
Parallel Optimisation Algorithms for Continuous,
Non-Linear Numerical Simulations

by

Andrew Lewis

B.E.(Hons.), University of Newcastle

School of Computing and Information Technology

Faculty of Engineering and Information Technology

Griffith University,

Nathan campus, Brisbane, Australia

Submitted in fulfilment of the requirements

of the degree of Doctor of Philosophy

May, 2004

ABSTRACT

Parallel Optimisation Algorithms for Continuous, Non-Linear Numerical Simulations

Andrew Lewis

Griffith University,

Nathan campus, Brisbane, Australia

In computational science and engineering there are growing numbers of increasingly sophisti-
cated, rigorous and realistic numerical simulations of physical systems. Detailed knowledge of a
particular area of enquiry is expressed in mathematical terms, realised in computer programs and
run on increasingly powerful computer systems. The use of such simulations is now commonplace
in a growing collection of industrial design areas.

Often, users of these models want to understand their behaviour in response to a variety of
input stimuli, bounded by various operational parameters. Commonplace in the engineering design
process is the need to find the combination of design parameters that minimise (or maximise) some
design objective. Optimisation programs seek to apply mathematical techniques and heuristics to
guide a computer in choosing trial parameter sets itself in an attempt to satisfy the expressed design
objective.

The more realistic the numerical simulations become, the more demanding of computational re-
sources they become. Many of them consume hours, or days, of computing time on supercomputers
to deliver a single trial solution. Optimisation algorithms invariably require the model be run more
than once, often many times. In the absence of any means to reduce the computational cost of a
single run any further, there can be two responses to this dilemma:

1. Reduce the number of model evaluations required by the optimisation algorithm, or

2. reduce the time the whole collection of model evaluations takes by running as many as possi-
ble at the same time.

The research in this thesis is directed toward developing methods that use the approach of par-
allel computing to reduce total optimisation time by exploiting concurrency within the optimisation
algorithms developed. For generality it assumes the numerical simulations to which it may be ap-
plied will have real-valued parameters, i.e. they are continuous, and that they may be non-linear in
nature.

The following contributions are described:

• The idea of developing a set of “sandbox” case studies for effective testing of optimisation
algorithms is presented and established as a feasible alternative to the use of artificial test
functions. An initial set of problems with varying characteristics is also presented.

• A parallel implementation of the quasi-Newton gradient method with BFGS update and its
efficacy in comparison to a corresponding sequential algorithm and widely-used method of
simulated annealing is demonstrated.

ii

• The use of a method of parallel line search with the Nelder-Mead simplex algorithm and its
advantages compared to the original algorithm, in speed and reliability, are clearly shown.

• New direct search methods, the Reducing Set Concurrent Simplex (RSCS) algorithm with
line searching variants, are presented, and their superior performance compared to a variety
of direct search methods demonstrated.

• A novel Evolutionary Programming algorithm using concepts of self-organised criticality,
EPSOC, is presented, and demonstrated to be superior in performance to a wide variety of
gradient, direct search and stochastic methods on a set of test cases drawn from real-world
problems. Evidence is presented of its potential for multi-objective optimisation using a novel
implementation with multiple, “virtual” archives.

• Methods of preconditioning optimisation problems to reduce the total time taken to achieve
an optimal result are presented. Temporal preconditioning, based on the time behaviour of
the numerical simulations, is demonstrated to yield substantial speedup.

• Some conclusions have been drawn on the applicability of specific optimisation methods to
different classes of real-world problems.

All of the methods described are implemented in the framework of a general-purpose optimisation
toolset, Nimrod/O, to provide a sound basis for future work, easy adoption across a wide range of
engineering design problems and potential commercial application.

iii

TABLE OF CONTENTS
Page

ABSTRACT . ii

LIST OF FIGURES . viii

LIST OF TABLES . x

STATEMENT OF ORIGINALITY . xiv

1.0 Introduction . 1

1.1 Scope . 2

1.2 The Nimrod/O toolset . 4

1.2.1 A Nimrod/O plan file . 5

2.0 Optimisation Methods . 8

2.1 Gradient Methods .9

2.1.1 Conjugate Gradient method .9

2.1.2 Quasi-Newton method .10

2.1.2.1 The line search sub-problem11

2.2 Direct search methods .12

2.2.1 Hooke-Jeeves algorithm .12

2.2.2 Simplex methods .13

2.3 Stochastic methods .14

2.3.1 Simulated Annealing .14

2.3.1.1 Generating the Probability Density Function15

2.3.1.2 Acceptance Probability Density Function15

2.3.2 Population-based methods .15

2.3.2.1 Genetic algorithms .15

2.3.2.2 Evolutionary Strategies .16

2.3.2.3 Evolutionary Programming .17

iv

3.0 Case studies. 18

3.1 Photochemical Smog Model .19

3.2 Quantum Electrodynamical Problem: Laser .20

3.3 Design of durable parts .23

3.3.1 Design of durable parts: minimising stress23

3.3.2 Design of durable parts: maximising fatigue life25

3.4 Design of a two-dimensional aerofoil .26

3.5 Radio Frequency Design Problem: Bead .27

3.6 Benchmark: Rosenbrock’s function .32

3.7 Summary .32

3.7.1 Problem characterisation .33

4.0 Gradient Methods . 36

4.1 A Parallel Gradient Descent Algorithm .36

4.1.1 Parallel line search .37

4.1.2 Parallel BFGS – Version 1 .37

4.1.3 Parallel BFGS – Version 2 .40

4.2 Results of Numerical Experiments. .41

4.2.1 Results for photochemical smog model41

4.2.2 Results for Laser case studies .41

4.2.3 Results for radio frequency design problem42

4.3 Discussion of results .44

4.4 Summary .45

5.0 Direct Search Methods. 46

5.1 The Algorithms .46

5.1.1 Nelder-Mead Simplex and variants .46

5.1.2 MDS and variants .48

5.1.3 Hybrid methods .48

5.2 Results of Numerical Experiments .50

5.3 Discussion of Results .57

5.4 Summary .58

v

6.0 Stochastic methods. 60

6.1 Self-organised Criticality .60

6.2 EPSOC: an Evolutionary Programming algorithm using Self-Organised Criticality .61

6.2.1 EPSOC implementation .62

6.3 Results of Numerical Experiments .62

6.4 Statistical Analysis of Results .70

6.5 EPSOC and Multi-Objective Optimisation .71

6.5.1 Results of Numerical Experiments .74

6.6 Summary .76

7.0 Preconditioning . 77

7.1 Temporal preconditioning .78

7.1.1 Case study 1: the Aerofoil case .78

7.1.1.1 Numerical experiments on the truncated Aerofoil case84

7.1.2 Case study 2: a multi-element antenna simulation85

7.1.2.1 Numerical experiments on the antenna simulation86

7.1.3 Summary: temporal preconditioning .87

7.2 Spatial preconditioning .89

7.2.1 Numerical experiments of spatial preconditioning91

7.2.2 Summary: spatial preconditioning .93

8.0 Conclusion . 95

8.1 Further work .98

8.2 Achievements and significance .99

A.0 Pair-wise comparison of Nelder-Mead Simplex algorithms, with and without itera-
tive line search . 101

B.0 Pair-wise comparison of Nelder-Mead Simplex algorithms, with and without single-
pass line search. 105

C.0 Statistical comparison – Simplex, MDS and RSCS algorithms. 109

D.0 Pair-wise comparison of RSCS, Nelder-Mead and MDS algorithms, Aerofoil test
case . 111

E.0 Pair-wise comparison of RSCS iterative line-searching, Nelder-Mead and MDS al-
gorithms, Bead test case. 112

F.0 Objective function values for EPSOC. 113

G.0 Objective function values for Genesis 5.0. 117

H.0 Objective function values for 9 algorithms . 121

I.0 Pair-wise comparison of EPSOC against other algorithms. 125

vi

J.0 One step spatial preconditioning – results of numerical experiments. 129

K.0 Two step spatial preconditioning – results of numerical experiments. 138

REFERENCES . 148

vii

LIST OF FIGURES

Figure No. Page

1.1 A taxonomy of optimisation algorithms .3

1.2 The Nimrod/O Architecture . 4

2.1 The Hooke-Jeeves algorithm in two dimensions12

2.2 The Nelder-Mead algorithm in two dimensions – step 113

2.3 The Nelder-Mead algorithm in two dimensions – step 214

3.1 Intended characteristics of algorithm test regime19

3.2 Typical surface: Ozone concentration (ppb) as a function of NOx and ROC20

3.3 Line Polarisation (K) data from laser-atom interaction simulation21

3.4 Laser 1 test case data .22

3.5 Laser 2 test case data .22

3.6 Laser test case data with additive Brownian noise23

3.7 Parametrized curves from (a) Equation 3-1, (b) Equation 3-224

3.8 Isosurfaces of maximum stress: Crack 1 .25

3.9 Isosurfaces of the design durability: Crack 2 .26

3.10 Computational mesh for aerofoil simulation .27

3.11 Isosurfaces of the aerofoil lift-drag ratio .28

3.12 Geometry for simulation of a suppression bead on an infinitely long coaxial cable .29

3.13 Isosurfaces for transmission loss,S21 = -35db . 30

3.14 Contours ofS21 on a plane of constant bead permittivity through the global minimum30

3.15 Contours ofS21 on a plane of constant bead thickness through the global minimum31

3.16 Contours ofS21 on a plane of constant bead length through the global minimum . .31

3.17 Contour surface of Rosenbrock’s function in 2D32

3.18 Objective function values along sample loci .35

4.1 Comparison of sequential and parallel line minimization38

4.2 Comparison of gradient descent algorithms’ success rate42

4.3 Cost function isosurface at -5 (transmission loss = -55dB) with ASA and P-BFGS
optimisation points .43

5.1 Nelder-Mead Simplex forf(x, y) = 360x2 + y + y2 for x ≤ 0 andf(x, y) =
6x2 + y + y2 for x ≥ 0 . 47

5.2 Sequential and concurrent Nelder-Mead reflection49

5.3 RSCS search directions .49

5.4 Convergence history for Laser 1 problem .54

5.5 Convergence history for Laser 2 problem .55

viii

5.6 Convergence history for Laser 2 problem, from starting point distant from global
minimum .55

6.1 Convergence history of median values – Laser 164

6.2 Convergence history of median values – Laser 265

6.3 Convergence history of median values – Crack 165

6.4 Convergence history of median values – Crack 266

6.5 Convergence history of median values – Aerofoil66

6.6 Convergence history of median values – Bead .67

6.7 Crack 1 isosurface for constantβ . 68

6.8 Crack 2 isosurface for constantβ . 69

6.9 Ordered set mapping for EPSOC-MO .73

6.10 Use of reverse mappings in EPSOC-MO .73

6.11 Multi-objective test case objective space sampling with “best” points from 10 runs .75

6.12 Multi-objective test case objective space sampling with points from a single run . .75

6.13 Test case objective space sampling with “best” points from 10 runs, optimised for
gain only .75

7.1 Time evolution of residual errors – Aerofoil test case79

7.2 Lift-drag ratio isosurfaces at 250 iterations .80

7.3 Lift-drag ratio isosurfaces at 500 iterations .81

7.4 Lift-drag ratio isosurfaces at 750 iterations .81

7.5 Lift-drag ratio isosurfaces at 1000 iterations .82

7.6 Lift-drag ratio isosurfaces at 1500 iterations .82

7.7 Lift-drag ratio isosurfaces at 2000 iterations .83

7.8 Lift-drag ratio isosurfaces at 10,000 iterations .83

7.9 Evolution of aerofoil objective function value with simulation iterations84

7.10 Evolution of antenna objective function values with simulation iterations86

7.11 Minimum sampled antenna objective function value with simulation iterations . . .87

7.12 Spatial preconditioning, Bead test case, first step sampling90

7.13 Spatial preconditioning, Bead test case, second step sampling90

7.14 Spatial preconditioning, Bead test case, after two steps91

8.1 Classification of optimization problems by common features96

8.2 Mapping algorithm to problem .97

8.3 A (revised) taxonomy of optimisation algorithms99

ix

LIST OF TABLES

Table No. Page

5.1 Median results obtained across 10 runs – Objective function values51

5.2 Median results obtained across 10 runs – Function evaluations51

5.3 Median results obtained across 10 runs – Equivalent Serial Function Evaluations .52

5.4 Best objective function values obtained in 10 runs52

5.5 Time taken, in ESFE, to achieve best objective function values, across 10 runs . . .53

5.6 Probability of failure in 10 runs .54

6.1 Best objective functions values obtained in 10 runs63

6.2 Time taken, as ESFE, to achieve best objective functions values across 10 runs . . .64

6.3 Gain and length of “best” points from 10 runs .74

7.1 Statistical comparison of distances to fully converged global minimum85

7.2 Location indices for antenna “global” minimum with simulation iterations88

7.3 Statistical differences in quality of results returned after one step spatial precondi-
tioning, by algorithm and test case .92

7.4 Statistical differences in quality of results returned after two step spatial precondi-
tioning, by algorithm and test case .92

7.5 Percentage change in batches required, using one preconditioning step93

7.6 Percentage change in batches required, using two preconditioning steps93

A.1 Simplex iterative line search evaluation – Laser 1 test case102

A.2 Simplex iterative line search evaluation – Laser 2 test case102

A.3 Simplex iterative line search evaluation – Crack 1 test case103

A.4 Simplex iterative line search evaluation – Crack 1 test case103

A.5 Simplex iterative line search evaluation – Aerofoil test case104

A.6 Simplex iterative line search evaluation – Bead test case104

B.1 Simplex single-pass line search evaluation – Laser 1 test case106

B.2 Simplex single-pass line search evaluation – Laser 2 test case106

B.3 Simplex single-pass line search evaluation – Crack 1 test case107

B.4 Simplex single-pass line search evaluation – Crack 2 test case107

B.5 Simplex single-pass line search evaluation – Aerofoil test case108

B.6 Simplex single-pass line search evaluation – Bead test case108

C.1 Comparison of direct search algorithms – Laser 1 test case110

C.2 Comparison of direct search algorithms – Laser 2 test case110

C.3 Comparison of direct search algorithms – Crack 1 test case110

x

C.4 Comparison of direct search algorithms – Crack 2 test case110

C.5 Comparison of direct search algorithms – Aerofoil test case110

C.6 Comparison of direct search algorithms – Bead test case110

D.1 Pairwise comparison of RSCS and Nelder-Mead Simplex – Aerofoil test case . . .111

D.2 Pairwise comparison of RSCS and MDS – Aerofoil test case111

E.1 Pairwise comparison of iterative line-search RSCS and Nelder-Mead Simplex –
Bead test case .112

E.2 Pairwise comparison of iterative line-search RSCS and MDS – Bead test case . . .112

F.1 EPSOC evaluation – The quantum electro-dynamical case (Laser 1)114

F.2 EPSOC evaluation – The quantum electro-dynamical case (Laser 2)114

F.3 EPSOC evaluation – The durable component design case using stress (Crack 1) . .115

F.4 EPSOC evaluation – The durable component design case using fatigue life (Crack 2)115

F.5 EPSOC evaluation – The 2D aerofoil design case (Aerofoil)116

F.6 EPSOC evaluation – The radio-frequency design case (Bead)116

G.1 GA evaluation – The quantum electro-dynamical case (Laser 1)118

G.2 GA evaluation – The quantum electro-dynamical case (Laser 2)118

G.3 GA evaluation – The durable component design case using stress (Crack 1)119

G.4 GA evaluation – The durable component design case using fatigue life (Crack 2) .119

G.5 GA evaluation – The 2D aerofoil design case (Aerofoil)120

G.6 GA evaluation – The radio-frequency design case (Bead)120

H.1 Algorithm comparison – The quantum electro-dynamical case (Laser 1)122

H.2 Algorithm comparison – The quantum electro-dynamical case (Laser 2)122

H.3 Algorithm comparison – The durable component design case using stress (Crack 1)123

H.4 Algorithm comparison – The durable component design case using fatigue life
(Crack 2) .123

H.5 Algorithm comparison – The 2D aerofoil design case (Aerofoil)124

H.6 Algorithm comparison – The radio-frequency design case (Bead)124

I.1 Pair-wise comparison of EPSOC against other algorithms – Laser 1 test case126

I.2 Pair-wise comparison of EPSOC against other algorithms – Laser 2 test case126

I.3 Pair-wise comparison of EPSOC against other algorithms – Crack 1 test case . . .127

I.4 Pair-wise comparison of EPSOC against other algorithms – Crack 2 test case . . .127

I.5 Pair-wise comparison of EPSOC against other algorithms – Aerofoil test case . . .128

I.6 Pair-wise comparison of EPSOC against other algorithms – Bead test case128

J.1 Mann-Whitney pair-wise comparison of BFGS results for one step preconditioned
and unconditioned test cases .129

xi

J.2 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex results for one step
preconditioned and unconditioned test cases .130

J.3 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex with line search re-
sults for one step preconditioned and unconditioned test cases131

J.4 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex with single-pass line
search results for one step preconditioned and unconditioned test cases132

J.5 Mann-Whitney pair-wise comparison of MDS results for one step preconditioned
and unconditioned test cases .133

J.6 Mann-Whitney pair-wise comparison of RSCS results for one step preconditioned
and unconditioned test cases .134

J.7 Mann-Whitney pair-wise comparison of RSCS with line search results for one step
preconditioned and unconditioned test cases .135

J.8 Mann-Whitney pair-wise comparison of RSCS with single-pass line search results
for one step preconditioned and unconditioned test cases136

J.9 Mann-Whitney pair-wise comparison of EPSOC results for one step preconditioned
and unconditioned test cases .137

K.1 Mann-Whitney pair-wise comparison of BFGS results for two step preconditioned
and unconditioned test cases .138

K.2 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex results for two step
preconditioned and unconditioned test cases .139

K.3 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex with line search re-
sults for two step preconditioned and unconditioned test cases140

K.4 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex with single-pass line
search results for two step preconditioned and unconditioned test cases141

K.5 Mann-Whitney pair-wise comparison of MDS results for two step preconditioned
and unconditioned test cases .142

K.6 Mann-Whitney pair-wise comparison of RSCS results for two step preconditioned
and unconditioned test cases .143

K.7 Mann-Whitney pair-wise comparison of RSCS with line search results for two step
preconditioned and unconditioned test cases .144

K.8 Mann-Whitney pair-wise comparison of RSCS with single-pass line search results
for two step preconditioned and unconditioned test cases145

K.9 Mann-Whitney pair-wise comparison of EPSOC results for two step preconditioned
and unconditioned test cases .146

xii

ACKNOWLEDGEMENTS

The undertaking of a PhD does not occur in a vacuum. Numerous people have given assistance, and
I should like to mention several in particular.

I can truly say that without Professor David Abramson’s constant assistance, guidance and encour-
agement this work would likely not have been completed. I consider him a valuable mentor and
friend, and have enjoyed the opportunity to work with him.

Mr. Tom Peachey, the third member of our research team, has been tireless in his work in program-
ming and bringing to fruition the Nimrod/O framework, which proved invaluable to the progress of
this research.

I have been fortunate to collaborate with a number of colleagues in the course of this research,
particularly in the application of the methods to a range of case studies. I would like to thank:

Dr. Brenton Hall, for access to the quantum electro-dynamics models from which were drawn the
data for the “Laser” test cases.

Professor Rhys Jones, for access to the models and data for the fatigue life engineering applications.

Professor Clive Fletcher, for access to the two-dimensional aerofoil model.

Dr. Seppo Saario, for access to the radio-frequency design cases, “Bead” and the multi-element
antenna simulation, and for his enthusiastic cooperation in their investigation.

Dr Martin Cope and Dr Maciej Skierski for their assistance with the photochemical smog modelling.

Dr. Marcus Randall, for his valuable advice on methods of statistical analysis.

Dr. Oliver Sharpe, for a most stimulating discussion on the No Free Lunch theorem.

Several members of staff at Griffith University have provided material assistance and encouragement
during the course of this work. I would like to thank Professor Barry Harrison, Associate Professor
Liisa von Hellens, Professor Max Standage and Mr. Geoffrey Dengate.

Finally I would like to thank family and friends for their support and forbearance.

c©1997 IEEE. Parts of Chapter 4 reprinted, with permission, from:
Lewis, A, Abramson, D and Simpson, R (1997) ”Parallel Non-Linear Optimization: Towards the
Design of a Decision Support System for Air Quality Management”,Proc. 1997 ACM/IEEE SC97
Conf., San Jose, CA, USA.

c©2003 IEEE. Parts of Chapter 6 reprinted, with permission, from:
Lewis, A and Abramson, D (2003) ”An Evolutionary Programming Algorithm for Multi-Objective
Optimisation”,Proc. 2003 Congress on Evolutionary Computation, Canberra, Australia, pp. 1926-
1932.

c©2004 Springer-Verlag. Parts of Chapter 6 reprinted, with permission, from:
Lewis, A, Abramson, D and Peachey, T (2004) ”An evolutionary programming algorithm for auto-
matic engineering design”,Proc. 5th International Conference on Parallel Processing and Applied
Mathematics, PPAM 2003, Czestochowa, Poland, in Lecture Notes in Computer Science 3019/2004,
pp. 586-594.

xiii

STATEMENT OF ORIGINALITY

This work has not previously been submitted for a degree or diploma in any university. To the
best of my knowledge and belief, the thesis contains no material previously published or written by
another person except where due reference is made in the thesis itself.

Andrew Lewis

xiv

1

1.0 Introduction

In scientific and engineering research and design, a third investigative paradigm has developed
to complement the traditional approaches of theory and experiment:computationalscience and
engineering. This comparatively recent methodology makes use of computers to investigate the
behaviour of complex systems, aid in the design process, and venture where environments may be
too hostile for experiment, or intractable for analytical solution.

Underpinning this approach are increasingly sophisticated, rigorous and realistic numerical sim-
ulations of physical systems. Detailed knowledge of a particular area of enquiry is expressed in
mathematical terms, realised in computer programs and run on increasingly powerful computer sys-
tems. The use of such simulations is now commonplace in a growing collection of industrial design
areas, with automotive and aeronautical design being notable early adopters.

Often, users of these models want to understand their behaviour in response to a variety of
input stimuli, bounded by various operational parameters. A simplistic approach is to construct
the set of all possible combinations of the parameters of interest and run the model for all these
cases. Even with powerful supercomputers, parallel and distributed resources, this quickly runs
into the problem of “combinatorial explosion”: as the number of parameters of interest increases,
the number of required model experiments needed to adequately investigate the model response
increases exponentially, rapidly becoming too many to feasibly contemplate computing. A desire
for detailed knowledge of the response, increasing the resolution needed, merely exacerbates the
problem.

Many users, particularly design engineers working to the tight deadlines of industry, respond by
trying to “outguess” the model, applying experience and specialist knowledge to limit the number
of times a model is run. As a result their searches are often truncated and the results they achieve
may be sub-optimal. It is the role of optimisation programs to alleviate this problem by applying
mathematical techniques and heuristics to guide the computer in choosing trial parameter sets itself
in an attempt to satisfy the expressed design objective.

Typically, the more realistic the numerical simulations become, the more demanding of com-
putational resources they become. Many of them consume hours, or days, of computing time on
supercomputers to deliver a single trial solution. Optimisation algorithms invariably require the
model be run more than once, often many times. In the absence of any means to reduce the compu-
tational cost of a single run any further, there can be two responses to this dilemma:

1. Reduce the number of model evaluations required by the optimisation algorithm, or

2. reduce the time the whole collection of model evaluations takes by running as many as possi-
ble at the same time.

The dominant architecture in high performance computing in recent times has been parallel, either
within a single machine, or through a collection of machines linked by networks, “computational
grids”. This provides additional motivation for developing a parallel computation approach.

The design engineer who uses the optimisation program, while an expert in the application
domain, cannot always also be expected to be an expert in computer science. Ideally, to be useful a
general purpose optimisation tool should be easily applicable to a wide range of problems without
assuming specialised knowledge in methods of optimisation from the user. The more it can be
treated as a “black box”, the wider its potential adoption and the greater its end benefit.

The research in this thesis is directed at addressing the main issues briefly outlined above. It
uses the approach of parallel computing to reduce total optimisation time by exploiting concurrency

2

within the optimisation algorithms developed. For generality it assumes the numerical simulations
to which it may be applied will have real-valued parameters, i.e. they are continuous, and that they
may be non-linear in nature. All the methods described have been implemented in a general-purpose
optimisation toolset for their ready application to a wide range of problems.

1.1 Scope

The general optimisation problem can be written in terms of an objective function,f : <n → <1

where<n denotes a Euclidean space of orderedn-tuples of real numbers, as:

min{f(x) |x ∈ X ⊆ <n} (1-1)

There appear no satisfactory tests for establishing whether a candidate solution to the problem
is (globally) optimal or not (Polak 1971). All the algorithms to be described in this thesis can only
be used to construct a series whose limit satisfies some optimality condition. In the absence of
convexity assumptions, such a condition is only a necessary condition of optimality, not sufficient
condition. Furthermore, there is a broad variety of problems in which uni-extremality cannot be
simply postulated or verified (Bongartz, Conn, Gould and Toint 1995), in particular the optimised
design and operation of complex “black box” systems, e.g. in diverse engineering applications.
Practitioners often resort to local improvement heuristics.

A large class of algorithms finds points:

x∗ ∈ <n : ∇f(x∗) = 0 (1-2)

Such a point is adesirableor astationary point. Under the assumption thatf is convex, points
satisfying Equation 1-2maybe “optimal”. They may not, in fact, be local minimizers, as Equation
1-2 can also be satisfied by maximizers and saddle points. Usually a minimizer corresponds to a
positive definite Hessian matrix, a maximizer to a negative definite matrix and a saddle point to an
indefinite matrix. The Hessian matrix,A, is a matrix of second partial derivatives off :

A =

∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
...

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 (1-3)

For a twice-differentiable function a general approximation in the region of a minimizer can be
simply expressed as a quadratic. The most straightforward method of solving such an equation is
Newton’s method(see, for example, Fletcher (1987),Gill, Murray and Wright (1981),Beale (1988)
or other introductory texts). This method, however, requires zero, first and second derivatives of the
objective function be available at any point. Closely related methods have been derived that only
require first derivatives, or approximations to them. Methods that make explicit use of∇f will be
termedgradient methods.

Alternatively, algorithms may make no explicit use of gradient information, but instead explore
the parameter space relying only on objective function values. Exploratory evaluations may be gov-
erned by some defined pattern, “stencil” or structure, in which case they are termedpattern search

3

or direct search methods, or the exploratory process may have some (usually carefully controlled)
randomness yielding the class ofstochastic methods.

From these distinctions a simplified taxonomy of optimisation methods can be constructed, and
one such overview is illustrated in Figure 1.1. Bäck (1996) draws a preliminary distinction between
volume-oriented methods, based on the idea that the whole feasible region must be scanned, and
path-oriented methods, that follow a path in the feasible region starting from an arbitrary or “best-
so-far” point. Figure 1.1 does not seek to drawn these distinctions, but can be seen as encompassing
both. It is interesting to note that volume-oriented methods imply a requirement that the search
space be restricted to a finite volume. A review of representative methods from the major classes of
Figure 1.1 is given in Chapter 2.

