ralstructure Crossoverdisruptive, Still verybig, No grid struc-ture, Sparse [Cartwrightand Harris, 1993][Valenzuela andJones, 1993] [An-dre, 1994a]Graph 500 by 52 bit Realistic Crossover disrup-tive, Complex, Lit-tle preceding work,Sparse [Maher andKundu, 1993]TSP 25,000 link Widelystudied \By edge" costs,Sparse [Starkweather etal., 1991] [Valen-zuela and Jones,1993]GP S-expr-ession Complex, Little pre-ceding work [Atlan et al., 1994]Expans-iveCoding 25; 000�n com-plex Crossoverfriendly Complex, Little pre-ceding work [Beasley et al.,1993a]\GreedyOptimiz-ation" 500 line id Goodcrossover,Compact,Widelystudied Fitness evaluationexpensive [Syswerda, 1991a][Fang et al., 1993][Fang et al., 1994]



309C.5 Greedy OptimizersThe approach taken so far to solving the power transmission network maintenance schedul-ing problem has been to split the problem in two; a GA and a \greedy optimizer". Thegreedy optimizer is presented with a list of work to be done (i.e. lines to be maintained)by the GA. It schedules those lines one at a time, in the order presented by the GA, usingsome problem dependent heuristic. Figure C.2 shows this schematically, whilst the dottedline on Figure C.3 shows an order in which lines are considered.
Genetic Algorithm

Ordered list of 
things to be
Scheduled

Greedy Scheduler

Schedule 

Cost of Schedule

Fitness
Permutation

Figure C.2: Hybrid GA and \greedy optimizer"This approach of hybridising a GA with a problem speci�c heuristic has been widelystudied. [Davis, 1991] for example �rmly advocates using hybrid GAs when attemptingto solve di�cult real world problems. Hybrid GAs, of various sorts, have been used on anumber of scheduling problems (e.g. 
ight crew scheduling [Levine, 1994], task scheduling[Syswerda, 1991a] and job-shop and open-shop scheduling [Fang et al., 1993; Fang et al.,1994; Yamada and Nakano, 1992]).A variety of heuristics of increasing sophistication and computational complexity havebeen tried on the four-node problem which yielded progressively better results.C.5.1 Heuristic 1 { One Week, One LineIf we ensure a schedule maintains all lines and does not isolate nodes its �tness will beindependent of K and S. Such schedules are readily devised by only maintaining one lineat a time. Further such schedules are reasonable solutions to the problem (indeed it was
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Electricity users Electricity users

1 2

3 4

Generation Generation

Figure C.3: Example order (dotted) in which lines are considered by a \greedy optimizer"anticipated that the best solution would be of this type). By testing a number of thesewe used the results to guide choice of K and S. Figure C.4 shows the distribution of linecosts lie between 1470 and 3870 MW weeks.In Figures C.4 to C.10 we plot cumulative frequency against over loading line costs(or �tness). Often GA �tness landscapes are very rough however the roughness or textureof a �tness landscape is a product of the representation used as well as the �tness itself.Using cumulative frequency makes the graph independent of representation and, in thiscase, makes it smooth.The least cost solutions have the form of the schedule given in Table C.5. Thesemaintain the two right hand (referring to Figure C.1) high rating lines (numbered 3 and 4,see Table C.1) in the �rst and fourth weeks; the left hand two (7, 8) in weeks two andthree; the bottom cross lines (5, 6) in the �fth and six weeks, nothing in week seven andthe top two cross lines (1, 2) in the last two weeks. We shall return to the two top crosslines later. Table C.5: Best schedule produced by one week, one line heuristicWeek 1 2 3 4 5 6 7 8 9Lines 3 7 8 4 5 6 1 2Fitness 1470 MW weeks
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Number of cases (cumulative)Figure C.4: Cumulative frequency v. line costs (one week, one line)C.5.2 Heuristic 2 { Minimum Power FlowA greedy optimizer was devised which scheduled the maintenance of each line in the weekin which the power 
ow through it is a minimum. In the event of a tie, the earlier weekis chosen. As each line is scheduled, the power 
ows through the rest of the network arerecalculated. As Figure C.5 shows, the �tness of the schedules this algorithm producesvaries from 1440 to 1710 MW weeks, with 40% being 1480 or less. No schedule causes anode to be isolated or the network to be split.Both the best and the worst solutions produced are better than the best and worstgiven by the one line, one week algorithm. In fact most solutions are better than all but0.08% of the solutions given by the previous algorithm.The lower costs have been achieved by maintaining lines when demand (and hencepower 
ows) are least. Table C.6 shows one of these. Even the highest cost schedulemaintains the eight lines in the �rst four weeks, when demand is lowest. This reducesthe number of possible schedules so there are many solutions which have identical �tness.This is further increased by the symmetries of the problem. For example there are 736lowest cost schedules.These are good solutions which may prove to be acceptable but they are known not tobe optimal. Whilst good solutions to the problem as posed, they would probably not beacceptable operationally because the maintenance is too bunched together. This reducesthe resilience of the network, for example a single circuit failure could disconnect electricity
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Table C.6: Best schedule produced by minimum power 
ow heuristicWeek 1 2 3 4 5 6 7 8 9Lines 4 3 5 6 7 1 2 8Fitness 1440 MW weeks



