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Abstract

Although computational techniques for solving Multiobjective Optimization Prob-
lems (MOPs) have been available for many years, the recent application of Evolutionary
Algorithms (EAs) to such problems provides a vehicle with which to solve very large scale
MOPs. This research classifies and analyzes contemporary Multiobjective Evolutionary
Algorithm (MOEA) research and associated MOPs. Under the umbrella of a priori, pro-
gressive, and a posteriori algorithms, all currently known MOEAs proposed in the litera-
ture are classified and cataloged. The classification also incorporates detailed algorithmic
characteristics, such as objective aggregation, interactive methods, sampling, ranking, and
niching. Using a consistent MOEA terminology and notation, each cited MOEAS’ key
factors are presented in tabular form for ease of MOEA identification and selection. This
effort currently classifies 218 distinct MOEA research efforts and applications (representing

272 separate references).

A detailed quantitative and qualitative MOEA analysis is presented. The classified
efforts provide a basis for analyses about various algorithmic techniques, fitness functions,
gene representations, and the problem domains within which MOEAs are applied. On a
qualitative level MOEA “state of the art” is discussed, addressing topics such as MOEA
characteristics, theory, additional populations, complexity, and well-engineered MOEA

implementations. New theorems and definitions are also presented.

This research extends the traditional notion of building blocks to the MOP domain
in an effort to develop more effective and efficient MOEAs. An innovative extension of
an existing building block-based EA to the MOP domain (named the MOMGA), and the

engineering design decisions made during its construction are presented.

The MOEA community’s limited de facto test suites contain various MOP functions,
many of whose origins and rationale for use are unknown. Thus, example MOPs from the
current MOEA literature are presented in tabular form and classified based upon problem
domain genotype and phenotype characteristics; these include connectivity, disjointness,

concave or convex shape, constraints, and symmetry. Using general test suite guidelines,
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more comprehensive MOEA test function suites are generated based upon MOP charac-

teristics and applicable MOEA theory.

Few efforts quantitatively measure MOEA performance; fewer still compare MOEA
results to MOPs with known optima. Using a developed MOEA test function suite, an
experimental methodology incorporating known MOP solutions and appropriate test suite
metrics is offered as a proposed evaluation framework allowing for absolute comparisons
of specific MOEA approaches. This framework is then used in experiments with three
well-known MOEAs and the MOMGA, examining their performance in regard to test
MOPs. Experimental results, their statistical analyses, and other germane observations
are presented. The MOMGA is shown to be at least as effective as other MOEAs tested

and often more so.

Taken together, this document’s classifications, analyses, and new innovations present
a complete, contemporary view of current MOEA “state of the art” and possible future
research. Researchers with basic EA knowledge may also use part of it as a largely self-

contained introduction to MOEAs.



Multiobjective Evolutionary Algorithms:

Classifications, Analyses, and New Innovations

I. Introduction and Overview

It always takes longer than you expect, even when you take into account Hofstadter’s Law.
Douglas Hofstadter, Gédel, Escher, Bach

1.1 Introduction

With or without conscious thought people make decisions throughout every day of
their lives. These decisions may be as simple as deciding what clothes to wear or as difficult
as those involved in engineering a space shuttle’s design. The former decision is made in
a matter of seconds while one of the latter may take years, with the attendant difficulties
of changing priorities, rising costs, changing resource levels, and so on. Oftentimes these
problems are viewed as minimizing cost while maximizing gain. This research focuses on

complex types of these optimization problems.

Consider the very simple example of purchasing a car. The purchaser wishes to satisfy
the following criteria: minimizing the car’s cost, insurance premium, and weight (for towing
behind a motor home), and maximizing its “fun.” The purchaser also desires said vehicle to
meet the following conditions: seats six adults (comfortably), provides all-time four-wheel
drive and a “premium” stereo system, blue or black two-tone paint, and a minimum 75 miles
per gallon. In mathematical terminology the available vehicles (makes and models) are the
problem’s decision variables, the conditions to be met are the constraints, and the process
of minimizing and maximizing the criteria is called optimization. An objective function
based on the decision variables is used to determine an associated vector representing how

“well” some particular vehicle satisfies the criteria of vehicle and insurance cost, weight,
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and “fun.” Because multiple objectives are simultaneously considered this problem is

termed a Multiobjective Optimization Problem (MOP).

This simple example highlights many difficulties associated with solving MOPs.
Lower vehicle costs may not result in the desired paint job and stereo system. The de-
sired ‘miles per gallon’ may not be achieved by any vehicle on the market. Constructing a
mathematical model representing this situation may not be easy. For example, how does

one quantify “fun” and “premium?” Perhaps this MOP is not as simple as it appears?

1.2 Research Definition

Humanity has long been solving MOPs. As both human society and its technologies
progressed and became more complex, one can easily argue that real-world MOPs also
became correspondingly “harder.” For instance, Darius assumed control of the Persian
Empire around 500 B.C. Soon after he led his army and navy on a campaign to secure
the Empire’s eastern and western frontiers. [119:pg. 16]. His 70,000 man army consisted
of foot soldiers, archers, and cavalrymen, and his navy had 200-300 ships. It is obvious his

campaign’s planning was rife with conflicting objectives.

Imagine his war council’s conversations. “Which frontier should be attacked first?”
“Can the navy be used here instead of the army?” “Is the army or navy more effective
in coastal attack?” “Since most of the foot soldiers are needed here, can this mission
be accomplished by a force composed primarily of archers?” “The cavalry is the force of
choice here, but isn’t their cost more expensive (in terms of logistics)?” One easily sees
the conflicts and tradeoffs which often occur when attempting to simultaneously satisfy

multiple conflicting and/or complementary objectives.

Fast forward 2500 years to 1991. Compare Darius’ situation to that of General Nor-
man Schwarzkopf’s as Commander-in-Chief, Central Command, during Operation Desert
Storm. As military leader of the coalition attacking Iraq (with almost 600,000 US person-
nel alone [15:pg. 492]), Schwarzkopf had several military force options to consider. The
US could supply troops from its own Army, Air Force, Navy, and Marines. Other coali-

tion members brought similar military forces to the battle, some with unique capabilities.
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A multitude of weaponry was available. Army troops were armed with pistols, machine
guns, artillery, and tanks. Coalition navies used destroyers, submarines, and carrier-based
aviation. The Air Force brought precision-guided munitions and conventionally-armed
cruise missiles to the fray. One easily sees this campaign’s planning was a much more
difficult problem than Darius faced. Many more resources were available for use, each with
attendant benefits and drawbacks depending on their particular application. A mix of
social, political, and military objectives was still considered here, but instead of satisfying
these goals in view of a single country’s interests, a coalition of countries was involved.
Additionally, many coalition nations’ political and military leadership were no longer em-
bodied in the same individual. Battle maps showing coalition forces’ attacks on Iraq give
some appreciation for how some of the many complex military objectives were (partially)

satisfied [15:pp. 515-521].

Just as instantiated MOP complexity has increased through history, so has perfor-
mance and complexity of associated solution methods. Consider the post-World War II
period. Here, the combination of “state of the art” algorithmic advances (e.g., linear pro-
gramming, queuing theory) and the advent of electronic computation contributed to the
solution of larger and more complex optimization problems. [150:pp. 3-5]. Thus, although
one can easily imagine Darius and his generals clustered around an ancient “white board”
manually employing a primitive version of these algorithms, we now focus on computational

implementations of current “state of the art” algorithms.

Several algorithmic MOP solution approaches can be identified including enumera-
tive, deterministic, and stochastic schemes [126]. Because many MOPs are high-dimen-
sional, discontinuous, multimodal, and/or Nondeterministic Polynomial (NP)-Complete,
stochastic methods often give better performance. This research focuses on a class of
stochastic computational methods for solving real-world scientific and engineering MOPs
called Evolutionary Algorithms (EAs), specifically centering on what we term Multiobjec-
tive Evolutionary Algorithms (MOEAs).

Webster’s dictionary defines the term effective as the production of or the power
to produce an acceptable result; efficient is defined as acting in such a way as to avoid

resource loss or waste in functioning [339]. The term engineering is then defined as planning

1-3



with more or less subtle skill. By addressing relevant issues, this research shows “well-
engineered” MOEAs have the potential to solve some real-world MOPs both effectively
and efficiently.

1.8 Research Goals and Objectives

This research focuses on the foundations of MOEA application to scientific and engi-
neering MOPs. A myriad of related issues is involved in this effort, but broadly speaking,
this investigation attempts to achieve three major goals: MOEA classifications, analyses,

and innovations.

1.8.1 Goal 1: MOEA C(lassifications. Classifying any related set of items may
not be a simple task as classification characteristics may be conflicting, complementary,
subjective, and so forth. As both the MOP and MOEA domains are quite complex, these
may be the reasons why few researchers have attempted to organize the MOEA literature
into a coherent whole. This research effort attempts to place a cohesive “wrapper” around
both the MOEA literature and the major factors to consider when solving MOPs with

MOEAs. Research objectives supporting this goal are listed in Table 1.1.

Table 1.1. MOEA Classifications’ Objectives
Goal: MOEA Classifications
Objectives:
Develop and refine a sound, extensible basis for MOEA classification

Classify known implementations
Organize key problem/algorithm domain components of classified MOEAs
Organize MOEA test functions used in the literature

1.8.2 Goal 2: MOEA Analyses. The literature has no self-contained introduc-
tory document explaining relevant issues to consider when solving MOPs with MOEAs.
In addition, little literature currently exists regarding MOEA theory. As any effective
and efficient MOP solution algorithm must incorporate problem domain knowledge and
appropriate heuristics [218, 346], this study attempts to extend current MOEA theory by

analyzing key problem and algorithm domain characteristics. This allows for the design
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and application of “well-engineered” MOEAs. Research objectives supporting this goal are

listed in Table 1.2.

Table 1.2.  MOEA Analyses’ Objectives
Goal: MOEA Analyses
Objectives:
Critically consider current MOEA literature based upon classification effort
Analyze the MOP/MOEA domain integration process
— Identify and analyze major MOP domain characteristics
— Identify and analyze key MOEA components used in solving MOPs
Identify existing “well-engineered” MOEAs
Identify, analyze, and classify metrics for use in comparing MOP solutions

1.3.83 Goal 3: MOEA Innovations.  This dissertation attempts to extend MOEA
“state of the art.” Its classification and analysis identifies several shortcomings in the field;
the theoretical and practical innovations it offers are meant to expand the field’s knowledge
and to stimulate critical thinking among other researchers. Research objectives supporting

this goal are listed in Table 1.3.

Table 1.3. MOEA Innovations’ Objectives
Goal: MOEA Innovations
Objectives:
Define the presence and role of Building Blocks (BBs) in MOP solutions
Engineer an MOEA to explicitly manipulate BBs in solving MOPs
— Incorporate relevant analytical results in designing a BB-based MOEA
— Determine performance of the new MOEA
— Determine benefits of a parallel implementation
Substantiate and propose an MOEA test function suite
Substantiate and execute MOEA experiments
— Use developed metrics, test functions, and suitable MOEAs
Relate experimental results to MOEA application in real-world MOPs

1.4 Research Approach and Scope

This research adopts a methodical approach in accomplishing the previously defined
goals and objectives. It performs an in-depth investigation into both the problem (MOP)
and algorithm (MOEA) domains via an extensive literature review. Insight gained through

this review is then used in engineering an innovative EA, and in designing a proposed
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MOEA test suite and performance metrics. Finally, appropriate MOEA experiments are
designed and executed using the developed metrics, their results analyzed, and conclusions

presented.

This research’s goals and objectives (see Section 1.3) clearly define its focus. How-
ever, some general comments further clarify this document’s scope. First, this research
assumes the reader has a basic understanding of EAs, general mathematics, and computer
engineering. Second, any software developed supporting this research may not completely
follow accepted software engineering practices since suitable existing software may be mod-
ified when possible. We also employ rapid prototyping, and intend to make any software
implementation largely platform and operating system independent. Last, although this
research focuses and reports on primarily theoretical concepts, real-world MOP issues are

not ignored.

1.5 Document Organization

The remainder of this document is organized as follows. Chapter II gives an overview
of MOPs, general optimization techniques, EAs, and MOEAs; it also offers new theorems
and definitions. Chapter III presents in-depth analyses of MOEA “state of the art,” dis-
cussing practical and theoretical algorithm design considerations. Chapter IV defines BB
concepts and their use in EAs, then presents a new MOEA (called the Multiobjective messy
Genetic Algorithm (MOMGA)) qualitatively different than any existing implementation.
The MOMGA explicitly manipulates BBs in its search for MOP solutions. Relevant al-
gorithmic test suite issues are discussed in Chapter V, which then substantiates/proposes
MOPs for inclusion in an MOEA test suite. Chapters VI and VII provide both the exper-
imental methodology for and analysis of experiments performed supporting this research.

Chapter VIII then concludes the document’s body by recapping its major contributions.

Several appendices providing background and reference information are included.
Appendix A contains the extensive cataloged MOEA literature review used as the basis
for much of Chapter IIT’s presented analysis. Appendix B contains numeric MOP test
functions used in the MOEA literature; Appendices C and D then present corresponding

graphs for these functions showing each MOP’s salient characteristics.
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II. Multiobjective Optimization and Fvolutionary Algorithms

In relieving the brain of all unnecessary work, a good notation sets it free to concentrate on
more advanced problems, and, in effect, increases the mental power of the race.
Alfred North Whitehead

2.1 Introduction

This chapter provides an overview of the problem and algorithm domains considered
within this research. Neither is straightforward. Thus, we present key concepts defin-
ing and bounding both the problem class (MOPs) and algorithms selected to solve them
(MOEAs). Clearly comprehending this basic information makes it easier to grasp more

detailed concepts presented later.

Section 2.2 defines the MOP domain and offers new related theorems and definitions.
Section 2.3 presents an overview of general search and optimization techniques, giving a
framework within which to place the algorithms focused on by this research. Key elements
of these EAs/MOEAs are given in Sections 2.4 and 2.5. Finally, an MOEA literature

review and technique classification scheme are described in Section 2.6.

2.2 MOP Definition and QOverview

Global optimization is the process of finding the global minimum' within some search
space. The single-objective global optimization problem is formally summarized in the

following definition [17:pg. 35]:

Definition 1 (Global Minimum): Given a function f : Q CR* - R, Q # 0, for

T € Q the value f* = f(&*) > —oo is called a global minimum if and only if

VEEQ: f(@)< f(T). (2.1)

!Or maximum, since min{F(z)} = — max{—F(z)}.
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Then, &* is the global minimum solution(s), f is the objective function, and the set ) is
the feasible region. The problem of determining the global minimum solution(s) is called

the global optimization problem. O

Although single-objective optimization problems may have a unique optimal solution,
MOPs (as a rule) present a possibly uncountable set of solutions, which when evaluated,
produce vectors whose components represent trade-offs in objective space. A decision
maker then implicitly chooses an acceptable solution (or solutions) by selecting one or

more of these vectors. MOPs are mathematically defined as follows:

Definition 2 (General MOP): In general, an MOP minimizes F(Z) = (f1(Z),... , fx(Z))

subject to ¢;(¥) <0, i=1,... ,m, T € Q. An MOP solution minimizes the components of
a vector F(Z) where T is an n-dimensional decision variable vector (¥ = x1,... ,xy) from
some universe 2. O

An MOP thus consists of n decision variables, m constraints, and k& objectives, of
which any or all of the objective functions may be linear or nonlinear [158]. The MOP’s
evaluation function, F' : @ — A, maps decision variables (Z = z1,... ,z,) to vectors
(§ = a1,-.. ,ax). This situation is represented in Figure 2.1 for the case n = 2, m = 0, and
k = 3. This mapping may or may not be onto some region of objective function space, de-
pendent upon the functions and constraints composing the particular MOP. Furthermore,
all problems discussed in this dissertation are assumed to be minimization problems unless

otherwise specified, and to be primitive recursive (i.e., computable) [211].

MOPs are characterized by distinct measures of performance (the objectives) which
may be (in)dependent and/or non-commensurable. For example, a radio antenna’s trans-
mit power and direct monetary cost may have little dependence on each other (past a
certain point); they are also measured in different units (watts vs. dollars). The multi-
ple objectives being optimized almost always conflict, placing a partial, rather than total,
ordering on the search space. In fact, finding the global optimum of a general MOP is
NP-Complete [17:pg. 56]. “Perfect” MOP solutions, where all decision variables sat-

isfy associated constraints and the objective function attains a global minimum, may not
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Figure 2.1. MOP Evaluation Mapping

even exist. In addition, as Horn and others do [152], we use the terms objective, crite-
ria, and attribute interchangeably to represent an MOP’s goals or objectives (i.e., distinct
mathematical functions) to be achieved, even though they are subtly distinguished in the
literature. We also use the terms objective space or objective function space to denote the

coordinate space within which vectors resulting from evaluating an MOP are plotted.

Because of these characteristics (multiple objectives and constraints), MOPs may
require specialized optimization techniques. Regardless of implemented technique, a key

concept in determining a set of MOP solutions is that of Pareto Optimality.

2.2.1 Pareto Concepts.  Although Pareto optimality, and its related concepts and
terminology are frequently invoked, MOEA researchers often erroneously use them in the
literature. To ensure understanding and consistency we define Pareto Dominance, Pareto
Optimality, the Pareto Optimal Set, and the Pareto Front. An associated symbolic notation
is introduced later in Section 2.5.1. Using the MOP notation presented in Definition 2 we

mathematically define these key Pareto concepts [27] as follows:

Definition 3 (Pareto Dominance): A vector @ = (uq,... ,ux) s said to dominate
7 = (vi,...,vx) (denoted by 4@ <X ¥) if and only if u is partially less than v, i.e., Vi €
{1,...k}, i <oy ATie{l,... k}:u; <. O
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Definition 4 (Pareto Optimality): A solution x € 2 is said to be Pareto optimal with
respect to Q0 if and only if there is no ' € Q for which ¥ = F(2') = (fi(2),..., fr(z"))
dominates @ = F(z) = (fi(x),... , fx(z)). The phrase “Pareto optimal” is taken to mean

with respect to the entire decision variable space unless otherwise specified. O

Definition 5 (Pareto Optimal Set): For a given MOP F(z), the Pareto optimal set
(P*) is defined as:

P ={reQ|-32' €Q F(a) < F(z)}. (2.2)

Definition 6 (Pareto Front): For a given MOP F(x) and Pareto optimal set P*, the
Pareto front (PF*) is defined as:

PF* :={id=F(z) = (fi(z),..., fx(z)) |z € P} (2.3)

a

Pareto optimal solutions are also termed non-inferior, admissible, or efficient solu-
tions [152]; their corresponding vectors are termed nondominated. These solutions may
have no clearly apparent relationship besides their membership in the Pareto optimal set.
This is the set of all solutions whose corresponding vectors are nondominated with respect
to all other comparison vectors; we stress here that Pareto optimal solutions are classified
as such based on their evaluated functional values. When plotted in objective space, the
nondominated vectors are collectively known as the Pareto front. Again, P* is a subset
of some solution set. Its evaluated objective vectors form PF*, of which each is nondomi-

nated with respect to all objective vectors produced by evaluating every possible solution

in Q.

As an example of these Pareto concepts we present the one-variable, two-objective

problem denoted as F'1. This is the same problem used by Vincent and Grantham, Schaffer,
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Schaffer Pareto Front

§ Pareto Front

Figure 2.2.  f; and fy Values vs Figure 2.3.  Fi’s Pareto Front

and Srinivas and Deb for identical purposes [306]. This MOP is defined as:
F1 = (fi(z), f2(x)), where

2
flzma

fo = (z-2)2. (2.4)

Figure 2.2 implies that the Pareto optimal set is {z | z < 0 or = > 2}. The solution
x = 0 is optimal with respect to fi; but not fy; the solution = 2 is optimal with respect
to fo but not f1. Any solution {z |z € 0 < z < 2} is not a member of the Pareto optimal
set because it is not better than a solution in the set with respect to either objective.

Rudolph [276] has also shown that given:
F = (fi(z), f2(z)), where

fro= ll=l?,

fa ||z —2||> ,with 0 # z € R, (2.5)

the Pareto optimal set for this general MOP is:

P ={ze€R|z=rz, re[0,1]}. (2.6)
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We point out a significant difference between Figures 2.2 and 2.3. Figure 2.2 plots
the values of functions f; and f5 for different values of the independent variable. However,
Figure 2.3 represents the values of function f; plotted against those of function fy for the
same value of the independent variable. In other words, Figure 2.3 is a graph in objective
space displaying this MOP’s vectors as points. The nondominated vectors (graphed as

asterisks) represent F'1’s Pareto front.

Note that the Decision Maker (DM) is often selecting solutions via choice of accept-
able objective performance, represented by the Pareto front. Choosing an MOP solution
that optimizes only one objective may well ignore solutions, which from an overall stand-
point, are “better.” The Pareto optimal set contains those better solutions. Identifying a
set of Pareto optimal solutions is thus key for a DM’s selection of a “compromise” solution
satisfying the objectives as “best” possible. Of course, the accuracy of the decision maker’s

view depends on both the true Pareto optimal set and the set presented as Pareto optimal.

We note here that derived solutions of real-world MOPs often offer only a finite
number of points which may or may not be truly Pareto optimal. Any time the real-
(continuous) world is modeled (e.g., via objective functions) upon a computer (a discrete
machine), there is a fidelity loss between reality’s uncountable infinity and the implemented
finite, discretized model. Complex MOPs do not generally lend themselves to analytical
determination of the actual Pareto front, thus making even a computational approximation

of an MOP’s global optimum difficult.

