
On the Evaluation of the Quality of
Non–dominated Sets

Giovanni Lizárraga Lizárraga

Doctorado en Ciencias con Orientación en Ciencias de la Computación

Center for Research in Mathematics A.C.

April 2009

Abstract

There are many published multi–objective evolutionary algorithms (also

known as MOEAs). A natural question is what algorithm performs better?

If we ignore other factors such as computational complexity, the evaluation

of the performance of a MOEA only depends on the output of the algorithm.

The output of a MOEA is a set of vectors (usually known as non–dominated

sets) with some special properties derived from the Pareto Optimality Cri-

teria (POC). Unfortunately, evaluating and comparing these non–dominated

sets is not an easy task and is an open research problem.

Many performance measures have been proposed in the past, but they

are sensitive to misleading cases and sometimes, hard to use. Some theoret-

ical studies have been developed in order to determine what we want from

a good performance measure. Unfortunately, many of the performance mea-

sures derived from those studies are too conservative and have a very limited

capacity to distinguish between good and bad sets.

The goal of this thesis is to analyze the problem and introduce a new

method for the evaluation of non–dominated sets, named G–Ranker. The

G–Ranker is designed having in mind most of the desired properties of a

non–dominated set, needs no extra information about the multi–objective

problem and is more robust to misleading cases compared to other methods.

Also, we introduce a set of test cases to evaluate the effectiveness of a

performance measure. The results of the experiments demonstrate the supe-

riority of the G–Ranker with respect to state–of–the–art approaches reported

in specialized literature.

A mi madre, Evangelina Lizárraga Lizárraga.

i

ii

Agradecimientos

Hay tanta gente a quien agradecer que no quisiera no excluir a nadie, pero

si alguien me faltó, espero me disculpe.

Primero agradezco a mis padres por todo lo que hicieron por mı́, em-

pezando por haberme hecho a mı́. También a mis hermanos por su apoyo.

Segundo a mi asesor Arturo Hernández por la gúıa y la oportunidad.

A todo el personal de CIMAT, tanto académicos como administrativos

por su soporte y el excelente trabajo que hacen. Gracias a eso, uno solo tiene

que preocuparse por hacer ciencia y no por otras cosas.

A mis compañeros de cub́ıculo Alonso, Angel, Justino, Gerardo, Rogelio

y Karen. Hicieron que el trabajo de investigación la cosa más divertida del

mundo.

A Alejandra, que es una de las mejores cosas que me han pasado en la

vida.

A Judith e Ivette por ser una inspiración.

A todas mis amistades en Guanajuato, que hicieron mi vida más amena

fuera del ambiente en CIMAT. Si leen esto sabrán que me refiero a ustedes.

Al CIMAT como institución, por toda la ayuda y por ser el mejor lugar

para hacer investigación.

Un agradecimiento especial al Doctor Miguel Angel Moreles por todas

sus asesoŕıas respecto a matemáticas y en especial la revisión de una de mis

demostraciones referente a teoŕıa de conjuntos.

Un enorme agradecimiento al Consejo Nacional de Ciencia y Tecnoloǵıa

(CONACYT), por todo su apoyo para mis estudios de maestŕıa y doctorado

bajo el número de becario 159170. Sin este apoyo hubiera sido imposible la

realización de esta investigación.

Y finalmente, a todos los que me faltaron.

iii

iv

Contents

1 Introduction 1

2 Basic Concepts 5

2.1 Introduction . 5

2.2 Modeling . 7

2.3 Optimization . 11

2.3.1 Types of Optimization Problems 14

2.4 Evolutionary Computation . 16

2.5 Multi–Objective Optimization 20

2.5.1 Pareto Optimality Criteria 23

2.5.2 The Goal of Multi–Objective Optimization 32

2.5.3 Methods for Multi–Objective Optimization 33

2.5.4 Multi–Objective Evolutionary Algorithms 36

2.6 Preferences . 37

2.6.1 Introduction . 37

2.6.2 Decision Maker Preferences 38

2.6.3 Analyst Preferences . 40

2.7 Convergence and Diversity . 44

3 Quality Indicators for Non–dominated Sets 47

3.1 Introduction . 47

3.2 Quality Indicators and their Properties 48

v

3.3 Hansen and Jaszkiewicz Approach 52

3.4 Zitzler et al. Framework . 56

3.5 Farhang-Mehr and Azarm’s Framework 60

3.6 Quality indicators, Comparison Methods and Others. 62

3.6.1 Introduction . 62

3.6.2 Reference Points Found 63

3.6.3 Non–dominated Set Spacing 64

3.6.4 S–metric . 64

3.6.5 ε–Indicator . 65

3.6.6 Generational Distance 66

3.6.7 R–Metrics . 67

3.6.8 Dominance Ranking 70

4 Problem Statement 73

4.1 Introduction . 73

4.2 Quality Indicator Transformation 74

4.3 Attainment Function . 74

4.4 Ranking . 76

4.5 The Problem . 76

4.6 The Objective . 77

5 The G–Ranker 81

5.1 Introduction . 81

5.2 Convergence Component . 82

5.3 Diversity Component . 85

5.3.1 A New Interpretation of Diversity 86

5.3.2 Some Ideas For Indicators of Diversity 92

5.4 Combining Diversity and Convergence 100

5.5 Normalization . 103

5.6 Ranking . 103

5.6.1 General Algorithm of the G–Ranker 105

vi

5.6.2 Properties of the G–Ranker 105

6 Experiments 111

6.1 Introduction . 111

6.2 Nomenclature . 112

6.3 Experiments . 113

6.3.1 Experiment 1 . 113

6.3.2 Experiment 2 . 115

6.3.3 Experiment 3 . 116

6.3.4 Experiment 4 . 118

6.3.5 Experiment 5 . 118

6.3.6 Experiment 6 . 121

6.3.7 Experiment 7 . 121

6.3.8 Experiment 8 . 124

6.4 Conclusions of Experiments 124

7 Further Details 127

7.1 Introduction . 127

7.2 The G–Indicator . 127

7.3 Misleading Cases . 129

7.4 Using Information Related to the

Optimization Problem . 131

7.5 Using Other Geometric Objects 131

8 Conclusions 133

A The Cardinality of Some Sets of Non–dominated Sets 137

A.1 Introduction . 137

A.2 Set Theory . 140

A.3 The Cardinality of Some Important Sets 142

A.4 Cardinalities and Quality Indicators 149

vii

viii

List of Figures

2.1 Parabolic Movement. 9

2.2 The graph of an objective function. 14

2.3 The Search Space and the Objective Function Space. 23

2.4 An example of dominance. 26

2.5 An example of a non–dominated set. 29

2.6 The Pareto Front and the Pareto Set. 31

2.7 Convergence and Diversity. 33

2.8 Utility functions and their optimal solutions. 39

2.9 Two sets with a huge difference in diversity. 44

2.10 Convergence versus diversity. 46

3.1 According to the out–performance relations (OC , OS and OW),

these sets are not comparable. 54

3.2 Some elements of Z. 56

3.3 A misleading case for the Dominance Ranking. 72

5.1 Convergence Algorithm. 84

5.2 Five approximation sets, three classes of dominance. 85

5.3 The first “relative” Pareto Front is found. 86

5.4 The second “relative” Pareto Front is found. 87

5.5 An example of a Pareto Front. 89

5.6 Two probability distributions. 89

5.7 A continuous Pareto Front. 90

ix

5.8 Two density functions for a continuous Pareto Front. 90

5.9 Penalty functions for two different configurations of vectors. . 93

5.10 The radius U define a zone of influence I. 95

5.11 B2. 96

5.12 A graphic representation of the Diversity Component of the

G–Ranker. 98

5.13 Two approximations in the same class of dominance. 102

5.14 Diversity Algorithm. 103

5.15 Normalization Algorithm. 104

5.16 Ranking Algorithm. 105

5.17 G–Ranker. 106

5.18 Two non-dominated sets. 107

6.1 Experiment 1 in two dimensions. 114

6.2 Experiment 2 in two dimensions. 115

6.3 Experiment 3 in three dimensions. 117

6.4 Experiment 4 in three dimensions. 119

6.5 Experiment 5 in two dimensions. 120

6.6 Experiment 6 in two dimensions. 122

6.7 Experiment 7 in two dimensions. 123

6.8 Experiment 8 in two dimensions. 125

7.1 Three relative Pareto Fronts. 129

7.2 A misleading case for the G–Ranker. 130

A.1 A non–dominated set S ⊂ R2. 143

x

Chapter 1

Introduction

In this document we study the problem of how to evaluate the quality of a

non–dominated set, or how to compare the relative quality of several non–

dominated sets. This problem has become an important topic of research in

multi–objective optimization using the Pareto Optimality Criteria (POC).

In multi–objective optimization using POC, we approximate a special set of

vectors known as the Pareto Set. This set is important because, under a few

assumptions, it contains all possible optimal solutions that a Decision Maker

may want. Unfortunately, it is not possible to obtain the complete Pareto

Set in the general case, so it is necessary to make an approximation using a

non–dominated set. This way, it is more likely for a Decision Maker, to find

an acceptable solution.

Many special algorithms have been created to approximate the Pareto

Set. It is natural to wonder which algorithm is better than the others in the

range of problems they are supposed to solve1. As a consequence, a new area

of research has arisen: the comparison of the performance of two or more

multi–objective algorithms. One of the most important aspects to consider

when comparing two algorithms is the quality of their outputs. In our case,

1It has been demonstrated that the expected performance of all optimization algorithms
are equal [74], but if we are interested only in a subset of problems, some algorithms may
perform better than others.

1

the output of an algorithm is a non–dominated set, so, an important part in

the comparison of two algorithms is the comparison of non–dominated sets.

Unfortunately, the evaluation of the quality of non–dominated sets is a

difficult task. Many methodologies, proposed to this end, in some cases

contradict the intuitive notion of when a non–dominated set is better than

others. Part of the problem is the lack of a proper definition of quality re-

garding non–dominated sets. Several theoretical studies have been developed

to try to identify the desirable properties of both a non–dominated set and a

methodology to evaluate non–dominated sets. But, still there is no definitive

method that is universally accepted, so an active area of research is to find

more accurate methodologies to evaluate non–dominated sets.

We are interested in a special class of algorithms that approximate the

Pareto Set, known as multi–objective evolutionary algorithms. MOEAs are

stochastic algorithms, therefore, repeated runs of the algorithms may result

in different non–dominated sets. As a consequence, a single run is not enough

to compare two algorithms. So, the comparison of two MOEAs must be based

on several runs from both algorithms. In [43], a methodology to make this

kind of analysis is proposed. The basic steps of this methodology are:

1. Run each MOEA several times.

2. Combine the outputs of all MOEAs in a set of m non–dominated sets.

3. Rank the m sets.

4. Decide which MOEA is the best based on a non–parametric analysis

of the ranked sets.

Non–parametric analysis is a well developed area in statistics, so the

main area of opportunity here is how to rank m non–dominated sets. The

goal of this work is to develop a method to evaluate the elements of a list

of non–dominated sets, that models our intuitive notion of when one non–

dominated set is better than another. In order to attain this goal, we review

2

some of the most important articles related to the evaluation of the quality

of non–dominated sets and make a revision of several basic concepts related

to optimization and operation research in order to identify what makes a

non–dominated set useful.

Some of the most important results from this work are the following:

1. We create a method to compare non–dominated sets that combines

diversity and convergence and has most of the desirable properties for

a quality indicator.

2. We introduce a benchmark that is useful to study the behavior of qual-

ity indicators.

3. We show that, contrary to what is widely believed, unary quality indi-

cators are not inferior to binary ones, and that being both compatible

and complete is not desirable for a quality indicator.

The rest of the document is organized in the following way: in Chapter 2,

we present some basic concepts of problem solving. In Chapter 3, we review

the main concepts about performance measures for non–dominated sets and

some of the most popular quality indicators. In Chapter 4, we state the

problem we address in this work. In Chapter 5, we present our quality

indicator. In Chapter 6, we present some test cases to evaluate the robustness

of a comparison method and the result of the experimentation. In Chapter 7,

we explore some details and ideas for future research based on this work.

Finally in Chapter 8, we state our conclusions.

3

4

Chapter 2

Basic Concepts

2.1 Introduction

In daily life, we make decisions all the time. Some of these decisions are

easily made and do not require a lot of time or other resources, for example:

choosing a pair of shoes. Other decisions may need more time and effort, like

buying a new car. The goal of making decisions is to choose good solutions to

a problem, for instance, what pair of shoes combines better with my clothes?

or where am I going to live?

Sometimes, we are satisfied with any solution that fulfills some require-

ments, for example, any working car that cost less then $5000.00 is good

enough to satisfy our needs. Sometimes, we want the “best” solution to the

problem, for example:

Example 1. We want the cheapest apartment in our city whose distance

from our office is less than 10 kilometers.

When we are looking for a solution, it is common to have a set of possible

candidates to choose from. We call the set of candidate solutions “the search

space”. These candidate solutions have some attributes of interest, depending

on the problem we are solving. These attributes of interest can be divided

5

into constraints and objectives. In Example 1, the set of candidate solutions

is all the houses for rent in the city and the attributes of interest are “distance

from our workplace” and “cost of the rent”. The attribute “distance from

the workplace” is a constraint while the attribute “cost of the rent” is an

objective.

The procedure we use to solve a problem may depend on how clear our

objective is. If we are looking for a birthday present but we are not sure of

what we want, an option is to enter a gift store and look for the options.

In this case, we first explore the options and then decide what we want. In

other cases, like Example 1, we know in advance exactly what solution we

want, “the cheapest apartment in the city no more than 10 kilometers from

our workplace”, the problem is to find that apartment.

The examples given above, like finding an apartment or a pair of shoes,

are useful to introduce some of the basic concepts of optimization, but in

this thesis we are interested in more complex problems that arise in science,

engineering, economy and other areas of human activity. Problems that can

be represented in a “mathematical way”, so the search space, constraints and

other concepts can be represented by numbers, vectors, functions and other

mathematical objects.

In the rest of this chapter we describe some basic concepts related to some

areas of applied mathematics and engineering, such as numerical optimization

and operations research. Operations research deals with the complete process

of problem solving, considering some steps like:

List 1.

1. Identifying the problem

2. Modeling

3. Mathematical optimization

4. Decision making

6

5. Implementation

Modeling (item 2 in List 1) is sometimes the most important step in

problem solving, according to [53], page 1. Modeling is the construction

of a mathematical representation of the system we want to work on. We

review some basic concepts about modeling because they are very relevant

in problem solving. Mathematical optimization (item 3) consists of applying

powerful mathematical tools on a model to find the optimal solution for a

problem. When solving a problem, we have constraints in time and other

resources, so choosing the best tool to solve a problem is very important,

because some tools may work better than others. This issue is related to

the problem we are dealing with. There is a class of algorithms known

as multi–objective evolutionary algorithms (MOEAs), designed to solve a

special class of problems. Choosing the best MOEAs is, itself, a problem

related to decision making (item 4). When the candidate solutions have

several, equally important, attributes of interest, we are dealing with multi–

criteria decision making, also known as multi–objective decision making. We

claim that the key to creating a criteria to evaluate MOEAs must be based on

a good understanding of the basic concepts of multi–criteria decision making.

Item 5, implementation of the solution, is beyond the scope of this work and

will not be discussed here.

2.2 Modeling

When designing an airplane, it is common for aeronautic engineers to con-

struct a maquette of the airplane in order to do experiments and make ad-

justments to the design. There are several reasons to construct maquettes,

for example:

List 2.

1. It is cheaper and faster to construct a maquette and do experiments on

it than constructing the real plane for the experimentation.

7

2. A maquette is a lot easier to manipulate than a real plane.

3. A well constructed maquette contains the attributes of interest for the

engineers, or at least has a behavior similar enough to that of the real

plane. So, we can make valid inferences about the design based on the

maquette.

Note that item 3 in List 2, implies that a maquette is not a perfect

representation of the airplane, there may be differences between the behavior

of the real airplane and the maquette. There is a trade off between simplicity

and accuracy. In this example, the maquette is a model of the plane. “Models

are a representations of reality”([1], page 60), and they are very helpful in

problem solving to obtain solutions in less time and at a lower cost.

In operations research we also have models, they are not “physical” mod-

els, like a maquette, but abstract models. We represent the system under

study as a combination of real numbers and functions. We use these math-

ematical models for the same reasons mentioned in List 2. For example,

when we want to evaluate if a steel structure is strong enough to resist some

load conditions, it is cheaper and easier to use the finite element method to

represent and evaluate the characteristics of the structure than constructing

the building and testing it.

A typical example of a mathematical model is parabolic movement. Con-

sider the following example:

Example 2. Consider a cannon on flat terrain that can be rotated vertically

at angle θ, with values from θ0 to θf (Figure 2.1). The cannon shoots a

cannonball with an initial speed V0. We want to find the angle of rotation for

the cannon so the cannonball reaches the maximum horizontal distance from

the cannon.

In Example 2, the physical system under study is composed by the can-

non, cannonball, gravity, etc. The attribute of interest is the position of the

cannonball, and the search space are the different angles of rotation of the

8

Figure 2.1: Parabolic Movement.

cannon. The angle of rotation can be represented with real numbers in the

interval [θ0, θf]. In order to simplify the problem, assume that the trajectory

of the cannonball is contained in a vertical plane P , and define a coordinate

system with the origin in the position of the cannon and the vertical and

horizontal axis contained in P . Using the principles of universal gravitation

we can model the position (x, y) of the cannonball with respect to the time

t passed after the cannonball is shot as:

x(t, θ) = V0 · t · cos θ (2.1)

y(t, θ) = V0 · t · sin θ −K · t2 (2.2)

where K is a constant related to the force of gravity. Also, we have some

9

constraints related to the system:

t ≥ 0 (2.3)

y(t, θ) ≥ 0 (2.4)

θ0 ≤ θ ≤ θf (2.5)

Constraint 2.3 is necessary because we are only interested in what happens

after the cannonball is shot. Constraint 2.4 is necessary because the ball can

not go under ground level. Constraint 2.5 comes from the statement of

Example 2.

Formulas 2.1–2.5 represent an acceptable mathematical model of the sys-

tem under study. In order to represent the problem we want to solve, we

need to create an objective function which is at the same time, a model of

the desirability of a solution. In this case, the objective function is x(t, θ).

In this case the definition of an objective function is trivial, but in other

problems the construction of the objective function may be more difficult.

So, the mathematical formulation of the problem in Example 2 is to maxi-

mize Formula 2.1 subject to the constraints represented in Formulas 2.3–2.5.

This means, we need to find the value of θ1 so the cannonball reaches the

maximum horizontal distance.

Modeling is a very important issue in operations research, because we

look for the optimal solution for the problem in the model. If the model is

not accurate enough, the solution found in the model may have no relation

with the real solution of the system.

For simplicity, in Example 2 we make some simplifications and assump-

tions that are not completely true. For example, we assumed that the trajec-

tory of the cannonball is contained in a plane and we ignored other factors

like the friction of the air. If we consider such factors we obtain a more

1The value of t that maximizes x is implicitly determined by the value of θ.

10

accurate, and complicated model. For instance, there are several kinds of

models, for example Aris ([3], page 27) describes six types of models: verbal

models, finite models, fuzzy subsets, statistical models, differential equations

and stochastic models. Ackoff and Sasieni ([1], page 60) describe three kinds

of models frequently used in operations research: iconic, analogue and sym-

bolic.

Another refinement that can be done to a model is to consider the stochas-

tic nature of the physical world. The model constructed for Example 2 was

deterministic, this means that for a given value of the search variable, we

obtain a unique value of the objective function. This is not true in the real

world, where there is variability in the results of several experiments realized

under the same conditions. There are models where the value of the objective

function is affected by a distribution of probability. In this work, we only

consider deterministic models to represent optimization problems.

Modeling is very important, but we have only given an overview. The

concept of modeling is fundamental in the process of problem solving, we

refer the reader to sources of detailed information as [11], [1], [3] and [50]

2.3 Optimization

Once a good model is obtained, the following step to solve a problem is to

optimize the model to find the best solution. We call this step optimization.

There are many kinds of problems, and for different problems there are

different models. We work with optimization problems that can be stated in

the following way:

11

Optimization Problem 1.

Minimize f(x) (2.6)

subject to

gi(x) ≤ 0, i = 1, . . . , I (2.7)

hj(x) = 0, j = 1, . . . , J (2.8)

x ∈ Rn (2.9)

Where f(x) is the objective function that represents the desirability of a

solution, I is the number of inequality constraints gi(x) and J is the number

of equality constraints hj(x). We state the problem so the objective function

must be minimized, but in many problems the objective function must be

maximized. Fortunately, any problem in the form “maximize f(x)” can be

converted into the equivalent form “minimize −f(x)”.

When a candidate solution x does not violate any constraint of the prob-

lem, we say that x is feasible. We denote by X the set of all feasible candidate

solutions of the search space. A candidate solution that violates one or more

constraints is unfeasible. So, the optimization problem can also be stated as:

Optimization Problem 2.

Minimize f(x) (2.10)

subject to

x ∈ X (2.11)

The “best” solution for an optimization problem is known as a global

optimum and its definition is the following:

Definition 1. A global optimum of a model in the form of Optimization

Problem 1, is a point x∗ ∈ X such that f(x∗) ≤ f(x), for all x ∈ X.

Note that x∗ may not be unique, more than one element of X may be a

12

global optimum. Another important definition is local optimum, but before

defining a local optimum we present some other definitions:

Definition 2. Let r be a real number greater than zero and x a point in

Rn. An open ball of radius r and center x ∈ Rn, is a subset of Rn given by

{y ∈ Rn|d(x, y) < r}, where d(x, y) denotes the Euclidean distance between

x and y.

Definition 3. Let Y be a subset of Rn. Y is an open set in Rn if for each

y ∈ Y , Y contains some open ball with center y.

Definition 4. A neighborhood of x is any open set that contains x.

In this work we only use subsets of Rn. When we mention open sets and

open balls, we assume that these objects are in Rn. Finally, we define local

optimum:

Definition 5. A local optimum of an optimization problem, is a point x∗ ∈ X

such that for a neighborhood N of x∗, f(x∗) ≤ f(x), for all x ∈ N ∩X.

We also call global minimum and local minimum to the global optimum

and local optimum, respectively. With these definitions, we introduce a def-

inition of optimization:

Definition 6. Given a model of a problem, like Optimization Problem 1,

optimization is the process to explore the search space in order to find or at

least approximate the global optimum of the model.

Many optimization algorithms can only guarantee to find a local opti-

mum, not the global optimum. Other algorithms do not guarantee to find

neither the global or local optimum, but are less likely to be trapped in a

local optimum, thus improving the potential of finding a global optimum.

13

x

f(x)

-

6

x0 xfa b

Figure 2.2: The graph of an objective function. The search space is the
interval [x0, xf]. Point a is a global optimum, point b is a local optimum.

2.3.1 Types of Optimization Problems

Depending on the kind of problem, more specific information can be intro-

duced to the model, and more efficient and effective search algorithms can be

created. Optimization problems can be divided into several kinds depending

on the model to optimize. Next, we present some examples.

Continuous versus Discrete Optimization

In many problems, the search space consists of variables that can take con-

tinuous values at least in some intervals. But, for other problems, the search

space is composed by integer values. For these cases it is necessary to intro-

duce the constraint:

x ∈ Z (2.12)

14

Constrained versus Unconstrained Optimization

When there are no constraints in the optimization problem, we have a case

of unconstrained optimization. It is possible to have no constraints in some

special problems, or when the model of Optimization Problem 1 is reformu-

lated so the constraints are added to the objective function as a penalty.

Constrained optimization occurs when we have one or more constraints.

Linear versus Non–linear Optimization

When the objective function and the constraints are all linear functions, we

have a case of linear programming. There are many effective and efficient

algorithms to solve linear programming problems. When the objective func-

tion and/or at least one of the constraints is not linear, we have a case of

non–linear optimization, which usually is more complicated. A special case

of non–linear optimization occurs when all constraints are linear and the ob-

jective function is quadratic. This case is known as quadratic programming.

Optimization Algorithms

There is a wide variety of algorithms that compute an optimal solution of

a problem. One of the main differences between these algorithms is their

search mechanism. Many of these algorithms are designed for specific kinds

of problems and exploit special information depending on the model. For

example, in continuous, unconstrained non–linear problems where the objec-

tive function is twice continuously differentiable, there are several methods

that guarantee to find a local optimum, such as line search methods, trust

region methods, Newton methods, etc.

For constrained, continuous, non–linear problems, where the objective

function is twice continuously differentiable, we can use Penalty methods [10],

[33], Barrier methods [26], [20], Augmented Lagrangian methods [36], [56],

Sequential Quadratic programming [27], [34], [73], [57], and others.

15

For linear problems, we have the Simplex Method [11], and the Interior

Point Methods [75]. For quadratic programming there are some algorithms

such as the Active Set Method and the Gradient Projection Method [53].

For a detailed description of the algorithms mentioned here we recom-

mend reading Nocedal and Wright [53]. One characteristic present in most

search mechanisms is that they are iterative algorithms. This means that the

algorithms repeat a cycle in which one or more new candidate solutions are

obtained. Many search algorithms are designed in such a way that the candi-

date solution obtained in one iteration is better than the one in the previous

iteration. Other algorithms, like genetic algorithms [32], need to compare

new solutions with previous ones in order to choose the best solutions and

continue the search based on the information contained in the best solutions.

Most of the algorithms just mentioned, and many others, can only be

guaranteed to find a local optimum. Once they reach certain neighborhood

of a local optimum, they are hopelessly attracted to that local optimum.

A special case is linear optimization, where there are algorithms that are

guaranteed to find a global optimum.

In the next section, we describe a special family of optimization algo-

rithms, known as evolutionary algorithms. They are called evolutionary

algorithms because their search mechanism is inspired by concepts of the

theory of evolution.

2.4 Evolutionary Computation

Evolutionary algorithms (EAs) [21], [37], [63] are part of a wider kind of opti-

mization algorithms that use a very strong stochastic element in their search

mechanism. Other examples of this family of algorithms are tabu search

(TS) [31], [29], [30] and simulated annealing (SA) [41]. Another common

characteristic of this family of algorithms is that they are “general purpose

algorithms”, this means that they can work with practically any optimization

16

problem, without the necessity to make any assumption about the nature of

the problem. It does not matter if the optimization problem is continuous or

discontinuous or the objective function is twice continuously differentiable,

etc, EAs, SA and TS can be easily adapted to work with the problem.

Evolutionary Algorithms are inspired, as the name suggests, in the theory

of evolution [12]. EAs use some procedures based on concepts like “popula-

tion”, “selection of the fittest”, “mutation”, “crossover”, “fitness” and others.

