
 
 
 
 

A COMPARATIVE STUDY OF DIVERSITY 
PRESERVATION TECHNIQUES IN MULTIOBJECTIVE 

EVOLUTIONARY ALGORITHMS 

 

 

 

 

 

Arun Anand Sadanandan 

 

Thesis submitted to the University of Nottingham  

for the degree of Master of Philosophy 

 

 

August 2007 



 i

Abstract 

 
 
Most real world applications found in today’s world necessitate dealing with certain 

common issues. These competing, often conflicting problems have kept researchers 

around the globe inquisitive and interested over the years and continue to do so, 

attributing to several open questions in the area. These problems, which deal with 

two or more objectives and invariably, involve large and complex search spaces, are 

referred to as multi-objective optimization problems (MOP’s). Although several 

traditional methods has been put forth and tested, evolutionary algorithms is being 

reckoned to be one of the approaches that provide efficient and effective solutions to 

these challenging problems, mainly because of its ability to deal with problems that 

are multi-objective in nature. These algorithms are, naturally termed as multi-

objective evolutionary algorithms.  

 

Evolutionary algorithms are classified into three major forms: Genetic Algorithms 

(GA), Evolutionary programming (EP) and Evolutionary strategies (ES). Owing to the 

popularity of this area of research, several new approaches based on evolutionary 

techniques has evolved over the years. Additionally, many successful attempts 

towards improvement of these existing methods have emerged too. Moreover, other 

nature inspired approaches like particle swarm optimization and immune systems are 

widely researched as well. This thesis attempts to summarize and classify 

information on these biological inspired approaches, highlighting the importance of 

analyzing the research techniques followed by them thereby motivating researchers 

to come up with novel ideas for exploiting the search capabilities of these algorithms. 

A comparative analysis and study of the main algorithms are also provided based on 

diversity measures, along with their advantages and disadvantages and application 

areas. New approaches are proposed through hybridization methods on diversity 

techniques in multi-objective algorithms. A software toolbox for MOEAs is also 

developed. Finally, future development in this area and potential path for further 

research is addressed. 
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Chapter 1 

Introduction   
 
This work aspires to make a thorough comparative analysis and study of nature 

inspired algorithms such as evolutionary algorithms, particle swarm optimization, 

artificial immune systems etc. in the context of multi-objective optimization problems. 

Furthermore two new methodologies are suggested by making use of hybridization 

techniques. This section introduces an overview of multi-objective optimization 

problems, brief introduction to the nature inspired algorithms studied in this thesis, 

problem definition, research goals and methodology, and structure of the thesis in 

general. 

 

1.1 Multi-objective Optimization Problems (MOP) 
 
Most problems in nature require managing several objectives which are mostly 

independent of each other. Consider a simple case of designing an automobile; the 

general objectives should be to minimize factors like cost and weight while 

maximizing performance, fuel efficiency or the like. Problems with more than one 

objective (often conflicting, as in the previous example) are commonly referred to as 

multi-objective optimization problems and are encountered in many real world 

applications, be it nature, science or business. 

 

1.1.2 MOP Definition 
 

Multi-objective optimization (also called multi-criteria optimization, multi-

performance or vector optimization) can be defined as the problem of finding [16]: 

      

a vector of decision variables which satisfies constraints and optimizes a 

vector function whose elements represent the objective functions. These 

functions form a mathematical description of performance criteria which are 

usually in conflict with each other. Hence, the term “optimize” means 

finding such a solution which would give the values of all the objective 

functions acceptable to the designer.    
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Formally it is stated as follows [16]: 

 

Find the vector x* = [x*1, x*2,…….,x*n]T  which will satisfy the m inequality 

constraints: 

  gi(x) ≥ 0     i = 1,2,….,m                                                             (1) 

the p equality constraints 

  hi(x) ≥ 0     i = 1,2,….,p                                                              (2) 

and optimizes the vector function  

  f(x) =[f1(x),f2(x),….,fk(x)]T           (3) 

 

where x = [x1,x2,….,xn]T is the vector of decision variables. 

 

In other words the aim is to determine from among the set F of all the numbers 

which satisfy (1) and (2) the particular set x*1, x*2,…….,x*n which yields the optimum 

values of all the objective functions. 

Thus the general form of a constrained multi-objective optimization problem is as 

follows: 

Without loss of generality, in the case of a minimization problem to minimize means 

[17] 

1) all objective functions are simultaneously minimized  

2) the objectives are at least partly conflicting with each other, and 

3) there does not exist any single solution that is optimal with respect to every 

objective function. 

As is often the case with multi-objective optimization problems, there is no single 

optimal point or solution. Conflicting objectives demand a set of solutions which are 

essentially “tradeoff” solutions. These are referred to as Pareto Optimal Solutions 

and are the desired solution set of the MOPs.  

We say that a vector of decision variables x* Є F is Pareto optimal if there does not 

exist another x Є F such that fi(x) ≤ fi(x*) for all i = 1,…,k and fj(x) < fj(x*) for at 

least one j [16]. 

In words this definition [16] says that x * is Pareto Optimal if there exists no feasible 

vector of decision variables x Є F which would decrease some criterion without a 

simultaneous increase in at least another criterion. The vectors x* corresponding to 

the solutions included in the Pareto optimal set are called non-dominated. The plot of 
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the objective functions whose non-dominated vectors are in the Pareto optimal set is 

called the Pareto front. 

A point x* Є F is a weakly non-dominated solution if there is no x Є F such that 

fi(x) < fi(x*), for i = 1, . . . , n. 

A point x* Є F is a strongly non-dominated solution if there is no x Є F such that  

fi(x) ≤ fi(x*), for i = 1, . . . , n and for at least one value of i, fi(x) < fi(x*). 

Thus, if x* is strongly non-dominated, it is also weakly non-dominated; but the 

converse is not necessarily true[9]. As explained in [9], Non-dominated solutions for 

the bi-objective case can readily be represented graphically by passing into the 

objective function space {f1(x), f2(x)}. The so-called minimal curve corresponds to 

the locus of strongly non-dominated points, and the weakly minimal curve to the 

locus of weakly non-dominated points [9]. These two curves are sketched in Figure 1 

for a simple bi-objective problem [9]. 

 
 
 
f2(x) 
 

                  Strongly 
                  Minimal  
    Curve 
 
 
 

 

                               
                   Weakly Minimal Curve 

       
                      f1(x)   
Figure 1: Weakly and strongly non-dominated curves on the bi-objective case 

(Source: Coello [9]).                   
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1.2 Evolutionary Algorithms  

The ever increasing need of effective solutions for multi-objective problems has 

focused the attention on various evolutionary methods over time. The main reason 

for preferring these approaches is the fact that multi-objective problems have to deal 

with a population of solutions as opposed to the single objective problem wherein the 

idea is to obtain a single solution as result. Evolutionary algorithms are proven to be 

an ideal technique in working with a population of solutions with the ability to come 

up with multiple solutions in a single simulation run. Consequently a number of 

approaches based on EAs have emerged [3], [4], [5], [6], [7], [8]. Evolutionary 

algorithms are heuristic search techniques that adopt a selection mechanism inspired 

on the survival of the fittest principle from Charles Darwin’s evolutionary theory. 

 

Ever since Schaffer (1984) [49] came up with research work in multi-objective 

genetic algorithms, active and persistent research has been performed in the field 

followed by Fourman (1985) [50], and Goldberg (1989) [20] whose study of non 

dominated genetic algorithm has played a pivotal role in further advancement in this 

field. A number of different EA implementations were proposed in the years 1991-

2002 (Kursawe 1991 [41], Hajela and Lin 1992 [48]; Horn, Nafpliotis, and Goldberg 

1994 [8]; Srinivas and Deb 1995 [4], E. Zitzler and L. Thiele 1999, K. Deb, A. Pratap, 

S. Agarwal, and T. Meyarivan 2002 [5], E. Zitzler, M. Laumanns, and L. Thiele 2002 

[6]). 

 

The primary goal of every multi-objective evolutionary algorithm is to obtain a 

solution set that is as close as possible to the Pareto front much often called the true 

Pareto front. Although the true Pareto front is a hypothetic set of values most of the 

time and will be unknown in many real world scenarios, researchers make use of 

various standardized test methodology and performance metrics to evaluate the 

success of a Pareto front obtained in algorithm runs[10], [11]. In recent years, 

researchers have investigated particular topics of evolutionary multi-objective search, 

such as convergence to the Pareto-optimal front, divergence, niching, and elitism 

which are integral elements to be considered in modern evolutionary multi-objective 

approaches. 
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1.3 Particle Swarm Optimization (PSO) 
 
1.3.1 Overview 

A relatively new optimization technique by J. Kennedy and R. Eberhart (1995) is yet 

another method based on a biological approach [12].  Introduced as a method to 

facilitate single objective optimization, PSO is fast gaining popularity in solving multi-

objective problems as well. Particle Swarm Optimization is a swarm intelligence 

method that models social behavior to guide swarms of particles towards the most 

promising regions of the search space [12]. Like evolutionary approaches PSO also 

maintains a population of solutions and individuals are represented using binary or 

floating point encoding similar to Evolutionary Strategies. 

 

 In PSO, the population dynamics simulate the behavior of “bird’s flock”, where social 

sharing of information takes place and individuals profit from the discoveries of 

previous experience of all other companions during the search of food [13]. The 

companions denoted as particles perform search in the population or swarm, for 

efficient results. The members of the population adjust their positions or parameters 

during the optimization run based on their previous experiences as well as the flying 

experiences of other members of the flock. i.e. the best evaluated individual found so 

far by the optimization process called gbest and the best evaluated individual found 

previously by the same individual denoted as pbest. A local individual may be 

selected for each swarm member, however these lbest individuals may all also be 

non-dominated (representing local areas of the estimated Pareto front maintained by 

the swarm), making them all also gbest [14].  

 

1.3.2 PSO Definition 

To define the operation of a PSO a fixed population of solutions is used, where each 

solution (or particle) is represented by a point in N-dimensional space. The ith particle 

is commonly represented [13], [14], [15] as Xi = (xi1, xi2,….., xiiN), and its 

performance evaluated on the given problem and stored. Each particle maintains 

knowledge of its best previous evaluated position, represented as Pi = (pi1, 

pi2…….,piN ), and also has knowledge of the single global best solution found so far, in 

the traditional uni-objective application indexed by g. The rate of position change of 

a particle then depends upon its previous local best position and the global best, and 
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its previous velocity. For particle i this velocity is Vi = (vi1, vi2,…….., viN). Hence the 

velocities of particles are determined as: 

 

Vi,j = w vi,j + c1r1(pi,j – xi,j) + c2r2(pg,j – xi,j)                                                          

(4) 

 

  xi,j = xi,j + Xvi,j,            j = 1,….,N                                                                       

(5)  

 

 

where w, c1, c2, X ≥ 0.w is the inertia weight of a particle, c1 and c2 are constraints on 

the velocity toward global and local best, X is a constraint on the overall shift in 

position, r1, r2 are random numbers within the range [0,1]. 

 

[13] states that Equation (4) determines the ith particle's new velocity as a function 

of three terms: the particle's previous velocity; the distance between the best 

previous position of the particle and its current position, and finally; the distance 

between the swarm's best experience (the position of the best particle in the swarm) 

and the ith particle's current position. Then, according to Equation (2), the ith particle 

“flies” towards a new position. In general, the performance of each particle is 

measured according to a fitness function, which is problem-dependent [13]. 

 

1.4 Research Problem and Objectives 

With multi-objective evolutionary algorithms being a rapidly evolving field of 

research with new methodologies being introduced, several optimization techniques 

found for improvement of these approaches, considerable number of research 

publications released in regular intervals, the need for an updated analytical work is 

essential. Recently, lot of focus in this field of research has been on improvement of 

techniques used in MOEA’s mainly convergence and diversity. Achieving these would 

be the fundamental goals of any MOEA design; minimizing the distance of the 

generated solutions to the Pareto front (convergence) and maximizing the spread of 

the achieved Pareto set approximation (diversity). Diversity plays a crucial part in 

producing successful results because it ensures effective search in the most of the 

areas of the objective space, thereby avoiding the problem of potentially good 
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solutions being ignored, as well as providing the decision maker with efficient set of 

solutions.  

 

Traditionally, diversity was achieved through fitness sharing mechanisms suggested 

by Goldberg [19], [20]. But modern MOEAs are benefited by the use of several 

archive-updation procedures in achieving this goal. In this thesis we perform a study 

into these diversity preservation methods used in Non Dominated Sorting Genetic 

Algorithm (NSGA II), Pareto Archived Evolutionary Strategies (PAES), Strength 

Pareto Evolutionary Algorithm (SPEA 2) and Pareto Potential Regions Evolutionary 

Algorithm (PPREA). By doing this, improved versions of NSGA II and SPEA2 are 

implemented using hybridization methods. This is achieved by using alternate 

diversity measures on these algorithms. The improved versions are tested using 

standardized test functions and performance metrics and evaluated. This being the 

primary motivation of the thesis, it is also intended to provide detailed comparative 

analysis of several MOEAs. A multi-objective optimization toolbox is also designed in 

this work. 

 

Thus the research goals are broadly classified into three stages: 

 

1. A comprehensive comparative analysis of biologically inspired algorithms, in 

terms of features such as convergence and diversity, and arrive at a 

conclusion on the efficiency and effectiveness of these. Diversity techniques 

are given more importance in doing so.  

2. Based on diversity handling techniques, introduce hybridization methods for 

MOEAs and perform thorough and accurate analysis and performance 

comparison based on test problems and performance metrics. 

3. Design and develop a toolbox with extended functionalities aiding research in 

the field of multi objective evolutionary algorithms.  
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1.5 Thesis Structure 

Chapter 2 presents the literature review of this work with classification and 

overviews of evolutionary algorithms and introduction to definitions and terms. 

Chapter 3 discusses the various test functions and performance metrics and their 

classification. Definitions and depiction of true Pareto front representation of these 

problems are defined too. In Chapter 4, a new tool box for MOEA’s is introduced and 

discussed. Chapter 5 details the research methodology and the implementation of 

the new methods. Chapter 6 provides a summary of the results and discusses the 

findings of this research. Chapter 7 provides the conclusion and discusses the future 

scope of research. 
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Chapter 2 

Multi-Objective Evolutionary Algorithms  
 

In this chapter the basic principles of evolutionary algorithms and its importance in 

multi-objective optimization problems are reviewed. The general structure and 

mechanisms followed by the EA is detailed in section 2.1, followed by overviews of 

key concepts in EAs addressed in section 2.2. In section 2.3, some of the popular 

Multi-objective Evolutionary Algorithms (MOEAs) are reviewed.  

 

2.1 Classification of Evolutionary Algorithms 

Evolutionary algorithms, a subset of evolutionary computation, are computer-based 

problem solving systems that models evolutionary processes. These computational 

models act as primary elements of the design and implementation of an evolutionary 

algorithm. Although the origins of evolutionary inspired algorithms for optimization 

and machine learning can be traced to as early as 1950s [20], it has gained 

considerable popularity over the last few decades. 

 

Evolutionary algorithms can be broadly classified into three mainstream instances:  

• Genetic Algorithms 

• Evolutionary Programming 

• Evolutionary strategies  

Other evolutionary approaches like genetic programming, classifier systems and 

several hybridization methods have also evolved. Despite of different evolutionary 

algorithms being proposed, all of them are similar in their basic properties. 

 

¾ Evolutionary algorithms operate on a population of individuals thereby 

incorporating a collective learning process. Each individual represents and 

encodes a search point in the space of potential solutions to a given problem.  

 

¾ Quality of individuals is evaluated by assigning a quality measure to them, 

referred to as the fitness of the individuals. Then a selection process is 

performed in such a way that the fitter individuals have a higher probability of 

taking part in the search in future generations. 
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¾ New candidates for the coming generations are selected by sets of processes 

which model natural process such as recombination and mutation. 

 

Thus in evolutionary algorithms, the solutions are termed as individuals and the set 

of individuals as population, borrowing from natural terms. The following algorithm 

represents a general evolutionary algorithm. A population P of individuals is 

initialized and then evolved from generation t to generation t+1 by repeated 

application of fitness evaluation, selection, recombination, and mutation. In the 

selection process, which can be either stochastic or completely deterministic, 

individuals with lower fitness are removed from the population, while fitter 

individuals have higher chance of reproduction. Recombination and mutation aim at 

generating new solutions within the search space by the variation of existing ones. 

The crossover operator takes a certain number of parents and creates a certain 

number of children by recombining the parents. To mimic the stochastic nature of 

evolution, a crossover probability is associated with this operator. Similarly, the 

mutation operator alters individuals according to a mutation probability. The 

crossover and mutation operations are performed on individuals, i.e., in individual 

space, and not on the decoded decision vectors. Based on these concepts, natural 

evolution is simulated by an iterative computation process. The various steps 

involved in the algorithm are explained below. 