Optimisation Algorithms

Gradient methods Direct search methods Stochastic methods

Conjugate
gradient
methods

quasi-Newton
methods

Pattern
search

Simplex
methods

Adaptive
search
set

Simulated
annealing

Population-
based

methods

DFP BFGS Hooke-
Jeeves

Nelder-
Mead

Genetic Evolutionary Evolution
Algorithms Programming Strategies

algorithms


`````

�
�

H
H

�
�

H
H

�
�

H
H

������
L
LL

�
��

�
��

     �
PPP

Figure 1.1 A taxonomy of optimisation algorithms

The work in this thesis contains details of new, parallel optimisation algorithms and hybrids of
existing methods that expand upon and improve several of the classes in Figure 1.1. This study,
primarily motivated by the needs of real design problems, begins by developing a set of test prob-
lems drawn from real-world applications, extracting and abstracting their information to provide real
challenges, rather than simplified mathematically constructed test cases. Details of the test cases are
outlined in Chapter 3. New algorithms, and contributions to existing algorithms, ingradient meth-
ods, direct search methodsandstochastic methodsare discussed in Chapters 4, 5 and 6 respectively.
Results of numerical experiments and statistical comparison of methods are also given. Methods of
“conditioning” the target problems to improve optimisation performance are discussed in Chapter
7. Finally, in Chapter 8, conclusions are drawn about the new algorithms, contributions to existing
methods, and their implementation. Supplementary material is presented on an accompanying CD,
including:

• Virtual Reality Modeling Language (VRML) data sets for the case studies described in Chap-
ter 3,

• some animations of the operation of new algorithms discussed in Chapters 5 and 6, and

• an animation of the operation of spatial preconditioning discussed in Chapter 7.



4

1.2 The Nimrod/O toolset

As outlined above, a fundamental objective of this research is its simple and effective application
to real problems. The more the process of optimisation can be treated as a the function of a “black
box”, the more readily it may be applied to a wide range of problems. To meet these needs, the
algorithms described in this thesis have been implemented as components of a fully integrated op-
timisation toolset, Nimrod/O (Abramson, Lewis and Peachey 2000, Abramson, Lewis and Peachey
2001, Abramson, Lewis, Peachey and Fletcher 2001a).

Nimrod/O is a development of the Nimrod research project (Abramson, Sosic, Giddy and Hall
1995, Lewis, Abramson, Sosic and Giddy 1995, Abramson, Foster, Giddy, Lewis, Sosic, Sutherst
and White 1997), incorporating automatic optimisation into the framework of what was originally
a parameter sweep toolset. Nimrod allows a scientist or engineer to succinctly describe their nu-
merical simulation, define parameter ranges and perform automatic explorations of parameter space
using enumeration of the cross-product of the defined parameters on parallel or distributed comput-
ers. It is a tool specifically designed for the task of performing “parameter sweeps” of simulations,
varying parameter values between upper and lower limits in a step-wise manner, and evaluating the
simulation at each step. The step size is typically chosen for reasons of desired resolution or feasible
computation, given limited time or resources.

While an extremely useful tool, Nimrod suffers from the shortcoming identified in Chapter
3: combinatorial explosion of required model evaluations as problem dimensionality and desired
solution resolution increased. Nimrod/O seeks to avoid this problem by extending the toolset to
include automatic optimisation in the same, easily usable framework. It is the product of a contin-
uing research project involving principally Abramson, Lewis and Peachey, to which the author has
contributed mainly the design and development of parallel optimisation algorithms.

The structure of Nimrod/O and outline of its operation is shown in Figure 1.2. Control is via a
declarative plan file, a simple description of the execution of the numerical model and optimisation
problem, including parameters, their ranges, and details of the optimisation methods to be used. An
example plan file is shown below. Nimrod/O interprets the plan file, sets up the run environment
and passes control to the requested optimisation algorithm(s). Nimrod/O explicitly supports simul-
taneous execution of multiple optimisation runs from different starting points, and simultaneous use
of multiple optimisation methods.

Figure 1.2 The Nimrod/O Architecture

An optimisation algorithm, as it runs, passes requests to Nimrod/O job control for objective
function evaluations to be performed. These can be grouped in batches where the algorithm is



5

capable of generating multiple concurrent tasks. Job control checks the requested set of parameters
against a cache of previously computed results and then automatically dispatches evaluation jobs
to computing resources provided by the user, whether they be parallel or distributed computers, via
one of a number of job distribution mechanisms. Currently two are provided in the standard toolset:

• a Globus-enabled tool for use of computational grid resources (Foster and Kesselman 1997).

• an API to EnFuzion, a commercially available implementation of the original Nimrod tool
that allows use of parallel computers or collections of workstations on a LAN.

These tools take care of job submission, execution tracking and input and output file handling.

1.2.1 A Nimrod/O plan file

Following is a simple, example declarative plan file. Further details of the syntax can be found
in the Nimrod/O Users’ Guide (Peachey 2003a).

parameter b float range from 5 to 35
parameter tness float range from 2 to 9
parameter bias float range from -0.02 to 0.02

task main
copy runfiles/* node:.
node:execute ./run.script $b $tness $bias
copy node:result.dat output.$jobname

endtask

method simplex
starts 9 named "simplex"

starting points specified in starters
tolerance 0.005

endstarts
endmethod

method epsoc
starts 10 named "EPSOC"

starting points random
maximum iterations 20
population 64
tolerance 0.005

endstarts
endmethod

The plan file starts by defining the parameters. A parameter is named, its type defined, how it
will be expressed and, where appropriate, the bounds on its value. For example, parameter “b” is
defined as being a floating point value, to be expressed in a range from a lower bound of 5.0 to an
upper bound of 35.0:

parameter b float range from 5 to 35



6

Supported parameter types are float, integer and text. Float and integer types must be expressed as
a range of values, text as a list of values. Where text parameters are used, the listed cases will be
evaluated by simple enumeration, i.e. multiple optimisations will be performed, one for each value
of the text parameter.

Then, in the section labelled as “task main”, a brief description is given of how to run the
numerical simulation. Input and output of the simulation are assumed to be via named files. This
has been a common method of interaction with large-scale simulations, and is an easy method
independent of the model implementation. For each objective function evaluation task input files
are copied to the “node” on which execution is to be scheduled:

copy runfiles/* node:.

All other files necessary for execution of the simulation should also be copied, including all neces-
sary scripts and executables. Then a user-provided script is run on the node:

node:execute ./run.script $b $tness $bias

It is assumed that the script will provide the commands to run the simulation and derive the single,
floating-point objective function value. It may be directly output from the model, or derived by post-
processing of the model output, in which case the script should also perform the post-porcessing
steps. It may be noted that the parameters are provided to the script via named environment vari-
ables. These will be substituted by the particular parameter values supplied by the optimisation
algorithm at run-time.

The results, written to a file, are copied back to the scheduling node, and placed in a file with
the standard name “output” and an extension identifying the particular job:

copy node:result.dat output.$jobname

Following the description of the model execution are two sections specifying two different al-
gorithms to be used. These will both be executed simultaneously. Parameters for the algorithms
are kept to a minimum, are generally intuitive, and provided with sensible default values. In the
example shown, nine simultaneous runs will be performed using a parallel implementation of the
Nelder-Mead Simplex algorithm, from starting points specified in a user-supplied file:

starts 9 named "simplex"
starting points specified in starters

At the same time, ten runs will be performed using the new EPSOC algorithm, with randomly
generated starting seeds, a limit of 20 iterations, and a population size of 64.

starts 10 named "EPSOC"
starting points random
maximum iterations 20
population 64

Both algorithm descriptions specify a desired solution tolerance:

tolerance 0.005



7

For the Simplex algorithm this specifies the convergence criterion by defining the magnitude of
the fractional gradient of the final simplex. As will be described in Chapter 6 EPSOC uses the
“maximum iterations” value specified to terminate iteration. In this case, the “tolerance” is used to
control the operation of NimCache, by defining the minimum separation between parameter values
that will be stored as distinct values in the results cache.

This is sufficient to specify the entire optimisation experiment to Nimrod/O.

Nimrod/O includes a syntax for the imposition of constraints on the parameter space. Both
barrier and penalty function constraints can be defined by algebraic expressions. The use and impact
of constraints has not been considered in this research, so further information on their use can be
found by reference to the Nimrod/O Users’ Guide.

Nimrod/O provides a simple, easy to use framework for the application of optimisation to a
wide range of problems. No additional programming is required to integrate numerical simulations
into the optimisation framework, and no access is generally required to the internal operations of
the simulation. Nimrod/O is thus readily usable even with proprietary simulation packages, as is
demonstrated in the case study described in Section 3.4. All the algorithms to be described in
following chapters have been developed, tested and fully integrated in the Nimrod/O framework.



8

2.0 Optimisation Methods

When the evaluation of the optimisation objective is computationally very demanding, as is the
case with perhaps the majority of the engineering and scientific numerical simulations that con-
stitute the domain for this research, there are two main approaches that can be tried to make the
optimisation problem tractable:

1. Choose an optimisation method that minimises the absolute number of function evaluations
required to find an optimal solution.

2. Choose an optimisation method that seeks to minimise the total time taken to find an optimal
solution by performing as much of the computation required in parallel.

It is the basic intention of this research to find, develop and exploit methods using the latter ap-
proach, to build a general purpose toolset that can be deployed on parallel or distributed computing
resources. Looking at the taxonomy of methods in Figure 1.1, which methods are best suited to
which of these two approaches?

Moving from left to right in the diagram to some extent parallels the historical development of
optimisation methods. Early algorithms sought to build on the foundations of mathematical knowl-
edge embodied in Newton’s method, least squares minimization and other, manually-executed,
largely sequential techniques. The introduction of variable metric methods by Davidon (1959) was a
revolutionary step forward in sophistication of methods. In averygeneral sense moving from left to
right in the diagram of Figure 1.1 also indicates some degree of increasing parallelism of methods.
Until the rise of multi-processor high performance computers in the late 1980’s and early 1990’s, the
accepted wisdom continued to make much of the advantages of sequential processing, using knowl-
edge from earlier iterations of a method to guide later steps. Indeed, in the early 1960’s the opinion
was expressed that “Naturally, simultaneous schemes are much less effective than sequential plans”
(Wilde 1964). Several authors struggled, briefly, with the question of what circumstances might jus-
tify the use of simultaneous search methods, and could see little reasonunless working to a deadline
in real life (Wilde 1964, Cooper and Steinberg 1970). Obviously, the limited computing resources
available at that time did much to mitigate against ideas of using “speculative” computation. The
gradient methods, while rapid to converge on local minima, generally have limited concurrency, i.e.
few independent tasks within the algorithm that can be performed simultaneously.

At about this time early direct search methods (Hooke and Jeeves 1961, Spendley, Hext and
Himsworth 1962, Nelder and Mead 1965) started to appear. Their emphasis was still on sequential
procedures, but the structure of some of them, particularly the simplicial methods, had potentially
greater concurrency.

The use of stochastic methods for optimization on a large scale is generally a more recent de-
velopment. While some precursor studies were made at the same time as the rapid development of
other optimisation methods in the late 1950’s and early 1960’s, it was not until the availability of
sufficient computing resources to make the methods practical that they saw widespread adoption.

Simulated annealing is based upon the algorithm of Metropolis et al. (Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller 1958), which was originally proposed as a means of finding the equi-
librium configuration of a collection of atoms at a given temperature. The connection between this
algorithm and mathematical minimization was first noted by Pincus (1970). While having the po-
tential for parallel execution, this can have a large impact on its rate of convergence so the technique
is usually employed sequentially.



9

The population-based methods, practical for real-world optimisation only with the availability of
sufficient computing resources to support them, are inherently parallel by their nature, and the most
recent to experience attention and active research. Alander (1999) has documented an exponential
growth in application of genetic algorithms from about the mid-1970’s.

The following sections will examine each of these classes of methods in turn, and later chap-
ters will explore the problem of exploiting parallelism within them, and their application to real
optimisation problems.

2.1 Gradient Methods

Gradient methods for optimisation are familiar and widely used. A search on a leading citations
database returned over 100,000 references to gradient descent optimisation. For this reason the
fundamental topics will be approached by reference to introductory texts.

The gradient descent method can be generalized by the following steps:

1. Supply an initial estimate of the solution,x1

2. At the kth iteration, determine a search direction,sk, generally a direction in whichf (x)
decreases.

3. Findαk to minimizef (xk + αsk) with respect toα.

4. Setxk+1 = xk + αksk.

Methods differ principally in how they proceed at step (2). Step (3), essentially aline search, can
be exact in theory and inexact, to a greater or lesser degree, in practice.

A first, intuitive approach to setting the line search direction is to set it in the direction of the
local downhill gradient, thesteepest descent method.It can be trivially demonstrated, however,
that even in the simplest cases this is not a good approach, leading to very inefficient, zigzagging
trajectories. A more desirable trajectory might be constructed by requiring new search directions to
maintain any change in the gradient to be perpendicular to the original search direction, i.e. not to
spoil minimization along the first search direction while traversing the new search direction. The
two search vectors are said to beconjugate.

2.1.1 Conjugate Gradient method

The method of conjugate gradients was introduced by Hestenes and Stiefel (1952) (Hestenes
1956) and applied to optimisation by Fletcher and Reeves (1963). The method is an exact line
search method in which:

s0 = −g0 whereg = ∇f(x) (2-1)

and

sk+1 = component of− gk+1 conjugate tos1, s2, . . ., sk (2-2)

The conjugacy condition can be written as:



10

sT
i (gj+1 − gj) j 6= i (2-3)

and an update formula for the search direction derived:

sk+1 = −gk+1 + βksk (2-4)

with β0 = 0, whereβk =
gT

k+1gk+1

gT
k gk

Applied to a quadratic function, the method converges to an exact solution in a finite number
of iterations. For minimization of non-quadratic functions the method cannot be guaranteed to
terminate. In practice, the method is periodically reset to the steepest descent search direction.

2.1.2 Quasi-Newton method

An alternative class of gradient methods are thequasi-Newtonor variable metric methods, first
introduced by Davidon (1959) and later improved by Fletcher and Powell (1963a) in theDFP
method.A minor variant of the DFP method proposed by Broyden (1970), Fletcher (1970), Gold-
farb (1970) and Shanno (1970) is known as theBFGS update formula. In practice it has been found
to work well, and is considered by some as the “best” quasi-Newton method (Fletcher 1987).

The main advantage of quasi-Newton methods compared to conjugate gradient methods is that
they avoid the need for periodic restarts and the consequent loss of information (Beale 1988). They
have also been found to be more efficient (Fletcher 1987). Their main disadvantage is the storage
requirement for then × n Hessian matrix (or its inverse.) With current computing resources, this
is a negligible consideration. Some authors have stated the opinion that today a problem of 50
parameters is small and one of 5000 parameters is large (Sartenaer 1995). It may be instructive,
however, to inspect the problems presented, for example, in the CUTE set of standard test functions
(Bongartz et al. 1995). Of the 75 problems whose solution has been used in a real application
and that have a specified number of parameters, the median number of parameters is 8. It would
appear that this smaller dimensionality is more representative of the true scale of typical, real-world
problems.

The perception that these methods also require a matrix inversion operation to be performed at
each iteration, supposedly another disadvantage in comparison with conjugate gradient methods, is
false, as the methods can be easily expressed in terms of operations on the inverse of the Hessian
matrix.

The basic idea of variable metric methods is to construct a sequence of matrices,Hi, such that:

lim
i→∞

Hi = A−1
i (2-5)

whereA−1
i is the inverse of the Hessian matrix, i.e. a sequence of approximations is made toA−1

i .
The kth iteration of a quasi-Newton method can generally be given by:

1. Setsk = -Hkgk

2. Line search alongsk yielding xk+1 = xk + αk sk

3. UpdateHk to Hk+1



11

Initial estimates forx0 andH0 must be supplied. In practice,H0 is often set to the identity matrix.

The BFGS update formula is given by (see, for example, Press, Teukolsky, Vetterling and Flan-
nery (1992)):

Hk+1 = Hk + (xk+1−xk)⊗(xk+1−xk)
(xk+1−xk)·(gk+1−gk)

− [Hk·(gk+1−gk)]⊗[Hk·(gk+1−gk)]
(gk+1−gk)·Hk·(gk+1−gk)

+ [(gk+1 − gk) ·Hk · (gk+1 − gk)]u⊗ u

(2-6)

where

u ≡ Hk + (xk+1−xk)
(xk+1−xk)·(gk+1−gk)

− Hk·(gk+1−gk)
(gk+1−gk)·Hk·(gk+1−gk)

(2-7)

2.1.2.1 The line search sub-problem. Gradient methods applied to multivariate problems essen-
tially reduce the problem to univariate minimization in some specific search direction, aline search.
It is this search that forms the heart of the overall method, and largely governs its performance.
There can be considerable variation in methods, particularly depending on whether derivatives of
the objective function are available or not.

The line search basically generates a sequence of trial solutions, terminating when one of them
is an acceptable point. Depending on the methods used, forf(x) in <, the univariate mapping of
f(x) in <n in the search direction, this may be a stationary point as defined by Equation 1-2. There
are typically two stages to the line search:

1. The algorithm defines a series of points along the search vector, often by sequentially stepping
successively greater distances along it, evaluates them, and continues until a bracket on an
interval of acceptable points is detected.

2. Some form of interpolation, e.g. by fitting parabolic approximations to the sampled points, is
carried out to give a better approximation to a minimal point.

Methods vary in how they define the sequence of trial points, e.g. how the initial step size and its
rate of increase are chosen for iterative stepping methods, and whether interpolation is performed,
and how that is achieved.

As outlined in Section 4.1.1 below, by reformulation of the problem it is possible to make use of
a method of iterative line interval subdivision. This is readily adapted to use of parallel computing
resources. The method of equal interval search is well known (Cooper and Steinberg 1970), but in
the past its analysis has been limited to the context of uniprocessor computers, with the result that
the three-point equal interval search was considered the most “economical” (Cooper and Steinberg
1970, Kiefer 1959). The method has been re-assessed in the light of using multi-processor, parallel
computers and the effectiveness of the search in finding the global minimum of a synthetic, periodic
function demonstrated to be proportional to the number of sampled points at each step (Peachey,
Abramson and Lewis 2001).



12

-

6
�
�
��

-

6
�
�
�
�
��

-

6

?�
��
�
�*

0 1

2

3 4

5

6 7

8

9

Figure 2.1 The Hooke-Jeeves algorithm in two dimensions

2.2 Direct search methods

Quasi-Newton gradient descent methods typically use finite difference approximations to the
gradient if it is not otherwise available. To derive the gradient in this way, a separate step involving
evaluation of the objective functions on a finite difference stencil is required. Direct search methods
do not explicitly use approximate gradient information, but instead take objective function values
from a set of sample points, and use that information to continue sampling.

2.2.1 Hooke-Jeeves algorithm

For example, in an iteration of the Hooke-Jeeves algorithm (Hooke and Jeeves 1961) the objec-
tive function is computed on a Cartesian stencil, an “exploratory move” that seeks to accumulate
information about the local behaviour of the objective function, and the returned values are used to
determine a search direction. A pattern move is then made in the search direction, i.e. the origin
of the exploration stencil is relocated based on information from the exploration. Anad hocdevel-
opment of thealternating variables method, it sought to make better progress by extending along
apparently favourable directions. The process is illustrated in two dimensions in Figure 2.1.

Referring to Figure 2.1, from the starting base point at 0, an exploration probe is made in the
first coordinate direction. The point sampled is an improvement on 0, so it is accepted as point
1. A probe is made in the second coordinate direction, is also successful, and the new point, 2, is
accepted. All coordinate directions have been probed, so a pattern move is made in the direction of
the sum of the probe vectors, minus the (null) vector at 0. This pattern move improves the objective
function, so it is accepted as point 3.

The exploration phase is repeated, with successful moves to points 4 and 5. The pattern move is
now the sum of the previous pattern move, and the exploratory moves, i.e. it extends in the direction
experience has indicated is successful. The new pattern move is also successful, and point 6 is
accepted. A probe to point 7 is successful, so it is accepted, but the probe in the second coordinate



13

�
�
�
�
�

��
�*

��
��
�
��
�*

��
��
�
��
�
��*

��
��
�
��
�
��
�
��
�
�*

3 2

1 a

b

c

d

Figure 2.2 The Nelder-Mead algorithm in two dimensions – step 1

direction from point 7 is not. Another probe is tried in the opposite direction, succeeds and point 8
is accepted. Then a pattern move is made to point 9 and the process continues.

If all exploration moves fail, they are repeated with a reduced step size. The method terminates
when the step size is reduced below a given threshold.

2.2.2 Simplex methods

In the Nelder-Mead simplex algorithm (Nelder and Mead 1965), then + 1 vertices of a simplex
of approximations to an optimal point inn-dimensional space are sampled, ordered by objective
function value, and an attempt made to replace the worst vertex by reflection through the convex
hull of the remaining vertices, using limited sampling along the search direction so defined. Use
of the Nelder-Mead simplex algorithm remains current, largely because, as confirmed during these
investigations, on a range of practical engineering problems it is capable of returning a very good
result (Wright 1995). It is also robust to small perturbations or inaccuracies in objective function
values (Neddermeijer, van Oortmarssen, Piersma, Dekker and Habbema 2000). The Nelder-Mead
algorithm in two dimensions is illustrated in Figures 2.2 and 2.3.

In Figure 2.2 the initial simplex is constructed, often aligned with coordinate directions for want
of a better guess, the objective function values obtained at the vertices and the vertices ordered by
the values. A search vector is constructed from the worst vertex, point 3, through the centroid of
the remaining vertices. In two dimensions this lies in the direction through the centre of the simplex
edge 1-2.

The original algorithm prescribed a reflection of the worst vertex be tried, i.e. to pointa. If this
was successful, i.e. it produced simple decrease in the objective function value, an extension was
tried in the same direction, i.e. to pointb. If this was successful, it became the new vertex and the
process was repeated for the next worst vertex.

If point a was unsuccessful, a contracted step was tried. Variants of the algorithm placed this at
point c or pointd. If these points also prove unsuccessful, all vertices 2,3,... are contracted toward
the best vertex, 1.



14

���
���

���
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�7

�
�
�
�
�
�
�
�
�
�7

�
�
�
�
�
�
�
�
�
�
�
�
��7

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�7

3

2

1

a

b

c

d

Figure 2.3 The Nelder-Mead algorithm in two dimensions – step 2

In Figure 2.2, the extension to pointb is successful, it becomes a vertex of the new simplex,
shown in Figure 2.3, the vertices are reordered, and a new search begins.

Some criticism has been voiced over the arbitrary choice of the sample points, with no theoret-
ical basis for choosing the expansion and contraction factors (Shekarforoush, Berthod and Zerubia
1995). The simple reflection operation has been found to be advantageous in that it maintains con-
gruency of the sequence of simplices, a desirable property since it prevents degeneration of the
simplex (Torczon 1989, Kelley 1999). It may be noted that the Nelder-Mead algorithm always sam-
ples at least two points, the location of which are entirely defined by the geometry of the simplex.
This inherent concurrency is readily exploitable.

More recently, the work of Dennis and Torczon (Dennis and Torczon 1991, Torczon 1989, Torc-
zon 1991) has yielded abstractions of the simplicial methods with the potential for greatly enhanced
parallelism through simultaneous treatment of multiple vertices, and speculative computation of
multiple stages of the algorithms. A straightforward implementation of the first of these ideas has
been embodied in their Multidirectional Search (MDS) method.

2.3 Stochastic methods

2.3.1 Simulated Annealing

The Simulated Annealing (SA) group of algorithms are based on an analogy to the annealing
process used in metals as they cool. Initially a problem is defined with a high “temperature” which
allows the next solution point to be relatively random. As the number of trial solution points in-
creases, a probability density function increasingly confines the next solution point to be closer to
a known minimum. Depending on the simulation parameters, the optimisation algorithm is able to
solve complex problems with some statistical guarantee of finding the global minimum.



15

The basic components of the SA algorithm are briefly discussed below (Kirkpatrick, Gerlatt and
Vecchi 1983):

2.3.1.1 Generating the Probability Density Function. In a D-dimensional parameter space with
parameterspi having ranges[Ai, Bi], about the k’th last saved point (e.g, a local optima),pi

k, a
new point is generated using a distribution defined by the product of distributions of each param-
eter,gi(yi;T i) in terms of random variablesyi in [-1, 1], wherepi

k+1 = pi
k + yi(Bi − Ai) and

“temperatures”Ti.
gi(yi;Ti) = 1/2(

∣∣yi
∣∣ + Ti) ln(1 + 1/Ti)

For each pointpi
k the numerical simulation is run and a cost function,C(pk), is a measure of the

suitability of the solution obtained.

2.3.1.2 Acceptance Probability Density Function. The cost functions,C(pk+1) − C(pk), are
compared using a uniform random generator,U in [0,1] in a “Boltzmann” test: If

exp[−(C(pk+1)− C(pk))/Tcos t] > U

whereTcos t is the “temperature” used for this test, then the new point is accepted as the new saved
point for the next iteration. Otherwise, the last saved point is retained.

The parameter “temperatures”, normally reduced as some simple function of the algorithm it-
eration count, may be periodically adaptively reannealed, or increased relative to their previous
values, using their relative first derivatives with respect to the cost function, to guide the search
evenly among the parameters.

2.3.2 Population-based methods

Population-based methods involve large numbers of objective function evaluations, typically
performed in parallel, evolving solutions over several “generations”. A particular subset of these
methods is evolutionary computation, which seeks to use insight into natural processes to inform
computational methods. The resulting Evolutionary Algorithms are popularly differentiated into
three main classes (Bäck 1996) namely, Genetic Algorithms, Evolutionary Strategies and Evolu-
tionary Programming.

In the general, population-based method, multiple instances of a problem, each represented by a
vector of parameter values, are subject to various operators so that a population of problem instances
in a “parent” generation evolve into a “child” population. This process is repeated through a number
of generations.

2.3.2.1 Genetic algorithms. Widely known, these methods are generally accepted as having been
developed by Holland (1975). Genetic Algorithms, in contrast to Evolutionary Strategies and Evo-
lutionary Programming, work on bitstrings of fixed length. For problems of continuous variable
parameters the bitstring has a mapping to the vector of parameters, which generally implies they
are capable of returning approximate, rather than exact, global minima. Recent practice has been to
use Gray code interpretation of the bitstring segments so that the representations of adjacent inte-
ger values have Hamming distance one. Even so, changing a single bit may cause arbitrarily large
changes to the integer values. The standard selection methods of Genetic Algorithms require posi-
tive fitness values, which are highest for the best population members. This requires some scaling
transformation also be used when interpreting bitstring segments.



16

The bitstring representations are subject to a variety of processes to construct an analogue of
genetic inheritance in sexual reproduction, mutation and selection.

The mutation operator, considered by Holland as a “background operator” changes single bits
of the bitstring with a given mutation probability. In keeping with the natural model, the mutation
probability is usually very small. Small mutation rates in nature guarantee that individuals do not
differ greatly from their ancestors in a genetic sense. This does not hold true for encoded real-
valued parameters, as a single changed bit can cause large parameter value changes. Mutation
serves a useful role by its ability to reintroduce information lost from all members of the population,
maintaining genetic diversity.

The crossover operator, emphasised by many as the most important operator in Genetic Algo-
rithms (B̈ack 1996), allows useful segments from different parents to be exchanged to yield offspring
with the best characteristics of both. Traditionally, the bitstrings of two parents were severed at the
same location and corresponding portions of the bitstring exchanged. Empirical studies have indi-
cated this approach is inferior to a more recently developed method of multi-point crossover, that
allows simultaneous exchange of several corresponding segments, eliminating positional bias under
crossover.

Selection operates on the population using a probabilistic survival rule, survival probabilities
being calculated according to relative fitness of individuals. Some sampled subset of the population
is copied to the parent population of the next generation, the number of copies of individuals being
proportional to the survival probabilities.

These processes of mutation, recombination and selection are repeated, typically until some
limit on the number of iterations, or generations, is exceeded.

2.3.2.2 Evolutionary Strategies. These were a joint development of Bienert, Rechenberg and
Schwefel in the 1960s (see, for example, Schwefel (1965)), and operate on continuous parame-
ters, using normally distributed mutation and recombination. The earliest applications were ex-
perimental, applying small discrete changes sampled from binomial distributions to setups in fluid
dynamics problems, performing a physical experiment, measuring the objective criterion, and re-
taining the new setup if it proved better than the last one used. Schwefel first simulated the method
computationally, and this gave rise to what is termed the (1+1)-ES.

Rechenberg introduced the concept of a population by applying recombination ofµ parents to
produce a single “child”. The child undergoes mutation and the whole population is subject to
selection, the worst individual being removed. This formed the (µ+1)-ES. Schwefel continued the
development of the method, introducing two new variants. In the (µ + λ)-ES,µ parents generate
λ offspring and the whole population of parents and offspring are subject to selection (with the
obvious survival ofµ parents of the next generation.) In the (µ,λ)-ES the bestµ offspring are
selected fromλ generated individuals after mutation. This evidently impliesλ > µ.

An important characteristic of Evolutionary Strategies is that they readily allow the incorpora-
tion of important operational parameters, such as the parameters of the mutation probability distri-
butions, into the population, so that optimisation is applied not only to the objective function but
also to the strategy, so calledself-adaptation.

Recombination as used in Evolutionary Strategies can take the same forms as used in Genetic
Algorithms, but can also pair a single parent with several other randomly-chosen parents for each
segment of a multi-point crossover operation. It may also be intermediate with child parameter
values being formed from the (weighted) mean of several parent parameters.

Selection is completely deterministic, governed by the size ofµ andλ in the two strategies
described, (µ + λ)-ES and (µ,λ)-ES.



17

(µ + λ)-ES always preserves the best solutions found at each stage, thus guaranteeing mono-
tonic improvement of the population. By way of contrast, (µ,λ)-ES has possible advantages when
the objective is time-varying or the objective function has many local minima, because popula-
tion members adapted to outdated objectives or attracted by local minima may subsequently be
discarded.

Termination was originally determined by comparing worst and best fitness values of the parent
population, stopping if it was less than some predetermined threshold, either absolute or relative.
This is often substituted by the simpler approach of a limit on the maximum iteration count.

2.3.2.3 Evolutionary Programming. This approach was developed by Fogel (1962)(see also Fo-
gel, Owens and Walsh (1966)) and refers to that class of methods in evolutionary computation that
apply a uniform random mutation to each member of a population, generating a single offspring.
Originally applied to discrete parameters, the method was extended by D.B.Fogel to continuous
parameter problems (Fogel 1991, Fogel 1992). However, unlike the other methods previously de-
scribed, no recombination operators are applied. Population members may be considered as repre-
sentative of species, rather than individuals, so phenotypic effects are emphasised instead of genetic
change. After mutation, selection is applied to the combined population of parents and offspring,
and half enter the next generation, i.e. the selection mechanism may be termed (µ+µ). Termination
is usually triggered by exceeding a maximum iteration limit.

Evolutionary Programming algorithms offer a similar self-adaptation capability to Evolutionary
Strategies, since the operational parameters controlling the mutation operator can be included in the
genotype. Since these parameters undergo mutation at the same time as those defining the objective,
the effect of change on them will be delayed.

Evolutionary Programming methods are generally particularly simple, robust and highly paral-
lel.



18

3.0 Case studies

Where a simulation can be constructed that models the important physical properties of a real
system it allows designers to explore a range of scenarios without the need to build a physical pro-
totype. Computational science and engineering has been used extensively in the design processes
of aeronautical and automotive industries, electronic and CAD and environmental modelling. Sim-
ulations are becoming increasingly sophisticated, complex and computationally challenging, since
in order to achieve accurate modelling of a problem, it is important to use a high resolution in the
mathematical decomposition.

An important mode of use for these models is in exploring some design space. The model
is used as a “black box” to which questions are put such as “which set of input parameters will
minimise the output of my model?” This function can be automated by developing optimisation
programs that attempt to minimise an objective function value, which is computed either directly by
the numerical model, or as a result of post processing the model output. Simple enumeration, i.e.
running the model for all possible combinations of the input parameters and selecting the optimal
set of parameters by inspecting all the returned model outputs, is not feasible for two reasons:

• The combined computational cost of computing all possible permutations of the parameters
is prohibitively excessive. Each evaluation of the model may take several hours of computing
time, or more, and the desired resolution of the solution may require thousands of evaluations.

• As the dimensionality of the problem, i.e. the number of independent parameters,n, in-
creases, the number of required model evaluations increases as the power ofn leading to a
“combinatorial explosion” in the time to complete the experiment.

The computational techniques of the optimisation programs and the computing machinery used
are becoming more complex. Increasingly sophisticated tests are required to evaluate the perfor-
mance of algorithms, and their likely success tackling the problems of interest to engineers and
scientists. Several collections of test problems have been developed and are periodically reviewed
and maintained, older, simpler problems making way for more challenging problems to match the
state-of-the-art in optimisation programs.

Many of these test problems, however, bear little resemblance to the complexity of the problems
the programs are likely to face in the real world. Of more than 1000 test problems in the CUTE test
set, only some 75 have actually been used in the solution of a real problem. While mathematical
abstractions may serve to test specific aspects of algorithm capability, in many cases they are very
poor predictors of the ability to find solutions to real-world problems. A comparison of model
outputs from a real problem in Figure 3.13 and a “constructed” problem in Figure 3.17 graphically
illustrates the extent of the difference in complexity. When a range of different optimisation methods
are to be developed for use on real-world problems employing a range of computational methods,
an adequate testing regime using simplified, abstract test cases becomes increasingly difficult to
devise. For this reason a starting point for this research has been the development of a series of test
problems drawn directly from real applications.

It is generally not practical to directly use complex, real-world problems as test cases. The
“black box”, when queried, can take a considerable amount of time and computational resource to
provide a response. So parameter sweeps were made of a number of the numerical models that
form the basis of these test cases, and the output data stored. These pre-computed data are inter-
rogated, and linear interpolation employed to provide realistic responses from what are, in effect,
“sandboxes” in which optimisation programs can readily be tested. These “sandboxes” themselves



19

represent a large investment of time and computational resource – for example, the data acquisi-
tion necessary to build the test case described in Section 3.5 required over 2 months of continuous
computation on a multi-processor supercomputer.

In summary, the complex, accurate and realistic test cases described in the following sections
were used to provide a test domain for optimisation algorithm development that was challenging but
computationally tractable. Some of the characteristics of this domain are illustrated in Figure 3.1

-

6

&
Complex,
accurate

Simulation
accuracy

Simplified
Abstract Simulation

structure
Real-world

Desired
test

domain

Figure 3.1 Intended characteristics of algorithm test regime

3.1 Photochemical Smog Model

This case study is based on the CIT model developed by McRae, Russell and Harley (1992),
to compute the transport and production of photochemical smog within an urban airshed. In the
original application it was being used to determine the sensitivity of oxidant photo-chemistry to
various input parameters.

In the domain of air quality management, one of the major uses of photochemical airshed mod-
els is to compute oxidant concentrations. Oxidants, such as ozone, are generated as a result of the
chemical interaction between various precursors such as oxides of nitrogen (NOx) and other re-
active organic compounds (ROCs) in the presence of ultra-violet radiation. Ozone is of particular
importance because of its health related side effects; ozone levels in Australian urban areas recently
have been observed to exceed 0.12 ppm, which is a widely adopted health standard level. Results in
this area are of considerable and immediate interest to our environmental research colleagues.

The particular case described in this work was based on detailed meteorological and pollu-
tion emission data for a particular scenario collected for the Australian city of Perth. The model
behaviour is well understood, as it has served as the basis for earlier work including simple enu-
meration studies on parallel and distributed computing platforms (Abramson, Cope and McKenzie
1994). For the purposes of this work the objective was to determine the NOx and ROC concentra-
tions, as input parameters, that would produce a minimal peak hourly average ozone concentration
over a 24 hour period.

Figure 3.2 shows a sample ozone contour for the model region. It clearly shows the non-linear
effect of varying ROCs and NOx on the ozone concentration. In some regions of the control space,
increasing one of the precursors can increase the ozone, and in others it can decrease the ozone.
Thus, a simplistic strategy of decreasing the precursors may not have the desired effect of decreasing



20

the oxidants. It is this effect that makes it essential to correctly model the process when evaluating
control strategies.

Figure 3.2 Typical surface: Ozone concentration (ppb) as a function of NOx and ROC

The parameter ranges are limited to a subset of the whole domain to exclude the trivial solution
of reducing all precursor concentrations to zero. These limits were initially arbitrarily set to 50%
in each dimension, but the range permissible for NOx was expanded down to 25% to allow the
distinct non-linear feature seen in Figure 1 to extend across the whole domain. The desired solution
accuracy is arbitrarily set to±5% in the input parameters, a reasonable estimate for the accuracy of
the simulation.

3.2 Quantum Electrodynamical Problem: Laser

These test cases are derived from a simulation of laser-atom interactions (Hall 1998). A de-
tailed understanding of the collision processes between atoms, electrons and ions is of great interest
in the atomic physics community. This knowledge is important in the explanation of laboratory and
astrophysical plasmas, spectroscopic and surface collision physics, and scattering dynamics. Appli-
cations include fluorescent lamp and gas laser technology, surface science and atmospheric physics
(Anderson, Gallagher and Hertel 1988).

Of particular interest is the investigation of electron collisions with a short-lived laser excited
target atom. One experimental method for exploration of the electron-excited atom collision pro-
cess is the electron-superelastic scattering technique. An atom is optically prepared by a laser of
known polarisation to an excited state and scattered electrons, which gain energy by collisionally
de-exciting the atom, are detected.

This technique requires a detailed understanding of the laser-atom interaction as a function of
laser intensity, laser polarisation and laser/atom detunings. It is possible using Quantum Electro-
dynamic (QED) theory, to generate equations of motion for atomic operator elements representing



21

atomic populations in the ground and excited state, optical coherences formed between the ground
and excited state by the laser and excited state coherences formed by the laser. The QED model
generates closed sets of coupled, first order, linear, homogeneous differential equations. These
equations are solved using numeric integration, which can be time consuming.

Once the dynamics of the atomic operators are known, it is theoretically possible to predict the
line polarisation (K) for linearly polarised excitation, as shown in Figure 3.3. It is how these pa-
rameters vary as a function of laser intensity and detuning that is of particular interest to physicists.
Introducing integration over the Doppler profile of the atomic beam introduces another complexity,
which further lengthens the computing time needed.

Figure 3.3 Line Polarisation (K) data from laser-atom interaction simulation

The original data were resampled on a 100x100 grid, producing the Laser 1 data set. This base
case is quite a smooth surface. At the 100x100 sampling the dataset contains only 4 minima, of
which the global minimum is quite dominant, as can be seen in Figure 3.4.

To this surface, additive fractal noise was applied to develop more challenging test surfaces.
These surfaces test the ability of algorithms to optimise an objective functionf that is a perturbation
of a smooth function,fs by a small functionφ, i.e.:

f(x) = fs(x) + φ(x)

The perturbationφ can be random, based on the results of an experiment, or not even a function,
returning different results from subsequent calls with the same arguments.



22

Figure 3.4 Laser 1 test case data

The Laser 2 test case data shown in Figure 3.5 had moderate amounts of noise present and,
in contrast to the Laser 1 test case, at the same resolution the Laser 2 data set contains 1157 local
minima of varying severity. Other, intermediate cases were generated with more severe interference,
culminating in Brownian noise, shown in Figure 3.6. The fractal noise was generated by a process
of midpoint displacement (Saupe 1988), with an initial amplitude scaling of 10% of the range of the
underlying data. The global minimum for each data set was known from visual inspection of the
data.

Figure 3.5 Laser 2 test case data



23

Figure 3.6 Laser test case data with additive Brownian noise

3.3 Design of durable parts

3.3.1 Design of durable parts: minimising stress

In the design of load-bearing structures or mechanical components, competing objectives of
minimum weight and maximum strength provide a difficult design challenge. The failure of such
components is usually due to slow growth of a pre-existing crack followed by a sudden fracture
(Chaperon, Sawyer, Jones and Rose 1999). A common mechanism for crack growth is fatigue due
to cyclical loading. As a load is applied the high stress at the crack tip causes plastic deformation
that produces an irreversible growth in the crack. This growth is small (typically 10-7 - 10-3 mm)
but repeated cycles of loading may extend the crack to a stage where fracture occurs.

This case study used finite element analysis of a thin plate under cyclic loading that contained
a hole of given dimensions and shape, specified by the parameters (Peachey, Abramson, Lewis and
Jones 2003).

The dimensions of the hole were given:

|x− p|t

at
+
|y − q|t

bt
= 1. (3-1)

These are closed curves of width 2a height 2b wheret controls the curvature at the shoulders of
the curves. Figure 3.7 shows some of these witha = 10, b = 20, p = 0, q = 0 and a variety of
values oft. More generally, the curves can be defined by:

|x− p|t

at
+
|y − q|te−tβ(x−p)

bt
= 1 (3-2)



24

(a)

(b)

Figure 3.7 Parametrized curves from (a) Equation 3-1, (b) Equation 3-2

The inclusion of the exponential factor allows for asymmetry about that axis. The parameterβ,
called the “bias” here, controls the slope at the top. Figure 3.7(b) shows samples withp = 0, q = 0,
a = 10, b = 20, t = 5 and variousβ.

For the crack modela = 10, p = 20 andq = 0 giving a hole of width 20mm which is 10mm
from the boundary. Thus the variablesb, t andβ are the optimization parameters. The search space
used was the domain5 ≤ b ≤ 35, 2 ≤ t ≤ 9, −0.02 ≤ β ≤ 0.02.



25

First finite element techniques were used to compute the stress field throughout the component
for a given applied load in the absence of cracks. Then cracks are assumed to occur at critical
boundaries of the component and a recent modification (Nishioka and Atluri 1983) of the finite
element alternating method (Mattheck and Burkhardt 1990) is applied to compute the stress intensity
factor at the crack positions. In damage tolerant design common practice has been to minimise the
maximum stress under load. Isosurfaces of these stress values are shown in Figure 3.81. These
surfaces were reasonably smooth, and only 26 local minima were revealed by a parameter sweep at
a resolution of 3%. This dataset became the “Crack 1” case study.

Figure 3.8 Isosurfaces of maximum stress: Crack 1

3.3.2 Design of durable parts: maximising fatigue life

The use of durability as the primary criterion in damage tolerant design is a new development.
The crack test case included fatigue cracks at a number of locations, and the objective of this test
case was tomaximisethe life of the part as determined by fatigue crack growth to a defined length.
Continuing from computation of the stress-intensity factor at the crack locations in the Crack 1 test
case a growth law is used to compute the number of loading cycles required for the cracks to grow