313consumers. It may also cause other problems, such as requiring too many maintenancegangs. However these issues are beyond the scope of the four node problem.C.5.3 Heuristic 3 { Minimum Line CostThe greedy lowest power 
ow optimizer was replaced by the more complex minimum linecost optimizer. This schedules maintenance in the week which currently contributes leastto total costs. If there is a tie, the earliest week is used.As Figure C.6 shows this algorithm produced only a marginal reduction in the bestsolution found (1411.67 MW weeks) and the cost of the worst schedule is actually worse(2265 MW weeks). Instead of 40% having a �tness of 1480 or better, now only 10% do.
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Number of cases (cumulative)Figure C.6: Cumulative frequency v. �tness (minimum line cost)Most schedules again concentrate maintenance in the �rst four weeks but some, includ-ing the best (see Table C.7), use the �fth and sixth weeks as well. This more distributedmaintenance plan is only a marginal improvement on the previous result.Table C.7: Best schedule produced by minimum line cost heuristicWeek 1 2 3 4 5 6 7 8 9Lines 4 6 8 5 7 3 2 1Fitness 1411.67 MW weeksTable C.8 shows one of the worst schedules. It suggests, with this greedy optimizer,there is merit in delaying consideration of lines 1 and 2. We return to this point in the



314next section.Table C.8: Worst schedule produced by minimum power 
ow heuristicWeek 1 2 3 4 5 6 7 8 9Lines 7 1 2 8 3 4 5 6Fitness 2265 MW weeksC.5.4 Heuristic 4 { Minimum Increase in Line CostThe previous greedy optimizers had been based on the assumption that placing a line inmaintenance was bound to increase the power 
ows on the remaining lines and so mustincrease line costs (or leave them unchanged). Whilst it is theoretically possible for thechange in power 
ows to decrease line costs it was assumed that this would not occur inpractice. As this section shows, this assumption was wrong. It is possible to schedule lines1 or 2 so that they reduce line costs.Brie
y this can happen when one of the pairs of high rating lines (e.g. 3 and 4) is overloaded but the rest of the network (particularly lines 1 and 2) is not and lines 1 and 2 aretransferring power to them. Maintaining line 1 increases the impedance between nodes1 and 2 and so while the power through line 2 increases, the total power 
ow betweennodes 1 and 2 decreases. As the generation remains unchanged, the power through theover loaded lines decreases by the same amount, so reducing the line costs (the change ismet by increased power 
ows in the rest of the network).The greedy minimum line cost optimizer was replaced by the more complex least in-crease in line cost optimizer. This schedules maintenance in the week in which maintainingit would lead to the least increase in line costs (or in which there is most decrease). Ifthere is a tie, the earliest week is used. NB this optimizer looks one week ahead whereasthe others make their decisions using only the lines that have already been scheduled.As Figure C.7 shows this algorithm manages to �nd the optimal solution (1255 MWweeks) and the cost of the worst schedule (1705 MW weeks) is marginally better thanthe worst found by the least power 
ow algorithm. Now more than 70% have a �tnessof better than 1480 MW weeks. Figure C.8 shows the �tness distributions for all fourheuristics plotted to the same scale.Trial solutions now concentrate maintenance in the �rst three or four weeks except forlines 1 and 2 which are placed in the last two weeks (when demand is heaviest). Table C.9gives an example schedule produced by this method, which is the best known solution to
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316the four node problem.Table C.9: Best schedule (produced by minimum increase in line cost heuristic)Week 1 2 3 4 5 6 7 8 9Lines 3 7 5 6 8 4 1 2Fitness 1255 MW weeksThe worst schedules (Table C.10) suggest there is merit (with this type of greedyoptimizer) of considering lines 5 and 6 last. We are now free to consider line 1 and 2 atany point, since the optimizer will almost certainly place them either in week eight or nineregardless.Table C.10: Worst schedule produced by minimum increase in line cost heuristicWeek 1 2 3 4 5 6 7 8 9Lines 5 6 7 3 4 8 1 2Fitness 1705 MW weeks
C.6 Using QGAMEUsing a chromosome which consisted of a permutation of the lines to be scheduled, singlepoint PMX crossover [Goldberg, 1989] and a �tness function which used the minimumincrease in line costs greedy optimizer (Section C.5.4) the genetic algorithm QGAME[Ribeiro Filho and Treleaven, 1994] had no di�culty in �nding the optimal solution. Witha population of 20 and default parameters (see Table C.11) optimal solutions were foundby generation four in a couple of seconds.By generation 12 approximately half the population consisted of the same optimalsolution, however there were a number of slightly di�erent chromosomes which also gaverise to optimal schedules. By generation 20 almost all the population consists of optimalsolutions but there are now at least two di�erent but equivalent optimal schedules andthere are at least four di�erent but optimal chromosomes. The population now appearsto be dynamically stable, with no appreciable change in either chromosomes (genotype)or schedules (phenotype) by generation 100.
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Table C.11: QGAME genetic algorithm parametersName Value MeaningProblem type Combinatorial Combinatorial crossover and mutation operators areused on the chromosome, which holds a permutationof the lines to be scheduledGeneType G INT Line identi�cation numberPOPULATION 20 Size of populationCHROM LEN 8 Eight genes (lines) per chromosomeOptimiseType Minimise Search for lowest �tness valuePCROSS 0.6 On average each generation 0:6�POPULATION=2pairs of individuals are replaced by two new onescreated by crossing them overPMUT 0.03 On average each generation 0:03�POPULATIONindividuals are mutated by swapping two genesSelection Truncated The best TRUNCATION�POPULATION of thepopulation are passed directly to the next genera-tion. The remainder are selected using normalised�tness proportionate (roulette wheel) selection. Fit-ness is linearly rescaled so the best in the populationhas a normalised �tness of 1.0 and the worst zeroTRUNCATION 0.5 The best 50% passed directly to the next generationPOOLS 1 Single populationCHROMS 1 Individuals use single chromosomeMAX GEN 100 Run for 100 generations



