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Summary

A novel process has been developed for reducing complexity in real-world, high-

dimensional, multi-objective optimisation problems. This approach relies on being

able to identify and exploit local harmony between objectives to reduce dimensionality.

To achieve this, a systematic and modular process has been designed to cluster the

Pareto-optimal front and apply a rule-based Principal Component Analysis including

preference articulation for potential objective reduction.

Proof-of-principle is demonstrated on a simplified, real-world, automotive diesel

engine calibration optimisation problem comprising three objectives. Some objective

reduction was achieved in one cluster, from which a selected solution performed better

when compared with the parent three-objective problem.

On a six-objective version of the diesel problem, the complexity reduction pro-

cess resulted in three and four objective sub-problems. In the former, a significant

improvement was achieved in one of the retained objectives at very little cost to the

others.

A further case study comprised a ten-objective gasoline engine cold start calibra-

tion optimisation problem, including sensitivity objectives related to a control system

actuator, which exhibited significant variation. For brevity, efficiency and to support

future software development, a mathematical notation was developed for the clustering

and objective reduction analysis. To address the computational demands, a parallel

computing cluster was utilised and a parallel island-based optimisation algorithm was

developed. The complexity reduction process consists of four stages and progressively

reduces objective dimensionality where evidence of local objective harmony exists. It

involves the calibration engineer at various stages to advise on objective priorities and

to discard clusters containing solutions of no interest. This process culminated in two

sub-problems, one of three and one of four conflicting objectives. A comparison of the

resulting Pareto-optimal front, selected preferred solution and an independently gener-

ated, manually tuned calibration was made for each of the two sub-problems. In both

cases, the preferred solution outperformed the independent calibration.

iii



Acknowledgements

I would like to thank my academic supervisor, Prof. Peter Fleming, for pro-

viding expert strategic direction and my industrial supervisor, Dr. Mark Cary, for

invaluable technical guidance and support. I am very grateful to Ford Motor Company

for funding this Ph.D. and for providing management support. This work would not

have been possible without the support of various colleagues at Ford, notably Dr. An-

drew Emtage, Martin England, Mark Skilling and Jeff Smith. My thanks also to Sham

Ahmed, Paul Kerr-Delworth, Matt McDonnell and Ian Noell at The MathWorks for

providing the Matlab r© software used in this research. I would also like to thank Isabel

Cary for all her proof-reading and the very generous and hospitable use of the study

as well as Ian and Stella Ross for the use of their front room to get this finished.

Lastly, but most importantly, I am forever indebted to my family for their

enduring love and in particular, to Jan, who has put up with me doing this over several

years and without whose support, this thesis would not have been possible.

iv



Statement of Originality

Unless otherwise stated in the text, the work described in this thesis was carried

out solely by the candidate. None of this work has already been accepted for any other

degree, nor is it being concurrently submitted in candidature for any degree.

Candidate:

Robert J. Lygoe

Supervisor:

Peter J. Fleming

v



This thesis is dedicated to Rachel, Amy and Eddie. It’s surprising what you can achieve

when you put your mind to it.

vi



Nomenclature

Acronyms

CAO Convergence Accelerator Operator

CFND Constrained Fast Non-Dominated

CIDI Compression Ignition Direct Injection

CO Carbon Monoxide

CO2 Carbon Dioxide

CPU Central Processing Unit

CR Cluster verification Rule

DM Decision Maker

EA Evolutionary Algorithm

EGR Exhaust Gas Recirculation

EMO Evolutionary Many-Objective Optimisation

FIE Fuel Injection Equipment

GDI Gasoline Direct Injection

HC Hydrocarbon

ICA Independent Component Analysis

MCDM Multi-Criteria Decision Making

MOODM Many-Objective Optimisation Decision-Making

MOEA Multi-Objective Evolutionary Algorithm

MOO Multi-Objective Optimisation

NOx Oxides of Nitrogen

NMEP Net Mean Effective Pressure
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OR Objective reduction Rule

Parts Particulates

PC Principal Component

PCA Principal Component Analysis

PFI Port Fuel Injection

pMOEA parallel Multi-Objective Evolutionary Algorithm

POP Pareto-Optimal Population

PPA Progressive Preference Articulation

PPAFF Progressive Preference Articulation method of

Fonseca and Fleming (1998a)

RBF Radial Basis Function

RMS Root Mean Square

ROI Region Of Interest

RPM Revolutions Per Minute

SFC Specific Fuel Consumption

SLH Stratified Latin Hypercube

SN Signal-to-Noise

SVD Singular Value Decomposition

Empirical Models and Inputs

cyc 612 RMS (612R) Combustion variation metric for cycles 6-12 (bar)

F model (F) Fuel quantity (unitless)

neg 25 INT (25I) Negative run-up combustion intensity for

cycles 2-5 (bar)
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neg 612 INT (612I) Negative run-up combustion intensity for

cycles 6-12 (bar)

Peak Flare Speed (PFS) Peak Flare Speed (rpm)

sf cyc 25 RMS dFP abs (s25R) Absolute value of sensitivity of combustion

variation metric for cycles 2-5 to fuel

pressure (bar/MPa)

sf cyc 612 RMS dFP abs (s612R) Absolute value of sensitivity of combustion

variation metric for cycles 6-12 to fuel

pressure (bar/MPa)

sf cyc 25 INT dFP abs (s25I) Absolute value of sensitivity of combustion

intensity metric for cycles 2-5 to fuel

pressure (bar/MPa)

sf cyc 612 INT dFP abs (s612I) Absolute value of sensitivity of combustion

intensity metric for cycles 6-12 to fuel

pressure (bar/MPa)

AIR Inducted air mass flow (kg/h)

DEC Exponential decay in injected fuel quantity (unitless)

EOI End Of Injection crankshaft angle timing (degrees BTDC)

F Injected fuel quantity (unitless)

FP Fuel Pressure (MPa)

SPK2 Crankshaft angle timing of ignition (degrees BTDC)

Symbols

β Threshold of engineering significance for Ωk

χ2
df Chi-squared distribution with df degrees of freedom

∆xinp Small perturbation to the inpth objective function input, x
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p∆− The set of objectives retained for further comparison with negative

eigenvector coefficients for the pth PC

p∆+ The set of objectives retained for further comparison with positive

eigenvector coefficients for the pth PC

γ Sub-sample size

λp Eigenvalue associated with pth PC

Ωk The largest absolute normalised difference in centres between the reference

and the kth sub-sampled cluster

Ωk(ψ) Denotes the explicit value of Ωk

Φk The maximum absolute difference in correlations for the kth sub-sample

Φk(ω) Denotes the explicit value of Φk

τ Convergence tolerance of clustering algorithm

θp The critical value for the magnitude of an eigenvector coefficient for

the pth PC

ϕ Maximum number of iterations of clustering algorithm

ξj Number of final clusters for jth clustering run

ζ Set of objective indices

∃ There exists

∀ For all

∈ Is a member of

∨ Logical OR

∧ Logical AND

A Eigenvectors of correlation matrix

pA− The set of eigenvector coefficients of negative sign, whose magnitude

exceeds θp

pA+ The set of eigenvector coefficients of positive sign, whose magnitude

exceeds θp
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Cc Correlation matrix of cluster, c

Cd Correlation matrix of data, d

Ck Matrix of unique elements of the correlation matrices for the

kth sub-sample

Cp Correlation matrix of population, p

ce Combustion Event

ci Initial number of Clusters

cf Final number of Clusters

kDi The Pareto-optimal solutions for the kth sub-sample and the ith cluster

df Degrees of Freedom

dw NMEP deviation for an individual combustion event

DN Instantaneous combustion deviations (bar)

E The set of objective indices excluded (or discarded) in future analyses

F Subset of E excluding misfire or other aberrant combustion data

ft Savitzky-Golay filter order

g Preference vector

H The set of observed combustion events

h Proportion of data retained by FAST-MCD

I The set of objective indices included (or retained) in future analyses

i Cluster

Priority

inp Objective function input

J Combustion intensity (bar)

k Sub-sample

lm Mahalanobis distance

lom Lower limit on engineering significance for the mth objective

lp pth eigenvalue
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Mk Matrix of cluster centres for the kth sub-sample

Mc Centres of cluster, c

Md Centres of data, d

m Objective

Nk Matrix of reciprocal cluster centres for the kth sub-sample

N The set of natural numbers

nc Number of Clusters

nm NMEP threshold parameter

nn Nearest Neighbours

nl Number of samples to the left of the xce data

nobj Number of objectives

np Number of Processors

npc Number of Principal Components

nr Number of samples to the right of the xce data

nv Number of Variables

p Principal Component

R The vector of objective priorities

R The set of real numbers

kRi The correlation matrix for the kth sub-sample and the ith cluster

Rb
a RMS of instantaneous NMEP values over cycles [a, b] (bar

r Priority

ri The priority of the ith objective

rpc Number of Retained Principal Components

S Sample covariance

s The first event for which normal combustion occurs

tc Threshold for Cumulative percentage of variation
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tp Threshold for Proportion of variation

u ≺
g

v vector u is preferable to vector v given a preference vector g

u ≡
g

v vector u is equivalent to vector v given a preference vector g

u
^

The components of objective vector u which meet their corresponding goals

u
_

The components of objective vector u which violate their corresponding goals

upm Upper limit on engineering significance for the mth objective

V nobj
k A clustering analysis for nobj objectives and the kth sub-sample

vp Eigenvector associated with pth PC

vp′ Rotated eigenvector associated with pth PC

W The set of NMEP values for all combustion events from first fire onwards

xc Cluster centre

xce NMEP for the ceth combustion event (bar)

xf Individual NMEP member of the set F (bar)

kxγm Pareto-optimal solutions for the kth cluster, γ sub-sample size and

mth objective

xi Cluster data

xw Individual NMEP member of the set W (bar)

yce Savitzky-Golay filtered xce (bar)

z Vector of Principal Components
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Chapter 1

Introduction

1.1 Motivation

During the process of carrying out automotive engine calibration, it is common to

come across trade-off problems, that is, optimisation problems comprising two or more

competing objectives. In the automotive market there is ever-increasing customer de-

mand for more fuel efficient, higher performance, increased refinement and reliability

at low cost. These requirements combined with evermore stringent exhaust emissions

legislation and fierce competition amongst automotive manufacturers has led to more

complex engine technologies. This has, in turn, driven the development of correspond-

ingly complex control systems, with more actuator variables and more engine responses

or objectives to be optimised and traded-off.

Historically, optimisations were formulated as single objective problems, which

were solved using methods available at the time, e.g. gradient-based or direct search

algorithms. These approaches have a number of weaknesses including a tendency to

get stuck in local optima, the fact that they are often designed to be problem-specific

and they require multiple runs to generate a family of solutions as required for a multi-

objective optimisation by definition (Deb, 2001). By contrast, Evolutionary Algorithms

(EAs) evolve a population of solutions to search for the optimal trade-off or Pareto-

optimal front. Such methods are able to produce a diverse set of solutions in one run

of the optimiser and are well suited to multi-objective problems.

EAs have been mostly applied to two- or three-objective optimisations, the re-

sults of which are straightforward to visualise in low dimensions. However, real-world



2 1.2 Research Objectives

and in particular, modern, complex engine calibration optimisation problems can in-

volve significantly more than two or three objectives, termed many-objective optimisa-

tions. For such high-dimensional problems, multi-objective EAs have issues with lack

of effective search, potentially large population size required (may be computationally

expensive) and visualisation of the solutions, which may be sparse (Fleming et al.,

2005).

Research to address these issues has primarily concentrated on algorithmic de-

velopments to improve the search effectiveness. For example, repeated single-objective

EA optimisations have been shown to be effective in approximating the Pareto front

(Hughes, 2005). Nevertheless, even if a Pareto-optimal population has been generated,

the subsequent decision-making process to select a preferred solution has received little

attention, particularly in the case of many-objective problems.

This thesis addresses this research gap by proposing a practical Many-Objective

Optimisation Decision-Making (MOODM) process. This is applied to real-world prob-

lems comprising automotive engine calibration optimisations. A relatively low problem

(objective) dimension is considered initially to demonstrate the principle and its ef-

fectiveness. Subsequently, the proposed process is applied to two further problems

involving six and ten objectives. In the latter case study, several enhancements are in-

troduced to improve efficiency, generate optimal and robust solutions and provide more

flexibility in the objective reduction process. With all the problems, final, preferred,

optimal solutions are selected and compared.

1.2 Research Objectives

The aims of this research are as follows:

• Apply multi-objective evolutionary algorithms to many-objective real-world prob-

lems, few examples of which have been published.

• Develop and apply multi-objective decision-making processes to evolutionary op-

timisation problems to ultimately select a single preferred solution.

• Develop and apply an intuitive results presentation to assist the decision-maker

in many-objective problems.
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1.3 Outline of the Thesis

Chapter 2 provides a review of the literature relevant to this thesis. After an introduc-

tion to many-objective optimisation, current issues are described and remedial measures

discussed. Subsequently, a practical MOODM process is proposed and used to com-

pare current remedial measures and suggest promising approaches. An introduction to

some current automotive powertrain technologies follows, together with a description

of engine calibration and model-based approaches.

Chapter 3 describes how local harmony is identified and exploited for potential

objective reduction. It introduces the main elements of clustering to partition the

Pareto-optimal front and a Principal Component Analysis (PCA) based approach to

determine objective dependencies.

Chapter 4 details the proposed MOODM process comprising optimisation, clus-

tering and objective reduction elements. An explanation is provided of how the widely-

used multi-objective evolutionary algorithm, NSGAII (Deb, Pratap, Agarwal and Me-

yarivan, 2002) was modified to incorporate the Progressive Preference Articulation

method of Fonseca and Fleming (1998a). Subsequently, the proposed dimension reduc-

tion process is demonstrated on a simplified, real-world engine calibration optimisation

problem.

The first of two calibration optimisation case studies is provided in Chapter 5.

This comprises a six-objective optimisation of a diesel engine calibration. The proposed

objective reduction process is applied in detail including preference articulation to direct

the search and allow the most important objectives to be retained. Several further

studies are conducted to explore: applying objective reduction to the whole population

rather than locally, varying the threshold for retaining Principal Components (PCs)

and applying progressive preference articulation.

Chapter 6 details the second calibration optimisation case study. This comprises

a ten-objective gasoline engine cold start transient calibration optimisation to which

the proposed MOODM process is applied. Four significant process enhancements are

introduced:

• Parallel computing to address the computational demands of a large population

and batch processing of clustering runs.

• A mathematical notation for the clustering verification and objective reduction
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rules for clarity, brevity and efficiency.

• Sensitivity objectives to allow simultaneous search for optimal and robust solu-

tions.

• Variation of the threshold for retaining PCs to provide flexibility in reducing

objectives.

These improvements are implemented and applied in a multi-stage optimisation in

conjunction with an experienced calibration engineer to progress towards smaller sub-

problems from which preferred solutions are selected and compared.

Conclusions based on the thesis chapter structure are described in Chapter 7

together with suggestions for future research.

1.4 Contributions

The main contributions of this thesis are:

1. A novel, systematic and modular dimension reduction process. This

comprises search, clustering and PCA-based objective reduction elements. These

elements are specified in this thesis, but the process has been designed so that any

one of them can be replaced with a suitable alternative method. This process,

combined with visualisation approaches, assisted the decision-maker in selecting

solutions, which outperformed those resulting from a hand-tuning process.

2. Novel exploitation of local objective harmony for dimension reduction.

Partitioning of the Pareto-optimal front into clusters in which a PCA-based anal-

ysis is used to identify and, if possible, exploit objective harmony to reduce ob-

jective dimension.

(a) Definition of clustering verification rules. These have been designed

to verify the correct number and location of clusters in the Pareto-optimal

front. They include a sub-sampling approach to identify the smallest, most

computationally efficient population suitable for clustering.

(b) Definition of objective reduction rules. These have been developed

to objectively and systematically identify and retain the most influential

objectives within each retained Principal Component.
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(c) A new mathematical notation for the clustering and objective re-

duction rules. These have been introduced for clarity, brevity and ef-

ficiency in a multi-stage optimisation, which arises from high-dimensional

problems. In addition, such notation lends itself to future software develop-

ment to minimise human error and enable process automation.

3. Inclusion of sensitivity objectives in the optimisation. The definition and

inclusion of such objectives allow simultaneous and efficient search for solutions

providing optimal trade-offs between maximising performance and minimising

sensitivity to background noise.

Further minor contributions that resulted from the research work in this thesis are:

i. Objective priority use in objective reduction. Objective priorities provided

by the calibration engineer were used to discriminate between equivalent objectives

selected using the PCA-based objective reduction rules, so that the highest priority,

most influential objectives were retained.

ii. Flexibility in reducing the number of objectives. Varying the threshold used

for selecting Principal Components may affect the number of objectives retained

using the objective reduction rules. This can provide flexibility in the dimension

reduction process.

iii. Inclusion of Pertinency in an MOEA. NSGAII has been modified to in-

corporate the progressive preference articulation method of Fonseca and Fleming

(1998a). This allows the decision maker to zoom in to the region of interest by

intuitively specifying objective priorities and goals.

iv. New parallel MOEA. A new island-based parallel version of the modified NS-

GAII has been developed for efficient evaluation of large populations, which is one

approach to overcome the search effectiveness issues of the serial NSGAII.

v. Parallel computing applied to clustering. The clustering process is randomly

initialised and thus needs to be run several times from different values for the initial

number of clusters. This can be computationally demanding for large populations



6 1.4 Contributions

used in this thesis for high-dimensional problems. A batch processing approach

exploiting a distributed computing network is essential to make this task practical

for high-dimensional problems, such as the ten-objective cold start optimisation.

vi. Use of a cluster boundary constraint. The resulting centres and covari-

ance data resulting from the clustering process have been used to define a hyper-

ellipsoidal constraint on a cluster in an optimisation in an attempt to preserve

objective correlations within the cluster. This is necessary, as it is important to

verify that in subsequent optimisations, any discarded objectives do not deterio-

rate.

vii. Definition of dynamic measures of combustion quality. These comprised

smoothed, dynamic measures of combustion intensity and variation. Respectively,

these are equivalent to maximising the energy available to accelerate the engine

during the ‘run-up’ and minimising the combustion variation to give a smooth

engine response.



Chapter 2

Literature Review including Case

Study Background

The purpose of this chapter is to review the relevant technical literature to establish

the ‘state-of-the-art’ and in particular, to identify any existing weaknesses. This will

provide a reference framework against which the value of the author’s research can be

assessed.

After a brief introduction to engineering optimisation approaches in Section 2.1,

there follows in Section 2.2, a discussion of current issues in high-dimensional or many-

objective optimisation succeeded by sections on corresponding remedial measures. A

practical many-objective optimisation decision-making process (from hereon defined as

a practical MOODM process) is then proposed in Section 2.8, against which the current

countermeasures are reviewed and from which promising approaches suggested. The

chapter concludes with an overview in Section 2.9 of some of the current automotive

powertrain technologies, how they lead to multi-objective optimisation problems and

how these may be solved efficiently utilising a model-based approach.

2.1 Introduction to Many-Objective Optimisation

Historically, engineering optimisation problems were formulated as single objective

problems and relied on the use of gradient-based or direct search methods (Deb, 1995),

extensive reviews of which can be found in Rao (1996); Ravindran et al. (2006). Such

methods have a number of weaknesses including:
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• The choice of starting position may have a strong influence on convergence to

an optimal solution; i.e. a poor choice may result in the optimiser getting stuck

at local optima, which often exist in engineering problems (Deb, 1999). This

issue can be addressed by starting the optimiser from a number of different initial

positions, but this is inefficient and provides no guarantee of that the global

optima will be found.

• They are often designed to be problem specific.

• They cannot always realise the efficiencies offered by parallel computation.

• They are not efficient on problems with discrete variables.

Real-world engineering problems often involve the simultaneous solution of sev-

eral competing objectives subject to constraints (e.g. Fleming et al. (2005)). For

problems with multiple conflicting objectives, there is no one single optimal solution.

Instead, there is a family of solutions, where each solution represents a compromise,

or trade-off, between the competing objectives, and which cannot be improved upon

with respect to all objectives. To distinguish these solutions from inferior ones, many

multi-objective optimisation algorithms make use of the principle of Pareto-dominance.

One definition (Deb, 2001) is that given two solutions x1 and x2, x1 dominates x2 if

x1 is no worse than x2 in all nobj objectives and strictly better than x2 in at least one

objective:

Definition 2.1 (Pareto-dominance) A solution x1 dominates another solution x2,

(denoted by x1 ≺ x2) if and only if,

∀i ∈ {1, · · · , nobj}, x1
i ≤ x2

i ∧ ∃i ∈ {1, · · · , nobj} : x1
i < x2

i .

Furthermore, if there is no feasible solution x2 which dominates x1, then x1 is

a Pareto-optimal or non-dominated solution. This is illustrated graphically in Figure

2.1. The objective vectors corresponding to the set of all Pareto-optimal solutions is

known as the Pareto-optimal front or trade-off surface.

Three requirements of solutions from a multi-objective optimisation (MOO)

algorithm are (Purshouse, 2003; Fleming et al., 2005):

Proximity to the true Pareto-optimal front.
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Figure 2.1: Illustration of Pareto-dominance assuming minimisation: solution x1 dom-
inates x2, x1 dominates x3 and x3 dominates x2.

Diversity between solutions on the Pareto-optimal front, i.e. sufficient distribution to

reveal the underlying shape of the Pareto-optimal front and allow further search.

Pertinency of the Pareto-optimal solutions, i.e. they only lie in the decision-maker’s

(DM’s) region of interest (ROI).

‘Classical’ search and optimisation methods have been used over at least the

last four decades (Deb, 2001) to solve multi-objective optimisation problems. By ‘clas-

sical’, it is assumed that the method is deterministic and generates a single solution

per iteration. This approach was dictated by the methods that were available at the

time. A multi-objective problem was converted into a single objective problem using

some sort of scalarising or aggregating function, based on the relative importance or

preference of objectives. Examples include the weighted sum approach, as used in linear

quadratic regulator design (Athans and Falb, 1966), and the goal attainment method

(Gembicki, 1974). An extensive review of approaches is provided in Miettinen (1999).

These methods require multiple runs of the optimiser to generate sufficient solutions

to adequately represent the Pareto-optimal front. Furthermore, there is no guarantee

with such approaches that multiple runs with various aggregations of objectives will

produce the desired diversity in the Pareto-optimal front.
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An alternative approach is the class of algorithms known as Evolutionary Al-

gorithms (EAs). These originated in the 1970s (Rechenberg, 1973; Holland, 1975) and

are based on the principles of biological evolution, i.e. ‘survival of the fittest’. They

comprise a population of solutions, which is evolved or improved over a user-specified

number of generations to produce the Pareto-optimal front in one run of the optimiser.

Furthermore, the population approach can be used to emphasise all solutions equally

and thus produce a diverse set of solutions. In addition, various preference articulation

methods have been developed and applied to allow the DM to focus the population on

the ROI. Multi-Objective Evolutionary Algorithms (MOEAs) are thus well suited to

meet the aforementioned requirements of a MOO algorithm.

While there has been much research in the field of evolutionary multi-objective

optimisation (Deb, 2001; Coello et al., 2007), many of the applications have focussed

on a relatively small number of objectives, i.e. often two or three. One obvious reason

for this is the ease with which the resulting populations can be visualised using simple

scatter plots to assist in selecting a preferred solution. However, real-world optimisa-

tion problems can comprise significantly more than two or three objectives and it was

Farina and Amato (2002) who first introduced the term many-objective optimisation

to describe such scenarios. (From hereon EMO will be used as the abbreviation for

Evolutionary Many-objective Optimisation).

2.2 Issues in Many-Objective Optimisation

When trying to simultaneously optimise many objectives a number of difficulties arise:

• The ability of the optimiser to search towards the Pareto-optimal front can be

compromised. This occurs when a large proportion of the population is non-

dominated and there is insufficient selective pressure to progress the search (Khare

et al., 2003; Purshouse and Fleming, 2003b).

• The number of solutions, i.e. population size, required to approximate the Pareto-

optimal front rises exponentially with the number of objectives, and thus can

become prohibitive in terms of computational expense, as can be seen in Figure

2.2.

• Visualisation of solutions in many dimensions can be difficult. In addition, the
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sparseness of such solutions in many dimensions due to the curse of dimension-

ality (Bellman, 1961) can make interpretation of the resulting hyper-surface a

significant challenge.

Potential counter-measures are discussed in the following subsections. It should be

noted that this review is not meant to be exhaustive. Rather, it summarises some recent

and relevant methods and assesses their strengths and weaknesses. Other surveys of

remedial approaches can be found in Ishibuchi et al. (2008); Zou et al. (2008).

Figure 2.2: The proportion of non-dominated solutions versus the number of objectives
for different population sizes, derived from data in Deb et al. (2003).

2.3 Search Efficiency

In this section an overview is provided of approaches to improve search efficiency in

many-objective problems. These are categorised into: (i) methods for increasing selec-

tive pressure, (ii) alternative fitness functions, (iii) a convergence acceleration approach

and finally (iv) parallel techniques.

In EMO problems, the lack of effective search, and hence convergence to

the Pareto-optimal front, has been attributed to those algorithms based on Pareto-
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dominance selection (Kukkonen and Lampinen, 2007), e.g. NSGAII (Deb, Pratap,

Agarwal and Meyarivan, 2002) and SPEA2 (Zitzler et al., 2001).

2.3.1 Methods for increasing selective pressure

Modification of Pareto-dominance.

The purpose of this approach is to reduce the number of non-dominated solutions in the

population. In the approach of Sato et al. (2007), the dominance relation was changed

to allow the user to contract or expand the dominance area. This was achieved with

a user-specified scaling of the fitness value for each objective to weaken or strengthen

selection. Another implementation was that of α-dominance (Ikeda et al., 2001) where

a solution x dominates another y such that x can be slightly inferior (by an amount

controlled by α) to y in one objective and superior to y in other objectives.

Both of approaches are examples of the application of weak dominance, which

may increase the selective pressure and hence progress of the search towards the Pareto-

optimal front. However, both researchers have observed that the diversity of the re-

sulting population is reduced. In addition, both methods require the user to specify

parameters to control the strictness of the dominance relation.

In Zou et al. (2004, 2008) L-dominance is defined. This is an extended form of

Pareto-dominance taking account of the number and value of improved objectives. For

most of the DTLZ problems (Deb, Thiele, Laumanns and Zitzler, 2002) tested with

up to 9 objectives, it outperforms the state-of-the-art algorithms, IBEA (Zitzler and

Künzli, 2004), MSOPS (Hughes, 2003), MSOPSII (Hughes, 2007) and NSGAII in terms

of convergence to and diversity in, the Pareto-optimal front. However, it does rely on

the additional task of normalising all objectives within the feasible set of solutions, i.e.

the maximum and minimum of each objective must be found.

Assignment of different ranks.

One approach is that of Drechsler et al. (2001), which makes use of a relation favour to

compare solutions. A solution x is favoured to another y if the number of objectives in

which x is better than y is greater than the number of objectives for which y is better

than x. A more sophisticated version of the relation favour, called ε-Preferred, was

developed by Sülflow et al. (2007) to incorporate a user-specified difference in objective
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values, ε, between compared solutions and so address a variability issue. This approach

is not dissimilar to α-dominance Ikeda et al. (2001).

Alternatively, Köppen and Yoshida (2007) consider different distance assign-

ment functions to the existing crowding distance operator in NSGAII (Deb, Pratap,

Agarwal and Meyarivan, 2002) to avoid the algorithm getting stuck in the first few

generations. The main conclusion from this study is that the incorporation of sub-

stitute distance assignment functions in many-objective problems much improves the

convergence to the Pareto-optimal front. However, this improvement is achieved at the

expense of diversity in the population (since these functions are not explicitly designed

to maintain diversity) and in some cases, higher computational expense.

Corne and Knowles (2007) compare different ranking methods and conclude

that an average ranking method, such as Weighted Average Ranking (Bentley and

Wakefield, 1997), outperformed other algorithms, except for problems comprising many

objectives and where significant objective conflict exists. In addition, the performance

of the methods tested is compared based on the cover metric (Zitzler et al., 2003)

only, which does not indicate convergence or diversity performance of the resulting

population.

Ranking solutions and then aggregating them, described as ranking-dominance,

is used to replace non-dominated sorting based on Pareto-dominance in Kukkonen and

Lampinen (2007). Two aggregation functions are tested, the sum and the minimum

of ranks, on the DTLZ problems on up to fifty objectives. For four of the six prob-

lems, ranking-dominance showed much improved convergence to the Pareto-optimal

front. However, for the remaining two problems, ranking-dominance performed worse

than Pareto-dominance. This was due to the fact that ranking-dominance generated

solutions in which some objectives were deteriorated while others were improved.

Another observation was that in some cases, while convergence was much im-

proved, diversity was significantly compromised, e.g. on a 10-objective DTLZ2 problem

all two hundred individuals converged to just three unique solutions. To address this

diversity issue, diversity maintenance based on a distance to the two nearest neighbours

(Kukkonen and Deb, 2006) was gradually introduced across generations according to

a power law. Results on the 10-objective DTLZ2 problem show that both good diver-

sity and convergence have been simultaneously achieved with this approach. However,

according to Kukkonen and Lampinen (2007), the author has limited this diversity
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maintenance approach to one based on a power law, for one value of power and ap-

plied it to one test problem only. As a result, it is unclear how this method compares

with alternative diversity maintenance techniques and how it performs on other test

problems.

2.3.2 Different Fitness Functions.

As an alternative to Pareto-dominance, various fitness evaluation functions have been

developed and applied. Indicator-based algorithms are one such approach, in which

a single-objective indicator of a desired property of the population is optimised, e.g.

the Indicator-Based Evolutionary Algorithm (IBEA) of Zitzler and Künzli (2004). A

popular indicator is hypervolume, which measures the volume of objective space dom-

inated by a population (Zitzler and Thiele, 1999). On selected many-objective DTLZ

problems hypervolume used in an IBEA is shown to perform well (Wagner et al., 2007).

However, it has the drawback of being computationally expensive and there

have been various efforts to address this. Two examples are the iterative approach

of Ishibuchi et al. (2007) and the fast hypervolume algorithm (HypE) of Bader and

Zitzler (2008). The former only generates one solution per run and so multiple runs are

required to generate a Pareto-optimal set of solutions. The latter proposes a fast search

algorithm using Monte Carlo approximation of the hypervolume. When evaluated for a

constant period of time, HypE outperforms popular MOEAs such as NSGAII in terms

of hypervolume, albeit that each generation takes longer and hence it processes half

the number of generations. The approximation of the Pareto-optimal front depends on

the sampling of the Monte Carlo approach. More samples results in a more accurate

approximation, but require a longer execution time.

Another fitness evaluation mechanism is that of scalarising or aggregation func-

tions, which combine multiple objectives into a single objective, often with some form

of weighting function. One such approach is Multiple Single Objective Pareto Sampling

(MSOPS) due to Hughes (2003). It comprises multiple single objective searches run

in parallel, each with a different aggregation of objectives using weight vectors. While

this algorithm does not rely on Pareto-dominance to rank solutions and provide selec-

tive pressure, it does require specification of weight vectors a priori. This drawback

is addressed by the MSOPS-II algorithm (Hughes, 2007), by incorporating automatic

generation of weight vectors; although a priori -specified weight vectors gave superior
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performance on some of the published test problems.

In Ishibuchi, Doi and Nojima (2006); Ishibuchi and Nojima (2007), a different

scalarising function is used for each solution. Although this approach showed superior

results to NSGAII (with Pareto-dominance) on the ‘knapsack’ problems tested, it also

relies on the a priori -specification of weight vectors and probabilistic weighting between

using the Pareto-dominance of NSGAII and a weighted sum formulation.

Two somewhat different alternative and relevant approaches are reviewed below.

The former accelerates convergence to the Pareto-optimal front and could be used to

address this issue in EMO. The latter, parallel MOEAs, is a whole field in itself and

although related, has not been considered in any detail in the recent literature on

improving EMO scalability.

2.3.3 The Convergence Acceleration Operator (CAO).

The approach taken by Adra et al. (2009) involves hybridising conventional MOEAs,

NSGAII and SPEA2 with a convergence improvement process, where diversity main-

tenance is left to the existing mechanism in the host MOEA. At each generation the

CAO comprises the following steps:

1. Using the existing population, generate a computationally cheap Radial Basis

Function (RBF) network in objective space to predict the corresponding decision

vectors. The parameter settings for the RBF and adaptive interpolation step h

are generated from trial-and-error experiments. The parameter h is chosen to

maximise local improvement in the Pareto-optimal front subject to remaining

within the valid domain of the RBF. An adaptive process is proposed for setting

h based on the proportion of solutions introduced by the CAO which propagate

to the next generation.

2. A local improvement step via interpolation by a distance h of MOEA-generated

solutions in objective space to improve the Pareto-optimal front.

3. A correction step, which firstly checks for any invalid decision vectors and changes

them to valid nearest neighbours in decision space, and secondly, using the original

objective functions, determines the corrected objective vectors from the predicted

decision vectors in step 2. The use of this correction step was found to be critical
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to the superior performance of the CAO-based NSGAII hybrid compared to the

standard NSGAII. Together with the fact that a new RBF is created at every

generation, this correction step goes some way towards addressing difficulties

with mapping from objective to decision space.

4. Finally, the new objective vectors from step 3 then compete with those in the

MOEA archive to generate a new, fittest population.

Improved convergence compared to NSGAII and SPEA2 was observed on ZDT (Zitzler

et al., 2000), DTLZ and real-world problems. Although the inclusion of the CAO

into MOEAs increases the computational expense per generation, fewer generations

are needed to achieve similar performance. The CAO-based NSGAII hybrid generated

superior results to NSGAII for a similar computational effort.

2.3.4 Parallel MOEAs.

Historically, parallel or distributed computing has been an important initiative in solv-

ing time-consuming real-world optimisation problems. As previously mentioned, the

proportion of non-dominated solutions in the Pareto-optimal front becomes large as the

number of objectives is increased, as shown in Figure 2.2, and the selection pressure cor-

respondingly reduces. In addition, in order to generate a diverse Pareto-optimal front a

large population is required, which can be computationally expensive with serial Multi-

Objective Evolutionary Algorithms (MOEAs), but may be much less time-consuming

with parallel MOEAs (pMOEAs).

pMOEA paradigms.

Implementations of pMOEAs can be classified into three different approaches as listed

below with a much fuller description and many applications in Coello et al. (2007):

• Master-slave model. In this paradigm objective functions are evaluated on

several slave processors, while, at each generation, the master processor carries out

genetic operations and other functions such as: collecting and distributing sub-

populations, determining the non-dominated front and archiving. Computational

acceleration is only realised if the objective functions are expensive to evaluate, in

which case computation time is much greater than communication time between

the master and the slaves.
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One recent example of this approach is that of Shenfield et al. (2007), where

expensive objective functions were farmed out to slave processors connected in a

computational grid. Remote interaction with the master processor allowed the

optimisation to be steered towards a ROI. For the research undertaken in this

Ph.D. programme, response surface models, with execution times in milliseconds,

represent the objective functions. Consequently, the master-slave model is not

considered applicable.

• Island model. This is analogous to a chain of islands, each with its own popu-

lation, where limited migration occurs between islands. The pMOEA population

is divided into a number of independent sub-populations or demes, each of which

runs on a separate processor with an independent MOEA. Periodically, a small

number of best non-dominated individuals are migrated to neighbouring islands

(processors).

A suitable migration policy involves defining the number of migrants, the migra-

tion frequency, and the migrant selection and re-insertion method. This paradigm

is well suited to distributed computing using a cluster of processors, as exists for

this research, because there is limited communication between the host pMOEA

and the island or worker MOEAs.

• Diffusion model. This approach is similar to the master-slave paradigm, except

that each processor operates on only one or a few individuals in a small local

neighbourhood. The aim is that good solutions emerge from each neighbourhood

and slowly diffuse throughout the population. This requires a massively parallel

computer, which was not readily available for this research.

In conclusion, due to the computing resources available, i.e. a compute cluster,

and the execution speed of the objective functions used, i.e. very fast, the only suitable

approach that could be applied to this research is an island-based pMOEA.

pMOEA implementation aspects.

Given this assumption, there are various implementation aspects to be considered:

• Niching. The concept of allocating individual sub-populations to concentrate on

optimising a particular portion of the Pareto-optimal front is appealing as this
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may be more efficient in generating a diverse population. There have been several

implementations of this idea including:

– At regular intervals the Divided Range Multi-Objective Genetic Algorithm

(DRMOGA) (Hiroyasu et al., 2000) gathers sub-populations, sorts according

to a temporarily specified objective (this changes for each sort), and then

redistributes onto the island processors. The drawbacks of this process are

that the choice of objective on which to sort is arbitrary, the sorting is

temporary and the communication overhead is significant (Branke et al.,

2004).

– In Deb et al. (2003) the Guided Domination approach (Branke et al., 2001)

is used to guide the optimisation to different parts of the Pareto-optimal

front. Although this was shown to be effective on the problems tested, the

published approach is only applicable to convex Pareto-optimal fronts and

furthermore, a priori knowledge of the Pareto-optimal front is required to

specify the search directions.

– In Branke et al. (2004) the search space is divided into a number of regions

each assigned to a different processor. This sub-division is achieved by ap-

plying a cone constraint whose vertex is at the nadir point (worst point in all

objectives) resulting in an equal partition per processor. Unless the Pareto-

optimal front is known a priori this approach requires the nadir point to

be determined. While the efficacy of the method was demonstrated on 2-

objective test problems, when tested on a 3-objective problem there was a

lack of diversity in the resulting population as evidenced by a concentration

of solutions at the borders between regions.

– Another ‘divide and conquer’ approach is that of Streichert et al. (2005)

where k -Means clustering is applied to sub-divide the population among

np processors. At some migration rate, the sub-populations are collected,

clustered and re-distributed. This algorithm was tested on a number of

problems, albeit all 2-objective, and showed that the standard island ap-

proach with migration (at a rate of 5 individuals every 2 generations) gave

equivalent performance. As with DRMOGA, there will also be a communi-

cation expense to this partitioning process, which may be significant at such
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a migration frequency.

• Migration and Replacement. Many migration and replacement schemes exist

and these are categorised and described in detail in Coello et al. (2007). Two

migration aspects of interest are the number of immigrants and the processor

destination for immigrants. If too many individuals are migrated there is a risk

that identical sub-populations will be generated. Conversely, if too few individ-

uals are migrated then the search of objective space may not be effective. With

regard to the destination processor, if no migration takes place then ‘gene mixing’

cannot take place and there is the risk that the local MOEA may converge pre-

maturely. Conversely, a one-to-all processor broadcast of immigrants could cause

an excessive communication overhead.

Multiple replacement schemes also exist. The simplest approach and that with the

lowest selective pressure is the random method where individuals are randomly

replaced with immigrants. Conversely, elitist 100% ranking provides the greatest

selective pressure. Here immigrants are added to the current population, the

resulting population ranked into non-dominated fronts and then individuals are

deleted from the worst fronts. The drawback with elitist 100% ranking is the

computational cost of ranking the population into fronts.

• Archiving. Maintaining an external database of best individuals, which is peri-

odically combined with the local (island) population has the potential to improve

pMOEA search efficiency. A suitable balance should be found between regular

archive update, the number of archives, the method by which they are maintained

and the communication overhead. One straightforward implementation is to al-

low local archiving and at the end of the pMOEA search, all the local archives

are combined to determine the final Pareto-optimal front.

2.4 Visualisation

Much research on evolutionary multi-objective optimisation has concentrated on two-

objective problems Deb (2001); Coello et al. (2007). Using a Cartesian scatter plot,

it is straightforward to visualise the optimisation results and select a preferred non-

dominated solution. However, when there are more than two objectives, as is often the
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case in engineering problems, the task of presenting sufficient, but not excessive, visual

information to the DM (Decision Maker) for decision-making purposes to be made,

is more challenging. Two commonly-used approaches are reviewed below with more

extensive surveys in Miettinen (1999); Deb (2001). This is followed by a brief review

of some recent methods.

2.4.1 The Scatter-Plot

The scatter-plot as described in Cleveland (1993) is in fact a matrix of pairwise ob-

jective plots. A real-world (automotive) example of a Pareto-optimal front is shown

in Figure 2.3. Despite widespread usage of such plots, particularly for the results of

two-objective problems, they can become increasingly difficult to interpret for higher

numbers of objectives. In other words, visually representing three or more dimensions

with a two dimensional diagram may not be very informative to the DM. While pro-

jecting onto lower dimensional spaces may seem appealing, it carries with it the risks of

losing information and in particular, hidden extrapolation, with regard to valid model

domains. Nevertheless, a scatter plot matrix combined with brushing (highlighting one

or more objective vectors) (Wegman and Luo, 1997), as implemented in Matlab r© v7.7

(R2008b), can be useful for simultaneous highlighting of solutions of interest in multiple

Figure 2.3: Scatter plot matrix of a Pareto-optimal front from a real-world (automotive)
problem
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dimensions.

2.4.2 The Parallel Coordinates Plot

The parallel coordinate representation as originated by Inselberg (1985), and in the

case of a multi-objective evolutionary optimisation, involves plotting the normalised

objective components of the resulting individuals onto parallel axes, one per normalised

objective. The objective components for each individual are joined by a line. The

degree to which the lines cross indicates how strong the trade-off is between adjacent

objectives, i.e. the more/less the lines cross, the more/less the adjacent objectives

conflict. An example plot is shown in Figure 2.4 using the same data as in Figure 2.3.

However, care should be taken in interpreting such plots, as changing the axis scaling

can dramatically affect the appearance of any pairwise objective correlation. Clearly,

the ordering of the objective axes is important to reveal the presence and degree of

any conflict. The ability to easily re-order or re-scale axes can substantially change

the view of the resulting objective space and offer new insights into the data structure

(Müller et al., 2008).

Although this method has not enjoyed the same substantial experience and

intuition that has been gained with Cartesian plots (Wegman, 1990), parallel coordi-

Figure 2.4: Parallel coordinates plot of a Pareto-optimal front from a real-world (au-
tomotive) problem (same data as in Figure 2.3)



22 2.4 Visualisation

nates plots do allow a multi-dimensional objective space to be represented in a two-

dimensional diagram. Wegman and Luo (1997) describe further development of the

use of parallel coordinates with the introduction of the Grand Tour (Asimov, 1985)

methodology, which animates two-dimensional projections of high-dimensional data to

reveal the underlying data structure.

Example applications of the use of parallel coordinates are the interactive multi-

objective optimisations shown in Fonseca and Fleming (1998b) and Fleming et al.

(2005). Here goals are overlaid on the parallel coordinates plots to assist the DM to

progressively articulate preferences, so as to reduce the region of interest and ultimately

identify an acceptable solution.

Schroder (1998) developed a method of quantifying the extent of trade-off or

conflict between objectives, which originated with parallel coordinates plots. Each

objective was partitioned into regions, in each of which a measure of conflict was cal-

culated based on the weighted sum of the separation of pairs of objectives, where a

larger separation is indicative of greater conflict. The measure of conflict is normalised

by population density. One shortcoming of this approach and one that in fact applies

to all pairwise comparison approaches, is that there may be conflict between three or

more objectives for a particular solution.

2.4.3 Recent Visualisation Approaches

In Blasco et al. (2008), Pareto-optimal solutions are classified according to their nor-

malised proximity to an ideal (or utopian) point. A weakness of this approach is that

the minimum and maximum of each objective function needs to be determined, which

may not be known a priori and knowledge of which may change in EMO problems as

the search progresses. Nevertheless, a useful feature presented is that of colouring the

Pareto-optimal solutions according to their objective preference.

Yoshikawa et al. (2007) makes use of Fuzzy C-Means clustering to partition

the Pareto-optimal front. Subsequently, for each cluster, Fuzzy Multiple Discrimi-

nant Analysis is used to identify projection axes (or eigenvectors), in a similar way

to principal component analysis. The sign and magnitude of the resulting eigenvector

coefficients is used to reduce objectives, although the process for doing this is unclear

and does not seem to be part of a progressive objective reduction process. A weakness

of the clustering method used is that the initial number of clusters must be specified.
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A Hyper-Space Diagonal Counting method is applied in Agrawal et al. (2004).

This approach relies on dividing each objective range into bins and counting the so-

lutions falling into each bin. For more than two objective problems, the objectives

are grouped so that the results can easily visualised in two or three dimension scatter

plots. Both the optimal division of each objective into bins and the most appropriate

grouping of objectives are unresolved issues with this method as pointed out by the

authors. Furthermore, when the objectives are grouped, it is not clear how to separate

solutions which fall into the same bin, but have significantly different objective values.

2.5 Pertinency

Preferences can be used to confine the optimiser to certain regions of interest of the

trade-off surface. Various approaches used in Multi-Criteria Decision Making (MCDM)

include the specification of constraints on decision variables and/or criteria (objectives),

relative importance of criteria and comparison of solutions, as well as aspirations or

goals for the criteria. Four categories of decision making processes appear in the liter-

ature (Hwang and Masud, 1979) (see surveys in Coello (2000); Andersson (2000); Mi-

ettinen (2001, 2002); Fleming et al. (2005); Rachmawati and Srinivasan (2006); Adra

et al. (2007)). One category, that of no preference articulation, comprise methods which

do not make use of any preference information, but merely generate optimal solutions

(Yu, 1973; Zeleny, 1973; Miettinen and Mäkelä, 1995). Since a decision making stage

is considered essential in real-world EMO problems, such methods will not be explored

further. The remaining three categories are described below:

2.5.1 A priori Preference Articulation

This is when the DM specifies preferences prior to the optimisation. A common ap-

proach is to specify an aggregating function, which converts individual objectives into a

single utility function resulting in a single objective optimisation problem. An example

of this approach is the weighted-sum method (Hwang and Masud, 1979). Here, each

of the objectives is multiplied by a weight and then all the weighted objectives are ag-

gregated to produce a single objective function. Other a priori approaches include the

Goal Programming method of Ignizio (1976), the utility function approach employed

by Greenwood et al. (1997) and the weighting function approaches used by Bentley



24 2.5 Pertinency

and Wakefield (1997). Although these approaches possess the virtue of simplicity, they

have some well known difficulties with (Deb, 2001; Purshouse, 2003):

• Identifying non-convex Pareto fronts.

• Generating a well-distributed set of Pareto-optimal solutions.

• Precise capture of the decision maker’s preferences in a single utility function.

• Aggregating non-commensurable objectives.

Furthermore, such approaches are capable only of finding a single optimised solution in

a single simulation run. Due to these difficulties and since a priori methods are essen-

tially single objective approaches, they will not be considered further as a preference

articulation method.

2.5.2 A posteriori Preference Articulation

Here the DM specifies preferences after the optimisation to identify a preferred solution.

Examples include Pareto optimisation approaches NSGA (Srinivas and Deb, 1994),

MOGA (Fonseca and Fleming, 1998a), and SPEA (Zitzler and Thiele, 1999), non-

Pareto approaches such as VEGA (Schaffer, 1985) and VOES (Kursawe, 1991), as well

as other EAs such as MOSA (Suppapitnarm et al., 1999), and gradient-based methods

such as NBI (Das and Dennis, 1998). Historically, much EMO research has concentrated

on a posteriori approaches and neglected to consider the subsequent decision-making

phase, which is often of great importance in real-world applications. When applied to

EMO problems, common issues with a posteriori methods are:

• The algorithm may have some difficulty in generating an adequate Pareto front

in terms of its diversity of solutions and proximity to the true Pareto front (Pur-

shouse, 2003).

• It may be computationally infeasible for the algorithm to generate Pareto optimi-

sations for many objectives, particularly if in the case of evolutionary algorithms,

large populations are used. As the DM is usually only interested in a subset or

region of interest (ROI) of the Pareto front, then many of the Pareto-optimal

solutions may be redundant.
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2.5.3 Progressive Preference Articulation

This category is progressive or interactive articulation of preferences. In this group,

the DM iteratively pauses the optimisation to provide revised preferences as more in-

formation progressively becomes available and then resumes the optimisation to search

for better solutions (Cvetković and Coello, 2004; Drechsler et al., 2001; Branke et al.,

2001; Tan et al., 2003; Branke and Deb, 2004; Fonseca and Fleming, 1998a). Thus, the

DM acquires knowledge of the problem as the optimisation progresses and very little

pre-requisite information such as, goal values, objective ranges and individual objective

optima is required. Monarchi et al. (1973) gave several reasons for favouring progressive

preference articulation, which include:

• Preferences cannot be quantified analytically, but the DM does subscribe to a

certain view.

• Solutions and preferences may change over time.

• Goals and preferences change as solutions emerge and experience of the problem

is gained.

Miettinen (2001, 2002) provides an extensive survey of interactive multi-objective opti-

misation methods, but all those described scalarise the objectives into a single objective

providing a single solution. Since knowledge of the Pareto-optimal front – as defined

by a family of solutions – is necessary information for the DM to specify preferences

and guide the optimisation, scalarising or aggregating or single objective approaches

will not be considered further. Where multiple Pareto-optimal solutions are generated

a progressive process can be used to ‘zoom in’ on the ROI on the Pareto front. Com-

pared to a posteriori methods, by virtue of searching in a smaller objective space, this

approach should provide both:

• More and better distributed Pareto-optimal solutions in the ROI for the same

computational expense.

• Better proximity to the true Pareto front.

Hence, progressive preference articulation (PPA) represents a promising technique

for finding Pareto-optimal solutions in EMO problems. Example approaches include
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Cvetković and Coello (2004); Drechsler et al. (2001); Branke et al. (2001); Tan et al.

(2003); Branke and Deb (2004); Fonseca and Fleming (1998a).

2.6 Harmony, Conflict and Independence

2.6.1 Definitions

As previously described in Purshouse (2003) and Deb and Saxena (2006), there exists

an opportunity to reduce the dimensionality in many-objective problems if, for the

Pareto-optimal solutions in the DM’s region of interest, objectives are sufficiently pos-

itively correlated, i.e. in harmony. In this case, improvement in one objective would

automatically improve another positively correlated objective. As a means of explaining

this refer to Figure 2.5, which is a graph of several Pareto-optimal solutions, x1, . . . , x5

plotted against two objectives, a and b, both of which are minimised. Solutions are

compared pairwise and relative to x1 to define the nature of the dependency.