 

2.1.1 A General Evolutionary Algorithm 

 
Algorithm 1: General Evolutionary Algorithm 
 
 
Input:       N (population size) 

      T (maximum number of generations) 
       pc (crossover probability) 
       pm (mutation rate) 
 

Output:       A (nondominated set) 
 
Step 1:       Initialization: Set P0 = � and t = 0. For i = 1, . . . , N do 

      a) Choose i ∈ I according to some probability distribution. 

      b) Set P0 = P0 + {i }. 
Step 2:      Fitness assignment: For each individual i ∈ Pt determine the encoded 
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decision vector x = m(i ) as well as the objective vector y = f (x) and 

calculate  the scalar fitness value F(i ). 
Step 3:      Selection: Set P′ = �. For i = 1, . . . , N do 

      a) Select one individual i ∈ Pt according to a given scheme and 

                  based on its fitness value F(i ). 
                  b) Set P′ = P′ + {i }. 

      The temporary population P′ is called the mating pool. 
Step 4:       Recombination: Set P′′ = �. For i = 1, . . . , N/2 do 

      a) Choose two individuals i , j ∈ P′ and remove them from P′. 
      b) Recombine i and j . The resulting children are k, l ∈ I . 
      c) Add k, l to P′′ with probability pc. Otherwise add i , j to P′′. 

Step 5:       Mutation: Set P′′′ = �. For each individual i ∈ P′′ do 

                  a) Mutate i with mutation rate pm. The resulting individual is j ∈ I . 
                  b) Set P′′′ = P′′′ + { j }. 
Step 6:       Termination: Set Pt+1 = P′′′ and t = t + 1. If t ≥ T or another 

                  stopping criterion is satisfied then set A = p(m(Pt )) else go to Step 2. 
 
 
 

2.1.1.1 Input and Output Parameters 

Input parameters are: 

� N is the total number of individuals in the population. 

� T is the maximum number of generations. 

� Pc is the probability of crossover.  

� Pm is the probability of mutation  

Output parameter is the Pareto optimal set stored in A. 

  

2.1.1.2 Initialization 

The first step of an EA is to initialize the population in random order. The set Pt gives 

the population at generation t and is generally stored as a linear list. The individuals 

in the population are encoded using binary representation, real representation or 

other schemes such as graphs and trees. In binary encoding, individuals are referred 

to as chromosomes and each bit a gene.  

2.1.1.3 Fitness Assignment 

The fitness of an individual determines its ‘quality’ in terms of the problem in hand. 

In most cases it is a scalar vector produced by the evaluation of an objective 

function although this may vary with different MOEAs. Currently there are several 
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fitness assignment strategies. MOEAs differ in accordance to the fitness assignment 

and selection methods. They could be classified as: 

 

Classical aggregation techniques: The objectives are aggregated into a single 

parameterized objective. Each objective function is multiplied with its corresponding 

weight, and they are summed up to obtain the fitness value that is to be assigned to 

the individual. The weighted sum aggregation approach is an example of this type. 

The parameters of this function are not changed for different optimization runs, but 

instead systematically varied during the same run. Some approaches such as (Hajela 

and Lin 1992 [48]), for instance, use the weighting method. Since each individual is 

assessed using a particular weight combination (either encoded in the individual or 

chosen at random), all members of the population are evaluated by a different 

objective function. Hence, optimization is done in multiple directions simultaneously. 

However, these approaches experienced difficulties when a non-convex pareto front 

is encountered. 

 

Criterion-based methods: Instead of combining the objectives into a single scalar 

fitness value, this class of MOEAs switches between the objectives during the 

selection phase [22]. Each time an individual is chosen for reproduction, potentially a 

different objective will decide which member of the population will be copied into the 

mating pool. 

 

Pareto-based Selection: This popular method, suggested by Goldberg [20] calculates 

the individuals fitness based on Pareto dominance. First all nondominated individuals 

are assigned rank one and temporarily removed from the population. Then, the next 

nondominated individuals are assigned rank two and so forth. Finally, the fitness 

value is determined by the rank of an individual. This way the fitness is related to the 

whole population, unlike other approaches where an individual’s raw fitness value is 

calculated independent of other individuals. Several of the successful algorithms 

developed has benefited by Pareto based fitness assignment scheme [4], [8], [27].  

 

2.1.1.4 Selection 

Selection plays a crucial part in the outcome of an MOEA. Selection operator selects 

the individuals for reproduction on the basis of their fitness values, thereby selecting 

individuals with higher quality for survival. There are different kinds of selection 
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operators, of which Roulette wheel selection and Tournament selection are popular. 

In Roulette wheel selection, each individual is assigned a proportion of the roulette 

wheel equal to the ratio of its fitness to the sum of the entire population’s fitness, 

whereas in Tournament selection, n individuals are chosen at random and the best 

one is selected. Constraint handling is also done in the selection step. 

 

2.1.1.5 Recombination  

Recombination provides variation to the individuals in the population thereby 

allowing the algorithm to explore new regions of the search space. This is done 

through crossover and mutation operators. 

 

� Crossover: There are several crossover methods. Their usage is often 

dependent on the type of encoding used in the individuals. For example for 

binary and integer encoding, single point, n point and uniform crossover are 

used whereas for real representations, simulated binary crossover operators 

are used. Crossover is performed only with a certain probability. 

 

o Single point crossover: A crossover point on the bit string is selected 

by random and all the elements following this point are interchanged. 

o n point crossover: Here 2n crossover points are selected randomly and 

the elements between these points are interchanged. 

o Uniform crossover: This operator randomly chooses different bits from 

each parent, with equal probabilities. 

 

� Mutation: Mutation operator is used to introduce completely new individuals 

suddenly into the population to improve the search. This is usually done with 

a lesser probability. In case of binary encoded individuals, mutation changes a 

bit from 0 to 1 and vice versa.  

 

 

2.1.1.6 Termination 

An EA will stop when the termination criteria is met. This happens usually when the 

maximum number of generations has been reached or when there is no change in 

the population for several generations. 
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2.1.1 Genetic Algorithms 

Genetic Algorithms (GAs) were invented and developed by Holland [21]. Holland’s 

original goal was to formally study the phenomenon of natural adaptation and to 

develop ways in which its mechanism might be imported into computer systems. GAs 

were presented as an abstraction of biological evolution and derived its behavior 

from a genetic/evolutionary metaphor.  

 

Traditionally, GAs use binary representation for the individuals (chromosomes or 

structures). Recently, however, many applications have focused on other 

representations such integers, real-valued vectors, graphs (neural networks), Lisp 

expressions, and ordered lists.  

 

Selection is a probabilistic function based on relative fitness. With this selection 

method, known as fitness-proportional selection, the expected number of times an 

individual will be selected to reproduce is the individual’s fitness divided by the 

average fitness of the population. A simple method of implementing fitness-

proportional selection is roulette-wheel sampling [16]. The number of offspring 

created is the same as the number of parents µ. Later, in the survivors selection step, 

the µ newly created offspring will replace the µ parents in the population. This form 

of selection is not elitist.  

 

Offspring are created by recombination (crossover) of parent individuals with 

probability pc. After that, mutation is applied with a very small probability pm per bit. 

In its initial conception, GAs emphasize recombination (crossover) as the primary 

search operator and apply mutation solely as a “background operator”. Interest in 

mutation has increased recently, partly due to the influence of Evolution Strategies 

and Evolutionary Programming. 

 

 

2.1.2 Evolutionary Strategies 

Evolution strategies (ESs) were developed by Rechenberg [12], using selection, 

mutation, and a population of one parent and one offspring. Schwefel [13] 

introduced recombination and populations with more than one individual, and 

compared ESs with more traditional optimization techniques. 
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Evolution strategies typically use real-valued, vector representations. Individuals to 

be parents are selected randomly from a uniform distribution. The number of 

offspring λ created is greater than the number of parents µ. The selection of 

survivors is deterministic and is implemented in one of two methods. The first 

method selects the best µ out of λ offspring and replaces the parents with these 

newly created individuals. In other words, only the best µ offspring are allowed to 

survive. This method is known as a (µ,λ) selection strategy. The second method 

selects the best µ individuals among µ parents and λ offspring. Thus, in this method 

both the best parents and offspring are allowed to survive. This second method is 

known as a (µ+λ) selection strategy. Both methods belong to the kind of extinctive 

(truncation) selection methods. (µ + λ) selection is elitist but (µ,λ) selection is not.  

 

Offspring are created by recombination (when µ > 1) of parent individuals followed 

by mutation. A variety of different recombination mechanisms are currently used in 

ESs and the operators are sexual and panmictic. In sexual operators, recombination 

acts on two randomly chosen parent individuals. Conversely, in panmictic operators, 

one parent is randomly chosen and held fixed while for each component of its 

vectors the second parent is randomly chosen anew from the population. Mutation 

perturbs the individuals using a normal distribution with expectation zero. In ESs 

considerably effort has been put on (self) adapting the mutations during the run of 

the algorithm. ESs allow each individual (or each variable within the individual) to 

have adaptive mutation rates that are normally distributed with a zero expectation.  

 

ESs emphasizes recombination and mutation as essential operators for searching 

simultaneously in the variables space and in the strategy parameters space (self-

adaptation). 

 

 

 

2.1.3 Evolutionary Programming 

Evolutionary programming (EP) was developed by Fogel et al. [14]. EP arose from 

the desire to generate machine intelligence using selection and mutation to evolve 

finite-state machines. 
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EP traditionally has used representations for the individual that are tailored to the 

problem domain. In the case of finite-state machine applications, the individuals 

within the population are represented as graphs. For other applications, appropriate 

representations such real-valued vectors and ordered lists are used. 

 

Selection is a probabilistic function based on tournament. The number of offspring 

created is the same as the number of parents µ. In the survivors selection step, µ 

individuals are chosen from the 2µ (parents and offspring) individuals. This form of 

selection is elitist and can be considered to be a (µ + µ) selection strategy. 

 

Offspring are created by mutation of parent individuals. The form of mutation is 

based on the representation used, and similar to ESs is often (self) adaptive. For real 

valued optimization problems, for example, it works with normally distributed 

mutations with expectation zero and extends the evolutionary process to the 

strategy parameters (self-adaptation). The forms of mutation used are usually quite 

flexible and can produce perturbations similar to recombination, if desired. However, 

EP emphasizes mutation and does not incorporate the recombination of individuals. 

The justification for this is that in EP each individual is usually viewed as the analog 

of a species, and there is no sexual recombination between species. 

 

2.2 MOEA design challenges 

Success of an MOEA relies mainly on two factors: 

¾ Convergence: The approximation set should contain solutions whose 

corresponding objective vectors are close to the true Pareto front. This is 

achieved by assigning scalar fitness values to solutions in the presence of 

multiple optimization criteria. 

¾ Diversity: The obtained non dominated set should contain solutions, which are 

evenly distributed i.e. they should maintain uniform distance, usually in the 

objective space, but it is preferred that the diversity is extended to the 

objective space as well.  

Computational efficiency while achieving these goals is a factor to be considered as 

well. Finally, another issue that addresses both of the goals of MOEA is elitism. 
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2.2.1 Convergence  

The selection methods that operate giving preference to solutions that are locally 

non-dominated solutions over their dominated counterparts help the population to 

evolve towards globally optimal front. These methodologies are based on a partial 

ordering, or ranking, of the population. As stated by Zitzler (2002) [26], these 

schemes make use of the following information for each solution that can be drawn 

from the current population: 

 

� Dominance rank. The number of solutions in the population that dominate the 

solution under consideration. 

� Dominance count. The number of solutions in the population that are 

dominated by the solution under consideration. 

� Dominance depth. The rank of the solution in the non-dominated sorting of 

the population. 

 

Non-dominated sorting was the original Pareto-based EA approach proposed by 

Goldberg [20]. Here, he locally non-dominated solutions in the population are 

identified, assigned rank 0, and are removed temporarily from the population. In the 

remaining population, the new locally non-dominated solutions are identified, 

assigned rank 1, and are removed. This process is continued until all solutions have 

been assigned ranks. 

 

Fonseca and Fleming used a dominance ranking method called Pareto-based ranking, 

which was implemented in the MOGA[27]. Later Zitzler and Thiele’s [28] strength-

based approach made use of both dominance rank and dominance count. A modified 

version has also been proposed in the SPEA2 [6]. A sample-based approximation to 

a Pareto-based ranking of the entire population was proposed by Horn and Nafpliotis 

[29].  

 

In methods used by Fonseca and Fleming [27] and Srinivas and Deb [4] the rank 

values are assigned to fitness values, typically through linear transformation, and 

then proportional selection methods are applied thereby forming the mating pool. In 

SPEA and SPEA2, binary tournament selection operates directly on the strength-

based fitness measure [2], [6] and on the dominance depth in Deb, Pratap, Agarwal 

and Meyarivan’s NSGA-II [5]. However, in some methodologies, such as the PESA 
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family of algorithms [30], [31], selection operates purely on locally non-dominated 

solutions and thus no Pareto-based selection is required at this stage. 

Elitism, which is discussed later in section 2.2.3, is also a required element for an EA 

to guarantee convergence in the limit to the global optimum, 

 

2.2.2 Diversity  

Diversity preservation has been given more and more importance as algorithm 

development in MOEAs progressed over the years. This could mainly be attributed to 

the ability of diversity methods in improving the quality of the non dominated set of 

solutions. Traditionally diversity has been achieved through fitness sharing and 

Pareto Niching functions, introduced by Goldberg [20]. However, with the 

introduction of new MOEAs to the community, the diversity methods also took new 

forms. This can be illustrated by referring to the diversity preservation techniques 

used in some of the widely used MOEAs in recent past such as SPEA2 [6], NSGAII 

[5], PAES [33] and others. NSGAII uses a Crowding distance estimate to perform 

diversity measures, while SPEA2 uses a truncation method based on the Nearest 

Neighbor density measure. PAES uses an adaptive Grid Algorithm to achieve 

diversity. These methods are discussed in detail in Chapter 5.  

 

2.2.3 Elitism 

During the optimization process, it could happen that potential good solutions are 

lost owing to random effects. This issue can be solved using an elitism approach. 

There are two possible ways of going about elitism. As mentioned in [22], combining 

parent and child population and applying a deterministic selection procedure, instead 

of changing the whole of the old population by the newly attained pool of individuals, 

is one way. The second and more popular method is use an external archive to store 

the best individuals found at each generation. The members of the archive usually 

take part in future selection procedures. An issue that has to be addressed in 

performing elitism is the amount of resources that could be used by the process. So 

usually a restriction measure is attached to the size of the archive. As and when the 

archive is overfilled, necessary measures are taken to decide whether to replace 

solutions from the archive, or to ignore the new solution. Most of the recent MOEAs 

make use of an external archive for storing elite individuals. The SPEA algorithm [3], 

for example, stores all non-dominated solutions separately from the active 
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population. The selection process involves both the archive and the population, with 

preference given to individuals in the elite set. 

 

2.3 Review of Multi-objective Evolutionary algorithms 

Contemporary MOEAs use selection and replacement based on multi-objective 

domination criterion. Examples of this approach are Fonseca and Fleming’s MOGA 

[23], Horn et al.’s NPGA [25], Corne, et al.’s PESA [31], Zitzler et al.’s SPEA 

algorithms [3], [6] and Deb et al.’s NSGA-II [5]. All of these algorithms use niching 

to ensure that a diverse Pareto set is found, and all except one (the NPGA) use elite 

methods or an external storage to keep the best individuals found so far. Here we 

discuss some of the MOEAs relevant to this thesis. 

 

2.3.1 Strength Pareto Evolutionary Algorithm (SPEA) 

SPEA introduced by Zitzler and Thiele [3] is an MOEA which uses elitism with the 

concept of non-domination. As discussed in the previous section on elitism, this 

method uses an external population to store non-dominated individuals. The 

members of this external population also take part in recombination and selection 

operations. The number of non-dominated solutions determines the fitness values of 

individual in both the populations. The algorithm follows these steps. First a new 

population is produced by combining the external population and the regular one. 

Then, fitness values are assigned to each of the members based on how many 

solutions they dominate. Another factor that is considered here is to assign more 

fitness values to those solutions which are having more dominated solutions. This 

measure is called a strength value which is a measure of the number of solutions in 

the current population that is dominated by that solution in the external archive. To 

deal with crowding of individuals a clustering mechanism is used where solutions in a 

less crowded non-dominated front are retained. By using this method, diversity is 

achieved. But there are drawbacks in this method since a Pareto optimal solution in 

the external population may get replaced by a less efficient solution that is in a less 

crowded region. 

2.3.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2) 

The SPEA2 [6] is a modified version of the SPEA proposed by the same authors. The 

primary motivation for the design of this algorithm was to overcome weaknesses 
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found in its predecessor [6] in addition to the new strategies proposed. The new 

algorithm uses a fitness assignment method, whereby each member of the solution 

set is assigned fitness based on a value indicating the number of solutions which are 

dominated by that individual as well as the number of solutions which dominates the 

individual. It proposes a new method for diversity based on the kth nearest neighbor 

method. Further the problems of boundary solutions being lost in SPEA is solved by 

using a new archive truncation method. 