318C.7 DiscussionHaving solved the four node problem, we now consider how this technique will scale upto larger problems. There are two aspects to scaling up; how di�cult it is to search thelarger search space and how the time taken by �tness evaluation scales.Table C.12 shows the computational complexity of the four heuristics. A large com-ponent of them all, is the DC load 
ow calculation, which assuming the number of nodes� number of lines, is O(n3). In practice we expect to do rather better than simple inter-polation using Table C.12 would indicate because:� Table C.12 re
ects scaling for large problems, i.e. the time taken by low order termswill fall as a proportion of the total as the problem grows,� We expect to use sparse matrix and other techniques to speed up the DC load 
owcalculation,� The code has not been optimized as yet.But even so, considerable growth in the �tness evaluation time must be anticipated, asthe size of the problem (i.e. the number of nodes) is increased.Table C.12: Computational complexity of �tness functionHeuristic Order of Computational ComplexityOne week, One Line weeks�DC weeks�nodes3Min Power Flow (lines+weeks)�DC (lines+weeks)�nodes3Min Line Cost (lines+weeks)�DC (lines+weeks)�nodes3Min Increase Line Cost weeks�lines�DC weeks�lines�nodes3We can also calculate how the size of the search space grows with problem size butassessing how di�cult it will be to search is more problematic. The size of the completesearch space grows exponentially, being 2lines�weeks. However this includes many solutionsthat we are not interested in, e.g. we are not interested in solutions which take a line outof service when all its maintenance has already been done.If we are prepared to consider only solutions which maintain each line in a singleoperation for exactly the required time then the number of such solutions is:(1 + weeks� weeks to do maintenance)lines : (C:2)



319Although a big number this is considerably less than 2lines�weeks. For the four node problemthe ratio between them is 9:1 10�15 and this di�erence grows exponentially as the problemincreases in size.The greedy optimizers use their problem speci�c knowledge to further reduce the searchspace. They consider at most (lines)! points in the smaller search space referred to in(C.2). Once again this is a considerable reduction. For the four node problem it is athousandfold reduction and this di�erence grows rapidly as the problem increases in size.However, as we have seen from the �rst three greedy optimizers, there is a danger in allsuch heuristics that by considering some solutions rather than all, the optimum solutionmay be missed.For the four node problem it was feasible to investigate a signi�cant part of the searchspace. Figure C.9 shows part of the search space in which schedules do not do moremaintenance than required. This includes all (1+weeks�weeks to do maintenance)linesschedules which do the required amount of maintenance plus those that fail to maintain oneor more lines (above 10,000 MW weeks the graph is shown dotted as detailed statistics werenot recorded, values below 10,000 are plotted on an expanded scale in Figure C.10). FigureC.10 indicates that it is hard to �nd the global minimum but it should be straightforwardto �nd solutions costing less than 2500MW weeks. Figure C.8 shows all of the greedyoptimizers should readily �nd solutions better than this and the three that use DC load 
owcalculations would readily �nd solutions better than 1480MW weeks (i.e. within 225MWweeks of the global optimum).In addition to reducing the size of the search space, the successful greedy algorithm,considerably enhances the chance of �nding the optimal solution because there are many(2240) solutions which produce it. Whilst some (32) of the multiple optimal solutionsarise from the symmetry of the original problem others come from the power of the greedyalgorithm itself.There is no guarantee, despite the care in designing the four node problem, that largerproblem's �tness landscapes will be similar to that of the four node problem. Assumingthey are, then we can expect our greedy scheduler to readily �nd near optimal solutions.C.8 ConclusionsThis appendix which was published in part in [Langdon, 1995d] has described the com-plex real world problem of scheduling preventive maintenance of a very large electricitytransmission network. A demonstration problem which, although small, includes many
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321of the features of the real problem, has been created. The approach of hybridising a ge-netic algorithm (GA) with a problem speci�c heuristic has been successfully applied tothe demonstration problem.The time taken to perform GA �tness evaluations and with it program run time, growsrapidly with problem size, however there are a number of techniques which could be usedto contain this.Analysis of the search space of the demonstration problem indicates, provided it isrepresentative of larger problems, our hybrid GA approach should be able to �nd nearoptimal solutions to larger maintenance scheduling problems. Since the demonstrationsystem was devised to contain features of the larger problem we may expect, providedthe growth in �tness evaluation time is not excessive, this approach to be suitable forscheduling the maintenance of electrical power transmission networks.The four node problem de�nition and QGAME are available via anonymous ftp, sitecs.ucl.ac.uk directory genetic/four node.
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Appendix DScheduling Maintenance of theSouth Wales Network
Appendix C showed the combination of a Genetic Algorithm using an order or permutationchromosome combined with hand coded \Greedy" Optimizers can readily produce anoptimal schedule for a four node test problem. This appendix concentrates on the evolutionof better \greedy" optimizers for the South Wales region of the UK high voltage powernetwork problem using genetic programming (GP) starting from the hand coded heuristicused with the GA.Section D.1 describes the South Wales region. The �tness function used to cost main-tenance schedules and scheduling heuristics are based on that used in Appendix C (Sec-tion D.2). Section D.3 brie
y describes how the GA has been used to �nd maintenanceschedules for the South Wales region. While Section D.4 describes in detail the geneticprogramming experiment and the results obtained. Section D.5 describes other approachesthat might be tried and possible further work.D.1 The South Wales Region of the UK Electricity Net-workThe South Wales region of the UK electricity network carries power at 275K Volts and400K Volts between electricity generators and regional electricity distribution companiesand major industrial consumers. The region covers the major cites of Swansea, Cardi�,Newport and Bristol, steel works and the surrounding towns and rural areas (see Fig-ure D.1). The major sources of electricity are infeeds (2) from the English Midlands, coal�red generation at Aberthaw, nuclear generation at Oldbury and oil �red generation atPembroke. Both demand for electricity and generation change signi�cantly through theyear (See Figures D.2 and D.3).The representation of the electricity network used in these experiments is based upon323
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Figure D.1: South Wales Region High Voltage Network
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Figure D.3: Predicted Generation in South Wales Regionthe engineering data available for the physical network; however a number of simpli�cationshave to be made. Firstly the regional network has been treated as an isolated network;its connections to the rest of the network have been modeled by two sources of generationconnected by a pair of low impedance high capacity conductors. Secondly the physicalnetwork contains short spurs run to localised load points such as steel works. These \T"points have been simpli�ed (e.g. by inserting nodes into the simulation) so all conductorsconnect two nodes. The industry standard DC load 
ow approximation is used to calculatepower 
ows through the network.In the experiments reported in this appendix the maintenance planning problem for theSouth Wales region has been made deliberately more di�cult than the true requirement.In these experiments:� All lines must be maintained during the 53 week plan (1995 had 53 weeks ratherthan 52). Typically about one third of the lines are maintained in any one year.� All maintenance takes four weeks. Typically scheduled outage of a line is between aweek and 112 months.� All conductor ratings were reduced by 50%.The requirement that the network should be fault resistant during maintenance is onlyconsidered in Section D.3.2 and not in the GP work in this appendix. This is because