• Harmony. In these regions solutions x2 and x4 are compared to x1. From the

definition of harmony given in Purshouse and Fleming (2003a), (xa
1 < xa

2)∧ (xb
1 <

xb
2), likewise with x4 compared to x1. For x1 and x2 (and for x4 and x1) complete

Figure 2.5: Conflict and harmony between two solutions with respect to two objectives
a and b, both of which are minimised.
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harmony (or complete correlation) would exist if the gradient of the line joining

both solutions is 1; in other words, the correlation between the two objectives

(for these two solutions) is 1. Weak harmony would exist if (xa
1 < xa

2)∧ (xb
1 = xb

2)

or (xa
1 = xa

2)∧ (xb
1 < xb

2). By extension, if x4, x1 and x2 were the Pareto-optimal

set, then objectives a and b would be in harmony.

• Conflict. In these regions, solutions x3 and x5 are compared to x1. Again from

Purshouse and Fleming (2003a), conflict is defined as (xa
1 < xa

3) ∧ (xb
1 > xb

3) and

likewise with x5 compared to x1. For x3 and x1 (and for x5 and x1) complete

conflict would exist if the gradient of the line joining both solutions is -1; in other

words, the correlation between the two objectives (for these two solutions) is -1.

Again, this definition can be extended so that if the Pareto-optimal set comprised

solutions, x5, x1 and x3, objective a would be in conflict with objective b.

• Independence. In the case where the solutions compared do not form part of

the same Pareto-optimal front, e.g. in different sections of a disconnected Pareto-

optimal front, then the objectives are perfectly independent for such solutions.

In this case, the correlation is 0 and the objectives can be minimised independent

of each other.

2.6.2 Global and Local Harmony and Conflict

Both Purshouse and Fleming (2003a) and Deb and Saxena (2005) state that harmony

and conflict may vary across the Pareto-optimal front. This is depicted in Figure 2.6 and

comprises a plot of Pareto-optimal solutions (hollow circles) overlaid onto the Pareto-

optimal front (mesh) for the three-objective DTLZ2 problem (Deb, Thiele, Laumanns

and Zitzler, 2002) where all objectives were minimised. It can be seen from the bottom

right that z1 and z3 are in harmony and z2 is in conflict, whereas at the top z1 and z2

are in harmony, but z3 is in conflict. One potential issue, as pointed out by Purshouse

(2003), is that if a redundant (i.e. positively correlated) objective is left in the problem,

then the distribution of solutions on the Pareto-optimal front may be biased towards

such objectives. This effect is a function of how effective the diversity preservation

mechanism is within the genetic algorithm.

In summary, it has been recognised that harmony and conflict vary locally

within the Pareto-optimal front, which in turn presents an opportunity for local objec-
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Figure 2.6: DTLZ2 scatter plot showing how conflict varies across the Pareto-optimal
front from Purshouse and Fleming (2003a).

tive reduction. The author is not aware of any research which exploits this opportunity

for dimension reduction in EMO problems.

2.7 Dimension Reduction

Clearly, if it is possible to reduce the dimensionality of a many-objective problem then

this is desirable to improve the effectiveness of the optimisation algorithm in locating the

true Pareto-optimal front. In identifying dimension reduction as a remedial measure,

Purshouse and Fleming (2003a) stated that such approaches can be used interactively or

a priori and briefly described two examples namely, Curvilinear Component Analysis

(Demartines and Hérault, 1997) and Principal Component Analysis (Kendall, 1975;

Jolliffe, 2002). These techniques are amongst several that have received widespread

development and application in fields such as multi-variate statistics, image processing,

engineering, astronomy and biology.

In such applications it has been found that some of the variables are correlated

with each other and thus the dimensionality can be reduced by finding a subset of

uncorrelated variables to generate a more compact representation of the data. The
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need for analysing very large multi-variate data sets, which would otherwise prove

intractable, is in no small part due to the extensive computing and storage capabilities

now available to many institutions. Some dimension reduction approaches are reviewed

below with more complete surveys described in Carreira-Perpinan (1997) and Fodor

(2002). It is convenient to categorise the various methods into linear and non-linear

methods.

2.7.1 Linear Methods

The two most widely used methods are principal component analysis (PCA) (Kendall,

1975; Jolliffe, 2002) and Factor Analysis (Harman, 1967; Kendall, 1975). These tech-

niques fall into the category of second-order methods, i.e. rely only on information

contained in the covariance matrix. As such, these methods often only require classical

matrix manipulations and so are computationally straightforward.

• Principal Component Analysis. This is also known in some fields as the sin-

gular value decomposition (SVD) and the Hotelling transform (Hotelling, 1936).

The basic principle behind PCA is to reduce the dimensionality of the problem

by finding the orthogonal linear combinations (or Principal Components) of the

original variables that account for most of the variance in the data. Furthermore,

it can be used to identify any near-linear dependencies and thus immediate objec-

tive reduction. In other words, PCA exploits the existence of linear associations

or dependencies between variables (for the purposes of this research, the term

objectives replaces the general term, variables).

Deb and Saxena (2005) applied PCA to reduce the dimensionality of EMO prob-

lems with up to 30 objectives. Procedures were proposed to identify from the

whole population the significant principal components and then to reduce the

number of objectives. Standard test problems were used with known solutions.

The authors demonstrated that this methodology has some vulnerability in find-

ing the Pareto-optimal front in a 10-objective problem.

Brockhoff and Zitzler (2006) questioned whether the PCA approach of Deb and

Saxena (2006) reduced the number of objectives without consideration of the ef-

fect on the dominance structure. This concern can be addressed by considering

a straightforward example. If objective 1 and objective 2 are strongly positively
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correlated (or harmonious), then objective 2 can be eliminated because it is re-

dundant. It is still true that if the remaining objective 1 is subsequently improved

then this would have simultaneously improved objective 2 if it had been left in

the problem (this, of course, assumes that the search is constrained to remain

in the same region of the Pareto-optimal front, otherwise such correlations may

change). So, in the case of strongly positively correlated objectives, the relevance

of maintaining the dominance structure is not clear. What is important is re-

taining any conflicting objectives in the DM’s ROI. Nevertheless, the approach of

Brockhoff and Zitzler (2006, 2009) is of interest in that exact and heuristic algo-

rithms are developed and demonstrated for determining the minimum objective

subset and the minimum objective subset of given size with minimum error (in

the dominance structure). Another objective reduction method is that of Jaimes

et al. (2008), in which conflict, based on distance between solutions in objective

space, and an objective correlation matrix are used to discard the least conflicting

objectives. Deb and Saxena (2005); Brockhoff and Zitzler (2006) and Jaimes et al.

(2008) approach objective reduction by identifying global conflict, i.e. across the

whole Pareto-optimal front, rather than locally in regions of it.

• Factor Analysis. This assumes that the measured variables depend on some

unknown, fewer common (or latent) factors. This dependency is defined by a

linear model, which includes an error or noise term. This differs from PCA where

no explicit model is defined. In addition, it is mandatory in Factor Analysis

to search for a rotation of the factors to give a simpler interpretation of the

relationship between the variables and factors. This rotation takes the form of an

orthogonal or oblique transformation to estimate the model parameters or factor

loadings.

• Higher Order Methods. These apply to non-Gaussian data sets. One such

technique is Projection Pursuit (Friedman and Tukey, 1974), which involves

searching for interesting projections that optimise a projection index, where the

Gaussian distribution is considered the least interesting. However, Projection

Pursuit is not well suited to highly non-linear data and is computationally in-

tensive (Carreira-Perpinan, 1997). Independent Component Analysis (ICA)

(Hyvärinen, 1999) is another higher order method, which identifies linear trans-
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formations which are as independent as possible. However, it relies on some other

method, e.g. PCA, to reduce the dimensionality beforehand.

2.7.2 Non-Linear Methods

• Non-Linear PCA. One approach extends the vector of variables, x, to include

linear functions of variables that have maximum variance (Gnanadesikan, 1977).

For example, x = (x1, x2) could be extended to x′ = (x1, x2, x
2
1, x

2
2, x1x2). In addi-

tion, Jolliffe (2002) describes other non-linear transformations such as products of

powers of the variables. Obviously, it is important that whatever transformation

is applied, it holds for all the data under consideration. One recent application

of non-linear PCA, in particular Kernel PCA, is described in Saxena and Deb

(2007), but the success of this approach relies on the choice of kernel.

• Non-linear Principal Curves. These are smooth one-dimensional non-linear

curves which pass through the middle of multidimensional data such that the

variation orthogonal to the curve is minimised. Principal Surfaces are principal

curves extended to multiple dimensions (Hastie and Stuetzle, 1989). However,

the required smoothing is difficult if data is sparse in multiple dimensions. Fur-

thermore, it is not known for what kinds of distribution principal curves exist

and if the construction algorithms converge (Carreira-Perpinan, 1997).

• Multi-Dimensional Scaling (MDS). This method maps high dimensional data

onto low dimensional space based on a measure called proximity, which indicates

the similarity (or correlation) between pairs of objects. It is commonly used prior

to cluster analysis. Shortcomings of MDS include determining the dimension

of the lower dimensional map - this is a process of trial-and-error and unlike

PCA, it is not possible to generate a lower dimensional MDS map from a higher

dimensional map (Carreira-Perpinan, 1997; Morrison et al., 2003). One form of

MDS is that of Maximum Variance Unfolding as described in Saxena and Deb

(2007), where Semi-Definite Programming is used to maximise the proximity

matrix with a constraint on the number nn of nearest neighbours, with whom

distances and angles have to be maintained in the process of unfolding. Saxena

and Deb (2007) state that the choice of nn is crucial to avoid over-constrained or

erroneous unfolding, but do suggest a guideline.
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• Topologically Continuous Maps. These are of fixed dimension and are gen-

erated from high dimensional data using unsupervised learning, the most well

known of which are the Self-Organising Maps (SOMs) of Kohonen (1995). SOMs

have been used in conjunction with MOEAs (Obayashi and Sasaki, 2003; Obayashi

et al., 2005) to give an initial clustering of design objective functions prior to hier-

archical clustering of ‘adjacent’ clusters. However, due to the heuristic nature of

SOMs they have a number of disadvantages including the lack of a cost function

to optimise and no guarantee of convergence (Carreira-Perpinan, 1997). Further-

more, in order to make such representations visually intuitive, it is necessary to

consider visual enhancements such as shading, colour, the annotation of design

solutions and legends. Also, the training of the SOM needs to be computationally

fast so that the decision-making process is efficient.

• Vector Quantisation. Kambhatla and Leen (1997) used a hybrid approach of

vector quantisation to cluster the data into disjoint regions, within which a local

PCA is conducted to achieve a locally linear dimension reduction by retaining

the rpc Principal Components where rpc < n where n is the dimension of the

data. The vector quantisation algorithm used minimises the reconstruction error

to achieve an optimal dimension reduction. However, no guidelines are provided

for selecting the target dimension rpc.

2.8 The Research Gap

Based on the review of the relevant literature in the previous sections, a proposed

practical many-objective optimisation decision-making process (or practical MOODM

process) would have the following features:

• Be able to efficiently generate trade-off solutions useful to the DM in his/her re-

gion of interest. In the field of automotive powertrain calibration, more stringent

legislation, more demanding customers and intense competition has lead to in-

creasingly complex powertrain technology. Such considerations often lead to more

competing objectives and constraints, which need to be efficiently evaluated to

define optimal system capability and generate optimal calibrations.

• In the DM’s region(s) of interest, identify and exploit local objective harmony for
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potential objective reduction. That is, be able to partition the Pareto-optimal

front into domains of like solutions and then within each domain, determine ob-

jective dependencies and discard harmonious objectives (from subsequent optimi-

sations, albeit that the DM should be able to check that any objective harmony

is maintained). This objective reduction process should be straightforward and

efficient to perform for the DM, who is likely to be an engineer unfamiliar with

the details of the process.

• Utilise progressive preference articulation (PPA) to allow the DM to iteratively

specify objective goals and priorities at each stage of the optimisation, as more

information about the problem becomes known. Preference articulation allows

the DM to specify a region of interest and hence shrink the search space and

also to discriminate between harmonious objectives, which may be discarded.

The approach employed should be able to work with the current generation of

MOEAs, e.g. NSGAII (Deb, Pratap, Agarwal and Meyarivan, 2002), allow re-

formulation of the optimisation problem to cater for discarded objectives and

again, be intuitive and efficient to use for the DM. Although there is evidence

that NSGAII’s search ability deteriorates in many objective problems (Hughes,

2005; Ishibuchi, Nojima and Doi, 2006), it is hoped that the addition of PPA to

shrink the search space will mitigate this concern (Bentley and Wakefield, 1997).

This remains an opportunity for future research.

• Be a systematic and as far as possible, objective (rather than subjective) process

that progressively reduces objective dimension and arrives at a preferred Pareto-

optimal solution per local region of the Pareto-optimal front.

• This process should be modular, so that each component process can be improved

as better techniques emerge so as to leave the overall process intact.

• Be as computationally efficient as possible given that many-objective problems

by definition have a larger dimension in objective space. With MOEAs this may

necessitate large populations, many generations and with progressive approaches,

multiple optimisation stages. Hence, the partitioning of the Pareto-optimal front

and objective reduction process should also not impose a significant time burden

on the DM.
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In view of the above requirements of the proposed process, it is useful to sum-

marise and highlight weaknesses of existing approaches and hence research opportuni-

ties as reviewed previously in this chapter.

• To determine calibration trade-offs amongst competing engine responses para-

metric studies have been utilised (Deb, 1995; Montgomery and Reitz, 1996),

which are time-consuming and have no guarantee of locating Pareto-optimal solu-

tions. Multi-objective optimisation algorithms coupled with mathematical (em-

pirical and/or physical), fast engine simulations provide a means to systemati-

cally search for these Pareto-optimal solutions. Multi-objective genetic algorithms

have proved to be effective search methods for problems with small numbers of

objectives, but for more than three objectives such algorithms can suffer from in-

sufficient selective pressure to enable progress to the true Pareto front (Ishibuchi

et al., 2008).

• Although exploitation of objective harmony for dimension reduction has been

demonstrated (Deb and Saxena, 2005), this has been applied on the whole pop-

ulation. In other words, this approach has identified evidence of global harmony

and conflict. However, it has been established (Purshouse, 2003; Deb and Sax-

ena, 2006) that objective harmony and conflict vary across the Pareto front, i.e.

that local harmony and conflict exist. To the best of the author’s knowledge the

only known local objective reduction approach is that of Yoshikawa et al. (2007).

However, as detailed in Section 2.4.3, it has a number of weaknesses including

an unclear objective reduction process, which does not appear to be progressive,

and in addition, relies on the initial number of clusters being specified.

• With regard to linear dimension reduction approaches, Factor Analysis assumes

that there is some random error in the data being analysed when there is no

such component in the mathematical models, which are evaluated to generate

solutions. By contrast, PCA does not make such an assumption, but is cited

as not being suitable for non-linear data such as that typical of Pareto-optimal

fronts. However, if the Pareto-optimal front is partitioned into groups of like

solutions, then PCA may be useful in identifying local harmony for objective

reduction. Higher order methods which allow for non-Gaussian data, can be
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computationally expensive or may rely on other methods, e.g. PCA (Carreira-

Perpinan, 1997; Hyvärinen, 1999).

With non-linear methods, the DM may need to specify additional information

such as the non-linear transform required or distributional assumption. In addi-

tion, there are known problems with MDS not being able to project onto lower

dimensions; with SOMs, which have issues with subjectivity involved in hierar-

chical clustering, convergence and interpretation; and with Vector Quantisation,

where the DM must specify target dimension a priori and no consideration is

given to objective harmony and conflict (Kambhatla and Leen, 1997).

• Of the two common visualisation approaches, scatter plots are difficult to interpret

for more than three objectives and parallel coordinates plots, while useful as a

one-dimensional representation regardless of the data dimension, can be difficult

to interpret for large data sets and may require all objective orders to be plotted

to reveal any pairwise objective dependencies. Nevertheless, parallel coordinates

plots have been useful in a PPA context, where objective goals can be overlaid to

aid decision making (Fonseca and Fleming, 1998b; Fleming et al., 2005).

• Preference handling approaches also have limitations. A priori preferences are not

usually known before the optimisation starts, while a posteriori approaches run

into difficulties with many objectives in terms of effective search (Fleming et al.,

2005). There are various PPA approaches, with that of Fonseca and Fleming

(1998a) being one of the more intuitive to use as objective priorities and goals can

be specified fairly simply and directly. In addition, it has been shown to perform

well compared to other recent PPA methods (Adra et al., 2007). However, to

date this approach has not received widespread application.

2.9 Review of Relevant Automotive Powertrain Technolo-

gies

Case studies are used in the body of the text to demonstrate the utility of the proposed

methodology developed in this thesis. Both studies are automotive applications. For

convenience, background information pertinent to each study is presented here, so that

the unfamiliar reader can gain an insight into the motivation, benefits and challenges
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involved.

Greater customer expectation for more fuel efficient and higher performing en-

gines that meet increasingly stringent vehicle emissions legislation, has driven automo-

tive manufacturers to invest heavily in developing internal combustion engine technolo-

gies. In recent years this trend has been exacerbated by the rising awareness in recent

years of energy and environmental issues. In turn, this has led to, for example, tax

incentive policies for lower carbon dioxide (CO2) emissions – directly proportional to a

reduction in fuel consumption – in an attempt to slow global warming (Mundorff et al.,

1998).

2.9.1 Comparison of Modern Diesel to Spark Ignition Engines

The significant improvement in diesel performance and fuel economy has led to strong

demand in Europe for diesel-equipped vehicles. In recent years sharp rises in fuel prices

have triggered significant technological development to further improve diesel engines.

In 2007, diesel engine-powered vehicles accounted for 50% of the total European market

(Herzog et al., 2007). The following summarises some of the advantages and challenges

of diesel technology as compared to gasoline and more specifically, spark ignition port

fuel injection (PFI) designs. More detail can be found in references such as Stone

(1994).

Advantages

Major advantages of modern diesel engines over PFI are:

1. Improved fuel economy/maximum efficiency due to:

• Reduced pumping losses due to the absence of throttling.

• Reduced frictional losses as diesels in general are designed to operate at lower

speeds.

• The air-fuel mixture is always weak of the stoichiometric air-fuel ratio.

• Increased compression ratio.

• Air only being present during the early part of the compression stroke.

2. Improved full load torque due to turbocharging, which is now frequently incor-

porated in diesel engine designs.
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Challenges

Modern diesel engine challenges comprise:

1. Combustion noise as exhibited by the characteristic ‘diesel knock’, which is caused

by too large a rapid combustion period in which self-ignition occurs too slowly.

This can be overcome by careful control of the initial fuel injection. However,

the more rapid the combustion, the more efficient the engine is, so there is thus

a trade-off between fuel economy and minimising combustion noise. Modern

diesel engines typically feature an electronic fuel injection system (also known as

‘common rail’ fuel injection equipment (FIE)), which allows a small initial fuel

injection, known as pilot injection, before the main injection.

2. Cold starting can pose a serious problem. This can be improved by using a higher

compression ratio than optimum for fuel economy or power output. Other aids

include excess fuel injection, late fuel injection and electrical heating of air, e.g.

glowplugs.

3. Hydrocarbon (HC) emissions caused by too much fuel being over-diluted at the

periphery of the air-fuel mixture after injection, but before combustion, can also

be reduced using pilot injection. Advancing the injection timing also reduces HC

emissions, but at the expense of increased Oxides of Nitrogen (more commonly

known as NOx) emissions and combustion noise.

4. NOx emissions strongly depend on combustion temperature, oxygen concentra-

tion and combustion duration. Thus, turbocharged engines, which have higher

combustion temperatures have higher NOx emissions. NOx can be reduced by

increasing the rate of injection, retarding the injection timing and exhaust gas

recirculation (EGR). The use of cooled EGR further reduces NOx and means that

less EGR can be used, which otherwise may lead to increased particulate and HC

emissions.

5. Increased particulate emissions. These originate from the fuel-rich side of the

air-fuel mixture in the diffusion-controlled combustion phase. This phase can be

shortened by increased swirl, more rapid injection and advanced injection timing.

However, earlier injection timing increases the combustion noise.
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6. New after-treatment technologies are required. Since diesel engines always oper-

ate lean of the stoichiometric air-fuel ratio, lean burn NOx-reducing catalysts are

required. The use of a post injection can be provided by a common rail system to

supply a controlled quantity of HC as a reducing agent for NOx catalysts. Partic-

ulate traps are also used, but typically such filters require temperatures of 550-600

degrees Celsius to become effective or are electrically heated and regenerative.

2.9.2 Gasoline Direct Injection Engine Technology

Historically, much of this engine research and development effort was concentrated on

enhancing compression ignition direct injection (CIDI), i.e. modern diesel engines, and

spark ignition port fuel injection (PFI) designs (Heywood, 1988). While the diesel

engine has superior fuel economy to the gasoline, it generally exhibits a higher noise

level and worse startability, particulate and nitric oxide (NOx) emissions (Zhao et al.,

1999). In the last two decades, much automotive research (Preussner et al., 1998;

Sasaki et al., 1998; Yi et al., 2000; Alger et al., 2000; Zhao et al., 1999) has focussed

on developing an engine that combines the best of both diesel and gasoline engines,

i.e. diesel-like fuel economy with the higher specific power of the gasoline engine. A

promising candidate for satisfying this goal is the gasoline direct injection (GDI) engine.

As its name suggests, this technology involves injecting a fuel spray plume directly into

the cylinder. This fuel mixes with inducted air and any residual air/fuel/combustion

products and is then ignited by the spark plug.

The following summarises a comparison of GDI versus PFI engine design with

more detail to be found in Zhao et al. (1999).

Advantages

Major advantages of GDI engines over PFI are:

1. Improved fuel economy of approximately 20 - 25% resulting from:

• Reduced pumping losses during unthrottled, stratified operation.

• Reduced heat losses to the combustion chamber walls during unthrottled,

stratified operation.

• Lower octane requirements.
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• Increased compression ratio.

• Increased volumetric efficiency.

• Application of fuel cut-off during vehicle deceleration manoeuvres.

2. Improved transient response from improved air charge measurement accuracy and

the absence of intake port fuel films.

3. An extended EGR tolerance limit, which minimises the use of throttling.

4. Improved starting due to direct and more precise fuel delivery (Anderson et al.,

1996).

5. Decreased CO2 and cold-start hydrocarbon emissions.

6. Enhanced potential for system optimisation.

Challenges

GDI engine limitations comprise:

1. Difficulties in controlling the stratified charge combustion process over the neces-

sary operating range.

2. Complexity of the control and injection technologies required for imperceptible

load or operating mode changes.

3. High rate of formation of injector deposits and ignition fouling.

4. High light-load hydrocarbon (HC) emissions.

5. High light-load NOx emissions under part-load stratified-charge operation.

6. Soot formation at high-load operation.

7. Increased particulate emissions.

8. New after-treatment technologies are required (Brogan et al., 1998).

9. Increased fuel system component wear as a function of the increased fuel injection

pressures and reduced fuel lubricity.

10. Increased rates of cylinder bore wear.
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11. Increased electrical system power requirements.

12. Elevated parasitic losses.

Despite these difficulties, automotive manufacturers have in recent years (Kume

et al., 1996) incorporated this technology into new vehicles because the potential ad-

vantages of GDI engines cannot be ignored.

2.9.3 Engine Calibration

The potential benefits of GDI or modern CIDI engine technology can only be realised

using a suitable electronic control system (Zhao et al., 1999). This includes a micro-

processor controller, which continuously monitors the current engine state via sensors

and then using a computer program or control strategy adjusts the engine state via

actuators (Cary, 2003).

A typical control strategy is extremely complex, but in simple terms, the re-

quired actuator settings for a given engine operating condition are stored in the mi-

croprocessor read-only-memory in the form of look-up tables (Holliday, 1995). For

example, diesel engines typically include controls on turbocharger boost pressure, main

injection timing, pilot injection timing and quantity, common rail fuel pressure and

EGR. A development engineer must provide these data to populate the relevant look-up

tables for a given engine application, the process for which is referred to as calibration.

In practice, calibration of any GDI or CIDI modern control system involves the

trade-off of several competing objectives. The two case studies included in this research

comprise the following calibration trade-offs:

1. The development of modern CIDI engines involves the calibration of common rail

FIE to deliver an acceptable trade-off between the competing objectives of the

legislated emissions (Yun and Reitz, 2003; Hiroyasu et al., 2004): NOx, partic-

ulates, HC, Carbon Monoxide (CO) and CO2 (or fuel consumption) as well as

combustion noise. As such, this calibration task has been formulated as a six

objective optimisation problem. The control variables include:

• Pilot injection, which reduces combustion noise by slowing the combustion

rate and in the process degrades fuel consumption.
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• Injection timing - advancing it reduces HC emissions, but at the expense of

increased NOx and combustion noise.

• EGR reduces combustion temperatures and hence NOx emissions, but may

lead to increased particulate and HC emissions.

2. On GDI engines, robust cold start performance requires a trade-off between the

competing objectives of combustion strength and variation, maximum flare speed

(engine speed overshoot immediately after engine start), HC emissions (Zhao

et al., 1999; Wiemer et al., 2007) as well as sensitivity to any input variation.

Furthermore, engine start is a highly transient process and so these criteria have

to be considered over subsequent combustion events. This calibration trade-off

problem has been formulated as a ten objective optimisation. Relevant control

variables include (Heywood, 1988):

• Spark timing, which can be set to maximise combustion strength and simul-

taneously minimise combustion variation. However, retarded spark timing

reduces HC emissions.

• Fuel injection quantity, rate, pressure and timing can all affect the combus-

tion metrics as well as flare speed and HC emissions.

• Throttle setting can be increased to maximise combustion strength, but has

a significant effect on flare speed and can easily exceed the maximum level

acceptable to the customer.

2.9.4 The Need for Model-Based Approaches

Many of the calibration tasks on modern automotive engines require solution of an op-

timisation problem, which is often multi-objective in nature and subject to constraints.

It is possible to conduct this optimisation online, i.e. with the optimiser connected di-

rectly to the test rig if the objectives are aggregated, and one measurement per search

iteration is required. A population-based approach to determining the Pareto-optimal

front, as assumed in this research, would require many measurements per search iter-

ation and thus be practically prohibitive. In contrast, a model-based approach offers

practical advantages in terms of efficiency, re-use and noise-free or repeatable objective

function evaluation. An important requirement of such models to represent objective
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functions is that they are adequately, computationally efficient to allow practical op-

timisation. In other words, the required number of generations of an MOEA can be

executed in a reasonable period, e.g. hours rather than days. A further advantage of a

model-based approach is that it is straightforward to develop sensitivity and curvature

functions. Such models can be included directly in the multi-objective optimisation to

enable robust calibration trade-offs to be developed without the need for additional test

data. Where such models/simulations are not available or direct experimental evalua-

tion is more efficient, online optimisation has been used with some success (Knowles,

2009).



Chapter 3

Objective Reduction Methods

3.1 Introduction

The primary feature of the proposed practical MOODM process outlined in the pre-

vious Chapter (see Section 2.8) is the ability to identify and exploit local harmony

for potential objective reduction. This chapter describes how this can be achieved

and introduces the main elements. These comprise methods to firstly, partitioning the

Pareto-optimal front into clusters of like solutions and subsequently, the use of Prin-

cipal Components Analysis (PCA) to identify objective dependencies per cluster and

potentially discard harmonious objectives. In addition, relevant implementation details

are explained.

3.2 Partitioning of the Pareto-Optimal Front using Clus-

tering

As stated in Section 2.6.2, objective harmony and conflict can vary across the Pareto-

optimal front. In order to discover such local objective dependency, if it exists, it

is necessary to partition the Pareto-optimal front into groups of like-solutions. This

will allow any local objective harmony to be exploited for local objective reduction.

In addition, other studies (Yoshikawa et al., 2007; Müller et al., 2008) suggest that

sub-dividing the Pareto-optimal front is useful for visualizing high dimensional Pareto-

optimal fronts and grouping similar solutions. Clustering approaches are considered for

partitioning the Pareto-optimal front in this research programme.
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3.3 Clustering

To begin with, it is necessary to define some frequently-used terms when describing

clustering approaches. Systems for partitioning or classifying data into groups or clus-

ters are either supervised or unsupervised. In supervised classification, a number of

pre-classified data patterns exist and are used to classify new data. By contrast, unsu-

pervised classification is based solely on the data (Xu and Wunsch, 2005). Clustering is

the unsupervised classification of patterns (observations, data items, or feature vectors)

into groups (clusters) based on similarity (Jain et al., 1999). Intuitively, the goal of the

grouping is that data within a cluster are similar to each other, but dissimilar to data

in other groups. Representing the data by a few clusters loses certain fine details, but

provides significant simplification - especially in terms of revealing the underlying data

structure.

A simple example, depicting the results from a k-Means clustering (Macqueen,

1967) analysis applied to a set of two-dimensional pseudorandom data patterns is shown

in Figure 3.1. At this stage, the specifics of the clustering algorithm are unimportant,

but it can clearly be seen that the raw data comprises three well defined groups and

the algorithm appears to have assigned the data membership correctly.

Figure 3.1: Results from a k-Means clustering analysis on a set of two-dimensional
pseudorandom data patterns.
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By subdividing the Pareto-optimal front objective patterns, as returned by the

MOEA, into clusters, it is hoped that any harmony that exists between objective pairs

can be identified. If harmony is detected within any cluster, it can be potentially

exploited for dimension reduction purposes. The unsupervised nature of the clustering

task is therefore important. This is because it is essential that any groupings which

result are derived exclusively from properties exhibited by the data patterns. Here

the term property implies some form of similarity measure among objective pattern

vectors, which has been imposed by the analyst. In other words, data will be grouped

based on the appropriate similarity metric.

In the next few sections, the various elements comprising the clustering task

are defined and various techniques for them discussed. The intent is not to provide an

exhaustive review of clustering, but rather to provide sufficient background to justify

the clustering method preferred in this research programme, namely the k*-Means

algorithm (Cheung, 2003).

3.3.1 Components of a Clustering Task

Jain and Dubes (1988) state that a typical pattern clustering activity involves the

following steps: pattern representation, pattern proximity, clustering or grouping, data

abstraction and assessment of output.

The process steps are depicted graphically in Figure 3.2 and described below:

• Pattern representation. This refers to the number of classes, the number of

available patterns, as well as the number, type and scale of the features available

Figure 3.2: Flowchart of a typical clustering process.
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to the clustering routine. Feature selection refers to identifying the most effective

subset of the original features. Feature extraction refers to the use of one or more

transformations of the original features to produce new more significant features.

• Interpattern Similarity. Pattern proximity is typically measured by a dis-

tance metric defined on pairs of patterns, e.g. Euclidean distance.

• Clustering or grouping of data. Grouping can be performed using a variety

of methods. A broad classification is that the partitioning can be hard, where each

pattern is assigned to a single grouping, or fuzzy, where each pattern possesses a

variable degree of membership in all identified data groupings.

• Data abstraction. This is the process of providing a compact description of

the data. It is this aspect that makes clustering such a potentially useful data

pre-processing step. Typically the analyst will be interested both in the pattern

membership for the cluster (e.g. how many data patterns are assigned to the

cluster) and descriptive statistics, which illustrate the location, orientation and

extent of the cluster.

• Assessment of output. This step is concerned with the validity of the clus-

tering. Here questions such as ‘what characterises a good or poor clustering

result?’ arise. After all, every clustering algorithm will produce clusters when

presented with data - regardless of whether the data contains obvious groupings

or not. Equally, when the data does contain clusters, some algorithms are likely

to provide better clusters than others. Clearly, data that does not contain clus-

ters should not be processed by a clustering algorithm. A clustering structure is

considered valid if it could not have arisen through chance or as some artificial

bi-product of a clustering algorithm.

3.3.2 Requirements of a Clustering Algorithm

In order to be effective as part of a MOODM process, a clustering algorithm must fulfill

the following requirements:

• Be efficient to run. Given that sufficient data density is required to determine

the number and location of clusters and that it may need to be run a number of

times with different initial settings for the algorithm parameters, it is important
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that execution time is relatively short. This is even more relevant if the algorithm

is initialised with random settings and consequently needs to be run a number of

times to generate reliable results.

• Generate the correct number of clusters. Some algorithms assume that

the number of clusters is known a priori. Since this is unlikely with real world

problems, particularly in high dimensions, ideally, the algorithm must define the

final number of clusters.

• Produce a valid clustering structure consistent with the downstream

process. Some algorithms make certain assumptions on the distribution of

the data to be clustered, e.g. the k-Means algorithm (Macqueen, 1967) assumes

the raw data is hyper-spherical. However, there is no guarantee that the Pareto-

optimal population resulting from the optimisation will conform to a specified

distribution. Furthermore, the downstream dimension reduction PCA-based pro-

cess assumes the clusters are hyper-ellipsoidal.

3.3.3 A Review of Clustering Approaches

There follows a brief review of clustering methods with their strengths and weaknesses.

More extensive reviews can be found in survey papers such as Jain et al. (1999); Berkhin

(2002); Xu and Wunsch (2005).

Clustering analysis approaches can be categorised according to the taxonomy

as discussed in Jain and Dubes (1988), shown in Figure 3.3 and summarised below. At

Figure 3.3: A taxonomy of clustering approaches based on Jain and Dubes (1988).
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the highest level, the approaches can be split into hierarchical methods, which generate

a nested series of partitions, whereas partitional approaches generate a single set of

groupings.

Hierarchical Clustering

Hierarchical clustering yields a nested grouping of patterns based on similarity levels

and is depicted by a binary tree or dendogram. The Decision Maker (DM) must decide

at which level to cut this hierarchy to generate a clustering result. Such representa-

tion can be very informative, especially where hierarchical structure in the data exists.

However, they are sensitive to noise and outliers, are not capable of correcting pre-

vious misclassification and have a high computational cost (Xu and Wunsch, 2005).

These weaknesses make such methods unattractive for application to many-objective

optimisation problems and will not be considered further.

Partitional Clustering

Partitional clustering algorithms generate a single partition of the data. The generation

of all possible solutions to search for the optimal partition according to some criterion

is considered practically infeasible (Liu, 1968). Consequently, heuristic algorithms have

been developed to generate approximate solutions. For large data sets, such methods

have an advantage, where construction of a dendogram would be computationally pro-

hibitive. A weakness of partitional methods is that the number of output clusters must

be decided. In an attempt to overcome this, such algorithms are typically run multiple

times from different starting states to generate a clustering output, which is ‘best’ in

some sense (Jain et al., 1999). The partitional methods relating to the taxonomy in

Figure 3.3 are:

Squared Error Algorithms are the most popular partitional method, with the k-

Means algorithm (Macqueen, 1967) being the most frequently used. From random

initial clusters, patterns are reassigned to clusters based on their similarity to

the cluster centres until a convergence criterion is achieved. While it is easy to

implement and comparatively fast to execute, it is sensitive to the choice of initial

clusters and may converge only to a local minimum.

Graph-Theoretic Approaches make use of graph theory to describe clustering
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problems, where the nodes of a weighted graph correspond to data points and

the edges reflect the proximities between pairs of points. A well-known algorithm

is based on generating a minimal spanning tree (MST) (Zahn, 1971) of the data.

The longest MST edges are deleted to produce clusters.

Mixture-Resolving Algorithms assume that the data patterns to be clustered be-

long to one of several distributions. The aim is to identify the parameters of the

distributions and a popular approach is expectation-maximisation (EM) (McLach-

lan and Krishnan, 1997). However, EM has a number of disadvantages including

sensitivity to selection of initial parameters, convergence to a local optimum and

slow convergence (Xu and Wunsch, 2005).

Further to the taxonomy in Figure 3.3, Jain et al. (1999) summarise that only

the k-Means and Self-Organising Map (SOM) (Kohonen, 1995) algorithms have been

tested on large data sets in contrast to artificial neural network, genetic algorithms,

tabu search and simulated annealing methods. With the latter approaches it is difficult

to adequately calibrate control parameters and they are comparatively, computationally

expensive for large data sets. Nevertheless, both k-Means and the SOM require the

number of output clusters to be pre-specified.

3.3.4 The k*-Means Clustering Algorithm

The k*-Means algorithm (Cheung, 2003) is a generalisation of the k-Means algorithm

and is designed to address the latter’s weaknesses, specifically:

• It allows both spherical and elliptical clusters because it is assumed that the data

comprises a mixture of Gaussian densities. This is achieved using Mahalanobis

distance, lm, as the measure of similarity when clustering data:

l2m = (xi − xc)S−1(xi − xc)T (3.1)

where xi is the cluster data, xc is the cluster centre (measure of location) and S

is the sample covariance (measure of dispersion) of the cluster data.

• The k-Means algorithm suffers from the so-called dead-unit problem (Xu et al.,

1993), where some of the cluster centres are initialised comparatively far away

from the input data and are never assigned data.
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• The number of output clusters must be pre-specified when using the k-Means

approach. Importantly, if this number is wrong, an incorrect clustering result

will be produced.

The k*-Means algorithm comprises two main steps. Firstly, a pre-processing

procedure is carried out, which assigns at least one cluster centre to each of the initial

clusters. The second step involves applying a learning rule to adaptively adjust each

centre to a cluster while penalising rival centres. There is no need pre-determine the

number of output clusters. Further details are provided in Cheung (2003, pp. 2888).

Since k*-Means meets the requirements of a clustering algorithm (see Section

3.3.2), it was selected as the algorithm of choice for partitioning the Pareto-optimal

front. In addition, a software implementation was readily available to the author (Cary,

2008). To verify that k*-Means algorithm meets the requirements of clustering algo-

rithm, a number of simulations were run on known data.

3.3.5 k*-Means Simulation Testing

In order to gain some confidence that this algorithm correctly identifies data clusters,

simulated data with known correlations, but with no outlying data has been used for

testing. Pseudo-random number generators available in Matlab r© were used to generate

the simulation data. Details of the simulations and results are presented in Appendix

A.

In summary, the k*-Means clustering algorithm was able to efficiently and cor-

rectly determine the number and location of clusters in multi-variate normal and non-

normal data, the latter of which was considered to be significant for Pareto-optimal

populations. In other words, these simulation tests provided evidence that the k*-

Means algorithm did meet the requirements for clustering and was a suitable choice for

partitioning a Pareto-optimal front.

3.3.6 Robust Clustering

Outlying data can have a significant effect on estimation of the mean and covariance

of data and hence the generation of Principal Components, which may be attracted

to such outlying points. Under these circumstances, Principal Component Analysis

(PCA) may be unreliable as a method for dimension reduction (Hubert et al., 2005).
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Figure 3.4: Effect of outliers on PCA and robust PCA.

This vulnerability of PCA can be demonstrated with an example, where a num-

ber of outliers are added to some ‘uncontaminated’ multi-variate normal random data

as shown in Figure 3.4. A PCA is carried out on the covariance matrix of the combined

data set and the Principal Axes plotted in red, which are attracted towards the outliers.

However, if a robust algorithm is applied to the combined data and a PCA is subse-

quently performed using the estimated robust covariance matrix, the blue Principal

Axes are produced. These align much better with the uncontaminated data, i.e. are

not influenced significantly by the outliers. This is reinforced when the covariance ma-

trices are compared, where there is good agreement between uncontaminated, COVu,

and the robust (resulting from FAST-MCD), COVr, covariance matrices. In contrast,

the contaminated covariance matrix, COVc, demonstrates that the presence of outliers

can have a significant effect.

COVu =

 1.3203 0.9638

0.9638 1.2090

 COVr =

 1.1368 0.8443

0.8443 1.1419

 COVc =

 2.6725 0.8647

0.8647 1.0448



Mahalanobis distance has historically been used to detect single outliers, where large
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Mahalanobis distances suggest potential outliers (Rousseeuw and Van Driessen, 1999).

However, if multiple outliers exist Mahalanobis distance is not a reliable approach

because:

• It depends directly on the data mean and covariance, which themselves are most

affected by the presence of outliers.

• The so-called masking effect can arise when small clusters of outliers exist. Re-

moval of one outlier may not significantly influence the covariance estimate if

other outliers remain.

Robust estimation of mean and covariance (after clustering, from hereon termed as ‘ro-

bust clustering’) are therefore necessary for robust PCA. Another requirement is that

the method must exhibit a high breakdown point. The Breakdown point is defined

as the smallest proportion of contamination, which has an arbitrarily large effect on

estimation of the mean (Rousseeuw and Leroy, 1987). In other words, the approach

must be resistant to outliers. For a survey of positive breakdown methods with applica-

tions see Rousseeuw (1997). One such method is the minimum covariance determinant

(MCD) estimator originally proposed in Rousseeuw (1984, 1985), since much improved

in terms of convergence and computational speed and known as the FAST-MCD al-

gorithm (Rousseeuw and Van Driessen, 1999). FAST-MCD gives robust estimation of

multivariate location and scatter, i.e. robust cluster centres and covariance.

The objective of the algorithm is to find h observations out of a total of n

whose covariance matrix has the lowest determinant. The MCD estimate of location

is the average of these h points and the MCD estimate of scatter is their covariance

matrix. Rousseeuw and Van Driessen (1999) state that the FAST-MCD algorithm

is able to deal with sample sizes in the tens of thousands, up to about 100 dimen-

sions, but can only be used when the number of variables, nv does not exceed the

sample size, n (Hubert et al., 2005). Full details are provided in Rousseeuw and

Van Driessen (1999, pp. 13) and the corresponding source code is available from

http://www.agoras.ua.ac.be/Robustn.htm. However, custom FAST-MCD code

(Cary, 2007) has been used throughout this research programme.

In order to determine the robust covariance matrix, a proportion of data, h is

retained. Rousseeuw and Van Driessen (1999) state that a default of h = 0.75n is a

good compromise between breakdown and convergence. For the studies in this research
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programme, a subjective value of h = 0.95n has been used as a compromise between

estimating a robust covariance matrix and rejecting data of potential interest, leaning

towards retention of the vast majority of data.

3.4 Exploiting Linear Associations for Dimension Reduc-

tion using PCA

Once the Pareto front has been partitioned, then one approach to identifying linear de-

pendencies between objectives is principal component analysis (PCA). These objective

associations are of the same dimension as the number of objectives and require inter-

pretation in order to identify harmonious and conflicting objectives and the strength

of this dependency.

3.5 Generation of PCA

As described in Section 2.7.1, the motivation for using PCA is to reduce the dimen-

sionality of the many-objective problem, whilst retaining as much as possible of the

variation in the Pareto-optimal solutions per objective. This is realised by the trans-

formation of the objectives to a new set of uncorrelated variables that account for

the majority of the variation in the original objectives. Such variables are commonly

referred to as Principal Components (PCs), the analysis of which is comprehensively

described in Jolliffe (2002).

3.5.1 PCA Definition

If x is a vector of nv random variables, the first step of PCA is to find a linear function

αT
1 x (or PC) of the elements of x having maximum variance, where α1 is a vector of

nv constants α11, α12, . . . , α1nv, so that,

αT
1 x = α11x1 + α12x2 + · · ·+ α1nvxnv =

nv∑
j=1

α1jxj .

where α1 is the vector of coefficients or factor loadings for the pth PC.

The next stage is to find a linear function αT
2 x uncorrelated with αT

1 x, but hav-

ing maximum variance. This process is repeated until at the pth stage a linear function
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αT
k x is found having maximum variance and uncorrelated with αT

1 x,αT
2 x, . . . ,αT

k−1x.

If there is objective redundancy then most of the variation in the Pareto-optimal solu-

tions per objective will be explained by rpc PCs where rpc� nv.

3.5.2 PCA Properties

The properties of PCs have important implications for dimension reduction as follows:

• The eigenvectors (or principal axes) αp are orthogonal to each other and corre-

spond to linearly independent directions in the ellipsoid describing the data under

consideration.

• The eigenvalues λp measure the amount of variation explained by each PC and

are sorted to define successively smaller amounts of variance corresponding to

successively shorter principal axes.

As a direct consequence, retention of the largest PCs will explain the majority of the

variance and because the PCs are orthogonal, any that are discarded do not affect those

retained.

PCA using the Correlation Matrix

It is more common to define a vector, z, of PCs as

z = ATx∗

where A now consists of eigenvectors of the correlation matrix and x∗ consists of

standardised variables (having zero mean and unit standard deviation). The main

disadvantage of using PCs derived from covariance matrices is that the PCs are sensitive

to variables, which have significantly different units of measurement. As this is the case

with objective functions typically traded-off in automotive internal combustion engine

design, then PCs based on correlation matrices should be used and have been from

hereon in this research programme.

Zero Eigenvalues

Although it is relatively unusual, it is possible for one or more of the eigenvalues of the

correlation matrix to be very close to or equal to zero (Jolliffe, 2002). Any PC with a



3.5 Generation of PCA 55

zero eigenvalue exhibits a pure linear dependency between the variables, implying that

one of them is redundant and can be discarded without losing any information.

Pairwise Correlations

As described previously, PCs are linear functions of the data (i.e. the Pareto-optimal

solutions in objective space) defining the principal axes and explaining the variation in

the data. These functions are projections of the data onto principal axes, which are

of the same dimension and number as the dimension of the data. In other words, if

there are six objectives, then there will be six PCs, each of which is six dimensional.

By contrast, correlations between objectives can be calculated, but these are pairwise

comparisons and unlike PCs, cannot identify dependencies which exist among more

than two objectives at a time.

To illustrate this weakness of pairwise correlations, an example is presented in

Table 3.1. Initially, a 10 row by 5 column uniformly distributed random data set was

created using the Matlab r© command rand, where each column is chosen to represent

an objective. To this matrix a sixth column (objective) was added, which equalled the

fifth objective divided by 3.5, i.e. the Objective 6 has a pure linear dependency or is

perfectly correlated with Objective 5. As expected, the resulting correlation matrix

identifies this correlation and is shown shaded in Table 3.1. If the Objective 6 is

changed to be equal to (Objectives 4 + 5)/2, so that the Objective 6 still has a pure

linear dependency, then this is not identified by the correlation matrix as shown in Table

3.1. By contrast, if the PCs are computed (using the Matlab r© command pcacov), then

from the resulting sorted eigenvalues, λ, and the matrix of corresponding eigenvectors,

vp, displayed in columns for each p PC as shown below, the last eigenvalue is zero and

is evidence of a pure linear dependency in PC6. Examination of the last column, i.e.

PC6, in vp reveals that only Objectives (rows) 4-6, shown shaded, contribute to this

PC and there exists a pure linear dependency or perfect correlation between them.

In summary, PCA has not only been able to detect the pure linear dependency,

but also has identified which objectives are affected. It should be noted that the PCA

is based on the correlation matrix and therefore the linear dependency is in scaled

objectives.

Montgomery and Peck (1991, pp. 318) define a threshold of 1,000 for the ra-

tio of the largest eigenvalue to smaller eigenvalues (also known as condition number)
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to indicate strong evidence of a linear dependency. For this research programme, a

threshold or 10,000 has been used, suggesting very strong evidence.

Table 3.1: Comparison of pairwise correlations for pure linear dependencies.

Data matrix with
column 6 = column 5 /
3.5

0.6443 0.2077 0.3111 0.5949 0.0855 0.0244
0.3786 0.3012 0.9234 0.2622 0.2625 0.0750
0.8116 0.4709 0.4302 0.6028 0.8010 0.2289
0.5328 0.2305 0.1848 0.7112 0.0292 0.0083
0.3507 0.8443 0.9049 0.2217 0.9289 0.2654
0.9390 0.1948 0.9797 0.1174 0.7303 0.2087
0.8759 0.2259 0.4389 0.2967 0.4886 0.1396
0.5502 0.1707 0.1111 0.3188 0.5785 0.1653
0.6225 0.2277 0.2581 0.4242 0.2373 0.0678
0.5870 0.4357 0.4087 0.5079 0.4588 0.1311

Correlation matrix
corresponding to above
data matrix

1 0 0 0 0 0
-0.4400 1 0 0 0 0
-0.0601 0.4315 1 0 0 0
-0.0504 -0.1198 -0.7009 1 0 0
0.1851 0.6112 0.4798 -0.5442 1 0
0.1851 0.6112 0.4798 -0.5442 1 1

Data matrix with
column 6 = (columns 4
+ 5) / 2

0.6443 0.2077 0.3111 0.5949 0.0855 0.3402
0.3786 0.3012 0.9234 0.2622 0.2625 0.2623
0.8116 0.4709 0.4302 0.6028 0.8010 0.7019
0.5328 0.2305 0.1848 0.7112 0.0292 0.3702
0.3507 0.8443 0.9049 0.2217 0.9289 0.5753
0.9390 0.1948 0.9797 0.1174 0.7303 0.4238
0.8759 0.2259 0.4389 0.2967 0.4886 0.3927
0.5502 0.1707 0.1111 0.3188 0.5785 0.4486
0.6225 0.2277 0.2581 0.4242 0.2373 0.3307
0.5870 0.4357 0.4087 0.5079 0.4588 0.4834

Correlation matrix
corresponding to above
data matrix

1 0 0 0 0 0
-0.4400 1 0 0 0 0
-0.0602 0.4315 1 0 0 0
-0.0504 -0.1199 -0.7009 1 0 0
0.1850 0.6112 0.4798 -0.5442 1 0
0.1816 0.6346 0.0430 0.1050 0.7772 1
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λ =



2.7610

1.5079

1.3191

0.3384

0.0736

0.0000



vp =



−0.0216 0.0069 −0.8473 −0.3423 0.4056 0.0000

0.4728 −0.2743 0.4066 −0.2113 0.7009 0.0000

0.4179 0.4743 0.0969 −0.6805 −0.3577 0.0000

−0.3475 −0.6100 0.1048 −0.5088 −0.2186 0.4354

0.5621 −0.0908 −0.2363 0.3403 −0.1750 0.6881

0.4057 −0.5652 −0.2015 0.0218 −0.3714 −0.5805



Rules for Principle Component Reduction

The main purpose of using PCA is to reduce the dimensionality of the problem by

replacing the variables by a smaller number of PCs which account for most of the vari-

ation. Several rules have been developed to identify this smaller number of PCs, some

of which are ad hoc rules of thumb, but are nevertheless intuitive to use and work in

practice and it is these that are described below. Other rules exist based on hypothesis

tests, which require distributional assumptions and could be restrictive in nature; there

are also statistically-based rules, which can be computationally demanding (Jolliffe,

2002).

Eigenvalue-1 Criterion Also known as Kaiser’s rule (Kaiser, 1960), the principle

is to retain and analyse any PC with an eigenvalue of greater than 1. Each variable

contributes one unit of variance to the total variance in the data set, because PCA

standardises the variables to have a mean of 0 and a variance of 1. Any component

that contributes more than one unit is viewed as significant and should be retained,

whereas any component that contributes less than one unit is viewed as trivial and is

ignored. Advantages of this rule is its simplicity as there is no subjectivity and that it
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has been shown to identify the correct number of components for a small to moderate

number of variables (Stevens, 1986). However, this rule can lead to retaining the wrong

number of PCs where there are a large number of variables. Also, injudicious use may

result in a component with an eigenvalue of 0.999 being discarded while one with an

eigenvalue of 1.001 is retained.