 The fitness assignment in SPEA2 is the sum of the raw fitness measure and the 

distance found from the nearest neighbor estimation technique. The raw fitness of an 

individual is a measure of the sum of the strength values, i.e. the number of 

solutions that it dominates. The fitness assignment process is discussed in detail in 

the diversity preservation methods defined in section 5.1.2. 

 

 

Figure 2: Archive truncation in SPEA2 (Source: Zitzler et. al [6]) 
 
The next stage is the environmental selection stage, where archive updation is 

achieved. This method improves upon the one used in SPEA such that the boundary 

solutions are preserved and would not take part in the truncation process. In SPEA2 

the size of the archive is kept constant unlike SPEA. In this stage the archive is filled 

with non-dominated solutions. The updation process stops if the number of non-

dominated individuals exactly fit the archive. In the event of the archive not being 

full, it is populated with dominated individuals from the previous archive. On the 

other hand if the number exceeds the size of the archive, truncation is performed 

until the required archive size is obtained. This is done with the help of the nearest 

neighbor method, the individual with the least distance value to another, is chosen at 

each stage for removal. This is illustrated in figure 3 taken from [6]. 



 21

 

2.3.3 Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

NSGAII [5], which is an improved version of the NSGA [4], as the name suggests 

uses the strategy of sorting based on the level of non-domination. It uses elitism for 

preserving the best solutions, and has an explicit diversity preservation mechanism. 

The niching operation is performed without the explicit declaration of the sharing 

parameter. The book keeping strategy defined by [5] in this method ensures that the 

complexity of the algorithm is O(MN2), where M is the number of objectives and N is 

the size of the population. In this method, an external archive population P’ is 

maintained, the contents of which are compared with all the members of the main 

population P one by one. On the event of a solution in P dominating one in P’, the 

dominated member is removed from P’. If the solution in P is dominated by at least 

one member of P’, then it is ignored, whereas if it is not dominated by any of the 

members then that solution gets added to the non-dominated set P’. This way the 

non-dominated list is produced for the entire population. After this the non-

dominated sorting is performed by removing the non-dominated solutions from P and 

repeating the above procedure with the solutions stored in first front, second front 

and so on. 

Following this step the well spread of solutions in the population is ensured by the 

diversity preservation method called crowding distance assignment. This is a density 

estimation metric which allows the comparison of solutions for the extent of 

proximity to other solutions. Then the solutions in the most crowded region is 

determined using a crowding comparison operator, which uses the crowding distance 

and domination ranking to find crowded regions. This diversity method is discussed 

in detail in section 5.1.3.  

Thus in NSGA-II, the child populations Qt is produced from the parent population Pt 

using selection, recombination and mutation operators. Then the two populations are 

combined together to produce Rt, which is of size twice the populations size N. After 

this the population Rt undergoes non-dominated sorting. This way a global non-

domination check is achieved. Next Pt+1 is filled based on the ranking of the non-

dominated fronts. Since the combined population is twice the size of the population 

size N, all the fronts are not allowed to be used. Therefore a crowding distance 

sorting is performed in descending order and the population is filled. This for this 

new population Pt+1 the whole process is repeated. The NSGAII process can be 

visualized in the figure 2 extracted from [5]. 
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Figure 3: NSGAII process flow (Source: Deb et. al [5]) 
 

However NSGA II could have problems in convergence in certain scenarios where 

more than N population members of the combined population are found to be 

belonging to the non-dominated set, the selected is performed only based on 

crowding. This could potentially result in a Pareto optimal solution being omitted 

owing to a non optimal set which has better diversity metric value. 

 

2.3.4 Pareto-Archived Evolution Strategy (PAES) 

PAES introduced by Knowles and Corne [33] was first developed to find solutions 

using a local search method for multi-objective problems. It was mainly used for 

solving telecommunication routing optimization problems [46]. 

PAES acts as a multi-objective local search process which maintains a single parent 

solution and generates a single offspring on every iteration, through the process 

mutation.  In this (1+1) evolution strategy, the offspring solution is compared to the 

parent and evaluated for domination. If the parent is dominated, then the offspring 

becomes the new parent and generation advances. Otherwise if the parent 

dominates the child, then the offspring solution is discarded and a new mutation 

solution takes part in the evolution. If neither dominates the other, then the 

selection is based on comparison with the individuals in the elite population. Two 

scenarios could arise from here. One, the offspring dominates one of the archive 

members. Here the offspring becomes the new parent and the archive is updated by 

removing the dominated solutions. On the other hand if the offspring does not 
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dominate any archive member, then a crowding check is performed after which the 

choice is made by identifying the proximity to other solutions in the archive. In the 

event of equal proximity values, random selection is performed to choose a parent. 

Crowding is achieved using an adaptive grid algorithm method by recursively dividing 

the d dimensional objective space [46] where d is the depth parameter. The 

resultant n subspaces are updated dynamically. This method ensures low 

computational cost as compared to other methods.  The essential preference of non-

dominated solutions, the ability to converge quicker and the low computational head 

makes this method a popular algorithm for solving MOPs.  

 

2.3.5 Pareto Potential Regions Evolutionary Algorithm(PPREA) 

This MOEA proposed by Hallam [18] introduces a new fitness assignment scheme 

and archive updation procedure. In this method a chain of regions connecting 

successive points in the objective space is constructed. These regions, termed as 

Potential Pareto Regions, are dynamic regions within which any generated vector 

solution is automatically non-dominated with regard to all the current non-dominated 

solutions.  

Fitness assignment: The non-dominated set is sorted according to one objective 

and each pair of immediate neighbors delimit one PPR [18].The fitness values for the 

rest of the individuals in the population are assigned according to the distance of 

each individual from the PPR. The lower the fitness value of the individual, the better 

the individual is. All non dominated individuals are assigned with negative values. 

Additionally the fitness values of the non-dominated extreme solutions in the archive 

are calculated as the absolute value of twice the size of the largest PPR[18] and the 

rest of the archive members are assigned fitness values equal to the sum of the 

sized of two adjacent PPRs. The fitness values of all the other dominated members 

are determined by the Euclidean distances to the nearest PPRs. This way the non 

dominated members in the archive have better preference. 

Archive update procedure: Archive updation in PPREA is performed by rearranging 

the whole population including the archive and the rest of the population into a set of 

lists. The sorting is based on one of the objectives chosen. Then each of the non-

dominated members are assigned with a list of points that they dominate. This list is 

sorted according to the fitness in ascending order. Then the archive is updated with 

the best individuals from the lists and subsequently by the next best individuals until 

the size criteria is met. In case the archive is full requires the entry of a new 
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individual, the removal process is performed on the most crowded region using the 

crowding dispersion technique. 

Crowding dispersion method: This method allows computing the degree of 

crowding and the extent of distribution of each non-dominated solution in the archive. 

For each non-dominated vector a matrix is maintained which stores the two Euclidian 

distances to its immediate neighbors. The vectors in the archive are ordered 

according to one objective dimension and hence the immediate neighborhood is 

based on this order [18]. 

If the size of the archive is n, there is a need to compute n - 1 distances. 

Based on this matrix, the two important indicators, 

namely crowding and dispersion are computed as follows: 

crowding(i) = min(dhi, dij)     (1) 

dispersion(i) = max(dhi, dij)     (2) 

Assume that i is the vector with the minimum crowding value and that dhi > dij , 

then the vector j, the neighbor of i, has also the minimum crowding. Therefore the 

most crowded among these two vectors is the one with the minimum dispersion. The 

following table taken from [18] demonstrates the crowing dispersion indicators. 

 
 
 
 

 

Table 1: PPRs dimensions used as crowing dispersion indicators (Source: Hallam 
[18]). 
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2.4 Summary 

This chapter provides an introduction to the basic principles and classifications of 

Multi-objective Evolutionary algorithms. The major issues in the design of EAs such 

as diversity, convergence and elitism are addressed. Finally some of the popular 

MOEA methods are reviewed and highlighed. This chapter discusses the importance 

of fitness assignment and archive updation procedures used in Multi-Objective 

optimization problems. 
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Chapter 3 

Test Problems and Performance Metrics  
 

This chapter details the various test problems and performance metrics used for 

performing comparative analysis of evolutionary algorithms. The test problem 

definitions and graphs are represented in section 3.1 and the performance metrics 

are briefly reviewed in section 3.2. 

3.1 Test Suite Problem  

Test problems provide benchmarks for testing the various algorithms. Since most 

real world problems involve wide range of difficulty settings, the only way to decide 

upon the authenticity of a newly proposed algorithm or methodology is to agree 

upon a common set of benchmarking problems. Many test problems with varying 

difficulty settings and complex search spaces have been extensively used by the 

research community. Some of the desired factors in constructing the test problems 

are easiness of construction, scalability in terms of objective functions and decision 

variables, and the ability to simulate difficult scenarios, the occurrence of which is 

quite often in real life problems. 

Usually the test problems are constructed in steps, where the Pareto optimal front is 

represented mathematically, then designing the objective search space with it and 

finally mapping the decision space into the objective space. In the next section some 

of the most popular test functions widely used in current research is discussed. 

Visual representation of the true Pareto front identified for these test problems are 

also featured. 
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3.1.1 ZDT Test Functions 

Zitzler, Deb and Thiele [34] introduced six test functions which are widely used by 

researchers, owing to the ability to provide sufficient complexity in comparing 

different multi-objective optimizers. These test functions, which are commonly 

referred to as ZDT test functions are defined below. 

 

As mentioned in [11] all of the six test functions defined follow the same structure 

with three basic functions. 

 

1 1 2 2

2 2 1 1 2

1

Minimize ( ) ( ( ), ( ))
subject to ( ) ( ,...., ) ( ( ), ( ,...., ))
where ( ,...., )

n n

n

F x f x f x
f x g x x h f x g x x

x x x

=
=

=
                                                     

(3.1) 

 

The function 1f  is a function of the first decision variable only, g is a function of the 

remaining n-1 variables and the parameters of h are the function values of 1f  and g 

[34]. The test functions vary in these three functions as well as in the number of 

variables m and the values associated to them. 
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3.1.1.1 ZDT1 Function 

ZDT1 is a bi-objective MOP. It's a scalable problem in terms of the number of 

variables. By default ZDT1 uses 30 real variables. ZDT1 problem (shown in Equation 

3.2) has a convex Pareto optimal front [34]. 

Definition: 

                     

1 1

2 1

2

( )

( ) ( ) 1 / ( )

( ) 1 9( ) / ( 1)n
ii

f x x

f x g x x g x

g x x n
=

=

⎡ ⎤= −⎣ ⎦

= + −∑

                   (3.2) 

 

where n =30 and [ ]0,1ix ∈  
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Figure 4: Pareto optimal front for ZDT1 function 
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3.1.1.2 ZDT2 Function 

Like ZDT1, ZDT2 is a bi-objective MOP scalable in the number of variables. Also, by 

default, ZDT2 uses 30 real variables. ZDT2 problem (shown in Equation 3.3) has a 

non-convex Pareto optimal front [34]. 

Definition: 

( )( )

( ) ( )

1 1

2
2

2

( )

( ) ( ) 1 /

( ) 1 9 / 1

i

n
ii

f x x

f x g x x g x

g x x n
=

=

⎡ ⎤= −
⎣ ⎦

= + −∑

                  (3.3) 

where n =30 and [ ]0,1ix ∈  
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Figure 5: Pareto optimal front for ZDT2 function 
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3.1.1.3 ZDT3 Function 

ZDT3 (shown in Equation 3.4) has a Non-convex and disconnected Pareto optimal 

front. 

Definition: 

( ) ( ) ( )

( ) ( )

1 1

1 1
2 1

2

( )

( ) ( ) 1 sin 10

( ) 1 9 / 1n
ii

f x x

x xf x g x x
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g x x n

π

=

=

⎡ ⎤
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              (3.4) 

 

where n =30 and [ ]0,1ix ∈  
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Figure 6: Pareto optimal front for ZDT3 function 
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3.1.1.4 ZDT4 Function 

ZDT4 is a bi-objective MOP scalable in the number of variables. By Default, uses 10 

real variables. ZDT4 (shown in Equation 3.5) has a non-convex and multimodal 

Pareto optimal front. 

Definition: 

( )

1 1

2

2

2

( )

( ) ( ) 1 / ( )

( ) 1 10( 1) 10cos 4

i

n

i i
i

f x x

f x g x x g x

g x n x xπ
=

=

⎡ ⎤= −⎣ ⎦

⎡ ⎤= + − + −⎣ ⎦∑

              (3.5) 

 

where n =10, [ ]1 0,1x ∈ , [ ]5,5ix ∈ −  and 2,....,i n=  
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Figure 7: Pareto optimal front for ZDT4 function 
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3.1.1.5 ZDT6 Function 

ZDT6 is a bi-objective scalable problem in the number of variables. By default this 

problems uses 10 real variables. ZDT6 (shown in Equation 3.6) has a non-convex 

and non-uniformly spaced Pareto optimal front. 

Definition: 

( ) ( )
( )

( ) ( )

6
1 1 1

2
2 1
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              (3.6) 

 

where n =10 and [ ]0,1ix ∈  
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Figure 8: Pareto optimal front for ZDT6 function 
 

 

 

 



 33

3.1.2 DTLZ Test Functions 

The DTLZ test functions introduced by Deb, Zitzler, Thiele and Laumanns [39], are a 

set of scalable problems with the ability to control difficulties in converging to the 

Pareto front and maintaining the diversity of solutions. 

3.1.2.1 DTLZ1 Function 

Here a DTLZ1 problem with 3 objectives and 7 variables is shown. 

( ) ( )( )
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Figure 9: Pareto optimal front for DTLZ1 function 
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3.1.2.2 DTLZ2 Function 

Here a DTLZ2 problem with 3 objectives and 12 variables is shown. 
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Figure 10: Pareto optimal front for DTLZ2 function 
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3.1.2.3 DTLZ3 Function 

Here a DTLZ3 problem with 3 objectives and 12 variables is shown. 
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Figure 11: Pareto optimal front for DTLZ3 function 
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 3.1.2.4 DTLZ4 Function 

Here a DTLZ4 problem with 3 objectives and 12 variables is shown. 
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Figure 12: Pareto optimal front for DTLZ4 function 
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3.1.2.5 DTLZ5 Function 

Here a DTLZ5 problem with 3 objectives and 12 variables is shown. 
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Figure 13: Pareto optimal front for DTLZ5 function 
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3.1.2.6 DTLZ6 Function 

Here a DTLZ6 problem with 3 objectives and 12 variables is shown. 
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Figure 14: Pareto optimal front for DTLZ6 function 
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3.1.2.7 DTLZ7 Function 

Here a DTLZ7 problem with 3 objectives and 22 variables is shown. 
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Figure 15: Pareto optimal front for DTLZ7 function 
 

 

 



 40

3.1.3 Schaffer Test Function (SCH) 

Schaffer [40] test function is a bi-objective problem with one real variable. SCH 

(shown in Equation 3.14) has a convex and connected Pareto optimal front. 

Definition: 
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Figure 16: Pareto optimal front for SCH function 
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3.1.4 Kursawe Test Function (KUR) 

Kursawe [41] test function is a bi-objective problem. KUR (shown in Equation 3.15) 

has a disconnected Pareto optimal front. 

Definition: 
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Figure 17: Pareto optimal front for KUR function 
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3.1.5 Fonseca Test Function (FON) 

Fonseca [23] test function is a bi-objective problem with one real variable. FON 

(shown in Equation 3.16) has a non-convex and connected Pareto optimal front. 

Definition: 
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Figure 18: Pareto optimal front for FON function 
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3.2 Performance Metrics 

Owing to the difficulty in defining a single and precise method of evaluating 

algorithm performance, it is essential to define several criteria evaluating procedures 

for doing the same. This task of performing accurate performance comparison 

between different algorithms is achieved by the use of several metrics defined in 

literature. Each of these metrics measure one or more particular aspects of an 

algorithm’s performance. Generally the different aspects of interest when doing 

comparison are distance to the Pareto optimal front, the number of non-dominated 

elements in the obtained set, the spread of solutions, the quality of the non-

dominated solution set etc. In this context, some of the important performance 

metrics are briefly reviewed. 

 

3.2.1 Error Ratio (ER) 

This metric proposed by Veldhuizen [37] is used to measure the ratio of those 

vectors that are in the true Pareto front to those which are not in the true Pareto 

front (PFknown). Therefore this metric uses the true Pareto front as a reference set. It 

is given as, 

1
n

ii e
n
=∑

          (3.17) 

where n is the number if vectors in the approximation set. ie  = 0 if vector i is in the 

true Pareto front and 1 otherwise. The lower the value of ER, the better the non 

dominated set will be.   

