

A COMPARATIVE STUDY OF DIVERSITY
PRESERVATION TECHNIQUES IN MULTIOBJECTIVE

EVOLUTIONARY ALGORITHMS

Arun Anand Sadanandan

Thesis submitted to the University of Nottingham

for the degree of Master of Philosophy

August 2007

 i

Abstract

Most real world applications found in today’s world necessitate dealing with certain

common issues. These competing, often conflicting problems have kept researchers

around the globe inquisitive and interested over the years and continue to do so,

attributing to several open questions in the area. These problems, which deal with

two or more objectives and invariably, involve large and complex search spaces, are

referred to as multi-objective optimization problems (MOP’s). Although several

traditional methods has been put forth and tested, evolutionary algorithms is being

reckoned to be one of the approaches that provide efficient and effective solutions to

these challenging problems, mainly because of its ability to deal with problems that

are multi-objective in nature. These algorithms are, naturally termed as multi-

objective evolutionary algorithms.

Evolutionary algorithms are classified into three major forms: Genetic Algorithms

(GA), Evolutionary programming (EP) and Evolutionary strategies (ES). Owing to the

popularity of this area of research, several new approaches based on evolutionary

techniques has evolved over the years. Additionally, many successful attempts

towards improvement of these existing methods have emerged too. Moreover, other

nature inspired approaches like particle swarm optimization and immune systems are

widely researched as well. This thesis attempts to summarize and classify

information on these biological inspired approaches, highlighting the importance of

analyzing the research techniques followed by them thereby motivating researchers

to come up with novel ideas for exploiting the search capabilities of these algorithms.

A comparative analysis and study of the main algorithms are also provided based on

diversity measures, along with their advantages and disadvantages and application

areas. New approaches are proposed through hybridization methods on diversity

techniques in multi-objective algorithms. A software toolbox for MOEAs is also

developed. Finally, future development in this area and potential path for further

research is addressed.

 ii

Acknowledgements

I would like to take this opportunity to thank everyone who painstakingly guided me

during this work. I wish to express my sincere thanks and gratitude to my

supervisors Dr. Nasreddine Hallam and Dr. Payam Barnaghi, for their excellent

guidance, patience and support throughout my period of study. I am also grateful to

Dr. Dickson Lukose for his constant motivation.

I would also like to thank several of my friends for their whole hearted support and

helping with the preparation of this thesis, especially Thamil, Vijay and Khadir.

I wish to thank my parents and brother for their love and encouragement the entire

time. And last but not least I would like to thank the God almighty for everything.

 iii

Table of contents

Abstract ... i
Acknowledgements ... ii
Table of contents ... iii
List of Figures ... v
1 Introduction... 1

1.1 Multi-objective Optimization Problems (MOP) .. 1
1.1.2 MOP Definition .. 1

1.2 Evolutionary Algorithms ... 4
1.3 Particle Swarm Optimization (PSO) .. 5

1.3.1 Overview ... 5
1.3.2 PSO Definition .. 5

1.4 Research Problem and Objectives .. 6
1.5 Thesis Structure.. 8

2 Multi-Objective Evolutionary Algorithms... 9
2.1 Classification of Evolutionary Algorithms ... 9

2.1.1 A General Evolutionary Algorithm ...10
2.1.1.1 Input and Output Parameters...11
2.1.1.2 Initialization ..11
2.1.1.4 Selection...12
2.1.1.5 Recombination...13
2.1.1.6 Termination...13

2.1.1 Genetic Algorithms ...14
2.1.2 Evolutionary Strategies ...14
2.1.3 Evolutionary Programming...15

2.2 MOEA design challenges..16
2.2.1 Convergence ...17
2.2.2 Diversity ...18
2.2.3 Elitism ..18

2.3 Review of Multi-objective Evolutionary algorithms19
2.3.1 Strength Pareto Evolutionary Algorithm (SPEA)19
2.3.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2)19
2.3.3 Non-Dominated Sorting Genetic Algorithm (NSGA-II)21
2.3.4 Pareto-Archived Evolution Strategy (PAES) ..22
2.3.5 Pareto Potential Regions Evolutionary Algorithm(PPREA)23

2.4 Summary..25
3 Test Problems and Performance Metrics... 26

3.1 Test Suite Problem ...26
3.1.1 ZDT Test Functions...27

3.1.1.1 ZDT1 Function ...28
3.1.1.2 ZDT2 Function ...29
3.1.1.3 ZDT3 Function ...30
3.1.1.4 ZDT4 Function ...31
3.1.1.5 ZDT6 Function ...32

3.1.2 DTLZ Test Functions ...33
3.1.2.1 DTLZ1 Function..33
3.1.2.2 DTLZ2 Function..34
3.1.2.3 DTLZ3 Function..35
3.1.2.4 DTLZ4 Function..36
3.1.2.5 DTLZ5 Function..37

 iv

3.1.2.6 DTLZ6 Function..38
3.1.2.7 DTLZ7 Function..39

3.1.3 Schaffer Test Function (SCH) ...40
3.1.4 Kursawe Test Function (KUR)...41
3.1.5 Fonseca Test Function (FON)..42

3.2 Performance Metrics ...43
3.2.1 Error Ratio (ER) ...43
3.2.2 S metric (S) ..43
3.2.3 Coverage of two sets (C) ...43
3.2.4 Coverage Difference (D)..44
3.2.5 Generational Distance (GD) ...44
3.2.6 Maximum Pareto Front Error (MPFE) ...45
3.2.8 Overall Non Dominated Vector Generation Ratio (ONVGR)....................45
3.2.9 Spacing Metric (Deb) ..46
3.2.10 Spacing Metric (Schott) ...46

3.3 Summary..46
4 Multi-objective Optimization Problems Toolbox (M-OPT) 47

4.1 General Architecture and Description...48
4.2 Discussion: NSGA-II ...48

5 Diversity: Analysis and Hybrid methods.. 53
5.1 Introduction ..53
5.2 Diversity preservation methods used in MOEAs...53

5.2.1 Pareto Niching and Fitness Sharing ...54
5.2.2 The Archive Truncation method ..55
5.2.3 The Crowding Distance technique ...56
5.2.4 The Adaptive Grid Algorithm technique..57

5.3 Improvements to Existing MOEAs ...58
5.3.1 NSGAII with Nearest Neighbor diversity (NSGAII*)58
5.3.2 SPEA2 with Crowding Distance diversity (SPEA2*)58

5.3.3 Summary ...58
6 Results and Discussion... 59

6.1 Introduction ..59
6.2 Algorithms Runs...59
6.3 Testing environment ...59
6.4 Parameter Settings...60
6.5 Discussion on results ..60

6.5.1 Diversity analysis results ...62
6.5.2 Convergence analysis results ...63
6.5.3 Schaffer Test Function - Summary of results65
6.5.4 ZDT1 Test Function - Summary of results ..68
6.5.5 ZDT3 Test Function - Summary of results ..71

6.6 Generated Pareto Fronts..74
7 Summary and Conclusion ... 79

7.1 Summary..79
7.2 Conclusion ..79
7.3 Future work...80

References.. 81
APPENDIX... 85
A. Obtained Pareto fronts.. 85
B. Detailed results on Algorithm runs .. 86
C. List of Acronyms ... 119
D. M-OPT Screenshots ... 120

 v

List of Figures
Figure 1: Weakly and strongly non-dominated curves on the bi-objective case 3
Figure 2: Archive truncation in SPEA2 ...20
Figure 3: NSGAII process flow ...22
Figure 4: Pareto optimal front for ZDT1 function..28
Figure 5: Pareto optimal front for ZDT2 function..29
Figure 6: Pareto optimal front for ZDT3 function..30
Figure 7: Pareto optimal front for ZDT4 function..31
Figure 8: Pareto optimal front for ZDT6 function..32
Figure 9: Pareto optimal front for DTLZ1 function ..33
Figure 10: Pareto optimal front for DTLZ2 function...34
Figure 11: Pareto optimal front for DTLZ3 function...35
Figure 12: Pareto optimal front for DTLZ4 function...36
Figure 13: Pareto optimal front for DTLZ5 function...37
Figure 14: Pareto optimal front for DTLZ6 function...38
Figure 15: Pareto optimal front for DTLZ7 function...39
Figure 16: Pareto optimal front for SCH function..40
Figure 17: Pareto optimal front for KUR function..41
Figure 18: Pareto optimal front for FON function..42
Figure 19: Initialization of NSGAII - NSGA_init () method.50
Figure 20: Components of program NsgaII.java ..51
Figure 21: Schaffer Function M- OPT..52
Figure 22: Original Schaffer Function ...52
Figure 23: Pareto Niching...54
Figure 24: The crowding distance calculation ..57
Figure 25: Spacing metric comparison for Schaffer function62
Figure 26: Spacing metric comparison for ZDT1 function62
Figure 27: Spacing metric comparison for ZDT3 Function....................................63
Figure 28: Generational Distance comparison for Schaffer Function63
Figure 29: Generational Distance comparison for ZDT1 Function64
Figure 30: Generational Distance comparison for ZDT3 Function64
Figure 31: Schaffer Test Function Results ...74
Figure 32: Kursawe Test Function Results...75
Figure 33: ZDT1 Test Function Results ...76
Figure 34: ZDT2 Test Function Results ...77
Figure 35: ZDT3 Test Function Results ...78
Figure 36: Pareto Fronts for Schaffer test function ...85
Figure 37: M-OPT Screen1..120
Figure 38: M-OPT Screen2..120

 vi

List of Tables
Table 1: PPRs dimensions used as crowing dispersion indicators.24
Table 2: Default parameter setting ..60
Table 3: Schaffer Test Function for 5000 generations ...65
Table 4: Schaffer Test Function for 7000 generations ...66
Table 5: Schaffer Test Function for 12000 generations67
Table 6: ZDT1 Test Function for 5000 generations ...68
Table 7: ZDT1 Test Function for 7000 generations ...69
Table 8: ZDT1 Test Function for 12000 generations ...70
Table 9: ZDT3 Test Function for 5000 generations ...71
Table 10: ZDT3 Test Function for 7000 generations ...72
Table 11: ZDT3 Test Function for 12000 generations..73
Table 12: Detailed Results (SCH - 5000) NSGAII ...86
Table 13:Detailed Results (SCH - 7000) NSGAII ..87
Table 14:Detailed Results (SCH - 12000) NSGAII ..88
Table 15:Detailed Results (ZDT1 - 5000) NSGAII...89
Table 16:Detailed Results (ZDT1 - 7000) NSGAII...90
Table 17:Detailed Results (ZDT1 - 12000) NSGAII...91
Table 18:Detailed Results (ZDT3 - 5000) NSGAII...92
Table 19:Detailed Results (ZDT3 - 7000) NSGAII...93
Table 20: Detailed Results (ZDT3 - 12000) NSGAII ..94
Table 21:Detailed Results (SCH - 5000) NSGAII* ..95
Table 22:Detailed Results (SCH - 7000) NSGAII* ..96
Table 23: Detailed Results (SCH - 12000) NSGAII*..97
Table 24: Detailed Results (ZDT1 - 5000) NSGAII* ..98
Table 25:Detailed Results (ZDT1- 7000) NSGAII*..99
Table 26: Detailed Results (ZDT1- 12000) NSGAII* ...100
Table 27: Detail Results (ZDT3 - 5000) NSGAII* ...101
Table 28: Detail Results (ZDT3- 7000) NSGAII* ..102
Table 29: Detail Results (ZDT3- 12000) NSGAII* ..103
Table 30: Detail Results (SCH - 5000) SPEA 2...104
Table 31: Detail Results (SCH - 7000) SPEA 2...105
Table 32: Detail Results (SCH - 12000) SPEA 2 ...106
Table 33: Detail Results (ZDT1 - 5000) SPEA 2 ...107
Table 34: Detail Results (ZDT1 - 7000) SPEA 2 ...108
Table 35: Detail Results (ZDT1 - 12000) SPEA 2..109
Table 36: Detail Results (ZDT3 - 5000) SPEA 2 ...110
Table 37: Detail Results (ZDT3 - 7000) SPEA 2 ...111
Table 38: Detail Results (ZDT3 - 12000) SPEA 2..112
Table 39: Detail Results (SCH - 5000) SPEA 2* ...113
Table 40: Detail Results (SCH - 7000) SPEA 2* ...114
Table 41: Detail Results (SCH - 12000) SPEA 2* ...115
Table 42: Detail Results (SCH - 5000) SPEA 2* ...116
Table 43: Detail Results (SCH - 7000) SPEA 2* ...117
Table 44: Detail Results (SCH - 12000) SPEA 2* ...118

 1

Chapter 1

Introduction

This work aspires to make a thorough comparative analysis and study of nature

inspired algorithms such as evolutionary algorithms, particle swarm optimization,

artificial immune systems etc. in the context of multi-objective optimization problems.

Furthermore two new methodologies are suggested by making use of hybridization

techniques. This section introduces an overview of multi-objective optimization

problems, brief introduction to the nature inspired algorithms studied in this thesis,

problem definition, research goals and methodology, and structure of the thesis in

general.

1.1 Multi-objective Optimization Problems (MOP)

Most problems in nature require managing several objectives which are mostly

independent of each other. Consider a simple case of designing an automobile; the

general objectives should be to minimize factors like cost and weight while

maximizing performance, fuel efficiency or the like. Problems with more than one

objective (often conflicting, as in the previous example) are commonly referred to as

multi-objective optimization problems and are encountered in many real world

applications, be it nature, science or business.

1.1.2 MOP Definition

Multi-objective optimization (also called multi-criteria optimization, multi-

performance or vector optimization) can be defined as the problem of finding [16]:

a vector of decision variables which satisfies constraints and optimizes a

vector function whose elements represent the objective functions. These

functions form a mathematical description of performance criteria which are

usually in conflict with each other. Hence, the term “optimize” means

finding such a solution which would give the values of all the objective

functions acceptable to the designer.

 2

Formally it is stated as follows [16]:

Find the vector x* = [x*1, x*2,…….,x*n]T which will satisfy the m inequality

constraints:

 gi(x) ≥ 0 i = 1,2,….,m (1)

the p equality constraints

 hi(x) ≥ 0 i = 1,2,….,p (2)

and optimizes the vector function

 f(x) =[f1(x),f2(x),….,fk(x)]T (3)

where x = [x1,x2,….,xn]T is the vector of decision variables.

In other words the aim is to determine from among the set F of all the numbers

which satisfy (1) and (2) the particular set x*1, x*2,…….,x*n which yields the optimum

values of all the objective functions.

Thus the general form of a constrained multi-objective optimization problem is as

follows:

Without loss of generality, in the case of a minimization problem to minimize means

[17]

1) all objective functions are simultaneously minimized

2) the objectives are at least partly conflicting with each other, and

3) there does not exist any single solution that is optimal with respect to every

objective function.

As is often the case with multi-objective optimization problems, there is no single

optimal point or solution. Conflicting objectives demand a set of solutions which are

essentially “tradeoff” solutions. These are referred to as Pareto Optimal Solutions

and are the desired solution set of the MOPs.

We say that a vector of decision variables x* Є F is Pareto optimal if there does not

exist another x Є F such that fi(x) ≤ fi(x*) for all i = 1,…,k and fj(x) < fj(x*) for at

least one j [16].

In words this definition [16] says that x * is Pareto Optimal if there exists no feasible

vector of decision variables x Є F which would decrease some criterion without a

simultaneous increase in at least another criterion. The vectors x* corresponding to

the solutions included in the Pareto optimal set are called non-dominated. The plot of

 3

the objective functions whose non-dominated vectors are in the Pareto optimal set is

called the Pareto front.

A point x* Є F is a weakly non-dominated solution if there is no x Є F such that

fi(x) < fi(x*), for i = 1, . . . , n.

A point x* Є F is a strongly non-dominated solution if there is no x Є F such that

fi(x) ≤ fi(x*), for i = 1, . . . , n and for at least one value of i, fi(x) < fi(x*).

Thus, if x* is strongly non-dominated, it is also weakly non-dominated; but the

converse is not necessarily true[9]. As explained in [9], Non-dominated solutions for

the bi-objective case can readily be represented graphically by passing into the

objective function space {f1(x), f2(x)}. The so-called minimal curve corresponds to

the locus of strongly non-dominated points, and the weakly minimal curve to the

locus of weakly non-dominated points [9]. These two curves are sketched in Figure 1

for a simple bi-objective problem [9].

f2(x)

 Strongly
 Minimal
 Curve

 Weakly Minimal Curve

 f1(x)
Figure 1: Weakly and strongly non-dominated curves on the bi-objective case

(Source: Coello [9]).

 4

1.2 Evolutionary Algorithms

The ever increasing need of effective solutions for multi-objective problems has

focused the attention on various evolutionary methods over time. The main reason

for preferring these approaches is the fact that multi-objective problems have to deal

with a population of solutions as opposed to the single objective problem wherein the

idea is to obtain a single solution as result. Evolutionary algorithms are proven to be

an ideal technique in working with a population of solutions with the ability to come

up with multiple solutions in a single simulation run. Consequently a number of

approaches based on EAs have emerged [3], [4], [5], [6], [7], [8]. Evolutionary

algorithms are heuristic search techniques that adopt a selection mechanism inspired

on the survival of the fittest principle from Charles Darwin’s evolutionary theory.

Ever since Schaffer (1984) [49] came up with research work in multi-objective

genetic algorithms, active and persistent research has been performed in the field

followed by Fourman (1985) [50], and Goldberg (1989) [20] whose study of non

dominated genetic algorithm has played a pivotal role in further advancement in this

field. A number of different EA implementations were proposed in the years 1991-

2002 (Kursawe 1991 [41], Hajela and Lin 1992 [48]; Horn, Nafpliotis, and Goldberg

1994 [8]; Srinivas and Deb 1995 [4], E. Zitzler and L. Thiele 1999, K. Deb, A. Pratap,

S. Agarwal, and T. Meyarivan 2002 [5], E. Zitzler, M. Laumanns, and L. Thiele 2002

[6]).

The primary goal of every multi-objective evolutionary algorithm is to obtain a

solution set that is as close as possible to the Pareto front much often called the true

Pareto front. Although the true Pareto front is a hypothetic set of values most of the

time and will be unknown in many real world scenarios, researchers make use of

various standardized test methodology and performance metrics to evaluate the

success of a Pareto front obtained in algorithm runs[10], [11]. In recent years,

researchers have investigated particular topics of evolutionary multi-objective search,

such as convergence to the Pareto-optimal front, divergence, niching, and elitism

which are integral elements to be considered in modern evolutionary multi-objective

approaches.

 5

1.3 Particle Swarm Optimization (PSO)

1.3.1 Overview

A relatively new optimization technique by J. Kennedy and R. Eberhart (1995) is yet

another method based on a biological approach [12]. Introduced as a method to

facilitate single objective optimization, PSO is fast gaining popularity in solving multi-

objective problems as well. Particle Swarm Optimization is a swarm intelligence

method that models social behavior to guide swarms of particles towards the most

promising regions of the search space [12]. Like evolutionary approaches PSO also

maintains a population of solutions and individuals are represented using binary or

floating point encoding similar to Evolutionary Strategies.

 In PSO, the population dynamics simulate the behavior of “bird’s flock”, where social

sharing of information takes place and individuals profit from the discoveries of

previous experience of all other companions during the search of food [13]. The

companions denoted as particles perform search in the population or swarm, for

efficient results. The members of the population adjust their positions or parameters

during the optimization run based on their previous experiences as well as the flying

experiences of other members of the flock. i.e. the best evaluated individual found so

far by the optimization process called gbest and the best evaluated individual found

previously by the same individual denoted as pbest. A local individual may be

selected for each swarm member, however these lbest individuals may all also be

non-dominated (representing local areas of the estimated Pareto front maintained by

the swarm), making them all also gbest [14].