2.2.2 Pareto-Related Contributions.  We have developed new Pareto-based theo-
rems and definitions to support research objectives and other theoretical results. As many
MOEAs assume each generational population contains Pareto optimal solutions (with re-
spect to that population), Theorem 1 substantiates this assumption. As the MOEA litera-
ture offers little guidance concerning possible Pareto front cardinality and dimensionality,
Theorems 2 and 3 provides an upper bound. Thus, these Pareto contributions further

bound both problem and algorithm domains. They are presented here for coherence.
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2.2.2.1 Pareto Optimal Set Minimal Cardinality. Because of the manner
in which Pareto optimality is defined, any non-empty finite solution set contains at least
one Pareto optimal solution (with respect to that set). As this may be non-intuitive, and
because it is assumed in many MOEA implementations, we present the following theorem

for the general case.

Theorem 1: Given an MOP with feasible region {2 and any non-empty finite solution
set w C €2, there exists at least one solution & € w that is Pareto optimal with respect to

w. |

Proof: Label the k-dimensional objective vectors resulting from evaluating each #; € w

in non-decreasing, lexicographic order as vi,vs,... ,v, with v; = (vs,1,v52,... ,v). If all
v; are equal then v; is nondominated. Otherwise, there exists a smallest j € {1,... ,k}
such that for some i € {1,... ,n—1}, v =02 =... =v;j < Vg1, < Vigo; < ... < vpj.
This shows that v;y1,v;49,... ,v, do not dominate v;.

If 4 = 1 then we have shown v; is nondominated. On the other hand, if 7 # 1 and

j = k we have shown v; = v9 = ... = v; and vy is again nondominated. Otherwise, there
exists a smallest j' € {j + 1,... ,k} such that for some ¢’ € {1,...,i — 1}, vy jy = vy jy =
=0t < Vi1 < Vpge g < ... < wig. If either i =1, or i’ # 1 and j = k, then we
have again shown v; is nondominated. Otherwise we continue this process. Because k is
finite we eventually show v1 is nondominated and therefore there is at least one solution

that is Pareto optimal with respect to w. Q.E.D.

2.2.2.2 Pareto Front Structure. Theoretical bounds are useful in defining
a given problem domain. We now present a corollary and theorems defining the structural
bounds any Pareto front may attain. Corollary 1 provides a lower bound for the cardinality

of the Pareto front.
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Corollary 1: Given an MOP with feasible region 2 and any non-empty finite solution
set w C €, its Pareto front PF™* is a set containing at least one vector. This result follows

directly from Theorem 1. O

Theorem 2 provides an upper bound on the cardinality of the Pareto front for
MOPs with Euclidean objective spaces (spaces containing all n-tuples of real numbers,

(z1,29,... ,25), denoted by R™). This includes all MOPs of interest in this research.

Theorem 2: The Pareto front of any MOP is composed of at most an uncountably

infinite number of vectors. O

Proof: The Pareto front’s cardinality is bounded above by the cardinality of the objective
space. Q.E.D.

We use the following definition in bounding the Pareto front’s dimensionality [6:pg.

174]:

Definition 7 (Box-Counting Dimension): A bounded set S in RF has boz-counting

dimension
In N
bozdim(S) = lim - 1(6) , (2.7)
=0 In(¢)
where the limit exists and where N(¢€) is the number of bozes that intersect S. O

Theorem 3: For a given MOP F(z) and Pareto optimal set P*, if the Pareto front PF*

is bounded, then it is a set with box-counting dimension no greater than (k — 1). O

Proof: Without loss of generality assume PF* is a bounded set in [0,1]¥. Take S
to be the closure of PF*. Because [0,1]* is closed, S is a bounded set in [0,1]¥. Let

[0,1]% be partitioned by a grid of k-dimensional boxes of side-length €, where the boxes’
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sides are parallel to the objective axes. For each » € R £ {0,¢,2,... L%J e}*~1 define
R, = [r1,71 + € X [ro,m9 + €] X -+ X [rg—1,7%—1 + €] x [0,1]. If SN R, # 0, define p,
to be the point that minimizes f; over R, and B, to be any box that includes p,. Also
define S, = {p,} and B, = U, B,. Then B, covers S.. Because S is closed lim._,o S, = S,
and B £ lim,_,o B, covers S. Because PF* C S, B also covers PF*. Hence, N(¢) =

| R |= [1]%~!, and the box-counting dimension of PF* is

In([¢1*)

T S BT ()
_ 1 (k—l)[an—i—ln(%)]
T ()
k In
— lim! ln@) 2 b (k—1)
= k-1 (2.8)

Q.E.D.

In practice, the Pareto front is a collection of (k — 1) or lower dimensional surfaces
we term Pareto surfaces. The special case where k = 2 results in surfaces we term Pareto
curves. Horn [154] and Thomas [318] state that a k-objective MOP’s Pareto front is a
k — 1 dimensional surface. We have just shown this is incorrect; the front is at most
(k—1) dimensional surface. Although asymptotic bounds are useful, researchers must also
account for the Pareto front’s possible shape within those bounds. Theorem 3 then implies
that any proposed MOEA benchmark test function suite should contain MOPs with Pareto

fronts composed of Pareto curve(s), Pareto surface(s), or some combination of the two.

2.2.2.3 MOP Global Optimum.  Defining an MOP’s global optimum is not
a trivial task as the “best” compromise solution may vary among DMs due to individual
beliefs and biases. Solutions may also have some temporal dependence, e.g., acceptable
resource expenditures may vary from month to month. Thus, there is no universally
accepted definition for the MOP global optimization problem. However, we define an

MOP’s global optimum to substantiate later algorithmic engineering decisions.
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Pareto optimal solutions are those which when evaluated, produce vectors whose
performance in one dimension cannot be improved without adversely affecting another.
The Pareto front PF* determined by evaluating P* is fixed by the defined MOP and does
not change. Thus, P* represents the “best” solutions available and allows the definition of

an MOP’s global optimum.

Definition 8 (MOP Global Minimum): Given a function F: Q CR* - RF, Q £ 0,

k> 2, for T € Q the set PF* £ F(&}) > (—o0,... ,—0oc) is called the global minimum if
and only if

VEeQ: F(Z) R F(Z). (2.9)
Then, &, ¢ = 1,... ,n is the global minimum solution set (i.e., P*), F is the multiple

objective function, and the set S is the feasible region. The problem of determining the

global minimum solution set is called the MOP global optimization problem. O

2.8 General Optimization Algorithm Overview

We classify general search and optimization techniques into three categories: enumer-
ative, deterministic, and stochastic (random). Although an enumerative search is deter-
ministic we make a distinction here as it employs no heuristics. Figure 2.4 shows common

examples of each type.

Enumerative schemes are perhaps the simplest search strategy. Within some defined
finite search space each possible solution is evaluated. However, it is easily seen this
technique is inefficient or even infeasible as search spaces become large. As many real-
world problems are computationally intensive, some means of limiting the search space
must be implemented to find “acceptable” solutions in “acceptable” time. Deterministic
algorithms attempt this by incorporating problem domain knowledge. Many of these are

considered graph/tree search algorithms and are described as such here.

Greedy algorithms make locally optimal choices, assuming optimal sub-solutions are

always part of the globally optimal solution [42, 157]. Thus, these algorithms fail unless
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Global
Search & Optimization
l | 1
Enumerative | | Deterministic | | Stochastic |
_| Greedy | _| Random Search/Walk |
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_l Depth-First | _l Tabu Search |
_l Breadth-First | _| Evolutionary Computation |
- Best-First
(A*Z*, ..)) | Mathematical Programming |
Calculus-Based

Figure 2.4.  Global Optimization Approaches

that is the case. Hill-climbing algorithms search in the direction of steepest ascent from
the current position. These algorithms work best on unimodal functions, but the presence
of local optima, plateaus, or ridges in the fitness (search) landscape reduce algorithm
effectiveness [277]. Greedy and hill-climbing strategies are irrevocable. They repeatedly
expand a node, examine all possible successors (then expanding the “most promising”

node), and keep no record of past expanded nodes [252].

Branch and bound search techniques need problem specific heuristics/decision algo-
rithms to limit the search space [120, 252]. They compute some bound at a given node
which determines whether the node is “promising;” several nodes’ bounds are then com-
pared and the algorithm branches to the “most promising” node [233]. Basic depth-first
search is blind or uninformed in that the search order is independent of solution location
(except for search termination). It expands a node, generates all successors, expands a
successor, and so forth. If the search is blocked (e.g., it reaches a tree’s bottom level) it
resumes from the deepest node left behind [252]. Backtracking is a depth-first search vari-
ant which “backtracks” to a node’s parent if the node is determined “unpromising” [233].
Breadth-first search is also uninformed. It differs from depth-first search in its actions after

node expansion, where it progressively explores the graph one layer at a time [252]. Best-
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first search uses heuristic information to place numerical values on a node’s “promise”; the
node with highest promise is examined first [252]. A*  Z* and others are popular best-
first search variants selecting a node to expand based both on “promise” and the overall
cost to arrive at that node. Finally, calculus-based search methods at a minimum require

continuity in some variable domain for an optimal value to be found [13].

Greedy and hill-climbing algorithms, branch and bound tree/graph search techniques,
depth- and breadth-first search, best-first search, and calculus-based methods are all de-
terministic methods successfully used in solving a wide variety of problems [42, 126, 233].
However, many MOPs are high-dimensional, discontinuous, multimodal, and/or N P-
Complete. Deterministic methods are often ineffective when applied to INP-Complete
or other high-dimensional problems because they are handicapped by their requirement
for problem domain knowledge (heuristics) to direct or limit search [106, 120, 126] in
these exceptionally large search spaces. Problems exhibiting one or more of these above

characteristics are termed #rregular [190].

Because many real-world scientific and engineering MOPs are irregular, enumerative
and deterministic search techniques are then unsuitable. Stochastic search and optimiza-
tion approaches such as Simulated Annealing (SA), Monte Carlo, Tabu search, and Evolu-
tionary Computation (EC) techniques were developed as alternative approaches for solving
these irregular problems [126, 218]. Stochastic methods require a function assigning fitness
values to possible (or partial) solutions, and an encode/decode (mapping) mechanism be-
tween the problem and algorithm domains. Although some are shown to “eventually” find
an optimum most cannot guarantee the optimal solution. They in general provide good
solutions to a wide range of optimization problems which traditional deterministic search

methods find difficult [126, 157].

A random search is the simplest stochastic search strategy, as it simply evaluates
a given number of randomly selected solutions. A random walk is very similar, except
that the next solution evaluated is randomly selected using the last evaluated solution
as a starting point [333]. Like enumeration, though, these strategies are not efficient for
many MOPs because of their failure to incorporate problem domain knowledge. Random

searches can generally expect to do no better than enumerative ones [126:pg. 5].
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SA is an algorithm explicitly modeled on an annealing analogy, where, for example,
a liquid is heated and then gradually cooled until it freezes. Where hill-climbing chooses
the best move from some node SA picks a random one. If the move improves the current
optimum it is always executed, else it is made with some probability p < 1. This probability
exponentially decreases either by time or with the amount by which the current optimum is
worsened [277]. If water’s temperature is lowered slowly enough it attains a lowest-energy
configuration; the analogy for SA is that if the “move” probability decreases slowly enough

the global optimum is found.

In general, Monte Carlo methods involve simulations dealing with stochastic events;
they employ a pure random search where any selected trial solution is fully independent
of any previous choice and its outcome [295]. The current “best” solution and associated
decision variables are stored as a comparator. Tabu search is a meta-strategy developed to
avoid getting “stuck” on local optima. It keeps a record of both visited solutions and the
“paths” which reached them in different “memories.” This information restricts the choice
of solutions to evaluate next. Tabu search is often integrated with other optimization

methods [295].

EC is a generic term for several stochastic search methods which computationally sim-
ulate the natural evolutionary process. As a recognized research field EC is young, although
its associated techniques have existed for about thirty years. EC embodies the techniques of
Genetic Algorithms (GAs), Evolutionsstrategies, or Evolution Strategies (ESs), and Evo-
lutionary Programming (EP), collectively known as EAs. These techniques are loosely
based on natural evolution and the Darwinian concept of “Survival of the Fittest” [126].
Common between them are the reproduction, random variation, competition, and selec-
tion of contending individuals within some population [104]. In general, an EA consists
of a population of encoded solutions (individuals) manipulated by a set of operators and

evaluated by some fitness function.

Each solution’s associated fitness determines which survive into the next generation.

Although sometimes considered equivalent, the terms EA and EC are used separately in

2-13



this document to preserve the distinction between EAs and other EC techniques (e.g.,

Genetic Programming (GP) and learning classifier systems)?.

MOP complexity and the shortcomings of deterministic search methods also drove
creation of several optimization techniques by the Operations Research (OR) community.
These methods (whether linear or non-linear, deterministic or stochastic) can be grouped
under the rubric mathematical programming. These methods treat constraints as the main
problem aspect [295]. Linear programming is designed to solve problems in which the
objective function and all constraint relations are linear [150]. Conversely, nonlinear pro-
gramming techniques solve some MOPs not meeting those restrictions but require convex
constraint functions [295]. We note here that many problem domain assumptions must
be satisfied when using linear programming, and that many real-world scientific and engi-
neering problems may only be modeled by non-linear functions [150:pp. 138,574]. Finally,
stochastic programming is used when random-valued parameters and objective functions
subject to statistical perturbations are part of the problem formulation. Depending on the
type of variables used in the problem, several variants of these methods exist (i.e., discrete,

integer, binary, and mixed-integer programming) [295].

2.4 EA Overview

The following presentation defines basic EA structural terms and concepts;® the
described terms’ “meanings” are normally analogous to their genetic counterparts. A
structure or individual is an encoded solution to some problem. Typically, an individual is
represented as a string (or string of strings) corresponding to a biological genotype. This
genotype defines an individual organism when it is expressed (decoded) into a phenotype.
A genotype is composed of one or more chromosomes, where each chromosome is composed
of separate genes which take on certain values (alleles) from some genetic alphabet. A locus
identifies a gene’s position within the chromosome. Thus, each individual decodes into a

set of parameters used as input to the function under consideration. Finally, a given set of

2 Although GP and learning classifier systems may be classified as EA techniques, we and others consider
them conceptually different approaches to EC [180].

3There is no shortage of introductory EA texts. The general reader is referred to Goldberg [126],
Michalewicz [218], or Mitchell [223]; a more technical presentation is given by Béick [17].
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chromosomes is termed a population. These concepts are pictured in Figure 2.5 (for both

binary and real-valued chromosomes) and in Figure 2.6.

Locus
(Position)
12345678910
110[1/1]/1[1]/0/0[1]0]| -- Chromosome (String) Lo‘c'us
1/ol1]o]olo[1]1]1]0]| -- Chromosome (String) (Position)
olo[1[1[1]1[1]o0l0 1 2 3
0/1/0/0]1]0J1]1]1]1 4.3852 0.5837 8.3853
Population 2111010 1 0L0L1L0 ® 6.3964 | 55495 | 1.0937
UL 011000 e 1.0937 8.3853 9.3856
1/0/0[0[O[1]1[1]1]L L4 : . :
1/0[1[1]/0[0|0[1]0]1 6.3964 1.0645 0.5837
0[0]1]1]0/1]0]1]1]0 )
0/01 110} 1]0{1} 1]0]0] - Chromosome (String) L Allele (Value) = 6.3964
Allele (Value) =0 Allele (Value) = 1

Figure 2.5.  Generalized EA Data Structure and Terminology

Just as in nature, Evolutionary Operators (EVOPs) operate on an EA’s population
attempting to generate solutions with higher and higher fitness. The three major EVOPs
associated with EAs are mutation, recombination, and selection. Illustrating this, Fig-
ure 2.7 shows bitwise mutation on an encoded string where a ‘1’ is changed to a ‘0’, or
vice versa. Figure 2.8 shows single-point crossover (a form of recombination) operating on
two parent binary strings; each parent is cut and recombined with a piece of the other.
Above-average individuals in the population are selected (reproduced) to become members
of the next generation more often than below-average individuals. The selection EVOP
effectively gives strings with higher fitness a higher probability of contributing one or more
children in the succeeding generation. The Schema Theorem describes this process and
is discussed in Section 4.2. Figure 2.9 shows the operation of the common roulette-wheel
selection (a fitness proportional selection operator) on two different populations of four
strings each. Each string in the population is assigned a portion of the wheel proportional

to the ratio of its fitness and the population’s average fitness.

Real-valued chromosomes also undergo these same EVOPs although implemented
differently. All EAs use some subset or variation of these EVOPs. Many variations on
the basic operators exist; these are dependent upon problem domain constraints affecting

chromosome structure and alleles [17].
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Figure 2.6. Key EA Components

An EA requires both an objective and fitness function, which are fundamentally
different. The objective function defines the EA’s optimality condition (and is a feature
of the problem domain) while the fitness function (in the algorithm domain) measures
how “well” a particular solution satisfies that condition and assigns a corresponding real-
value to that solution. However, these functions are in principle identical [17:pg. 68] (e.g.,

numerical optimization problems).

Many other selection techniques are implemented by EAs, e.g., tournament and rank-
ing [17]. Tournament selection operates by randomly choosing some number ¢ individuals
from the generational population and selecting the “best” to survive into the next gen-
eration. Binary tournaments (¢ = 2) are probably the most common. Ranking assigns
selection probabilities solely on an individual’s rank, ignoring absolute fitness values. Two
other selection techniques we note in detail are the (u + A) and (p, A) selection strategies,

where p represents the number of parent solutions and A the number of children. The

2-16



Crossover Point

Mutation Point Parent 1:

2:
Parent: ‘ ‘ ‘ ‘ Parent 2: ‘ [ ‘

ffspring 1:
Offspring: ‘ . ‘ Offspring ‘ [ ‘

Offspring 2:

Figure 2.7. Bitwise Mutation
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Figure 2.9. Roulette Wheel Selection

former selects the p best individuals drawing from both the parents and children, the latter

selects p individuals from the child population only.

Why is the choice of EA selection technique so important? Two conflicting goals
are common to all EA search: ezploration and exploitation. Back also offers the analogous
terms of convergence reliability and velocity, large and small genotypic diversity, and “soft”
and “hard” selection [17:pg. 165]. No matter the terminology, one goal is achieved only
at the expense of another. An EA’s selective pressure is the control mechanism determin-
ing the type of search performed. Biack’s analysis shows a general ordering of selection
techniques (listed in order of increasing selective pressure): Proportional, linear ranking,
tournament, and (g, A) selection [17:pg. 180]. Finally, an EA’s decision function deter-
mines when execution stops. Table 2.1 highlights the major differences between the three

major EC instantiations.
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Table 2.1. Key EA Implementation Differences
| EA Type | Representation | EVOPs ‘

EP Real-values Mutation and (p + )
selection alone

ES Real-values and | Mutation, recombina-
strategy parameters | tion, and (z + M) or
(1, A) selection

GA Historically binary; | Mutation, recombina-
Real-values now | tion, and selection
common

It is beyond the scope of this research to provide an in-depth analysis of general
EVOPs and EA components. Where appropriate, specific EA parameters and values are

discussed later in this document to support design decisions.*

Although much room for creativity exists when selecting and defining EA instan-
tiations (e.g., genetic representation and specific EVOPs), careful consideration must be
given to the mapping from problem to algorithm domains. “Improper” representations
and/or operators may have detrimental effects upon EA performance (e.g., Hamming
cliffs [17:pg. 229]). Although there is no unique combination guaranteeing “good” perfor-
mance [105, 346], choosing wisely may well result in more effective and efficient implemen-

tations.

2.4.1 EA Mathematical Definition. To formally define an EA its general algo-
rithm is described in mathematical terms, allowing for exact specification of various EA
instantiations. In this framework, each EA is associated with a non-empty set I called
the EA’s individual space. Each individual a € I normally represents a candidate solution
to the problem being solved by the EA. Individuals are often represented as a vector (&)
where the vector’s dimensions are analogous to a chromosome’s genes. The general frame-
work leaves each individual’s dimensions unspecified; an individual (a) is simply that and

is modified as necessary for the particular EA instance.