 

3.2.2 S metric (S) 

The S metric introduced by Zitzler and Thiele [28] is used to measure the size of the 

dominated space. This scaling independent metric gives a measure of the volume of 

the objective space that is weakly dominated by the non dominated set (A). As 

stated in [2] the S metric allows assessing the set of vectors independently. 

 

3.2.3 Coverage of two sets (C) 

This metric by Zitzler and Thiele [28] measures if one of the two sets of vectors is 

weakly dominated by the other. 
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( ) { }/ :
,

b B a A a b
C A B

B
∈ ∃ ∈

=
f

         (3.18) 

 
Let A, B � X be two sets of decision vectors. The function C maps the ordered pair   

(A, B) to the interval [0, 1]: 

The value C (A, B) = 1 means that all decision vectors in B are weakly dominated by 

A. The opposite, C (A, B) = 0, means that none of the points in B are weakly 

dominated by A.  

 

3.2.4 Coverage Difference (D) 

The D metric [2] was introduced to tackle certain anomalies that could occur in the C 

metric. It measures the coverage difference of two sets of decision vectors. It finds 

the volume space that is weakly dominated by one set but not by the other set of 

vectors. 

Let A, B � X be two sets of decision vectors. 

The function D is defined by 

( ) ( ) ( ),D A B S A B B= + −     (3.19) 

 

and gives the size of the space weakly dominated by A but not weakly dominated 

by B (regarding the objective space). 

 

3.2.5 Generational Distance (GD) 

The Generational distance (Veldhuizen [37]), is the average distance from the 

obtained set to the true Pareto front. This metric also uses the true Pareto front as a 

reference set. 

2
1

n
ii d

n
=∑

          (3.20) 

where id  is the Euclidean distance in the objective space from solution i to the 

nearest solution in the true Pareto front.  
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3.2.6 Maximum Pareto Front Error (MPFE) 

This metric (Veldhuizen [37]) is used to measure the largest distance between any 

element in the obtained set and the respective closest element in the true Pareto 

front. 

1/1 ( 1 ( 2 ( 2 (max(min ) ) ) ) )j ji ip p px x x x
ij

f f f f− + −uuur uuur uuur uuur
                              

(3.21) 

where  i  = 1,…..,n1 and j = 1,….,n2 are elements in the obtained set and the true 

Pareto front respectively, and p = 2. The smaller the MPFE the better the solutions 

are. 

 

3.2.7 Overall Non Dominated Vector Generation (ONVG) 

This metric (Veldhuizen [37]) measures the size of the obtained non dominated set. 

knownPFONVG �         (3.22)

  

where knownPF is the approximation set. 

 

3.2.8 Overall Non Dominated Vector Generation Ratio 

(ONVGR) 

This metric (Veldhuizen [37]) measures the ratio of the size of the obtained set to 

the size of the true Pareto front. 

PFknownONVG
PFtrue

�        (3.23)

  

 

 

 

 

. 
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3.2.9 Spacing Metric (Deb) 

This metric proposed by (Deb et al. [5]) is used to measure the diversity of the 

solution in the objective space by calculating the evenness of points in the obtained 

set. 

   
1

knownPF
i

i known

d d

PF=

−
∆ = ∑        (3.24)

  

 

where id  is the Euclidean distance between two consecutive elements in the non 

dominated front, and d  is the average of these distances. 

 

3.2.10 Spacing Metric (Schott) 

This metric proposed by (Schott [38]) also measures the diversity of solutions in the 

front 

( )
( )
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1 1 2 2

1
1

, min

n

i
i

i j i j
i j

S d d
n

where d f f f f
+

= −
−

= − + −

∑
                               

(3.25) 

d  is the mean of all id and n = knownPF . 

 

 

3.3 Summary 
 

In this chapter the features and definitions of most widely used test problems and 

performance metrics are discussed. The graphs depicting the Pareto optimal fronts 

for the test problems are also shown for reference to the experimental study in 

chapter 5. 
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Chapter 4 

   Multi-objective Optimization Problems 
Toolbox (M-OPT) 

   

M-OPT is a software application toolbox intended to demonstrate and solve multi-

objective optimization problems (MOPs) using several popular nature inspired 

algorithms with the main focus on evolutionary multi-objective algorithms. 

 

The central aim of this software package is to provide an environment which could be 

used not only for testing the performance efficiency of the current algorithms, but 

also to aid implementation of new methods by reusing the code. This is all the more 

easily done owing to the fact the package is developed in Java, thereby providing an 

object oriented approach to program coding in addition to its proven efficiency and 

portability. There are sets of base classes which form the building blocks and all the 

algorithm implementations are coded based on these base classes (for ex., classes 

for density estimation, genetic operators, test functions etc.) , thus making the 

comparison of the methods more authentic.  

 

The implemented algorithms include the Non Dominated Sorted Genetic Algorithm 

(NSGA II) [5], Strength Pareto Evolutionary Algorithm (SPEA 2) [6], Pareto Archived 

Strategy (PAES) [31], Pareto Envelope Based Selection (PESA II) [30], Multi-

objective Particle Swarm Optimization (OMOPSO) [47] and two new hybridized 

algorithms NSGAII* and SPEA2* (These are discussed in chapter 5).  

 

Additionally most of the popularly used standard test functions used by researchers 

are implemented, which includes the five ZDT (Zitzler Deb Thiele [34]) functions, 

seven DTLZ (Deb Thiele Laumanns Zitzler [39]) functions and other unconstrained 

test problems such as Kursawe, Schaffer and Fonseca. Refer to section 3.1 for details 

on these test functions. The framework also provides a graphical user interface with 

real time plotting of the objective functions and variables. It also allows the user to 

modify the algorithm specific parameters thereby enhancing the scope of 

hybridization techniques. 
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4.1 General Architecture and Description 

The software is developed in NetBeans IDE version 5.5 and JDK version 1.5. As 

mentioned before, each algorithm accesses the methods and variables of base 

classes, which defines the basic structure of the algorithm.  

 
The class BaseStructure implements a generic template for the algorithms 

developed in M-OPT. Every algorithm must have a mapping between the parameters 

and their names, and another mapping between the operators and their names. This 

class declares an abstract method called run(), which defines the  behavior of the 

algorithm. This class has inherited by all the algorithms and it provides methods like 

paramGet() and paramAdd() to access parameter required for the application. The 

genetic operators used in the algorithms are provided by operAdd() and operGet() 

methods. The run() method starts the execution of the algorithm. The class 

Population represents the set of solution objects which in turn are composed of the 

chromosome object which again contains the gene component, following the 

evolutionary algorithm terminology. The gene class is an interface defining the array 

of variables having different representation namely binary, real or real-coded binary. 

The class Problem defines the problem that the algorithm solves. It uses the 

assess() method to assess the problem function. The genetic operators like crossover, 

mutation and selection are defined in the Operator class. Other classes are also 

defined to find the ranking, crowding distance, density etc.  

 

4.2 Discussion: NSGA-II 
 
Here the implementation of NSGAII is discussed briefly to give a better picture of the 

working of the algorithm in M-OPT.  The algorithm specific parameter values are 

accepted from the GUI framework and configured using the NSGA_init() method. The 

NSGAII class defines the execution of the algorithm and specifies the problem to 

solve, the operators to use etc. The NSGA_init() method is shown in Fig.1 and an 

extract from the NSGAII class is included as Fig.2. 

The input parameters such as the population and the maximum number of 

evaluations to compute are accepted in the line 9 to 13 and the problem is selected 

in line 14. In line15, a new instance of the NSGAII class is created. Lines 16 and 17 

are used to set the parameters for the algorithm. Next (lines 18 to 25), crossover, 

mutation, and selection operators are specified. After this the operator are assigned 

to the algorithm using the operAdd() method. The line 30 starts the execution of the 
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algorithm with lines 29 and 31 used to determine the execution time in milliseconds. 

After this, the objective function values and variables are written into text files, in 

lines 36 and 37. 

 
1. ProblemClass probObj = null   ;   
2. BaseStructure algorithm ;         // The algorithm to be used 
3. OperatorClass  crossover ;         // Crossover operator 
4. OperatorClass  mutation  ;         // Mutation operator 
5. OperatorClass  selection ;         // Selection operator 
 

6. int popSize, maxEvaluations; 
7. double probCross, crossoverDist, mutationDist; 

 
8. try{ 

 
9. popSize       = Integer.parseInt(popSizeTF.getText()); 
10. maxEvaluations       = Integer.parseInt(maxEvaluationsTF.getText()); 
11. probCross     = Double.parseDouble(probCrossTF.getText()); 
12. crossoverDist = Double.parseDouble(crossoverDistTF.getText()); 
13. mutationDist  = Double.parseDouble(mutationDistTF.getText());        
 

14. probObj = initProb(ProblemCB, RepresentationCB, probObj); 
 

15. algoObj = new NsgaII(probObj); 
 

16. algoObj.initializeInput("populationSize",popSize); 
17. algoObj.initializeInput("maxEvaluationsuations", maxEvaluations); 

 
18. crossVar = 

CrossoverClass.opCrossoverGet(crossoverCB.getSelectedItem().toString());                    
19. crossVar.paramSet("probability",probCross);                    
20. crossVar.paramSet("distribuitionIndex",crossoverDist); 

 
21. mutation = 

MutationClass.getMutationOperator(mutationCB.getSelectedItem().toString());                     
22. mutation.paramSet("probability",1.0/probObj.getNumberOfVariables()); 
23. mutation.paramSet("distributionIndex",mutationDist); 
24. .paramSet("probability",1.0/80); 

 
25. selection = new BinTournament();                             

 
26. algoObj.operAdd("crossover",crossVar); 
27. algoObj.operAdd("mutation",mutation); 
28. algoObj.operAdd("selection",selection); 

 
29. long startTime = System.currentTimeMillis(); 
30. Population population = algoObj.run(); 
31. long timeOfExecution = System.currentTimeMillis() - startTime; 
32. System.out.println("Total time of execution: "+timeOfExecution); 
33. JOptionPane.showMessageDialog(null,"Run Successful", "Status",    

JOptionPane.INFORMATION_MESSAGE);             
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34. execLbl.setText(timeOfExecution+" ms"); 
35. fileLabel1.setText("Objectives values have been written to file 

Obj_NSGAII.txt"); 
 

36. population.setOutputObjectives("Obj_NSGAII.txt"); 
37. population.setOutputvariables("Var_NSGAII.txt");      
38. fileLabel2.setText("Variables values have been written to file 

Var_NSGAII.txt"); 
39.       
40. }catch(Exception e){ 
41. JOptionPane.showMessageDialog(null,"Please Fill Up All The Fields ", "Data 

Validation",    JOptionPane.INFORMATION_MESSAGE);             
42. } 
 

Figure 19: Initialization of NSGAII - NSGA_init () method. 
 
 
A piece of code of the class NSGAII is shown in Figure. 2. The execution of the 

algorithm is performed in the run() method in line 11. Initially the parameter values 

and operators are obtained. Then, the two populations required by the algorithm are 

population is initialized. The main loop of the algorithm starts in line 13. It follows 

the genetic algorithms steps: two parents are selected (lines 19-20), a pair of 

children is obtained after crossover (line 22), the mutation (lines 23-24). Then they 

are evaluated (lines 25-28), and finally inserted into the child population (lines 29-

30). 

 
 

1. package EA_TBox.MoeaAlgorithms; 
2. import EA_TBox.base.*; 
3. import EA_TBox.base.operator.comparator.DominanceComparator; 
4. import EA_TBox.base.BaseStructure; 
5. import java.util.Comparator; 
6. import EA_TBox.util.*; 

 
7. public class NsgaII extends BaseStructure { 

 
8. public NsgaII(ProblemClass probObj){ 
9. this.probObj_ = probObj;                         
10. } 

 
11. public Population run() { 
12. ….// initialize input variables and operators 

 
13. while (noOfGenerations< maxEvaluations) { 

 
14. //-> Create the child population       
15. childPop  = new Population(populationSize);         
16. Individual [] parents = new Individual[2]; 
17. for (int i = 0; i < (populationSize/2); i++){    
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18. //obtain parents 
19. parents[0] = (Individual)selectionOperator.run(population); 
20. parents[1] = (Individual)selectionOperator.run(population); 
21. if (noOfGenerations< maxEvaluations) {                                 
22. Individual [] childMembers = (Individual []) crossoverOperator.run(parents);                 
23. mutationOperator.run(childMembers[0]); 
24. mutationOperator.run(childMembers[1]);                 
25. probObj_.assess(childMembers[0]);             
26. probObj_.assessConstraints(childMembers[0]); 
27. probObj_.assess(childMembers[1]);   
28. probObj_.assessConstraints(childMembers[1]);             
29. childPop.add(childMembers[0]); 
30. childPop.add(childMembers[1]);               
31. noOfGenerations+= 2; 
32. } else { 
33. childPop.add(new Individual(parents[0])); 
34. childPop.add(new Individual(parents[1]));                 
35. } // if                             
36. } // for 
37. //<- 

 
38. //-> Create the population union of population and childMembers 
39. union = ((Population)population).union(childPop);               

 
40. ….// Ranking and crowding distance calculation phase  
41. } 

 
 
Figure 20: Components of program NsgaII.java 
 
Next, the ranking and crowding estimation phase of NSGA-II: the two populations 

are joined and ranked. Then the newly formed population is obtained selecting the 

best ranked individuals, applying crowding distance to choose the best ones in the 

last selected rank. The plot obtained for NSGA II using M-OPT for the Schaffer test 

function is shown in Figure 22. A plot of the original Schaffer function is also included 

in Figure 23 along with screenshots of the toolbox in Appendix D. The toolbox also 

provides visualization of graphs through an interface to Matlab. 
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Figure 21: Schaffer Function M- OPT 
 

 

Figure 22: Original Schaffer Function 
 

 

 

 

 

 



 53

Chapter 5 

Diversity: Analysis and Hybrid methods   
 
5.1 Introduction 

In this chapter, the diversity techniques used by some of the widely used MOEAs are 

discussed. Additionally, in section 5.3 modified algorithms are proposed for NSGA II 

and SPEA2 by introducing changes in the diversity estimation techniques of these 

methods.  

 

5.2 Diversity preservation methods used in MOEAs 
 
The efficiency of the output produced by multi-objective evolutionary algorithms 

depends heavily on an effective diversity preservation method. Diversity techniques 

simply put, enhances a wide spread of solutions along the objective space. Lack of 

an effective diversity method could result in the algorithm being driven towards a 

local Pareto, thereby missing out on the other potentially important areas of the 

search space. Usually diversity is achieved by manipulating density information 

pertaining to the individual in the search space. The spread of solutions is 

accomplished by excluding those solutions which are attributed with higher density 

values, from the selection process at each stage. Consequently, more and more 

diverse individuals are allowed to take part in the process of driving towards the true 

Pareto front. Although usage of diversity methods existed from the early part of 

MOEA research, its relevance became more appreciated later on whereby several 

methods were introduced. Goldberg introduced the Pareto Niching and Fitness 

sharing methods [20]. Improved methods were developed by Srinivas and Deb in 

their NSGAII [5] which uses crowding estimation technique for diversity maintenance. 

Knowles and Corne introduced the adaptive grid algorithm in PAES [33]. Equally 

popular is the archive truncation method using the nearest neighbor estimation 

technique developed by Zitzler et al. for their SPEA2 algorithm [6]. These current 

approaches in diversity techniques are briefly discussed in the following section. 
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5.2.1 Pareto Niching and Fitness Sharing  

Pareto niching and fitness sharing methods have been used in single objective 

optimization for finding several optimum points in the search space. However, in 

MOEAs fitness sharing is performed with the goal of finding well distributed as well as 

well spread vectors. Fonseca and Fleming’s [23] MOGA used fitness sharing in a 

restricted manner i.e. only those solutions which evaluate to vectors with identical 

Pareto rank can take part in fitness sharing. They measure niching distance in 

phenotypic space; the distance between two solutions’ evaluated fitness vectors is 

computed and compared to σshare (the key sharing parameter). If the distance is less 

than σshare, the solution’s associated niche count is then adjusted.  

 

 

Figure 23: Pareto Niching 
 
The NSGA differs slightly using a method where distance is measured in genotypic 

space; the distance between two solutions is compared to σshare. The NSGA also 

shares fitness only between solutions evaluating to vectors with identical Pareto rank. 

Horn et al. [25] define niching differently in their Niched Pareto Genetic Algorithm 

(NPGA), which performs selection via binary Pareto domination tournaments. 

Solutions are selected if they dominate both the other and some small group (tdom) of 

randomly selected solutions, but fitness sharing occurs only in the cases where both 

solutions are non dominated [24]. Each of the two solution’s niche counts is derived 

by counting the number of objective vectors within σshare of their evaluated vectors in 

phenotype space. The solution with a smaller niche count (fewer phenotypical 

neighbors) is then selected. This method was termed as equivalence class sharing by 

Horn et al.  