from its given initial size to a given final size. The number of cycles required at the worst (least
cycles) crack is taken as the fatigue life of the designed part.

Isosurfaces at a number of values are shown in Figure 3.9. The dataset was “noisy”, and a pa-
rameter sweep at a resolution of 3% revealed 540 local maxima. This dataset became the “Crack
2” case study. The data collected from the parameter sweeps of both Crack test cases were each

1Throughout the text the value of the objective function is illustrated in a number of places using 3-dimensional
isosurfaces. These usually appear as a series of roughly concentric “shells”, the smallest, inner shell enclosing the global
minimum. Features to observe are the location of this minimum, any discontinuity of similarly coloured isosurfaces
indicating significant regions of local minima, and the degree of “smoothness” of the surfaces. Irregularities indicate
the presence of divergent local gradients, impeding movement of gradient-based algorithms in directions more or less
tangential to the surface.



26

compiled into a 31x36x21 data set (i.e. 23436 objective function evaluations) for subsequent inves-
tigations.

Figure 3.9 Isosurfaces of the design durability: Crack 2

3.4 Design of a two-dimensional aerofoil

The use of computational modelling in design processes is well established in the aerodynamics
industry, and the use of optimisation techniques is becoming more widespread. This test case models
the aerodynamic properties of an aerofoil cross-section, the objective function to be minimised
being the lift-drag ratio (Abramson et al. 2001a). Specifically, a simple two-dimensional aerofoil
was modelled using a FLUENT simulation (www.fluent.com ). The aerofoil mesh generated by
GAMBIT is shown in Figure 3.10. It had 28089 nodes and 49426 elements, made up of 43090
triangular elements and 6336 quad elements. The shape of the simulation mesh was generated from
the problem input parameters, and FLUENT was used to compute the flowfield around the aerofoil,
from which lift and drag properties were derived. Parameters were the aerofoil angle of attack, its
thickness and camber. The angle of attack is the angle with the horizontal formed by a line through
the leading and trailing extremities of the aerofoil, the thickness is the greatest width measured
normal to the centreline between these extremities, and the camber is the maximum distance the
centreline curves away from a straight line between the extremities. The convergence criteria for
the FLUENT run were set at1.0× 10−4.

Figure 3.11 shows a number of isosurfaces of the lift-drag ratio in the parameter space inves-
tigated. The global minimum, corresponding to low drag and high lift, is located near the bottom,
front corner of the domain in the Figure, with a small angle of attack, large camber and small
thickness. The isosurfaces for increasing values of the lift-drag ratio can be seen as a series of con-
centric, largely featureless shells around the global minimum. The dataset was generally “smooth”,
and when a parameter sweep was performed at a resolution of 10% only 12 local minima and a
dominant global minimum were discovered. The data collected from the parameter sweep were
compiled into a 1000-point data set for subsequent investigations.



27

Figure 3.10 Computational mesh for aerofoil simulation

3.5 Radio Frequency Design Problem: Bead

Testing of mobile telecommunication handsets is an important aspect in the design and char-
acterisation of handset performance. Typical performance parameters include input impedance,
radiation patterns, gain and efficiency.

The structure of most mobile telephone antennas includes the chassis as an earth reference. This
effectively forms an asymmetric dipole structure with the physical characteristics of the chassis
(size, shape and orientation) playing a significant role in determining the radiation characteristics of
the antenna.

Due to the chassis forming an integral part of the radiating structure, several difficulties are en-
countered in the measurement of mobile telephone antennas since antennas are generally connected
to a network analyser via a coaxial cable. It has been shown that the coaxial cable used to feed a
handset has significant effects on both the radiation pattern and resonant frequency (Saario, Thiel,
Lu and O’Keefe 1997).

This case study considers the application of high permittivity lossless ceramic suppression beads
for minimising the cable effect on measurements (Saario, Thiel and Lu 1999). The bead is opti-
mised for minimum transmission, characterized by the transmission loss,S21. In order to determine
the effectiveness of the beads used in the handset characterisation, a Finite Difference Time Do-
main (FDTD) method was used for numerical analysis of the handset-cable structure. A frequency-
domain near-to-far field transformation was used to obtain the far-field radiation patterns. A 4-layer



28

Figure 3.11 Isosurfaces of the aerofoil lift-drag ratio

Perfectly Matched Layer (PML) Absorbing Boundary Condition (ABC) was used for termination
of the solution space.

The geometry of the simulation model is shown in Figure 3.12. An infinitely long coaxial cable
was modeled by allowing the outer metal conductor of the coaxial cable to penetrate the PML.
The PML is effectively a perfect match for the impedance of the coaxial cable since no reflection
occurs. The suppression bead was placed centrally on the coaxial cable. Parameters varied were the
permittivity, thickness and length of the bead.

A value of -50dB forS21 is more than adequate for suppression, so the cost function to drive
the optimization is defined as:C(pk) = 50 + Avg(S21) whereAvg(S21) is the averageS21 over
the 990-1010MHz band, the frequency range of interest.

To obtain a qualitative insight into the nature of the parameter space, the cost function was
evaluated at integer intervals in the parameter ranges:

35 ≤ εr ≤ 60

2mm ≤ thickness ≤ 17mm corresponding to diameter, D,15mm ≤ D ≤ 90mm

37.5mm ≤ length ≤ 112.5mm



29

Figure 3.12 Geometry for simulation of a suppression bead on an infinitely long coaxial cable

Figure 3.13 shows isosurfaces in parameter space of the transmission loss,S21, at -35db. WhileS21

at this level is inadequate for the suppression required in the intended application, these isosurfaces
can give some guidance as to the structure of the model response in parameter space and location
of significant local and global minima. The global minimum, in fact, is located inside the tubular
structure evident in the upper right of the Figure.

Figures 3.14, 3.15 and 3.16 show contours ofS21 on three “cutting planes” through parameter
space, each passing through the global minimum, and holding bead dielectric permittivity, bead
thickness and length constant, respectively.

Figure 3.15, for constant bead thickness, corresponds to an horizontal plane through Figure 3.13
and clearly shows a slice through the tubular structures. Figures 3.14 and 3.16 show planes cutting
through these structures more or less obliquely. Considered together, all the Figures give a picture
of considerable complexity and structure. Direct inspection of the sampled data indicates there
are approximately 298 local minima. In summary, this is an extremely challenging optimisation
problem.

The sampled data set was retained as the Bead test case.



30

Figure 3.13 Isosurfaces for transmission loss,S21 = -35db

Figure 3.14 Contours ofS21 on a plane of constant bead permittivity through the global minimum



31

Figure 3.15 Contours ofS21 on a plane of constant bead thickness through the global minimum

Figure 3.16 Contours ofS21 on a plane of constant bead length through the global minimum



32

3.6 Benchmark: Rosenbrock’s function

In order to provide a point of comparison with the published literature, the well-known Rosen-
brock’s function in two dimensions was included. The objective function values for this test case
were directly computed fromf(x) = 100(x2 − x2

1)
2 + (1 − x1)2 for xi ∈ [−2, 2] which has one

local minimum atf(1, 1) = 0. A contour surface of the function is shown in Figure 3.17.

Figure 3.17 Contour surface of Rosenbrock’s function in 2D

3.7 Summary

A number of real computational models drawn from problems in a range of physical sciences
have been used to test the algorithms investigated in this research. The following compiled datasets
derived from parameter sweeps of the respective computational models were retained and used
within the testing framework as “sandbox” models for algorithm testing:

• The two Quantum Electro-dynamics cases: Laser 1 and Laser 2



33

• The two durable component design cases: Crack 1 and Crack 2

• The 2D aerofoil design case: Aerofoil

• The radio-frequency design case: Bead

Linear interpolation was used to provide intermediate results, simulating continuous functions,
except for the “Bead” test case. For this case study, unless otherwise noted, real number parameters
were truncated to integers internal to the test case, and the corresponding data value returned. The
calling optimisation algorithms continued to interpret the parameters as continuous variables, seeing
the objective function as having discontinuous first derivatives. This duplicated the treatment of
parameters by the original computational model.

The data acquisition in compiling these “sandbox” models represents a considerable investment
in time and effort, the return being it allowed algorithms to be tested on real-world problems while
minimising the demands of running multiple algorithms on multiple test cases from multiple start-
ing conditions for numerical models with large computational requirements. However, it is this
considerable effort – months of computing in some cases – that precludes the use of this approach
for practical optimisation of new problems.

3.7.1 Problem characterisation

Generally, the case studies fell into 2 sets:

• Smooth, with a dominant global minimum (Laser 1, Aerofoil, Crack 1, Rosenbrock’s func-
tion)

• Multiple/many local minima, non-convex (Bead, Laser 2, Crack 2)

In formulating ideas about the most appropriate algorithm for use with a particular problem, a
great deal may depend on whether the problem encountered is “noisy” or “smooth”. Considerable
effort has been expended in the development of methods specifically to address “noisy” problems
(Elster and Neumaier 1995, Elster and Neumaier 1997, Anderson and Ferris 2001, Carter, Gablon-
sky, Patrick, Kelley, Eslinger 2001). The question remains:

For a new, relatively unknown problem, how may its degree of “smoothness” be determined
so that an appropriate choice of algorithm can be made?

One possible approach is to perform some initial sampling of the objective function across the
parameter space, as is done during Response Surface Methodology (RSM) optimisation (Khuri and
Cornell 1987, Box and Draper 1987). This may reveal the approximate nature of the objective
function but, as has been acknowledged for RSM itself (Haftka, Vitali and Sankar 1999, Giunta,
Narducci, Burgee, Grossman, Mason, Watson and Haftka 1995, Scotti, Malik, Cheung and Nelder
2000), falls victim to the “curse of dimensionality”, i.e. as the dimensionality of the parameter
space increases, the number of function evaluations required to adequately characterize the objective
function increases greatly. For example,central composite design (CCD),a popular experimental
design used with RSM, samples at all the vertices of the search space, the face centers, and the centre
of the domain, requiring2n + 2n + 1 analysis points. For a problem of 20 parameters, CCD will
require over a million function evaluations. If sufficient points are not sampled, the RSM predictive
phase must resort to extrapolation, possibly leading to large errors.

For the task of problem classification, however, it may be sufficient to take a drastically reduced
sampling of the objective function, since only a qualitative understanding of the general nature of



34

the problem is necessary, not a surrogate for the objective function. It is proposed that a locus of
points be generated “diagonally” through the parameter space, i.e. starting from a point at the lower
bound in all dimensions, for each successive point of the locus all parameter values are uniformly
increased, and the objective function then simultaneously sampled at all these points. This procedure
was carried out for a 20-point locus for each of the real-world test cases described in preceding
sections, and the graphs of returned values against displacement along the loci are shown in Figure
3.18. Comparison of the “smooth” problems (on the left) shows they all have a generally smooth,
convex graph, in marked contrast to the “noisy” problems on the right.

These empirical results suggest that a simple, qualitative test may be sufficient to classify prob-
lems into “noisy” or “smooth” types. Further, it may be possible to construct an automatic pro-
cedure, given the derivation of suitable criteria (for example, number of times the sign of the first
derivative of the function on the locus changes.) Such a procedure could be applied at minimal
computational cost if sufficient parallel computing resources are available for all necessary function
evaluations to be completed concurrently.



35

Laser 1

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19

Laser 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19

Crack 2

0

1000

2000

3000

4000

5000

6000
1 3 5 7 9 11 13 15 17 19

Crack 1

0
0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035

0.004
0.0045
0.005

1 3 5 7 9 11 13 15 17 19

Aero

-60

-50

-40

-30

-20

-10

0

1 3 5 7 9 11 13 15 17 19

Bead

0
5

10

15
20
25
30
35

40
45
50

1 3 5 7 9 11 13 15 17 19

Figure 3.18 Objective function values along sample loci



36

4.0 Gradient Methods

Gradient methods are among the best established of optimisation methods. They generally
have very good convergence properties, particularly on quadratic functions, and some possibility of
parallelization of operations within the algorithms. Well understood and widely used, they are em-
inently suitable to provide a baseline for future comparison, and are indispensable in any complete
optimisation toolset. For these reasons they were chosen as the first class of methods to investigate.

As Hough and Meza (2002) clearly point out, for gradient descent methods it is possible to
parallelise:

• the function, gradient and constraint evaluations,

• the linear algebra of the method, or

• the optimisation algorithm at a higher level.

As they concluded, often there is no access to the source code for the objective function, precluding
the first alternative. For many of the problems of interest the dimensionality is usually small, as
was confirmed in Chapter 3, and so parallelisation of the linear algebra can be expected to yield
little benefit. In addition, the computation required to derive the objective function values generally
rapidly overwhelms the computational needs of the linear algebra. The remaining option is to
parallelise the optimisation algorithm at a higher level of abstraction.

As outlined in Section 2.1, there are two major families of gradient descent algorithms: conju-
gate gradient methods and quasi-Newton methods. For this work, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm was chosen from the family of quasi-Newton methods. The BFGS algo-
rithm is widely regarded as one of the most efficient and robust gradient descent methods for use
with continuous functions (Gill et al. 1981, Fletcher 1987, Press et al. 1992).

For continuous functions, gradient descent methods use the derivative of the cost function, as
well as its value, to select a search direction, essentially reducing the multivariate optimization
problem to univariate minimization along a search vector; a line search. They thus consist of two
main operations which are executed repeatedly, gradient calculations and line searching. When
the cost function is the computed result of a numerical simulation, as proposed in this work, finite
difference approximations to the derivative must usually be employed.

4.1 A Parallel Gradient Descent Algorithm

The gradient information gathering phase of the algorithm is easily parallelized by concurrent
execution of function evaluations on the finite difference stencil, and this rapidly became common
practice (van Laarhoven 1985, Schnabel 1987, Byrd, Schnabel and Schulz 1988, Navon, Phua and
Ramamurthy 1988, Freeman and Phillips 1992). Parallel computation of finite differences is so
obvious it has become an exemplar in the development of parallel algorithms (Foster 1994). The
degree of parallelism achievable is limited, however, by the dimensionality of the problem domain.
At most, when using central difference approximations, computing the gradient requires2n + 1
function evaluations for ann-dimensional problem. If forward differences are employed, with their
lower accuracy, computing the gradient requires onlyn + 1 function evaluations.

The approach of parallelisation of finite difference gradient approximations has been adopted by
many practitioners as a first, and only, recourse. Some even consider parallelisation of line searches



37

as impossible (see, for example, Koh, Reinbolt, Fregly, and George (2004)). Much of the contempo-
rary research is in the context of unconstrained optimisation, which makes parallelisation of the line
search difficult. Several researchers concentrate instead on methods of guaranteeing sufficient de-
crease in the line search (Moré and Thuente 1994). Even when developing methods for constrained
optimisation, some continue to emphasise this aspect of line searching (Byrd, Lu, Nocedal and Zhu
1995). A very few have considered parallel line searching, from speculation (Navon et al. 1988)
to practical implementation (van Laarhoven 1985, Lewis, Abramson and Simpson 1997, Phua, Fan
and Zeng 1998) and analysis (Peachey et al. 2001). Van Laarhoven (1985) applied parallel gra-
dient evaluation and parallel line searching to early variable metric methods, but claimed parallel
execution would give no improvement for the BFGS-method.

4.1.1 Parallel line search

For unconstrained optimization the line search phase is often inherently sequential, but for the
class of problems under consideration there will often be restrictions on the expected range of vari-
ables determined by physical constraints on their possible values. Equally, in the context of real
design problems secondary factors, such as prohibitive retooling costs in manufacture, may serve
to limit the range of values of interest, even if they are strictly, physically feasible. The restricted
expected range of the variables allows the formulation of these problems as nonlinear optimization
problems withsimple bounds, and so the line search phase of the algorithm may be parallelized by
using a method of interval subdivision, rather than the sequential stepping methods typically used.
It should be noted, however, that applying simple bounds has the potential to create additional local
minima where the objective function intersects the boundaries, as has been alluded to in Elster and
Neumaier (1995). The resulting parallel line search is similar to the method of Avriel and Wilde
(1966).

Because of the use of an iterative subdivision line search, the parallel algorithm is not trapped in
some local minima, unlike the sequential algorithm. This is illustrated in Figure 4.1 which shows the
sequential algorithm using a combination of stepping and parabolic interpolation, and the parallel
algorithm using interval sub-division. The sequential algorithm terminates in the first minimum
found, while the parallel algorithm, extending its search to the boundary, finds the lower minimum.

Two other, quite novel approaches have been proposed for parallelisation of gradient descent
methods. Phua et al. (1998) used a method of multiple search directions by simultaneously apply-
ing several different update formulae, the BFGS update being just one. This can be considered a
form of speculativecomputation, in that it was intended to allow the choice of whichever update
was better suited to a particular problem or circumstance. The benefit to the solution time derived
from the potential reduction in iterations required to converge. Zavriev and Perunova (2003) used
multiple processors to compute finite difference approximations to the gradient with several differ-
ent spatial discretization constants (yielding finite difference stencils of different sizes) to “smooth”
local gradients and avoid small local minima. The next step, of concurrent function evaluation, was
overlooked. This method aimed for potential gains in solution quality, rather than acceleration of
the algorithm.

4.1.2 Parallel BFGS – Version 1

A parallel BFGS algorithm has been implemented. It uses concurrent evaluation of finite dif-
ference approximations to the gradient, but does not extend this to perform speculative gradient
calculation for each point in the line search as being too computationally expensive for limited
gain. The finite difference approximations are central difference formulations where possible, for



38

Figure 4.1 Comparison of sequential and parallel line minimization

accuracy, reverting to forward (or backward) differencing when less than the finite difference in-
terval from the domain boundaries. The finite difference interval was set to the desired tolerance
multiplied by the range of the parameter in each dimension, for simplicity.

Convergence was determined by iterative change in objective function value and position in
parameter space both being proportionally less than the desired tolerance. If the solution space is
considered as the (n+1)-dimensional union of then-dimensional parameter space and the objective
function value, this condition constrains the solution within a hyper-sphere with a diameter of the
desired tolerance, relative to the parameter range in each dimension and the current value of the
objective function.

In addition, the gradient of the objective function at the final point was constrained to be less than
an empirically-determined constant, unless the solution point was on or near one or more domain
boundaries and on a slope normal to the boundary.

The number of sub-intervals sampled in the parallel line search was set by the user, with a
default of 6 to match the 2n finite-difference stencil for a 3-dimensional problem, the largest used
in the set of case studies.

For comparison, a sequential BFGS algorithm was also implemented. This algorithm uses a
combination of bracketing the minimum by golden section search followed by isolation of the min-
imum using Brent’s method (Brent 1973), instead of the iterative interval subdivision method for



39

line searching used in the parallel algorithm. Function evaluations for determing the gradient were
also performed sequentially. Otherwise the two algorithms were identical.

A brief outline of the first version of the parallel algorithm is given below.

Initialization

• Evaluate the objective function at the starting point

• Calculate the gradient at the starting point by finite difference approximation (parallel func-
tion evaluation)

• Set the inverse Hessian to the unit matrix

• Set the initial line direction to the inverse of the gradient

Perform line minimization

• Truncate the line search vector for active constraints

• Determine the nearest boundary in the search direction and set maximum excursion accord-
ingly

• Sub-divide the interval as desired (usually an integer multiple of processors available)

• Evaluate the objective function at the sub-intervals (parallel function evaluation)

• Select a bracket of three points containing the minimum value

If (bracket width is less than the desired solution tolerance)then

– Line minimization complete

– elseSub-divide the bracket and repeat the evaluation

Test for convergence

If (step change in function value and largest step change in position in any dimension are less than
the desired tolerance)then

• Calculate the gradient at the “minimum”

If (gradient is less than an empirically determined constant)then

• optimization is complete

else if(the “minimum” is at a boundary normal to the gradient)then

• optimization is complete

else if(change in function value over previous two steps is less than desired tolerance)then

• optimization is complete

else



40

• Reset the inverse Hessian to the unit matrix, reset the line search direction to the inverse of
the gradient and

• repeat line minimization

Perform BFGS update

• Calculate a new gradient at the line minimum

• Calculate the step change in the gradient

• Apply the BFGS update to the inverse Hessian

• Calculate the new line search direction andrepeat line minimization

The version of the parallel algorithm described above has the disadvantage that convergence
is governed by the absolute magnitude of the gradient at the final point,x∗. This requires somea
priori knowledge of the nature of the objective function, and intelligent tuning of the convergence
criteria accordingly. If the limit on the magnitude of the gradient for convergence is set too large the
algorithm may be prone to premature termination, too small and excessive iterations may ensue. It
is unsafe to omitsometest of the stationarity ofx∗, relying only on examination of the differences
in successive values of the objective function.

4.1.3 Parallel BFGS – Version 2

In order to construct a robust algorithm simple to use in the context of the tool framework
outlined in Section 1.2, a second version of the parallel algorithm was implemented that substituted
a test for sufficient decrease in the norm of the gradient, relative to the norm of the gradient at the
starting point (Kelley 1999a). For a well-conditioned∇2f(x∗), a small gradient norm implies a
small error norm. “Sufficient decrease” was defined as being a ratio equal to the desired solution
tolerance.

These modifications required the interpolation of the following steps in the algorithm outline:

Initialization

• Evaluate the objective function at the starting point

• Calculate the gradient at the starting point by finite difference approximation (parallel func-
tion evaluation)

• Calculate the Euclidean norm of the gradient

• Set the inverse Hessian to the unit matrix

. . . (algorithm continues)

Test for convergence

If (step change in function value and largest step change in position in any dimension are less than
the desired tolerance)then

{Calculate the gradient at the ”minimum” and the Euclidean norm of the gradient

If (gradient norm is less than desired tolerance)then optimization is complete

else

. . . (algorithm continues)



41

4.2 Results of Numerical Experiments.

The second version of the parallel implementation of the BFGS algorithm, P-BFGS, was com-
pared with the sequential implementation on the following test cases:

• The photochemical smog model

• The quantum electrodynamical models: Laser 1, 2, and intermediate cases.

• The radio frequency design problem: Bead

For the photochemical smog model, since the computational model was used directly only a single
run was performed for each algorithm. For the Laser case studies, results were compiled from 100
runs for each problem, for each algorithm, from uniformly distributed starting points.

4.2.1 Results for photochemical smog model

The photochemical smog model was tested using the first version of P-BFGS, and a tolerance
on the gradient of1.0 × 10−6. The convergence tolerance on objective function value was±5%, a
reasonable estimate for the accuracy of the simulation.

Using P-BFGS, a solution set of input concentrations of NOx and ROC that minimized gener-
ated ozone was found at 100% NOx and 50% ROC. Inspection of Figure 3.2 confirms this to be the
global minimum for the search domain. This result was achieved in under 14 hours of wall-clock
compute time (ignoring queue wait time). This represents 46 evaluations of the cost function, using
a simplified chemistry (Azzi, Johnson and Cope 1992) in the airshed model to reduce the computa-
tional load in these exploratory tests. Each run of the airshed model took about 1 hour 20 minutes
of CPU time. A comparable solution by simple enumeration would have required an estimated 140
hours of computing.

Using a single CPU the sequential algorithm required 51 hours of wall-clock compute time,
performing 39 evaluations of the cost function. The prototype parallel code thus achieved a speedup
of 3.8 relative to the sequential algorithm. Using an average 4.6 CPUs this represents a parallel
efficiency of 83%.

Unlike the parallel algorithm, the sequential algorithm terminated in a local minimum (79%
NOx, 50% ROC) which was close to the global minimum actually discovered by the parallel algo-
rithm. The method of line search adopted in the parallel algorithm has been found to more reliably
find global minima in a number of test cases.

4.2.2 Results for Laser case studies

The Laser case studies used the later version of P-BFGS. The ability of the parallel algorithm
to search beyond intervening local minima, as illustrated in Figure 4.1, suggests it may be more
tolerant of noise in the returned values of the objective function. The additional Laser test cases
with a range of fractal noise levels imposed were used to test this hypothesis. The global minimum
for each Laser data set was known from visual inspection of the data. A search was deemed to have
terminated successfully if the fractional difference between final objective function value and the
value at the global minimum relative to the range of the data set was less than twice the desired
tolerance, which was set at1.0× 10−2.



42

0
10
20
30
40
50
60
70
80
90

100

1 2
Laser test case

Hits -
parallel

Hits -
serial

Figure 4.2 Comparison of gradient descent algorithms’ success rate

The percentage of runs that were successful in each case, for both parallel and serial algorithms,
is shown graphed in Figure 4.2. As can be seen, the parallel algorithm is consistently more success-
ful at finding the global minimum. Not only is it able to avoid gross local minima in the data, such
as can be seen in the original data set in Figure 3.3, but it is also able to avoid more of the noise
related minima in the surface.

In addition, the concurrent execution of objective function evaluations obtained, averaged over
all the runs, provided an average speedup of a factor of 4 compared to the serial code, using an
8-processor computer.

When finding the global minimum is important, as opposed to finding a sufficiently “good”
result for some practical purpose, multiple runs can be performed from different starting points. If
a 64-processor parallel computer (or cluster) were available, for the original, smooth data the serial
algorithm could utilise this resource to improve its success rate from 78%, to a probability of finding
the global minimum effectively equal to 1. Using the same 64-processor machine would improve
the parallel algorithm’s chance of finding the global minimum from 87% to a probability within
1.0× 10−8% of 1. It would also achieve this result 4 times faster.

4.2.3 Results for radio frequency design problem

For the Bead case study the later version of P-BFGS was compared with an Adaptive Simulated
Annealing (ASA) code (Ingber 1989). For reference, the basics of the simulated annealing method
are outlined in Section 2.3.1. For these trials the Bead test case was being directly computed, so
results are limited to a single run for each algorithm. The convergence tracks of the algorithms in
parameter space, and the location of the global minimum, are shown in Figure 4.3.



43

On the left side of the Figure, each subsequent point accepted by ASA is shown linked to the
preceding point, forming a “track” of points accepted by the algorithm developing through time.
Initially, while the “temperature” is high, large excursions can be seen over a significant portion of
the domain. Despite this, the right hand side of the domain appears to have been largely unexplored.
Then, as the “temperature” cools, the algorithm becomes increasingly constrained in its movement,
the tracks become short and densely packed, and the algorithm converges on a local minimum in
the middle left of the Figure.

On the right side of the Figure, the track traversed by the P-BFGS algorithm can be seen, as
each subsequent line minimum is joined to the preceding track segment. Starting from a randomly
chosen point that is below the global minimum – the “arrowhead”-shaped isosurface in the middle
right of the Figure – the algorithm spirals toward the viewer and then away again, the spiral growing
tighter, until it converges on a local minimum above and behind the global minimum.

Figure 4.3 Cost function isosurface at -5 (transmission loss = -55dB) with ASA and P-BFGS
optimisation points

The ASA algorithm could not be run to convergence due to limitations of time, as it was using
a sequential implementation on a uniprocessor machine. However, in 143 function evaluations, it
appeared to be converging to a minimum using the default algorithmic parameters. Given a parallel
implementation across 8 processors, as was available to the P-BFGS implementation, this result
would be equivalent to less than 18 steps. However, this approximation to the parallelism and
speedup of ASA ignores any effect of parallel searches on the convergence rate of the algorithm.



44

By comparison, the P-BFGS algorithm terminated at a point above the global minimum after
44 steps, using 319 function evaluations. The technique adopted in the line search phase of interval
subdivision along the entire search vector to the nearest boundary, coupled with iteration to desired
solution tolerance on each line segment appears to place a large overhead of unproductive func-
tion evaluations on the algorithm, while the non-convex nature of the problem prevents the higher
convergence rate of the gradient descent method from being attained. The speed of P-BFGS could
perhaps have been increased by allowing inexact line searches for intermediate steps.

By inspection of Figure 4.3 it may be seen that neither algorithm is converging on the global
minimum; both are attracted to small, “deep” local minima (neither was resolved by the enumera-
tion and so cannot be seen in the Figure). It should be noted that both algorithms reached values
sufficiently low to be of use in the engineering design of the handset measurement setup under
consideration, and did so quicker than by enumeration.

The “optimal” solution for a high permittivity bead from ASA was determined to haveεr = 52,
O.D. = 20 mm and length = 57.5 mm, yielding a reflection loss,S11 of -10.3dB and transmission
loss,S21 of -49dB at 1 GHz. The solution delivered by P-BFGS was a bead ofεr = 41.8, O.D.
= 85 mm and length = 102 mm, yielding a reflection loss,S11 of –14.7dB and transmission loss,
S21 of –56.6dB at 1 GHz. These “optimal” beads were then applied to the handset/cable problem to
determine the effectiveness in reducing cable perturbation effects.

4.3 Discussion of results

In a realistic problem of air quality management, use of a parallel gradient descent optimization
algorithm has shown significant performance gains over other methods of solution. In a simple test it
uses less than half the number of evaluations of a computationally demanding numerical simulation
than previously used simple enumeration techniques require and is more than four times faster than
traditional sequential optimization methods.

As indicated, the photochemical smog problem used an average 4.6 CPUs during the trial. There
are practical limits to the number of CPUs this method can profitably utilize. During the gradient
determination phase, two CPUs are required for each dimension, to perform the finite difference
approximation. So any more than 2n processors are wasted for gradient determination. For the
photochemical case studyn= 2, so the maximum number of processors useful for gradient determi-
nation is 4.

During the line minimization phase, interval sub-division is repeated until the sub-intervals are
less than the desired tolerance. So for a given fractional tolerance,t, the maximum number of CPUs
that can usefully be employed is 1/t. Since most line searches will be less than the entire span of
the search domain, to a first approximation the average number of CPUs usefully employed will be
1/(2t). For the benchmark problemt= 0.1 so the number of processors useful for line minimization
is 5.

For the photochemical smog problem, at the time of testing the number of processors actually
available coincided with the theoretical optimum most of the time, as reflected in the high parallel
efficiency. With some code refinements the parallel efficiency could be made very high because of
the negligible extent of serial code, most computation being performed in parallel in the objective
function evaluation. The algorithm scaling, however, is strictly limited by problem parameters.

The results obtained for the radio frequency test case demonstrate P-BFGS to be comparable
with an implemetation of Simulated Annealing. Using parallel computing resources, it was able to
return a superior objective function result in less than a third of the time taken by the sequential
ASA code.



45

4.4 Summary

The parallel implementation of the BFGS algorithm has been found to provide moderate speedup
on typical problems from the physical sciences using small-scale parallel computing resources, and
consistently outperformed a serial implementation of the algorithm in its success at finding global
minima in the presence of moderate to severe noise. As expected, the algorithm displayed rapid
convergence, finding better solutions faster than, for example, a simulated annealing algorithm.

The scalability of the problem remains a significant shortcoming. The fundamental aim of the
parallel optimisation algorithm approach is to reduce the total, “wallclock” time taken for solution
of a problem by exploiting concurrency, as opposed to minimising the absolute number of objective
function evaluations required. As could be seen, the number of function evaluations required by
P-BFGS could exceed those requested by a variety of sequential algorithms. Its advantage lay in
that the additional computational cost was performed in parallel, reducing the overall run-time. But
the method was severely limited in the degree of concurrency obtainable, governed by problem
dimensionality, which the evidence outlined in Section 3 suggests may be limited in many practical
applications, and desired solution tolerance, which also can be quite limited, as in the problem
described in 3.1.

To overcome these shortcomings, methods with the potential for more concurrency are inves-
tigated in the following sections. By reference to Figure 1.1, the next promising approach to be
considered is the use of Direct Search methods.



46

5.0 Direct Search Methods

Gradient methods have generally restricted degrees of concurrency, limiting the extent to which
use of parallel computing can speed the process of optimisation. A second reason to consider an
alternative approach is the dependence of the methods on the availability of values not only of the
objective function,f , but also its derivatives,∇f . For the large numerical simulations that form
the focus of this study, the latter are rarely available, particularly in industrial applications. Conn,
Scheinberg and Toint (1997) venture the opinion that for very computationally expensive objective
function evaluations the use of finite difference approximations cannot be justified. Another ap-
proach may be to apply automatic differentiation techniques, but availability of the complete source
code for calculation off is indispensable (Bischof, B̈ucker, Lang, and Rasch 2003). Unfortunately,
for many problems of interest, particularly in industrial or commercial applications, the source code
may not be available at all. As detailed in Section 1.2, Nimrod/O has been designed with the goal of
general applicability, and no access to the internal operations of the subject simulation assumed. To
continue this flexibility of application consideration may be given to other methods such as direct
search.

In the direct search methods, gradient information is implicitly used by constraining moves
to be “downhill”. The steps of gradient determination and search, separate in gradient descent
methods, are effectively merged in direct search methods. The early pattern search methods are,
however, of very limited concurrency. The Multidirectional Search (MDS) method of Dennis and
Torczon (Dennis and Torczon 1991, Torczon 1989, Torczon 1991) has greatly enhanced parallelism,
all vertices of ann + 1 simplex being treated simultaneously. The work described in this section
seeks to investigate hybrids and variants of Nelder-Mead Simplex and MDS with the key objective
of increasing the amount of concurrency, and thus reducing the time to solve a given problem.

5.1 The Algorithms

5.1.1 Nelder-Mead Simplex and variants

When a search direction is chosen by the Nelder-Mead simplex algorithm, defined by the current
worst vertex and the centroid of the remaining vertices, the original algorithm tries an exploratory
step consisting of reflecting the worst vertex about the centroid. If this step is “successful”, i.e. the
objective function value is decreased, an expanded step is tried. If it is unsuccessful a contracted
step is tried. If this is also unsuccessful, a contraction of the worst vertex toward the centroid, within
the current simplex, is tried.

From this brief description, it can be seen that there is a “stencil” of points sampled by the
algorithm, with never less than two being evaluated, and their location entirely determined by the
geometry of the current simplex. As a basis for this work the original Nelder-Mead simplex al-
gorithm was implemented with concurrent evaluation of all four trial points of this stencil, which
provides an immediate improvement in execution speed relative to the original, sequential algo-
rithm. Where subsequent reference is made to the Nelder-Mead algorithm, results are from this
parallel implementation.

The work of Parkinson and Hutchinson (1972) suggests including line searching along the
Nelder-Mead search direction has the potential to improve the performance of the algorithm. A
line search method of iterative subdivision enhances parallelism and, as outlined in Section 4.1.1,
has been demonstrated to improve the ability of the line search to avoid entrapment in local minima.



47

The parallel implementation of the Nelder-Mead algorithm was extended by applying this method
of line searching in the work reported here.

It has been demonstrated that the Nelder-Mead Simplex algorithm in some cases exhibits be-
haviour that causes the algorithm to converge to a non-stationary point (McKinnon 1998). Figure
5.1 shows a test case reported, a function in two variables defined by:f(x, y) = 360x2 + y + y2

for x ≤ 0 andf(x, y) = 6x2 + y + y2 for x ≥ 0

Figure 5.1 Nelder-Mead Simplex forf(x, y) = 360x2 + y + y2 for x ≤ 0 andf(x, y) = 6x2 +
y + y2 for x ≥ 0

When an iterative subdivision line search method is used, it selects a number of sample points
along the line segment from the current vertex,V (0), to the nearest external boundary in the search
direction. Depending on the interval between sample points, there will be either:

• A sample point in the line segment from the vertex,V (0), to reflection of the vertex,R(0), in
the region, for example, ofS1. If this is the case,V (0) will in due course be replaced by a
point in this region, and the algorithm will proceed.

• A sample point in the line segment fromR(0) to the boundary, in the region, for example, of
S2. In this case, sinceV (0)is the current trial minimum, the interval betweenV (0) andS2 will
be iteratively subdivided until a minimum is identified, in the region ofS1, and the algorithm
proceeds.

In neither case will repeated inside contraction occur in the manner described by McKinnon.



48

It is widely acknowledged (see, for example, Fletcher (1987), Kelley (1999a) or Gill et al.
(1981)) that use of anexact line searchis generally not worth the extra computational effort and may,
in fact, degrade performance. To explore this issue, two variations of line search were implemented:

• Iterative subdivision line search, an exact line search within the limits of the desired tolerance,
and

• Subdivision line search, but with only a single iteration.

5.1.2 MDS and variants

As a baseline for comparison the MDS algorithm was implemented, with concurrent evaluation
of all trial points.

To implement line searching along the MDS search directions presents a problem. MDS avoids
potential ill-conditioning experienced in the Nelder-Mead simplex algorithm by requiring each new
simplex to be congruent to the previous one. In a simply-bounded parameter domain, this makes
the individual line searches inter-dependent, since each must keep track of whether a proposed new
vertex location on one line requires another vertex to be located outside the problem domain to
maintain congruency. Such a method could be implemented with additional algorithm complexity
by initialising a feasible set of search direction line segments, but this would still entail a limitation
in potential expansion of the simplex along desirable search directions. To avoid these complica-
tions, line searching was introduced in a variant of the MDS algorithm that allows independent
relocation of vertices, i.e. congruency is not enforced.

5.1.3 Hybrid methods

The MDS algorithm raises the idea of concurrent searching along multiple search directions.
Supplementary search directionsdrawing on the methods of the Nelder-Mead algorithm and the
MDS algorithm have been suggested (Hamma 1997) but, as illustrated in Figure 5.2, a straightfor-
ward, concurrent implementation of both sets of search directions is potentially inefficient.

When the search directions of the Nelder-Mead simplex algorithm are applied sequentially,
producing new vertices 3a and 2b, the search directions are generally downhill, relative to the local
gradient. However, if they are applied concurrently, it may quite often be the case that one or more
may be to some degree uphill (for example, the trial vertex 2a). Note: the MDS search directions
have been omitted for clarity: they would be from vertices 2 and 3, through vertex 1.

In this research a different approach to generating supplementary search directions for concur-
rent search is proposed. The search direction from the worst vertex is through the centroid of the
remainingn vertices, as in the normal Nelder-Mead algorithm. But the search direction from the
next worst vertex is through then − 1 remaining vertices that are better than it, and so on, until
the search direction from the second best vertex is reduced to the MDS search direction though the
best vertex. All searches are performed concurrently, and all vertices are independently relocatable.
The method can be considered as deriving from a hybrid of the Nelder-Mead and MDS algorithms.
In this work it will be referred to as the Reducing Set Concurrent Simplex (RSCS) algorithm. The
set of search directions generated is illustrated in Figure 5.3. Comparing the search directions il-
lustrated in Figure 5.3 with the concurrent search directions of Figure 5.2, it may be noted that the
search directions generated by RSCS are more likely to be downhill.

Line searching variants of this method were also implemented, both iterative subdivision and
single-pass versions.



49

Local 
gradient 

1 

2 

3 

3a 

2b 

Local 
gradient 

1 

2 

3 

3a 

2a 

Figure 5.2 Sequential and concurrent Nelder-Mead reflection

Local 
gradient 

1 

2 

3 

Figure 5.3 RSCS search directions

In summary, the algorithms to be tested were the original two algorithms:

• NM : the Nelder-Mead simplex algorithm (parallel implementation)

• MDS : the MDS algorithm of Dennis and Torczon

and the following variants and hybrids:

• NML : NM with iterative subdivision line search

• NML1 : NM with a single pass line search



50

• MDS1 : a variant of MDS with individually relocatable vertices

• MDS1L : MDS1 with iterative subdivision line search

• MDS1L1 : MDS1 with a single pass line search

• RSCS : Reducing Set Concurrent Simplex algorithm

• RSCSL : RSCS with iterative subdivision line search

• RSCSL1 : RSCS with a single pass line search

5.2 Results of Numerical Experiments

To evaluate the set of algorithms, seven test cases were used:

• The two Quantum Electro-dynamics cases: Laser 1 and Laser 2

• The two durable component design cases: Crack 1 and Crack 2

• The 2D aerofoil design case: Aerofoil

• The radio-frequency design case: Bead

• Rosenbrock’s function in 2 dimensions

Each of the algorithms was run on each of the test cases from 10 randomly distributed start
points. For the purposes of comparison, in a given test case the same set of start points were
used for each algorithm. The starting simplices were right simplices aligned with the coordinate
axes. By default they were scaled to 10% of the parameter range for each coordinate, as use of
reasonably large simplices has been shown to enhance performance (Humphrey and Wilson 1998).
Convergence criterion for most cases was a fractional step-wise gradient of10−3. Dolan, Lewis
and Torczon (2000) have provided analytic support for the use of this measure by demonstrating
pattern size is a reliable measure of stationarity. Despite the possibility raised by Lagarias, Reeds,
Wright and Wright (1996) that simplices of zero diameter may have colinear vertices, rather than
converging to a point, we prefer to be guided by Elster and Neumaier (1997) that it is more important
to have an algorithm that is fast and robust in practice than one which converges in theory but is
slow in practice.

Function evaluations are performed concurrently in batches in Nimrod/O, the general purpose
optimisation toolset described in Section 1.2 in which the algorithms were implemented. The batch
count can be interpreted as equivalent to Effective Serial Function Evaluations (ESFE), a measure
of the wall-clock time taken for an algorithm to complete, providing all of the computations can
be performed in parallel. This means that the machine must have enough processors to achieve
this level of concurrency, which is not an unreasonable assumption given the proliferation of cheap
clusters. The parallel job distribution mechanism used for the tests supported concurrent function
evaluations in line searches, but not concurrent, multiple line searches. To evaluate the possible par-
allel performance of each algorithm, an estimate was made of ESFE for those that perform multiple,
independent line searches by assuming that the line searches could be performed concurrently. This
assumption was made for MDS1L, MDS1L1, RSCSL and RSCSL1.



51

By inspection of the relevant objective functions values tabulated in Appendix H, and the corre-
sponding Shapiro-Wilk W test statistic for normality it can be seen that in many cases W is below the
corresponding percentage point for normality, which for a significance level of 0.05 andn= 10, is
0.842. This leads to the rejection of the null hypothesis that the results are normally distributed. For
this reason, median values are used as the basis for comparison of algorithms, and non-parametric,
descriptive statistical methods are used for analysis of results.

Tables 5.1, 5.2 and 5.3 show, for each algorithm on each test case over the 10 runs performed,
respectively:

• The median objective function value obtained,

• The median number of function evaluations performed (FE) and

• The median Effective Serial Function Evaluations (ESFE).

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock
NM -0.481 -0.032 191.9 5299 -67.85 3.66 0
NML -0.459 0.037 196.6 5294 -67.08 -13.82 0.004
NML1 -0.451 -0.12 196.9 5276 -66.14 -15.68 0.039
MDS -0.481 0.279 188.0 5319 -67.92 1.63 0.066
MDS1 -0.100 0.287 190.7 5268 -59.39 8.68 1.744