Scree Test This rule, as discussed by Cattell (1966), involves plotting the eigenvalues

for each PC to hopefully reveal an elbow or break between the larger, significant values

and the smaller, insignificant ones. If there are several breaks, then the last big break

should be selected to identify which components to retain. The theory is that the

trivial components form the scree at the bottom of a steep rock face. This approach

has provided reasonably accurate results provided the sample is large (Stevens, 1986).

However, this rule is even more subjective as there can be ambiguity in determining

the break, e.g. where there are no obvious changes in gradient.

Proportion of Variance A PC can be retained if it accounts for a specified propor-

tion of the variance, calculated as follows:

tp =
100(lp)∑nv

p=1 lp
=

100(lp)
nv

where:

• tp exceeds some cut-off threshold tp∗ of say, 10-15%.

• lp is the pth eigenvalue.

• nv is the number of variables.

• The total of all eigenvalues is equal to the number of variables as each variable

contributes one unit of variance.

Alternatively, the cumulative percentage of variance can be calculated as below

with a typical minimum threshold of 70 to 90%, but for less obvious structures a cut-off

of greater than 90% may be required. The number, rpc, of PCs retained is the smallest

value of rpc whose cumulative percentage of variation exceeds this threshold.

tc =
100
nv

rpc∑
p=1

lp
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For this research programme the Matlab r© routine pcacov has been used to determine

the PC loadings (or eigenvectors), eigenvalues and the percentage of cumulative varia-

tion explained by each PC. In turn, pcacov uses Singular Value Decomposition (SVD),

which is a computationally efficient method for finding PCs.

3.5.3 Rotation of Principal Components

In order to simplify the interpretation of PCs, a rotational transformation is often

applied to reveal data structure and identify opportunities for dimension reduction. If

rpc PCs account for most of the variation in p-dimensional data, Arpc is the (p× rpc)

matrix whose pth column is the eigenvector for the pth PC, orthogonally rotated PCs

have eigenvectors given by the columns of Brpc, where Brpc = ArpcT and T is a (rpc×

rpc) orthogonal matrix. T is chosen to optimise one of many possible rotation criteria

(Cattell, 1978). It should be noted that the choice of rotation criteria is arbitrary

and is often made based on the default option available in the computing software

being used. In addition, despite there being several different choices of criteria for

orthogonal rotations, as used with this research, there is little difference in the results

(Jolliffe, 2002). A popular default and the criterion used in this work is the VARIMAX

criterion (Kaiser, 1958). The VARIMAX option is available as an input argument to the

Matlab r© routine rotatefactors and has been used throughout this research programme.

In the following section, a graphical and numerical example of rotation is described.

3.5.4 A Graphical Explanation of PCA

Principal component analysis can be considered to be a rotation of the axes of the

original coordinate system to orthogonal axes or Principal Axes, which align with the

direction of maximum variation in the data. Thus, a PCA transformation can be

interpreted as a rotation of the axes about the origin. Consequently, the distance of

each solution from the origin is preserved and therefore objective harmony and conflict

relationships are maintained. Using the convention that the principal axes are rotated

onto the axes of the original coordinate system, then

x∗ = Az (3.2)
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where A consists of eigenvectors of the correlation matrix and x∗ consists of standard-

ised variables.

Graphically, the Principal Axes, εx and εy are shown in Figure 3.5, using the

convention which is consistent with that used by Matlab r© command pcacov for per-

forming PCA, where a clockwise rotation of the Principal Axes onto the original axes,

x and y, is defined as negative.

The Principal Axes can be resolved into the unit vector components i and

j consistent with the orientation of the original axes and described by the direction

cosines of the angle θ. From Figures 3.6 and 3.7:

i = cos θεx + sin θεy (3.3)

j = sin θεx − cos θεy (3.4)

These components can then be assembled in the form described in Equation 3.2

to describe the PCA rotation:

Figure 3.5: PCA rotation convention showing principal axes (red) rotated onto original
axes.
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Figure 3.6: Principal axes εx and
εy resolved into i direction.

Figure 3.7: Principal axes εx and
εy resolved into j direction.

 i

j

 =

 cos θ sin θ

sin θ − cos θ

 εx

εy

 (3.5)

Thus, the eigenvector matrix, A represents the matrix of direction cosines:

A =

 cos θ sin θ

sin θ − cos θ

 (3.6)

As an example, performing PCA on the same single cluster data in two variables

from Appendix A using the Matlab r© command pcacov results in:

A =

 cos θ sin θ

sin θ − cos θ

 =

 0.7071 0.7071

0.7071 −0.7071

 (3.7)

where, θ = −π
4 = −45 ◦.

A plot of the data and resulting Principal Axes aligned with the maximum

variation in the data is shown in Figure 3.8, where PC1 subtends an angle of −45 ◦

with the x1 axis.

The benefit of a rotation of the Principal Components as described in Section
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Figure 3.8: PCA rotation on single cluster data in two variables from Appendix A.

Figure 3.9: PCA + VARIMAX rotation on single cluster data in two variables from
Appendix A.
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3.5.3 can be demonstrated graphically if the same data is artificially rotated through an

angle of π
8 , PCA is performed and then an orthogonal rotation is applied. The VARI-

MAX rotation is one such orthogonal transformation applied to allow the eigenvectors

resulting from a PCA to be more easily interpreted so as to reveal data structure. The

VARIMAX rotation maximizes the squared eigenvector coefficients (or loadings) in each

PC so that the large loadings are increased and the small ones are decreased. The goal

is to generate a solution such that each PC has a small number of large negative and

positive loadings (or correlations), which may reveal much more clearly evidence of ob-

jective harmony and conflict. Graphically, as can be seen in Figure 3.9, the additional

orthogonal rotation used here aligns much better with the variation in the data and the

corresponding loadings, Â reveal a more discriminating structure than the loadings, A

from just the PCA rotation as shown below:

A =

 0.7071 0.7071

0.7071 −0.7071

 (3.8)

Â =

 −0.9487 0.3162

−0.3162 −0.9487

 (3.9)

3.5.5 Rules for Variable Reduction

With problems comprising many variables (objectives), a subset containing the majority

of information can often be found. There have been several studies of various variable

selection methods including Jolliffe (1972, 1973). Al-Kandari (1998) concluded that

few of the techniques tried were uniformly inferior and none was uniformly superior.

Deb and Saxena (2005) have suggested rules which have some correspondence to one

method type examined by Jolliffe (2002).

• For the 1st PC select the most positive and negative objectives.

• For subsequent PCs check if the corresponding eigenvalue is > 0.1 or not.

– If not, choose the objective corresponding to the highest absolute element

in the eigenvector.
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– If it is, various cases are considered:

∗ If all the elements of the eigenvector are positive, chose the highest

element.

∗ If all the elements of the eigenvector are negative, chose all the objec-

tives.

∗ If the value of the highest positive element pos is less than the abso-

lute value of the most-negative element neg, two different scenarios are

considered:

· If pos ≥ 0.9 | neg |, choose two objectives corresponding to pos and

neg.

· If pos < 0.9 | neg |, choose only the objective corresponding to neg.

∗ Similarly, if pos >| neg |, two other scenarios are considered:

· If pos ≥ 0.8 | neg |, choose both objectives corresponding to pos and

neg.

· If pos < 0.8 | neg |, choose only the objective corresponding to pos.

• Further reduction was considered based on the reduced correlation matrix to

investigate if there still exists a set of objectives having identical positive or nega-

tive correlation coefficients with other objectives and having a positive correlation

among themselves. If so, retain the objective with the largest eigenvalue.

The rules suggested by Deb and Saxena (2005) appear somewhat complicated.

They also include a final step based on pairwise correlations, which is inconsistent

with using PCA comprising linear functions of, i.e. correlations across, all objectives.

Alternative rules proposed by the author are simpler and more intuitive. (Objective

loading used here is equivalent to eigenvector element used by Deb and Saxena (2005)).

• Use the following threshold for determining if an objective loading magnitude is

significant:

– Loading> nobj−0.5 for nobj objectives (if the PC axes formed a hyper-sphere

then all would contribute equally to the variance in the data).

• If all objective loadings in the same PC have the same sign then they all positively

contribute to, i.e. increase, the corresponding PC score. In other words, the
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objectives in such a PC can be considered as being in harmony. In this case, choose

the objective with the largest objective loading magnitude (as it contributes the

most to the PC), providing it exceeds nobj−0.5.

• If the objective loadings in the same PC are in two signed groups, then some

of the objectives decrease and some increase the corresponding PC score. In

this scenario, the objectives of different signs can be considered to be in conflict.

Therefore, choose the largest objective loading magnitude from each group to

represent the strongest conflict, providing they exceed nobj−0.5.

3.5.6 Hyper-ellipsoidal Constraint on Principal Components

The k*-Means algorithm (see Section 3.3.4) clusters the data into ellipse-shaped clus-

ters. From the equations of conic sections, the equation for an ellipse is:

Ax2 + Bxy + Cy = 1 (3.10)

In matrix form Equation 3.10 becomes:

(
X Y

)
·

 A B/2

B/2 A

 ·

X
Y

 = 1 (3.11)

The k*-Means algorithm uses Mahalanobis distance as the similarity metric for cluster-

ing. When compared to the matrix equation of an ellipse (Equation 3.11), the equation

for Mahalanobis distance takes the same form as shown below in Equation 3.12.

l2m = (xi − xc)S−1(xi − xc)T (3.12)

where xi is the cluster data, xc is the cluster centre (measure of location) and S is the

sample covariance (measure of dispersion) of the cluster data.

For multivariate, normally distributed data, Mahalanobis distance approxi-

mately follows a Chi-squared distribution, χ2
df , with df degrees of freedom (Rousseeuw

and Leroy, 1987). Large robust Mahalanobis distances can be used to detect outliers

(as discussed in Section 3.3.6) by comparing them to a quantile of the Chi-squared

distribution, e.g. the 97.5% quantile (Filzmoser, 2004).



66 3.6 Summary

Using χ2 as the bound, Equation 3.12 becomes:

(X−Xc)V−1(X−Xc)T ≤ χ2 (3.13)

where Xc and V are the cluster centres and covariance matrix, respectively. Equation

3.13 can be now be used as a hyper-ellipsoidal constraint on a cluster in an optimisation

in an attempt to preserve objective correlations within the cluster.

3.6 Summary

In order to identify and exploit any incidence of local objective harmony for dimen-

sion reduction, methods for partitioning the Pareto-optimal front and consequently

determining objective dependencies are described. Following an introduction to clus-

tering, requirements of an algorithm suitable for a MOODM process are defined. A

brief review of clustering methods is provided with the k*-Means algorithm comparing

favourably and meeting the aforementioned requirements. Simulation testing is carried

out on various known data to verify correct identification of clusters. The FAST-MCD

algorithm is described and is a method for dealing with outliers such that they do

not have undue influence on the subsequent principal component analysis (PCA). An

introduction to PCA follows, which focusses on practical application, together with a

graphical explanation. Sets of rules for interpreting PCA results for objective reduc-

tion are presented and compared. Finally, a method is described for constraining an

optimisation to remain within the cluster boundary in an attempt to preserve objective

correlations. This is based on the similarity measure used by the clustering algorithm.



Chapter 4

The Many-Objective

Optimisation Decision-Making

Process

4.1 Introduction

In this chapter it is shown how the clustering and principal component analysis (PCA)

elements discussed in Chapter 3 can be combined with an efficient search method to

produce a systematic dimension reduction process. The goal is to aid the Decision

Maker (DM) in discovering opportunities for simplifying the optimisation by reducing

the number of objectives at each step. This is achieved by exploiting local harmony, if

it exists, in the form of strongly, positively correlated objectives within clusters of the

Pareto-optimal population.

The proposed Many-Objective Optimisation Decision-Making (MOODM) pro-

cess is described with details of the optimisation, clustering and objective reduction

elements provided in the following sections. Subsequently, the MOODM process is ap-

plied to a real-world automotive problem to demonstrate the principle and the efficacy

of the proposed approach.
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Figure 4.1: Proposed Many-Objective Optimisation Decision-Making (MOODM) Pro-
cess.
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4.2 The MOODM Process Description

Figure 4.1 shows the elements of optimisation, clustering and objective reduction via

principal component analysis-based heuristic rules combined in a proposed MOODM

process. The first step is to efficiently generate a Pareto-Optimal Population (POP).

There are many MOEAs that can be used to achieve this, but for many-objective prob-

lems, careful consideration must be given to overcome the known issues of lack of search

efficiency and very large population sizes required (see Chapter 2). On completion of

the optimisation, the resulting POP is partitioned into groups of like-solutions using

a clustering algorithm. It is important that the DM is satisfied that there is evidence

of the number and location of the clusters and so, cluster verification rules have been

developed. Subsequently, for each POP cluster, PCA together with some some heuris-

tic rules are applied to reduce objective dimensionality. If no objective reduction is

achieved, then the process is terminated. If objective reduction is possible within a

cluster, then the process repeats with firstly, optimisation with the reduced objectives

subject to the constraint of remaining within the cluster boundary. The process ends

when no further objective reduction can be achieved within each cluster.

4.3 Generate Pareto-Optimal Population

Consistent with the practical MOODM process described in Section 2.8, the NSGAII

algorithm (Deb, Pratap, Agarwal and Meyarivan, 2002) has been modified to incor-

porate the Progressive Preference Articulation (PPA) method of Fonseca and Fleming

(1998a). This allows preferences in the form of objective goals and priorities to be

used to direct the search to the DMs region of interest. In addition, the introduction

of PPA to NSGAII has been used to mitigate the known search issues of NSGAII in

many-objective problems (see Section 2.8). Not only is it a requirement to ensure that

the resulting population has converged to the Pareto-optimal front, but also that there

is sufficient data density in the population to support the identification of clusters with

‘converged’ correlation matrices. By ‘converged’ it is meant that the iterative calcula-

tion of the cluster correlation matrix, generated by the k*-Means clustering algorithm,

has converged to that of the data in the cluster. To meet these requirements, it is

necessary to specify a sufficiently large population and studies such as that described
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in Deb (2001, Fig. 276) and the cluster simulation in Section 3.3.5 can be used. For

example, for a six objective problem, Deb (2001) suggests a population size of 800 and

the cluster simulation on normal data in six variables suggested a population of 1000.

Since the computational effort was considered acceptable in the case of the six objective

diesel problem, a deliberately large population size of 4000 was chosen, with the view

that this could subsequently reduced if justified.

4.3.1 Apply Objective Goals and Priorities

Preference articulation can be used to direct the optimiser towards the DMs region

of interest and so improve search efficiency (Fleming et al., 2005). Furthermore, a

progressive approach allows the DM to specify these preferences interactively as infor-

mation emerges from successive optimisations. The Progressive Preference Articulation

method of Fonseca and Fleming (1998a) (PPAFF) provides an intuitive and efficient

specification of objective goals and priorities (Adra et al., 2007) and is utilised in this

research study. However, the description in Fonseca and Fleming (1998a) is relatively

compact and so, to aid understanding, a number of simple examples are worked through

in Appendix B.

The preference information specified in PPAFF approach is in the form of objec-

tive priorities and goals. These preferences provide a means of ranking non-dominated

solutions and are often naturally available when formulating an optimisation problem.

Typically, it is necessary for an analyst to either prioritise objectives and/or consider

how particular solutions satisfy engineering goals. For example, an automotive problem

may be to find solutions which are optimal for, in order of priority, fuel economy then

combustion stability, subject to meeting a smoke emission constraint. There follows a

more formal description.

Priorities specify the order of objectives to be optimised according to their

importance to the DM, e.g. objective A may be more important than objective B,

which may be more important than objective C as in the lexicographic approach (Ben-

Tal, 1980).

Goals define desired values for the objectives and may be:

• a Utopian value for the objective, which is by definition unattainable, but one

which the optimiser in question aspires to achieve;
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• a target, which the optimiser will try to get as close to as possible;

• a minimum level, which the optimiser must satisfy. This is analogous to satisfying

a constraint, where the objective is minimised until the goal is reached.

Constraints are often practical limitations in the form of bounds on the decision

variable or limits on the allowable domain of an objective function. From Fonseca and

Fleming (1998a), constraints can be expressed as inequalities:

f(x) ≤ g (4.1)

where f is a non-linear function of a decision variable vector x, and g is a constant value.

Alternatively, the inequality can be strictly less than, or an equality constraint. This

inequality applies component-wise, i.e. per objective. In other words, the inequality

acts as a logical OR relation and is such that there must be at least one objective value

in a universe U which satisfies all constraints. In practice, this may not be achievable,

in which case it may be possible that some of the constraints can be relaxed. These

ideas motivate the mathematical concepts of preferability and equivalence. Preferabil-

ity/equivalence embodies the concept that a subset of non-dominated solutions may be

favoured/equivalent to the remainder, given goals and priorities defined by the DM. For

example, consider a simple two-objective, two-individual scenario where both objectives

are minimised, as depicted in Figure 4.2. Solutions A and B are both non-dominating,

but A satisfies both goals, i.e. for A, f1 < g1 and f2 < g2, and is therefore preferred.

Solution C also satisfies the goals, but A dominates C and is therefore preferred to it.

If g1 and g2 are constraints that must be satisfied, but once met the objectives are not

required to be minimised, then solution A would be equivalent, but not preferable to

C. Fonseca and Fleming (1998a) include the definitions of preferability and equivalence

in their definition of a Comparison Operator.

4.3.2 The Mathematical Definition of the Comparison Operator

Following from Fonseca and Fleming (1998a), let x be some decision variable vector

and f be a vector function so that u = f(xu) and v = f(xv) are two nobj -dimensional
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Figure 4.2: Preferability and Equivalence example

objective vectors. Also, let g be an nobj -dimensional preference vector

g = [g1, . . . ,gr]

= [(g1,1, . . . , g1,nobj1), . . . , (gr,1, . . . , gr,nobjr)],

and,

u = [u1, . . . ,ur]

= [(u1,1, . . . , u1,nobj1), . . . , (ur,1, . . . , ur,nobjr)];

v and f are defined similarly.

The preference vector g can be decomposed into sub-vectors gi where i = 1, . . . , r asso-

ciate priorities i and goals gi,ji , where ji = 1, . . . , nobji to the corresponding objective

functions fi,ji , components of fi. This convenient permutation of the components of f

is assumed to be general. The preference vector g is defined such that:

• Priority i is the lowest and r the highest.
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• The number of objectives nobj, the number of priorities r, and the number of

goals are equal.

To aid understanding, a number of simple examples are worked through in Appendix

B.

Definition 4.1 (Preferability) Vector u = [u1, . . . ,ur] is preferable to

v = [v1, . . . ,vr] given a preference vector g = [g1, . . . ,gr], (u ≺
g

v) iff

r = 1 ⇒ (u
u
_
r p< v

u
_
r ) ∨

{
(u

u
_
r = v

u
_
r ) ∧

[
(v

u
^
r � g

u
^
r ) ∨ (u

u
^
r p< v

u
^
r )

]}
(4.2)

and

r > 1 ⇒ (u
u
_
r p< v

u
_
r ) ∨

{
(u

u
_
r = v

u
_
r ) ∧

[
(v

u
^
r � g

u
^
r ) ∨ (u1,...,r−1 ≺

g1,...,r−1

v1,...,r−1)
]}
(4.3)

where:

• The smile, u
^

, and frown, u
_

, annotation denotes the components of u which

meet and violate, respectively, their corresponding goals.

• u1,...,r−1 = [u1, . . . ,ur−1] and similarly for v and g.

• u p< v is derived from the definition of Pareto dominance as given in Fonseca

and Fleming (1998a): a given vector u = (u1, · · · , unobj) dominates

v = (v1, · · · , vnobj) if and only if u is partially less than v, u p< v, that is,

∀i ∈ {1, · · · , nobj}, ui ≤ vi ∧ ∃i ∈ {1, · · · , nobj} : ui < vi.

A simple explanation of the Comparison Operator follows from Fonseca and Fleming

(1998a). Firstly, vectors u and v are compared in terms of their objective components

with the highest priority, i.e. i = r, disregarding those in which ur meets the

corresponding goals, u
u
^
r . If both vectors satisfy all goals with this priority in the

same way, the next priority down, (r − 1), is considered. The process continues until

the lowest priority (r = 1) is reached, where the priority 1 objective components are

compared using Pareto dominance to produce a result.
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Definition 4.2 (Equivalence) Vector u = [u1, . . . ,ur] is equivalent to

v = [v1, . . . ,vr] given a preference vector g = [g1, . . . ,gr], (u ≡
g

v) iff

(u
u
_ = v

u
_) ∧ (u

u
^

1 = v
u
^

1 ) ∧ (v
u
^

2,...,r ≤ g
u
^

2,...,r) (4.4)

Lemma 1 For any two objective vectors u and v, if u p< v, then u is either

preferable or equivalent to v, given any preference vector g = [g1, . . . ,gr].

As stated previously, worked examples are detailed in Appendix B, which were found

to be very useful in explaining how different parts of the Comparison Operator apply

in practice.

4.3.3 The Migration of Preferability to NSGAII

The multi-objective optimisation algorithm NSGAII is widely used (Adra et al., 2009)

and was already available to the author in Matlab r© code (MathWorks, 2008b).

Consequently, it was decided to modify this NSGAII software to incorporate the

Progressive Preference Articulation method of Fonseca and Fleming (1998a) (PPAFF).

A flowchart representation of the NSGAII Matlab r© software with the PPAFF

modifications is shown in Figure 4.3.

These modifications were implemented by The MathWorks Limited at the request of

the author and comprise the pseudocode described in Algorithm 1. In the flowchart in

Figure 4.3 this is encompassed in the Rank by Preference box if the PPAFF option is

selected. The pseudocode relates to Preferability in Definition 4.1 as follows:

• obj ipref = obj ifdom | (obj ifeq ∧ obj ifpop) relates to the first part of Equation

4.3, i.e. (u
u
_
r p< v

u
_
r ) ∨

{
(u

u
_
r = v

u
_
r ) ∧

[
(v

u
^
r � g

u
^
r ).

• obj isdom = obj is ≺ obj pops relates to the last part of Equation 4.2, i.e.

(u
u
^
r p< v

u
^
r ).

There are several points to be made about the subsequent process steps in the

flowchart in Figure 4.3:
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Figure 4.3: NSGAII modified to incorporate the Progressive Progressive Articulation
method of Fonseca and Fleming (1998a) (PPAFF).
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Algorithm 1 PPAFF

obj pops = obj pop ≤ goals The objective components that meet (‘s’)
obj popf = obj pop > goals and exceed (‘f’) the goals respectively.

For each objective individual, obj i,
For each unique priority from highest to lowest,
obj ifdom = obj if ≺ obj popf The objective components that exceed the goals

and dominate the corresponding objective
components in the rest of the population.

obj ifeq = obj if ≡ obj popf The objective components that exceed the goals
and equal the corresponding objective
components in the rest of the population.

obj ifpop = obj pops > goals The objective components of the population that
exceed the goals corresponding to the
objective components that meet the goals.

obj ipref = obj ifdom | (obj ifeq ∧ obj ifpop) The preferability of obj i according
to the Comparison Operator.

If any remaining individuals exist and priority level = 1
obj isdom = obj is ≺ obj pops The objective components that meet the goals

and dominate the corresponding objective
components in the rest of the population.

update obj ipref matrix Update preference status of each objective
individual.

rank(obj i) = obj ipref For each objective individual record the
individuals preferable to it.

rank = sum(rank) + 1 The rank of an objective individual is the
number of individuals preferable to it.

• In the Crowding distance fitness assignment block: if Gen > 0 AND NSGAII,

assign fitness using crowding distance until population filled. If population > N,

choose N fittest solutions.

• In the Archive population block: the current population is constrained fast

non-dominated (CFND) sorted (as with NSGAII), appended to the archive, the

archive CFND-sorted and the resulting archive truncated to the same size as the

population. Although this use of CFND sorting is inconsistent with the PPAFF

path, the archive is still a non-dominated population. Resolution of this

inconsistency has been left for future work.

• In the Make new population block: if Gen > 0 AND NSGAII,
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New Population = Parent + Child Populations.

4.4 Cluster Population

Having generated a Pareto-Optimal Population (POP) using the modified NSGAII,

the next stage of the MOODM process (Figure 4.1) is to partition the POP into

groups or clusters of like-solutions. As justified in Section 3.3.3, the k*-Means

clustering algorithm is used for this task in this research programme. In the following

sections an explanation is provided of the practical aspects of applying this algorithm,

namely parameters, usage and cluster verification.

4.4.1 k*-Means Algorithm Parameters

• Initial number of clusters. The algorithm assumes that the initial number

of clusters is greater than the correct number of clusters. While the correct

number of clusters is not known a priori, setting this number too high will just

waste computational expense. The default value is 10.

• Learning rate. This is the rate at which the cluster centres and

corresponding covariance matrices are learnt. The default value is 0.001.

• Convergence tolerance. This is the difference between successive values of

the Maximum Likelihood function minimised by the algorithm. When this

difference is less than the convergence tolerance the clustering is deemed to have

converged and terminates. The default value is 0.1

• Maximum iterations. This is the maximum number of iterations the

algorithm runs for before it terminates. The default value is 1000.

All the default values have been recommended from testing by the developer of the

k*-Means Matlab r© software (Cary, 2008) and were derived from simulation testing.

4.4.2 Stochastic Aspects

While the initial number of clusters is specified, the location (or centres) of these

clusters is randomly initialised. Subsequently, the cluster centres and covariance

matrices are updated iteratively. Just like with MOEAs (Purshouse, 2003), the
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stochastic nature of this algorithm justifies running it a number of times to gain

confidence that the results are reliable. Consequently, the clustering verification

process described in the following section has been designed to ensure consistent and

correct results. With many objectives and possible large population sizes, the

computational demands may be significant and deserve consideration in deciding how

many clustering runs are to be run.

4.4.3 Cluster Verification Rules

Providing the population (resulting from the optimisation) is not too large, it has

been found that is efficient and effective to run the clustering several times from

different initial numbers of clusters as demonstrated in the following case study.

Following the clustering, FAST-MCD (Rousseeuw and Van Driessen, 1999) is used to

identify outliers and hence robust Principal Components (see Section 3.3.6); the

combination of clustering followed by FAST-MCD is referred to as robust k*-Means

clustering. Finally, the bounds of the data within each cluster are examined to

understand if it is justified to keep all clusters. These guidelines have been distilled

into a number of Cluster verification Rules: CR1-4 as follows and were applied to the

final POP resulting from the multi-objective optimisation. (This POP will be denoted

as the large POP from this point on).

CR1 Apply robust k*-Means clustering to the large POP from different initial

numbers of clusters, cs. This should result in the same final number of clusters,

cf .

CR2 Randomly sub-sample the data in each cluster resulting from the large POP,

assemble into smaller POPs and apply robust k*-Means clustering to each. For

each of these smaller POPs this should result in the same final number of

clusters, cf , which should be the same as cf from CR1.

CR3 Compare centres and correlations for each of the smaller POPs. There should

be good agreement between corresponding clusters in the different POPs. Select

the smallest POP which provides adequate agreement of centres and

correlations to the large POP.

CR4 With the selected POP compare cluster memberships and bounds to justify the
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retention of all clusters.

Note: random sub-sampling can be achieved using the Matlab r© routine randperm,

which returns a pseudorandom permutation of the input matrix.

4.5 Apply PCA to identify Redundant Objectives within

each Cluster

The first step in this process is to check the ratio of the largest to smallest eigenvalue

(also known as condition number (Montgomery and Peck, 1991)) as evidence of a

linear dependency. As discussed in Section 3.5.2, if the condition number is

sufficiently high, then one of the objectives may be discarded. In such a situation and

where objective priorities are specified, the obvious choice would be to discard the

lowest priority from the set of objectives in the principal component with a low

eigenvalue. Part of the PCA process is to identify those Principal Components (PCs)

which explain most of the variance in the cluster data. A simple cumulative

percentage of total variation is calculated and a threshold of approximately 95% was

used to reject insignificant PCs. The eigenvector coefficients (or factor loadings) of

the objectives for each PC are rotated to allow better interpretation and identification

of the objectives in harmony and conflict. Heuristic decision-making rules have been

developed, which in conjunction with objective priorities, if available, are used to

identify redundancy. Finally, it is necessary to check that the retained objectives

make sense in terms of expected trade-offs, if known. Such principles have been

summarised into a series of Objective reduction Rules: OR1-3 below, which were

applied to each cluster after the Cluster verification Rules.

For each cluster:

OR1 Apply PCA to generate npc PCs. Order the resulting eigenvalues, λ, and

determine if there is sufficient evidence of linear dependency using the test:

λ1/λi ' 10000, for i = 2 . . . npc. For each of the pth PCs, which do qualify as

near-linear dependencies, examine the corresponding eigenvector and from the

coefficients that are not near-zero, select one of the objectives to discard (use

the rules OR3a)-c) and/or if objective priorities are specified, select the

objective with the lowest priority). Reapply PCA to the remaining objectives to
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generate new PCs.

OR2 Determine the cumulative percentage of total variation for the PCs and retain

those rpc PCs that contribute more than a threshold, trpc, where trpc ≈ 95%.

OR3a) If two or more PCs are retained, rotate the eigenvectors, Vp using the

VARIMAX transformation (Kaiser, 1958). If only one PC is retained, this

represents a line in the objective space and therefore cannot be rotated. Use as

a test of significance: eigenvector coefficient, vp
m > m−0.5 for m objectives. (If

the PC axes formed a hyper-sphere then all would contribute equally to the

variance in the data).

OR3b) For each PC, if the significant vp
ms have the same sign, the corresponding

objectives are in harmony. Of these objectives, retain the objective with the

significant eigenvector coefficient of greatest magnitude. This rule can be

compromised in favour of higher priority objectives.

OR3c) For each PC, if the significant vp
ms have different signs, the corresponding

objectives are in conflict. Of these objectives, retain the objective from each

group with the significant eigenvector coefficient of greatest magnitude. This

rule can be compromised in favour of higher priority objectives.

4.6 Continue Optimisation per Cluster with Reduced

Objectives

If objective reduction within a cluster has been achieved, then it is important to

preserve the correlations between objectives whilst not overly constraining the

subsequent search for improved solutions. This has been achieved by using the cluster

hyper-ellipsoidal constraint (see Equation 3.13) developed in the first stage

optimisation as an additional constraint in subsequent optimisations.
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4.7 A Simplified Real-World Example

4.7.1 Problem Formulation

This problem concerns calibration of the primary (or ‘base’) actuator settings for a

modern diesel engine control system. The objective functions used in this base

calibration optimisation case study were built from empirical engine models. These

were developed from experimental data collected on a 2.2 litre in-line four cylinder

turbocharged common-rail passenger car engine. The data was collected at a single

operating condition defined by an engine speed of 1723 RPM, an engine brake torque

of 97 Nm, stabilised (fully warm) operating temperatures. The resulting models

comprised:

• SFC - corrected specific fuel consumption (g/kWh), which gives a measure of

fuel consumption normalised by the engine power output to allow comparison to

engines of differing capacity and design (Heywood, 1988).

• Parts - or particulate emissions (g/h).

• NOx - or nitrous oxide emissions (g/h).

• HC - or hydrocarbon emissions (g/h).

• CO - or carbon monoxide emissions (g/h). All four of these emissions quantities

are required to meet legislated limits and so, could be set as constraints.

However, setting these quantities as objectives to be minimised may provide an

opportunity to reduce exhaust after-treatment system cost.

• Noise - or combustion noise (dBA) (Brooks et al., 2005). This is formulated as

the absolute difference from a noise target, which itself is a function of engine

speed and engine torque. An acceptable upper limit for this absolute difference

is 3 dBA.

All models had the following inputs, all of which were used as decision variables:

• B - turbocharger boost pressure (hPa).

• M - main injection timing (deg.).
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• S - pilot separation (µs), i.e. the difference in injection timing between the end

of the pilot and start of the main injection.

• Q - pilot quantity (mg), quantity of fuel delivered by the pilot injection.

• P - common rail fuel pressure (kPa).

• E - EGR (mg), exhaust gas recirculation.

In order to visualise the results, a smaller three-objective problem was considered,

where the objective functions were SFC, Parts and NOx, which were all minimised

subject to the model boundary constraint, model bdry. This model boundary is an

envelope wrapped around the boundary of the data used to build the models to

indicate model extrapolation (MathWorks, 2008a). The model boundary can thus be

used as a constraint to ensure that the models are not extrapolated. In other words,

this ensures that the model boundary constrains the decision variables to lie within

the range of the test data used to build the empirical models (objective functions).

The constraint is defined as model bdry ≤ 0 and is applied in the modified NSGAII

search process in the Archive population block (see Section 4.3.3) where the current

population is constrained fast non-dominated (CFND) sorted such that the search is

biased against extrapolated or infeasible solutions.

The NSGAII algorithm modified to incorporate preference articulation of Fonseca and

Fleming (1998a) (PPAFF) was used with the following options and parameters

specified:

• Number of generations: 2000.

• Population size: 2000 - both of these first two parameters were chosen to

provide a reasonable computational effort, i.e. it took less than an hour to run;

in addition, while a population size of at least 500 was required based on

findings from the clustering simulation in Section 3.3.5, the computational

expense of such a population size was considered acceptable to be consistent

with Cluster verification Rule CR2.

• External archive used and updated every generation (Laumanns et al., 2002).

• Selection operator: tournament of size 2.
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• Crossover operator: SBX (Deb and Agrawal, 1995) with probability: 0.7 and

distribution index: 20

• Mutation operator: polynomial (Deb and Goyal, 1996) with probability: 0.17

and distribution index: 20 (Deb, Thiele, Laumanns and Zitzler, 2002; Khare

et al., 2003).

• Minimum and maximum range limits on the decision variables are listed in

Table 4.1.

• Initially all the objectives were minimised subject to the constraint, which

corresponds to the constrained minimisation formulation in the PPAFF method

of Fonseca and Fleming (1998a). Despite model bdry being defined as a

constraint in the engineering context of formulating the optimisation problem,

the PPAFF approach treats the constraint as the highest priority objective,

which must be satisfied first before minimisation of the lower priority objectives.

The resulting initial goals and priorities are shown in Table 4.2, where the

higher the number, the higher the priority.

Table 4.1: Decision variable ranges.

Decision
Variable

Units
Ranges

Minimum Maximum

B hPa 1014 1035
M deg. -3.42 2.57
S µs 5100 7140
Q mg 0.6 3
P kPa 246293 374551
E mg 292 503

4.7.2 Three-Objective Diesel Problem Results

Clustering and Verification

The resulting Pareto-optimal front is displayed in Figure 4.4. As shown, the

Pareto-optimal solutions have been robustly clustered into two groups. For the
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Table 4.2: Initial goals and priorities for the three-objective diesel problem, where
the last row represents the constraint.

Objective Goal Priority

SFC −∞ 1
NOx −∞ 1
Parts −∞ 1

model bdry 0 2

Figure 4.4: 3D Pareto-optimal front from 3-objective diesel problem split into clusters.

clustering of the Pareto-Optimal Population (POP) resulting from the optimisation,

the k*-Means parameters were set to their default values. The exception was the

Maximum Iterations, which was set to 2000 in an effort to ensure the algorithm had

sufficient iterations to converge with the larger populations specified here compared to

those used previously in simulation testing.

The clustering into like-solutions can be more easily identified from pairwise plots of

the objectives as shown in Figure 4.5. Cluster 1 has low diversity in SFC and Parts

but high diversity in NOx, whereas Cluster 2 has the opposite - low diversity in NOx,

but high diversity in SFC and Parts. Obviously, with such a relatively low

dimensional problem and utilising such scatter plots, it can be straightforward to
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Figure 4.5: Pairwise plot of Pareto-optimal front from 3-objective diesel problem show-
ing clustering of like-solutions.

visualise and hence verify that the clustering has been successful both in terms of the

location and number of clusters. However, for higher-dimensional problems the scatter

plot approach to visualising the Pareto-Optimal front is more difficult to interpret for

the DM and alternative visualisation methods have been used (Miettinen, 1999; Deb,

2001). One such approach is that of Parallel Coordinates Plots (Inselberg, 1985).

Parallel coordinates plots of the two clusters are shown in Figures 4.6 and 4.7. Two

plots are required for the two different objective orders possible. Just as with scatter

plots, it is possible to see evidence of the two clusters and such plots can be helpful to

indicate the number and location of clusters, but can require some interpretation,

particularly where the clusters overlap. As the use of scatter and parallel coordinates

plots demonstrate, it is possible to verify the number and location of clusters, but it

would be altogether more difficult to determine the number and location of clusters

without any a priori knowledge. This is where algorithms such as k*-Means (Cheung,

2003), which automatically determine the number and location of clusters are very

useful. The Cluster verification Rules from Section 4.4.3 were applied to verify the

number and location of clusters of like Pareto-Optimal solutions, the conclusions from
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Figure 4.6: Parallel Coordinates plot of Clusters 1 and 2 for objective order: SFC,
NOx, Parts.

Figure 4.7: Parallel Coordinates plot of Clusters 1 and 2 for objective order: SFC,
Parts, NOx.
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which are listed below. The clustering has been repeated from various initial numbers

of clusters and on different size Pareto-optimal population sizes with the results

shown in Table 4.3.

Table 4.3: Comparison of clusters resulting from the POP of 2000 with those of ran-
domly sub-sampled POPs.

Cluster Property Population Cluster 1 Cluster 2

Centres

2000 239.5 42.3 2.0 265.2 9.7 26.5
1000 239.8 41.5 2.0 264.2 10.1 25.7
500 239.5 43.7 1.9 266.1 9.4 27.7
250 240.6 39.4 2.2 265.2 9.8 26.0
100 241.2 38.5 2.5 264.8 9.7 26.5

Correlation
Matrices

2000
1 1

-0.86 1 -0.95 1
0.41 -0.65 1 0.91 -0.90 1

1000
1 1

-0.86 1 -0.95 1
0.43 -0.65 1 0.91 -0.90 1

500
1 1

-0.87 1 -0.94 1
0.43 -0.60 1 0.91 -0.92 1

250
1 1

-0.88 1 -0.94 1
0.51 -0.65 1 0.89 -0.92 1

100
1 1

-0.91 1 -0.96 1
0.60 -0.67 1 0.86 -0.89 1

• Applying CR1, robust clustering was repeated on the same population of 2000

Pareto-optimal solutions from cs: 4, 5 three times, 6 and 8. All runs resulted in

a cf = 2.

• Applying CR2, one of the pairs of clusters (the second run from a cs = 5)

resulting from the application of CR1 to the POP of 2000, was randomly

sub-sampled using the Matlab r© routine randperm into smaller POPs of sizes:
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1000, 500, 250 and 100. Robust clustering (retaining 95% of the data) was run

on all of the POPs and all yielded cf = 2.

• Applying CR3,

– The cluster centres for Objectives 1-3 were determined and in comparison

were broadly similar for all POPs, as can be seen in Table 4.3. However,

closer examination of Cluster 1 reveals that some divergence in centres is

evident with the POPs of 250 and 100 compared to that of 2000.

– Since the PCA was based on the correlation matrices (in lower triangular

form), these were calculated for all POPs and had broadly similar

magnitude and structure, as can be seen in Table 4.3. Again, further

inspection of the smaller POPs shows some evidence of divergence from the

correlation matrices of the POP of 2000.

Consequently, this divergence in centres and correlations justified the selection

of the POP of 500 as the smallest POP providing adequate agreement with the

POP of 2000.

• Applying CR4 to the selected POP of 500, Cluster 1 had 232 members while

Cluster 2 had 268, so both had significant membership. In order to compare

objective ranges in the POP of 500, the upper and lower bounds were

determined. In terms of minimising objectives with a lower and ideally smaller,

range:

– Cluster 1 was better for Objectives 1 (SFC) and 3 (Parts).

– Cluster 2 was better for Objective 2 (NOx).

Therefore both clusters were retained. These results are shown in Table 4.4.

Principal Component Analysis and potential Objective Reduction

In order to establish any opportunity for objective reduction, the objective reduction

rules previously defined in Section 4.5 was followed for each cluster, the results for

which are displayed in Table 4.4.
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Table 4.4: Clustering and PCA results for the selected POP. For each cluster, the
eigenvalues are listed in Principal Component order (largest first), followed by the
corresponding cumulative percentage of total variation. Also, the eigenvectors and as
appropriate, rotated eigenvectors, are listed by objective for the retained PCs with the
selected significant eigenvector coefficients shown shaded.

Cluster 1 Cluster 2

Cluster Membership 232 268

Cluster Bounds
Upper 255.4 99.6 8.3 283.4 18.1 56.2
Lower 229.3 17.5 0.1 247.0 5.7 5.4

PC Eigenvalues (λp)
2.2894 2.8480
0.6077 0.0967
0.1030 0.0553

Cumulative % of Total
Variation

76.3 94.9
96.6 98.2
100 100

PCs retained PC1 PC2 PC1

Eigenvectors (vp)
Obj1 -0.5957 -0.4902 -0.5783
Obj2 0.6332 0.2008 0.5805
Obj3 -0.4942 0.8482 -0.5732

Rotated Eigenvectors (vp′)
Obj1 -0.7599 -0.1322
Obj2 0.6500 -0.1372 n/a
Obj3 -0.0122 0.9815

Objective Reduction Rules applied to Cluster 1

1. Applying OR1, λ1/λ3 = 22.2, so there is no evidence of a near-linear

dependency.

2. Applying OR2, t2 ≈ 95%, i.e. retain the first two PCs, which account for

approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), the eigenvectors for the two retained PCs were rotated and

the threshold for the test of significance is 3−0.5 = 0.5774.

4. Applying OR3c) to PC1, the rotated eigenvector coefficients (shaded in Table

4.3), v1
1 and v1

2 exceed 0.5774 in magnitude and thus are significant. They have

opposite signs and so are in conflict. Therefore, both Objectives 1 (SFC) and 2

(NOx) are retained.
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5. Applying OR3b) to PC2, only the rotated eigenvector coefficient, v2
3 is

significant and so Objective 3 (Parts) is also retained.

Thus, there was no opportunity for objective reduction in Cluster 1. It is useful to

refer back to Figures 4.4 and 4.5 to verify these conclusions with regard to Cluster 1.

It can be seen that conflict is present between all objectives in the region where NOx

is low, justifying their retention in Cluster 1. However, if all of Cluster 1 is

considered, it can be argued that the conflict between Objectives 1 (SFC) and 2

(NOx) is stronger than between 2 (NOx) and 3 (Parts). This is supported by the fact

that the majority (76%) of the cumulative percentage of total variation is accounted

for by the first PC, and (applying OR3c) to the unrotated eigenvector) only

Objectives 1 (SFC) and 2 (NOx) would have been significant and retained.

Objective Reduction Rules applied to Cluster 2

1. Applying OR1, λ1/λ3 = 51.5, so there is no evidence of a near-linear

dependency.

2. Applying OR2, t1 ≈ 95%, i.e. retain the first PC only. Note this means that the

PC represents a line in objective space and cannot be rotated.

3. Applying OR3c) to PC1, all three objectives were similar to the threshold

(0.5774) for the test of significance and Objectives 2 (NOx) and 3 (Parts) were

retained (in preference to Objectives 1 and 2) as there are legislated limits on

these quantities.

Again, it was useful to refer back to Figures 4.4 and 4.5 to verify these conclusions

with regard to Cluster 2. It can be seen that there is evidence of harmony between

Objectives 1 (SFC) and 3 (Parts) as supported by the fact that the eigenvector

coefficients for these objectives have the same sign. In addition, it could be seen that

conflict exists between Objectives 2 (NOx) and 3 (Parts).

Further optimisation within Cluster 2 In the previous section the number of

objectives in Cluster 2 was reduced from three to two. Therefore, further optimisation

was carried out on the two remaining objectives of NOx and Parts. The final

population resulting from the original optimisation was used as the initial population
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for the further optimisation. In addition, a hyper-ellipsoidal cluster bound constraint,

cluster bdry, was determined (see Section 4.6) in an attempt to ensure that the

objective search space would remain within Cluster 2, and the corresponding

objective correlations, i.e. harmony and conflict, would be preserved. The problem

formulation used was the same as in Section 4.7.1, except that the maximum number

of generations was reduced to 500 to reflect the reduced number of objectives and yet

still provide a reasonable computational effort. The corresponding goals and priorities

are listed in Table 4.5 and show the additional cluster bdry constraint, which like the

model bdry constraint has the same highest priority and must be satisfied first before

minimisation of the lower priority NOx and Parts Objectives, i.e. a constrained

minimisation formulation.

Table 4.5: Goals and priorities for the reduced, two-objective diesel problem.

Objective Goal Priority

SFC −∞ 0
Parts −∞ 1
NOx −∞ 1

model bdry 0 2
cluster bdry 0 2

It should be noted that for the discarded Objective, SFC the priority was set to 0,

which means:

• that it was ignored, i.e. not included in the modified NSGAIIs determination of

objective fitness, and

• it was required to determine the ellipsoidal cluster boundary constraint, since

this was defined in the original three-objective space and any lower dimensional

projection would be give an incorrect boundary.

Although it is useful to calculate the value of the discarded objective to ensure its

value has not been degraded with further optimisation of the other two objectives, its

inclusion means that the computational burden has not been reduced with further

optimisation. The resulting population is plotted against the original Cluster 2 in
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parallel coordinates format in Figure 4.8 and in scatter plot format in Figure 4.9. The

parallel coordinates plot shows that while it is possible to select a solution that has a

lower Parts value, this is at the expense of NOx and vice versa, providing evidence of

significant conflict. For the discarded Objective, SFC, the range of solutions has

deteriorated somewhat as allowed by the ellipsoidal cluster constraint, but not

significantly. It is slightly clearer in this three-objective case to examine the scatter

plot, which shows that while the Pareto-optimal front between the preferred and

retained Objectives NOx and Parts has improved with the Stage 2 optimisation, this

has been at the expense of the discarded Objective, SFC.

Figure 4.8: Parallel Coordinates plot of Cluster 2 and the Stage 2 POP resulting from
the (reduced) two-objective optimisation of NOx and Parts in Cluster 2.

It is important to note that while the ellipsoidal constraint has allowed improved

Pareto-optimal solutions with regard to NOx and Parts to be found, it has maintained

the same objective correlations as in Stage 1. That is, SFC and Parts are positively

correlated or are in harmony, whereas the other Objective pairs of SFC/NOx and

NOx/Parts are negatively correlated or in conflict.
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Figure 4.9: Scatter plot of Cluster 2 and the Stage 2 POP resulting from the (reduced)
two-objective optimisation of NOx and Parts in Cluster 2.

Selection of Final Solution and Conclusions from the Objective Reduction

Process

Since with a three-objective problem it is straightforward to visualise, analyse and

interpret pairwise scatter plots, these were used to select a final solution. With higher

dimensional problems parallel coordinates plots are easier to use, in which case the

axes limits can be reduced to focus on preferred solutions. Selection of a final solution

depends on which cluster is selected and what, if any, objective priorities are applied,

with examples given below. In each case, the Data Cursor feature in the Matlab r©

Figure environment was used to identify reasonable compromise solutions, which have

been tabulated in Table 4.6. Figure 4.10 is an example of the pairwise scatter plot for

the first case with the preferred solution identified using the Data Cursor.

As Table 4.6 shows, some improvement in the retained Objectives, NOx and Parts, at

the expense of the discarded Objective, SFC, has been achieved in the Stage 2 POP

in Cluster 2 compared to the solution selected in Stage 1 Cluster 1, where, in

contrast, the SFC is lower at the expense of NOx and Parts. In conclusion, the use of

clustering, PCA and objective preference articulation has allowed the dimensionality
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Figure 4.10: Scatter plot of Stage 1 Clusters 1 and 2 and the Stage 2 POP resulting
from the (reduced) two-objective optimisation of NOx and Parts in Cluster 2. The
solution selected using the Matlab r© Data Cursor feature from the Stage 1 Cluster 1
data is shown in black in the bottom right plot

Table 4.6: Final solutions selected.

Data Group SFC NOx Parts
(g/kWh) (g/h) (g/h)

Stage 1 Cluster 1 251.7 17.9 4.8

Stage 2 POP in Cluster 2 265.4 16.4 2.7
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of the problem to be reduced to enable the search for preferred solutions to progress.

Nevertheless, it was important to show in the further optimisation in Cluster 2, that

while the ellipsoidal cluster boundary did allow the discarded Objective, SFC, to

deteriorate slightly, the harmony with the Parts Objective was maintained.

4.8 Summary

A Many-Objective Optimisation Decision Making (MOODM) Process has been

introduced. This comprises the elements of optimisation, partitioning the

Pareto-Optimal Population (POP) into clusters, and objective reduction using

principal component analysis (PCA) based rules. If objective reduction is achieved

within a cluster, further optimisation with reduced objectives is carried out, subject

to a hyper-ellipsoidal cluster boundary constraint in an attempt to preserve objective

correlations.

The optimisation element utilised the widely used NSGAII algorithm (Deb, Pratap,

Agarwal and Meyarivan, 2002), which was modified to incorporate the Progressive

Preference Articulation method of Fonseca and Fleming (1998a) (PPAFF). This

allows objective goals and priorities to be intuitively and efficiently specified and

shrinks the search space to the DMs region of interest. The clustering element makes

use of the k*-Means algorithm (Cheung, 2003), which automatically determines the

number of clusters in the POP. The clusters represent groups of like-solutions, within

which any local objective harmony can be identified. This is achieved using principal

component analysis (PCA) based rules designed to identify and retain only the most

dominant and/or conflicting objectives.

The MOODM process is demonstrated using a simplified real-world example

comprising a three-objective, single constraint Diesel Engine Base Calibration

optimisation. The process resulted in no objective reduction in the first cluster and a

reduction to a two-objective problem in the second cluster. A solution selected from

the latter POP performed better in the retained objectives (and maintained

correlation with the discarded objective) compared to the former POP.





Chapter 5

Case Study: Diesel Engine Base

Calibration Optimisation

5.1 Introduction

This is the first of two automotive powertrain calibration optimisation case studies

and concerns the optimisation of diesel base engine calibration (Cary, 2003). Vehicles

equipped with diesel engine technology form approximately 50% of the European

automotive market (Herzog et al., 2007). This is due in no small part to the sharp

rise in fuel prices and superior fuel economy offered by diesel technologies. As detailed

in Section 2.9.3, diesel base engine calibration involves adjustment of the control

actuator settings to achieve optimal trade-offs between competing objectives. Such

objectives include fuel consumption as well as legislated emissions and combustion

noise measures. Therefore, diesel base engine calibration represents a fundamentally

important task for manufacturers in a very competitive market.