1.3.2 PSO Definition

To define the operation of a PSO a fixed population of solutions is used, where each

solution (or particle) is represented by a point in N-dimensional space. The ith particle

is commonly represented [13], [14], [15] as Xi = (xi1, xi2,….., xiiN), and its

performance evaluated on the given problem and stored. Each particle maintains

knowledge of its best previous evaluated position, represented as Pi = (pi1,

pi2…….,piN), and also has knowledge of the single global best solution found so far, in

the traditional uni-objective application indexed by g. The rate of position change of

a particle then depends upon its previous local best position and the global best, and

 6

its previous velocity. For particle i this velocity is Vi = (vi1, vi2,…….., viN). Hence the

velocities of particles are determined as:

Vi,j = w vi,j + c1r1(pi,j – xi,j) + c2r2(pg,j – xi,j)

(4)

 xi,j = xi,j + Xvi,j, j = 1,….,N

(5)

where w, c1, c2, X ≥ 0.w is the inertia weight of a particle, c1 and c2 are constraints on

the velocity toward global and local best, X is a constraint on the overall shift in

position, r1, r2 are random numbers within the range [0,1].

[13] states that Equation (4) determines the ith particle's new velocity as a function

of three terms: the particle's previous velocity; the distance between the best

previous position of the particle and its current position, and finally; the distance

between the swarm's best experience (the position of the best particle in the swarm)

and the ith particle's current position. Then, according to Equation (2), the ith particle

“flies” towards a new position. In general, the performance of each particle is

measured according to a fitness function, which is problem-dependent [13].

1.4 Research Problem and Objectives

With multi-objective evolutionary algorithms being a rapidly evolving field of

research with new methodologies being introduced, several optimization techniques

found for improvement of these approaches, considerable number of research

publications released in regular intervals, the need for an updated analytical work is

essential. Recently, lot of focus in this field of research has been on improvement of

techniques used in MOEA’s mainly convergence and diversity. Achieving these would

be the fundamental goals of any MOEA design; minimizing the distance of the

generated solutions to the Pareto front (convergence) and maximizing the spread of

the achieved Pareto set approximation (diversity). Diversity plays a crucial part in

producing successful results because it ensures effective search in the most of the

areas of the objective space, thereby avoiding the problem of potentially good

 7

solutions being ignored, as well as providing the decision maker with efficient set of

solutions.

Traditionally, diversity was achieved through fitness sharing mechanisms suggested

by Goldberg [19], [20]. But modern MOEAs are benefited by the use of several

archive-updation procedures in achieving this goal. In this thesis we perform a study

into these diversity preservation methods used in Non Dominated Sorting Genetic

Algorithm (NSGA II), Pareto Archived Evolutionary Strategies (PAES), Strength

Pareto Evolutionary Algorithm (SPEA 2) and Pareto Potential Regions Evolutionary

Algorithm (PPREA). By doing this, improved versions of NSGA II and SPEA2 are

implemented using hybridization methods. This is achieved by using alternate

diversity measures on these algorithms. The improved versions are tested using

standardized test functions and performance metrics and evaluated. This being the

primary motivation of the thesis, it is also intended to provide detailed comparative

analysis of several MOEAs. A multi-objective optimization toolbox is also designed in

this work.

Thus the research goals are broadly classified into three stages:

1. A comprehensive comparative analysis of biologically inspired algorithms, in

terms of features such as convergence and diversity, and arrive at a

conclusion on the efficiency and effectiveness of these. Diversity techniques

are given more importance in doing so.

2. Based on diversity handling techniques, introduce hybridization methods for

MOEAs and perform thorough and accurate analysis and performance

comparison based on test problems and performance metrics.

3. Design and develop a toolbox with extended functionalities aiding research in

the field of multi objective evolutionary algorithms.

 8

1.5 Thesis Structure

Chapter 2 presents the literature review of this work with classification and

overviews of evolutionary algorithms and introduction to definitions and terms.

Chapter 3 discusses the various test functions and performance metrics and their

classification. Definitions and depiction of true Pareto front representation of these

problems are defined too. In Chapter 4, a new tool box for MOEA’s is introduced and

discussed. Chapter 5 details the research methodology and the implementation of

the new methods. Chapter 6 provides a summary of the results and discusses the

findings of this research. Chapter 7 provides the conclusion and discusses the future

scope of research.

 9

Chapter 2

Multi-Objective Evolutionary Algorithms

In this chapter the basic principles of evolutionary algorithms and its importance in

multi-objective optimization problems are reviewed. The general structure and

mechanisms followed by the EA is detailed in section 2.1, followed by overviews of

key concepts in EAs addressed in section 2.2. In section 2.3, some of the popular

Multi-objective Evolutionary Algorithms (MOEAs) are reviewed.

2.1 Classification of Evolutionary Algorithms

Evolutionary algorithms, a subset of evolutionary computation, are computer-based

problem solving systems that models evolutionary processes. These computational

models act as primary elements of the design and implementation of an evolutionary

algorithm. Although the origins of evolutionary inspired algorithms for optimization

and machine learning can be traced to as early as 1950s [20], it has gained

considerable popularity over the last few decades.

Evolutionary algorithms can be broadly classified into three mainstream instances:

• Genetic Algorithms

• Evolutionary Programming

• Evolutionary strategies

Other evolutionary approaches like genetic programming, classifier systems and

several hybridization methods have also evolved. Despite of different evolutionary

algorithms being proposed, all of them are similar in their basic properties.

¾ Evolutionary algorithms operate on a population of individuals thereby

incorporating a collective learning process. Each individual represents and

encodes a search point in the space of potential solutions to a given problem.

¾ Quality of individuals is evaluated by assigning a quality measure to them,

referred to as the fitness of the individuals. Then a selection process is

performed in such a way that the fitter individuals have a higher probability of

taking part in the search in future generations.

 10

¾ New candidates for the coming generations are selected by sets of processes

which model natural process such as recombination and mutation.

Thus in evolutionary algorithms, the solutions are termed as individuals and the set

of individuals as population, borrowing from natural terms. The following algorithm

represents a general evolutionary algorithm. A population P of individuals is

initialized and then evolved from generation t to generation t+1 by repeated

application of fitness evaluation, selection, recombination, and mutation. In the

selection process, which can be either stochastic or completely deterministic,

individuals with lower fitness are removed from the population, while fitter

individuals have higher chance of reproduction. Recombination and mutation aim at

generating new solutions within the search space by the variation of existing ones.

The crossover operator takes a certain number of parents and creates a certain

number of children by recombining the parents. To mimic the stochastic nature of

evolution, a crossover probability is associated with this operator. Similarly, the

mutation operator alters individuals according to a mutation probability. The

crossover and mutation operations are performed on individuals, i.e., in individual

space, and not on the decoded decision vectors. Based on these concepts, natural

evolution is simulated by an iterative computation process. The various steps

involved in the algorithm are explained below.

2.1.1 A General Evolutionary Algorithm

Algorithm 1: General Evolutionary Algorithm

Input: N (population size)

 T (maximum number of generations)
 pc (crossover probability)
 pm (mutation rate)

Output: A (nondominated set)

Step 1: Initialization: Set P0 = � and t = 0. For i = 1, . . . , N do

 a) Choose i ∈ I according to some probability distribution.

 b) Set P0 = P0 + {i }.
Step 2: Fitness assignment: For each individual i ∈ Pt determine the encoded

 11

decision vector x = m(i) as well as the objective vector y = f (x) and

calculate the scalar fitness value F(i).
Step 3: Selection: Set P′ = �. For i = 1, . . . , N do

 a) Select one individual i ∈ Pt according to a given scheme and

 based on its fitness value F(i).
 b) Set P′ = P′ + {i }.

 The temporary population P′ is called the mating pool.
Step 4: Recombination: Set P′′ = �. For i = 1, . . . , N/2 do

 a) Choose two individuals i , j ∈ P′ and remove them from P′.
 b) Recombine i and j . The resulting children are k, l ∈ I .
 c) Add k, l to P′′ with probability pc. Otherwise add i , j to P′′.

Step 5: Mutation: Set P′′′ = �. For each individual i ∈ P′′ do

 a) Mutate i with mutation rate pm. The resulting individual is j ∈ I .
 b) Set P′′′ = P′′′ + { j }.
Step 6: Termination: Set Pt+1 = P′′′ and t = t + 1. If t ≥ T or another

 stopping criterion is satisfied then set A = p(m(Pt)) else go to Step 2.

2.1.1.1 Input and Output Parameters

Input parameters are:

� N is the total number of individuals in the population.

� T is the maximum number of generations.

� Pc is the probability of crossover.

� Pm is the probability of mutation

Output parameter is the Pareto optimal set stored in A.

2.1.1.2 Initialization

The first step of an EA is to initialize the population in random order. The set Pt gives

the population at generation t and is generally stored as a linear list. The individuals

in the population are encoded using binary representation, real representation or

other schemes such as graphs and trees. In binary encoding, individuals are referred

to as chromosomes and each bit a gene.

2.1.1.3 Fitness Assignment

The fitness of an individual determines its ‘quality’ in terms of the problem in hand.

In most cases it is a scalar vector produced by the evaluation of an objective

function although this may vary with different MOEAs. Currently there are several

 12

fitness assignment strategies. MOEAs differ in accordance to the fitness assignment

and selection methods. They could be classified as:

Classical aggregation techniques: The objectives are aggregated into a single

parameterized objective. Each objective function is multiplied with its corresponding

weight, and they are summed up to obtain the fitness value that is to be assigned to

the individual. The weighted sum aggregation approach is an example of this type.

The parameters of this function are not changed for different optimization runs, but

instead systematically varied during the same run. Some approaches such as (Hajela

and Lin 1992 [48]), for instance, use the weighting method. Since each individual is

assessed using a particular weight combination (either encoded in the individual or

chosen at random), all members of the population are evaluated by a different

objective function. Hence, optimization is done in multiple directions simultaneously.

However, these approaches experienced difficulties when a non-convex pareto front

is encountered.

Criterion-based methods: Instead of combining the objectives into a single scalar

fitness value, this class of MOEAs switches between the objectives during the

selection phase [22]. Each time an individual is chosen for reproduction, potentially a

different objective will decide which member of the population will be copied into the

mating pool.

Pareto-based Selection: This popular method, suggested by Goldberg [20] calculates

the individuals fitness based on Pareto dominance. First all nondominated individuals

are assigned rank one and temporarily removed from the population. Then, the next

nondominated individuals are assigned rank two and so forth. Finally, the fitness

value is determined by the rank of an individual. This way the fitness is related to the

whole population, unlike other approaches where an individual’s raw fitness value is

calculated independent of other individuals. Several of the successful algorithms

developed has benefited by Pareto based fitness assignment scheme [4], [8], [27].

2.1.1.4 Selection

Selection plays a crucial part in the outcome of an MOEA. Selection operator selects

the individuals for reproduction on the basis of their fitness values, thereby selecting

individuals with higher quality for survival. There are different kinds of selection

 13

operators, of which Roulette wheel selection and Tournament selection are popular.

In Roulette wheel selection, each individual is assigned a proportion of the roulette

wheel equal to the ratio of its fitness to the sum of the entire population’s fitness,

whereas in Tournament selection, n individuals are chosen at random and the best

one is selected. Constraint handling is also done in the selection step.

2.1.1.5 Recombination

Recombination provides variation to the individuals in the population thereby

allowing the algorithm to explore new regions of the search space. This is done

through crossover and mutation operators.

� Crossover: There are several crossover methods. Their usage is often

dependent on the type of encoding used in the individuals. For example for

binary and integer encoding, single point, n point and uniform crossover are

used whereas for real representations, simulated binary crossover operators

are used. Crossover is performed only with a certain probability.

o Single point crossover: A crossover point on the bit string is selected

by random and all the elements following this point are interchanged.

o n point crossover: Here 2n crossover points are selected randomly and

the elements between these points are interchanged.

o Uniform crossover: This operator randomly chooses different bits from

each parent, with equal probabilities.

� Mutation: Mutation operator is used to introduce completely new individuals

suddenly into the population to improve the search. This is usually done with

a lesser probability. In case of binary encoded individuals, mutation changes a

bit from 0 to 1 and vice versa.

2.1.1.6 Termination

An EA will stop when the termination criteria is met. This happens usually when the

maximum number of generations has been reached or when there is no change in

the population for several generations.

 14

2.1.1 Genetic Algorithms

Genetic Algorithms (GAs) were invented and developed by Holland [21]. Holland’s

original goal was to formally study the phenomenon of natural adaptation and to

develop ways in which its mechanism might be imported into computer systems. GAs

were presented as an abstraction of biological evolution and derived its behavior

from a genetic/evolutionary metaphor.

Traditionally, GAs use binary representation for the individuals (chromosomes or

structures). Recently, however, many applications have focused on other

representations such integers, real-valued vectors, graphs (neural networks), Lisp

expressions, and ordered lists.

Selection is a probabilistic function based on relative fitness. With this selection

method, known as fitness-proportional selection, the expected number of times an

individual will be selected to reproduce is the individual’s fitness divided by the

average fitness of the population. A simple method of implementing fitness-

proportional selection is roulette-wheel sampling [16]. The number of offspring

created is the same as the number of parents µ. Later, in the survivors selection step,

the µ newly created offspring will replace the µ parents in the population. This form

of selection is not elitist.

Offspring are created by recombination (crossover) of parent individuals with

probability pc. After that, mutation is applied with a very small probability pm per bit.

In its initial conception, GAs emphasize recombination (crossover) as the primary

search operator and apply mutation solely as a “background operator”. Interest in

mutation has increased recently, partly due to the influence of Evolution Strategies

and Evolutionary Programming.

2.1.2 Evolutionary Strategies

Evolution strategies (ESs) were developed by Rechenberg [12], using selection,

mutation, and a population of one parent and one offspring. Schwefel [13]

introduced recombination and populations with more than one individual, and

compared ESs with more traditional optimization techniques.

 15

Evolution strategies typically use real-valued, vector representations. Individuals to

be parents are selected randomly from a uniform distribution. The number of

offspring λ created is greater than the number of parents µ. The selection of

survivors is deterministic and is implemented in one of two methods. The first

method selects the best µ out of λ offspring and replaces the parents with these

newly created individuals. In other words, only the best µ offspring are allowed to

survive. This method is known as a (µ,λ) selection strategy. The second method

selects the best µ individuals among µ parents and λ offspring. Thus, in this method

both the best parents and offspring are allowed to survive. This second method is

known as a (µ+λ) selection strategy. Both methods belong to the kind of extinctive

(truncation) selection methods. (µ + λ) selection is elitist but (µ,λ) selection is not.

Offspring are created by recombination (when µ > 1) of parent individuals followed

by mutation. A variety of different recombination mechanisms are currently used in

ESs and the operators are sexual and panmictic. In sexual operators, recombination

acts on two randomly chosen parent individuals. Conversely, in panmictic operators,

one parent is randomly chosen and held fixed while for each component of its

vectors the second parent is randomly chosen anew from the population. Mutation

perturbs the individuals using a normal distribution with expectation zero. In ESs

considerably effort has been put on (self) adapting the mutations during the run of

the algorithm. ESs allow each individual (or each variable within the individual) to

have adaptive mutation rates that are normally distributed with a zero expectation.

ESs emphasizes recombination and mutation as essential operators for searching

simultaneously in the variables space and in the strategy parameters space (self-

adaptation).

2.1.3 Evolutionary Programming

Evolutionary programming (EP) was developed by Fogel et al. [14]. EP arose from

the desire to generate machine intelligence using selection and mutation to evolve

finite-state machines.

 16

EP traditionally has used representations for the individual that are tailored to the

problem domain. In the case of finite-state machine applications, the individuals

within the population are represented as graphs. For other applications, appropriate

representations such real-valued vectors and ordered lists are used.

Selection is a probabilistic function based on tournament. The number of offspring

created is the same as the number of parents µ. In the survivors selection step, µ

individuals are chosen from the 2µ (parents and offspring) individuals. This form of

selection is elitist and can be considered to be a (µ + µ) selection strategy.

Offspring are created by mutation of parent individuals. The form of mutation is

based on the representation used, and similar to ESs is often (self) adaptive. For real

valued optimization problems, for example, it works with normally distributed

mutations with expectation zero and extends the evolutionary process to the

strategy parameters (self-adaptation). The forms of mutation used are usually quite

flexible and can produce perturbations similar to recombination, if desired. However,

EP emphasizes mutation and does not incorporate the recombination of individuals.

The justification for this is that in EP each individual is usually viewed as the analog

of a species, and there is no sexual recombination between species.

2.2 MOEA design challenges

Success of an MOEA relies mainly on two factors:

¾ Convergence: The approximation set should contain solutions whose

corresponding objective vectors are close to the true Pareto front. This is

achieved by assigning scalar fitness values to solutions in the presence of

multiple optimization criteria.

¾ Diversity: The obtained non dominated set should contain solutions, which are

evenly distributed i.e. they should maintain uniform distance, usually in the

objective space, but it is preferred that the diversity is extended to the

objective space as well.

Computational efficiency while achieving these goals is a factor to be considered as

well. Finally, another issue that addresses both of the goals of MOEA is elitism.

 17

2.2.1 Convergence

The selection methods that operate giving preference to solutions that are locally

non-dominated solutions over their dominated counterparts help the population to

evolve towards globally optimal front. These methodologies are based on a partial

ordering, or ranking, of the population. As stated by Zitzler (2002) [26], these

schemes make use of the following information for each solution that can be drawn

from the current population:

� Dominance rank. The number of solutions in the population that dominate the

solution under consideration.

� Dominance count. The number of solutions in the population that are

dominated by the solution under consideration.

� Dominance depth. The rank of the solution in the non-dominated sorting of

the population.

Non-dominated sorting was the original Pareto-based EA approach proposed by

Goldberg [20]. Here, he locally non-dominated solutions in the population are

identified, assigned rank 0, and are removed temporarily from the population. In the

remaining population, the new locally non-dominated solutions are identified,

assigned rank 1, and are removed. This process is continued until all solutions have

been assigned ranks.

Fonseca and Fleming used a dominance ranking method called Pareto-based ranking,

which was implemented in the MOGA[27]. Later Zitzler and Thiele’s [28] strength-

based approach made use of both dominance rank and dominance count. A modified

version has also been proposed in the SPEA2 [6]. A sample-based approximation to

a Pareto-based ranking of the entire population was proposed by Horn and Nafpliotis

[29].

In methods used by Fonseca and Fleming [27] and Srinivas and Deb [4] the rank

values are assigned to fitness values, typically through linear transformation, and

then proportional selection methods are applied thereby forming the mating pool. In

SPEA and SPEA2, binary tournament selection operates directly on the strength-

based fitness measure [2], [6] and on the dominance depth in Deb, Pratap, Agarwal

and Meyarivan’s NSGA-II [5]. However, in some methodologies, such as the PESA

 18

family of algorithms [30], [31], selection operates purely on locally non-dominated

solutions and thus no Pareto-based selection is required at this stage.

Elitism, which is discussed later in section 2.2.3, is also a required element for an EA

to guarantee convergence in the limit to the global optimum,

2.2.2 Diversity

Diversity preservation has been given more and more importance as algorithm

development in MOEAs progressed over the years. This could mainly be attributed to

the ability of diversity methods in improving the quality of the non dominated set of

solutions. Traditionally diversity has been achieved through fitness sharing and

Pareto Niching functions, introduced by Goldberg [20]. However, with the

introduction of new MOEAs to the community, the diversity methods also took new

forms. This can be illustrated by referring to the diversity preservation techniques

used in some of the widely used MOEAs in recent past such as SPEA2 [6], NSGAII

[5], PAES [33] and others. NSGAII uses a Crowding distance estimate to perform

diversity measures, while SPEA2 uses a truncation method based on the Nearest

Neighbor density measure. PAES uses an adaptive Grid Algorithm to achieve

diversity. These methods are discussed in detail in Chapter 5.

2.2.3 Elitism

During the optimization process, it could happen that potential good solutions are

lost owing to random effects. This issue can be solved using an elitism approach.

There are two possible ways of going about elitism. As mentioned in [22], combining

parent and child population and applying a deterministic selection procedure, instead

of changing the whole of the old population by the newly attained pool of individuals,

is one way. The second and more popular method is use an external archive to store

the best individuals found at each generation. The members of the archive usually

take part in future selection procedures. An issue that has to be addressed in

performing elitism is the amount of resources that could be used by the process. So

usually a restriction measure is attached to the size of the archive. As and when the

archive is overfilled, necessary measures are taken to decide whether to replace

solutions from the archive, or to ignore the new solution. Most of the recent MOEAs

make use of an external archive for storing elite individuals. The SPEA algorithm [3],

for example, stores all non-dominated solutions separately from the active

 19

population. The selection process involves both the archive and the population, with

preference given to individuals in the elite set.