MDS1L 0.227 0.271 200.3 5249 -51.94 1.61 0.882
MDS1L1 0.041 0.299 201.7 5259 -52.63 1.61 1.120
RSCS -0.481 -0.286 193.5 5310 -68.56 2.41 0.186
RSCSL -0.190 -0.542 197.8 5295 -58.00 -13.33 0.124
RSCSL1 -0.467 -0.460 192.6 5291 -60.29 -2.28 0.034

Table 5.1 Median results obtained across 10 runs – Objective function values

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock
NM 97 100.5 106 66 88 50 240
NML 971 922.5 690 582 752 179.5 1562
NML1 241 222.5 254.5 157 267 138.5 370
MDS 96 93 94 260.5 121 49 2358
MDS1 95 95 130 88 160 70 139
MDS1L 876.5 1046 1135 2344 974.5 219.5 587
MDS1L1 194 310 314 1096 305.5 170 348.5
RSCS 103 120.5 132 180 118 106 227
RSCSL 725.5 751 760.5 743.5 624.5 164.5 962.5
RSCSL1 298 361 363 312 403.5 120.5 421

Table 5.2 Median results obtained across 10 runs – Function evaluations

For each test case, thebest median objective function valueis highlighted inbold type. Also
highlighted is thefastest time,in terms of ESFE, for an algorithm to achieve a result within 10% of



52

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock
NM 24.5 25.5 26.5 16.5 22 12.5 63.5
NML 58.5 55.5 42 35 45 25 96
NML1 18.5 19.5 16.5 10 17.5 12 30.5
MDS 16.5 16 11 29.5 14 6 393.5
MDS1 12.5 12.5 11.5 8 14 6.5 18
MDS1L 31 34 29.5 61.5 24 18.5 19
MDS1L1 11.5 16 8 39 8 12.5 18.5
RSCS 13.5 16 12 16 10.5 10 29
RSCSL 22.5 23 16.5 16 13.5 8.5 31.5
RSCSL1 12.5 17 8.5 8 9 4.5 21

Table 5.3 Median results obtained across 10 runs – Equivalent Serial Function Evaluations

the best median objective function, as a percentage of the range from best median value obtained to
worst. Existing algorithms are shown shaded.

The results in Tables 5.1-5.3 show that the MDS algorithm produced the best median result
for about half the test cases, but was generally slower than other algorithms. On the other hand,
algorithms from the new, RSCS family were the fastest, successful algorithms in 5 of the 7 cases.
MDS1 and MDS1L1 were often the outright fastest algorithms, but at the expense of the result
obtained.

Table 5.4 shows the best objective function value obtained in 10 runs for each algorithm on each
test case. Table 5.5 shows the actual ESFEs required to obtain that result. For each test case, the
best objective function value obtained by any algorithm, and the fastest ESFE to obtain that value,
are highlighted inbold type.

It may be noted from Tables 5.4 and 5.6 that in general the Nelder-Mead algorithms with line
searching, and RSCS and its variants, obtain better or similar results to the Nelder-Mead and MDS
algorithms, and do so faster.

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock
NM -0.48 -0.56 187.6 5353 -68.64 -26.98 0
NML -0.48 -0.56 187.6 5332 -68.64 -39.85 0
NML1 -0.48 -0.56 187.5 5331 -68.63 -39.85 5e-6
MDS -0.48 -0.56 187.6 5357 -68.64 -16.12 3e-4
MDS1 -0.48 -0.56 187.7 5348 -68.33 -21.61 12
MDS1L -0.25 -0.37 191.9 5331 -66.39 -26.91 19
MDS1L1 -0.25 -0.37 198.5 5348 -66.39 -26.91 8
RSCS -0.48 -0.56 187.6 5347 -68.64 -26.91 0
RSCSL -0.48 -0.56 187.5 5357 -67.21 -26.98 6e-6
RSCSL1 -0.48 -0.56 187.7 5348 -68.62 -26.98 8e-4

Table 5.4 Best objective function values obtained in 10 runs



53

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock
NM 24 24 25 23 20 16 54
NML 55 51 30 46 38 28 112
NML1 15 24 13 12 18 13 48
MDS 16 12 13 1000 14 7 1000
MDS1 12 13 12 30 10 6 25
MDS1L 14 63 19 19 36 153 56
MDS1L1 30 4 8 7 11 102 19
RSCS 22 12 9 42 7 12 39
RSCSL 22 24 15 27 18 11 88
RSCSL1 13 17 11 8 15 5 33

Table 5.5 Time taken, in ESFE, to achieve best objective function values, across 10 runs

Table 5.6 shows the probability, derived from a binomial trial model, that an algorithm willnot
successfully obtain a “good” result in 10 runs, for each test case. The criteria for success were:

• For all test casesexceptthe Bead test case and Rosenbrock’s function: an objective function
value that was within 10% of the best result obtained by any algorithm, measured in the range
of all results obtained by any algorithm.

• Bead test case: all but a very few algorithms experienced considerable difficulty in obtaining
a good result on this test case. This difficulty is largely a result of the nature of the global
optimum, which exists in a very narrow, deep “notch” among several other local minima. The
parameter space also contains several large regions forming local attractors. A final objective
function value less than zero (about 50% of the range from best to worst results obtained by
any algorithm) was considered “successful” in order to assess the relative merits of most of
the algorithms tested. For a conventional measure of success, such as was used for the other
test cases, success rates were so low as to make it difficult to separate the algorithms.

• Rosenbrock’s function: a threshold of 10% of the range above the global minimum value of
zero gave most algorithms tested uniformly high rates of success. It was necessary to reduce
the threshold to 1% to separate them.

Results indicating a better than 99% probability of success have been highlighted inbold type-
face. Whilst these results indicate that almost all algorithms can find solutions almost all of the
time, the earlier tables highlight the detailed performance differences between them. Table 5.6 does
illustrate that MDS1 and its derivatives have a significant problem returning adequate results. Of
all the algorithms, only MDS, NML and RSCS can be guaranteed to return a good result acrossall
cases.

To illustrate the time behaviour of the algorithms, the objective function value achieved at each
iteration of each algorithm for representative runs on each of the laser problems are plotted in
Figures 5.4 and 5.5. It should be noted that iteration count is not a strict measure of time taken.
For iterative line searching, several batches of function evaluations may be dispatched sequentially
during a single iteration.

As might be expected from the tabulated results, the hybrid algorithms with line search rapidly
achieve a good result on both cases. For the Laser 1 problem, a “smooth” test case, the Nelder-Mead



54

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock
NM 0 0.09 1.0e-8 0.09 1.0e-8 2.8 0
NML 1.0e-5 0.6 0.6 1.0e-8 0.09 1.0e-5 1.0e-5
NML1 0.01 2.8 2.8 0 0.09 1.0e-5 1.0e-8
MDS 0 0.6 0.01 1.0e-8 0.0006 0.09 1.0e-8
MDS1 10.7 10.7 0.6 0.0006 34.9 2.8 0.6
MDS1L 100 100 100 0.01 34.9 0.09 0.09
MDS1L1 100 100 100 0.01 34.9 0.09 0.09
RSCS 1.0e-5 0.09 0.6 1.0e-8 0.0006 0.6 0.0006
RSCSL 10.7 2.8 10.7 1.0e-5 2.8 1.0e-5 1.0e-8
RSCSL1 2.8 0.6 2.8 1.0e-8 2.8 0.09 1.0e-8

Table 5.6 Probability of failure in 10 runs

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 4 7 10 13 16 19 22 25 28 31 34

Iterations

Ob
je

ct
iv

e

NM NML NML1 MDS MDS1
MDS1L MDS1L1 RSCS RSCSL RSCSL1

Figure 5.4 Convergence history for Laser 1 problem

and MDS algorithms also achieved a good result, if somewhat slower. For the Laser 2 problem,
with many local minima, the progress of the Nelder-Mead algorithm is slower still, and several
other algorithms became trapped in local minima. The run chosen to illustrate performance on the
Laser 2 test case gave the algorithms a starting point in a region that, with the initial scaling of the
simplex, yielded sufficient decrease for the Nelder-Mead and MDS algorithms to “step over” many
of the local minima, emphasising the advantage of a sufficiently large initial simplex. If a more
distant starting point was chosen, only the line searching variants of RSCS made any significant
progress, as illustrated in the example run in Figure 5.6. This echoes the view of Durand and
Alliot (1999) that the Nelder-Mead algorithm can only find a local optimum close to the starting
point, but simultaneously demonstrates an approach, incorporating a line search, that ameliorates
this difficulty.



55

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

NM NML NML1 MDS MDS1
MDS1L MDS1L1 RSCS RSCSL RSCSL1

Figure 5.5 Convergence history for Laser 2 problem

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

NM NML NML1 MDS MDS1
MDS1L MDS1L1 RSCS RSCSL RSCSL1

Figure 5.6 Convergence history for Laser 2 problem, from starting point distant from global min-
imum



56

In both examples, and in general across the remaining test cases, the line-search variants of the
MDS1 algorithm were very prone to premature termination. In these algorithms vertex replacement
is entirely free as to location. The diameter of the simplex is not bounded above zero and no
congruency of simplices is required. With the MDS-style search directions through the current best
vertex, this led to a common mode of failure of the algorithm in which the current best vertex was
identified as the best point to which worse vertices should be relocated when the line search did not
yield a better, external point. The simplex would effectively collapse onto itself.

The line-search variants of the RSCS algorithm had a similar failing. But with the concurrent
use of other, Nelder-Mead-style search directions, collapse of the simplex to a single point was
delayed. Instead, the termination phase of the algorithm was beneficially accelerated: few general
contractions of the simplex, if any, were observed. RSCSL and RSCSL1 owe some degree of
their speed to this accelerated termination. Occasionally, the unbounded replacement of vertices
yielded ill-conditioned or degenerate simplices, arbitrarily flat or needle-shaped. This provides
a readily understood mechanism, for this algorithm, of a phenomenon already observed for the
Nelder-Mead algorithm (Bassiri and Hutchinson 1994, Wright 1995, Lagarias et al. 1996, Lewis,
Torczon and Trosset 2000a). RSCS allows a very rapid elongation of the simplex when one of the
search directions becomes aligned with a long, downhill run. This elongation will cause a near-
loss of linear independence in the search directions. If the required search direction to proceed
further is nearly conjugate to this elongation, the concept on which conjugate gradient methods is
predicated, failure is likely to occur. It is possible to conjecture a sequence of extensions of the
Nelder-Mead simplex that could lead to a similar elongation. A suggestion has been made for a
method specifically to protect against this eventuality, by ensuring internal angles of the simplex are
bounded above zero (Tseng 1999, Nazareth and Tseng 2002).

Closer examination of run logs for RSCSL1 on the aerofoil test case, in which it returned
poor median objective function values, suggests there were problems with the algorithm rapidly
approaching, and collapsing the simplex onto, the parameter domain boundaries. It is possible to
devise special boundary-handling code to correct this problem. However, several authors have sug-
gested that it is easier for simplex-based, pattern search algorithms to recover from ill-conditioned
simplices simply by restarting with rescaled simplices, i.e. construct a new simplex around the
best vertex found so far, with a scale appropriate to the stage of optimisation (larger to start with
and decreasing in size with iteration count) and orientation reset either to a convenient default or
with orthogonal sides having a difference approximation to the local direction of steepest descent
(Wright 1995, Kelley 1999).

To quantitatively investigate the effect of introducing line searches, pair-wise comparisons were
made between the Nelder-Mead algorithm and its two line-searching variants. The Mann-Whitney
U test statistic was computed for each comparison on each test case and results are tabulated in
Appendices A and B. These results indicate that the objective function values obtained on the Bead
test case by the line searching variants were better than the original algorithm at a significance
level of 0.05. On the smooth Laser 1 test case the original algorithm was significantly better than
the single-pass line-searching variant. On all other test cases, there was no statistically significant
difference between the results obtained by the original algorithm or its line-searching variants. The
only difference between them was their speed.

Similarly, comparisons were made between the RSCS algorithms and the Nelder-Mead and
MDS algorithms. The Kruskal-Wallis H test statistic was computed across results for the different
algorithms, for each test case. Results are tabulated in Appendix C. At a significance level of 0.05,
the percentage point of theχ2-distribution for the 5 algorithms tested, i.e. 4 degrees of freedom,
is 9.4877. Comparison of the H test statistic with this percentage point indicates that the results
of at least two of the algorithms differed in their distributions in only two cases, the Laser 1 and
Aerofoil test cases. These are two “smooth” test cases, and inspection of the rank sums indicates



57

the Nelder-Mead and MDS algorithms were the best performing. However, the rank sum of RSCS
on the Aerofoil test case is equally high.

To confirm the relative performance of RSCS on the Aerofoil test case, a pair-wise compari-
son was performed with each of Nelder-Mead and MDS, using the Mann-Whitney U test statistic.
The results are tabulated in Appendix D. They confirm that RSCS returns results as good as the
Nelder-Mead and MDS algorithms. The only remaining difference between the algorithms is speed.
Reference to Table 5.3 shows RSCS was generally twice as fast as Nelder-Mead and a third faster
than MDS on this test case.

From Table C.6, the results obtained by the iterative line-searching variant of RSCS appear to
be better than other algorithms. A pair-wise comparison was performed with each of Nelder-Mead
and MDS, using the Mann-Whitney U test statistic. The results are tabulated in Appendix E. They
indicate that, to a significance level of 0.05, RSCSL returns better objective function values on the
Bead test case.

5.3 Discussion of Results

From the results in Table 5.1, it can be seen that the addition of line searching has improved
the performance of the Nelder-Mead simplex algorithm. The single pass line search variant, in
particular, is consistently faster, on average by about 53%. The median values obtained were either
better, or never more than 10% worse. Analysis of objective function values returned, as shown in
Tables A.6 to A.4, indicates there was no statistically significant difference in the quality of results
returned by line-searching variants of the algorithm.

The new, hybrid algorithm, RSCS, gave median results and ESFE that were consistently better
than the Nelder-Mead algorithm on “noisy” test cases and never more than 5% worse on “smooth”
cases. On average, RSCS was 78% faster than the Nelder-Mead algorithm. Analysis of objec-
tive function values returned, as shown in Tables B.6 to B.4, indicates there was no statistically
significant difference in the quality of results returned by RSCS, Nelder-Mead simplex and MDS
algorithms, except for the “smooth” Laser 1 test case. From Table 5.4 it can be seen that RSCS was
capable of equalling the best objective function value returned by both the Nelder-Mead and MDS
algorithms on this test case. From Table 5.1, it can be seen that RSCS is approximately 20% faster
than MDS on average. This excludes the time taken by MDS on Rosenbrock’s function, which
was considered a pathological example of the tendency of simplicial methods toward premature
convergence (Barton and Ivey 1996).

The single pass line search variant of the new algorithm, RSCSL1, also surpassed the Nelder-
Mead simplex algorithm. Among the fastest of the algorithms, it was on average 2.4 times faster
than the Nelder-Mead algorithm. The median objective function values obtained were better on
two of the “noisy” surfaces. On one of the “smooth” test cases themedian result was about 30%
worse than that of Nelder-Mead, but thebestobjective function values obtained were never more
than 0.1% worse than those obtained by the Nelder-Mead algorithm across all test cases, and other
median results were within 10%.

RSCSL1 was also faster than MDS, on average by a factor of 6. This was primarily due to
very slow runs for MDS on Rosenbrock’s function. If the poor times on this test case are ignored,
RSCSL1 is about 35% faster than MDS. Once more, the median result from RSCSL1 on the aerofoil
test case was about 32% worse than MDS, but the best objective function values it obtained were in
some cases better, and never more than 0.1% worse than those obtained by MDS, and other median
results were within 10%.



58

The MDS algorithm demonstrated a high probability of a “successful” result, as shown by the
results in Table 5.6. However, it must be noted that the leniency of the criterion for “success” in the
Bead test case contributed to this result: comparison of the best results obtained on this test case,
as shown in Table 5.4, show MDS obtained the worst result of all the algorithms. In addition, on a
couple of individual runs the algorithm appeared to reduce the diameter of the simplex prematurely,
from which it did not recover, resulting in extremely long run times.

The iterative subdivision line search variant of the Nelder-Mead algorithm, NML, also had a
high probability of success, but at the expense of speed: Table 5.1 shows it was generally slower
than the un-modified algorithm. In contrast, RSCS also had a high probability of success but was
faster.

5.4 Summary

In general, the Nelder-Mead and MDS algorithms performed well on the “smooth” test cases,
but poorly on the class of cases with noise or many local minima. The new algorithm, RSCS, and
its line searching variants, performed reasonably (or very) well on both types of problems. They
generally provide better results, and deliver them faster.

The inclusion of line searching in the Nelder-Mead simplex algorithm also proved to be very ad-
vantageous. The single-pass line search variant is consistently faster than the unmodified algorithm,
and delivered equivalent or better results across almost all test cases.

It may be observed from the results in Table 5.6, thatall algorithms had a high probability of
a successful result using multiple starts on Rosenbrock’s function. This would tend to suggest that
this function is not really a good predictor of performance on real-world problems. For this reason,
results for Rosenbrock’s function are included for qualitative comparison, but are not included in
detailed analyses.

With the exception of the Nelder-Mead algorithm on “smooth” test cases, all algorithms had
at least one run on each test case that yielded an exceptionally poor result. For the purposes of
optimisation of industrial or commercial problems, it would appear multiple runs of any chosen
algorithm are a practical necessity. Given multiple starts, MDS, RSCS and the iterative line search
variant of the Nelder-Mead simplex algorithm could be guaranteed to yield at least one good result
across all test cases.

Comparing the direct search methods discussed in this chapter with the gradient methods of the
previous chapter all have the advantage that, for most of the time, each step produces some improve-
ment in the objective function. The gradient methods require two steps, gradient determination and
a line search, to produce similar improvement. In terms of their use of parallel computing resources
they fall into one of a number of categories:

• If methods do not utilise a line search they show somewhatlessconcurrency, of similar order
to the gradient determination step of P-BFGS. The (parallel) Nelder-Mead simplex algorithm
falls into this category.

• MDS and RSCS fall into an intermediate category. They do not use a line search, but treat
multiple vertices simultaneously. The four-point stencil sampled in each search direction
allows them the use of twice the parallel computing as the gradient determination step of
P-BFGS. Their concurrency relative to the line search step will be dependent on the dimen-
sionality of the problem and the desired tolerance.



59

• If the methods use a single line search at each step they show about the same level of con-
currency, since the line search governs this in each case. The line-searching variants of the
Nelder-Mead simplex, NML and NML1 are in this group.

• If several line searches are executed simultaneously, they demonstrate concurrency roughly
O(n) greater than the gradient methods. The new RSCSL and RSCSL1 fall into this category.

While generally utilizing parallel computing resources a little more effectively than the gradient
methods, all algorithms were limited to a greater or lesser degree in their maximum concurrency.
Line searching increases concurrency, and the MDS and RSCS algorithms also have greater poten-
tial, though some have considered this a disadvantage for problems of high dimensionality, prefer-
ring the Nelder-Mead algorithm to other methods such as MDS because of the former’s parsimony
in function evaluation (Kelley 1999). To effectively use more parallel computing resource we must
turn to stochastic methods.



60

6.0 Stochastic methods

Of the optimisation methods outlined in the simple taxonomy in the Introduction, those offer-
ing the greatest concurrency arepopulation-based methods, in which large numbers of objective
function evaluations are typically performed in parallel, evolving solutions over several “genera-
tions”. It is only over the past decade that the computational capacity available to scientists and
engineers has increased to the point where population-based methods of optimisation have become
practical for the solution of real-world problems. Moreover, in engineering design, the evaluation
of the objective function is so much slower than the rest of the algorithm, that such codes demon-
strate excellent speedup in spite of the need for global communication on each iteration.Genetic
Algorithms (GA) now may be frequently encountered in application to engineering problems (for
examples, see Alander (1995)). These have inherent, easily exploitable parallelism, and attractive
global convergence probabilities, but have been considered generally slow to converge (Durand and
Alliot 1999).

Among the population-based methods, Genetic Algorithms are the most widely used, as is clear
from such surveys of the published literature as in Van Veldhuizen (1999) or Coello Coello (1999).
However, with the real-valued problems that are the main focus of the work reported here it is
unclear why joining, for example, the mantissa of a parameter from one trial solution with the
exponent from another should be expected to provide anything more constructive than a random
search. Exchange of whole parameter values may beneficially provide a means for exploration of
different neighbourhoods in parameter space, and a Genetic Algorithm might be constructed that
preserves the integrity of parameter values under its recombination (crossover) operators (Wright
1991), but this work instead concentrates on the purely mutational approach of the Evolutionary
Programming methods, while incorporating concepts of self-organised criticality and elitism.

6.1 Self-organised Criticality

The theory of self-organised criticality gives an insight into emergent complexity in nature (Bak
1996, Bak and Sneppen 1993). Systems in stable equilibrium exhibit linear behaviour. The system’s
response to a disturbance is proportional to the size of the disturbance. Large fluctuations can only
occur if several factors simultaneously combine to act in the same direction, which is unlikely to
occur. Such a system, then, is also unlikely to adapt rapidly to the demands of an objective function.

At the other end of the spectrum, chaotic systems can react violently to change, as small pertur-
bations of initial values are amplified in the system’s response. Chaotic systems have no memory of
their past states and cannot evolve.

However, at the transition from a stable system to chaos, complex behaviour can emerge. It is
this critical state that may deliver efficient adaptation. Self-organised critical systems evolve to the
critical state without any external organising force. This is advantageous because it implies noa
priori information about the internal functioning of the systems is required to develop an effective
means of optimising an objective function expressed in terms of externally exposed parameters and
observed system response.

Bak contended that the critical state was “the most efficient state that can actually be reached dy-
namically”. Inspection of many natural phenomena suggests the critical state is capable of efficient
adaptation to environmental pressures using simple, robust systems. If optimisation is considered
as the adaptation of a system described by its parameters to the selective pressure of an objective
function, then it appears developing a critical state may be a highly effective method of optimisation.



61

Bak sought to model evolution of species with a simple model of inter-species interactions and
selection. A number of species were arranged, arbitrarily and randomly, in a ring topology. At
each time step, the least fit species and its two neighbours in the ring were replaced by randomly
instantiated new species. This model was demonstrated to lead to complex behaviour, with gradual
evolution of the fitness of the whole population.

Self-organised criticality is also exhibited by the “sandpile model”. In this model, “grains” of
sand are modelled numerically, stacking upon each other and toppling onto neighbouring stacks
under simple rules. The structure of this simple system can be observed to evolve to an organised
state with dynamics characteristic of criticality.

6.2 EPSOC: an Evolutionary Programming algorithm using
Self-Organised Criticality

In earlier applications of self-organised criticality to optimisation, it has been proposed that a
separately computed power-law extinction rate be imposed on a spatial diffusion model, or cellular
GA (Krink and Thomsen 2001). Krink and Thomsen’s model used pre-computed, stored dynamics
of a sandpile model to control the size of extinction events in a diffusion model. The algorithm
apparently does not attempt to evolve a population in a critical state, but indirectly imposes the
observed behaviour of such a population.

In both Bak’s nearest-neighbour, punctuated equilibrium model, and Krink and Thomsen’s spa-
tial diffusion model the population members are artificially arranged spatially: in a ring in the for-
mer, and in a toroidal, 2D grid in the latter. In contrast, by considering the trial solution parameter
vectors as defining a location in ann−dimensional parameter space, the spatial behaviour of Bak’s
model is realized naturally in EPSOC.

In its operation EPSOC is largely a straightforward implementation of Bak’s model as an opti-
misation algorithm, though using Euclidean parameter space for spatial operators. It also diverges
in applying a high degree of greediness to the algorithm, which has been clearly demonstrated to
improve the performance of a Genetic Algorithm (Zitzler, Deb and Thiele 2000). Maintaining a
large “elite” (in EPSOC, half the total population) can be viewed as a “constructive” operator. An
analogous operator is “Maxwell’s demon”.

Maxwell’s Demon is an imaginary creature created by the mathematician James Clerk Maxwell
to contradict the second law of thermodynamics. In a thought experiment in gas dynamics, the
demon operates a molecule-sized trap door in a partition across a gas-filled cavity. The demon ob-
serves the gas molecules and allows faster than average molecules through the door so they end up
on one side, and ensures slower than average molecules approaching the door end up on the other
side. So after these operations one half of the cavity is filled with all the faster than average gas
molecules, and the other half with all the slower than average ones. The demon is decreasing the
randomness of the system (by ordering the molecules according to a certain rule). By protecting
half of the population from extinction events, applying greediness accretes information in a man-
ner similar to Maxwell’s demon, and encourages a gradual improvement in the better half of the
population.



62

6.2.1 EPSOC implementation

Restated, the general optimisation problem for an arbitrary, non-linear functionf is:

Minimize f(x) where:f : <n → < andx = {x0,. . . ,xi,. . . ,xn} (6-1)

For a population-based method, the population,p, consists of a set of parameter vectors,x : p =
{x0, ...,xi, ...,xm}. For the real-world engineering design problems being considered, values for
f(x) are generally derived from execution of complex numerical simulations requiring considerable
computation time.

The steps of the EPSOC algorithm are:

1. Initialise a random, uniformly-distributed population,p, and evaluate each trial solution,
xi ∀ i.

2. Sort the population by objective function value,f(x).

3. Select a set, B, of thenbadworst members of the population. For each member of B, add to
the set its two nearest neighbours in parameter space that are not already members of the set,
or from the best half of the sorted population.

4. Apply a random, uniformly-distributed mutation to the selected set, B, i.e. re-initialise them.
For all other members of the population, generate a “child” by applying a small (∼10% of
parameter range), random, uniformly-distributed mutation to the “parent” member.

5. Evaluate each new trial solution,f(x).

6. If a child has a better objective function value than its parent, replace the parent with the child.

7. Repeat from step 2 until a preset number of iterations have been completed.

As each set of parameters defining a trial solution is independent of all others, it is immediately
apparent that the evaluation of trial solutions at steps 1 and 5 can be performed concurrently. Since
the evaluation of the objective function completely dominates the execution time, from Amdahl’s
Law we can expect extremely high parallel efficiency.

6.3 Results of Numerical Experiments

To evaluate EPSOC its performance was compared to that of a set of algorithms, including a
GA (Genesis 5.0 (Grefenstette 1984)), a parallel gradient descent method (P-BFGS), Dennis and
Torczon’s MDS, the Simplex method of Nelder and Mead, a Reducing Set Concurrent Simplex
(RSCS), and line-searching variants of Simplex and RSCS.

Seven test cases were used: ,

The two Quantum Electro-dynamics cases: Laser 1 and Laser 2

The two durable component design cases: Crack 1 and Crack 2

The 2D aerofoil design case: Aerofoil

The radio-frequency design case: Bead



63

Rosenbrock’s function in 2 dimensions

Each of the algorithms tested was run on each of the test cases from 10 randomly distributed
start points. To allow direct comparison, in a given test case the same set of start points were used
for each algorithm. The convergence criterion for most cases was a fractional step-wise gradient
of 10−3, except for EPSOC and Genesis, which used fixed limits on iteration count and function
evaluations, respectively.

The population-based algorithms, EPSOC and Genesis, both used a population of 64 members
and elitist strategy. Other operational parameters of the algorithms, such as mutation and crossover
rates for the GA, and extinction rate and mutation width for EPSOC, were tuned for each test
case. Three different values were chosen for each of these operational parameters, and the two
algorithms run with each of the nine resulting combinations. The results of these trials are tabulated
in Appendices F and G. Further interpretation of their significance can be found in Section 6.4.
The Shapiro-Wilk W test statistic for normality was applied to each set of results for a given set of
operational parameters. For a significance level of 0.05, the corresponding percentage point for the
W test for normality, forn= 10, is 0.842. By inspection, many of the groups display a W test statistic
less than this, leading to the rejection of the null hypothesis that they are normally distributed. For
this reason, non-parametric, descriptive statistical methods are used for analysis of results.

Table 6.1 shows the best objective function value obtained in 10 runs for each algorithm on each
test case. Table 6.2 shows the Equivalent Serial Function Evaluations (ESFE) required to obtain
that result. For each test case, the best objective function value obtained by any algorithm, and the
fastest ESFE to obtain the best value, are highlighted. Existing algorithms are again shown shaded.

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock
P-BFGS -0.48 -0.56 187.5 5347 -67.90 -29.71 7e-2
NM -0.48 -0.56 187.6 5353 -68.64 -26.98 0
NML1 -0.48 -0.56 187.5 5331 -68.63 -39.85 5e-6
MDS -0.48 -0.56 187.6 5357 -68.64 -16.12 3e-4
RSCS -0.48 -0.56 187.6 5347 -68.64 -26.91 0
RSCSL -0.48 -0.56 187.5 5357 -67.21 -26.98 6e-6
RSCSL1 -0.48 -0.56 187.7 5348 -68.62 -26.98 8e-4
EPSOC -0.48 -0.56 187.5 5356 -68.64 -39.85 1e-3
GA -0.48 -0.56 188.5 5346 -68.51 -39.85 2e-4

Table 6.1 Best objective functions values obtained in 10 runs

In Table 6.1 it may be noted that on all bar one of the real-world test cases EPSOC achieved the
best objective value. For the one case (Crack 2) on which it did not, it came within one part in 5000
of the best result. On half of the cases it was also the fastest algorithm to achieve the best result.

To illustrate the time behaviour of the algorithms, the median objective function value achieved
after each iteration of each algorithm across all 10 runs on each of the real-world test cases are
plotted in Figures 6.1-6.6. The convergence history of algorithms on Rosenbrock’s function is not
shown.

Looking at the convergence history for the Laser 1 test case in Figure 6.1, it may be seen that
virtually all algorithms converge, with varying degrees of rapidity, to median values at or near the
dominant global minimum. This might be expected for such a “smooth” problem. There were
two exceptions with poorer results, the reasons for which were found by inspection of numerical
experiment log files:



64

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock
P-BFGS 37 39 26 12 26 18 10
NM 24 24 25 23 20 16 54
NML1 15 24 13 12 18 13 48
MDS 16 12 13 1000 14 7 1000
RSCS 22 12 9 42 7 12 39
RSCSL 22 24 15 27 18 11 88
RSCSL1 13 17 11 8 15 5 33
EPSOC 10 12 5 20 20 14 14
GA 14 19 16 11 9 7 23

Table 6.2 Time taken, as ESFE, to achieve best objective functions values across 10 runs

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

EPSOC
GA
Simplex
Simplex-L1
MDS
PBFGS
RSCS
RSCS-L
RSCS-L1

Figure 6.1 Convergence history of median values – Laser 1

• The gradient descent method, P-BFGS, has a final median value that is degraded by several
runs that became trapped in the local minima that can be seen in Figure 3.4.

• Similarly, the line-search variant of RSCS had a number of runs that also became trapped in
these local minima.



65

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

EPSOC
GA
Simplex
Simplex-L1
MDS
PBFGS
RSCS
RSCS-L
RSCS-L1

Figure 6.2 Convergence history of median values – Laser 2

180

190

200

210

220

230

240

250

EPSOC
GA
Simplex
Simplex-L1
MDS
PBFGS
RSCS
RSCS-L
RSCS-L1

Figure 6.3 Convergence history of median values – Crack 1



66

4570

4670

4770

4870

4970

5070

5170

5270

EPSOC
GA
Simplex
Simplex-L1
MDS
PBFGS
RSCS
RSCS-L
RSCS-L1

Figure 6.4 Convergence history of median values – Crack 2

-75.00

-70.00

-65.00

-60.00

-55.00

-50.00

-45.00

-40.00

EPSOC
GA
Simplex
Simplex-L1
MDS
PBFGS
RSCS
RSCS-L
RSCS-L1

Figure 6.5 Convergence history of median values – Aerofoil



67

-40

-30

-20

-10

0

10

20

30

40

EPSOC
GA
Simplex
Simplex-L1
MDS
PBFGS
RSCS
RSCS-L
RSCS-L1

Figure 6.6 Convergence history of median values – Bead

EPSOC and the GA show the benefit of larger sampling populations. The “starting” median
values, i.e. the median of the best points returned from the first generation sampling, are better
than for other algorithms. All the direct search algorithms start from the same initial simplices and
thus have the same initial median value. Even the small sampling of the multiple vertices of the
initial simplex confers a slight advantage over the single point evaluation of the gradient descent
algorithm.

The median values of EPSOC and the GA are also the most rapid to approach the global mini-
mum. They do this, however, at the expense of significantly greater numbers of objective function
evaluations. Withouta priori knowledge of the problem, it cannot be assumed that this rapidly
attained result is the final, best value. A comparison across all the problems (by inspection of the
remaining Figures 6.2–6.6) shows the EPSOC and GA values can “plateau” at intermediate stages.
(This is particularly evident on, for example, the Bead and Crack problems.)

Turning to the next of the “smooth” problems, inspection of Figure 6.3 shows performance on
the Crack 1 problem generally similar to that of the Laser 1 problem in Figure 6.1. There is a slight
spread of the final values across all algorithms, but no significant outliers. To explore the reasons for
this a further inspection of the shape of the objective function in parameter space is helpful. Figures
3.8 (and also Figure 3.9) show isosurfaces that are generally less sensitive to changes in the value
of bias,β. If the objective function is plotted for a constant value ofβ, as shown in Figure 6.7, a
large flat surface adjacent to the global optimum can be seen. It is thus a simple matter for most
algorithms to achieve a “reasonably good” result, giving rise to the uniformity of final results seen
in Figure 6.3. Of all algorithms, EPSOC achieves the best result earliest.

Considering results for the remaining problem classified in Section 3.7 as a “smooth” problem,
the Aerofoil test case shown in Figure 6.5, similar features can be seen:



68

Figure 6.7 Crack 1 isosurface for constantβ

• Separation of starting values, with population-based methods leading direct search methods
and P-BFGS the poorest starter.

• Clustering of final median values near the global minimum.

• EPSOC the most rapid to achieve the best results.

The line-searching variants of simplex-based methods all fared poorly on this test case. As
discussed in Section 5.2, all these variants can yield degenerate simplices, particularly when the
local gradient field directs them strongly toward a domain boundary.

In summary, very similar relative behaviour of algorithms was observed on the test cases clas-
sified as “smooth”. EPSOC consistently delivered better results faster than other algorithms. How-
ever, EPSOC and the GA achieve a median result comparable to the remaining algorithms, and
only slightly faster. Without knowledge of the problem, they cannot be assumed to have definitely
converged in any less time than the other algorithms and, as has already been noted, utilise many
more function evaluations. For these reasons, direct search and gradient descent methods may be
seen as preferable for use on “smooth” problems, particularly if the available parallel or distributed
computing resources are limited.

Inspecting the median results for the problems classified in Section 3.7 as “noisy” (Figures 6.2,
6.4 and 6.6), there are also similarities in algorithm behaviour:



69

• The separation and ordering of initial values is the same as observed for “smooth” problems,
as is to be expected, since this is purely a function of the initial sampling.

• EPSOC and the GA consistently provide better results more rapidly.

However, except for the Crack 2 test case, there is not the same clustering of algorithms yielding
good final results.

Figure 6.8 shows the Crack 2 objective function values plotted for constantβ. As was seen
for the Crack 1 test case, there are large regions of reasonably good values adjacent to the global
maximum. This explains the bunching of algorithms observed in Figure 6.4. In contrast to the Crack
1 test case where these flat surfaces sloped toward the minimum, the flat surfaces in the Crack 2 test
case have almost zero gradient. There are also regions of flat, low gradient surfaces at significantly
worse function values. As a result P-BFGS, the gradient descent algorithm, fared much worse than
others.

Figure 6.8 Crack 2 isosurface for constantβ

On the Laser 2 and Bead test cases EPSOC and the GA in general gave much better results than
the other algorithms. The next best were line-searching variants of simplex-based algorithms, with
all the remaining algorithms demonstrating similar behaviour to each other.

One point worth noting is that on the Laser 2 test case P-BFGS and MDS both had a tendency
to become trapped in local minima if the starting point was remote from the global minimum.



70

These regions general have a very small “underlying” or average gradient, i.e. they are flat with
superimposed, fractal noise dominating the local gradients.

P-BFGS, which is heavily dependent on the local gradient field, performed poorly as a result.
MDS, which imposes congruency on successive simplices, was prone to early general contraction
of the simplices when search directions failed to reliably return improved points on the generally
flat, noisy surface.

In summary, EPSOC and the GA both demonstrated an ability to return much better results more
rapidly than other methods on the “noisy” test cases. This amply justifies the additional investment
in greater numbers of function evaluations, provided sufficient concurrent computing resources are
available.

Comparing the performance of all algorithms on the basis of the convergence history of median
results obtained, it may be noted that EPSOC achieved an equal or better median value than any
other algorithm on all test cases. In 3 of the 6 cases, the median result obtained by EPSOC lay at
the global minimum. On several cases it was also significantly faster than other methods.

6.4 Statistical Analysis of Results

For EPSOC and Genesis, the Kruskal-Wallis H test statistic was computed across results for
different operational parameters, for each test case. Results are tabulated in Appendices F and G.
The sum of ranks for each group of results for a specific set of operational parameters was compared
against the pooled ranks to determine the best set of parameters to use for each test case. At a
significance level of 0.05, the percentage point of theχ2-distribution for the 9 parameter treatments
tested, i.e. 8 degrees of freedom, is 15.507. By inspection of H test values, EPSOC has statistically
significant differences in its performance (H> χ2

.05) for different operational parameters settings in
only two cases, Laser 1 and Aerofoil. In contrast, Genesis has significantly different performance
for different operational parameters settings on all test cases. This is in direct contrast to previous
comparisons of Evolutionary Programming and Genetic Algorithms (Keane 1996) and indicates a
distinct advantage for EPSOC.

To select effective values of operational parameters would generally require somea priori un-
derstanding of the nature of the problems, and the performance of the algorithm. Close inspection of
the results for Genesis, in Appendix G, may indicate some general trends; for example, with lower
rates of crossover it appears beneficial to use higher rates of mutation. But in almost all cases best
results were obtained with values for these parameters other than their default settings, and no firm
rules apply to all cases. The median results obtained on the radio-frequency design case for different
settings for Genesis (Table G) shows the difficulty should only one parameter be given the wrong
value. Without a detailed understanding of problem and algorithm, multiple trials are needed to en-
sure the quality of results. This comes at a cost of additional time required, or significant additional
computing resources if it is proposed the several permutations be run simultaneously. The relative
insensitivity of EPSOC to operational parameters makes it far easier to apply with confidence in the
results delivered.

Once the best-tuned EPSOC and Genesis for each test case had been chosen, their results were
compared with those of the remaining algorithms. The Kruskal-Wallis H test statistic was computed
across results for different algorithms, for each test case. Results are tabulated in Appendix H. For
the 9 algorithms tested, comparison of the H test statistic with the percentage point of theχ2-
distribution, at a significance level of 0.05, indicates that the results of at least two of the algorithms
differed in their distributions, for all test cases. Put simply, at least one algorithm in each test
performed significantly better than others.



71

Inspection of the rank sums for each algorithm shows that EPSOC was the highest ranked al-
gorithm in 4 of the 6 test cases. In the Bead test case the GA performed marginally better, and the
MDS algorithm was marginally better in the Laser 1 test case. In 3 of the remaining cases the GA
was ranked second to EPSOC. Simplex ranked second to EPSOC in the Aerofoil test case.

To examine the relative performance of algorithms in more detail, a pair-wise comparison be-
tween the first and second ranked algorithms, using the Mann-Whitney U test, was performed for
each test case. In the 4 cases in which EPSOC was the best algorithm, it was shown to be signif-
icantly better than the next best algorithm, to a significance level of better than 0.05. In the two
cases in which another algorithm yielded better results than EPSOC, the difference was statistically
insignificant.

To qualitatively evaluate algorithm performance in terms of speed, the time to reach the best
objective functions values, measured in ESFE as shown in Table 6.2, was averaged over all the test
cases. EPSOC proved to have the fastest mean time to achieve these results, at an average 13.6
iterations. The mean of the averaged times of the remaining algorithms, excluding the outlying re-
sults for MDS which skewed the runtime performance, was approximately 21 iterations. It was this
result, derived from earlier testing, that was used to determine the “maximum iteration” completion
criteria for EPSOC and Genesis.

6.5 EPSOC and Multi-Objective Optimisation

When tackling real-world problems, particularly in the field of engineering design, the desired
optimal design may not be expressed in terms of a single objective. Product designers may wish to
maximise some element of the performance of a product, while minimising the cost of its manufac-
ture, for example. Different objectives may be conflicting, with littlea priori knowledge as to how
they interact. In the past, common practice was to optimise for a single objective while applying
other objectives as constraints, a less than ideal approach. Evolutionary Algorithms (EAs) have
recently become more widely used for their ability to work well with large-scale problems (Van
Veldhuizen 1999).

In general, there remains a role for a human Decision Maker (DM) in choosing between com-
peting objectives. Multi-objective optimisation algorithms can broadly be categorised by when in
the optimisation process the DM intervenes (Zitzler 1999, Van Veldhuizen 2000):

• Decision making before search: the DM aggregates the objectives into a single objective,
including preference information (or weights). The problem is essentially reduced to a single
objective optimisation.

• Decision making during search: the DM interactively supplies preference information to
guide the search

• Decision making after search: the DM selects from a set of candidate solutions resulting
from the search.

It may be noted that the first two of these approaches would seem to require somea priori knowl-
edge of the problem domain in order to effectively provide preference information, particularly for
methods involving aggregation. It has been asserted that the first approach does not return Pareto-
optimal solutions in the presence of non-convex search spaces (Coello Coello 1998, Zitzler 1999).
The multi-objective EPSOC method to be described (EPSOC-MO) largely falls into the last cate-
gory.



72

EAs applied to multi-objective optimisation need to address two main problems:

1. How is fitness assignment and selection performed?

2. How is a diverse population maintained, to aid search space exploration?

Fitness assignment can conceptually be divided into a number of approaches (Zitzler 2002): ,

• Aggregation-based

• Criterion-based

• Pareto-based

A great deal of recent work has concentrated on using pareto-based selection (see Coello Coello
(1999), Zitzler (1999) or Zitzler et al. (2000)). EPSOC-MO does not make explicit use of pareto
dominance, selection being made according to rankings based on single objective function values,
and their combination. It does not do this, however, by aggregation of the objectives. In approach,
EPSOC-MO can be seen as a hybrid of criterion-based and Pareto-based fitness assignment and
selection. Fitness is determined by objective function values in turn, a criterion-based assignment.
But selection, for extinction, is tempered by consideration of ranking against all objectives, an
implicit Pareto-based approach.

Diversity of the population is addressed in EPSOC-MO by the same means as for its use for
single objective optimisation, i.e. achieving a self-organised critical state through operations of
mutation and extinction. Of the common methods (Zitzler 1999):

• Fitness sharing

• Restricted mating

• Isolation by distance

• Overspecification

• Reinitialization

• Crowding

the method of species extinction in EPSOC-MO is closest to a form of reinitialization, though of a
carefully selected section of the population.

EPSOC operates on an ordered population, ranked by fitness according to the objective function.
However, for it to be used for multi-objective optimisation it would not be possible to sort the
population according to two or more objectives simultaneously. The modified EPSOC-MO instead
maintains an ordered set for each objective, with a mapping into the original population. An example
for two objectives is illustrated in Figure 6.9.

Referring to the outline of the EPSOC algorithm in Section 6.2.1, half of thenbadmembers
selected come from the worst members of the first ordered set, and the remainder from the worst
members of the second ordered set,with the provisothat those chosen from the first set not be among
the elite of the second set andvice versa.

To implement this restriction, a set of reverse mappings, from the original population back into
the ordered sets, was also maintained. Their use is illustrated in Figure 6.10. A member chosen
from the first set, for example, would be mapped into the original population, and then into the
second set. It would only be chosen for extinction if it were not in the elite of either set. For the



73

Set ordered 
according to 
objective 1 

Mapping 1 

Original 
population 

Set ordered 
according to 
objective 2 

Mapping 2 

Figure 6.9 Ordered set mapping for EPSOC-MO

Set ordered 
according to 
objective 1 

Mapping 1 

Original 
population 

Set ordered 
according to 
objective 2 

Mapping 2 

Figure 6.10 Use of reverse mappings in EPSOC-MO

example shown in Figure 6.10, the chosen member from set 1 would be rejected since it is in the
elite of set 2. Similar restrictions are imposed on the choice of nearest neighbours at step 3 of the
algorithm. The elites of each set were chosen so that their sum was the size of the elite of the single
objective implementation of EPSOC.

The use of archives to preserve the Pareto-optimal set is commonplace in multi-objective evo-
lutionary algorithms (MOEAs) (Zitzler 2002) and remains an area of active research (Laumanns,
Thiele, Deb and Zitzler 2002). Most algorithms use the archive as a form of “non-volatile” storage,
serving only to preserve Pareto-optimal approximations. Only a few use the archive as a dynamic
element in the algorithm (Knowles and Corne 1999).



74

In contrast, in EPSOC-MO the ranked sets play an integral role in the operation of the algorithm.
These sets not only preserve the approximations to the Pareto-optimal set, but also mediate between
objectives during the search. In this regard they can be considered as playing a role in the decision-