326consideration of potential network faults is highly CPU intensive. The permutation GAapproach has been taken further than the GP approach and acceptable schedules havebeen evolved which do consider network robustness.D.2 The Fitness FunctionThe �tness function used by both GA and GP approaches to scheduling maintenance inthe South Wales region is essentially that used on the four node problem (described inSection C.2 and summarised by Equation C.1 on page 304). To summarise; there is amaintenance bene�t for each maintenance task completed (i.e. for each line maintainedfor at least four consecutive weeks), the replacement generation costs are approximated bya penalty given by the amount each line is overloaded, and large penalties are also includedto punish schedules which isolate nodes. (However nodes with no demand or generationconnected directly to them are excluded from these penalties). In the case of the SouthWales network, which contains zero demand nodes, it is necessary to consider the impactof network splits in more detail than was the case with the four node network. Whennodes are isolated or the network is split, the penalty for each node in the disconnectedpart of the network are summed and then the usual load
ow and �tness calculations areperformed on the remaining connected network (i.e. the connected network containing themost nodes). In the South Wales problem there is no separate penalty for splitting thenetwork.For the South Wales problem the same values of Kt, S1 and S2 as the four node systemwhere used. I.e. Kt is 4,000 MW and S1 = S2 = 5. [Gordon, 1995] veri�ed the values usedfor the four node problem are applicable to the South Wales region.The South Wales network is obviously considerably larger and more complex thanthe four node network. Correspondingly, both the time to perform network connectivitychecks and to calculate power
ows within the network are greatly increased. Since bothare fundamental parts of some greedy schedulers and of the �tness function, the run timeof the South Wales problem is far greater than that of the four node problem.The sparse matrix package SDRS2 was used to reduce the CPU requirements of theload
ow calculation. While successful, the reduction was only by a factor of two. A largerratio is anticipated with larger networks, such as the National Grid. More success washad with the \rankone" technique, which in some cases produced a ten fold speed up.Analysis indicates that performing the network connectivity checks can be a bottleneck. A signi�cant reduction in run time was achieved by replacing the original algorithm.



327Additional reduction was achieved by maintaining a cache of previously evaluated networkconnectivities. It is felt that caching techniques could produce worthwhile reductions inrun time if also applied to the load
ow calculation.D.3 Solving the South Wales Problem with GAsD.3.1 South Wales Problem without ContingenciesMany aspects of network planning must consider the e�ect of possible faults in the network.(Faults which are either frequent or which have important consequences may be worthyof inclusion in network planning. These are called contingencies). Considering lots ofcontingencies increases run time greatly and so we start by not including them.A slightly modi�ed version of the minimum increase in line cost heuristic (Section C.5.4)was able to �nd good schedules for the South Wales region. The best found has a costof 616MW weeks. The GA was that used in Appendix C, with the same population size.While these results were encouraging, it became clear that the a viable solution to thescheduling problem would have to include (at least some of) the contingencies.The run time of these experiments is consistent with Table C.12 (page 318) and thefact that results have been obtained indicates some similarity between the search spaceand that of the four node problem, despite it being 2:1 1060 fold larger.[Gordon, 1995] used a linear chromosome with non-binary alleles [Ross, 1994] to solvethe four node problem but was less successful on the larger South Wales problem.D.3.2 South Wales Problem with ContingenciesIn the version of the South Wales problem with contingencies, the �tness function (de-scribed in Section D.2) is extended to explicitly include each contingency. For each con-tingency, the �tness of the schedule is recalculated assuming that the contingency actuallyoccurred. This gives a cost for each contingency (plus the base case, when there are nocontingencies). The complete �tness is a weighted sum of these costs. The run time ofthe GA increases roughly in proportion to the number of contingencies. (In this sectionthe arti�cial reduction in conductor ratings (cf. Section D.1) was removed and the trueratings were used in the �tness calculations).Experiments where conducted with the two most severe contingencies, all eight doublefault contingencies and �nally all 52 contingencies.A number of \Greedy optimisers" were tried with the permutation GA (described inAppendix C). Satisfactory schedules where obtained for the full problem, with all 52



328contingencies, using a two stage heuristic; the �rst stage selects all the weeks for whichthe weighted node disconnection costs summed over all contingencies (Section C.2.3) isthe minimum. The modi�ed version of the minimum increase in line cost heuristic, usedin the previous section, is then used to select the weeks in which to perform maintenance.NB the second stage can only choose from weeks passed to it by the contingency pre-pass.The remainder of this appendix considers solving the non contingent South Walesproblem using genetic programming.D.4 Genetic Programming SolutionA number of di�erent GP approaches have been tried on these problems. A \pure" GPapproach can �nd the optimal solution to the four node problem without the need for handcoded heuristics. On the South Wales problem, possibly due to insu�cient resources, a\pure" GP has not been able to do as well as the best solution produced by the GA and\greedy optimizer" combination, described in Section D.3.1. The remainder of this sectiondescribes the evolution of lower cost schedules using a GP population which is \seeded"with the two heuristics based on those described in Sections C.5.2 and C.5.4.D.4.1 ArchitectureEach individual in the GP population consists of a single tree. This program is called oncefor each line that is to be maintained, its return value is converted from 
oating point toan integer which is treated as the �rst week in which to schedule maintenance of that line.If this is outside the legal range 1 : : : 50 then that line is not maintained.The lines are processed in �xed but arbitrary order given by NGC when the networkwas constructed. Thus the GP approach concentrates upon evolving the scheduling heuris-tic whereas in the GA approach this is given and the GA searches for the best order inwhich to ask the heuristic to process the lines.D.4.2 Choice of PrimitivesThe functions, terminals and parameters used are given in Table D.2. The function andterminal sets include indexed memory, loops and network data.Indexed memory was deliberately generously sized to avoid restricting the GP's use ofit. It consists of 4,001 memory cells each containing a single precision 
oating point value.They had addresses in the range �2000 : : : + 2000. Memory primitives (read, set, swap)had de�ned behaviour which allows the GP to continue on addressing errors. All stored