2.3 Review of Multi-objective Evolutionary algorithms

Contemporary MOEAs use selection and replacement based on multi-objective

domination criterion. Examples of this approach are Fonseca and Fleming’s MOGA

[23], Horn et al.’s NPGA [25], Corne, et al.’s PESA [31], Zitzler et al.’s SPEA

algorithms [3], [6] and Deb et al.’s NSGA-II [5]. All of these algorithms use niching

to ensure that a diverse Pareto set is found, and all except one (the NPGA) use elite

methods or an external storage to keep the best individuals found so far. Here we

discuss some of the MOEAs relevant to this thesis.

2.3.1 Strength Pareto Evolutionary Algorithm (SPEA)

SPEA introduced by Zitzler and Thiele [3] is an MOEA which uses elitism with the

concept of non-domination. As discussed in the previous section on elitism, this

method uses an external population to store non-dominated individuals. The

members of this external population also take part in recombination and selection

operations. The number of non-dominated solutions determines the fitness values of

individual in both the populations. The algorithm follows these steps. First a new

population is produced by combining the external population and the regular one.

Then, fitness values are assigned to each of the members based on how many

solutions they dominate. Another factor that is considered here is to assign more

fitness values to those solutions which are having more dominated solutions. This

measure is called a strength value which is a measure of the number of solutions in

the current population that is dominated by that solution in the external archive. To

deal with crowding of individuals a clustering mechanism is used where solutions in a

less crowded non-dominated front are retained. By using this method, diversity is

achieved. But there are drawbacks in this method since a Pareto optimal solution in

the external population may get replaced by a less efficient solution that is in a less

crowded region.

2.3.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

The SPEA2 [6] is a modified version of the SPEA proposed by the same authors. The

primary motivation for the design of this algorithm was to overcome weaknesses

 20

found in its predecessor [6] in addition to the new strategies proposed. The new

algorithm uses a fitness assignment method, whereby each member of the solution

set is assigned fitness based on a value indicating the number of solutions which are

dominated by that individual as well as the number of solutions which dominates the

individual. It proposes a new method for diversity based on the kth nearest neighbor

method. Further the problems of boundary solutions being lost in SPEA is solved by

using a new archive truncation method.

 The fitness assignment in SPEA2 is the sum of the raw fitness measure and the

distance found from the nearest neighbor estimation technique. The raw fitness of an

individual is a measure of the sum of the strength values, i.e. the number of

solutions that it dominates. The fitness assignment process is discussed in detail in

the diversity preservation methods defined in section 5.1.2.

Figure 2: Archive truncation in SPEA2 (Source: Zitzler et. al [6])

The next stage is the environmental selection stage, where archive updation is

achieved. This method improves upon the one used in SPEA such that the boundary

solutions are preserved and would not take part in the truncation process. In SPEA2

the size of the archive is kept constant unlike SPEA. In this stage the archive is filled

with non-dominated solutions. The updation process stops if the number of non-

dominated individuals exactly fit the archive. In the event of the archive not being

full, it is populated with dominated individuals from the previous archive. On the

other hand if the number exceeds the size of the archive, truncation is performed

until the required archive size is obtained. This is done with the help of the nearest

neighbor method, the individual with the least distance value to another, is chosen at

each stage for removal. This is illustrated in figure 3 taken from [6].

 21

2.3.3 Non-Dominated Sorting Genetic Algorithm (NSGA-II)

NSGAII [5], which is an improved version of the NSGA [4], as the name suggests

uses the strategy of sorting based on the level of non-domination. It uses elitism for

preserving the best solutions, and has an explicit diversity preservation mechanism.

The niching operation is performed without the explicit declaration of the sharing

parameter. The book keeping strategy defined by [5] in this method ensures that the

complexity of the algorithm is O(MN2), where M is the number of objectives and N is

the size of the population. In this method, an external archive population P’ is

maintained, the contents of which are compared with all the members of the main

population P one by one. On the event of a solution in P dominating one in P’, the

dominated member is removed from P’. If the solution in P is dominated by at least

one member of P’, then it is ignored, whereas if it is not dominated by any of the

members then that solution gets added to the non-dominated set P’. This way the

non-dominated list is produced for the entire population. After this the non-

dominated sorting is performed by removing the non-dominated solutions from P and

repeating the above procedure with the solutions stored in first front, second front

and so on.

Following this step the well spread of solutions in the population is ensured by the

diversity preservation method called crowding distance assignment. This is a density

estimation metric which allows the comparison of solutions for the extent of

proximity to other solutions. Then the solutions in the most crowded region is

determined using a crowding comparison operator, which uses the crowding distance

and domination ranking to find crowded regions. This diversity method is discussed

in detail in section 5.1.3.

Thus in NSGA-II, the child populations Qt is produced from the parent population Pt

using selection, recombination and mutation operators. Then the two populations are

combined together to produce Rt, which is of size twice the populations size N. After

this the population Rt undergoes non-dominated sorting. This way a global non-

domination check is achieved. Next Pt+1 is filled based on the ranking of the non-

dominated fronts. Since the combined population is twice the size of the population

size N, all the fronts are not allowed to be used. Therefore a crowding distance

sorting is performed in descending order and the population is filled. This for this

new population Pt+1 the whole process is repeated. The NSGAII process can be

visualized in the figure 2 extracted from [5].

 22

Figure 3: NSGAII process flow (Source: Deb et. al [5])

However NSGA II could have problems in convergence in certain scenarios where

more than N population members of the combined population are found to be

belonging to the non-dominated set, the selected is performed only based on

crowding. This could potentially result in a Pareto optimal solution being omitted

owing to a non optimal set which has better diversity metric value.

2.3.4 Pareto-Archived Evolution Strategy (PAES)

PAES introduced by Knowles and Corne [33] was first developed to find solutions

using a local search method for multi-objective problems. It was mainly used for

solving telecommunication routing optimization problems [46].

PAES acts as a multi-objective local search process which maintains a single parent

solution and generates a single offspring on every iteration, through the process

mutation. In this (1+1) evolution strategy, the offspring solution is compared to the

parent and evaluated for domination. If the parent is dominated, then the offspring

becomes the new parent and generation advances. Otherwise if the parent

dominates the child, then the offspring solution is discarded and a new mutation

solution takes part in the evolution. If neither dominates the other, then the

selection is based on comparison with the individuals in the elite population. Two

scenarios could arise from here. One, the offspring dominates one of the archive

members. Here the offspring becomes the new parent and the archive is updated by

removing the dominated solutions. On the other hand if the offspring does not

 23

dominate any archive member, then a crowding check is performed after which the

choice is made by identifying the proximity to other solutions in the archive. In the

event of equal proximity values, random selection is performed to choose a parent.

Crowding is achieved using an adaptive grid algorithm method by recursively dividing

the d dimensional objective space [46] where d is the depth parameter. The

resultant n subspaces are updated dynamically. This method ensures low

computational cost as compared to other methods. The essential preference of non-

dominated solutions, the ability to converge quicker and the low computational head

makes this method a popular algorithm for solving MOPs.

2.3.5 Pareto Potential Regions Evolutionary Algorithm(PPREA)

This MOEA proposed by Hallam [18] introduces a new fitness assignment scheme

and archive updation procedure. In this method a chain of regions connecting

successive points in the objective space is constructed. These regions, termed as

Potential Pareto Regions, are dynamic regions within which any generated vector

solution is automatically non-dominated with regard to all the current non-dominated

solutions.

Fitness assignment: The non-dominated set is sorted according to one objective

and each pair of immediate neighbors delimit one PPR [18].The fitness values for the

rest of the individuals in the population are assigned according to the distance of

each individual from the PPR. The lower the fitness value of the individual, the better

the individual is. All non dominated individuals are assigned with negative values.

Additionally the fitness values of the non-dominated extreme solutions in the archive

are calculated as the absolute value of twice the size of the largest PPR[18] and the

rest of the archive members are assigned fitness values equal to the sum of the

sized of two adjacent PPRs. The fitness values of all the other dominated members

are determined by the Euclidean distances to the nearest PPRs. This way the non

dominated members in the archive have better preference.

Archive update procedure: Archive updation in PPREA is performed by rearranging

the whole population including the archive and the rest of the population into a set of

lists. The sorting is based on one of the objectives chosen. Then each of the non-

dominated members are assigned with a list of points that they dominate. This list is

sorted according to the fitness in ascending order. Then the archive is updated with

the best individuals from the lists and subsequently by the next best individuals until

the size criteria is met. In case the archive is full requires the entry of a new

 24

individual, the removal process is performed on the most crowded region using the

crowding dispersion technique.

Crowding dispersion method: This method allows computing the degree of

crowding and the extent of distribution of each non-dominated solution in the archive.

For each non-dominated vector a matrix is maintained which stores the two Euclidian

distances to its immediate neighbors. The vectors in the archive are ordered

according to one objective dimension and hence the immediate neighborhood is

based on this order [18].

If the size of the archive is n, there is a need to compute n - 1 distances.

Based on this matrix, the two important indicators,

namely crowding and dispersion are computed as follows:

crowding(i) = min(dhi, dij) (1)

dispersion(i) = max(dhi, dij) (2)

Assume that i is the vector with the minimum crowding value and that dhi > dij ,

then the vector j, the neighbor of i, has also the minimum crowding. Therefore the

most crowded among these two vectors is the one with the minimum dispersion. The

following table taken from [18] demonstrates the crowing dispersion indicators.

Table 1: PPRs dimensions used as crowing dispersion indicators (Source: Hallam
[18]).

 25

2.4 Summary

This chapter provides an introduction to the basic principles and classifications of

Multi-objective Evolutionary algorithms. The major issues in the design of EAs such

as diversity, convergence and elitism are addressed. Finally some of the popular

MOEA methods are reviewed and highlighed. This chapter discusses the importance

of fitness assignment and archive updation procedures used in Multi-Objective

optimization problems.

 26

Chapter 3

Test Problems and Performance Metrics

This chapter details the various test problems and performance metrics used for

performing comparative analysis of evolutionary algorithms. The test problem

definitions and graphs are represented in section 3.1 and the performance metrics

are briefly reviewed in section 3.2.

3.1 Test Suite Problem

Test problems provide benchmarks for testing the various algorithms. Since most

real world problems involve wide range of difficulty settings, the only way to decide

upon the authenticity of a newly proposed algorithm or methodology is to agree

upon a common set of benchmarking problems. Many test problems with varying

difficulty settings and complex search spaces have been extensively used by the

research community. Some of the desired factors in constructing the test problems

are easiness of construction, scalability in terms of objective functions and decision

variables, and the ability to simulate difficult scenarios, the occurrence of which is

quite often in real life problems.

Usually the test problems are constructed in steps, where the Pareto optimal front is

represented mathematically, then designing the objective search space with it and

finally mapping the decision space into the objective space. In the next section some

of the most popular test functions widely used in current research is discussed.

Visual representation of the true Pareto front identified for these test problems are

also featured.

 27

3.1.1 ZDT Test Functions

Zitzler, Deb and Thiele [34] introduced six test functions which are widely used by

researchers, owing to the ability to provide sufficient complexity in comparing

different multi-objective optimizers. These test functions, which are commonly

referred to as ZDT test functions are defined below.

As mentioned in [11] all of the six test functions defined follow the same structure

with three basic functions.

1 1 2 2

2 2 1 1 2

1

Minimize () ((), ())
subject to () (,....,) ((), (,....,))
where (,....,)

n n

n

F x f x f x
f x g x x h f x g x x

x x x

=
=

=

(3.1)

The function 1f is a function of the first decision variable only, g is a function of the

remaining n-1 variables and the parameters of h are the function values of 1f and g

[34]. The test functions vary in these three functions as well as in the number of

variables m and the values associated to them.

 28

3.1.1.1 ZDT1 Function

ZDT1 is a bi-objective MOP. It's a scalable problem in terms of the number of

variables. By default ZDT1 uses 30 real variables. ZDT1 problem (shown in Equation

3.2) has a convex Pareto optimal front [34].

Definition:

1 1

2 1

2

()

() () 1 / ()

() 1 9() / (1)n
ii

f x x

f x g x x g x

g x x n
=

=

⎡ ⎤= −⎣ ⎦

= + −∑

 (3.2)

where n =30 and []0,1ix ∈

0.00 0.20 0.40 0.60 0.80 1.00

f1

0.00

0.20

0.40

0.60

0.80

1.00

f2

Figure 4: Pareto optimal front for ZDT1 function

 29

3.1.1.2 ZDT2 Function

Like ZDT1, ZDT2 is a bi-objective MOP scalable in the number of variables. Also, by

default, ZDT2 uses 30 real variables. ZDT2 problem (shown in Equation 3.3) has a

non-convex Pareto optimal front [34].

Definition:

()()

() ()

1 1

2
2

2

()

() () 1 /

() 1 9 / 1

i

n
ii

f x x

f x g x x g x

g x x n
=

=

⎡ ⎤= −
⎣ ⎦

= + −∑

 (3.3)

where n =30 and []0,1ix ∈

0.00 0.20 0.40 0.60 0.80 1.00

f1

0.00

0.20

0.40

0.60

0.80

1.00

f2

Figure 5: Pareto optimal front for ZDT2 function

 30

3.1.1.3 ZDT3 Function

ZDT3 (shown in Equation 3.4) has a Non-convex and disconnected Pareto optimal

front.

Definition:

() () ()

() ()

1 1

1 1
2 1

2

()

() () 1 sin 10

() 1 9 / 1n
ii

f x x

x xf x g x x
g x g x

g x x n

π

=

=

⎡ ⎤
= − −⎢ ⎥

⎢ ⎥⎣ ⎦

= + −∑

 (3.4)

where n =30 and []0,1ix ∈

0.00 0.20 0.40 0.60 0.80 1.00

f1

-1.00

-0.50

0.00

0.50

1.00

f2

Figure 6: Pareto optimal front for ZDT3 function

 31

3.1.1.4 ZDT4 Function

ZDT4 is a bi-objective MOP scalable in the number of variables. By Default, uses 10

real variables. ZDT4 (shown in Equation 3.5) has a non-convex and multimodal

Pareto optimal front.

Definition:

()

1 1

2

2

2

()

() () 1 / ()

() 1 10(1) 10cos 4

i

n

i i
i

f x x

f x g x x g x

g x n x xπ
=

=

⎡ ⎤= −⎣ ⎦

⎡ ⎤= + − + −⎣ ⎦∑

 (3.5)

where n =10, []1 0,1x ∈ , []5,5ix ∈ − and 2,....,i n=

0.00 0.20 0.40 0.60 0.80 1.00

f1

0.00

0.20

0.40

0.60

0.80

1.00

f2

Figure 7: Pareto optimal front for ZDT4 function

 32

3.1.1.5 ZDT6 Function

ZDT6 is a bi-objective scalable problem in the number of variables. By default this

problems uses 10 real variables. ZDT6 (shown in Equation 3.6) has a non-convex

and non-uniformly spaced Pareto optimal front.

Definition:

() ()
()

() ()

6
1 1 1

2
2 1

0.25

2

() 1 exp 4 sin 4

() () 1 () / ()

() 1 9 / 1n
ii

f x x x

f x g x f x g x

g x x n

π

=

= − −

⎡ ⎤= −⎣ ⎦

⎡ ⎤= + −⎢ ⎥⎣ ⎦∑

 (3.6)

where n =10 and []0,1ix ∈

0.20 0.40 0.60 0.80 1.00

f1

0.00

0.20

0.40

0.60

0.80

1.00

f2

Figure 8: Pareto optimal front for ZDT6 function

 33

3.1.2 DTLZ Test Functions

The DTLZ test functions introduced by Deb, Zitzler, Thiele and Laumanns [39], are a

set of scalable problems with the ability to control difficulties in converging to the

Pareto front and maintaining the diversity of solutions.

3.1.2.1 DTLZ1 Function

Here a DTLZ1 problem with 3 objectives and 7 variables is shown.

() ()()
() () ()()

() () ()()
() () ()()

() () ()()

1 1 2 1

2 1 2 1

1 1 2

1

2

minimise 1/ 2 ... 1 ,

minimise 1/ 2 ... 1 1 ,

....

minimise 1/ 2 1 1 ,

minimise 1/ 2 1 1 .

subject to 0 1, i=1,2,...,n.

100 0.5 cos 20 0.5
i M

M M

M M

M M

M M

i

M M i i
x X

f x x x x g x

f x x x x g x

f x x x g x

f x x g x

x for

g x X x xπ

−

−

−

∈

= +

= − +

= − +

= − +

≤ ≤

⎡
= + − − −

⎣
∑

⎤
⎢ ⎥

⎦

 (3.7)

0.00 0.10 0.20 0.30 0.40 0.50
f1

0.00

0.10

0.20

0.30

0.40

0.50

f3

0.000.100.200.300.400.50
f2

Figure 9: Pareto optimal front for DTLZ1 function

 34

3.1.2.2 DTLZ2 Function

Here a DTLZ2 problem with 3 objectives and 12 variables is shown.

() ()() () () ()
() ()() () () ()
() ()() () ()

() ()() ()
() ()

1 1 2 1

2 1 2 1

3 1 2

1

2

minimise 1 cos / 2 ...cos / 2 cos / 2 ,

minimise 1 cos / 2 ...cos / 2 sin / 2 ,

minimise 1 cos / 2 ...sin / 2 ,

....

minimise 1 sin / 2 ,

with 0.5 ,
i

M M M

M M M

M M

M M

M M ix

f x g x x x x

f x g x x x x

f x g x x x

f x g x x

g x X x

subj

π π π

π π π

π π

π

− −

− −

−

= +

= +

= +

= +

= ∈ −∑
 to 0 1, i=1,2,...,n.iect x for≤ ≤

(3.8)

0.00 0.20 0.40 0.60 0.80 1.00
f1

0.00

0.20

0.40

0.60

0.80

1.00

f3

0.000.200.400.600.801.00
f2

Figure 10: Pareto optimal front for DTLZ2 function

 35

3.1.2.3 DTLZ3 Function

Here a DTLZ3 problem with 3 objectives and 12 variables is shown.

() ()() () () ()
() ()() () () ()
() ()() () ()

() ()() ()

() ()

1 1 2 1

2 1 2 1

3 1 2

1

2

minimise 1 cos / 2 ...cos / 2 cos / 2 ,

minimise 1 cos / 2 ...cos / 2 sin / 2 ,

minimise 1 cos / 2 ...sin / 2 ,

...

minimise 1 sin / 2 ,

with 100 0.5 cos 20

M M M

M M M

M M

M M

M M i

f x g x x x x

f x g x x x x

f x g x x x

f x g x x

g x X x

π π π

π π π

π π

π

π

− −

− −

−

= +

= +

= +

= +

= + − − ()()0.5

 to 0 1, i=1,2,...,n.
i M

ix X

i

x

subject x for
∈

⎡ ⎤−⎣ ⎦
≤ ≤

∑

(3.9)

0.00 0.20 0.40 0.60 0.80 1.00
f1

0.00

0.20

0.40

0.60

0.80

1.00

f3

0.000.200.400.600.801.00
f2

Figure 11: Pareto optimal front for DTLZ3 function

 36

 3.1.2.4 DTLZ4 Function

Here a DTLZ4 problem with 3 objectives and 12 variables is shown.

() ()() () () ()
() ()() () () ()
() ()() () ()

() ()() ()
() ()

2 1

1 2 1

1 2

1

1 1

2

3

2

minimise 1 cos / 2 ...cos / 2 cos / 2 ,

minimise 1 cos / 2 ...cos / 2 sin / 2 ,

minimise 1 cos / 2 ...sin / 2 ,

...

minimise 1 sin / 2 ,

with 0.5

M M

M M

M

i

M

M

M

M M

M ix X

f x g x x x x

f x g x x x x

f x g x x x

f x g x x

g x x

α α α

α α α

α α

α

π π π

π π π

π π

π

− −

− −

−

∈

= +

= +

= +

= +

= − ,

 to 0 1, i=1,2,...,n.
M

isubject x for≤ ≤

∑

 (3.10)

0.00 0.20 0.40 0.60 0.80 1.00
f1

0.00

0.20

0.40

0.60

0.80

1.00

f3

0.000.200.400.600.801.00
f2

Figure 12: Pareto optimal front for DTLZ4 function

 37

3.1.2.5 DTLZ5 Function

Here a DTLZ5 problem with 3 objectives and 12 variables is shown.