making process; in effectdecision making during searchbut without the interaction of the Decision
Maker. In a sense, through these sets EPSOC-MO maintains multiple, “virtual” archives.

6.5.1 Results of Numerical Experiments

A simple experiment was constructed by formulating a second objective for the Bead test case.
Not only was gain to be optimised, but the length of the optimal bead was to be minimised. This
is in some sense a realistic goal, in that a shorter, more compact component might be desirable
in practice. Ten runs of the multi-objective implementation of EPSOC were made using these
objectives. The maximum iteration for the run was set to 500, and a population of 64 was used.
The length of the bead was permitted in the range 35mm to 60mm and, as has been shown in earlier
numerical experiments, the range of the gain values was from –39.85 to 48.52.

Gain and length values for the points returned at the top of the set ordered by gain for each run
are shown in Table 6.3. The median gain for this set of points is –22.35, compared with a median
of 34.99 for the whole dataset. The median length of these returned points is 48.1, compared with a
median of 47.5 for the whole dataset.

Gain Length
-12.27 50.07
-26.98 48.44
-27.55 51.77
-14.35 41.37
-20.41 41.71
-30.42 51.68
-7.73 41.34
-35.57 51.97
-10.89 42.98
-24.29 47.79

Table 6.3 Gain and length of “best” points from 10 runs

The entire decision space was scanned at integer intervals, and the results are plotted in objective
space in Figure 6.11 to illustrate the distribution of solutions in objective space, and give some
indication of the location of Pareto-optimal solutions. It should be noted that the test case uses
these sample points and linear interpolation between them to provide objective function values, i.e.
these are extremal points. The “best” returned values are highlighted. By inspection, it can be seen
that the returned points approach the Pareto-optimal front of minimal gain values combined with
minimal length.

The top-ranked points in the gain-ranked virtual archive in any particular run also approach
the Pareto-optimal front. The top ten points from a representative run are shown in Figure 6.12,
superimposed on the same parameter sweep data as Figure 6.11.

In order to compare the effect of optimising for multiple objectives, another 10 runs were per-
formed, the only change being the removal of the second objective function (relating to the length).
The median gain of the set of points returned from these runs was –29.97, and the median length of



75

the optimised beads was 49.0. The length of the returned beads was purely a product of the location
of significant minima in the dataset, of which there are two dominant, one in a region of parameter
space corresponding to a length of 52mm which also contains the global minimum, and another at
length 42mm. The returned points, superimposed on the parameter sweep data, are shown in Figure
6.13. It can be seen that returned points are clustered at higher gain values, unlike the points in
Figure 6.11 which are more spread along an approximation to the Pareto-optimal front.

The median gain returned for the multi-objective test case is neither near that returned for the
single-objective, gain-only case, nor near the median of the entire dataset. It lies between and

Figure 6.11 Multi-objective test case objective space sampling with “best” points from 10 runs

Figure 6.12 Multi-objective test case objective space sampling with points from a single run

Figure 6.13 Test case objective space sampling with “best” points from 10 runs, optimised for
gain only



76

demonstrates EPSOC-MO is capable of returning a compromise solution, independent of an external
Decision Maker supplying preference information after the search.

The median length returned for the multi-objective case lay close to the median for the entire
dataset. It could be concluded that behaviour of EPSOC-MO was neutral toward the length objec-
tive, but evidence from the single-objective test case indicates this value may also be a compromise
between lengths for two solutions of attractive gain in different regions of parameter space.

These are preliminary results, and by no means exhaustive. Several questions remain as to the
efficacy of EPSOC-MO for multi-objective optimisation, not the least being the scalability of the
method, but the results returned so far are quite promising.

6.6 Summary

A novel Evolutionary Programming algorithm using concepts of Self-Organised Criticality, EP-
SOC, has been described in this chapter. Tested on a group of real-world problems, it has been
demonstrated to deliver significantly better results faster than any of the methods described in pre-
vious chapters. It also shows potential for multi-objective optimisation. The multi-objective imple-
mentation of the algorithm uses multiple, “virtual” archives both to store optimal results and also to
mediate between objectives during selection. A test of the implemented algorithm on a difficult test
case with a highly nonlinear objective demonstrated its ability to return reasonable approximations
to Pareto-optimal solutions.

The population-base methods of this chapter can make use of far greater parallelism in comput-
ers than gradient or direct search methods on the group of problems drawn from scientific research
and engineering design processes. For challenging problems, with noisy objectives and multiple
local minima about which little may be known, the new EPSOC algorithm proved the clear method
of choice.

Looking at the taxonomy in Figure 1.1 we have reached the extremity of concurrency in the
stochastic methods of this chapter. To achieve any further improvement in the time to obtain an
optimal solution, we must consider a clue given in the Introduction: seeking to reduce the total time
taken for optimisation by utilizing more parallel computing resources was necessaryif there were
no way to reduce the time taken for a single execution of the numerical simulation. At no time have
we assumed any access to the internals of the simulation to improve its performance, but are there
ways the model could be externally manipulated to reduce the time taken to obtain a result? The
following chapter will look at two different approaches to this question.



77

7.0 Preconditioning

The work in preceding chapters has concentrated on reducing the time to achieve optimisation
of an objective function by means of iterative methods using concurrent execution of objective func-
tion evaluation to a greater or lesser degree. Eventually, however, for a chosen optimisation method
applied to a given problem the time taken for its solution reaches some irreducible minimum, de-
termined by the character of the problem and characteristics of the optimisation method such as its
degree of concurrency and the computational resources available for its solution.

It is possible that modification of theproblemmay further reduce the time taken to achieve an
optimal solution. This work considers two such modifications: those exploiting features of the time
behaviour of the numerical simulation,temporal preconditioning, and features of the parameter
space to which the optimisation effort is confined,spatial preconditioning.

The methods used in this chapter to modify optimisation problems can be considered in the con-
text of systematic use of surrogates to reduce the computational cost of the optimisation process.
Torczon and Trosset (1998) make the careful distinction between “surrogate models” or auxiliary
simulations of less physical accuracy but corresponding less computational cost, and “surrogate
approximations” in which algebraic summaries of the response of the physically accurate, com-
putationally expensive models are compiled and used instead of more evaluations of the models.
Several other authors use the terms interchangeably, primarily referring to approximations. Current,
standard engineering practice is to use approximations (Dennis and Torczon (1996), and see also
Booker, Dennis, Frank, Serafini, Torczon and Trosset (1998), Büche, Schraudolph and Koumout-
sakos (2003), El-Beltagy and Keane (2001), Liang, Yao and Newton (2000), and Rodrı́guez, Ṕerez,
Padmanabhan and Renaud (2001)) and the widespread Response Surface Methodology discussed
in Section 3.7.1 is founded on this approach. For the reasons stated in Section 3.7.1 the use of “sur-
rogate approximations” is unattractive: the formulation of algebraic approximations is difficult and
prey to the “curse of dimensionality” of the problem, as Torczon and Trosset (1998) admit.

A smaller number of authors have investigated “surrogate models” (Bakr, Bandler, Madsen,
Rayas-Śanchez and Søndergaard 2000, Vitali, Haftka and Sankar 1999, Alexandrov and Lewis
2000) but generally rely on the explicit construction of these models using detailed knowledge
of the problem. In contrast, both the methods described here can be considered “surrogate models”,
but do not require highly specific knowledge of the problem domain. Temporal preconditioning
can be readily understood as a surrogate model or low-fidelity model achieved using user specified
solution tolerance, as categorised by Alexandrov and Lewis (2000), though their experiments were
confined to the two other categories they mention, multigrid and reduced fidelity physics. Temporal
preconditioning also uses a single, step change in accuracy at convergence, similar to the consis-
tency requirements suggested by Alexandrov and Lewis (2000). In the following sections attention
is directed to investigating the predictive capability of this surrogate method.

Spatial preconditioning can be considered a surrogate model if the “model” is taken to be the
combination of the numerical simulation and the range of the model parameters. The method con-
structs a sequence of models with gradually differing properties. There are elements of similarity
in the method with the approach of Pérez and Renaud (2000). The motivation behind the method is
that the final, resulting model will prove quicker to solve.



78

7.1 Temporal preconditioning

For many problems of practical interest to science and engineering, evaluation of the objective
function itself involves an iterative process. Trial solutions to ordinary or partial differential equa-
tions are generated and refined, until a solution of some predetermined, acceptable accuracy may be
reached. These can be computationally intensive, time-consuming processes. If it were possible to
reduce the accuracy with which a trial solution is known but still correctly determine the location,
in parameter space, of a minimum of the objective function, the need for several iterations of the
numerical simulation might be obviated and the overall time to achieve an optimal solution consid-
erably reduced. This section describes numerical experiments simulating temporal preconditioning
applied to two case studies: the Aerofoil case and a multi-dimensional problem in the design of a
novel antenna for microwave frequency communications.

As an example to clarify the method of temporal preconditioning, consider the prototypic elliptic
equation, thePoissonequation in 2 dimensions, which can be written:

∂2u

∂x2
+

∂2u

∂y2
= ρ(x, y)

When discretized on a computational grid, the resulting system of equations can be represented in
matrix notation as:

A · u = b

Successive approximations to the matrix of coefficients,A, are substituted and a trial balance made
with the known information about the problem, for example fixed conditions at the boundary of the
model domain, encapsulated inb. From an initial guess, the difference between terms on right and
left sides of the system of equations is termed theresidual error, which may itself be used to correct
the values inA. In a converging solution, the magnitude of the residual error should, on the whole,
be progressively decreasing. A question can then be posed:

• At what point is the residual error sufficiently reduced, that the output from the numerical
simulation can be used in an optimisation procedure to correctly determine the location of a
minimum within the parameter space?

To explore the hypothesis that a numerical simulation truncated before full convergence can
perhaps guide optimisation toward the correct region of a local or global minimum, a prototype
method was trialled on two real-world problems. The two cases investigated were the Aerofoil test
case previously described, and a computationally intensive multi-element antenna simulation. The
results are discussed below, for each case.

7.1.1 Case study 1: the Aerofoil case

As outlined in Section 3.4, the Aerofoil case study uses the FLUENT computational fluid dy-
namics package for evaluation of the objective function. A detailed simulation is made of fluid flow
around the 2-dimensional aerofoil whose shape is determined by the case study parameters. This
simulation requires the iterative solution of five major equations:

• Momentum equations in the two Cartesian dimensions of the problem

• A continuity equation ensuring conservation of mass



79

• Two equations modelling the time-averaged turbulence of the flow, deriving the kinetic energy
and kinematic rate of dissipation of the turbulence.

Each of these equations is required to have a relative residual error or not more than1.0 × 10−4.
The model is allowed 10,000 iterations to converge.

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

Iterations

R
es

id
ua

l e
rr

or
s

Continuity U velocity V velocity k epsilon

0 4000 1000 2000 3000 

Figure 7.1 Time evolution of residual errors – Aerofoil test case

Figure 7.1 shows the evolution of the residual error for the 5 equations, from 1 to 4200 iterations,
plotted on a logarithmic scale. The equations of fluid motion rapidly converge, followed by the
turbulence kinetic energy, mass conservation and the turbulence kinematic dissipation coefficient,
epsilon, is slowest of all.

The time taken for all equations to converge is obviously quite problem-dependent. Different
parameter settings will construct different problems, for which solution time can be expected to be
different. For example, the angle of attack in this problem may affect the degree of turbulence in the
flow over the upper surface. As can be seen in Figure 7.1, and confirmed by close examination of the
log files for this problem run to the maximum 10,000 iterations, no major improvement occurred
in the residual errors beyond about 2500-3000 iterations. In particular, the kinematic dissipation
equation failed to reach convergence at all.

While it is desirable that all equations relating to quantities of interest be fully converged, it is
common practice to ensure that the continuity equation has converged, fully converged turbulence
quantities only being required if it is anticipated they will have a significant impact on details of
the solution. It thus seems reasonable to hypothesise that the lift-drag ratio derived from a model in
which the continuity equation has converged, i.e. after about 1500-2000 iterations, will be adequate
to direct an optimisation procedure toward a generally correct minimum. It is anticipated that gross
features of the local gradient field will be correctly approximated, with only finer details possibly
inaccurate. This would represent an improvement in run-time of a factor of about two over the
point at which improvement of the solution effectively ceased in this problem, given that the entire
process is completely dominated by the run-time of the numerical simulation.



80

To test this hypothesis, a parameter sweep of the numerical simulation was performed at 250-
iteration intervals up to 1000 iterations, and then at 1500 and 2000 iterations. The derived lift-drag
ratio isosurfaces are compared with those derived from a sweep performed on results from a fully
converged simulation. The results from these experiments are shown in Figures 7.2–7.7, with results
from the fully converged simulation shown in Figure 7.8 (similarly coloured isosurfaces in different
figures are at the same value). Examination of these figures confirms that the major features of the
objective function in the chosen parameter space derived from a simulation terminated after 1500
iterations are very similar to those derived from a simulation that completed the maximum number
of iterations.

In Figure 7.2 the nature of the field in objective space is very simple, almost linear, and shows
little more than a tendency for a low angle of attack to yield better results. In Figure 7.3 the “mini-
mum” is already in the correct location, after only 500 iterations, but the field is unstable – by 750
iterations, shown in Figure 7.4 there is a spurious “minimum” appearing for high angle of attack,
and large aerofoil thickness. By 1250 iterations, shown in Figure 7.6, this has largely disappeared
and the minimum is again settling toward the correct region. By 1500 iterations, shown in Figure
7.7, little major change is occuring and the location of the minimum is essentially the same as for
the fully converged case shown in Figure 7.8.

Figure 7.2 Lift-drag ratio isosurfaces at 250 iterations



81

Figure 7.3 Lift-drag ratio isosurfaces at 500 iterations

Figure 7.4 Lift-drag ratio isosurfaces at 750 iterations



82

Figure 7.5 Lift-drag ratio isosurfaces at 1000 iterations

Figure 7.6 Lift-drag ratio isosurfaces at 1500 iterations



83

Figure 7.7 Lift-drag ratio isosurfaces at 2000 iterations

Figure 7.8 Lift-drag ratio isosurfaces at 10,000 iterations



84

For reference, Figure 7.9 shows the time evolution of the objective function value at a random
location in parameter space, as derived after 100 iterations through to 2100 iterations. Once more
it appears major changes in the objective function value are complete after about 1500 iterations
with minor subsequent refinement. This suggests it is reasonable to assume that an optimisation
procedure will correctly identify the location of significant minima within the parameter space using
objective function data derived from a simulation terminated after approximately 1500 iterations.
This was tested in a series of numerical experiments using a number of representative optimisation
algorithms.

-40

-35

-30

-25

-20

-15

-10

-5

0
1

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Figure 7.9 Evolution of aerofoil objective function value with simulation iterations

7.1.1.1 Numerical experiments on the truncated Aerofoil case. To confirm that optimisation al-
gorithms can correctly determine the location of significant minima within the parameter space us-
ing data from truncated numerical simulations, each of three, representative optimisation algorithms
(P-BFGS, RSCS and EPSOC) were run 10 times from random starting points, using data from simu-
lations terminated after 1500 and 10,000 iterations. For each algorithm, a pair-wise comparison was
made using the Mann-Whitney U test from each of the two iteration counts. The quantity compared
was the dimensionally normalised distance between the endpoints of the optimisation searches and
the (known) global minimum of the data set from the fully converged simulation. These results are
shown in Table 7.1.

For the P-BFGS and RSCS algorithms there is no statistically significant difference in the ability
of the algorithms to find the location of the global minimum for truncated or fully converged simu-
lations. EPSOC, however, shows a statistically significant difference in the endpoint locations. On
closer inspection, it may be noted that EPSOC endpoints are much more tightly clustered around the
location of the global minimum in each of the two data sets than are the other algorithms: EPSOC
is very effective at finding the global minimum. For the data set using truncated simulation, the
global minimum is actually slightly displaced from the global minimum from the fully converged
simulation. It is this “systematic error” that causes the observed differences. It may be noted that



85

the distance between the two global minima is less than the spread of distances returned by both
P-BFGS and RSCS, i.e. the magnitude of the systematic error of EPSOC is less than the magnitude
of random errors of the other two algorithms.

P-BFGS RSCS EPSOC
1500 10000 1500 10000 1500 10000
0.0255 0.0322 0.0702 0.1203 0.0102 0.0008
0.0221 0.0245 0.0545 0.0702 0.0102 0.0007
0.0172 0.0180 0.0437 0.0457 0.0101 0.0004
0.0100 0.0172 0.0373 0.0331 0.0100 0.0004
0.0099 0.0100 0.0340 0.0012 0.0099 0.0004
0.0099 0.0071 0.0100 0.0005 0.0098 0.0003
0.0099 0.0040 0.0100 0.0005 0.0092 0.0003
0.0099 0.0002 0.0100 0.0004 0.0092 0.0003
0.0098 0.0001 0.0099 0.0003 0.0091 0.0002
0.0098 0.0000 0.0099 0.0002 0.0090 0.0002

Rank sum 96 114 87.5 122.5 55 155
U 41 32.5 0
P 0.5288 0.2176 0.0000

Table 7.1 Statistical comparison of distances to fully converged global minimum

A simple comparison of the truncated simulation iteration count of 1500, and the original itera-
tion count of 10,000 might suggest that temporal preconditioning has yielded a speedup by a factor
greater than 6. However, it is more realistic to consider that inspection of residual errors might have
led an experienced engineer to ordinarily truncate the simulation at the point at which no further
improvement in solution could be expected, i.e. at an iteration count of about 3000. The limit of
10,000 iterations originally imposed can be interpreted as being overly conservative; perhaps useful
caution to start with, but altered as experience dictated. On this basis temporal preconditioning has
yielded a speedup by a factor of about 2. By way of comparison, this is similar to the two-fold
savings with variable resolution (multigrid) models reported by Alexandrov and Lewis (2000), also
applied to a 2D airfoil aerodynamic optimisation.

7.1.2 Case study 2: a multi-element antenna simulation

This case study involves the design of a 13 element dielectric embedded electronically switched
multiple-beam (DE-ESMB) antenna (Lu, Thiele and Saario 2002). Seven of the design parame-
ters require optimisation, making enumeration of possible configurations infeasible. The size and
dimensionality of the parameter space also precluded aggregation of sufficient objective function
values to allow meaningful approximation by interpolation into pre-computed data. Numerical ex-
periments required direct computation of objective function values, and were consequently limited
in number.

The finite difference time domain (FD-TD) simulation of the antenna was custom-written code,
and residual error values were not readily available. Comparison of Figures 7.1 and 7.9 in the
previous section suggests it may be possible to determine a reasonable point at which to truncate



86

iteration of the numerical simulation from inspection of the behaviour of the objective function
alone, over the course of a trial evaluation. This behaviour at a randomly selected location in the
parameter space for this problem is illustrated in Figure 7.10. Inspection of this Figure suggests that
it may be possible to use objective function values from simulations terminated at some point after
about 1700 iterations for the purposes of optimisation, since by this time the evidently decaying
oscillations in the objective function value have all but disappeared.

24.5

24.6

24.7

24.8

24.9

25

25.1

25.2

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
es

1000 2000 3000 

Figure 7.10 Evolution of antenna objective function values with simulation iterations

7.1.2.1 Numerical experiments on the antenna simulation. As a simple test of this assumption,
a parameter sweep was performed of the parameter space for the problem, evaluating the objective
function at intervals of 100 iterations for cases defined by the cross-product of three parameter
values in each dimension, a total of 2187 samples at each iteration count. The minimum value
found by this coarse sampling is plotted in Figure 7.11. As can be seen, there is considerably more
variation in the minimum value found than there is in the value at the randomly chosen point, but
the variation does become smooth and monotonic at about the same iteration count.

The location of the “global” minimum is tabulated, by the index of the sample point in each
dimension, against iteration count, in Table 7.2. The location in parameter space ceases to change
after 1700 iterations, corresponding approximately to the point at which oscillations in the objective
function value at the randomly sampled point become negligible in Figure 7.10, and the variation
in the coarsely-sampled “global minimum” value becomes smooth and monotonically changing in
Figure 7.11.

From this brief investigation it appears it may be possible to determine an appropriate iteration
count for truncation from inspection of objective function value behaviour alone. The advantage in
terms of reduced execution time is only a factor of 1.76, slightly less than for the aerofoil case study
of the previous section, but over the course of tens of function evaluations, for simulations that may



87

0

2

4

6

8

10

12

14

16

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

1000 2000 3000 

Figure 7.11 Minimum sampled antenna objective function value with simulation iterations

require hours to complete for each function evaluation, the reduction in total time taken could make
the difference between a theoretically feasible, and a practically useful tool for engineering design.

7.1.3 Summary: temporal preconditioning

For an important class of optimisation problems in engineering design that derive their objective
function from execution of a numerical simulation, the simulation employs iterative methods inter-
nally for solution of systems of equations describing the physical problem. A method is proposed
of reducing the time taken to locate a minimum in some chosen parameter space, by truncating the
iteration of the numerical simulation before convergence of the model. Termedtemporal precondi-
tioning, the feasibility of the method was investigated for two real-world case studies.

For a problem in design of a two-dimensional aerofoil, with an objective of maximising the
aerofoil’s lift-drag ratio, it was demonstrated that inspection of the residual errors in the fluid dy-
namics simulation could identify an appropriate iteration count at which to truncate execution of the
simulation. The overall reduction in execution time achieved was a factor of two, compared with the
iteration count at which the solution was assumed to have ceased improvement. The iteration count
chosen was sufficient to ensure convergence of the continuity equation, required for conservation
of mass considerations, while equations for turbulence quantities remained unconverged. Several
representative optimisation algorithms were tested using data from truncated simulation execution,
and all were shown to be capable of correctly determining the location of the global minimum in a
given parameter space, as defined by execution of a fully converged model.

In a problem of the design of a novel communications antenna using finite difference time
domain simulation of the electromagnetic fields around the antenna array, it was demonstrated that
inspection of the behaviour of the objective function values derived from trial simulations could



88

Iterations

100 1 1 1 3 1 3 2
200 2 2 1 1 1 2 3
300 1 2 3 3 1 2 3
400 3 1 1 3 2 2 2
500 3 1 3 3 2 2 2
600 3 1 3 3 2 2 2
700 1 3 1 2 1 2 3
800 1 3 1 2 1 2 3
900 1 3 1 2 1 2 3
1000 1 3 1 2 1 2 3
1100 2 3 3 2 1 2 3
1200 2 3 3 2 1 2 3
1300 2 3 3 2 1 2 3
1400 2 3 3 2 1 2 3
1500 2 3 1 2 1 2 3
1600 3 3 2 2 1 2 3
1700 3 3 1 2 1 2 3
1800 3 3 1 2 1 2 3
1900 3 3 1 2 1 2 3
2000 3 3 1 2 1 2 3
2100 3 3 1 2 1 2 3
2200 3 3 1 2 1 2 3
2300 3 3 1 2 1 2 3
2400 3 3 1 2 1 2 3
2500 3 3 1 2 1 2 3
2600 3 3 1 2 1 2 3
2700 3 3 1 2 1 2 3
2800 3 3 1 2 1 2 3
2900 3 3 1 2 1 2 3
3000 3 3 1 2 1 2 3

Table 7.2 Location indices for antenna “global” minimum with simulation iterations

identify an iteration count at which to truncate execution of the simulation, to achieve a reduction in
total execution time of a factor of 1.76. Parameter sweep sampling of the simulation over a defined
parameter space confirmed the stability of the coarse location of the global minimum for iteration
counts in excess of the chosen threshold. This would suggest the location of a minimum found using
the truncated data would coincide with the location found using a fully converged model.

For both problems the choice of iteration count required inspection of time-varying data derived
from trial runs of the numerical simulations. Despite this imposition, application of the method
would provide substantial gains in completion times for optimisation. While it may be possible to
contrive an automatic method of choice of the truncation point, for the fluid dynamics problem in



89

particular some intelligent application of problem-specific knowledge was required to choose an
appropriate threshold for the residual errors to trigger truncation of the simulation.

7.2 Spatial preconditioning

Temporal preconditioning sought to improve optimisation performance by altering the numer-
ical simulation from which an objective function value was derived. In contrast,spatial precondi-
tioningseeks to improve performance by altering the parameter space of the problem.

All the techniques investigated in the work described in preceding chapters have been applied
to simply bounded parameter spaces. The global minimum of each of these parameter spaces occu-
pies a particular location, and for the purposes of this work this location is defined as being static,
i.e. time-varying objective functions have explicitly been excluded. Intuitively, if the optimisation
methods could be constrained to the immediate vicinity of the global minimum this could be ex-
pected to have an impact on their performance. Of course, this is a “Catch 22”, because if we knew
where the global minimum was we wouldn’t need to perform the optimisation!

In the method proposed, at each step a random sampling is made of the parameter space, mul-
tiple objective function evaluations being executed on parallel or distributed computing resources.
The values returned are then formulated as a “multi-body” problem. Each sample point is given a
“mass” proportional to its objective function value, and a location in then-space of the parameter
space. The values are normalised above the current minimum and exponentially weighted to ensure
“clustering” of points does not inordinately outweigh the effect of “good” points. The location of the
“centre of mass” of the combined system is then calculated by summing mass components in each
dimension. A reduction factor is applied to the extent of the parameter space in each dimension, and
a new parameter space, with new upper and lower bounds, constructed about the calculated centre
of mass. The process is repeated until a desired reduction in size of the parameter space is achieved.

The motivation behind reducing the size of the parameter space toward regions that accumulate
good objective function values rests on two ideas:

• For a convex function, the region surrounding the global minimum can be expected to yield
more points with good objective function values than regions further from the minimum. As
can be seen from the examples in Chapter 3, real-world problems cannot be assumed to be
strictly convex, but the abstraction may still prove useful, especially for local minima.

• All the problems considered have been simply bounded, and the solution found to the limit
of a user-supplied, desired tolerance. For the line searching algorithms described, for exam-
ple, tolerance thresholds will be reached more quickly in the search direction if the domain
is more closely bounded. In the toolset architecture outlined in Section 1.2, caching of com-
puted results is employed. For stochastic methods the statistical probability of requesting trial
solution points within tolerance limits of a pre-computed, stored result will be greater for a
smaller parameter space.

The process of spatial preconditioning is graphically illustrated in Figures 7.12, 7.13 and 7.14,
for the radio frequency design case, Bead. Figure 7.12 shows the original parameter space, with
isosurfaces of the objective function, and the first set of sampled points. Figure 7.13 shows the
parameter space boundaries after the first preconditioning step, and the second step sampled points.
The isosurfaces in Figure 7.13 have been reduced to a lower value than appeared in Figure 7.12.
Figure 7.14 show the parameters space boundaries further reduced after the second step of precon-
ditioning, and further reduced isosurfaces. It may be noted that the final parameter space, roughly



90

one eighth the extent of the original, has drawn in toward, and contains, the region of better values
defined by the tighter isosurfaces.

Figure 7.12 Spatial preconditioning, Bead test case, first step sampling

Figure 7.13 Spatial preconditioning, Bead test case, second step sampling



91

Figure 7.14 Spatial preconditioning, Bead test case, after two steps

7.2.1 Numerical experiments of spatial preconditioning

The method of spatial preconditioning described was implemented with a fixed reduction factor
at each step of 0.707. This gives an approximate halving of the parameter space in each dimension
in two steps of the preconditioner. The number of samples at each step was fixed at 64, an arbitrarily
chosen “population” size corresponding to the number of CPUs available on a local parallel comput-
ing cluster used for some of the experiments described in the previous section. The preconditioner
was used with each of the following algorithms:

• P-BFGS

• Simplex (Nelder-Mead)

• Simplex with line search

• Simplex with single-pass line search

• MDS

• RSCS

• RSCS with line search

• RSCS with single-pass line search

• EPSOC



92

on the following test cases:

• The two Quantum Electro-dynamics cases: Laser 1 and Laser 2

• The two durable component design cases: Crack 1 and Crack 2

• The 2D aerofoil design case: Aerofoil

• The radio-frequency design case: Bead

with one and two steps of preconditioning for each case.

Results are tabulated in Appendices J and K. In these tables it may be observed that there
are statistically significant differences in the quality of results returned by various algorithms on
different test cases. These differences are summarised in Table 7.3, for single-step preconditioning,
and Table 7.4, for two-step preconditioning. Where there was a statistically significant (to better
than 90% probability) improvement a “+” is shown. Where preconditioning yielded a significant
degradation in the result returned, a “-” is shown.

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead
P-BFGS

NM - -
NML -
NML1 -
MDS - -
RSCS -
RSCSL + -
RSCSL1 - +
EPSOC - - - +

Table 7.3 Statistical differences in quality of results returned after one step spatial precondition-
ing, by algorithm and test case

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead
P-BFGS + +

NM - -
NML -
NML1 -
MDS - -
RSCS - +
RSCSL - +
RSCSL1 - +
EPSOC - - +

Table 7.4 Statistical differences in quality of results returned after two step spatial precondition-
ing, by algorithm and test case



93

The results in Tables 7.3 and 7.4 are inconclusive, apart from the observation that precondition-
ing almost always appears to degrade the results returned for the second Crack test case. Inspection
of the log files for the preconditioner for this test case showed that the global minimum for the data
set was clipped from the parameter space after a single preconditioner step.

Quality of results returned is only one measure of the possible impact of preconditioning. It
may also affect the speed of algorithms. Raw batch counts for each algorithm on each test case
were compared before and after preconditioning. The percentage change in the function evaluation
batches each algorithm required is tabulated in Table 7.5, for one preconditioning step, and Table
7.6, for two preconditioning steps. These batch countsincludethe batches required to perform the
preconditioning. Values for EPSOC are not included, since it has a specified, fixed iteration count,
equivalent to the batch count.

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead
P-BFGS 8.3 -47.5 3.8 -3.2 -39.7 19.5
NM -10.2 -2.0 -11.3 30.3 29.5 12.0
NML -15.4 -21.6 -7.1 15.7 -26.7 -14.0
NML1 -10.8 -2.6 -15.2 50.0 2.9 -8.3
MDS -3.0 0.0 9.1 -5.1 -7.1 16.7
RSCS 3.7 -18.8 8.3 -37.5 0.0 5.0
RSCSL 3.4 -31.1 -8.8 -11.2 12.0 6.7
RSCSL1 -15.0 -16.9 -24.4 -10.3 -18.4 4.8

Table 7.5 Percentage change in batches required, using one preconditioning step

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead
P-BFGS -23.8 -3.0 13.2 -22.6 -52.1 -22.0
NM -2.0 3.9 -39.6 3.0 -6.8 0.0
NML -47.0 -13.5 -16.7 21.4 -46.7 -26.0
NML1 -18.9 -12.8 -18.2 30.0 14.3 -8.3
MDS 24.2 15.6 -9.1 -35.6 4.6 16.7
RSCS 48.1 -6.3 4.2 -28.1 14.3 -5.0
RSCSL 11.5 -7.8 -15.4 6.7 -25.3 -15.6
RSCSL1 27.5 -18.6 -33.3 -7.7 -32.7 4.8

Table 7.6 Percentage change in batches required, using two preconditioning steps

On average, across all algorithms for all test cases, one preconditioning step led to a reduction
in batches of 4.2%. Two preconditioning steps delivered an average reduction in batches of 7.4%.
However, there was no uniform trend in speedup, either by algorithm, or for a particular test case.

7.2.2 Summary: spatial preconditioning

A simple method of preconditioning the parameter space for an optimisation problem has been
described that uses progressive reduction of simple bounds on the parameter space about a “centre
of mass” derived from randomly sampling the objective function values within the parameter space.



94

It has been shown to deliver modest average reductions in the number of concurrently executed
batches of objective function evaluations required by a variety of optimisation algorithms.

The number of steps of preconditioning should be chosen carefully. If this method of random
sampling were able to “zero in” on the global minimum with confidence it would make a simple
and effective optimisation method in itself. Unfortunately, it is easy for too many steps to eventually
remove the global minimum from the region considered. Indeed, in the second durable component
design case, Crack 2, this was observed after a single step of the preconditioner. The extent to
which this is a significant problem depends on whether the “best” result is required, or just sufficient
improvement to suit a particular purpose.

In general, use of spatial preconditioning should be treated with caution, due to the risk in par-
ticular cases of degrading the results returned by removing the global optimum from the parameter
space considered, and its occasional significant increases in run-time, rather than the intended reduc-
tion. It could conceivably be used most effectively as an adjunct used in tandem with un-modified
methods, with the possibility it may provide better results sooner.



95

8.0 Conclusion

The main thrust of the work described in preceding sections has been to develop algorithms
with improved performance for use in a general-purpose, “black-box” optimisation toolset, applied
to continuous, simply-bounded, non-linear numerical simulations. To a large extent, the focus of
the work has already defined many of the characteristics of the problems to be considered:

• They are assumed to be continuous, i.e. differentiable, even if derivatives are not available.
This allows consideration of algorithms that may rely on the existence of derivatives, such as
quasi-Newton methods. Some discontinuities in objective functions are allowed by assuming
piece-wise linearity.

• The objective functions may be multivariate. This implies the methods used, and their imple-
mentations, must have the sophistication to operate in multiple dimensions.

• The parameters are simply bounded. As described in Chapters 4 and 5, this allows the use of
interval subdivision line searching, with a commensurate increase in available concurrency.

• Linear and, in particular, non-linear constraints have not been considered. Dealing with con-
straints can be quite difficult. The optimisation toolset Nimrod/O, described in Section 1.2,
provides the functionality for application of simple, arithmetic constraints using penalty func-
tion methods, but their consideration has been omitted.

• The objective functions are allowed to be non-linear, precluding the use of linear program-
ming methods.

Given these characteristics, algorithms from the methods represented in Chapters 4, 5 and 6 can
all be seen as candidates for use on the problems to be considered. Nimrod/O allows the user to
choose from a range of different algorithms, or combinations of them, and set the context for their
operation on a specific problem at hand. The user is, however, confronted with a question when
making these choices:

Which algorithm will perform best on my problem?

A strong interpretation of the No Free Lunch (NFL) theorem (Wolpert and Macready 1997)
would have us reply: without some knowledge of the problem there can be no answer, since con-
sidered overall problems, all algorithms have the same average performance. As Culberson (1996)
reminds us, the results of Turing (1936) preclude the existence of a “magic bullet” that can solve
any problem. But NFL itself allows the possibility of minimax comparisons between algorithms,
when constrained to a single problem.It is a matter of common experience, amply demonstrated by
the numerical results reported in earlier chapters, that for a given problem some algorithms perform
better than others. With cautious extension and a weaker interpretation of NFL, it may be possible to
say that for a givenclassof problems, some class of algorithms may be a better choice than others.

This is not a new idea: Sharpe (2000) graphically illustrated this from one viewpoint by suggest-
ing classifying search spaces according to which search algorithms perform well on them. Wolpert
and Macready (1997) suggest that years of research on traveling salesman problems have yielded
algorithms “aligned” to these problems, which thus perform well on them. Problem landscapes can
be artificially constructed to favour one class of algorithms over another (Sharpe 1998).

If, when considering which algorithm is best suited to a problem, an implicit assumption is made
that real world problems (RWP) are the union of a number of coherent subsets of problems sharing
defining characteristics, then it may be reasonable to assume a matching of algorithms to these



96

subsets is possible. Figure 8.1 provides one, non-exhaustive illustration of problem classification
and a mapping from Sharpe’s classification to this can be conjectured.

Combinatorial 
“TSP” 

Mixed 
integer 

RWP 

Continuous, 
real-valued, 

“noisy” 

Continuous, 
real-valued, 

“smooth” 

Artificial, 
mathematical 

constructs 

? 

Figure 8.1 Classification of optimization problems by common features

It is generally quite rare that a problem is presented about which there is absolutely no knowl-
edge. At the very least, the numerical methods used in its solution have quite likely been employed
on other problems, and optimisation problems in many fields have been explored, some in great
detail. (For example, a recent search of the Science Citation Index database using the terms “ge-
netic algorithm” and “aerodynamic” matched over 130,000 documents.) In the event that accurate
classification cannot be made, more than one approach can be tried simultaneously, particularly if
the toolset used supports this.

In most cases, some general classification is usually possible. Qualitative comparison of the
behaviour of the various different methods of optimisation tested suggests that different algorithms
may be preferable, depending on quite broadly defined characteristics of the problem. For example,
classical, gradient descent algorithms appear to perform poorly when the starting point chosen is
distant from a global minimum, particularly when the objective function value returned is uncertain,
or “noisy”. Population based methods out-perform other algorithms in most cases, but are generally
expensive to use, in terms of function evaluations required. It may be possible to summarise some of
these observations by suggesting a coarse “mapping” of algorithms depending on two main factors
(Sharpe 2003):

• A priori knowledge of the problem – how much we know about the “nature” of the problem.

• Problem complexity – how difficult the problem is to solve.

Figure 8.2 shows a suggested mapping drawn from observations of the numerical results of
previous chapters. Where a problem is reasonably well understood, simple in structure, and free
from complicating factors such as noise, the rapid convergence and efficiency of classical, gradient
descent methods are advantageous. For particularly complex problems, “noisy” problems and those
about which there is littlea priori knowledge, the expense of using population-based methods is



97

justified by their better success rates. Between these two extremes, direct search methods provide
reasonably rapid, economical, dependable performance.

Gradient 
descent 

Direct search 
methods 

Population-based methods 
Problem 

complexity 

Problem knowledge 

Figure 8.2 Mapping algorithm to problem

Within these broad classes, some further observations may be made.

P-BFGS, the parallel implementation of a quasi-Newton gradient method with BFGS update
described in this thesis, is both faster and more reliable at returning good solutions than an equivalent
serial algorithm. On a selection of real-world problems, it exhibits speedups of a factor of 3 or 4,
and appears less prone to capture by local minima, due to a novel application of an equal interval
iterative line search. In comparison with a representative simulated annealing code, it is also faster
by a factor of more than 3, and provided better objective function results. On problems with noise,
many local minima, or regions of very small gradient, it performed less well than some direct search
and stochastic methods.

Among the direct search methods, the Nelder-Mead simplex algorithm and the Multidirectional
Search (MDS) method of Dennis and Torczon perform well on “smooth” test cases, but poorly on
problems with noise and many local minima. The new hybrid, the Reducing Set Concurrent Simplex
(RSCS) algorithm proposed in this thesis, performs better, with median results consistently better
than Nelder-Mead on “noisy” problems, and equivalent on the “smooth” cases. It is also almost
twice as fast, on average. Compared to MDS, RSCS is also much faster, in particular avoiding the
problems of premature convergence MDS experienced on two test cases.

The addition of line searching to the simplex algorithms Nelder-Mead and RSCS, as proposed in
Chapter 5, is also clearly very useful. A single-pass line searching variant of RSCS is the fastest of
all direct search methods tested to return high quality objective function values. The iterative line-
searching variant of RSCS is also very reliable, providing the best objective function value in over
half the case studies. Applying line searching strategies to the Nelder-Mead algorithm also yields
improvements, with the single-pass variant being consistently faster than the parent algorithm, by
more than 50% on average. The iterative line-searching variant is also very reliable: NML, MDS
and RSCS are the only algorithms guaranteed to return a good result on all test cases from random,
multiple runs.



98

The new Evolutionary Programming algorithm proposed in Chapter 6, EPSOC, demonstrates
the advantages of the stochastic methods. In 4 of 6 cases, EPSOC can deliver statistically sig-
nificantly better results than any other algorithm tested, and statistically equivalent results on the
remaining cases. Contrary to other opinions of stochastic methods and genetic algorithms as be-
ing slow to solve local optimisation problems (Durand and Alliot 1999) and requiring thousands of
function evaluations even for problems of low dimensionality (Elster and Neumaier 1995), EPSOC
provides these results with some 50% fewer iterations, on average, than the other algorithms tested.
Given sufficient parallel computing resources, this implies a considerable advantage in time taken.
It does use more function evaluations than direct search or gradient methods, in general by an order
of magnitude, but not to an extent that its use on real-world problems, as typified by the test cases,
becomes infeasible. Compared to a representative Genetic Algorithm, its nearest rival in terms of
performance, EPSOC is also more robust, with less dependence on its operational settings.

8.1 Further work

In the course of this research, some promising avenues of further enquiry have become appar-
ent. In particular, the potential for some of the algorithms to be applied to problems of multiple
objectives is of great, practical interest. It is often the case, during the design process, that compet-
ing objectives require satisfaction. A mechanical part might need to be strong and durable, but also
lightweight. In the past, problems of this nature might often have been formulated as optimisation
problems subject to constraints. One or more of what are really objectives could be expressed as
derived limits on the design, minimum yield strength for example, within which optimisation of the
remaining objective, e.g. component weight, was attempted. This is generally unsatisfactory – if
the design required is to be “optimal”, then all objectives should be the best (feasible) values.

EPSOC has already been identified has having potential for multi-objective optimisation, using
a novel implementation with multiple, “virtual” archives as outlined in Section 6.5. Given the
expressed demand for a capability of this sort, this is an area deserving of further investigation.

In addition, a common idea in the literature is to combine the differing abilities of different
algorithms to develop more powerful hybrids. For example, it may be desirable to precede the
rapid convergence to a local optimum of gradient descent or direct search methods with the wide
exploration abilities of stochastic methods. Durand and Alliot (1999) provide such an example, with
a hybrid GA+Simplex method.

The Nimrod/O general-purpose optimisation toolset described in Section 1.2 provides a proto-
type means for “chaining” algorithms together sequentially. There is significant potential in exploit-
ing this mechanism to develop and testad hochybrids. The idea to improve the performance of one
algorithm by re-using the computed results from another also bears investigation. As Nimrod/O
employs a cache of computed results, the NimCache shown in Figure 1.2, the impact of “cache
seeding” could readily be explored.

Web-based services are becoming an increasingly important mode of service delivery and has
already been explicitly applied to remote optimisation tasks (Alotto, Molfino and Molinari 2001).
Investigation and implementation of web services for Nimrod/O could possibly broaden its adoption
in industry.

It is believed that Nimrod/O, with further development, has commercial potential. Features
promoting ease of use, and modification to enhance fault tolerance would greatly benefit its ready
application to a wide range of application areas.



99

8.2 Achievements and significance

This research has presented a number of novel algorithms in the field of optimisation of contin-
uous, non-linear numerical simulations. Parallel algorithms have been developed across a number
of classes of optimisation methods. The contributed methods are summarised in Figure 8.3, shown
in bold typeface.

Optimisation Algorithms

Gradient methods Direct search methods Stochastic methods

Conjugate
gradient
methods

quasi-Newton
methods

Pattern
search

Simplex
methods

Adaptive
search
set

Simulated
annealing

Population-
based

methods

DFP P-BFGS BFGS Hooke-
Jeeves

Nelder-
Mead

RSCS Genetic Evolutionary Evolution
Algorithms Programming Strategies

algorithms

NML EPSOC

     
`````