The idea in evolutionary algorithms, is that each candidate solution x ∈
Rn is a member of a population P of size N . The first population is chosen

randomly from X. There is a fitness function that assigns to each member of

the population a quantity that represents how “well adapted” is the solution

to the “environment”. So, based on the fitness of each individual, a subset

Pparents of P , is chosen. From Pparents, a new population of N offsprings is

created through a process of crossover and mutation of the Pparents. The

process is repeated by using the new population until a stop condition is

met. At the end, the best individual of the last population is presented

as the solution of the problem. These are the general ideas of a genetic

algorithm, but there are many variations.

The implicit assumption in genetic algorithms is that from the best indi-

viduals of a population, we can create new individuals that are better than

the parents. There are many important concepts related to the implementa-

tion of EAs. Concepts such as the representation of an individual, crossover

procedure, mutation procedure, search space, fitness function, selection func-

tion, and many others. These concepts can be implemented in several ways,

and the different implementations of these concepts result in different EAs.

Next, we explain briefly some of these concepts.

Search Space. Evolutionary Algorithms need to define a box in Rn that

will be the whole search space. This box is defined as a set of intervals [ai, bi]

for i ∈ {1, . . . , n}. If the model of the problem does not define such a box as

17

part of the constraints, it is necessary to define a box in such a way that X,

or at least a promising zone of it, is included inside that box.

Fitness Function. An important step of an evolutionary algorithm is to

select the fittest individuals in the population. So, a fitness function, that

measures the utility of a candidate solution, is necessary. The obvious op-

tion is to use the objective function f(x) of the optimization problem, but

sometimes another function based on f(x) is used. The fitness function may

also include information about the constraints, but usually the constraints

are considered in the selection procedure.

Representation of the Individuals. The most straightforward way to

represent an individual in a population is by an element of Rn, just like the

candidate solutions in the model of the optimization problem. But in some

cases, the individuals must be encoded differently in order to use some special

operators. For some classes of EAs, the individuals are represented as strings

of binary digits.

Selection Procedure. Another important operator of an Evolutionary

Algorithms is the selection of the best individuals in the population which

will generate the next population. This operator is inspired by natural se-

lection, where the fittest individuals have a higher chance to survive and

to reproduce, passing their characteristics to their descendants. Determinis-

tic selection, one of the most basic selection procedures, consists on choosing

the n individuals with the highest fitness from a population of N individuals,

0 < n < N . There are many other techniques that introduce an stochastic

component in the selection. For example, in a binary tournament, two indi-

viduals from the population are chosen randomly and the one with the highest

fitness value is selected. The tournament is repeated until n individuals are

chosen. If the optimization problem has constraints, these are considered in

the selection process, usually giving preference to feasible solutions.

18

Crossover Procedure. The individuals selected in the selection proce-

dure are recombined to create new individuals. Usually, two parents are

chosen (there are several procedures to choose these two parents), and they

are recombined to create one (or more) offspring(s). When the individuals

are encoded with a string of K binary numbers, an example of crossover is

to generate a random integer k, between zero and K, and to generate an

offspring whose first k binary numbers are identical to the ones in one par-

ent, and the last K − k binary numbers are equal to the ones in the other

parent. When the parents are represented with a vector of real numbers, an

example of crossover is to generate an offspring equal to a random point on

the segment of the line that goes from one parent to the other.

Mutation Procedure. Mutation is another important component in the

search mechanism of an Evolutionary Algorithm. A mutation is a random

perturbation of the elements of an individual, just as in nature random

changes in the genes result in mutated individuals. When the individual

is encoded as a string of binary numbers, an example of mutation mecha-

nism is to choose randomly an element of the string and to flip its value.

When the individual is represented as a vector of real numbers, an example

of mutation is simply to add to the individual a vector of random noise.

Stopping Criterion. In every iterative algorithm, a stopping criterion

must be established. In Evolutionary Algorithms, a cycle is composed by:

the evaluation of the fitness of the current population, the selection of a set

of parents from the current population, and the creation of the population

for the next cycle through the crossover and mutation of the parents in

the actual cycle. This cycle is commonly known as “a generation”. The

most common stopping criterion in EAs is to set a maximum number of

generations. Another criterion is to stop when the mean value of the fitness

of the population has not changed significantly in several generations.

There are three dominant paradigms of EAs: Genetic Algorithms, Evolu-

19

tionary Strategies and Evolutionary Programming. In Genetic Algorithms,

the individuals are typically represented as a string of binary numbers and

the main search mechanism is the crossover, with the mutation as a secondary

mechanism. In Evolutionary Strategies, the individuals are represented as a

vector of real numbers and the main search mechanism is mutation, with the

crossover as a secondary operator. In Genetic Programming, the individuals

are represented as a tree, this uses more complex procedures of crossover and

mutation.

More recently, new classes of Evolutionary Algorithms have been pro-

posed, such as Particle Swarm [40], [18], Ant Colonies [17], Estimation of

Distribution Algorithms [46], Differential Evolution [58], etc., each one with

their own search mechanism. It is common to use the term “Biological In-

spired Algorithms” to refer to all of these algorithms because some of them

are not inspired in evolution but in other natural processes, such as bird

migration and the behavior of ant colonies.

This is only an overview of Evolutionary Algorithms. For a more complete

study of EAs we recommend reviewing the wide bibliography on the subject,

for example [32], [72], [59], [5], [2].

2.5 Multi–Objective Optimization

There is a branch of optimization known as multi–objective optimization

that deals with problems whose model is in the form:

20

Optimization Problem 3.

Minimize F (x) = 〈f1(x), f2(x), . . . , fm(x)〉 (2.13)

subject to

gi(x) ≤ 0, i = 1, . . . , I (2.14)

hj(x) = 0, j = 1, . . . , J (2.15)

x ∈ Rn (2.16)

From now on, when we speak of a multi–objective problem we refer to

an optimization problem whose model is stated in the form of Optimization

Problem 3.

As is evident, the main difference between Optimization Problem 3 with

respect to Optimization Problem 1 is that we have several objective functions

instead of one. Sometimes the optimization of a single objective function is

called mono–objective optimization or single objective optimization.

There is more than one point of view with respect to the relationship be-

tween mono–objective and multi–objective optimization. One point of view

considers Optimization Problem 3 as the more general model for optimiza-

tion, and Optimization Problem 1 is a degenerated case ([14], page 1), where

the number of objective functions m is equal to one.

Here, we consider another, more traditional, point of view where the

model of Optimization Problem 1 is the basic model of an optimization prob-

lem, and Optimization Problem 3 is a degenerated case in which it is not

possible to create a unique function of merit, but the attributes of interest

of the system are identified. In other words, the model of the optimization

problem can not be completed.

One may wonder if it makes sense to optimize when the user preferences

have not been established clearly. The answer is that we do know a lot about

what the user wants. First, the attributes of interest have been identified and

they are modeled by the objective functions f1, . . . , fm. Second, we know

21

what we want to do with these functions: we want to minimize them 2.

Based on these information, we can discard many candidate solutions that

are not optimal and concentrate only on potential optimal solutions.

Like in mono–objective optimization, a multi–objective problem is solved

when we find a single solution that gives the most benefit. Except for special

cases, it is not possible to choose a single solution based on the information in

Optimization Problem 3. In order to find the final solution we need the help

of a Decision Maker (DM), the person who has the final word when comparing

candidate solutions. In some cases, the preferences of the DM are not clear

“a priori”. So, we need to present the DM with some information about

the optimization problem in order to clarify preferences. One of the goals

of multi–objective optimization is to generate a set of promising solutions in

order to “make up” the DM’s mind.

In multi–objective optimization, there is another very important concept:

“objective function space”. We call the “objective functions space” to the

space where we locate the image of the search space under F (x) (Figure 2.3).

Moreover, the image of X under F (x) is called Z, in other words:

Definition 7. For a multi–objective optimization problem, Z is the set of

vectors in objective function space, that are generated by the feasible vectors

in the search space. In mathematical notation Z = {z | z = F (x), x ∈ X}

We mentioned above that in order to find the best solution for a multi–

objective problem we need the help of a Decision Maker and that in some

cases the preferences of the DM are not clear “a priori”. In this cases, where

the preferences are not clear, we present the DM with some elements of X

(and its corresponding image in Z), so he/she can define their preferences

based these attainable candidate solutions. As the final decision of the DM

2It is possible to have both functions to be minimized and functions to be maximized
in the same multi–objective problem. Like in mono–objective optimization, we can trans-
form any multi–objective problem with functions to be maximized, into a multi–objective
problem with functions to be minimized only. For this, we only need to substitute every
function fi(x) to be maximized by −fi(x).

22

X

x1

x2

-

6

-
F

f1

f2

-

6

Z

Objective Function SpaceSearch Space

Figure 2.3: The Search Space and the Objective Function Space.

is highly influenced by the set of candidate solutions we use, it is of vital

importance to use the best candidate solutions we can find. We want a set

of solutions that characterize the most information of the best trade–offs

between objective functions. But, how do we identify the “best” and “more

informative” solutions? When we have several objective functions, what are

the most promising candidate solutions?

2.5.1 Pareto Optimality Criteria

Consider the following problem: in a given school, it has been decided to

choose the best science student. In order to decide who the best student

is, three subjects are considered: math, chemistry and physics. The staff

responsible for selecting the best student is formed by Mr. Smith, professor

of math; Ms. Jones, professor of chemistry and Mr. Lee, professor of physics.

The candidates with their respective scores are shown in Table 2.1.

The score on every subject is evaluated on a scale from 1 to 10, 10 is the

best score and 1 is the worst score. The problem is how to decide whether

one student has performed better than another.

According to some statistical studies, it is necessary to study roughly 10

hours in order to pass the final chemistry exam. Based on the same studies,

23

Table 2.1: Students Nominated
Score

Student Math Chemistry Physics
Angel 9 8 9
Ivvan 9 8 6
Oyuki 10 9 7
Sergio 8 7 8
Hayday 7 8 7
Alonso 8 8 9
Noemi 5 5 5
Brenda 6 7 7
Judith 8 9 8
Jean 6 7 6

it is necessary to study 12 hours in order to pass the final physics exam

and 15 hours to pass the final math exam. Based on these proportions Mr.

Smith suggests multiplying the scores of the students in math, chemistry and

physics by 1.5, 1 and 1.2 correspondingly, and add these weighed scores up

to obtain a single number that will be used to compare the performance of

the students.

Unfortunately, Ms. Jones and Mr. Lee are not happy with the idea,

because they consider that this method under evaluates their subjects. They

suggest assigning the same weight to each subject and to use the sum of the

scores to evaluate the students. Mr. Smith insists that his subject deserves

more weight, and as a consequence the staff does not arrive at an agreement.

The deadline to name a winner is near and the staff decide to name a

group of finalists from which the winner will be chosen. The members of

the staff are not sure about the criteria to compare the performance of two

students, but it is evident that the higher the score in one subject, the better

the student in that subject. And if student A has a better score than student

B in all subjects, than A is better than B. Based on this, the professors can

eliminate some students that, for sure, are not the best ones.

24

Based on Table 2.1, we can see that Noemi is not the best student, because

Alonso has better scores in all subjects, so we can eliminate her. In a similar

way, we can eliminate Ivvan, Hayday, Brenda and Jean, because their scores

are inferior to those of Oyuki, Judith, Angel and Alonso respectively.

There is another special case where we can discard candidates. Consider

the scores of Alonso and Angel, we see that they have the same score in

chemistry and physics, but Angel has a better score in math. It is acceptable

to consider Angel as a better student than Alonso, because Angel’s scores

are not worse than Alonso’s in any subject, and, Angel has better score than

Alonso in one subject. This criteria is not as strong as when a student does

better than another one in all subjects, but it is acceptable. According to

this new criteria we eliminate Alonso as a candidate for the best student. So

the finalists are Oyuki, Angel and Judith.

At this point, we see that it does not matter how we combine the scores of

the students in a weighted sum, as long as the weights we assign to each score

are bigger than zero, the best student will be one of the three finalists. So we

have reduced our search space to only three people, until more information

is available to choose a winner.

This example shows one of the most popular criteria to compare two

vectors in order to decide which one is better than the other. This is known

as the “Pareto Optimality Criteria”, and it is defined through a relation

between vectors known as dominance.

Dominance

The concept of dominance is central in this work and its discussion deserves

some space. Next we introduce some definitions of dominance that are fre-

quently used in the literature. For a vector x ∈ Rn, we denote by x(i),

i ∈ {1, . . . , n} the i–th component of x.

Definition 8. Dominance between two vectors. For two vectors a, b ∈ Rn,

we say that a dominates b if a(i) ≤ b(i) for i = 1 to n, and there exists at

25

a

bc

{

{{

Figure 2.4: An example of dominance. Here, a dominates b, c dominates b,
a and c are mutually non–dominated.

least one index j ∈ {1, . . . , n} for which a(j) < b(j). Otherwise, we say that a

does not dominate b.

The dominance relation defined above sometimes is called weak dom-

inance, or Pareto dominance. There are several alternative definitions of

dominance, for example, we may consider that a dominates b if a(i) < b(i)

for i = 1 to n. In this work we consider only Definition 8 as the definition

of dominance between two vectors. A graphical example of dominance is

shown in Figure 2.4. Next, we present another definition of dominance in

the context of a multi–objective problem.

Definition 9. Dominance between two candidate solutions of a multi–objective

problem. We say that a candidate solution x dominates a candidate solution

y if F (x) dominates F (y).

The idea behind the concept of dominance, is that a candidate solution

x is preferred over a candidate solution y, if x is not worse than y in all

objective functions and there is at least one objective function for which x is

strictly better than y. We present a third definition of dominance that states

Definition 9 in a different way.

Definition 10. Dominance between two candidate solutions with respect to

a vector of objective functions F (x). Denote with F (a > b), a, b ∈ Rn, the

26

set of objective functions from F (x) for which a attains a better value than

b. We say that a candidate solution x dominates a candidate solution y if

F (x > y) 6= ∅ and F (y > x) = ∅.

If, as in the example of the best student, we are maximizing the value

of the elements of the vectors, then “better” in Definition 10 means greater

than, and “not worse” means greater or equal. When we are minimizing,

better means smaller than, and not worse means smaller or equal.

Note, that Definition 8 is useful when we are comparing vectors in the

objective function space, while Definition 9 is useful when we are comparing

two candidate solutions in the search space. It must be clear by the context

what definition is being used.

Preference Structure

A preference structure refers to a set of rules that allow us to decide when

one element of a set is better than another. Let A be a set, and a, b two

arbitrary elements of A. One and only one of the following binary relations

is possible:

List 3.

1. a is better than b. We denote this by a ≺ b.

2. a is worse than b. We denote this by a Â b.

3. a is equivalent or equally good as b. We denote this by a ∼ b.

4. We do not have enough information to decide if any of 1, 2 or 3 holds.

We denote this by a ? b.

Definition 11. A≺ is the set of ordered pairs (a, b), such that for a, b ∈
A, a ≺ b. AÂ is the set of ordered pairs (a, b), such that for a, b ∈ A, a Â b.

A∼ is the set of ordered pairs (a, b), such that for a, b ∈ A, a ∼ b. A? is the

27

set of ordered pairs (a, b), such that for a, b ∈ A, a ? b. The combination of

A≺, AÂ, A∼, A? is a preference structure.

In mono–objective optimization, the image of the candidate solutions are

real numbers, Z ⊂ R. In this case the rules to compare candidate solutions

in X are as follows for x, y ∈ X:

List 4.

1. x is better than y if f(x) < f(y).

2. x is worse than y if f(x) > f(y).

3. x is equivalent or equally good to y if f(x) = f(y).

Note that X? = ∅, all pairs of elements of X can be compared. In

multi–objective optimization, we can use the dominance relation to create

a preference structure between two arbitrary candidate solutions x, y, with

the following relations:

List 5.

1. x is better than y if x dominates y.

2. x is worse than y if y dominates x.

3. x is equivalent or equally good to y if F (x) = F (y).

4. x and y are not comparable or incomparable if x does not dominate y

and y does not dominate x.

This preference structure for a multi–objective problem is defined on the

elements of the search space. It can also be used when x and y are elements

of the objective function space. We only need to change Item 3 in previous

List 5 to “x is equivalent or equally good to y if x = y”.

In a preference structure, it is desirable that X? = ∅, because this makes

it a lot easier to identify an optimal solution in an optimization problem.

28

f1

f2-

6s
s

s
s

s

Figure 2.5: An example of a non–dominated set, represented by the black
dots.

Non–dominated Set

A very important concept in multi–objective optimization is that of a non–

dominated set (NS):

Definition 12. Let B ⊂ Rn. B is a non–dominated set if and only if

for every pair of vectors a, b ∈ B, a and b are not comparable under the

dominance relation.

A non–dominated set in Rn is a set of mutually non–dominated vectors in

Rn (see Figure 2.5). A non–dominated set can also be defined in the context

of a multi–objective problem.

Definition 13. Consider a multi–objective problem. A non–dominated set

of candidate solutions is a set A ⊂ X, such that for every pair of candidate

solutions x, y ∈ A, F (x) does not dominate F (y) and F (y) does not dominate

F (x).

So, a non–dominated set of candidate solutions is a set of candidate so-

lutions whose image in objective functions space is a non–dominated set,

according to Definition 12. It must be evident by the context if we are

talking about a non–dominated set in the search space or in the objective

29

functions space. Finally, there is a set of non–dominated sets that is very

important for multi–objective optimization.

Definition 14. Consider a multi–objective problem. We denote by Ω the set

of all non–dominated sets that are subsets of Z (Z given by Definition 7).

We denote an arbitrary element of Ω with script capital letters. For example

A , B, C , etc. may represent different non–dominated sets from Ω.

Note that Ω is defined in the objective functions space. Another impor-

tant concept is that of the non–dominated elements of a set:

Definition 15. The non–dominated elements of a set A ⊂ Rn, denoted by

ND(A), is the set of all vectors in A that are not dominated by any element of

A. In mathematical notation, ND(A) = {a ∈ A | 6 ∃b ∈ A, b dominates a}.

For a multi–objective problem, this definition applies both to the elements

of the search space and the elements of the objective functions space. If

A is in the search space, then we use the definition of dominance given

in Definition 9. If A is in the objective functions space, than we use the

definition of dominance given in Definition 8. There are two very important

non–dominated sets related to a multi–objective problem.

Definition 16. Consider a multi–objective problem. We call the Pareto

Front (PF) to ND(Z).

Definition 17. Consider a multi–objective problem. We call the Pareto Set

(PS) to {x ∈ X | F (x) ∈ PF}.

There is a function from the Pareto Set to the Pareto Front. This rela-

tion is given through the vector of objective functions of the multi–objective

problem, PF = F (PS). A graphical representation of these sets is shown

in Figure 2.6. Both PS and PF may have many topologies.

The Pareto Front for a multi–objective problem with m objective func-

tions, is usually described as an (m−1) dimensional surface. Veldhuizen [71]

30

|X

x1

x2

-

6

-
F

f1

f2

-

6

Z

¢
¢

¢
¢

¢
¢®

Pareto Front
¢

¢
¢

¢®

Pareto Set

Objective Function SpaceSearch Space

Figure 2.6: The Pareto Front and the Pareto Set.

proved that the Pareto Front is at most an m − 1 surface. He also proved

that the cardinal number of Z is, at most, the same cardinal number of the

continuous line.

The importance of the Pareto Set (and its corresponding image, the

Pareto Front) is that it contains an optimal solution for all possible user

preferences. This is guaranteed through the following assumption:

General Assumption 1. In a multi–objective problem, non–dominated so-

lutions are preferred over dominated ones. In other words, for x, y ∈ X, if x

dominates y then x is considered a better solution than y.

At this point, it should be evident that General Assumption 1 is the most

basic and general supposition when we work with multi–objective optimiza-

tion using the Pareto Optimality Criteria. If the final preferences of the

Decision Maker are concordant with General Assumption 1, then the final

solution selected by the DM is an element of the Pareto Set. To see this,

imagine that the final solution chosen (xf) is not a member of PS. This

means that there exists a vector y ∈ X such that y dominates xf . But if

xf is the final solution, this means that it is preferred over y, contradicting

General Assumption 1.

31

2.5.2 The Goal of Multi–Objective Optimization

We have mentioned in previous subsections, that we need to present the

Decision Maker with a set of candidate solutions to clarify preferences and

to create a criterion to identify a final solution to the problem. The set

of solutions that we present to the Decision Maker must be the Pareto Set,

because PS contains all possible solutions to any DM preference. The Pareto

Set may have a huge number of elements, so in practice we present the

Decision Maker with a subset of the Pareto Set. Hence, in this work, the

goal of multi–objective optimization is the following:

Goal of Multi–Objective Optimization. The objective of multi–objective

optimization is to collect as much information as possible of the multi–objective

problem, so the Decision Maker can define preferences with more precision

and find a unique solution for the problem. More specifically, we want to

obtain an approximation of PF/PS that contains as much information as

possible of PF surface, so the DM can either choose an element of this sub-

set as the final solution, or use this information to specify preferences that

allow us to search and find a final solution.

We consider that any set of vectors that approximate the Pareto Front/Set

is a non–dominated set, and from now on we refer to these sets as “an approx-

imation set”, “an approximation” or a non–dominated set. An interesting

point is: what makes an approximation set more informative and thus more

desirable? There are two properties that have been identified as desirable for

an approximation: convergence and diversity. Convergence is related to how

near an approximation is (in objective function space) to the Pareto Front.

Diversity is related to how well distributed the vectors in the approximation

are (in objective function space) among the Pareto Front. A graphical rep-

resentation is shown in Figure 2.7. We speak more about convergence and

diversity later.

32

f1

f2

-

6 ¡¡ª

¡¡ª

¡¡ª
¡¡ª ¡¡ª

t

t
t

t t

f1

f2

-

6 t

t
t

t t

DiversityConvergence

Figure 2.7: Convergence and Diversity.

2.5.3 Methods for Multi–Objective Optimization

Multi–objective optimization has been worked on in the past with several ap-

proaches. A good review of these approaches can be found in Miettinen [49].

The special case where all objectives and constraints are linear functions,

in a multi–objective problem, is known as multi–objective linear program-

ming (MOLP). In MOLP, any element of the Pareto Set can be obtained

using variations of the Simplex Method (see [52]). In this work we only

consider multi–objective problems that are not linear.

Depending on the role of the Decision Maker, we have different approaches

to solve a multi–objective problem, for example:

List 6.

• A posteriori methods

• A priori methods

• Interactive methods

33

A Posteriori Methods

In the “a posteriori methods” the idea is to construct an auxiliary objective

function f : Rm → R using a conversion of the form:

f(x) = g(f1(x), f2(x), . . . , fm(x)) (2.17)

The function g : Rm → R takes as argument the vector of objective func-

tions from a multi–objective problem and returns a real number. Then, we

substitute the vector of objective functions in Formula 2.13 by Formula 2.17

to obtain an auxiliary mono–objective optimization problem. The next step

is to optimize the auxiliary mono–objective problem to obtain its optimal

solution. Function g in Formula 2.17, usually depends on several parame-

ters, and by changing the parameters we obtain different objective functions

f(x). If g and its set of parameters are chosen carefully, the solutions of the

auxiliary mono–objective problems are elements of the Pareto Front. For ex-

ample, if we want to obtain ten elements of the Pareto Front/Set, we choose

an auxiliary function f(x), and ten randomly generated sets of parameters

for g. Next, we optimize the ten different optimization problems, obtaining

as a result ten different (we hope) elements of the Pareto Front/Set.

Finally, the solutions are presented to the Decision Maker in order to

choose the best solution. The Decision Maker does not interact in the opti-

mization process until the set of solutions is obtained.

An example of an auxiliary function that is commonly used in a posteriori

method is the weighted sum:

f(x) =
m∑

i=1

wi · fi(x), (2.18)

where wi > 0 for i = 1 to m and
∑m

i=1 wi = 1. The parameters of the auxiliary

function are the different weights wi. Using different sets of weights we may

obtain different solutions in the Pareto Front/Set. Adjusting the weights

34

to obtain a well distributed set of solutions along the Pareto Front is not

trivial and, in some cases, some elements of the Pareto Front are impossible

to obtain. The advantage of this auxiliary function is that it is easy to

implement.

Another example of a posteriori method is the ε–Constraint Method. In

this method, the vector of objective functions in Formula 2.13 is transformed

into a single objective function fk(x) and m− 1 constraints fi(x) ≤ εi, that

together with the original constraints form a new mono–objective problem.

The index k is an element of {1, . . . , m} and i = 1, . . . ,m, i 6= k. The values of

εi are upper bounds for the objective functions. By choosing different values

for k and εi we can obtain different elements of the Pareto Front/Set, but

special care must be taken in order to guarantee Pareto optimality (see [52]).

The advantage of this method is that it is possible to obtain any element of

the Pareto Front/Set.

A Priori Methods

In the “a priori methods” the Decision Maker specifies preferences before the

optimization process starts, so a unique optimal solution can be found. This

can be done in several ways, for example, the user may construct a utility

function that substitutes the vector of objective functions in Optimization

Problem 3, obtaining a mono–objective problem.

Another example of a priori method is the lexicographical ordering. In

lexicographical ordering, the Decision Maker sorts the objective functions

according to their importance. Next, we minimize the most important ob-

jective function, fk1(x), ignoring the others, to attain its optimal value fmin
k1 .

Next, we minimize the second most important function, fk2(x), adding the

constraint fk1(x) = fmin
k1 . We continue minimizing the objective functions

according to their importance and adding constraints to preserve the opti-

mal value of the previous functions until all objective functions have been

minimized.

35

In this work we do not consider a priori methods, because we assume

that the Decision Maker is unable to provide more preferences until new

information of the problem is available.

Interactive Methods

In interactive methods, the Decision Maker collaborates with the search pro-

cess in an iterative way. For example, we can use a posteriori approach to

create an iterative method. In each iteration, an approximation of the Pareto

Front/Set is obtained. Based on this approximation the DM gets a clearer

idea of preferences and provides more information to the search process, so a

more specific and promissory part of the Pareto Front/Set is detected. This

iteration is repeated until the DM finds a solution that is satisfactory, or

until the DM gives enough information to choose a unique solution.

There are many interactive methods that use some specific information

in each iteration, for example the Geoffrion–Dyer–Feinberg Method [28], the

Tchebycheff Method [68], and many others.

These methods that deal with multi–objective problems are part of a

research area known as Multi Criteria Decision Making (MCDM) or Multi

Attribute Decision Making (MADM). There is an abundant bibliography on

this subject, some examples are [52], [69], [77], [8], [45], [13], [45].

2.5.4 Multi–Objective Evolutionary Algorithms

We call multi–objective evolutionary algorithm (MOEA) an evolutionary al-

gorithm designed to obtain an approximation of the Pareto Front/Set. Evolu-

tionary algorithms have been used widely to solve multi–objective optimiza-

tion problems. This is because genetic algorithms work with populations, or

sets of solutions. As the goal of multi–objective optimization is to obtain a

set of solutions that approximate the Pareto Front, genetic algorithms fit well

in the solution of the problem, obtaining several Pareto optimal solutions in

36

a single run.