() ()() () () ()
() ()() () () ()
() ()() () ()

() ()() ()
() ()() ()()

2 1

2 1

2

1 1

2 1

3 1

1

minimise 1 cos / 2 ...cos / 2 cos / 2 ,

minimise 1 cos / 2 ...cos / 2 sin / 2 ,

minimise 1 cos / 2 ...sin / 2 ,

...

minimise 1 sin / 2 ,

with / 4 1 1 2

M M

M M

M

M

M

M

M M

i M M i

f x g x

f x g x

f x g x

f x g x

g g X g X x for

θ π θ π θ π

θ π θ π θ π

θ π θ π

θ π

θ π

− −

− −

−

= +

= +

= +

= +

= + + +

() ()2

 2,..., 1,

with 0.5 ,

 to 0 1, i=1,2,...,n.
i M

M ix X

i

i M

g x x

subject forθ
∈

= −

= −

≤ ≤

∑

 (3.11)

0.00 0.20 0.40 0.60 0.80
f1

0.00

0.20

0.40

0.60

0.80

1.00

f3

0.000.200.400.600.80
f2

Figure 13: Pareto optimal front for DTLZ5 function

 38

3.1.2.6 DTLZ6 Function

Here a DTLZ6 problem with 3 objectives and 12 variables is shown.

() ()() () () ()
() ()() () () ()
() ()() () ()

() ()() ()
() ()() ()()

2 1

2 1

2

1 1

2 1

3 1

1

minimise 1 cos / 2 ...cos / 2 cos / 2 ,

minimise 1 cos / 2 ...cos / 2 sin / 2 ,

minimise 1 cos / 2 ...sin / 2 ,

...

minimise 1 sin / 2 ,

with / 4 1 1 2

M M

M M

M

M

M

M

M M

i M M i

f x g x

f x g x

f x g x

f x g x

g g X g X x for

θ π θ π θ π

θ π θ π θ π

θ π θ π

θ π

θ π

− −

− −

−

= +

= +

= +

= +

= + + +

() 0.1

 2,..., 1,

with ,

 to 0 1, i=1,2,...,n.
i M

M ix X

i

i M

g x x

subject forθ
∈

= −

=

≤ ≤

∑

 (3.12)

0.00 0.20 0.40 0.60 0.80V1

0.00

0.20

0.40

0.60

0.80

1.00

V3

0.000.200.400.600.80
V2

Figure 14: Pareto optimal front for DTLZ6 function

 39

3.1.2.7 DTLZ7 Function

Here a DTLZ7 problem with 3 objectives and 22 variables is shown.

()
()

()
() () ()()

() ()
() ()() ()()

1 1

2 2

1 1

1

1

minimise ,

minimise ,
....
minimise ,

minimise 1 1, 1,..., , .

1 9 / ,

1, 1,..., , 1 1 / 1 1 sin 3 ,

subject to 0 1, i=1,2,...,n.

i M

M M

M M M

M M ix X

M i i

i

f x x

f x x

f x x

f x g X h f f f g

g x X x

h f f f g M i M f g f

for

π

θ

− −

−

∈

−

=

=

=

= +

= +

⎡ ⎤= − = − + +⎣ ⎦
≤ ≤

∑
∑

 (3.13)

0.00 0.20 0.40 0.60 0.80 1.00
f1

2.00

3.00

4.00

5.00

6.00

f3

0.000.200.400.600.801.00
f2

Figure 15: Pareto optimal front for DTLZ7 function

 40

3.1.3 Schaffer Test Function (SCH)

Schaffer [40] test function is a bi-objective problem with one real variable. SCH

(shown in Equation 3.14) has a convex and connected Pareto optimal front.

Definition:

2
1

2
2

()

() (2)

f x x

f x x

=

= −

(3.14)

where [0, 2]x ∈

0 1 2 3 4

f1

0

1

2

3

4

5

f2

Figure 16: Pareto optimal front for SCH function

 41

3.1.4 Kursawe Test Function (KUR)

Kursawe [41] test function is a bi-objective problem. KUR (shown in Equation 3.15)

has a disconnected Pareto optimal front.

Definition:

1 2 2
1 11

0.8 3
2 1

() (10exp(0.2))

() (5sin)

n
i ii

n
i ii

f x x x

f x x x

−

+=

=

= − − +

= +

∑
∑

 (3.15)

-20.00 -19.00 -18.00 -17.00 -16.00 -15.00 -14.00

f1

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

f2

Figure 17: Pareto optimal front for KUR function

 42

3.1.5 Fonseca Test Function (FON)

Fonseca [23] test function is a bi-objective problem with one real variable. FON

(shown in Equation 3.16) has a non-convex and connected Pareto optimal front.

Definition:

2
1 1

2
2 1

1() 1 exp(3())
3
1() 1 exp(3())
3

i i

i i

f x x

f x x

=

=

= − − −

= − − +

∑

∑

(3.16)

where 1 2 3
1 1, , ,
3 3

x x x −⎡ ⎤∈ ⎢ ⎥⎣ ⎦

0.00 0.20 0.40 0.60 0.80 1.00

f1

0.00

0.20

0.40

0.60

0.80

1.00

f2

Figure 18: Pareto optimal front for FON function

 43

3.2 Performance Metrics

Owing to the difficulty in defining a single and precise method of evaluating

algorithm performance, it is essential to define several criteria evaluating procedures

for doing the same. This task of performing accurate performance comparison

between different algorithms is achieved by the use of several metrics defined in

literature. Each of these metrics measure one or more particular aspects of an

algorithm’s performance. Generally the different aspects of interest when doing

comparison are distance to the Pareto optimal front, the number of non-dominated

elements in the obtained set, the spread of solutions, the quality of the non-

dominated solution set etc. In this context, some of the important performance

metrics are briefly reviewed.

3.2.1 Error Ratio (ER)

This metric proposed by Veldhuizen [37] is used to measure the ratio of those

vectors that are in the true Pareto front to those which are not in the true Pareto

front (PFknown). Therefore this metric uses the true Pareto front as a reference set. It

is given as,

1
n

ii e
n
=∑

 (3.17)

where n is the number if vectors in the approximation set. ie = 0 if vector i is in the

true Pareto front and 1 otherwise. The lower the value of ER, the better the non

dominated set will be.

3.2.2 S metric (S)

The S metric introduced by Zitzler and Thiele [28] is used to measure the size of the

dominated space. This scaling independent metric gives a measure of the volume of

the objective space that is weakly dominated by the non dominated set (A). As

stated in [2] the S metric allows assessing the set of vectors independently.

3.2.3 Coverage of two sets (C)

This metric by Zitzler and Thiele [28] measures if one of the two sets of vectors is

weakly dominated by the other.

 44

() { }/ :
,

b B a A a b
C A B

B
∈ ∃ ∈

=
f

 (3.18)

Let A, B � X be two sets of decision vectors. The function C maps the ordered pair

(A, B) to the interval [0, 1]:

The value C (A, B) = 1 means that all decision vectors in B are weakly dominated by

A. The opposite, C (A, B) = 0, means that none of the points in B are weakly

dominated by A.

3.2.4 Coverage Difference (D)

The D metric [2] was introduced to tackle certain anomalies that could occur in the C

metric. It measures the coverage difference of two sets of decision vectors. It finds

the volume space that is weakly dominated by one set but not by the other set of

vectors.

Let A, B � X be two sets of decision vectors.

The function D is defined by

() () (),D A B S A B B= + − (3.19)

and gives the size of the space weakly dominated by A but not weakly dominated

by B (regarding the objective space).

3.2.5 Generational Distance (GD)

The Generational distance (Veldhuizen [37]), is the average distance from the

obtained set to the true Pareto front. This metric also uses the true Pareto front as a

reference set.

2
1

n
ii d

n
=∑

 (3.20)

where id is the Euclidean distance in the objective space from solution i to the

nearest solution in the true Pareto front.

 45

3.2.6 Maximum Pareto Front Error (MPFE)

This metric (Veldhuizen [37]) is used to measure the largest distance between any

element in the obtained set and the respective closest element in the true Pareto

front.

1/1 (1 (2 (2 (max(min)))))j ji ip p px x x x
ij

f f f f− + −uuur uuur uuur uuur

(3.21)

where i = 1,…..,n1 and j = 1,….,n2 are elements in the obtained set and the true

Pareto front respectively, and p = 2. The smaller the MPFE the better the solutions

are.

3.2.7 Overall Non Dominated Vector Generation (ONVG)

This metric (Veldhuizen [37]) measures the size of the obtained non dominated set.

knownPFONVG � (3.22)

where knownPF is the approximation set.

3.2.8 Overall Non Dominated Vector Generation Ratio

(ONVGR)

This metric (Veldhuizen [37]) measures the ratio of the size of the obtained set to

the size of the true Pareto front.

PFknownONVG
PFtrue

� (3.23)

.

 46

3.2.9 Spacing Metric (Deb)

This metric proposed by (Deb et al. [5]) is used to measure the diversity of the

solution in the objective space by calculating the evenness of points in the obtained

set.

1

knownPF
i

i known

d d

PF=

−
∆ = ∑ (3.24)

where id is the Euclidean distance between two consecutive elements in the non

dominated front, and d is the average of these distances.

3.2.10 Spacing Metric (Schott)

This metric proposed by (Schott [38]) also measures the diversity of solutions in the

front

()
()

2

1

1 1 2 2

1
1

, min

n

i
i

i j i j
i j

S d d
n

where d f f f f
+

= −
−

= − + −

∑

(3.25)

d is the mean of all id and n = knownPF .

3.3 Summary

In this chapter the features and definitions of most widely used test problems and

performance metrics are discussed. The graphs depicting the Pareto optimal fronts

for the test problems are also shown for reference to the experimental study in

chapter 5.

 47

Chapter 4

 Multi-objective Optimization Problems
Toolbox (M-OPT)

M-OPT is a software application toolbox intended to demonstrate and solve multi-

objective optimization problems (MOPs) using several popular nature inspired

algorithms with the main focus on evolutionary multi-objective algorithms.

The central aim of this software package is to provide an environment which could be

used not only for testing the performance efficiency of the current algorithms, but

also to aid implementation of new methods by reusing the code. This is all the more

easily done owing to the fact the package is developed in Java, thereby providing an

object oriented approach to program coding in addition to its proven efficiency and

portability. There are sets of base classes which form the building blocks and all the

algorithm implementations are coded based on these base classes (for ex., classes

for density estimation, genetic operators, test functions etc.) , thus making the

comparison of the methods more authentic.

The implemented algorithms include the Non Dominated Sorted Genetic Algorithm

(NSGA II) [5], Strength Pareto Evolutionary Algorithm (SPEA 2) [6], Pareto Archived

Strategy (PAES) [31], Pareto Envelope Based Selection (PESA II) [30], Multi-

objective Particle Swarm Optimization (OMOPSO) [47] and two new hybridized

algorithms NSGAII* and SPEA2* (These are discussed in chapter 5).

Additionally most of the popularly used standard test functions used by researchers

are implemented, which includes the five ZDT (Zitzler Deb Thiele [34]) functions,

seven DTLZ (Deb Thiele Laumanns Zitzler [39]) functions and other unconstrained

test problems such as Kursawe, Schaffer and Fonseca. Refer to section 3.1 for details

on these test functions. The framework also provides a graphical user interface with

real time plotting of the objective functions and variables. It also allows the user to

modify the algorithm specific parameters thereby enhancing the scope of

hybridization techniques.

 48

4.1 General Architecture and Description

The software is developed in NetBeans IDE version 5.5 and JDK version 1.5. As

mentioned before, each algorithm accesses the methods and variables of base

classes, which defines the basic structure of the algorithm.

The class BaseStructure implements a generic template for the algorithms

developed in M-OPT. Every algorithm must have a mapping between the parameters

and their names, and another mapping between the operators and their names. This

class declares an abstract method called run(), which defines the behavior of the

algorithm. This class has inherited by all the algorithms and it provides methods like

paramGet() and paramAdd() to access parameter required for the application. The

genetic operators used in the algorithms are provided by operAdd() and operGet()

methods. The run() method starts the execution of the algorithm. The class

Population represents the set of solution objects which in turn are composed of the

chromosome object which again contains the gene component, following the

evolutionary algorithm terminology. The gene class is an interface defining the array

of variables having different representation namely binary, real or real-coded binary.

The class Problem defines the problem that the algorithm solves. It uses the

assess() method to assess the problem function. The genetic operators like crossover,

mutation and selection are defined in the Operator class. Other classes are also

defined to find the ranking, crowding distance, density etc.

4.2 Discussion: NSGA-II

Here the implementation of NSGAII is discussed briefly to give a better picture of the

working of the algorithm in M-OPT. The algorithm specific parameter values are

accepted from the GUI framework and configured using the NSGA_init() method. The

NSGAII class defines the execution of the algorithm and specifies the problem to

solve, the operators to use etc. The NSGA_init() method is shown in Fig.1 and an

extract from the NSGAII class is included as Fig.2.

The input parameters such as the population and the maximum number of

evaluations to compute are accepted in the line 9 to 13 and the problem is selected

in line 14. In line15, a new instance of the NSGAII class is created. Lines 16 and 17

are used to set the parameters for the algorithm. Next (lines 18 to 25), crossover,

mutation, and selection operators are specified. After this the operator are assigned

to the algorithm using the operAdd() method. The line 30 starts the execution of the

 49

algorithm with lines 29 and 31 used to determine the execution time in milliseconds.

After this, the objective function values and variables are written into text files, in

lines 36 and 37.

1. ProblemClass probObj = null ;
2. BaseStructure algorithm ; // The algorithm to be used
3. OperatorClass crossover ; // Crossover operator
4. OperatorClass mutation ; // Mutation operator
5. OperatorClass selection ; // Selection operator

6. int popSize, maxEvaluations;
7. double probCross, crossoverDist, mutationDist;

8. try{

9. popSize = Integer.parseInt(popSizeTF.getText());
10. maxEvaluations = Integer.parseInt(maxEvaluationsTF.getText());
11. probCross = Double.parseDouble(probCrossTF.getText());
12. crossoverDist = Double.parseDouble(crossoverDistTF.getText());
13. mutationDist = Double.parseDouble(mutationDistTF.getText());

14. probObj = initProb(ProblemCB, RepresentationCB, probObj);

15. algoObj = new NsgaII(probObj);

16. algoObj.initializeInput("populationSize",popSize);
17. algoObj.initializeInput("maxEvaluationsuations", maxEvaluations);

18. crossVar =

CrossoverClass.opCrossoverGet(crossoverCB.getSelectedItem().toString());
19. crossVar.paramSet("probability",probCross);
20. crossVar.paramSet("distribuitionIndex",crossoverDist);

21. mutation =

MutationClass.getMutationOperator(mutationCB.getSelectedItem().toString());
22. mutation.paramSet("probability",1.0/probObj.getNumberOfVariables());
23. mutation.paramSet("distributionIndex",mutationDist);
24. .paramSet("probability",1.0/80);

25. selection = new BinTournament();

26. algoObj.operAdd("crossover",crossVar);
27. algoObj.operAdd("mutation",mutation);
28. algoObj.operAdd("selection",selection);

29. long startTime = System.currentTimeMillis();
30. Population population = algoObj.run();
31. long timeOfExecution = System.currentTimeMillis() - startTime;
32. System.out.println("Total time of execution: "+timeOfExecution);
33. JOptionPane.showMessageDialog(null,"Run Successful", "Status",

JOptionPane.INFORMATION_MESSAGE);

 50

34. execLbl.setText(timeOfExecution+" ms");
35. fileLabel1.setText("Objectives values have been written to file

Obj_NSGAII.txt");

36. population.setOutputObjectives("Obj_NSGAII.txt");
37. population.setOutputvariables("Var_NSGAII.txt");
38. fileLabel2.setText("Variables values have been written to file

Var_NSGAII.txt");
39.
40. }catch(Exception e){
41. JOptionPane.showMessageDialog(null,"Please Fill Up All The Fields ", "Data

Validation", JOptionPane.INFORMATION_MESSAGE);
42. }

Figure 19: Initialization of NSGAII - NSGA_init () method.

A piece of code of the class NSGAII is shown in Figure. 2. The execution of the

algorithm is performed in the run() method in line 11. Initially the parameter values

and operators are obtained. Then, the two populations required by the algorithm are

population is initialized. The main loop of the algorithm starts in line 13. It follows

the genetic algorithms steps: two parents are selected (lines 19-20), a pair of

children is obtained after crossover (line 22), the mutation (lines 23-24). Then they

are evaluated (lines 25-28), and finally inserted into the child population (lines 29-

30).

1. package EA_TBox.MoeaAlgorithms;
2. import EA_TBox.base.*;
3. import EA_TBox.base.operator.comparator.DominanceComparator;
4. import EA_TBox.base.BaseStructure;
5. import java.util.Comparator;
6. import EA_TBox.util.*;

7. public class NsgaII extends BaseStructure {

8. public NsgaII(ProblemClass probObj){
9. this.probObj_ = probObj;
10. }

11. public Population run() {
12. ….// initialize input variables and operators

13. while (noOfGenerations< maxEvaluations) {

14. //-> Create the child population
15. childPop = new Population(populationSize);
16. Individual [] parents = new Individual[2];
17. for (int i = 0; i < (populationSize/2); i++){

 51

18. //obtain parents
19. parents[0] = (Individual)selectionOperator.run(population);
20. parents[1] = (Individual)selectionOperator.run(population);
21. if (noOfGenerations< maxEvaluations) {
22. Individual [] childMembers = (Individual []) crossoverOperator.run(parents);
23. mutationOperator.run(childMembers[0]);
24. mutationOperator.run(childMembers[1]);
25. probObj_.assess(childMembers[0]);
26. probObj_.assessConstraints(childMembers[0]);
27. probObj_.assess(childMembers[1]);
28. probObj_.assessConstraints(childMembers[1]);
29. childPop.add(childMembers[0]);
30. childPop.add(childMembers[1]);
31. noOfGenerations+= 2;
32. } else {
33. childPop.add(new Individual(parents[0]));
34. childPop.add(new Individual(parents[1]));
35. } // if
36. } // for
37. //<-

38. //-> Create the population union of population and childMembers
39. union = ((Population)population).union(childPop);

40. ….// Ranking and crowding distance calculation phase
41. }

Figure 20: Components of program NsgaII.java

Next, the ranking and crowding estimation phase of NSGA-II: the two populations

are joined and ranked. Then the newly formed population is obtained selecting the

best ranked individuals, applying crowding distance to choose the best ones in the

last selected rank. The plot obtained for NSGA II using M-OPT for the Schaffer test

function is shown in Figure 22. A plot of the original Schaffer function is also included

in Figure 23 along with screenshots of the toolbox in Appendix D. The toolbox also

provides visualization of graphs through an interface to Matlab.

 52

Figure 21: Schaffer Function M- OPT

Figure 22: Original Schaffer Function

 53

Chapter 5

Diversity: Analysis and Hybrid methods

5.1 Introduction

In this chapter, the diversity techniques used by some of the widely used MOEAs are

discussed. Additionally, in section 5.3 modified algorithms are proposed for NSGA II

and SPEA2 by introducing changes in the diversity estimation techniques of these

methods.

5.2 Diversity preservation methods used in MOEAs

The efficiency of the output produced by multi-objective evolutionary algorithms

depends heavily on an effective diversity preservation method. Diversity techniques

simply put, enhances a wide spread of solutions along the objective space. Lack of

an effective diversity method could result in the algorithm being driven towards a

local Pareto, thereby missing out on the other potentially important areas of the

search space. Usually diversity is achieved by manipulating density information

pertaining to the individual in the search space. The spread of solutions is

accomplished by excluding those solutions which are attributed with higher density

values, from the selection process at each stage. Consequently, more and more

diverse individuals are allowed to take part in the process of driving towards the true

Pareto front. Although usage of diversity methods existed from the early part of

MOEA research, its relevance became more appreciated later on whereby several

methods were introduced. Goldberg introduced the Pareto Niching and Fitness

sharing methods [20]. Improved methods were developed by Srinivas and Deb in

their NSGAII [5] which uses crowding estimation technique for diversity maintenance.

Knowles and Corne introduced the adaptive grid algorithm in PAES [33]. Equally

popular is the archive truncation method using the nearest neighbor estimation

technique developed by Zitzler et al. for their SPEA2 algorithm [6]. These current

approaches in diversity techniques are briefly discussed in the following section.