329data within the program is initialised to zero before the trial program is executed for the�rst line. It is not initialised between runs of the same trial program.The for primitive takes three arguments, an initial value for the loop control variable,the end value and a subtree to be repeatedly executed. It returns the last value of theloop control variable. A run time check prevents loops being nested more than four deepand terminates execution of any loop when more than 10,000 iteration in total have beenexecuted in any one program call. I.e. execution of di�erent loops contribute to the sameshared limit. The current value of the innermost for loop control variable is given by theterminal i0, that of the next outer loop by i1, the control variable of the next outer loopby terminal i2 and so on. When not in a loop nested to depth n, in is zero.The network primitives return information about the network as it was just beforethe test program was called. Each time a change to the maintenance schedule is made,power 
ows and other a�ected data are recalculated before the GP tree is executed againto schedule maintenance of the next line. The network primitives are those available tothe C programmer who programmed the GA heuristics and the �tness function (see TableD.1). Where these primitives take arguments, they are checked to see if they are withinthe legal range. If not the primitive normally evaluates to 0.0D.4.3 MutationApproximately 90% of new individuals are created by crossover between two parents usingGP crossover (as [Koza, 1992] except only one individuals is created at a time). Theremainder are created by mutating a copy of a single parent. Two forms of mutationare used with equal likelihood. In subtree mutation [Koza, 1992] a single node withinthe program is chosen at random. This is the root of a subtree which is removed andreplaced with a randomly generated new subtree. The other form or mutation selectsnodes at random (with a frequency of 10/1024) and replaces them with a randomly selectedfunction (or terminal) which takes the same number of arguments. Thus the tree shape isunchanged but a Poissonly distributed number of node are changed within it. Notice theexpected number of changes rises linearly with the size of the tree.D.4.4 Constructing the Initial PopulationThe initial population was created from two \seed" individuals. These are the GA heuris-tics described in Sections C.5.2 and C.5.4 but written as GP individuals using the primi-tives described in Section D.4.2 and modi�ed for the South Wales region (see Figures D.4and D.5). Half the remaining population is created from each seed by making a copy of it
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Table D.1: Network PrimitivesPrimitive Meaningmax 10.0ARG1 Index number of current line, 1:0 : : : 42:0nn Number of nodes in network, 28.0nl Number of lines in network, 42.0nw Number of weeks in plan, 53.0nm weeks Length of maintenance outage, 4.0P(n) Power injected at node n in 100MW. Negative values indicate demand.NNLK(l) Node connected to �rst end of line l.NNLJ(l) Node connected to 2nd end of line lXL(l) Impedance of line l 
.LINERATING Power carrying capacity of line l in MW.MAINT(w, l) 1.0 if line l is scheduled for maintenance in week w, otherwise 0.0splnod(w, n) 1.0 if node n is isolated in week w of the maintenance plan, 0.0otherwise.FLOW(w, n) Power 
ow in line l from �rst end to second in week w, negative if 
owis reversed MW.shed(w, l) Demand or generation at isolated nodes in week w if line l is maintainedin that week in addition to current scheduled maintenance MW.load
ow(w,l,a) Performs a load 
ow calculation for week w assuming line l is main-tained during the week in addition to the currently scheduled mainte-nance. Returns cost of schedule for week w.If a is valid also sets memory locations a : : : a+ nl � 1 to the power
ows through the network MW.�t(w) Returns the current cost of week w of the schedule.



331Table D.2: South Wales ProblemObjective Find a program that yields a good maintenance schedule when pre-sented with maintenance tasks in network orderArchitecture One result producing branchPrimitives ADD, SUB, MUL, DIV, ABS, mod, int, PROG2, IFLTE, Ifeq, I
t,0, 1, 2, max, ARG1, read, set, swap, for, i0, i1, i2, i3, i4, nn, nl, nw,nm weeks, P, NNLK, NNLJ, XL, LINERATING, MAINT, splnod,FLOW, shed, load
ow �tMax prog size 200Fitness case All 42 lines to be maintainedSelection Pareto Tournament group size of 4 (with niche sample size 81) usedfor both parent selection and selecting programs to be removed fromthe population. Pareto components: Schedule cost, CPU penaltyabove 100,000 per line, schedule novelty. Steady state panmicticpopulation. Elitism used on schedule cost.Wrapper Convert to integer. If � 1 and � 50, treat as week to schedulestart of maintenance of current line, otherwise the current line isnot maintained.Parameters Pop = 1000, G = 50, no aborts. pc = 0:9, psubtree mutation = 0:05,pnode mutation = 0:05. Node mutation rate = 10=1024.Success predicate Schedule cost � 616and then mutating the copy. The same mutation operators are used to create the initialpopulation as to create mutants during the main part of the GP run. I.e. there is equalchance to mutate a subtree as to create mutants by random change to nodes with the tree.(Procedures to detect and discard individuals which encounter array bound errors whilstexecuting were not used).D.4.5 Fitness FunctionThe �tness of each individual is comprised of three independent components; the �tness(cost) of the schedule it produces (as described in Section D.2), a CPU penalty and anovelty reward for scheduling a line in a week which is unusual. These components arenot combined instead selection for reproduction and replacement uses Pareto tournaments(cf. Section 2.3.8) and �tness niches (Section 2.3.8). The cost and CPU penalty aredetermined when the individual is created but the novelty reward is dynamic and maychange whilst the individual is within the population.The CPU penalty is the mean number of primitives evaluated per line. However ifthis below the threshold of 100,000 then the penalty is zero. Both seeds are comfort-ably below the threshold. (The minimum power 
ow seed executes 206,374 primitives(206; 374=42 � 4914) and the minimum increase in cost seed executes 301,975 primitives