�
�

H
H

�
�

H
H

�
�

H
H

������

�
�
�

L
LL

�
��

�
��

Q
Q
Q

 �
PPP

Figure 8.3 A (revised) taxonomy of optimisation algorithms

In order to provide a realistic test of the algorithms abilities, a series of “sandbox” test cases
were developed from data collected from parameter sweep execution of several real-world prob-
lem simulations. The collected data was encapsulated with linear interpolation routines to give
challenging optimisation problems with realistic levels of complexity and structure characteristic of
real problems, but with computational overheads a vanishingly small fraction of that of the original
models. Without these test cases, the range and extent of testing required to develop and prove new
methods of optimisation would have been infeasible without recourse to mathematically contrived
test functions, with the limitations that imposes.

With reference to Figure 8.3, it is believed that the work contained in this thesis has contributed
to the knowledge of general purpose optimisation systems in the following areas:

• The idea of developing a set of “sandbox” case studies for effective testing of optimisation
algorithms has been established as a feasible alternative to the use of artificial test functions,
and an initial set of problems with varying characteristics has been presented.

• A parallel implementation of the quasi-Newton gradient method with BFGS update has been
developed and its efficacy in comparison to a corresponding sequential algorithm and widely-
used method of simulated annealing demonstrated.

• The use of a method of parallel line search with the Nelder-Mead simplex algorithm has been
implemented and its advantages compared to the original algorithm, in speed and reliability,
clearly shown.

100

• New direct search methods, the Reducing Set Concurrent Simplex (RSCS) algorithm with its
line searching variants, have been presented, and their superior performance compared to a
variety of direct search methods demonstrated.

• A novel Evolutionary Programming algorithm using concepts of self-organised criticality,
EPSOC, has been presented, and demonstrated to be superior in performance to a wide variety
of gradient, direct search and stochastic methods on a set of test cases drawn from real-world
problems. It also has evidence of potential for multi-objective optimisation using a novel
implementation with multiple, “virtual” archives.

• Methods of preconditioning optimisation problems to reduce the total time taken to achieve an
optimal result have been presented. Temporal preconditioning, based on the time behaviour
of the numerical simulations, has been demontrated to yield substantial speedup.

• Some conclusions have been drawn on the applicability of specific optimisation methods to
different classes of real-world problems.

• All of the methods described have been implemented in the framework of a general-purpose
optimisation toolset, Nimrod/O, to provide a sound basis for future work and potential com-
mercial application.

As shown in Section 8.1, the work contained in this thesis has the potential to give rise to a number
of future projects.

101

A.0 Pair-wise comparison of Nelder-Mead Simplex algorithms, with
and without iterative line search

The following tables contain final objective function values delivered by 10 simultaneous runs,
from random starting points, of the Nelder-Mead Simplex algorithm and a variant with an iterative
subdivision line search, for each test case. Also tabulated is the Mann-Whitney U test statistic, and
the corresponding significance level, assuming a two-tailed test.

102

Laser 1
NM NML
-0.476 0.242
-0.479 0.045
-0.480 -0.416
-0.481 -0.432
-0.481 -0.455
-0.481 -0.463
-0.481 -0.479
-0.481 -0.482
-0.482 -0.482
-0.482 -0.482

Rank sum 123.0 87.0
U 32.0
P 0.190

Table A.1 Simplex iterative line search evaluation – Laser 1 test case

Laser 2
NM NML
0.496 0.333
0.314 0.310
0.286 0.278
0.274 0.274
0.274 0.262
-0.561 -0.187
-0.562 -0.559
-0.562 -0.559
-0.562 -0.562
-0.562 -0.563

Rank sum 108.0 102.0
U 47.0
P 0.853

Table A.2 Simplex iterative line search evaluation – Laser 2 test case

103

Crack 1
NM NML
199.229 219.539
199.194 208.181
199.076 199.522
199.067 199.191
195.801 197.574
188.053 195.622
187.890 191.217
187.762 188.547
187.615 187.695
187.614 187.553

Rank sum 116 94
U 39.0
P 0.435

Table A.3 Simplex iterative line search evaluation – Crack 1 test case

Crack 2
NM NML
4411 4405
5264 5239
5265 5263
5293 5264
5297 5291
5300 5295
5311 5298
5319 5322
5319 5330
5353 5333

Rank sum 112 98
U 43.0
P 0.630

Table A.4 Simplex iterative line search evaluation – Crack 1 test case

104

Aerofoil
NM NML
-44.736 -44.767
-66.251 -54.612
-67.255 -56.558
-67.323 -64.967
-67.323 -65.608
-68.375 -65.797
-68.459 -68.362
-68.626 -68.537
-68.641 -68.624
-68.643 -68.642

Rank sum 121 89
U 34.0
P 0.247

Table A.5 Simplex iterative line search evaluation – Aerofoil test case

Bead
NM NML
37.715 24.504
28.292 10.354
15.083 -11.795
13.840 -12.841
5.086 -14.806
3.711 -16.547
3.608 -18.046
-10.798 -22.615
-13.005 -24.240
-26.977 -39.849

Rank sum 78.0 132.0
U 23.0
P 0.043

Table A.6 Simplex iterative line search evaluation – Bead test case

105

B.0 Pair-wise comparison of Nelder-Mead Simplex algorithms, with
and without single-pass line search

The following tables contain final objective function values delivered by 10 simultaneous runs,
from random starting points, of the Nelder-Mead Simplex algorithm and a variant with a single-pass
subdivision line search, for each test case. Also tabulated is the Mann-Whitney U test statistic, and
the corresponding significance level, assuming a two-tailed test.

106

Laser 1
NM NML1
-0.476 0.129
-0.479 0.008
-0.480 -0.051
-0.481 -0.255
-0.481 -0.445
-0.481 -0.457
-0.481 -0.465
-0.481 -0.471
-0.482 -0.473
-0.482 -0.478

Rank sum 154.0 56.0
U 1.0
P 0.000

Table B.1 Simplex single-pass line search evaluation – Laser 1 test case

Laser 2
NM NML1
0.496 0.334
0.314 0.253
0.286 0.120
0.274 0.008
0.274 -0.018
-0.561 -0.2223
-0.562 -0.237
-0.562 -0.486
-0.562 -0.559
-0.562 -0.562

Rank sum 107.0 103.0
U 48.0
P 0.911

Table B.2 Simplex single-pass line search evaluation – Laser 2 test case

107

Crack 1
NM NML1
199.229 219.562
199.194 208.204
199.076 199.537
199.067 199.153
195.801 197.904
188.053 195.980
187.890 195.880
187.762 192.948
187.615 191.093
187.614 187.549

Rank sum 121 89
U 34.0
P 0.247

Table B.3 Simplex single-pass line search evaluation – Crack 1 test case

Crack 2
NM NML1
4411 5236
5264 5253
5265 5265
5293 5269
5297 5283
5300 5294
5311 5299
5319 5319
5319 5326
5353 5332

Rank sum 110 100
U 45.0
P 0.739

Table B.4 Simplex single-pass line search evaluation – Crack 2 test case

108

Aerofoil
NM NML1
-44.736 -44.760
-66.251 -54.037
-67.255 -57.182
-67.323 -60.996
-67.323 -64.959
-68.375 -67.323
-68.459 -68.559
-68.626 -68.617
-68.641 -68.627
-68.643 -68.632

Rank sum 116 94
U 39.0
P 0.393

Table B.5 Simplex single-pass line search evaluation – Aerofoil test case

Bead
NM NML1
37.715 24.504
28.292 10.354
15.083 -11.795
13.840 -12.841
5.086 -14.806
3.711 -16.547
3.608 -18.046
-10.798 -22.615
-13.005 -24.240
-26.977 -39.849

Rank sum 78.0 132.0
U 23.0
P 0.0432

Table B.6 Simplex single-pass line search evaluation – Bead test case

109

C.0 Statistical comparison – Simplex, MDS and RSCS algorithms

The following tables contain the rank sum of each algorithm across the pooled ranks, and
Kruskal-Wallis H test statistic. Final objective function values delivered by 10 simultaneous runs
of the 5 selected algorithms, from random starting points, median, interquartile range, and Shapiro-
Wilk W test statistic can be found in Appendix H.

110

NM MDS RSCS RSCSL RSCSL1
Rank sum 346.5 364.0 220.5 162.0 182.0
H 16.669

Table C.1 Comparison of direct search algorithms – Laser 1 test case

NM MDS RSCS RSCSL RSCSL1
Rank sum 254.5 202.5 263.0 278.0 277.0
H 1.804

Table C.2 Comparison of direct search algorithms – Laser 2 test case

NM MDS RSCS RSCSL RSCSL1
Rank sum 289.5 290.5 271.0 191.0 233.0
H 3.429

Table C.3 Comparison of direct search algorithms – Crack 1 test case

NM MDS RSCS RSCSL RSCSL1
Rank sum 243.0 296.0 301.5 230.0 204.5
H 3.371

Table C.4 Comparison of direct search algorithms – Crack 2 test case

NM MDS RSCS RSCSL RSCSL1
Rank sum 327.0 315.0 314.0 140.0 179.0
H 14.713

Table C.5 Comparison of direct search algorithms – Aerofoil test case

NM MDS RSCS RSCSL RSCSL1
Rank sum 202.0 232.5 214.0 355.0 271.5
H 7.185

Table C.6 Comparison of direct search algorithms – Bead test case

111

D.0 Pair-wise comparison of RSCS, Nelder-Mead and MDS
algorithms, Aerofoil test case

The following tables contain rank sums across pooled ranks, the Mann-Whitney U test statistic,
and the corresponding significance level, assuming a two-tailed test, for the RSCS, Nelder-Mead
Simplex and MDS algorithms, for the Aerofoil test case. Final objective function values delivered
by the selected algorithms, median, interquartile range, and Shapiro-Wilk W test statistic can be
found tabulated in Appendix H.

Aerofoil
RSCS NM

Rank sum 106.0 104.0
U 49.0
P 0.970

Table D.1 Pairwise comparison of RSCS and Nelder-Mead Simplex – Aerofoil test case

Aerofoil
RSCS MDS

Rank sum 106 104
U 49.0
P 0.970

Table D.2 Pairwise comparison of RSCS and MDS – Aerofoil test case

112

E.0 Pair-wise comparison of RSCS iterative line-searching,
Nelder-Mead and MDS algorithms, Bead test case

The following tables contain the rank sum of each algorithm across the pooled ranks, Mann-
Whitney U test statistic and the corresponding significance level, assuming a two-tailed test. Final
objective function values delivered by the selected algorithms, median, interquartile range, and
Shapiro-Wilk W test statistic can be found tabulated in Appendix H.

Bead
RSCSL NM

Rank sum 134.0 76.0
U 21.0
P 0.028

Table E.1 Pairwise comparison of iterative line-search RSCS and Nelder-Mead Simplex – Bead
test case

Bead
RSCSL MDS

Rank sum 133.5 76.5
U 21.5
P 0.032

Table E.2 Pairwise comparison of iterative line-search RSCS and MDS – Bead test case

113

F.0 Objective function values for EPSOC

The following tables contain final objective function values delivered by 10 simultaneous runs
of EPSOC with given operational parameters, from random starting points. Table column labels
are of the format:b nbadm mutation width,where mutation width is expressed as a percentage of
parameter range. Also tabulated are the median for each group, interquartile range, Shapiro-Wilk
W test statistic, rank sum of each group across the pooled ranks, and Kruskal-Wallis H test statistic.

114

b3m5 b3m10 b3m20 b6m5 b6m10 b6m20 b9m5 b9m10 b9m20
-0.471 -0.471 -0.467 -0.476 -0.471 -0.472 -0.476 -0.474 -0.477
-0.473 -0.473 -0.475 -0.477 -0.473 -0.474 -0.479 -0.475 -0.480
-0.475 -0.474 -0.477 -0.479 -0.478 -0.475 -0.479 -0.479 -0.481
-0.476 -0.477 -0.477 -0.479 -0.478 -0.477 -0.480 -0.480 -0.481
-0.477 -0.478 -0.479 -0.480 -0.480 -0.480 -0.481 -0.480 -0.481
-0.479 -0.478 -0.480 -0.480 -0.480 -0.480 -0.481 -0.480 -0.481
-0.479 -0.478 -0.480 -0.481 -0.481 -0.481 -0.481 -0.481 -0.481
-0.480 -0.480 -0.481 -0.481 -0.481 -0.481 -0.481 -0.481 -0.481
-0.481 -0.480 -0.481 -0.481 -0.481 -0.481 -0.481 -0.481 -0.482
-0.481 -0.481 -0.481 -0.482 -0.481 -0.481 -0.482 -0.482 -0.482

Median -0.478 -0.478 -0.480 -0.480 -0.480 -0.480 -0.481 -0.480 -0.481
IQR 0.005 0.006 0.004 0.002 0.003 0.006 0.002 0.002 0.001
W 0.898 0.890 0.762 0.879 0.784 0.833 0.768 0.746 0.695
Rank sum 309 274 400.5 479.5 453.5 432.5 560.5 523.5 662
H 17.118

Table F.1 EPSOC evaluation – The quantum electro-dynamical case (Laser 1)

b3m5 b3m10 b3m20 b6m5 b6m10 b6m20 b9m5 b9m10 b9m20
-0.550 -0.553 -0.555 -0.558 -0.556 -0.555 -0.558 -0.555 -0.553
-0.551 -0.558 -0.558 -0.559 -0.556 -0.557 -0.560 -0.558 -0.557
-0.559 -0.559 -0.560 -0.559 -0.558 -0.560 -0.561 -0.559 -0.558
-0.560 -0.559 -0.561 -0.561 -0.559 -0.560 -0.561 -0.559 -0.559
-0.560 -0.561 -0.561 -0.561 -0.560 -0.560 -0.562 -0.560 -0.559
-0.562 -0.561 -0.561 -0.562 -0.562 -0.560 -0.562 -0.562 -0.561
-0.562 -0.561 -0.561 -0.562 -0.562 -0.561 -0.562 -0.562 -0.562
-0.562 -0.562 -0.561 -0.562 -0.562 -0.562 -0.562 -0.562 -0.562
-0.562 -0.562 -0.561 -0.562 -0.562 -0.562 -0.562 -0.562 -0.562
-0.562 -0.563 -0.562 -0.562 -0.562 -0.562 -0.562 -0.562 -0.562

Median -0.561 -0.561 -0.561 -0.561 -0.561 -0.560 -0.562 -0.561 -0.560
IQR 0.003 0.003 0.001 0.003 0.004 0.002 0.001 0.003 0.004
W 0.713 0.819 0.708 0.862 0.824 0.856 0.752 0.846 0.866
Rank sum 410.5 443 411 530.5 472 395 564.5 493 375.5
H 4.894

Table F.2 EPSOC evaluation – The quantum electro-dynamical case (Laser 2)

115

b3m5 b3m10 b3m20 b6m5 b6m10 b6m20 b9m5 b9m10 b9m20
190.55 188.42 189.71 190.17 187.88 188.20 188.55 188.76 188.07
189.96 188.30 187.95 188.77 187.85 187.93 188.14 187.86 187.88
189.11 188.06 187.83 188.16 187.78 187.91 187.78 187.81 187.73
188.10 188.00 187.80 188.03 187.76 187.89 187.76 187.75 187.70
187.88 187.99 187.78 187.92 187.72 187.87 187.74 187.74 187.69
187.85 187.77 187.78 187.69 187.69 187.83 187.68 187.64 187.68
187.84 187.75 187.66 187.67 187.64 187.74 187.64 187.63 187.67
187.63 187.65 187.65 187.64 187.64 187.68 187.61 187.60 187.64
187.63 187.57 187.57 187.61 187.55 187.64 187.58 187.58 187.61
187.61 187.55 187.57 187.55 187.55 187.59 187.56 187.55 187.60

Median 187.87 187.88 187.78 187.81 187.70 187.85 187.71 187.69 187.68
IQR 1.478 0.411 0.174 0.518 0.147 0.222 0.178 0.210 0.088
W 0.755 0.912 0.542 0.709 0.933 0.914 0.743 0.635 0.782
Rank sum 329 389.5 457.5 399.5 551.5 387.5 509.5 545.5 525.5
H 7.802

Table F.3 EPSOC evaluation – The durable component design case using stress (Crack 1)

b3m5 b3m10 b3m20 b6m5 b6m10 b6m20 b9m5 b9m10 b9m20
5320 5334 5328 5312 5324 5319 5316 5321 5330
5342 5336 5334 5320 5341 5332 5331 5341 5339
5342 5339 5336 5337 5344 5341 5348 5343 5339
5343 5339 5341 5340 5346 5344 5352 5346 5347
5344 5344 5350 5345 5348 5345 5352 5351 5347
5346 5351 5351 5351 5350 5346 5355 5352 5351
5347 5352 5354 5354 5351 5349 5355 5353 5351
5348 5353 5355 5355 5352 5351 5356 5355 5351
5353 5353 5356 5355 5354 5353 5356 5356 5352
5356 5356 5356 5356 5356 5355 5356 5357 5355

Median 5345 5348 5351 5348 5349 5345 5353 5351 5349
IQR 5.46 13.89 19.23 17.75 7.87 9.40 7.76 12.96 11.83
W 0.800 0.863 0.853 0.831 0.814 0.858 0.697 0.793 0.867
Rank sum 396 423 477 436.5 464 375 577 525.5 421
H 4.809

Table F.4 EPSOC evaluation – The durable component design case using fatigue life (Crack 2)

116

b3m5 b3m10 b3m20 b6m5 b6m10 b6m20 b9m5 b9m10 b9m20
-67.881 -68.547 -68.622 -68.190 -68.586 -68.616 -68.415 -68.595 -68.632
-68.463 -68.595 -68.629 -68.527 -68.614 -68.624 -68.522 -68.605 -68.633
-68.522 -68.611 -68.631 -68.556 -68.628 -68.627 -68.535 -68.613 -68.637
-68.523 -68.614 -68.633 -68.566 -68.628 -68.635 -68.535 -68.617 -68.638
-68.527 -68.626 -68.634 -68.584 -68.630 -68.636 -68.623 -68.628 -68.638
-68.565 -68.631 -68.637 -68.610 -68.632 -68.636 -68.625 -68.630 -68.638
-68.601 -68.633 -68.638 -68.615 -68.634 -68.639 -68.632 -68.632 -68.639
-68.619 -68.637 -68.641 -68.618 -68.641 -68.639 -68.641 -68.634 -68.640
-68.620 -68.638 -68.641 -68.641 -68.642 -68.641 -68.641 -68.634 -68.641
-68.637 -68.641 -68.642 -68.642 -68.643 -68.643 -68.642 -68.638 -68.641

Median -68.546 -68.628 -68.635 -68.597 -68.631 -68.636 -68.624 -68.629 -68.638
IQR 0.097 0.026 0.010 0.063 0.013 0.013 0.106 0.021 0.003
W 0.594 0.777 0.924 0.623 0.779 0.869 0.788 0.865 0.871
Rank sum 185 424 599.5 300 523 591 395.5 400.5 676.5
H 28.932

Table F.5 EPSOC evaluation – The 2D aerofoil design case (Aerofoil)

b3m5 b3m10 b3m20 b6m5 b6m10 b6m20 b9m5 b9m10 b9m20
-12.84 -23.34 -15.50 -17.66 -15.63 -17.66 -16.12 -18.05 -19.40
-15.50 -26.91 -15.63 -19.40 -18.05 -19.40 -18.05 -22.80 -21.80
-15.50 -26.98 -18.46 -21.53 -19.40 -21.53 -20.75 -22.80 -22.62
-22.62 -26.98 -19.40 -22.80 -23.34 -22.80 -24.24 -24.24 -23.29
-24.24 -29.72 -19.53 -24.24 -24.24 -24.24 -33.69 -26.91 -23.34
-29.71 -33.69 -23.34 -24.24 -28.28 -24.24 -36.59 -29.71 -23.34
-33.69 -33.69 -26.91 -33.69 -28.28 -33.69 -36.59 -33.69 -26.91
-36.59 -33.69 -28.28 -33.69 -29.71 -33.69 -39.85 -33.69 -29.71
-39.85 -39.85 -33.69 -39.85 -33.69 -39.85 -39.85 -36.59 -33.69
-39.85 -39.85 -39.85 -39.85 -36.59 -39.85 -39.85 -39.85 -33.69

Median -26.97 -31.70 -21.43 -24.24 -26.26 -24.24 -35.14 -28.31 -23.34
IQR 21.08 6.716 9.821 12.16 10.31 12.16 19.10 10.89 7.092
W 0.888 0.887 0.864 0.854 0.936 0.854 0.824 0.930 0.846
Rank sum 434 593.5 335 450.5 402 450.5 544.5 495 390
H 7.430

Table F.6 EPSOC evaluation – The radio-frequency design case (Bead)

117

G.0 Objective function values for Genesis 5.0

The following tables contain final objective function values delivered by 10 simultaneous runs
of Genesis 5.0 with given operational parameters, from random starting points. Table column labels
are of the format:c crossover ratem mutation rate,where crossover rates are 0.3, 0.6 and 0.9,
and mutation rates are 0.001, 0.01 and 0.1, respectively. Also tabulated for each group are the
median, interquartile range, Shapiro-Wilk W test statistic, rank sum across the pooled ranks, and
Kruskal-Wallis H test statistic.