MOEAs are a posteriori methods, they approximate the Pareto Front/Set

without any assumption of the Decision Maker preferences. The advantage

of MOEAs over other a posteriori methods is that they can obtain many

Pareto optimal vectors in a single run, while other algorithms need to make

a run per solution. Another advantage of MOEAs is that we can design

their search mechanism in such a way that the final set of vectors are well

distributed among the Pareto Front, increasing the amount of information

that the approximation provides to the Decision Maker.

In recent years, an increasing number of MOEAs have been proposed,

for example VEGA [61], NPGA [38], MOGA [22], NSGA [67], NSGAII [15],

SPEA [80], SPEAII [79], ε–MOEA [47] and many others.

Designing MOEAs is an area of research with a huge development in re-

cent years. To explore all details of MOEAs is beyond the scope of this work.

For a deeper study in multi–objective optimization with evolutionary algo-

rithms we recommend reading [14] and [9]. The characteristics of a MOEA

that are more relevant to this work is that they are algorithms that work with

an optimization problem in the form of Optimization Problem 3 and return

a non–dominated set as an output. Also, MOEAs are stochastic algorithms,

so for different runs, they may return different non–dominated sets.

2.6 Preferences

2.6.1 Introduction

In order to solve a multi–objective optimization problem it is necessary to

obtain extra information in order to be able to find a final solution. In this

section we review some of the different preferences that can be helpful.

37

2.6.2 Decision Maker Preferences

It is important to remember that obtaining an approximation set is not the

final step when solving a multi–objective optimization problem. In the end, a

Decision Maker (DM) will choose a particular solution. The Decision Maker

is a person, or group of people, that can make the final decision about the

best solution for the problem. Here, we refer to the Decision Maker as a

single person. We call Decision Maker Preferences the knowledge associated

to the DM, that allows the identification of the optimal solution from a

set of candidate solutions. The DM Preferences can be very abstract and

subjective, making it necessary for the DM to “see” the candidate solutions

in order to decide which one is the best. DM Preferences may be different

for different DMs, and they also may change over time. As a consequence, it

is possible for different elements of an approximation set to be the optimal

solution of the problem for different situations.

We assume in this work, that a DM Preference is a preference structure

defined on Z, where Z? = ∅. We also assume that the preferences are tran-

sitive: if the DM considers that if x ≺ y and y ≺ z then x ≺ z, or if x = y

and y = z then x = z. Hanzen and Jazkiewicz [35] consider that the DM

Preferences can be modeled by utility functions u : Rm → R, where Rm is

the objective functions space. This consideration is valid because a model

is a representation of a system. In this case, the system is the DM Prefer-

ence and it is always possible to propose a real function to model them. A

different issue is how accurate the model is. For a discussion of when a DM

preference can be modeled by an utility function see [52], page 678.

The goal of the DM is to maximize the utility, so the candidate solution

that provides the maximum value of u is the optimal solution according

to that DM preference. The maximum value for a utility function in an

approximation set A is denoted by u∗(A) = max
z∈A{u(z)}. We denote with

zu
A the element of A for which u attains the best value. For different DM

preferences we may have different optimal solutions, this is illustrated in

38

f1

f2

-

6

Z

s
s s

zu1
PF

zu2
PF

zu3
PF

Objective Function Space

Figure 2.8: For three different utility functions, u1, u2 and u3 we may have
three different optimal solutions zu1

PF , zu2

PF and zu3

PF .

Figure 2.8

Next we present some important definitions given in [35].

Definition 18. A utility function u is compatible with the dominance relation

if and only if ∀z1, z2 ∈ Z, z1 dominates z2 ⇒ u(z1) ≥ u(z2). UC denotes the

set of all utility functions that are compatible with the dominance relation.

A utility function u is strictly compatible with the dominance relation if and

only if ∀z1, z2 ∈ Z, z1 dominates z2 ⇒ u(z1) > u(z2). USC denotes the set of

all utility functions that are strictly compatible with the dominance relation.

In this work we assume that all DM Preferences are compatible with

General Assumption 1. So, all DM Preferences must be modeled by elements

of USC or UC . A utility function u can be used as an objective function to

transform a multi–objective problem into a mono–objective problem, in a

similar way as in the “a priori” methods.

39

2.6.3 Analyst Preferences

Another important entity in optimization is the analyst. We call “the an-

alyst” the person, or group of people that are experts in optimization and

are working with the DM to solve the optimization problem. The analyst

is a professional in problem solving and the DM is the client. We refer to

the analyst as a single person. We assume that the DM is not an expert

in multi–objective optimization and that is not familiar with concepts such

as Pareto Front, convergence, diversity, etc. We adopt this assumption for

simplicity, but it is not true in the general case, because the DM and the

analyst may be the same person, or the DM may have some knowledge about

optimization.

The analyst has a well defined goal, to provide the DM with a good ap-

proximation to the Pareto Front/Set. The job of DM is to choose a final

solution from the approximation. Or, if we are in an iterative approach, the

DM must use the approximation to clarify preferences and use this informa-

tion to update the optimization problem, so the analyst can obtain a more

specific approximation and so on until a final solution is obtained.

An important question is: what is a good approximation? or what makes

one approximation better than another? There are several desirable proper-

ties of an approximation that the experts have identified. These properties

are supposed to make an approximation more informative for the DM. We

call these properties the “Analyst Preferences”. We consider two: conver-

gence and diversity. There may be other properties but convergence and

diversity are the most widely accepted.

Convergence

The most important characteristic of an approximation is convergence. As

mentioned in Section 2.5.2, convergence refers to how close to the Pareto

set a non–dominated set is. Unfortunately, there is not a rigorous definition

of convergence, the concept of closeness to the Pareto Front has not been

40

defined. This incapacity to clearly define convergence is the source of many

complications when trying to compare different non–dominated sets. If a

non–dominated set is a subset of the Pareto Front, we can conclude that the

set has complete convergence, because all its elements are Pareto optimal.

But, when we are comparing two non–dominated sets, and none of them

have completely converged to the Pareto Front, the question of which one is

“nearer” to the Pareto Front needs to be answered.

Some quality indicators designed to measure the closeness of a non–

dominates set to the Pareto Front are proposed in [62] and [71]. These

quality indicators use Euclidian distances between the elements of a NS and

a reference set. Unfortunately, it has been demonstrated that these quality

indicators can be misleading in some cases [42][83]. Another approach is to

compute the convergence of one approximation in relation to another, for ex-

ample we can consider that A has a better convergence than B if all vectors

in B are dominated by vectors in A .

Vectors near to, or in the Pareto Front are more informative for the DM

because they provide more information about the potentially optimal solu-

tions. Solutions far away from the Pareto Front represent suboptimal options

for the DM when choosing a final solution, and give misleading information

to the DM when trying to define preferences. Even when there is no rigorous

definition of convergence, its intuitive notion is understood and accepted by

most researchers in the area.

Diversity

Just like in the case of convergence, there is no rigorous definition of diversity

in the literature. As mentioned in 2.5.2, diversity refers to the distribution

of the elements of an approximation set over the Pareto Front. Actually, the

concept of diversity has been described in many ways, for example:

1. We want to have a good idea of the shape of the trade–off surface.

41

2. We want to represent the Pareto Front with the maximum resolution

possible.

3. We want the vectors in the non–dominated set to be as evenly dis-

tributed as possible.

4. We want to have as many solutions as possible in the Pareto Front.

5. It is desirable to know the extreme values of the Pareto Front.

Some authors divide diversity into more specific characteristics, for exam-

ple in [82] it is considered dispersion (the vectors must be evenly distributed

along the Pareto Front surface), and extension (the range of values of all

objective functions must be as wide as possible), instead of diversity.

This variety of definitions show how difficult it is to define the concept

of diversity. Also, some of the definitions may be incorrect depending on

the topology of the Pareto Front. For example, if a Pareto Front in m–

dimensional space is a (m − 1)–dimensional surface, having the elements of

a non–dominated set evenly distributed is desirable, but this is not adequate

if the Pareto Front is a finite set of irregularly spaced vectors.

Another example is when the Pareto Front consists of a single point or

has a very short extension (compared with other zones of Z). In these cases,

a non–dominated set that is located far from the Pareto Front can have a

better extension, when the Pareto Front has a poor one. Using the number of

vectors generated to evaluate diversity can be misleading in cases where the

Pareto Front consists of a small number of vectors, or when an approximation

has all its vectors clustered in a small region. Even combinations of these

concepts can be problematic to interpret.

These difficulties are the reason why some authors view diversity suspi-

ciously [44]. Actually, some methodologies to evaluate non–dominated sets

ignore diversity completely [83].

Even when it is extremely complicated to define and measure diversity,

we cannot ignore it. Here is a list of justifications for considering diversity:

42

1. The final goal of evaluating the quality of an approximation set is to

create a methodology to compare two (or more) MOEAs. Most MOEAs

in the literature, and especially all the state of the art MOEAs, have

been designed considering diversity, using implicit or explicit mecha-

nisms to generate approximation sets with good diversity. Ignoring

diversity in our comparison methods may result in unfair comparisons

between MOEAs.

2. One of the justifications of using the Pareto Optimality Criteria in-

stead of “a priori” methods in multi–objective optimization, is that it

is possible to obtain a set of solutions in a single run. If diversity is

ignored, there will be no difference between one NS with one solution

and another NS with many, as long as both are in the Pareto Front.

So, ignoring diversity may lead us to ignore MOEAs and use the more

efficient “a priori” methods.

3. The goal of presenting a set of solutions to the DM is to give him/her

a good idea of the different possible trade offs between objective func-

tions. So, the DM can have a better idea of the attainable solutions

and can make a decision based on more and better information. Con-

sider the two NSs in Figure 2.9. A has many elements and B has

only one. Assume that both sets are in the Pareto Front and that they

are disjoint. Appealing to the intuitive notion of convergence, it can

be argued that both sets have the same convergence, but they have a

huge difference in diversity. As analysts, what approximation would

we choose between A and B, to present to the DM?

The conclusion is that diversity is relevant and, together with conver-

gence, is necessary to completely evaluate the quality of a non–dominated

set. We are convinced that many of the problems and contradictions regard-

ing diversity are a consequence of the lack of a clear definition. Finding an

43

f1

f2

-

6

ssssssssscsssssssssss

Objective Function Space

Figure 2.9: Two sets with a huge difference in diversity. A (•) has a better
diversity than B (◦).

appropriate definition of diversity may lead us to design a better notion of

when one approximation has a better diversity than another.

2.7 Convergence and Diversity

In this work we consider both convergence and diversity to evaluate the

quality of a non–dominated set. Diversity can be divided into other concepts,

like number of vectors generated, distribution of the vectors in objective

function space, etc, but here we consider diversity as a whole.

A very important issue is how to combine diversity and convergence to

obtain a complete evaluation of a non–dominated set. One approach is to

consider convergence and diversity as two incomparable objective functions

and to create a secondary multi–objective problem where we are trying to

optimize these two objective functions. So, in the future, the Decision Maker

can decide the trade off between convergence and diversity. We do not agree

44

with this approach for the following reasons:

1. Considering convergence and diversity as two different goals to optimize

does not solve our problem. We want to choose the best one between

two sets of vectors. Measuring the quality of an approximation with

two characteristics (convergence and diversity) leave us almost at the

same point, we still can not decide in all cases which approximation is

the best one.

2. We as analysts, are suppose to provide the DM with a good set of solu-

tions so a good decision can be made. Choosing a good approximation

is a problem that the analyst must solve, we are not supposed to pass

on the problem to the Decision Maker. The DM can tells us what solu-

tions of a set are the best, is not supposed to know about convergence

and diversity.

3. If convergence and diversity are considered two non comparable goals,

we can arrive at contradictions. Consider the two NSs in Figure 2.10.

We see that A has better convergence, while B has better diversity.

So, we have that they are not comparable, but this is a contradiction

to General Assumption 1, because all vectors in B are dominated by

vectors in A . If we assume that these sets are not comparable, we are

implying that for some DM preferences B has better solutions than

A , but this means that the DM may prefer dominated solutions over

non–dominated ones.

We consider that both convergence and diversity must be combined to

obtain the total evaluation of an approximation. Diversity must be in second

place after convergence because, as mentioned above, considering diversity

and convergence as two equally important objectives leads to a contradiction.

On the other extreme, ignoring diversity can lead us to unfair comparisons.

In our opinion, the best approach is to use convergence to make an initial

45

f1

f2

-

6

Z

s

cccccc

Objective Function Space

Figure 2.10: Convergence versus diversity. A (•) has better convergence but
B (◦) has better diversity.

classification of the sets and then, use diversity to solve any ties when con-

vergence is unable to distinguish between two non–dominated sets. This is

the approach we use to elaborate a comparison method, and similar ideas

have been proposed before [43].

46

Chapter 3

Quality Indicators for

Non–dominated Sets

3.1 Introduction

How can we measure the quality of an approximation set? How can we decide

if one approximation is better than another? These questions are really

challenging to answer. Several approaches to solve the questions above have

been presented in the literature but still there is a lot to be done. In this

chapter we make a brief review of the work that has been done to compare

the quality of two or more approximation sets.

We use A > B to denote that A is better than B, for some definition of

“better”. The quality of a candidate solution is usually evaluated based on its

values of objective functions. So, it is common to evaluate an approximation

set based on its image in the objective function space. In the rest of this

work, we locate points, vectors, solutions, approximations, etc. in objective

function space.

In the next subsections we review some concepts related with the quality

of an approximation set and some methodologies to evaluate this quality.

We want to remark that this revision is based on the “Analyst Preferences”

47

(convergence and diversity), and the effectiveness of the various approaches

studied here is evaluated according to these preferences. Also, we assume that

the final goal of evaluating the quality of an approximation, is to compare

the performance of multi–objective algorithms.

3.2 Quality Indicators and their Properties

At the beginning, NSs were compared using visual validation, if A looks

better then B than A > B. Unfortunately, this technique has several

disadvantages. First, there is a subjective component in a visual comparison.

For example, it is possible that A looks better than B for one researcher,

while B looks better than A for another researcher. Second, for more than

three dimensions, it is very hard to visualize a non–dominated set. As a

consequence, visual validation is not trustable in all cases, and is limited to

two or three dimensions.

On the other hand, visual validation can be very useful under some con-

ditions. When there are considerable differences in convergence and diversity

(for 2d and 3d problems), visual validation can give a good idea of the qual-

ity of the sets. Actually, visual validation has been useful to detect errors

in some numerical comparison methods. While these methods state that

A > B, when the approximations are plotted, it is evident that B > A .

So, under some conditions and used with precaution, visual validation can

be useful to support the development of new comparison methods.

In order to make a numeric evaluation of the outputs of MOEAs, quality

indicators (QIs) are introduced:

Definition 19. An m–ary quality indicator is a function I : Ωm → R which

assigns to each m–tuple (A1,A2, . . . , Am) a real value I(A1,A2, . . . , Am).

Ω is given by Definition 14. A unary quality indicator I(A) takes one

approximation as an argument. Unary quality indicators can be considered

48

models of quality for an approximation. Different quality indicators represent

different models of quality, with different levels of accuracy. Higher (or lower,

depending on how it was defined) values of I(A) mean that A is “better”.

So, A > B if I(A) > I(B), based on a quality indicator I.

Quality indicators can be classified depending on the aspect of quality

they are evaluating. There exist quality indicators designed to measure con-

vergence, others are designed to measure diversity and there are others de-

signed to measure the general quality of a non–dominated set.

Some unary quality indicators use extra information about the multi–

objective problem in order to make their evaluations. For example, Gen-

erational Distance [71] uses a set of vectors as a reference to evaluate the

convergence of a non–dominated set. The reference set may be a subset of

the Pareto Front, an approximation of the Pareto Front, or a synthetic set

of vectors defined by the analyst. Some QIs have parameters to adjust. For

example the S–metric [81] needs a reference point, whose position is deter-

mined by the analyst. The problem is that, in general, the evaluation of

these QIs depends on the set of parameters and reference information used.

So, it is possible for a quality indicator I and a pair of approximations B

and A , that under a set of parameters I(A) > I(B) and under another set

of parameters I(B) > I(A).

Moreover, it is important to remember that a unary quality indicator is

only a model, so its evaluations may not always agree with reality. Some

unary QIs may contradict our knowledge of when one non–dominated set is

better than another. The problem is that the quality of a non–dominated set

is very difficult to model and some quality indicators usually introduce biases

in their evaluations, or do not capture well the essence of the properties they

are trying to evaluate.

A binary quality indicator I(A , B) takes two approximations as an argu-

ment and returns a real number. This number represents the quality of one

of the two approximations with respect to the other approximation. Usually,

49

binary quality indicators need more interpretation than unary quality indic-

tors. For example, for A and B, we have two real numbers I(A ,B) and

I(B,A). Depending in how the quality indicator is defined, and we need to

interpret these numbers to decide whether A or B is better. An example of

a binary quality indicator I(A ,B), is the proportion of vectors in B that

are dominated by vectors in A .

Unary quality indicators have some advantages over binary ones. Unary

QIs allow us to order the elements of Ω. This makes the analysis of perfor-

mance a considerably easier, especially if we are comparing m > 2 approxi-

mations. When using a binary QI, the number of evaluations that we need to

make is O(m2), this makes the analysis of the results even more complicated.

Moreover, some binary quality indicators can induce cycles. For example,

for approximations A , B and C , some binary QIs can consider A > B,

B > C and C > A . For these reasons, unary QIs have been more popular

than binary QIs.

Zitzler et al. published a study [83] where it is claimed that binary QIs

are superior to unary QIs. According to that study, all quality indicators,

or combination of quality indicators, must have a property known as “com-

patibility and completeness”, because only then a QI can detect whether

one approximation is better than another. Then, it is demonstrated that

unary quality indicators cannot be, in general, compatible and complete.

Due to this, unary QIs are considered “politically incorrect” and their use

have been discouraged. It is notorious that, in practice, unary QIs are used

more often than binary ones. Another interesting point is that, when it was

demonstrated that unary QI can not be compatible and complete, some as-

sumptions that are not met in practice were assumed. When we consider

practical conditions we obtain a different result (see Appendix A).

Originally, quality indicators were called “metrics”, because their inten-

tion is to measure the quality of a non–dominated set. Unfortunately, the

term “metric” has a specific meaning in mathematics. This meaning is not

50

necessarily compatible with the meaning we are using here. The term met-

ric is considered incorrect, so the term “performance measure” has become

very popular to refer to a quality indicator. But, performance measure is also

considered incorrect, because “performance” is usually related with efficiency

with respect to time. In the rest of the work we refer to these functions as

quality indicators or performance measures.

There are some properties that are desirable to have for a quality in-

dicator, because quality indicators with these properties is more robust in

misleading cases. Two examples of these properties are monotony and rela-

tivity [44].

Definition 20. A quality indicator I has the property of monotony if adding

a new non–dominated vector to an approximation A , improves its evaluation

of A . A quality indicator I has the property of weak monotony if adding

more non–dominated vectors to an approximation A , does not degrade its

evaluation of A . By “adding a new non–dominated vector to A ”, we mean

that we add to A a vector c 6∈ A , that neither is dominated by current

elements of A , nor dominates any current element of A .

Definition 21. A quality indicator I has the property of relativity if it eval-

uates the Pareto Front as better than any other non–dominated set in Z.

A quality indicator I has the property of weak relativity if it evaluates the

Pareto Front as not worse than any other non–dominated set in Z.

The importance of these properties must be evident. The Pareto Front is

better than any of its approximations, so it must be evaluated as better (or

at least not worse) than any other approximation. Adding more elements to

a non–dominated set increases the information contained in the set, so its

evaluation must increase (or at least not decrease).

51

3.3 Hansen and Jaszkiewicz Approach

One of the most influential studies of performance measures is a technical

report written by Hansen and Jaszkiewicz [35]. In that report, the authors

create a framework to analyze quality indicators. Also, they propose some

quality indicators and give some directions about how to create QIs. Hansen

and Jaszkiewicz rely strongly on the concept of utility function to find a

partial answer to the question of when one non dominated set is better than

another. First, they present from the following definition:

Definition 22. A is better than B if for some user preferences, A contains

a better solution than B, but there is no user preference for which B contain

a better solution than A .

Also, they assume that all user preferences can be modeled by utility

functions u, and denoted by U a set of utility functions. Let (A > B)U ⊂ U

denote the set of utility functions in U that attain a better value in A than

in B. We have the following definition:

Definition 23. Out–performance relation subject to a set of utility functions

U . A out–performs B subject to a set of utility functions U , denoted by

A OU B, if (A > B)U 6= ∅ and (B > A)U = ∅. In other words, A OU B

if some utility functions u ∈ U achieves better values for A than for B but

no function u ∈ U achieves a better value for B than for A .

An out–performance relation, is a binary relation between two non–

dominated sets, so if A out–performs B (denoted by A O B) then we

can conclude that A is better than B. Note that the out–performance

relation given in Definition 23 is an extension of the dominance relation be-

tween two candidate solutions, given in Definition 10. In Definition 10 we

have candidate solutions to be evaluated in a vector of objective functions,

in Definition 23 we have sets of vectors to be evaluated by a set of utility

functions.

52

Remember that in this work we only consider utility functions compatible

with the dominance relation (we recommend to read Definition 18 for the

discusion in the following paragraphs). In order to apply Definition 23 it is

necessary to define a set of utility functions. Hansen and Jaszkiewicz also

defined other out–performance relations that do not depend on a set of utility

functions.

Definition 24. Weak outperformance: A weakly outperforms B, denoted

by A OW B, when for every point b ∈ B there exists a point a ∈ A such

that a dominates b or a = b and there exists at least a point c ∈ A such that

c /∈ B.

Definition 25. Strong outperformance: A strongly outperforms B, denoted

by A OS B, when for every point b ∈ B there exists a point a ∈ A such

that a dominates b or a = b and there exists at least a pair of points r ∈ A

and s ∈ B such that r dominates s.

Definition 26. Complete outperformance: A completely outperforms B,

denoted by A OC B, when for every point b ∈ B there exists at least one

point a ∈ A such that a dominates b.

The definitions of OW , OS and OC are concordant with Definition 23 if

we use UC as the reference set of utility functions. For example, if A OC B

then the set (B > A)UC
is empty, because every vector in B is dominated

by a vector in A , and all u ∈ UC give a better or no worse evaluation to

dominating vectors. At the same time, (A > B)UC
is not empty, because

some u ∈ UC give a better evaluation to dominating vectors. So, if A OC B

there are some utility functions for which A is better than B, but there is

no utility function for which B is better then A . Similarly, if A OW B, or

A OS B, it is easy to find that (B > A)UC
is empty and that (A > B)UC

is not empty.

For the cases where ¬(A O B) and ¬(B O A) (O may be OW , OS, OC

and ¬ denotes the logic negation), we say that A and B are not comparable

53

f1

f2

-

6

t

Objective Function Space

b

Figure 3.1: For A (·) and B (•), suppose that b ∈ PF and b 6∈ A . A and
B are non–comparable under the out–performance relations.

under the out–performance relation O.

The reason why the out–performance relations represent a partial answer

to the question of when one non–dominated set is better than another, is

because when A and B are not comparable, no conclusion can be derived.

This is very important because it is possible for A to be better than B even

if A does not out–perform B.

In order to understand how the out–performance relations work, it is

useful to study the negations of the out–performance relations. For example,

the negation of weak out–performance is as follows:

Definition 27. Negation of weak outperformance. A does not weakly out-

perform B when A = B, or when there exists at least one point b ∈ B that

is neither contained in A nor dominated by any point in A .

We want to remark that a single vector b ∈ B, that is neither contained

in A nor dominated by elements of A is enough to conclude that B is not

weakly out–performed by A . Actually, the same condition is enough to con-

sider that B is not strongly or completely out–performed by A . This leads us

54

to realize how limited is the inference power of the out–performance relations

(OC , OS and OW) when the approximations have a similar convergence.

An extreme example can be seen in Figure 3.1. The red line represents

A and the black dot represents B. Suppose that b 6∈ A and that b is in

the Pareto Front for a multi–objective problem. Evidently, A is better than

B, but according to the out–performance relations described above, A and

B are not comparable. B does not outperform A because there exist many

elements in A that neither are in B nor are dominated by any element of

B. A does not outperform B because there exists an element in B, b, that

neither is in A nor is dominated by any element of A .

The conclusion is that for many pairs of approximations, there is a con-

siderable difference in quality, but the out–performance relations are not able

to detect it. Hansen and Jaszkiewicz recommended to use stronger assump-

tions about DM’s preferences for the cases where two non–dominated sets

were non comparable. As a result, a family of QIs known as the R–metrics

was created. We describe the R–metrics later.

The out–performance relations are useful to establish a minimum of what

characteristics are expected from a quality indicator. Let I be a quality

indicator, and let I(A > B) means “I considers A better than B” and

I(A ≥ B) means “I considers A better than/equal to B”. A desirable

property of a QI is the following:

Definition 28. A quality indicator I is compatible with an out–performance

relation O (where O is any of OU , OW , OC or OS) when I always evaluates

A as better than B if A O B. In mathematical notation, I is compatible

with O when A O B ⇒ I(A > B). I is weakly compatible with an out–

performance relation O when A O B ⇒ I(A ≥ B).

An indicator compatible with the out–performance relations is more ro-

bust to misleading cases, and it is desirable to design and use quality indica-

tors that are compatible with these relations.

55

f1

f2

-

6

s

s

s
s

a

b

c

d

Objective Function Space

Figure 3.2: Some elements of Z.

It is interesting to note that strong out–performance can be contradictory

to the concept of monotony in some cases. To see this, consider the vectors in

Figure 3.2. Let A = {a, b, c} and B = {a, b}. It is evident that 6 (A OW B.

But if we add to B the vector d, we have that A OS B. The evaluation of

B is degraded after adding a new vector to B.

3.4 Zitzler et al. Framework

Another influential study on performance measures was realized by Zitzler

et al. [83]. In that study, the authors strongly relied on the work of Hansen

and Jaszkiewicz and went forward with the objective of analyzing how useful

current comparison methods are. They considered the scenario where more

than one quality indicator may be used to evaluate or compare the quality of

non–dominated sets. Under this scenario, it may be necessary to introduce

an interpretation function E. So, when comparing two approximations, we

use E to interpret the results of all the quality indicators. The result is a

56

formal definition of a comparison method:

Definition 29. Let I = (I1, I2, ..., Ik) be a k–tuple of quality indicators.