 54

5.2.1 Pareto Niching and Fitness Sharing

Pareto niching and fitness sharing methods have been used in single objective

optimization for finding several optimum points in the search space. However, in

MOEAs fitness sharing is performed with the goal of finding well distributed as well as

well spread vectors. Fonseca and Fleming’s [23] MOGA used fitness sharing in a

restricted manner i.e. only those solutions which evaluate to vectors with identical

Pareto rank can take part in fitness sharing. They measure niching distance in

phenotypic space; the distance between two solutions’ evaluated fitness vectors is

computed and compared to σshare (the key sharing parameter). If the distance is less

than σshare, the solution’s associated niche count is then adjusted.

Figure 23: Pareto Niching

The NSGA differs slightly using a method where distance is measured in genotypic

space; the distance between two solutions is compared to σshare. The NSGA also

shares fitness only between solutions evaluating to vectors with identical Pareto rank.

Horn et al. [25] define niching differently in their Niched Pareto Genetic Algorithm

(NPGA), which performs selection via binary Pareto domination tournaments.

Solutions are selected if they dominate both the other and some small group (tdom) of

randomly selected solutions, but fitness sharing occurs only in the cases where both

solutions are non dominated [24]. Each of the two solution’s niche counts is derived

by counting the number of objective vectors within σshare of their evaluated vectors in

phenotype space. The solution with a smaller niche count (fewer phenotypical

neighbors) is then selected. This method was termed as equivalence class sharing by

Horn et al.

The disadvantage of all these methods lies in the requirement of setting the key

sharing parameter which is a crucial element of this method. Additionally the size of

the population also affects the performance of fitness sharing method. Assigning

 55

appropriate values to σshare is generally difficult as it usually requires some a priori

knowledge about the shape and separation of a given problem’s niches, as stated in

[24]. These disadvantages forced researchers to investigate a method which doesn’t

require the explicit knowledge of a sharing function value.

5.2.2 The Archive Truncation method

This diversity preservation method is used in SPEA2. Here, unlike NSGA-II, the

selection process and density estimation go hand in hand with the fitness assignment.

The algorithm considers two factors when it comes to finding non-domination, for

every individual the number of individuals dominated by and the number which it

dominates are determined. This way individuals dominated by the same members of

the archive will have different fitness values [6]. As the selection process ideally has

to give preference to the solutions belonging to the non-dominated set in the

combined population, a raw fitness value is assigned denoting the number of

individuals each individual dominates. This is referred to as the strength value Si and

the raw fitness of an individual is the sum of all strength values of the individuals it

dominates. A high raw fitness value shows that the individual is dominated by many

other individuals. So a lower value is preferred for the raw fitness. The raw fitness is

given as:

,
() ()

t jj P P j i
R i S j

+∈
= ∑

f

where {() | }t tS i j j P P i j= ∈ + Λ f

“ ” Denotes the cardinality of the set, + stands for multiset union and f stands

for the Pareto dominance relation.

Although the raw fitness itself is a good density measure, it would not give accurate

results when most individuals do not dominate each other. Therefore the fitness

value is improved by adding more information. This is done with the kth nearest

neighbor estimation technique according to which the density of any point is a

decreasing function of the distance to the kth nearest element [6]. Thus the inverse

of the distance to the kth nearest gives the density estimate. It is given as

2

1() ki
D i

σ +
=

 56

where N Nk += i.e. [6] the square root of the sample size.

This measure added with the raw fitness determines the final fitness value ()F i . It is

given as follows:

 () () ()F i R i D i= +

An external archive is used for storing the solutions in each generation. The size of

the archive is specified in advance and the non dominated set of solutions is copied

into the archive in each generation run. If the number of non dominated solutions

found in each run is lesser than the maximum archive size then the next best

solutions are populated into the archive. On the other hand if the number of non

dominated solutions is greater than the archive size, then archive truncation method

is executed. This method removes solutions from the overfilled archive, based on the

kth distance found previously, such that the individual which has the least distance

to the other individual is removed from the archive. This process is continued until

the required archive size is achieved.

5.2.3 The Crowding Distance technique

This method is used in the NSGA II, discussed in section 2.3.3. The two offspring

populations generated from the parent population are joined and non dominated

sorting is performed to generate fronts. Then the new population is filled with

solutions of different non-dominated fronts with the best front given preference. The

other fronts are deleted. The niching method is required when there are not enough

slots available for the solutions. So the crowding distance method is used to identify

the most crowded region in the fronts. The sorting of solutions is done based on the

objective function. Infinite values are assigned to the extreme solutions. Then the

distance measure is updated based on the difference in objective values between

neighboring solutions. Thus to find the density of solutions around a particular

solution, the average distance of two other points on either side of the current point

is estimated along the objective values [5]. In other words this is the size of the

largest cuboid enclosing the point. This measure gives the crowding distance as

mentioned in [5]. Figure 24, obtained from [5] illustrates this calculation, where the

average side length of the cuboid gives the crowding distance.

 57

Figure 24: The crowding distance calculation (Source: Deb et. al [5])

This process is continued and finally each solution is assigned a distance value based

on the objective function. Following this, the most crowded region is identified as the

one with the least crowding distance value and consequently removed from further

selection. This is achieved with the help of a crowded comparison operator, which

eventually drives the population towards a well spread set of optimal solutions. As

stated in [5], the crowded comparison operator (np) using the non-domination

rank (ranki) and the crowding distance (disti), is calculated with the following formula.

 ni jp () (() ()rank rank rank rank dist distif i j or i j and i j>< =

Thus preference is always given to the solution with the better rank. Otherwise the

solution in the least crowded region is preferred.

5.2.4 The Adaptive Grid Algorithm technique

Another method of density estimation is through histograms. These methods use a

hyper grid to define neighborhoods within the objective space. The number of

solutions present in the hyperboxes defines the density value. In Pareto archived

evolution strategy (PAES) [33], the adaptive grid spacing is determined by a number

of bisections specified by the user. These bisections of the objective range are

defined by the locally non-dominated solutions. PAES also uses an external archive

for storing non dominated individuals. In the case of the archive exceeding the

preferred size, a solution from the most crowded hyperbox is selected for removal

and is replaced by the newly found solution.

 58

5.3 Improvements to Existing MOEAs

In this section two new hybrid MOEAs namely NSGAII* and SPEA2* are introduced.

Two of the popular MOEAs, NSGAII and SPEA2 are modified with different diversity

techniques replacing their original ones. NSGAII* uses the nearest neighbor estimate

for measuring diversity while SPEA2* uses the crowding distance operation in its

diversity mechanism.

5.3.1 NSGAII with Nearest Neighbor diversity (NSGAII*)

This hybrid algorithm is defined in the same manner as the original NSGAII with the

difference in the density estimation procedure. NSGAII* uses the k-th nearest

neighbor technique used by SPEA2, to determine the distance measure. The

algorithm is implemented in the M-OPT toolbox discussed in chapter 4.

5.3.2 SPEA2 with Crowding Distance diversity (SPEA2*)

SPEA2* also maintains the same steps as the original SPEA differing only in the

diversity mechanism. SPEA2* uses the crowding distance assignment technique to

determine the distance measure. The algorithm is also implemented in the M-OPT

toolbox.

Results of the performance analysis of the above mentioned algorithms, based on

several test functions are listed in the chapter 6, followed by results discussion.

5.3.3 Summary

In this chapter different diversity measuring techniques used in MOEAs are discussed.

Additionally, two new hybrid methods are proposed based on changes in the

diversity calculation.

 59

Chapter 6

Results and Discussion

6.1 Introduction

In this chapter the results of the experiments carried out in analyzing the

performance of the algorithms relevant to this thesis, are tabulated and analyzed.

The chapter is divided into sections representing the testing methodology used, the

parameter setting for the algorithm runs, the performance metrics used, the

summary of results in tables and the discussion.

6.2 Algorithms Runs

Each one of the algorithms is run with three different parameters for maximum

number of evaluations with values being 5,000, 7,000 and 12,000. This way, four of

the algorithms namely NSGAII, SPEA2, NSGAII*, SPEA2* are run for each of the

different maximum number of evaluations. This process is repeated for each of the

test problems namely Schaffer’ test function (refer section 3.1.3), ZDT1 (refer

section 3.1.1.1) and ZDT3 (refer section 3.1.1.3). Furthermore, the performance

metrics for Spacing, Coverage, Generational distance, Coverage Difference, S metric,

D metric and the time of execution (milli seconds) are also calculated in order to

evaluate the performance of the algorithms in question. Each of the above

mentioned process is iterated for 10 separate runs to avoid ambiguities through

random results. After this the average, minimum, maximum and standard deviation

values of those runs are also tabulated for comparison. Graphs representing the

obtained Pareto front for the test problems are depicted too.

6.3 Testing environment

The M-OPT toolbox is used to execute the algorithms and generating the results. An

open source software GUIMOO is used for generating the performance metrics [43].

 60

6.4 Parameter Settings

The following parameters have been kept the same for all executions for fair

comparison.

Population size 100
Crossover type SBX
Distribution index for SBX 20
Crossover probability 0.9
Mutation type Polynomial mutation
Distribution index for polynomial mutation 20

Table 2: Default parameter setting

6.5 Discussion on results

The diversity comparison between the four algorithms is shown in graphs below,

represented by figures 26-28. The graphs are defined by average spacing metric

measures plotted against the different variations of maximum generation numbers.

Convergence is measured through Generational distance which is visualized in

figures 29-31. The metrics spacing and the S metric are independent measures as

mentioned in chapter 3. The other metrics such as generational distance, coverage,

coverage difference and the D metric are measured against the respective true

Pareto fronts.

The data is extracted from the results of averages, minimum, maximum and

standard deviation values summarized from the actual runs. These summary results

are shown in Tables 2-10. The value which ranked best for each metric is highlighted

in the tables. For detailed results on the runs refer to tables in Appendix B. The non

dominated front for each of the different algorithms on the test functions are

visualized in section 6.6.

Based on the results obtained it has been found that the NSGAII* showed better

diversity values (lower spacing metric measure) and better convergence (lower

generational distance value) in the initial generations (5000) of the run for the

Schaffer test problem. The SPEA2* outperformed others in diversity for the convex

ZDT1 problem, where the even spread of solutions was shown to improve in the

12000 evaluation run (Figure 27. Again, for the non-convex disconnected problem

ZDT3, SPEA2* produced the best results for the final generation runs (Figure 28).

The size of the non-dominated front measured by the S metric was used to find the

overall quality of the non-dominated set. NSGAII and NSGAII* showed better results

 61

for this metric in Schaffer’s function, whereas SPEA2 performed well on ZDT1 and

ZDT3 functions.

All the other three algorithms performed better than the SPEA2* in terms of

convergence measures. NSGAII showed better results in generational distance

measures denoting effective convergence, closely followed by NSGAII* and SPEA2.

 62

6.5.1 Diversity analysis results
Figure 25: Spacing metric comparison for Schaffer function

5000 6000 7000 8000 9000 10000 11000 12000
0

0.5

1

1.5

2

2.5

MaximumEvaluations

S
pa
ci
n
g M
et
ric
 V
al
ue
s

NSGAII
NSGAII*
SPEA2
SPEA2*

Figure 26: Spacing metric comparison for ZDT1 function

5000 6000 7000 8000 9000 10000 11000 12000
0

0.005

0.01

0.015

0.02

0.025

0.03

MaximumEvaluations

S
pa
ci
n
g M
et
ric
 V
al
ue
s

NSGAII
NSGAII*
SPEA2
SPEA2*

 63

Figure 27: Spacing metric comparison for ZDT3 Function

5000 6000 7000 8000 9000 10000 11000 12000
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Maximum Evaluations

S
pa
ci
n
g M
et
ric
 V
al
ue
s

NSGAII
NSGAII*
SPEA2
SPEA2*

6.5.2 Convergence analysis results

Figure 28: Generational Distance comparison for Schaffer Function

5000 6000 7000 8000 9000 10000 11000 12000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Maximum Evaluations

G
en
er
at
io
na
l D
is
ta
nc
e

NSGAII
NSGAII*
SPEA2
SPEA2*

 64

Figure 29: Generational Distance comparison for ZDT1 Function

5000 6000 7000 8000 9000 10000 11000 12000
0

0.002

0.004

0.006

0.008

0.01

0.012

Maximum Evaluations

G
en
er
at
io
na
l D
is
ta
nc
e

NSGAII
NSGAII*
SPEA2
SPEA2*

Figure 30: Generational Distance comparison for ZDT3 Function

5000 6000 7000 8000 9000 10000 11000 12000
0

1

2

3

4

5

6
x 10-3

Maximum Evaluations

G
en
er
at
io
na
l D
is
ta
nc
e

NSGAII
NSGAII*
SPEA2
SPEA2*

 65

6.5.3 Schaffer Test Function - Summary of results

Test Function : Schaffer
Maximum Evaluations : 5000
MOEA Metric Spacing S Metric Generational

Distance
Coverage Coverage

Difference
D Metric Execution

time
Avg 0.106853 14.81131 0.006991 0.024998 -0.22868 0.002012 2151.6
Min 0.049581 14.7231 0.00608 0 -0.79272 0.001501 2078
Max 0.14227 14.903 0.007702 0.05 0.218391 0.003064 2250

NSGAII

Sd 0.025791 0.05238 0.000542 0.013792 0.379793 0.000433 50.71313658
Avg 0.10049298 14.24558 0.007042425 0.02773664 -0.22465415 0.001834645 1965.4
Min 0.0744838 14.1668 0.00544966 0.0192308 -0.651938 0.00127214 1906
Max 0.116793 14.2937 0.00911255 0.05 0.324505 0.00229137 2000

SPEA 2

Sd 0.012468918 0.039963867 0.001130666 0.01066551 0.317397945 0.000290473 31.79168305
Avg 0.09568323 14.04266 0.006303698 0.02147422 0.05239508 0.002091587 10993.7
Min 0.0680044 13.9572 0.00477164 0 -0.745261 0.00139909 9281
Max 0.130139 14.1019 0.0076099 0.0465116 1.4067 0.00247652 12031

NSGAII*

Sd 0.023330897 0.043725131 0.001076192 0.017303366 0.633296465 0.000313343 1029.79567
Avg 1.21908 61.05524 0.164619 0.380952 -3.06739 0.00028 4403.1
Min 0 0 0.051227 0 -38.1212 0 4359
Max 3.65446 79.6865 0.495977 1 24.2354 0.000767 4438

SPEA2*

Sd 1.506724 29.97295 0.165083 0.372636 23.08391 0.000253 31.29945

Table 3: Schaffer Test Function for 5000 generations

 66

Test Function : Schaffer
Maximum Evaluations : 7000
MOEA Metric Spacing S Metric Generational

Distance
Coverage Coverage

Difference
D Metric Execution

time
Avg 0.06541486 13.95702 0.004453362 0.00968744 0.3820706 0.002795207 2770.3
Min 0.0454264 13.9184 0.00355883 0 -0.464883 0.00232292 2641
Max 0.0793565 13.9986 0.00494904 0.031746 1.46749 0.00353321 3109

NSGAII

Sd 0.011669769 0.024454438 0.000483171 0.013088441 0.578286559 0.000340406 126.5921272
Avg 0.06214031 14.35161 0.00486451 0.01961303 -0.1595968 0.002823951 2737.6
Min 0.0456268 14.3136 0.00392023 0 -0.652608 0.00221091 2718
Max 0.0944126 14.3919 0.00588534 0.0350877 0.463263 0.00321084 2797

SPEA 2

Sd 0.015567951 0.027644748 0.000736864 0.012419517 0.397240692 0.000305676 21.92005677
Avg 0.05750619 14.40338 0.004833416 0.01087483 -0.04397301 0.002795495 18034.3
Min 0.0462143 14.3653 0.00410278 0 -0.354676 0.00232195 12531
Max 0.0743043 14.4456 0.00614926 0.0246914 0.539424 0.00347107 26641

NSGAII*

Sd 0.00888164 0.026420985 0.000624789 0.008248805 0.256647846 0.000336117 3817.48169
Avg 2.168906 82.84095 0.106323 0.215202 9.719258 0.000281 6201.6
Min 0 72.6429 0.070027 0 -21.6284 2.8E-05 6172
Max 4.47206 89.3874 0.149983 0.5 25.4111 0.000607 6250

SPEA2*

Sd 1.75044 5.003878 0.024221 0.190513 13.52139 0.000205 33.2873

Table 4: Schaffer Test Function for 7000 generations

 67

Test Function : Schaffer
Maximum Evaluations : 12000
MOEA Metric Spacing S Metric Generational

Distance
Coverage Coverage

Difference
D Metric Execution

time
Avg 0.03467587 13.87635 0.0025483 0.006 0.005290931 0.00432087 4509.5
Min 0.0260134 13.8618 0.00218351 0 -0.247208 0.00401089 4359
Max 0.0486865 13.8838 0.00295501 0.01 0.396809 0.00466075 5125

NSGAII

Sd 0.007393839 0.007417734 0.000243642 0.005163978 0.174123941 0.000177791 220.4471466
Avg

0.0317691 13.72102 0.002544732 0.01
-
0.060007254 0.004314792 5012.5

Min 0.0251085 13.7118 0.00208738 0 -0.330261 0.00387698 4890
Max 0.0381341 13.7323 0.00322549 0.02 0.172418 0.00470302 5156

SPEA 2

Sd 0.004528296 0.006874397 0.000323705 0.006666667 0.144643018 0.000235246 104.5086387
Avg 0.06210616 13.75549 0.003739675 0.0081 0.01717511 0.004359609 31148.5
Min 0.0479887 13.7444 0.00271907 0 -0.464457 0.00390946 19344
Max 0.0771029 13.7665 0.0045945 0.02 0.408991 0.0047852 34859

NSGAII*

Sd 0.011067172 0.009088265 0.000555052 0.006190495 0.248039802 0.00025672 5362.730342
Avg 1.869645 82.32969 0.086695 0.156984 0.344471 0.000352 11215.7
Min 0.10341 72.6928 0.05173 0 -30.4027 6.63E-05 10907
Max 5.75853 87.0451 0.137502 0.4 12.9799 0.000885 11750

SPEA2*

Sd 1.863832 4.722306 0.027877 0.169825 14.71341 0.00029 247.9113

Table 5: Schaffer Test Function for 12000 generations

 68

6.5.4 ZDT1 Test Function - Summary of results

Test Function : ZDT1
Maximum Evaluations : 5000
MOEA Metric Spacing S Metric Generational

Distance
Coverage Coverage

Difference
D Metric Execution

time
Avg 0.01761894 0.8997265 0.003193552 1 0.2146941 0 1265.4
Min 0.0144158 0.802358 0.00243434 1 0.14513 0 1187
Max 0.0224261 0.948946 0.00478327 1 0.35619 0 1312

NSGAII

Sd 0.002735922 0.045864412 0.000728572 0 0.066130879 0 36.23135536
Avg 0.02655061 1.0111216 0.004351858 1 0.309496 0 2357.6
Min 0.0183806 0.97961 0.00284769 1 0.217936 0 2328
Max 0.0437705 1.10006 0.00480402 1 0.409546 0 2407

SPEA 2

Sd 0.007833242 0.037047888 0.000608044 0 0.062072801 0 27.2282533
Avg 0.02249254 0.9112688 0.004362227 1 0.2817175 0 1192.1
Min 0.0175668 0.84305 0.00361584 1 0.21337 0 1141
Max 0.0302852 0.96492 0.00546781 1 0.334171 0 1406

NSGAII*

Sd 0.004511111 0.035538508 0.00053585 0 0.036719123 0 76.84826319
Avg 0.02133393 1.1457124 0.009098993 1 0.779746 0 5407.9
Min 0.0150963 0.956024 0.00663923 1 0.575376 0 5125
Max 0.053606 1.23984 0.01432 1 1.22484 0 5797

SPEA2*

Sd 0.011550531 0.077451023 0.002355142 0 0.17827152 0 288.4908818

Table 6: ZDT1 Test Function for 5000 generations

 69

Test Function : ZDT1
Maximum Evaluations : 7000
MOEA Metric Spacing S Metric Generational

Distance
Coverage Coverage

Difference
D Metric Execution

time
Avg 0.010681607 0.7809812 0.001350462 1 0.09273318 0 1656.3
Min 0.00732323 0.744539 0.00101159 1 0.064281 0 1485
Max 0.0139857 0.802795 0.00187628 1 0.148626 0 1844