The disadvantage of all these methods lies in the requirement of setting the key 

sharing parameter which is a crucial element of this method. Additionally the size of 

the population also affects the performance of fitness sharing method. Assigning 
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appropriate values to σshare is generally difficult as it usually requires some a priori 

knowledge about the shape and separation of a given problem’s niches, as stated in 

[24]. These disadvantages forced researchers to investigate a method which doesn’t 

require the explicit knowledge of a sharing function value. 

 

5.2.2 The Archive Truncation method  

This diversity preservation method is used in SPEA2. Here, unlike NSGA-II, the 

selection process and density estimation go hand in hand with the fitness assignment. 

The algorithm considers two factors when it comes to finding non-domination, for 

every individual the number of individuals dominated by and the number which it 

dominates are determined. This way individuals dominated by the same members of 

the archive will have different fitness values [6]. As the selection process ideally has 

to give preference to the solutions belonging to the non-dominated set in the 

combined population, a raw fitness value is assigned denoting the number of 

individuals each individual dominates. This is referred to as the strength value Si and 

the raw fitness of an individual is the sum of all strength values of the individuals it 

dominates.  A high raw fitness value shows that the individual is dominated by many 

other individuals. So a lower value is preferred for the raw fitness. The raw fitness is 

given as: 

,
( ) ( )

t jj P P j i
R i S j

+∈
= ∑

f

 

where  {( ) | }t tS i j j P P i j= ∈ + Λ f  

“ ..... ” Denotes the cardinality of the set, + stands for multiset union and f stands 

for the Pareto dominance relation. 

 

Although the raw fitness itself is a good density measure, it would not give accurate 

results when most individuals do not dominate each other. Therefore the fitness 

value is improved by adding more information. This is done with the kth nearest 

neighbor estimation technique according to which the density of any point is a 

decreasing function of the distance to the kth nearest element [6]. Thus the inverse 

of the distance to the kth nearest gives the density estimate. It is given as  

2

1( ) ki
D i

σ +
=  
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where N Nk +=  i.e. [6] the square root of the sample size. 

This measure added with the raw fitness determines the final fitness value ( )F i . It is 

given as follows: 

    ( ) ( ) ( )F i R i D i= +  

An external archive is used for storing the solutions in each generation. The size of 

the archive is specified in advance and the non dominated set of solutions is copied 

into the archive in each generation run. If the number of non dominated solutions 

found in each run is lesser than the maximum archive size then the next best 

solutions are populated into the archive. On the other hand if the number of non 

dominated solutions is greater than the archive size, then archive truncation method 

is executed. This method removes solutions from the overfilled archive, based on the 

kth distance found previously, such that the individual which has the least distance 

to the other individual is removed from the archive. This process is continued until 

the required archive size is achieved.  

 
 

5.2.3 The Crowding Distance technique 

This method is used in the NSGA II, discussed in section 2.3.3. The two offspring 

populations generated from the parent population are joined and non dominated 

sorting is performed to generate fronts. Then the new population is filled with 

solutions of different non-dominated fronts with the best front given preference. The 

other fronts are deleted. The niching method is required when there are not enough 

slots available for the solutions. So the crowding distance method is used to identify 

the most crowded region in the fronts. The sorting of solutions is done based on the 

objective function. Infinite values are assigned to the extreme solutions. Then the 

distance measure is updated based on the difference in objective values between 

neighboring solutions. Thus to find the density of solutions around a particular 

solution, the average distance of two other points on either side of the current point 

is estimated along the objective values [5]. In other words this is the size of the 

largest cuboid enclosing the point. This measure gives the crowding distance as 

mentioned in [5]. Figure 24, obtained from [5] illustrates this calculation, where the 

average side length of the cuboid gives the crowding distance. 
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Figure 24: The crowding distance calculation (Source: Deb et. al [5]) 
 

 
This process is continued and finally each solution is assigned a distance value based 

on the objective function. Following this, the most crowded region is identified as the 

one with the least crowding distance value and consequently removed from further 

selection. This is achieved with the help of a crowded comparison operator, which 

eventually drives the population towards a well spread set of optimal solutions. As 

stated in [5], the crowded comparison operator ( np ) using the non-domination 

rank ( ranki ) and the crowding distance ( disti ), is calculated with the following formula. 

 ni jp    ( ) (( ) ( )rank rank rank rank dist distif i j or i j and i j>< =  

Thus preference is always given to the solution with the better rank. Otherwise the 

solution in the least crowded region is preferred. 

 

5.2.4 The Adaptive Grid Algorithm technique 

Another method of density estimation is through histograms. These methods use a 

hyper grid to define neighborhoods within the objective space. The number of 

solutions present in the hyperboxes defines the density value. In Pareto archived 

evolution strategy (PAES) [33], the adaptive grid spacing is determined by a number 

of bisections specified by the user. These bisections of the objective range are 

defined by the locally non-dominated solutions. PAES also uses an external archive 

for storing non dominated individuals. In the case of the archive exceeding the 

preferred size, a solution from the most crowded hyperbox is selected for removal 

and is replaced by the newly found solution. 
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5.3 Improvements to Existing MOEAs 

In this section two new hybrid MOEAs namely NSGAII* and SPEA2* are introduced. 

Two of the popular MOEAs, NSGAII and SPEA2 are modified with different diversity 

techniques replacing their original ones. NSGAII* uses the nearest neighbor estimate 

for measuring diversity while SPEA2* uses the crowding distance operation in its 

diversity mechanism. 

 

5.3.1 NSGAII with Nearest Neighbor diversity (NSGAII*) 

This hybrid algorithm is defined in the same manner as the original NSGAII with the 

difference in the density estimation procedure. NSGAII* uses the k-th nearest 

neighbor technique used by SPEA2, to determine the distance measure. The 

algorithm is implemented in the M-OPT toolbox discussed in chapter 4.    

 

5.3.2 SPEA2 with Crowding Distance diversity (SPEA2*) 

SPEA2* also maintains the same steps as the original SPEA differing only in the 

diversity mechanism. SPEA2* uses the crowding distance assignment technique to 

determine the distance measure. The algorithm is also implemented in the M-OPT 

toolbox. 

Results of the performance analysis of the above mentioned algorithms, based on 

several test functions are listed in the chapter 6, followed by results discussion. 

 

5.3.3 Summary 

In this chapter different diversity measuring techniques used in MOEAs are discussed. 

Additionally, two new hybrid methods are proposed based on changes in the 

diversity calculation.  
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Chapter 6 

Results and Discussion   
 
 

6.1 Introduction 

In this chapter the results of the experiments carried out in analyzing the 

performance of the algorithms relevant to this thesis, are tabulated and analyzed. 

The chapter is divided into sections representing the testing methodology used, the 

parameter setting for the algorithm runs, the performance metrics used, the 

summary of results in tables and the discussion. 

 

6.2 Algorithms Runs 

Each one of the algorithms is run with three different parameters for maximum 

number of evaluations with values being 5,000, 7,000 and 12,000. This way, four of 

the algorithms namely NSGAII, SPEA2, NSGAII*, SPEA2* are run for each of the 

different maximum number of evaluations. This process is repeated for each of the 

test problems namely Schaffer’ test function (refer section 3.1.3), ZDT1 (refer 

section 3.1.1.1) and ZDT3 (refer section 3.1.1.3). Furthermore, the performance 

metrics for Spacing, Coverage, Generational distance, Coverage Difference, S metric, 

D metric and the time of execution (milli seconds) are also calculated in order to 

evaluate the performance of the algorithms in question. Each of the above 

mentioned process is iterated for 10 separate runs to avoid ambiguities through 

random results. After this the average, minimum, maximum and standard deviation 

values of those runs are also tabulated for comparison. Graphs representing the 

obtained Pareto front for the test problems are depicted too. 

 

6.3 Testing environment 

The M-OPT toolbox is used to execute the algorithms and generating the results. An 

open source software GUIMOO is used for generating the performance metrics [43]. 
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6.4 Parameter Settings 

The following parameters have been kept the same for all executions for fair 

comparison. 

Population size 100 
Crossover type SBX 
Distribution index for SBX 20 
Crossover probability 0.9 
Mutation type Polynomial mutation 
Distribution index for polynomial mutation 20 

 
Table 2: Default parameter setting 

 

6.5 Discussion on results 

The diversity comparison between the four algorithms is shown in graphs below, 

represented by figures 26-28. The graphs are defined by average spacing metric 

measures plotted against the different variations of maximum generation numbers. 

Convergence is measured through Generational distance which is visualized in 

figures 29-31. The metrics spacing and the S metric are independent measures as 

mentioned in chapter 3. The other metrics such as generational distance, coverage, 

coverage difference and the D metric are measured against the respective true 

Pareto fronts. 

The data is extracted from the results of averages, minimum, maximum and 

standard deviation values summarized from the actual runs. These summary results 

are shown in Tables 2-10. The value which ranked best for each metric is highlighted 

in the tables. For detailed results on the runs refer to tables in Appendix B. The non 

dominated front for each of the different algorithms on the test functions are 

visualized in section 6.6. 

Based on the results obtained it has been found that the NSGAII* showed better 

diversity values (lower spacing metric measure) and better convergence (lower 

generational distance value) in the initial generations (5000) of the run for the 

Schaffer test problem. The SPEA2* outperformed others in diversity for the convex 

ZDT1 problem, where the even spread of solutions was shown to improve in the 

12000 evaluation run (Figure 27. Again, for the non-convex disconnected problem 

ZDT3, SPEA2* produced the best results for the final generation runs (Figure 28). 

The size of the non-dominated front measured by the S metric was used to find the 

overall quality of the non-dominated set. NSGAII and NSGAII* showed better results 
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for this metric in Schaffer’s function, whereas SPEA2 performed well on ZDT1 and 

ZDT3 functions.  

All the other three algorithms performed better than the SPEA2* in terms of 

convergence measures. NSGAII showed better results in generational distance 

measures denoting effective convergence, closely followed by NSGAII* and SPEA2. 
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6.5.1 Diversity analysis results  
Figure 25: Spacing metric comparison for Schaffer function 
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Figure 26: Spacing metric comparison for ZDT1 function 
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Figure 27: Spacing metric comparison for ZDT3 Function 
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6.5.2 Convergence analysis results 
 

Figure 28: Generational Distance comparison for Schaffer Function 
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Figure 29: Generational Distance comparison for ZDT1 Function 
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Figure 30: Generational Distance comparison for ZDT3 Function 
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6.5.3 Schaffer Test Function - Summary of results 
 
Test Function                 : Schaffer                                         
Maximum Evaluations  : 5000 
MOEA Metric Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
D Metric Execution 

time 
Avg 0.106853 14.81131 0.006991 0.024998 -0.22868 0.002012 2151.6 
Min 0.049581 14.7231 0.00608 0 -0.79272 0.001501 2078 
Max 0.14227 14.903 0.007702 0.05 0.218391 0.003064 2250 

NSGAII 

Sd 0.025791 0.05238 0.000542 0.013792 0.379793 0.000433 50.71313658 
Avg 0.10049298 14.24558 0.007042425 0.02773664 -0.22465415 0.001834645 1965.4 
Min 0.0744838 14.1668 0.00544966 0.0192308 -0.651938 0.00127214 1906 
Max 0.116793 14.2937 0.00911255 0.05 0.324505 0.00229137 2000 

SPEA 2 

Sd 0.012468918 0.039963867 0.001130666 0.01066551 0.317397945 0.000290473 31.79168305 
Avg 0.09568323 14.04266 0.006303698 0.02147422 0.05239508 0.002091587 10993.7 
Min 0.0680044 13.9572 0.00477164 0 -0.745261 0.00139909 9281 
Max 0.130139 14.1019 0.0076099 0.0465116 1.4067 0.00247652 12031 

NSGAII* 

Sd 0.023330897 0.043725131 0.001076192 0.017303366 0.633296465 0.000313343 1029.79567 
Avg 1.21908 61.05524 0.164619 0.380952 -3.06739 0.00028 4403.1 
Min 0 0 0.051227 0 -38.1212 0 4359 
Max 3.65446 79.6865 0.495977 1 24.2354 0.000767 4438 

SPEA2* 

Sd 1.506724 29.97295 0.165083 0.372636 23.08391 0.000253 31.29945 
 

Table 3: Schaffer Test Function for 5000 generations  
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Test Function                 : Schaffer                                         
Maximum Evaluations  : 7000 
MOEA Metric Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
D Metric Execution 

time 
Avg 0.06541486 13.95702 0.004453362 0.00968744 0.3820706 0.002795207 2770.3 
Min 0.0454264 13.9184 0.00355883 0 -0.464883 0.00232292 2641 
Max 0.0793565 13.9986 0.00494904 0.031746 1.46749 0.00353321 3109 

NSGAII 

Sd 0.011669769 0.024454438 0.000483171 0.013088441 0.578286559 0.000340406 126.5921272 
Avg 0.06214031 14.35161 0.00486451 0.01961303 -0.1595968 0.002823951 2737.6 
Min 0.0456268 14.3136 0.00392023 0 -0.652608 0.00221091 2718 
Max 0.0944126 14.3919 0.00588534 0.0350877 0.463263 0.00321084 2797 

SPEA 2 

Sd 0.015567951 0.027644748 0.000736864 0.012419517 0.397240692 0.000305676 21.92005677 
Avg 0.05750619 14.40338 0.004833416 0.01087483 -0.04397301 0.002795495 18034.3 
Min 0.0462143 14.3653 0.00410278 0 -0.354676 0.00232195 12531 
Max 0.0743043 14.4456 0.00614926 0.0246914 0.539424 0.00347107 26641 

NSGAII* 

Sd 0.00888164 0.026420985 0.000624789 0.008248805 0.256647846 0.000336117 3817.48169 
Avg 2.168906 82.84095 0.106323 0.215202 9.719258 0.000281 6201.6 
Min 0 72.6429 0.070027 0 -21.6284 2.8E-05 6172 
Max 4.47206 89.3874 0.149983 0.5 25.4111 0.000607 6250 

SPEA2* 

Sd 1.75044 5.003878 0.024221 0.190513 13.52139 0.000205 33.2873 
 

Table 4: Schaffer Test Function for 7000 generations  
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Test Function                 : Schaffer                                         
Maximum Evaluations  : 12000 
MOEA Metric Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
D Metric Execution 

time 
Avg 0.03467587 13.87635 0.0025483 0.006 0.005290931 0.00432087 4509.5 
Min 0.0260134 13.8618 0.00218351 0 -0.247208 0.00401089 4359 
Max 0.0486865 13.8838 0.00295501 0.01 0.396809 0.00466075 5125 

NSGAII 

Sd 0.007393839 0.007417734 0.000243642 0.005163978 0.174123941 0.000177791 220.4471466 
Avg 

0.0317691 13.72102 0.002544732 0.01 
-
0.060007254 0.004314792 5012.5 

Min 0.0251085 13.7118 0.00208738 0 -0.330261 0.00387698 4890 
Max 0.0381341 13.7323 0.00322549 0.02 0.172418 0.00470302 5156 

SPEA 2 

Sd 0.004528296 0.006874397 0.000323705 0.006666667 0.144643018 0.000235246 104.5086387 
Avg 0.06210616 13.75549 0.003739675 0.0081 0.01717511 0.004359609 31148.5 
Min 0.0479887 13.7444 0.00271907 0 -0.464457 0.00390946 19344 
Max 0.0771029 13.7665 0.0045945 0.02 0.408991 0.0047852 34859 

NSGAII* 

Sd 0.011067172 0.009088265 0.000555052 0.006190495 0.248039802 0.00025672 5362.730342 
Avg 1.869645 82.32969 0.086695 0.156984 0.344471 0.000352 11215.7 
Min 0.10341 72.6928 0.05173 0 -30.4027 6.63E-05 10907 
Max 5.75853 87.0451 0.137502 0.4 12.9799 0.000885 11750 

SPEA2* 

Sd 1.863832 4.722306 0.027877 0.169825 14.71341 0.00029 247.9113 
 

Table 5: Schaffer Test Function for 12000 generations  
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6.5.4 ZDT1 Test Function - Summary of results 
 
Test Function                 : ZDT1                                        
Maximum Evaluations  : 5000 
MOEA Metric Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
D Metric Execution 

time 
Avg 0.01761894 0.8997265 0.003193552 1 0.2146941 0 1265.4 
Min 0.0144158 0.802358 0.00243434 1 0.14513 0 1187 
Max 0.0224261 0.948946 0.00478327 1 0.35619 0 1312 

NSGAII 

Sd 0.002735922 0.045864412 0.000728572 0 0.066130879 0 36.23135536 
Avg 0.02655061 1.0111216 0.004351858 1 0.309496 0 2357.6 
Min 0.0183806 0.97961 0.00284769 1 0.217936 0 2328 
Max 0.0437705 1.10006 0.00480402 1 0.409546 0 2407 

SPEA 2 

Sd 0.007833242 0.037047888 0.000608044 0 0.062072801 0 27.2282533 
Avg 0.02249254 0.9112688 0.004362227 1 0.2817175 0 1192.1 
Min 0.0175668 0.84305 0.00361584 1 0.21337 0 1141 
Max 0.0302852 0.96492 0.00546781 1 0.334171 0 1406 