The six objective problem formulated in this case study was first introduced in

Chapter 4 where it was simplified into a three objective problem to demonstrate the

proposed objective reduction process. After specifying the optimisation problem and

running the optimisation, a clustering analysis is carried out to partition the

Pareto-optimal front. This is followed by a principal component analysis (PCA) and

application of objective reduction rules to each cluster. These are used to exploit any

local objective harmony and to identify the main conflicting objectives. Preference

articulation is used not only to direct the search to a region of interest, but also to
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discriminate between the main conflicting objectives, so that only the highest priority

conflicting objectives are retained. Subsequent optimisation is carried out with

reduced objectives to allow final preferred solutions to be selected and compared.

Further studies are conducted to compare this approach to alternative methods.

These comprise applying the PCA and objective reduction process on the whole

population, varying the threshold for selecting Principal Components and finally, an

exclusive application of the Progressive Preference Articulation (PPA) method of

Fonseca and Fleming (1998a).

5.2 Six Objective Diesel Problem Formulation

The full six-objective diesel problem as described in section 4.7.1 requires the

minimisation of the following objectives:

• SFC (g/kWh).

• NOx (g/h).

• Parts (g/h).

• HC (g/h).

• CO (g/h).

• Noise (dBA).

The model boundary constraint, the parameter settings for NSGAII, the decision

variables and their bounds were the same as for the three-objective problem as

defined in Section 4.7.1. The exceptions were that the population size was increased

to 4000 and the number of generations was increased to 5000 to provide a reasonable

computational effort. The computational expense was considered acceptable, i.e. the

optimisation took approximately three hours on a PC with an Intel r© Core
TM

2 Duo

CPU T8300 2.40 GHz processor.

All the objectives were minimised subject to the constraint. Realistic preferences were

applied to take into account that the emissions Objectives (NOx, Parts, HC and CO)

have legislated limits and are therefore considered as being more important than SFC

or noise. Furthermore, of these emissions Objectives, NOx and Parts have greater
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Table 5.1: Initial goals and priorities for the six-objective diesel problem, where the
last row represents the constraint. The highest(lowest) Priority number indicates the
highest(lowest) priority objective.

Objective Goal Priority

SFC −∞ 1
NOx −∞ 3
Parts −∞ 3
HC −∞ 2
CO −∞ 2

Noise 3 1
model bdry 0 4

priority than HC or CO. This is because the latter can be reduced using exhaust

after-treatment systems, e.g. catalytic convertors, while the former have to be

minimised at source (Brooks et al., 2005). Nevertheless, it is still important to

minimise HC and CO emissions as this will have a positive cost benefit to the design

of the after-treatment system. Following the constrained minimisation problem

formulation as defined by Fonseca and Fleming (1998a), this means that the

constraint was assigned as the highest priority objective, with the emissions objectives

at intermediate priorities and the SFC and noise objectives at the lowest priority. The

priorities are listed in Table 5.1.

5.3 Six Objective Diesel Problem Results

5.3.1 Clustering and Verification

As with the three-objective problem, the Cluster verification Rules from Section 4.4.3

were applied to verify the number and location of clusters of like Pareto-Optimal

solutions. The k*-Means parameter settings were the same as used previously on the

three-objective problem in Section 4.7.2.

In addition, the clustering has been repeated from various initial numbers of clusters

and on different size Pareto-Optimal Population (POP) sizes with the results shown

in Table 5.2 and described as follows:

• Applying CR1, robust clustering was repeated on the same population of 4000
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Table 5.2: Comparison of clusters resulting from the POP of 4000 with those of ran-
domly sub-sampled POPs.

Cluster Property Population Cluster 1 Cluster 2

Centres

4000 251.2 31.8 14.8 6.5 59.4 1.2 282.2 8.4 71.0 6.9 392.0 0.5
2000 251.2 31.7 14.8 6.5 59.4 1.2 282.5 8.3 72.0 6.9 400.5 0.5
1000 251.2 31.5 14.7 6.5 58.8 1.2 281.2 8.7 69.9 6.9 385.8 0.5
500 251.0 31.4 14.2 6.5 56.1 1.1 279.8 9.2 67.2 6.9 366.5 0.5

Correlation
Matrices

4000

1 1
-0.98 1 -0.95 1
0.98 -0.93 1 0.90 -0.97 1

-0.70 0.78 -0.61 1 0.91 -0.79 0.68 1
0.94 -0.88 0.99 -0.52 1 0.88 -0.94 0.99 0.68 1

-0.93 0.97 -0.85 0.73 -0.78 1 -0.94 0.81 -0.76 -0.95 -0.77 1

2000

1 1
-0.98 1 -0.95 1
0.98 -0.93 1 0.88 -0.96 1

-0.71 0.80 -0.62 1 0.91 -0.77 0.64 1
0.94 -0.87 0.99 -0.53 1 0.86 -0.93 0.99 0.63 1

-0.93 0.96 -0.85 0.76 -0.76 1 -0.93 0.80 -0.74 -0.95 -0.73 1

1000

1 1
-0.98 1 -0.95 1
0.98 -0.94 1 0.90 -0.97 1

-0.74 0.83 -0.66 1 0.91 -0.78 0.67 1
0.95 -0.88 0.99 -0.57 1 0.88 -0.94 0.99 0.66 1

-0.94 0.97 -0.87 0.82 -0.79 1 -0.94 0.82 -0.76 -0.96 -0.76 1

500

1 1
-0.99 1 -0.95 1
0.98 -0.95 1 0.91 -0.97 1

-0.77 0.85 -0.69 1 0.91 -0.79 0.71 1
0.95 -0.90 0.99 -0.62 1 0.89 -0.95 0.99 0.70 1

-0.95 0.98 -0.88 0.83 -0.82 1 -0.94 0.84 -0.78 -0.97 -0.78 1

Pareto-optimal solutions from an initial number of clusters, cs: 4, 5 three times,

6 and 8. All runs resulted in a final number of clusters, cf = 2.

• Applying CR2, one of the pairs of clusters (the second run from a cs = 5)

resulting from the application of CR1 to the POP of 4000, was randomly

sub-sampled using the Matlab r© routine randperm into smaller POPs of sizes:

4000, 2000, 1000 and 500. Robust clustering (retaining 95% of the data) was

run on all of the POPs and all yielded cf = 2.

• Applying CR3,

– The cluster centres for Objectives 1 to 6 were determined and in

comparison were broadly similar for all POPs, as can be seen in Table 5.2.
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However, closer examination of the centres, more so for Cluster 2, showed

some divergence of the 500 POP centres from those of the 4000 POP.

– Since the PCA was based on the correlation matrices, these were

calculated for all POPs and had broadly similar magnitude and structure,

as can be seen in Table 5.2. Again, further inspection of the smaller POPs

shows some fairly mild evidence of divergence from the correlation matrices

of the 4000 POP.

Consequently, it was concluded that the POP of 1000 was the smallest POP

providing adequate agreement with the POP of 4000.

Further evidence is provided in the parallel coordinates plots of the POP of

4000 and the sub-sampled POP of 1000, as displayed in Figures 5.1 and 5.2

respectively. Graphically, these plots show similar pattern, range and

harmony/conflict relationships between objectives when the same objective

order is considered. To consider all objective orders would require m(m− 1)

parallel coordinate plots, where m is the number of objectives, i.e. fifteen plots

for six objectives. This would be very cumbersome in practice and is one of the

weaknesses of such plots.

Table 5.3: Cluster data bounds for the selected POP of 1000.

Cluster 1 Cluster 2

Cluster Membership Count 673 327

Cluster Bounds
Upper 264.3 65.2 36.2 6.8 145.5 3.0 297.9 16.2 103.6 7.7 807.8 1.0
Lower 235.0 14.6 1.2 6.1 25.2 0.7 261.1 6.3 28.3 6.3 93.5 0.0

• Applying CR4 to the selected POP of 1000, Cluster 1 had 673 members while

Cluster 2 had 327, so both had significant membership. In order to compare

objective ranges in the POP of 1000, the upper and lower bounds of the data in

each cluster were determined. In terms of minimising objectives with a lower

and ideally smaller, range:

– Cluster 1 was better for Objectives 1 (SFC), 3 (Parts), 4 (HC) and 5 (CO).
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– Cluster 2 was better for Objectives 2 (NOx) and 6 (noise).

Therefore both clusters were retained. These results are shown in Table 5.3.

Figure 5.1: Parallel coordinates plot of the clusters in the original POP of 4000.

5.3.2 Principal Component Analysis and potential Objective

Reduction

Just as with the three-objective problem, the process of Section 4.5 was applied to

each cluster to identify any opportunity for objective reduction.

Objective Reduction Rules applied to Cluster 1

1. Applying OR1, λ1/λ6 = 21495, and this is taken as evidence that the last PC is

a near-linear dependency. In other words, the eigenvector for the PC6 is v6 =

0.0992Obj1− 0.1851Obj2− 0.8101Obj3 + 0.007Obj4 + 0.5464Obj5− 0.0014Obj6,

with the eigenvector coefficients for Objectives 4 and 6 being near zero, as

shown in Table 5.4. Further examination revealed that of the eigenvector

coefficients which are non near-zero, i.e. Objectives 1, 2, 3 and 5, Objective 1
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Figure 5.2: Parallel coordinates plot of the clusters in the sub-sampled POP of 1000.

Table 5.4: PCA results for Cluster 1 in the selected POP of 1000. The eigenvalues are
listed in Principal Component order (largest first). As there is evidence of a near-linear
dependency (λ1/λ6 ≥ 10000), the eigenvector of the last PC is examined for those
objectives, which have non near-zero coefficients. Of these, Objective 1 (SFC) has the
lowest priority (shown shaded) and was thus selected to be discarded.

Cluster 1

PC Eigenvalues (λp)

5.3229
0.5465
0.1189
0.0104
0.0010
0.0002

Eigenvectors (vp)

Obj1 -0.4308 -0.1327 0.0804 -0.3422 0.8145 0.0992
Obj2 0.4306 -0.0874 -0.1797 0.6727 0.5365 -0.1851
Obj3 -0.4189 -0.3354 -0.1850 0.0594 -0.1343 -0.8101
Obj4 0.3507 -0.7546 0.5348 -0.1384 -0.0493 0.0070
Obj5 -0.3997 -0.4928 -0.3577 0.3779 -0.1643 0.5474
Obj6 0.4132 -0.2236 -0.7163 -0.5146 0.0368 -0.0014
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Table 5.5: Clustering and PCA results for the selected POP of 1000, where Cluster
1 has had the number of objectives reduced to five. For each cluster, the eigenvalues
are listed in Principal Component order (largest first), followed by the corresponding
cumulative percentage of total variation. Also, the eigenvectors and as appropriate,
rotated eigenvectors, are listed by objective for the retained PCs with the selected
significant eigenvector coefficients shown shaded.

Cluster 1 Cluster 2

PC Eigenvalues (λp)

n/a 5.3040
4.0112 0.6012
0.6458 0.0601
0.3322 0.0267
0.0104 0.0074
0.0004 0.0006

Cumulative % of Total Variation

n/a 88.4
80.2 98.4
93.1 99.4
99.8 99.9
100 100
100 100

PCs retained PC1 PC2 PC1 PC2

Eigenvectors (vp)

Obj1 n/a n/a -0.4294 -0.1161
Obj2 -0.4922 -0.0159 0.4217 -0.2271
Obj3 0.4830 0.2355 -0.4083 0.4374
Obj4 -0.3346 0.9124 -0.3816 -0.5969
Obj5 0.4562 0.3251 -0.4036 0.4439
Obj6 -0.4521 -0.0782 0.4032 0.4362

Rotated Eigenvectors (vp′)

Obj1 n/a n/a -0.2357 -0.3772
Obj2 -0.4694 0.1491 0.4636 0.1205
Obj3 0.5339 0.0611 -0.5968 0.0428
Obj4 -0.0113 0.9717 0.1264 -0.6971
Obj5 0.5385 0.1544 -0.5978 0.0507
Obj6 -0.4523 0.0769 -0.0012 0.5940

(SFC) had the lowest priority and was therefore discarded. PCA was applied to

the remaining five objectives, the results of which are shown in Table 5.5.

2. Applying OR1 to the remaining five objectives, λ2/λ6 = 8930.8, so there is not

sufficient evidence of a near-linear dependency.

3. Applying OR2, t2 ≈ 95%, i.e. retain the first two PCs, which account for

approximately 95% of the cumulative percentage total variation. Note that two
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PCs account for 93.1% cumulative variation, whereas three PCs account for

99.8%, which is much further away from 95%.

4. Applying OR3a), the eigenvectors for the two retained PCs were rotated and

the threshold for the test of significance is 5−0.5 = 0.4472.

5. Applying OR3c) to PC1, the rotated eigenvector coefficients, v1
2, v

1
3, v

1
5 and v1

6

exceed 0.4472 in magnitude and thus are significant. v1
2 and v1

6 have the same

sign, but Objective 2 (NOx) has higher priority and so is retained. Likewise, v1
3

and v1
5 have the same sign, but Objective 3 (Parts) has higher priority and so is

retained. Both of the retained objectives have their eigenvector coefficients

shown shaded in Table 5.5.

6. Applying OR3b) to PC2, only the rotated eigenvector coefficient, v2
4 is

significant and so the corresponding Objective 4 (HC) is also retained. On

closer examination, it can be seen that the magnitude of v2
3 is nearly 1 and

relatively small for the other objectives in PC2. Further, the corresponding

eigenvector coefficient in PC1, i.e. v1
4 is close to zero in magnitude. This

suggests that Objective 4 is independent, since it dominates PC2 and has

negligible effect in PC1, can be removed from any further multi-objective

optimisation in Cluster 1 and formulated as a single-objective optimisation.

While one two-objective and a single-objective optimisation may be considered

a simpler problem formulation, in the interests of consistency, it was decided to

leave such a simplification for future work.

In summary, in Cluster 1 the objectives were reduced to just three: NOx, Parts and

HC. Evidence of this can be seen in Figure 5.2, which shows harmony between SFC,

Parts and CO and also between NOx and noise.

Objective Reduction Rules applied to Cluster 2

1. Applying OR1 to the remaining five objectives, λ1/λ6 = 8412, so there is not

sufficient evidence of a near-linear dependency.

2. Applying OR2, t2 ≈ 95%, i.e. retain the first two PCs, which account for

approximately 95% of the cumulative percentage total variation.
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3. Applying OR3a), the eigenvectors for the two retained PCs were rotated and

the threshold for the test of significance is 6−0.5 = 0.4082.

4. Applying OR3c) to PC1, the rotated eigenvector coefficients, v1
2, v

1
3 and v1

5

exceed 0.4082 in magnitude and thus are significant. v1
3 and v1

5 have the same

sign, but Objective 3 (Parts) has higher priority and so is retained. Objective 2

is also retained as v1
2 is the only positive significant eigenvector coefficient. Both

of the retained objectives have their eigenvector coefficients shown shaded in

Table 5.5.

5. Applying OR3b) to PC2, only the rotated eigenvector coefficients, v2
4 and v2

6 are

significant and so Objectives 4 (HC) and 6 (noise) are retained.

In summary, in Cluster 2 the objectives were reduced to four: NOx, Parts, HC and

noise. Unlike Cluster 1, evidence of this in Figure 5.2 is not clear. Solutions in

Cluster 2 are well spread for each of the Objectives: Parts, HC and CO, so it is

difficult to visually discern any correlations. NOx appears to be correlated with noise,

but the PCA and objective reduction rules have resulted in NOx being selected in

PC1 and noise being chosen in PC2. This is evidence that it may be difficult to

identify objective correlations with parallel coordinates plots.

Table 5.6: Goals and priorities for the reduced, three-objective diesel problem in Cluster
1.

Objective Goal Priority

SFC −∞ 0
NOx −∞ 2
Parts −∞ 2
HC −∞ 1
CO −∞ 0

noise 3 0
model bdry 0 3
cluster bdry 0 3
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Further Optimisation within Cluster 1

In the previous section the objectives were reduced from six to three: NOx, Parts and

HC. The sub-sampled population resulting originally from the initial six-objective

problem was used as the initial population for further optimisation. Also, as with the

three-objective problem in Section 4.7.2, a hyper-ellipsoidal cluster boundary

constraint, cluster bdry, was used to keep the search within Cluster 1 and preserve

objective correlations. The problem was formulated as before in Section 5.2, except

that the number of generations was reduced to 2000, which was still a reasonable

computational effort given the reduction in objectives. The goals and priorities are

specified in Table 5.6, where the discarded Objectives (SFC, CO and noise) have a

priority set to 0.

The resulting population is plotted against the original Cluster 1 in parallel

coordinates format in Figure 5.3 and in scatter plot format in Figure 5.4. The parallel

coordinates plot shows for the retained objectives, both NOx and HC have improved,

but partially at the expense of Parts (due to the fact that all three objectives

Figure 5.3: Parallel Coordinates plot of Cluster 1, the Stage 2 POP resulting from the
(reduced) three-objective optimisation of NOx, Parts and HC and the selected final
solution.
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Figure 5.4: Scatter plot of Cluster 1, the Stage 2 POP resulting from the (reduced)
three-objective optimisation of NOx, Parts and HC and the selected final solution.

conflict), while the discarded Objectives, SFC, CO and noise broadly show no

deterioration. As with the three-objective problem, the plot indicates that the Stage 1

objective correlations have been maintained in Stage 2. The two-dimensional scatter

plots show this more clearly and suggest that a trade-off solution for NOx and Parts

can be chosen with simultaneously improved HC. The Data Cursor feature in the

Matlab r© Figure environment was used to select such a solution and hence determine

from the final population the corresponding values for the discarded objectives, as

shown in Table 5.8.

Further Optimisation within Cluster 2

In Cluster 2 the objectives were reduced from six to four, i.e. NOx, Parts, HC and

noise. The sub-sampled population resulting originally from the initial six-objective

problem was used as the initial population for further optimisation and an ellipsoidal

cluster bound constraint was used to keep the search within Cluster 2 and preserve

objective correlations. The problem was formulated as before in Section 5.2 and run

for 2000 generations. The goals and priorities are specified in Table 5.7, where the

discarded Objectives (SFC and CO) have a priority set to 0.
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Table 5.7: Goals and priorities for the reduced, four-objective diesel problem in Cluster
2.

Objective Goal Priority

SFC −∞ 0
NOx −∞ 3
Parts −∞ 3
HC −∞ 2
CO −∞ 0

noise 3 1
model bdry 0 4
cluster bdry 0 4

Figure 5.5: Parallel Coordinates plot of Cluster 2, the Stage 2 POP resulting from the
(reduced) four-objective optimisation of NOx, Parts, HC and noise and selected final
solutions from stage 1 and stage 2.
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The resulting population is plotted against the original Cluster 2 in parallel

coordinates format in Figure 5.5 and in scatter plot format in Figure 5.6. The parallel

coordinates plot shows for the retained objectives, that NOx has improved along with

noise at the expense of Parts and HC, whilst the discarded Objectives (SFC and CO)

have both maintained their objective correlations. In summary, no overall

improvement was achieved with this objective reduction.

This is even more clear in the two-dimensional scatter plots. Again, the Data Cursor

feature was used to select solutions. Firstly, a trade-off solution (‘final solution 1’) in

terms of the higher priority Objectives, NOx and Parts, was chosen based on lowest

Parts. As can be seen from the figure, an improved solution (‘final solution 2’) in

terms of Parts can be found in the Cluster 2 from stage 1, albeit that this is at the

expense of NOx. Both of these solutions are displayed in Table 5.8

5.3.3 Conclusions from the Objective Reduction Process

Table 5.8 summarises the results from the objective reduction process applied in each

of the two clusters. Of the two highest priority Objectives (NOx and Parts), final

Figure 5.6: Scatter plot of Cluster 2, the Stage 2 POP resulting from the (reduced)
four-objective optimisation of NOx, Parts, HC and noise and selected final solutions
from stage 1 and stage 2.
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Table 5.8: Final solutions selected.

Stage Cluster Final Solution SFC NOx Parts HC CO noise
(g/kWh) (g/h) (g/h) (g/h) (g/h) (dBA)

2 1 1 249.1 25.8 12.1 5.5 44.7 2.1

2 2 1 294.0 7.3 73.3 7.5 434.0 0.5
1 2 2 261.1 16.2 31.6 6.4 122.2 0.8

solution 1 in Cluster 2 has achieved the lowest NOx, but this was at the expense of

Parts and deteriorated SFC, HC and especially CO. However, in practice, diesel

calibrators tend to prioritise Parts higher (i.e. is more important) than NOx. In this

case, final solution 2 in Cluster 2 is improved for SFC, Parts, HC and CO and only

marginally deteriorated for noise. By comparison, final solution 1 in Cluster 1 is

further improved in Parts (again at the expense of NOx), SFC, HC and CO and

although noise has deteriorated, it is still within the 3 dBA constraint.

An iterative, complexity reduction process comprising the following stages was used

in this case study:

• Multi-Objective Optimisation - using the NSGAII modified to incorporate

the Progressive Preference Articulation (PPA) approach of Fonseca and Fleming

(1998a) to specify objective priorities and goals to direct the search.

• Clustering - to partition the Pareto-Optimal Population to allow any local

objective harmony to be exploited.

• PCA and Objective Reduction - to identify opportunities for objective

reduction within each cluster with the possible application of PPA to

discriminate between the main conflicting objectives.

In summary, the original six-objective optimisation has been split into two smaller

optimisation problems via the complexity reduction process summarised above. Of

these two sub-problems and with further preference articulation, the three-objective

sub-problem was able to provide an improved solution in comparison to the

four-objective sub-problem.
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5.4 Objective Reduction applied without Clustering

The application of clustering as used in the previous section poses an additional stage

in the decision-making process. In addition, PCA and objective reduction rules have

previously been applied to the final population, i.e. without clustering (Deb and

Saxena, 2005). Therefore, it was of interest to explore the latter approach and

compare results on the six-objective diesel problem.

The PCA and objective reduction process of Section 4.5 was applied to the final

population resulting from the optimisation as specified in Section 5.2 to identify any

opportunity for objective reduction. The results are shown in Table 5.9. No attempt

was made to follow the PCA and objective reduction process defined in Deb and

Saxena (2005), since the authors stated that this approach showed some vulnerability

in that not all conflicting objectives could be correctly identified.

1. Applying OR1, λ1/λ6 = 2302, so there is not sufficient evidence of a near-linear

dependency.

2. Applying OR2, t2 ≈ 95%, i.e. retain the first two PCs, which account for

approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), the eigenvectors for the two retained PCs were rotated and

the threshold for the test of significance is 6−0.5 = 0.4082.

4. Applying OR3b) to PC1, the rotated eigenvector coefficients, v1
3, v

1
4, and v1

5

exceed 0.4082 in magnitude and thus are significant. Of this group, v1
4 has the

largest magnitude, is significantly larger than v1
3 or v1

5 (even though Objective 3

has higher priority) and so the corresponding Objective 4 (HC) is retained

(shown shaded in Table 5.9).

5. Applying OR3b) to PC2, the rotated eigenvector coefficients, v2
2, v

2
4 and v2

6

exceed 0.4082 in magnitude and thus are significant. Of this group, v2
2 is largest

in magnitude and priority and so the corresponding Objective 2 (NOx) is

retained.

In summary, the application of PCA and the objective reduction rules has resulted in

the number of objectives being reduced from six in the original final population to
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Table 5.9: PCA results for the final POP without clustering. The eigenvalues are listed
in Principal Component order (largest first), followed by the corresponding cumula-
tive percentage of total variation. Also, the eigenvectors and as appropriate, rotated
eigenvectors, are listed by objective for the retained PCs with the selected significant
eigenvector coefficients shown shaded.

PC Eigenvalues (λp)

4.9241
0.7791
0.2546
0.0354
0.0048
0.0021

Cumulative % of Total Variation

82.1
95.1
99.3
99.9
100
100

PCs retained PC1 PC2

Eigenvectors (vp)

Obj1 -0.4485 -0.0121
Obj2 0.4060 -0.4761
Obj3 -0.4396 -0.0814
Obj4 -0.3226 -0.7226
Obj5 -0.4217 -0.2242
Obj6 0.3985 -0.4406

Rotated Eigenvectors (vp′)

Obj1 -0.3831 0.2335
Obj2 0.0822 -0.6203
Obj3 -0.4133 0.1705
Obj4 -0.6635 -0.4314
Obj5 -0.4758 0.0409
Obj6 0.0951 -0.5864

two. This is considered by the author to be a somewhat drastic objective reduction in

a single step.

Nevertheless, a further optimisation was conducted with the two remaining

Objectives, NOx and HC. The goals and priorities are specified in Table 5.10, where

the discarded Objectives (SFC, Parts, CO and noise) have a priority set to 0. The

initial population was the final population resulting from the original six-objective
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Table 5.10: Goals and priorities for the reduced, two-objective diesel problem resulting
from the application of PCA and objective reduction rules.

Objective Goal Priority

SFC −∞ 0
NOx −∞ 2
Parts −∞ 0
HC −∞ 1
CO −∞ 0

noise 3 0
model bdry 0 3

optimisation. The parameter settings were as before (Section 5.2), but run for 2000

generations. Unlike with the clustering approach, no constraint was applied in an

attempt to preserve objective correlations.

The resulting population is plotted against the original population in parallel

coordinates format in Figure 5.7. The plot shows that while the retained Objective

Figure 5.7: Parallel Coordinates plot of the original POP where all 6 objectives where
minimised and the POP resulting from the minimisation of 2 Objectives (NOx and HC),
which were retained based on PCA and objective reduction only, i.e. no clustering.
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HC has improved, the other retained Objective, NOx, has not. Furthermore, this

improvement in HC has come at the expense of a deterioration in a high priority

Objective, namely Parts, and also noise, where it can be seen that most of the

population exceeds 3 dBA, which was the noise goal in the original six-objective

formulation. In other words, for the most part the noise constraint has been violated.

This can more clearly be seen in Figure 5.8, where there is a clear contrast with

respect to the noise objective of the retained two-objective POP versus the best

cluster identified when clustering, PCA and objective reduction were applied. In the

latter case, an important difference is that the Cluster 1 hyper-ellipsoidal constraint

was applied in an attempt to preserve correlations. Those solutions from the retained

two- objective POP, which did satisfy the 3 dBA noise constraint compared

unfavourably to those from the best cluster identified when clustering, PCA and

objective reduction were applied with regard to all (discarded) objectives with the

exception of NOx. In conclusion, the use of clustering has allowed objective harmony

Figure 5.8: Parallel Coordinates plot of the Cluster 1 stage 2 POP resulting from
clustering, PCA and objective reduction to give three retained Objectives (NOx, Parts
and HC) overlaid on the POP resulting from the minimisation of 2 Objectives (NOx

and HC), which were retained based on PCA and objective reduction only, i.e. no
clustering.
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to be exploited to reduce objectives and search for improved solutions whilst applying

a cluster-based constraint to try and preserve objective correlations. This process has

resulted in a reasonable compromise between the high priority objectives subject to

the noise constraint as opposed to the process without clustering, which has reduced

the objectives, but ignored a high priority objective, mostly violated the noise

constraint and compared unfavourably with regard to the other objectives.

5.5 The Cut-off Threshold for selecting Principal

Components

As stated in Section 3.5.2, the choice of the cut-off threshold in terms of cumulative

percentage of variance is problem dependent and typically in the range of 70-90%

(Jolliffe, 2002). One question which arises is that of which value to choose and what

effect this has on objective reduction. The six-objective diesel problem can be used to

answer this using a couple of alternative cut-off thresholds applied to the PCA results

in Table 5.5.

• Cut-off Threshold = 70%

This would result in the first PCs only, being chosen in Clusters 1 and 2 using

OR2 and thus the eigenvectors could not be rotated. Applying OR3c) to

Cluster 1 results in eigenvector coefficients v1
2 and v1

3 being selected as these are

significant and have the highest magnitude and priority. Applying OR3c) to

Cluster 2 also gives v1
2 and v1

3 as both are significant, the former is the largest

negative eigenvector coefficient and the latter has higher priority than v1
1. In

summary, in both clusters the problem has been reduced in dimension from six

objectives to two, which is a somewhat drastic objective reduction.

Furthermore, if only one PC is selected based on this threshold, as is the case

with the three- and six-objective diesel problems, rules OR3b) and OR3c)

dictate that the problem will be reduced to either one or two objectives, which

is a severe dimension reduction.

• Cut-off Threshold = 100%

This means all the PCs would be chosen. When the objective reduction rules

are applied then it is possible that no objective reduction will be achieved. This
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Table 5.11: PCA results on the two clusters resulting from the selected POP of
1000, where Cluster 1 has had the number of objectives reduced to five. For each
cluster, the resulting eigenvectors are displayed where the shaded coefficients are
those selected from application of the objective reduction rules.

Cluster 1 Cluster 2

PCs retained PC2 PC3 PC4 PC5 PC6 PC1 PC2 PC3 PC4 PC5 PC6

Eigenvectors (vp)

Obj1 n/a n/a n/a n/a n/a -0.4294 -0.1161 0.2817 0.4560 -0.7014 -0.1513
Obj2 -0.4922 -0.0159 -0.2553 -0.7829 -0.2816 0.4217 -0.2271 -0.6236 -0.0552 -0.5613 0.2522
Obj3 0.4830 0.2355 -0.2912 0.0701 -0.7884 -0.4083 0.4374 -0.0891 0.0038 -0.0275 0.7958
Obj4 -0.3346 0.9124 0.1999 0.1249 0.0049 -0.3816 -0.5969 0.1473 -0.6695 -0.0759 0.1493
Obj5 0.4562 0.3251 -0.5365 -0.3152 0.5468 -0.4036 0.4439 -0.4756 -0.3670 -0.1464 -0.5077
Obj6 -0.4521 -0.0782 -0.7226 0.5168 0.0126 0.4032 0.4362 0.5253 -0.4539 -0.4062 0.0141

is demonstrated with the six-objective problem with the results shown in Table

5.11, where application of the objective reduction rules has resulted in all six

objectives being retained as shown by the shaded coefficients.

As shown with the six-objective problem, neither extreme of a 70 or 100% threshold is

suitable for acceptable progressive dimension reduction. What is sought is a threshold

where the majority of the variation is retained, but the objective reduction is not too

drastic. In this case, a threshold of 95% seems a reasonable compromise and has given

acceptable dimension reduction for both the three and six-objective problems.

As an insight into the objective dimension reduction opportunity, the impact of

cut-off threshold on the number of selected PCs is shown in Figure 5.9. It can be seen

Figure 5.9: Effect of cut-off threshold on the number of PCs selected.
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that a cut-off of approximately 95% gives a progressive reduction in the number of

PCs and via the objective reduction rules, a potentially similar reduction in the

number of objectives (see discussion under ’Proportion of Variance’ in Section 3.5.2

together with guidance on the choice of threshold, which is provided later).

5.6 An Application of Progressive Preference

Articulation

One alternative method used as a countermeasure for the lack of effective search in

many-objective optimisation (Fleming et al., 2005) is the Progressive Preference

Articulation technique of Fonseca and Fleming (1998a) (PPAFF).

This approach has been initiated with the sub-sampled POP of size 1000 as described

in Section 5.3.1. This sub-sampled POP was derived from the original POP of size

4000, which resulted from the optimisation formulated in Section 5.2 and was chosen

to aid visualisation. A Parallel Coordinates plot of this sub-sampled POP is shown in

Figure 5.10, from which there is some suggestion of harmony (objective pairs

improve/deteriorate together) between SFC and Parts and between NOx and noise.

This is much more evident in Figure 5.11 where the same data is shown, but with the

Figure 5.10: Parallel Coordinates plot of the sub-sampled POP of 1000 from the original
POP of 4000.
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Figure 5.11: Same data as Figure 5.10, but with with re-ordered objectives to show
evidence of harmony between SFC and Parts and between noise and NOx.

Figure 5.12: The population resulting from further optimisation with SFC discarded
and noise changed to a constraint showing evidence of harmony between Parts and CO.
Note: the objectives have been re-ordered.
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Figure 5.13: The population resulting from further optimisation with SFC and CO
discarded and noise changed to a constraint. Note: the objectives have been re-ordered.

Figure 5.14: The same data as Figure 5.13, but with the population filtered for reduced
Parts (blue dashed lines) and a preferred lowest Parts solution selected (red solid line).
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Figure 5.15: The same starting POP of 1000 as in Figure 5.10, but with re-ordered ob-
jectives (blue), the preferred solution from Figure 5.14 (red) and the preferred solution
from clustering/PCA (green).

objectives re-ordered so that the harmonious ones are adjacent and the lines between

them are somewhat parallel. The subsequent steps to identify an optimal solution are

listed below and refer to Table 5.12, which details the decision maker’s preferences in

terms of goals and priorities.

1. 1st Objective Reduction

Table 5.12: Goals and priorities for original and subsequent reduced objective optimi-
sations using Progressive Preference Articulation.

Objectives
Original

Optimisation
1st Objective
Reduction

2nd Objective
Reduction

Goal Priority Goal Priority Goal Priority

SFC −∞ 1 −∞ 0 −∞ 0
NOx −∞ 3 −∞ 2 −∞ 2
Parts −∞ 3 −∞ 2 −∞ 2
HC −∞ 2 −∞ 1 −∞ 1
CO −∞ 2 −∞ 1 −∞ 0

noise 3 1 3 3 3 3
model bdry 0 4 0 3 0 3
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With reference to Figure 5.11 and the harmonious objectives, SFC can be

discarded as it has a lower priority than Parts and although noise has a lower

priority than NOx, the noise objective has a goal of 3, which must be achieved

and so was converted to a constraint. According to the PPA method of Fonseca

and Fleming (1998a) (PPAFF), this is realised by increasing the priority of the

noise objective (in this case from 1 to 3), so that solutions must satisfy this

constraint first. A subsequent optimisation was carried out, formulated as

before (Section 5.3.2), but run for 2000 generations with the goals and priorities

as specified in Table 5.12.

2. 2nd Objective Reduction

The results of the 1st Objective Reduction are plotted in Figure 5.12 and show

evidence of harmony between Parts and CO, with a suggestion that HC and

NOx are also harmonious. The discarded Objective SFC has been included in

the plot to demonstrate that after further optimisation, it is still in harmony

with Parts and likewise with the noise constraint and NOx. It was decided to

discard CO as it is lower priority than Parts and consistent with a progressive

approach, retain HC, which is a lower priority than NOx. A subsequent

optimisation was carried out, formulated as the 1st Objective Reduction with

goals and priorities as specified in Table 5.12. The results are plotted in Figure

5.13, which show that the harmony between the discarded Objectives of SFC

and CO with Parts has been preserved and that there is some evidence of

conflict between Parts, HC and NOx. It can also be observed that the effect of

discarding CO has significantly decreased NOx at the expense of Parts, which is

further evidence of the conflict between these objectives.

3. Selection and Comparison of a Final solution

Of the two highest priority Objectives, Parts and NOx, as previously stated in

Section 5.3.3, diesel calibrators attach more importance to Parts and so it was

decided to filter the solutions to identify those with a lower Parts value (less

than 35 g/kWh). This resulted in the plot in Figure 5.14, from which a single

preferred solution in terms of lowest Parts was selected, shown in red. It is of

interest to compare this solution in the context of the sub-sampled POP of 1000

and also in comparison with the selected solution (shown in green) resulting
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from the clustering and PCA approach as plotted in Figure 5.15.

Several conclusions can be drawn from this comparison:

• Both the PPAFF and clustering/PCA approaches have explored a new region of

objective space as demonstrated by the distinctly lower HC value of the selected

solutions compared to the sub-sampled POP of 1000.

• The clustering/PCA solution is broadly comparable with that achieved by

PPAFF and provides evidence of the efficacy of the former method.

• PPAFF does not exploit any local harmony for potential objective reduction.

• PPAFF relies on the DM being able to visually discern objective harmony and

conflict from a parallel coordinates plot, which may be difficult and may involve

some subjectivity. In contrast, the proposed clustering/PCA approach does not

rely on visualisation, but instead utilises a set of rules and if specified, priorities

to allow the DM to identify harmony and possible objective reduction.

5.7 Summary

A real-world diesel engine base calibration optimisation was carried out in this case

study. This was a six-objective version of the problem introduced in Chapter 4.

Likewise, the same principle of exploiting local harmony for objective reduction was

used. A process of clustering and sub-sampling provided evidence of two clusters and

that a Pareto-Optimal Population (POP) of 1000 was adequate, respectively.

Objective reduction using PCA-based rules and objective priorities was performed in

each of the two clusters, resulting in three- and four-objective sub-problems.

Subsequent optimisation subject to a hyper-ellipsoidal cluster constraint was

conducted to preserve objective correlations. In the three-objective sub-problem, a

significant improvement was achieved in one of the retained objectives at very little

cost to the other objectives. Whereas, in the four-objective problem, no further

improvement was observed. With further preference articulation, preferred solutions

were selected and that from the three-objective problem compared favourably to the

solution generated from the four-objective problem.
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Further studies were carried out to explore related aspects. Firstly, the objective

reduction rules were applied without clustering, i.e. globally to the whole population.

This resulted in the objective dimensionality being reduced to two. Subsequent

optimisation resulted in a significant improvement in one of the retained objectives at

the expense of a deterioration in a high priority, discarded objective. Furthermore, it

could be seen that most of the resulting population violated a goal on another

discarded objective and which was present in the original problem formulation.

Unlike the clustering approach, it should be noted that there was no constraint to

preserve correlations in subsequent optimisation with reduced objectives.

Secondly, the effect of varying the threshold for selecting PCs was explored. Two

scenarios were considered. With a threshold of 70% only one PC and one objective

was retained, which was considered too drastic an objective reduction. If a threshold

of 100% was used, then all PCs and objectives were retained, i.e. there was no

objective reduction. A threshold of 95% was considered a reasonable compromise.

Finally, the Progressive Preference Articulation method of Fonseca and Fleming

(1998a) (PPAFF) was applied exclusively. A progressive approach of visually

identifying objective harmony using parallel coordinate plots was used to reduce

objectives. This process resulted in two objectives being discarded and one being

converted to a constraint. Using the same objective priorities applied previously, a

preferred solution was selected. This solution was broadly comparable to that

generated from the clustering/PCA approach and showed the efficacy of the latter

method. However, PPAFF relies on being able to visually discern objective harmony

from a parallel coordinates plot, which may be difficult and involve some subjectivity.

In many-objective problems, this may become an even greater challenge if large

populations are required and need to be visualised. By comparison, the

clustering/PCA approach did not rely on visualisation and instead used a set of rules

and if specified, objective priorities, to allow the DM to identify local harmony and

potential objective reduction. Exploiting potential local objective harmony in

partitions of the Pareto-Optimal Population (POP) may provide more opportunities

for complexity reduction than approaches applied to the whole POP.

A number of observations from this case study have relevance to higher dimensional

optimisation problems:
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• While this six-objective problem involved only one stage of objective reduction,

it is possible that for problems with a larger number of objectives, the number

of stages increases also. In such a scenario, the application of the clustering

verification and objective reduction rules will become lengthy. A more compact

form for these rules, which lends itself to being automated, would be useful.

• Higher dimensional problems may require larger populations to provide effective

search. Larger populations in more objectives may generate more clusters. Both

place significant demands on computational efficiency. Parallel computing is one

approach to address this requirement.

• As the number of objectives increase so does the number of PCs. A principal

component analysis on a larger number of objectives may reveal a finer

graduation in the percentage of variation represented by the PCs. In other

words, it may be possible that the threshold for selecting PCs could be varied

slightly from the suggested 95% to retain a different number of PCs and

potentially, a different degree of objective reduction.





Chapter 6

Case Study: Gasoline Engine

Cold Start Calibration

Optimisation

6.1 Introduction

With ever more stringent emission standards being imposed upon passenger vehicles,

calibration approaches that minimise emissions during start and immediately after

start or ‘run-up’ are becomingly increasingly important to vehicle manufacturers

(Wiemer et al., 2007). Minimisation of hydrocarbon (HC) emissions during start-up,

prior to the exhaust catalyst achieving a sufficiently high working temperature, is of

particular significance (Bielaczyc and Merkisz, 1997; Shayler et al., 1996).

During cold engine start, it is normal to inject excess fuel to account for unfavourable

conditions that exist for air-fuel mixture preparation. With Gasoline Direct Injection

(GDI) engine technology, as fuel is injected directly into the combustion chamber, the

need to account for fuel films in the intake port (as in the case of a Port Fuel Injected

(PFI) gasoline engine) is eliminated (Zhao et al., 1999). This suggests that GDI

technology should utilise less fuel during start-up than a PFI engine, and thereby

offer greater potential for reducing HC emissions. Although some authors have

reported savings in HC emissions of up to 50% for GDI over equivalent PFI engine

technologies (Lee et al., 2000), reductions of fuel quantity must not be achieved at the

expense of decreased start and run-up quality.
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Due to the many degrees of freedom associated with typical GDI controls, much more

time and effort is needed to develop an engine start and run-up characterised by: an

instantaneous first fire, followed by a stable and reliable engine run-up, while

simultaneously minimising the delivered fuel quantity in an attempt to lower HC

emissions. Apart from geometric design variables, such as the spark plug and injector

location, it is essential to optimise calibration parameters such as injection pressure,

injection and ignition timing. Furthermore, given that engine start is a highly

transient process, it is necessary to adjust these parameters on a combustion

event-by-event basis.

In the current context, ‘stable and reliable run-up’ is taken to mean consistency of the

resulting engine speed response profile. In other words, after achieving a rapid first

fire during cranking, the engine accelerates quickly and smoothly to the desired idle

speed, without exhibiting aberrant behaviour, e.g. engine stall, excessive over or

under-shoot, engine speed oscillations or engine stumble (non-smooth run-up). Ideally,

at any temperature, the start profile should remain repeatable, regardless of the

background variation or noise, e.g. fuel type, engine age or variations in fuel pressure.

Hence, from a user-perspective, the objective is to discover a robust calibration, i.e.

one which shows relatively low, or ideally no, variation to this background noise.

Whereas the control system provides compensators for some variables, e.g. start

temperature, the effect of some operational properties is not directly accounted for,

e.g. fuel type. In addition, some actuators cannot be consistently set, due to

limitations of the control sub-system electro-mechanical response. For example, fuel

pressure, which is ostensibly a controlled actuator, cannot be reliably set in practice

and varies considerably from start-to-start. This limitation relates to the ability of

the camshaft-driven mechanical high pressure fuel pump to deliver sufficient flow rate

to charge the fuel rail at very low engine speed. As the instantaneous fuel delivered is

directly related to the differential pressure across the injector, this represents a serious

concern.

For noise variables of this type, there is no direct feed forward or feedback

compensation available. Consequently, techniques have been borrowed from the

principles of parameter design (Davis and Grove, 1992; Taguchi, 1993; Fowlkes and

Creveling, 1995; Kawaguchi et al., 2009) and minimising structural design sensitivity

(Haug et al., 1986; Cho and Jung, 2003) in an attempt to induce the necessary level
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of robustness. As will be demonstrated comprehensively in this case study, robustness

measures can conflict with their performance counterparts. This justifies the

application of multi-objective optimisation approaches.

Furthermore, the inclusion of robustness measures in the optimisation process

significantly increases the number of objectives. To reduce the dimensionality in this

case study to a manageable level, engineering knowledge is applied a priori to limit

the focus to robustness measures associated with the dominant noise variable, which

is considered to be fuel pressure. Nevertheless, even with this simplification a

constrained ten-objective optimisation problem results.

This chapter extends the application of the complexity reduction strategy, proposed

in Chapter 4, to a high-dimensional real-world study, comprising ten objectives and

one constraint. Four important enhancements are included and discussed in detail.

These are:

1. The Use of Parallel Computing Methods. The computational demands on

the process under investigation are now sufficiently high to justify a parallel

computing approach. A parallel MOEA has been developed to evaluate large

populations distributed across a cluster of processors. Batch processing in

parallel has also been utilised to accelerate the clustering task.

2. The Use of Concise Mathematical Notations. These are introduced for

reasons of clarity, brevity and efficiency for the clustering and objective

reduction processes. Also, such notation lends itself to being implemented in

software to automate these processes and in so doing, minimise errors.

3. The Introduction of Sensitivity Objectives. These have been added to the

problem formulation so that the optimiser simultaneously searches for solutions,

which are optimal for performance and which minimise the sensitivity to

background noise.

4. Variations on Thresholds for reducing the Number of Objectives.

Varying the threshold used for selecting Principal Components may affect the

number of objectives retained using the objective reduction rules. This can

provide flexibility in the dimension reduction process.
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However, fundamentally the concept of local harmony is exploited to allow various

degrees of complexity reduction in several local domains of the Pareto-Optimal

Population (POP). The resultant sequence of optimisations, clustering and objective

reduction processes enables the decision maker, working in conjunction with an

experienced calibration engineer, to propose potential solutions. These results,

developed systematically using the methods described, are shown to out-perform the

existing calibration developed using empirical approaches.

6.1.1 Cold Start Profile Descriptions

Figures 6.1 and 6.2 show Net Mean Effective Pressure (NMEP) (Ferguson, 1986) and

engine speed data for a ‘good’ and a ‘bad’ start respectively. NMEP is related to the

chemical energy from combustion that is available at the crankshaft. Clearly, at any

instant and for a given fuel quantity supplied, it is desirable to maximise this

quantity. It can be seen from the NMEP traces, that the integrated NMEP for the

good start is significantly greater than the bad start in the first twenty combustion

events, due mostly to the partial burns (Heywood, 1988) of the bad start. In the

corresponding engine speed traces, the good start exhibits a faster rise rate, higher

peak flare speed and smooth decay to the desired idle speed. In contrast, the bad

start shows a stumble in the first second, a slower rise rate, a lower flare speed and a

less smooth decay with some evidence of undershoot.
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Figure 6.1: Cold start NMEP traces for a ‘good’ and a ‘bad’ start.

Figure 6.2: Cold start engine speed traces for a ‘good’ and a ‘bad’ start.
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6.2 A Review of Sensitivity Analysis Approaches

As with many engineering problems, in engine calibration studies it is desirable to

achieve a solution that is not only optimal in some sense, but also robust to variation.

This background variation or noise comprises piece-to-piece variation in control

system sensors and actuators, external environmental factors and customer duty

(Davis and Grove, 1992). For the purposes of this case study, a robust, optimal

calibration is defined as some optimal trade-off of competing engine responses, for

which the solution is relatively insensitive to noise. In practice, it may not be possible

to simultaneously achieve optimal performance and low sensitivity to noise and

therefore some compromise may be necessary. This justifies a means by which the

sensitivity of the response should be evaluated. There follows a brief review of

sensitivity analysis approaches with their strengths and weaknesses. More extensive

surveys can be found in Saltelli et al. (1999); Frey and Patil (2002); Helton and Davis

(2003) and Tang et al. (2007).

Sensitivity analysis methods can be categorised (Frey and Patil, 2002) into Statistical

or Mathematical methods as follows:

6.2.1 Statistical Sensitivity Analysis Approaches

These approaches involve assigned probability distributions to inputs to assess the

effect on the output distribution. This category includes:

• Monte Carlo Methods. These comprise some probabilistic sampling of the

inputs to develop a mapping of the input (or design) space to the output.

Advantages are that extensive sampling is made of the input space and input

interactions can be explored. The main drawback is the significant

computational cost. In addition, it is not clear which probability distribution

should be assumed for sampling the inputs and also, this technique cannot be

incorporated directly into a multi-objective optimisation process. A further

disadvantage is that it is a ‘Pass/Fail’ test in the sense that these methods only

inform acceptable or unacceptable robustness unlike a sensitivity model, which

may be explored by the decision maker to find acceptable sensitivity.

• Fourier Amplitude Sensitivity Test (FAST). In this approach, values of
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each model input are transformed to values along a search curve. A frequency is

specified for each input and using Fourier coefficients the output variance can be

evaluated (Cukier et al., 1973). Benefits of this method are that the full design

space can be explored as well as the effect of input interactions. Among the

disadvantages are the mathematical complexity, it is not well known or widely

applied and importantly, can be computationally expensive.

The statistical methods described above are global in that they can consider the

entire design space and take into account input interactions. However, this increased

capability involves significant computational expense and prohibits their online usage

in optimisation search processes.

Signal-to-Noise (SN) ratios are another statistical method, although not one

involving the assignment of probability distributions to inputs. Taguchi (1987)

introduced the concept of a SN metric to optimise the robustness of a product, where

the signal represents the output or response of interest. The aim is to maximise the

SN ratio to optimise the robustness. Much more explanatory detail with applications

is provided in texts such as Fowlkes and Creveling (1995).

The main advantage of this approach is that there is only one SN ratio per objective,

whereas with for example, direct derivatives, there is one sensitivity objective per

input, so the number of sensitivity functions can increase quickly. However, the

confounding of the signal and noise is a serious drawback (Nair, 1992). For example, a

small signal equates to a small SN ratio even though the noise may be comparatively

large and conversely, an extremely large signal would result in a large SN ratio, but

the noise may still be large. In these scenarios maximising the SN ratio will not

provide robust solutions.

6.2.2 Mathematical Sensitivity Analysis Approaches

These methods involve the determination of the change in output corresponding to a

local change in the inputs. This category includes:

• Controls Percentage Sensitivity. This approach involves calculation of the

fractional change in the output with respect to the fractional change in the

input and can be expressed as a percentage (D’Azzo and Houpis, 1981).

Benefits of this method are that i) it is unitless, ii) sensitivity objectives can be
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easily created and traded-off against performance, iii) individual sensitivities are

directly comparable and iv) it is useful for setpoint or process control, e.g. servo

control. Conversely, a disadvantage is that the number of objectives are

increased due to an additional objective per sensitivity. However, the most

significant drawback is that if the target approaches zero, the sensitivity tends

towards infinity. Since a target of zero can occur with some engine responses,

e.g. driveline zero torque crossing, this approach is not sufficiently general for

engine calibration problems and will not be considered further.

• Direct Derivatives. These methods are similar to those of the Controls

Percentage Sensitivity approach, but are based on partial derivatives of the

outputs with respect to changes in the inputs and therefore have units. However,

if the inputs are first normalised, then all sensitivities are directly comparable.

Finite difference methods can be used to approximate partial derivatives based

on small perturbations in the inputs and are straightforward to implement

(Delinchant et al., 2004; Tang et al., 2007). Taking second order partial

derivatives allows approximation of the rate of change of sensitivity or curvature

in the vicinity of an optimum. As with the Controls Percentage Sensitivity

approach, the number of objectives is increased as sensitivity objectives are

added, but the Direct Derivatives approach does not suffer from the weakness of

infinite sensitivity when the target performance is zero. Thus, this approach has

all the advantages and addresses the disadvantages of the Controls Percentage

Sensitivity method.