332week = (PROG2 (set (SUB 0 1) (SUB (SUB 0 max) nw))(PROG2 (for 1 nw (set ((ADD i0 (read (SUB 0 1)))) (ABS (FLOW i0 ARG1))))(PROG2 (set (SUB 0 (ADD 1 1)) (SUB (read (SUB 0 1)) nw))(PROG2 (for 1 (SUB nw (SUB nm_weeks 1))(PROG2 (set 0 0)(PROG2(for i0 (ADD i0 (SUB nm_weeks 1) )(set 0 (ADD (read 0) (read (ADD i0 (read (SUB 0 1))))))) (set ((ADD i0 (read (SUB 0 (ADD 1 1))))) (read 0)))))(PROG2 (set 0 (MUL max (MUL max (MUL max max))))(PROG2 (set 1 0)(PROG2 (for 1 (SUB nw (SUB nm_weeks 1))(Iflt (read ((ADD i0 (read (SUB 0 (ADD 1 1)))))) (read 0)(PROG2 (set 1 i0)(set 0 (read ((ADD i0 (read (SUB 0 (ADD 1 1))))))))0))(read 1))))))))Figure D.4: Seed 1 : Minimum Power 
ow Heuristic. Length 133, Cost of schedule 9830.19(301; 975=42 � 7190)).The novelty reward is 1.0 if the program constructs a schedule where the start of anyline's scheduled maintenance is in a week when less than 100 other schedules schedule thestart of the same line in the same week. Otherwise it is 0.0.D.4.6 ResultsIn one GP run the cost of the best schedule in the population is 1120.05 initially. This isthe cost of schedule produced by seed 2. Notice this is worse than the best schedule foundby the GA using this seed because the heuristic is being run with an arbitrary ordering ofthe tasks and not the best order found by the GA. By generation 4 a better schedule ofcost 676.217 was found. By generation 19 a schedule better than that found by the GAwas found. At the end of the run (generation 50) the best schedule found had a cost of388.349 (see Figure D.6). The program that produced it is shown in Figure D.7.The best program di�ers from the best seed in eight subtrees and has expanded almostto the maximum allowed size. At �rst sight some of the changes appear trivial and unlikelyto a�ect the result but in fact only two changes can be reversed with out worsening theschedule. However all but one of the other changes can be reversed (one at a time) andyield a legal schedule with a cost far better than the population average, in some casesbetter than the initial seeds.
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week = (PROG2 (set (SUB 0 1) (SUB (SUB 0 max) nw)) %[-1]=working area(PROG2 (for 1 nw (set ((ADD i0 (read (SUB 0 1)))) %store answer%(ABS (FLOW i0 ARG1)) min load flow heuristic(loadflow i0 ARG1 (ADD 2 2)) %discard flow info)) (PROG2 (set (SUB 0 (ADD 1 1)) (SUB (read (SUB 0 1)) nw)) %[-2]=workarea(PROG2 (for 1 (SUB nw (SUB nm_weeks 1)) %work2 = sum ov 4 weeks(PROG2 (set 0 0) %[0]=temp(PROG2(for i0 (ADD i0 (SUB nm_weeks 1) )(set 0 (ADD (read 0) (read (ADD i0 (read (SUB 0 1))))))) (set ((ADD i0 (read (SUB 0 (ADD 1 1))))) (read 0)))))(PROG2 (set 0 (MUL max (MUL max (MUL max max))))(PROG2 (set 1 0)(PROG2 (for 1 (SUB nw (SUB nm_weeks 1)) %find min increase in cost(Iflt (SUB %calculate increase in cost(read ((ADD i0 (read (SUB 0 (ADD 1 1))))))(PROG2 (PROG2 (set 2 0)(for i0 (ADD i0 (SUB nm_weeks 1))(set 2 (ADD (read 2) (fit i0)))))(read 2)))(read 0)(PROG2 (set 1 i0)(set 0 (SUB(read ((ADD i0 (read (SUB 0 (ADD 1 1))))))(read 2))))0))(read 1))))))))Figure D.5: Seed 2 : Minimum Increase in Cost Heuristic. Length 160, Cost of schedule1120.13
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Figure D.6: Evolution of GP Produced Schedule CostsD.5 Other GP ApproachesGenetic Programming has been used in other scheduling problems, notably Job ShopScheduling [Atlan et al., 1994] and scheduling maintenance of railway track [Grimes, 1995].An approach based on [Atlan et al., 1994] which used a chromosome with a separatetree per task (i.e. line) to be maintained was tried. However unlike [Atlan et al., 1994]there was no central coordinating heuristic to ensure \the system's coherence" and eachtree was free to schedule its line independent of the others. The �tness function guidingthe co-evolution of these trees. This was able to solve the four node problem, where thereare eight tasks, but good solutions were not found (within the available machine resources)when this architecture was used on the South Wales problem, where it required 42 treeswithin the chromosome.Another architecture extended the problem asking the GP to simultaneously evolve aprogram to determine the order in which the \greedy" scheduler should process the tasksand evolve the greedy scheduler itself. Each program is represented by a separate treein the same chromosome. Access to Automatically De�ned Functions (ADFs) was alsoprovided.The most recent approach is to retain the �xed network ordering of processing thetasks but allow the scheduler to change its mind and reschedule lines. This is allowed byrepeatedly calling the evolved program, so having processed all 42 tasks it called again
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week = (PROG2 (set (SUB 0 1) (SUB (SUB 0 max) nw)) %[-1]=working area(PROG2 (for i0 nw (set ((ADD i0 (read (SUB 0 1)))) %store answer%(ABS (FLOW i0 ARG1)) min load flow heuristic(loadflow i0 ARG1 (ADD 2 i2)) %discard flow info)) (PROG2 (set (SUB 0 (ADD 1 ARG1)) (set (SUB (read (ADD i0 (read (SUB 0(ADD 1 1))))) (read 2)) (SUB (read (SUB (read (MUL 0 (ADD 1 1))) 1)) i0)))(PROG2 (for 1 (SUB nw (SUB nm_weeks (swap i0 (NNLK 1)))) %work2 = sum ov 4 weeks(PROG2 (set 0 (XL 1)) %[0]=temp(PROG2(for i0 (ADD i0 (SUB nm_weeks 1) )(set 0 (ADD (read 0) (read (ADD i0 (read (SUB 0 1)))))))(set ((ADD i0 (read (SUB 0 (ADD 1 1))))) (read 0)))))(PROG2 (set 0 (MUL max (SUB nw (SUB 1 (swap (XL 1) (read 0))))))(PROG2 (set (PROG2 (�t nw) (set nw (ADD (read 2) (ADD i0 (read (SUB 0 1)))))) 0)(PROG2 (for 1 (SUB nw (SUB nm_weeks 1)) %find min increase in cost(Iflt (SUB %calculate increase in cost(read ((ADD i0 (read (SUB 0 (ADD 1 1))))))(PROG2 (PROG2 (set 2 0)(for i0 (ADD i0 (SUB nm_weeks 1))(set 2 (ADD (read 2) (fit i0)))))(read 2)))(read 0)(PROG2 (set 1 i0)(set 0 (SUB(read ((ADD i0 (read (SUB 0 (ADD 1 1))))))(read 2))))0))(read 1))))))))Figure D.7: Evolved Heuristic. Length 199, Cost of schedule 388.349, CPU 306,438