NSGAII* 

Sd 0.004511111 0.035538508 0.00053585 0 0.036719123 0 76.84826319 
Avg 0.02133393 1.1457124 0.009098993 1 0.779746 0 5407.9 
Min 0.0150963 0.956024 0.00663923 1 0.575376 0 5125 
Max 0.053606 1.23984 0.01432 1 1.22484 0 5797 

SPEA2* 

Sd 0.011550531 0.077451023 0.002355142 0 0.17827152 0 288.4908818 
 

Table 6: ZDT1 Test Function for 5000 generations  
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Test Function                 : ZDT1                                        
Maximum Evaluations  : 7000 
MOEA Metric Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
D Metric Execution 

time 
Avg 0.010681607 0.7809812 0.001350462 1 0.09273318 0 1656.3 
Min 0.00732323 0.744539 0.00101159 1 0.064281 0 1485 
Max 0.0139857 0.802795 0.00187628 1 0.148626 0 1844 

NSGAII 

Sd 0.001783894 0.017064345 0.000251297 0 0.02392317 0 131.4094957 
Avg 0.01576466 0.940221 0.002243562 1 0.2039435 0 3329.7 
Min 0.0118067 0.894147 0.0016682 1 0.169401 0 3281 
Max 0.0231072 0.982718 0.00288223 1 0.282956 0 3437 

SPEA 2 

Sd 0.003765815 0.027955868 0.000383528 0 0.031035794 0 43.71892547 
Avg 0.012321582 0.7787452 0.001691574 1 0.11067947 0 1742.2 
Min 0.00813085 0.719903 0.00119937 1 0.0701497 0 1672 
Max 0.0152287 0.813097 0.00259483 1 0.159818 0 1938 

NSGAII* 

Sd 0.002594436 0.027826053 0.000418936 0 0.031472736 0 77.85713412 
Avg 0.012160202 0.6756576 0.008100803 1 0.6391736 0 7231.1 
Min 0.00938047 0.576582 0.00606761 1 0.512559 0 7187 
Max 0.0166163 0.734321 0.0101685 1 0.754125 0 7266 

SPEA2* 

Sd 0.002157113 0.047819997 0.001317958 0 0.075290859 0 35.2087426 
 

Table 7: ZDT1 Test Function for 7000 generations  
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Test Function                 : ZDT1                                        
Maximum Evaluations  : 12000 
MOEA Metric Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
D Metric Execution 

time 
Avg 

0.006664239 0.6756519 0.000277038 0.995 0.013501777 
7.11461E-
08 2472 

Min 0.00581581 0.671509 0.000242112 0.98 0.00842381 0 2468 
Max 

0.00807983 0.678153 0.000340268 1 0.0200203 
3.33241E-
07 2485 

NSGAII 

Sd 
0.00064612 0.001891775 2.80328E-05 0.007071068 0.003508426 

1.17671E-
07 6.863753427 

Avg 0.005029205 0.7169763 0.000404536 1 0.0280154 0 6773.4 
Min 0.00403858 0.710018 0.000354129 1 0.0171999 0 6547 
Max 0.00638048 0.720535 0.000508522 1 0.0500253 0 7234 

SPEA 2 

Sd 0.000664308 0.003502124 5.20972E-05 0 0.010484237 0 189.6922654 
Avg 

0.008170093 0.6864284 0.000331628 0.999 0.014800536 
9.30431E-
08 3573.3 

Min 0.00707532 0.680285 0.000279114 0.99 0.00741076 0 3437 
Max 

0.00918807 0.690487 0.00042288 1 0.0222313 
9.30431E-
07 3875 

NSGAII* 

Sd 
0.000772635 0.003471865 4.99123E-05 0.003162278 0.004854179 

2.94228E-
07 129.1838053 

Avg 0.002567452 0.3995725 0.01165386 1 0.617471 0 12970.3 
Min 0.00181475 0.331057 0.0104335 1 0.598091 0 12765 
Max 0.0031423 0.443068 0.0136027 1 0.639271 0 13312 

SPEA2* 

Sd 0.000439163 0.039412575 0.001158179 0 0.014036686 0 208.0213931 
 

Table 8: ZDT1 Test Function for 12000 generations  
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6.5.5 ZDT3 Test Function - Summary of results 
 
Test Function                 : ZDT3                                        
Maximum Evaluations  : 5000 
MOEA Metric Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
D Metric Execution 

time 
Avg 0.0154456 0.9908863 0.002644349 1 0.1860695 0 1212.6 
Min 0.0120711 0.924505 0.00224124 1 0.140058 0 1171 
Max 0.0186723 1.02582 0.0033245 1 0.251435 0 1250 

NSGAII 

Sd 0.002036838 0.036071799 0.000392929 0 0.031241976 0 30.60210596 
Avg 0.02145701 1.243168 0.003557599 1 0.2767322 0 2361.1 
Min 0.0140933 1.18986 0.0030214 1 0.221539 0 2344 
Max 0.0424615 1.27944 0.00536689 1 0.593699 0 2407 

SPEA 2 

Sd 0.008294363 0.023721081 0.000683211 0 0.113172038 0 24.93302139 
Avg 0.017324 1.018238 0.003296 1 0.253051 0 1262.5 
Min 0.012122 0.950226 0.002206 1 0.170667 0 1203 
Max 0.024564 1.12317 0.004064 1 0.308099 0 1547 

NSGAII* 

Sd 0.004365 0.049075 0.000533 0 0.036881 0 100.7144 
Avg 0.020424 0.904882 0.005459 1 0.441293 0 5136 
Min 0.015377 0.805628 0.003277 1 0.233473 0 5109 
Max 0.033791 0.9995 0.00796 1 0.645393 0 5188 

SPEA2* 

Sd 0.005291 0.062017 0.001821 0 0.189984 0 24.67567 
 

Table 9: ZDT3 Test Function for 5000 generations  
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Test Function                 : ZDT3                                        
Maximum Evaluations  : 7000 
MOEA Metric Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
D Metric Execution 

time 
Avg 0.011111343 0.9111428 0.001096795 1 0.08596119 0 1579.7 
Min 0.00749903 0.854473 0.000501127 1 0.0385018 0 1484 
Max 0.0219104 0.95776 0.00195407 1 0.143646 0 1828 

NSGAII 

Sd 0.004197074 0.024975712 0.000355287 0 0.02641703 0 110.6275533 
Avg 0.013347 0.972673 0.001852 1 0.138973 0 3342.3 
Min 0.01086 0.899186 0.001032 1 0.08729 0 3297 
Max 0.018095 1.03562 0.002609 1 0.209713 0 3422 

SPEA 2 

Sd 0.002197 0.041743 0.000502 0 0.035491 0 41.16107 
Avg 0.011974 0.905334 0.001601 1 0.120919 0 1861 
Min 0.008475 0.865063 0.000813 1 0.065642 0 1797 
Max 0.016654 0.966835 0.002119 1 0.172974 0 2203 

NSGAII* 

Sd 0.002574 0.03252 0.000415 0 0.035321 0 120.8461 
Avg 0.01188 0.803219 0.003888 1 0.391777 0 7307.7 
Min 0.009037 0.730636 0.001699 1 0.123653 0 7187 
Max 0.015482 0.845455 0.005411 1 0.502598 0 7969 

SPEA2* 

Sd 0.002528 0.034273 0.001138 0 0.138462 0 234.688 
 

Table 10: ZDT3 Test Function for 7000 generations  
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Test Function                 : ZDT3                                        
Maximum Evaluations  : 12000 
MOEA Metric Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
D Metric Execution 

time 
Avg 0.007379528 0.8053063 0.00020948 1 0.010720972 0 2498.3 
Min 0.00669593 0.80193 0.000191218 1 0.00372046 0 2484 
Max 0.0087414 0.808536 0.00022383 1 0.0158356 0 2547 

NSGAII 

Sd 0.000612572 0.002726726 1.10671E-05 0 0.003649753 0 22.72076877 
Avg 0.005626 0.826239 0.000296 1 0.024431 0 7051.5 
Min 0.004636 0.820784 0.000257 1 0.019091 0 6812 
Max 0.006899 0.832328 0.000342 1 0.030909 0 7500 

SPEA 2 

Sd 0.000727 0.003973 2.97E-05 0 0.003986 0 214.4306 
Avg 0.007121 0.798703 0.000273 1 0.014717 0 3695.2 
Min 0.005345 0.791997 0.000216 1 0.00831 0 3562 
Max 0.008449 0.803722 0.000333 1 0.020838 0 3968 

NSGAII* 

Sd 0.001079 0.004004 4.13E-05 0 0.0044 0 140.1918 
Avg 0.004221 0.71477 0.002896 1 0.408872 0 13967.4 
Min 0.003002 0.655506 0.00071 1 0.170762 0 13407 
Max 0.006489 0.741127 0.006975 1 0.587711 0 14703 

SPEA2* 

Sd 0.000984 0.025849 0.001759 0 0.150909 0 420.1053 
 

Table 11: ZDT3 Test Function for 12000 generations  
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6.6 Generated Pareto Fronts  

The non dominated fronts generated for the different test functions are visualized 

below. All the obtained fronts are plotted against the true Pareto front. In this 

section only fronts which were generated at 10000 runs are shown. For more listing 

refer to Appendix A. 
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Figure 31: Schaffer Test Function Results 
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Figure 32: Kursawe Test Function Results 
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Figure 33: ZDT1 Test Function Results 
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Figure 34: ZDT2 Test Function Results 
 
 
 
 
 
 
 
 
 



 78

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 f2

 f1

True Pareto Front ZDT3.fit
Run_ZDT310000_10_NSGAII.fit

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 f2

 f1

True Pareto Front ZDT3.fit
Run_ZDT310000_10_NSGAII_Mod.fit

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 f2

 f1

True Pareto Front ZDT3.fit
Run_ZDT310000_10_SPEA2.fit

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 f2

 f1

True Pareto Front ZDT3.fit
Run_ZDT310000_10_SPEA2_Mod.fit

 
                        NSGAII                       NSGAII*  
 

 

 

 

 

 

 

 

 

 

 

 

 

                        SPEA2                       SPEA2*  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: ZDT3 Test Function Results 
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Chapter 7 

Summary and Conclusion  

 

7.1 Summary  

In this work several aspects of solving multi-objective problems by the use of 

evolutionary algorithms are analyzed. In particular, an inevitably prominent area of 

MOEA namely diversity maintenance, has been given prime importance in the 

discussion. Review on the state of the art in evolutionary algorithms for multi-

objective optimization problems was presented. The importance of test functions and 

performance metrics are highlighted in Chapter 3. A new MOEA toolbox has been 

designed and developed. The toolbox is implemented with several features aiding 

research in MOEAs with implementation of a number of algorithms, design of the test 

problems, graphical analysis of results etc. Additionally, two new hybrid algorithms 

based on diversity maintenance has been proposed and discussed in Chapter 5.The 

statistical analysis and discussion on the performance comparison is provided in 

chapter 6.  

 

7.2 Conclusion  

The fundamental base of multi-objective evolutionary algorithms is provided by 

diversity preserving techniques. Most of the MOEA’s, while following the EA’s skeletal 

structure, has been essentially found to vary in their diversity maintaining methods. 

Among the several diversity methods, the most effective ones are chosen for 

comparison in this work. These methods applied to multi-objective problems has 

been analyzed and reviewed in this work. The impact of altering the diversity 

mechanisms in different algorithms and their consequent ability of finding better 

solutions are researched. Two new hybrid methods have been presented based on 

this study. The crowding distance diversity method used in the NSGAII has been 

used in the SPEA2 algorithm, replacing its existing diversity measure. Similarly the 

archive truncation method based on kth nearest neighbor method used in SPEA2 has 

been applied to NSGAII’s diversity method and tested. As a result of the tests, the 

hybrid methods, NSGAII* and SPEA2* showed improved results in certain test 

scenarios whereas produced satisfactory results otherwise. The algorithms 
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outperformed their original counterparts several times particularly in the case of 

increased number of maximum evaluations. With the implementation, testing and 

comparison of these hybrid methods acting as the backbone of this work, extensive 

statistical analysis is performed to provide support to the findings. The algorithms 

have been executed for several runs and changing parameter settings. They were 

tested on the test problems discussed and the comparison analysis was achieved 

with the use of several performance metrics. Additionally, the MOPT toolbox 

designed with a user friendly interface serves to provide an effective tool for 

researchers and students in the field of evolutionary algorithms to implement novel 

algorithms as well as to enable testing, visualizing and comparing several algorithms.  

 

7.3 Future work 

As part of future enhancements the algorithms could be tested for performance in 

the case of large number of objectives. Applying performance metrics which does not 

require knowledge of the true Pareto, into the runtime operation of an EA could be a 

potential future area of exploration. The spacing and hyper volume metrics could 

provide an ideal boosting factor in driving the algorithm towards effective solutions 

using this method. 
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APPENDIX  

A. Obtained Pareto fronts 
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Figure 36: Pareto Fronts for Schaffer test function 
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B. Detailed results on Algorithm runs 
 
Table 12: Detailed Results (SCH - 5000) NSGAII 
Test Function                 : Schaffer 
Algorithm                       : NSGAII 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.104905 14.7739 0.00766496 0.0227273 -0.0546837 
2 0.123404 14.7977 0.00675159 0.0208333 0.197304 
3 0.0495811 14.903 0.00665096 0.015625 0.218391 
4 0.103515 14.7792 0.00702987 0.05 -0.456736 
5 0.105848 14.8343 0.00685464 0.0222222 -0.770269 
6 0.14227  14.8413 0.00770154 0.0243902 -0.792723 
7 0.114779 14.7231 0.00748713 0.0263158 -0.262039 
8 0.111856 14.782 0.00727949 0 0.204523 
9 0.129357 14.8074 0.00608032 0.0243902 -0.403433 
10 0.0830164 14.8712 0.00641005 0.0434783 -0.167129 
 
Runs D Metric Execution 

Time  
1 0.00171787 2250 
2 0.00197715 2172 
3 0.00306365 2156 
4 0.00189935 2078 
5 0.00207992 2125 
6 0.00199078 2141 
7 0.00172418 2204 
8 0.0018323 2109 
9 0.00150095 2109 
10 0.00233123 2172 
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Table 13:Detailed Results (SCH - 7000) NSGAII 
Test Function                 : Schaffer 
Algorithm                       : NSGAII 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0793565 13.9474 0.00492845 0 1.46749 
2 0.0639287 13.9845 0.00381773 0.025974 -0.256545 
3 0.0501151 13.9696 0.0041551 0 0.861298 
4 0.0763856 13.9266 0.00493053 0.031746 -0.464883 
5 0.0671323 13.9184 0.0047593 0 0.6937 
6 0.0748454 13.9684 0.0044807 0 0.608634 
7 0.0640341 13.9546 0.00494904 0 0.546288 
8 0.0454264 13.9986 0.00355883 0.0235294 -0.10403 
9 0.0569989 13.9545 0.00439524 0 0.130811 
10 0.0759256 13.9476 0.0045587 0.015625 0.337943 
 
Runs D Metric Execution 

Time  
1 0.00247326 2782 
2 0.00287862 2719 
3 0.00295233 2734 
4 0.00247822 2781 
5 0.00232292 2734 
6 0.00292082 2781 
7 0.00289287 2703 
8 0.00353321 2641 
9 0.00282057 2719 
10 0.00267925 3109 
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Table 14:Detailed Results (SCH - 12000) NSGAII 
Test Function                 : Schaffer 
Algorithm                       : NSGAII 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0313061 13.8823 0.00247444 0 0.0440512 
2 0.0321405 13.8777 0.00257278 0 0.114136 
3 0.028535 13.8837 0.00227559 0 -0.00947189 
4 0.0284426 13.8838 0.00218351 0 0.396809 
5 0.0260134 13.8677 0.00264776 0.01 -0.0430155 
6 0.0325723 13.8761 0.00236988 0.01 -0.167466 
7 0.0357078 13.8815 0.00255969 0.01 -0.0624294 
8 0.0450542 13.8707 0.002885 0.01 -0.0379925 
9 0.0383003 13.8782 0.00255934 0.01 -0.247208 
10 0.0486865 13.8618 0.00295501 0.01 0.0654964 
 
Runs D Metric Execution 

Time  
1 0.00428331 4407 
2 0.00422487 5125 
3 0.00431454 4484 
4 0.00466075 4422 
5 0.00431922 4407 
6 0.00444359 4453 
7 0.00441698 4359 
8 0.00401089 4469 
9 0.0043941 4469 
10 0.00414045 4500 
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Table 15:Detailed Results (ZDT1 - 5000) NSGAII 
Test Function                 : ZDT1 
Algorithm                       : NSGAII 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0158019 0.948946 0.00243434 1 0.14513 
2 0.0200079 0.892339 0.00335172 1 0.35619 
3 0.0189391 0.926621 0.00265751 1 0.171547 
4 0.0224261 0.802358 0.00478327 1 0.298509 
5 0.0181124 0.920285 0.00289083 1 0.208317 
6 0.014459 0.939849 0.0025885 1 0.161129 
7 0.019837 0.858607 0.00375984 1 0.221731 
8 0.0147809 0.873588 0.00359581 1 0.213094 
9 0.0144158 0.942076 0.00255647 1 0.1637 
10 0.0174093 0.892596 0.00331723 1 0.207594 
 