118

c3m001 c3m01 c3m1 c6m001 c6m01 c6m1 c9m001 c9m01 c9m1
-0.212 -0.349 -0.468 -0.403 -0.455 -0.476 -0.465 -0.455 -0.472
-0.324 -0.392 -0.468 -0.436 -0.463 -0.476 -0.469 -0.461 -0.474
-0.370 -0.422 -0.470 -0.467 -0.466 -0.476 -0.476 -0.474 -0.475
-0.418 -0.427 -0.473 -0.468 -0.474 -0.478 -0.476 -0.479 -0.477
-0.418 -0.449 -0.477 -0.477 -0.477 -0.478 -0.479 -0.479 -0.478
-0.433 -0.458 -0.477 -0.478 -0.478 -0.479 -0.480 -0.479 -0.478
-0.453 -0.462 -0.479 -0.478 -0.478 -0.479 -0.480 -0.480 -0.479
-0.465 -0.470 -0.480 -0.479 -0.479 -0.479 -0.480 -0.480 -0.479
-0.470 -0.474 -0.480 -0.480 -0.480 -0.479 -0.481 -0.480 -0.480
-0.473 -0.479 -0.480 -0.480 -0.480 -0.480 -0.481 -0.481 -0.481

Median -0.426 -0.453 -0.477 -0.477 -0.477 -0.479 -0.479 -0.479 -0.478
IQR 0.082 0.041 0.005 0.025 0.008 0.002 0.006 0.009 0.003
W 0.809 0.864 0.835 0.674 0.789 0.856 0.771 0.674 0.914
Rank sum 133 199 507 455 453 570 620 582 576
H 35.626

Table G.1 GA evaluation – The quantum electro-dynamical case (Laser 1)

c3m001 c3m01 c3m1 c6m001 c6m01 c6m1 c9m001 c9m01 c9m1
-0.280 -0.505 -0.552 -0.476 -0.530 -0.556 -0.544 -0.542 -0.547
-0.351 -0.523 -0.553 -0.507 -0.539 -0.556 -0.545 -0.549 -0.554
-0.474 -0.534 -0.555 -0.519 -0.548 -0.558 -0.554 -0.554 -0.555
-0.475 -0.542 -0.556 -0.545 -0.549 -0.558 -0.556 -0.558 -0.555
-0.503 -0.555 -0.556 -0.546 -0.553 -0.558 -0.558 -0.559 -0.557
-0.530 -0.555 -0.557 -0.552 -0.554 -0.558 -0.560 -0.560 -0.559
-0.531 -0.556 -0.559 -0.555 -0.555 -0.558 -0.561 -0.561 -0.559
-0.552 -0.558 -0.559 -0.556 -0.557 -0.559 -0.561 -0.562 -0.559
-0.558 -0.562 -0.562 -0.557 -0.557 -0.559 -0.561 -0.562 -0.560
-0.561 -0.562 -0.562 -0.559 -0.561 -0.559 -0.561 -0.562 -0.561

Median -0.516 -0.555 -0.557 -0.549 -0.554 -0.558 -0.559 -0.559 -0.558
IQR 0.078 0.024 0.005 0.037 0.009 0.001 0.007 0.008 0.005
W 0.798 0.820 0.936 0.773 0.865 0.792 0.771 0.801 0.860
Rank sum 200 400 550 288 361 588 574 601 533
H 25.355

Table G.2 GA evaluation – The quantum electro-dynamical case (Laser 2)

119

c3m001 c3m01 c3m1 c6m001 c6m01 c6m1 c9m001 c9m01 c9m1
196.62 195.65 194.01 192.78 195.44 196.36 189.97 192.28 195.39
193.49 193.84 192.74 192.42 192.59 191.93 189.94 192.20 193.13
193.00 193.67 191.68 191.96 190.10 190.67 189.72 190.91 191.89
192.88 193.47 191.66 191.13 189.71 189.89 189.64 190.71 191.44
192.06 192.98 190.50 190.80 189.58 189.87 189.00 190.35 190.55
191.88 191.62 190.47 190.63 189.47 189.66 188.56 189.21 190.36
191.76 189.84 190.20 190.57 188.74 189.25 188.43 189.13 190.32
190.98 189.37 189.68 190.11 188.54 188.91 188.23 189.01 189.44
190.10 189.26 189.54 188.47 187.81 188.89 188.04 188.94 189.32
188.78 188.08 189.08 188.42 187.81 188.34 187.83 188.78 188.88

Median 191.97 192.30 190.48 190.71 189.52 189.76 188.78 189.78 190.46
IQR 2.022 4.303 2.004 1.852 1.559 1.761 1.484 1.904 2.453
W 0.921 0.905 0.911 0.901 0.810 0.742 0.873 0.844 0.885
Rank sum 264 337 388 405 581 518 703 503 396
H 21.18

Table G.3 GA evaluation – The durable component design case using stress (Crack 1)

c3m001 c3m01 c3m1 c6m001 c6m01 c6m1 c9m001 c9m01 c9m1
5290 5284 5294 5291 5286 5299 5298 5305 5308
5296 5287 5319 5291 5296 5302 5317 5310 5321
5298 5303 5322 5313 5302 5302 5321 5326 5322
5300 5309 5324 5318 5306 5307 5323 5328 5328
5305 5311 5328 5324 5306 5320 5329 5342 5331
5317 5312 5328 5324 5313 5328 5341 5343 5332
5319 5317 5329 5337 5325 5334 5342 5344 5332
5328 5317 5334 5339 5331 5345 5347 5346 5333
5330 5329 5339 5343 5332 5348 5353 5352 5346
5350 5333 5344 5351 5347 5350 5354 5353 5348

Median 5311 5312 5328 5324 5310 5324 5335 5342 5332
IQR 29.57 14.20 11.81 25.09 28.47 42.99 25.53 20.67 11.72
W 0.885 0.918 0.861 0.905 0.929 0.864 0.924 0.866 0.917
Rank sum 310 281 491 458 338 464 578 614 561
H 17.293

Table G.4 GA evaluation – The durable component design case using fatigue life (Crack 2)

120

c3m001 c3m01 c3m1 c6m001 c6m01 c6m1 c9m001 c9m01 c9m1
-64.329 -65.220 -66.458 -66.245 -65.874 -66.160 -66.401 -65.585 -66.302
-64.606 -65.419 -67.686 -66.675 -66.926 -66.387 -66.924 -66.018 -66.476
-64.661 -65.822 -67.745 -66.924 -66.975 -66.510 -67.651 -66.564 -66.873
-65.142 -66.125 -67.908 -67.429 -67.638 -66.620 -67.764 -66.962 -67.374
-65.900 -66.456 -67.933 -67.471 -67.778 -66.621 -67.919 -67.107 -67.451
-66.026 -66.782 -68.011 -67.552 -67.841 -66.868 -68.029 -68.126 -67.585
-66.145 -67.072 -68.179 -67.610 -68.026 -67.998 -68.179 -68.141 -67.794
-67.065 -67.540 -68.278 -68.244 -68.158 -68.322 -68.198 -68.191 -68.165
-67.839 -68.071 -68.383 -68.325 -68.233 -68.369 -68.401 -68.216 -68.203
-68.416 -68.238 -68.556 -68.497 -68.410 -68.439 -68.564 -68.289 -68.271

Median -65.963 -66.619 -67.972 -67.512 -67.810 -66.745 -67.974 -67.617 -67.518
IQR 2.405 1.718 0.534 1.320 1.183 1.812 0.547 1.627 1.292
W 0.894 0.926 0.810 0.926 0.864 0.801 0.873 0.840 0.902
Rank sum 222 298 613 492 517 444 581 465 463
H 18.355

Table G.5 GA evaluation – The 2D aerofoil design case (Aerofoil)

c3m001 c3m01 c3m1 c6m001 c6m01 c6m1 c9m001 c9m01 c9m1
-6.70 -5.92 -19.40 -10.67 -6.70 -17.66 -21.53 -6.70 -17.66
-7.90 -8.32 -26.99 -11.01 -8.97 -26.98 -23.34 -9.72 -17.66
-9.42 -8.97 -28.28 -13.44 -17.66 -26.98 -24.24 -17.66 -24.24

-10.52 -16.94 -29.71 -22.62 -17.66 -29.71 -28.28 -21.80 -26.98
-14.70 -17.66 -33.69 -23.78 -19.61 -33.69 -29.71 -24.24 -36.59
-17.66 -17.66 -39.85 -24.24 -22.07 -39.85 -29.71 -29.71 -39.85
-21.61 -20.75 -39.85 -26.92 -24.24 -39.85 -29.71 -29.71 -39.85
-21.80 -22.07 -39.85 -33.69 -29.71 -39.85 -33.69 -33.69 -39.85
-23.78 -22.62 -39.85 -33.69 -33.69 -39.85 -36.59 -39.85 -39.85
-39.85 -29.71 -39.85 -39.85 -33.69 -39.85 -39.85 -39.85 -39.85

Median 12.39 -15.65 -33.05 -22.23 -20.03 -32.71 -28.53 -23.67 -31.39
IQR 10.03 7.426 7.334 10.042 9.319 7.832 5.826 11.52 9.577
W 0.082 0.907 0.813 0.902 0.919 0.808 0.916 0.924 0.756
Rank sum 244.5 225.5 647 409.5 340 639 541 445 603.5
H 31.142

Table G.6 GA evaluation – The radio-frequency design case (Bead)

121

H.0 Objective function values for 9 algorithms

The following tables contain final objective function values delivered by 10 simultaneous runs
of 9 selected algorithms, from random starting points. Also tabulated are the median result for each
algorithm, interquartile range, Shapiro-Wilk W test statistic, rank sum of each algorithm across the
pooled ranks, and Kruskal-Wallis H test statistic.

122

EPSOC GA P-BFGS NM NML1 MDS RSCS RSCSL RSCSL1
-0.477 -0.465 0.101 -0.476 0.129 -0.476 0.412 0.411 0.412
-0.480 -0.469 0.063 -0.479 0.008 -0.479 0.380 0.309 0.119
-0.481 -0.476 -0.053 -0.480 -0.051 -0.480 0.343 0.145 0.009
-0.481 -0.476 -0.104 -0.481 -0.255 -0.481 0.096 0.078 -0.285
-0.481 -0.479 -0.435 -0.481 -0.445 -0.481 -0.356 -0.138 -0.459
-0.481 -0.480 -0.462 -0.481 -0.457 -0.481 -0.470 -0.242 -0.475
-0.481 -0.480 -0.469 -0.481 -0.465 -0.481 -0.479 -0.331 -0.478
-0.481 -0.480 -0.470 -0.481 -0.471 -0.482 -0.482 -0.456 -0.479
-0.482 -0.481 -0.471 -0.482 -0.473 -0.482 -0.482 -0.479 -0.479
-0.482 -0.481 -0.480 -0.482 -0.478 -0.482 -0.482 -0.482 -0.481

Median -0.481 -0.479 -0.448 -0.481 -0.451 -0.481 -0.413 -0.190 -0.467
IQR 0.001 0.004 0.417 0.002 0.419 0.001 0.825 0.601 0.487
W 0.695 0.771 0.747 0.744 0.760 0.648 0.733 0.889 0.737
Rank sum 685.0 515.0 282.0 669.5 267.0 698.0 385.5 261.0 332.0
H 41.674

Table H.1 Algorithm comparison – The quantum electro-dynamical case (Laser 1)

EPSOC GA P-BFGS NM NML1 MDS RSCS RSCSL RSCSL1
-0.558 -0.542 0.340 0.496 0.334 0.497 0.391 0.280 0.286
-0.560 -0.549 0.319 0.314 0.253 0.309 0.314 0.273 0.283
-0.561 -0.554 0.307 0.286 0.120 0.305 0.284 0.242 0.245
-0.561 -0.558 0.306 0.274 0.008 0.289 0.284 -0.036 -0.276
-0.562 -0.559 0.302 0.274 -0.018 0.279 -0.024 -0.533 -0.365
-0.562 -0.560 0.295 -0.561 -0.222 0.278 -0.475 -0.551 -0.555
-0.562 -0.561 0.012 -0.562 -0.237 -0.560 -0.562 -0.559 -0.556
-0.562 -0.562 -0.004 -0.562 -0.486 -0.561 -0.562 -0.559 -0.560
-0.562 -0.562 -0.184 -0.562 -0.559 -0.562 -0.563 -0.559 -0.562
-0.562 -0.562 -0.559 -0.562 -0.562 -0.562 -0.563 -0.563 -0.563

Median -0.562 -0.559 0.298 -0.144 -0.120 0.279 -0.250 -0.542 -0.460
IQR 0.001 0.008 0.312 0.848 0.606 0.866 0.847 0.801 0.806
W 0.752 0.801 0.718 0.720 0.906 0.715 0.759 0.701 0.728
Rank sum 686.0 580.0 213.0 464.5 384.0 359.5 469.0 461.0 478.0
H 20.888

Table H.2 Algorithm comparison – The quantum electro-dynamical case (Laser 2)

123

EPSOC GA P-BFGS NM NML1 MDS RSCS RSCSL RSCSL1
187.883 189.973 232.298 199.229 219.562 211.372 212.046 204.170 201.833
187.846 189.939 218.293 199.194 208.204 199.236 199.525 201.957 201.423
187.783 189.717 208.792 199.076 199.537 199.168 199.067 200.918 200.718
187.756 189.643 199.442 199.067 199.153 199.092 198.972 200.786 199.821
187.716 189.000 197.716 195.801 197.904 188.005 195.176 200.387 195.031
187.689 188.561 195.772 188.053 195.980 187.973 191.794 194.970 190.153
187.641 188.430 192.939 187.890 195.880 187.787 188.060 194.628 190.136
187.636 188.233 189.322 187.762 192.948 187.648 187.787 192.641 187.922
187.552 188.044 187.549 187.615 191.093 187.636 187.603 188.252 187.735
187.550 187.826 187.547 187.614 187.549 187.587 187.557 187.548 187.654

Median 187.703 188.781 196.744 191.927 196.942 187.989 193.485 197.679 192.592
IQR 0.147 1.484 19.470 11.314 6.589 11.520 11.280 8.277 12.796
W 0.933 0.873 0.849 0.712 0.867 0.737 0.839 0.880 0.809
Rank sum 742.5 534.0 364.5 482.5 316.5 499.0 448.0 320.0 388.0
H 20.766

Table H.3 Algorithm comparison – The durable component design case using stress (Crack 1)

EPSOC GA P-BFGS NM NML1 MDS RSCS RSCSL RSCSL1
5316 5305 4098 4411 5236 4878 4881 4405 4399
5331 5310 4464 5264 5253 5253 5293 5007 5271
5348 5326 4464 5265 5265 5294 5295 5292 5272
5352 5328 4630 5293 5269 5303 5299 5292 5280
5352 5342 4808 5297 5283 5319 5310 5294 5291
5355 5343 4854 5300 5294 5319 5311 5297 5292
5355 5344 4936 5311 5299 5319 5319 5300 5296
5356 5346 4975 5319 5319 5319 5333 5304 5319
5356 5352 5247 5319 5326 5319 5348 5348 5319
5356 5353 5356 5353 5332 5357 5348 5357 5348

Median 5353 5342 4831 5299 5288 5319 5311 5295 5292
IQR 7.762 20.668 510.839 54.467 53.545 25.175 38.148 12.040 46.806
W 0.697 0.866 0.946 0.453 0.937 0.525 0.500 0.567 0.445
Rank sum 776.5 665.0 164.5 403.0 358.5 484.0 490.0 397.0 356.5
H 37.949

Table H.4 Algorithm comparison – The durable component design case using fatigue life (Crack
2)

124

EPSOC GA P-BFGS NM NML1 MDS RSCS RSCSL RSCSL1
-68.632 -66.458 -57.330 -44.736 -44.760 -44.763 -44.656 -44.637 -44.599
-68.633 -67.686 -63.313 -66.251 -54.037 -66.202 -58.097 -53.356 -54.007
-68.637 -67.745 -64.148 -67.255 -57.182 -66.218 -61.732 -54.078 -55.778
-68.638 -67.908 -65.508 -67.323 -60.996 -66.257 -67.323 -55.579 -57.279
-68.638 -67.933 -66.230 -67.323 -64.959 -67.516 -68.506 -57.428 -58.065
-68.638 -68.011 -66.441 -68.375 -67.323 -68.332 -68.609 -58.552 -62.521
-68.639 -68.179 -67.390 -68.459 -68.559 -68.586 -68.619 -65.622 -65.049
-68.640 -68.278 -68.640 -68.626 -68.617 -68.629 -68.622 -65.988 -67.323
-68.641 -68.383 -68.642 -68.641 -68.627 -68.636 -68.635 -66.234 -67.323
-68.641 -68.556 -68.642 -68.643 -68.632 -68.638 -68.643 -67.207 -68.622

Median -68.638 -67.972 -66.336 -67.849 -66.141 -67.924 -68.558 -57.990 -60.293
IQR 0.003 0.534 4.492 1.372 11.434 2.411 6.889 11.910 11.546
W 0.871 0.810 0.819 0.459 0.804 0.486 0.643 0.888 0.903
Rank sum 789.0 511.0 460.0 519.0 379.5 491.0 500.5 193.0 252.0
H 34.833

Table H.5 Algorithm comparison – The 2D aerofoil design case (Aerofoil)

EPSOC GA P-BFGS NM NML1 MDS RSCS RSCSL RSCSL1
-23.335 -19.400 22.756 37.715 24.504 15.083 37.715 13.840 15.083
-26.914 -26.977 15.826 28.292 10.354 13.840 15.083 1.723 13.840
-26.977 -28.281 11.612 15.083 -11.795 13.451 12.652 -6.282 9.868
-26.977 -29.707 10.114 13.840 -12.841 3.909 12.570 -11.795 3.909
-29.707 -33.693 -3.126 5.086 -14.806 3.711 9.868 -12.841 1.723
-33.693 -39.849 -9.388 3.711 -16.547 -0.455 3.711 -13.818 -6.282
-33.693 -39.849 -13.083 3.608 -18.046 -2.464 3.608 -13.818 -11.795
-33.693 -39.849 -14.806 -10.798 -22.615 -7.230 0.756 -14.806 -12.841
-39.849 -39.849 -16.115 -13.005 -24.240 -11.527 -21.530 -19.610 -19.610
-39.849 -39.849 -29.707 -26.977 -39.849 -16.115 -26.914 -26.977 -26.977

Median -31.700 -36.771 -6.257 4.398 -15.676 1.628 6.789 -13.329 -2.279
IQR 6.716 11.568 26.418 25.881 10.820 20.682 11.896 8.524 22.709
W 0.887 0.813 0.916 0.942 0.872 0.907 0.885 0.887 0.915
Rank sum 760.000 807.000 363.000 266.000 499.000 294.000 284.500 462.000 359.500
H 47.943

Table H.6 Algorithm comparison – The radio-frequency design case (Bead)

125

I.0 Pair-wise comparison of EPSOC against other algorithms

The following tables contain final objective function values delivered by 10 simultaneous runs,
from random starting points, of EPSOC and another algorithm, chosen on the basis of relative
rank in tests of multiple algorithms, for each test case. Also tabulated is the Mann-Whitney U test
statistic, and the corresponding significance level, assuming a two-tailed test.

126

Laser 1
EPSOC MDS
-0.477 -0.476
-0.480 -0.479
-0.481 -0.480
-0.481 -0.481
-0.481 -0.481
-0.481 -0.481
-0.481 -0.481
-0.481 -0.482
-0.482 -0.482
-0.482 -0.482

Rank sum 99.000 111.000
U 44.000
P 0.6842

Table I.1 Pair-wise comparison of EPSOC against other algorithms – Laser 1 test case

Laser 2
EPSOC GA
-0.558 -0.542
-0.560 -0.549
-0.561 -0.554
-0.561 -0.558
-0.562 -0.559
-0.562 -0.560
-0.562 -0.561
-0.562 -0.562
-0.562 -0.562
-0.562 -0.562

Rank sum 132.000 78.000
U 23.000
P 0.0432

Table I.2 Pair-wise comparison of EPSOC against other algorithms – Laser 2 test case

127

Crack 1
EPSOC GA
187.883 189.972
187.846 189.938
187.783 189.717
187.756 189.642
187.716 189.000
187.689 188.561
187.641 188.430
187.636 188.233
187.552 188.043
187.55 187.825

Rank sum 153 57
U 2.000
P 0.0000

Table I.3 Pair-wise comparison of EPSOC against other algorithms – Crack 1 test case

Crack 2
EPSOC GA
5316 5305
5331 5310
5348 5326
5352 5328
5352 5342
5355 5343
5355 5344
5356 5346
5356 5352
5356 5353

Rank sum 135 75
U 20.000
P 0.0232

Table I.4 Pair-wise comparison of EPSOC against other algorithms – Crack 2 test case

128

Aerofoil
EPSOC NM
-68.632 -44.736
-68.6327 -66.251
-68.6368 -67.255
-68.6377 -67.323
-68.6379 -67.323
-68.6383 -68.375
-68.6386 -68.459
-68.6402 -68.626
-68.6406 -68.641
-68.6413 -68.643

Rank sum 136 74
U 19.000
P 0.0186

Table I.5 Pair-wise comparison of EPSOC against other algorithms – Aerofoil test case

Bead
EPSOC GA
-23.335 -19.400
-26.914 -26.977
-26.977 -28.281
-26.977 -29.707
-29.707 -33.693
-33.693 -39.849
-33.693 -39.849
-33.693 -39.849
-39.849 -39.849
-39.849 -39.849

Rank sum 85.000 125.000
U 30.000
P 0.1432

Table I.6 Pair-wise comparison of EPSOC against other algorithms – Bead test case

129

J.0 One step spatial preconditioning – results of numerical
experiments

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.016 -0.009 0.296 0.471 -57.32 -53.95
-0.118 -0.070 0.286 0.302 -63.31 -54.77
-0.249 -0.130 0.253 0.255 -64.14 -57.87
-0.387 -0.347 0.215 0.101 -65.50 -59.36
-0.396 -0.398 -0.031 0.093 -66.23 -65.01
-0.420 -0.476 -0.242 0.070 -66.44 -65.22
-0.465 -0.479 -0.267 -0.296 -67.38 -65.45
-0.480 -0.479 -0.414 -0.381 -68.63 -66.27
-0.480 -0.480 -0.542 -0.540 -68.64 -68.37
-0.481 -0.480 -0.562 -0.562 -68.64 -68.64

Rank sum 108.0 102.0 112.0 107.0 123.0 87.0
U 47.0 43.0 32.0
P 0.8534 0.6306 0.315

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
22.756 21.134 232.2 206.1 4098 4049
15.826 20.709 218.2 205.4 4464 4329
11.612 17.019 208.7 204.0 4464 4406
10.114 -1.536 199.4 199.8 4630 4637
-3.126 -11.527 197.7 199.6 4808 4926
-9.388 -16.115 195.7 198.3 4854 4927
-13.083 -23.782 192.9 197.9 4975 4950
-14.806 -33.693 189.3 195.8 5007 5000
-16.115 -39.849 187.5 194.6 5247 5002
-29.707 -39.849 187.5 192.9 5356 5025

Rank sum 94.5 115.5 114.0 96.0 109.0 101.0
U 39.5 41.0 46.0
P 0.4358 0.5288 0.796

Table J.1 Mann-Whitney pair-wise comparison of BFGS results for one step preconditioned and
unconditioned test cases

130

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
-0.476 0.301 0.496 0.297 -44.73 -58.53
-0.479 -0.473 0.314 0.277 -66.25 -64.78
-0.480 -0.481 0.286 0.275 -67.25 -65.64
-0.481 -0.481 0.274 -0.555 -67.32 -66.02
-0.481 -0.481 0.274 -0.562 -67.32 -68.61
-0.481 -0.481 -0.561 -0.562 -68.37 -68.61
-0.481 -0.481 -0.562 -0.562 -68.45 -68.62
-0.481 -0.481 -0.562 -0.562 -68.62 -68.63
-0.482 -0.481 -0.562 -0.562 -68.64 -68.63
-0.482 -0.482 -0.562 -0.562 -68.64 -68.64

Rank sum 104.0 106.0 94.0 116.0 105.0 105.0
U 49.0 39.0 50.0
P 0.9706 0.4358 1.0

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
37.715 32.977 199.2 213.2 4411 5236
28.292 31.727 199.1 200.1 5264 5236
15.083 17.662 199.0 199.4 5265 5236
13.840 17.019 199.0 199.1 5293 5248
5.086 16.671 195.8 199.1 5297 5248
3.711 16.022 188.0 199.1 5300 5248
3.608 -6.311 187.8 199.0 5311 5248
-10.798 -10.520 187.7 195.7 5319 5278
-13.005 -28.281 187.6 193.6 5319 5279
-26.977 -29.707 187.6 192.9 5353 5287

Rank sum 111.0 99.0 131.0 79.0 139.0 71.0
U 44.0 24.0 16.0
P 0.6842 0.0524 0.0090

Table J.2 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex results for one step pre-
conditioned and unconditioned test cases

131

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.242 0.323 0.333 -0.022 -44.76 -58.04
0.045 0.293 0.310 -0.368 -54.61 -62.44
-0.416 0.020 0.278 -0.369 -56.55 -64.58
-0.432 -0.218 0.274 -0.405 -64.96 -67.55
-0.455 -0.269 0.262 -0.507 -65.60 -67.59
-0.463 -0.406 -0.187 -0.526 -65.79 -67.72
-0.479 -0.479 -0.559 -0.536 -68.36 -67.96
-0.482 -0.482 -0.559 -0.558 -68.53 -68.33
-0.482 -0.482 -0.562 -0.559 -68.62 -68.40
-0.482 -0.482 -0.563 -0.563 -68.64 -68.49

Rank sum 113.0 97.0 93.0 117.0 102.0 108.0
U 42.0 38.0 47.0
P 0.5788 0.3930 0.8534

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
24.504 24.424 219.5 209.8 4405 5000
10.354 17.662 208.1 202.0 5239 5000
-11.795 17.019 199.5 199.6 5263 5181
-12.681 12.461 199.1 199.5 5264 5182
-12.841 -9.374 197.5 199.4 5291 5236
-14.806 -11.843 195.6 199.4 5295 5243
-16.547 -23.782 191.2 199.0 5298 5244
-18.046 -26.977 188.5 197.9 5322 5245
-22.615 -28.281 187.6 197.0 5330 5247
-39.849 -33.693 187.5 195.1 5333 5291

Rank sum 110.0 100.0 122.0 88.0 137.5 72.5
U 45.0 33.0 17.5
P 0.7394 0.2176 0.0146

Table J.3 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex with line search results
for one step preconditioned and unconditioned test cases

132

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.129 0.323 0.334 0.254 -44.76 -59.51
0.008 0.311 0.253 0.253 -54.04 -64.89
-0.051 -0.006 0.120 -0.100 -57.18 -66.90
-0.255 -0.016 0.008 -0.539 -61.00 -67.50
-0.445 -0.095 -0.018 -0.548 -64.96 -67.70
-0.457 -0.354 -0.222 -0.557 -67.32 -67.85
-0.465 -0.445 -0.237 -0.560 -68.56 -68.03
-0.471 -0.454 -0.486 -0.560 -68.62 -68.21
-0.473 -0.454 -0.559 -0.562 -68.63 -68.36
-0.478 -0.477 -0.562 -0.563 -68.63 -68.44

Rank sum 120.0 90.0 86.0 124.0 101.0 109.0
U 35.0 31.0 46.0
P 0.2798 0.1654 0.7960

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
24.504 24.424 219.6 210.0 5236 5000
10.354 17.662 208.2 201.7 5253 5226
-11.795 17.019 199.5 199.9 5265 5236
-12.841 12.461 199.2 199.7 5269 5236
-14.806 -13.049 197.9 199.4 5283 5244
-16.547 -23.782 196.0 199.3 5294 5244
-18.046 -26.977 195.9 199.0 5299 5244
-22.615 -26.977 192.9 198.9 5319 5246
-24.240 -28.281 191.1 198.0 5326 5248
-39.849 -29.707 187.5 195.0 5332 5291

Rank sum 103.0 107.0 123.0 87.0 144.0 66.0
U 48.0 32.0 11.0
P 0.9198 0.1904 0.0020

Table J.4 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex with single-pass line
search results for one step preconditioned and unconditioned test cases

133

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
-0.476 -0.481 0.497 0.277 -44.76 -54.53
-0.479 -0.481 0.309 -0.558 -66.20 -59.16
-0.480 -0.481 0.305 -0.559 -66.22 -66.08
-0.481 -0.481 0.289 -0.561 -66.26 -66.18
-0.481 -0.481 0.279 -0.562 -67.52 -67.44
-0.481 -0.481 0.278 -0.562 -68.33 -68.54
-0.481 -0.481 -0.560 -0.562 -68.59 -68.58
-0.482 -0.481 -0.561 -0.562 -68.63 -68.61
-0.482 -0.482 -0.562 -0.562 -68.64 -68.62
-0.482 -0.482 -0.562 -0.563 -68.64 -68.64

Rank sum 97.0 113.0 75.0 135.0 112.0 98.0
U 42.0 20.0 43.0
P 0.5788 0.0232 0.6306

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
15.083 33.978 211.4 206.1 4878 5004
13.840 32.998 199.2 205.1 5253 5208
13.451 25.337 199.2 199.8 5294 5232
3.909 24.329 199.1 199.8 5294 5236
3.711 18.145 188.0 199.7 5303 5236
-0.455 17.019 188.0 199.2 5319 5236
-2.464 -11.588 187.8 199.1 5319 5236
-7.230 -13.049 187.6 199.1 5319 5248
-11.527 -15.595 187.6 199.1 5319 5263
-16.115 -29.707 187.6 193.1 5319 5263

Rank sum 118.0 92.0 133.0 77.0 143.0 67.0
U 37.0 22.0 12.0
P 0.3526 0.0354 0.0028

Table J.5 Mann-Whitney pair-wise comparison of MDS results for one step preconditioned and
unconditioned test cases

134

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.412 -0.481 0.355 0.277 -44.66 -58.20
0.390 -0.481 0.314 -0.024 -58.10 -59.45
-0.476 -0.481 0.295 -0.041 -61.73 -65.50
-0.481 -0.481 0.094 -0.554 -67.32 -67.32
-0.481 -0.482 -0.071 -0.557 -68.51 -67.39
-0.482 -0.482 -0.501 -0.562 -68.61 -68.55
-0.482 -0.482 -0.555 -0.562 -68.62 -68.62
-0.482 -0.482 -0.562 -0.562 -68.62 -68.63
-0.482 -0.482 -0.563 -0.562 -68.64 -68.63
-0.482 -0.482 -0.563 -0.563 -68.64 -68.64

Rank sum 94.0 116.0 91.0 119.0 102.5 107.5
U 39.0 36.0 47.5
P 0.4358 0.3150 0.9118

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
37.715 35.118 212.0 201.6 4881 5236
15.083 31.727 199.5 199.4 5293 5248
12.652 17.662 199.1 199.2 5295 5248
9.916 12.697 199.0 199.1 5299 5263
3.608 5.919 195.2 199.1 5310 5263
1.214 -11.588 191.8 195.0 5311 5263
-11.795 -14.242 188.1 193.1 5319 5265
-13.818 -16.115 187.8 192.9 5333 5291
-21.801 -29.707 187.6 192.9 5348 5291
-26.914 -33.693 187.6 192.9 5348 5291

Rank sum 104.0 106.0 120.0 90.0 145.0 65.0
U 49.0 35.0 10.0
P 0.9706 0.2798 0.0016

Table J.6 Mann-Whitney pair-wise comparison of RSCS results for one step preconditioned and
unconditioned test cases

135

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.411 0.178 0.280 0.266 -44.64 -60.21
0.309 -0.077 0.273 0.124 -53.36 -62.11
0.145 -0.149 0.242 0.093 -54.08 -62.43
0.078 -0.332 -0.036 -0.071 -55.58 -63.35
-0.138 -0.448 -0.533 -0.243 -57.43 -63.70
-0.242 -0.449 -0.551 -0.531 -58.55 -64.07
-0.331 -0.482 -0.559 -0.553 -65.62 -65.44
-0.456 -0.482 -0.559 -0.559 -65.99 -66.03
-0.479 -0.482 -0.559 -0.559 -66.23 -68.10
-0.482 -0.482 -0.563 -0.563 -67.21 -68.29

Rank sum 84.5 142.0 103.0 107.0 85.0 125.0
U 13.0 48.0 30.0
P 0.0038 0.9118 0.1432

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
13.840 24.424 204.2 203.2 4405 5000
1.723 17.832 202.0 200.5 5007 5000
-6.282 17.662 200.9 200.2 5292 5000
-11.795 16.022 200.8 199.5 5292 5245
-12.841 -11.014 200.4 199.4 5294 5245
-13.818 -11.843 195.0 199.3 5297 5248
-13.818 -17.153 194.6 196.2 5300 5263
-14.806 -19.400 192.6 195.9 5304 5269
-19.610 -28.281 188.3 195.8 5348 5278
-26.977 -39.849 187.5 195.6 5357 5291

Rank sum 112.0 98.0 110.0 100.0 138.0 72.0
U 43.0 45.0 17.0
P 0.6306 0.7394 0.0114

Table J.7 Mann-Whitney pair-wise comparison of RSCS with line search results for one step
preconditioned and unconditioned test cases

136

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.412 0.212 0.286 0.148 -44.60 -60.71
0.119 0.187 0.283 0.079 -54.01 -60.94
0.009 -0.435 0.245 -0.542 -55.78 -61.35
-0.285 -0.446 -0.276 -0.547 -57.28 -62.80
-0.459 -0.448 -0.365 -0.548 -58.07 -64.09
-0.475 -0.463 -0.555 -0.554 -62.52 -66.57
-0.478 -0.471 -0.556 -0.560 -65.05 -68.20
-0.479 -0.475 -0.560 -0.561 -67.32 -68.64
-0.479 -0.481 -0.562 -0.562 -67.32 -68.64
-0.481 -0.481 -0.563 -0.562 -68.62 -68.64

Rank sum 107.0 103.0 97.0 113.0 82.0 128.0
U 48.0 42.0 27.0
P 0.9118 0.5788 0.0892

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
15.083 24.424 201.8 200.3 4399 4993
13.840 17.832 201.4 200.0 5271 4993
9.868 17.662 200.7 199.7 5272 4993
3.909 16.022 199.8 199.6 5280 5242
1.723 -9.991 195.0 199.4 5291 5244
-6.282 -10.520 190.2 199.4 5292 5248
-11.795 -11.014 190.1 199.1 5296 5268
-12.841 -11.843 187.9 197.2 5319 5281
-19.610 -19.400 187.7 195.8 5319 5291
-26.977 -28.281 187.7 194.2 5348 5291

Rank sum 112.0 98.0 116.0 94.0 134.5 75.5
U 43.0 39.0 20.5
P 0.6306 0.4358 0.0288

Table J.8 Mann-Whitney pair-wise comparison of RSCS with single-pass line search results for
one step preconditioned and unconditioned test cases

137

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
-0.477 -0.477 -0.558 -0.558 -68.632 -68.631
-0.480 -0.477 -0.560 -0.561 -68.633 -68.635
-0.481 -0.479 -0.561 -0.561 -68.637 -68.635
-0.481 -0.479 -0.561 -0.561 -68.638 -68.636
-0.481 -0.480 -0.562 -0.562 -68.638 -68.638
-0.481 -0.480 -0.562 -0.562 -68.638 -68.639
-0.481 -0.480 -0.562 -0.562 -68.639 -68.642
-0.481 -0.481 -0.562 -0.562 -68.640 -68.642
-0.482 -0.481 -0.562 -0.562 -68.641 -68.642
-0.482 -0.481 -0.562 -0.562 -68.641 -68.643

Rank sum 133.0 77.0 105.0 105.0 96.5 113.5
U 22.0 50.0 41.5
P 0.0354 1.0000 0.6842

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
-23.335 -36.585 187.9 193.4 5316 5283
-26.914 -36.585 187.8 193.3 5331 5283
-26.977 -39.849 187.8 193.3 5348 5287
-26.977 -39.849 187.8 193.3 5348 5288
-29.707 -39.849 187.7 193.2 5352 5289
-33.693 -39.849 187.7 193.1 5352 5289
-33.693 -39.849 187.6 193.1 5355 5289
-33.693 -39.849 187.6 193.1 5355 5290
-39.849 -39.849 187.6 193.1 5356 5291
-39.849 -39.849 187.6 193.0 5356 5291

Rank sum 67.0 143.0 155.0 55.0 155.0 55.0
U 12.0 0.0 0.0
P 0.0028 0.0000 0.0000

Table J.9 Mann-Whitney pair-wise comparison of EPSOC results for one step preconditioned and
unconditioned test cases

138

K.0 Two step spatial preconditioning – results of numerical
experiments

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.016 0.268 0.296 -0.141 -57.32 -60.89
-0.118 0.009 0.286 -0.296 -63.31 -62.18
-0.249 -0.008 0.253 -0.317 -64.14 -62.53
-0.387 -0.085 0.215 -0.351 -65.50 -64.40
-0.396 -0.407 -0.031 -0.524 -66.23 -65.05
-0.420 -0.408 -0.242 -0.526 -66.44 -65.15
-0.465 -0.456 -0.267 -0.550 -67.38 -65.22
-0.480 -0.476 -0.414 -0.553 -68.63 -66.03\
-0.480 -0.476 -0.542 -0.558 -68.64 -68.30
-0.481 -0.476 -0.562 -0.561 -68.64 -68.64

Rank sum 115.0 95.0 77.0 133.0 119.0 91.0
U 40.0 22.0 36.0
P 0.4812 0.0354 0.3150

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
22.756 22.956 232.2 203.3 4098 4405
15.826 -9.991 218.2 201.3 4464 4505
11.612 -16.115 208.7 199.4 4464 4673
10.114 -16.115 199.4 199.0 4630 4695
-3.126 -29.707 197.7 199.0 4808 4878
-9.388 -29.707 195.7 199.0 4854 4902
-13.083 -29.707 192.9 197.9 4975 4929
-14.806 -33.693 189.3 197.4 5007 4950
-16.115 -33.693 187.5 197.4 5247 4981
-29.707 -33.693 187.5 195.8 5356 5000

Rank sum 73.5 136.5 114.0 96.0 105.0 105.0
U 18.5 41.0 50.0
P 0.0186 0.5288 1.0

Table K.1 Mann-Whitney pair-wise comparison of BFGS results for two step preconditioned and
unconditioned test cases

139

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
-0.476 0.168 0.496 0.107 -44.73 -61.57
-0.479 0.167 0.314 0.067 -66.25 -64.94
-0.480 -0.009 0.286 0.066 -67.25 -65.18
-0.481 -0.009 0.274 -0.024 -67.32 -66.12
-0.481 -0.481 0.274 -0.560 -67.32 -66.21
-0.481 -0.481 -0.561 -0.561 -68.37 -68.61
-0.481 -0.481 -0.562 -0.562 -68.45 -68.62
-0.481 -0.482 -0.562 -0.562 -68.62 -68.62
-0.482 -0.482 -0.562 -0.562 -68.64 -68.63
-0.482 -0.482 -0.562 -0.563 -68.64 -68.63

Rank sum 108.0 102.0 92.0 118.0 112.0 98.0
U 47.0 37.0 43.0
P 0.8534 0.3526 0.6306

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
37.715 20.019 199.2 199.7 4411 4663
28.292 8.671 199.1 199.4 5264 4673
15.083 8.164 199.0 199.2 5265 4695
13.840 -2.666 199.0 199.2 5293 4993
5.086 -9.991 195.8 199.1 5297 5000
3.711 -10.520 188.0 199.1 5300 5164
3.608 -10.520 187.8 199.0 5311 5181
-10.798 -11.527 187.7 198.0 5319 5181
-13.005 -29.707 187.6 195.0 5319 5239
-26.977 -33.693 187.6 195.0 5353 5239

Rank sum 89.0 121.0 133.0 77.0 145.0 65.0
U 34.0 22.0 10.0
P 0.2474 0.0354 0.0016

Table K.2 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex results for two step
preconditioned and unconditioned test cases

140

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.242 0.219 0.333 0.156 -44.77 -63.32
0.045 0.191 0.310 -0.041 -54.61 -64.97
-0.416 0.046 0.278 -0.420 -56.56 -65.11
-0.432 0.013 0.274 -0.456 -64.97 -65.23
-0.455 0.011 0.262 -0.520 -65.61 -66.73
-0.463 -0.355 -0.187 -0.521 -65.80 -67.15
-0.479 -0.445 -0.559 -0.544 -68.36 -68.48
-0.482 -0.478 -0.559 -0.559 -68.54 -68.57
-0.482 -0.482 -0.562 -0.559 -68.62 -68.57
-0.482 -0.482 -0.563 -0.563 -68.64 -68.62