“For further information, the interested researcher is directed to the Handbook of Evolutionary Com-
putation [19], probably the most comprehensive collection of articles discussing EC, its instantiations, and
applications.
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When defining (generational) population transformations Biack denotes the resulting
collection of p individuals via I*, and denotes population transformations by the follow-
ing relationship: T : I* — I* where p € N [17]. However, some EA variants obtain
resulting populations whose size is not equal to their predecessors. Thus, this general
framework represents a population transformation via the relationship 7" : I# — I*' indi-
cating succeeding populations may contain the same or different numbers of individuals.
This framework also represents all population sizes, evolutionary operators, and param-
eters as sequences [216]. This is due to the fact that different EAs use these factors in
slightly different ways. The general algorithm thus recognizes and explicitly identifies this
nuance. Having discussed the relevant background terminology, an EA is then defined

as [216][17:pg. 66]:

Definition 9 (Evolutionary Algorithm): Let I be a non-empty set (the individual
space), {pD}ien a sequence in ZT (the parent population sizes), {M'(i)}z’eN a sequence in
Z* (the offspring population sizes), ® : I — R a fitness function, ¢ : U‘i’il(I“)(i) —
{true, false} (the termination criterion), x € {true, false}, r a sequence {r®} of recom-
bination operators r() : Xgi) — T Qgi),T I“(i),I“’(i) ), m a sequence {m(i)} of mu-
tation operators m(® : Xﬁf) — T (Q%),T (I“’(i),
operators s+ X x T(I,R) — T (2,7 ((1#O00) 1Y), ) € X9 (the

T ® ), s a sequence {sD} of selection

recombination parameters), o e xW (the mutation parameters), and o9 e x{ (the
selection parameters). Then the algorithm shown in Figure 2.10 is called an Evolutionary

Algorithm. O

2.5 MOEA Overview

MOEAs are a recently developed algorithmic tool with which to solve MOPs. Their
popularity can be attributed to several desirable characteristics. For example, Horn notes
that many optimization approaches in Section 2.3 were developed for searching intractably
large spaces, but that traditional MOP solution techniques generally assume small, enu-
merable search spaces [152]. More simply, some MOP solution approaches focus on search

and others on multiobjective decision making. MOEAs are then very attractive MOP
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t = 0;
initialize P(0) := {31(0)7 . 7au(0)} c I“(O);
while (¢({P(0),...,P(t)}) # true) do

recombine: P'(t) := ng:) (P(t));

r

mutate: P"(t) := mgiﬁ) (P'(t));

select:
if x
then P(t +1) = s\ (P"(1));
else P(t+1):=s
fi
t:=1t4+1;
od

Figure 2.10.  Evolutionary Algorithm Outline

solution techniques because they address both search and multiobjective decision making.
Additionally, they have the ability to search partially ordered spaces for several alterna-
tive trade-offs. Probably most important, however, is the capability for an MOEA to track
several solutions simultaneously via its population, whereas traditional MOP solution tech-
niques offer only one solution per “run.” Many researchers have successfully used MOEAs

to find good solutions for complex MOPs (see Appendix A).

An MOEA'’s defining characteristic is the set of multiple objectives being simultane-
ously optimized. Otherwise, a task decomposition clearly shows little structural difference
between the MOEA and its single-objective EA counterparts. The following definition and

figures explain this relationship.

Definition 10 (Multiobjective Evolutionary Algorithm): Let®:1 — R¥ (k>
2, a multiobjective fitness function). If this multiobjective fitness function is substituted for
the fitness function in Definition 2.10 then the algorithm shown in Figure 2.10 is called a
Multiobjective Evolutionary Algorithm. O

Figures 2.11 and 2.12 respectively show a general EA’s and MOEA’s task decompo-
sition. The major differences are noted as follows. By definition, Task 2 in the MOEA
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case computes k (where k > 2) fitness functions. In addition, because MOEAs expect
a single fitness value with which to perform selection, additional processing is sometimes
required to transform MOEA solutions’ fitness vectors into a scalar (Task 2a). Although
the various transformation techniques vary in their algorithmic impact (see Section 3.3.4)
the remainder of the MOEA is structurally identical to its single-objective counterpart.

However, this does not imply the differences are insignificant.

General EA Tasks

1. Initialize Population
2. Fitness Evaluation
3. Recombination

4. Mutation

Sequential Decomposition

Figure 2.11.  Generalized EA Task Decomposition

General MOEA Tasks

1. Initialize Population
2. Fitness Evaluation
2a. Vector/Fitness Transformation Loop
3. Recombination T
4. Mutation — ~_

—
5. Selection _— \\‘

> S

(A2 2o (e)

Sequential Decomposition

Figure 2.12. MOEA Task Decomposition

2.5.1 Pareto Notation. An MOEA’s algorithmic structure can easily lead to
confusion (e.g., multiple, unique populations) when identifying or using Pareto concepts.
In fact, MOEA researchers have erroneously used Pareto terminology in the literature
suggesting a more precise notation is required. During MOEA execution, a “current” set
of Pareto optimal solutions (with respect to the current MOEA generational population)
is determined at each EA generation and termed Pyppent(t), where ¢ represents the gen-

eration number. Many MOEA implementations also use a secondary population storing
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nondominated solutions found through the generations [326] (see also Section 3.3.3). Be-
cause a solution’s classification as Pareto optimal depends upon the context within which
it is evaluated (i.e., the given set of which it’s a member), corresponding vectors of this
set must be (periodically) tested and solutions whose associated vectors are dominated

removed.

We term this secondary population Pypgqy (£). This term is also annotated with ¢ to
reflect its possible changes in membership during MOEA execution. Pgpoun (0) is defined
as the empty set (0) and Pgpoun alone as the final set of solutions returned by the MOEA at
termination. Different secondary population storage strategies exist; the simplest is when
Peyrrent () is added at each generation (i.e., Peyprent (t) U Prpown (t — 1)). At any given
time, Ppown (t) is thus the set of Pareto optimal solutions yet found by the MOEA through
generation t. Of course, the true Pareto optimal set (termed Pjpe) is not explicitly known
for problems of any difficulty. Piweis implicitly defined by the functions composing an
MOP; it is fixed and does not change. Because of the manner in which Pareto optimality

is defined Peyprent(t) is always a non-empty solution set (see Theorem 1).

Peyrrent (), Prnown, and Py, are sets of MOEA genotypes;® each set’s corresponding
phenotypes form a Pareto front. We term the associated Pareto front for each of these
solution sets as PFoyprent(t), PFrnown, and PFipye. Thus, when using an MOEA to solve
MOPs, the implicit assumption is that one of the following holds: Pruown = Pirues Prnown C
Pirye, or {i; € PFppoyn,Uj € PFyye | Vi, Vj min[distance(i;,u;)] < €}, where distance is

defined over some norm (Euclidean, RMS, etc.).

2.5.2 MOEA Convergence. If there is no chance of a search algorithm finding the
desired solution(s), it makes no sense to implement it. Given that Z is a decision variable,
I the space of all feasible decision variables, ® a fitness function, and ¢ the generation
number, Back proves [17:pg. 129] that an EA converges with probability one if it fulfills

the following conditions:

vz, & € I, ¥ is reachable from & by means of mutation and recombination; (2.10)

*Horn [152] uses Pontine, Poftine, a0d Pactuat instead of Peurrent (1), Prnown, and Pirue. Our notation is more
precise, allowing for each set’s generational specification. We also note that Piue = P* and PFiue = PF™.
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and the population sequence P(0), P(1),... is monotone, i.e.,

Vt: min{®(F(t +1) | (Z(t+1) € P(t+ 1)} < min{®(Z(t) | (Z(t) € PX)}  (2.11)

Back’s definition of monotonicity, appropriate in the context of single objective EAs,
is fitness based and assumes that the objective space is totally ordered. Neither of these
restrictions is appropriate in the context of MOEAs. A solution’s Pareto-based fitness
depends on the set within which it is evaluated, and consequently may vary from one
generation to the next. Also, the objective space for an MOEA is partially and not nec-
essarily totally ordered. Thus, a convergence theorem for MOEASs requires a more general
definition of monotonicity that is both fitness independent and appropriate for objective

spaces that are not totally ordered.

One such definition is given by the condition
Prnown(t) = {Z € Peyprent (1)U | Vo' € Peyrrent(t) U s.t. F(z) X F(z')} (2.12)

with Pgpown (0) = 0. It can be shown by induction on ¢ that under this condition, Ppen (1)
consists of the set of solutions evaluated through generation ¢ that are Pareto optimal with
respect to the set of all such solutions. Thus, Pgpown (t+1) either retains or improves upon
solutions in Pyypoyn (t). In this sense, Condition (2.12) ensures that Pyypgqy (t) monotonically

moves towards Py -

Theorem 4: An MOEA satisfying (2.10) and (2.12) converges to the global optimum of
an MOP (PFye ) with probability one, i.e.,

PT‘Ob{tEIIOO{Ptrue = P(t)}} =1,

where P(t) = Prnown(t)- -

Proof: An MOEA may be viewed abstractly as a Markov chain consisting of two states.

In the first state, Pyye = Pinown (t), and in the second state this is not the case. By
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Condition (2.12), there is zero probability of transitioning from the first state to the second
state. Thus, the first state is absorbing. By Condition (2.10), there is a non-zero probability
of transitioning from the second state to the first state. Thus, the second state is transient.

The theorem follows immediately from Markov chain theory [4]. Q.E.D.

2.5.2.1 Other Convergence Proofs. Other research also addresses the de-
sired MOEA convergence. Rudolph’s [275] Corollary 2 guarantees that given a countably
infinite MOEA population and an MOP, at least one decision variable (z}) sequence exists
such that f(zy) converges in the mean to PFypy,, although it appears his nomenclature is

inconsistent with accepted definitions.

Rudolph [276] also independently proved that a specific multiobjective (p + A =
14+1) ES converges with probability one to a member of Py, of the MOP specified by
Equation 2.5. His distance metric is in the genotype domain, as compared to ours and his
previous work, which is phenotypically based. The EVOPs in his model are not able to
search the entire space (in a probabilistic sense) since a step size restriction is placed upon
the probabilistic mutation operator. Thus, convergence only occurs when the ES’s step size
is proportional to the distance to the Pareto set as shown in the elaborate proof. However,
this distance is obviously unknown in problems of high complexity which is typical of most

real-world problems.

We note his variation kernel (i.e., transition probability function) is equivalent to our
reachability condition (appropriate mutation and recombination operators allowing every
point in the search space to be visited). He also refers to at least one sequence leading
to an associated point on Py, as compared to this work which indicates that through
Pareto ranking all decision variable sequences lead towards Pypye; likewise, these variables’

phenotypical expressions lead towards P Fpye.

Rudolph’s theorems are for a specific EA and MOP instantiation with constrained
EVOPs while ours requires a less-specific EA. Both theorems show that what we seek
is possible — given MOEAs do converge to an optimal set, although Rudolph defines a

genotypic optimum and we a phenotypic one. Using phenotypical information is often
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more appropriate as a decision maker’s costs and profits are more accurately reflected in

attribute space.

We note here the more important issue is the rate at which an MOEA converges
to PFyye, and whether PFypopp(t) uniformly represents PFyye as t — oco. The MOEA
literature is largely silent on these issues, although Rudolph shows the convergence rate
for the specific (14+1) EA above is sub-exponential [276]. In this document, Chapter VI
presents metrics for possible use in experimentally determining MOEA convergence rate,

and Chapter VII shows results for selected experimental problems.

2.6 MOEA Literature Review and Analysis

MOEAs are receiving renewed interest by EA researchers. Although the first MOEA
was published in 1984 [288] and a substantial MOEA literature has since developed, there
have been only three notable surveys published. Of these, two contain little technical detail
of the various MOEA techniques and almost no reference at all to the OR methods from

which the techniques were derived!

The reviews by Fonseca and Fleming [111] and by Horn [152] (published in 1995
and 1997) quickly examine major MOEA techniques. The former additionally provides
many relevant MOP issues from an MOEA perspective. Both classify existing MOEA ap-
proaches differently: Fonseca and Fleming from a broad algorithmic perspective, and Horn
from a DM’s. More recently, in 1999 Coello Coello [61] presents an MOEA review which
classifies implementations from a detailed algorithmic standpoint and adds discussions of

the strengths and weaknesses of each technique.

The literature survey conducted as part of this dissertation research offers much
more. First, it expands upon previous reviews by classifying and cataloging all known
(to date) MOEA efforts and considers more recent and related MOEA citations. Pro-
posed algorithmic approaches are grouped by technique (from a DM’s perspective) and
key elements of each effort identified in a condensed summary. These results are listed in
tabular form, allowing for quick access and easy perusal of past research by technique or

approach characteristic. The classification structure used was first proposed by Horn [152];

2-25



we substantiate and extend its use. This cataloged presentation highlights previously un-
noticed MOEA research trends, clearly distinguishes the various implemented techniques,

and identifies distinctive characteristics of each.

Second, the classification structure and cataloged components allow easy identifica-
tion of “suitable” MOEA techniques for a given MOP. A high-level discussion describes
each technique and its mathematical formulation for fitness assignment and/or selection is

presented.

Finally, this detailed survey and associated analysis (Appendix A and Chapter IIT)
allows interested researchers to quickly construct MOEAs for investigating MOPs. The
classification structure allows quick identification of a (possibly) effective technique(s),
EVOPs, and representations. The proposed test suite in Chapter V then allows these

MOEA'’s performance to be compared over selected numerical MOPs.

Freeman Dyson once said, “A good engineer is a person who makes a design that
works with as few original ideas as possible.” This survey and analysis helps an engineer
hold those original ideas to a minimum for some MOP of interest. Scanning the survey’s
tables may locate similar efforts within some particular problem domain. The tables also
provide examples in the form of previously used fitness functions and chromosomal repre-
sentations. In quick order, an engineer is then able to identify and incorporate appropriate
concepts in a new MOEA instantiation. This reference capability is not available in any
other MOEA paper. Researchers with basic EA knowledge can use this survey as a largely

self-contained introduction to MOEAs.

The review formalizes an algorithmic framework for the important and rapidly ex-
panding research in MOEAs. This listing is not complete; no matter the effort spent
collecting and evaluating references any proposed listing from this dynamic research field
is soon outdated. Although many applications might remain unpublished for confiden-
tiality reasons we conjecture the reported data is representative of the field’s direction(s).
We now detail the survey’s technique classification structure as it is often referred to in

succeeding chapters.
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2.6.1 MOEA Classification. = Many successful MOEA approaches are predicated
upon previously implemented mathematical MOP solution techniques. For example, the
OR field proposed several methods well before 1985 [70, 158, 308]. Their Multiple Objective
Decision Making (MODM) problems are closely related to design MOPs. These problems’
common characteristics are a set of quantifiable objectives, a set of well-defined constraints,
and a process of obtaining trade-off information between the stated objectives (and possibly

also between stated or non-stated non-quantifiable objectives) [158].

Various MODM techniques are commonly classified from a DM’s point of view (i.e.,
how the DM performs search and decision making). Cohon [69] further distinguishes
methods between two types of DM: a single DM /group or multiple DMs with conflicting
decisions. Here we consider the DM to be either a single DM or a group, but a group

united in its decisions.

Because the set of solutions a DM is faced with are often “compromises” between the
multiple objectives some specific compromise choice(s) must be made from the available
alternatives. Thus, the final MOP solution(s) results from both optimization (by some
method) and decision processes. We choose to classify MOEA-based MOP solution tech-
niques as many OR researchers do, defining three variants of the decision process [70, 158]
where the final solution(s) results from a DM’s preferences being made known either before,

during, or after the optimization process. This is more formally declared as follows [158]:

A Priori Preference Articulation. (Decide — Search) DM combines the differing
objectives into a scalar cost function. This effectively makes the MOP single-objective

prior to optimization.

Progressive Preference Articulation. (Search «— Decide) Decision making and op-
timization are intertwined. Partial preference information is provided upon which
optimization occurs, providing an “updated” set of solutions for the decision maker

to consider.

A Posteriori Preference Articulation. (Search — Decide) DM is presented with a
set of efficient (deﬁned in Section 2.2.1) candidate solutions and chooses from that

set.
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Basic techniques below this top level of the MODM hierarchy may be common to
several algorithmic research fields, however, we limit discussion to implemented MOEA
techniques. A hierarchy of the known MOEA techniques is shown in Figure 2.13 where
each is classified by the different ways in which the fitness function and/or selection is
treated. See Cohon [70] and Duckstein [93] for other multiobjective techniques which may
be suitable for but have not yet been implemented in MOEAs.

Existing MOEA Solution Techniques

A Priori Progressive A Posteriori
(Before) (During) (Generating)
Aggregation (Ordering) Interactive —— Independent Sampling

Cooperative Search

Aggregation (Scalarization)

-- Ranking
-- Multiplicative -- Ranking and Niching
-- Target Vector -- Demes
-- Minimax -- Elitist

Hybrid Selection

Figure 2.13. MOEA Solution Technique Classification

2.7 Research Assumptions

Only one assumption is made a priori, and that involves Pareto optimality. The
definition of Pareto optimality implies no particular objective can be further optimized
without worsening another objective (with respect to some function). Thus, the Pareto
optimal solutions represent optimal compromise solutions. Since it makes no sense (theo-
retically) to accept a sub-optimal solution we define these solutions (P*) to be the MOP’s
global optimum solution set. That set is the goal of any MOEA algorithm proposed by or

used in this research.
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2.8 Summary

This chapter provides an overview of the problem and algorithm domains focused
on by this research. MOPs are defined, Pareto concepts introduced, and new theorems
and definitions offered. An introduction to general search and optimization techniques is
presented along with a broad overview of both EAs and MOEAs. The literature review
supporting this effort is described and organized by a new classification structure. Hav-
ing presented technical definitions and overviews, we now place this effort in context by

reviewing related MOEA work in the next chapter.
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ITI. MOEA Analysis and Design

There once was a man who said: “God

Must think it exceedingly odd

If he finds that this tree

Continues to be

When there’s no one about in the Quad.”
Monsignor Ronald Knox

Dear Sir, your astonishment’s odd.

| am always about in the Quad.

And that’s why the tree

Will continue to be

Since observed by yours faithfully, GOD.

Anonymous

3.1 Introduction

A conference reviewer once called a particular MOEA implementation “straight-
forward;” it was also evident the reviewer did not completely understand crucial MOP
domain concepts. Conversations with other MOEA researchers indicate they have encoun-
tered similar situations. They agree that much time and effort is expended defining and
defending MOEA concepts in conference and journal submissions, as it seems many EA
practitioners do not have an adequate understanding of basic MOP issues. We hesitate to
call any MOEA implementation straightforward, at least as far as achieving effective and

efficient performance is concerned.

Appendix A and this chapter together address the many issues involved in MOP
and MOEA domain integration. A detailed survey is located in Appendix A which math-
ematically defines known MOEA solution techniques for MOPs. Each citation therein is
cataloged by recording key elements of its approach, and classified using the structure
defined in Section 2.6.1. This database currently contains 218 entries representing 272

separate MOEA-based citations from the literature.

This chapter presents a quantitative and qualitative analysis of currently known pub-
lished MOEA research. Many relevant meta-level topics are addressed, highlighting several
MOEA topics which are treated lightly or even ignored in the literature. For example, we
discuss MOEA fitness functions, application problem domains, theory, complexity, and

other selected topics.



A quantitative and qualitative analysis of known MOEA research is presented in
Sections 3.2 and 3.3. Section 3.4 recommends several well-engineered MOEA implementa-
tions for possible use. Finally, we highlight what we feel to currently be significant MOEA

research contributions in Section 3.5.

3.2 MOEA Research Quantitative Analysis

This section details past MOEA research and is concerned primarily with analyzing
raw data, while Section 3.3 presents analysis of a more observational nature. We are con-
cerned in this section with issues such as the number of MOEA research efforts, practicality
of the various implemented techniques, fitness functions and chromosomal representations
used in MOEA research, and the problem domains in which MOEAs have been applied.
This treatment of major MOEA research issues shows the interested practitioner where

and how the field has focused its energies.

3.2.1 MOEA Citations. Three graphs quantifying the cataloged citations are
presented here:' Figure 3.1 shows the number of citations by year, Figure 3.2 by technique,
and Figure 3.3 by type. We immediately see that the initial transformations of EAs into
the multiobjective domain did not spark any real interest for several years (Figure 3.1). We
also note here that although Schaffer “invented” the first MOEA, Fourman too deserves
credit for his different MOEA implementations published about the same time. Not until
the mid 1990’s is there a noticeable increase in published MOEA research. However, this
increase is substantial as almost three times as many MOEA approaches were published in
the last six years (1994-1999) as in the first ten (1984-1993). The sheer number of recent

publications indicates an active research community interest in MOEAs.

As noted in Section 2.6.1, we have classified MOEA approaches into three major

categories. These categories and the specific techniques they embody are listed below.

! As noted in Section A.1.2, a few efforts are classified under two MOP techniques reflecting dual ap-
proaches proposed in the same citation. Additionally, some efforts have multiple citations indicating a
great deal of duplication between the cited papers. We ignore these minor anomalies and deal here with
the total number of classified efforts within each technique; the interest is in identifying MOEA research
trends rather than absolute values.
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Figure 3.1. MOEA Citations by Year

A Priori Techniques: Lexicographic, linear fitness combination, and nonlinear fitness

combination
Progressive Techniques: Progressive

A Posteriori Techniques: Independent sampling, criterion selection, aggregation selec-
tion, Pareto-based selection, Pareto rank- and niche-based selection, Pareto deme-

based selection, Pareto elitist-based selection, and hybrid selection

Comparing citations by technique highlights the popularity of a posterior: techniques
(Figure 3.2). Over twice as many citations occur in that category as in the a priori and
progressive categories combined. Does this imply a willingness by DMs to select solutions
from (possibly) unbiased searches? Or is it that DMs are unwilling (or unable) to assign
priorities to objectives without further information? At least in real-world problems, it
seems reasonable for DMs to expend the necessary resources to first perform a search
for possible solutions. Making a decision a posteriori could well be less expensive in the
long run than making decisions without the additional knowledge gained through initial

or interactive search.
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Figure 3.2. MOEA Citations by Technique

When considering the a posteriori techniques, almost twice as many Pareto sampling
approaches exist as the others combined. The number of papers comparing MOEAs is a
healthy sign of skepticism, in that researchers are seeking to compare proposed algorithms

on a variety of problems.

Note that MOEA theory noticeably lags behind applications, at least in terms of
published papers. This is even clearer when noting few of these categorized papers (see
Section A.5.2) concentrate on MOEA theoretical concerns. The others discuss some MOEA
theory but do so only as regarding various parameters of their respective approaches.
This quantitative lack of theory is not necessarily bad but indicates further theoretical
development is necessary to (possibly) increase the effectiveness and efficiency of existing

MOEAs. Section 3.3.2 discusses many MOEA theoretical issues in detail.