The primary aim for this case study is to include sensitivity and engine response

objectives in the optimisation problem formulation so that both can be

simultaneously searched for Pareto-optimal solutions. Requirements to achieve this

aim comprise a computationally efficient, easy-to-implement approach, which can be

integrated into the optimisation and is sufficiently general for engine calibration

optimisation problems. The Direct Derivatives method most closely matches these

requirements and is the selected sensitivity analysis approach for this case study.
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6.3 Definition of Sensitivity Objective Functions

Applying a forward finite difference approximation to a partial derivative results in

the following definition of a sensitivity objective function, Sm for the mth objective, as

used in this case study:

Sm(xinp) =
fm(xinp + ∆xinp)− fm(xinp)

∆xinp
(6.1)

where fm is the mth objective function, xinp is the inpth objective function input or

decision variable and ∆xinp is a small peturbation applied to the decision variable to

generate a change in the objective function and hence a sensitivity. The value used

for ∆xinp was based on a relatively small percentage of the decision variable range.

This was determined simply by evaluating the sensitivity objective functions at

various values of ∆xinp against the decision variable under consideration (Fuel

Pressure, FP), plots of which are shown in Figure 6.3. The value of ∆xinp was chosen

to be 0.1%, which was considered sufficiently small to give an adequate approximation

to the partial derivative.
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Figure 6.3: Sensitivity objective functions plotted against Fuel Pressure (FP) for various
values of ∆xinp shown as proportions. The other decision variables were set at the centre
of their range, except for End Of Injection (EOI), which was set to 75 degrees BTDC
from a previous optimisation. ∆xinp = 0.001 = 0.1% was selected to give an adequate
approximation to the partial derivative. Y-axis labels are at the top of each plot.

6.4 pMOEA Implementation

As stated in Section 2.3.4, given that a compute cluster was available and the

objective functions were fast to evaluate for this research, the only suitable pMOEA

paradigm was the island-based approach. The implementation took the form of a

parallelisation of the modified NSGAII of Section 4.3.3. The Matlab r© v7.7 (R2008b)

Parallel Computing Toolbox and the Distributed Computing Server were used to

allow sub-populations to be evaluated in parallel, periodic migration between islands

(processors) and collation of the final population.

The parallelisation was implemented by The MathWorks Limited at the request of
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the author and comprised:

• Splitting the population up by the number of processors available on the

compute cluster. This cluster comprised a total of ten office PCs with multi-core

processors, a large proportion of which were not used during the course of

normal day-to-day operations. During trials, it was found that the number of

processors had to be limited to those on the same sub-network and those not

being intensively used, which amounted to between thirty-five and forty

processors.

• Specifying a number of individuals from the population to migrate between

neighbouring processors together with a migration frequency. The number of

immigrants used was 2% of the island population migrated every generation.

These settings were consistent with those used, with some success, in Streichert

et al. (2005).

• Immigrants were chosen by selecting pairs of individuals with each pair

comprising the fittest and least fittest individuals. Whilst it may seem intuitive

to choose only the fittest solutions to migrate, there is the possibility that in

doing so, premature convergence could result. Including the worst individual(s)

introduced some diversity and was straightforward to implement.

Clearly, there are opportunities to explore alternative migration parameter settings

and schemes. Since the aforementioned parallel Matlab r© software was only available

for a limited period on trial licenses, such studies have been left for future research.

A validation test was conducted to verify that the implemented pMOEA generated

broadly equivalent Pareto-Optimal Populations (POPs). This test was based on the

six objective diesel case study of Chapter 5. As can be seen from the pairwise

objective scatter plots in Figure 6.4, when overlaid, the Pareto-Optimal Populations

resulting from runs with the serial and parallel versions of NSGAII corresponded well

in terms of objective pattern and distribution.

In addition, it was of interest to compare the execution times of the serial and parallel

algorithms. With all parameters the same, the serial algorithm on a single processor

took 1271 minutes, whereas the parallel algorithm using twenty equivalent processors

took only fifteen minutes - a considerable time saving.
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Figure 6.4: Pareto-Optimal Populations (POPs) resulting from runs with serial and
parallel versions of NSGAII. Objective axes are not labelled as they are not required
and to make the plot more compact.

A study was conducted into run time for the six-objective diesel problem with a

varying number of processors (Emtage, 2009). In doing so, it was discovered that part

of the speed-up can be attributed to internal operation of the CPU; specifically, the

size (32kB) of the L1 cache on Intel r© Core
TM

2 Quad CPU Q9450 2.66 GHz

processors. With less than twelve processors, the memory taken by the objective and

decision variable matrices exceeded 32kB, in which case the slower L2 cache would be

used. Conversely, with more than twelve processors, only the L1 cache was used and



6.5 Problem Formulation 139

the speed-up was clearly improved. Consequently, it was concluded that the

implemented pMOEA would be adequate for use in this many-objective cold start

optimisation problem.

6.5 Problem Formulation

The objective functions used in the cold start case study were based on empirical

engine models. These were developed from experimental data taken on a 2 litre

in-line four cylinder turbocharged direct injection gasoline passenger car engine. The

data comprised a series of cold start tests each from an initial engine coolant

temperature of 20 ◦C. After each start, the engine was fully warmed-up to a stabilised

temperature to burn off any residual hydrocarbon emissions and fuel in the oil

(Heywood, 1988). The engine was then switched off and chilled back down to the

initial coolant temperature in preparation for the next start. Fifty-seven starts were

conducted as part of a designed experiment with ten validation tests.

Figure 6.5: Encapsulated dynamic dynamometer cell 109 in the West Wing Laboratory
at the Ford Dunton Technical Centre, Essex.



140 6.5 Problem Formulation

The engine test facility used was a dynamic dynamometer encapsulated test cell, a

photograph of which is shown in Figure 6.5. Such facilities can be provide very

efficient, cost effective and realistic testing on a rig as opposed to building expensive

prototype vehicles, which require specialised vehicle-based test facilities or testing in

remote cold climate locations.

6.5.1 Combustion Quality Metrics

In addition to the inclusion of sensitivity functions in the optimisation, several

combustion quality metrics were incorporated as follows:

• Dynamic Measures of Combustion Intensity. Cumulative Net Mean

Effective Pressure (NMEP), summed over several engine cycles is used as a

measure of localised combustion intensity and is defined as:

Jb
a =

s+bc−1∑
w=s+(a−1)c

xw, ∀xw ∈W (6.2)

where J is the combustion intensity for cycles a to b, c is the number of engine

cylinders, s is the combustion event index of the first fire during engine crank

and xw is the NMEP for a combustion event in an ordered dataset, W , of all

combustion events from first fire onwards. For example, the combustion

intensity metrics used for this case study are J5
2 and J12

6 and assuming c = 4:

J5
2 =

s+19∑
s+4

xw (6.3)

and,

J12
6 =

s+47∑
s+20

xw (6.4)

Both J5
2 and J12

6 are measures of the cumulative energy supplied by combustion

over the cycles selected. Maximising these characteristics is equivalent to
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maximising the energy available to accelerate the engine rotational speed after

start, known as the run-up period.

• Dynamic Measures of Combustion Variation. In steady-state combustion

development studies, standard deviation or coefficient of variation have been

used as combustion metrics (Ferguson, 1986; Heywood, 1988; Brunt and

Emtage, 1996). During steady-state operation, these can be calculated over a

relatively large number of cycles and on a lumped engine or individual cylinder

basis. This is straightforward because the mean NMEP response, for specific or

all cylinders, is essentially constant throughout. However, by definition it is not

possible to use such metrics in dynamic studies.

In this study a dynamic combustion variation measure is proposed, based on the

root-mean-square (RMS) of the instantaneous combustion deviations. The set of

squared NMEP deviations, DN , is defined in Equation C.4:

DN = {xw, yw ∈ R ∧ d2
w = (yw − xw)2}N

w=s (6.5)

where yw is the Savitzky-Golay (Savitzky and Golay, 1964) smoothed NMEP

data (see Appendix C for further detail), such that any deviations between the

smoothed and raw NMEP data indicate the quality or variation in the

combustion process. This approach is somewhat similar to methods in

statistical time series analysis (Box and Jenkins, 1970; Brockwell and Davis,

1991) where the filtered response is subtracted from the raw data to de-trend

the data prior to estimating the cyclic correlation trends.

If Rb
a denotes the RMS of the instantaneous NMEP values over cycles [a, b],

then:

Rb
a =

√√√√√√
w=s+bc−1∑

w=s+(a−1)c

d2
w

(1 + (b− a))c
, ∀dw ∈ DN (6.6)
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Based on the discussion in Appendix C, Rb
a has the disadvantage that the magnitude

of the individual deviations depends on the filter parameters. This property

significantly devalues this statistic as a generic dynamic combustion quality indicator.

However, in a specific case-study utilising a SG-filter with fixed parameters,

minimisation of this quantity is still meaningful.

Again, assuming c = 4, the appropriate metrics are:

R5
2 =

√√√√√w=s+19∑
w=s+4

d2
w

16
(6.7)

and,

R12
6 =

√√√√√w=s+47∑
w=s+20

d2
w

28
(6.8)

6.5.2 Optimisation Problem

The optimisation was formulated as a ten-objective, single constraint problem as

follows:

Minimise:

• Combustion variation metric for cycles 2-5, cyc 25 RMS (bar).

• Combustion variation metric for cycles 6-12, cyc 612 RMS (bar).

• Negative run-up combustion intensity for cycles 2-5, neg 25 INT (bar).

• Negative run-up combustion intensity for cycles 6-12, neg 612 INT (bar).

• Fuel quantity, F model (unitless). Due to measurement difficulties, this was

used as a surrogate measure for HC emissions, which varies in proportion to the

fuel quantity injected.

• Maximum engine speed flare after start, Peak Flare Speed, (rpm).

• Absolute value of sensitivity of combustion variation metric for cycles 2-5 to

Fuel Pressure, sf cyc 25 RMS dFP abs (bar/MPa).
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• Absolute value of sensitivity of combustion variation metric for cycles 6-12 to

Fuel Pressure, sf cyc 612 RMS dFP abs (bar/MPa).

• Absolute value of sensitivity of run-up combustion intensity for cycles 2-5 to

Fuel Pressure, sf cyc 25 INT dFP abs (bar/MPa).

• Absolute value of sensitivity of run-up combustion intensity for cycles 6-12 to

Fuel Pressure, sf cyc 612 INT dFP abs (bar/MPa).

Subject to:

• A constraint on the mild extrapolation of valid domain or boundary of the

models. This model boundary is an envelope wrapped around the boundary of

the data used to build the models and allows, in this case, mild extrapolation

(MathWorks, 2008a). The constraint is defined as model boundary ≤ 0.15.

All models had the following inputs, all of which were used as decision variables:

• AIR - inducted air mass flow (kg/h) as controlled by the engine throttle.

• DEC - exponential decay (unitless) in injected fuel quantity.

• SPK2 - crankshaft angle timing (degrees before piston top dead centre) of

ignition.

• F - injected fuel quantity, expressed as a factor (unitless).

• FP - fuel pressure (MPa). Limited control on this control system actuator is

available during cold start operation. Therefore, there is a requirement to

develop a cold start calibration that is not only optimal for cold start

performance, but also relatively insensitive to variation in fuel pressure. Hence,

FP was the decision variable under consideration in the formulation of the

sensitivity objective functions.

• EOI - crankshaft angle timing (degrees before piston top dead centre) of end of

fuel injection. This was fixed at a value of 75 degrees BTDC from a previous

optimisation.

(It should be noted that this problem contains 5 decision variables and 10 objectives

so is underdetermined.) The pMOEA described in Section 6.4 was used with the

following options and parameters specified:



144 6.5 Problem Formulation

• Number of generations: 50000.

• Population size: 20000 - both of these first two parameters were chosen to

provide a reasonable computational effort compared to the diesel six-objective

case study, where an initial population of 4000 was run for 5000 generations; in

addition, as with the six-objective case study, a reasonably large initial

population is used to allow cluster-based sub-sampling consistent with cluster

verification rule CR2.

• External archive used and updated every 1 generation.

• Number of migrants: 2% of island population.

• Migration frequency: every 1 generation.

• Selection operator: tournament of size 2.

• Crossover operator: SBX (Deb and Agrawal, 1995) with probability: 0.7 and

distribution index: 20.

• Mutation operator: polynomial (Deb and Goyal, 1996) with probability: 0.17

and distribution index: 20 (Deb, Thiele, Laumanns and Zitzler, 2002; Khare

et al., 2003).

Table 6.1: Decision variable ranges.

Decision
Variable

Units
Ranges

Minimum Maximum

AIR 25 45
DEC 0 0.104
SPK2 ◦BTDC -10 10

F 1.49 3.49
FP MPa 2.02 3.5

• Minimum and maximum range limits on the decision variables are listed in

Table 6.1. These were not explicitly included in the problem formulation.

Instead, a so-called boundary constraint model (referred to as model bdry) was
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incorporated, which represents a convex hull envelope around the data. Beyond

this model bdry, models built from the data are extrapolated.

• Initially, all the objectives were minimised subject to the constraint, which

corresponds to the constrained minimisation formulation in the Progressive

Preference Articulation method of Fonseca and Fleming (1998a) (PPAFF ) as

described in Section 4.7.1. The resulting initial goals and priorities are shown in

Table 6.2.

Results from the optimisation process are presented in the next section. This process

comprises four stages of successive objective reductions. The analysis involved is

summarised in flowcharts with accompanying explanations. Details of the analysis for

each of the four stages are provided in Appendices: F to I, respectively.

Table 6.2: Initial goals and priorities for the ten-objective cold start problem, where
the last row represents the constraint.

Objective Goal Priority

neg 25 INT −∞ 1
neg 612 INT −∞ 1
cyc 25 RMS 0 1
cyc 612 RMS 0 1
F model 0 1
Peak Flare Speed 0 1
sf cyc 25 RMS dFP abs 0 1
sf cyc 612 RMS dFP abs 0 1
sf cyc 25 INT dFP abs 0 1
sf cyc 612 INT dFP abs 0 1
model bdry 0.15 2

6.6 Results from the Objection Reduction Process - 1st

Stage

A summary of the 1st stage objective reduction process after the initial optimisation

is provided in the flowchart in Figure 6.6. The resulting Pareto-Optimal Population
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(POP) of 18,552 solutions is robustly clustered, suitable sub-sample clusters

determined and then principal component analysis (PCA) applied to potentially

reduce the number of objectives within each cluster. Mathematical notations are used

in the clustering and objective reduction blocks, which will be described in the

following sections.

Figure 6.6: Flowchart of the results from objective reduction - 1st stage, leading to
Clusters 2, 3 and 4 with 6, 7 and 5 objectives being retained, respectively. This flowchart
starts after the first optimisation has been completed.



6.6 Results from the Objection Reduction Process - 1st Stage 147

6.6.1 Clustering and Verification

In order to carry out the clustering, the Clustering verification Rules as defined in

Section 4.4.3 were applied. However, for high-dimensional optimisation problems, the

application of these rules requires lengthy description. To address this, a compact

mathematical notation has been devised and is defined in Appendix D. Such a

notation lends itself to being coded in software to automate the application of these

rules to make their usage much more efficient.

The following summarises the sequence of steps depicted in the flowchart in Figure

6.6 with corresponding details provided in Appendix F:

• Establish Reference Clusters. The first step was to cluster the reference

POP generated from the initial optimisation. The results can be summarised

using the notation, V 10
1 (18552, lr, cs, 5000, 0.1) = 4. That is, the reference

clustering analysis in ten objectives, of the reference POP of 18,552, from

various learning rates, lr, and initial number of clusters, cs, maximum iterations

of 5000 and a convergence tolerance of 0.1 generated a reference solution of four

converged clusters.

• Establish Sub-sampled POP Size. Subsequently, the reference solution was

randomly sub-sampled per cluster to generate smaller POPs of 10000, 5000,

2000 and 1000. Clustering was run on all of the sub-sampled POPs to test for

agreement with the reference solution clusters. As a result, it was decided that

the POP of 10,000 was the smallest sub-sampled POP that provided acceptable

agreement with the reference POP. This is denoted by:

– V 10
2 (10000, lr, cs, 5000, 0.1) = [4, 4, 4] - a clustering analysis on a

sub-sampled POP of 10,000 with various lr and cs resulted in three

alternative solutions of four clusters. A run with the best convergence was

selected from those in the first (most frequently occurring) solution.

– {2Di ⊂ 1Di}4
i=1 ∧ Ω2(0.04) ≤ 0.05 ∧ Φ2(0.06) ≤ 0.1 - with respect to the

corresponding reference clusters, the selected sub-sampled 10,000 POP

clusters are a subset AND have cluster centres in close agreement AND

have cluster correlation matrices in close agreement.

• Check Cluster Bounds. The only engineering limit that was specified by the
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Cold Start calibration engineer, was applied to Objective 6 (Peak Flare Speed),

where only solutions in the 1300 to 1500rpm range were of interest. The

Peak Flare Speed data within Cluster 1 violated this limit and so was

discarded, while the other clusters satisfied this limit and were retained. The

cluster data bounds per objective are detailed in Table F.4 in Section F.1.3.

6.6.2 PCA and Potential Objective Reduction

As with the six-objective problem in the previous chapter, the objective reduction

rules (see Section 4.5) were applied to each cluster to identify any opportunity for

potential objective reduction with the results summarised in Table F.5. In the process

of discussing and selecting clusters to be retained in Section 6.6.1, the Cold Start

calibration engineer advised objective priorities as shown in Table 6.3 and these were

taken into account, where necessary, when applying the objective reduction rules. The

notation defined in Appendix E has been used to more concisely represent the

objective reduction process. An example is given below of how this notation is

applied with a brief description provided for clarification. The remaining application

of these rules is provided in Section F.2.

Table 6.3: Initial goals and priorities for the ten-objective cold start problem, where
the last row represents the constraint.

Objective Goal Priority

neg 25 INT −∞ 4
neg 612 INT −∞ 4
cyc 25 RMS 0 2
cyc 612 RMS 0 2
F model 0 6
Peak Flare Speed 0 5
sf cyc 25 RMS dFP abs 0 1
sf cyc 612 RMS dFP abs 0 1
sf cyc 25 INT dFP abs 0 3
sf cyc 612 INT dFP abs 0 3
model bdry 0.15 7
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Retaining PCs to account for 95% of the Total Variation

Objective Reduction Rules applied to Cluster 2

1. Applying OR1, λ1/λ10 = 164.5, so there was insufficient evidence of a

near-linear dependency.

2. Applying OR2, t5 = 95%, i.e. first five PCs were retained, which account for

approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), θ10 = 0.3162 - the eigenvectors for the five retained PCs were

rotated and the threshold for the test of significance was 10−0.5 = 0.3162.

4. Applying OR3c) to PC1, 1A−(2, 4, 5) ∧ 1A+(8) ∧ (r5 > r2 > r4) ⇒ {5, 8} ⊆ I -

the rotated eigenvector coefficients, v1
2, v

1
4, v

1
5 and v1

8 exceeded 0.3162 in

magnitude and thus were classified as significant. v1
2, v

1
4 and v1

5 have the same

sign, but Objective 5 (F model) had the highest priority and so was retained. v1
8

was the only positive significant coefficient and so Objective 8

(sf cyc 612 RMS abs) was also retained.

5. Applying OR3c) to PC2, 2A−(6) ∧ 2A+(8) ⇒ {6, 8} ⊆ I - v2
6 and v2

8 were the

only two significant coefficients and so both Objectives 6 (Peak Flare Speed)

and 8 (sf cyc 612 RMS abs) were retained.

6. Likewise applying OR3c) to PC3, 3A−(9) ∧ 3A+(10) ⇒ {9, 10} ⊆ I - v3
9 and v3

10

were the only two significant coefficients and so both Objectives 9

(sf cyc 25 INT) and 10 (sf cyc 612 INT) were retained.

7. Applying OR3b) to PC4, 4A+(1, 3) ∧ (r1 > r3) ⇒ {1} ⊆ I - the only significant

coefficients were v4
1 and v4

3, but Objective 1 (neg 25 INT) had the highest

priority and so was retained.

8. Applying OR3b) to PC5, 5A+(7) ⇒ {7} ⊆ I - the only significant coefficient was

v5
7 and so Objective 7 (sf cyc 25 RMS abs) was retained.

In summary, seven objectives were retained in Cluster 2:

• F model

• sf cyc 612 RMS abs
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• Peak Flare Speed

• sf cyc 25 INT abs

• sf cyc 612 INT abs

• neg 25 INT

• sf cyc 25 RMS abs

Overall, some objective reduction was achieved in Clusters 2 and 4 by retaining only

those PCs that accounted for approximately 95% of the variation. However, it is of

interest to understand what effect a reduced percentage of variation would have on

objective reduction.

The Effect of a Reduced Percentage of Variation on Objective Reduction

Consequently, it was decided to consider two further such scenarios where PCs are

retained that account for approximately 90% and 86% of the variation. The details of

the remaining application of the objective reduction rules are given in Section F.2 and

summarised in Table F.5. The results from the objective reduction process for varying

thresholds of cumulative percentage of variation are collated in Table 6.4. It can be

seen that while some objective reduction was achieved using a threshold of 95%, using

86% gives significantly more reduction. As a result, it was decided to proceed with

retaining the objectives per cluster corresponding to the 86% threshold in further

optimisation. This stage culminated in three Clusters (2, 3 and 4) with six, seven and

five objectives being retained, respectively.

Table 6.4: 1st Stage retained objectives from objective reduction process for varying
thresholds of cumulative percentage of total variation.

Threshold for cumulative
% of total variation

No. of objectives retained
Cluster 2 Cluster 3 Cluster 4

95 7 10 7
90 6 8 7
86 6 7 5



6.7 Results from the Objection Reduction Process - 2nd Stage 151

6.7 Results from the Objection Reduction Process - 2nd

Stage

6.7.1 Optimisation with Reduced Objectives - 2nd Stage

Three subsequent optimisations with the reduced objectives were carried out, one in

each of the retained clusters. Previous optimisation parameter settings were used as

defined in Section 6.5.2 with the exception of the population size, which is now 10,000

(was 18,552) as a result of sub-sampling (see Section 6.6.1) and the number of

generations, which is now 25,000 (was 50,000) as the number of objectives and

population size has significantly reduced, but is still considered a reasonable

computational effort. The objective goals and priority order have been inherited from

the previous objective reduction process (see Table 6.3) and are shown in Table 6.5,

where the ellipsoidal cluster boundary model has been added as a constraint in an

attempt to preserve objective correlations within the cluster boundary. The initial

population used was that of the sub-sample, some of which would initially be

Table 6.5: Retained objectives from objective reduction process with associated goals
and priorities consistent with those specified previously in Table 6.3, where Obj1 and
Con1 refer to Objective 1 and constraint 1 respectively.

Objective/Constraint

No. Name Goals Priorities
Cluster 2 Cluster 3 Cluster 4

Obj1 neg 25 INT −∞ 4 3 0
Obj2 neg 612 INT −∞ 0 3 3
Obj3 cyc 25 RMS 0 2 1 2
Obj4 cyc 612 RMS 0 0 1 0
Obj5 F model 0 0 5 5
Obj6 Peak Flare Speed 0 5 4 4
Obj7 sf cyc 25 RMS abs 0 1 0 0
Obj8 sf cyc 612 RMS abs 0 0 0 1
Obj9 sf cyc 25 INT abs 0 3 0 0
Obj10 sf cyc 612 INT abs 0 3 2 0

Con1 model bdry 0 6 6 6
Con2 cluster bdry 0 6 6 6
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infeasible according to the cluster boundary constraint. This was not expected to be a

problem, as these solutions would quickly be replaced by feasible ones as the

algorithm proceeded.

A summary of the 2nd stage objective reduction process after the optimisation is

provided in the flowchart in Figure 6.7. This stage culminated in four Clusters (2, 3,

4 1 and 4 2) with four, five, four and four objectives being retained, respectively. The

next two sections summarise the sequence of steps with corresponding details

Figure 6.7: Flowchart of the results from objective reduction - 2nd stage, leading to
Clusters 2, 3, 4 1 and 4 2 with 4, 5, 4 and 4 objectives being retained, respectively.
This flowchart starts after the optimisation in the 2nd stage has been completed.
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provided in Appendix G.

6.7.2 Clustering and Verification with Reduced Objectives - 2nd

Stage

The final populations resulting from the Optimisation with reduced objectives - 2nd

Stage were clustered using the k*-Means clustering algorithm and initial parameters

set as previously in Section 6.6.1. Further detail is provided in Section G.1.

• Cluster within Clusters. Initial clustering runs on each of the populations

did not produce any sub-clusters. It was found that, although the data within

each population was unique using the default Matlab r© double precision of 16

decimal places, when a user-specified engineering precision of 1 to 3 decimal

places was used far fewer unique solutions existed. Consequently, it was decided

to reformulate the objective functions to engineering precision in an attempt to

generate more unique (to engineering precision) solutions (see Section G.1 for

more detail). The final populations from the optimisations of the re-formulated

objectives were then clustered. This resulted in no sub-clusters in the retained

Clusters 2 and 3 and two sub-clusters in retained Cluster 4, i.e.

For Cluster 2: V 6(10000, lr, cs, 5000, 0.1) = 1 (6.9)

For Cluster 3: V 7(10000, lr, cs, 5000, 0.1) = 1 (6.10)

For Cluster 4: V 5(10000, lr, cs, 5000, 0.1) = 2 (6.11)

As the computational expense of optimising a population of 10,000 over 10

objectives was considered acceptable with the pMOEA running on more than 30

processors, (2-3 hours), further sub-sampling was not carried out (i.e. V has no

suffix). Consequently, Clustering verification Rules, CR2 and CR3 did not apply.

• Check Sub-Cluster Bounds. Applying CR4, no further engineering limits

were applied by the Cold Start calibration engineer to the sub-clusters in

Cluster 4. In addition, both clusters had significant membership and so were

retained. The bounds on the cluster data are shown in Table G.2 in Section G.1.
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6.7.3 PCA and Potential Objective Reduction - 2nd Stage

For the final populations from the optimisations of the re-formulated objectives in

Clusters 2 and 3, FAST-MCD was used to determine robust correlation matrices, on

which to base PCA and as before, the proportion of the population retained was 95%.

Subsequently, PCA was conducted and the results are shown in Table G.3 in Section

G.2. The grey-shaded eigenvector coefficients indicate the retained objectives

resulting from application of the objective reduction rules.

A similar process to that in Section 6.6.2 was used to explore what effect varying the

cumulative percentage of total variation had on the number of objectives retained. In

order to achieve this the Objective reduction Rules OR3a)-3c) were applied, the

results of which are shown in Table G.4. The details of how these objective rules were

applied is provided in Section G.2.

A reasonable objective reduction was achieved in Cluster 3 with a 99% threshold for

the cumulative percentage of variation, but no objective reduction was achieved for

Clusters: 2, 4 1 and 4 2. With a 95% threshold, there was a small objective reduction

in Cluster 2, but none in Clusters: 4 1 and 4 2. With an 85% threshold, a reasonable

objective reduction was achieved for Clusters 2, 4 1 and 4 2. However, for Cluster 3,

an 85% threshold was considered to give too drastic an objective reduction in one go

and so, it was decided to adhere to using a 99% threshold for this cluster. For this

case study a policy of progressively, gradually reducing the number of objectives was

adopted, albeit that this approach may involve more objective reduction stages and

Table 6.6: 2nd Stage retained objectives from objective reduction process for varying
thresholds of cumulative percentage of total variation. The objective reduction selected
per cluster is shown highlighted in grey. The number of retained objectives from the
first stage is shown in brackets for each cluster.

Threshold for cumulative
% of total variation

No. of objectives retained
Cluster 2 Cluster 3 Cluster 4 1 Cluster 4 2

(6) (7) (5) (5)

99 6 5 5 5
95 5 4 5 5
85 4 3 4 4
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therefore take longer. In summary:

• Cluster 2. Four objectives were retained: neg 25 INT, Peak Flare Speed,

sf cyc 25 INT abs and sf cyc 612 INT abs.

• Cluster 3. Five objectives were retained: neg 25 INT, cyc 612 RMS, F model,

Peak Flare Speed and sf cyc 612 INT abs.

• Cluster 4 1. Four objectives were retained: neg 612 INT, cyc 25 RMS,

F model and Peak Flare Speed.

• Cluster 4 2. Four objectives were retained: cyc 25 RMS, F model,

Peak Flare Speed and sf cyc 612 RMS abs.

6.8 Results from Objection Reduction Process - 3rd

Stage

6.8.1 Further Optimisation with Reduced Objectives - 3rd Stage

Four subsequent optimisations were carried out with the reduced objectives from

Stage 2, one in each of the retained clusters. Previous optimisation parameter settings

were used as defined in Section 6.7.1. The objective goals and priority order have

been inherited from the previous objective reduction process (see Table 6.5) and are

shown in Table 6.7, where an additional ellipsoidal cluster boundary model has been

added as a constraint for the two clusters resulting from Cluster 4.

A summary of the 3rd stage objective reduction process after the optimisation is

provided in the flowchart in Figure 6.8.

6.8.2 Clustering and Verification with Reduced Objectives - 3rd

Stage

The final populations resulting from further optimisation with reduced objectives -

3rd Stage, were clustered using the k*-Means clustering algorithm. The initial

parameters were set as previously in Section 6.6.1, except for the number of runs per

cluster which was set to 19 (78 in total) and the learning rate which was set to a range

of 1e-2 to 1e-5. This is a larger learning rate than used previously, but is consistent

with the reduced number of objectives, as there are fewer parameters (smaller means
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Table 6.7: Retained objectives from objective reduction process with associated goals
and priorities consistent with those specified previously in Table 6.3, where Obj1, Con1
and n/a refer to Objective 1, constraint 1 and not applicable respectively.

Objective/Constraint

No. Name Goals Priorities
Cluster 2 Cluster 3 Cluster 4 1 Cluster 4 2

Obj1 neg 25 INT −∞ 3 3 0 0
Obj2 neg 612 INT −∞ 0 0 2 2
Obj3 cyc 25 RMS 0 0 0 1 0
Obj4 cyc 612 RMS 0 0 1 0 0
Obj5 F model 0 0 5 4 4
Obj6 Peak Flare Speed 0 4 4 3 3
Obj7 sf cyc 25 RMS abs 0 1 0 0 0
Obj8 sf cyc 612 RMS abs 0 0 0 0 1
Obj9 sf cyc 25 INT abs 0 0 0 0 0
Obj10 sf cyc 612 INT abs 0 2 2 0 0

Con1 model bdry 0 5 6 5 5
Con2 cluster bdry 0 5 6 5 5
Con3 cluster bdry 0 n/a n/a 5 5

Figure 6.8: Flowchart of the results from objective reduction - 3rd stage, leading to
Clusters 2, 3, 4 1 and 4 2 with 4, 4, 4 and 3 objectives being retained respectively. The
objective reduction process has been concluded in all clusters, except Cluster 3. This
flowchart starts after the optimisation in the 3rd stage has been completed.
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and covariance matrices), which should require less learning. After examination of the

results, no evidence of any converged clusters was found. Therefore:

For Cluster 2: V 4(10000, lr, cs, 5000, 0.1) = 1 (6.12)

For Cluster 3: V 5(10000, lr, cs, 5000, 0.1) = 1 (6.13)

For Cluster 4 1: V 4(10000, lr, cs, 5000, 0.1) = 1 (6.14)

For Cluster 4 2: V 4(10000, lr, cs, 5000, 0.1) = 1 (6.15)

6.8.3 PCA and Potential Objective Reduction - 3rd Stage

For the final populations from further optimisation with reduced objectives - 3rd

Stage, FAST-MCD was used to determine robust correlation matrices, on which to

base PCA and as before, the proportion of the population retained was 95%.

Subsequently, PCA was conducted and the results are shown in Table H.1 in Section

H.1. The grey-shaded eigenvector coefficients indicate the retained objectives

resulting from application of the objective reduction rules.

A similar process to that in Section 6.6.2 was used to explore what effect varying the

cumulative percentage of total variation had on the number of objectives retained. In

order to achieve this the Objective reduction Rules OR3a)-3c) were applied, the

results of which are shown in Table 6.8. Objective reduction was only achieved in

Cluster 4 2 with a 95% threshold for the cumulative percentage of variation.

Nevertheless, an 85% threshold was also evaluated to explore any further objective

Table 6.8: 3rd Stage retained objectives from objective reduction process for varying
thresholds of cumulative percentage of total variation. The objective reduction selected
per cluster is shown highlighted in grey. The number of retained objectives from the
first stage is shown in brackets for each cluster.

Threshold for cumulative
% of total variation

No. of objectives retained
Cluster 2 Cluster 3 Cluster 4 1 Cluster 4 2

(4) (5) (4) (4)

99 4 4 4 4
95 4 4 4 3
85 4 4 4 3
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reduction opportunity. The application of the Objective reduction Rules using the

notation is described in Section H.1.

As described in Section 6.6.1 for the Clustering verification Rules, the use of

mathematical notation for the clustering and PCA-based objective reduction process

is not only compact, but can be coded in software. This will make the process more

efficient, but also prevent errors, such as in the process of determining objectives to

retain or discard. An example of such an error is detailed below in the process of

applying the objective reduction rules within Cluster 3 for an 85% threshold for the

cumulative percentage of variation. This error was not initially identified, as the

analysis was carried out and completed before the results were written up. It was not

possible to re-do the analysis with the error corrected as the clustering and pMOEA

software used was running on a trial software license, which had expired by the time

the error was found. The software implementation of the mathematical notation is

the subject of future work.

Objective Reduction Rules applied within Cluster 3.

1. Applying OR1, λ1/λ10 = 947.9, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 85%, i.e. the first two PCs were retained, which accounted

for approximately 85% of the cumulative percentage total variation.

3. Applying OR3a), θ5 = 0.4472.

4. Applying OR3c) to PC1, 1A−(1) ∧ 1A+(6) ⇒ {1, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A−(5) ⇒ {5} ⊆ I.

6. For PC2, the sign of the eigenvector coefficient for Objective 10 was mistaken as

being positive (it is in fact, negative) and so OR3c) was erroneously applied to

PC2, 2A−(5) ∧ 2A+(10) ⇒ {5, 10} ⊆ I. (The correct rule to apply to PC2 was

OR3b), 2A−(5) ⇒ {5} ⊆ I and so, only three objectives should have been

retained).

In summary (albeit in error), four objectives were retained in Cluster 3:

• neg 25 INT
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• F model

• Peak Flare Speed

• sf cyc 612 INT abs

It should be noted that for PCs retained to account for a threshold of 99% of the

total variation, in Cluster 4 1 PC2, the magnitude of the eigenvector coefficient for

Objective 5 is 1.0000 and near-zero for the other objectives and the same objective in

PC1 and PC3. This suggests Objective 5 is independent, can be removed from any

further multi-objective optimisation in Cluster 4 1 and can be formulated as a

separate single objective optimisation. Strong evidence of this independence can also

be seen in PC3 in the same cluster as well as all of the other clusters with the 99%

threshold. Such independence will spawn more optimisation problems, but of lower

dimension (in this case only 2 or 1), for which it is much easier to search for and

identify an optimal solution. However, when the threshold is reduced to 85% for

Cluster 3 and 95% for the other clusters, evidence of this single objective

independence disappears. This is because the PCA transformation projects the data

onto fewer Principal Components (or Principal Axes) and the variation in the data

that previously dominated a Principal Component (as indicated by the magnitude of

the eigenvector coefficient) is now shared between coefficients. For example, for a 95%

threshold in PC2, the variance is shared by the eigenvector coefficients for Objectives

5 and 6, whereas for a threshold of 99% the same PC2 was dominated by Objective 5.

In summary, this stage culminated in:

• Two Clusters (2 and 4 1), where there was no further objective reduction.

• Cluster 4 2, where, although further objective reduction was achieved and

subsequent optimisation was conducted, the number of objectives had reduced

such that visualisation of the resulting POP was straightforward. Consequently,

the objective reduction process in this cluster was concluded.

• Cluster 3, where further objective reduction was achieved resulting in a 4th

stage of the objective reduction process within this cluster.

In addition, as evidenced by the independence between objectives observed in this 3rd

Stage, it should be noted that reducing the threshold for the cumulative percentage of
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total variation and hence the number of PCs, does not always result in the simplest

possible problem structure for subsequent optimisations. For example, as in Cluster 3,

one two-objective optimisation and two single-objective optimisations are considered

simpler in structure than one four-objective optimisation. Nevertheless, as in Section

5.3.2, it was decided in the interests of consistency to leave this independence-based

simplification for future work and persevere with objective reduction based on

exploiting objective harmony.

Table 6.9: Retained objectives from objective reduction process with associated goals
and priorities consistent with those specified previously in Table 6.3, where Obj1, Con1
and n/a refer to Objective 1, constraint 1 and not applicable respectively.

Objective/Constraint

No. Name Goals Priorities
Cluster 3 1 Cluster 4 2 1

Obj1 neg 25 INT −∞ 2 0
Obj2 neg 612 INT −∞ 0 0
Obj3 cyc 25 RMS 0 0 0
Obj4 cyc 612 RMS 0 0 0
Obj5 F model 0 4 3
Obj6 Peak Flare Speed 0 3 2
Obj7 sf cyc 25 RMS abs 0 0 0
Obj8 sf cyc 612 RMS abs 0 0 1
Obj9 sf cyc 25 INT abs 0 0 0
Obj10 sf cyc 612 INT abs 0 1 0

Con1 model bdry 0 5 4
Con2 cluster bdry 0 5 4
Con3 cluster bdry 0 n/a 4
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6.9 Results from the Objection Reduction Process - 4th

Stage

6.9.1 Further Optimisation with Reduced Objectives - 4th Stage

Two subsequent optimisations were carried out with the reduced objectives from

Stage 3. In Cluster 3 the number of objectives was reduced from five to four, now

denoted as Cluster 3 1. In Cluster 4 2 an objective reduction of four to three was

achieved, denoted as Cluster 4 2 1. In the latter case, it is straightforward to visualise

a three-dimensional Pareto-optimal front and select a preferred solution and so

further objective reduction was not pursued.

Previous optimisation parameter settings were used as defined in Section 6.7.1. The

objective goals and priority order have been inherited from the previous objective

reduction process (see Table 6.7) and are shown in Table 6.9.

A summary of the 4th stage objective reduction process after the optimisation is

provided in the flowchart in Figure 6.9.

6.9.2 Clustering and Verification with Reduced Objectives - 4th

Stage

In Cluster 3 1 only, the final population resulting from the further optimisation with

reduced objectives - 4th Stage, was clustered using the k*-Means clustering algorithm.

The initial parameters were set as previously in Section 6.6.1, except that now the

number of runs was set to 35 (corresponding to the number of processors available to

the pMOEA). No evidence of any converged clusters was found, i.e.

V 4(10000, lr, cs, 5000, 0.1) = 1 (6.16)

6.9.3 PCA and Potential Objective Reduction - 4th Stage

For the final populations resulting from the further optimisation with reduced

objectives - 4th Stage, FAST-MCD was used to determine robust correlation

matrices, on which to base PCA and as before, the proportion of the population

retained was 95%. Subsequently, PCA was conducted and the results are shown in

Table I.1 in Section I.1. The grey-shaded eigenvector coefficients indicate the retained



162 6.9 Results from the Objection Reduction Process - 4th Stage

objectives resulting from application of the objective reduction rules.

A similar process to that in Section 6.6.2 was used to explore what effect varying the

cumulative percentage of total variation had on the number of objectives retained.In

order to achieve this, the Objective reduction Rules OR3a)-3c) were applied for 95%

and 85% thresholds for the cumulative percentage of variation. The application of the

Objective reduction Rules using the notation is described in Section I.1.1. No further

objective reduction was achieved with either threshold.

While the same mistake was made again as in the 3rd stage in Cluster 3 (see Section

6.8.3), it is reassuring that after the 4th stage optimisation and objective reduction

the same pattern (objectives retained and eigenvector coefficient magnitudes) has

resulted in Cluster 3 with the lower threshold for cumulative percentage of total

Figure 6.9: Flowchart of the results from objective reduction - 4th stage in Cluster 3 1,
resulted in no further objective reduction. This flowchart starts after the optimisation
in the 4th stage has been completed.



6.10 Conclusions from the Objective Reduction Process 163

variation. (Note: whilst a 95% was used as the lower threshold in stage 3, compared

to an 85% threshold in Stage 4, had the same 85% been used in Stage 3, the results

would not have changed as it would still be two PCs that would have been retained).

6.10 Conclusions from the Objective Reduction Process

The results from the final objective reduction from the 3rd Stage are displayed in

Tables 6.10 and 6.11, where the latter shows which objectives were retained in each

cluster at each stage. The results from the 3rd Stage show that, in general, the high

priority objectives were retained, which is not surprising given that objective priority

is accounted for in the objective reduction rules.

Parallel coordinates plots of the POPs per cluster resulting from the final objective

reductions are shown in Figure 6.10 and 6.11. These plots were reviewed with the

Cold Start calibration engineer and the following conclusions were arrived at:

• In Cluster 3 (green), the F Objective was in the range 1.5-1.6. At these low

levels of Fuel quantity, the engine cold start performance was erratic when lower

quality fuels (available in markets such as Russia) were tested.

• In Cluster 3, while the n612I Objective was relatively high, (combustion

intensity for cycles 6-12 was strong), this was at the expense of the n25I

Objective, which was comparatively low (weak combustion intensity for cycles

2-5).

• In Figure 6.11, it can be seen that in Cluster 3 when the sensitivity Objective

Table 6.10: Number of objectives retained at each stage of the objective reduction
process.

Objective reduction
Stage

No. of objectives retained
Cluster 2 Cluster 3 Cluster 4

1st 6 7 5

Cluster 4 1 Cluster 4 2

2nd 4 5 4 4
3rd 4 4 4 3
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Table 6.11: Table of which specific objectives and the number of them retained at
each stage of the objective reduction process per cluster, where retained objectives are
shaded grey and objective names are further abbreviated for plotting purposes. The
priority order is that used by the Comparison Operator in the modified NSGAII such
that a high number is a high priority and vice versa.

Objective Objective Reduction Stage

No. Name Abbreviation Priority 1st 2nd 3rd

Cluster 2 Cluster 3 Cluster 4 Cluster 2 Cluster 3 Cluster 4 1 Cluster 4 2 Cluster 2 Cluster 3 Cluster 4 1 Cluster 4 2
Obj1 neg 25 INT n25I 4
Obj2 neg 612 INT n612I 4
Obj3 cyc 25 RMS 25R 2
Obj4 cyc 612 RMS 612R 2
Obj5 F model F 6
Obj6 Peak Flare Speed PFS 5
Obj7 sf cyc 25 RMS abs s25R 1
Obj8 sf cyc 612 RMS abs s612R 1
Obj9 sf cyc 25 INT abs s25I 3
Obj10 sf cyc 612 INT abs s612I 3

Number of Objectives Retained 6 7 5 4 5 4 4 4 4 4 3

Figure 6.10: Parallel Coordinates plot of the final POPs resulting from objective re-
duction in each cluster. See Table 6.11 for objective abbreviations.



6.10 Conclusions from the Objective Reduction Process 165

s612I is plotted next to the Objective to which it relates, n612I, the resulting

sensitivity values are in some cases almost as large for those for n612I,

indicating that these solutions show high sensitivity.

• The resulting POPs in Clusters 4 1 and 4 2 display somewhat similar

performance, which is to be expected given that they have the same parent

cluster. Nevertheless, it can be seen that Cluster 4 1 (red) performs worse in the

sensitivity objectives than Cluster 4 2 (gold). In this case, more sensitivity

means the start performance is less robust to variations in Fuel Pressure, which

is not tightly controlled. In a mass-production environment, this variation is

likely to increase and may lead to poor customer satisfaction with start

performance and potentially, warranty cost.

Consequently, it was decided in consultation with the calibration engineer to discard

Clusters 3 (green) and 4 1 (red) and to select preferred solutions from the retained

Clusters 2 (blue) and 4 2 (gold).

Figure 6.11: Parallel Coordinates plot of the final POPs resulting from objective re-
duction in each cluster. The objectives have been re-ordered so that each sensitivity
objective is adjacent to the objective to which it relates.



166 6.10 Conclusions from the Objective Reduction Process

6.10.1 Selection of Final Solutions

In Cluster 2, of the retained Objectives, PFS (Peak Flare Speed) was the highest

priority. Using this information and a brushing technique, available in generating

figure plots in Matlab r© v7.7 (R2008b), a preferred solution that was relatively

insensitive as measured by s25R and s612I and also with a relatively low value of F

(Fuel quantity - a surrogate measure for HC emissions) was selected. This solution is

shown in red in objective space in Figure 6.12 and in decision variable space in Figure

6.13. As can be seen in the plot of PFS versus n25I (top left) in Figure 6.12, there

was evidence of a strong trade-off or conflict between these two objectives. This

complies with known physical understanding of engine starting, as a stronger NMEP

in cycles 2-5 (more negative n25I) indicates that the combustion intensity is stronger

just after the engine has fired, which will in turn cause the engine speed to rise to a

higher level (or higher PFS). The converse is also true.

In Cluster 4 2, of the retained objectives, the highest priority objective was F (Fuel

quantity), then PFS, then the s612R (sensitivity of cycles 6-12 combustion variation

to fuel pressure). Using this information and brushing, a preferred solution that is

Figure 6.12: Scatter plot of the objectives in the final POP (blue) resulting from
objective reduction in Cluster 2 and the selected solution (red).
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Figure 6.13: Scatter plot of the decision variables in the final POP (blue) resulting
from objective reduction in Cluster 2 and the same selected solution (red) as in Figure
6.12.

Figure 6.14: Scatter plot of the objectives in the final POP (blue) resulting from
objective reduction in Cluster 4 2 and the selected solution (red).
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Figure 6.15: Scatter plot in 3D of the objectives in the final POP (blue) resulting from
objective reduction in Cluster 4 2 and the selected solution (red).

Figure 6.16: Scatter plot of the decision variables in the final POP (blue) resulting from
objective reduction in Cluster 4 2 and the same selected solution (red) as in Figure 6.14.
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relatively insensitive as measured by s612R was selected. This solution is shown in

red in objective space in Figures 6.14 and 6.15 and in decision variable space in

Figure 6.16. The chosen solution was identified principally from the scatter plot of F

versus PFS (top left) in Figure 6.14, where F was favoured slightly over PFS, but also

had a low s612R. This can be seen more clearly in the three-dimensional scatter plot

in Figure 6.15.

The objective values of the final solutions selected from each cluster are shown in

Table 6.12 with the retained objectives in each cluster highlighted in grey and the

remaining objectives discarded. Comparing the two solutions, initial observations

were:

• In the objectives where at least one was retained (shaded grey), the retained

objectives generally performed better than the discarded ones. The exception

being the neg 25 INT Objective where solution 355 was better (larger negative

value), but only by a relatively small extent. In the Peak Flare Speed Objective

both solutions were similar in value. This improved performance in the retained

objectives was expected as these were the objectives retained for further

optimisation.

• In the other objectives, which have been discarded for both solutions, solution

271 was better than 355 in neg 612 INT and cyc 612 RMS, but worse in

cyc 25 RMS and sf cyc 25 INT abs.

• In other words, each solution was neither better nor worse than the other, just

different.

Of further interest was a comparison of these solutions against their respective parent

cluster of solutions and against a recent calibration generated by the Cold Start

Table 6.12: Final solutions selected from retained Clusters 2 and 4 2. The objectives
retained are shown highlighted in grey.

Cluster Sol. no. n25I n612I 25R 612R F PFS s25R s612R s25I s612I

2 271 -77.69 -54.38 1.225 0.317 2.31 1471.5 0.071 0.326 16.73 5.4
4 2 355 -83.12 -39.41 0.769 0.59 2.2 1463.5 0.812 0 3.21 14.12
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calibration engineer using a manual, iterative tuning process.

Figure 6.17: Scatter plot of the retained objectives in the final POP (blue) resulting
from objective reduction in Cluster 2, the selected solution, no. 271 (red) and the
independently developed, manually tuned calibration (green).

Scatter plots of this data are shown for Cluster 2 and 4 2 in Figure 6.17 and Figure

6.18, respectively. In addition, parallel coordinates plots of this data are shown for

Cluster 2 and 4 2 in Figure 6.19 and Figure 6.20, respectively. For each figure, the

final POP (blue) resulting from objective reduction, the selected solution (red) and an

independently, manually generated calibration (green) are overlaid. For both clusters,

it can be seen that the calibration is inferior with respect to the POP and the selected

solutions. The exception is in Cluster 2, where the calibration is slightly better

(smaller) than selected solution 271 with respect to the neg 25 INT Objective.

In summary, the selected solution is a significant improvement compared to the

calibration in respect of:

• In Cluster 2. Peak Flare Speed (PFS) and combustion variation sensitivity

(for cycles 2-5) (s25R). The former is considered to be very important for

customer satisfaction with the starting process and the latter indicates much
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Figure 6.18: Scatter plot of the retained objectives in the final POP (blue) resulting
from objective reduction in Cluster 4 2, the selected solution, no. 355 (red) and the
independently developed, manually tuned calibration (green).

improved start robustness and quality.

• In Cluster 4 2. Fuel quantity (F) and PFS. Fuel quantity is very important

with regard to ever-increasing customer expectations of good fuel economy.

Also, as fuel quantity has been used as a surrogate for legislated HC emissions,

reducing fuel reduces HC. So, in this case, significantly reduced HC emissions is

considered especially important as the vast majority of HC emissions are

produced before the exhaust aftertreament system (e.g. catalytic convertor) has

reached operating temperature, i.e. at and after engine start.
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Figure 6.19: Parallel coordinates plot of the retained objectives in the final POP (blue)
resulting from objective reduction in Cluster 2, the selected solution, no. 271 (red) and
the independently developed, manually tuned calibration (green).

Figure 6.20: Parallel coordinates plot of the retained objectives in the final POP (blue)
resulting from objective reduction in Cluster 4 2, the selected solution, no. 355 (red)
and the independently developed, manually tuned calibration (green).