Let I(A) be a vector of real values 〈I1(A), I2(A), ..., Ik(A)〉 generated by

a list I of unary quality indicators. Let I(A ,B) be a vector of real values

〈I1(A ,B), I2(A , B), ..., Ik(A , B)〉 generated by a list I of binary quality in-

dicators. Let E : Rk ×Rk → {false, true} a Boolean function which takes

two real vectors of length k as arguments. When I consist of unary quality

indicators only, a comparison method CI,E is a function in the form:

CI,E(A ,B) = E(I(A), I(B)) (3.1)

When I consists of binary quality indicators only, a comparison method CI,E

is a function in the form:

CI,E(A , B) = E(I(A ,B), I(B,A)). (3.2)

If CI,E(A ,B) is true, then A is better than B, according to CI,E. And if

CI,E(A ,B) is false, then A is not better than B according to CI,E. Note

also that it is possible to create a comparison method using a combination of

unary and binary quality indicators in I.

These definitions established a more formal way to define a methodology

to compare two non–dominated sets. In [83] is defined a property known as

“compatibility and completeness”1, similar to the property of compatibility

with the out–performance measures described in Definitions 24, 25 and 26.

Definition 30. A comparison method CI,E is compatible and complete with

respect to an out–performance relation O when CI,E(A ,B) = true if and

only if A O B.

1Zitzler et al. [83] define two properties for quality indicators. One property is called
compatibility and the other one is called completeness. In this work we refer to the
property of being both compatible and complete as “compatibility and completeness”.

57

So, a comparison method is compatible and complete with respect an

out–performance relation O2 if and only if ∀A ,B(A O B ⇔ CI,E(A ,B) =

true).

In [83] it is postulated that a comparison method must be compatible and

complete. According to the study of Hansen and Jaszkiewicz [35] it is clear

that a comparison method must evaluate A as better than B if A O B,

but what is the justification to consider that a comparison method must

evaluate A as better than B only if A O B? The justification also comes

from [35], where it is clearly stated that when two non–dominated sets are

not comparable under the out–performance relations, it is not possible to

decide what NS is better than the other under General Assumption 1. In

that case more assumptions about DM’s preferences must be used in order

to find differences between the sets.

From the framework just described, several important conclusions are de-

rived. Maybe the most important conclusion is the affirmation that unary

comparison methods have a limited inference power. This conclusion is de-

rived from the fact that a comparison method based on a finite number of

unary quality indicators cannot be compatible and complete (see the demon-

stration in [83]). Many of the quality indicators available in the bibliography

were revised and it was found that most quality indicators are not compatible

and complete.

When we study the definition of a compatible and complete comparison

method, we arrive at some interesting conclusions. One of these conclusions

is that we must not speak of a compatible and complete comparison method

(CCCM) but of the compatible and complete comparison method. In other

words, all compatible and complete comparison methods are exactly the same

function.

Two functions are considered equal if they have the same graph. For

2In [83], the property of compatibility and completeness is defined for any binary rela-
tion between approximations. We focus only on the out–performance relations.

58

a function f : A → B, its graph is the set of ordered pairs (a, b), where

a ∈ A, b ∈ B and b = f(a). For example, consider a function f1 whose

domain is A = {1, 2, 3, 4} and its codomain is B = {1, 4, 9, 16}. In order to

relate the elements of the domain and codomain, f1 uses the following rule:

f1(a) = a2 (3.3)

The graph of f1 is the set {(1, 1), (2, 4), (3, 9), (4, 16)}. Now, consider

another function f2 with the same domain and codomain of f1, but the rule

that f2 uses to relate the elements of the domain with the elements of the

codomain is:

f2(a) =

{
3(a− 1) + 1 if 1 ≤ a ≤ 2

7(a− 3) + 9 if 3 ≤ a ≤ 4

The graph of f2 is {(1, 1), (2, 4), (3, 9), (4, 16)}. As we can see, f1 and f2

are the same function, because both have that same graph. The “rule” used

to associate the domain with the codomain is irrelevant, as long as we obtain

the same graph we have the same function.

A compatible and complete comparison method is a function in the form:

f : Ω × Ω → {true, false}, so its graph is the set {(w, y)|w ∈ Ω × Ω, y ∈
{true, false}} of ordered pairs, where y = “true′′ if and only if the first set

of w out–performs the second set in w. The consequence of all this is that all

compatible and complete comparison methods are exactly the same function,

because they have the same graph. As mentioned above, the “rule” we use

to make the map from Ω × Ω to {true, false} is irrelevant. Thus, it does

not matter what vector I of quality indicators we use, at the end all of them

give the same information. In other words, once we know one compatible

and complete comparison method, we know them all.

Further, two examples of compatible and complete comparison methods

where given in [83] based in two different quality indicators. The question

is, if we already have some of these methods and all of them give the same

59

information, is it necessary to look for new ones? A possible answer to

that question is to improve the computational complexity of the comparison

method. The computation complexity of all known CCCM is O(|A ||B|) but,

is it possible to find a faster CCCM?

Unfortunately, compatible and complete comparison methods have the

same limitations in inference power of the out–performance relations. Re-

calling the example of Figure 3.1, where A and B do not out–perform each

other, a compatible and complete comparison method, by definition, consid-

ers these sets as non–comparable. This is a disadvantage; usually researchers

want a comparison method to be able to identify such considerable differ-

ences in the quality of the approximations. But, by definition, a CCCM

cannot detect any difference when the approximations are not comparable

under the out–performance relations. The conclusion is that, contrary to

what is widely believed, being compatible and complete is not desirable for a

comparison method, or for a quality indicator. An important consequence of

this, is that unary quality indicators are not inferior to binary ones. Unary

QIs are considered inferior because they cannot be compatible and complete.

But if compatibility and completeness is an undesirable property, then there

is no known reason to consider unary QIs as inferior.

3.5 Farhang-Mehr and Azarm’s Framework

Another interesting framework for the analysis and design of performance

measures is that of Farhang-Mehr and Azarm [48]. A peculiar aspect of this

study is that the authors do not focus on answering the question of when one

non–dominated set is better than another. Instead, they investigated how

to select different quality indicators in the most efficient way such that there

is not redundant information, and all aspects of quality of a non–dominated

set are evaluated.

Their work introduces the concept of excellence relation, whose definition

60

we reproduce next:

Definition 31. An excellence relation, denoted by R, is defined as a strict

partial order in Ω that relates all non-dominated sets that are objectively

comparable with respect to a common aspect of quality.

Where Ω denotes the set of all non–dominated sets. A strict partial

order between the elements of a set A, is an irreflexive, antisymmetric, and

transitive binary relation that compares some and not every pair of elements

of A.

An excellence relation is associated with some aspects of quality of a non–

dominated set. For example, Farhang-Mehr and Azarm consider the out–

performance relations as excellence relations related to convergence. They

also define a new excellence relation related to diversity.

Only binary and symmetric quality indicators are considered in that study

and some interesting conclusions were derived. For example, suppose that we

consider n different aspects of quality when evaluating some approximations.

In order to obtain a complete comparison, no less than n different quality

indicators must be used. If we do not want to obtain redundant information,

then no more than n quality indicators must be used. As a conclusion, the

most efficient and complete way to evaluate approximation sets considering

n aspects of quality is to use n quality indicators, one for each aspect of

quality.

The framework presented in [48] is an interesting approach to solve the

problem of how to compare approximation sets. But, in this work we follow

a different road for several reasons, for example:

1. In [48] it is assumed that the DM will provide a set of quality aspects

to evaluate an approximation set. In our approach, we assume that

the DM is not familiar with concepts such as convergence and diversity

(this is also mentioned in [48]). On the contrary, we assume that the

61

DM is able to compare two candidate solutions but not two approxima-

tions. The decision of when one approximation is better than another

comes from the analyst. We have two different tasks: one task is to

optimize a multi–objective problem, and the other task is to compare

the performance of two MOEAs. When solving a multi–objective prob-

lem, we assume that either the DM or the analyst already has chosen

a MOEA to work with, and that we can introduce DM preferences.

When comparing the performance of different MOEAs, the quality of

an approximation must not depend on the preferences of the DM, be-

cause for each DM we must make an analysis of what MOEA performs

better. This is inefficient and makes it almost impossible to decide

when one MOEA is better than another.

2. In [48] it is recommended to use several quality indicators to evaluate

approximations but it says nothing about how to combine their evalua-

tions. Using n QIs give us n different numbers for each approximation,

but how do we use these numbers to decide when one approximation

is better than another? Without a criterion to combine those numbers

many approximations may not be comparable, and we return to the

point where we started. One of the goals in this work is to be able to

rank m approximations from the best to the worst.

3.6 Quality indicators, Comparison Methods

and Others.

3.6.1 Introduction

In this subsection we describe a few of the quality indicators that can be found

in the literature. It is not our intention to be exhaustive in this review; we

only want to give an idea of the different approaches that have been proposed.

62

For more examples of quality indicators we recommend reading [62], [71], [81],

[54], [76], [65], [44], [19].

3.6.2 Reference Points Found

This quality indicator is mentioned in [35] 3 and consists of the number of

elements of the Pareto Front in an approximation, divided by the number of

elements in the Pareto Front. In mathematical notation:

C1(A) =
|A ∩PF |
|PF | . (3.4)

This quality indicator gives a value of zero to NSs that have no elements

in PF and give and increasing value to NSs with more elements in PF .

It is evident that in cases where the Pareto Front has an infinite number

of elements or where the Pareto Front is unknown, this quality indicator

cannot be used. For those cases, we can use a different version, where PF

is substituted by a reference set R. R could be a subset of PF or the best

non–dominated set known. Then, we count the number of vectors in A that

are not dominated by any element in R. The mathematical description of

this modified version is presented next:

C2(A) =
|{a ∈ A | 6 ∃r ∈ R, r dominates a}|

|A | . (3.5)

Hansen and Jaszkiewicz [35] mention some disadvantages of these quality

indicators:

• They are insensitive to improvements of the non–dominated sets. For

example, if R OC A and A OC B, C1 and C2 consider A and B as

equally good, but A is better than B.

3Hansen and Jaszkiewicz [35] mention that this quality indicator is used in [70] in 1993.
We could not find a copy of [70], so all our information about the “number of reference
points found” is based on [35].

63

• C1 and C2 are not sensitive to some differences in the diversity of the

NSs. For example, suppose that A has k elements in PF , but clus-

tered in a small region and B has k elements in PF well distributed

along all the extension of PF . C1 and C2 give the same value to both

NSs, even when B has richer information about PF .

• If none of the NSs to compare converged to PF , C1 and C2 will not

be able to give any more information about the non–dominated sets.

A binary version of this quality indicator is described in [42]:

C3(A ,B) =
|{b ∈ B|∃a ∈ A , a dominates b}|

|B| . (3.6)

3.6.3 Non–dominated Set Spacing

Proposed in [62], this metric measures the spacing between the elements of

a non–dominated set. The formula is:

Spacing(A) =
1

|A | − 1

|A |∑
i=1

(d− di)
2, (3.7)

where d is the mean value of all dis and di = min
j {|a(1)

i − a
(1)
j |+ |a(2)

i − a
(2)
j |},

ai, aj ∈ A , j 6= i, a
(k)
l stands for the k–th component of the l–th vector in

A . This quality indicator is defined for two objective functions, but it can

be extended for more objective functions.

3.6.4 S–metric

Proposed in [81], the S–metric consists of the space enclosed by a non–

dominated set A and a fixed reference point r∗. For a minimization problem,

the bigger the space enclosed the better the evaluation of A . This is one of

the most popular performance measures in the literature.

64

The evaluation of the S–metric for a non–dominated set A , can be ex-

pressed with the formula [51]:

S(A) = µ

(⋃

a∈A

{x | (a dominates x) and (x dominates r∗)}
)

, (3.8)

where µ denotes the Lebesgue measure and a is an arbitrary element of A .

S–metric measures the overall quality of an approximation. It is a unary

quality indicator, so it creates a total order between the non–dominated

sets. The S–metric is compatible with all the out–performance relations if

the reference point is well chosen.

It has been reported that the S–metric has a bias towards the central

zone of the Pareto Front and towards convex areas of the Pareto Front [78].

Some research is being done to solve these problems [78]. The election of

the reference point is vital for the good behavior of the S–metric. Different

reference points may result in different evaluations. Also, the reference point

must be dominated by all possible vectors in the comparison, otherwise the

evaluations of the S–metric may not make any sense, for example, reporting

negative values.

There are efficient algorithms to calculate the value of the S–metric. Fon-

seca et al. [23] proposed an O(|A | log |A |) algorithm for three dimensions.

There is another algorithm with complexity O(|A |d/2) [6] that works on any

dimension. This last algorithm is based on another algorithm that solves

Klee’s measure problem [55]. The S–metric has been used to lead the search

process in some multi–objective algorithms [51].

3.6.5 ε–Indicator

A family of performance measures based on ε–dominance [47] is proposed

in [83]. The binary ε–indicator Bε(A ,B) is the minimum factor for which

65

all components of all vectors in B must be multiplied in order to have each

vector in B dominated or equal to some vector in A . If we substitute the

set B for a reference set R, we obtain the unary ε–indicator, denoted Iε(A).

There is another version of the ε–indicator mentioned above, known as

the additive ε–indicator. The binary additive ε–indicator, B+ε(A ,B) is the

minimum value that must be added to all components of all vectors in B,

in order to have each vector in B dominated or equal to some vector in A .

The unary additive ε–indicator is obtained when we substitute the set B by

a reference set R.

Bε(A ,B) can be calculated with the formula:

Bε(A ,B) = max
b∈B

min
a∈A

max
1≤i≤m

a(i)

b(i)
, (3.9)

where the vectors in the approximations are in Rm and a(i) stands for the

i–th component of vector a.

This family of quality indicators have gained much attention in recent

years. They have an intuitive meaning, they are very easy to program and

they are relatively cheap to calculate. Using the binary multiplicative version

it is possible to construct a compatible and complete comparison method. To

construct such a comparison method, use the function [83]: F = (Iε(A , B) ≤
1∧Iε(B, A) > 1). This formula is true if and only if A weakly out–performs

B, so the comparison method CIε,F is compatible and complete.

The members of the ε–indicator family are defined based on concepts of

dominance only, but they are often used to evaluate the general quality of

the non–dominated sets.

3.6.6 Generational Distance

Generational distance is designed to measure the convergence of a non–

dominated set. For a NS A and a reference set R, Generational Distance

66

(GD) is defined as [71]:

GD(A) =

√∑|A |
i=1 di

|A | , (3.10)

where di is the distance between the i–th element of A and the nearest ele-

ment of R. Smaller values of GD mean a better convergence of the set. This

performance measure is intuitive, easy to calculate and creates a total order

between non–dominated sets. Unfortunately, GD depends on a reference set

and, in general, is not even weakly compatible with weak out–performance.

Adding more vectors to a non–dominated set can degrade its evaluations, so

it has no property of monotony. Nevertheless, this performance measure is

still popular because it is easy to use.

3.6.7 R–Metrics

Hansen and Jaszkiewicz [35] define several quality indicators based on con-

cepts of probability. Let U ⊂ UC be the set of utility functions used to

model all possible DM preferences for a multi–objective problem. For u ∈ U ,

let u∗(A) denote the maximum value reached by u in A . Let p(u) be the

probability that the DM chooses u ∈ U . The binary quality indicator R1 is

defined as follows:

R1(A ,B, U, p) =

∫

u∈U

C(A ,B, u, p)p(u)du, (3.11)

where:

C(A ,B, u) =





1 if u∗(A) > u∗(B)

1/2 if u∗(A) = u∗(B)

0 if u∗(A) < u∗(B).

(3.12)

67

An intuitive (but not completely accurate) interpretation of R1 is that it

counts how many utility functions A provide a better solution than B, but

considers the probability of these utility functions to be the chosen one. A

is better than B if R1(A , B) > 1/2, A is equal to B if R1(A ,B) = 1/2

and A is worse than B if R1(A ,B) < 1/2. R1 is compatible with the

out–performance relations under some special conditions [35].

A disadvantage of R1 is that it can induce cycles. For example, it is

possible to have situations where R1(A , B) > 1/2, R1(B,C) > 1/2 and

R1(C , A) > 1/2. A variation of R1 is the unary quality indicator R1R :

R1R(A , U, p) = R1(A ,R, U, p), (3.13)

where R is a reference set. R1R is weakly compatible with the out–performance

relations, but it is not compatible even with complete out–performance. An-

other disadvantage of R1R is that it can not detect differences in the quality

of approximations that are completely out–performed by R, because the

value of R1R for those sets is zero.

R1(A ,B, U, p) > 1/2 can be interpreted as “it is more likely that A

yields a better solution than B”, but R1 does not consider the differences in

the amount of benefit provided by the solutions.

Imagine that all utility functions are defined so the value of different

utility functions can be added. The expected benefit from an approximation

can be calculated as:

E(u∗(A)) =

∫

u∈U

u∗(A)p(u)du. (3.14)

The expected value of the utility of an approximation set is, itself, a

good unary quality indicator. Suppose that all utility functions u(z) are

formulated to measure the income in dollars obtained from the candidate

solution z. E(u∗(A)) represents the expected income that we can obtain

68

using A . It is hard to think of a better quality indicator than that. Hansen

and Jaszkiewicz [35] define a binary QI based on Formula 3.14 known as R2:

R2(A ,B, U, p) = E(u∗(A))− E(u∗(B)). (3.15)

A is better than B if R2(A ,B, U, p) > 0. R2 is weakly compatible with

the out–performance relations, and is compatible under the same conditions

as R1.

Other “R”–metrics based on R1 and R2 are also defined in [35]. One of

the main disadvantages of the R–metrics is that they require a considerable

amount of information in order to be used. The probability function p(z) and

the set of utility functions U are not known “a priori” and they can be very

difficult to obtain. Hansen and Jaszkiewicz [35] give some recommendations

about how to set p(z) and U in an artificial way, but we must remember that

the evaluations of the R–metrics are heavily affected by those parameters

and the selection of a particular set of parameters must be justified.

When Hansen and Jaszkiewicz designed the R–metrics, one of their goals

was to use those quality indicators in the search process. For example, in an

interactive approach, we can obtain an initial approximation to the Pareto

Front. Next, based on that approximation, the DM can clarify preferences,

select a set of utility functions and decide which of them are more likely to

be the best ones. Then, we can include this information in the R–metrics

and use it as a stopping criterion.

Unfortunately, when we want to evaluate the performance of different

MOEAs, there is a major drawback in the use of the R–metrics. The gen-

eral procedure to compare several algorithms, is to run the algorithms in a

benchmark. Next we evaluate the outputs of the algorithms using one or

more quality indicators. Then we perform a statistical study of the evalu-

ations of the outputs. In the end, we want to infer if one MOEA performs

better than another in the “general case”. The R–metrics are designed to

introduce very specific information of a particular Decision Maker in their

69

evaluations. If a DM provides a density functions p(z) and a set of utility

functions U , when using this information the only inference we can make is

that a MOEA performs well for these particular DM preferences but not for

a multi–objective problem in general.

It can be argued that most quality indicators have parameters to adjust,

and different sets of parameters represent different preferences. That is true,

but the disadvantage of the R–metrics is that they are explicitly designed

to introduce preferences. The most favorable case for the R–metrics, when

the DM preferences are completely known, is the least favorable case when

trying to make general inferences about the performance of a MOEA.

3.6.8 Dominance Ranking

Next, we give the definition of what we call a ranker in the context of quality

indicators for approximation sets:

Definition 32. Given a finite number m of approximation sets, a ranker is a

procedure that ranks the m approximations from the best to the worst based on

some definition of quality. The lower the rank, the better the approximation.

The ranking is created considering all the information of the m sets.

The difference between a unary quality indicator and a ranker is that

a unary QI evaluates an approximation ignoring the information of other

approximations. The evaluations of a ranker are relative to the m approxi-

mations we are evaluating.

In [43] a ranker is described, called Dominance Ranking (DR). DR com-

pares each of the m approximations Ai, i ∈ {1, . . . , m}, with the others using

weak out-performance, and ranks them based on how many times each set is

out–performed. The rank of a set is defined by the formula:

rank(Ai) = 1 +
m∑

j=1

F (Aj,Ai), (3.16)

70

where:

F (A ,B) =

{
1 if A OW B

0 otherwise.
(3.17)

The DR is intended to be used in combination with a statistical rank test

to detect if there is a significative difference in the ranks of the sets.

DR is extremely easy to understand and to implement. Its computa-

tional complexity is relatively low, O(m2|M |2) in the worst case, where M

is the biggest set in the comparison. Also, it is not biased towards any DM

preference.

A disadvantage of DR is that it does not consider diversity in its evalu-

ations, so it cannot detect differences in the quality of two approximations

when they are not comparable under the out–performance relations. Another

disadvantage is that it can give some strange evaluations for some configu-

ration of sets. For example, consider the approximations in Figure 3.3. It is

evident that G is the worst set. It can also be seen that G does not follow

exactly the same arrangement of the other approximations. G is “shifted”

a little bit to the left and a little bit down. As a consequence, the leftmost

element of G is dominated by no vector in B, D and F , and the rightmost

element of G is dominated by no vector in A , C and D . Thus, when we

apply the weak out–performance relation, G is out–performed by no other

approximation! At the end, G will be located in the first rank, together with

A and B, contrary to what is expected.

71

f1

f2

-

6

q q q q

r r r r

t t t t

q q q q

r r r r

t t t t

u u u u

A C E
G

B

D

F

Figure 3.3: A misleading case for the Dominance Ranking.

72

Chapter 4

Problem Statement

4.1 Introduction

In single objective optimization, it is relatively easy to compare the perfor-

mance of stochastic algorithms. The value of the objective function is used

to measure the quality of a solution. Thus, the quality of the outputs of algo-

rithms is the value of the objective function of the best individual found. The

output of the algorithm is considered a random variable X, and it is desirable

to know the distribution of this variable. Knowing the distribution allows us

to infer how likely and with what consistency the algorithm approximates the

optimal solution. A typical procedure is to run the algorithm several times

to obtain a sample of its outputs, and use a measure of central tendency, as

the mean and median, and a measure of variability, as the variance. This

way we can compare two algorithms, comparing the mean, variance or any

other measure, of the sample of their outputs. This procedure has been used

in several papers, for example in [60].

It is even better to use statistical tests to compare stochastic algorithms.

There are many statistical tests designed to compare two or more samples

of a distribution, and to infer if there is a significant difference between the

samples. Statistical tests have a lot of theoretical support and the conclusions

73

derived from them are more trustable. For an introduction to statistical tests,

we recommend consulting [64].

In multi–objective optimization, the comparison between MOEAs is more

difficult because the outputs of a MOEA are sets of vectors. In [43], three ap-

proaches to compare the performance of MOEAs (based only on the outputs

of the algorithms) are described: quality indicator transformation, attain-

ment functions and ranking.

4.2 Quality Indicator Transformation

In this approach, the idea is to transform each approximation into a single

figure of merit using a unary quality indicator (binary quality indicators could

be used also). Assuming that a QI gives a bigger (or smaller, depending on

how it is defined) value to better approximations, we can use the value of

the QI as a random variable X produced by the multi–objective algorithm.

This way we can make a statistical analysis based on the transformation of

a sample of approximations into a sample of real numbers.

Using a quality indicator to perform a statistical analysis has several

advantages. Transforming an approximation into a real number simplifies the

statistical analysis. The problem is that there are many quality indicators

with both advantages and disadvantages, and it is not clear which one must

be used. There is the alternative of using a set of quality indicators, but it

is not clear what set must be used and how to interpret the different results

of the QIs.

4.3 Attainment Function

An attainment function [24] is a function defined on the objective function

space. It gives the probability for a vector z ∈ Rm to be dominated by,

or equal to, an element of an approximation A , generated by a MOEA

74

M . Let AM represent an arbitrary outcome of MOEA M , let z ∈ Rm be

an element of objective function space, and denote by A £ z, that z is

dominated by an element of A or contained in A . The attainment function

αAM
(·) : Rm → [0, 1] is defined as:

αAM
(z) = P (AM £ z). (4.1)

In practice, the attainment function can be estimated as follows. Define

the function:

I(A , z) =

{
1 if A £ z

0 otherwise
(4.2)

The empirical attainment function, based on n outputs of a MOEA, is

defined as:

αn(z) =
1

n

n∑
i=1

I(A , z). (4.3)

Given the attainment function of two MOEAs, a combination of statistical

tests and visual comparison can be used to determine which MOEA generates

better sets (for details, see [43]).

The attainment function approach has many advantages. For example,

most of the information of the approximations is preserved, unlike the quality

indicator approach. Also, arguably all the aspects of quality of an approx-

imation are intrinsically considered when using attainment functions. The

disadvantage is that for higher dimensions (d > 3), the empirical attainment

function is hard to evaluate and visualize. Since most of the experimentation

in multi–objective optimization is done in low dimensions, and the Pareto

Optimality Criteria loses strength as the number of dimension increases, the

dimensionality may not be a big problem for the use of attainment functions.

75

4.4 Ranking

Knowles et al. [43] propose the following approach. Imagine we want to com-

pare q MOEAs: MOEA1, MOEA2, . . ., MOEAq, and we make ri runs for

MOEAi, i ∈ {1, . . . , q}. We end up with r =
∑q

i=1 ri approximations, each

one associated with a different MOEA. Next, we rank the r sets using Dom-

inance Ranking (see Section 3.6.8), so each approximation A has associated

a figure of merit equal to rank(A). This way, each MOEA has associated

a list of integer numbers (the ranks) in the form (rank(A j
1), rank(A j

2),

. . . , rank(A j
r)), where A j

i denotes the i–th output of MOEAj. Finally, a

statistical rank test is used to find whether there are significant differences

between the ranks of the MOEAs.

Actually, this procedure is a particular case of the indicator transforma-

tion. Any quality indicator could be used to generate a ranking between a

combination of non–dominated sets. The advantages of the ranking is that

it is easy to understand and implement, and that no further assumptions are

made about Decision Maker preferences.

The disadvantages of this approach is that the Dominance Ranking can-

not detect differences in diversity, and it can produce some misleading rank-

ings (see Section 3.6.8). In [43] it is recommended to complement this ap-

proach with attainment functions and quality indicators to obtain a finer

evaluation, but no detailed procedure is given.

4.5 The Problem

In this work we focus on the ranking approach mentioned above. A quality

indicator or a ranker is necessary to rank the approximations and make a

rank statistical test. Unfortunately, all known quality indicators have disad-

vantages. They introduce strong biases in their evaluations, do not consider

all aspects of quality, etc.

The problem and area of opportunity is the following:

76

Problem Statement. Comparing the performance of two MOEAs is an

open problem in multi–objective optimization. When a researcher wants to

compare the performance of two MOEAs, it is not clear what methodology

must be used. As a consequence, it is difficult to validate new algorithms.

It is common to use several quality indicators at the same time, but it is

not clear how the different evaluations must be interpreted, and the use of

many quality indicators at the same time does not guarantee to obtain a good

evaluation. This lack of a good methodology to compare MOEAs has slowed

down the advance of multi–objective optimization.