Finally, Figure 3.3 shows the most popular MOEA implementation by far is a Multi-

objective Genetic Algorithm (MOGA).2 This is nine times the number of implementations

2As noted in Section 2.3, the terms EA and EC embody several specific techniques. Figure 3.3 tracks
the following: Multiobjective Evolutionary Programming (MOEP), Multiobjective Evolutionary Strategies
(MOES), MOGA, and Multiobjective Genetic Programming (MOGP).
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Figure 3.3. MOEA Citations by Type

as all other types combined. Also, observe that only one MOEP is reported in the litera-

ture.

3.2.2 MOEA Technique Discussions. Real estate agents claim three major factors
set the price one can reasonably expect when buying or selling a home: location, location,
and location! There is a direct analogy when using MOEAs to solve MOPs. To wit, three
factors determine the effectiveness and/or efficiency of a particular MOEA: the problem
domain, the problem domain, and the problem domain! An MOEA should be applied only
when the problem requires it. A particular problem instance may also determine MOEA
performance. This is no different than is the case with single-objective EAs but bears

mentioning.

Many MOEA implementations are currently available. Selecting an appropriate tech-
nique and approach is dependent upon meticulous examination of the problem domain;
ensuring derived solutions are the best available requires careful integration of both prob-
lem and algorithm domains. Identifying MOEA techniques and approaches which have
and have not historically “worked” should improve future MOEAs. Thus, this section

presents general observations about the categorized approaches. General comments about



each high-level technique are given and followed by detailed discussions of the approaches

cataloged within that technique.?

3.2.2.1 A Priori Techniques. By definition, these techniques require objec-
tive importance to be defined before search occurs. In real-world scientific and engineering
problems this is a non-trivial task. The ramifications of “bad” objective prioritization
choices are easy to see: the DM’s “cost” (no matter how defined) could be greater than
necessary as more “acceptable” solutions are missed. No matter the optimization algo-
rithm used, this is an inescapable consequence of a priori MOEA techniques, which we

now examine in detail.

Lexicographic techniques have not found favor with MOEA researchers, as only two
implementations are reported. This may be due to the fact this technique explores objective
space unequally, in the sense that priority is given to solutions performing well in one

objective over another(s). Or in other words, one objective is optimized at all costs.

The lexicographic technique appears most suitable only when the importance of each
objective (in comparison to the others) is clearly known. However, trade-offs do exist.
On one hand, any reported solutions are Pareto optimal (by definition and with respect
to all solutions evaluated) and are thus part of the global optimum. On the other hand,
when is such an “all costs” goal necessary or even appropriate? If one objective is to be
optimized regardless of the others’ expense, it seems more appropriate to instead use a

single objective EA which does not incur the additional overhead of an MOEA.

The linear fitness combination technique is a popular approach despite its identified
shortfalls, probably due to its simplicity. Section A.2.2 reflects its application to many real-
world scientific and engineering problems where it is often incorporated with “variations

on a theme.”

A basic weighted sum MOEA is both easy to understand and implement;
the fitness combination technique is also computationally efficient. If the problem domain
is “easy” and a sense of each objective’s relative worth is known and can be quantified, or

even if the time available for search is short, this may be a suitable method to discover

3The interested reader is referred to Coello Coello [61] for a more complete description and discussion
of attendant strengths/weaknesses for many of these approaches.
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an acceptable MOP solution. However, this technique has a major disadvantage due to

certain MOP characteristics.

Fonseca and Fleming [107] explain that for any positive set of weights and fitness
function @ (see Equation A.6 in Section A.2.2), the returned global optimum is always a
Pareto optimal solution (with regard to all others identified during search). However, if
PFipye is nonconvex, optima in that portion of the front can not be found via this method.
Thus, blindly using this technique guarantees that some solutions in Py, can not be found
when it is applied to certain MOPs. Fonseca and Fleming also state that linear fitness
combination is the most popular MOEA technique. Figure 3.2 clearly indicates over twice

as many implemented Pareto-based approaches. Thus, their statement is no longer true.

Researchers appear leery of applying nonlinear combination techniques. For example,
of the two cited multiplicative efforts only one reports actually implementing the technique.
This may be due to the overhead involved in determining appropriate probability of ac-
ceptance or utility functions, and to the various conditions which these objective functions

must meet [177]. This additional overhead may not justify resulting solutions’ “quality.”

A target vector fitness combination (goal programming) approach is incorporated
into four MOEAs. If a DM is certain of each objective’s desired levels this technique may
produce acceptable solutions. Just as in all a priori techniques, though, specifying exact
goals or weights before search may unnecessarily limit the search space and therefore “miss”
desirable solutions. Algorithmic overhead is minimal when implementing this technique
because the desired goal levels are directly incorporated into the fitness function. These
comments also hold true for the cited minimax techniques. Finally, we again find that

using these techniques to minimize ® does not guarantee resulting solutions are members

of Ptr'ue [107]

It appears that these a priori MOEA techniques may be undesirable for general use.
If a DM is expending resources to search for MOP solutions, it stands to reason optimal
(or “good”) solutions are desired (expected?). Because these techniques arbitrarily limit

the search space they can not find all solutions in Pjpye. Additionally, as is shown in



Section 3.4, implementing “more” effective and efficient MOEAs might not be as difficult

and involve less overhead than imagined.

3.2.2.2 Progressive Techniques.  The lack of cited interactive search efforts
in the MOEA literature is surprising. It seems that no matter what MOP solution tech-
nique is implemented, close interaction between the DM and “searchers” can only increase
the efficiency (or “desirability”) of discovered solutions. It is understandable that a DM’s
time is at a premium. At least to some level, though, more interaction certainly implies
“better” results. Although either a priori or a posteriori techniques may be used interac-
tively, the latter are more suited to MOPs because they offer a set of solutions rather than
just one. There is a limit to how much information a DM can process at one time, but

surely some greater number of choices vice one or two is generally more advantageous.

Incorporating DM preferences within and through an interactive search and decision
making process may benefit all involved. Do researchers and/or practitioners feel they
don’t have the time? Or is it the DM who balks at the additional effort? Real-world
applications should surely use this interactive process as the economic implications can be
quite significant. In fact, several MOEAs [108, 99, 156] are able to explicitly incorporate

DM preferences within search.

3.2.2.3 A Posteriori Techniques. As indicated in Section A.4 these tech-
niques are explicitly seeking Py.e. An MOEA search process is executed with resultant
solutions and their evaluations (Pipown and P Fipoun ) provided to the relevant DM. We

now examine these techniques in detail.

Several independent sampling approaches are reported but we question their overall
effectiveness (see Section A.4.1). All cited efforts use some fitness combination technique
where the weights assigned to each objective are uniformly varied between a number of
separate MOEA runs. This technique may have limited utility if only two objectives
are being considered. For example, assume an MOEA using a linear fitness combination
approach. If each objective’s weight varies from 0 to 1 by 0.05 increments, only 21 MOEA

runs are necessary to explore the possible weight combinations and give some picture
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of PFrpown . However, even varying the weights at this coarse resolution results in the
required number of runs combinatorially increasing with the number of objectives. Thus,
its overall usefulness seems quite limited especially as the arbitrary weight combinations
may well prevent discovery of some solutions in Pjpye , and also in view of other techniques’

strengths.

Schaffer’s Vector Evaluated Genetic Algorithm (VEGA) [289] is an example of a
criterion selection technique where fractions of succeeding populations are selected based
on separate objective performance. This is the first time we see an MOEA’s population
capability fully used in that the MOEA returns a number of solutions within a single
run. However, some criterion techniques are faulted for ignoring solutions performing

“acceptably” in all dimensions in favor of those performing “well” in only one [152].

Crossley et al. [76, 237] believe this technique reduces the diversity of any given
PF yrrent (t). They implement elitist selection to ensure PFypouy (t) endpoints (or in
other words, PFluoun (t)’s extrema) survive between generations, noting that otherwise
the MOEA converges to a single design rather than maintaining a number of alternatives.
In other attempts to preserve diversity in PFyppens (t) they also employ a VEGA variant.
Here, “k”-branch tournaments (where k is the number of MOP objectives) allow each so-
lution to compete once in each of k tournaments, where each set of tournaments selects

1/k of the next population [170].

Aggregative selection MOEAs incorporate a variety of techniques to solve MOPs.
Section A.4.3 shows weighted sums, constraint and objective combinations, and hybrid
search approaches used. However, rather than using static weight combinations for the
objectives throughout an MOEA run, the weights are varied between generations and/or
each function evaluation. Sometimes the weights are assigned randomly, sometimes they
are functions of the particular solution being evaluated, and in other cases are encoded in

the chromosome as genes where EVOPs act upon the them also.

The major advantage of both criterion and aggregation selection techniques is the set
of solutions returned by each MOEA run. Thus, Pyyoyn and P Fyyon may be reasonable

approximations to Pyye and PFipye , and have required only one MOEA run. These meth-
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ods are not without their disadvantages, however. When using the weighted sum technique
we know certain members of PFyy, may be missed. Both the constraint /objective combi-
nation and hybrid search approaches have significant overhead (e.g., solving a linear system
of equations to determine an appropriate hyperplane [356]). Thus, a fitness assignment or
selection technique able to “easily” find all members of Py and PFypye is desired. Pareto

sampling offers this capability.

Almost 90% of reported Pareto-based MOEAs are applied to real-world scientific and
engineering problems. This certainly implies Pareto techniques are suitable for a number of
different engineering problem domains. Additionally, rather than the usual two objective
functions, several Pareto-based approaches used three, four, seven, or more. The Pareto

methodology handles this increased number of functions easily.

Figure 3.2 shows the major body of MOEA research centering upon approaches
exploring “equally” in all objective dimensions (the Pareto sampling techniques). Further-
more, judging merely by the number of published efforts, more interest is evident in either
Pareto-based or Pareto rank- and niche-based selection techniques as either has more ci-
tations than Pareto deme- and elitist based selection. As no direct comparisons have yet
been made attesting to the efficacy of these various Pareto approaches, this is not to say
that Pareto deme- or elitist-based selection is not worthwhile. The only existing criticism is
that Pareto elitist approaches may not retain diverse enough populations to find and retain
a PFpoun truly representative of PFipye , as they retain only Peyprent (t) between genera-
tional populations and discard all other solutions. As more and more population members
are contained in Pgyppent (t) the remaining solutions may not provide enough diversity for

effective further exploration.

The sheer number of Pareto sampling approaches indicates many researchers see
merit in the basic methodology. As the global optimum of an MOP is PFy.. [325], using
a Pareto-based approach seems reasonable. However, in order to determine a particular
MOEA implementation’s effectiveness and efficiency, systematic comparison using appro-
priate metrics on carefully selected test problems should be performed. Although several

MOEA comparison papers exist this has not yet been accomplished.
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3.2.2.4 MOEA Comparisons. To date, most MOEA researchers’ modus
operandi is comparing some MOEA (usually the researcher’s own new and improved vari-
ant) against an older MOEA (often VEGA, even with it’s identified shortfalls), and an-
alyzing results for some MOP (often Schaffer’s F2 [289] or some other numeric exam-
ple). Comparative results are then “clearly” shown in graphical form indicating which
algorithm performed better, implying its returned PFlpounis a better representation of
PFypye . Only recently (1998) has any researcher proposed experimental methodologies
for general MOEA comparative analysis [359]; we present an extensive discussion on this
subject in Chapter VI. To their credit, many of these publications also compare MOEA
performance on real-world applications. An argument can be made down the lines of “if
it works, use it,” but in general, using a test problem and/or an application’s results to

judge comprehensive MOEA usefulness is not conclusive.

3.2.2.5 MOEA Theory. Less than 1/10% of published MOEA papers fo-
cus on underlying theoretical analyses of MOEAs. These papers focus mainly on MOEA
parameters, behavior, and concepts. They attempt to further define the nature and lim-
itations of Pareto optimality, the subsequent effects upon MOEA search, and discuss the
characteristics and construction of an appropriate MOEA benchmark test function suite.
Although other MOEA researchers often cite these works, our detailed categorizations show
their efforts to often be modifications of previously implemented approaches, or perhaps
the same approach applied to a different application. These papers add little or noth-
ing to the body of MOEA theory. Fonseca and Fleming [111] and Horn [152] state that
more effort is being spent designing and refining MOEA approaches than on developing

accompanying theory. We not only agree with this but have clearly shown it to be a fact.

3.2.83 MOEA Fitness Functions.  The cataloged research efforts provide various
fitness function types used by MOEAs. Table 3.1 lists several generic fitness function types,
their identifying characteristics, and examples of each drawn from the MOEA literature.
These listed types are not limited to MOEA applications nor are they the only ones possi-

ble. However, MOEAs offer the exciting possibility of simultaneously employing different
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Table 3.1. MOEA Fitness Function Types

| Category | Characteristic | Examples |
Electromagnetic Energy transfer or reflection [220, 225, 328]
Economic Production growth [137, 297]
Entropy Information content and (dis)order | [112, 183, 274]
Environmental Environmental benefit or damage [5, 58, 322]
Financial Direct monetary (or other) cost [16, 156, 330]
Geometrical Structural relationships [92, 117, 167]
Physical (Energy) | Energy emission or transfer [171, 249, 343]
Physical (Force) Exerted force or pressure [74, 242, 331]
Resources Resource levels or usage [21, 90, 297]
Temporal Timing relationships [108, 163, 297]

fitness functions to capture desirable characteristics of the problem domain regardless of

implemented MOEA technique.

The fitness functions employed appear limited only by the practitioner’s imagination
and particular application; several are identified and others must surely exist. However,
a fitness function’s effectiveness depends on its application in appropriate situations (i.e.,
it measures some relevant feature of the studied problem). The claim by many authors
that their particular MOEA implementations are successful imply the associated fitness

functions are appropriate for the given problem domains.

Finally, the cataloged efforts clearly show the non-commensurability and indepen-
dence of many fitness function combinations. For example, optimizing a radio antenna
design may involve electromagnetic (energy transmission), geometric (antenna shape), and
financial (dollar cost) objectives. The proposed antenna’s shape may have no meaningful
impact on its cost. Also, these objectives may be measured in megawatts, feet, and eu-
ros! These are the factors responsible for the partial ordering of the search space and the

subsequent need to develop appropriate MOEA fitness assignment procedures.

3.2.4 MOEA Chromosomal Representations. Theorems exist [105] showing no
intrinsic advantage exists in any given genetic representation. For any particular encoding
and associated cardinality, equivalent evolutionary algorithms (in an input/output sense)
can be generated for each individual problem instance. Although certain gene representa-

tions and EVOPs may be more effective and efficient in certain situations, the theorems
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show that no choice of representation and/or EVOPs operating on one or two parents offers

any capability which can’t be duplicated by another MOEA instantiation.

The No Free Lunch (NFL) theorems [346] indicate that if an algorithm performs
“well” (on average) for some problem class then it must do worse on average over the
remaining problems. In particular, if an algorithm performs better than random search
on some problem class then it must perform worse than random search on the remaining
problems. So, although the NFL theorems imply one MOEA may provide “better” results
than another when applied to some problem these other theorems show that that MOEA

is not unique. Thus, there appears to be more than one way to skin a cat (or MOP).

Genetic representation is then another MOEA component limited only by the im-
plementor’s imagination. The cited efforts indicate the most common representation is
a binary string corresponding to some simple mapping from the problem domain. Real-
valued chromosomes are also often used in this fashion. And, as in single-objective EAs,
combinatorial optimization problems often use a permutation ordering of jobs, tasks, etc.

However, some representations are more intricate and therefore notable.

Some MOEAs employ arrays as genome constructs. For example, Baita uses a ma-
trix representation to store recessive information [21].* Parks and Chow also use matri-
ces as these data structures are more natural representations of their respective problem
domains’ decision variables [250, 57]. The Priifer encoding used by Gen [123] uniquely
encodes a graph’s spanning tree and allows easy repair of any illegal chromosome. In
the known multiobjective Genetic Programming implementations (e.g., [191, 151, 278]), a
program/program tree representation is used. No matter the representation employed, we
again see any claims of “successful” MOEA implementations imply the associated genetic

encodings are appropriate for the given problem domain.

3.2.5 MOEA Problem Domains. MOEAs operate on MOPs by definition. A more
theoretical discussion of the MOP domain is given in Chapter V and elsewhere [327, 83];
we here discuss it in more general terms. When implementing an MOEA it is (implicitly)

assumed that the problem domain (fitness landscape) has been examined, and a decision

*As a side note, only two published MOEAs use dominant and recessive genetic information [21, 189].
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made that an MOEA technique is the most appropriate solution tool for the given MOP.
In general, it is accepted that single-objective EAs are useful search algorithms when the
problem domain is multidimensional (many decision variables), and/or the search space is

very large. Most cited MOEA problem domains appear to exhibit these characteristics.

An overwhelming majority of cited efforts are applied to non-pedagogical problems.
This indicates MOEA practitioners are developing and implementing MOEAs as real-world
tools. As a quick glance through Appendix A shows, these implementations span several
disparate scientific and engineering research areas and give credibility to the MOEA’s claim

as an effective and efficient general purpose search tool.

3.8 MOEA Research Qualitative Analysis

What differentiates an MOEA from a single-objective EA? What components should
be included in an MOEA? When should an MOEA be used? This section addresses these
questions and presents matters of a more philosophical nature raised by the preceding
discussion, considering several MOEA design issues. Although not quantitatively derived,
our analytical observations are based on the cataloged presentation in Appendix A and

substantiated with other relevant citations from the literature.

3.3.1 MOEA Characteristics. Of course, the major MOEA defining character-
istic is the set of multiple objectives being simultaneously optimized. Although the cited
efforts in Sections A.2 through A.4 explain how various MOEAs incorporate these multiple
objectives, they do not always explain why. This may well be due to a lack of MOEA

theory.

3.3.2 MOEA Theoretical Issues. ~ We agree with other MOEA researchers [152,
111] that MOEA theory is lagging behind MOEA implementations and applications. For
example, until recently no proof was offered showing an MOEA is capable of converging
t0 Pipye or PFypye (see Section 2.5.2). We show in Figure 3.1 that although the number of
MOEA implementations is significant, this fact alone does not indicate a corresponding

depth of associated theory (as reflected by Table A.16 in Section A.5.2). This research

3-14



makes absolutely clear that more effort has been spent designing new or variant MOEA
approaches, and not in comprehensively reviewing the benefits and/or trade-offs of the

various implementations.

Why is there such a lack of underlying MOEA theory? Although some mathematical
foundations exist the current situation seems akin to Goldberg’s recent comparisons of
engineer and algorithmist [127]. He likens algorithms to “conceptual machines” and implies
computer scientists are hesitant to move forward without exact models precisely describing
their situation. On the other hand, he claims a design engineer often accepts less accurate
models in order to build the design. MOEA researchers certainly seem to have taken this

approach!

Realizing that simple assumptions are sometimes made in order to develop limited
theoretical results, the foundations of single-objective EA theory are well-established. The
Handbook of Evolutionary Computation [19] devotes entire chapters to theoretical EC re-
sults established during the past 20-30 years. Sample topics include EA types, selection,
representation, crossover, mutation, fitness landscapes, and so on. Several foundational
textbooks are also available, such as those by Goldberg [126], Michalewicz [218], and by
Béack [17]. Although much of this theory is (may be?) valid when regarding MOEAs,
some is not. Thus, this section discusses current knowledge concerning selected MOEA

theoretical issues.

3.3.2.1 Fitness Functions. The general manner of fitness function imple-
mentation is two-fold. This is reflected by the work of Wienke et al. [343] and Fonseca
and Fleming [112], who each solved MOPs with seven fitness functions. Wienke et al.
essentially used seven copies of an identical objective function, which was to meet atomic
emission intensity goals for seven different elements. Although the elements and associated
goals are each different the fitness functions are conceptually identical. This does not make

the MOP “easier” but perhaps makes the objective space somewhat easier to understand.

On the other hand, Fonseca and Fleming’s MOP’s seven objectives appear both
incommensurable and independent. Both Pgpoun and PFlipoun are hard to visualize, as

are their interrelationships. For example, when considering the mathematical polynomial
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Figure 3.4. MOEA Citations by Fitness Function

model constructed by their MOEA, it is unclear how the number of terms affects the

long-term prediction error and how that error may affect variance and model lag.

With that said, Figure 3.4 shows the number of citations employing a given number of
fitness functions. The overwhelming majority use only two fitness functions, most probably
for ease and understanding. Several use three to nine, and the currently known maximum
is 23 fitness functions within a single MOEA. This approach used an MOEA to solve a
heavily constrained single-objective optimization problem [62]. Thus, one objective was
the fitness function and the other 22 were constraints cast as objectives. Of the two
efforts using 17 objectives, one doesn’t specify the specific objectives [260] and the other
implements conceptually identical objectives [269]. The highest number of conceptually
different implemented fitness functions is found in a linkage design problem [285] where

nine objectives are used.

How many fitness functions are enough? How many objectives are generally required
to adequately capture an MOP’s essential characteristics? Can all characteristics be cap-
tured? The cataloged efforts imply most real-world MOPs are effectively solved using only

two or three. There is a practical limit to the maximum number of possible objective func-
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tions, as the time to compute several complex MOEA fitness functions quickly becomes

unmanageable.