336for the �rst, and then the second, and the third and so on. Processing continues untila �xed CPU limit is exceeded (cf. PADO [Teller and Veloso, 1995d]). These alternativetechniques were able to produce maintenance schedules but they had higher costs thanthose described in Sections D.3.1 and D.4.6.D.6 DiscussionThe permutation GA approach has a signi�cant advantage over the GP approach in thatthe system is constrained by the supplied heuristic to produce only legal schedules. Thisgreatly limits the size of the search space but if the portion of the search space selectedby the heuristic does not contain the optimal solution, then all schedules produced willbe suboptimal. In the GP approach described the schedules are not constrained andmost schedules produced are poor (see Figure D.6) but the potential for producing betterschedules is also there.During development of the GA approach several \greedy" schedulers were coded byhand, i.e. they evolved manually. The GP approach described further evolves the bestof these. It would be possible to start the GP run not only with the best hand coded\greedy" scheduler but also the best task ordering found by the GA. This would ensurethe GP started from the best schedule found by previous approaches.The run time of the GA is dominated by the time taken to perform load
ow calculationsand the best approaches perform many of these. A possible future approach is to hybridisethe GA and GP, using the GP to evolve the \greedy scheduler" looking not only for theoptimal schedule (which is a task shared with the GA) but also a good compromise betweenthis and program run time. Here GP can evaluate many candidate programs and so havean advantage over manual production of schedulers. This would require a more realisticcalculation of CPU time with load
ow and shed functions being realistically weighted inthe calculation rather than (as now) being treated as equal to the other primitives.When comparing these two approaches the larger machine resources consumed by theGP approach must be taken into consideration (population of 1000 and 50 generationversus population of 20 and 100 generations).D.7 ConclusionsThis appendix which was published in part in [Langdon, 1996a] has described the complexreal world problem of scheduling preventive maintenance of a very large electricity trans-mission network. It has been demonstrated that both the combination of a GA and hand



337coded heuristic and a GP using the same heuristics as seeds in the initial population canproduce low cost schedules for a region within the whole network when network robustnessis not considered. Lower cost schedules have been found by the GP but at the cost ofmany more �tness evaluations.The combination of a GA and hand coded heuristic has been shown to produce accept-able schedules for a real regional power network when including consideration of networkrobustness to single and double failures. However consideration of such contingencies con-siderably increases run time and so the production of schedules with similar costs usingGP has not yet been demonstrated.The time taken to perform GA �tness evaluations and with it program run time, growsrapidly with problem size and number of potential failures that must be considered. Itis anticipated that running on parallel machines will be required to solve the nationalproblem using a GA or GP approach. However there are a number of techniques whichcould be used to contain run time.
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Appendix EImplementationE.1 GP-QUICKFor reasons of convenience of use, support and speed, the work in this thesis is primarilycoded in C++. The GP-QUICK package written by Andy Singleton [Singleton, 1994] waschosen as a basis because:� It was written in C++.� It was freely available, for non-commercial use.� It was stable.� There was some limited bug �xing support.� There were early problems with the alternative C++ GP package, GPCPlus.� It implements (via the FASTEVAL macro) linear pre�x jump tables ([Keith andMartin, 1994, page 300] describes these as the best of the options they considered).� GP-QUICK stores GP individuals in �xed length arrays. This is believed to con-siderably simplify the dynamic memory allocation/deallocation problem and avoidfragmenting the heap; however it means wasting some memory where individualsare less than the maximum length.Some disadvantages to GP-QUICK have been encountered. For example, GP-QUICKaccesses the population at random. This can cause severe performance problems if partof the population is swapped out of main memory.
339