4.6 The Objective

Main Objective 1. The main objective of this work is to create a ranker

able to rank a collection of approximation sets according to our intuition of

when one approximation is better than another.

Next we present some of the characteristics that we want in our ranker:

• We consider our ranker as a model of the analyst preferences. Our goal

is to model a complex system, the analyst preferences. This system has

been very difficult to model in the past, and different approaches have

had different degrees of success. In many cases we have an intuitive

notion of when one approximation is better than another. This intuitive

notion is what we want to imitate in our model. The goal is to design a

model accurate enough to make acceptable inferences when evaluating

the performance of MOEAs.

• We want to include all aspects of quality. More specifically, we want to

consider both convergence and diversity in our model. Ignoring one of

those aspects of quality may result in incomplete evaluations.

• We want to transform the evaluation of an approximation into a single

figure of merit. Evaluating different aspects of quality independently or

77

using several indicators has a disadvantage, we still have to decide how

to combine the different evaluations. Quality indicators that evaluate

different aspects of quality are important and their creation must be

encouraged, but the ideal scenario is to have a proper way to combine

them. In our model we combine convergence and diversity in a single

evaluation.

• We want to reduce the number of parameters as much as possible. Ad-

justing parameters can be difficult, especially if it is not clear what

are the consequences of changing a parameter. On the other hand, the

existence of parameters in a model has some advantages. Parameters

allow us to make adjustments for particular conditions. We want our

model to have a small number of parameters, and we want them to be

easy to adjust.

• We want our model to have desirable properties. When engineers create

a model of complex systems, for example the maquette of a bridge,

there are some properties that guarantee that the model has a behavior

similar to the real system. For example, there are properties related

with geometry (the scale in the main axis must be adequate). There are

also properties related with statics and dynamics (the response of the

model to mechanic elements like vibrations and stress must be similar

to that of the real system). For quality indicators, there are some

desirable properties that have been identified. For example monotony,

relativity, compatibility with out–performance relations (as is defined

by Hansen and Jaszkiewicz [35]), etc.

• We want our model to be easy to calculate. Low computational com-

plexity and simplicity are desirable properties for any quality indicator

or ranker. Unfortunately, in most cases the relationship between ef-

fectiveness and simplicity is inversely proportional. The most effective

algorithms to evaluate an approximations are the most demanding in

78

computational effort (for example, the S–metric and attainment func-

tions). We are trying to model a very complex system and the calcu-

lation of our model may not be cheap.

• We do not want to depend on extra information of the multi–objective

problem. Including information about the multi–objective problem may

be very useful, because we can adjust the evaluations of a quality indi-

cator. The drawback is that our model may become dependent on the

availability of such information. We want our model to be able to work

under the worst conditions, when there is no other information about

the problem, only the approximations to compare.

In order to be able to compare all possible approximations, Hansen and

Jaszkiewicz [35] introduce very specific information of a Decision Maker in

R–metrics. This approach has the disadvantage that it introduces a big bias

in the evaluations of R–metrics, losing generality. Ziztler et al. [83] decided

not to include any assumption or preference, besides General Assumption 1,

in the design of the compatible and complete comparison method. The disad-

vantage of this approach is that it is not possible to detect evident differences

in quality between some approximations. The rest of the quality indicators

are somewhere in the middle, with different capacity to detect differences in

quality and introducing some biases.

It is a common belief that introducing any assumption to a quality indi-

cator will make its evaluations biased. In this work, we assume that there

must be some extra information that can be introduced to improve the infer-

ence power of a quality indicator without introducing important biases. We

deduce this from the behavior of the compatible and complete comparison

method. CCCM has no biases, but it is clear that something is lacking in

its evaluations. We shall try to identify such information and to introduce it

into our model of quality.

Another objective of this thesis it to create a benchmark to study the be-

havior of the quality indicators under some synthetic cases. The only bench-

79

mark for quality indicators published, as far as we know, is that of Okabe et

al. [54]. In that work, the authors create six synthetic approximations with

different levels of quality. The disadvantage of that benchmark is that some

interpretation is required to decide the correct order, from the best to the

worst, between the sets. For example, one of the synthetic approximations

has good convergence, good extension and bad distribution, while another

approximation has good convergence, bad extension and good distribution.

But, it is not clear what approximation is better, because it can be discussed

whether we prefer extension over distribution or distribution over extension.

As a consequence, it is not clear what to expect from a quality indicator

when evaluating these approximations.

We want to create some test cases where it is clear whether one approx-

imation is better than another, or at least, where we can justify why we

consider some approximations better than others. This way, when using

a quality indicator in the test cases, we know exactly what is the desired

behavior of the QI.

80

Chapter 5

The G–Ranker

5.1 Introduction

In this chapter we describe our ranker and some theoretical concepts about

convergence and diversity. We begin with a list of non–dominated sets L =

(A1,A2, . . . , Ar). The elements of this list are supposed to be generated by

different MOEAs, but this information is not necessary in order to rank sets.

Thus, we only consider that we need to rank the sets in L and assume that

the information of what MOEA generated which approximation is known

and used in a posterior analysis. It is possible for two MOEAs to generate

the same set, or for a MOEA to generate the same set more than once.

For that reason we put the approximations in a list, not in a set. In order

to describe operations with the elements of L, we use an auxiliary set of

indices C = {1, 2, . . . , r}. Each element i ∈ C is associated with the i–th

element of L, the approximation Ai. Originally, when we designed our ranker,

we considered some ideas from geometry and computational geometry, such

as Voronoi diagrams, balls, etc., for this reason we call our approach the

(Geometric) G–Ranker.

The G–Ranker has two main components, a convergence component and

a diversity component. In the following subsections, we explain the different

81

mechanisms that conform the G–Ranker and the ideas behind them.

5.2 Convergence Component

As mentioned before, convergence is the most important characteristic of

a NS, so it is necessary to consider this property. An important problem

is how to define convergence. Some of the first ideas were that a multi–

objective algorithm has converged to the optimum if it has found one or more

elements of the Pareto Front. We follow this idea and present a definition of

convergence.

Definition 33. An approximation A has converged to the Pareto Front

(PF), if A ∩PF 6= ∅.

So, an approximation has converged to the Pareto Front if it has elements

in common with the Pareto Front. Definition 33 has some disadvantages. The

main disadvantage is that we need to know the Pareto Front in order to apply

this definition. We assume that the only information we have are the approx-

imations in list L. For this reason we use a relaxed version of Definition 33.

Let S1 =
⋃

i∈C Ai, and R1 = ND(S1). R1 consists on all the non–dominated

vectors from the sets in L and can be used as a “relative” Pareto Front (or

a reference set) based only on the information of the approximations we are

evaluating. Next, we can create a list of the indices of the approximations

that converged to the “relative” Pareto Front with the following formula:

C1 = {i ∈ C | Ai ∩R1 6= ∅}. (5.1)

The sets that have “converged” are those whose index is in C1. Another

disadvantage of Definition 33 is that it classifies the sets in only two classes:

the approximations that have elements in the Pareto Front and those that

have not. But no further distinctions between the sets are possible. It is

possible to have big differences in the quality of the sets whose indices are

82

not in C1. In order to detect such differences we proceed as follows. First,

we ignore the sets whose indices are in C1 (we already know that they are

the best ones). Next, we detect the non–dominated elements for the rest of

the approximations. These non–dominated elements represent a new “rela-

tive” Pareto Front. Finally, the approximations that contribute at least one

element to the new relative Pareto Front are the second best approximations

according to convergence.

In a more algorithmic way, given the original set of indices and the set C1,

firstly we update the list of indices in the following way: C = C −C1. Next,

we recalculate the union of the sets S2 =
⋃

i∈C Ai, with the updated list of

indices C. Then, we recalculate the non–dominated elements R2 = ND(S2).

Finally, we define a new set of indices:

C2 = {i ∈ C | Ai ∩R2 6= ∅}. (5.2)

The sets with the second best convergence are those whose indices are in

C2. We can repeat this process until all the indices in C have been located

in a class Ck. The algorithm for our convergence component is shown in

Figure 5.1.

The convergence operator of the G–Ranker is an extension of the non–

dominated sorting proposed by Goldberg [32]. Goldberg’s non–dominated

sorting (GNS) is designed to classify vectors according to the relation of

dominance between them. In the first class of GNS we have the vectors

that are not dominated by any other vector. In the second class we have

the vectors that are dominated only by members of the first class. The

following classes consist of vectors that are dominated only by vectors in

previous classes. Our convergence operator classifies sets of vectors based on

Definition 33.

After we use our convergence procedure, we assign an integer number

conv(Ai) to each approximation in the list (A1,A2, . . . , Ar). This integer

number is the evaluation of the convergence of approximation Ai and is

83

Require: A list of r non–dominated sets L = (A1, A2, . . ., Ar).
Ensure: A partition of C = {1, 2, . . . , r} into K classes C1, C2, . . ., CK .

Each Ck contains the indices of the k–est best non–dominated sets ac-
cording to convergence.

1: C = {1, 2, . . . , r}
2: k = 0
3: repeat
4: k = k + 1
5: Sk =

⋃
i∈C Ai

6: Rk = ND(Sk)
7: Ck = {i | Ai ∩Rk 6= ∅}
8: C = C − Ck

9: until C = ∅

Figure 5.1: Convergence Algorithm.

defined as:

conv(Ai) = k | i ∈ Ck, (5.3)

the smaller the value of conv(Ai), the better the evaluation of convergence

of Ai. For simplicity, we use the expression “Ai is in class Ck” as a synonym

of “the index i of Ai is an element of Ck”

As an illustrative example, consider the approximations in Figure 5.2. We

have that r = 5, L = (A1,A2, A3,A4,A5), C = {1, 2, 3, 4, 5}. Considering

the union of all approximations in L, the “relative” Pareto Front are the vec-

tors enclosed by circles in Figure 5.3. The only sets that have elements in the

“relative” Pareto Front are A3 and A4, so C1 = {3, 4}. In order to find C2,

we discard the sets in C1 and we find the new “relative” Pareto Front, whose

elements are enclosed by circles in Figure 5.4. The approximations with ele-

ments in the new “relative” Pareto Front are A1 and A2, so C2 = {1, 2}. It is

evident that C3 = {5}. The evaluation of convergence for the approximations

is (conv(A1), conv(A2), conv(A3), conv(A4), conv(A5)) = (2, 2, 1, 1, 3).

84

4
4

◦
◦

◦

¤
¤

¤
¤

∗
∗
∗

∗
∗
∗

+

+

+

f1

f2

6

-

Figure 5.2: Five approximation sets, three classes of dominance. A1 (¤), A2

(∗), A3 (4), A4 (◦), A5 (+).

The computational complexity of this convergence component in the

worst case is O(m3|Amax|2), Amax is the approximation with more elements

and m is the number of approximations. The worst case occurs in cases

where there is only one approximation per class.

5.3 Diversity Component

Measuring diversity has proven to be very difficult. One of the difficulties is

that there is no unique definition of diversity. It is common to divide diversity

in other aspects such as: number of vectors generated, evenness, extension,

etc., and to create different quality indicators for these aspects. We want to

create a model of diversity that considers all these aspects together. In order

to create such model, it is necessary to find a good definition of diversity. In

order to find that definition we introduce some theoretical concepts in this

section.

85

4
4

◦
◦

◦

¤
¤

¤
¤

∗
∗
∗

∗
∗
∗

+

+

+

n
n

n
n

n

f1

f2

6

-

Figure 5.3: The first “relative” Pareto Front is found. A1 (¤), A2 (∗), A3

(4), A4 (◦), A5 (+).

5.3.1 A New Interpretation of Diversity

The preferences of the Decision Maker are influenced by the approximation

that is shown. The more and better information presented to the DM, the

more “optimal” his/her decisions can be. Imagine the hypothetical situation

where we know the whole Pareto Front and the Decision Maker is able to

analyze all its elements. Under these conditions it is valid to assume that the

DM can define perfectly his/her preferences1 and select the real optimal so-

lution. We call the preferences derived under these conditions “the True DM

preferences” or “True preferences” and the optimal solution derived under

these conditions “the True optimal solution”.

In the following discussion, in order to simplify some explanations, we

only consider approximations whose elements are also elements of the Pareto

Front. In other words, we only consider approximations that are subsets of

1We call Decision Maker preferences the information from the DM that can allow us
to identify a unique optimal solution for a multi–objective problem.

86

¤
¤

¤
¤

∗
∗
∗

∗
∗
∗

+

+

+

n
n

n
n

n

f1

f2

6

-

Figure 5.4: The second “relative” Pareto Front is found. A1 (¤), A2 (∗), A3

(4), A4 (◦), A5 (+).

the Pareto Front.

Different Decision Makers may have different True preferences. Even the

same DM may have different True preferences over time. We represent an

arbitrary True preference with p. We denote by zp the true optimal solution

associated with a True preference p2. We assume that each zp is an element

of the Pareto Front. We denote with P the set of all possible True DM

preferences. We assume that the Pareto Front is the set of all possible True

optimal solutions.

Remember that we are working with a posteriori approach, where the

DM preferences are completely unknown a priori, the only information avail-

able is the model of multi–objective optimization problem (Formula 2.13). In

Chapter 2, we present General Assumption 1, that can be related with con-

vergence. There is another assumption related with diversity, that is widely

2This framework is similar to that of Hanzen and Jazckiewicz [35], where they repre-
sented the DM preferences using utility functions.

87

accepted in the a posteriori approach:

General Assumption 2. A priori, all the elements of the Pareto Front

are equally important, no element of the Pareto Front is preferred over the

others.

All Pareto Optimal solutions have the same potential to be the True

optimal solution. There are some situations where General Assumption 2

is not accepted. For example, some algorithms search for specific zones of

the Pareto Front known as “knees” [7]. In these cases, more information

about the DM preferences is introduced and we lose generality. We consider

General Assumption 2 as valid, as do most MOEAs.

Now, imagine that for any multi–objective problem, there exists an in-

tensity function p(p) over the elements of P, related to the probability of

p ∈ P to be the True preference chosen by the Decision Maker. Also imagine

a multi–objective problem whose Pareto Front is the one in Figure 5.5 and

we begin to randomly select DM preferences from P based on the intensity

function p(p) associated with this multi–objective problem. For any DM

preference chosen, we find its corresponding zp in the Pareto Front, and keep

a record of how many times each element of the Pareto Front was the opti-

mal solution. After a large number of experiments, we construct an intensity

function q(z) defined over the elements of the Pareto Front. Function q(z)

presents the probability of an element of the Pareto Front to be the True

Pareto optimal solution of the multi–objective problem.

If, for the multi–objective problem described above, q(z) is as shown in

Figure 5.6, left side, we can conclude that vector b is more likely to be the

True optimal solution, followed by vectors c and a, respectively. If q(z) is

as shown in Figure 5.6, right side, then we see that all the elements of the

Pareto Front have the same probability to be the True optimal solution.

In a case with two objective functions where the Pareto Front is a con-

tinuous line, as in Figure 5.7 (points a, b, c, d, e and f are landmarks), we

can also obtain an intensity function on the Pareto Front (at least in our

88

f1(x)

f2(x)

-

6
s

s
s

s
s

s

a

b
c

d

e

f

Objective Function Space

Figure 5.5: An example of a Pareto Front.

a b c d e f a b c d e f

Figure 5.6: Two probability distributions.

imagination), using an intensity function on P. In Figure 5.8 we show two

possible intensity functions q(z), where the elements of the Pareto Front have

been aligned horizontally. If the resulting q(z) is as in Figure 5.8, left side,

we see that the most promising zones of the Pareto Front are between b and

c and in the neighborhood of e. In Figure 5.8, right side, we have that all

the elements of the Pareto Front have the same probability to be zp for an

arbitrary DM preference p.

Different probability functions represent different information about the

DM preferences. From the point of view of entropy, a constant function q(z)

represents the minimum quantity of information, and it is harder to make

89

f1

f2

-

6
r

r

r
r

r r

a

b

c

d
e f

Figure 5.7: A continuous Pareto Front.

a b c d e f
s s s s s s

a b c d e f
s s s s s s

Figure 5.8: Two density functions for a continuous Pareto Front.

predictions of the final outcome. These are the conditions that we assume

when we say that the DM preferences are unknown a priori. Based on this

discussion we give an alternative definition to General Assumption 2.

Alternative Definition of General Assumption 2. The “a priori” den-

sity function q(z) that gives the probability of an element z of the Pareto

Front to be the True optimal solution for the Decision Maker is a constant

function.

Now, imagine a Pareto Front with an infinite number of elements, like

the one in Figure 5.7. Suppose that we obtain an approximation from a

MOEA. A MOEA always generates a finite set of solutions. If the size of an

90

approximation is finite, and the size of the Pareto Front is infinite, and the

Alternative Definition of General Assumption 2 is true, what is the proba-

bility for the True Optimal solution to be an element of the approximation?

The answer is, of course, zero. Except for the cases where the Pareto Front

has a relatively small number of elements, the True optimal solution will

not be an element of any approximation. So, when choosing a final solution

from an approximation, the Decision Maker will not get zp, but at most will

get an alternative solution, hopefully similar to the optimal one. Based on

these ideas, we propose the following definition of diversity for subsets of the

Pareto Front:

Definition 34. The diversity of a subset of the Pareto Front is proportional

to its capacity to provide a similar alternative solution to any element of the

Pareto Front.

Remember, we consider the Pareto Front as the set of all possible True

optimal solutions. An approximation set that provides acceptable solutions

to any DM preferences (not necessarily the optimal one) can be considered

to have a good diversity. As mentioned before, the DM will take the solution

most similar to zp from an approximation. If an approximation provides good

substitutes for any possible optimal solution, the DM is more likely to find

a satisfactory solution.

Unfortunately, Definition 34 is ambiguous and needs to be interpreted in

order to create an useful indicator of diversity. What makes one alternative

solution similar to another? How do we measure the capacity to provide

an alternative solution? We consider that two solutions are similar if they

provide a similar benefit to the Decision Maker. An intuitive assumption is

that the similarity between two solutions is inversely proportional to their

distance in objective function space. Similar assumptions are frequently ac-

cepted in evolutionary computation, for example in the concept of niches, or

in the diversity mechanism of the MOEAs. From now on we consider that

the smaller the distance between two solutions, the more similar the solutions

91

are. So, we need to find a way to evaluate the capacity of an approximation

to provide solutions that may be similar to any arbitrary element z of the

Pareto Front.

5.3.2 Some Ideas For Indicators of Diversity

An Error Function

In this subsection, we construct an error function whose value is higher for

approximations with lower capacity to provide alternative solutions. This

function is defined for subsets of the Pareto Front only.

Consider the Pareto Front in Figure 5.7. This front can be considered a

continuous line in R2. Suppose that we straighten this Pareto Front, preserv-

ing the relative distance between its elements through the continuous line.

Now, suppose that we have an approximation that is a subset of the Pareto

Front. For each element z of the Pareto Front, we add a penalty based on

the distance of the nearest element of the approximation. For example, we

can use d(z, a)2, where d(x, y) is the Euclidean distance between x and y.

Our penalty diversity measure is defined as:

E(A) =

∫

z∈PF

d(z, anear)
2dz (5.4)

where A is the approximation set and anear is the element of A nearest to

z. An example of E can be seen in the top panel of Figure 5.9, where a, b,

c, d, e and f are an approximation set.

As a curious note, it is a common assumption that the extreme elements of

the Pareto Front must be found, but according to our error diversity measure

this is not the best option. For example, in the top panel of Figure 5.9, we

have six vectors (set A) evenly distributed and extended to reach the extreme

values of the Pareto Front. In the same Figure, bottom panel, we have

another six vectors (set B), that are evenly distributed. But, the extreme

92

a b c d e f
s s s s s s

a′ b′ c′ d′ e′ f ′
s s s s s s

Figure 5.9: Penalty functions for two different configurations of vectors. A =
{a, b, c, d, e, f}, B = {a′, b′, c′, d′, e′, f ′}. For this case, E(A) > E(B).

vectors of B are not coincident with the extreme vectors of the Pareto Front.

The extreme vectors of B are separated from the nearest extreme element of

the Pareto Front by half the distance between two contiguous elements of B.

The value of Formula 5.4 is higher in A compared to its value in B, thus B

has a better diversity. One reason for which A has a bigger error than B,

is that the maximum distance between an element of the Pareto Front and

the nearest element of A is higher than the corresponding distance in B.

Two of the desirable properties in a quality indicator are monotony and

relativity. A quality indicator with monotony improves the evaluation of an

approximation as we add new non–dominated vectors. A quality indicator

with relativity gives the Pareto Front a better evaluation than any other

non–dominated set. Formula 5.4 has both properties. When we add a new

element a to an approximation, the elements of the Pareto Front nearer to a

than to any other element of the approximation, will have a reduction in their

penalty value reducing the value of Formula 5.4. The value of Formula 5.4

for the Pareto Front is zero, the minimum possible value.

The error quality measure, described above, has many interesting theo-

retical properties. But, unfortunately, there are many practical restrictions

for its use. First, we need to know the Pareto Front in order to use it, and

93

for more than two dimensions, it is not possible to “straighten” the Pareto

Front. A partial solution to this problem is: to project the approximations

to a plane P , to define a domain in P and calculate Formula 5.4 using this

domain and the projected elements of the approximation. Here, the domain

is a substitute of the true Pareto Front, and the projection to the plane

P is a substitute of “straightening” the Pareto Front. For a discussion of

how to project a non–dominated set to a plane, see [19]. The main prob-

lem of the approach just described, is to define the domain for the integral

in Formula 5.4. Different domains may result in different evaluations, and

approximation A may be better than approximation B for one domain and

the other way for another domain. Also, a Voronoi tessellation is necessary

to find the nearest element of an approximation to an element of the domain.

A Voronoi tessellation is expensive in high dimensions.

Due to all those problems, it is desirable to find another function that is

cheaper to evaluate, that models diversity and that does not need knowledge

about the Pareto Front.

A Benefit Function

Instead of penalizing based on how far the elements of an approximation are

from the elements of the Pareto Front, we can sum based on how many of

the elements of the Pareto Front are near to the approximation.

Again, consider a Pareto Front like the one in Figure 5.7 and suppose that

we straighten this set and align it horizontally. Suppose that there exists a

distance U such that if the distance between a candidate solution a and the

True optimal solution zp, is less than U , then the DM could use a instead of

zp. The elements of the Pareto Front whose distance from a is smaller than

U represent “the zone of influence” (Ia) of a, see the top panel of Figure 5.10.

For an approximation set A , the union of all the zones of influence of

its elements (IA) can be used as a measure of its diversity. IA is the set of

all the elements of the Pareto Front for which A can produce an alternative

94

a

U U
u

a bc d e fu uu u u u
α β γ

a bc d e fu uu u u u

Figure 5.10: The radius U define a zone of influence I.

solution (assuming that we can find the value of U). We can measure the

size of IA , denoted by µ(IA), measuring the length of the union of all Ias.

For the approximation in Figure 5.10, center, µ(IA) = α + β + γ.