A theoretical limit also exists as far as Pareto optimality is concerned. As additional
objectives are added to an MOP more and more MOEA solutions meet the definition of
Pareto optimality. Thus, as Fonseca and Fleming indicate for most Pareto MOEAs [111],
the size of Peyprent (t), PFeurrent (t); Prnown (), and P Fypoun (t) grows, and Pareto selective
pressure decreases. However, some confusion results from both their and Horn’s [152]
statements implying that the size of P Fy. grows with additional objectives. We show that
the Pareto front is composed of Pareto curve(s), Pareto surface(s), or some combination
of the two (see Section 2.2.2.2). And, as Cantor proved [138], the infinity of points on
a line, surface, cube, and so on are the same (represented by Nj). Thus, the cardinality
of PFymedoes not grow with the number of objectives, only (possibly) it’s topological
dimension. However, since MOEAs deal with discretized numerical representations the
number of possible solutions (and therefore the number of computable vectors composing

PFypown ) may increase as more objectives are added.

Finally, some limit to human understanding and comprehension exists. The human
mind appears to have a limited capacity for simultaneously distinguishing between multiple
pieces of information or concepts. Perhaps this is best noted by Miller’s [222] seminal paper
proposing a human one-dimensional span of judgment and immediate memory of 7 £ 2.
He notes that adding objective dimensions increases this capacity but at a decreasing rate.
This seems to argue a “more the merrier” viewpoint for the number of MOP objectives, but
visualizing and understanding objective inter-relationships becomes more difficult as their
numbers grow. Thus, certain techniques are designed to map high-dimensional information
to two- or three dimensions for better understanding (e.g., Sammon mapping [284] and
profiles [81]). Fonseca and Fleming [108, 112, 113] often use profiles (or tradeoff graphs) to
show MOEA solution values and their interrelationships. Figure 3.5 is an example profile

for an MOP with seven objectives; the lines simply connect each solution’s objective values.

Past MOEA implementation results imply that two or three objectives are “satisfac-
tory” for most problem domains. Thus, MOEA application to a given MOP should begin

with two or three primary objectives in an effort to gain problem domain understanding.
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One may be able to ascertain how the different objectives affect each other and an idea
of the fitness landscape’s topology. Other fitness functions may then be added in order to
capture other relevant problem characteristics. Table 3.1 in Section 3.2.3 identifies several

fitness function categories for this purpose.

3.3.2.2 Pareto Ranking. Two Pareto fitness assignment methods are pri-
marily used in MOEAs although variations do exist. In general, all assign preferred (Pareto
optimal) solutions the same rank and other solutions some higher (less desirable) rank.
With the scheme proposed by Goldberg [126], where a solution = at generation ¢ has a
corresponding objective vector z,, and N is the population size, the solution’s rank is

defined by the algorithm in Figure 3.6.

The second technique, proposed by Fonseca and Fleming [111], operates somewhat

differently. As before, a solution z at generation ¢ has a corresponding objective vector

()

x,. We also let ry” signify the number of vectors associated with the current population

dominating x,; x’s rank is then defined by:
rank(z,t) = r{t) . (3.1)

This ensures all solutions with nondominated vectors receive rank zero.
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curr_rank = 1
m=N
while N # 0 do
For:=1:m do
If x,, is nondominated
rank(z,t) = curr_rank
od
Fori=1:m do
If rank(z,t) = curr_rank
Store x in temporary population

N=N-1
od
curr_rank = curr_rank + 1
m=N

od

Figure 3.6. Rank Assignment Algorithm

Some approaches simply split the population in two, e.g., assigning solutions with
nondominated vectors rank 1 and all others rank 2 [25]. Using the same notation, this

ranking scheme is defined by:

1 it =o,
rank(z,t) = (3.2)

2 otherwise.

When considering Goldberg’s and Fonseca and Fleming’s ranking schemes, it initially
appears that neither is “better” than the other, although it is mentioned in the literature
that Fonseca and Fleming’s method, which effectively assigns a cost value to each solution,
might be easier to mathematically analyze [107]. Horn [152] also notes this ranking can

determine more ranks (is finer-grained) than Goldberg’s (assuming a fixed population size).

One last ranking method using Pareto optimality as its basis is proposed by Zit-
zler and Thiele [358].> Their MOEA implementation uses a secondary population whose
solutions are directly incorporated into the generational population’s fitness assignment

procedure. Effectively, each Pareto optimal solution (at each generation) is assigned a fit-

STheir rank assignment algorithm is lengthy. The reader is instead referred to the citation for imple-
mentation details.
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ness equal to the proportion of evaluated vectors its associated vector dominates. Because
of the secondary population’s inclusion in the fitness assignment process this method’s
complexity may be significantly higher than the other methods. Additionally, this method
has a known shortfall. Deb [83] presents a geometric argument that this fitness assignment
method has inherent bias. Pareto optimal solutions whose associated vectors dominate
more vectors (or dominate a larger portion of objective space) receive higher fitness than
other Pareto optimal solutions. However, each Pareto optimal solution should receive equal
fitness! This method is then biased, as it may result in some Pareto optimal solutions re-

ceiving preference over others in the selection process.

There is currently no clear evidence as to the benefit(s) of any of these ranking
schemes over another. Only one experiment whose purpose is directly comparing any of
these schemes is reported in the literature. Thomas compared Fonseca and Fleming’s and
Goldberg’s Pareto ranking schemes in an MOEA applied to submarine stern design [318].
He concludes both outperformed tournament selection, and that Fonseca and Fleming’s
ranking appears to provide a fuller, smoother PFyy,,yy . However, he (and we) caution that
this is a singular data point. On a similar note, only one paper in the MOEA literature
presents data on the number of population “fronts” using Goldberg’s ranking. Vedarajan
et al. present a graph showing the number of fronts found in each generation [329]. With
a population size of 300 individuals the first generation has over 40 fronts. This quickly

drops and from generations 10 to 100 and oscillates between 20 and 25.

Analyzing these schemes’ mathematical complexity is revealing. Table 3.2 (showing
each scheme’s best and worst case) and the following analysis only consider population
size in computing complexity, where IV is the size of the generational population and N;
of Pipown - We assume that as comparisons are performed appropriate counter or fitness
value assignments are made or updated. Thus, the binary, Fonseca and Fleming’s, and
Zitzler’s ranking schemes require only one “pass” through the population(s) regardless of
the number of nondominated solutions. Their worst and best case complexities are identi-
cal. Goldberg’s scheme, however, requires at most N — 1 “passes” through the population
if there is only one Pareto optimal solution per (reduced) population. In addition, Zitzler’s

scheme’s complexity increases if Pyyoun ’s size is much larger than the generational popu-
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Table 3.2. MOEA Fitness Ranking Complexities

‘ Technique ‘ Best Case ‘ Worst Case
Binary N?_N N?2_-N
Fonseca N? - N N? - N
Goldberg N? - N ;(N3—N)
Zitzler (N+N1)2—N—N1 (N+N1)2—N—N1

lation’s. Thus, Goldberg’s and Zitzler and Thiele’s ranking schemes (potentially) involve

significantly more overhead than do the others.

It is also instructional to look at the possible value ranges for each ranking scheme.
The binary scheme (Equation 3.2) offers only two values, ® € [0,1]. Both Fonseca and
Fleming’s (Equation 3.1) and Goldberg’s scheme (Figure 3.6) offer N possible values,
® € [0,1,... ,N — 1]. However, in practice Goldberg’s scheme uses some subset of these
values (resulting in a “coarser” ranking). Zitzler’s scheme offers (possibly non-integer)
values ® € [1,N). Using Fonseca’s second function as an example (see Table B.1 in
Appendix B), Figure 3.7 shows the resultant solution rankings of three Pareto ranking
schemes.

Fitness vs. Genotype (Fonseca) Fitness vs. Genotype (Goldberg)

w
o
o

N
o
o

100

Pareto Ranking
Pareto Ranking

Fitness vs. Genotype (Simple)

Pareto Ranking
o
(6]

No

y-value -2 -2 x—value

Figure 3.7. Pareto Ranking Schemes

3-21



Further clouding the issue is the fact that rank itself is often not directly used as a
solution’s fitness. For example, Fonseca and Fleming first used their ranking scheme in
an MOEA implementation named the MOGA [108]; Srinivas and Deb were first to imple-
ment Goldberg’s scheme in the Nondominated Sorting Genetic Algorithm (NSGA) [306].
Both transform assigned rank before selection occurs. The MOGA sorts solutions by rank
and assigns fitness via linear or exponential interpolation, while the NSGA uses “dummy”
fitness assignment, ensuring only that each “wave” of Pareto optimal solutions has a max-

imum fitness smaller than the preceding wave’s minimum value.%

3.8.2.83 Pareto Niching and Fitness Sharing.  Several MOEA Pareto niching
and fitness sharing variants have been proposed with the same goal as in traditional single-
objective optimization — finding and maintaining multiple optima. However, MOEAs use
sharing in an attempt to find a uniform (equidistant) distribution of vectors representing
PFipye, i.e., one in which PFy, 4, 's shape is a “good” approximation of PFy.,.. We

compare selected implementations of this concept.

Fonseca and Fleming’s MOGA [114] uses restricted sharing, in the sense that fitness
sharing occurs only between solutions with identical Pareto rank. They measure niching
distance in phenotypic space, i.e., the distance (over some norm) between two solutions’
evaluated fitness vectors is computed and compared to ogpere (the key sharing parameter).
If the distance is less than o4 the solution’s associated niche count is then adjusted.
Srinivas and Deb’s NSGA [306] implements a slightly different scheme, where distance is
measured (over some norm) in genotypic space, i.e., the distance between two solutions is

compared to T gpgre-

Horn and Nafpliotis define niching differently in their MOEA named the Niched
Pareto Genetic Algorithm (NPGA) [154], which performs selection via binary Pareto dom-
ination tournaments. Solutions are selected if they dominate both the other and some
small group (t4om ) of randomly selected solutions. However, fitness sharing occurs only in

the cases where both solutions are (non)dominated. Each of the two solution’s niche counts

5The MOGA and NSGA are used in the experiments discussed in Chapter VI. Their algorithmic
implementations are further explained there.
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is computed not by summing computed sharing values, but by simply counting the num-
ber of objective vectors within o4 of their evaluated vectors in phenotype space. The
solution with a smaller niche count (i.e., fewer phenotypical neighbors) is then selected.

Horn et al. term this equivalence class sharing [155].

Another fitness sharing variant uses the NSGA’s rank assignment scheme (i.e., Gold-
berg’s [126] Pareto ranking) but uses phenotypic-based sharing [221]; another combines
both genotypic and phenotypic distances in determining niche counts [274]. Fitness shar-
ing may also be applied to solutions regardless of rank instead of restricting sharing between

equally ranked solutions.

All of these methods require setting explicit values for the key sharing parameter
O share, Which can affect both MOEA efficiency and effectiveness. Fitness sharing’s perfor-
mance is also sensitive to the population size N. Assigning appropriate values to ogpgere is
difficult as it usually requires some a priori knowledge about the shape and separation of a
given problem’s niches. However, as phenotypic-based niching attempts to obtain equidis-
tantly spaced vectors along P Fypoyn , both Fonseca and Fleming [114] and Horn [154] are
able to give guidelines for determining appropriate MOEA o447 values. These values are
based on known phenotypical extremes (minimum and maximum) in each objective dimen-
sion. Horn also suggests appropriate values for the NPGA’s tournament size parameter
(tdom)'

To determine o4 s value using Fonseca and Fleming’s method, one uses the num-
ber of individuals in the population (which implicitly determines the number of niches),
scales the known attribute values, and determines the extreme attribute values in each
objective dimension. These parameters are then used to derive e - Horn’s guidelines

use the above parameters to define bounds for g4 ’s value.

How does one find each objective dimension’s extreme values? One suggested ap-
proach is by computing objective values using each decision variables’ minimum and max-
imum value. This is not feasible because decision variable extremums may not correspond

to attribute extremums; the combinatorics and unknown relationships between different

"The NPGA is used in the experiments discussed in Chapter VI. Its algorithmic implementation is
further explained there.
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decision variable values is an additional factor. Thus, the minimum and maximum values of
either the generational or a secondary population may be used. Fonseca and Fleming [114]
indicate recomputing ogep at each generation (using current generational extremums)
yields good results. We also note that the MOEA’s stochastic nature may not preserve
these values between generations, i.e., the associated solutions may not survive. Thus, it
is better to select objective extremes from the secondary population if one is incorporated
in the MOEA. By definition, this population contains each objective dimension’s extrema

so far, ensuring the “ends” of P Fjy .y, are not lost.

As with the proposed Pareto ranking schemes, there is then no clear evidence as to
the benefit(s) of one Pareto niching and sharing variant over another. Nor are experiments
reported in the literature comparing key components of these different approaches (e.g.,

O share value assignment).

We note the following in regard to the appropriate sharing domain. Horn et al. indi-
cate sharing should be performed in a space we “care more about” [154, 155]. Phenotypic-
based sharing does make sense if one is attempting to obtain a “uniform” representation of
PFirye . On the other hand, Benson and Sayin indicate many OR researchers “care more
about” obtaining a “uniform” representation of Py [28], in which case genotypic-based

sharing seems appropriate. The end representation goal should drive the sharing domain.

3.3.2.4 Mating Restriction. The idea of restricted mating is not new.
Goldberg [126] first mentions its use in single-objective optimization problems to prevent
or minimize “low-performance offspring (lethals).” In other words, restricted mating biases
how solutions are paired for recombination in the hopes of increasing algorithm effective-
ness and efficiency. Goldberg presented an example using genotypic-based similarity as the
mating criteria. Deb and Goldberg [86] implemented phenotypic-based restricted mating
in their GA niching and sharing investigation. We note here these implementations only
allow mating between “similar” solutions (over some metric). Island model GAs also imple-
ment restricted mating but in a geographic sense where solutions mate only with neighbors
residing within some restricted topology [46]. It is also noted [61] that other researchers

believe restricted mating should allow recombination of dissimilar (over some metric) indi-
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viduals to prevent lethals. However defined, restricted mating is also incorporated within

many MOEAs in an attempt to reduce unfit (e.g., non-Pareto optimal) offspring.

For example, Baita et al. [21], and Loughlin and Ranjithan [205], place solutions on
a grid and restrict the area within which each solution may mate. Lis and Eiben [201]
allow mating only between solutions of different “sexes.” Jakob et al. [167] restrict mating
to solutions within a particular deme. Hajela and Lin [140] implement a unique form of
mating restriction. In their linear fitness combination (weighted-sum) MOEA formulation,
they apply restricted mating based on a solution’s associated weighting variables to prevent
crossover between designs with radically different weight combinations. When considering
general MOEAs phenotypic-based restricted mating between similar solutions is of more
interest to us. Several MOEA researchers state in their published reports [108, 109, 359]:

“Following the common practice of setting opate = Tgpare ---

This may be a common practice, but no background is cited in the literature. As
O share attempts to define a region within which all vectors are “related,” setting o,4¢e €qual
to Ospare 18 intuitive. The same rationale holds in genotypic sharing and mating restriction.
We currently have only empirical explanations offered for the implementation (or lack) of
restricted mating in various MOEA approaches. In fact, it was recently noted [111] that
“... the use of mating restriction in multiobjective EAs does not appear to be widespread.”
Obviously, some researchers believe restricted mating is necessary or they would not have

implemented it, but others indicate it is of no value!

Zitzler and Thiele [359] state that for several different values of opqe , N0 improve-
ments were noted in their test problem results (an MOP with two - four objectives) when
compared against those with no mating restriction. Shaw and Fleming [297] report the
same qualitative results for their application (an MOP with three objectives) whether or
not mating restriction was incorporated. Horn et al. [155] offer empirical evidence directly
contradicting the basis for mating restriction. They note that recombining solutions whose
associated vectors are on different portions of P Fyyoyyp (t) can produce offspring whose vec-
tors are on PFyoun (t + 1) but between their parents. They also claim that for a specific

MOP a constant (re)generation of vectors through recombination of “dissimilar” parents
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maintains PFypoun - They believe most recombinations of solutions in Pgypeyn also yield

solutions in Piyoun -

Thus, as in single-objective optimization, no clear quantitative evidence regarding
restricted mating’s benefits exists. The empirical evidence presented in the literature can
be interpreted as an argument either for or against this type of recombination and leaves the
MOEA field in an unsatisfactory predicament. This issue clearly benefits from experiments
directly comparing its algorithmic inclusion/exclusion. One must also consider the NFL
theorems [346], realizing that mating restriction may not always be effective (or needed)

for every problem (class).

3.3.2.5 Solution Stability and Robustness. Both EAs and MOEAs search
for some problem’s optima. At least for MOPs; it has been noted [160] that Pj, may not,
and often is not, the most desirable solution set because its members are “unstable” (e.g.,
due to engineering tolerances, nonlinear response). It is also suggested that these solutions
are often on the “edge” of optimality and/or feasibility. Thus, just as in single-objective
optimization, any solutions returned as optimal must be evaluated with respect to any
constraints not explicitly considered in the objective function(s). Or, perhaps a suitably

defined sensitivity objective (e.g., engineering tolerances) may be incorporated into the

MOEA.

3.8.8 MOEA Secondary Populations. ~ We agree with Horn [152] that any practi-
cal MOEA implementation must include a secondary population composed of all nondom-
inated solutions found so far (Pgpown (t)). This is due to the MOEA’s stochastic nature
which does not guarantee that desirable solutions, once found, remain in the generational
population until MOEA termination. This is analogous to elitism but we stress that it is a
separate population. The question is then how to best utilize this additional population. Is
it simply a repository, continually added to and periodically culled of dominated solutions?
Or is it an integrated component of the MOEA? Although several researchers indicate their
use of secondary populations only a few explain its use in their implementation. As there

is no consensus for its “best” use we present some of its incarnations.
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A straightforward implementation stores Peyppent (t) at the end of each MOEA gen-
eration (i.e., Peyprent (t) U Pinown (t — 1)). This set must be periodically culled since a
solution’s designation as Pareto optimal is always dependent upon the set within which
it is evaluated. How often the population is updated is generally a matter of choice, but
as determination of Pareto optimality is an O(n?) algorithm, it should probably not be
performed arbitrarily. As this population’s size grows comparison time may become signif-
icant. This implementation does not feed solutions from Py () back into the MOEA’s

generational population.

Conversely, other published algorithms actively involve Pgpoyn in MOEA operation.
For example, Zitzler and Thiele’s [358] Strength Pareto Evolutionary Algorithm (SPEA)
stores Pgyprent () in a secondary population and then culls dominated solutions. Solutions
from both the MOEA’s generational and secondary populations then participate in binary
tournaments selecting the next generation. If the number of solutions in Pgyoyy () exceeds
a given maximum, the population is reduced by clustering which attempts to generate a
representative solution subset while maintaining the original set’s (Pgpoun (t)’s) character-
istics. SPEA also uses Pgpoun (t) in computing the main population’s solutions’ fitness;

this effectively results in a larger generational population.

Todd and Sen [319] also insert nondominated solutions from Py (t) into the mat-
ing population to maintain diversity, as do Ishibuchi and Murata [163, 165, 164], and
Cieniawski et al. [58]. These implementations never reduce the size of Pyyoun (t) except
when removing dominated solutions. Parks and Miller [249] and Parks [250, 248] imple-
ment an archive of Pareto optimal solutions. However, solutions in Peypens () are not
always archived; the process occurs only if a solution is sufficiently “dissimilar” from those
already resident. Thus, this also is clustering. If a new solution is added any archive mem-
bers no longer Pareto optimal are removed. Like SPEA, the next generation’s members

are selected from both Pypoyun () and the current generational population.

Some researchers use secondary populations not composed of Pareto optimal solu-
tions. Bhanu and Lee [32] apply an MOEA to adaptive image segmentation; their sec-
ondary population is actually a training database from which GA population members are

selected. Viennet et al. [334] use separate GAs to optimize each of the MOP’s k func-
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tions independently; these “additional” populations are later combined and nondominated

solutions removed to provide Piyoun -

A secondary population (of some sort) is an MOEA necessity. Because the MOEA
is attempting to build up a (discrete) picture of a (possibly continuous) Pareto front, this
is probably a case where at least initially, too many solutions are better than too few.
It intuitively seems that a secondary population might also be useful in adding diversity
to the current generation and in exploring “holes” in the known front, although how to
effectively and efficiently use Pgyoun in this way is unknown. Again, we suggest experiments

directly comparing various secondary population implementations.

3.3.4 MOEA Complexity. It is well known that fitness function evaluation (for
many real-world problems) dominates EA execution time. Thus, when discussing various
MOEASs’ algorithmic complexity we are concerned mainly about the number of fitness
evaluations. We do consider solution comparisons and additional calculations, as this
overhead is not found in simple GA (SGA) implementations. EVOP complexity is ignored

for the current purpose.

MOEA complexity is generally greater than that of SGAs. After fitness evaluation in
an SGA, resultant values are stored in memory and no further computation is (normally)
required as far as fitness is concerned. However, an MOEA sometimes combines and/or
compares these stored values which adds algorithmic complexity. As a reference we present
the complexity of the various MOEA techniques in Table 3.3; SGA complexity is included

for comparison. Each technique’s “worst-case” was used to generate these figures.