NSGAII

Sd 0.001783894 0.017064345 0.000251297 0 0.02392317 0 131.4094957
Avg 0.01576466 0.940221 0.002243562 1 0.2039435 0 3329.7
Min 0.0118067 0.894147 0.0016682 1 0.169401 0 3281
Max 0.0231072 0.982718 0.00288223 1 0.282956 0 3437

SPEA 2

Sd 0.003765815 0.027955868 0.000383528 0 0.031035794 0 43.71892547
Avg 0.012321582 0.7787452 0.001691574 1 0.11067947 0 1742.2
Min 0.00813085 0.719903 0.00119937 1 0.0701497 0 1672
Max 0.0152287 0.813097 0.00259483 1 0.159818 0 1938

NSGAII*

Sd 0.002594436 0.027826053 0.000418936 0 0.031472736 0 77.85713412
Avg 0.012160202 0.6756576 0.008100803 1 0.6391736 0 7231.1
Min 0.00938047 0.576582 0.00606761 1 0.512559 0 7187
Max 0.0166163 0.734321 0.0101685 1 0.754125 0 7266

SPEA2*

Sd 0.002157113 0.047819997 0.001317958 0 0.075290859 0 35.2087426

Table 7: ZDT1 Test Function for 7000 generations

 70

Test Function : ZDT1
Maximum Evaluations : 12000
MOEA Metric Spacing S Metric Generational

Distance
Coverage Coverage

Difference
D Metric Execution

time
Avg

0.006664239 0.6756519 0.000277038 0.995 0.013501777
7.11461E-
08 2472

Min 0.00581581 0.671509 0.000242112 0.98 0.00842381 0 2468
Max

0.00807983 0.678153 0.000340268 1 0.0200203
3.33241E-
07 2485

NSGAII

Sd
0.00064612 0.001891775 2.80328E-05 0.007071068 0.003508426

1.17671E-
07 6.863753427

Avg 0.005029205 0.7169763 0.000404536 1 0.0280154 0 6773.4
Min 0.00403858 0.710018 0.000354129 1 0.0171999 0 6547
Max 0.00638048 0.720535 0.000508522 1 0.0500253 0 7234

SPEA 2

Sd 0.000664308 0.003502124 5.20972E-05 0 0.010484237 0 189.6922654
Avg

0.008170093 0.6864284 0.000331628 0.999 0.014800536
9.30431E-
08 3573.3

Min 0.00707532 0.680285 0.000279114 0.99 0.00741076 0 3437
Max

0.00918807 0.690487 0.00042288 1 0.0222313
9.30431E-
07 3875

NSGAII*

Sd
0.000772635 0.003471865 4.99123E-05 0.003162278 0.004854179

2.94228E-
07 129.1838053

Avg 0.002567452 0.3995725 0.01165386 1 0.617471 0 12970.3
Min 0.00181475 0.331057 0.0104335 1 0.598091 0 12765
Max 0.0031423 0.443068 0.0136027 1 0.639271 0 13312

SPEA2*

Sd 0.000439163 0.039412575 0.001158179 0 0.014036686 0 208.0213931

Table 8: ZDT1 Test Function for 12000 generations

 71

6.5.5 ZDT3 Test Function - Summary of results

Test Function : ZDT3
Maximum Evaluations : 5000
MOEA Metric Spacing S Metric Generational

Distance
Coverage Coverage

Difference
D Metric Execution

time
Avg 0.0154456 0.9908863 0.002644349 1 0.1860695 0 1212.6
Min 0.0120711 0.924505 0.00224124 1 0.140058 0 1171
Max 0.0186723 1.02582 0.0033245 1 0.251435 0 1250

NSGAII

Sd 0.002036838 0.036071799 0.000392929 0 0.031241976 0 30.60210596
Avg 0.02145701 1.243168 0.003557599 1 0.2767322 0 2361.1
Min 0.0140933 1.18986 0.0030214 1 0.221539 0 2344
Max 0.0424615 1.27944 0.00536689 1 0.593699 0 2407

SPEA 2

Sd 0.008294363 0.023721081 0.000683211 0 0.113172038 0 24.93302139
Avg 0.017324 1.018238 0.003296 1 0.253051 0 1262.5
Min 0.012122 0.950226 0.002206 1 0.170667 0 1203
Max 0.024564 1.12317 0.004064 1 0.308099 0 1547

NSGAII*

Sd 0.004365 0.049075 0.000533 0 0.036881 0 100.7144
Avg 0.020424 0.904882 0.005459 1 0.441293 0 5136
Min 0.015377 0.805628 0.003277 1 0.233473 0 5109
Max 0.033791 0.9995 0.00796 1 0.645393 0 5188

SPEA2*

Sd 0.005291 0.062017 0.001821 0 0.189984 0 24.67567

Table 9: ZDT3 Test Function for 5000 generations

 72

Test Function : ZDT3
Maximum Evaluations : 7000
MOEA Metric Spacing S Metric Generational

Distance
Coverage Coverage

Difference
D Metric Execution

time
Avg 0.011111343 0.9111428 0.001096795 1 0.08596119 0 1579.7
Min 0.00749903 0.854473 0.000501127 1 0.0385018 0 1484
Max 0.0219104 0.95776 0.00195407 1 0.143646 0 1828

NSGAII

Sd 0.004197074 0.024975712 0.000355287 0 0.02641703 0 110.6275533
Avg 0.013347 0.972673 0.001852 1 0.138973 0 3342.3
Min 0.01086 0.899186 0.001032 1 0.08729 0 3297
Max 0.018095 1.03562 0.002609 1 0.209713 0 3422

SPEA 2

Sd 0.002197 0.041743 0.000502 0 0.035491 0 41.16107
Avg 0.011974 0.905334 0.001601 1 0.120919 0 1861
Min 0.008475 0.865063 0.000813 1 0.065642 0 1797
Max 0.016654 0.966835 0.002119 1 0.172974 0 2203

NSGAII*

Sd 0.002574 0.03252 0.000415 0 0.035321 0 120.8461
Avg 0.01188 0.803219 0.003888 1 0.391777 0 7307.7
Min 0.009037 0.730636 0.001699 1 0.123653 0 7187
Max 0.015482 0.845455 0.005411 1 0.502598 0 7969

SPEA2*

Sd 0.002528 0.034273 0.001138 0 0.138462 0 234.688

Table 10: ZDT3 Test Function for 7000 generations

 73

Test Function : ZDT3
Maximum Evaluations : 12000
MOEA Metric Spacing S Metric Generational

Distance
Coverage Coverage

Difference
D Metric Execution

time
Avg 0.007379528 0.8053063 0.00020948 1 0.010720972 0 2498.3
Min 0.00669593 0.80193 0.000191218 1 0.00372046 0 2484
Max 0.0087414 0.808536 0.00022383 1 0.0158356 0 2547

NSGAII

Sd 0.000612572 0.002726726 1.10671E-05 0 0.003649753 0 22.72076877
Avg 0.005626 0.826239 0.000296 1 0.024431 0 7051.5
Min 0.004636 0.820784 0.000257 1 0.019091 0 6812
Max 0.006899 0.832328 0.000342 1 0.030909 0 7500

SPEA 2

Sd 0.000727 0.003973 2.97E-05 0 0.003986 0 214.4306
Avg 0.007121 0.798703 0.000273 1 0.014717 0 3695.2
Min 0.005345 0.791997 0.000216 1 0.00831 0 3562
Max 0.008449 0.803722 0.000333 1 0.020838 0 3968

NSGAII*

Sd 0.001079 0.004004 4.13E-05 0 0.0044 0 140.1918
Avg 0.004221 0.71477 0.002896 1 0.408872 0 13967.4
Min 0.003002 0.655506 0.00071 1 0.170762 0 13407
Max 0.006489 0.741127 0.006975 1 0.587711 0 14703

SPEA2*

Sd 0.000984 0.025849 0.001759 0 0.150909 0 420.1053

Table 11: ZDT3 Test Function for 12000 generations

 74

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 f2

 f1

True Pareto Front Schaffer.fit
Run_Schaffer10000_10_SPEA2.fit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

 f2

 f1

True Pareto Front Schaffer.fit
Run_Schaffer10000_10_SPEA2_Mod.fit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 f2

 f1

True Pareto Front Schaffer.fit
Run_Schaffer10000_10_NSGAII_Mod.fit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

 f2

 f1

True Pareto Front Schaffer.fit
Run_Schaffer10000_10_NSGAII.fit

6.6 Generated Pareto Fronts

The non dominated fronts generated for the different test functions are visualized

below. All the obtained fronts are plotted against the true Pareto front. In this

section only fronts which were generated at 10000 runs are shown. For more listing

refer to Appendix A.

 NSGAII NSGAII*

 SPEA2 SPEA2*

Figure 31: Schaffer Test Function Results

 75

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

 f2

 f1

True Pareto Front Kursawe.fit
Run_Kursawe10000_10_NSGAII.fit

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

 f2
 f1

True Pareto Front Kursawe.fit
Run_Kursawe10000_10_NSGAII_Mod.fit

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

 f2

 f1

True Pareto Front Kursawe.fit
Run_Kursawe10000_10_SPEA2_Mod.fit

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

 f2

 f1

True Pareto Front Kursawe.fit
Run_Kursawe10000_10_SPEA2.fit

 NSGAII NSGAII*

 SPEA2 SPEA2*

Figure 32: Kursawe Test Function Results

 76

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

 f2

 f1

True Pareto Front ZDT1.fit
Run_ZDT110000_10_NSGAII.fit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

 f2
 f1

True Pareto Front ZDT1.fit
Run_ZDT110000_10_NSGAII_Mod.fit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

 f2

 f1

True Pareto Front ZDT1.fit
Run_ZDT110000_10_SPEA2.fit

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

 f2

 f1

True Pareto Front ZDT1.fit
Run_ZDT110000_10_SPEA2_Mod.fit

 NSGAII NSGAII*

 SPEA2 SPEA2*

Figure 33: ZDT1 Test Function Results

 77

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

 f2

 f1

True Pareto Front ZDT2.fit
Run_ZDT210000_10_NSGAII.fit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1
 f2

 f1

True Pareto Front ZDT2.fit
Run_ZDT210000_10_NSGAII_Mod.fit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

 f2

 f1

True Pareto Front ZDT2.fit
Run_ZDT210000_10_SPEA2.fit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

 f2

 f1

True Pareto Front ZDT2.fit
Run_ZDT210000_10_SPEA2_Mod.fit

 NSGAII NSGAII*

 SPEA2 SPEA2*

Figure 34: ZDT2 Test Function Results

 78

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 f2

 f1

True Pareto Front ZDT3.fit
Run_ZDT310000_10_NSGAII.fit

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 f2

 f1

True Pareto Front ZDT3.fit
Run_ZDT310000_10_NSGAII_Mod.fit

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 f2

 f1

True Pareto Front ZDT3.fit
Run_ZDT310000_10_SPEA2.fit

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 f2

 f1

True Pareto Front ZDT3.fit
Run_ZDT310000_10_SPEA2_Mod.fit

 NSGAII NSGAII*

 SPEA2 SPEA2*

Figure 35: ZDT3 Test Function Results

 79

Chapter 7

Summary and Conclusion

7.1 Summary

In this work several aspects of solving multi-objective problems by the use of

evolutionary algorithms are analyzed. In particular, an inevitably prominent area of

MOEA namely diversity maintenance, has been given prime importance in the

discussion. Review on the state of the art in evolutionary algorithms for multi-

objective optimization problems was presented. The importance of test functions and

performance metrics are highlighted in Chapter 3. A new MOEA toolbox has been

designed and developed. The toolbox is implemented with several features aiding

research in MOEAs with implementation of a number of algorithms, design of the test

problems, graphical analysis of results etc. Additionally, two new hybrid algorithms

based on diversity maintenance has been proposed and discussed in Chapter 5.The

statistical analysis and discussion on the performance comparison is provided in

chapter 6.

7.2 Conclusion

The fundamental base of multi-objective evolutionary algorithms is provided by

diversity preserving techniques. Most of the MOEA’s, while following the EA’s skeletal

structure, has been essentially found to vary in their diversity maintaining methods.

Among the several diversity methods, the most effective ones are chosen for

comparison in this work. These methods applied to multi-objective problems has

been analyzed and reviewed in this work. The impact of altering the diversity

mechanisms in different algorithms and their consequent ability of finding better

solutions are researched. Two new hybrid methods have been presented based on

this study. The crowding distance diversity method used in the NSGAII has been

used in the SPEA2 algorithm, replacing its existing diversity measure. Similarly the

archive truncation method based on kth nearest neighbor method used in SPEA2 has

been applied to NSGAII’s diversity method and tested. As a result of the tests, the

hybrid methods, NSGAII* and SPEA2* showed improved results in certain test

scenarios whereas produced satisfactory results otherwise. The algorithms

 80

outperformed their original counterparts several times particularly in the case of

increased number of maximum evaluations. With the implementation, testing and

comparison of these hybrid methods acting as the backbone of this work, extensive

statistical analysis is performed to provide support to the findings. The algorithms

have been executed for several runs and changing parameter settings. They were

tested on the test problems discussed and the comparison analysis was achieved

with the use of several performance metrics. Additionally, the MOPT toolbox

designed with a user friendly interface serves to provide an effective tool for

researchers and students in the field of evolutionary algorithms to implement novel

algorithms as well as to enable testing, visualizing and comparing several algorithms.

7.3 Future work

As part of future enhancements the algorithms could be tested for performance in

the case of large number of objectives. Applying performance metrics which does not

require knowledge of the true Pareto, into the runtime operation of an EA could be a

potential future area of exploration. The spacing and hyper volume metrics could

provide an ideal boosting factor in driving the algorithm towards effective solutions

using this method.

 81

References
[1] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in
 multiobjective optimization," Evolutionary Computation, vol. 3, no. 1, pp. 1-16,
 1995.

[2] E. Zitzler, “Evolutionary algorithms for multiobjective optimization: Methods and
 applications”, Swiss Federal Institute of Technology (ETH)1999.

[3] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A comparative
 case study and the strength Pareto approach," IEEE Transactions on Evolutionary
 Computation, vol. 3, no. 4, pp. 257-271, 1999.

[4] N. Srinivas and K. Deb, “Multiobjective optimization using nondominated sorting
 in genetic algorithms," Evolutionary Computation, vol. 2, no. 3, pp. 221-248,
 1995.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
 genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol.
 6, no. 2, pp. 182-197, 2002.

[6] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto
 evolutionary algorithm," In Proceedings of Evolutionary Methods for Design,
 Optimization, and Control, pp. 95-100, 2002.

[7] H. Lu and G. G. Yen, “Rank-density-based multiobjective genetic algorithm and
 benchmark test function study," IEEE Transactions on Evolutionary Computation,
 vol. 7, no. 4, pp. 325-343, 2003.

[8] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic algorithm for
 multiobjective optimization," In Proceedings of the IEEE Conference on
 Evolutionary Computation (ICEC'94), pp. 82-87, 1994.

[9] C.A.C. Coello, “An Updated Survey of GA-Based Multiobjective Optimization
 Techniques”, ACM Computing Surveys, Vol. 32, No. 2, June 2000.

[10] J. D. Knowles, L. Thiele and E. Zitzler, “A tutorial on the performance
 assessment of stochastic multiobjective optimizers”, TIK Report No. 214,
 Computer Engineering and Networks Laboratory, February 2006.

[11] K. Deb, “Multi-objective Genetic Algorithms: Problem Difficulties and
 Construction of Test Problems”, Evolutionary Computation Volume 7, Number 3,
 1999.

[12] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”. In Proceedings of
 the Fourth IEEE International Conference on Neural Networks, IEEE Service
 center, pp. 1942-1948, 1995.

[13] K.E. Parsopoulos and M.N. Vrahatis, “Particle Swarm Optimization Method in
 Multiobjective Problems”. In Proceedings of the 2002 ACM Symposium on
 Applied Computing (SAC 2002), pp. 603-607, 2002.

 82

[14] Jonathan E. Fieldsend, “Multi-objective particle swarm optimisation methods”.
 Technical Report #419, Department of Computer Science, University of Exeter,
 March 2004.

[15] C. A. C. Coello and M.S. Lechunga. “MOPSO: A Proposal for Multiple Objective
 Particle Swarm Optimization”. In Proceedings of the 2002 Congess on
 Evolutionary Computation, part of the 2002 IEEE World Congress on
 Computational Intelligence, pages 1051-1056, 2002. IEEE Press.

[16] C. A. C. Coello, “A Short Tutorial on Evolutionary Multiobjective Optimization”,
 First International Conference on Evolutionary Multi-Criterion Optimization,
 pages 21-40. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
 2001.

[17] Azarm, S., B. Reynolds, and S. Narayanan, "Comparison of Two Multiobjective
 Optimization Techniques with and within Genetic Algorithms,"
 CD-ROM Proceedings of the 25th ASME Design Automation Conference,
 Paper No. DETC99/DAC-8584, 1999.

[18] N. Hallam , ”MultiObjective Evolutionary Algorithms: State of the Art”, Technical
 Report, TR 1122004, The University of Nottingham, Malaysia Campus, Dec 2004.

[19] D. E. Goldberg, & J. Richardson, ”Genetic algorithms with sharing for multi-
 Modal function optimization,” in textit Proc. 2nd Int. Conf. on Genetic Algorithms,
 pp.41-49, 1987.

[20] D. E. Goldberg, ”Genetic Algorithms in Search, Optimization, and Machine
 Learning,” Addison Wesley, Reading, Massachusetts, 1989.

[21] John H. Holland. Adaptation in Natural and Artificial Systems. University of
 Michigan Press, 1975.

[22] E. Zitzler, M. Laumanns, S. Bleuler, “A Tutorial on Evolutionary Multiobjective
 Optimization.” Workshop on Multiple Objective Metaheuristics (MOMH 2002),
 Springer-Verlag, 2003.

[23] Fonseca, C. M. and Fleming, P. J. (1998),” Multiobjective Optimization and
 Multiple Constraint Handling with Evolutionary Algorithms – Part I: A Unified
 Formulation.” IEEE Transactions on Systems, Man and Cybernetics – Part A:
 Systems and Humans, 28(1):26–37.

[24] D. Van Veldhuizen and G. Lamont, “Multiobjective Evolutionary Algorithms:
 Analyzing the State-of-the-Art.”, Evolutionary Computation, 8(2):125-147, 2000.

[25] Horn, J., Nafpliotis, N. and Goldberg, D. E. (1994). A Niched Pareto Genetic
 Algorithm for Multiobjective Optimization. In Michalewicz, Z., editor, Proceedings
 of the First IEEE Conference on Evolutionary Computation, pp. 82–87, IEEE
 Press.

[26] Zitzler, E.: 2002, “A tutorial on evolutionary multiobjective optimization”,
 Invited Talk,Workshop on Multi-Objective Meta-Heuristics. 4–5 November 2002.

 83

[27] Fonseca, C. M. and Fleming, P. J.:“ Genetic algorithms for multiobjective
 optimization: Formulation, discussion and generalization”, in S. Forrest (ed.),
 Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan
 Kauffman Publishers, San Mateo, California, pp. 416–423, 1993.

[28] Zitzler, E. and Thiele, L.: “Multiobjective optimization using evolutionary
 algorithms - a comparative study”, in A. E. Eiben (ed.), Proceedings of the
 Parallel Problem Solving from Nature V Conference, Springer-Verlag, Berlin, pp.
 292–301, 1998.

[29] Horn, J. and Nafpliotis, N.: “Multiobjective optimization using the niched
 Pareto genetic algorithm”, IlliGAL Report 93005, University of Illinois at Urbana-
 Champaign, 1993.

[30] Corne, D. W., Jerram, N. R., Knowles, J. D. and Oates, M. J.: “PESA-II:
 Region-based selection in evolutionary multiobjective optimization”, in L.
 Spector, E.D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M.
 Dorigo, S.Pezeshk, M. H. Garzon and E. Burke (eds), Proceedings of the 2001
 Genetic and Evolutionary Computation Conference (GECCO 2001), Morgan
 Kaufmann, pp. 283–290, 2001.