For a fixed value of U , there is a point where adding more elements to an

approximation does not improve the value of µ(IA). In order to solve this

problem, we can add a weight w(z) to the elements z of the Pareto Front,

depending on their closeness to an element of A . Many weight functions can

be proposed, but in this work we use the following:

w(z) =





√
U2 − d(z, anear)2 if d(z, anear) < U

0 otherwise

,

(5.5)

where anear is the element of A nearest to z. The benefit quality indicator

can be defined as:

B(A) =

∫

z∈PF

w(z)dz.. (5.6)

95

f1

f2

-

6 ~
~
~~~~

p
p
p p p p

Figure 5.11: B2.

A graphical representation of w(z) can be seen in the bottom panel of

Figure 5.10, where we see that Formula 5.6 can be interpreted as the area of

the union of the semicircles centered in the elements of A . B(A ) has the

property of monotony, because adding a new vector to A increases the area

of the union of the semicircles. B(A ) also has relativity, because the Pareto

Front has the maximum area possible for the union of semicircles.

The restrictions of the practical implementation of B(A ) are similar to

those of E(A ), since we need to define a domain for the integral. In order

to solve this problem, we introduce some modifications to B(A ). First,

instead of semicircles, we can associate full circles to the elements of an

approximation (imagine that we multiply w(z) by two). This way, in order

to evaluate the integral in Formula 5.6 we only need to calculate the area of

the union of circles of radius U , centered on each element of A .

Next, instead of “straightening” the Pareto Front, we can associate the

circles (balls, from now on) to the elements of the approximation in their

original positions, as is shown in Figure 5.11. Denote with b(U, a) the ball

of radius U and center a, and with µ(Y ) the measure of the set Y (in 2d

it means area, in 3d it means volume, etc.). We define the diversity quality

indicator B2 as:

B2(A , U) = µ
( ⋃

a∈A

b(U, a)
)
. (5.7)

96



The definition of the diversity quality measure above, depends only on

the position of the vectors in A and the balls associated to them. We do

not need to know the Pareto Front in order to use B2. As a consequence,

we can use B2 independently of the topology of the Pareto Front, even when

the Pareto Front is discontinuous.

B2 has some desirable properties. For a fixed value of U , adding a new

element to an approximation A does not degrade the value of B2(A ). Also,

the value of B2 for the Pareto Front is not inferior to any approximation

that is a subset of the Pareto Front.

By intuition, we can see that B2 has a good behavior as a diversity

indicator. The measure of the union of balls associated to the vectors is

directly proportional to the diversity of the vectors. A set B ⊂ PF with

good diversity has a high value of B2(B), because there is little intersection

between the balls (Figure 5.12, right side). A set A ⊂ PF with poor

diversity has a lot of intersections between the balls associated to its elements,

and the value of B2(A ) decreases (Figure 5.12, left side).

The measure of the union of N balls can be calculated in O(N log N)

time for 2d and in O(N2) time in 3d [4]. No exact algorithm is known by

the authors for more than three dimensions, but it can be approximated

in O(dN) time with a Monte Carlo integration, where d is the number of

dimensions [66].

We know two approaches for the evaluation of diversity, that are similar

to B2. One of them, the entropy based metric indicator (EM), is inspired

by the concept of entropy and is proposed by Farhang-Mehr and Azarm [19].

EM consists of projecting the elements of an approximation A to a plane

P . Denote by A ′ this projection of A . Then, an influence function Ω with

domain P ′ ⊂ P is associated to each element of A ′. The influence function

has positive values on P ′ that is inversely proportional to the distance from

its “center”. A density function is defined as:

97



Figure 5.12: A graphic representation of the Diversity Component of the
G–Ranker.

D(p) =

|A |∑
i=1

I(d(ai, p)), (5.8)

where ai is an element of A ′, d(ai, p) is the Euclidean distance between ai and

p. Finally, the diversity of the approximation A depends on the “flatness”

of the density function described in Formula 5.8. This flatness is measured

through the standard deviation of the value of D for some evenly distributed

elements of P ′.

Even when we use the same idea of influence functions, there are many

differences between EM and B2. In B2, we do not project the elements of

an approximation on a plane. In the theoretical development of B2 (when

we define B), our weight function is based on the influence of the nearest

element of the approximation, while in EM , the density function is based

on the sum of the influence of all elements of the approximation. In our

approach, the value of diversity is based on the area (volume, hyper–volume,

etc) of a set of balls, not on the standard deviation of a set of weights, as in

EM .

98



Another approach is the integrated sphere counting (ISC), proposed by

Silva et al. in [65]. In ISC, in order to evaluate the diversity of an approxi-

mation A , a list of values ISC1, ISC2, . . ., ISCn is calculated. To calculate

the value of ISCi, the first step is to propose a real value ri > 0. Then, a

vector a1 ∈ A is chosen and marked as “selected”, and all unmarked vectors

b ∈ A whose distance from a1 is smaller than ri are marked as “eliminated”.

Next, a new unmarked vector a2, is chosen and marked as “selected”, and

all unmarked vectors b ∈ A whose distance from a2 is smaller than ri are

marked as “eliminated”. This marking process is repeated until all vectors

in A are marked. Let mi be the number of vector marked as selected and

denote by µ(bi) the measure of a ball of radius ri and let ISCi = µ(bi) ·m1.

At the end, the value of diversity for A is
∑n

i=1 ISCi.

Both ISC and B2 use the measure of balls in Rm, but they have many

differences. In B2 we use a single radius to calculate the diversity of an

approximation, while in ISC they use several radii. In B2 there is no process

of elimination based on the distances between vectors, but all vectors are

used. The evaluations of B2 are based on the union of the balls associated

to each vector in A while in ISC the intersections between balls are not

considered.

The Parameter U

As we mentioned before, the overlap between the balls associated to each

element of an approximation is very important for the good behavior of B2

as a diversity indicator. The overlap depends on the parameter U, so the

numeric value of U must be chosen carefully. It is important to allow some

level of overlap, so we can discriminate between sets with bad and good

diversity. If U is too small, the overlap will be zero and the evaluations of

B2 will not be related to the distribution of the points. At the same time, the

value of U must not be too big, because the difference between the values of

B2 for different approximations will be very small, even for approximations

99



with different diversity.

We want the value of U to be determined by the the configuration of

the sets we are comparing. The procedure we use to calculate U is the

following: suppose that we are evaluating the diversity of the approximations

Aj, 1 ≤ j ≤ m. For each vector ai ∈ Aj we find its nearest neighbors in Aj

(the definition of “nearest neighbor” that we use here is that given in [76]).

Next we calculate the mean value rij of the distances between ai and its

nearest neighbors. Finally, the value of U is calculated as half the mean

value of the rijs of all vectors in all sets Aj:

U = 0.5

∑m
j=1

∑|Aj |
i=1 rij∑m

j=1 |Aj| . (5.9)

This value of U produces at least a small amount of overlap between the

balls of the approximation with the worst diversity.

The concept of nearest neighbors given in [76] is the following: let A be

a set of vectors a ∈ Rn. For a given a, denote by a(k) the k–th component

of a and denote by Ba(k)+ the set vectors b in A so that a(k) < b(k). One of

the nearest neighbors of a is the element of Ba(k)+ whose distance from a is

the smallest with respect to the other elements of Ba(k)+. This way we can

find n nearest neighbors of a, one for each component of a. If we substitute

the set Ba(k)+ by the set Ba(k)− of the vectors b in A so that a(k) > b(k), we

can find other n nearest neighbors. This way we can find at most 2n nearest

neighbors of a. Note that we say “at most”, because some nearest neighbors

may not exist or some of them may be repeated.

5.4 Combining Diversity and Convergence

In Section 5.2 we describe a procedure to classify a list of approximations to

the Pareto Front, based on convergence. In Section 5.3, we describe a method

100



to measure the diversity of subsets of the Pareto Front. In this section we

describe how we combine both methodologies to obtain a single method to

evaluate the full quality of a list of approximations.

After evaluating convergence, we obtain a classification of the approxi-

mation in K classes Ck. Independently of their diversity, an approximation

in a class Ci is better than an approximation in a class Cj, if i < j. We use

diversity to detect differences between the approximations in the same class.

So, our diversity method is applied K times, once per class Ck.

After the application of our diversity method, we obtain a list of real

values associated to the list of approximations. These real values are the

evaluation of diversity for the approximations. For a list of approximations

(A1, A2, . . ., Ar) we get another list of real numbers (div(A1), div(A2), . . .,

div(Ar)). div(Ai) is the evaluation of the diversity of approximation Ai. We

use both the convergence and diversity to rank the approximations from the

best to the worst.

Several precautions must be taken when using the diversity operator.

Going back to the example in Figure 5.2, suppose that we want to apply our

diversity method to the approximations in class C2 = {1, 2}, shown in the

top panel of Figure 5.13. If we apply our diversity method directly, A2 will

be considered as better than A1, because A2 has more diversity than A1.

Unfortunately, this is incorrect, because even when A2 has more diversity,

most of its elements are dominated by elements in A1. In order to prevent

this situation, we evaluate our diversity method using only vectors that are

not dominated by other vectors in the same class. For example, in the bottom

panel of Figure 5.13, we eliminate all vectors in A2 that are dominated by

vectors in A1. And, considering only these vectors, we use our diversity

method.

So, given a list of approximations L = (A1,A2, . . . , Ar) and a set of in-

dices Ck = {j1, j2, . . . , jn}, 1 ≤ j1, . . . , jn ≤ r, where each element js ∈ Ck

is associated with the approximation Ai ∈ L | js = i, we proceed as follows.

101



¤
¤

¤
¤

∗
∗
∗
∗
∗
∗

f1

f2

6

-

¤
¤

¤
¤∗

f1

f2

6

-

Figure 5.13: Two approximations in the same class of dominance. A1 (¤),
A2 (∗).

We use the “relative” Pareto Front Rk of this class (Rk = ND(
⋃

js∈Ck
Ajs))

to create a new list of n approximations L′ = (A ′
j1,A

′
j2, . . . , A

′
jn), defined

as A ′
js = Ajs ∩ Rk. Then, we use the sets in L′ to calculate the radius U

and the diversity of each A ′
js, for js ∈ Ck. Finally, the diversity of the set

Aji is div(Aji) = B2(A ′
ji, U). The algorithm is shown in Figure 5.14, where

CALCULATEU is a function that uses Formula 5.9 to calculate U .

102



Require: A list of r approximation sets L = (A1, A2, . . . , Ar) and a set
of indices Ck = {j1, j2, . . . , jn}, 1 ≤ j1, . . . , jn ≤ r, n ≤ r where each
element js ∈ Ck is associated with the approximation Ai ∈ L | js = i.

Ensure: The evaluation of diversity for Ajs, js ∈ Ck.

1: Sk =
⋃

js∈Ck
Ajs

2: Rk = ND(Sk)
3: for all js ∈ Ck do
4: A ′

js = Ajs ∩Rk.
5: end for
6: U = CALCULATEU(A ′

j1, A
′

j2, . . . , A
′

jn)
7: for all js ∈ Ck do
8: div(Ajs) = B2(A ′

js, U).
9: end for

Figure 5.14: Diversity Algorithm.

5.5 Normalization

Our diversity operator (Formula 5.7) mixes the values of different objective

functions. This can be problematic when there are huge differences in the

scale of the objective functions, because one objective function may become

more important than the others if its scale is bigger. For this reason it is

important to normalize the values of the vectors in the approximations, so

there is a balance in their scale.

Before applying our convergence and diversity operators, we normalize

the vectors in all approximation sets using the maximal and minimal value

of the set of non–dominated vectors. The normalization procedure is shown

in Figure 5.15.

5.6 Ranking

After using our operators of convergence and diversity, we have two numbers,

conv(Ai) and div(Ai) associated to each approximation Ai. At the end, the

103



Require: A list of r approximation sets L = (A1, A2, . . . , Ar) and a set
of indices C = {1, 2, . . . , r}, where the each element i ∈ C is associated
with the element Ai ∈ L. The elements of the approximations are vectors
a ∈ Rm, a(j) stands for the j–th component of a.

Ensure: The same list of approximations but with the values of their ele-
ments normalized.

1: S =
⋃

i∈C Ai

2: R = ND(S)
3: for all j = 1 : m do
4: MAXj = a(j) | a ∈ R,∀b ∈ R, a(j) ≥ b(j).
5: MINj = a(j) | a ∈ R, ∀b ∈ R, a(j) ≤ b(j).
6: end for
7: for all Ai do
8: for all a ∈ Ai do
9: for all j = 1 : m do

10: a(j) =
a(j)−MINj

MAXj−MINj
.

11: end for
12: end for
13: end for

Figure 5.15: Normalization Algorithm.

rule to compare two approximations A and B is the following:

A > B if





conv(A ) < conv(B)

or

conv(A ) = conv(B) and div(A ) > div(B)

A = B if conv(A ) = conv(B) and div(A ) = div(B)

B > A otherwise

(5.10)

In order to assign ranks to the list of approximations L = (A1, A2, . . . , Ar),

first we sort the approximations according to Formula 5.10. So, we obtain a

list L2 = (Aj1,Aj2, . . . , Ajr) with the same elements of L but sorted. The

algorithm to rank the approximations is shown in Figure 5.16.

104



Require: A list of r approximation sets L = (A1,A2, . . . , Ar), a list
of numbers (conv(A1), conv(A2), . . . , conv(Ar)) and a list of numbers
(div(A1), div(A2), . . . , div(Ar)). SORT is an algorithm that sorts the
elements of L according to Formula 5.10.

Ensure: A list of ranks for the elements of L.

1: (Aj1, Aj2, . . . , Ajr) = SORT (L)
2: RANK = 1
3: for s = 1 : r − 1 do
4: Ajs = RANK.
5: if conv(Aj(s+1)) > conv(Ajs) then
6: RANK = RANK + 1
7: else if div(Aj(s+1)) < div(Ajs) then
8: RANK = RANK + 1
9: end if

10: end for
11: Ajr = RANK.

Figure 5.16: Ranking Algorithm.

5.6.1 General Algorithm of the G–Ranker

Once we have explained all the components of the G–Ranker, the general

algorithm is shown in Figure 5.17.

5.6.2 Properties of the G–Ranker

G–Ranker has some desirable properties. G–Ranker has the property of weak

relativity. If the Pareto Front is included in the comparison, it always is in

class C1, and for any approximation Ai in C1 its value of diversity will be

evaluated considering only its elements in the Pareto Front. Because of the

way that B2 is defined, the value of diversity of Ai will not be better than

that of the Pareto Front.

Another property of G–Ranker is weak compatibility with OW . To explain

why G–Ranker is weakly compatible with OW we introduce some notation.

For two approximations A and B, let the following sets be defined:

105



Require: A list of approximation sets L = (A1,A2, . . . , Ar).
Ensure: The rank of the elements of L.

1: Normalize the elements of L according to algorithm in Figure 5.15.
2: Obtain the K classes Ck using the convergence algorithm in Figure 5.1
3: for k = 1 to K do
4: Calculate the value of diversity for the approximation sets in class Ck,

using the diversity algorithm in Figure 5.14.
5: end for
6: Assign ranks to each approximation using algorithm in Figure 5.16.

Figure 5.17: G–Ranker.

J : is the set of indices of the vectors aj ∈ A so that aj = br for some

vector br ∈ B.

K: is the set of indices of the vectors ak ∈ A so that ak is dominated by

some vector b ∈ B.

L: is the set of indices of the vectors al ∈ Ai so that al is not in B and

al is not dominated by any vector in B.

R: is the set of indices of the vectors br ∈ B so that br = aj for some

aj ∈ A .

S: is the set of indices of the vectors bs ∈ B so that bs is dominated by

some a ∈ A .

T : is the set of indices of the vectors bt ∈ B so that bt is not in A and

bt is not dominated by any vector in A .

As an example, for A and B in Figure 5.18, J = {3, 4}, because a3

= b4 and a4 = b5, K = {5} because a5 is dominated by elements of B,

L = {1, 2} because a1 and a2 are elements of A not present in B and they

are not dominated by elements of B. Similarly R = {4, 5}, S = {1, 2, 3} and

T = {6, 7}. Note the J , K and L can be used to make a partition of A , and

R, S and T can be used to make a partition of B. Also note that the set of

vectors whose indices are in J is the same set of vectors whose indices are in

R.

106



Figure 5.18: Two non-dominated sets.

Denote by b(r, x) the ball of radius r and center x, and considering our di-

versity algorithm, we have that, div(A ) = µ
(⋃

j∈J b(U, aj) ∪
⋃

l∈L b(U, al)
)
.

Similarly, div(B) = µ
(⋃

r∈R b(U, br) ∪
⋃

t∈T b(U, bt)
)
. In the evaluation of

diversity, we ignore the vectors whose indices are in K and S, because in our

diversity algorithm we only consider vectors not dominated by other vectors

in the same class.

Theorem 1. When comparing two NSs, A and B, G–Ranker is weakly

compatible with OC, OS and OW .

Proof. If A OC B, this implies that A is in a better class than B because

B cannot have elements in the same “relative” Pareto Front as A , but only

in the “relative” Pareto Front of a worse class. Hence, based on the rule

given in Formula 5.10, conv(A ) < conv(B) implies that A is better than

B.

If A OS B and A does not completely outperform B, then both sets

are in the same class of convergence. Also, T is an empty set and L contains

107



at least one element, so:

µ

(⋃
j∈J

b(U, aj) ∪
⋃

l∈L

b(U, al)

)
≥ µ

(⋃
r∈R

b(U, br)

)
(5.11)

div(A ) ≥ div(B) (5.12)

Inequality 5.11 holds because, by definition, the set of vectors whose in-

dices are in J is equal to the set of vectors whose indices are in R. As a conse-

quence
⋃

j∈J b(U, aj) =
⋃

r∈R b(U, br), µ
(⋃

j∈J b(U, aj)
)

= µ
(⋃

r∈R b(U, br)
)

and µ
(⋃

j∈J b(U, aj) ∪
⋃

l∈L b(U, al)
)
≥ µ

(⋃
r∈R b(U, br)

)
. According to the

rule given in Formula 5.10, if conv(A ) = conv(B) and div(A ) > div(B)

then A is better than B. Also, if conv(A ) = conv(B) and div(A ) = div(B)

then A is as good as B. So A is never considered as inferior than B.

If A OW B and A does not strongly outperform B, then both sets are

in the same class of convergence, T is empty and L contains at least one

element, so this case is equal to the previous one.

This proves that G–Ranker is weakly compatible with the out–performance

relations when it evaluates two NSs. With respect to more than two NSs, the

G–Ranker is compatible with OC , because of the mechanism of the conver-

gence operator. With respect to OS and OW , G–Ranker is weakly compatible.

Suppose that there are three NSs A , B and C in the same class and that

A OS B or A OW B. If we only consider A and B, this means that T

is empty and L has at least one element, so div(A ) > div(B). But when

we consider C , it is possible for all als to be dominated by some elements

in C , so the elements in L are discarded and div(A ) = div(B). It does not

matter how many NSs we add to the comparison, if an element of A whose

index is in J is dominated, the corresponding element in B whose index is

in R is also dominated and the equality holds. As a consequence div(A ) will

not be smaller than div(B), so the weak compatibility with OS and OW is

108



guaranteed.

According to Knowles and Corne [42], weak compatibility with OW is

enough to exhibit weak monotony, so we have that G–Ranker has weak

monotony.

109



110



Chapter 6

Experiments

6.1 Introduction

The evaluation of the behavior of a quality indicator has been mainly based

on theoretical studies of its properties, but not on a methodological testing.

Theoretical studies are fundamental to validate a quality indicator, but the

use of a benchmark, in our opinion, is very important also. Some quality

indicators that work well in theory may have a poor behavior in practice.

There are several benchmarks in the literature for MOEAs [16], [14], but

there is only one benchmark for performance measures [54] according to our

knowledge.

So, in order to evaluate the performance of our approach, we design some

experiments that consider various possible topologies of the Pareto Front.

We compare our results with those of the S-Metric [81], the Iε [83], and

the Compatible and Complete Comparison Method (CCCM) [83]. All these

methods are described in Section 3. We choose these quality indicators be-

cause they are very popular in the literature and, like the G–Ranker, they

evaluate the general quality of non–dominated sets.

We design our test cases so it is evident which NS is better than the

others, or if there are NSs that are equally good. So, it is possible to decide

111



the correct order from the best approximation to the worst approximation.

The challenge for the quality indicators is to evaluate the NSs in such a way

that we can find the correct order.

The reference point for the S–metric is the maximum value of all vectors

in all non–dominated sets in the corresponding test case. The reference set

for the unary ε–indicator is the non–dominated vectors from the union of all

the sets in the test case.

The evaluations of the S–metric determine an order in the approxima-

tions, we only need to sort the approximations based on their values of the

S–metric, from the greatest to the smallest. The same is also valid for the Iε.

For the case of the G–Ranker, we only need to sort the sets based on their

ranks, from the smallest rank to the greatest rank.

For the CCCM, more work is necessary in order to find an order between

M approximations. The CCCM is a binary comparison method, so we need

to make M(M − 1)/2 binary comparisons in order to compare all sets. From

these comparisons we figure out an order for the approximations.

6.2 Nomenclature

In order to simplify the analysis of the results, we introduce the following

nomenclature to represent the different relationships between different non–

dominated sets. Suppose we have five NSs A , B, C , D and E . A > B

means that A is better than B, A = B means that A and B are equally

good. A ? B means that it is unknown whether A is better than B. A >

B,C , D means that A is better than any of B, C and D ; and A ,B,C > E

means that E is worse than any of A , B, and C .

We concatenate strings of symbols to create more complex expressions.

For example:

• E > D > C > B > A means that E is better than any of the other

sets; D is better than A , B and C ; C is better than A and B; and

112



Table 6.1: Results of Experiment 1
2d 3d

G–Ranker A > B > C > D > E A > B > C > D > E
S–metric A > B > C > D > E A > B > C > D > E

Iε A > B > C > D > E A > B > C > D > E
CCCM A > B > C > D > E A > B > C > D > E

B is better than A .

• E > D = C > B = A means that E is better than any other set; D

and C are equally good and better than both A and B; and B and

A are equally good.

• E = D = C = B > A means that D , B, C and D are equally good

and that A is worse than any of the other NSs.

For each test case we make a two dimensional version and a three dimen-

sional version. We consider all the test cases as minimization problems.

6.3 Experiments

6.3.1 Experiment 1

The goal of this experiment is to evaluate the ability of the algorithms to

detect various levels of complete out–performance. This experiment is clearly

focused on convergence. There are five NSs, A , B, C , D and E , with the

same diversity. A OC B, B OC C , C OC D and D OC E . So, from the

best to the worst, the order is A > B > C > D > E . The two dimensional

version of the NSs is shown in Figure 6.1.

The results for this experiment can be seen in Table 6.1. All the methods

correctly evaluate the approximations.

113



2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Figure 6.1: Experiment 1 in two dimensions. A (·),B(◦), C (×),D(∗),E (♦).

114



2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Figure 6.2: Experiment 2 in two dimensions. A (♦),B(◦),C (·), D(2), E (×).

6.3.2 Experiment 2

In this experiment (Figure 6.2) we combine convergence with diversity. There

are five NSs A , B, C , D and E , where A completely outperforms the other

sets in the experiment. Also, both B and C completely outperform both D

and E . B and C have the same convergence, but C has a better diversity

than B. D and E have the same convergence, but E has a better diversity

than D . So, from the best to the worst, the correct order is A > C > B >

E > D .

115



Table 6.2: Results of Experiment 2
2d 3d

G–Ranker A > C > B > E > D A > C > B > E > D
S–metric A > C > B > E > D A > C > B > E > D

Iε A > C > B > D > E A > C > B > D > E
CCCM A > B ? C > E ? D A > B ? C > E ? D

Table 6.3: Results of Experiment 3
2d 3d

G–Ranker A > B > C > D > E A > B > C > D > E
S–metric A > B > C > D > E A > B > C > D > E

Iε A > B > C > D > E A > B > C > D > E
CCCM A ? B ? C ? D ? E A ? B ? C ? D ? E

Both G–Ranker and S–Metric find the correct order of the sets, as can be

seen in Table 6.2. But CCCM is not able to detect the difference between

B and C , and between D and E . Iε incorrectly evaluates D as better than

E in both two dimensions and three dimensions.

6.3.3 Experiment 3

This experiment tests if the performance measures can detect empty zones

in the non–dominated sets. We have five NSs with circular shape and with a

hole in the center (Figure 6.3). The size of the hole is different for different

NSs. We consider that the bigger the hole, the worse the NS. So, from the

best to the worst, the order is A > B > C > D > E .

The result of the experiment is shown in Table 6.3. G–Ranker, Iε and

S–Metric find the correct order. CCCM is not able to detect any difference

in the quality of the sets.

116



−1
0

1

−1
0

1

−1

0

1

−1
0

1

−1
0

1

−1

0

1

−1
0

1

−1
0

1

−1

0

1

−1
0

1

−1
0

1

−1

0

1

−1
0

1

−1
0

1

−1

0

1

Figure 6.3: Experiment 3 in three dimensions. A (top, left side), B (top,
right side), C (center, left side), D (center, right side), E (bottom).

117



Table 6.4: Results of Experiment 4
2d 3d

G–Ranker A > B > C > D > E A > B > C > D > E
S–metric A > B > C > D > E A > B > C > D > E

Iε A > B > C > D > E A > B > C > E > D
CCCM A ? B ? C ? D ? E A ? B ? C ? D ? E

6.3.4 Experiment 4

This case is inspired by problem DTLZ1 [16]. In this problem, the Pareto

Front consists of all the points p ∈ Rd with components p(k) ≥ 0 for k = 1 to

d and
∑d

i=1 p(i) = 0.5. There are five NSs, where A has the best diversity.

The other NSs are obtained adding different levels of noise to the positions

of the points in A . We consider that the bigger the noise in the NS, the

worse its diversity (see Figure 6.4). The convergence for all NSs is the same.

From the best to the worst, the order is A > B > C > D > E .

The result of the experiment is shown in Table 6.4. G–Ranker and S–

Metric find the correct order. Iε incorrectly considers E better than D in

the 3d version of the test. CCCM is not able to detect any difference in the

quality of the sets.

6.3.5 Experiment 5

In this experiment (Figure 6.5), we evaluate the ability of the algorithms to

detect weak out–performance. We create five sets A , B, C , D and E where

E OW D , D OW C , C OW B and B OW A . So, from the best to the worst

the correct order is E > D > C > B > A .

Considering that all the methods are compatible with OW (G-Ranker is

weakly compatible), it is not surprising that all of them find the correct order

of the sets (see Table 6.5).

118



0

0.5

0

0.5

0

0.2

0.4

0

0.5

0

0.5

0

0.2

0.4

0

0.5

0

0.5

0

0.2

0.4

0

0.5

0

0.5

0

0.2

0.4

0

0.5

0

0.5

0

0.2

0.4

Figure 6.4: Experiment 4 in three dimensions. A (top, left side), B (top,
right side), C (center, left side), D (center, right side), E (bottom).

119



2 2.5 3
2

2.2

2.4

2.6

2.8

3

2 2.5 3
2

2.2

2.4

2.6

2.8

3

2 2.5 3
2

2.2

2.4

2.6

2.8

3

2 2.5 3
2

2.2

2.4

2.6

2.8

3

2 2.5 3
2

2.2

2.4

2.6

2.8

3

Figure 6.5: Experiment 5 in two dimensions. A (top, left side), B (top,
right side), C (center, left side), D (center, right side), E (bottom).

120



Table 6.5: Results of Experiment 5
2d 3d

G–Ranker E > D > C > B > A E > D > C > B > A
S–metric E > D > C > B > A E > D > C > B > A

Iε E > D > C > B > A E > D > C > B > A
CCCM E > D > C > B > A E > D > C > B > A

Table 6.6: Results of Experiment 6
2d 3d

G–Ranker A = B A = B
S–metric B > A B > A

Iε B > A B > A
CCCM A ? B A ? B

6.3.6 Experiment 6

The goal of this experiment is to compare the sensibility of the measures

to the convexity of the Pareto Front. We have two NSs, A and B, with

the same diversity and convergence, but A is non-convex while B is convex

(Figure 6.6). We expect the same evaluation for both NSs.

It seems, according to Table 6.6, that both S–Metric and Iε have a bias