6.11 Summary 173

6.11 Summary

In this case study a real-world transient calibration problem has been distilled into a

ten-objective many-objective optimisation problem. The objectives include dynamic

measures of combustion quality as well as sensitivity quantities related to a control

system actuator, which exhibits significant variation. To address the computational

demands of such a high-dimensional problem, use was made of a parallel computing

cluster. The modified NSGAII multi-objective genetic algorithm of Chapter 4 was

parallelised using an island-based approach. In addition, the k*-Means clustering

algorithm was run in batch mode allowing many more clustering runs to be carried

out. A mathematical notation for the Clustering verification and Objective reduction

Rules was introduced for brevity and efficiency and to enable future software

development. The objective reduction process consisted of four stages and

progressively reduced objective dimensionality where evidence of local objective

harmony existed. It involved the calibration engineer at various stages to advise on

objective priorities and to discard clusters containing solutions of no interest. This

process culminated in two sub-problems, one of three and one of four conflicting

objectives. From the corresponding POPs, scatter plots and brushing, together with

priorities for the remaining objectives, were used to identify preferred solutions. A

comparison of the resulting POP, preferred solution and an independently generated,

manually tuned calibration was made for each of the two sub-problems. In general,

the preferred solution outperformed the independent calibration.





Chapter 7

Conclusions and Future Work

7.1 Conclusions

The objectives of this research were to apply multi-objective evolutionary algorithms

to many-objective real-world problems and in doing so, to develop a decision-making

process to ultimately select a single preferred solution utilising an intuitive results

presentation.

To this end, a novel process has been developed for reducing complexity in

high-dimensional, real-world, multi-objective optimisation problems. This approach

relies on the principle of being able to identify and exploit local harmony between

objectives to reduce dimensionality. To achieve this, a systematic and modular

process has been designed to partition the Pareto-optimal front into clusters, within

which a rule-based Principal Component Analysis (PCA) including preference

articulation is applied for potential objective reduction. This process has been applied

to several real-world automotive engine problems of increasing complexity from three

to ten objectives. In each case study, the number of objectives was progressively and

systematically reduced and a preferred, better-performing solution selected.

Conclusions from this thesis are described below and correspond to the numbered list

of Contributions defined in Chapter 1.

1. A novel, systematic and modular dimension reduction process. This is

a sequential process of applying search, clustering and PCA-based objective

reduction elements, as depicted in the flowchart in Figure 4.1. Rules have been

developed to verify the clustering analysis and identify any objective reduction
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opportunity as detailed in Sections 4.4.3 and 4.5, respectively. No claim is made

that each of the methods used for elements are the best for their respective

tasks, but those used in this research programme have provided useful results on

real-world problems, as demonstrated in the simplified example in Section 4.7

and the case studies in Chapters 5 and 6. The application to these examples of

Pareto-front partitioning and dimensionality reduction coupled with

visualisation enabled the decision-maker to select solutions, which outperformed

those chosen using a manual tuning approach. Nevertheless, each one of the

elements can be replaced by an alternative, which may have advantages in a

given application such as being superior in performance, more readily available

or more familiar to the researcher.

2. Novel exploitation of local objective harmony for dimension

reduction. The aforementioned dimension reduction process relies on the

principle of being able to identify and exploit any local harmony between

objectives for potential dimension reduction. The principle is based on the

observations detailed in Section 2.6 that:

• Objective harmony and conflict may vary across the Pareto-optimal front

(Purshouse and Fleming, 2003a; Deb and Saxena, 2005). The clustering

element is used to group like-solutions in the population to allow any local

objective dependencies to be explored.

• If a subset of the objectives in the Decision Maker’s region of interest are

in harmony, a local objective reduction opportunity exists (Purshouse,

2003; Deb and Saxena, 2006). The PCA-based analysis is used to identify

objective dependencies for potential objective reduction.

There are three further contributions related to using local objective harmony

for dimension reduction as follows:

(a) Definition of clustering verification rules. The k*-Means clustering

algorithm used in this research programme is stochastic by nature, which

justifies running it several times to give confidence that the results are

reliable. In addition, it is necessary that the Decision Maker (DM) is

satisfied that the number and location of the resulting clusters is consistent
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and correct. Consequently, a number of rules (see Section 4.4.3) have been

devised to carry out the clustering with varying initial settings as well as a

sub-sampling approach to identify the smallest, most computationally

efficient population suitable for clustering. Furthermore, the resulting

cluster membership and bounds are compared to justify retaining all

clusters. The latter was employed with notable effect in the Cold Start

optimisation: 1st Stage Objective Reduction (Section 6.6.1), where data

within one cluster violated an engineering limit and was subsequently

discarded.

(b) Definition of objective reduction rules. In problems comprising many

objectives, it may be possible to find a subset containing the majority of

information. Rules to determine this subset have been proposed (in Section

4.5) to objectively and systematically identify and retain the most

influential objectives within each retained Principal Component.

Both of these sets of rules have been applied in the simplified example in

Section 4.7 and the case studies in Chapters 5 and 6 and have led to

significant objective reduction.

(c) A new mathematical notation for the clustering and objective

reduction rules. With problems comprising a larger number of

objectives, it is possible that the number of stages of the objective

reduction will increase and application of the rules will become lengthy.

This was borne out by the four stages involved in the Cold Start

optimisation in Chapter 6. To address the lengthy application of the rules,

mathematical notations were developed to provide clarity, brevity and

efficiency. These notations are defined in Appendices D and E for the

clustering verification and objective reduction rules, respectively. In

addition, they are applied in Chapter 6, the results from which are

summarised in flowcharts for each stage of the objective reduction process,

as shown in Figure 6.6, for example.

3. Inclusion of sensitivity objectives in the optimisation. This allows

simultaneous and efficient search for solutions providing optimal trade-offs

between maximising performance and minimising sensitivity to background
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noise, as exists in the Cold Start optimisation in Chapter 6. The Direct

Derivatives method most closely matches the requirements of being a

computationally efficient, easy-to-implement sensitivity analysis approach,

which can be integrated into the optimisation and is sufficiently general for

engine calibration optimisation problems. The empirical model-based approach

used in this thesis made it straightforward to develop such a Direct derivative

approximation without the need for additional test data. Four such sensitivity

objectives were developed and included in the Cold Start optimisation.

Further minor contributions that resulted from the research work in this thesis are:

i. Objective priority use in objective reduction. Objective priorities and

goals were specified in both of the six and ten objective problems in Chapters 5

and 6, respectively. These were not only implemented with the modified NSGAII

to guide the search, but also were directly applied to the PCA-based objective

reduction process in both case studies to discriminate between objectives with a

similar influence. In the Cold Start optimisation (Chapter 6), objective priorities

were provided by the Cold Start calibration engineer.

ii. Flexibility in reducing the number of objectives. A study on the effect of

varying the threshold for selecting PCs (see Section 5.5) showed that this had a

significant effect on the number of objectives retained. In the Cold Start

optimisation problem in Chapter 6, this effect was utilised to achieve more

objective reduction for a slightly lower threshold for retaining PCs and as such,

may provide some objective reduction flexibility to the DM.

iii. Inclusion of pertinency in a MOEA. The widely-used Multi-Objective

Evolutionary Algorithm, NSGAII (Deb, Pratap, Agarwal and Meyarivan, 2002)

has been modified to incorporate the progressive preference articulation method

of Fonseca and Fleming (1998a). To achieve this, it was necessary to gain a good

understanding of how this method works, as documented in Appendix B. The

modified NSGAII not only allows the decision maker to zoom in to the region of

interest, but also shrinks the search space in high dimensional problems. This is

achieved by intuitively specifying objective priorities and goals and has been used

in all the real-world problems analysed in this research programme.
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iv. New parallel MOEA. A new island-based parallel version of the modified

NSGAII has been developed for efficient evaluation of large populations. This was

implemented as it is one approach for overcoming the search effectiveness issues

of the serial NSGAII and a compute cluster comprising 35-40 processors was

available. In Section 6.4, a validation test conducted to verify that the

implemented pMOEA generated broadly equivalent Pareto-Optimal Populations

(POPs), showed that the serial and parallel MOEAs corresponded well in terms

of objective pattern and distribution. The pMOEA was applied to the

multi-stage Cold Start optimisation in Chapter 6 and proved to be

computationally efficient, e.g. it took 2-3 hours to run the pMOEA for 25,000

generations on a population of 10,000 for the ten-objective problem.

v. Parallel computing applied to clustering. The clustering process is

randomly initialised and thus needs to be run several times from different values

for the initial number of clusters. This can be computationally demanding for

large populations used in this thesis for high-dimensional problems. A batch

processing approach exploiting a distributed computing network is essential to

make this task practical for high-dimensional problems. Consequently, this

approach was employed for the clustering and verification elements in each of the

four optimisation stages in the Cold Start optimisation in Chapter 6.

vi. Use of a cluster boundary constraint. The cluster centres and covariance

data resulting from the clustering process have been used to define a

hyper-ellipsoidal constraint, associated with a cluster in an optimisation in an

attempt to preserve objective correlations within the cluster, as defined in Section

3.5.6. This is necessary, as it is important to verify that in subsequent

optimisations, any discarded objectives do not deteriorate. This was applied in all

three real-world problems in this research programme.

vii. Definition of dynamic measures of combustion quality. These comprised

smoothed, dynamic measures of combustion intensity and variation. Respectively,

these are equivalent to maximising the energy available to accelerate the engine

during the ‘run-up’ and minimising the combustion variation to give a smooth

engine response. These measures were used as objective functions in the Cold

Start optimisation in Chapter 6 and are defined in Section 6.5.1.
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7.2 Future Work

Although significant objective reduction and favourable optimisation solutions have

been realised with the complexity reduction process as introduced in Chapter 4, there

are a number of enhancements which can be made. Such improvements have been

categorised into those which address observed weaknesses or make improvements to

elements of the existing proposed process and those exploring other, more general

many-objective optimisation research opportunities.

• Improvements to the existing proposed dimension reduction process

– In the Migration of Preferability (PPAFF) to NSGAII (Section 4.3.3), the

Archive population block (see Figure 4.3) uses a constrained fast

non-dominated (CFND) sorted (as with NSGAII) for both the NSGAII

and PPAFF paths. This use of CFND sorting is not a feature of the

original PPAFF path, which instead ranks the population by preference.

Therefore, the Archive population block should be extended to

accommodate both paths, not just CFND. Once implemented, the relative

performance of the archiving approaches should be compared to

understand what effect such a change would have.

– Revisit the objective reduction analyses and subsequent optimisation in

both case studies where there is evidence of independence between

objectives. This is indicated by a retained Principal Component (PC) in

which a particular objective dominates, as evidenced by a near-unity

eigenvector coefficient magnitude with corresponding near-zero eigenvector

coefficient magnitudes for the same objective in the other PCs. In such

scenarios, an increased number of lower dimension optimisations may

result.

– Explore and compare the performance of alternative migration parameter

settings and schemes for the island-based pMOEA implementation as

described in Section 6.4.

– While the k*-Means clustering algorithm automatically determines the

number of output clusters, its parameters may require a lot of calibration,

i.e. lots of runs, to generate converged clusters. Other clustering
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approaches should be tried. For example, it may be possible to comply

with the spherical data assumption of the k-Means algorithm (Macqueen,

1967), by normalising objective function inputs and then running it many

times (particularly if parallel computing is available) from different

numbers of initial clusters. Comparison of the cluster convergence should

reveal the correct number of output clusters.

– As demonstrated in the case studies in Chapters 5 and 6, the two main

stages of the search (evolution of an initial population for clustering and

further evolution of populations within clusters) have involved many

thousands of objective function evaluations. Further research is required to

determine whether this significant computational investment is justified or

if fewer objective function evaluations would suffice.

• More general many-objective optimisation research opportunities

– Implement the mathematical notation for the Clustering verification and

Objective reduction Rules in software. This will make a high dimensional

multi-stage objective reduction process more efficient, less error-prone and

potentially fully automated including documentation of results at each

stage. Different degrees of objective reduction and different objective

priority orders could easily be explored, which may be subject to available

computational resources.

– This software could be implemented as a collection of routines underlying a

Graphical User Interface in for example, a Matlab r© toolbox. This could be

designed to easily allow alternative optimisation, clustering or dimension

reduction algorithms to be ‘plugged-in’ as well as being able to interface to

a parallel computing facility.

– The ‘toolbox’ software concept could be extended into a more general

‘Many-Objective Optimisation’ toolbox, which not only supported the

proposed dimension reduction process, but also provided for other

processes, based on alternative methods to be implemented. For example,

hybrid MOEAs such as the CAO-based NSGAII (Adra et al., 2009) or

modified Pareto-dominance algorithms such as that based on L-dominance

(Zou et al., 2008) could be included. In addition, further visualisation
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capability could be incorporated, e.g. the Hyper-Radial Visualization tools

(Chiu and Bloebaum, 2008, 2010). Furthermore, the toolbox could provide

a convenient and easy-to-use capability to compare the results of various

alternative approaches to optimising the same problem.



Appendix A

Details of k*-Means Simulation

Testing

This appendix provides details of the simulation testing on the k*-Means clustering

algorithm summarised in Section 3.3.5.

For the normal data and non-normal data a multivariate normal distribution and a χ2

distribution were sampled, respectively. A number of scenarios have been run with

the results as shown below:

Scenario:

1. Normal data: one cluster, two variables

This is the simplest scenario in which the clustering algorithm should work and a

plot of the data sample is shown in Figure A.1. The data consisted of 200 points

as a function of two variables, x1 and x2. As detailed below, there was good

agreement between the centres of the cluster, Mc and those for the data, Md.

Mc =
[

0.0733 0.0837
]

Md =
[

0 0
]

Furthermore, in lower triangular form, the correlation matrix of the cluster

(determined by an iterative method in the k*-Means of Cheung (2003)), Cc,

corresponded well to that of the data, Cd, produced by the random number

generator. In turn, Cd was similar to the population correlation matrix, Cp

(derived from the covariance matrix specified to the multivariate, normal,
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Figure A.1: Single group of normal data.

Figure A.2: Two well-separated groups of normal data.
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pseudo-random number generator used to produce the data sample).

Cp =

 1.0000

0.9254 1.0000

 Cd =

 1.0000

0.9196 1.0000

 Cc =

 1.0000

0.9189 1.0000



2. Normal data: two well-separated clusters, two variables

The algorithm should have no difficulty in discerning between the groups of

data shown in Figure A.2. Each of these groups consisted of 200 points as a

function of the same two variables as before. Good agreement was achieved

between the centres of each cluster, Mc1,2 and the respective centers of each

data group, Md1,2 .

Mc1 =
[

0.0099 0.1550
]

Md1 =
[

0 0
]

Mc2 =
[

9.9371 10.2060
]

Md2 =
[

10 10
]

The correlation matrices of each cluster, Cc1,2 , corresponded well to those of the

data, Cd1,2 , produced by the random number generator. In turn, Cd1,2 were

similar to the population correlation matrices, Cp1,2 .

Cp1 =

 1.0000

0.9254 1.0000

 Cd1 =

 1.0000

0.9196 1.0000

 Cc1 =

 1.0000

0.9073 1.0000



Cp2 =

 1.0000

0.9254 1.0000

 Cd2 =

 1.0000

0.9265 1.0000

 Cc2 =

 1.0000

0.9114 1.0000



3. Normal data: two adjacent clusters, two variables

This is a more realistic, but more challenging scenario, where it is quite possible

that the algorithm will select members of the other cluster. Each of these

groups consisted of 200 points as a function of the same two variables as before.

These groups were made adjacent, since it was expected that a Pareto-optimal

population would, in many problems, have at least some adjacent clusters.

Good agreement was achieved between the centres of each cluster, Mc1,2 and the
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respective centers of each data group, Md1,2 .

Mc1 =
[

0.0377 −0.0295
]

Md1 =
[

0 0
]

Mc2 =
[

3.9391 3.8571
]

Md2 =
[

4 4
]

The correlation matrices of each cluster, Cc1,2 , corresponded well to those of the

data, Cd1,2 , produced by the random number generator. In turn, Cd1,2 were

similar to the population correlation matrices, Cp1,2 . When comparing the size

of the two resulting clusters, cluster 1 had a membership of 194, whereas cluster

2 had a membership of 206 data points. Evidence of this can be seen in Figure

A.3. However, the correlations were still similar to those of the sample.

Cp1 =

 1.0000

0.9254 1.0000

 Cd1 =

 1.0000

0.9196 1.0000

 Cc1 =

 1.0000

0.9046 1.0000



Cp2 =

 1.0000

0.9254 1.0000

 Cd2 =

 1.0000

0.9253 1.0000

 Cc2 =

 1.0000

0.9296 1.0000



Figure A.3: Two adjacent groups of normal data.
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Figure A.4: Two adjacent groups of χ2 non-normal data.

4. Non-normal data: two adjacent clusters, two variables

It is quite likely that a population of Pareto-optimal solutions will be

non-normal. To test one example of data from a non-normal distribution, a χ2

distribution with 5 degrees of freedom (to give a reasonably well skewed

distribution) was randomly sampled. This resulted in two adjacent data groups

each of 200 points and each as a function of the same two variables as before.

Good agreement was achieved between the centres of each cluster, Mc1,2 and the

respective centers of each data group, Md1,2 .

Mc1 =
[

5.1201 5.0623
]

Md1 =
[

5.2102 5.0991
]

Mc2 =
[

16.226 15.979
]

Md2 =
[

16.210 16.099
]

The correlation matrices of each cluster, Cc1,2 , corresponded well to those of the

data, Cd1,2 , produced by the random number generator. When comparing the

size of the two resulting clusters, cluster 1 had a membership of 198, whereas

cluster 2 had a membership of 202 data points. Evidence of this can be seen in
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Figure A.4. However, the correlations were still similar to those of the sample.

Cd1 =

 1.0000

−0.0072 1.0000

 Cc1 =

 1.0000

−0.0348 1.0000



Cd2 =

 1.0000

−0.0072 1.0000

 Cc2 =

 1.0000

0.0177 1.0000


5. Normal data: two adjacent clusters, six variables

One of the real world optimisation problems in which it was intended to apply

this algorithm consisted of six decision variables, so it was worth trying this

scenario. To begin with, each of these adjacent groups consisted of 200 points as

a function of the same two variables as before, as shown in the parallel

coordinates plot in Figure A.5. From Table A.1 it can be seen that:

• Reasonable agreement was achieved between the respective data and

cluster centres.

• Better agreement was achieved between the respective data and cluster

centres when the data group size was increased from 200 to 300 points.

Figure A.5: Parallel coordinates plot of data groups of 200 points.
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Figure A.6: Parallel coordinates plot of data groups of 300 points.

• For the data groups of 200 points, the cluster correlation matrices of each

cluster corresponded well to those of the data, which, in turn, were similar

to those of the population. When comparing the size of the two resulting

clusters, both had memberships of 200.

• When the data group size was increased from 200 to 300 points, there was

very little improvement in correspondence between the correlation matrices

of the data and the corresponding clusters.
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Table A.1: Comparison of centres and correlation matrices for six variable two
cluster data for different data group sizes.

Cluster
Property

Data Group
Size

Data
Source

Cluster 1 Cluster 2

Centres
200

Data 0 0 0 0 0 0 6 6 6 6 6 6
Cluster -0.0388 0.1286 -0.0352 -0.2016 -0.1103 -0.1320 6.0504 6.0748 6.2160 5.9797 6.0967 6.0009

300
Data 0 0 0 0 0 0 6 6 6 6 6 6

Cluster 0.0720 0.0202 -0.0925 -0.0406 0.0497 0.0472 5.9454 6.0558 6.0445 5.9855 6.0490 5.9223

Correlation
Matrices

200

Population

1 1
0.7791 1 0.7791 1
0.7112 0.8759 1 0.7112 0.8759 1
0.9008 0.9389 0.8493 1 0.9008 0.9389 0.8493 1
0.7916 0.6592 0.7468 0.6819 1 0.7916 0.6592 0.7468 0.6819 1
0.6403 0.4290 0.7021 0.6039 0.6960 1 0.6403 0.4290 0.7021 0.6039 0.6960 1

Data

1 1
0.8148 1 0.8209 1
0.7421 0.8944 1 0.7220 0.8821 1
0.9144 0.9465 0.8673 1 0.9188 0.9477 0.8520 1
0.7995 0.6983 0.7557 0.6954 1 0.8149 0.7400 0.7874 0.7456 1
0.6692 0.5223 0.7481 0.6660 0.6869 1 0.6605 0.5308 0.7636 0.6730 0.7113 1

Cluster

1 1
0.8113 1 0.8156 1
0.7385 0.8901 1 0.7177 0.8771 1
0.9105 0.9423 0.8630 1 0.9136 0.9419 0.8472 1
0.7954 0.6945 0.7517 0.6921 1 0.8096 0.7348 0.7825 0.7410 1
0.6655 0.5191 0.7436 0.6621 0.6829 1 0.6558 0.5274 0.7590 0.6695 0.7076 1

300

Population

1 1
0.7791 1 0.7791 1
0.7112 0.8759 1 0.7112 0.8759 1
0.9008 0.9389 0.8493 1 0.9008 0.9389 0.8493 1
0.7916 0.6592 0.7468 0.6819 1 0.7916 0.6592 0.7468 0.6819 1
0.6403 0.4290 0.7021 0.6039 0.6960 1 0.6403 0.4290 0.7021 0.6039 0.6960 1

Data

1 1
0.7622 1 0.7758 1
0.7113 0.8517 1 0.6675 0.8610 1
0.8964 0.9315 0.8524 1 0.9130 0.9290 0.8095 1
0.8169 0.6618 0.7383 0.7103 1 0.7807 0.6417 0.7118 0.6770 1
0.5521 0.2646 0.6137 0.4928 0.6066 1 0.6433 0.4211 0.6737 0.6100 0.6852 1

Cluster

1 1
0.7612 1 0.7721 1
0.7109 0.8487 1 0.6655 0.8555 1
0.8926 0.9270 0.8495 1 0.9079 0.9224 0.8049 1
0.8139 0.6622 0.7369 0.7095 1 0.7778 0.6402 0.7086 0.6749 1
0.5555 0.2743 0.6164 0.4978 0.6091 1 0.6420 0.4230 0.6727 0.6099 0.6835 1



Appendix B

The Comparison Operator

This Appendix provides details of some simple example problems to explain how the

Comparison Operator (Fonseca and Fleming, 1998a) introduced in Section 4.3.2,

operates.

B.1 Some Examples explaining how Different Parts of

the Comparison Operator work

These examples are simple two-objective, two-individual problems where both

objectives are minimised. The objectives chosen relate to an automotive problem of

minimising both Combustion Stability and negative Torque (maximising Torque).

More extensive examples are given in the next section.

1. These are Pareto optimisation examples as shown in Figure B.1 where the

priority r equals 1 so Equation (4.2) applies. Also, no goals for the objectives

are given, i.e. the goals equal −∞, and have equal priority.

• Comparing individuals: A to B; A dominates B with respect to both

objectives. This relates to the first part of Equation (4.2) where A does not

meet the goals(−∞), i.e. (A
A
_
r p< B

A
_
r ) = 1. Therefore, A is preferable to B.

• Comparing individuals: B to C which are coincident; B does not meet the

goals, but B does not dominate C, since for at least one objective, B must

be strictly less than C, so (B
B
_
r p< C

B
_
r ) = 0. Although B equals C in both

objectives, i.e. (B
B
_
r = C

B
_
r ) = 1, this is ANDed with the remainder of
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B.1 Some Examples explaining how Different Parts of the Comparison

Operator work

Figure B.1: Initial Pareto optimisation examples

Equation (4.2) where B does meet the goals. However, in this case B does

not meet the goals and therefore the remainder of Equation (4.2) does not

apply. Therefore, B is not preferable to C.

However, according to Lemma 1, B and C should be equivalent. So, with

reference to the definition of Equivalence, Equation (4.4), B does not meet

the goals, so (B
B
_ = C

B
_) = 1. Also, (B

B
^

1 = C
B
^

1 ) = 1. However, the last

part does not apply as there are no higher priority objectives. So B is

equivalent to C, i.e. (B ≡
g

C).

• Comparing individuals: A to D; A does not dominate or equal D, i.e.

(A
A
_
r p< D

A
_
r ) = 0 and (A

A
_
r = D

A
_
r ) = 0. So, A is not preferable to D.

2. These are constrained optimisation examples as shown in Figure B.2 where the

priority r equals 2, so Equation (4.3) applies. From Equation (4.1), the

functional parts, f1 in this case, of the constraint inequalities are treated as high

priority objectives to be minimised until the constant parts, g1 in this case,

specified as the goals, are reached. The unconstrained objectives are treated as
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Figure B.2: Initial constrained optimisation examples

lower priority and have goals equal to −∞. So in this case, the aim is to

minimise Combustion Stability until the goal (constraint) is reached and then to

minimise -Torque.

• Comparing individuals: A to B; using the convention Ar,i where m relates

to the objective and r the priority, and considering the highest priority

objective first, i.e. the constrained objective f1, A2,1 meets the

Combustion Stability goal (or constraint) g1 and therefore the set A
A
_

2,1 is

empty. This means that (A
A
_

2,1 = B
A
_

2,1) = 1. As A2,1 meets the Combustion

Stability goal g1, the parts of Equation (4.3) in square brackets apply. B2,1

is less than g1, so (B
A
^

2,1 � g
A
^

1 ) = 0. However, the last part

(A1,...,r−1 ≺
g1,...,r−1

B1,...,r−1) does apply, and essentially means that the

next priority down (r − 1) is considered, i.e. the priority r equals 1 case:

Equation (4.2). A1,1 does not meet the goal: −∞, for this objective, and so

(A
A
_

1,1 p< B
A
_

1,1) = 1. Therefore, A is preferable to B.

• Comparing individuals: A to C; again considering the highest priority
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Operator work

objective first, i.e. the constrained objective f1, A2,1 meets the

Combustion Stability goal (or constraint) g1. Therefore, the set A
A
_

2,1 is

empty and (A
A
_

2,1 = C
A
_

2,1) = 1. In this case, C2,1 exceeds the Combustion

Stability goal g1 and so (C
A
^

2,1 � g
A
^

1 ) = 1. Therefore, A is preferable to C.

Figure B.3: Initial constraint satisfaction example

3. This is a constraint satisfaction example as shown in Figure B.3 where the

priority r equals 2 so Equation (4.3) applies. All objectives are constrained and

are considered in the same way as constrained optimisation, i.e. high priority

objectives. However, as this category suggests, the aim is only to satisfy the

constraints and the objectives are not minimised further once the constraints

are met. In other words, there is no lower priority objective to be minimised.

So, in this case, there are constraints on both -Torque and Combustion

Stability. Both solutions A and B satisfy the goals (constraints) and therefore

the set A
A
_
r is empty. This means that (A

A
_
r = B

A
_
r ) = 1. However, while A does

meet both goals, (B
A
^
r � g

A
^
r ) = 0 and the very last part of Equation (4.3)
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(A1,...,r−1 ≺
g1,...,r−1

B1,...,r−1) does not apply as there is no lower priority.

Therefore, A is not preferable to B.

Considering equivalence as defined in Equation (4.4), the set A
A
_
r is empty

therefore (A
A
_ = B

A
_) = 1. The next part, (A

A
^

1 = B
A
^

1 ) does not apply as r = 2.

However, the last part does. This is because where A meets the goals, B meets

the goal with respect to the higher priority objectives, i.e. (B
A
^

2 ≤ g
A
^

2 ) = 1.

Therefore, A and B are equivalent, which is intuitive as they both satisfy the

goals.

B.2 Multi-Objective Decision Making Strategies

Fonseca and Fleming (1998a) describe several different cases with corresponding

preference vectors. As in Section B.1, the examples given in this section relate to the

automotive problem of minimising both Combustion Stability and negative Torque

(maximising Torque) objectives referred to as f1 and f2 respectively.

B.2.1 Pareto

All objectives have equal priority and no goals are given. The general form of the

preference vector is: g = [g1] = [(−∞, · · · ,−∞)]. Worked examples have been shown

in Section B.1.

B.2.2 Lexicographic

Each objective is assigned a different priority and no goal levels are given. The

general form of the preference vector is: g = [g1, · · · ,gnobj ] = [(−∞), · · · , (−∞)].

This approach (Ben-Tal, 1980) works on the basis that the highest priority objective

and goal is considered first. If a single solution results then the process terminates.

However, if multiple solutions exist then the next highest priority objective and goal

is considered, but without degrading the solutions from the higher priority objectives

and goals. This process continues until a single solution results. The following worked

example provides an explanation, see Figure B.4. For this approach, r = 2 and

Equation (4.3) initially applies.
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Figure B.4: Lexicographic optimisation example

Worked examples

Comparing individuals: A to B;

objectives = [A,B] =

 0.2 0.23

−96.7 −96.7

 goals =

 −∞

−∞

 priorities =

 1

2



With respect to the highest priority constrained objective f2, i.e. -Torque,

(A
A
_

2,2 = B
A
_

2,2). (B
A
^

2,2 � g
A
^

2 ) = 0, but (A1,...,r−1 ≺
g1,...,r−1

B1,...,r−1) does apply.

Therefore the next priority down (r − 1) is considered, i.e. the priority r equals 1

case: Equation (4.2). A1,1 does not meet the goal: −∞, for this objective, and so

(A
A
_

1,1 p< B
A
_

1,1) = 1 and so, A≺
g
B. In other words, A is equivalent to B in the (first)

highest objective Combustion Stability, but A dominates B in the lower priority

objective -Torque.
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B.2.3 Constrained Optimisation

See the constrained optimisation examples in Section B.1 for an explanation of the

formulation. The general form of the preference vector is

g = [g1,g2] = [(−∞, · · · ,−∞), (g2,1, · · · , g2,nobjc)], which, for these examples

translates to: g = [g1,g2] = [(0.15), (−∞)], see Figure B.5. That is, r = 2 and

Equation (4.3) applies.

Figure B.5: Further constrained optimisation examples

Worked examples

Comparing individuals: A to B;

objectives = [A,B] =

 0.18 0.22

−93 −96

 goals =

 0.15

−∞

 priorities =

 2

1


With respect to the highest priority constrained objective f1, A2,1 > g1, i.e.

A2,1 > 0.15. So, (A
A
_

2,1 p< B
A
_

2,1) = 1 and A≺
g
B. This is because A gets closer than B to
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the highest priority objective, which is the Combustion Stability constraint in this

case.

Comparing individuals: C to D;

objectives = [C,D] =

 0.08 0.12

−80 −80

 goals =

 0.15

−∞

 priorities =

 2

1



With respect to the highest priority constrained objective f1, C2,1 < g1, so C
C
_

2,1 = {}

and (C
C
_

2,1 = D
C
_

2,1) = 1. As (D
C
^

2,1 � g
C
^

1 ) = 0, i.e. C2,1 < 0.15, the next priority down

(r = 1) is considered. C1,1 does not meet the goal: −∞, for this objective, but C does

not dominate D in the lower priority objective and so (C
C
_

1,1 p< B
C
_

1,1) = 0. Therefore, C

is not preferable to D.

Considering equivalence as defined in Equation (4.4), the set C
C
_
r is empty therefore

(C
C
_ = D

C
_) = 1. The next part, (A

A
^

1 = B
A
^

1 ) = 1. However, the last part does not

apply as r = 1. Therefore, C and D are equivalent with respect to the lower priority

objective, f1.

B.2.4 Constraint Satisfaction

All constraints are treated as in constrained optimisation, but there is no low priority

objective to be optimised. In other words, all objectives are constrained and the only

aim is to satisfy all constraints.

The general form of the preference vector is: g = [{},g2] = [(g2,1, · · · , g2,nobj)], which

for these examples translates to: g = [{},g2] = [(0.15,−70)], see Figure B.6. That is,

r = 2 and Equation (4.3) applies.

Worked examples

1. Comparing individuals: A to B;

objectives = [A,B] =

 0.09 0.18

−80.4 −92.8

 goals =

 0.15

−70

 priorities =

 2

2
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Figure B.6: Further constraint satisfaction examples

A meets both goals (constraints), i.e. A
A
_ = {}, so (A

A
_
r = B

A
_
r ) = 1 and

(B
A
^

2,1 � g
A
^

1 ) = 1 ∴ A≺
g
B.

2. Comparing individuals: B to C;

objectives = [B,C] =

 0.18 0.22

−92.8 −95.9

 goals =

 0.15

−70

 priorities =

 2

2


Considering first where B does not meet the goal(s) (constraint(s)), which in

this example is B2,1 > g1, i.e. B2,1 > 0.15 ∴ B
B
_

2,1 p< C
B
_

2,1) and B≺
g
C. This is

because where B exceeds the constraints it gets closer than C to satisfying them.

3. Comparing individuals: B to D;

objectives = [B,D] =

 0.18 0.03

−92.8 −63.2

 goals =

 0.15

−70

 priorities =

 2

2



B does not meet goal (constraint) g1, i.e. B2,1 > 0.15, but (B
B
_

2,1 p< D
B
_

2,1) = 0
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and (B
B
_

2,1 = D
B
_

2,1) = 0. Likewise, B does not meet goal (constraint) g2, i.e.

B2,2 > −70, but (B
B
_

2,2 p< D
B
_

2,2) = 0 and (B
B
_

2,2 = D
B
_

2,2) = 0. ∴ B⊀
g
D. This is

because B and D fail different constraints, so their performance relative to the

constraints cannot be compared.

B.2.5 Goal Programming(1)

One formulation (Hwang and Masud, 1979) consists of trying to meet the goals

simultaneously in a similar way to lexicographic optimisation. The general form of

the preference vector is: g = [g1, · · · ,gnobj ] = [(g1,1), · · · , (gnobj,1)], which for these

examples translates to: g = [g1,g2] = [(0.15), (−70)], see Figure B.7. That is, r = 2

and Equation (4.3) applies.

Figure B.7: Goal programming examples
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Worked examples

1. Comparing individuals: A to E;

objectives = [A,E] =

 0.09 0.12

−80.4 −86.2

 goals =

 0.15

−70

 priorities =

 1

2



A meets both goals, i.e. A
A
_
r = {}, so (A

A
_
r = E

A
_
r ) = 1. Considering the highest

priority objective f2 (-Torque), (E
A
^

2,2 � g
A
^

2 ) = 0, but

(A1,...,r−1 ≺
g1,...,r−1

E1,...,r−1) applies. This means the next priority down is

considered, i.e. r = 1 and Equation (4.2) applies. (A
A
^

1,1 p< E
A
^

1,1) = 1 ∴ A≺
g
E.

This is because A gets closer to the higher priority goal g2.

2. Comparing individuals: A to B;

objectives = [A,B] =

 0.09 0.18

−80.4 −92.8

 goals =

 0.15

−70

 priorities =

 1

2



A meets both goals (constraints), i.e. A
A
_
r = {}, so (A

A
_
r = B

A
_
r ) = 1.

Considering the highest priority objective f2 (-Torque), (B
A
^

2,2 � g
A
^

2 ) = 0, but

(A1,...,r−1 ≺
g1,...,r−1

B1,...,r−1) applies. This means the next priority down is

considered, i.e. r = 1 and Equation (4.2) applies. (B
A
^

1,1 � g
A
^

1 ) = 1 ∴ A≺
g
B.

This is because A meets both goals but B fails goal g1.

3. Comparing individuals: B to C;

objectives = [B,C] =

 0.18 0.22

−92.8 −95.9

 goals =

 0.15

−70

 priorities =

 1

2



Considering first the highest priority objective f2 (-Torque), B
B
_

2,2 = {}, so

(B
B
_

2,2 = C
B
_

2,2) = 1. (C
B
^

2,2 � g
B
^

2 ) = 0, but (B1,...,r−1 ≺
g1,...,r−1

C1,...,r−1) applies.

This means the next priority down is considered, i.e. r = 1 and Equation (4.2)

applies. (B
B
_

1,1 p< C
B
_

1,1) = 1 ∴ B≺
g
C. This is because while both B and C meet

goal g2 and fail to meet goal g1, B gets closer than C to satisfying goal g1.
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4. Comparing individuals: B to D;

objectives = [B,D] =

 0.18 0.03

−92.8 −63.2

 goals =

 0.15

−70

 priorities =

 1

2



Considering first the highest priority objective f2 (-Torque), B
B
_

2,2 = {}, so

(B
B
_

2,2 = D
B
_

2,2) = 1. (D
B
^

2,2 � g
B
^

2 ) = 1 ∴ B≺
g
D. This is because B meets, but D

fails to meet, the higher priority goal g2.

5. Comparing individuals: A to F;

objectives = [A,F] =

 0.09 0.09

−80.4 −74

 goals =

 0.15

−70

 priorities =

 1

2



A meets both goals, i.e. A
A
_
r = {}, so (A

A
_
r = F

A
_
r ) = 1. Considering first the

highest priority objective f2 (-Torque), (F
A
^

2,2 � g
A
^

2 ) = 0, but

(A1,...,r−1 ≺
g1,...,r−1

F1,...,r−1) applies. This means the next priority down is

considered, i.e. r = 1 and Equation(4.2) applies. (A
A
^

1,1 p< F
A
^

1,1) = 0, since for

A1,1 to dominate F1,1, A1,1 must be strictly less than F1,1. ∴ A⊀
g
F.

However, according to Lemma 1, A and F should be equivalent. So, with

reference to the definition of Equivalence, Equation (4.4), A meets both goals,

i.e. A
A
_ = {}, so (A

A
_ = F

A
_) = 1. Also, (A

A
^

1 = F
A
^

1 ) = 1, and (F
A
^

2 ≤ g
A
^

2 ) = 1,

so (A ≡
g

F).

B.2.6 Goal Programming(2)

Another formulation attempts to meet all goals simultaneously and be Pareto

optimal. The general form of the preference vector is: g = [g1] = [(g1,1, · · · , g1,nobj)],

which for these examples translates to: g = [g1] = [(0.15,−70)], see Figure B.7. That

is, r = 1 and Equation(4.2) applies.
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Worked examples

1. Comparing individuals: A to E;

objectives = [A,E] =

 0.09 0.12

−80.4 −86.2

 goals =

 0.15

−70

 priorities =

 1

1



A meets both goals, i.e. A
A
_
r = {}, so (A

A
_
r = E

A
_
r ) = 1. (E

A
^
r � g

A
^
r ) = 0, and

(A1,...,r−1 ≺
g1,...,r−1

E1,...,r−1) does not apply as there is no lower priority.

∴ A⊀
g
E. This is because both A and E satisfy both equal priority goals and do

not dominate each other.

2. Comparing individuals: A to B;

objectives = [A,B] =

 0.09 0.18

−80.4 −92.8

 goals =

 0.15

−70

 priorities =

 1

1



A meets both goals (constraints), i.e. A
A
_ = {}, so (A

A
_
r = B

A
_
r ) = 1.

(B
A
^

1,1 � g
A
^

1,1) = 1 ∴ A≺
g
B. This is because A meets both goals but B fails to

meet goal g1.

3. Comparing individuals: B to C;

objectives = [B,C] =

 0.18 0.22

−92.8 −95.9

 goals =

 0.15

−70

 priorities =

 1

1


Considering first where B fails to meet the goals, i.e. B1,1 > g1,

(B
B
_

1,1 p< C
B
_

1,1) = 1 ∴ B≺
g
C. This is because where B fails to meet the goals,

i.e. g1, it gets to closer than C to satisfying goal g1.

4. Comparing individuals: B to D;

objectives = [B,D] =

 0.18 0.03

−92.8 −63.2

 goals =

 0.15

−70

 priorities =

 1

1


Considering first where B fails to meet the goals, i.e. B1,1 > g1,

(B
B
_

1,1 p< D
B
_

1,1) = 0 and (B
B
_

1,1 = D
B
_

1,1) = 0. ∴ B⊀
g
D. This is because while B
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and D both fail to meet one of the goals, they fail different goals, which both

have equal priority.

5. Comparing individuals: H to J;

objectives = [H,J] =

 0.2 0.2

−75 −65

 goals =

 0.15

−70

 priorities =

 1

1


Considering first where H fails to meet the goals, i.e. H1,1 > g1,

(H
H
_

1,1 p< J
J
_

1,1) = 0, but (H
H
_

1,1 = J
H
_

1,1) = 1. H meets the -Torque goal, i.e.

H1,2 < g2 and (J
H
^

1,2 � g
H
^

2 ) = 1. ∴ H≺
g
J. This is because while H and J both

fail to meet one of the goals (by the same extent), H meets the other goal,

whereas J does not and so H is preferable to J.



Appendix C

Application of Savitzky-Golay

smoothing to combustion data

This is an Appendix to Section 6.5 and explains how the NMEP combustion data,

used in some of the objective functions, has been smoothed using the Savitzky-Golay

(SG) algorithm (Savitzky and Golay, 1964) with a detailed explanation provided in

Press et al. (1992, pp. 650).

Let H denote the set of observed combustion events and xce the Net Mean Effective

Pressure (NMEP) (Ferguson, 1986) for the corresponding ceth event, then:

H = {xi ∈ R}N
ce=1 (C.1)

It should be noted that H is implicitly considered an ordered set as it is assumed that

the xce are written as an ordered sequence. In general, the set H may contain

non-firing or aberrant combustion events. It is therefore convenient to define a subset

F of H (F ⊆ H), whose elements exclude misfire or other aberrant combustion data.

F is defined by:

F = {(xce ∈ R) ∧ (xce > nm)} (C.2)

In Equation C.2, nm is the NMEP threshold parameter, above which an event is

defined to have normal combustion. Further, let xf denote the individual members of

F (xf ∈ F ). If s ∈ [1, N ] ∧ i ∈ N denotes the event index at which combustion first

occurs, this suggests xs is the first member of F ; i.e. the NMEP achieved at first fire.
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Therefore, s is the first event for which xce > nm.

It is also necessary to define W as the set:

W = {xce ∈ R}N
i=s (C.3)

That is, W is the set of NMEP values for all combustion events from first fire

onwards. Clearly, by definition, W ⊂ H. Similarly, xw denotes the individual

members of W (xw ∈W ).

In addition, let yce = SG(xce, nl, nr, ft) (or yce = SG(nl, nr, ft) if the variable to be

filtered is known) denote the result of applying a ftth order Savitzky-Golay filter of

window size nl + nr + 1, where nl is the number of samples to the left of the ceth

sampling instance and nr is the corresponding number of samples to the right, of the

xce data.

Figure C.1 illustrates the application of a SG(xce, 4, 4, 2) filter to after-start NMEP

data obtained from a typical engine start test run. It can be seen that the data are

significantly smoothed without the need to resort to formulating an explicit

explanatory model; the smoothed data being considered to represent a trend-line

through the data. As a result, the deviations between the smoothed and raw data at

Figure C.1: Application of a 2nd order SG-filter (symmetrical window and window
width) to a typical after-start NMEP trace.
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any instant indicate the consistency or quality of the combustion process.

The set of squared NMEP deviations, DN can then be defined as:

DN = {xw, yw ∈ R ∧ d2
w = (yw − xw)2}N

w=s (C.4)

where dw is the NMEP deviation for an individual combustion event.

Figure C.2 illustrates the effect of varying the SG-filter parameters on a typical NMEP

data trace; pane a) displays the smoothed response and pane b) the corresponding

dce. As expected, the dce plot depends on various filter parameterisations.

Figure C.2: Effect of SG filter parameters on the smoothed NMEP response. Pane a)
shows the raw data and corresponding smoothed data. Pane b) plots the corresponding
NMEP deviations. Increasing the order of the polynomial, for a fixed window width,
decreases the smoothing, while increasing the window width, for a fixed polynomial
order, increases the smoothing.





Appendix D

Mathematical Notation for

Clustering Verification Rules

This notation applies to the Cluster verification Rules as defined in Section 4.4.3, and

which are used to make cluster comparisons. It not only provides a compact

representation, but also forms part of a requirements specification for developing

automated analysis software.

D.1 A Compact Notation for Cluster Analyses used in

CR1 and CR2

We will use the following notation to describe a clustering analysis:

V nobj
k (γ, lr, cs, ϕ, τ) = [ξ1, ξ2, . . . , ξs] (D.1)

where k denotes the kth sub-sample, with k = 1 representing the reference sample,

nobj the number of objectives, γ the sub-sample size, lr is the learning rate, cs the

initial number of clusters, ϕ the maximum number of iterations and τ the

convergence tolerance. The purpose of this notation is to completely define the

clustering algorithm configuration and is currently designed for the k*-Means

clustering algorithm only. Similar notation could be subsequently developed for other

clustering algorithms.

The parameters ξj ∈ N denote the number of clusters resulting from each run of the

algorithm. These are written from left to right in terms of frequency of occurrence
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and ascending number of clusters. Thus V nobj
k (γ, lr, cs, ϕ, τ) = [2, 2, 3] defines that the

most frequently occurring solution had two clusters, as did the next most common

solution. However, the two solutions are not the same and will have different centres,

correlation matrices or number of solutions per cluster. The least frequent solution

resulted in three clusters. In the scenario where two solutions, e.g. those with two

clusters, occur equally as frequently, then brackets will be used to identify them, e.g.

V nobj
k (γ, lr, cs, ϕ, τ) = [(2, 2), 3].

k*-Means is a stochastic clustering algorithm and may therefore return different kξj

for the same parameter settings. Consequently, k*-Means needs to be run several

times to allow discovery of potential multiple solutions.

It may be of interest to the decision maker (DM) to explore solutions corresponding

to multiple kξj , especially in problems where little prior knowledge exists. For

example, if V nobj
k (γ, lr, cs, ϕ, τ) = [2, 2, 3] the DM may want to look at kξ1 = kξ2 = 2.

To differentiate between these two results, an additional index, z, is used to represent

different solutions with the same number of resulting clusters leading to the notation,

V nobj
kz .

D.2 Comparison of Cluster Centres and Correlations in

CR3

D.2.1 The Consistent Cluster Data Membership Condition

If Dk denotes the (Pareto-optimal population, or POP) solutions for the kth

sub-sample, then kDi = {kxij ∈ Rnobj}kni
j=1 signifies the set of kni, i ∈ [1, nc] solutions

(kxij) associated with the ith cluster at sub-sample k, then Dk =
⋃nc

i=1 kDi, where nc

is the number of clusters.

The condition {kD ⊂ 1Di}nc
i=1 must necessarily apply at each sub-sampled clustering

operation. This criterion is referred to as the consistent cluster data membership

condition. We write {kD ⊂ 1Di}nc
i=1 to indicate the condition is satisfied and

{kD 6⊂ 1Di}nc
i=1 to indicate that it is not.
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D.2.2 Introduction of vec and vech Operators.

A compact vector representation is provided by the vec and vech operators (Searle,

1982). For example, let the matrix

A =

 1 3

2 4


Then the operator vec(•) denotes the process of stacking the individual column

vectors to comprise the matrix, i.e.

vec(A) =


1

2

3

4


Similarly, the vech(•) operator denotes the process of stacking on or below the leading

diagonal, as follows:

vech(A) =


1

2

4


D.2.3 Application of vec and vech Operators to Cluster

Comparisons.

These operators can form the basis of cluster centre and correlation matrix

comparisons. For example, if the cluster resulting from CR1 that is chosen for

sub-sampling, is defined as the reference cluster, then the matrix of reference cluster

centres, M1 can be defined as:

M1 =


1mT

1

1mT
2

...

1mT
nc

 ∈ Rf×nobj (D.2)

where 1mT
1 ∈ R1×nobj ,∀i ∈ N ∧ i ∈ [1, nc];, i.e. the matrix formed by stacking the

nc-row vectors, with nc clusters and nobj objectives.
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If Mk represents the corresponding matrix of cluster centres for the kth sub-sample,

then:

Mk =


kmT

1

kmT
2

...

kmT
f

 ∈ Rf×d (D.3)

Further, if kmij denotes the jth element of kmT
i , then the matrix Nk can be defined

as:

Nk =


km−1

11 km−1
12 · · · km−1

1nobj

km−1
21 km−1

22 · · · km−1
2nobj

...
...

...

km−1
f1 km−1

f2 · · · km−1
ncnobj

 (D.4)

A compact approach for comparing corresponding cluster centres between the

reference cluster, M1, and the sub-sampled clusters, Mk is to determine the largest

absolute normalised difference, Ωk, between them and is calculated as follows:

Ωk = max | (vec(MT
1 )− vec(MT

k )) ◦ vec(NT
k ) | (D.5)

where ◦ denotes the Hadamard product defined as: if A ∈ Rr×c, B ∈ Rr×c, then

C = (A ◦B) ∈ Rr×c with elements cij = aij × bij .

While it may be strictly correct to normalise by NT
1 , this has an inherent problem in

that if the centre is zero then the absolute normalised difference would be infinity.

To assess the engineering significance (Montgomery, 1991) of Ωk it is useful to

compare it to a threshold value, denoted as β. Therefore, Ωk ≤ β and Ωk > β indicate

that Ωk was acceptable (less than or equal to the threshold) and unacceptable (more

than the threshold), respectively. Furthermore, Ωk(ψ), ψ ∈ R denotes the explicit

value. Thus Ωk(ψ) ≤ β indicates the vicinity of the Ωk(ψ) to the threshold.

An equivalent compact notation can be developed for comparing corresponding

cluster correlation matrices. Due to their symmetry the vech(•) operator can be

utilised. Let Ck denote the matrix:

Ck = [vech(kR1), · · · , vech(kRf )] ∀i ∈ N ∧ i ∈ [1, nc] (D.6)
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where R is the correlation matrix for the kth sub-sample for the ncth cluster and each

column of Ck denotes the unique elements of the ith correlation matrix. If C1

represents the matrix of correlations for the largest or reference population then,

analogous to Ωk, the operator Φk can be defined as:

Φk = max | vec(C1 −Ck) | (D.7)

If we let δc represent a critical threshold for Rk, then we can write Φk(ω) ≤ δc to

denote an acceptable difference and Φk(ω) > δc to indicate an unacceptable difference

in correlations. We can combine Ωk and Φk together using Boolean operators to

produce composite conditions, e.g. Ωk(ψ) ≤ β ∧ Φk(ω) ≤ δc would indicate that both

the maximum normalised differences in cluster centres and absolute cluster

correlation difference matrix are below their respective thresholds. In contrast,

Ωk(ψ) ≤ β ∧ Φk(ω) > δc would fail the maximum allowable absolute correlation

differences only.

The consistent cluster data membership condition can be combined using Boolean

operators with the notation previously defined for Ωk and Φk. For example, the

statement:

{kD ⊂ 1Di}nc
i=1 ∧ Ωk(ψ) ≤ β ∧ Φk(ω) ≤ δc (D.8)

defines a valid sub-sample cluster analysis.

D.3 Cluster Bound Notation used in CR4

After a clustering analysis has been carried out to determine a valid sub-sampled

POP that agrees with the reference POP, a cluster bound analysis is conducted. The

purpose of this is to discard any clusters from subsequent analyses if the cluster

bounds exceed the engineering significance for one or more specific objectives. Let

Xk ∈ Rnk×nobj denote the matrix of POP solutions for the kth cluster with individual

elements kxγm, for the mth objective where γ is the sub-sample size, q ∈ [1, nobj] and

nobj is the number of objectives. In order to test if the cluster bounds for a particular

objective exceed this engineering significance, statements such as the following can be

used:

kxγm ∈ [lom, upm] (D.9)
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where lom and upm denote the lower and upper limits on engineering significance as

applied to the mth objective. Such limits from hereon will be referred to as

engineering limits.