[31] Corne, D. W., Knowles, J. D. and Oates, M. J.: 2000, “The Pareto envelope-
 based selection algorithm for multiobjective optimization”, in M. Schoenauer, K.
 Deb, G.Rudolph, X. Yao, E. Lutton, J. J. Merelo and H.-P. Schwefel (eds),
 Proceedings of the Parallel Problem Solving from Nature VI Conference,
 Springer-Verlag, pp. 839–848.

[32] M. Laumanns, L. Thiele, E. Zitzler, and K. Deb. “Archiving with guaranteed
 convergence and diversity in multi-objective optimization”, GECCO 2002:
 Proceedings of the Genetic and Evolutionary Computation Conference,
 pages 439-447,pp. 9-13 July 2002.

[33] Joshua D. Knowles and David W. Corne. “The Pareto Archived Evolution
 Strategy : A New Baseline Algorithm for Pareto Multiobjective Optimisation”, In
 1999 Congress on Evolutionary Computation, pages 98-105, July 1999.

[34] Zitzler E, Deb K, Thiele L, “Comparison of multiobjective evolutionary

 algorithms: empirical results”, Evolutionary Computation 8(2):173–195, 2000.

[35] Zitzler E, Deb K, Thiele L, “Combining convergence and diversity in
 evolutionary multi-objective optimization”, Evolutionary Computation
 10(3):263–282, 2002.

[36] Joshua D. Knowles, “Local-Search and Hybrid Evolutionary Algorithms for Pareto
 Optimization”, PhD Thesis, The University of Reading, Reading, UK, January
 2002.

[37] David A. Van Veldhuizen, “Multiobjective Evolutionary Algorithms:
 Classifications, Analyses, and New Innovations.”, PhD thesis, Department of
 Electrical and Computer Engineering. Graduate School of Engineering. Air Force
 Institute of Technology, May 1999.

 84

[38] Jason R. Schott, “Fault Tolerant Design Using Single and Multicriteria Genetic
 Algorithm Optimization.” Master's thesis, Department of Aeronautics and
 Astronautics, Massachusetts Institute of Technology, Cambridge, May 1995.

[39] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns and Eckart Zitzler, “Scalable
 Test Problems for Evolutionary Multi-Objective Optimization”, TIK-Report
 No.112, Computer Engineering and Networks Laboratory (TIK), Swiss Federal
 Institute of Technology (ETH), July, 2001.

[40] J.D. Schaffer, “Multiple Objective Optimization with Vector Evaluated Genetic
 Algorithms”. In J.J. Grefensttete, editor, Proc. of the First International
 Conference on Genetic Algorithms (ICGA), pages 93–100, 1987.

[41] F. Kursawe, “A Variant of Evolution Strategies for Vector Optimization.”, In H.P.
 Schwefel and R. M¨nner, editors, Parallel Problem Solving for Nature, volume
 496 of Lecture Notes in Computer Science, pages 193–197, Berlin, Germany,
 1990.

[42] Silverman, B. W. “Density estimation for statistics and data analysis.”,
 London: Chapman and Hall, 1986.

[43] GUIMOO (Graphical User Interface Multi-Objective Optimization), available at:
 <http://www.lifl.fr/OPAC/guimoo/>

[44] K. Hirschen and M. Schäfer “A Study on Evolutionary Multi-Objective
 Optimization for Flow Geometry Design Computational Mechanics”, ISSN 0178-
 7675, Vol. 37/2, pp. 131-141, 2006

[45] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb and Eckart Zitzler, “On the
 Convergence and Diversity-Preservation Properties of Multi-Objective
 Evolutionary Algorithms”, Technical Report 108, Computer Engineering and
 Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich,
 Gloriastrasse 35, CH- 8092, May 2001.

[46] Joshua D. Knowles and David W. Corne, “Approximating the Nondominated
 Front Using the Pareto Archived Evolution Strategy”, Evolutionary Computation,
 Vol no. 8(2), pp. 149-172, 2000.

[47] Reyes, M., Coello Coello, C.A. “Improving pso-based multi-objective
 optimization using crowding, mutation and epsilon-dominance”.Third
 International Conference on Evolutionary MultiCriterion Optimization, EMO 2005.

[48] P. Hajela and C. Y. Lin. “Genetic search strategies in multicriterion optimal
 design. Structural Optimization”, Vol no.4, pp. 99-107, 1992.

[49] J. David Schaffer. “Multiple Objective Optimization with Vector Evaluated
 Genetic Algorithms”. In Genetic Algorithms and their Applications: Proceedings
 of the First International Conference on Genetic Algorithms, pp. 93-100, 1985.

[50] M. P. Fourman. “Compaction of Symbolic Layout using Genetic Algorithms”, In
 Genetic Algorithms and their Applications: Proceedings of the First International
 Conference on Genetic Algorithms, pp. 141-153, 1985.

 85

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 f2

 f1

True Pareto Front Schaffer.fit
Run_Schaffer5000_10_NSGAII.fit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

 f2

 f1

True Pareto Front Schaffer.fit
Run_Schaffer7000_10_NSGAII.fit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

 f2

 f1

True Pareto Front Schaffer.fit
Run_Schaffer10000_10_NSGAII.fit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 f2

 f1

True Pareto Front Schaffer.fit
Run_Schaffer12000_10_NSGAII.fit

APPENDIX

A. Obtained Pareto fronts

Pareto front for Schaffer Test Function

NSGAII: 5000 Evaluations NSGAII: 7000 Evaluations

NSGAII: 10000 Evaluations NSGAII: 12000 Evaluations

Figure 36: Pareto Fronts for Schaffer test function

 86

B. Detailed results on Algorithm runs

Table 12: Detailed Results (SCH - 5000) NSGAII
Test Function : Schaffer
Algorithm : NSGAII
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.104905 14.7739 0.00766496 0.0227273 -0.0546837
2 0.123404 14.7977 0.00675159 0.0208333 0.197304
3 0.0495811 14.903 0.00665096 0.015625 0.218391
4 0.103515 14.7792 0.00702987 0.05 -0.456736
5 0.105848 14.8343 0.00685464 0.0222222 -0.770269
6 0.14227 14.8413 0.00770154 0.0243902 -0.792723
7 0.114779 14.7231 0.00748713 0.0263158 -0.262039
8 0.111856 14.782 0.00727949 0 0.204523
9 0.129357 14.8074 0.00608032 0.0243902 -0.403433
10 0.0830164 14.8712 0.00641005 0.0434783 -0.167129

Runs D Metric Execution

Time
1 0.00171787 2250
2 0.00197715 2172
3 0.00306365 2156
4 0.00189935 2078
5 0.00207992 2125
6 0.00199078 2141
7 0.00172418 2204
8 0.0018323 2109
9 0.00150095 2109
10 0.00233123 2172

 87

Table 13:Detailed Results (SCH - 7000) NSGAII
Test Function : Schaffer
Algorithm : NSGAII
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0793565 13.9474 0.00492845 0 1.46749
2 0.0639287 13.9845 0.00381773 0.025974 -0.256545
3 0.0501151 13.9696 0.0041551 0 0.861298
4 0.0763856 13.9266 0.00493053 0.031746 -0.464883
5 0.0671323 13.9184 0.0047593 0 0.6937
6 0.0748454 13.9684 0.0044807 0 0.608634
7 0.0640341 13.9546 0.00494904 0 0.546288
8 0.0454264 13.9986 0.00355883 0.0235294 -0.10403
9 0.0569989 13.9545 0.00439524 0 0.130811
10 0.0759256 13.9476 0.0045587 0.015625 0.337943

Runs D Metric Execution

Time
1 0.00247326 2782
2 0.00287862 2719
3 0.00295233 2734
4 0.00247822 2781
5 0.00232292 2734
6 0.00292082 2781
7 0.00289287 2703
8 0.00353321 2641
9 0.00282057 2719
10 0.00267925 3109

 88

Table 14:Detailed Results (SCH - 12000) NSGAII
Test Function : Schaffer
Algorithm : NSGAII
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0313061 13.8823 0.00247444 0 0.0440512
2 0.0321405 13.8777 0.00257278 0 0.114136
3 0.028535 13.8837 0.00227559 0 -0.00947189
4 0.0284426 13.8838 0.00218351 0 0.396809
5 0.0260134 13.8677 0.00264776 0.01 -0.0430155
6 0.0325723 13.8761 0.00236988 0.01 -0.167466
7 0.0357078 13.8815 0.00255969 0.01 -0.0624294
8 0.0450542 13.8707 0.002885 0.01 -0.0379925
9 0.0383003 13.8782 0.00255934 0.01 -0.247208
10 0.0486865 13.8618 0.00295501 0.01 0.0654964

Runs D Metric Execution

Time
1 0.00428331 4407
2 0.00422487 5125
3 0.00431454 4484
4 0.00466075 4422
5 0.00431922 4407
6 0.00444359 4453
7 0.00441698 4359
8 0.00401089 4469
9 0.0043941 4469
10 0.00414045 4500

 89

Table 15:Detailed Results (ZDT1 - 5000) NSGAII
Test Function : ZDT1
Algorithm : NSGAII
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0158019 0.948946 0.00243434 1 0.14513
2 0.0200079 0.892339 0.00335172 1 0.35619
3 0.0189391 0.926621 0.00265751 1 0.171547
4 0.0224261 0.802358 0.00478327 1 0.298509
5 0.0181124 0.920285 0.00289083 1 0.208317
6 0.014459 0.939849 0.0025885 1 0.161129
7 0.019837 0.858607 0.00375984 1 0.221731
8 0.0147809 0.873588 0.00359581 1 0.213094
9 0.0144158 0.942076 0.00255647 1 0.1637
10 0.0174093 0.892596 0.00331723 1 0.207594

Runs D Metric Execution

Time
1 0 1187
2 0 1282
3 0 1265
4 0 1234
5 0 1312
6 0 1265
7 0 1297
8 0 1250
9 0 1297
10 0 1265

 90

Table 16:Detailed Results (ZDT1 - 7000) NSGAII
Test Function : ZDT1
Algorithm : NSGAII
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.00974308 0.768028 0.00137176 1 0.0968511
2 0.0105295 0.802743 0.00101159 1 0.064281
3 0.00732323 0.786174 0.00128497 1 0.0749446
4 0.00938536 0.787434 0.0012532 1 0.0765765
5 0.0115137 0.781462 0.0013587 1 0.0962217
6 0.010372 0.785042 0.0013063 1 0.0975538
7 0.0103267 0.802795 0.00102475 1 0.0713605
8 0.0122437 0.744539 0.00187628 1 0.148626
9 0.0139857 0.77153 0.0014598 1 0.0980766
10 0.0113931 0.780065 0.00155727 1 0.10284

Runs D Metric Execution

Time
1 0 1516
2 0 1562
3 0 1735
4 0 1531
5 0 1844
6 0 1844
7 0 1640
8 0 1687
9 0 1719
10 0 1485

 91

Table 17:Detailed Results (ZDT1 - 12000) NSGAII
Test Function : ZDT1
Algorithm : NSGAII
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.00609015 0.675238 0.000282582 0.99 0.0133547
2 0.00707092 0.671509 0.000340268 0.99 0.0164732
3 0.00668261 0.675887 0.000273265 1 0.0141712
4 0.00581581 0.67534 0.000280666 1 0.0200203
5 0.00807983 0.675747 0.000273605 1 0.0101185
6 0.00640227 0.675862 0.000273179 0.99 0.0136264
7 0.00631265 0.678153 0.000242112 1 0.00842381
8 0.00661258 0.674266 0.000297946 0.98 0.0148901
9 0.00718324 0.678074 0.000243055 1 0.00922006
10 0.00639233 0.676443 0.000263701 1 0.0147195

Runs D Metric Execution

Time
1 1.24399e-007 2485
2 0 2469
3 2.17737e-007 2469
4 0 2468
5 0 2469
6 3.6084e-008 2469
7 0 2468
8 3.33241e-007 2469
9 0 2469
10 0 2485

 92

Table 18:Detailed Results (ZDT3 - 5000) NSGAII
Test Function : ZDT3
Algorithm : NSGAII
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0167772 0.937186 0.00320283 1 0.212194
2 0.017511 0.924505 0.0033245 1 0.251435
3 0.015539 1.01855 0.0023201 1 0.172574
4 0.0139827 1.00666 0.00251036 1 0.162163
5 0.016519 1.01885 0.00230655 1 0.171263
6 0.0147573 0.994052 0.00265427 1 0.184867
7 0.0120711 1.00849 0.00243881 1 0.177096
8 0.013056 1.01039 0.00243886 1 0.178482
9 0.0155704 0.96436 0.00300597 1 0.210563
10 0.0186723 1.02582 0.00224124 1 0.140058

Runs D Metric Execution

Time
1 0 1219
2 0 1172
3 0 1235
4 0 1234
5 0 1219
6 0 1250
7 0 1250
8 0 1188
9 0 1171
10 0 1188

 93

Table 19:Detailed Results (ZDT3 - 7000) NSGAII
Test Function : ZDT3
Algorithm : NSGAII
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0102501 0.910574 0.00106016 1 0.092851
2 0.0119154 0.917687 0.00101073 1 0.07583
3 0.0126303 0.904929 0.00116683 1 0.0925134
4 0.0219104 0.854473 0.00195407 1 0.143646
5 0.00904512 0.908005 0.00111688 1 0.102108
6 0.0115105 0.907227 0.00113587 1 0.0812148
7 0.00755944 0.913174 0.00106817 1 0.0769561
8 0.00833604 0.918048 0.00100195 1 0.0751218
9 0.0104571 0.919551 0.000952166 1 0.080869
10 0.00749903 0.95776 0.000501127 1 0.0385018

Runs D Metric Execution

Time
1 0 1656
2 0 1828
3 0 1625
4 0 1500
5 0 1500
6 0 1657
7 0 1500
8 0 1516
9 0 1484
10 0 1531

 94

Table 20: Detailed Results (ZDT3 - 12000) NSGAII
Test Function : ZDT3
Algorithm : NSGAII
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.00707588 0.806506 0.000208021 1 0.0157171
2 0.00704275 0.808175 0.000191218 1 0.00734723
3 0.00670964 0.808536 0.000200373 1 0.011039
4 0.00737362 0.802709 0.000215285 1 0.0115012
5 0.00786111 0.802175 0.00022383 1 0.0113726
6 0.0087414 0.807663 0.000196337 1 0.0108824
7 0.00669593 0.80193 0.000222746 1 0.0158356
8 0.00711917 0.803532 0.000209318 1 0.0116085
9 0.00750347 0.803749 0.000208472 1 0.00372046
10 0.00767231 0.808088 0.000219195 1 0.00818563

Runs D Metric Execution

Time
1 0 2485
2 0 2531
3 0 2484
4 0 2484
5 0 2484
6 0 2500
7 0 2500
8 0 2547
9 0 2484
10 0 2484

 95

Table 21:Detailed Results (SCH - 5000) NSGAII*
Test Function : Schaffer
Algorithm : NSGAII*
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0745312 14.0892 0.0048623 0.0357143 -0.57158
2 0.128458 14.0498 0.00734218 0.0181818 -0.0345402
3 0.0787597 14.008 0.0076099 0.0212766 0.747914
4 0.0680044 14.056 0.00613411 0.0357143 -0.21149
5 0.0844249 14.002 0.00660159 0 -0.0157843
6 0.0828549 14.0468 0.00674431 0 1.4067
7 0.130139 14.0396 0.00654536 0 0.212811
8 0.122523 13.9572 0.00740185 0.0465116 -0.34479
9 0.101218 14.0761 0.00502374 0.0196078 0.0799713
10 0.0859192 14.1019 0.00477164 0.0377358 -0.745261

Runs D Metric Execution

Time
1 0.00220179 9281
2 0.00247652 9297
3 0.00207723 10110
4 0.00224362 11719
5 0.00224362 11359
6 0.00173272 11421
7 0.00201354 11485
8 0.00139909 11531
9 0.00230332 12031
10 0.00222442 11703

 96

Table 22:Detailed Results (SCH - 7000) NSGAII*
Test Function : Schaffer
Algorithm : NSGAII*
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0462143 14.4068 0.00410278 0.0136986 0.175236
2 0.0609568 14.4456 0.00449622 0.0131579 -0.293289
3 0.0662255 14.4141 0.0046446 0.0142857 -0.197252
4 0.0462775 14.4094 0.00429026 0.0125 -0.0785666
5 0.0577404 14.3653 0.00520086 0.016129 -0.0885754
6 0.0576854 14.3737 0.00614926 0 -0.083519
7 0.0516139 14.4025 0.00504661 0.0142857 -0.121549
8 0.0620705 14.3734 0.0054223 0 0.0630369
9 0.0519733 14.4065 0.00463444 0 0.539424
10 0.0743043 14.4365 0.00434683 0.0246914 -0.354676

Runs D Metric Execution

Time
1 0.00290559 12531
2 0.00301749 14094
3 0.0029318 15578
4 0.00296446 17328
5 0.00268319 26641
6 0.00263613 17797
7 0.00239241 19453
8 0.00232195 19093
9 0.00263086 18937
10 0.00347107 18891

 97

Table 23: Detailed Results (SCH - 12000) NSGAII*
Test Function : Schaffer
Algorithm : NSGAII*
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.061509 13.7597 0.00351299 0 0.283363
2 0.0482078 13.7466 0.00343338 0.01 -0.0896702
3 0.0770399 13.7665 0.0045945 0.001 -0.140594
4 0.0771029 13.7648 0.00448271 0.02 0.207424
5 0.0707345 13.7589 0.00378852 0.01 0.408991
6 0.0568463 13.764 0.00330388 0 0.0987568
7 0.050804 13.7444 0.00372053 0.01 -0.101853
8 0.0631941 13.7454 0.00377066 0.01 -0.0464067
9 0.0676344 13.7449 0.00407051 0.01 -0.464457
10 0.0479887 13.7597 0.00271907 0.01 0.0161972

Runs D Metric Execution

Time
1 0.00452139 19344
2 0.00405282 23125
3 0.00436539 32125
4 0.0047852 34188
5 0.00448036 34859
6 0.00450744 33297
7 0.00450212 32984
8 0.00426538 33672
9 0.00390946 34703
10 0.00420653 33188

 98

Table 24: Detailed Results (ZDT1 - 5000) NSGAII*
Test Function : ZDT1
Algorithm : NSGAII*
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0213005 0.900051 0.0045078 1 0.288017
2 0.0232447 0.941774 0.00396193 1 0.297854
3 0.0274935 0.869505 0.00493183 1 0.290331
4 0.0241169 0.84305 0.00546781 1 0.31424
5 0.0193843 0.929929 0.00403534 1 0.255859
6 0.0176238 0.923815 0.00421553 1 0.30569
7 0.0302852 0.907269 0.00437182 1 0.281049
8 0.0175668 0.931419 0.00398479 1 0.236594
9 0.0261132 0.900956 0.00452958 1 0.334171
10 0.0177965 0.96492 0.00361584 1 0.21337

Runs D Metric Execution

Time
1 0 1187
2 0 1141
3 0 1172
4 0 1187
5 0 1172
6 0 1406
7 0 1156
8 0 1156
9 0 1156
10 0 1188

 99

Table 25:Detailed Results (ZDT1- 7000) NSGAII*
Test Function : ZDT1
Algorithm : NSGAII*
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.01503 0.784044 0.00159946 1 0.0954626
2 0.00993597 0.80346 0.00133421 1 0.0888442
3 0.0137079 0.764767 0.00189791 1 0.128646
4 0.014192 0.719903 0.00259483 1 0.154019
5 0.0152287 0.808596 0.00124948 1 0.0701497
6 0.0129178 0.766742 0.0018799 1 0.159818
7 0.011847 0.759259 0.00197522 1 0.136495
8 0.0136244 0.787402 0.00151608 1 0.0931162
9 0.0086012 0.780182 0.00166928 1 0.098121
10 0.00813085 0.813097 0.00119937 1 0.082123

Runs D Metric Execution

Time
1 0 1718
2 0 1750
3 0 1672
4 0 1938
5 0 1765
6 0 1703
7 0 1719
8 0 1672
9 0 1703
10 0 1782