Runs D Metric Execution 

Time  
1 0 1187 
2 0 1282 
3 0 1265 
4 0 1234 
5 0 1312 
6 0 1265 
7 0 1297 
8 0 1250 
9 0 1297 
10 0 1265 
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Table 16:Detailed Results (ZDT1 - 7000) NSGAII 
Test Function                 : ZDT1 
Algorithm                       : NSGAII 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.00974308 0.768028 0.00137176 1 0.0968511 
2 0.0105295 0.802743 0.00101159 1 0.064281 
3 0.00732323 0.786174 0.00128497 1 0.0749446 
4 0.00938536 0.787434 0.0012532 1 0.0765765 
5 0.0115137 0.781462 0.0013587 1 0.0962217 
6 0.010372 0.785042 0.0013063 1 0.0975538 
7 0.0103267 0.802795 0.00102475 1 0.0713605 
8 0.0122437 0.744539 0.00187628 1 0.148626 
9 0.0139857 0.77153 0.0014598 1 0.0980766 
10 0.0113931 0.780065 0.00155727 1 0.10284 
 
Runs D Metric Execution 

Time  
1 0 1516 
2 0 1562 
3 0 1735 
4 0 1531 
5 0 1844 
6 0 1844 
7 0 1640 
8 0 1687 
9 0 1719 
10 0 1485 
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Table 17:Detailed Results (ZDT1 - 12000) NSGAII 
Test Function                 : ZDT1 
Algorithm                       : NSGAII 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.00609015 0.675238 0.000282582 0.99 0.0133547 
2 0.00707092 0.671509 0.000340268 0.99 0.0164732 
3 0.00668261 0.675887 0.000273265 1 0.0141712 
4 0.00581581 0.67534 0.000280666 1 0.0200203 
5 0.00807983 0.675747 0.000273605 1 0.0101185 
6 0.00640227 0.675862 0.000273179 0.99 0.0136264 
7 0.00631265 0.678153 0.000242112 1 0.00842381 
8 0.00661258 0.674266 0.000297946 0.98 0.0148901 
9 0.00718324 0.678074 0.000243055 1 0.00922006 
10 0.00639233 0.676443 0.000263701 1 0.0147195 
 
Runs D Metric Execution 

Time  
1 1.24399e-007 2485 
2 0 2469 
3 2.17737e-007 2469 
4 0 2468 
5 0 2469 
6 3.6084e-008 2469 
7 0 2468 
8 3.33241e-007 2469 
9 0 2469 
10 0 2485 
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Table 18:Detailed Results (ZDT3 - 5000) NSGAII 
Test Function                 : ZDT3 
Algorithm                       : NSGAII 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0167772 0.937186 0.00320283 1 0.212194 
2 0.017511 0.924505 0.0033245 1 0.251435 
3 0.015539 1.01855 0.0023201 1 0.172574 
4 0.0139827 1.00666 0.00251036 1 0.162163 
5 0.016519 1.01885 0.00230655 1 0.171263 
6 0.0147573 0.994052 0.00265427 1 0.184867 
7 0.0120711 1.00849 0.00243881 1 0.177096 
8 0.013056 1.01039 0.00243886 1 0.178482 
9 0.0155704 0.96436 0.00300597 1 0.210563 
10 0.0186723 1.02582 0.00224124 1 0.140058 
 
Runs D Metric Execution 

Time  
1 0 1219 
2 0 1172 
3 0 1235 
4 0 1234 
5 0 1219 
6 0 1250 
7 0 1250 
8 0 1188 
9 0 1171 
10 0 1188 
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Table 19:Detailed Results (ZDT3 - 7000) NSGAII 
Test Function                 : ZDT3 
Algorithm                       : NSGAII 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0102501 0.910574 0.00106016 1 0.092851 
2 0.0119154 0.917687 0.00101073 1 0.07583 
3 0.0126303 0.904929 0.00116683 1 0.0925134 
4 0.0219104 0.854473 0.00195407 1 0.143646 
5 0.00904512 0.908005 0.00111688 1 0.102108 
6 0.0115105 0.907227 0.00113587 1 0.0812148 
7 0.00755944 0.913174 0.00106817 1 0.0769561 
8 0.00833604 0.918048 0.00100195 1 0.0751218 
9 0.0104571 0.919551 0.000952166 1 0.080869 
10 0.00749903 0.95776 0.000501127 1 0.0385018 
 
Runs D Metric Execution 

Time  
1 0 1656 
2 0 1828 
3 0 1625 
4 0 1500 
5 0 1500 
6 0 1657 
7 0 1500 
8 0 1516 
9 0 1484 
10 0 1531 
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Table 20: Detailed Results (ZDT3 - 12000) NSGAII 
Test Function                 : ZDT3 
Algorithm                       : NSGAII 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.00707588 0.806506 0.000208021 1 0.0157171 
2 0.00704275 0.808175 0.000191218 1 0.00734723 
3 0.00670964 0.808536 0.000200373 1 0.011039 
4 0.00737362 0.802709 0.000215285 1 0.0115012 
5 0.00786111 0.802175 0.00022383 1 0.0113726 
6 0.0087414 0.807663 0.000196337 1 0.0108824 
7 0.00669593 0.80193 0.000222746 1 0.0158356 
8 0.00711917 0.803532 0.000209318 1 0.0116085 
9 0.00750347 0.803749 0.000208472 1 0.00372046 
10 0.00767231 0.808088 0.000219195 1 0.00818563 
 
Runs D Metric Execution 

Time  
1 0 2485 
2 0 2531 
3 0 2484 
4 0 2484 
5 0 2484 
6 0 2500 
7 0 2500 
8 0 2547 
9 0 2484 
10 0 2484 
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Table 21:Detailed Results (SCH - 5000) NSGAII* 
Test Function                 : Schaffer 
Algorithm                       : NSGAII* 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0745312 14.0892 0.0048623 0.0357143 -0.57158 
2 0.128458 14.0498 0.00734218 0.0181818 -0.0345402 
3 0.0787597 14.008 0.0076099 0.0212766 0.747914 
4 0.0680044 14.056 0.00613411 0.0357143 -0.21149 
5 0.0844249 14.002 0.00660159 0 -0.0157843 
6 0.0828549 14.0468 0.00674431 0 1.4067 
7 0.130139 14.0396 0.00654536 0 0.212811 
8 0.122523 13.9572 0.00740185 0.0465116 -0.34479 
9 0.101218 14.0761 0.00502374 0.0196078 0.0799713 
10 0.0859192 14.1019 0.00477164 0.0377358 -0.745261 
 
Runs D Metric Execution 

Time  
1 0.00220179 9281 
2 0.00247652 9297 
3 0.00207723 10110 
4 0.00224362 11719 
5 0.00224362 11359 
6 0.00173272 11421 
7 0.00201354 11485 
8 0.00139909 11531 
9 0.00230332 12031 
10 0.00222442 11703 
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Table 22:Detailed Results (SCH - 7000) NSGAII* 
Test Function                 : Schaffer 
Algorithm                       : NSGAII* 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0462143 14.4068 0.00410278 0.0136986 0.175236 
2 0.0609568 14.4456 0.00449622 0.0131579 -0.293289 
3 0.0662255 14.4141 0.0046446 0.0142857 -0.197252 
4 0.0462775 14.4094 0.00429026 0.0125 -0.0785666 
5 0.0577404 14.3653 0.00520086 0.016129 -0.0885754 
6 0.0576854 14.3737 0.00614926 0 -0.083519 
7 0.0516139 14.4025 0.00504661 0.0142857 -0.121549 
8 0.0620705 14.3734 0.0054223 0 0.0630369 
9 0.0519733 14.4065 0.00463444 0 0.539424 
10 0.0743043 14.4365 0.00434683 0.0246914 -0.354676 
 
Runs D Metric Execution 

Time  
1 0.00290559 12531 
2 0.00301749 14094 
3 0.0029318 15578 
4 0.00296446 17328 
5 0.00268319 26641 
6 0.00263613 17797 
7 0.00239241 19453 
8 0.00232195 19093 
9 0.00263086 18937 
10 0.00347107 18891 
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Table 23: Detailed Results (SCH - 12000) NSGAII* 
Test Function                 : Schaffer 
Algorithm                       : NSGAII* 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.061509 13.7597 0.00351299 0 0.283363 
2 0.0482078 13.7466 0.00343338 0.01 -0.0896702 
3 0.0770399 13.7665 0.0045945 0.001 -0.140594 
4 0.0771029 13.7648 0.00448271 0.02 0.207424 
5 0.0707345 13.7589 0.00378852 0.01 0.408991 
6 0.0568463 13.764 0.00330388 0 0.0987568 
7 0.050804 13.7444 0.00372053 0.01 -0.101853 
8 0.0631941 13.7454 0.00377066 0.01 -0.0464067 
9 0.0676344 13.7449 0.00407051 0.01 -0.464457 
10 0.0479887 13.7597 0.00271907 0.01 0.0161972 
 
Runs D Metric Execution 

Time  
1 0.00452139 19344 
2 0.00405282 23125 
3 0.00436539 32125 
4 0.0047852 34188 
5 0.00448036 34859 
6 0.00450744 33297 
7 0.00450212 32984 
8 0.00426538 33672 
9 0.00390946 34703 
10 0.00420653 33188 
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Table 24: Detailed Results (ZDT1 - 5000) NSGAII* 
Test Function                 : ZDT1 
Algorithm                       : NSGAII* 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0213005 0.900051 0.0045078 1 0.288017 
2 0.0232447 0.941774 0.00396193 1 0.297854 
3 0.0274935 0.869505 0.00493183 1 0.290331 
4 0.0241169 0.84305 0.00546781 1 0.31424 
5 0.0193843 0.929929 0.00403534 1 0.255859 
6 0.0176238 0.923815 0.00421553 1 0.30569 
7 0.0302852 0.907269 0.00437182 1 0.281049 
8 0.0175668 0.931419 0.00398479 1 0.236594 
9 0.0261132 0.900956 0.00452958 1 0.334171 
10 0.0177965 0.96492 0.00361584 1 0.21337 

 
Runs D Metric Execution 

Time  
1 0 1187 
2 0 1141 
3 0 1172 
4 0 1187 
5 0 1172 
6 0 1406 
7 0 1156 
8 0 1156 
9 0 1156 
10 0 1188 
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Table 25:Detailed Results (ZDT1- 7000) NSGAII* 
Test Function                 : ZDT1 
Algorithm                       : NSGAII* 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.01503 0.784044 0.00159946 1 0.0954626 
2 0.00993597 0.80346 0.00133421 1 0.0888442 
3 0.0137079 0.764767 0.00189791 1 0.128646 
4 0.014192 0.719903 0.00259483 1 0.154019 
5 0.0152287 0.808596 0.00124948 1 0.0701497 
6 0.0129178 0.766742 0.0018799 1 0.159818 
7 0.011847 0.759259 0.00197522 1 0.136495 
8 0.0136244 0.787402 0.00151608 1 0.0931162 
9 0.0086012 0.780182 0.00166928 1 0.098121 
10 0.00813085 0.813097 0.00119937 1 0.082123 
 
Runs D Metric Execution 

Time  
1 0 1718 
2 0 1750 
3 0 1672 
4 0 1938 
5 0 1765 
6 0 1703 
7 0 1719 
8 0 1672 
9 0 1703 
10 0 1782 
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Table 26: Detailed Results (ZDT1- 12000) NSGAII* 
Test Function                 : ZDT1 
Algorithm                       : NSGAII* 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.00707532 0.688378 0.000305681 1 0.0203528 
2 0.00730712 0.680285 0.00042288 1 0.0187378 
3 0.00866543 0.68899 0.000289497 1 0.0103549 
4 0.00896427 0.686255 0.000336969 1 0.0134582 
5 0.00918807 0.686881 0.000321839 1 0.0123579 
6 0.00815082 0.684295 0.000360295 1 0.018665 
7 0.00808879 0.689308 0.000293941 1 0.0124542 
8 0.00859897 0.681176 0.000405972 1 0.0222313 
9 0.0070907 0.690487 0.000279114 1 0.00741076 
10 0.00857144 0.688229 0.000300089 0.99 0.0119825 
 
Runs D Metric Execution 

Time  
1 0 3500 
2 0 3640 
3 0 3688 
4 0 3547 
5 0 3531 
6 0 3484 
7 0 3875 
8 0 3437 
9 9.30431e-007 3531 
10 0 3500 
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Table 27: Detail Results (ZDT3 - 5000) NSGAII* 
Test Function                 : ZDT3 
Algorithm                       : NSGAII* 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0190038 0.950226 0 1 0.308099 
2 0.0121969 0.993583 0.0050702 1 0.255438 
3 0.0121218 1.03031 0.0125625 1 0.255645 
4 0.0170949 1.12317 0.0133915 1 0.170667 
5 0.0215041 0.981719 0.0112446 1 0.289643 
6 0.0222327 0.983505 0.0052517 1 0.253188 
7 0.0139222 1.04932 0.0129204 1 0.242768 
8 0.0161655 1.00541 0.00504821 1 0.265786 
9 0.0245642 1.0571 0.00723334 1 0.226423 
10 0.0144339 1.00804 0.00627098 1 0.26285 
 
Runs D Metric Execution 

Time  
1 0 1547 
2 0 1234 
3 0 1234 
4 0 1234 
5 0 1234 
6 0 1219 
7 0 1250 
8 0 1235 
9 0 1235 
10 0 1203 
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Table 28: Detail Results (ZDT3- 7000) NSGAII* 
Test Function                 : ZDT3 
Algorithm                       : NSGAII* 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0166542 0.883421 0.0018585 1 0.155383 
2 0.0121641 0.883945 0.00189823 1 0.144119 
3 0.0132729 0.892794 0.00175246 1 0.126819 
4 0.00902107 0.913015 0.0014939 1 0.101395 
5 0.0142743 0.878422 0.00193849 1 0.144092 
6 0.00923166 0.966835 0.000813139 1 0.0656416 
7 0.0117386 0.938879 0.00118266 1 0.0814288 
8 0.0115328 0.894214 0.00175569 1 0.130163 
9 0.0084745 0.936747 0.00120245 1 0.087173 
10 0.0133798 0.865063 0.00211941 1 0.172974 
 
Runs D Metric Execution 

Time  
1 0 1829 
2 0 1797 
3 0 1844 
4 0 1828 
5 0 1813 
6 0 2203 
7 0 1828 
8 0 1828 
9 0 1828 
10 0 1812 
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Table 29: Detail Results (ZDT3- 12000) NSGAII* 
Test Function                 : ZDT3 
Algorithm                       : NSGAII* 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0084487 0.803476 0.000251508 1 0.00830966  
2 0.00574161 0.798377 0.000267878 1 0.0146495 
3 0.00795096 0.803722 0.000216081 1 0.00912201 
4 0.00611749 0.802025 0.000245702 1 0.0125332 
5 0.00770546 0.795912 0.000329541 1 0.0149168 
6 0.00751448 0.794361 0.000332832 1 0.0188774 
7 0.00812976 0.791997 0.000316306 1 0.0206831 
8 0.00665044 0.801986 0.000226437 1 0.0121536 
9 0.00534519 0.797187 0.000275848 1 0.0208377 
10 0.00760576 0.79799 0.000265293 1 0.0150829 
 
Runs D Metric Execution 

Time  
1 0 3625 
2 0 3688 
3 0 3968 
4 0 3672 
5 0 3641 
6 0 3609 
7 0 3609 
8 0 3641 
9 0 3937 
10 0 3562 
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Table 30: Detail Results (SCH - 5000) SPEA 2 
Test Function                 : Schaffer 
Algorithm                       : SPEA 2 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.116793 14.2686 0.00676068 0.0392157 -0.581295 
2 0.102299 14.2866 0.00544966 0.0377358 -0.19869 
3 0.101131 14.257 0.00667089 0.0212766 -0.651938 
4 0.108457 14.1911 0.00911255 0.025 -0.420989 
5 0.105932 14.2456 0.00746688  0.0208333 -0.0731812 
6 0.112966 14.2937 0.00560185 0.0217391 -0.0504303 
7 0.101588 14.2548  0.00633232 0.0196078 0.324505 
8 0.0884626 14.2609 0.00715907 0.0192308 -0.0590315 
9 0.0744838 14.1668 0.00815725 0.0227273 0.0252295 
10 0.0928174 14.2307 0.0077131 0.05 -0.560721 
 