Rank sum 119.5 90.5 91.0 119.0 96.0 114.0
U 35.5 36.0 41.0
P 0.3150 0.3150 0.5288

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
24.504 20.019 219.5 205.1 4405 4950
10.354 2.679 208.2 202.8 5239 5000
-11.795 1.132 199.5 199.8 5263 5000
-12.681 -1.524 199.2 199.5 5264 5000
-12.841 -9.991 197.6 199.2 5291 5000
-14.806 -11.527 195.6 199.2 5295 5008
-16.547 -11.843 191.2 199.0 5298 5025
-18.046 -29.707 188.5 198.8 5322 5104
-22.615 -29.707 187.7 198.1 5330 5155
-39.849 -33.693 187.6 196.6 5333 5236

Rank sum 114.0 96.0 123.0 87.0 145.0 65.0
U 41.0 32.0 10.0
P 0.5288 0.1904 0.0016

Table K.3 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex with line search results
for two step preconditioned and unconditioned test cases

141

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.129 0.219 0.334 0.156 -44.76 -63.29
0.008 0.191 0.253 0.101 -54.04 -64.30
-0.051 0.160 0.120 0.074 -57.18 -64.95
-0.255 -0.003 0.008 0.039 -61.00 -65.20
-0.445 -0.109 -0.018 -0.239 -64.96 -65.23
-0.457 -0.184 -0.222 -0.456 -67.32 -67.15
-0.465 -0.467 -0.237 -0.456 -68.56 -68.47
-0.471 -0.469 -0.486 -0.558 -68.62 -68.57
-0.473 -0.479 -0.559 -0.559 -68.63 -68.57
-0.478 -0.481 -0.562 -0.563 -68.63 -68.62

Rank sum 113.0 97.0 97.0 113.0 100.0 110.0
U 42.0 42.0 45.0
P 0.5788 0.5788 0.7394

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
24.504 20.019 219.6 205.1 5236 4677
10.354 8.164 208.2 202.8 5253 4993
-11.795 -1.524 199.5 199.9 5265 5000
-12.841 -6.698 199.2 199.8 5269 5000
-14.806 -8.996 197.9 199.1 5283 5009
-16.547 -9.991 196.0 199.1 5294 5012
-18.046 -29.707 195.9 199.0 5299 5013
-22.615 -29.707 192.9 198.5 5319 5165
-24.240 -29.707 191.1 197.5 5326 5172
-39.849 -33.693 187.5 196.9 5332 5238

Rank sum 108.0 102.0 121.0 89.0 154.0 56.0
U 47.0 34.0 1.0
P 0.8534 0.2474 0.0000

Table K.4 Mann-Whitney pair-wise comparison of Nelder-Mead Simplex with single-pass line
search results for two step preconditioned and unconditioned test cases

142

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
-0.476 -0.481 0.497 0.096 -44.76 -65.12
-0.479 -0.481 0.309 0.082 -66.20 -66.17
-0.480 -0.481 0.305 0.066 -66.22 -66.18
-0.481 -0.481 0.289 -0.173 -66.26 -66.19
-0.481 -0.481 0.279 -0.173 -67.52 -66.25
-0.481 -0.482 0.278 -0.557 -68.33 -67.71
-0.481 -0.482 -0.560 -0.558 -68.59 -68.61
-0.482 -0.482 -0.561 -0.562 -68.63 -68.62
-0.482 -0.482 -0.562 -0.562 -68.64 -68.63
-0.482 -0.482 -0.562 -0.562 -68.64 -68.64

Rank sum 83.0 127.0 84.0 126.0 111.5 98.5
U 28.0 29.0 43.5
P 0.1052 0.1230 0.6842

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
15.083 22.919 211.4 202.8 4878 4673
13.840 14.415 199.2 00.2 5253 4695
13.451 13.473 199.2 199.6 5294 4926
3.909 8.164 199.1 199.2 5294 5000
3.711 -5.137 188.0 199.2 5303 5005
-0.455 -11.527 188.0 199.0 5319 5162
-2.464 -11.588 187.8 199.0 5319 5181
-7.230 -19.400 187.6 198.2 5319 5181
-11.527 -21.607 187.6 198.0 5319 5238
-16.115 -29.707 187.6 195.1 5319 5240

Rank sum 94.5 115.5 128.0 82.0 147.0 63.0
U 39.5 27.0 8.0
P 0.4812 0.0892 0.0008

Table K.5 Mann-Whitney pair-wise comparison of MDS results for two step preconditioned and
unconditioned test cases

143

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.412 -0.009 0.355 0.095 -44.66 -61.17
0.390 -0.009 0.314 0.067 -58.10 -65.22
-0.476 -0.169 0.295 -0.171 -61.73 -67.34
-0.481 -0.459 0.094 -0.552 -67.32 -68.60
-0.481 -0.470 -0.071 -0.560 -68.51 -68.60
-0.482 -0.482 -0.501 -0.562 -68.61 -68.62
-0.482 -0.482 -0.555 -0.562 -68.62 -68.62
-0.482 -0.482 -0.562 -0.563 -68.62 -68.63
-0.482 -0.482 -0.563 -0.563 -68.64 -68.64
-0.482 -0.482 -0.563 -0.563 -68.64 -68.64

Rank sum 107.5 102.5 88.0 122.0 95.0 115.0
U 47.5 33.0 40.0
P 0.9118 0.2176 0.4812

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
37.715 20.019 212.0 201.3 4881 4695
15.083 -1.834 199.5 199.4 5293 4695
12.652 -19.400 199.1 199.2 5295 5006
9.916 -19.400 199.0 199.2 5299 5008
3.608 -19.610 195.2 199.1 5310 5172
1.214 -21.607 191.8 199.0 5311 5172
-11.795 -28.281 188.1 197.4 5319 5172
-13.818 -29.707 187.8 195.0 5333 5236
-21.801 -29.707 187.6 195.0 5348 5236
-26.914 -33.693 187.6 195.0 5348 5239

Rank sum 76.0 134.0 124.0 86.0 147.0 63.0
U 21.0 31.0 8.0
P 0.0288 0.1654 0.0008

Table K.6 Mann-Whitney pair-wise comparison of RSCS results for two step preconditioned and
unconditioned test cases

144

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.411 0.053 0.280 -0.285 -44.64 -65.77
0.309 0.034 0.273 -0.291 -53.36 -66.07
0.145 -0.011 0.242 -0.339 -54.08 -66.44
0.078 -0.041 -0.036 -0.356 -55.58 -66.83
-0.138 -0.445 -0.533 -0.459 -57.43 -67.48
-0.242 -0.468 -0.551 -0.471 -58.55 -67.55
-0.331 -0.482 -0.559 -0.553 -65.62 -67.99
-0.456 -0.482 -0.559 -0.563 -65.99 -68.01
-0.479 -0.482 -0.559 -0.563 -66.23 -68.18
-0.482 -0.482 -0.563 -0.563 -67.21 -68.47

Rank sum 84.0 126.0 96.0 114.0 62.0 148.0
U 29.0 41.0 7.0
P 0.1230 0.5288 0.0004

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
13.840 20.019 204.2 202.8 4405 4695
1.723 8.164 202.0 201.1 5007 4978
-6.282 8.164 200.9 200.5 5292 5000
-11.795 -5.426 200.8 199.4 5292 5000
-12.841 -5.426 200.4 199.2 5294 5002
-13.818 -9.374 195.0 199.2 5297 5161
-13.818 -13.049 194.6 198.9 5300 5162
-14.806 -14.699 192.6 197.4 5304 5190
-19.610 -29.707 188.3 195.9 5348 5236
-26.977 -33.693 187.5 195.0 5357 5240

Rank sum 114.0 96.0 113.0 97.0 140.0 70.0
U 41.0 42.0 15.0
P 0.5288 0.5788 0.0068

Table K.7 Mann-Whitney pair-wise comparison of RSCS with line search results for two step
preconditioned and unconditioned test cases

145

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
0.412 0.053 0.286 0.075 -44.60 -66.14
0.119 0.025 0.283 0.066 -54.01 -66.46
0.009 -0.008 0.245 -0.420 -55.78 -67.46
-0.285 -0.009 -0.276 -0.533 -57.28 -67.55
-0.459 -0.469 -0.365 -0.537 -58.07 -67.83
-0.475 -0.470 -0.555 -0.537 -62.52 -67.98
-0.478 -0.472 -0.556 -0.555 -65.05 -68.01
-0.479 -0.475 -0.560 -0.557 -67.32 -68.18
-0.479 -0.481 -0.562 -0.561 -67.32 -68.47
-0.481 -0.481 -0.563 -0.562 -68.62 -68.64

Rank sum 105.0 105.0 101.0 109.0 68.0 142.0
U 50.0 46.0 13.0
P 1.0000 0.7960 0.0038

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
15.083 20.019 201.8 202.8 4399 4689
13.840 8.164 201.4 199.8 5271 4980
9.868 8.164 200.7 199.4 5272 5000
3.909 -5.037 199.8 199.2 5280 5004
1.723 -5.426 195.0 199.2 5291 5161
-6.282 -6.698 190.2 198.3 5292 5164
-11.795 -13.049 190.1 196.9 5296 5167
-12.841 -14.699 187.9 195.9 5319 5181
-19.610 -29.707 187.7 195.1 5319 5236
-26.977 -33.693 187.7 195.1 5348 5239

Rank sum 97.0 113.0 119.0 91.0 145.0 65.0
U 42.0 36.0 10.0
P 0.5788 0.3150 0.0016

Table K.8 Mann-Whitney pair-wise comparison of RSCS with single-pass line search results for
two step preconditioned and unconditioned test cases

146

Laser 1 Laser 2 Aerofoil
Original Precon Original Precon Original Precon
-0.477 -0.480 -0.558 -0.560 -68.632 -68.624
-0.480 -0.480 -0.560 -0.560 -68.633 -68.638
-0.481 -0.481 -0.561 -0.560 -68.637 -68.639
-0.481 -0.481 -0.561 -0.561 -68.638 -68.640
-0.481 -0.481 -0.562 -0.561 -68.638 -68.640
-0.481 -0.481 -0.562 -0.562 -68.638 -68.642
-0.481 -0.481 -0.562 -0.562 -68.639 -68.642
-0.481 -0.481 -0.562 -0.562 -68.640 -68.642
-0.482 -0.481 -0.562 -0.562 -68.641 -68.643
-0.482 -0.481 -0.562 -0.562 -68.641 -68.643

Rank sum 105.0 105.0 100.0 110.0 79.5 131.5
U 50.0 45.0 23.5
P 1.0000 0.7394 0.0524

Bead Crack 1 Crack 2
Original Precon Original Precon Original Precon
-23.335 -29.707 187.9 195.7 5316 5240
-26.914 -33.693 187.8 195.2 5331 5240
-26.977 -33.693 187.8 195.1 5348 5240
-26.977 -33.693 187.8 195.1 5348 5240
-29.707 -33.693 187.7 195.1 5352 5240
-33.693 -33.693 187.7 195.1 5352 5240
-33.693 -33.693 187.6 195.1 5355 5240
-33.693 -33.693 187.6 195.0 5355 5240
-39.849 -33.693 187.6 195.0 5356 5240
-39.849 -33.693 187.6 195.0 5356 5240

Rank sum 92.0 118.0 155.0 55.0 155.0 55.0
U 37.0 0.0 0.0
P 0.3472 0.0000 0.0000

Table K.9 Mann-Whitney pair-wise comparison of EPSOC results for two step preconditioned
and unconditioned test cases

REFERENCES

148

REFERENCES

Abramson, D., Cope, M., and McKenzie, R., (1994) “Modelling Photochemical Pollution using
Parallel and Distributed Computing Platforms”,Proc. PARLE-94, Athens, Greece, pp. 478-489.

Abramson, D., Sosic, R., Giddy, J., and Hall, B., (1995) “Nimrod: A Tool for Performing Parame-
tised Simulations using Distributed Workstations”,4th IEEE Symnposium on High Performance
Distributed Computing, Virginia.

Abramson, D., Foster, I., Giddy, J., Lewis, A., Sosic, R., Sutherst, R., and White, N., (1997) “The
Nimrod Computational Workbench: A Case Study in Desktop Metacomputing”,Australian
Computer Science Conference (ACSC97), Sydney, Australia.

Abramson, D., Lewis, A., and Peachey, T., (2000) “Nimrod/O: A Tool for Automatic Design Op-
timization”, The 4th International Conference on Algorithms & Architectures for Parallel Pro-
cessing (ICA3PP 2000), Hong Kong, China.

Abramson, D., Lewis, A., and Peachey, T., (2001) “Case Studies in Automatic Design Optimi-
sation using the P-BFGS Algorithm”,Proc. 2001 High Performance Computing Symposium
(HPC’01), Advanced Simulation Technologies Conference, Seattle, WA, pp. 104-109.

Abramson, D., Lewis, A., Peachey, T., Fletcher, C., (2001a) “An Automatic Design Optimization
Tool and its Application to Computational Fluid Dynamics”,Proc. ACM/IEEE SC2001 Conf.,
Denver, CO.

Alander, J.T., (1995) “An Indexed Bibliography of Genetic Algorithms in Computer Aided De-
sign”, Report 94-1-CAD, Department of Information Technology and Production Economics,
University of Vaasa, Finland.

Alander, J.T., (1999) “An Indexed Bibliography of Genetic Algorithms Papers Available via ftp and
www”, Report 94-1-FTP, Department of Information Technology and Production Economics,
University of Vaasa, Finland.

Alexandrov, N.M., and Lewis, R.M., (2000) “First-Order Frameworks for Managing Models in
Engineering Optimization”, inModeling and Space Mapping for Engineering Optimization,
Lyngby, Denmark.

Alotto, P., Molfino, P., and Molinari, G., (2001) “A WWW-based Tool for the Remote Optimisation
of Electromagnetic Devices”,IEEE Trans. Magnetics, 37(5)1, pp. 3592-5.

Anderson, N., Gallagher, J.W., and Hertel, I.V., (1988)Physics Reports (Review Section of Phys.
Rev. Lett.), 165(1-2), pp. 1-188.

Anderson, E.J., and Ferris, M.C., (2001) “A Direct Search Algorithm for Optimization with Noisy
Function Evaluations”,SIAM J. Optim., 11(3), pp. 837-857.

Avriel, M., and Wilde, D.J., (1966) “Optimal search for a maximum with sequences of simultaneous
function evaluations”,Management Science, 12, pp. 722-731.

Azzi, M., Johnson, G., and Cope, M., (1992) “An Introduction to the Generic Reaction Set pho-
tochemical mechanism”,Proc. 11th Int. Conf. of the Clean Air Society of Australia and New
Zealand, Brisbane, Australia.

149

Bak P. and Sneppen K. (1993) “Punctuated equilibrium and criticality in a simple model of evolu-
tion”, Phys. Rev. Let., 71, pp. 4083-4086.

Bak, P. (1996) “How Nature Works”, Springer-Verlag, New York.

Bakr, M.H., Bandler, J.W., Madsen, K., Rayas-Sánchez, J.E., and Søndergaard, J., (2000) “Space-
Mapping Optimization of Microwave Circuits Exploiting Surrogate Models”,IEEE Trans. Mi-
crowave Theory and Techniques, 48(12), pp. 2297-2306.

Bäck, T. (1996) “Evolutionary Algorithms in Theory and Practice”, Oxford University Press, New
York, NY.

Barton, R.R., and Ivey, J.S., Jr., (1996) “Nelder-Mead Simplex Modifications for Simplex Opti-
mization”,Management Science, 42(7), pp. 954-973.

Bassiri, K., and Hutchinson, D., (1994) “New Parallel Variants on Parallel Multi-Dimensional
Search for Unconstrained Optimisation”, Research Report 94.28, University of Leeds, School
of Computer Studies.

Beale, E.M.L., (1988) “Introduction to Optimization”, John Wiley & Sons, Chichester, 1988.

Bischof, C.H., B̈ucker, H.M., Lang, B., and Rasch, A., (2003) “Automated Gradient Calculation”, In
J. Ballmann (ed.),Flow Modulation and Fluid-Structure Interaction at Airplane Wings, num-
ber 84 in Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 205-224.
Springer, Berlin.

Bongartz, I., Conn, A.R., Gould, N. and Toint, P.L., (1995) “{CUTE}: Constrained and Uncon-
strained Testing Environment”,ACM Trans.Math.Software,21(1), pp. 123-160.

Booker, A.J., Dennis, Jr., J.E., Frank, P.D., Serafini, D.B., Torczon, V., and Trosset, M.W., (1998)
“Optimization using surrogate objectives on a helicopter test example”, inComputational Meth-
ods in Optimal Design and Control, Borggaard, et al. (eds.), Birkhauser, Boston, MA, pp. 49-58.

Box, G.E.P., and Draper, N.R., (1987) “Empirical Model-Building and Response Surfaces”, Wiley.

Brent, R.P., (1973) “Algorithms for Minimization without Derivatives”, Prentice-Hall, Englewood
Cliffs, NJ.

Broyden, C.G., (1970) “The convergence of a class of double rank minimization algorithms, parts I
and II,J.Inst.Maths.Applns.,6, pp. 76-90 and 222-231.

Büche, D., Schraudolph, N.N., and Koumoutsakos, P., (2003) “Accelerating Evolutionary Algo-
rithms Using Fitness Function Models”,Proc. Bird of a Feather Workshops, Genetic and Evo-
lutionary Computation Conference (GECCO 2003), Chicago, IL, pp. 166-169.

Byrd, R.H., Schnabel, R.B., and Schulz, G.A., (1988) “Parallel quasi-Newton Methods for Uncon-
strained Optimization”,Math. Prog., 42, pp. 273-306.

Byrd, R.H., Lu, P., Nocedal, J., and Zhu, C., (1995) “A limited memory algorithm for bound con-
strained optimization”,SIAM J. Opt., 16(5), pp. 1190-1208.

Carter, R., Gablonsky, J.M, Patrick, A., Kelley, C.T., and Eslinger, O.J., (2001) “Algorithms for
Noisy Problems in Gas Transmission Pipeline Optimization”,Optimization and Engineering,
(2), pp. 139-157.

150

Chaperon, P., Sawyer, J., Jones, R., and Rose, F., (1999) “Structural Optimization with Damage
Tolerance Constraints”,Proceedings of the 20th Symposium of the International Committee on
Aeronautical Fatigue, Bellevue, WA.

Coello Coello, C.A., (1998) “An Updated Survey of Evolutionary Multiobjective Optimization
Techniques” State of the Art and Future Trends”, Technical Report Lania-RD-98-08, Labo-
ratorio Nacional de Inforḿatica Avanzada (LANIA), Xalapa, Veracruz, México.

Coello Coello, C.A., (1999) “A Comprehensive Survey of Evolutionary-Based Multiobjective Op-
timization Techniques”,Knowledge and Information Systems, 1(3), pp. 269-308.

Conn, A.R., Scheinberg, K., and Toint, Ph.L., (1997) “Recent Progress in Unconstrained Nonlinear
Optimization Without Derivatives”,ISMP97, Lausanne, Switzerland.

Cooper, L., and Steinberg, D., (1970) “Introduction to Methods of Optimization”, W.B.Saunders,
Philadelphia, PA.

Culberson, J., (1996) “On the Futility of Blind Search”, Technical Report TR 96-18, University of
Alberta, Department of Computer Science.

Davidon, W.C., (1959) “Variable metric method for minimization”,AEC Res. and Dev. Report ANL-
5990(revised).

Dennis, J.E., and Torczon, V., (1991) “Direct search methods on parallel machines”,SIAM J. Optim.,
1, pp. 448-474.

Dennis, J.E., and Torczon, V., (1996) “Managing Approximation Models in Optimization”,Pro-
ceedings of the 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Opti-
mization, Bellevue, WA.

Dolan, E.D., Lewis, R.M., and Torczon, V., (2000) “On the Local Convergence of Pattern Search”,
SIAM Journal on Optimization, 14(2), pp. 567-583.

Durand, N., and Alliot, J-M., (1999) “A Combined Nelder-Mead Simplex and Genetic Algorithm”,
GECCO’99: Proceedings of the Genetic and Evolutional Computation Conference,Orlando,
FL.

El-Beltagy, M.A., and Keane, A., (2001) “Evolutionary optimization for computationally expensive
problems using Gaussian processes”,Proc. Int. Conf. on Artificial Intelligence IC-AI’2001, Las
Vegas, pp. 708-714.

Elster, C., and Neumaier, A., (1995) “A grid algorithm for bound constrained optimisation of noisy
functions”,IMA J. Numerical Analysis, 15(4), pp. 585-608.

Elster, C., and Neumaier, A., (1997) “A trust region method for the optimisation of noisy functions”,
Computing, 58, pp. 31-46.

Fletcher, R. and Reeves, C.M., (1963) “Function minimization by conjugate gradients”,Computer
Journal,7, pp. 149-54.

Fletcher, R. and Powell, M.J.D., (1963) “A rapidly convergent descent method for minimization”,
Computer Journal, 6, pp. 163-8.

Fletcher, R., (1970) “A new approach to variable metric algorithms”,Computer Journal, 13, pp.
317-322.

151

Fletcher, R., (1987) “Practical Methods of Optimization”, 2nd Ed., John Wiley & Sons, Chichester.

http://www.fluent.com/

Fogel, L.J., (1962) “Autonomous automata”,Industrial Research, 4, pp. 14-19.

Fogel, L.J., Owens, A.J., and Walsh, M.J., (1966) “Artificial Intelligence through Simulated Evolu-
tion”, Wiley, New York.

Fogel, D.B., (1991) “System Identification through Simulated Evolution: A Machine Learning Ap-
proach to Modeling”, Ginn Press, Needham Heights.

Fogel, D.B., (1992) “Evolving Artificial Intelligence”, PhD thesis, University of California, San
Diego, CA.

Foster, I., (1994)Designing and Building Parallel Programs, Addison-Wesley, Reading, MA.

Foster, I., Kesselman, C., (1997) “Globus: A Metacomputing Infrastructure Toolkit”,International
Journal of Supercomputer Applications, 11(2), pp. 115-128.

Freeman, T.L., and Phillips, C., (1992)Parallel Numerical Algorithms, Prentice Hall International,
Hemel Hempstead, UK.

Gill, P.E., Murray, W., and Wright, M.H., (1981) “Practical Optimization”, Academic Press, London
and New York.

Giunta, A. A, Narducci R., Burgee, S., Grossman, B., Mason, W. H., Watson, L. T. and Haftka, R.
T., (1995) “Variable-Complexity Response Surface Aerodynamic Design of an HSCT Wing”,
AIAA 95–1886,Proceedings of 13th AIAA Applied Aerodynamics Conference, San Diego, CA,
pp. 994-1002.

Goldfarb, D., (1970) “A family of variable metric methods derived by variational means”,Maths.Comp.,
24, pp. 23-26.

Grefenstette, J.J., (1984) “GENESIS: A system for using genetic search procedures”,Proceedings
of the 1984 Conference on Intelligent Systems and Machines, pp. 161-165.

Haftka, R.T., Vitali, R., and Sankar, B.V., (1999) “Optimization of Composite Structures using Re-
sponse Surface Approximations,” NATO Advanced Study Institute, July 1998, InMechanics of
Composite Materials and Structures, A. Mota Soares, et al. (eds.), Kluwer Academic Publish-
ers, pp. 409-430.

Hall, B.V., (1989) “Superelastic Electron Scattering from the Laser Excited52P3/2 State of Rubid-
ium”, PhD thesis, Griffith University, Australia.

Hamma, B.S., (1997) “Local and Global Behavior of Moving Polytope Algorithms”,CERFACS
Tech. Report TR/PA/97/39,Toulouse, France.

Hestenes, M.R. and Stiefel, E., (1952) “Methods of conjugate gradients for solving linear equa-
tions”, J.Res.Nat.Bur.Stand.,49, pp. 409-36.

Hestenes, M.R., (1956) “The conjugate gradient method for solving linear systems”, InProc.Symposia
on Appl.Math.,VI “Numerical Analysis”, McGraw-Hill, New York, pp. 83-102.

Holland, J.H. (1975) “Adaptation in natural and artificial systems”, University of Michigan Press,
Ann Arbor, MI.

152

Hooke, R., and Jeeves, T.A., (1961) “‘Direct Search’ solution of numerical and statistical problems”,
J. Assoc. Comput. Mach.,8, pp. 212-229.

Hough, P.D., and Meza, J.C., “A class of trust-region methods for parallel optimization”,SIAM J.
Opt., 13(1), pp. 264-282.

Humphrey, D.G., and Wilson, J.R., (1998) “A Revised Simplex Search Procedure for Stochastic
Simulation Response-Surface Optimization”,Proc. 1998 Winter Simulation Conference,D.J.
Medeiros, et al. (eds.), IEEE Press, Piscataway, N.J., pp. 751-759.

Ingber, L., (1989) “Very fast simulated re-annealing”,Journal of Mathematical Computer Modeling,
12(8), pp. 967-973.

Keane, A.J., (1996) “A Brief Comparison of Some Evolutionary Optimization Methods”, InModern
Heuristic Search Methods, V. Rayward-Smith, et al. (eds.), J. Wiley, pp. 255-272.

Kelley, C.T., (1999) “Detection and Remediation of Stagnation in the Nelder-Mead Algorithm using
a Sufficient Decrease Condition”,SIAM J. Optim.,10(1), pp. 48-55.

Kelley, C.T., (1999) “Iterative Methods of Optimization”, SIAM, Philadelphia, PA.

Khuri, A.I., and Cornell, J.A., (1987) “Response surfaces: design and analyses”, Dekker, Inc., New
York, NY.

Kiefer, J., (1959) “Optimum sequential search and approximation methods under minimum regu-
larity assumptions”,J.SIAM, 5(3).

Kirkpatrick, S., Gerlatt, C. D. Jr., and Vecchi, M.P., (1983)“ Optimization by Simulated Annealing”,
Science, 220, pp. 671-680.

Knowles, J.D. and Corne, D.W., (1999) “The Pareto Archived Evolution Strategy: A New Baseline
Algorithm for Multiobjective Optimisation”, In1999 Congress on Evolutionary Computation,
Washington, DC, pp. 98-105.

Koh, B.I., Reinbolt, J.A., Fregly, B.J., and George, A.D. (2004) “Parallel decomposition methods
for biomechanical optimization”, inProceedings of the Eighth International Symposium on the
3D Analysis of Human Movement, Tampa, FL.

Krink, T., and Thomsen, R., (2001) “Self-Organized Criticality and Mass Extinction in Evolution-
ary Algorithms”,Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001),
Seoul, Korea.

van Laarhoven, P.J.M., (1985) “Parallel variable metric algorithms for unconstrained optimization”,
Math. Prog., 39, pp. 68-81.

Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright, P.E., (1996) “Convergence Properties of the
Nelder-Mead Simplex Algorithm in Low Dimensions”, Technical Report 96-4-07, Bell Labo-
ratories, Computing Science Research Center.

Laumanns, M., Thiele, L., Deb, K. and Zitzler, E., (2002) “Archiving with guaranteed convergence
and diversity in multi-objective optimization”, inProceedings of the Genetic and Evolutionary
Computation Conference, pp. 439-447.

Lewis, A., Abramson, D., Sosic, R., and Giddy, J., (1995) “Tool-based Parameterisation: An Appli-
cation Perspective”,Proc. Computational Techniques and Applications Conference (CTAC95),
pp. 463-469, Melbourne, Australia.

153

Lewis, A., Abramson, D., and Simpson, R., (1997) “Parallel non-linear optimization: Towards
the design of a decision support system for air quality management”,Proceedings of the 1997
ACM/IEEE conference on Supercomputing, San Jose, CA.

Lewis, R.M., Torczon, V., and Trosset, M.W., (2000) “Direct Search Methods: Then and Now”,J.
Computational and Applied Mathematics124(1-2), pp. 191-207.

Liang, K-H., Yao, X., and Newton, C., (2000) “Evolutionary Search of Approximated N-Dimensional
Landscapes”,Int. J. Knowledge-Based Intelligent Eng. Sys., 4(3), pp. 172-183.

Lu, J.W., Thiel, D.V., and Saario, S.A., (2002) “FDTD analysis of dielectric-embedded electroni-
cally switched multiple-beam (DE-ESMB) antenna array”,IEEE Trans. Magnetics, 38(2), pp.
701-704.

Mattheck, C., and Burkhardt, S., (1990) “A new method of structural shape optimization based on
biological growth”,Int. J. Fatigue, 12(3), pp. 185-190.

McKinnon, K.I.M., (1998) “Convergence of the Nelder-Mead Simplex Method to a Non-Stationary
Point”, SIAM J. Optim.,9, pp. 148-158.

McRae, G.J., Russell, A.G., and Harley, R.A., (1992) “CIT photochemical airshed model – users
manuals”, Carnegie Mellon University, Pittsburgh, PA and California Intitute of Technology,
Pasadena, CA.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M. N., Teller, A.H. and Teller, E., (1958) “Equations
of State Calculations by Fast Computing Machines”,J. Chem. Phys.21, pp. 1087-1092.

Moré, J.J., and Thuente, D.J., (1994) “Line search algorithms with guaranteed sufficient decrease”,
ACM Transactions on Mathematical Software, 20(3), pp. 286-307.

Navon, I.M., Phua, P.K.H., and Ramamurthy, M., (1988) “Vectorization of conjugate-gradient meth-
ods for large scale minimization”,Proceedings of the 1988 ACM/IEEE conference on Super-
computing, pp. 410-418.

Nazareth, L, and Tseng, P., (2002) “Gilding the Lily: a Variant of the Nelder-Mead Algorithm based
on Golden-Section Search”,Comp.Optim.Appl., 22, pp. 133-144.

Neddermeijer, H.G., van Oortmarssen, G.J., Piersma, N., Dekker, R., and Habbema, J.D.F., (2000)
“Adaptive extensions of the Nelder and Mead Simplex Method for optimisation of stochastic
simulation models”,Econometric Institute Report EI2000-22/A,Faculty of Economics, Eras-
mus University Rotterdam, The Netherlands.

Nelder, J.A., and Mead, R., (1965) “A simplex method for function minimization”,Comput. J.,7,
pp. 308-313.

Nishioka, T. and Atluri, S.N., (1983) “Analytical Solution for Embedded Elliptical Cracks, and Fi-
nite Element Alternating Method for Elliptical Surface Cracks, Subject to Arbitrary Loadings”,
Engng. Fracture Mechanics, 17(3), pp. 247-268.

Parkinson, J.M., and Hutchinson, D., (1972) “An Investigation into the Efficiency of Variants on
the Simplex Method”, InNumerical Methods for Non-linear Optimization(F.A. Lootsma, ed.)
Academic Press, London and New York, pp. 115-135.

Peachey, T., Abramson, D., and Lewis, A., (2001) “Parallel Line Search”, To appear inProc.
ASOR2001 Optimization Day, Adelaide, Australia.

154

Peachey, T., Abramson, D., Lewis, A. and Jones, R., (2003) “Distributed Optimization using Nim-
rod/O and its Application to Fault Tolerant Structures”,Fifth International Conference on Par-
allel Processing and Applied Mathematics (PPAM 2003),Czestochowa, Poland.

Peachey, T., (2003a) “Nimrod/O User’s Guide: for Version 2.1.x”, Monash University, Australia.

Pérez, V.M., and Renaud, J.E., (2000) “Decoupling the design sampling region from the trust region
in approximate optimization”,International Mechanical Engineering Congress & Exposition
(IMECE’00), Orlando, FL.

Phua, P.K-H., Fan, W., and Zeng, Y., (1998) “Parallel Algorithms for Large-scale Nonlinear Opti-
mization”, Int. Trans. in Operational Res., 5(1), pp. 67-77.

Pincus, M., (1970) “A Monte Carlo Method for the Approximate Solution of Certain Types of
Constrained Optimization Problems”,Oper. Res., 18, pp. 1225-1228.

Polak, E., (1971) Computational Methods in Optimization, Academic Press, New York.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., (1992) “Numerical Recipes in
Fortran 77: the art of scientific computing”, 2nd Ed., Cambridge University Press.

Rodŕıguez, J.F., Ṕerez, V.M., Padmanabhan, D., Renaud, J.E., (2001) “Sequential Approximate Op-
timization Using Variable Fidelity Response Surface Approximations”,Structural Optimiza-
tion, 22,(1), pp. 24-34.

Saario, S., Thiel, D.V., Lu, J.W., and O’Keefe, S.G., (1997) “An assessment of cable radiation effects
on mobile communications antenna measurements”,IEEE APS Symp. Dig., pp. 550-553.

Saario, S., Thiel, D.V., and Lu, J.W., (1999) “Application and optimisation of high permittivity
ceramic beads for RF isolation on straight wire transmission lines”,CSIRO, Symp. on Antennas
Sydney, Australia.

Sartenaer, A., (1995) “Large-scale nonlinear optimization and the LANCELOT package”,Belgian
Journal of Operations Research, Statistics and Computer Science, 35(3-4), pp. 61-79.

Saupe, D., (1988) “Algorithms for random fractals”, InThe Science of fractal images, (H.-O. Peitgen
and D. Saupe, eds.), Springer-Verlag, New York.

Schwefel, H.-P. (1965) “Kybernetische Evolution als Strategie der experimentellen Forschung in
der Str̈omungstechnik”, Diplomarbeit, Technische Universität Berlin.

Scotti, M.V., Malik, Z., Cheung, P.Y.K., and Nelder, J., (2000) “Optimisation of full custom logic
cells using response surface methodology”,Electronics Letters,36(1).

Shanno, D.F., (1970) “Conditioning of quasi-Newton methods for function minimization”,Maths.Comp.,
24, pp. 647-656.

Sharpe, O.J., (1998) “Beyond NFL : A few tentative steps”,Proceedings of the Third Annual Genetic
Programming Conference,(Koza, J.R., ed.).

Sharpe, O.J., (2000) “Towards a Rational Methodology for Using Evolutionary Search Algorithms”,
PhD thesis, University of Sussex.

Sharpe, O.J., (2003) private communication.

155

Shekarforoush, H., Berthod, M., and Zerubia, J., (1995) “Direct Search Generalized Simplex Al-
gorithm for Optimizing Non-Linear Functions”, INRIA Research Report RR-2535, Sophia An-
tipolis, France.

Schnabel, R.B., (1987) “Concurrent function evaluations in local and global optimization”,Com-
puter Methods in Applied Mechanics and Engineering, 64, pp. 537-552.

Spendley, W., Hext, G.R., and Himsworth, F.R., (1962) “Sequential application of simplex designs
in optimization and evolutionary operation”,Technometrics, 4, pp. 441-461.

Torczon, V., (1989) “Multidirectional Search”, Ph.D. thesis, Rice University, Houston, TX.

Torczon, V., (1991) “On the convergence of the multidirectional search algorithm”,SIAM J. Optim.,
1, pp. 123-145.

Torczon, V., and Trosset, M.W., (1998) “Using approximations to accelerate engineering design op-
timization”, Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, St. Louis, MO.

Tseng, P., (1999) “Fortified-Descent Simplicial Search Method: A General Approach”,SIAM J.
Optim., 10(1), pp. 269-288.

Turing, A.M., (1936) “On computable numbers with an application to the entscheidungs-problem”,
Proc. London Mathematical Society, 2(42), pp. 230-265,ibid., (43), pp. 544-546.

Van Veldhuizen, D.A., (1999) “Multiobjective Evolutionary Algorithms: Classifications, Analyses
and New Innovations”, PhD Thesis, Air Force Institute of Technology, Air University, USA.

Van Veldhuizen, D.A., and Lamont, G.B., (2000) “Multiobjective Evolutionary Algorithms: Ana-
lyzing the State-of-the-Art”,Evolutionary Computation, 8(2) pp. 125-147.

Vitali, R., Haftka, R.T., and Sankar, B.V., (1999) “Multifidelity Design of Stiffened Composite Panel
with a Crack”, World Congress of Structural and Multidisciplinary Optimization Congress,
Buffalo, New York.

Wilde, D.J., (1964) “Optimum Seeking Methods”, Prentice-Hall, Englewood Cliffs, NJ.

Wolpert, D., and Macready, W., (1997) “No free lunch theorems for search”,IEEE Transactions on
Evolutionary Computation, 1(1), pp. 67-82.

Wright, A.H., (1991) “Genetic Algorithms for Real Parameter Optimization”, inFoundations of
Genetic Algorithms, (G.J.E. Rawlins, ed.), Morgan Kaufman.

Wright, M.H., (1995)“Direct Search Methods: Once Scorned, Now Respectable”, inNumerical
Analysis 1995 (Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis),
(D.F. Griffiths, and G.A. Watson, eds.), Addison Wesley Longman, Harlow, UK, pp. 191-208.

Zavriev, S.K., and Perunova, Y.N., (2003) “Parallel Versions of the Modified Coordinate and Gra-
dient Descent Methods and Their Application to a Class of Global Optimization Problems”,
Computational Mathematics and Modeling, 14(2), pp. 108-122.

Zitzler, E., (1999) “Evolutionary Algorithms for Multiobjective Optimization: Methods and Appli-
cations”, D.Tech.Sci. Dissertation, Swiss Federal Institute of Technology, Zurich, Switzerland.

Zitzler, E., Deb, K., and Thiele, L., (2000) “Comparison of Multiobjective Evolutionary Algorithms:
Empirical Results”,Evolutionary Computation, 8(2) pp. 173-195.

156

Zitzler, E., (2002) “Evolutionary Algorithms for Multiobjective Optimization”,EUROGEN-2001,
Evolutionary Methods for Design, Optimisation and Control, Barcelona, Spain.