340E.2 Coding Changes to GP-QUICK-2.1Over the course of this work numerous changes have been made to GP-QUICK. Thefollowing list contains some of the more important:� Support for multiple trees within one individual.� Support for Automatically De�ned Functions (ADFs).� Reduction in space to store population to one byte per primitive.� Run parameters set by control �le and/or command line.� Separate �le of test cases.� Check pointing (so long runs can be restarted after a workstation reboots).E.3 Default ParametersThe default values for GP-QUICK parameters used in this thesis are given in Table E.1.They are the same as those used by [Koza, 1994, page 655] except, the following GP-QUICK parameters have also been used:� GP-QUICK implements a steady state, rather than a generational, population.� The GP-QUICK default tournament size is 4, rather than 7. Additionally selectingindividuals for removal from the population is performed using tournament selection(again with a tournament size of 4).� A maximum total program length limit is used rather than a maximum programdepth limit of 17. In addition to the total length restriction, some experimentsimpose a limit, when the initial population is created, of 50 nodes on individualtrees within the program.� A single child is produced by each crossover. (If the potential o�spring exceeds themaximum program size then the roles of the two parents are swapped, given bothparents are of legal length this second o�spring cannot be too big).



341Table E.1: Default GP-QUICK ParameterspPopSize : 10000pGenerateLimit : 1000000pPopSeed : 0pTestSeed : 1pTrace : 0pMaxExpr : 250pInitExpr : 6pMuteRate : 0pCrossSelf : 1pUnRestrictWt : 70pCrossWt : 90

pMuteWt : 0pAnnealMuteWt : 0pAnnealCrossWt : 0pCopyWt : 10pSelectMethod : 4pTournSize : 4pGaussRegion : 0pRepeatEval : 0pKillTourn : 4pMaxAge : 0pParsimony : 0E.4 Network RunningAll the experiments presented in this thesis were carried out on the UCL Computer Sciencedepartment's heterogeneous network of SUN workstations. The runs being independentof each other. Using the queue problem as an example, with a population of 10,000, eachjob occupies about 13 Megabytes of RAM within the workstation. However the elapsetime of each job varies considerably depending upon the load on the workstation (mostruns were done out of hours), the speed of the workstation and the details of the GP run.To perform a million �tness evaluations (each of which requires the program under testto be run 320 times) takes all day on the faster workstations and cannot be completed ina day on the slower ones.E.5 Reusing Ancestors Fitness Information[Handley, 1994a] has shown that where GP primitives do not have side e�ects considerablereduction in run time can be achieved by the use of caches and representing the populationas a single directed acyclic graph. These caches hold values of previously evaluated subtreesin the population. As the whole population is represented as a single graph, the cachesare shared by the whole population. Thus the �tness evaluation of any member of thepopulation can load subtree caches with values that might be used during the �tnessevaluation of any program created later. I.e. partial �tness evaluation information isreadily inherited. This section brie
y describes an implementation which has achievedreductions in run time by a factor of two. It can be applied to multi-tree programs whose



342primitives have side e�ects and is implemented using a conventional representation for thepopulation.When tests are independent of each other, unless a particular test causes code whichis di�erent in a child from its parent to be run, the child's result on that test must be thesame as that of its parent on the same test. Since the only di�erence between the child'scode and the parent's is produced by crossover (or mutation), it can be readily determinedif the child's result on a particular test could be di�erent from its parent. Only those testswhere the result could be di�erent need be run. For the others, the result can be takenfrom the parent. The complete �tness of the child is assembled from the individual testresults. NB result values can be inherited inde�nitely, i.e. not only directly from the child'smother but also from its grandmother, great grandmother etc.Our implementation considers changes only at the tree level. If crossover changes atree which is not executed in a particular test then the new program's behaviour on thattest must be identical to its parent's. I.e. its score must be identical and therefore thechild's score on that test is inherited, and that test is not executed. The savings producedare dependent upon the test sequences, GP parameters and other time saving techniques(cf. Section E.6), nonetheless run time was halved in some cases. Since results for each testin the test case must be stored, as well as the overall �tness value, the technique increasesexecution speed at the expense of greater use of memory.The technique could be extended to cover other cases where a child's score must beidentical to that of one of its parents. For example children produced by crossovers whichoccur within introns, must behave identically to their parent and so have identical �tness.
E.6 CachesHandley's [Handley, 1994a] combination of caches and directed acyclic graphs, requiresall the primitives to be free of side e�ects. read, write and other primitives do haveside e�ects, nevertheless caching can be used when parts of the program (such as trees orADFs) are known to be free of side e�ects. In the case of some runs of the list problem,cache hit ratios of between 70% and 97% were obtained with caches on End (1000 words),First (200), Next (1000) and Previous (200). This reduced run time by about 50%.



343E.7 Compressing the Check Point FileAs mentioned in Section E.4, GP runs may take a long time. Under these circumstancesa check point �le can be used to restart a run from the last check point, rather than fromthe beginning. The check point �le can also be used to extend particularly interestingruns.The bulk of the check point �le is occupied by the GP population. If written as plaintext the population consumes too much disk space, particularly if more than one GP runis active at the same time. Therefore the population is written in a coded form, whichoccupies one byte per program primitive. As the GP run continues and the populationconverges, considerable reductions in disk space can be achieved by using gzip to compressthe check point �le. Compression ratios as high as 25 fold can occur but compression toabout one bit per program primitive is common. (The high compression achieved indicateslow diversity within the GP population). A balance needs to be struck between the timetaken to process the check point �le and the potential time saved should the check point�le be used. Typically it takes about a minute to compress the check point �le. Thereforecheck points are written about once an hour.E.8 CodeSome of the C++ code used in this thesis is available, for research and educational pur-poses, via anonymous ftp; node cs.ucl.ac.uk directory genetic/gp-code.
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