towards the convex zones of the Pareto Front. The G-Metric gives the same

rank to both NSs, as expected. The CCCM evaluates the sets as non–

comparable.

6.3.7 Experiment 7

To evaluate the sensibility of the performance measures to the relative po-

sition of the different NSs, we create five NSs with the same convergence

and diversity but with different positions. An image of the two dimensional

version is shown in Figure 6.7.

As is clear from Table 6.7, both S–metric and Iε give a different evaluation

121



2 2.5 3 3.5 4

2

2.5

3

3.5

4

Figure 6.6: Experiment 6 in two dimensions. A (·),B(∗).

Table 6.7: Results of Experiment 7
2d 3d

G–Ranker A = B = C = D = E A = B = C = D = E
S–metric C > B = D > A = E B > C > A > D > E

Iε C > B = D > A = E C > B = D > A = E
CCCM A ? B ? C ? D ? E A ? B ? C ? D ? E

122



3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Figure 6.7: Experiment 7 in two dimensions. A (·), B(◦),C (4),D(♦),E (+).

123



Table 6.8: Results of Experiment 8
2d 3d

G–Ranker E > D > C > B > A E > D > C > B > A
S–metric E > D > C > B > A E > D > C > B > A

Iε E > D > C > B > A E > D > C > B > A
CCCM A ? B ? C ? D ? E A ? B ? C ? D ? E

to the NSs, so they fail the test. CCCM is not able to make conclusions

about the NSs. G–Ranker evaluates the NSs as equally good, so it is the

only method that passes the test.

6.3.8 Experiment 8

For this experiment (Figure 6.8), we generate five NSs with the same exten-

sion and convergence. All vectors are evenly distributed, but the sets have

a different number of vectors. We have that |A | = 4, |B| = 12, |C | = 38,

|D | = 98, |E | = 758 for the two dimensional case. For the three dimensional

case, |A | = 10, |B| = 21, |C | = 35, |D | = 78, |E | = 465. The objective

is to study how the number of vectors can affect the behavior of the quality

indicators. The expected ordering is E > D > C > B > A .

All methods are able to find the expected ordering for this experiment

(Table 6.8) except for CCCM that is not able to detect any difference between

the approximations.

6.4 Conclusions of Experiments

The G–Ranker shows the best performance of the comparison methods an-

alyzed, correctly solving all test cases. The S–Metric is the second best of

the comparison, being sensitive to the relative position and convexity of the

non–dominated sets. As the S–Metric, Iε is sensitive to the relative position

124



2 3 4
2

2.5

3

3.5

4

2 3 4
2

2.5

3

3.5

4

2 3 4
2

2.5

3

3.5

4

2 3 4
2

2.5

3

3.5

4

2 3 4
2

2.5

3

3.5

4

Figure 6.8: Experiment 8 in two dimensions. A (top, left side), B (top,
right side), C (center, left side), D (center, right side), E (bottom).

125



and the convexity of the non–dominated sets, but it also fails Experiments 2

and 4. The CCCM presents a very limited inference power. It never makes a

wrong statement about when one approximation is better that another, but

neither is it able detect important differences in the quality of non–dominated

sets.

126



Chapter 7

Further Details

7.1 Introduction

In this chapter we briefly discuss some details and future work related with

the research made in this work.

7.2 The G–Indicator

The G–Ranker assigns a rank to each non–dominated set in order to make a

non–parametric comparison of two MOEAs. Ranking a collection of approx-

imations tells us whether one approximation is better than another, but not

by how much. It could be desirable to redefine the G–Ranker so it assigns a

real number to each approximation so we can make other kinds of analyses.

The diversity operator of the G–Ranker already assigns real numbers to the

approximations that are proportional to their diversity. We can transform

the convergence component into a real number, so we can combine this real

number with the diversity evaluation to get a single number that represents

the relative quality of an approximation with respect to the others.

An example of how this could be done, is the following. First, we run

the algorithm of the G–Ranker shown in Figure 5.17 to obtain K classes Ck

127



and the evaluation of diversity, div(A ), for each approximation A . Next,

we measure the distance between the approximations in class Ck and the ap-

proximations in class Ck+1, in other words, we measure the distance between

every pair of contiguous classes of dominance. Calculating the distance be-

tween two collections of sets can be done in many ways. We propose the

following idea: in order to calculate a distance between classes Ck and Ck+1

we use the “relative” Pareto Front of each class, Rk and Rk+1.

As an illustrative example, recall the example in Figure 5.2, where we

have five approximations and three classes of dominance. In Figure 7.1, we

see the three relative Pareto Fronts for the example in Figure 5.2. We take

as the distance between two classes Ck and Ck+1, the distance between the

relative Pareto Fronts Rk and Rk+1. We can define many ways to measure

the distance between relative Pareto Fronts, for example, the maximum of

the distances between an element of Rk and the nearest element of Rk+1.

Another example is to use the Generational Distance between Rk and Rk+1.

Once a measure of distance has been chosen, calculate the distance between

the Rks. Denote by D(k, k + 1) the distance between Ck and Ck+1.

Now, we combine the distances D(k, k+1) with the evaluation of diversity

div(A ) to generate a unique figure of merit. Let G(A ) denotes this figure

of merit. For the approximations A in the worst class CK , we set G(A ) =

div(A ). For the approximations Aj in the second worst class CK−1, we set

G(Aj) = div(Aj) + D(K − 1, K) + max
i∈CKG(Ai). For the sets Aj in class Ck,

k < K, we set the value G(Aj) = div(Aj) + D(k, k + 1) + max
i∈Ck+1G(Ai).

The definition of G(A ) given above, guarantees that G(Ai) > G(Aj)

when Ai is in a better class than Aj. If we rank the approximation based on

the value of G(A ), we obtain the same ranking as that of the G–Ranker.

128



4
4

◦
◦

◦

¤
¤

¤
¤ ∗

+

+

+

f1

f2

6

-

Figure 7.1: Three relative Pareto Fronts. R1 (4, ◦), R2 (¤, ∗), R3 (+).

7.3 Misleading Cases

The G–Ranker is not free of misleading cases. Consider the non–dominated

sets in Figure 7.2 and suppose that the Pareto Front is the union of A , B,

C and D . All the elements of E are dominated by the elements of the other

approximations, thus the G–Ranker will put E in the second class and it

will be considered as the worst approximation. But, according to intuition E

could be the best approximation, because it is “almost” in the Pareto Front

and has better diversity than the other sets. A DM may have a better idea

of the possible attainable solutions from E than from any of the other sets.

This is an atypical case where diversity may have more or equal relevance

than convergence. G–Ranker considers E as the worst set because all its

elements are dominated, so all the information in E is not optimal. But as

a whole and considering the poor diversity of the other sets, E may be more

informative than any of the other approximations.

A possible solution to this problem is to use a relaxed version of dom-

129



4

◦

¤

∗

+

+

+

+

f1

f2

6

-

Figure 7.2: A misleading case for the G–Ranker. A (4), B (◦), C (¤), D
(∗), E (+).

inance, the negative ε–dominance. The negative ε–dominance is defined as

follows:

Definition 35. A vector a ∈ Rn dominates a vector b ∈ Rn according

to the negative ε–dominance and a real value ε > 0, if a(i) + ε ≤ b(i), for all

i ∈ {1, . . . , n} and there exists an index j ∈ {1, . . . , n} such that a(j)+ε < b(j).

The negative ε–dominance considers a tolerance ε in the definition of

dominance, so it is harder for a vector to dominate another one. As a con-

sequence, some approximations with vectors that are nearly optimal can be

included in better classes of dominance. The disadvantage is that we add a

parameter to the G–Ranker that needs to be adjusted. Fortunately, the pa-

rameter ε has an intuitive meaning and the effects of increasing or decreasing

this parameter are not hard to visualize.

130



7.4 Using Information Related to the

Optimization Problem

The G–Ranker is designed to be used when there is no information avail-

able about the multi–objective problem. But, if we have information of the

multi–objective problem, we can consider it when using the G–Ranker. For

example, if the extreme values of the Pareto Front are known, we can make

the normalization of the non–dominated sets using these values.

7.5 Using Other Geometric Objects

In Section 5, we explain how we decide to associate balls to the elements of

a non–dominated set in order to evaluate its diversity. It is interesting to

explore the use of other geometric figures. For example, instead of balls we

may use boxes whose geometric center is located in the elements of the ap-

proximation sets and whose faces are aligned with the axis of the coordinate

system. The advantage of using boxes is that there exists an exact algorithm

to calculate the volume of the union of several boxes in any dimension [55],

so we do not need to make an approximation with a Monte Carlo integration.

The disadvantage is that using boxes makes the G–Ranker more sensitive to

the orientation of the approximation sets.

131



132



Chapter 8

Conclusions

In this work we create a model of the analyst preferences for approximation

sets. For some years, the experts in multi–objective optimization have had

an intuitive idea of what characteristics are desirable in an approximation

to the Pareto Front. Much effort has been invested in constructing a way

to transform those characteristics into real numbers, or at least to create an

order between the approximation sets according to their quality.

Our model has many properties that have been considered as desirable in

the literature, like weak monotony, weak relativity and weak compatibility

with the out–performance relations. The most important property of our

approach is that it models very accurately the analyst preferences, as is

shown in the benchmark we used to test it. It performs better than other

comparison methods that are very popular in the literature.

Another contribution of this work is the introduction of a benchmark for

quality indicators. The intention of these test cases is to check if a quality

indicator is a good model or if it can be mislead. The study of quality

indicators has been based, mainly, on theoretical aspects. But it is possible

that methods that work well in theory, have a poor performance in practice.

The importance of the test cases is that they allow one to study the behavior

of the quality indicators in a more practical way.

133



We test some popular quality indicators using our benchmark, obtaining

very interesting results. The S–metric proves to be one of the best perfor-

mance measures, solving correctly most of the test cases. It fails the test cases

related with the convexity of the approximations and the relative position of

the approximations, confirming that the S–metric has some biases.

The ε–indicator is a relatively new quality indicator that is very popular

in the literature. It is very easy to understand and to implement, and very

efficient in computational complexity. But these advantages have a price.

The behavior of the epsilon–indicator is below that of the S–metric. It shows

the same biases as the S–metric and fails some other test cases. However,

it correctly solve many of the test cases. Considering how fast this quality

indicator is, it may be desirable to use the ε–indicator for fast tests, where

we want to have an idea of the quality of the approximation and we do not

need much precision.

The biggest surprise is related to the compatible and complete compari-

son method (CCCM). This comparison method has the most desirable the-

oretical properties, but when we test it in our benchmark, the results show

that the CCCM has a very limited inference power. It solves correctly the

test cases where there is a big difference in convergence, but gives no infor-

mation when the approximations have similar convergence, even when they

have huge differences in diversity. A extreme case is Test Case 8, where the

approximations are mutually non comparable under the out–performance re-

lations but they have big differences in the number of vectors. For example,

in the two dimensional version of that test case, |A | = 4 and |E | = 758,

but the CCCM considers these approximations as non comparable! This is

no surprise, because when the CCCM was designed, the concept of diversity

was not considered. The CCCM designed is based only on the concept of

dominance between vectors, so its behavior in the benchmark is normal and

it does not represent a defect in its design. The problem is that many re-

searchers are not aware of this, and it is frequently assumed that the CCCM

134



can evaluate both diversity and convergence.

It is interesting to see that the comparison method with the most the-

oretical properties is the one with the most limited practical use, while the

other quality indicators, even with less theoretical properties, have better

behavior. This shows how important it is to use test cases to validate quality

indicators. Another conclusion is that the most complicated and expensive

quality indicators tested, are the most effective ones. This suggests that in

order to evaluate the quality of an approximation in a more accurate way,

one needs to pay the price in complexity. This is what we could expect by

intuition, because the quality of an approximation is a very complex property

to evaluate, and a quality indicator based on a very simple computation is

not expected to capture properly that property.

It is important to know as much as possible about the behavior of the

quality indicators before using them. A researcher that uses a quality indica-

tor assuming that it has a certain behavior, but is not aware of its limitations,

may arrive at wrong conclusions.

For the case of the G–Ranker, we see that it has the best performance,

solving correctly the full benchmark. In this work, we have the hypothesis

that it is possible to introduce more preferences, besides the ones derived from

General Assumption 1, in a quality indicator to improve its evaluations, but

without the introduction of important biases. Based on our experimentation

we conclude that the hypothesis is correct. G–Ranker is the most informative

of the indicators tested, and one of the least biased.

We can imagine a future where the quality indicators are designed, from

the start, with a clear idea of what are the assumptions and biases introduced

into the indicator. This way one can design better quality indicators, and

indicators for specific preferences. In the case of the G–Ranker, one might

wonder what other information could have been considered to improve it

without introducing biases.

We also reviewed some of the most influential studies about comparison

135



methods, under the point of view of convergence and diversity, and one of the

most important conclusions is that a very popular property known as “com-

patibility and completeness” is not only unnecessary but undesirable when

constructing a model for the analyst preferences. A comparison method that

is compatible and complete is too conservative and in many cases does not

reflect the preferences of the analyst. An immediate consequence is that,

contrary to general belief, unary comparison methods are not inferior to bi-

nary ones. Unary comparison methods are considered inferior because, at

least theoretically, they can not be compatible and complete, but if “com-

patibility and completeness” is not a desirable property then this is not a

reason to consider unary quality indicators as inferior. We must remark that

the property defined by Hansen and Jaszkiewicz that they called “compati-

bility” is important and necessary for any comparison method that evaluates

the total quality of an approximation set.

Another interesting question is if unary quality indicators can be com-

patible and complete under practical conditions. When it was demonstrated

that unary QI cannot be compatible and complete, some theoretical assump-

tions were made, that are not met in practice. Under practical conditions,

we arrive at a different result as can be seen in the Appendix A.

The G–Ranker is not perfect and we have made our most sincere effort to

detect its weak points. We hope that the model we constructed becomes the

basis for more accurate models, which are able to answer with the most preci-

sion possible when one approximation is better than another. Constructing a

comparison method that introduces more preferences than General Assump-

tion 1, opens the possibility to introduce biases in the evaluations. But, in

order to be able to compare the quality of different approximations sets, there

is a point where we need to take chances and make decisions.

136



Appendix A

The Cardinality of Some Sets

of Non–dominated Sets

A.1 Introduction

In this appendix we make some demonstrations about the cardinality of

some important sets of non–dominated sets. Based on these demonstrations,

we review some claims about the limitations of unary quality indicators.

Essentially, we show that under practical conditions we have no elements

to affirm that we cannot construct a compatible and complete comparison

method based on a finite number of unary quality indicators. In this thesis

we show that being both compatible and complete is not a desirable property

for a quality indicator, so this discussion may seem irrelevant. But, we must

consider that in the future and under different conditions, the property of

being both compatible and complete may become important. Also, this

discussion is interesting from the theoretical point of view.

Next, we make a review of multi–objective optimization. Evolutionary

multi–objective optimization (EMO) consists of maximizing or minimizing

(or a mixture) a vector of objective functions F (x) = 〈f1(x), f2(x), . . . , fn(x)〉
subject to constraints using Evolutive Algorithms (EA). The objective func-

137



tions and constraints depend on a vector of variables x ∈ Rm. We call X

the set of all feasible vectors x, and Z the projection of X on objective func-

tions space. Without loss of generality, we consider hereafter that we are

minimizing the objective functions.

EMO uses the Pareto Optimality Criteria (POC ). POC is defined through

the relation between two vectors z, w ∈ Rn known as Pareto dominance. We

have that z dominates w (z dom w) if ∀i ∈ {1, 2, . . . , n}, z(i) ≤ w(i) ∧ ∃j ∈
{1, 2, . . . , d} | z(j) < w(j), where v(k) stands for the k–th component of vector

v. Otherwise, we say that z does not dominate w (z ¬dom w). The goal

is to find a set of vectors known as the Pareto Set (PS ) defined as PS =

{x ∈ X | ∀y ∈ X, F (y) ¬dom F (x)}. According to POC, all elements of

PS are optimal, because they represent the different tradeoffs between the

objective functions where it is not possible to improve one objective without

degrading another. The projection of PS in objective functions space is called

the Pareto Front (PF ), and is usually described as a surface that represents

the best possible tradeoffs between the objective functions.

In recent years, many multi–objective evolutionary algorithms (MOEAs)

based on POC have been developed. For a review of these algorithms

consult [14] and [9]. Instead of generating a single solution, these algo-

rithms generate a finite set A of vector solutions x ∈ X that approxi-

mates the PS. These approximation sets have the characteristic that ∀x, y ∈
A,F (x) ¬dom F (y) ∧ F (y) ¬dom F (x) and are usually called non–dominated

sets (NS ). We can consider these NSs as approximations of the Pareto Set.

Also, we can consider these NSs as approximations to the Pareto Front, if we

locate the sets in their projection in objective function space. Hereafter in

this appendix we must locate points, sets, vectors, and solutions in the space

of the objective functions.

The set Z is very important because all solutions generated by a MOEA

are subsets of Z. Z can have many topologies, it can be discrete, finite,

continuous, etc. In the rest of this appendix we assume the most extreme

138



case where Z = Rn.

Define the set Ω as the set of all non–dominated sets we can generate with

elements of Z. Ω is also a very interesting set, because all NSs generated by

a MOEA are elements of Ω. One of the most important properties of a set

is its cardinality. As we see later, the cardinality is related with the size of a

set. The cardinality of Ω is especially important for performance measures,

because many quality indicators are functions whose domain are subsets of

Ω.

There are other sets of non–dominated sets that are important. Many

MOEAs stores the non–dominated vectors they have found using an archive

of fixed size k. This means that, once the value of k is decided for a MOEA,

the set of all non–dominated sets we can obtain from that MOEA are those

of size less than or equal to k. So, the set Ω≤k of all non–dominated sets of

size less than or equal to k is also interesting.

Finally, we want to introduce another important set. Define Ω≤a as the

set of all non–dominated sets of finite size. In practice, all MOEAs generate a

finite number of explicit vector solutions for an evolutionary multi–objective

problem. So, Ω≤a is a better representation of all possible outputs of a MOEA

than Ω.

We find the cardinality of the sets described above and use this infor-

mation to explain some properties of the performance measures described

in [83]. The rest of the appendix is organized as follows: in Section A.2

we present some basic theorems from set theory, in Section A.3 we use set

theory to find the cardinality of some important sets. Later, in Section A.4

we use the results of previous sections to make some demonstrations related

to quality indicators for multi–objective algorithms.

139



A.2 Set Theory

In this section we present an overview of set theory and present all the

definitions and results that are necessary to demonstrate the theorems and

lemmas in the following sections. The concepts in this section are taken

from [25] and [39]. The demonstrations of the results presented here can be

consulted in [25] and [39].

Two sets, A and B, are equivalent (A ∼ B) if it is possible to make a

correspondence between the elements of both sets in such a way that to every

element of A correspond one and only one element of B; and to every element

of B correspond one and only one element of A. This kind of correspondence

is called a one–to–one correspondence. The equivalence property is reflex-

ive, transitive and symmetric. An injection from A to B is a one–to–one

correspondence from A to a subset of B.

One of the most important concepts of set theory is that of cardinal num-

bers, or cardinality. Cardinal numbers are related with the size of a set. A

cardinal number refers to an arbitrary member of a family of mutually equiv-

alent sets. For example, the cardinal number 4 represents any set equivalent

to {1,2,3,4}, like {a,b,c,d}, {“dog”, “rat”, “cat”, “mouse”}, etc. We repre-

sent the cardinal number of a set A by |A|, for example |{a, b}| = 2. Infinite

sets also have cardinal numbers. For positive integers N = {1, 2, 3, . . .}, we

represent its cardinal number by a. For real numbers R we represent |R|
by c. We represent the cardinal number of the set of functions defined in a

continuous interval by f .

It is not possible to make an injection from A to B if |A| > |B| because

there are not enough different elements in B to be associated with the ele-

ments of A. If A ⊂ B then |A| ≤ |B|. An interesting result from set theory

is that it is impossible to make an injection from R to N, the set of natural

numbers is somehow “smaller” than the set of real numbers. For two infinite

sets A and B, |A| < |B| if and only if there is an injection from A to B but

there is no injection from B to A. If we can make an injection from A to B,

140



than |A| ≤ |B|. It is proved that a < c < f .

A set A with cardinal number a is called countable and it is equivalent

to the set of natural numbers. When listing its elements, a countable set is

usually represented using “. . .”, for example A = {a1, a2, . . .}.
An interesting property of the infinite sets, like N and R, is that it is

possible to make a one–to–one correspondence between an infinite set and

some of its subsets.

For two sets A and B, their union is represented by A+B. Their cartesian

product is represented by A × B. The cartesian product of a set with itself

can be represented by an exponent. For example, A× A× A = A3.

The power set of A, P(A), is the set whose elements are all possible subsets

of A and it is proved that |A| < |P (A)|. If |A| = |B| then |P (A)| = |P (B)|.
The cardinal numbers of infinite sets are called transfinite numbers. The

smallest transfinite number is a and all finite numbers are smaller than any

transfinite number. We present a list of results of set theory, where k > 0 is

a finite cardinal number and m,n > 0 are finite numbers.

a: A ∼ B ⇐⇒ |A| = |B|. Two sets are equivalent if and only if they have

the same cardinal number.

b: c + k = c + a = c + c = c. For a set A of cardinality c, if we add

a finite number of elements to A, the resulting set has cardinality c.

The same occurs if we add a–many elements to A or if we add c–many

elements to A. For example |R + {a, b, c}| = |R| = c, |(0, 1) + N| = c,

|[0, 1)+[1, 2)| = |[0, 1)| = c. Similarly, we can extract a finite number of

elements from a set of cardinality c and the resulting set has cardinality

c.

c: c ·k = c ·a = c ·c = c. The cartesian product of a set A with cardinality

c with a finite set results in a set with cardinality c. The same result is

obtained if the cartesian product is evaluated with a set of cardinality

a or c. For example |R× {1, 2, 3}| = c, |R×N| = c, |R×R| = c.

141



d: cm = ca = c. A set A with cardinality c elevated to a finite exponent

results in an equivalent set. For example, |R5| = |R| = c. The same

result is obtained if A is elevated to a.

e: Let |A| = c. |Ac| = |P (A)|. If we elevate a set A of cardinality c to

the exponent c, the result is a set with a bigger cardinality. The same

cardinality of the power set of A. For example, Rc ∼ P (R).

f: cm × cn = c(m+n) = c. For example, R5 ×R2 ∼ R7 ∼ R.

g: c + c + . . . = c. The sum of countable many sets, each of them with

cardinality c, results in a set of cardinality c. For example [0, 1) +

[1, 2) + . . . + [k, k + 1) + . . . ∼ R.

h: |A| = |B| =⇒ |P (A)| = |P (B)|. If two sets have the same cardinality,

then their power sets are equivalent.

i: A ⊂ B =⇒ |A| ≤ |B|. If A is a subset of B, then the cardinal number

of A is less than or equal to the cardinal number of B.

j: Let |A| = c and |B| = a: f = |P (A)| > c = |P (B)| > a.

k: If C ⊂ B then: A ∼ C =⇒ |A| ≤ |B|.

These results are used in the following sections.

A.3 The Cardinality of Some Important Sets

We introduce some demonstrations about the cardinality of some sets of non–

dominated sets. These demonstrations are interesting by themselves from the

theoretical point of view but they are also useful to prove the theorems we

present later. We use extensively the Theorems (a)–(k) from Section A.2.

First we present the line S. The line S is a structure we borrow from [83]

and we use it in the demonstration of some of the lemmas and theorems in

142



Figure A.1: A non–dominated set S ⊂ R2.

this section. It is a segment of line in Rn, aligned in a direction so the points

in the line are a non–dominated set. An example of the line S is shown in

Figure A.1. The definition of S is the following:

Definition A.1. Choose a, b ∈ R with a < b. The line S is defined as S =

{〈z(1), z(2), . . . , z(n)
〉 ∈ Z | a < z(1) < b, z(2) = b+a−z(1) and z(i) = (a+ b)/2

for i = 3 to n }. Also, define ΩS as the set of all non–dominated sets we can

generate from S.

Note that the definition of z(1) and z(2) implies that all points in S are

non–dominated between them. For simplicity, we give a fixed value to the

rest of the z(i)s. ΩS is equivalent to the power set of S minus the empty set,

because any subset of non–dominated set is also a non–dominated set with

the exception of the empty set1.

In Section A.1 we define the set Ω of all non–dominated sets we can

create from Z. We are interested in the following question. How many

non–dominated sets can be created from Z? In other words, what is the

cardinality of Ω? To answer this question we present the following theorem:

1In order to make the demonstrations shorter, we consider that the empty set is not a
non–dominated set. This makes no difference because our demonstrations hold even if we
consider that the empty set is a non–dominated set.

143



Theorem A.1. The cardinal number of Ω can be as big as f .

Proof. Consider the line S ⊂ Z described before and consider the most

extreme case where Z = Rn. The argumentation is the following (we denote

by lowercase letters in parenthesis the theorems (a)–(k) from Section A.2):

A: ΩS ⊂ Ω ⊂ P (Rn), because of the definition of S, Ω and ΩS.

B: |ΩS| ≤ |Ω| ≤ |P (Rn)|, because of (i) and A.

C: ΩS = P (S)− {∅}, because the subset of a NS is also a NS.