The table’s notation is as follows. Population size is denoted by n and the number
of generations by G. Ty represents fitness computation time (assumed here to be equal
for each objective). The number of fitness functions is designated by k and the number
of solutions per processor (the Pareto demes case) by m. All table entries are based upon
a single generational population, i.e., no secondary populations are used. All techniques
are assumed to store a solution’s evaluated fitness making selection’s computational cost
inconsequential. All listed techniques have the identical basic cost of TyGnk fitness com-

putations. Finally, independent sampling’s complexity was computed using several runs
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Table 3.3. MOEA Solution Technique Complexity
| MOEA Technique Computational Complexity

SGA T;Gn

Lexicographic TyGnk + Gn’k — Gnk
Linear Combination TyGnk + Gnk — Gn
Multiplicative TiGnk + Gnk — Gn

Target Vector TyGnk + Gk? +2Gk
Minimax TiGnk + 3Gnk
Independent Sampling | c[TyGnk + Gnk — Gn]
Criterion Selection TyGnk + Gn

Aggregation Selection TiGnk + Gnk —n

Pareto Rank TyGnk + Gn’k — Gnk
Pareto Niche and Share | TyGnk + Gn’k — Gnk + n’
Pareto Demes TyGnk + Gm?zzﬁ — GmTk + " comm
Pareto Elitist TyGnk + Gn’k — Gnk

of a linear fitness combination technique. Randomly assigned weights (in the fitness func-
tions) were used for the aggregation technique’s complexity determination. Table 3.3 shows
MOEA techniques explicitly incorporating Pareto concepts are the most computationally
expensive; this is due primarily to the O(n?) cost of determining which solutions in some

set are Pareto optimal.

MOEA storage requirements are problem dependent. Like other EAs these require-
ments are mandated by the specific data structures used. Required storage increases
linearly with the number of fitness functions used, and when a secondary population is

brought into play.

We note here that MOEA complexity may be a moot issue in real-world applica-
tions. As fitness function evaluation (for many real-world problems) dominates EA execu-
tion time, the overhead involved in any of the presented techniques may be miniscule in
comparison. If that is the case the complexity issue “goes away” as long as the technique

appears effective and efficient.

3.3.5 MOEA Computational “Cost”.  When practically considered, MOP evalu-
ation cost limits MOEA search. The most “expensive” EA component in many real-world

MOPs is the fitness function evaluation. Since all algorithms must eventually terminate
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the number of fitness evaluations is then often selected as the finite resource expended in
search, i.e., the choice is made a priori for an EA to execute n fitness evaluations. The
“best” solution found is then returned. Assuming solutions are not evaluated more than

once (no clones) a total of n points (possible solutions) in the search space are explored.

Now consider a k-objective function. Here, k fitness evaluations are performed for
each possible solution (one for each objective). Assuming resources are still limited to
n fitness evaluations and that each objective evaluation is equally “expensive”, only | %]
points in the search space are now explored. All else held equal, a k-objective optimization
problem may then result in a k-fold decrease in search space exploration. Note also that in
the context of MOEASs, this implies using the term “fitness function evaluations” to measure
computational effort may be somewhat misleading. The term “solution evaluations” is

clearer.

This result implies an MOEA may require longer (than a single-objective EA) “wall
clock” execution times for good performance. Further search is never guaranteed to return
the optimal answer but one wishes as much exploration as possible in the time allowed.

This increases the sense of confidence one has found the true, and not a local, optimum.

3.3.6 MOEA Parallelization.  We have noted several parallel MOEA implemen-
tations [3, 21, 167, 210, 256, 274]. These implementations execute either several MOEAs
on different processors (several independent, synchronous runs) or spread an MOEA’s pop-
ulation among processors in a demic manner (i.e., a “master-slave” or island model [46]).
However, none discuss what other parallel MOEA possibilities exist or what MOEA tech-

nique modifications may be required when implemented in parallel.

An obvious first choice for MOEA parallelization is an exact task to processor map-
ping, but this is not a wise choice. Each identified task in Figure 2.12 (Section 2.5) executes
for varying time periods. Additionally, Task 1 executes only once. It is easy to see this
proposed mapping’s inefficiency. One processor completes its task and then sits idle. The
other processors are also unable to operate asynchronously resulting in a much greater idle

than calculation time.
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The four steps in the execution loop must occur sequentially. Mutation cannot op-
erate until recombination finishes. Selection does not (normally) occur until all fitnesses
are computed. It is conceivable that the fitness evaluation task can operate on solutions
sent immediately after mutation does/does not occur, but the overhead of opening/closing
a communication channel between two processors seems prohibitively expensive compared
to the minimal computational gains. Additionally, since data required by each task is res-
ident on other processors there is an additional communication overhead associated with
this implementation. We thus draw the conclusion that this implementation is not useful.
“Pipelining” the algorithm’s tasks is also ineffective because it is a special case of the exact

task to processor mapping.

Another possibility is a Single Program Multiple Data (SPMD) implementation. One
may execute several MOEAs simultaneously on different processors and compare, contrast,
and/or combine the reported results. As executing a number of MOEAs sequentially
achieves this same result the parallel implementation has obvious speedup. However, we

also wish to consider parallelizing innate MOEA tasks.

3.3.6.1 MOEA Decomposition.  Affecting the ability to effectively and effi-
ciently parallelize an MOEA is the fact it is inherently sequential. By definition, Task 2
(Figure 2.12 in Section 2.5) in the MOEA case computes k (k > 2) fitness functions. This

task can and has been parallelized.

MOEA fitness function evaluation allows for parallelism by assigning each function’s
evaluation to different processors, assigning subpopulations for evaluation on different pro-
cessors, or assigning each individual’s evaluation across several processors. These options

are shown in Figure 3.8; each is discussed in turn.

Each fitness function’s execution time may be radically different. Blindly assign-
ing the entire population and each of the k functions to a different processor may then
be imprudent if one fitness evaluation takes many times longer than the others (see Fig-
ure 3.8a). One could load balance these fitness computations but the effort expended may
not be worthwhile. It is also possible to assign fractions of the population to different

processors where identical numbers of individuals are evaluated via identical fitness func-
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Figure 3.8.  Parallel Fitness Evaluation Possibilities

tions (see Figure 3.8b). As long as communication time is not a significant fraction of
each subpopulation’s calculation time, this is an effective parallelization method for fitness
evaluation. Jones et al. [170] use a “master—slave”, dynamic load-balancing approach to
distribute fitness evaluations in this manner. Finally, in the case of an extremely expensive
fitness computation(s) each individual’s evaluation(s) could be split among processors (see
Figure 3.8¢c). This is most likely in problem domains such as computational electromag-

netics or fluid dynamics where such parallel codes already exist.

Additional processing is sometimes required to transform the resultant fitness vectors
into scalars. Several variants of MOEA fitness assignment and selection techniques exist
(e.g., ordering, scalarization, independent sampling, and cooperative search) which may or
may not be parallelizable. For instance, using a Pareto ranking and niching implementation
such as Fonseca and Fleming’s MOGA [108] permits the Pareto ranking and shared fitness
calculations to be performed independently. As each are O(n?) algorithms overall MOEA
speedup is possible.

Figure 3.9 shows a parallel MOEA’s task decomposition. One processor acts as the
MOEA “master,” executing the population initialization, recombination, mutation, and
selection tasks. It also controls parallelization of the fitness evaluation/transformation
tasks performed by the “slaves,” easily implemented via communication libraries such as
the Message Passing Interface (MPI) [247]. MPI includes communication routines that are

readily incorporated into MOEA implementations, and are portable across a wide variety of
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Figure 3.9. Parallel MOEA Task Decomposition

computer architectures with either homogeneous or heterogeneous processors. The master

processor may or may not perform fitness calculations depending on the particular problem.

3.8.6.2 Parallel MOEA Issues.  Taken as a whole, a parallel MOEA is not
a complex algorithm. Represented as a Directed Acyclic Graph (DAG) MOEA tasks show
more precedence relationships than asynchrony. In other words, the parallel MOEA has a

large grain size; algorithmic decomposability is rapidly reaching its limit.

Instantiated parallel MOEAs may well benefit from applying one of the many avail-
able static or dynamic processor scheduling and load balancing techniques [97, 185]. As
parallel MOEAs are applied to real-world scientific and engineering problems where the
fitness calculation time is significant, these scheduling heuristics become more important.
However, since the overwhelming amount of many MOEA computational efforts is spent
on fitness calculation, parallelizing fitness assignment and selection may not result in large

gains. The overhead involved could in fact be “more trouble than it’s worth.”

In broad terms, any parallel MOEA implementation should result in some speedup
gains. Additionally, it offers the possibility of evaluating more candidate solutions perhaps

providing a “better” view of the fitness landscape.

3.4 MOEA Design Recommendations

The tables in Sections A.2—A.4 present numerous approaches. When considering
them those wishing to implement an MOEA may well be asking, “Where do I begin?” We
cannot specify an “all purpose” MOEA technique nor do the NFL theorems [346] allow

for one. However, we can suggest MOEAs which appear appropriate as a starting point.
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Interested researchers may then select one of these MOEAs to begin their exploration of

the MOP domain.

Definition 8 states that an MOP’s global optimum is PFjype , determined by eval-
uating each member of Py . Additionally noted in Section A.4 is the fact that many
a posteriori approaches explicitly seek Pyye. Thus, a priori techniques are not generally
appropriate because they may not be capable of finding each member of Py, and they
return only a single solution per MOEA run. The DM’s lack of information before search

occurs is also a factor.

Although there are several a posteriori techniques to consider® we focus on those
MOEAs employing Pareto rank- and niche-based selection, and specifically consider Fon-

seca and Fleming’s MOGA [114], the NPGA [154], and the NSGA [306]. The citations

give ample information to implement these algorithms.

These algorithms stand out because they incorporate known MOEA theory. The
Pareto-based selection each employs explicitly seeks Py . All incorporate niching and
fitness sharing in an attempt to uniformly sample P Fy,. . Mating restriction may (or may
not) be included in any of the three, as may a secondary population. Finally, their general

algorithmic complexity is no higher than other known MOEA techniques.

Although each MOEA'’s authors (and rightly so) point out deficiencies in their own
and other MOEASs, any algorithmic approach is bound to have some shortfalls when applied
to certain problem classes (c.f., the NFL theorems [346]). These algorithms’ common theme
is their respect of known relevant theoretical issues, and their empirical success in both
(non-)numeric MOPs and real-world applications. Appendix A shows these algorithms
easily win the title “Most Often Imitated,” implying other researchers also see value in
them. As these MOEAs are used in experiments supporting this research we present
detailed information about each in Sections 6.3.2 and 6.3.3. They are briefly described

here.

8Progressive approaches incorporate either a priori or a posteriori techniques; any of the algorithms we
recommend may be used interactively.
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1. MOGA. Implemented by Fonseca and Fleming [114]. Used to explore incorporation
of DM goals and priorities in the multiobjective search process. Employs the Pareto

ranking scheme in Equation 3.1 (Section 3.3.2.2) and fitness sharing.

2. NPGA. Implemented by Horn et al. [154]. Used to explore benefits of providing
Pipnown as input to a Multi Attribute Utility Analysis [177] process. Uses tournament
selection based on Pareto optimality instead of fitness assignment based on Pareto

optimality. Incorporates fitness sharing.

3. NSGA. Implemented by Srinivas and Deb [306]. Employs Goldberg’s Pareto rank-
ing [126] as shown in Figure 3.6 (Section 3.3.2.2). This MOEA attempts to prevent

bias towards certain regions of the Pareto front and incorporates fitness sharing.

Although not straightforward, many existing EA implementations are extendable into
the MOEA domain. For example, GENOCOP III [217] was readily modified to incorporate
both a specialized problem domain code and linear fitness combination technique. The
Genetic and Evolutionary Algorithm Toolbox (GEATbx) for use with MATLAB® [255]
allowed us to quickly create both MOGA and NSGA variants; these codes are now being
incorporated into the toolbox’s baseline version. Upon request, other researchers have also
provided their MOEA code for experimentation. Thus, initial algorithmic development

should not be a barrier to solving MOPs with MOEAs.

3.5 MOEA Research Contributions

This chapter’s analysis and the cataloged research in Appendix A provide a pool from
which to award “MOEA Oscars” for significant and original MOEA research contributions.

These awards are (of course) subjective.

Schaffer and Fourman must be recognized for their pioneering MOEA work [289, 117].
Figure 3.1 (Section 3.2.1) shows very few MOEA publications during the next six years.
Goldberg deserves mention for noticing that the concept of Pareto optimality might be
used to rank solutions in MOEAs [126:pg. 201]. As Deb notes [84], varying MOEA

SMATLAB is a Trademark of The MathWorks, Inc.
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interpretations and implementations of Goldberg’s “10-line sketch” have proved at least

equal to classical approaches in many cases.

Fonseca and Fleming were the first to publish an MOEA research survey [111]. They
broadly classified and critiqued known approaches presenting a solid explanation of key
MOEA theoretical aspects (e.g., fitness assignment and sharing). This survey and Gold-
berg’s book [126] are probably the most cited documents in MOEA publications. Their
MOGA was one of the first Pareto-based MOEAs explicitly used to seek P Fje and the
first to mention active DM involvement. Horn later published an updated survey [152]
with a different classification structure recognizing that many implemented MOEA tech-
niques originated in the OR field. His and Nafpliotis’ NPGA [154], and Srinivas’ and
Deb’s NSGA [306] are two other Pareto-based MOEAs built on solid theoretical results.
We note our MOEA classification and technique analysis (see Appendix A) is generally

more complete and up-to-date than these other surveys.

Finally, awards must be given for MOEA theory development. Three researchers
deserve mention here. Rudolph brings a rigorous mathematical approach to the important
issue of MOEA convergence [275, 276]. Deb realizes the lack of capability to construct
MOPs with desired characteristics and analytical solutions for PFy.. [83]. Finally, we
also recognize the need for additional MOEA theory, a substantiated MOEA test function
suite, and a methodology with which to quantitatively compare MOEA performance [327]
(also see Chapters II, V and VI).

3.6 Summary

This chapter presents an in-depth analysis of MOEA research, discussing in detail
several foundational issues such as implemented MOEA techniques and fitness functions,
chromosomal representations, and application areas. More general observations are also
made concerning MOEA characteristics and components. Theoretical issues relating to

MOEA complexity and parallelization are discussed.

This analysis identifies appropriate MOEAs recommended for initial use in solving

MOPs, and should be used when re-engineering these (or any other) MOEAs to solve
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particular MOPs. The chapter concludes by highlighting several significant MOEA research
contributions. As a whole, this analysis and Appendix A serve as a guide to MOEA design.
With this background and insight into the MOEA design process a new algorithm design

is discussed and implemented in the next chapter.
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IV. Building Blocks and MOEA Design

A good scientist is a person with original ideas. A good engineer is a person who makes
a design that works with as few original ideas as possible. There are no prima donnas in
engineering.

Freeman Dyson, Disturbing the Universe

4.1 Introduction

A primary thesis of this research is that Building Blocks (BBs) can be successfully
employed in solving MOPs. This view was until now unexplored. In keeping with the above
quote we first review relevant single-objective BB concepts and then extend appropriate
ones to the MOP domain. Based on these results, an existing single-objective GA which

explicitly manipulates BBs is made the basis for a new, innovative MOEA.

Section 4.2 gives an overview of BB concepts. A brief history of BB-based GAs is
presented in Section 4.3 and Section 4.4 discusses the relationship between BBs and MOPs.
Finally, Section 4.5 presents a “new” multiobjective EA (called the MOMGA) based on the
explicit BB manipulation performed by the messy GA. Section 4.6 proposes a concurrent

MOMGA implementation.

4.2 GA Building Block Overview

Theoretical GA performance analysis makes extensive use of schemata (singular:
schema), or similarity templates.! A schema is a character string; its characters are drawn
from some specified genetic alphabet also containing a “don’t care” character (*). Since
solutions are encoded as strings a schema thereby describes a subset of potential solutions.
For example, the schema 1** represents the set of all 3-bit binary strings containing a 1 in
the first position, i.e., 1*¥* = {100, 101, 110, 111}. Likewise, the schema 1*0 represents the

set of all 3-bit binary strings beginning with a 1 and ending with a 0, i.e., 1¥0 = {100,110}.

LThis overview makes use of the concepts presented in Section 2.4.



The defining length (6(H)) of a schema H is the “distance” between the index of the
first and last specified positions. For example, §(1*****0%) = 7—1 = 6 and §(1****k**x) =
1 —1=0. The order (o(H)) of a schema H is the number of its specified positions. For

example, o( Lx***xx**x) =1 and 0o(11111111) = 8.

These concepts provide a basis for discussing the Fundamental Theorem of Genetic
Algorithms, also known as the Schema Theorem. Defining the average fitness of the strings
matching some schema H as f(H), the average population fitness as f, and the num-
ber of strings matching the schema contained in a population at time ¢ as m(H,t), the

reproduction operator’s effect (assuming fitness proportional selection) is

H
m(H,t+ 1) :m(H,t)Q . (4.1)
Two types of EVOPs can disrupt schema present in the population as the GA ex-
ecutes. Single-point crossover disrupts a schema only when the crossover point occurs

within the defining length of the schema. Thus, the probability of survival under single-

point crossover for some schema in a string of length [ is

6(H
-1
where p, is the probability of crossover. The inequality reflects the fact that crossover

may not actually disrupt the schema even when the crossover point is within the defining

length.

Point mutation also disrupts a schema only when occurring within the schema’s
defining length. The probability of survival for the same schema under the point mutation

operator is

Pms = 1- O(H)pm) Pm < 1 ) (43)



where p,, is the probability of mutation. Combining these results and omitting negligi-
ble terms gives an estimate for the expected number of schema remaining in the next

generation:

m(+1) > m(E D 1 )y, (4.4

f l
Goldberg states this result implies “short, low-order, above-average schemata receive
exponentially increasing trials in subsequent generations” [126]. These highly fit schemata

are also referred to as BBs. Goldberg also postulates a Building Block Hypothesis:

Short, low-order, and highly fit schemata are sampled, recombined, and resam-
pled to form strings of potentially higher fitness.

BB concepts are also valid when viewed in light of real-valued EAs. Instead of an
[-bit binary string assume m real-valued parameters. Given that parameter p;’s range is
li < pi < u;, and thus a parameter space P defined by P = [, [l;, u;], Wright defines a

real-valued schema S by:
S € [os, 8] (4.5)

where [; < a; < 8; < u; [347]. He then shows the Schema Theorem also holds when

real-valued BBs are considered.

In general, EAs implicitly focus search around BBs whose role is defined by the
Schema Theorem. BBs are a GA’s “information” source where each has two major compo-
nents: each bit (or parameter) has some specified value(s) and each is somehow dependent
upon the others (linkage). BBs define chromosomes associated with high fitness and are
used by GAs in three primary ways. First, an initial supply of BBs is provided via the
starting population and used in defining individual fitness. Second, selection should cause
an increase in the number of desired BBs by selecting individuals containing them for

inclusion in the next generation. Finally, BBs are mixed via recombination, attempting



to assemble the best BBs into a single individual. In each generation, GAs use these two

EVOPs in an attempt to exploit the BBs present in their populations.?

4.8 Building Block-Based GAs

If true, the Building Block hypothesis means BBs are an important GA component.
Few research efforts take steps to explicitly incorporate BB manipulation into GA opera-
tion. When considering ones that do, Goldberg et al.’s [130, 129] messy GA (mGA) and
fast messy GA (fmGA) [128] are of special interest here.

4.3.1 mGA and fmGA.  Goldberg et al. [130] believe too much attention is paid
to “neat” GA genotype codings. They propose a coding scheme where genotypes can
exhibit redundancy, over- and under- specification, and changing structure and length.
They believe this GA modification forms tighter and more useful BBs than those formed
by standard GAs. The resultant mGA proved successful in optimizing deceptive functions;
these functions mislead GA search toward some local optimum when the global optimum

actually lies elsewhere [130]. The mGA’s pseudocode is shown in Figure 4.1.

As shown, the mGA initializes a population of BBs via a deterministic process called
Partially Enumerative Initialization (PEI), producing all possible BBs of a specified size.

This population size is governed by the equation

N =t (;i) , (4.6)

where N is the resulting population’s size, C the allelic alphabet’s cardinality, [ the chro-
mosomal length (in bits), and k the problems assumed BB size. Thus, for a 240-bit (binary)
chromosome with & = 3, the initial population size is 18,202,240. It is easily seen that
population size grows exponentially with increasing k. These BBs’ fitness is evaluated with

respect to a competitive template used to fill in values of under-specified positions.

*Based upon a mutation probability much less than one, and a BB of any size, it is highly unlikely for
BBs to be constructed via mutation. Mutation is thus considered more of an exploratory EVOP.



Forn=1to k
Perform Partially Enumerative Initialization
Evaluate Each Population Member’s Fitness (w.r.t. Template)
// Primordial Phase
For i = 1 to Maximum Number of Primordial Generations
Perform Tournament Thresholding Selection
If (Appropriate Number of Generations Accomplished)
Then Reduce Population Size
End If
End Loop
/[ Juztapositional Phase
For i = 1 to Maximum Number of Juxtapositional Generations
Cut-and-Splice
Evaluate Each Population Member’s Fitness (w.r.t. Template)
Perform Tournament Thresholding Selection
End Loop
Update Competitive Template
End Loop

Figure 4.1. mGA Pseudocode

Following PEI is the primordial phase which contains several cycles of population
growth and reduction. Next is the juzrtapositional phase where the mGA operates on the
BB population by cloning desired BBs, then recombining and selecting resulting strings
with high fitness (again, with respect to the competitive template). The specialized re-
combination operator (called cut-and-splice) operates on uneven length strings. Taken
together, PEI and these two phases form an era. The mGA executes for a user-specified
k eras, returning a solution which is then optimal with respect to BB size (k) and the

competitive template.