This notation can be developed to explicitly identify conditions at which the

engineering limits have been exceeded. To compactly denote the simultaneous

application of Equation D.9 for all γ ∈ [1, nk], then:

kxm ∈ [lom,upm] (D.10)

Furthermore, if at least one of the n-engineering limit conditions for the mth objective

is violated, then:

kxm 6∈ [lom,upm] (D.11)

Such notation is useful to indicate that some of the sub-sampled POP solutions for a

particular objective exceed the corresponding engineering limits, but the precise

details are not required. This principle can be extended further to cater for all

objectives. If the matrix, L = [l1, lo2, . . . , lnobj ] ∈ Rnk×nobj and

U = [u1,up2, . . . ,unobj ] ∈ Rnk×nobj , then to denote that, for all of the sub-sampled

POP solutions and all objectives, all the engineering limits are simultaneously

satisfied:

Xk ∈ [L,U] (D.12)

and if, for at least one objective, at least one engineering limit is violated:

Xk 6∈ [L,U] (D.13)

D.4 An Example Application of the Clustering Notation

The notation is sufficiently flexible to represent a sequence or tree of sub-sample

cluster analyses. An example is given below from the six objective diesel problem

described in Chapter 5, where the notation for each Cluster verification Rule is listed

with a brief description alongside.

1. CR1. V 6
1 (4000, 0.001, 5, 1500, 0.1) = 2 - the reference clustering analysis in six

objectives, of a population of 4000, a learning rate of 0.001, five initial clusters,
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maximum iterations of 1500 and a convergence tolerance of 0.1 resulted in two

clusters.

2. CR2(i). V 6
2 (2000, 0.001, 5, 1500, 0.1) = 2 - a clustering analysis on a

sub-sampled population of 2000 with all other parameters unchanged resulted in

two clusters.

3. CR3(i). {2Di ⊂ 1Di}2
i=1 ∧ Ω2(0.022) ≤ 0.05 ∧ Φ2(0.04) ≤ 0.1 - the sub-sampled

POP satisfies the consistent cluster data membership condition AND the

maximum absolute normalised difference in centres is less than the threshold of

0.05 AND the difference in absolute cluster correlation matrices is below the

threshold of 0.1.

4. CR2(ii). V 6
3 (1000, 0.001, 5, 1500, 0.1) = 2 - a clustering analysis on a

sub-sampled POP of 1000 with all other parameters unchanged resulted in two

clusters.

5. CR3(ii). {3Di ⊂ 1Di}2
i=1 ∧ Ω3(0.028) ≤ 0.05 ∧ Φ3(0.09) ≤ 0.1 - the

sub-sampled POP satisfies the consistent cluster data membership condition

AND the maximum absolute normalised difference in centres is less than the

threshold of 0.05 AND the difference in absolute cluster correlation matrices is

below the threshold of 0.1.

6. CR2(iii). V 6
4 (500, 0.001, 5, 1500, 0.1) = 2 - a clustering analysis on a

sub-sampled POP of 500 with all other parameters unchanged resulted in two

clusters.

7. CR3(iii). {4Di ⊂ 1Di}2
i=1 ∧Ω4(0.065) > 0.05∧Φ4(0.1) ≤ 0.1 - the sub-sampled

POP satisfies the consistent cluster data membership condition AND the

maximum absolute normalised difference in centres is more than the threshold

of 0.05 AND the difference in absolute cluster correlation matrices is below the

threshold of 0.1.

The sub-sampling process is terminated at p = 500 as the maximum absolute

normalised difference in centres exceeds the threshold. In otherwords, the POP of

1000 is the smallest sub-sampled POP that provides acceptable agreement with the

reference POP.





Appendix E

Mathematical Notation for

Objective Reduction Rules

A compact notation has been developed to represent the application of Objective

reduction Rules OR3a), OR3b) and OR3c) as defined in Section 4.5. As with the

clustering notation, this notation avoids the need for verbose and repetitive

descriptions of the objective reduction process and also, can be used to specify

software to automate the analysis.

E.1 The Included and Excluded Objective Sets

Let ζ = {i}d
i=1,∀d ∈ N denote the set of objective indices. It is assumed that each

objective is permanently mapped onto one corresponding index variable, e.g.

NOx → 1, Parts → 2, . . .. Similarly, let I and E denote the set of indices for those

objectives included in and excluded from future analyses. I and E will be referred to

as the included and excluded index sets respectively. Clearly, I ⊆ ζ, E ⊂ ζ, I ∩ E = φ

and I ∪ E = ζ.

Therefore, statements such as 1 ∈ I or {1, 5} ⊂ E can be written, meaning that

objective 1 is a member of the included set or objectives 1 and 5 are a subset of the

excluded set. Application of the objective reduction rules OR3a)-c) should result in an

assignment of a particular index to either I or E, where we are usually only interested

in the retained objectives, i.e. those in I.

In order for the notation to be compact and precise, it is necessary to specify the



218 E.2 The Sign and Magnitude of the PC Eigenvector Coefficients

information required by the objective reduction rules. Therefore, the following

subsections cover the sign and magnitude of the PC eigenvector coefficients, objective

priorities, the comparison operators and any applicable threshold values.

E.2 The Sign and Magnitude of the PC Eigenvector

Coefficients

With respect to the PC eigenvector coefficients, for the pth PC, pA− and pA+ denote

the set of eigenvector coefficients that are of negative or positive sign respectively and

whose magnitude exceeds a critical value, θp. This critical value corresponds to that

resulting from the test of significance defined in objective reduction rule OR3a) in

Section 4.5, i.e. m−0.5 for the mth objective. The membership of, for example, pA−

can then be defined as pA−(1, 2, . . .). The threshold, θ can be naturally incorporated

into statements such as: pA−(1, 2, . . .) ≥ θp or pA+(1, 2, . . .) ≥ θp. For example, for

nobj objectives, nobj = 6 ⇒ θ6 = 0.408 and if the PC eigenvector is

vp = [−0.7, 0.01, 0.245,−0.1, 0.436, 0.5]T , then pA−(1) ≥ 0.408 ⇒ |vp
1 | ≥ 0.408.

Likewise, pA−(5, 6) ≥ 0.408 ⇒ |vp
5 | ≥ 0.408 ∧ |vp

6 | ≥ 0.408, which can be summarised

as:

pA−(1) ≥ 0.408 ∧ pA+(5, 6) ≥ 0.408 (E.1)

or, if the threshold is known,

pA−(1) ∧ pA+(5, 6) (E.2)

denotes all coefficients of the pth eigenvector exceed θp.

E.3 The Relative Magnitude of the PC Eigenvector

Coefficients

Selection of objectives to retain may depend in part on the relative difference in the

magnitude of eigenvector coefficients of the same sign. For example, if θp = 0.316 and

pA+(1, 3, 5) (the magnitude of objectives 1, 3 and 5 exceed θp and all are of positive

sign), one method of discarding objectives is to set aside those which are relatively

small compared to those objectives retained. Furthermore, if, for example, |vp
1 | = 0.32,

|vp
3 | = 0.48 and |vp

5 | = 0.5, then objective 1 may be discarded on the basis that its
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magnitude is noticeably smaller than that of objectives 3 and 5 - smaller by at least

0.1, say. This simple heuristic rule has been applied as part of the objective reduction

process followed in the Gasoline Engine Cold Start Calibration Optimisation case

study.

Such tests can be written directly in terms of the eigenvector coefficients, e.g.

|vp
3 | − |v

p
1 | > 0.1 (E.3)

|vp
5 | − |v

p
1 | > 0.1 (E.4)

|vp
5 | − |v

p
3 | < 0.1 (E.5)

However, the number of combinations soon becomes cumbersome and more

importantly, does not directly answer the fundamental question of; ’Which objectives

should be retained?’ Consequently, the following notation has been introduced:

p∆+(i, j, . . .) ≥ δr, ∀{i, j, . . .} ∈ pA+ (E.6)

p∆−(r, s, . . .) ≥ δr, ∀{r, s, . . .} ∈ pA− (E.7)

Applying this to the previous example, we can write p∆+(3, 5) ≥ 0.1 to denote that

objectives 3 and 5 have been retained for further comparison. If the value of δ has

been defined, then the notation can be shortened to:

p∆+(i, j, . . .), ∀{i, j, . . .} ∈ pA+ (E.8)

p∆−(r, s, . . .), ∀{r, s, . . .} ∈ pA− (E.9)

This notation can be combined with that from Section E.2 on a Boolean basis. For

example, either:

pA+(1, 3, 5) ∧ p∆+(3, 5) ≥ 0.1 (E.10)

or,

pA+(1, 3, 5) ∧ p∆+(3, 5) (E.11)

Equation E.11 implies that, for the pth PC, objective 1 has been assigned to E, while

objectives 3 and 5 are retained for further comparison.
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E.4 Denoting Objective Priorities

The decision to retain objectives may be strongly influenced by priority. Let

R ∈ Rnobj denote the vector of objective priorities and ri the ith element of R. Then

the statement:

ri ≥ rj , i 6= j (E.12)

indicates that the priority assigned to objective i is equal to or greater than objective

j. Similarly, the statement:

ri ∧ rj ≥ rm ∧ rn (E.13)

implies that the priorities for objectives i and j are either equal to or greater than

those for objectives m and n.

E.5 Composite Statements

The notations defined in Sections E.2 and E.4 can be compactly combined to define

the conditions under which individual objectives are assigned to I. For example:

pA+(1, 3, 5) ∧ p∆+(3, 5) ∧ r5 > r3 ⇒ 5 ∈ I (E.14)

suggests that, for the pth PC, objective 5 has been assigned to I on the following basis:

• The eigenvector coefficients for objectives 1, 3 and 5 for the pth PC all have a

positive sign.

• That |vp
3 | and |vp

5 | are sufficiently greater in magnitude than |vp
1 | so that

objective 1 can be discarded.

• The priority assigned to objective 5 is greater than that for objective 3.

Likewise:

pA+(1, 3, 5) ∧ p∆+(5) ⇒ 5 ∈ I (E.15)

pA−(2, 6) ∧ p∆−(2) ⇒ 2 ∈ I (E.16)

indicates that the eigenvector coefficients, whose value exceeds θp, fall into two signed

groups, one positive and the other negative. From each of these groups objectives 5
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and 2 have been assigned to I based only on their relative magnitude, as no

accompanying priority is specified.

Examples such as that described in Equation E.14 apply in cases where all

eigenvector coefficients exceeding θp have the same sign. This indicates harmony.

Conversely, the example described in Equation E.15 comprises eigenvector coefficients

with different signs indicating conflict.

The usefulness of the notation will now be demonstrated for a variety of different

scenarios as follows:

• pA−(i) ⇒ i ∈ I - the kth PC contains only one significant eigenvector coefficient

and so magnitude or priority comparisons are not necessary.

• pA+(i, j) ∧ rj > ri ⇒ j ∈ I - objective j has been assigned to I, i.e. retained,

based on priority only.

• pA+(i, j) ⇒ i ∈ I - indicates that ||vp
i | − |v

p
j || < δr and ri = rj and objective i

has been assigned to I as it is larger in magnitude than j. For brevity, only

those tests relevant to the retention or otherwise of objectives are written and

so, for example, this is why the priority test was omitted. In this example, if

objective i was equal in magnitude to j, then the decision maker should still

select one objective only, as having the same sign, both objectives are in

harmony and one can be discarded.

Up until now, conditions relating to pA− and pA+ have been written on separate

lines, but it is possible to combine these on a single line without loss of quality. For

example,

pA−(i) ∧ pA+(j) ⇒ {i, j} ⊆ I (E.17)

or,

pA−(i) ∧ (pA+(j,m) ∧ rj > rm) ⇒ {i, j} ⊆ I (E.18)

which suggests that objective m has been discarded due to a lower priority. Again,

the absence of a p∆+(j) statement implies ||vp
i | − |v

p
m|| < δr.

Finally, consider:

(pA−(i, j,m) ∧ p∆−(j,m) ∧ rm > rj) ∧ (pA+(r, s, t, u) ∧

∧p∆+(r, s, t) ∧ rr > rs > rt) ⇒ {m, r} ⊆ I (E.19)
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Objective m is retained from pA− based on priority compared to objective j with

both j and m larger in magnitude than i. Likewise for pA+, objective u is the first

objective discarded (based on magnitude), then s and t based on priority, leaving

objective r (along with m) to be retained.



Appendix F

Detailed Results from Objective

Reduction Process - 1st Stage

This Appendix provides details of the Stage 1 clustering and objective reduction

processes summarised in Section 6.6 and depicted in the flowchart in Figure 6.6.

F.1 Clustering and Verification

F.1.1 Establish Reference Clusters

Applying Cluster verification Rule CR1, robust clustering was repeated on the 18,552

population from various settings of learning rate, lr, and initial number of clusters, cs.

Learning rate was varied as preliminary testing on this problem showed some

sensitivity to this parameter. The settings of these parameters was defined using a

Stratified Latin Hypercube (SLH) array available in the Matlab r© v7.7 (R2008b)

Model-Based Calibration Toolbox
TM

. This was chosen as it was readily available in

Matlab r© and provided an experimental array based on a mixture of integer (cs) and

continuous (lr) inputs. The learning rate parameter was added as a variable in the

batch of clustering runs as preliminary testing on this ten-objective problem

suggested there may be some dependency of the results on this parameter. The

number of clustering runs in this array was 37, based on the number of PC processors

available to be run in parallel as batch job (i.e. one run per processor) using the

Matlab r© Parallel Computing Toolbox. The parameters of the k*-Means clustering

algorithm were set as follows:
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• Learning rate, lr: 1e-4 to 1e-6.

• Initial number of clusters, cs: 5 to 7.

• Convergence tolerance: 0.1.

• Window: 50.

• Maximum iterations: 5000.

• Proportion of data retained for robust clustering (using FAST-MCD): 95%.

The whole batch job of 37 runs took approximately seven hours using Intel r© Core
TM

2 Quad Q9450 2.66GHz processors with 3.25GB RAM on each PC.

The reference clustering analysis in ten objectives, of a Pareto-optimal population

(POP) of 18,552 (the reference POP), SLH array of learning rates and initial clusters,

maximum iterations of 5000 and a convergence tolerance of 0.1 resulted in a total of

seven runs with converged clusters, where the most frequently occurring solution had

three clusters. From Section D.2.3, convergence was defined as Ω1 ≤ 0.05 ∧ Φ1 ≤ 0.1 -

the maximum absolute normalised difference in centres is less than the threshold of

0.05 AND the difference in absolute cluster correlation matrices is below the threshold

of 0.1. All the other runs did not converge. Only generating seven converged runs out

of a total of 113 runs (three batches of runs were carried out) was disappointing and

suggested that there may be issues with the k*-Means parameter settings or the

algorithm itself. These potential problems were not explored further at this stage

since some useful results had been generated and consequently, these issues were left

for future research. Of the four-cluster solutions, that with the best convergence was

selected, i.e. run 18 and is referred to from hereon as the reference solution.

F.1.2 Establish Sub-sampled POP Size

Subsequently, the reference solution was randomly sub-sampled per cluster using the

Matlab r© routine randperm to generate smaller POPs of 10,000, 5000, 2000 and 1000.

Robust clustering was run on all of the sub-sampled POPs to test for agreement with

the reference solution clusters. The results from the application of the Clustering

verification Rules are summarised below using the notation (defined in Appendix D)

together with an explanatory description:
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1. CR1. V 10
1 (18552, lr, cs, 5000, 0.1) = 4 - the reference clustering analysis in ten

objectives, of the reference POP of 18,552, SLH array of learning rates, lr, and

initial number of clusters, cs, maximum iterations of 5000 and a convergence

tolerance of 0.1 resulted in three runs of four converged clusters, which were

very similar to each other in terms of centres and correlation matrices.

2. CR2(i). V 10
2 (10000, lr, cs, 5000, 0.1) = [4, 4, 4] - a clustering analysis on a

sub-sampled population of 10,000 with the SLH array of learning rates, lr and

initial number of clusters, cs and all other parameters unchanged resulted in

three different solutions of four clusters. A run with the best convergence was

selected from those in the first (most frequently occurring) solution.

3. CR3(i). {2Di ⊂ 1Di}4
i=1 ∧ Ω2(0.04) ≤ 0.05 ∧ Φ2(0.06) ≤ 0.1 - the sub-sampled

POP of 10,000 satisfies the consistent cluster data membership condition AND

the maximum absolute normalised difference in centres of 0.04 is less than the

threshold of 0.05 AND the difference in absolute cluster correlation matrices of

0.06 is below the threshold of 0.1.

4. CR2(ii). V 10
3 (5000, lr, cs, 5000, 0.1) = [4, 4] - a clustering analysis on a

sub-sampled POP of 5000 with the SLH array of lr and cs and all other

parameters unchanged resulted in two different solutions of four clusters. A run

with the best convergence was selected from those in the first solution.

5. CR3(ii). {3Di ⊂ 1Di}4
i=1 ∧ Ω3(0.06) > 0.05 ∧ Φ3(0.07) ≤ 0.1 - the sub-sampled

POP of 5000 does satisfy the consistent cluster data membership condition

AND the difference in absolute cluster correlation matrices is below the

threshold of 0.1, but the maximum absolute normalised difference in centres is

not less than the threshold of 0.05.

6. CR2(iii). V 10
4 (2000, lr, cs, 5000, 0.1) = [4, 4] - a clustering analysis on a

sub-sampled POP of 2000 with the SLH array of lr and cs and all other

parameters unchanged resulted in two different solutions of four clusters. A run

with the best convergence was selected from those in the first solution.

7. CR3(iii). {4Di ⊂ 1Di}4
i=1 ∧Ω4(0.09) > 0.05∧Φ4(0.07) ≤ 0.1 - the sub-sampled

POP of 2000 does satisfy the consistent cluster data membership condition
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AND the difference in absolute cluster correlation matrices is below the

threshold of 0.1, but the maximum absolute normalised difference in centres is

not less than the threshold of 0.05.

8. CR2(iv). V 10
5 (1000, lr, cs, 5000, 0.1) = [4, 4, 4] - a clustering analysis on a

sub-sampled POP of 1000 with the SLH array of lr and cs and all other

parameters unchanged resulted in three different solutions of four clusters. A

run with the best convergence was selected from those in the first solution.

9. CR3(iv). {5Di ⊂ 1Di}4
i=1 ∧ Ω5(0.11) > 0.05 ∧ Φ5(0.1) = 0.1 - the sub-sampled

POP satisfies the consistent cluster data membership condition, but the

maximum absolute normalised difference in centres is more than the threshold

of 0.05 AND the difference in absolute cluster correlation matrices is not below

the threshold of 0.1.

The sub-sampling process could have been terminated at p = 5000 as the maximum

absolute normalised difference in centres exceeds the threshold. However, it was

decided to continue with the sub-sampling process to check that the trend of

increasing disagreement (between the reference and sub-sample clusters) continued

with smaller sub-samples.

Tables F.1 and F.2 show the selected clusters for the reference POP compared to

those for each of the sub-sampled POPs for Clusters 1/2 and Clusters 3/4

respectively. Table F.3 summarises the differences in cluster centres and correlation

matrices for each sub-sample compared to the reference POP as defined by the

previously used notation.

In conclusion, it was decided that the POP of 10,000 was the smallest sub-sampled

POP that provided acceptable agreement with the reference POP. Considerations in

making this decision were:

• The computational expense (i.e. approximately seven hours) involved in

optimising or clustering a POP of 10,000 with a parallel computing network was

not considered prohibitive compared to smaller POPs.

• As stated in Section 2.2, the population size necessary to approximate the

Pareto-optimal front rises exponentially with the number of objectives. As a
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result, it was decided to be prudent and keep the POP size larger rather than

smaller.

Consequently, the sub-sampled POP of 10,000 and associated selected clusters were

chosen to continue with the objective reduction process.

Table F.1: Comparison of Clusters 1 and 2 resulting from the POP of 18,552 with those
of randomly sub-sampled POPs.

Cluster
Property

POP
Size

Cluster 1 Cluster 2

Centres

18,552 -106.9 -45.4 0.8 0.4 2.1 1697.9 0.5 0.1 23.8 5.8 -83.9 -44.0 1.2 0.3 2.2 1593.9 0.2 0.2 7.7 15.0
10000 -106.9 -45.6 0.8 0.4 2.1 1697.1 0.5 0.1 23.4 5.8 -84.3 -44.7 1.2 0.3 2.2 1595.1 0.2 0.2 7.8 14.7
5000 -106.8 -45.7 0.8 0.4 2.1 1697.2 0.5 0.1 23.2 5.9 -84.5 -45.3 1.2 0.3 2.2 1595.1 0.2 0.2 7.9 14.5
2000 -107.2 -45.6 0.8 0.4 2.1 1695.5 0.5 0.1 23.9 5.8 -85.0 -45.5 1.2 0.3 2.2 1597.7 0.2 0.2 8.0 13.7
1000 -106.6 -46.3 0.8 0.4 2.1 1692.2 0.5 0.1 22.9 6.2 -84.1 -43.7 1.2 0.3 2.3 1594.9 0.2 0.2 7.9 14.2

Correlation
Matrices

18,552

1 1
0.43 1 0.65 1
0.82 0.20 1 -0.12 -0.70 1
0.30 0.75 -0.04 1 0.61 0.90 -0.68 1
0.12 0.40 -0.11 0.57 1 0.58 0.92 -0.75 0.89 1
0.44 0.70 0.44 0.59 -0.09 1 -0.48 -0.15 0.14 -0.06 -0.31 1

-0.59 -0.72 -0.42 -0.66 -0.36 -0.62 1 0.03 0.25 -0.35 0.37 0.13 0.31 1
-0.34 -0.93 -0.11 -0.75 -0.24 -0.76 0.67 1 -0.42 -0.76 0.42 -0.65 -0.63 -0.15 -0.03 1
0.20 0.33 -0.03 0.50 0.42 0.22 -0.16 -0.43 1 -0.24 -0.56 0.43 -0.46 -0.40 -0.23 -0.39 0.62 1
0.13 -0.45 0.22 -0.58 -0.23 -0.40 0.28 0.41 0.19 1 0.35 0.37 -0.02 0.13 0.22 -0.11 -0.21 -0.46 -0.40 1

10000

1 1
0.43 1 0.64 1
0.82 0.19 1 -0.09 -0.69 1
0.30 0.75 -0.04 1 0.60 0.90 -0.68 1
0.12 0.40 -0.11 0.56 1 0.56 0.92 -0.74 0.88 1
0.44 0.70 0.44 0.58 -0.10 1 -0.47 -0.15 0.12 -0.05 -0.30 1

-0.58 -0.72 -0.40 -0.66 -0.36 -0.61 1 0.02 0.23 -0.33 0.35 0.11 0.31 1
-0.34 -0.93 -0.11 -0.75 -0.24 -0.75 0.67 1 -0.42 -0.77 0.42 -0.65 -0.64 -0.14 -0.01 1
0.21 0.34 -0.02 0.49 0.41 0.22 -0.16 -0.43 1 -0.23 -0.55 0.41 -0.44 -0.39 -0.22 -0.38 0.61 1
0.14 -0.44 0.23 -0.57 -0.23 -0.39 0.28 0.39 0.21 1 0.36 0.37 -0.01 0.11 0.21 -0.12 -0.22 -0.46 -0.41 1

5000

1 1
0.39 1 0.61 1
0.81 0.12 1 -0.04 -0.67 1
0.27 0.74 -0.09 1 0.57 0.89 -0.66 1
0.13 0.43 -0.12 0.60 1 0.54 0.92 -0.73 0.87 1
0.42 0.67 0.42 0.54 -0.08 1 -0.49 -0.14 0.11 -0.05 -0.31 1

-0.58 -0.70 -0.39 -0.64 -0.37 -0.59 1 0.00 0.23 -0.34 0.35 0.11 0.29 1
-0.28 -0.93 -0.03 -0.75 -0.27 -0.72 0.65 1 -0.37 -0.74 0.37 -0.61 -0.59 -0.17 0.00 1
0.17 0.32 -0.07 0.49 0.44 0.17 -0.13 -0.42 1 -0.19 -0.54 0.40 -0.43 -0.37 -0.25 -0.38 0.61 1
0.15 -0.43 0.24 -0.55 -0.22 -0.38 0.26 0.40 0.22 1 0.36 0.35 0.03 0.09 0.19 -0.12 -0.22 -0.46 -0.37 1

2000

1 1
0.51 1 0.61 1
0.81 0.26 1 0.00 -0.65 1
0.35 0.74 -0.01 1 0.54 0.88 -0.64 1
0.17 0.41 -0.08 0.58 1 0.54 0.91 -0.69 0.86 1
0.51 0.69 0.51 0.54 -0.09 1 -0.54 -0.18 0.08 -0.03 -0.33 1

-0.60 -0.74 -0.41 -0.66 -0.36 -0.63 1 -0.06 0.17 -0.33 0.30 0.05 0.31 1
-0.41 -0.93 -0.16 -0.76 -0.26 -0.74 0.70 1 -0.33 -0.73 0.38 -0.60 -0.58 -0.16 0.04 1
0.22 0.28 -0.04 0.46 0.44 0.12 -0.10 -0.38 1 -0.19 -0.52 0.37 -0.40 -0.35 -0.20 -0.35 0.58 1
0.07 -0.44 0.16 -0.53 -0.21 -0.40 0.30 0.41 0.26 1 0.36 0.34 0.05 0.08 0.19 -0.16 -0.26 -0.44 -0.38 1

1000

1 1
0.29 1 0.57 1
0.75 -0.02 1 -0.09 -0.72 1
0.16 0.75 -0.23 1 0.54 0.89 -0.72 1
0.07 0.46 -0.22 0.57 1 0.48 0.91 -0.80 0.89 1
0.33 0.67 0.33 0.54 -0.08 1 -0.45 -0.05 0.10 0.01 -0.21 1

-0.55 -0.64 -0.33 -0.56 -0.37 -0.52 1 0.19 0.35 -0.31 0.45 0.24 0.24 1
-0.19 -0.92 0.08 -0.75 -0.28 -0.73 0.57 1 -0.34 -0.73 0.41 -0.60 -0.59 -0.21 -0.02 1
0.08 0.39 -0.25 0.53 0.50 0.15 -0.11 -0.46 1 -0.23 -0.56 0.37 -0.42 -0.38 -0.26 -0.33 0.64 1
0.17 -0.46 0.27 -0.59 -0.20 -0.45 0.25 0.44 0.13 1 0.31 0.31 0.04 0.06 0.12 -0.07 -0.20 -0.43 -0.42 1
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Table F.2: Comparison of Clusters 3 and 4 resulting from the POP of 18,552 with those
of randomly sub-sampled POPs.

Cluster
Property

POP
Size

Cluster 1 Cluster 2

Centres

18,552 -79.3 -38.3 0.7 0.6 2.8 1447.1 0.6 0.1 8.8 14.0 -60.5 -75.3 1.6 0.4 1.7 1541.8 0.2 0.0 25.0 47.2
10000 -79.4 -38.3 0.7 0.6 2.8 1447.8 0.6 0.1 8.7 14.3 -60.6 -75.1 1.6 0.4 1.7 1542.3 0.2 0.0 24.9 46.7
5000 -79.5 -38.4 0.8 0.6 2.8 1448.0 0.6 0.1 8.8 14.4 -60.4 -75.2 1.6 0.4 1.7 1541.4 0.2 0.0 25.2 47.4
2000 -79.5 -38.5 0.8 0.6 2.8 1449.9 0.6 0.1 8.8 14.2 -60.4 -75.2 1.6 0.4 1.7 1542.8 0.2 0.0 24.8 47.0
1000 -79.1 -38.2 0.7 0.6 2.8 1444.2 0.6 0.1 9.0 14.0 -60.4 -75.0 1.6 0.4 1.7 1541.4 0.2 0.0 25.0 46.0

Correlation
Matrices

18,552

1 1
0.07 1 -0.72 1

-0.23 -0.93 1 0.14 -0.58 1
0.86 0.48 -0.60 1 -0.19 0.22 0.19 1
0.87 0.23 -0.30 0.79 1 -0.59 0.53 -0.41 0.22 1

-0.89 -0.31 0.46 -0.86 -0.76 1 -0.63 0.15 0.43 0.03 -0.14 1
-0.68 -0.16 0.23 -0.55 -0.86 0.55 1 -0.42 0.34 0.14 0.47 0.18 0.22 1
0.14 -0.09 0.14 -0.02 0.29 0.01 -0.21 1 -0.15 0.05 -0.09 0.02 0.24 0.05 -0.16 1
0.32 -0.30 0.18 0.13 0.26 -0.23 -0.32 0.10 1 0.60 -0.12 -0.21 -0.33 -0.25 -0.56 -0.40 -0.22 1

-0.52 0.00 0.07 -0.36 -0.69 0.41 0.91 0.02 -0.33 1 0.18 -0.26 0.17 -0.12 -0.16 -0.13 0.08 -0.26 0.39 1

10000

1 1
0.07 1 -0.73 1

-0.22 -0.93 1 0.16 -0.58 1
0.85 0.48 -0.61 1 -0.19 0.24 0.16 1
0.86 0.24 -0.30 0.78 1 -0.59 0.54 -0.42 0.21 1

-0.89 -0.33 0.47 -0.86 -0.76 1 -0.63 0.16 0.41 0.03 -0.13 1
-0.68 -0.15 0.22 -0.54 -0.86 0.55 1 -0.41 0.34 0.14 0.47 0.18 0.22 1
0.13 -0.10 0.15 -0.04 0.29 0.03 -0.22 1 -0.17 0.06 -0.12 -0.02 0.26 0.05 -0.17 1
0.33 -0.32 0.20 0.13 0.26 -0.24 -0.31 0.12 1 0.60 -0.13 -0.18 -0.32 -0.25 -0.56 -0.39 -0.21 1

-0.52 0.02 0.05 -0.35 -0.69 0.40 0.91 0.01 -0.32 1 0.16 -0.26 0.20 -0.12 -0.16 -0.10 0.07 -0.24 0.38 1

5000

1 1
0.13 1 -0.69 1

-0.27 -0.94 1 0.09 -0.54 1
0.85 0.54 -0.65 1 -0.25 0.27 0.19 1
0.87 0.30 -0.36 0.80 1 -0.56 0.47 -0.36 0.21 1

-0.89 -0.40 0.53 -0.88 -0.79 1 -0.66 0.17 0.44 0.09 -0.12 1
-0.69 -0.20 0.26 -0.57 -0.86 0.58 1 -0.42 0.32 0.18 0.49 0.15 0.25 1
0.14 -0.10 0.14 -0.02 0.27 0.02 -0.19 1 -0.16 0.05 -0.10 -0.02 0.18 0.08 -0.15 1
0.32 -0.30 0.18 0.12 0.24 -0.22 -0.29 0.13 1 0.60 -0.11 -0.21 -0.38 -0.23 -0.57 -0.41 -0.20 1

-0.54 -0.04 0.10 -0.38 -0.69 0.43 0.91 0.04 -0.31 1 0.12 -0.23 0.17 -0.15 -0.12 -0.09 0.05 -0.22 0.38 1

2000

1 1
0.15 1 -0.68 1

-0.28 -0.94 1 0.01 -0.49 1
0.85 0.55 -0.65 1 -0.31 0.30 0.18 1
0.86 0.35 -0.39 0.79 1 -0.51 0.44 -0.34 0.27 1

-0.88 -0.43 0.55 -0.88 -0.78 1 -0.67 0.17 0.49 0.09 -0.17 1
-0.69 -0.22 0.28 -0.55 -0.85 0.57 1 -0.47 0.41 0.19 0.50 0.12 0.30 1
0.14 -0.05 0.09 0.01 0.28 0.03 -0.20 1 -0.15 0.03 -0.06 -0.02 0.19 0.08 -0.15 1
0.31 -0.28 0.16 0.11 0.21 -0.23 -0.26 0.10 1 0.62 -0.13 -0.26 -0.43 -0.22 -0.59 -0.42 -0.22 1

-0.52 -0.04 0.10 -0.35 -0.68 0.42 0.91 0.05 -0.27 1 0.14 -0.23 0.12 -0.14 -0.11 -0.13 0.03 -0.20 0.40 1

1000

1 1
0.11 1 -0.64 1

-0.25 -0.93 1 -0.09 -0.45 1
0.87 0.48 -0.61 1 -0.31 0.31 0.20 1
0.89 0.29 -0.36 0.82 1 -0.44 0.42 -0.31 0.31 1

-0.91 -0.33 0.48 -0.88 -0.82 1 -0.72 0.17 0.51 0.07 -0.17 1
-0.75 -0.20 0.29 -0.62 -0.87 0.65 1 -0.48 0.36 0.26 0.49 0.10 0.32 1
0.03 -0.12 0.21 -0.11 0.17 0.14 -0.12 1 -0.20 0.09 -0.11 -0.01 0.21 0.09 -0.13 1
0.34 -0.35 0.21 0.14 0.25 -0.27 -0.32 0.07 1 0.61 -0.06 -0.30 -0.41 -0.19 -0.57 -0.41 -0.25 1

-0.62 -0.05 0.16 -0.46 -0.72 0.54 0.92 0.10 -0.35 1 0.14 -0.21 0.15 -0.15 -0.20 -0.08 0.10 -0.30 0.40 1
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Table F.3: Comparison of the selected reference clusters from the reference (18,552)
POP with those of randomly sub-sampled POPs, showing the maximum absolute nor-
malised difference in cluster centres and the maximum absolute difference in cluster
correlation matrices.

Sub-sample
POP size

Cluster Maximum absolute normalised
difference in cluster centres

Maximum absolute difference
in cluster correlation matrices

10000

1 0.04 0.06
2 0.02 0.01
3 0.03 0.01
4 0.01 0.03

5000

1 0.06 0.03
2 0.03 0.03
3 0.02 0.01
4 0.06 0.07

2000

1 0.05 0.07
2 0.09 0.05
3 0.06 0.03
4 0.04 0.05

1000

1 0.11 0.03
2 0.07 0.04
3 0.04 0.03
4 0.05 0.10

F.1.3 Check Cluster Bounds

Using the notation defined in Section D.3 for CR4, the only engineering limit that

was specified by the Cold Start Calibration Engineer, was applied to the

Peak Flare Speed Objective, where only solutions in the 1300 to 1500rpm range were

of interest. Therefore, Equations D.10 and D.11 were applied as follows:

1x10000,6 6∈ [13006, 15006] (F.1)

2x10000,6 ∈ [13006, 15006] (F.2)

3x10000,6 ∈ [13006, 15006] (F.3)

4x10000,6 ∈ [13006, 15006] (F.4)

In other words, Cluster 1 was discarded as it only contained data in a excessively high

range for Objective 6, Peak Flare Speed and all other clusters were retained as they

satisfied the specified engineering limits. The cluster data bounds per objective are
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detailed in Table F.4, where Objective 6 in Cluster 1 is highlighted in grey.

Table F.4: Cluster membership and bounds on data per cluster for the selected
10,000 POP; Cluster 1 discarded due to excessively high range of Objective 6,
Peak Flare Speed, as highlighted in grey.

Cluster Membership Bounds

1 2958
Upper -78.9 -35.5 1.4 0.5 2.8 1812.1 1.5 0.4 56.3 20.7
Lower -120.5 -61.5 0.4 0.2 1.7 1567.7 0.0 0.0 0.0 0.0

2 2435
Upper -63.1 -4.1 1.7 0.6 3.1 1761.2 0.6 0.4 30.9 67.3
Lower -110.8 -76.6 0.7 0.2 1.6 1453.8 0.0 0.0 0.0 0.0

3 2173
Upper -45.6 -41.4 1.8 0.6 2.4 1670.6 0.9 0.2 37.3 85.9
Lower -96.9 -94.1 1.2 0.2 1.5 1445.4 0.0 0.0 0.1 0.0

4 2435
Upper -65.5 -31.2 1.3 0.8 3.5 1583.4 1.8 0.3 31.0 40.8
Lower -94.1 -51.0 0.4 0.4 1.9 1332.7 0.0 0.0 0.0 0.0

F.2 PCA and Potential Objective Reduction

Table F.5 summarises the results of applying the objective reduction rules to each

cluster. This was carried out for retained PCs corresponding to three different

percentages of total variation to understand the effect on objective reduction. Details

of how these rules are applied using the notation is provided below. The exception is

Cluster 2 for PCs retained to account for 95% of the total variation, which is given as

an example in Section 6.6.2. The Cold Start calibration engineer advised objective

priorities as shown in Table 6.3 and these were taken into account where necessary

when applying the objective reduction rules.

F.2.1 Retaining PCs to account for 95% of the Total Variation

Objective Reduction Rules applied to Cluster 3

1. Applying OR1, λ1/λ10 = 428.5, so there was not sufficient evidence of a pure

linear dependency.

2. Applying OR2, t7 = 95%, i.e. first seven PCs were retained, which accounted

for approximately 95% of the cumulative percentage total variation.
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Table F.5: Clustering and PCA results for the selected POP. For each cluster, the
eigenvalues are listed in Principal Component order (largest first), followed by the
corresponding cumulative percentage of total variation. Also, the rotated eigenvectors
are listed by objective for the retained PCs with the selected significant eigenvector
coefficients shown shaded.

Cluster 2 Cluster 3 Cluster 4

PC Eigenvalues (λp)

5.2142 3.2296 5.1305
1.7960 2.0245 2.5085
1.3700 1.3707 1.0173
0.6374 1.0689 0.7364
0.4895 0.9628 0.3895
0.2771 0.5920 0.1311
0.0977 0.3789 0.0461
0.0649 0.3036 0.0187
0.0380 0.0615 0.0119
0.0152 0.0075 0.0100

Cumulative % of Total Variation

52.1 32.3 51.3
70.1 52.5 76.4
83.8 66.2 86.6
90.2 76.9 93.9
95.1 86.6 97.8
97.8 92.5 99.1
98.8 96.3 99.6
99.5 99.3 99.8
99.8 99.9 99.9
100 100 100

PCs retained for 95% of total variation PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC1 PC2 PC3 PC4

Rotated Eigenvectors (vp′)

Obj1 -0.2787 0.2012 0.0401 0.7149 0.1345 -0.5445 0.1954 -0.0276 -0.0521 0.0093 -0.2794 0.0887 -0.4823 0.0947 -0.0718 0.0632
Obj2 -0.4396 -0.0045 0.0762 0.0069 -0.0009 0.2249 -0.7451 0.0139 -0.1577 0.0356 -0.0264 0.0186 -0.0433 -0.6209 -0.0279 0.0043
Obj3 0.3149 -0.2304 -0.0567 0.6459 -0.1307 0.3202 0.5510 0.1280 -0.3497 0.0860 -0.0558 0.1038 0.1539 0.5652 -0.0990 0.0084
Obj4 -0.4734 -0.0909 -0.1260 0.1389 0.1446 -0.0829 -0.0504 -0.0498 -0.9117 -0.0299 0.0324 -0.0468 -0.5192 -0.1346 0.0074 -0.0458
Obj5 -0.4881 0.1014 -0.0740 -0.1270 -0.1049 -0.0314 0.0199 0.0231 -0.0307 0.0127 0.9201 0.0547 -0.2809 -0.0267 -0.2041 0.3093
Obj6 0.0333 -0.8487 -0.0322 -0.0124 0.0677 0.7122 0.0500 -0.0257 0.0278 -0.0087 -0.1847 0.0647 0.5304 0.0153 -0.0767 0.0321
Obj7 0.0196 -0.0179 0.0352 0.0247 0.8753 -0.0553 -0.0873 0.1298 -0.0618 0.0359 -0.0864 -0.8628 0.0180 0.0532 0.0933 -0.6089
Obj8 0.3965 0.3673 -0.1677 -0.0350 0.2586 0.0108 -0.0023 0.0182 -0.0208 -0.9913 -0.0124 0.0174 0.0272 0.0190 -0.9434 -0.0051
Obj9 0.0481 0.1358 -0.5910 0.1411 -0.2523 -0.1728 -0.2843 0.4515 -0.0961 0.0692 -0.1563 0.4596 -0.3168 0.5100 0.0870 -0.0363
Obj10 0.0809 0.1178 0.7671 0.1197 -0.1781 0.0469 0.0956 0.8706 0.0612 -0.0358 0.0660 -0.1251 -0.1035 -0.0614 -0.1747 -0.7246

PCs retained for 90% of total variation PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC5 PC6 PC1 PC2 PC3 PC4

Rotated Eigenvectors (vp′)

Obj1 -0.5833 0.0818 -0.1353 0.4236 -0.5780 0.1451 -0.0426 0.0216 -0.0010 -0.2341 -0.4823 0.0947 -0.0718 0.0632
Obj2 -0.3947 0.0021 0.1394 -0.1139 0.2351 -0.6928 -0.0203 -0.2012 0.0499 -0.0590 -0.0433 -0.6209 -0.0279 0.0043
Obj3 0.0906 0.0751 -0.0439 0.7518 0.1528 0.6178 0.0429 -0.1452 0.0674 -0.0711 0.1539 0.5652 -0.0990 0.0084
Obj4 -0.4738 -0.2170 0.0250 0.0289 -0.2228 0.0530 -0.2064 -0.7453 -0.0479 0.0443 -0.5192 -0.1346 0.0074 -0.0458
Obj5 -0.3923 0.0513 -0.0126 -0.2483 0.0103 0.0050 0.0116 0.0286 0.0124 0.9179 -0.2809 -0.0267 -0.2041 0.3093
Obj6 0.1941 -0.4618 0.4845 0.3481 0.6429 0.1153 -0.0374 0.0801 -0.0054 -0.2403 0.5304 0.0153 -0.0767 0.0321
Obj7 -0.0927 -0.6674 0.0246 -0.1086 0.1541 -0.0406 0.2326 -0.5941 0.0438 -0.0589 0.0180 0.0532 0.0933 -0.6089
Obj8 0.2665 -0.0749 -0.4194 -0.1018 0.0144 -0.0219 0.0150 0.0012 -0.9913 -0.0128 0.0272 0.0190 -0.9434 -0.0051
Obj9 -0.0012 0.0434 -0.5589 0.1910 -0.3149 -0.2946 0.3614 0.1338 0.0671 -0.1637 -0.3168 0.5100 0.0870 -0.0363
Obj10 0.0131 0.5213 0.4857 0.0009 0.0335 0.1109 0.8757 -0.0665 -0.0362 0.0622 -0.1035 -0.0614 -0.1747 -0.7246

PCs retained for 86% of total variation PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3

Rotated Eigenvectors (vp′)

Obj1 -0.5833 0.0818 -0.1353 0.4236 -0.5637 0.2083 -0.0684 0.0809 0.1637 -0.4215 0.0465 0.0035
Obj2 -0.3947 0.0021 0.1394 -0.1139 0.2139 -0.6658 -0.0336 -0.1339 0.0710 -0.0378 -0.6156 -0.0180
Obj3 0.0906 0.0751 -0.0439 0.7518 0.1727 0.5941 0.0422 -0.1807 0.0975 0.1096 0.5695 -0.1263
Obj4 -0.4738 -0.2170 0.0250 0.0289 -0.2198 0.0814 -0.2405 -0.6882 -0.0709 -0.3785 -0.1951 0.1020
Obj5 -0.3923 0.0513 -0.0126 -0.2483 -0.0240 -0.1799 0.1043 -0.2275 -0.6205 -0.4229 -0.0216 -0.1907
Obj6 0.1941 -0.4618 0.4845 0.3481 0.6546 0.1272 -0.0506 0.1220 0.1595 0.3919 0.0742 -0.1694
Obj7 -0.0927 -0.6674 0.0246 -0.1086 0.1533 -0.0126 0.2024 -0.5386 0.0631 0.3953 -0.0278 0.1651
Obj8 0.2665 -0.0749 -0.4194 -0.1018 0.0426 0.1701 -0.0872 0.2745 -0.7126 -0.0290 -0.0180 -0.9259
Obj9 -0.0012 0.0434 -0.5589 0.1910 -0.3208 -0.2425 0.3489 0.1810 0.1604 -0.2215 0.4653 0.1416
Obj10 0.0131 0.5213 0.4857 0.0009 0.0331 0.1311 0.8665 -0.0660 -0.0759 0.3564 -0.1811 -0.0609
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3. Applying OR3a), θ10 = 0.3162 - the eigenvectors for the seven retained PCs

were rotated and the threshold for the test of significance was 10−0.5 = 0.3162.

4. Applying OR3c) to PC1, 1A−(1) ∧ 1A+(6) ⇒ {1, 6} ⊆ I - v1
1 and v1

6 were the

only two significant coefficients and so both Objectives 1 (neg 25 INT) and 6

(Peak Flare Speed) were retained.

5. Applying OR3c) to PC2, 2A−(2) ∧ 2A+(3) ⇒ {2, 3} ⊆ I - v2
2 and v2

3 were the

only two significant coefficients and so both Objectives 2 (neg 612 INT) and 3

(cyc 25 RMS) were retained.

6. Applying OR3b) to PC3, 3A+(9, 10) ∧ 3∆+(10) ⇒ {10} ⊆ I - the only

significant coefficients were v3
9 and v3

10, but v3
10 was much larger in magnitude

and so Objective 10 (sf cyc 612 INT abs) was retained.

7. Applying OR3b) to PC4, 4A−(3, 4) ∧ 4∆−(4) ⇒ {4} ⊆ I - the only significant

coefficients were v4
3 and v4

4, but v3
4 was much larger in magnitude and so

Objective 4 (cyc 612 RMS) was retained.

8. Applying OR3b) to PC5, 5A−(8) ⇒ {8} ⊆ I - the only significant coefficient was

v5
8 and so Objective 8 (sf cyc 612 RMS abs) was retained.

9. Applying OR3b) to PC6, 6A+(5) ⇒ {5} ⊆ I - the only significant coefficient was

v6
5 and so Objective 5 (F model) was retained.

10. Applying OR3c) to PC7, 7A−(7) ∧ 7A+(9) ⇒ {7, 9} ⊆ I - v7
7 and v7

9 were the

only two significant coefficients and so both Objectives 7 (sf abs cyc 25 RMS)

and 9 (sf cyc 25 INT abs) were retained.

In summary, all ten objectives were retained in Cluster 3, i.e. no objective reduction

was achieved.

Objective Reduction Rules applied to Cluster 4

1. Applying OR1, λ1/λ10 = 512.2, so there was insufficient evidence of a pure

linear dependency.

2. Applying OR2, t4 = 95%, i.e. first four PCs were retained, which accounted for

approximately 95% of the cumulative percentage total variation.
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3. Applying OR3a), θ10 = 0.3162 - the eigenvectors for the four retained PCs were

rotated and the threshold for the test of significance was 10−0.5 = 0.3162.

4. Applying OR3c) to PC1,

1A−(1, 4, 9) ∧ 1A+(6) ∧ 1∆−(1, 4) ∧ (r1 > r4) ⇒ {1, 6} ⊆ I - the coefficients, v1
1,

v1
4, v

1
6 and v1

9 were significant. v1
1, v

1
4 and v1

9 have the same sign, but although v1
1

was slightly smaller in magnitude than v1
4, Objective 1 (neg 25 INT) had the

highest priority and so was retained. v1
6 was the only positive significant

coefficient and so Objective 6 (Peak Flare Speed) was also retained.

5. Applying OR3c) to PC2, 2A−(2) ∧ 2A+(3, 9) ∧ (r9 > r3) ⇒ {2, 9} ⊆ I - the

coefficients, v2
2, v

2
3 and v2

9 were significant. v2
3 and v2

9 had the same sign, and

although v2
3 was slightly larger in magnitude than v2

9, v
2
9 had higher priority and

so Objective 9 (sf cyc 25 INT abs) was retained along with Objective 2

(neg 612 INT).

6. Applying OR3b) to PC3, 3A−(8) ⇒ {8} ⊆ I - the only significant coefficient was

v3
8 and so Objective 8 (sf cyc 612 RMS abs) was retained.

7. Applying OR3c) to PC4, 4A−(7, 10) ∧ 4A+(5) ∧ 4∆−(10) ⇒ {5, 10} ⊆ I - the

coefficients, v4
7 and v4

10 were significant, but v4
5 was considered sufficiently close

in magnitude to the threshold of 0.3162, that it too was considered significant.

v4
7 and v4

10 have the same sign, but v4
10 was larger in magnitude and has higher

priority than v4
7 and so Objective 10 (sf cyc 612 INT abs) was retained. v4

5 was

the only positive significant coefficient and so Objective 5 (F model) was also

retained.

In summary, seven objectives were retained in Cluster 4:

• neg 25 INT

• Peak Flare Speed

• sf cyc 25 INT abs

• neg 612 INT

• sf cyc 612 RMS abs
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• sf cyc 612 INT abs

• F model

F.2.2 Retaining PCs to account for 90% of the Total Variation

Objective Reduction Rules applied to Cluster 2

1. Applying OR1 gave the same result as above.

2. Applying OR2, t4 = 90%, i.e. first four PCs were retained, which accounted for

approximately 90% of the cumulative percentage total variation.

3. Applying OR3a), θ10 = 0.3162.

4. Applying OR3b) to PC1, 1A−(1, 2, 4, 5) ∧ 1∆−(1) ⇒ {1} ⊆ I.

5. Applying OR3c) to PC2, 2A−(6, 7) ∧ 2A+(10) ∧ 2∆−(7) ⇒ {7, 10} ⊆ I.

6. Applying OR3c) to PC3,

3A−(8, 9) ∧ 3A+(6, 10) ∧ 3∆−(9) ∧ (r6 > r10) ⇒ {6, 9} ⊆ I.

7. Applying OR3b) to PC4, 4A+(1, 3, 6) ∧ 4∆+(3) ⇒ {3} ⊆ I.

In summary, six objectives were retained in Cluster 2:

• neg 25 INT

• sf cyc 25 RMS abs

• sf cyc 612 INT abs

• Peak Flare Speed

• sf cyc 25 INT abs

• cyc 25 RMS

Objective Reduction Rules applied to Cluster 3

1. Applying OR1, gave the same result as before.

2. Applying OR2, t6 = 90%, i.e. the first six PCs were retained, which accounted

for approximately 95% of the cumulative percentage total variation.
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3. Applying OR3a), θ10 = 0.3162.