Runs D Metric Execution 

Time  
1 0.00229137 1984 
2 0.00183601 1922 
3 0.00194363 1968 
4 0.00147822 1984 
5 0.00201182 1938 
6 0.00173411 1984 
7 0.00193964 2000 
8 0.00203899 1906 
9 0.00180052 1984 
10 0.00127214 1984 
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Table 31: Detail Results (SCH - 7000) SPEA 2 
Test Function                 : Schaffer 
Algorithm                       : SPEA 2 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0944126 14.3195 0.00588534 0.0181818 -0.652608 
2 0.0572939 14.3416 0.00423929 0.0140845 0.198803 
3 0.062646 14.3136 0.00558612 0.030303 -0.45076 
4 0.0502236 14.321 0.00495588 0.028169 -0.328092 
5 0.0503809 14.3919 0.00392023 0 0.463263 
6 0.0517618 14.3726 0.00538223 0 0.266912 
7 0.0456268 14.3683 0.00547603 0.027027 -0.625355 
8 0.0831178 14.3415 0.00510385 0.0350877 -0.19222 
9 0.0603361 14.3738 0.00406458 0.0285714 -0.408814 
10 0.0656036 14.3723 0.00403155 0.0147059 0.132903 
 
Runs D Metric Execution 

Time  
1 0.00268358 2735 
2 0.00281045 2734 
3 0.00253911 2718 
4 0.00292966 2734 
5 0.00321084 2797 
6 0.00317874 2734 
7 0.002951 2735 
8 0.00221091 2719 
9 0.00303325 2735 
10 0.00269197 2735 
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Table 32: Detail Results (SCH - 12000) SPEA 2 
Test Function                 : Schaffer 
Algorithm                       : SPEA 2 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0251085 13.7239 0.0025004 0.02 -0.12824 
2 0.0369027 13.7118 0.0026001 0 0.172418 
3 0.0278823 13.719 0.002624 0 -0.025425 
4 0.0381341 13.7174 0.00255852 0.01 -0.15643 
5 0.0349253 13.7323 0.00208738 0.01 0.0376768 
6 0.0323894 13.7252 0.00232715 0.01 -0.330261 
7 0.0264353 13.731 0.00223852 0.01 -0.00123024 
8 0.0340224 13.714 0.00322549 0.02 -0.170024 
9 0.0283978 13.7183 0.00242086 0.01 -0.0817719 
10 0.0334932 13.7173 0.0028649 0.01 0.0832148 
 
Runs D Metric Execution 

Time  
1 0.00387698 5047 
2 0.00446847 4890 
3 0.00470302 5156 
4 0.00415946 5032 
5 0.00416654 4906 
6 0.00441768 5000 
7 0.00418099 5141 
8 0.00438553 4891 
9 0.00425373 5125 
10 0.00453552 4937 
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Table 33: Detail Results (ZDT1 - 5000) SPEA 2 
Test Function                 : ZDT1 
Algorithm                       : SPEA 2 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0437705 1.00671 0.00447802 1 0.296132 
2 0.028415 1.04558 0.00380171 1 0.282034 
3 0.0210605 0.97961 0.00458859 1 0.275797 
4 0.0183806 1.01256 0.00427008 1 0.264921 
5 0.0226931 0.989598 0.00462164 1 0.303142 
6 0.0201444 0.981096 0.00480402 1 0.28175 
7 0.0311652 1.00158 0.00478962 1 0.409546 
8 0.0239255 1.01132 0.00454334 1 0.403623 
9 0.0337713 0.983102 0.00477387 1 0.360079 
10 0.02218 1.10006 0.00284769 1 0.217936 
 
Runs D Metric Execution 

Time  
1 0 2343 
2 0 2343 
3 0 2328 
4 0 2343 
5 0 2407 
6 0 2344 
7 0 2359 
8 0 2344 
9 0 2359 
10 0 2406 
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Table 34: Detail Results (ZDT1 - 7000) SPEA 2 
Test Function                 : ZDT1 
Algorithm                       : SPEA 2 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0205802 0.894147 0.00288223 1 0.204401 
2 0.0122221 0.951118 0.00206945 1 0.197386 
3 0.0132753 0.982718 0.0016682 1 0.193981 
4 0.0140367 0.974075 0.00178486 1 0.216331 
5 0.0231072 0.920961 0.00239455 1 0.180584 
6 0.0138332 0.959957 0.00193944 1 0.186482 
7 0.0157789 0.922267 0.00251142 1 0.210527 
8 0.0118067 0.944897 0.00238319 1 0.282956 
9 0.0144647 0.938938 0.00219139 1 0.169401 
10 0.0185416 0.913132 0.00261089 1 0.197386 
 
Runs D Metric Execution 

Time  
1 0 3329 
2 0 3297 
3 0 3344 
4 0 3297 
5 0 3344 
6 0 3281 
7 0 3343 
8 0 3313 
9 0 3437 
10 0 3312 
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Table 35: Detail Results (ZDT1 - 12000) SPEA 2 
Test Function                 : ZDT1 
Algorithm                       : SPEA 2 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.00403858 0.718849 0.000379719 1 0.0357524 
2 0.00462824 0.720535 0.000354129 1 0.0207268 
3 0.0048509 0.715096 0.000434961 1 0.0286587 
4 0.00505082 0.719818 0.000363698 1 0.0282276 
5 0.00638048 0.713568 0.000455372 1 0.0376999 
6 0.00541078 0.710018 0.000508522 1 0.0500253 
7 0.00510555 0.720106 0.000354286 1 0.0171999 
8 0.00518839 0.71844 0.000381715 1 0.0182736 
9 0.00541347 0.714382 0.00043984 1 0.0238366 
10 0.00422484 0.718951 0.000373115 1 0.0197532 
 
Runs D Metric Execution 

Time  
1 0 6734 
2 0 6782 
3 0 6797 
4 0 7234 
5 0 6781 
6 0 6609 
7 0 6812 
8 0 6547 
9 0 6610 
10 0 6828 
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Table 36: Detail Results (ZDT3 - 5000) SPEA 2 
Test Function                 : ZDT3 
Algorithm                       : SPEA 2 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0246232 1.18986 0.00392201 1 0.27558 
2 0.0170117 1.24303 0.00342185 1 0.233451 
3 0.0192198 1.25198 0.00323731 1 0.235824 
4 0.019235 1.22105 0.00359773 1 0.279935 
5 0.0207529 1.27944 0.0030214 1 0.228549 
6 0.0140933 1.2396 0.00536689 1 0.593699 
7 0.0424615 1.25501 0.00334453 1 0.229279 
8 0.0257008 1.24674 0.00321468 1 0.227757 
9 0.0155616 1.25303 0.0032287 1 0.221539 
10 0.0159103 1.25194 0.00322089 1 0.241709 
 
Runs D Metric Execution 

Time  
1 0 2360 
2 0 2406 
3 0 2344 
4 0 2344 
5 0 2344 
6 0 2359 
7 0 2344 
8 0 2407 
9 0 2359 
10 0 2344 
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Table 37: Detail Results (ZDT3 - 7000) SPEA 2 
Test Function                 : ZDT3 
Algorithm                       : SPEA 2 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.0140404 1.03362 0.00108192 1 0.0872904 
2 0.0133935 0.984692 0.00174249 1 0.127757 
3 0.0115782 1.03562 0.00103178 1 0.0942835 
4 0.0108595 0.991001 0.00164605 1 0.12276 
5 0.011635 0.899186 0.00260891 1 0.209713 
6 0.0180954 0.958617 0.00201543 1 0.157353 
7 0.0159193 0.952468 0.00214844 1 0.14529 
8 0.0124187 0.939585 0.00228078 1 0.16662 
9 0.0128448 0.978896 0.00183845 1 0.131176 
10 0.0126806 0.95304 0.00212512 1 0.147487 
 
Runs D Metric Execution 

Time  
1 0 3344 
2 0 3344 
3 0 3422 
4 0 3297 
5 0 3390 
6 0 3359 
7 0 3297 
8 0 3344 
9 0 3297 
10 0 3329 
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Table 38: Detail Results (ZDT3 - 12000) SPEA 2 
Test Function                 : ZDT3 
Algorithm                       : SPEA 2 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 0.00582075 0.825452 0.000291234 1  0.0235764 
2 0.00689939 0.827478 0.000294602 1 0.0248355 
3 0.00535329 0.82449 0.000303431 1 0.0285415 
4 0.00580876 0.822844 0.000324582 1 0.0290183 
5 0.00630802 0.821375 0.000342136 1 0.0309091 
6 0.00560296 0.828474 0.000273501 1 0.0201061 
7 0.00463634 0.827646 0.000277388 1 0.0236099 
8 0.00500282 0.832328 0.000256674 1 0.0206808 
9 0.00614415 0.83152 0.000264657 1 0.0190905 
10 0.00468227 0.820784 0.000335294 1 0.0239441 
 
Runs D Metric Execution 

Time  
1 0 6907 
2 0 7062 
3 0 7500 
4 0 7031 
5 0 6828 
6 0 7297 
7 0 7094 
8 0 6812 
9 0 6906 
10 0 7078 
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Table 39: Detail Results (SCH - 5000) SPEA 2* 
Test Function                 : Schaffer 
Algorithm                       : SPEA 2* 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 2.98092 74.5917 0.0907294 0.333333 -23.5602 
2 0 9.38501 0.452532 1 -31.939 
3 1.0204 76.5101 0.0845583 0.0833333 12.0409 
4 3.65446 71.2795 0.118141 0.5 -22.2403 
5 0 0 0.495977 1 -38.1212 
6 3.40208 73.8847 0.0958613 0.25 17.2947 
7 0 68.7544 0.124789 0.5 24.2354 
8 0.343925 79.6865 0.0512265 0 10.4234 
9 0.332712 77.8671 0.0668402 0 11.6448 
10 0.456301 78.5934 0.0655361 0.142857 9.54765 
 
Runs D Metric Execution 

Time  
1 0.000276087 4422 
2 0 4359 
3 0.000767394 4422 
4 0.000141417 4422 
5 0 4359 
6 0.000257327 4422 
7 9.85647e-

005 
4407 

8 0.000637565 4359 
9 0.000327574 4438 
10 0.000297652 4421 
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Table 40: Detail Results (SCH - 7000) SPEA 2* 
Test Function                 : Schaffer 
Algorithm                       : SPEA 2* 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 4.23985 81.4628 0.124055 0.333333 17.4849 
2 4.13388 80.1746 0.11682 0.2 17.1988 
3 2.41216 83.1411 0.106527 0.111111 20.6213 
4 1.68216 89.3874 0.0700265 0.0909091 1.53135 
5 0.605503 87.0542 0.0794611 0 12.1146 
6 4.47206 78.2228 0.129111 0.5 -21.6284 
7 3.17088 86.1351 0.0927838 0.333333 -0.055274 
8 0 72.6429 0.149983 0.5 25.4111 
9 0.560596 82.9369 0.101825 0 12.6019 
10 0.411973 87.2517 0.0926399 0.0833333 11.9123 
 
Runs D Metric Execution 

Time  
1 2.80313e-

005 
6188 

2 0.000295998 6250 
3 0.000516919 6172 
4 0.00051366 6235 
5 0.00022422 6187 
6 0.000141733 6172 
7 0.000155687 6218 
8 3.81067e-

005 
6172 

9 0.000290647 6250 
10 0.000607382 6172 
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Table 41: Detail Results (SCH - 12000) SPEA 2* 
Test Function                 : Schaffer 
Algorithm                       : SPEA 2* 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 1.15235 86.1171 0.0647858 0.0714286 4.34636 
2 0.181473 86.0094 0.0619549 0 10.245 
3 4.17356 76.2854 0.122 0.4 -30.4027 
4 2.12027 84.5233 0.0734171 0.142857 2.13573 
5 1.699 85.9097 0.066907 0.4 -13.6947 
6 5.75853 72.6928 0.137502 0.333333 9.21077 
7 0.37225 80.5793 0.0974024 0 12.9799 
8 0.610456 87.0451 0.0517299 0 9.70435 
9 0.10341 81.6498 0.093429 0 12.8986 
10 2.52515 82.485 0.0978221 0.222222 -13.9786 
 
Runs D Metric Execution 

Time  
1 0.000885309 11328 
2 0.00016904 11265 
3 0.000102575 11750 
4 0.000334209 11250 
5 0.000192368 11407 
6 6.62638e-

005 
11063 

7 0.000222309 11031 
8 0.000247266 10968 
9 0.000830338 10907 
10 0.000465406 11188 
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Table 42: Detail Results (SCH - 5000) SPEA 2* 
Test Function                 : Schaffer 
Algorithm                       : SPEA 2* 
Maximum Evaluations  : 5000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 2.98092 74.5917 0.0907294 0.333333 -23.5602 
2 0 9.38501 0.452532 1 -31.939 
3 1.0204 76.5101 0.0845583 0.0833333 12.0409 
4 3.65446 71.2795 0.118141 0.5 -22.2403 
5 0 0 0.495977 1 -38.1212 
6 3.40208 73.8847 0.0958613 0.25 17.2947 
7 0 68.7544 0.124789 0.5 24.2354 
8 0.343925 79.6865 0.0512265 0 10.4234 
9 0.332712 77.8671 0.0668402 0 11.6448 
10 0.456301 78.5934 0.0655361 0.142857 9.54765 
 
Runs D Metric Execution 

Time  
1 0.000276087 4422 
2 0 4359 
3 0.000767394 4422 
4 0.000141417 4422 
5 0 4359 
6 0.000257327 4422 
7 9.85647e-

005 
4407 

8 0.000637565 4359 
9 0.000327574 4438 
10 0.000297652 4421 
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Table 43: Detail Results (SCH - 7000) SPEA 2* 
Test Function                 : Schaffer 
Algorithm                       : SPEA 2* 
Maximum Evaluations  : 7000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 4.23985 81.4628 0.124055 0.333333 17.4849 
2 4.13388 80.1746 0.11682 0.2 17.1988 
3 2.41216 83.1411 0.106527 0.111111 20.6213 
4 1.68216 89.3874 0.0700265 0.0909091 1.53135 
5 0.605503 87.0542 0.0794611 0 12.1146 
6 4.47206 78.2228 0.129111 0.5 -21.6284 
7 3.17088 86.1351 0.0927838 0.333333 -0.055274 
8 0 72.6429 0.149983 0.5 25.4111 
9 0.560596 82.9369 0.101825 0 12.6019 
10 0.411973 87.2517 0.0926399 0.0833333 11.9123 
 
Runs D Metric Execution 

Time  
1 2.80313e-

005 
6188 

2 0.000295998 6250 
3 0.000516919 6172 
4 0.00051366 6235 
5 0.00022422 6187 
6 0.000141733 6172 
7 0.000155687 6218 
8 3.81067e-

005 
6172 

9 0.000290647 6250 
10 0.000607382 6172 
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Table 44: Detail Results (SCH - 12000) SPEA 2* 
Test Function                 : Schaffer 
Algorithm                       : SPEA 2* 
Maximum Evaluations  : 12000 
 
Runs Spacing S Metric Generational 

Distance 
Coverage  Coverage 

Difference 
1 1.15235 86.1171 0.0647858 0.0714286 4.34636 
2 0.181473 86.0094 0.0619549 0 10.245 
3 4.17356 76.2854 0.122 0.4 -30.4027 
4 2.12027 84.5233 0.0734171 0.142857 2.13573 
5 1.699 85.9097 0.066907 0.4 -13.6947 
6 5.75853 72.6928 0.137502 0.333333 9.21077 
7 0.37225 80.5793 0.0974024 0 12.9799 
8 0.610456 87.0451 0.0517299 0 9.70435 
9 0.10341 81.6498 0.093429 0 12.8986 
10 2.52515 82.485 0.0978221 0.222222 -13.9786 
 
Runs D Metric Execution 

Time  
1 0.000885309 11328 
2 0.00016904 11265 
3 0.000102575 11750 
4 0.000334209 11250 
5 0.000192368 11407 
6 6.62638e-

005 
11063 

7 0.000222309 11031 
8 0.000247266 10968 
9 0.000830338 10907 
10 0.000465406 11188 
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C. List of Acronyms 
 
DTLZ Deb Laumanns Thiele Zitzler 
EA Evolutionary Algorithm 
FON Fonseca 
KUR Kursawe 
MOEA Multi Objective Evolutionary Algorithm 
MOP  Multi Objective Optimization Problem 
M-OPT Multi-objective Optimization Problems Toolbox 
NSGA Non Dominated Sorting Genetic Algorithm 
PAES Pareto Archived Evolutionary Strategy 
POF Pareto Optimal Front 
PSO Particle Swarm Optimization 
SBX Simulated Binary Crossover 
SCH Schaffer 
SPEA Strength Pareto Evolutionary Algorithm 
ZDT Zitzler Deb Thiele 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 120

D. M-OPT Screenshots  
 
 

 

Figure 37: M-OPT Screen1 
 

 
Figure 38: M-OPT Screen2 

 