The mGA is a computationally expensive algorithm due to PEL. The fmGA is then
proposed to reduce mGA complexity via probabilistic initialization schemes. The fmGA
operates identically to the mGA in the juxtapositional phase. However, instead of PEI, it
uses a probabilistic BB initialization technique creating a controlled number of BB clones
of specified size. These BBs are then filtered, ensuring that (in a probabilistic sense) all
desired BBs exist in the initial population. Goldberg et al. claim this variant is as effective

as the mGA but without the initialization bottleneck caused by PEI [128].
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4.3.2 Related Building Block GAs. Several other BB-based GAs are proposed
in the literature; other researchers classify them as linkage investigating GAs as they are
specifically designed to find and propagate “tightly-linked” genes, or BBs [88]. Table 4.1
lists other BB-based GAs briefly describing what differentiates each.

Two items are of note here. First, we consider the mGA, fmGA, and gmGA as
“Top-Down” approaches; the others are considered “Bottom-Up”. They are classified in
this fashion because of the different manner in which the algorithms attempt to determine
appropriate BBs. The mGA, fmGA, and gmGA explicitly construct BBs in the initial
population while the others use (or modify) randomly initialized individuals. Second, all
GAs in Table 4.1 except Population-Based Incremental Learning and the Selfish Gene GA

are (or are based on) work by Goldberg and his students.

4.8.8 Building Block Observations.  We note that the Building Block hypothesis

has never been proved, and may never be, although it is generally accepted to hold for cer-



Table 4.1.

Building Block GAs

GA ‘ Brief Description
compact GA Virtual population; Changing probability vector de-
(cGA) [146] termines convergence

Extended Compact
GA (ECGA) [144]

Concrete population; Convergence determined by
population marginal probability model

fast messy GA
(fmGA) [128]

Probabilistic initialization of size k& building blocks

Gene Expression
Messy Genetic Algo-

rithm (GEMGA) [172]

Completely specified chromosomes; Randomly gen-
erated initial population’s size determines processed
linkage size; 2 phases: Transcription attempts to de-
termine linkage and RecombinationEzpression com-
pares/modifies the linkages of and then recombines
two chromosomes

Generalized messy GA
(emGA) [214]

Replaces discrete-valued selection and filtering

threshold parameters with real-valued; Probability
distributions then incorporated

Linkage Learning GA

Overspecified chromosomes; Number of introns deter-

(LLGA) [145] mines processed linkage size; 2 phases: Selection and
Ezchange, which performs 2-point crossover, remov-
ing redundant genes from children

messy GA All size k building blocks explicitly generated

(mGA) [130, 129]

Population-Based
Incremental Learning

(PBIL) [22]

Incorporates hill-climbing; Changing probability vec-
tor determines convergence

Selfish Gene GA
(SGGA) [72, 71]

Virtual population modeled by marginal probability
vectors; Changing probability vector determines con-
vergence

tain cases and not for others. As any EA executes, each generation’s underlying probability
density functions are unknown thus making such a proof difficult. Additionally, successful
BB use critically depends on the EA representation’s degree of linear separability (decom-
position of the overall problem into subproblems) [264]. By definition, if a representation
is not linearly separable it suffers from epistatic effects (epistasis is a term describing gene
interrelationships). Standard EAs can cope with some degree and types of epistasis, but
since exact epistatic relationships are most often unknown Goldberg’s hypothesis may or

may not hold in any given situation.



These “negatives” have not prevented successful EA applications based on explicit
BB manipulation. For example, the mGA and fmGA are used in practical single-objective
applications [95, 121, 215]. Deb also implemented a floating point mGA version that
achieved good results on a numeric and cylinder design problem [82]. When considered at a
meta-level, standard EAs (which are predicated upon BBs) often perform much better than
random search, implying their use of BBs and problem domain knowledge is responsible
for their effectiveness and/or efficiency. Thus, it appears that BB concepts are useful in

some problem solving situations. With this background, we now focus on the explicit use

of BBs when solving MOPs.

4.4 MOPs and Building Blocks

Conjecture 1: Appropriately defined building blocks can be sampled, recombined, and
resampled to form “better” MOP solutions. O

This research attempts to determine Conjecture 1’s validity. The preceding dis-
cussions support the practical usefulness of BBs. Although their effectiveness is not yet
theoretically quantified they can be employed in MOEASs regardless of chromosome encod-
ing. We wish to extend BB concepts successfully applied to single-objective optimization

problems into the MOP domain, and use existing analogous ideas in search of more effective

and efficient MOEASs.

The Schema Theorem has historically been developed, described, and analyzed in
terms of single-objective functions. However, BB concepts remain applicable when ex-
tended to MOPs. We first note that BBs are not structurally modified by the simultaneous
optimization of two or more functions. To illustrate, assume a binary-valued genotype of
length | containing several BBs. Single-objective optimization maps this genotype to a
single value; this is the genotype’s associated fitness or phenotype. In MOPs the same
genotype maps to a multi-valued fitness vector. However, the genotype’s structure and its
BBs have not changed in any way! It’s simply that multiple fitness functions have been

evaluated with respect to a single genotype.

4-8



Single-objective optimization attempts to find a genotype(s) mapping to “high” fit-
ness; MOPs attempt the same. While single-objective optimization algorithms generally
search for a (possibly) unique single solution, MOEAs often focus on a set of Pareto opti-
mal solutions which may well have very dissimilar desired BBs! Thus, “good” MOP BBs

should help drive search towards solutions in Py -

As indicated in Section 2.2.1, Py defines the MOP’s trade-off surface from which
some DM implicitly indicates acceptable solutions. These solutions may have no clearly ap-
parent relationship besides their membership in the Pareto optimal set. In fact, BBs which
are “good” for some solution(s) in Py may be “not good” for an arbitrarily chosen other

(or subset). Taking Fonseca’s 2" MOP [109] as an example illustrates this phenomenon.
Minimize F' = (f1(Z), f2(Z)), where
n

A@) = 1= ep(= Y (m— 22,

fad) = 1= exp(= Y (it =) (@7)

where —4 < z; < 4 and n = 2.

Figure 4.4 shows a representation of this MOP’s Py, , and Figure 4.5 its P Fy, (in-
dicated by the ‘¢’ symbols; dominated vectors are represented by ‘.’).> When analyzing
Figure 4.4 it is easily seen that when taken overall, some relationship (structure) exists

between the Pareto optimal solutions.

For further insight, assume the following real-valued BBs:

BB, = ([-0.7,-0.5],]-0.7,-0.5), (4.8)

BBy = ([0.5,0.7] ,[0.5,0.7)).

Figure 4.6 plots all solutions containing BB as ‘+’s and BBj as ‘o’s. Figure 4.7 plots their

associated vectors using the same symbols. As easily seen, solutions in the lower-left hand

3Figures 4.4 and 4.5 are deterministically derived; Pareto representations may slightly change when
computational resolution is increased/decreased.
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corner of Figure 4.6, although closely related to others in their immediate neighborhood

(i.e., they all contain BBy), are different from solutions in the upper-right hand corner that

contain BBy. Figure 4.7 shows that in this case, the different BBs map to very different

portions of objective space yet both are equally important! We wish to use BB concepts

to gain insight into solving MOPs with MOEAs.
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MOEAs are able to use BBs “good” for only some solutions in Py , evidenced by

the successful approaches predicated on sharing, crowding, and niching techniques [107,

152, 326] (also discussed in Section 3.3.2.3). Albeit in more abstract terms, other MOEA

researchers also believe that MOP-BB issues are significant. Several MOEAs implement

some form of mating restriction where analogous to the ogp4p term used in computing



shared fitness, a parameter is used describing the “distance” (over some norm) within which
solutions (or their evaluated vectors) must reside in order to recombine (see Section 3.3.2.4).
But this is nothing other than what was just stated — it suggests researchers suspect that

BBs “good” for one solution in Pjy,gqy are possibly “not good” for others!

4.4.1 Building Block Deception.  Some mGA theoretical results must be viewed in
a different light when extended to the MOP domain. For example, the mGA is predicated
upon a priori definition of the suspected highest order deceptive nonlinearity present in the
problem being solved [130]. Thus, if we assume a given problem is order-k deceptive, all
order-1, order-2, ..., order-(k—1) schemata direct GA search away from the global optimum
to a deceptive one [342]. This implies all lower-order schema (i.e., order < k) contained as
special cases of an order-k schemata have different bit-values. These types of problems are
termed deceptive. The following theorems (similar to single-objective optimization results)

help bound k’s value when considering possibly deceptive MOPs.

Theorem 5: The orders of deception for the functions composing an MOP are not

necessarily equal. O

Proof: Existence proof. Assume an MOP composed of two functions — one is Whit-
ley’s Deceptive Function 1 (a fully deceptive order-3 function), and the other is Whitley’s
Deceptive Function 2 (a fully deceptive order-4 function) [342]. Q.E.D.

Theorem 6: An MOP’s order of deception is at worst [, where [ is the number of bits

encoding the chromosome. O

Proof: Existence proof. Assume an MOP, of which one function is Whitley’s Deceptive

Function 2 [342]. This is a fully deceptive function of order I. Q.E.D.

These results imply that when optimizing an MOP using a method where order is
a required parameter, one must choose a value equal to or greater than the highest order

of deceptiveness present in any function contained in the MOP. Selecting smaller values
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may well prevent discovery of solutions in Py, because mutation would be the only EVOP
allowing discovery of the global schema. Theorem 6 also shows that an MOP’s order of
deception may in the worst case be [, as it may also be for single-objective optimization

problems.

4.5 The Multiobjective mGA (MOMGA)

Having laid a foundation for understanding BB concepts and their use in evolutionary
search, we now wish to explore the relationship between MOEA BBs by extending an
existing single-objective BB-based GA to the MOEA domain. As no other known MOEA

considers this approach this new algorithm is a “state of the art” contribution.

The mGA [130] is initially considered as a vehicle with which to define and investigate
MOP BBs. We select this algorithm for several reasons, although primarily because its
population initially contains every possible BB of a specified size corresponding to (a subset
of) solutions in P, . Additionally, it is designed to explicitly manipulate appropriate
BBs in order to arrive at an optimal solution(s), its source code is freely available, its
operation well understood, and its structure modifiable to solve MOPs. We discuss only
mGA features modified in producing the MOMGA. The reader is directed to Goldberg et
al.’s original papers [129, 130] for a more detailed discussion of basic mGA operation and

theory. We extend the algorithm and associated theory in the following sections.

4.5.1 The mGA, MOMGA, and Fitness Functions. = The mGA requires a fitness
function defined over some I-bit string, each l; € {0,1}. The MOMGA uses no subfunc-
tions; fitness functions operate on the entire [-bit string. This is to focus solely on the BBs
used in MOP solutions and to prevent problems determining the relationship(s) between
subfunctions and a complete MOP (if any). As previously discussed, the number of simul-
taneously optimized fitness functions does not affect the genotype. Thus, the MOMGA

evaluates each of k user-defined fitness functions taking an identical /-bit string as input.

4.5.2 The mGA, MOMGA, and Solution Evaluations. The mGA initially con-

structs every possible BB of a user-specified size k, resulting in a primordial population of
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size 2F (,lc) Each of these strings requires only a single function evaluation. The result is
then stored and used repeatedly during the primordial phase. Likewise in the juxtaposi-
tional phase, only one function evaluation is computed per generated individual string for
a total of C' evaluations. Thus, the mGA’s algorithmic complexity is of order O(2* (,lc) +0).
Given identical string length, allelic cardinality, and order of deception (k), the MOMGA’s
population size is identical but it does require an increased number of function evaluations.
However, the number of function evaluations then increases at a “manageable” (linear) rate
as the MOMGA’s complexity in solving a p-objective MOP is of order O(p2* (,lc) +pC).4
However, “manageable” is a subjective term. Real-world scientific and engineering MOPs
often use computationally complex and time-consuming fitness calculations which may
impact the use of multiple objective functions. In addition, as [ and/or k grow, both the
mGA’s and MOMGA’s complexity is of order O(2* (,lc)) This indicates these algorithms
have a computational bottleneck due to PEI, and in fact is a primary reason for developing

alternative BB-based GAs (see Section 4.3.2).

The MOMGA’s storage requirements also increase linearly. Where the mGA stores
a single value from each function evaluation the MOMGA stores a vector whose number

of values corresponds to the number of functions being optimized.

4.5.8 The mGA, MOMGA and EVOPs. The mGA incorporates tournament
selection which effectively combines selection and fitness scaling [130, 19:pg. C2.3:1]. This
is implemented by choosing ¢ solutions at random (g > 2) and selecting the solution
with highest fitness for inclusion in the next generation. That solution is also removed
from the selection pool. The process is repeated until the population is filled. The mGA
was constructed using this selection operator because it is easily implemented and gives
desirable expected performance [130]. Also, ¢ = 2 is originally selected in the mGA (and is
a common parameter setting) as it results in “medium” selective pressure [17:pp. 174-180].

We also select ¢ = 2 in the MOMGA.

Pareto-based tournament selection (among others) has been successfully used in solv-

ing MOPs [152]. Comparing vectors based on dominance is a way of finding the “best avail-

“The variable p is used here to prevent confusion between the number of objectives and BB length.
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able” MOP solutions. If nondominated vectors are the search target it only makes sense
to use nondominance as the comparison criteria. Thus, we select currently Pareto optimal
BBs/solutions (Peyprent (t)) for further processing by making the MOMGA’s tournament

selection operator dominance- rather than fitness-based.

However, the MOMGA implements a modified tournament selection operator directly
based on the NPGA’s selection scheme [154]. The NPGA randomly selects two solutions
for a tournament, but also chooses a comparison set (¢4,,) of other individuals. Each
of the two candidates are compared (using Pareto dominance) against each comparison
set member. If one candidate is nondominated and the other is not (with respect to the
comparison set), it is selected for reproduction. If neither or both are dominated sharing
is implemented. Horn et al. found that a binary tournament alone produced insufficient
domination pressure resulting in poor P Fly,ey, representations. They then introduced the
comparison set to control what they call domination pressure, also giving suggested values

(based on empirical observation) for this parameter [155].

We show in Appendix A that many Pareto-based MOEAs employ explicit niching and
fitness sharing to track several genotypes (corresponding to varied phenotype performance)
at once. Sharing is also common in multimodal single-objective optimization problems,
where it attempts to prevent concentration on and then loss of an optimum (a situation
termed genetic drift). Horn et al. implement such a scheme in their NPGA [154]; we

employ an identical procedure in the MOMGA.

As described above, two randomly selected candidates are compared (using Pareto
dominance) against each solution in a comparison set. If neither or both’s associated
vectors are dominated, sharing occurs by determining the number of known vectors (the
niche count) within some phenotypical niche radius (ospqre ) of the two candidates. The
candidate with the smaller niche count is then selected. Horn terms this equivalence
class sharing because these solutions can be considered “equally” fit [154]. Several other
niching techniques do exist, e.g., preselection, crowding, and immune system models [153].
Engineering the MOMGA to employ the NPGA-niching scheme seemed the best choice

given that it already employed tournament selection.
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The mGA may employ both mutation and recombination (via “cut and splice”). The
MOMGA makes no changes to these EVOPs’ operation. One last crucial component of
successful mGA operation is the competitive template. Engineering this concept for MOPs

is by no means straightforward.

4.5.4 The mGA, MOMGA, and Competitive Templates. =~ The mGA uses a com-
petitive template in both the primordial and juxtapositional phases. The primordial phase
evaluates all BBs with respect to the template; the juxtapositional phase uses the template
to evaluate fitness of the recombined BBs. The competitive template’s purpose is to sepa-
rate the value of some bit combination from an entire string without using prior functional
knowledge. Thus, each partial string’s assigned fitness is actually a template fitness where
unassigned loci values are filled with the corresponding template values. Although using
competitive templates allows for consistent evaluation of partial strings, a given template

optimizes only one solution (itself) with respect to the available BBs.

The mGA uses templates locally optimal to the previous era. A randomly generated
template is used to find the locally optimal template for era 1, the resulting “best” answer
(at era 1’s end) is used to find the locally optimal template for era 2, etc. The competitive
template is changed by identifying the string with the highest template fitness value yet
achieved; its values are substituted into the current template. This competitive template
then represents the best total solution yet known to the mGA and it is here we arrive at

the crux of the matter.

Traditional mGA search is concerned with finding a single (“best”) answer. The
competitive template limits mGA search and is thus critical to finding an optimum and
not just an optimal solution. As MOPs offer a set of solutions the problem is how to
extend the template concept in order to provide that desired set. An easy answer of using
a template for each solution in Pjuye or Pgpown is not feasible. This implies determining
a number of solutions a priori when neither of these sets’ representable cardinalities is
known. Furthermore, how should these (possibly quite numerous) templates be employed
in the MOMGA? Combinatorial computational considerations are easily seen. Thus, the

following strategy is employed.
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During its primordial and juxtapositional phases the MOMGA uses a different com-
petitive template associated with each objective function being optimized. Each time a
partial string’s template fitness vector is computed a random template is selected from
the k available. At the end of each era the values of the “best” solution for each objective
replace corresponding values in the respective current template. We realize that mGA
competitive templates are criticized for being locally optimal [82], as is this VEGA-like
approach (VEGA selection may result in strong “speciation” [107, 306]). We again note

our initial focus is determining the use and role of BBs in forming MOP solutions.

4.6 MOMGA v1.0

A diagram showing our MOMGA implementation is presented in Figure 4.8. We per-
formed all mGA modifications discussed in Sections 4.5.1 through 4.5.4, along with adding
and maintaining a secondary solution population (Pggown )- The MOMGA pseudocode is

shown in Figure 4.9.
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Figure 4.8. MOMGA Operation

In each era, after each juxtapositional generation, we add Peyprent (t) t0 Prpown (t—1)
(i.e., Peurrent(t) U Prpown(t — 1)). Because a solution’s classification as Pareto optimal is
dependent upon the context within which it is evaluated (i.e., some current solution set), at

MOMGA termination all solutions of Py, are tested and those whose associated vectors
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Forn=1to k
Perform Partially Enumerative Initialization
Evaluate Each Population Member’s Fitness (w.r.t. k¥ Templates)
// Primordial Phase
For i = 1 to Maximum Number of Primordial Generations
Perform Tournament Thresholding Selection
If (Appropriate Number of Generations Accomplished)
Then Reduce Population Size
Endif
End Loop
/[ Juztapositional Phase
For i = 1 to Maximum Number of Juxtapositional Generations
Cut-and-Splice
Evaluate Each Population Member’s Fitness (w.r.t. k¥ Templates)
Perform Tournament Thresholding Selection and Fitness Sharing
Pknown(t) = Pcurrent (t) U Pknown (t - 1)
End Loop
Update k& Competitive Templates (Using Best Value Known in Each Objective)
End Loop

Figure 4.9. MOMGA Pseudocode

are dominated removed. Solution culling is performed at this time so as to not unnecessarily

slow MOMGA execution by the O(n?) complexity of dominance determination.

4.6.1 Concurrent MOMGA (¢cMOMGA).  Parallelizing the MOMGA may lead
to improved efficiency. Combining results (Pgpown ) of several simultaneously executing
MOMGA runs is perhaps the simplest parallel implementation. However, another possi-

bility may be considered.

MOMGA templates are locally optimal, i.e., they focus search toward portions of
the search space. Thus, instantiating several independent MOMGA runs all solving the
same MOP initially focuses search in different (and more) portions of the search space.
Allowing BB communication between MOMGA instantiations may then improve overall
performance. As previously noted, BBs good for some (sub)set of Pareto optimal solu-
tions may be bad for another. Ordering MOMGA runs in some manner then implies two
consecutively ordered runs are searching spaces “closer” together than any other two. A

cMOMGA version then shares BBs between these consecutive MOMGA instantiations in
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an attempt to increase performance. This process is illustrated in Figure 4.10. At termi-
nation, each particular MOMGA’s Pipown is combined, its associated vectors checked for

domination, and a final Ppyyqy, reported.

"Ordered" MOMGA Runs
[ [

Run #1 Run#2 = e Run #N
- MOMGA MOMGA MOMGA
yx‘zz"lﬁi‘r\lz PEI PEI PEI
pa;n||e| Primordial Phase Primordial Phase =~ """ttt Primordial Phase
-~ > -
Juxtapostional Juxtapostional Juxtapostional
Phase Phase Phase

Figure 4.10. Proposed cMOMGA Operation

On the surface this approach may appear somewhat complex. High communication
time is a recognized potential “show-stopper,” significantly affecting parallel program ef-
ficiency [185]. However, a well-engineered cMOMGA may not add significant overhead
when compared to a like number of independent runs (as regards computational expense)

and may result in better performance.