4. Applying OR3c) to PC1, 1A−(1) ∧ 1A+(6) ⇒ {1, 6} ⊆ I.

5. Applying OR3c) to PC2, 2A−(2) ∧ 2A+(3) ⇒ {2, 3} ⊆ I.

6. Applying OR3b) to PC3, 3A+(9, 10) ∧ 3∆+(10) ⇒ {10} ⊆ I.

7. Applying OR3b) to PC4, 4A−(4, 7) ∧ 4∆+(4) ⇒ {4} ⊆ I.

8. Applying OR3b) to PC5, 5A−(8) ⇒ {8} ⊆ I.

9. Applying OR3b) to PC6, 5A+(5) ⇒ {5} ⊆ I.

In summary, eight objectives were retained in Cluster 3:

• neg 25 INT

• Peak Flare Speed

• neg 612 INT

• cyc 25 RMS

• sf cyc 612 INT abs

• cyc 612 RMS

• sf cyc 612 RMS abs

• F model

Objective Reduction Rules applied to Cluster 4

The number of PCs retained in Cluster 4 to account for 90% of the variation was the

same as for 95% variation. Therefore, seven objectives were retained in Cluster 4:

• neg 25 INT

• Peak Flare Speed

• neg 612 INT

• cyc 25 RMS
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• sf cyc 612 RMS abs

• sf cyc 612 INT abs

• F model

F.2.3 Retaining PCs to account for 86% of the Total Variation

Objective Reduction Rules applied to Cluster 2

The number of PCs retained in Cluster 2 to account for 86% of the variation was the

same as for 90% variation. Therefore, six objectives were retained in Cluster 2:

• neg 25 INT

• sf cyc 25 RMS abs

• sf cyc 612 INT abs

• Peak Flare Speed

• sf cyc 25 INT abs

• cyc 25 RMS

Objective Reduction Rules applied to Cluster 3

1. Applying OR1, gave the same result as before.

2. Applying OR2, t5 = 86%, i.e. the first five PCs were retained, which accounted

for approximately 86% of the cumulative percentage total variation.

3. Applying OR3a), θ10 = 0.3162.

4. Applying OR3c) to PC1, 1A−(1) ∧ 1A+(6) ⇒ {1, 6} ⊆ I.

5. Applying OR3c) to PC2, 2A−(2) ∧ 2A+(3) ⇒ {2, 3} ⊆ I.

6. Applying OR3b) to PC3, 3A+(9, 10) ∧ 3∆+(10) ⇒ {10} ⊆ I.

7. Applying OR3b) to PC4, 4A−(4, 7) ∧ 4∆−(4) ⇒ {4} ⊆ I.

8. Applying OR3b) to PC5, 5A−(5, 8) ∧ (r5 > r8) ⇒ {5} ⊆ I.
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In summary, seven objectives were retained in Cluster 3:

• neg 25 INT

• Peak Flare Speed

• neg 612 INT

• cyc 25 RMS

• sf cyc 612 INT abs

• cyc 612 RMS

• F model

Objective Reduction Rules applied to Cluster 4

1. Applying OR1, gave the same result as before.

2. Applying OR2, t3 = 86%, i.e. first three PCs were retained, which accounted for

approximately 86% of the cumulative percentage total variation.

3. Applying OR3a), θ10 = 0.3162.

4. Applying OR3c) to PC1,

1A−(1, 4, 5) ∧ 1A+(6, 7, 10) ∧ (r5 > r1 > r4) ∧ (r6 > r10 > r7) ⇒ {5, 6} ⊆ I.

5. Applying OR3c) to PC2, 2A−(2) ∧ 2A+(3, 9) ∧ 2∆+(3) ⇒ {2, 3} ⊆ I.

6. Applying OR3b) to PC3, 3A−(8) ⇒ {8} ⊆ I.

In summary, five objectives were retained in Cluster 4:

• F model

• Peak Flare Speed

• cyc 25 RMS

• neg 612 INT

• sf cyc 612 RMS abs





Appendix G

Detailed Results from Objective

Reduction Process - 2nd Stage

This Appendix provides details of the Stage 2 clustering and objective reduction

processes summarised in Section 6.7 and depicted in the flowchart in Figure 6.7.

G.1 Clustering and Verification with Reduced

Objectives - 2nd Stage

The final populations resulting from further optimisations with reduced objectives in

each of the retained clusters were clustered using the k*-Means clustering algorithm

and initial parameters set as previously in Section 6.6.1. However, two batches of

clustering runs were carried out, one with a learning rate of 1e-4 to 1e-7 and the other

with a learning rate of 1e-3 to 1e-5 in an attempt to find clusters. Neither batch

produced any converged clusters.

When examined in more detail, some of the runs that did produce clusters, albeit not

converged, had very similar centres. Further investigation revealed in one such run

that, in one of the clusters:

• The magnitude of elements within the corresponding covariance matrices were

very small. Both the centres and covariance matrices are shown in Table G.1.

• When the objective data in the 10,000 member sub-sampled POP was plotted

as a histogram per objective with high-resolution binning, it was obvious that a
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Table G.1: Example of a clustering run from the 2nd Stage objective reduction in
Cluster 2 showing very similar data between, and very small covariances for, each
resulting cluster.

Cluster Property Cluster Obj1 Obj3 Obj6 Obj7 Obj9 Obj10

Centres
1 -77.79 1.23 1471.89 0.07 16.91 5.81
2 -77.80 1.23 1471.91 0.07 16.91 5.80

Covariances

1

0.0027 3.79E-05 -0.0073 1.47E-05 0.0001 -0.0013
3.79E-05 6.36E-07 -9.37E-05 1.57E-07 2.49E-06 -1.02E-05

-0.0073 -9.37E-05 0.0327 1.84E-05 0.0004 -0.0008
1.47E-05 1.57E-07 1.84E-05 4.41E-07 6.24E-06 -3.84E-05

0.0001 2.49E-06 0.0004 6.24E-06 0.0003 -0.0006
-0.0013 -1.02E-05 -0.0008 -3.84E-05 -0.0006 0.0035

2

0.0035 5.22E-05 -0.0106 7.76E-06 -8.21E-05 -0.0006
5.22E-05 9.94E-07 -0.0001 -1.93E-08 7.59E-07 9.84E-06

-0.0106 -0.0001 0.0490 4.40E-05 0.0015 -0.0033
7.76E-06 -1.93E-08 4.40E-05 5.45E-07 8.37E-06 -5.03E-05

-8.21E-05 7.59E-07 0.0015 8.37E-06 0.0005 -0.0008
-0.0006 9.84E-06 -0.0033 -5.03E-05 -0.0008 0.0049

Figure G.1: Histogram plot of each objective in the 10,000 member sub-sampled POP,
showing that a large proportion of the data was very similar. The y-axis represents
frequency of occurrence.
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Figure G.2: Histogram plot of each objective in the 10,000 member sub-sampled POP
after removing non-unique solutions. The y-axis represents frequency of occurrence.

large number of data was very similar - see Figure G.1. Furthermore, from a

powertrain calibration point of view, this similar data was so similar that it was

considered as replicate data. Using the Matlab r© v7.7 (R2008b) command

unique to identify unique solutions, non-unique data was removed and the

remaining unique 10,000 member sub-sampled POP objective data was

re-plotted as histograms, resulting in a much more even distribution of data as

shown in Figure G.2.

Using the Matlab r© v7.7 (R2008b) command unique, individual solutions in a

population can be identified. Starting from an initial population size of 10,000, it was

found that in each of the final populations within the three retained clusters, there

were 2727, 9881, and 5351 unique solutions respectively using the unique command

with the default Matlab r© double precision of 16 decimal places. However, using a

user-specified engineering precision of 1 to 3 decimal places to discriminate between

solutions revealed only 1043, 742 and 1151 solutions respectively.

As a result, it was decided to reformulate the objective functions so that they were

evaluated to this engineering precision in an attempt to generate more unique (to

engineering precision) solutions. For example, F model was reformulated to
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round(F model × 10d)/10d where round is the Matlab r© command to round to the

nearest integer and d is the number of decimal places used for engineering precision.

Subsequently, the optimisations within each cluster were re-run with the

re-formulated objective functions. The resulting final populations produced 2286,

3398 and 2124 unique solutions, which was a significant improvement.

The final populations from the optimisations of the re-formulated objectives were

then clustered. Again the k*-Means clustering algorithm was used with initial

parameters set as previously in Section 6.6.1 and two batches run at learning rates of:

1e-3 to 1e-5 and 1e-4 to 1e-7 (most runs were 1e-4 to 1e-6). In the retained Clusters 2

and 3, there was no evidence of converged clusters, whereas in Cluster 4, two further

clusters were generated. Therefore:

For Cluster 2: V 6(10000, lr, cs, 5000, 0.1) = 1 (G.1)

For Cluster 3: V 7(10000, lr, cs, 5000, 0.1) = 1 (G.2)

For Cluster 4: V 5(10000, lr, cs, 5000, 0.1) = 2 (G.3)

As the computational expense of optimising a population of 10,000 over 10 objectives

was considered acceptable with the pMOEA running on more than 30 processors, (2-3

hours), further sub-sampling was not carried out (i.e. V has no suffix). Consequently,

Clustering verification Rules, CR2 and CR3 did not apply.

Applying the remaining Clustering verification Rules and the notation as defined in

Sections 4.4.3 and Appendix D respectively, to Cluster 4:

• Applying CR1, V 5(10000, lr1, cs, 5000, 0.1) = 2 and

Table G.2: Cluster membership and bounds on data for each of the two Clusters, 4 1
and 4 2, resulting from the 2nd stage optimisation and clustering within Cluster 4,
where n/a is used to denote discarded objectives.

Cluster Membership Bounds

4 1 1140
Upper n/a -40.9 1.2 n/a 2.1 1512.9 n/a 0.2 n/a n/a
Lower n/a -47.6 0.8 n/a 1.0 1478.1 n/a 0.0 n/a n/a

4 2 984
Upper n/a -31.7 1.2 n/a 2.6 1501.3 n/a 0.2 n/a n/a
Lower n/a -49.1 0.5 n/a 2.0 1427.3 n/a 0.0 n/a n/a
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V 5(10000, lr2, cs, 5000, 0.1) = 2, where lr1: 1e-4 to 1e-7, lr2: 1e-3 to 1e-5 and cs:

5 to 7. Of the fifteen converged runs generating the same two clusters, the run

with the closest agreement between the cluster and data correlation matrices

was selected, i.e. run 64 using lr1.

• Applying CR4, no further engineering limits were applied by the Cold Start

calibration engineer. In addition, both clusters had significant membership and

so were retained. The bounds on the cluster data are shown in Table G.2.

Table G.3: Stage 2 results from PCA applied to optimisations of reduced objectives
within Clusters 2 to 4. Note missing rows in the tables of eigenvectors indicate discarded
objectives.

Cluster 2 Cluster 3 Cluster 4 1 Cluster 4 2

PC Eigenvalues (λp)

3.5134 4.0857 3.8246 3.4529
1.9066 1.9230 0.7698 1.2349
0.4318 0.8830 0.2613 0.2892
0.1235 0.0668 0.1411 0.0203
0.0229 0.0341 0.0032 0.0026
0.0019 0.0065

0.0008

Cumulative % of Total Variation

58.6 58.4 76.5 69.1
90.3 85.8 91.9 93.8
97.5 98.5 97.1 99.5
99.6 99.4 99.9 99.9
100 99.9 100 100
100 100

100

PCs retained for 99% of variation PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3

Rotated Eigenvectors (vp′)

Obj1 -0.5629 0.1159 0.0583 -0.2692 -0.4472 -0.1393 -0.2825 -0.2806
Obj2 0.5453 -0.0545 -0.0180 0.0671 -0.6673 -0.0068 0.0128 -0.0603 -0.0713 0.0021 0.6535
Obj3 -0.0980 0.0501 -0.0890 -0.8433 -0.0603 0.6565 -0.2382 -0.1855 0.7448 -0.0069 0.0130 -0.0610 -0.0634 -0.0002 -0.7525
Obj4 0.0275 0.0330 0.0960 -0.8943
Obj5 -0.0650 -0.0317 0.8975 -0.0999 -0.0052 0.0004 -0.0008 -0.9963 -0.6550 -0.0484 0.0622
Obj6 0.7477 0.1450 -0.0093 -0.1095 0.7025 -0.0184 -0.1132 -0.2256 0.0006 1.0000 0.0001 -0.0004 0.7496 -0.0489 0.0528
Obj7 0.1761 0.7683 0.1497 -0.2026
Obj8 0.0011 -0.0001 -0.9998 -0.0008 -0.0051 -0.9976 -0.0041
Obj9 0.0675 -0.0354 -0.9518 -0.0711
Obj10 0.2810 -0.6095 0.2455 -0.3979 0.0230 0.7378 0.1886 0.1471

PCs retained for 95% of variation PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Rotated Eigenvectors (vp′)

Obj1 -0.6156 0.1149 0.0643 -0.5671 -0.0897 -0.1956
Obj2 0.5033 -0.0501 -0.0475 -0.6570 -0.0468 0.0279 -0.0713 0.0021 0.6535
Obj3 -0.5664 -0.0099 -0.0155 -0.1337 0.6880 -0.1684 0.7430 -0.0483 0.0154 -0.0634 -0.0002 -0.7525
Obj4 -0.3694 0.1590 0.3188
Obj5 0.0193 -0.0713 0.8940 0.0852 -0.7006 0.1755 -0.6550 -0.0484 0.0622
Obj6 0.5474 0.1022 0.0433 0.4964 0.0378 -0.0682 0.0912 0.7104 0.1767 0.7496 -0.0489 0.0528
Obj7 0.0225 0.7305 0.2256
Obj8 0.0250 0.0005 -0.9680 -0.0051 -0.9976 -0.0041
Obj9 0.0007 0.0110 -0.9382
Obj10 0.0109 -0.6652 0.2502 0.1548 0.6959 0.1603

PCs retained for 85% of variation PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Rotated Eigenvectors (vp′)

Obj1 -0.5169 0.0461 -0.4615 -0.0897
Obj2 0.4869 -0.0530 -0.5337 -0.1036 -0.2560 0.4832
Obj3 -0.5104 -0.0572 -0.0591 0.6863 0.5737 0.0234 0.1818 -0.5288
Obj4 -0.4571 0.1649
Obj5 -0.3001 -0.0596 -0.0472 -0.6608 -0.5593 0.1297
Obj6 0.5067 0.1408 0.4886 0.0347 -0.0322 0.7327 0.5459 -0.1296
Obj7 0.1271 0.6761
Obj8 0.6187 -0.1233 -0.5392 -0.6733
Obj9 -0.4297 0.1822
Obj10 0.1212 -0.6961 0.0940 0.6973
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G.2 PCA and Potential Objective Reduction - 2nd Stage

For the final populations from the optimisations of the re-formulated objectives in

Clusters 2 and 3, FAST-MCD was used to determine robust correlation matrices, on

which to base PCA and as before, the proportion of the population retained was 95%.

Subsequently, PCA was conducted and the results are shown in Table G.3. The

grey-shaded eigenvector coefficients indicate the retained objectives resulting from

application of the objective reduction rules.

A similar process to that in Section 6.6.2 was used to explore what effect varying the

cumulative percentage of total variation had on the number of objectives retained. In

order to achieve this, the Objective reduction Rules OR3a)-3c) were applied, the

results of which are shown in Table G.4. A reasonable objective reduction was

achieved in Cluster 3 with a 99% threshold for the cumulative percentage of variation,

but no objective reduction was achieved for Clusters: 2, 4 1 and 4 2. With a 95%

threshold, there was a small objective reduction in Cluster 2, but none in Clusters:

4 1 and 4 2. With an 85% threshold, a reasonable objective reduction was achieved

for Clusters 2, 4 1 and 4 2. However, for Cluster 3, an 85% threshold was considered

to give too drastic an objective reduction in one go and so, it was decided to adhere

to using a 99% threshold for this cluster. For this case study a policy of progressively,

gradually reducing the number of objectives was adopted, albeit that this approach

may involve more objective reduction stages and therefore take longer.

The application of the Objective reduction Rules using the notation is described

Table G.4: 2nd Stage retained objectives from objective reduction process for varying
thresholds of cumulative percentage of total variation. The objective reduction selected
per cluster is shown highlighted in grey. The number of retained objectives from the
first stage is shown in brackets for each cluster.

Threshold for cumulative
% of total variation

No. of objectives retained
Cluster 2 Cluster 3 Cluster 4 1 Cluster 4 2

(6) (7) (5) (5)

99 6 5 5 5
95 5 4 5 5
85 4 3 4 4
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below.

G.2.1 Retaining PCs to account for 99% of the Total Variation

Objective Reduction Rules applied within Cluster 2.

1. Applying OR1, λ1/λ10 = 1849.2, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 99%, i.e. the first four PCs were retained, which accounted

for approximately 99% of the cumulative percentage total variation.

3. Applying OR3a), θ6 = 0.4083.

4. Applying OR3c) to PC1, 1A−(1) ∧ 1A+(6) ⇒ {1, 6} ⊆ I.

5. Applying OR3c) to PC2, 2A−(10) ∧ 2A+(7) ⇒ {7, 10} ⊆ I.

6. Applying OR3b) to PC3, 3A−(9) ⇒ {9} ⊆ I.

7. Applying OR3b) to PC4, 4A−(3) ⇒ {3} ⊆ I.

In summary, all six objectives were retained in Cluster 2, i.e. no further objective

reduction was achieved.

Objective Reduction Rules applied within Cluster 3.

1. Applying OR1, λ1/λ10 = 5107.1, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 99%, i.e. the first four PCs were retained, which accounted

for approximately 99% of the cumulative percentage total variation.

3. Applying OR3a), θ7 = 0.3780.

4. Applying OR3c) to PC1, 1A−(1) ∧ 1A+(2, 6) ∧ (r6 > r2) ⇒ {1, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A+(3, 10) ∧ (r10 > r3) ⇒ {10} ⊆ I.

6. Applying OR3b) to PC3, 3A+(5) ⇒ {5} ⊆ I.

7. Applying OR3b) to PC4, 4A−(4) ⇒ {4} ⊆ I.
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In summary, five objectives were retained in Cluster 3:

• neg 25 INT

• cyc 612 RMS

• F model

• Peak Flare Speed

• sf cyc 612 INT abs

Objective Reduction Rules applied within Cluster 4 1.

1. Applying OR1, λ1/λ10 = 1195.2, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 99%, i.e. the first four PCs were retained, which accounted

for approximately 99% of the cumulative percentage total variation.

3. Applying OR3a), θ5 = 0.4472.

4. Applying OR3c) to PC1, 1A−(2) ∧ 1A+(3) ⇒ {2, 3} ⊆ I.

5. Applying OR3b) to PC2, 2A+(6) ⇒ {6} ⊆ I.

6. Applying OR3b) to PC3, 3A−(8) ⇒ {8} ⊆ I.

7. Applying OR3b) to PC4, 4A−(5) ⇒ {5} ⊆ I.

In summary, all five objectives were retained in Cluster 4 1, i.e. no further objective

reduction was achieved.

Objective Reduction Rules applied within Cluster 4 2.

1. Applying OR1, λ1/λ10 = 1328, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 99%, i.e. the first three PCs were retained, which

accounted for approximately 99% of the cumulative percentage total variation.

3. Applying OR3a), θ5 = 0.4472.
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4. Applying OR3c) to PC1, 1A−(5) ∧ 1A+(6) ⇒ {5, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A−(8) ⇒ {8} ⊆ I.

6. Applying OR3c) to PC3, 3A−(3) ∧ 3A+(2) ⇒ {2, 3} ⊆ I.

In summary, all five objectives were retained in Cluster 4 2, i.e. no further objective

reduction was achieved.

G.2.2 Retaining PCs to account for 95% of the Total Variation

Objective Reduction Rules applied within Cluster 2.

1. Applying OR1, λ1/λ10 = 1849.2, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 95%, i.e. the first three PCs were retained, which

accounted for approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), θ6 = 0.4083.

4. Applying OR3c) to PC1, 1A−(1, 3) ∧ 1A+(6) ∧ (r1 > r3) ⇒ {1, 6} ⊆ I.

5. Applying OR3c) to PC2, 2A−(10) ∧ 2A+(7) ⇒ {7, 10} ⊆ I.

6. Applying OR3b) to PC2, 3A−(9) ⇒ {9} ⊆ I.

In summary, five objectives were retained in Cluster 2:

• neg 25 INT

• Peak Flare Speed

• sf cyc 25 RMS abs

• sf cyc 25 INT abs

• sf cyc 612 INT abs
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Objective Reduction Rules applied within Cluster 3.

1. Applying OR1, λ1/λ10 = 5107.1, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 95%, i.e. the first three PCs were retained, which

accounted for approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), θ7 = 0.3780.

4. Applying OR3c) to PC1, 1A−(1) ∧ 1A+(2, 6) ∧ (r6 > r2) ⇒ {1, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A+(3, 10) ∧ (r10 > r3) ⇒ {10} ⊆ I.

6. Applying OR3b) to PC3, 3A+(5) ⇒ {5} ⊆ I.

In summary, four objectives were retained in Cluster 3:

• neg 25 INT

• F model

• Peak Flare Speed

• sf cyc 612 INT abs

Objective Reduction Rules applied within Cluster 4 1.

1. Applying OR1, λ1/λ10 = 1195.2, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 95%, i.e. the first three PCs were retained, which

accounted for approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), θ5 = 0.4472.

4. Applying OR3c) to PC1, 1A−(2) ∧ 1A+(3) ⇒ {2, 3} ⊆ I.

5. Applying OR3c) to PC2, 2A−(5) ∧ 2A+(6) ⇒ {5, 6} ⊆ I.

6. Applying OR3b) to PC3, 3A−(9) ⇒ {9} ⊆ I.

In summary, all five objectives were retained in Cluster 4 1, i.e. no further objective

reduction was achieved.
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Objective Reduction Rules applied within Cluster 4 2.

1. Applying OR1, λ1/λ10 = 1328, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 95%, i.e. the first three PCs were retained, which

accounted for approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), θ5 = 0.4472.

4. Applying OR3c) to PC1, 1A−(5) ∧ 1A+(6) ⇒ {5, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A−(9) ⇒ {9} ⊆ I.

6. Applying OR3c) to PC3, 3A−(3) ∧ 3A+(2) ⇒ {2, 3} ⊆ I.

In summary, all five objectives were retained in Cluster 4 2, i.e. no further objective

reduction was achieved.

G.2.3 Retaining PCs to account for 85% of the Total Variation

Objective Reduction Rules applied within Cluster 2.

1. Applying OR1, λ1/λ10 = 1849.2, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 85%, i.e. the first two PCs were retained, which accounted

for approximately 85% of the cumulative percentage total variation.

3. Applying OR3a), θ6 = 0.4083.

4. Applying OR3c) to PC1, 1A−(1, 3, 9) ∧ 1A+(6) ∧ (r1 > r9 > r3) ⇒ {1, 6} ⊆ I.

5. Applying OR3c) to PC2, 2A−(7) ∧ 2A+(10) ⇒ {7, 10} ⊆ I.

In summary, four objectives were retained in Cluster 2:

• neg 25 INT

• Peak Flare Speed

• sf cyc 25 INT abs

• sf cyc 612 INT abs
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Objective Reduction Rules applied within Cluster 3.

1. Applying OR1, λ1/λ10 = 5107.1, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 85%, i.e. the first two PCs were retained, which accounted

for approximately 85% of the cumulative percentage total variation.

3. Applying OR3a), θ7 = 0.3780.

4. Applying OR3c) to PC1,

1A−(1, 4) ∧ 1A+(2, 6) ∧ (r1 > r4) ∧ (r6 > r2) ⇒ {1, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A+(3, 10) ∧ (r10 > r3) ⇒ {10} ⊆ I.

In summary, three objectives were retained in Cluster 3:

• neg 25 INT

• Peak Flare Speed

• sf cyc 612 INT abs

Objective Reduction Rules applied within Cluster 4 1.

1. Applying OR1, λ1/λ10 = 1195.2, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 85%, i.e. the first two PCs were retained, which accounted

for approximately 85% of the cumulative percentage total variation.

3. Applying OR3a), θ5 = 0.4472.

4. Applying OR3c) to PC1, 1A−(2) ∧ 1A+(3, 8) ∧ (r3 > r8) ⇒ {2, 3} ⊆ I.

5. Applying OR3c) to PC2, 2A−(5) ∧ 2A+(6) ⇒ {5, 6} ⊆ I.

In summary, four objectives were retained in Cluster 4 1:

• neg 612 INT

• cyc 25 RMS

• F model

• Peak Flare Speed
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Objective Reduction Rules applied within Cluster 4 2.

1. Applying OR1, λ1/λ10 = 1328, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 85%, i.e. the first two PCs were retained, which accounted

for approximately 85% of the cumulative percentage total variation.

3. Applying OR3a), θ5 = 0.4472.

4. Applying OR3c) to PC1, 1A−(5, 8) ∧ 1A+(6) ∧ (r5 > r8) ⇒ {5, 6} ⊆ I.

5. Applying OR3c) to PC2, 2A−(3, 8) ∧ 2A+(2) ∧ (r3 > r8) ⇒ {3, 8} ⊆ I.

In summary, four objectives were retained in Cluster 4 2:

• cyc 25 RMS

• F model

• Peak Flare Speed

• sf cyc 612 RMS abs





Appendix H

Detailed Results from Objective

Reduction Process - 3rd Stage

This Appendix provides details of the Stage 3 objective reduction processes

summarised in Section 6.8.3 and depicted in the flowchart in Figure 6.8.

H.1 PCA and Potential Objective Reduction - 3rd Stage

For the final populations from the further optimisations with reduced objectives Stage

3, FAST-MCD was used to determine robust correlation matrices, on which to base

PCA and as before, the proportion of the population retained was 95%. Subsequently,

PCA was conducted and the results are shown in Table H.1. The grey-shaded

eigenvector coefficients indicate the retained objectives resulting from application of

the objective reduction rules.

The application of the Objective reduction Rules using the notation is described

below.

H.1.1 Retaining PCs to account for 99% of the Total Variation

Objective Reduction Rules applied within Cluster 2.

1. Applying OR1, λ1/λ10 = 93.1, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 99%, i.e. the first three PCs were retained, which

accounted for approximately 99% of the cumulative percentage total variation.
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Table H.1: Stage 3 results from PCA applied to optimisations of reduced objectives
within Clusters 2 to 4. Note missing rows in the tables of eigenvectors indicate discarded
objectives.

Cluster 2 Cluster 3 Cluster 4 1 Cluster 4 2

PC Eigenvalues (λp)

2.3825 3.4125 3.1247 3.2291
1.5438 0.9990 0.7381 0.6898
0.0481 0.5624 0.1342 0.0801
0.0256 0.0225 0.0030 0.0010

0.0036

Cumulative % of Total Variation

59.6 68.3 78.1 80.7
98.2 88.2 96.6 98.0
99.4 99.5 99.9 100
100 99.9 100 100

100

PCs retained for 99% of variation PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Rotated Eigenvectors (vp′)

Obj1 0.0590 0.6951 -0.1856 -0.6326 0.1605 -0.1211
Obj2 -0.6847 -0.0068 0.0448 -0.0117 0.0135 -0.9816
Obj3 0.7288 -0.0068 0.0450
Obj4 -0.5251 -0.0959 0.1087
Obj5 -0.0238 -0.9810 -0.0156 -0.0003 -1.0000 -0.0003 -0.6542 -0.0975 -0.1363
Obj6 0.0587 -0.7189 -0.1835 0.5687 0.0493 -0.0079 0.0021 -0.0003 -0.9980 0.7562 -0.0956 -0.1330
Obj7 -0.0118 0.0030 -0.9653
Obj8 -0.0088 -0.9905 0.0129
Obj9
Obj10 0.9965 0.0012 0.0104 -0.0156 0.0151 0.9865

PCs retained for 95% of variation PC1 PC2 PC1 PC2 PC3 PC1 PC2 PC1 PC2

Rotated Eigenvectors (vp′)

Obj1 -0.0938 0.6855 -0.6326 0.1605 -0.1211
Obj2 -0.6850 -0.0368 -0.4063 0.3683
Obj3 0.7284 -0.0357
Obj4 -0.5251 -0.0959 0.1087
Obj5 -0.0238 -0.9810 -0.0156 0.0113 -0.7143 -0.6599 -0.0702
Obj6 -0.0929 -0.7266 0.5687 0.0493 -0.0079 0.0127 0.6980 0.6212 -0.0074
Obj7 -0.7084 -0.0303
Obj8 -0.1164 -0.9270
Obj9
Obj10 0.6934 -0.0356 -0.0156 0.0151 0.9865

PCs retained for 85% of variation PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Rotated Eigenvectors (vp′)

Obj1 -0.0938 0.6855 -0.6313 0.1841
Obj2 -0.6850 -0.0368 -0.4063 0.3683
Obj3 0.7284 -0.0357
Obj4 -0.5204 -0.1555
Obj5 0.0784 -0.7818 0.0113 -0.7143 -0.6599 -0.0702
Obj6 -0.0929 -0.7266 0.5588 0.0595 0.0127 0.6980 0.6212 -0.0074
Obj7 -0.7084 -0.0303
Obj8 -0.1164 -0.9270
Obj9
Obj10 0.6934 -0.0356 -0.1107 -0.5721
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3. Applying OR3a), θ4 = 0.5.

4. Applying OR3b) to PC1, 1A+(10) ⇒ {10} ⊆ I.

5. Applying OR3c) to PC2, 2A−(6) ∧ 2A+(1) ⇒ {1, 6} ⊆ I.

6. Applying OR3b) to PC3, 3A+(7) ⇒ {7} ⊆ I.

In summary, all four objectives were retained in Cluster 2, i.e. no further objective

reduction was achieved.

Objective Reduction Rules applied within Cluster 3.

1. Applying OR1, λ1/λ10 = 947.9, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 99%, i.e. the first three PCs were retained, which

accounted for approximately 99% of the cumulative percentage total variation.

3. Applying OR3a), θ5 = 0.4472.

4. Applying OR3c) to PC1, 1A−(1) ∧ 1A+(6) ⇒ {1, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A−(5) ⇒ {5} ⊆ I.

6. Applying OR3b) to PC3, 3A−(10) ⇒ {10} ⊆ I.

In summary, four objectives were retained in Cluster 3:

• neg 25 INT

• F model

• Peak Flare Speed

• sf cyc 612 INT abs

Objective Reduction Rules applied within Cluster 4 1.

1. Applying OR1, λ1/λ10 = 1041.6, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 99%, i.e. the first three PCs were retained, which

accounted for approximately 99% of the cumulative percentage total variation.
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3. Applying OR3a), θ4 = 0.5.

4. Applying OR3c) to PC1, 1A−(2) ∧ 1A+(3) ⇒ {2, 3} ⊆ I.

5. Applying OR3b) to PC2, 2A−(5) ⇒ {5} ⊆ I.

6. Applying OR3b) to PC3, 3A−(6) ⇒ {6} ⊆ I.

In summary, four objectives were retained in Cluster 4 1:

• neg 612 INT

• cyc 25 RMS

• F model

• Peak Flare Speed

Objective Reduction Rules applied within Cluster 4 2.

1. Applying OR1, λ1/λ10 = 3229.1, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 99%, i.e. the first three PCs were retained, which

accounted for approximately 99% of the cumulative percentage total variation.

3. Applying OR3a), θ4 = 0.5.

4. Applying OR3c) to PC1, 1A−(5) ∧ 1A+(6) ⇒ {5, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A−(8) ⇒ {8} ⊆ I.

6. Applying OR3b) to PC3, 3A−(2) ⇒ {2} ⊆ I.

In summary, four objectives were retained in Cluster 4 2:

• neg 612 INT

• F model

• Peak Flare Speed

• sf cyc 612 RMS abs
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H.1.2 Retaining PCs to account for 95% of the Total Variation

Objective Reduction Rules applied within Cluster 2.

1. Applying OR1, λ1/λ10 = 93.1, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 95%, i.e. the first two PCs were retained, which accounted

for approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), θ4 = 0.5.

4. Applying OR3c) to PC1, 1A+(7) ∧ 1A+(10) ⇒ {7, 10} ⊆ I.

5. Applying OR3c) to PC2, 2A−(6) ∧ 2A+(1) ⇒ {1, 6} ⊆ I.

In summary, all four objectives were retained in Cluster 2, i.e. no further objective

reduction was achieved.

Objective Reduction Rules applied within Cluster 3.

1. Applying OR1, λ1/λ10 = 947.9, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 95%, i.e. the first three PCs were retained, which

accounted for approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), θ5 = 0.4472.

4. Applying OR3c) to PC1, 1A−(1) ∧ 1A+(6) ⇒ {1, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A−(5) ⇒ {5} ⊆ I.

6. Applying OR3b) to PC3, 3A−(10) ⇒ {10} ⊆ I.

In summary, four objectives were retained in Cluster 3:

• neg 25 INT

• F model

• Peak Flare Speed

• sf cyc 612 INT abs
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Objective Reduction Rules applied within Cluster 4 1.

1. Applying OR1, λ1/λ10 = 1041.6, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 95%, i.e. the first two PCs were retained, which accounted

for approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), θ4 = 0.5.

4. Applying OR3c) to PC1, 1A−(2) ∧ 1A+(3) ⇒ {2, 3} ⊆ I.

5. Applying OR3c) to PC2, 2A−(5) ∧ 1A+(6) ⇒ {5, 6} ⊆ I.

In summary, all four objectives were retained in Cluster 4 1, i.e. no further objective

reduction was achieved.

Objective Reduction Rules applied within Cluster 4 2.

1. Applying OR1, λ1/λ10 = 3229.1, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 95%, i.e. the first two PCs were retained, which accounted

for approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), θ4 = 0.5.

4. Applying OR3c) to PC1, 1A−(5) ∧ 1A+(6) ⇒ {5, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A−(8) ⇒ {8} ⊆ I.

In summary, three objectives were retained in Cluster 4 2:

• F model

• Peak Flare Speed

• sf cyc 612 RMS abs
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H.1.3 Retaining PCs to account for 85% of the Total Variation

Objective Reduction Rules applied within Cluster 2.

1. Applying OR1, λ1/λ10 = 93.1, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 85%, i.e. the first two PCs were retained, which accounted

for approximately 85% of the cumulative percentage total variation.

3. Applying OR3a), θ4 = 0.5.

4. Applying OR3c) to PC1, 1A+(7) ∧ 1A+(10) ⇒ {7, 10} ⊆ I.

5. Applying OR3c) to PC2, 2A−(6) ∧ 2A+(1) ⇒ {1, 6} ⊆ I.

In summary, all four objectives were retained in Cluster 2, i.e. no further objective

reduction was achieved.

Objective Reduction Rules applied within Cluster 3.

1. Applying OR1, λ1/λ10 = 947.9, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 85%, i.e. the first two PCs were retained, which accounted

for approximately 85% of the cumulative percentage total variation.

3. Applying OR3a), θ5 = 0.4472.

4. Applying OR3c) to PC1, 1A−(1) ∧ 1A+(6) ⇒ {1, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A−(5) ⇒ {5} ⊆ I.

6. For PC2, the sign of the eigenvector coefficient for Objective 10 was mistaken as

being positive (it is in fact, negative) and so OR3c) was erroneously applied to

PC2, 2A−(5) ∧ 2A+(10) ⇒ {5, 10} ⊆ I. (The correct rule to apply to PC2 was

OR3b), 2A−(5) ⇒ {5} ⊆ I and so, only three objectives should have been

retained).

In summary (albeit in error), four objectives were retained in Cluster 3:

• neg 25 INT
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• F model

• Peak Flare Speed

• sf cyc 612 INT abs

Objective Reduction Rules applied within Cluster 4 1.

1. Applying OR1, λ1/λ10 = 1041.6, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 85%, i.e. the first two PCs were retained, which accounted

for approximately 85% of the cumulative percentage total variation.

3. Applying OR3a), θ4 = 0.5.

4. Applying OR3c) to PC1, 1A−(2) ∧ 1A+(3) ⇒ {2, 3} ⊆ I.

5. Applying OR3c) to PC2, 2A−(5) ∧ 1A+(6) ⇒ {5, 6} ⊆ I.

In summary, all four objectives were retained in Cluster 4 1, i.e. no further objective

reduction was achieved.

Objective Reduction Rules applied within Cluster 4 2.

1. Applying OR1, λ1/λ10 = 3229.1, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 85%, i.e. the first two PCs were retained, which accounted

for approximately 85% of the cumulative percentage total variation.

3. Applying OR3a), θ4 = 0.5.

4. Applying OR3c) to PC1, 1A−(5) ∧ 1A+(6) ⇒ {5, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A−(8) ⇒ {8} ⊆ I.

In summary, three objectives were retained in Cluster 4 2:

• F model

• Peak Flare Speed

• sf cyc 612 RMS abs



Appendix I

Detailed Results from Objective

Reduction Process - 4th Stage

This Appendix provides details of the Stage 4 objective reduction processes

summarised in Section 6.9.3 and depicted in the flowchart in Figure 6.9.

I.1 PCA and Potential Objective Reduction - 4th Stage

I.1.1 Retaining PCs to account for 95% of the Total Variation

Objective Reduction Rules applied within Cluster 3 1.

1. Applying OR1, λ1/λ10 = 286.2, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 95%, i.e. the first three PCs were retained, which

accounted for approximately 95% of the cumulative percentage total variation.

3. Applying OR3a), θ4 = 0.5.

4. Applying OR3c) to PC1, 1A+(1) ∧ 1A+(6) ⇒ {1, 6} ⊆ I.

5. Applying OR3b) to PC2, 2A−(5) ⇒ {5} ⊆ I.

6. Applying OR3b) to PC3, 3A+(10) ⇒ {10} ⊆ I.

In summary, all four objectives were retained in Cluster 3 1, i.e. no further objective

reduction was achieved.
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Table I.1: Stage 4 results from PCA applied to optimisations of reduced objectives
within Cluster 3. Note missing rows in the tables of eigenvectors indicate discarded
objectives.

Cluster 3 1

PC Eigenvalues (λp)

2.5181
0.8974
0.5757
0.0088

Cumulative % of Total Variation

63.0
85.4
99.8
100

PCs retained for 95% of variation PC1 PC2 PC3

Rotated Eigenvectors (vp′)

Obj1 -0.7548 0.1194 -0.0633
Obj2
Obj3
Obj4
Obj5 -0.0111 -0.9854 -0.0079
Obj6 0.6558 0.1208 -0.0638
Obj7
Obj8
Obj9
Obj10 -0.0061 0.0075 0.9959

PCs retained for 85% of variation PC1 PC2

Rotated Eigenvectors (vp′)

Obj1 -0.7516 0.1155
Obj2
Obj3
Obj4
Obj5 0.1003 -0.7881
Obj6 0.6411 0.1508
Obj7
Obj8
Obj9
Obj10 -0.1182 -0.5855
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I.1.2 Retaining PCs to account for 85% of the Total Variation

Objective Reduction Rules applied within Cluster 3 1.

1. Applying OR1, λ1/λ10 = 286.2, so there was not sufficient evidence of a

near-linear dependency.

2. Applying OR2, t2 = 85%, i.e. the first two PCs were retained, which accounted

for approximately 85% for the cumulative percentage of total variation.

3. Applying OR3a), θ4 = 0.5.

4. Applying OR3c) to PC1, 1A+(1) ∧ 1A+(6) ⇒ {1, 6} ⊆ I.

5. For PC2, the sign of the eigenvector coefficient for Objective 10 was mistaken

again as being positive (it is in fact, negative) and so OR3c) was erroneously

applied to PC2, 2A−(5) ∧ 2A+(10) ⇒ {5, 10} ⊆ I. (The correct rule to apply to

PC2 was OR3b), 2A−(5) ⇒ {5} ⊆ I and so, only three objectives should have

been retained).

In summary (albeit in error), four objectives were retained in Cluster 3 1, i.e. no

further objective reduction was achieved.
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Demartines, P. and Hérault, H.: 1997, Curvilinear Component Analysis: a

Self-Organising Neural Network for Non-linear Mapping of Data Sets, IEEE

Transactions on Neural Networks 8, 148–154.

Drechsler, N., Drechsler, R. and Becker, B.: 2001, Multi-Objective Optimisation

Based on Relation Favour , in E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello and

D. Corne (eds), Proceedings of the First International Conference on Evolutionary

Multi-Criterion Optimization (EMO 2001), Springer-Verlag, pp. 154–166.

Emtage, A. L.: 2009, Run-time study on parallel moga.



REFERENCES 271

Farina, M. and Amato, P.: 2002, On the optimal solution definition for many-criteria

optimization problems, in J. Keller and O. Nasraoui (eds), Proceedings of the 2002

NAFIPS-FLINT International Conference, IEEE Service Center, Piscataway, New

Jersey, pp. 233–238.

Ferguson, F. R.: 1986, Internal Combustion Engines, 1st edn, John Wiley and Sons.

Filzmoser, P.: 2004, A multivariate outlier detection method, Seventh International

Conference on Computer Data Analysis and Modeling, Vol. 1, Minsk, Belarus,

pp. 18–22.

Fleming, P. J., Purshouse, R. C. and Lygoe, R. J.: 2005, Many-Objective

Optimization: An Engineering Design Perspective, in C. A. C. Coello (ed.),

Proceedings of the Third International Conference on Evolutionary Multi-Criterion

Optimization (EMO 2005), Vol. 3410 of Lecture Notes in Computer Science,

Springer-Verlag, Berlin, Heidelberg, Germany, pp. 14–32.

Fodor, I. K.: 2002, A survey of dimension reduction techniques, Technical report,

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory.

Fonseca, C. M. and Fleming, P. J.: 1998a, Multiobjective Optimization and Multiple

Constraint Handling with Evolutionary Algorithms — Part I: A Unified

Formulation, IEEE Transactions on Systems, Man, and Cybernetics, Part A:

Systems and Humans 28(1), 26–37.

Fonseca, C. M. and Fleming, P. J.: 1998b, Multiobjective Optimization and Multiple

Constraint Handling with Evolutionary Algorithms — Part II: An Application

Example, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems

and Humans 28(1), 38–47.

Fowlkes, W. Y. and Creveling, C. M.: 1995, Engineering methods for robust product

design: using Taguchi methods in technology and product development,

Addison-Wesley.

Frey, H. and Patil, S.: 2002, Identification and review of sensitivity analysis methods,

Risk Analysis 22, 553–578.

Friedman, J. H. and Tukey, J. W.: 1974, A Projection Pursuit Algorithm for

Exploratory Data Analysis, IEEE Transactions of Computers c-23(9), 881–890.



272 REFERENCES

Gembicki, F. W.: 1974, Vector optimization for control with performance and

parameter sensitivity indices, PhD thesis, Case Western Reserve University,

Cleveland, Ohio.

Greenwood, G. W., Hu, X. S. and D’Ambrosio, J. G.: 1997, Fitness functions for

multiple objective optimization problems: Combining preferences with Pareto

rankings, in R. K. Belew and M. D. Vose (eds), Foundations of Genetic Algorithms

4, Morgan Kaufmann, San Mateo, California, pp. 437–455.

Harman, H. H.: 1967, Modern Factor Analysis, 2nd edn, University of Chicago Press.

Hastie, T. J. and Stuetzle, W.: 1989, Principal Curves, Journal of American

Statistical Association 84, 502–516.

Haug, E. J., Choi, K. K. and Komkov, V.: 1986, Design Sensitivity Analysis of

Structural Systems, Academic Press, New York.

Helton, J. C. and Davis, F. J.: 2003, Latin hypercube sampling and the propagation

of uncertainty in analyses of complex systems, Reliability Engineering and System

Safety 81, 23–69.

Herzog, P. L., Weissbaeck, M., Herrmuth, H. and CSchuessler, M.: 2007, The Diesel

SUV - Pushing Back Emission Frontiers, Symposium on International Automotive

Technology (SIAT 2007), The Automotive Research Association of India, Pune,

India. SAE Paper No. 2007-26-010.

Heywood, J. B.: 1988, Internal Combustion Engine Fundamentals, McGraw-Hill

Series in Mechanical Engineering, McGraw-Hill, Singapore.

Hiroyasu, T., Miki, M., Kim, M., Watanabe, S., Hiroyasu, H. and Miao, H.: 2004,

Reduction of heavy duty diesel engine emission and fuel economy with

multi-objective genetic algorithm and phenomenological model, 2004 SAE World

Congress, SAE International, Detroit, Michigan. SAE paper no.: 2004-01-0531.

Hiroyasu, T., Miki, M. and Watanabe, S.: 2000, The new model of parallel genetic

algorithm in multi-objective optimization problems — divided range

multi-objective genetic algorithm, in IEEE Neural Networks Council (ed.),



REFERENCES 273

Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000),

Vol. 1, IEEE Service Center, Piscataway, New Jersey, pp. 333–340.

Holland, J. H.: 1975, Adaptation in Natural and Artificial Systems, The University of

Michigan Press, Ann Arbor, Michigan.

Holliday, T.: 1995, The Design and Analysis of Engine Mapping Experiments: A

Two-Stage Approach, PhD thesis, University of Birmingham.

Hotelling, H.: 1936, Analysis of a complex of statistical variables into principal

components, Educational Psychology (24), 417–441, 498–520.

Hubert, M., Rousseeuw, P. and Vanden Branden, K.: 2005, ROBPCA: a New

Approach to Robust Principal Component Analysis, Technometrics 47, 64–79.

Hughes, E. J.: 2003, Multiple single objective pareto sampling, IEEE Congress on

Evolutionary Computation, CEC 2003, IEEE, Canberra, Australia, pp. 2678–2684.

Hughes, E. J.: 2005, Evolutionary Many-Objective Optimisation: Many Once or One

Many?, IEEE Congress on Evolutionary Computation (CEC’2005), Vol. 1, IEEE

Service Center, Edinburgh, Scotland, pp. 222–227.

Hughes, E. J.: 2007, MSOPS-II: A general-purpose Many-Objective optimiser,

Proceedings of 2007 IEEE Congress on Evolutionary Computation - CEC 2007,

IEEE Service Center, Singapore, pp. 3944–3951.

Hwang, C.-L. and Masud, A. S. M.: 1979, Multiple Objective Decision

Making-Methods and Applications, Vol. 164 of Lecture Notes in Economics and

Mathematical Systems, Springer-Verlag, Berlin.

Hyvärinen, A.: 1999, Survey on Independant Component Analysis, Neural Computing

Surveys 2, 94–128.

Ignizio, J. P.: 1976, Goal Programming and Extensions, Lexington Books, D. C.

Heath and Company, Lexington.

Ikeda, K., Kita, H. and Kobayashi, S.: 2001, Failure of Pareto-based MOEAs: Does

non-dominated really mean near to optimal?, in IEEE Neural Networks Council

(ed.), Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001),

Vol. 2, IEEE Service Center, Piscataway, New Jersey, pp. 957–962.



274 REFERENCES

Inselberg, A.: 1985, The Plane with Parallel Coordinates, The Visual Computer

1, 69–91.

Ishibuchi, H., Doi, T. and Nojima, Y.: 2006, Incorporation of scalarizing fitness

functions into evolutionary multiobjective optimization algorithms, Parallel

Problem Solving from Nature - PPSN IX, Vol. 4193 of Lecture Notes in Computer

Science, Springer, pp. 493–502.

Ishibuchi, H. and Nojima, Y.: 2007, Optimization of scalarizing functions through

evolutionary multiobjective optimization, Evolutionary Multi-Criterion

Optimization - EMO 2007, Vol. 4403 of Lecture Notes in Computer Science,

Springer, pp. 51–65.

Ishibuchi, H., Nojima, Y. and Doi, T.: 2006, Comparison between Single-Objective

and Multi-Objective Genetic Algorithms: Performance Comparison and

Performance Measures, IEEE Congress on Evolutionary Computation, 2006 (CEC

2006), pp. 1143–1150.

Ishibuchi, H., Tsukamoto, N. and Nojima, Y.: 2007, Iterative approach to

indicator-based multiobjective optimization, Proceedings of 2007 IEEE Congress on

Evolutionary Computation - CEC 2007, pp. 3967–3974.

Ishibuchi, H., Tsukamoto, N. and Nojima, Y.: 2008, Behavior of evolutionary

many-objective optimization, Computer Modeling and Simulation, 2008. UKSIM

2008. Tenth International Conference on, pp. 266–271.

Jaimes, A. L., Coello, C. A. C. and Chakraborty, D.: 2008, Objective reduction using

a feature selection technique, 2008 Genetic and Evolutionary Computation

Conference, GECCO 2008, ACM Press, Atlanta, USA.

Jain, A. K. and Dubes, R. C.: 1988, Algorithms for Clustering Data, Prentice-Hall

advanced reference series, Prentice-Hall, Inc., Upper Saddle River, NJ.

Jain, A. K., Murty, M. N. and Flynn, P. J.: 1999, Data Clustering: A Review, ACM

Computing Surveys 31(3).

Jolliffe, I. T.: 1972, Discarding Variables in a Principal Component Analysis. I:

Artificial Data, Journal of the Royal Statistical Society. Series C (Applied

Statistics) 21(2), 160–173.



REFERENCES 275

Jolliffe, I. T.: 1973, Discarding Variables in a Principal Component Analysis. II: Real

Data, Journal of the Royal Statistical Society. Series C (Applied Statistics)

22(1), 21–31.

Jolliffe, I. T.: 2002, Principal Component Analysis, 2nd edn, Springer, New York.

Kaiser, H. F.: 1958, The varimax criterion for analytic rotation in factor analysis,

Psychometrika 23, 187–200.

Kaiser, H. F.: 1960, The application of electronic computers to factor analysis, Educ.

Psychol. Meas. 20, 141–151.

Kambhatla, N. and Leen, T. K.: 1997, Dimension reduction by local principal

component analysis, Neural Computation 9(7), 1493–1516.

Kawaguchi, A., Aiba, T., Takada, N. and Ona, K.: 2009, A robustness-focused shape

optimization method for intake ports, SAE International Powertrains, Fuels and

Lubricants Meeting, SAE International, Florence, Italy. SAE paper no.:

2009-01-1777.

Kendall, M.: 1975, Multivariate Analysis, Charles Griffin & Co.

Khare, V., Yao, X. and Deb, K.: 2003, Performance Scaling of Multi-Objective

Evolutionary Algorithms, in C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb and

L. Thiele (eds), Proceedings of the Second International Conference on Evolutionary

Multi-Criterion Optimization (EMO 2003), Vol. 2632 of Lecture Notes in Computer

Science, Springer, Berlin, pp. 376–390.

Knowles, J.: 2009, Closed-loop evolutionary multiobjective optimization,

Computational Intelligence Magazine, IEEE 4(3), 77–91.

Kohonen, T.: 1995, Self-Organizing Maps, Springer, Berlin.
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