 100

Table 26: Detailed Results (ZDT1- 12000) NSGAII*
Test Function : ZDT1
Algorithm : NSGAII*
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.00707532 0.688378 0.000305681 1 0.0203528
2 0.00730712 0.680285 0.00042288 1 0.0187378
3 0.00866543 0.68899 0.000289497 1 0.0103549
4 0.00896427 0.686255 0.000336969 1 0.0134582
5 0.00918807 0.686881 0.000321839 1 0.0123579
6 0.00815082 0.684295 0.000360295 1 0.018665
7 0.00808879 0.689308 0.000293941 1 0.0124542
8 0.00859897 0.681176 0.000405972 1 0.0222313
9 0.0070907 0.690487 0.000279114 1 0.00741076
10 0.00857144 0.688229 0.000300089 0.99 0.0119825

Runs D Metric Execution

Time
1 0 3500
2 0 3640
3 0 3688
4 0 3547
5 0 3531
6 0 3484
7 0 3875
8 0 3437
9 9.30431e-007 3531
10 0 3500

 101

Table 27: Detail Results (ZDT3 - 5000) NSGAII*
Test Function : ZDT3
Algorithm : NSGAII*
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0190038 0.950226 0 1 0.308099
2 0.0121969 0.993583 0.0050702 1 0.255438
3 0.0121218 1.03031 0.0125625 1 0.255645
4 0.0170949 1.12317 0.0133915 1 0.170667
5 0.0215041 0.981719 0.0112446 1 0.289643
6 0.0222327 0.983505 0.0052517 1 0.253188
7 0.0139222 1.04932 0.0129204 1 0.242768
8 0.0161655 1.00541 0.00504821 1 0.265786
9 0.0245642 1.0571 0.00723334 1 0.226423
10 0.0144339 1.00804 0.00627098 1 0.26285

Runs D Metric Execution

Time
1 0 1547
2 0 1234
3 0 1234
4 0 1234
5 0 1234
6 0 1219
7 0 1250
8 0 1235
9 0 1235
10 0 1203

 102

Table 28: Detail Results (ZDT3- 7000) NSGAII*
Test Function : ZDT3
Algorithm : NSGAII*
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0166542 0.883421 0.0018585 1 0.155383
2 0.0121641 0.883945 0.00189823 1 0.144119
3 0.0132729 0.892794 0.00175246 1 0.126819
4 0.00902107 0.913015 0.0014939 1 0.101395
5 0.0142743 0.878422 0.00193849 1 0.144092
6 0.00923166 0.966835 0.000813139 1 0.0656416
7 0.0117386 0.938879 0.00118266 1 0.0814288
8 0.0115328 0.894214 0.00175569 1 0.130163
9 0.0084745 0.936747 0.00120245 1 0.087173
10 0.0133798 0.865063 0.00211941 1 0.172974

Runs D Metric Execution

Time
1 0 1829
2 0 1797
3 0 1844
4 0 1828
5 0 1813
6 0 2203
7 0 1828
8 0 1828
9 0 1828
10 0 1812

 103

Table 29: Detail Results (ZDT3- 12000) NSGAII*
Test Function : ZDT3
Algorithm : NSGAII*
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0084487 0.803476 0.000251508 1 0.00830966
2 0.00574161 0.798377 0.000267878 1 0.0146495
3 0.00795096 0.803722 0.000216081 1 0.00912201
4 0.00611749 0.802025 0.000245702 1 0.0125332
5 0.00770546 0.795912 0.000329541 1 0.0149168
6 0.00751448 0.794361 0.000332832 1 0.0188774
7 0.00812976 0.791997 0.000316306 1 0.0206831
8 0.00665044 0.801986 0.000226437 1 0.0121536
9 0.00534519 0.797187 0.000275848 1 0.0208377
10 0.00760576 0.79799 0.000265293 1 0.0150829

Runs D Metric Execution

Time
1 0 3625
2 0 3688
3 0 3968
4 0 3672
5 0 3641
6 0 3609
7 0 3609
8 0 3641
9 0 3937
10 0 3562

 104

Table 30: Detail Results (SCH - 5000) SPEA 2
Test Function : Schaffer
Algorithm : SPEA 2
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.116793 14.2686 0.00676068 0.0392157 -0.581295
2 0.102299 14.2866 0.00544966 0.0377358 -0.19869
3 0.101131 14.257 0.00667089 0.0212766 -0.651938
4 0.108457 14.1911 0.00911255 0.025 -0.420989
5 0.105932 14.2456 0.00746688 0.0208333 -0.0731812
6 0.112966 14.2937 0.00560185 0.0217391 -0.0504303
7 0.101588 14.2548 0.00633232 0.0196078 0.324505
8 0.0884626 14.2609 0.00715907 0.0192308 -0.0590315
9 0.0744838 14.1668 0.00815725 0.0227273 0.0252295
10 0.0928174 14.2307 0.0077131 0.05 -0.560721

Runs D Metric Execution

Time
1 0.00229137 1984
2 0.00183601 1922
3 0.00194363 1968
4 0.00147822 1984
5 0.00201182 1938
6 0.00173411 1984
7 0.00193964 2000
8 0.00203899 1906
9 0.00180052 1984
10 0.00127214 1984

 105

Table 31: Detail Results (SCH - 7000) SPEA 2
Test Function : Schaffer
Algorithm : SPEA 2
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0944126 14.3195 0.00588534 0.0181818 -0.652608
2 0.0572939 14.3416 0.00423929 0.0140845 0.198803
3 0.062646 14.3136 0.00558612 0.030303 -0.45076
4 0.0502236 14.321 0.00495588 0.028169 -0.328092
5 0.0503809 14.3919 0.00392023 0 0.463263
6 0.0517618 14.3726 0.00538223 0 0.266912
7 0.0456268 14.3683 0.00547603 0.027027 -0.625355
8 0.0831178 14.3415 0.00510385 0.0350877 -0.19222
9 0.0603361 14.3738 0.00406458 0.0285714 -0.408814
10 0.0656036 14.3723 0.00403155 0.0147059 0.132903

Runs D Metric Execution

Time
1 0.00268358 2735
2 0.00281045 2734
3 0.00253911 2718
4 0.00292966 2734
5 0.00321084 2797
6 0.00317874 2734
7 0.002951 2735
8 0.00221091 2719
9 0.00303325 2735
10 0.00269197 2735

 106

Table 32: Detail Results (SCH - 12000) SPEA 2
Test Function : Schaffer
Algorithm : SPEA 2
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0251085 13.7239 0.0025004 0.02 -0.12824
2 0.0369027 13.7118 0.0026001 0 0.172418
3 0.0278823 13.719 0.002624 0 -0.025425
4 0.0381341 13.7174 0.00255852 0.01 -0.15643
5 0.0349253 13.7323 0.00208738 0.01 0.0376768
6 0.0323894 13.7252 0.00232715 0.01 -0.330261
7 0.0264353 13.731 0.00223852 0.01 -0.00123024
8 0.0340224 13.714 0.00322549 0.02 -0.170024
9 0.0283978 13.7183 0.00242086 0.01 -0.0817719
10 0.0334932 13.7173 0.0028649 0.01 0.0832148

Runs D Metric Execution

Time
1 0.00387698 5047
2 0.00446847 4890
3 0.00470302 5156
4 0.00415946 5032
5 0.00416654 4906
6 0.00441768 5000
7 0.00418099 5141
8 0.00438553 4891
9 0.00425373 5125
10 0.00453552 4937

 107

Table 33: Detail Results (ZDT1 - 5000) SPEA 2
Test Function : ZDT1
Algorithm : SPEA 2
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0437705 1.00671 0.00447802 1 0.296132
2 0.028415 1.04558 0.00380171 1 0.282034
3 0.0210605 0.97961 0.00458859 1 0.275797
4 0.0183806 1.01256 0.00427008 1 0.264921
5 0.0226931 0.989598 0.00462164 1 0.303142
6 0.0201444 0.981096 0.00480402 1 0.28175
7 0.0311652 1.00158 0.00478962 1 0.409546
8 0.0239255 1.01132 0.00454334 1 0.403623
9 0.0337713 0.983102 0.00477387 1 0.360079
10 0.02218 1.10006 0.00284769 1 0.217936

Runs D Metric Execution

Time
1 0 2343
2 0 2343
3 0 2328
4 0 2343
5 0 2407
6 0 2344
7 0 2359
8 0 2344
9 0 2359
10 0 2406

 108

Table 34: Detail Results (ZDT1 - 7000) SPEA 2
Test Function : ZDT1
Algorithm : SPEA 2
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0205802 0.894147 0.00288223 1 0.204401
2 0.0122221 0.951118 0.00206945 1 0.197386
3 0.0132753 0.982718 0.0016682 1 0.193981
4 0.0140367 0.974075 0.00178486 1 0.216331
5 0.0231072 0.920961 0.00239455 1 0.180584
6 0.0138332 0.959957 0.00193944 1 0.186482
7 0.0157789 0.922267 0.00251142 1 0.210527
8 0.0118067 0.944897 0.00238319 1 0.282956
9 0.0144647 0.938938 0.00219139 1 0.169401
10 0.0185416 0.913132 0.00261089 1 0.197386

Runs D Metric Execution

Time
1 0 3329
2 0 3297
3 0 3344
4 0 3297
5 0 3344
6 0 3281
7 0 3343
8 0 3313
9 0 3437
10 0 3312

 109

Table 35: Detail Results (ZDT1 - 12000) SPEA 2
Test Function : ZDT1
Algorithm : SPEA 2
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.00403858 0.718849 0.000379719 1 0.0357524
2 0.00462824 0.720535 0.000354129 1 0.0207268
3 0.0048509 0.715096 0.000434961 1 0.0286587
4 0.00505082 0.719818 0.000363698 1 0.0282276
5 0.00638048 0.713568 0.000455372 1 0.0376999
6 0.00541078 0.710018 0.000508522 1 0.0500253
7 0.00510555 0.720106 0.000354286 1 0.0171999
8 0.00518839 0.71844 0.000381715 1 0.0182736
9 0.00541347 0.714382 0.00043984 1 0.0238366
10 0.00422484 0.718951 0.000373115 1 0.0197532

Runs D Metric Execution

Time
1 0 6734
2 0 6782
3 0 6797
4 0 7234
5 0 6781
6 0 6609
7 0 6812
8 0 6547
9 0 6610
10 0 6828

 110

Table 36: Detail Results (ZDT3 - 5000) SPEA 2
Test Function : ZDT3
Algorithm : SPEA 2
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0246232 1.18986 0.00392201 1 0.27558
2 0.0170117 1.24303 0.00342185 1 0.233451
3 0.0192198 1.25198 0.00323731 1 0.235824
4 0.019235 1.22105 0.00359773 1 0.279935
5 0.0207529 1.27944 0.0030214 1 0.228549
6 0.0140933 1.2396 0.00536689 1 0.593699
7 0.0424615 1.25501 0.00334453 1 0.229279
8 0.0257008 1.24674 0.00321468 1 0.227757
9 0.0155616 1.25303 0.0032287 1 0.221539
10 0.0159103 1.25194 0.00322089 1 0.241709

Runs D Metric Execution

Time
1 0 2360
2 0 2406
3 0 2344
4 0 2344
5 0 2344
6 0 2359
7 0 2344
8 0 2407
9 0 2359
10 0 2344

 111

Table 37: Detail Results (ZDT3 - 7000) SPEA 2
Test Function : ZDT3
Algorithm : SPEA 2
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.0140404 1.03362 0.00108192 1 0.0872904
2 0.0133935 0.984692 0.00174249 1 0.127757
3 0.0115782 1.03562 0.00103178 1 0.0942835
4 0.0108595 0.991001 0.00164605 1 0.12276
5 0.011635 0.899186 0.00260891 1 0.209713
6 0.0180954 0.958617 0.00201543 1 0.157353
7 0.0159193 0.952468 0.00214844 1 0.14529
8 0.0124187 0.939585 0.00228078 1 0.16662
9 0.0128448 0.978896 0.00183845 1 0.131176
10 0.0126806 0.95304 0.00212512 1 0.147487

Runs D Metric Execution

Time
1 0 3344
2 0 3344
3 0 3422
4 0 3297
5 0 3390
6 0 3359
7 0 3297
8 0 3344
9 0 3297
10 0 3329

 112

Table 38: Detail Results (ZDT3 - 12000) SPEA 2
Test Function : ZDT3
Algorithm : SPEA 2
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 0.00582075 0.825452 0.000291234 1 0.0235764
2 0.00689939 0.827478 0.000294602 1 0.0248355
3 0.00535329 0.82449 0.000303431 1 0.0285415
4 0.00580876 0.822844 0.000324582 1 0.0290183
5 0.00630802 0.821375 0.000342136 1 0.0309091
6 0.00560296 0.828474 0.000273501 1 0.0201061
7 0.00463634 0.827646 0.000277388 1 0.0236099
8 0.00500282 0.832328 0.000256674 1 0.0206808
9 0.00614415 0.83152 0.000264657 1 0.0190905
10 0.00468227 0.820784 0.000335294 1 0.0239441

Runs D Metric Execution

Time
1 0 6907
2 0 7062
3 0 7500
4 0 7031
5 0 6828
6 0 7297
7 0 7094
8 0 6812
9 0 6906
10 0 7078

 113

Table 39: Detail Results (SCH - 5000) SPEA 2*
Test Function : Schaffer
Algorithm : SPEA 2*
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 2.98092 74.5917 0.0907294 0.333333 -23.5602
2 0 9.38501 0.452532 1 -31.939
3 1.0204 76.5101 0.0845583 0.0833333 12.0409
4 3.65446 71.2795 0.118141 0.5 -22.2403
5 0 0 0.495977 1 -38.1212
6 3.40208 73.8847 0.0958613 0.25 17.2947
7 0 68.7544 0.124789 0.5 24.2354
8 0.343925 79.6865 0.0512265 0 10.4234
9 0.332712 77.8671 0.0668402 0 11.6448
10 0.456301 78.5934 0.0655361 0.142857 9.54765

Runs D Metric Execution

Time
1 0.000276087 4422
2 0 4359
3 0.000767394 4422
4 0.000141417 4422
5 0 4359
6 0.000257327 4422
7 9.85647e-

005
4407

8 0.000637565 4359
9 0.000327574 4438
10 0.000297652 4421

 114

Table 40: Detail Results (SCH - 7000) SPEA 2*
Test Function : Schaffer
Algorithm : SPEA 2*
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 4.23985 81.4628 0.124055 0.333333 17.4849
2 4.13388 80.1746 0.11682 0.2 17.1988
3 2.41216 83.1411 0.106527 0.111111 20.6213
4 1.68216 89.3874 0.0700265 0.0909091 1.53135
5 0.605503 87.0542 0.0794611 0 12.1146
6 4.47206 78.2228 0.129111 0.5 -21.6284
7 3.17088 86.1351 0.0927838 0.333333 -0.055274
8 0 72.6429 0.149983 0.5 25.4111
9 0.560596 82.9369 0.101825 0 12.6019
10 0.411973 87.2517 0.0926399 0.0833333 11.9123

Runs D Metric Execution

Time
1 2.80313e-

005
6188

2 0.000295998 6250
3 0.000516919 6172
4 0.00051366 6235
5 0.00022422 6187
6 0.000141733 6172
7 0.000155687 6218
8 3.81067e-

005
6172

9 0.000290647 6250
10 0.000607382 6172

 115

Table 41: Detail Results (SCH - 12000) SPEA 2*
Test Function : Schaffer
Algorithm : SPEA 2*
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 1.15235 86.1171 0.0647858 0.0714286 4.34636
2 0.181473 86.0094 0.0619549 0 10.245
3 4.17356 76.2854 0.122 0.4 -30.4027
4 2.12027 84.5233 0.0734171 0.142857 2.13573
5 1.699 85.9097 0.066907 0.4 -13.6947
6 5.75853 72.6928 0.137502 0.333333 9.21077
7 0.37225 80.5793 0.0974024 0 12.9799
8 0.610456 87.0451 0.0517299 0 9.70435
9 0.10341 81.6498 0.093429 0 12.8986
10 2.52515 82.485 0.0978221 0.222222 -13.9786

Runs D Metric Execution

Time
1 0.000885309 11328
2 0.00016904 11265
3 0.000102575 11750
4 0.000334209 11250
5 0.000192368 11407
6 6.62638e-

005
11063

7 0.000222309 11031
8 0.000247266 10968
9 0.000830338 10907
10 0.000465406 11188

 116

Table 42: Detail Results (SCH - 5000) SPEA 2*
Test Function : Schaffer
Algorithm : SPEA 2*
Maximum Evaluations : 5000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 2.98092 74.5917 0.0907294 0.333333 -23.5602
2 0 9.38501 0.452532 1 -31.939
3 1.0204 76.5101 0.0845583 0.0833333 12.0409
4 3.65446 71.2795 0.118141 0.5 -22.2403
5 0 0 0.495977 1 -38.1212
6 3.40208 73.8847 0.0958613 0.25 17.2947
7 0 68.7544 0.124789 0.5 24.2354
8 0.343925 79.6865 0.0512265 0 10.4234
9 0.332712 77.8671 0.0668402 0 11.6448
10 0.456301 78.5934 0.0655361 0.142857 9.54765

Runs D Metric Execution

Time
1 0.000276087 4422
2 0 4359
3 0.000767394 4422
4 0.000141417 4422
5 0 4359
6 0.000257327 4422
7 9.85647e-

005
4407

8 0.000637565 4359
9 0.000327574 4438
10 0.000297652 4421

 117

Table 43: Detail Results (SCH - 7000) SPEA 2*
Test Function : Schaffer
Algorithm : SPEA 2*
Maximum Evaluations : 7000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 4.23985 81.4628 0.124055 0.333333 17.4849
2 4.13388 80.1746 0.11682 0.2 17.1988
3 2.41216 83.1411 0.106527 0.111111 20.6213
4 1.68216 89.3874 0.0700265 0.0909091 1.53135
5 0.605503 87.0542 0.0794611 0 12.1146
6 4.47206 78.2228 0.129111 0.5 -21.6284
7 3.17088 86.1351 0.0927838 0.333333 -0.055274
8 0 72.6429 0.149983 0.5 25.4111
9 0.560596 82.9369 0.101825 0 12.6019
10 0.411973 87.2517 0.0926399 0.0833333 11.9123

Runs D Metric Execution

Time
1 2.80313e-

005
6188

2 0.000295998 6250
3 0.000516919 6172
4 0.00051366 6235
5 0.00022422 6187
6 0.000141733 6172
7 0.000155687 6218
8 3.81067e-

005
6172

9 0.000290647 6250
10 0.000607382 6172

 118

Table 44: Detail Results (SCH - 12000) SPEA 2*
Test Function : Schaffer
Algorithm : SPEA 2*
Maximum Evaluations : 12000

Runs Spacing S Metric Generational

Distance
Coverage Coverage

Difference
1 1.15235 86.1171 0.0647858 0.0714286 4.34636
2 0.181473 86.0094 0.0619549 0 10.245
3 4.17356 76.2854 0.122 0.4 -30.4027
4 2.12027 84.5233 0.0734171 0.142857 2.13573
5 1.699 85.9097 0.066907 0.4 -13.6947
6 5.75853 72.6928 0.137502 0.333333 9.21077
7 0.37225 80.5793 0.0974024 0 12.9799
8 0.610456 87.0451 0.0517299 0 9.70435
9 0.10341 81.6498 0.093429 0 12.8986
10 2.52515 82.485 0.0978221 0.222222 -13.9786

Runs D Metric Execution

Time
1 0.000885309 11328
2 0.00016904 11265
3 0.000102575 11750
4 0.000334209 11250
5 0.000192368 11407
6 6.62638e-

005
11063

7 0.000222309 11031
8 0.000247266 10968
9 0.000830338 10907
10 0.000465406 11188

 119

C. List of Acronyms

DTLZ Deb Laumanns Thiele Zitzler
EA Evolutionary Algorithm
FON Fonseca
KUR Kursawe
MOEA Multi Objective Evolutionary Algorithm
MOP Multi Objective Optimization Problem
M-OPT Multi-objective Optimization Problems Toolbox
NSGA Non Dominated Sorting Genetic Algorithm
PAES Pareto Archived Evolutionary Strategy
POF Pareto Optimal Front
PSO Particle Swarm Optimization
SBX Simulated Binary Crossover
SCH Schaffer
SPEA Strength Pareto Evolutionary Algorithm
ZDT Zitzler Deb Thiele

 120

D. M-OPT Screenshots

Figure 37: M-OPT Screen1

Figure 38: M-OPT Screen2