D: |ΩS| = f , because the power set of a set with cardinality c has cardi-

nality f (j), S has cardinality c and C.

E: P (Rn) ∼ P (R), because of (d) and (h).

F: |P (Rn)| = f , because of E, (a) and (j).

G: f ≤ |Ω| ≤ f , because of B, D and F.

H: |Ω| = f , this is a direct consequence of G.

Note that the size of Ω is bounded by the size of P (Rn). |P (Rn)| = f so

we have the following corollary:

Corollary A.1. The cardinal number of Ω is at most f .

Other demonstrations that will be useful in the rest of this work are about

the cardinality of the sets of non–dominated sets of a fixed size. For example,

define Ωk as the set of all non–dominated sets in Rn of size k, for k > 0.

What is the cardinality of Ω1, Ω2 and in general Ωk? We respond to these

questions in the following three lemmas.

Lemma A.1. The cardinality of Ω1 can be as big as c.

144



Proof. By definition, Ω1 is a set of the form {{z} | z ∈ Z}, so we can

make a one to one correspondence between the elements {z} ∈ Ω1 with the

corresponding z ∈ Z. This means that Ω1 ∼ Z. The cardinality of Z can be

as big as c, so recalling Theorem (a) from Section A we can conclude that

|Ω1| can be as big as c.

Note that the size of Ω1 is bounded by the size of Z. The cardinal number

of Z can be at most c. So we have the following corollary:

Corollary A.2. The cardinal number of Ω1 is at most c.

Lemma A.2. The cardinality of Ω2 can be as big as c.

Proof. Consider the line S described before. Choose a point s1 ∈ S and

define S ′ = S − {s1}. Define Ω′
2 as the set of all sets in the form {s1, s} for

s ∈ S ′. We have that all elements of Ω′
2 are non–dominated sets of size two.

A: |S ′| = c, because if we take a finite number of elements from a set of

cardinality c, the resulting set has cardinality c (b). We define S ′ as

S − {s1} and the cardinality of S is c, so the cardinal number of S ′ is

c.

B: |Ω′
2| = c, because we can make a one to one correspondence between

Ω′
2 and S ′. For this, associate each element {s1, s} ∈ Ω′

2 with the

corresponding element s ∈ S ′. But the cardinality of S ′ is c (A), so the

cardinal number of Ω′
2 is c (a).

C: Ω′
2 ⊂ Ω2, because the elements of Ω′

2 are non–dominated sets of size 2

and Ω2 is the set of all non–dominated sets of size 2.

D: |Ω′
2| ≤ |Ω2|, because Ω′

2 is a subset of Ω2 (C), so its cardinality must

be less than or equal to that of Ω2 (i).

E: c ≤ |Ω2|, because the cardinal number of Ω′
2 is less than or equal to the

cardinal number of Ω2 (D), and the cardinal number of Ω′
2 is c (B).

145



F: |Ω2| ≤ |R2n|, because of (k) and because we can make an injection

from Ω2 to R2n. For this, sort the vectors v =
〈
v(1), v(2), ...v(n)

〉 ∈ A

for A ∈ Ω2 using the following rule: v precedes u, for v, u ∈ A,

if v(1) < u(1) or if v(r) < u(r) when v(i) = u(i) for i = 1 to r −
1. This way, every non–dominated set A ∈ Ω2 is associated with

an unique pair of ordered vectors v1 =
〈
v

(1)
1 , v

(2)
1 , . . . , v

(n)
1

〉
, v2 =〈

v
(1)
2 , v

(2)
2 , . . . , v

(n)
2

〉
. Associate each non–dominated set A ∈ Ω2 with

the point (v
(1)
1 , v

(2)
1 , . . . , v

(n)
1 , v

(1)
2 , v

(2)
2 , . . . , v

(n)
2 ) ∈ R2n and we have the

desired injection.

G: |Ω2| ≤ c, because the cardinal number of Ω2 is less than or equal to the

cardinal number of R2n (F) and the cardinal number of R2n is c (d).

H: c ≤ |Ω2| ≤ c, because of E and G.

I: |Ω2| = c, this is a direct consequence of H.

Note that the size of Ω2 is bounded by the size of R2n. |R2n| = c, so we

have the following corollary:

Corollary A.3. The cardinal number of Ω2 is at most c.

The proof of Lemma A.2 can be extended for Ωk for k > 2, as is shown

in the following demonstration.

Lemma A.3. The cardinality of Ωk, for k > 2, can be as big as c.

Proof. Consider the line S described before. Choose k − 1 different points

s1, s2, . . . , sk−1 ∈ S and define S ′ = S − {s1, s2, . . . , sk−1}. Define Ω′
k as the

set of all sets in the form {s1, s2, . . . , sk−1, s} for s ∈ S ′. We have that all

elements of Ω′
k are non–dominated sets of size k.

146



A: |S ′| = c, because if we take a finite number of elements from a set

of cardinality c, the resulting set has cardinality c (b). We define S ′

as S − {s1, s2, . . . , sk−1} and the cardinality of S is c, so the cardinal

number of S ′ is c.

B: |Ω′
k| = c, because we can make a one–to–one correspondence between

Ω′
k and S ′. For this, associate each element {s1, s2, . . . , sk−1, s} ∈ Ω′

k

with the corresponding element s ∈ S ′. But the cardinality of S ′ is c

(A), so the cardinal number of Ω′
k is c (a).

C: Ω′
k ⊂ Ωk, because the elements of Ω′

k are non–dominated sets of size k

and Ωk is the set of all non–dominated sets of size k.

D: |Ω′
k| ≤ |Ωk|, because Ω′

k is a subset of Ωk (C), so its cardinality must

be less than or equal to that of Ωk (i).

E: c ≤ |Ωk|, because the cardinal number of Ω′
k is less than or equal to the

cardinal number of Ωk (D), and the cardinal number of Ω′
k is c (B).

F: |Ωk| ≤ |Rkn|, because of (k) and because we can make an injection from

Ωk to Rkn. For this, sort the vectors v =
〈
v(1), v(2), ..., v(n)

〉 ∈ A for

A ∈ Ωk using the following rule: v precedes u, for v, u ∈ A, if v(1) < u(1)

or if v(r) < u(r) when v(i) = u(i) for i = 1 to r − 1. This way, every

non–dominated set A ∈ Ωk is associated with a unique list of ordered

vectors v1 =
〈
v

(1)
1 , v

(2)
1 , . . . , v

(n)
1

〉
, v2 =

〈
v

(1)
2 , v

(2)
2 , . . . , v

(n)
2

〉
, . . . , vk =〈

v
(1)
k , v

(2)
k , . . . , v

(n)
k

〉
. Associate each non–dominated set A ∈ Ωk with

the point (v
(1)
1 , v

(2)
1 , . . . , v

(n)
1 , v

(1)
2 , v

(2)
2 , . . . , v

(n)
2 , . . . , v

(1)
k , v

(2)
k , . . . , v

(n)
k ) ∈

Rkn and we have the desired injection.

G: |Ωk| ≤ c, because the cardinal number of Ωk is less than or equal to the

cardinal number of Rkn (F) and the cardinal number of Rkn is c (f).

H: c ≤ |Ωk| ≤ c, because of E and G.

147



I: |Ωk| = c, this is a direct consequence of H.

Note that the size of Ωk is bounded by the size of Rkn. |Rkn| = c, so we

have the following corollary:

Corollary A.4. The cardinal number of Ωk, for k > 2, is at most c.

Based on the demonstrations presented before, we introduce the following

theorem:

Theorem A.2. The cardinal number of Ωk, where k is a positive integer, is

at most c.

Theorem A.2 is useful in the demonstration of the two following theorems.

These theorems are related with the cardinality of Ω≤k and Ω<a, defined in

Section A.1.

Theorem A.3. The cardinality of Ω≤k is at most c.

Proof. We can represent Ω≤k with the following sum:

Ω≤k = Ω1 + Ω2 + . . . + Ωk . (A.1)

the argumentation is as follows.

A: |Ωi| = c, for i = 1 to k, because of Theorem A.2 and we are considering

the most extreme case.

B: |Ω≤k| = |Ω1 + Ω2 + . . . + Ωk|, because of Formula A.1.

C: |Ω≤k| = |Ω1| + |Ω2| + . . . + |Ωk|, because the different Ωi are mutually

disjoint.

D: |Ω≤k| = k · c, because of A and C.

148



E: |Ω≤k| = c, because of D and because the product of c with a natural

number k > 0 is equal to c (c).

Theorem A.4. The cardinal number of Ω<a is at most c.

Proof. We can represent Ω<a with the following sum:

Ω<a = Ω1 + Ω2 + Ω3 + . . . . (A.2)

Note that this sum has a–many elements, because we can make a one–to–

one correspondence between the positive integers and the elements of the

sum. For this we only need to associate each positive integer k with the

corresponding Ωk. The values of k increase without a limit, but they are

always finite.

A: |Ωi| = c, for i = 1, 2, . . ., because of Theorem A.2 and we are consider-

ing the most extreme case.

B: |Ω≤a| = |Ω1 + Ω2 + Ω3 + . . . |, because of Formula A.2.

C: |Ω≤a| = |Ω1|+ |Ω2|+ |Ω3|+ . . ., because the different Ωk are mutually

disjoint and B.

D: |Ω≤a| = c + c + c + . . ., because of A and C.

E: |Ω≤a| = c, because of D and (g).

A.4 Cardinalities and Quality Indicators

In this section we make an extensive use of the Theorems A.1– A.4 from

Section A.3 and Theorems (a)–(k) from Section A.2.

149



An open problem in multi–objective optimization is how to evaluate the

performance of different MOEAs. After every run, a MOEA generates a non–

dominated set that approximates the Pareto Front. So, the evaluation of the

MOEAs depends on the evaluation of the NSs it generates. A popular method

to evaluate a non–dominated set is to use a unary quality indicator [83].

Define Ωr as the set of all non–dominated sets that can be generated by a

MOEA or the set of all non–dominated sets we are interested in. A unary

quality indicator is a function I : Ωr → R, that takes one NS as an argument

(hence it is named unary) and returns a real number as an output. This real

number is a measure of how good a NS is, and it is used to compare different

NSs. For example, if we consider that the bigger the value of I the better,

for two NSs A and B, if I(A ) > I(B) we can conclude that A is better

than B. It is also common to use several unary quality indicators in order

to evaluate two non–dominated sets.

In [83] the concept of unary comparison method is defined . A unary

comparison method UCI,E is formed by a combination I = (I1, I2, . . . , Ik) of

k unary quality indicators and a function E : Rk×Rk → {True, False}. For

two NSs A and B, if UCI,E(A ,B) is true, then the comparison method con-

siders that A is better than B. If UCI,E(A , B) is false, then the comparison

method considers that A is not better than B.

Also, in [83] a property for comparison methods known as “compatibility

and completeness” is introduced. Zitzler et al. [83] claim that “compatibility

and completeness” is a very important property to have, because a compat-

ible and complete comparison method is able to decide whether a NS A is

better than a NS B. It is proved [83] that a unary comparison method can

not be compatible and complete. This is described in the following theorem:

Theorem A.5. For multi–objective problems with 2 or more objectives, there

exists no unary comparison method with a finite number k of quality indica-

tors in I, that is compatible and complete.

Theorem A.5 has very important implications. It means that unary qual-

150



ity indicators have a limited capacity to evaluate whether a non–dominated

set is better than another. In order to demonstrate this theorem, we need

Lemma A.4.

Lemma A.4. Let Z = {〈z(1), z(2), . . . , z(n)
〉 ∈ Rn | a < z(i) < b , for i = 1

to n}, be an open hypercube in Rn with n ≥ 2, a, b ∈ R. If there exists a

compatible and complete unary comparison method with I = (I1, I2, ..., Ik),

and an interpretation function E, then for all A ,B ∈ Ω with A 6= B there

is at least one Ij in I such that Ij(A ) 6= Ij(B).

In other words, for a compatible and complete unary comparison method

(CCUC), if A 6= B then I(A ) 6= I(B). Define Υ as the set of all different

vectors I, that we can generate with the outputs of k unary quality indi-

cators. The cardinal number of Υ is c, because Υ = Rk ∼ R, (see (d) in

Section A.2). Due to Lemma A.4 there must be an injection from Ω to R.

The demonstration of Lemma A.4 can be found in [83]. Next, we present a

demonstration of Theorem A.5 that is equivalent to the demonstration pre-

sented in [83], but in our version it is easier to identify some details about

why unary comparison methods cannot be compatible and complete. We

use the Theorems (a)–(k) from Section A.2, denoted by lowercase letters in

parenthesis, in the following proofs.

Proof of Theorem A.5. Consider the most extreme case where Z = Rn and

let Ωr = Ω.

A: |Ωr| = f , see Theorem A.1.

B: |Υ| = c, because of the definition of Υ and (d).

C: c < f , because of (j).

D: We need to make an injection from Ωr to Υ, because of Lemma A.4.

E: It is impossible to make an injection from Ωr to Υ, because of A, B

and C.

151



The conclusion is that no comparison method based on a finite number of

unary quality indicators can be compatible and complete, because it leads to

an absurd result. The central part of the demonstration is that we can not

make an injection from Ωr to Υ. This part of the demonstration is central

for the rest of the study in this appendix, so we refer to it as the “cardinality

contradiction”.

Ziztler et al. [83] describe two conditions in which it is possible to con-

struct a compatible and complete unary comparison method. The first con-

dition is the use of an infinite number of unary quality indicators. They

even mention the empirical attainment function [24] as a basis to construct

a CCUC using an infinite number of quality indicators. An interesting ques-

tion is why it is possible to construct such CCUC under the conditions just

mentioned. The reason is very simple, and it is described in the following

corollary.

Corollary A.5. If we use c–many unary quality indicators, the cardinality

contradiction vanishes.

Proof. Redefine I as a combination of c–many unary quality indicators. Let

Z = Rn and Ωr = Ω.

A: |Ωr| = f , because of Theorem A.1.

B: |Υ| = f , because the number of different combinations of real numbers

we can generate from I is Rc = f (e).

C: We need to make an injection from Ωr to Υ, because of Lemma A.4.

D: It is possible to make an injection from Ωr to Υ, because of A and B.

152



So, the cardinality contradiction vanishes if we use c–many unary quality

indicators. Note that this is not true if we redefine I to contain a–many

unary quality indicators, because in this case |Υ| = |Ra| = c < f = |Ω|, so

the cardinality contradiction holds.

The second special condition introduced in [83] is that there exists a

comparison method that is compatible and complete if the size of the NSs

to compare is equal or less than a fixed value k. They even describe that

comparison method. Again, an interesting question is why it is possible to

construct such a comparison method under that condition. Just as in the

previous case, new conditions lead us to a new result. We state this in the

following corollary:

Corollary A.6. If we restrict the size of the non–dominated sets under com-

parison to be smaller than or equal to a fixed value k > 0 the cardinality

contradiction vanishes.

Proof. Let Z = Rn and Ωr = Ω≤k.

A: |Ωr| = c, because of Theorem A.3.

B: |Υ| = c, because the number of different vectors of real numbers we

can generate from I with k unary quality indicators is |Rk| = c (d).

C: We need to make an injection from Ωr to Υ, because of Lemma A.4.

D: It is possible to make an injection from Ωr to Υ, because of A and B.

Unfortunately, the comparison method mentioned above is not useful in

practice [83]. However, considering Corollary A.6, we wonder if other more

useful comparison methods can be created.

153



Finally, we introduce a third special condition where the cardinality con-

tradiction vanishes. This new special condition is to consider only non–

dominated sets of arbitrary finite size. Note that this condition is less re-

strictive than the one mentioned in Corollary A.6, because we do not need

to fix the size of the NSs to compare.

Corollary A.7. If we only compare non–dominated sets A ∈ Ω<a, the car-

dinality contradiction vanishes.

Proof. Let Z = Rn and Ωr = Ω≤a

A: |Ωr| = c, because of Theorem A.4.

B: |Υ| = c, because of the definition of Υ and (d).

C: Ωr ∼ Υ, because of A, B and (a).

D: We need to make an injection from Ωr to Υ, because of Lemma A.4.

E: It is possible to make an injection from Ωr to Υ, because of C.

The consequence of Corollary A.7 is that we can not affirm that a com-

patible and complete comparison method based on a finite number of unary

quality indicators is impossible to construct. All evolutionary multi–objective

algorithms known so far generate a finite number of vectors as an output. An

algorithm that generates an infinite number of explicit vector solutions, in

finite time, is not possible. So, we have that the conditions of Corollary A.7

are met in practice.

154



Bibliography

[1] Russell L. Ackoff and Maurice W. Sasieni. Fundamentals of Operations

Research. John Wiley and Sons, USA, 1968.

[2] Peter J. Angeline and Kenneth E. Kinnear, editors. Advances in genetic

programming. MIT Press, Cambridge, MA, USA, 1996.

[3] Rutherford Aris. Mathematical Modelling Techniques. Pitman Publish-

ing Limited, 39 Parker Street, London, 1978.

[4] David Avis, Binay K. Bhattacharya, and Hiroshi Imai. Computing the

volume of the union of spheres. The Visual Computer, 3(6):323–328,

1988.

[5] Thomas Bäck. Evolutionary algorithms in theory and practice: evolu-

tion strategies, evolutionary programming, genetic algorithms. Oxford

University Press, Oxford, UK, 1996.

[6] Nicola Beume and Günter Rudolph. Faster S-metric calculation by

considering dominated hypervolume as Klee’s measure problem. In

Boris Kovalerchuk, editor, Computational Intelligence, pages 233–238.

IASTED/ACTA Press, 2007.

[7] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, and Matthias Oss-

wald. Finding knees in multi-objective optimization. In Eighth Con-

ference on Parallel Problem Solving from Nature (PPSN VIII). Lecture

Notes in Computer Science, pages 722–731. Springer-Verlag, 2004.

155



[8] V. Chankong and Y.Y. Haimes. Multiobjective Decision Making, Theory

and Methodology. Elsevier Science, New York, 1983.

[9] Carlos A. Coello, D. Van Veldhuizen, and G. B. Lamont. Evolution-

ary Algorithms for Solving Multi-Objective Problems. Kluwer Aca-

demic/Plenum Publishers, New York, USA, 2002.

[10] Richard Courant. Variational methods for the solution of problems of

equilibrium and vibrations. Bulletin of the American Mathematical So-

ciety, 49(1):1–23, 1943.

[11] George B. Dantzig. Linear Programming and Extensions. Princeton

University Press, Princeton, New Yersey, 1963.

[12] Charles Darwin. On the Origin of Species by Means of Natural Selection.

John Murray, London, 1859.

[13] Donald Dawson and Ronald G. Askin. Optimal new product design us-

ing quality function deployment with empirical value functions. Quality

and Reliability Engineering International, 15:17–32, 1999.

[14] Kalyanmoy Deb. Multi-objective Optimization Using Evolutionary Al-

gorithms. John Wiley and Sons, Chichester, UK, 2001.

[15] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan.

A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE

Transactions on Evolutionary Computation, 6:182–197, 2002.

[16] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler.

Scalable Test Problems for Evolutionary Multi-Objective Optimization.

Technical Report 112, Zurich, Switzerland, 2001.

[17] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by

a colony of cooperating agents. IEEE Transactions on Systems, Man,

and Cybernetics, Part B, 26(1):29–41, 1996.

156



[18] Russell C. Eberhart, Yuhui Shi, and James Kennedy. Swarm Intelli-

gence. The Morgan Kaufmann Series in Artificial Intelligence. Morgan

Kaufmann, San Francisco, CA, USA, 2001.

[19] A. Farhang-Mehr and S. Azarm. Diversity assessment of pareto optimal

solution sets: an entropy approach. IEEE International Conference on

E-Commerce Technology, 1:723–728, 2002.

[20] Anthony V. Fiacco and Garth P. McCormick. Nonlinear programming :

sequential unconstrained minimization techniques. John Wiley & Sons,

New York, NY, 1968.

[21] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence through

Simulated Evolution. Wiley, New York, 1966.

[22] C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective

optimization: Formulation, discussion and generalization. In Proc. 5th

Int. Conf. Genetic Algorithms, pages 416–423, San Mateo, CA, 1993. S.

Forrest, Ed.

[23] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An improved

dimension-sweep algorithm for the hypervolume indicator. In Proceed-

ings of the IEEE Congress on Evolutionary Computation (CEC 2006),

pages 1157–1163, 2006.

[24] Carlos M. Fonseca, Viviane Grunert da Fonseca, and Luis Paquete. Ex-

ploring the performance of stochastic multiobjective optimisers with the

second-order attainment function. In EMO, pages 250–264, 2005.

[25] Abraham A. Fraenkel. Set Theory and Logic. Addison–Wesley Publish-

ing Company, Reading, USA, 1966.

[26] K.R. Frisch. The logarithmic potential method for convex programming.

Technical report, Institute of Economics, Univ. Oslo, 1955.

157



[27] U. M. Garcia-Palomares and O. L. Mangasarian. Superlinearly conver-

gent quasi-newton algorithms for nonlinearly constrained optimization

problems. Mathematical Programming, 11(1):1–13, 1976.

[28] A.M. Geoffrion, J.S. Dyer, and A. Feinberg. An interactive approach for

multi–criterion optimization, with an application to the operation of an

academic department. Management Science, 19(4):357–368, 1972.

[29] F. Glover. Tabu Search I. ORSA Journal on Computing, 1:190–206,

1989.

[30] F. Glover. Tabu Search II. ORSA Journal on Computing, 2:4–32, 1990.

[31] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,

Boston, 1997.

[32] David E. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. ADDISON WESLEY, Boston, MA, 1989.

[33] Nicholas Ian Mark Gould. On the accurate determination of search

directions for simple differentiable penalty functions. IMA Journal of

Numerical Analysis, 6(3):357–372, 1986.

[34] Shih-Ping Han. Superlinearly convergent variable metric algorithms for

general nonlinear programming problems. PhD thesis, 1974.

[35] Michael Pilegaard Hansen and Andrzej Jaszkiewicz. Evaluating the

quality of approximations to the non-dominated set. Technical Report

IMM-REP-1998-7, 1998.

[36] Magnus R. Hestenes. Multiplier and gradient methods. Journal of Op-

timization Theory and Applications, 4(5):303–320, 1969.

[37] John H. Holland. Adaptation in natural and artificial systems. MIT

Press, Cambridge, MA, USA, 1992.

158



[38] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched pareto genetic

algorithm for multiobjective optimization. In Proc. 1st IEEE Conf.

Evolutionary Computation, pages 82–87, Piscataway, NJ, 1994.

[39] E. Kamke. Theory of Sets. Dover Publications, Inc., New York, USA,

1950.

[40] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. of

the IEEE Int. Conf. on Neural Networks, pages 1942–1948, Piscataway,

NJ, 1995.

[41] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simu-

lated annealing. Science, 220:671–680, 1983.

[42] Joshua Knowles and David Corne. On Metrics for Comparing Non-

dominated Sets. In Proceedings of the 2002 Congress on Evolutionary

Computation (CEC’2002), volume 1, pages 711–716.

[43] Joshua Knowles, Lothar Thiele, and Eckart Zitzler. A tutotial on the

performance assessment of stochastic multiobjective optimizers. Tech-

nical Report TIK–Report No. 214, 2006.

[44] Joshua D. Knowles. Local-Search and Hybrid Evolutionary Algorithms

for Pareto Optimization. PhD thesis, Massachusetts Institute of Tech-

nology, January 2002.

[45] X. Lai, M. Xie, and K. C. Tan. Dynamic programming for QFD opti-

mization. Quality and Reliability Engineering International, 21:769–780,

2005.

[46] Pedro Larrañaga and Jose A. Lozano. Estimation of distribution al-

gorithms: A new tool for evolutionary computation. Kluwer Academic

Publishers, Boston, 2002.

159



[47] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler.

Combining convergence and diversity in evolutionary multi-objective op-

timization. Evolutionary Computation, 10:263–282, 2002.

[48] A.F. Mehr and S. Azarm. Minimal sets of quality metrics. In EMMO

2003, Lecture Notes in Computer Science 2632, pages 405–417. C.M.

Fonseca et al. (Eds.).

[49] Kaisa Miettinen. Some methods for nonlinear multi–objective optimiza-

tion. In E. Zitzler et al., editor, Evolutionary Multi–Criterion Optimiza-

tion, pages 1–20. Springer Berlin / Heidelberg, 2001.

[50] Miguel Angel Moreles and Salvador Botello. Notas de Modelación y

Métodos Numéricos I, Memorias del Taller de Métodos Numéricos en

Ingenieŕıa y Ciencias Aplicadas. CIMAT-CIMNE, Guanajuato, Mexico,

2007.

[51] Boris Naujoks and Nicola Beume. Multi-objective optimisation using

S-metric selection: application to three-dimensional solution spaces. In

In CEC2005, pages 1282–1289. Press, 2005.

[52] G. L. Nemhauser, A.H.G. Rinnooy Kan, and M.J. Todd. Optimization.

Elsevier Science Publishers B.V., Amsterdam, 1989.

[53] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer–

Verlag, New York, 1999.

[54] Tatsuya Okabe, Yaochu Jin, and Bernhard Sendhoff. A Critical Sur-

vey of Performance Indices for Multi-Objective Optimisation. In Pro-

ceedings of IEEE Congress on Evolutionary Computation (CEC-2003),

pages 878–885. IEEE Press, 2003.

[55] M. H. Overmars and Chee-Keng Yap. New upper bounds in Klee’s

measure problem. In SFCS ’88: Proceedings of the [Proceedings 1988]

160



29th Annual Symposium on Foundations of Computer Science, pages

550–556, Washington, DC, USA, 1988. IEEE Computer Society.

[56] M. J. D. Powell. A method for nonlinear constraints in minimization

problems. R. Fletcher, ed., Academic Press, New York, NY, 1969.

[57] M. J. D. Powell. A fast algorithm for nonlinearly constrained optimiza-

tion calculations. Springer Berlin / Heidelberg, Berlin, 1978.

[58] Kenneth Price, Rainer M. Storn, and Jouni A. Lampinen. Differential

Evolution: A Practical Approach to Global Optimization (Natural Com-

puting Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2005.

[59] Gregory J. E. Rawlins. Foundations of Genetic Algorithms. Morgan

Kaufmann Publishers, Inc., San Mateo, CA., 1991.

[60] T. Runarsson and X. Yao. Stochastic ranking for constrained evolution-

ary optimization. IEEE Transactions on Evolutionary Computation,

4:284–294, 2000.

[61] J. D. Schaffer. Some experiments in machine learning using Vector Eval-

uated Genetic Algorithms. PhD thesis, Vanderbilt University, November

1984.

[62] J.R. Schott. Fault tolerant design using single and multicriteria genetic

algorithm optimization. PhD thesis, Massachusetts Institute of Technol-

ogy, May 1995.

[63] Hans-Paul Paul Schwefel. Evolution and Optimum Seeking: The Sixth

Generation. John Wiley & Sons, Inc., New York, NY, USA, 1993.

[64] David J. Sheskin. Handbook of Parametric and Non-Parametric Statis-

tical Procedures. Chapman and Hall/CRC, USA, 2004.

161



[65] Vinicius L. S. Silva, Elizabeth F. Wanner, Sergio A. A. Cerqueira, and

Ricardo H. C. Takahashi. A new performance metric for multiobjective

optimization: the integrated sphere counting. In IEEE Congress on

Evolutionary Computation, pages 3625–3630, 2007.

[66] P. G. Spirakis. The volume of the union of many spheres and point

inclusion problems. In Proceedings on STACS 85 2nd annual symposium

on theoretical aspects of computer science, pages 328–338, New York,

NY, USA, 1985. Springer-Verlag New York, Inc.

[67] N. Srinivas and K. Deb. Multiobjective optimization using nondomi-

nated sorting in genetic algorithms. Technical report, 1993.

[68] R.E. Steuer. Multiple Criteria Optimization: Theory, Computation and

Applications. John Wiley & Sons, Inc., 1986.

[69] Evangelos Triantaphyllou. Multi-criteria decision making methods : a

comparative study. Kluwer Academic Pub., Boston, 2000.

[70] E.L. Ulungu. Optimisation combinatoire multicritére: détermination de

lensemble des solutions efficaces et méthodes interactives. PhD thesis,

Universit de Mons-Hainaut, 1993.

[71] David A. Veldhuizen. Multiobjective Evolution Algorithms: Classifica-

tions, Analyses, and New Innovations. PhD thesis, Force Institute Tech-

nology, Wright Patterson AFB, May 1999.

[72] Michael D. Vose. The simple genetic algorithm: foundations and theory.

MIT Press, Cambridge, MA, 1999.

[73] R. B. Wilson. A Simplicial Algorithm for Concave Programming. PhD

thesis, Harvard University, 1963.

162



[74] David H. Wolpert and William G. Macready. No free luch theorems

for optimization. IEEE Transactions on Evolutionary Computation,

1(1):67–82, 1997.

[75] Stephen J. Wright. Primal-Dual Interior-Point Methods. SIAM Publi-

cations, Philadelphia, Pa, 1997.

[76] Leung Yiu-Wing and Wang Yupinge. U-measure: a quality measure for

multiobjective programming. IEEE Transactions on Systems, Man and

Cybernetics, Part A, 33(3):337–343, May 2003.

[77] Paul K. Yoon, Ching-Lai Hwang, and Kwangsun Yoon. Multiple At-

tribute Decision Making: An Introduction (Quantitative Applications in

the Social Sciences). Sage Pubn. Inc, March 1995.

[78] E. Zitzler, D. Brockhoff, and L. Thiele. The Hypervolume Indicator

Revisited: On the Design of Pareto-compliant Indicators Via Weighted

Integration. In S. Obayashi et al., editors, Conference on Evolutionary

Multi-Criterion Optimization (EMO 2007), volume 4403 of LNCS, pages

862–876, Berlin, 2007. Springer.

[79] E. Zitzler, M. Laumanns, and L. Thiele. Spea 2: Improving the strength

pareto evolutionary algorithm. Technical Report Technical report 103,

2001.

[80] E. Zitzler and L. Thiele. An evolutionary algorithm for multiobjective

optimization: The strength pareto approach. Technical Report Techni-

cal report 43, 1999.

[81] Eckart Zitzler. Evolutionary Algorithms Multiobjective Optimization:

Methods and Applications. PhD thesis, Swiss Federal Institute of Tech-

nology (ETH), November 1999.

163



[82] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of mul-

tiobjective evolutionary algorithms: Empirical results. Evol. Comput.,

8(2):173–195, 2000.

[83] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and

Viviane Grunert da Fonseca. Performance assessment of multiobjective

optimizers: An analysis and review. IEEE Transactions on Evolutionary

Computation, 7(2):529–533, May 2003.

164