Several parallel algorithm efficiency and effectiveness metrics exist; we consider pri-
mary ones [185]. Serial run time is the elapsed time between program execution start
and finish on a sequential computer. Parallel run time is the elapsed time from the initial
parallel computation to the last (by any processor). Speedup is a relative measure showing
(or not) the benefit of executing an algorithm in parallel. It is defined as the ratio of serial
run time to parallel run time, using the same problem instance and executing on p pro-
cessors. Efficiency measures the fraction of time a processor is actually processing, and is
defined as the ratio of speedup to the number of processors. Cost is the product of parallel
run time and the number of processors used. These computational performance metrics
are then teamed with appropriate algorithmic performance measures to determine overall
cMOMGA performance. We also note that although several parallel MOEAs have been

implemented (see Appendix A) no formal computational performance results are reported.
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4.7 Summary

This chapter proposes a new MOEA (based on the mGA) which explicitly manipu-
lates BBs in its search for Pj.,. . The MOMGA’s operation is substantiated by an overview
and discussion of desired BB identification and application in the MOP domain. Although
the MOMGA incorporates current MOEA theory and mGA structures that fact is no
guarantor of “good” algorithm performance. In order to determine both its effectiveness
and efficiency the MOMGA must be included in experiments comparing selected MOEAs’

performance on appropriate MOPs.
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V. MOEA Test Suite Generation and Design

When the mathematician says that such and such a proposition is true of one thing, it may
be interesting, and it is surely safe. But when he tries to extend his proposition to everything,
though it is much more interesting, it is also much more dangerous. In the transition from
one to all, from the specific to the general, mathematics has made its greatest progress,
and suffered its most serious setbacks, of which the logical paradoxes constitute the most
important part.

E. Kasner and J. Newman , Mathematics and the Imagination

5.1 Introduction

Many research efforts use numeric MOPs as examples to show or judge MOEA per-
formance. However, there is no comprehensive discussion of MOP landscape issues in the
MOEA literature, nor is there any explanation of why (the selected) numeric MOPs may
be appropriate MOEA test functions. Extensive experimentation and analyses concerning

MOEA parameters, components, and approaches are also lacking.

To date, most MOEA researchers’ modus operandi is an algorithm’s comparison (usu-
ally the researcher’s own new and improved variant) against some other MOEA by analyz-
ing results for specific MOP(s) (Schaffer’s VEGA and MOP-F'2 are typical [289]). Results
are often “clearly” shown in graphical form indicating the new algorithm is more effective.
However, these empirical, relative experiments are incomplete as regarding general MOEA
comparisons. The literature’s history of visually comparing MOEA performance on non-
standard and unjustified numeric MOPs does little to determine a given MOEA’s actual
efficiency and effectiveness. A standard suite of numeric functions exhibiting relevant MOP

domain characteristics can provide the necessary common comparative basis.

The MOEA community’s limited de facto test suites contain various functions, many
of whose origins and rationale for use are unknown. Thus, a documented MOP test suite
is an asset to MOEA research. We provide various MOPs for use in a standardized MOEA
test suite. Supporting these proposals is a detailed discussion of general test suite issues

and the MOP domain.
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This chapter is organized as follows. Sections 5.2 and 5.3 discuss general test suite
issues and relevant MOP domain characteristics. Section 5.4 then proposes appropriate

numeric MOPs for an MOEA test function suite given the described MOP domain features.

5.2 An MOFEA Test Function Suite

As previously indicated, the MOEA community has created limited test suites. Spe-
cific functions are often used because other researchers did so in their research, or perhaps
because the MOP appears to exercise certain MOEA components. It is not clear that these
specific test functions are appropriate for inclusion into an MOEA test suite. Explanation
is rarely offered as to the MOP’s origin or raison d’etre, and several appear to be relatively
“easy” (see Section 5.3). Poloni et al. [257] also note the lack of complex mathematical
MOEA performance assessment tests. This situation implies that identification of appro-
priate functions to objectively determine MOEA efficiency and effectiveness is required.

Other researchers also note the need for a test suite of this type [83, 258, 331].

5.2.1 General MOEA Test Suite Issues. Generic test function suites are both
condoned and condemned. Any algorithm successfully “passing” all submitted test func-
tions has no guarantee of continued effectiveness and efficiency when applied to real-world
problems, i.e., examples prove nothing. Automotive passenger airbags are a prime exam-
ple; not until they were widely fielded was it discovered that airbag-babyseat interactions
are sometimes deadly. Pattern recognition research recognizes the additional problem of
“testing on the training data,” where an algorithm is tuned for only one or a few problem
instances [94]. These analogies hold when integrating the MOP and MOEA domains; new
and unforeseen situations may arise resulting in undesirable consequences. An MOEA test
suite is then a valuable tool only if relevant issues such as those that follow are properly

considered.

The NFL theorems [346] imply that if problem domain knowledge is not incorporated
into the algorithm domain no formal assurances of an algorithm’s general effectiveness
exist. Previously proposed EA test suites examine an EA’s capability to “handle” various

problem domain characteristics. These suites incorporate relevant search space features to
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be addressed by some particular EA instantiation. For example, De Jong [80] suggests five
single-objective optimization test functions (F1 - F5) and Michalewicz [219] five single-
objective constrained optimization test functions (G1 - G5). Whitley et al. [341] and
Goldberg et al. [130] offer other formalized EA test suites; informal suites are also used [349,

350].

De Jong’s test bed includes functions with the following characteristics [126]: contin-
uous and discontinuous, convex and nonconvex, unimodal and multimodal, quadratic and
nonquadratic, low- and high-dimensionality, and deterministic and stochastic. Michale-
wicz’s test bed addresses the following issues [219]: type of objective function (e.g., linear,
nonlinear, quadratic), number of decision variables and constraints, types of constraints
(linear and /or nonlinear), number of active constraints at the function’s optimum, and the
ratio between the feasible and complete search space size. Particular EA instantiations are

subjected to generic test suites like these and judged on their performance.

Test suites must contain characteristic problems from target algorithms’ problem
domain. Some problems should represent real-world situations. Yet others should range
in difficulty from “easy” to “hard.” We also consider the following guidelines suggested by
Whitley et al. [341]:

Some test suite problems should be resistant to simple search strategies.

Test suites should contain nonlinear, nonseparable, and nonsymmetric problems.

- Test suites should contain scalable problems.

Some test suite problems should have scalable evaluation cost.

Test problems should have a canonical representation.

Note that the NFL theorems also imply incorporating too much problem domain
knowledge into a search algorithm reduces its effectiveness on other problems. However,
as long as a test suite involves only major problem domain characteristics, any search
algorithm giving effective and efficient results over the test suite might remain broadly
applicable to problems from that domain. Thus, traits common to all (most) known MOPs

must be defined.
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5.3 MOP Domain Features

We first assert that like single-objective EA optimization problems, numeric MOPs
may be suitable representatives of real-world problems. Any modeled real-world problem is
done so mathematically in a functional form, but MOPs arguably capture more information
about the modeled problem as they allow incorporation of several functions (objectives).
Regardless, modeling a real-world problem may result in a numeric or combinatorial MOP,
one that is perhaps simple, perhaps complex. The MOP may contain continuous or discrete
(e.g., integer-constrained) functions or even a mix of the two. We here restrict discussion

to homogeneously continuous MOPs; other MOP types are discussed in Section 5.4.2.

It is generally accepted that EAs are useful search algorithms when the problem
domain is multidimensional (many decision variables), and /or the search space is very large.
Many numerical examples used by MOEA researchers do not explicitly meet this criteria.
Of the 30 distinct numerical MOPs in the literature (both constrained and unconstrained,
see Appendix B), all but three use at most two decision variables and the majority use
only two objective functions. This implies that unless the search space is very large (at
the least), MOEA performance claims/comparisons based on these functions may not be
meaningful. The MOEA may be operating in a problem domain not particularly well-suited

to its capabilities or perhaps one which is not challenging.

Some MOP test functions build upon commonly used single-objective optimization
test functions. For example, Kursawe’s MOP incorporates a modified Ackley’s func-
tion [17:pg. 143] and a modification of one provided by Schwefel [295:pg. 341]. Poloni’s
MOP incorporates a modified Fletcher-Powell function [17:pg. 143]. Finally, Quagliarella’s
MOP uses two versions of Rastrigin’s function [51]. The rationale for construction and use

of these and many of the other identified MOPs is unclear.

Any proposed MOP test suite must offer functions spanning known MOP charac-
teristics. Particularly, it must contain “MOEA challenging” functions. In order to then
identify appropriate functions for inclusion relevant MOP domain characteristics must be
identified and considered. We use the 30 known examples in the literature as the basis for

discussion; a complete list is found in Tables B.1 and B.2 in Appendix B. These MOPs
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each incorporate 2-3 functions and 0-12 side constraints. Appendices C and D present a
complete set of figures showing Py and P Fype for each MOP listed in the tables. These
figures are deterministically derived by computing all decision variable combinations pos-
sible at a given computational resolution. Their purpose is to highlight major structural
characteristics of both Pypye and P Fypy for use in constructing a sound MOEA test function

suite.

When implementing an MOEA it is (implicitly) assumed that the problem domain
has been properly considered, and a decision made that an MOEA is an appropriate search
algorithm for the given MOP. We also assume the MOEA’s objective is return of Pgyoun -
Thus, Tables 5.1 and 5.2 identify salient MOP domain characteristics viewed from an
MOEA perspective and classified under a genotype and phenotype rubric. Newly identified
characteristics may be considered later. We caution that these high-level characteristics
were determined from the figures presented in Appendices C and D, whose representation
(and succeeding interpretation) may slightly change based upon underlying computational

resolution and graphical presentation.

The table entries are explained as follows. Each row corresponds to one of the MOPs
listed in Appendix B. Each column signifies some genotypic/phenotypic characteristic.
Pyrye ’s “shape” may be connected, disconnected, symmetric, and/or scalable. P Fy.,e may
be connected, disconnected, and convex or concave. MOPs exhibiting any of these char-
acteristics are marked with an “x” in the appropriate column. Solution types are notated
by the number of decision variables and their type, where “R” indicates real (continu-
ous) decision variables. The number of functions is self-explanatory. Table 5.1 lists MOPs
associated with only decision variable constraints, identifying their numbers and types. Ta-
ble 5.2 lists MOPs which also contain side constraints, identifying both constraint numbers
and types. Each MOPs’ PFy,. ’s shape is listed, as Pareto fronts may geometrically and/or
topologically differ. We also note that only two of these MOPs (Fonseca’s second [109] and

Schaffer’s first [276]) have analytical solutions for P, .

What is Pypye s nature? Few MOEA efforts describe an example MOP’s underlying
decision variable (genotype) space, i.e., the space where Py, resides. Since an MOP

is composed of two or more functions, the solution space is obviously restricted by their
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Table 5.1.  MOP Numeric Test Function Characteristics

Genotype Phenotype
«
oy
e & | @ e
S o » g @ S
EIRAR: 18 |E |28
el g8 |= g Q S 3 Sl 8] 2 w
S| 8l E|=]| 2 g | B | 2| 8| ©
gl o =| E 5| & g sl | €| 5
S 2| E|l=| & |=| g S 20 %l a2 &
Q o S < =) o % =] o= o o
Function OolAln|lvn| v |[F|0O @) O|lA|0O]|0
Binh X X 2R | 2 | 2 Curve | x X
Binh (3) X 2R | 3 | 2 || Point
Fonseca X X 2R | 2 |0 Curve | x X
Fonseca (2) x x | x|nR| 2 | n| Curve | x x
Kursawe x| x|x|nR| 2|0 Curve x | x
Laumanns X X 2R | 2 | 2 Points X
Lis X X 2R | 2 | 2 Points X
Murata X X 2R | 2 | 2 Curve | x X
Poloni X 2R | 2 | 2 || Curves X
Quagliarella X x | nR | 2 | n| Points X
Rendon X X 2R | 2 | 2 Curve | x X
Rendon (2) x x 2R | 2 | 2 Curve | x x
Schaffer x x 1IR| 2|0 Curve | x x
Schaffer (2) x| x 1R | 2 | 1| Curves x
Vicini X 2R | 2 | 2 Curve | x
Viennet X X 2R | 3 | 2 || Surface | x
Viennet (2) || x 2R | 3 | 2 || Surface | x
Viennet (3) X 2R | 3 | 2 || Curve | x

combined limitations (e.g., decision variable range and side constraints). Within that space,
Pyrye may be connected or disconnected, an (hyper)area or separate points, symmetric in
shape, scalable, and so forth. Solutions may be discrete or continuous, and are composed
of one or more decision variables. When solved computationally (and assuming feasible
solutions exist), an MOP’s Py has only a lower bound (see Theorem 1 in Section 2.2.2.1);
the upper bound is unknown and varies depending upon the underlying computational

resolution.

What is PFime’s nature? P Fy.e lies in objective space and as already noted, may
be (dis)connected, convex or concave, and multidimensional. In fact, the structure of any

Pareto front has theoretical dimensional limitations depending on the number of functions
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Table 5.2. MOP Numeric Test Function (with side constraints) Characteristics

Genotype Phenotype
=
3 = s| . 3

B 8| £ =E| E = | 8|

HEIREEIE R S |8 5| &

g 9 s | E 47 g gl el ol &

S|Z|E|E| 2|5 & | £ |E|E|EE
Function OClRA|ln|lra|lyn | Ik (@) @) 0lAl0|D
Belegundu X X 2R| 2 |24 2S || Curve | x X
Binh (2) X X 2R| 2 |2+ 2S || Curve | x X
Binh (4) X 2R | 3 | 2+ 2S || Surface | x X
Jimenez X X 2R | 2 |24 4S || Curve | x X
Kita X | x 2R | 2 | 2+ 35S | Curves X
Obayshi X X 2R | 2 |24 1S || Curve | x X
Osyczka x 2R | 2 | 2+ 2S || Points X x
Osyczka (2) X 6R | 2 | 6 + 6S || Curves X
Srinivas x| x 2R | 2 |24 2S5 || Curve | x X
Tamaki X X 3R | 3 | 34+ 1S || Surface | x
Tanaka X 2R | 2 | 24 2S || Curves X
Viennet (4) X 2R | 3 | 2+ 3S || Surface | x

composing the MOP (see Theorem 3 in Section 2.2.2.2). PFy..’s shape can range from a

single vector to a collection of multi-dimensional surfaces.

Test suite functions should encompass (combinations of) all these possible character-
istics. Although no guarantor of continued success, any search algorithm giving effective

and efficient results over the test suite might be easily modified to target specific problems.

5.3.1 Related MOP Domain Research. Deb has recently published work which
also addresses MOEA test suite issues [83, 84]. As we are cooperating with him in some
MOEA research his efforts deserve critical attention, especially as he proposes a method-
ology for constructing MOPs exhibiting desired characteristics. Contrived functions may
then be generated for use in MOEA test suites. We address key issues as they are ordered

in Deb’s tech report [83].

Deb defines both a local and global Pareto optimal set. His global Pareto optimal

set is what we term Py ; our terminology is easily extended to denote a local Pareto
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optimal set, i.e., Pjcq . However, Pjyeqis ill-defined and may be confusing. Consider

Deb’s definition:

Definition 11 (Local Pareto Optimal Set): Given some Pareto optimal set P, if
Vz € P, =3y satisfying | y — = ||cc < €, where € is a small positive number (in principle,
y 1s obtained by perturbing x in a small neighborhood), and for which F(y) < F(xz), then

the solutions in P constitute a local Pareto optimal set. O

This definition implies that for some given set of Pareto optimal solutions, each is
perturbed in some manner but no new nondominated vectors are found. Deb’s purpose
here is defining a set of Pareto optimal solutions whose associated front (PFjy.y ) is “be-
hind” PFip. for the given MOP. Although conceptually possible, any Pj,., ’s existence is
dependent upon the € selected within which solutions are perturbed. Additionally, too

large an € prohibits a Pjyey , too small an € may result in many local fronts.

Deb also extends the concepts of multimodality, deception, an isolated optimum, and
collateral noise (well known single-objective EA difficulties) to the multiobjective domain.
We dispute two of these extensions. First, he defines a deceptive MOP as one in which
there are at least two optima (PFj,eq and PFype ) and where the majority of the search
space favors PFjy.q - As stated above this concept depends on Pj,.,; ’s existence. Secondly,
Deb defines a multimodal MOP as one with multiple local fronts. This definition mixes
terminology. One should use the term multimodal only when referring to a single-objective
optimization function containing both local and global minima. As all vectors composing
a Pareto front are “equally” optimal there is no Pareto front modality. Perhaps the term

“multifrontal” is a better choice to reflect this situation.

Deb also notes some of the same MOP phenotype characteristics as we presented in
Section 5.3. He points out that when computationally derived a non-uniform distribution
of vectors may exist in some Pareto front. He limits his initial test construction efforts
to unconstrained MOPs of only two functions; his construction methodology then places

restrictions on the two component functions so that resultant MOPs exhibit desired proper-
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ties. To accomplish this he defines the following generic bi-objective optimization problem:

Minimize F' = (f1(Z), f2(Z)), where

fl(l—')) = f(l'la"' 71'771)7

fo(®) = g(xms1s---2n) B(f(z1,--. s 2m), 9(Tmt1,--- ,ZN)) - (5.1)

The function f; is a function of (m < N) decision variables and fy a function of all
N decision variables. The function g is one of (N — m) decision variables which are not
included in function f. The function A is directly a function of f and ¢ function values.
The f and g functions are also restricted to positive values in the search space, i.e., f > 0
and g > 0. Deb then lists five functions each for possible f and ¢ instantiation, and four
for h. These functions may then be “mixed and matched” to create MOPs with desired

characteristics.

He states these functions have the following general effect:

f — This function controls vector representation uniformity along the Pareto front.

g — This function controls the resulting MOP’s characteristics — whether it is multifrontal

or has an isolated optimum.

h — This function controls the resulting Pareto front’s characteristics (e.g., convex, discon-

nected, etc.)

We agree that these functions respectively influence search along and towards the
Pareto front, and the shape of a Pareto front in R?. However, one of Deb’s examples high-
lights a possible problem with some MOPs constructed using this methodology. Consider
the following [83:pg. 9]:



Plot of g(xz)

Deb’s Multimodal Example

181 | 18k
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*
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O‘,Z 0‘,3 O‘A 0.‘5 O‘,S 0‘7 D.‘S O.‘Q ‘1

0
0.1
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0

. Figure 5.2. Pareto Fronts
Figure 5.1.  g(z9) Values

Minimize F' = (fi(x1,x2), fo(z1,22)), where

fl(xlaIZ) = I,

2—0.2\27 _ (x2—0.6\2
falor,n) = 22— V=08t ) (5.2)

In this MOP fy may also be represented as g(%f). Thus, g(z9) is the bimodal function
represented in Figure 5.1. This function has optima of ¢(0.6) ~ 1.2 and ¢(0.2) = 0.7057.
Figure 5.2 shows the MOP’s Pareto fronts (as Deb proposes). The lower portion of the up-
per vector band Deb terms P Fj,.y; ; the lower band is PFjpye . The solutions corresponding

to Plocar are {(z1,z2) | 2 = 0.6} and those corresponding to P are {(z1,z2) | z2 = 0.2}.

Deb then implies an MOEA has difficulty finding P F}y. because it gets “trapped” in
the local optimum, namely P Fj,., . However, this is not a phenotypical effect but rather
one due to the underlying genotype space. In this computational derivation function g(zs)’s
global optimum is in a narrow valley where fewer discretized search points exist. A pure
random search results in fewer points stochastically found “close to” or in this valley, as
opposed to the broad valley surrounding the local optimum containing many more points.
Thus, the difficulty in finding P Fjpye is due to the number of discrete points near g(z2)’s
global optimum and not simply the fact that PFj,e, exists. This example is one showing

deceptiveness rather than multifrontality.
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This example also highlights a problem we previously alluded to — that of discretizing
continuous functions (or solution spaces). The resultant mapping may not reflect reality
in that the computational discretization process may introduce “errors.” Additionally, a
uniform discretization of decision variable space does not imply uniform mappings into
objective space. In general, one must then be careful when analyzing and comparing
MOEA performance in various MOP domains. Different MOEA techniques (including
parameters and EVOPs) perform differently between and even within these domains (c.f.,

the NFL theorems [346]).

Additionally, this methodology is not the only way to construct MOPs exhibiting
some set of desired characteristics. Real-world MOPs may have similar genotype and/or
phenotype characteristics but look nothing at all like the examples Deb proposes. Thus,
the fact an MOEA “passes” all test functions submitted using Deb’s methodology may
have no bearing on its performance in solving real-world MOPs. However, the same can
be said of the test suite proposed in the next section. Any test functions must be carefully

selected to reflect as accurately as possible the problem domain they represent.

This analysis is not meant to belittle Deb’s effort. His methodology sometimes results
in MOPs with analytical solutions for Py or PFiu.., allowing for absolute comparison
of MOEA results and the MOP optimum. He also is attempting to generate an MOEA
test suite containing functions which in toto consider relevant MOP genotype/phenotype
characteristics. Because several distinct MOPs may be created using Deb’s initial method-

ology [83], direct implementations of those functions are not listed in Appendix B.

5.4 Numeric MOEA Test Suite Functions

Having shown the requirement for and considered the general issues involved in an
MOEA test function suite we now propose initial problems for inclusion. As discussed in
the last section, a sound methodology for constructing MOPs with arbitrary complexity
and characteristics still eludes us. Thus, proposed test suite MOPs are drawn from the
published literature. These MOPs in toto address some of the issues discussed in Section 5.2
and reflect the characteristics in Table 5.1. We restrict initial functions to those with no

side constraints. Their mathematical formulations (which may be slightly revised from
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the originals or as we elsewhere proposed [327]) are shown in Table 5.3. Figures 5.3

through 5.16 show representations of each MOPS’ Py and PFipye .

Schaffer’s first (unconstrained) two-objective function is selected for three primary
reasons. First is its historical significance; almost all proposed MOEAs have been tested
using this function. It is also an exemplar of relevant MOP concepts. Second, this MOP
allows determination of an analytical expression for PFyy. [325]. Third, as noted by
Rudolph [276] this MOP’s Pjy is in closed form so solutions’ membership in Py is then
easily determined. This MOP’s P Fy. is a single convex Pareto curve and its Py, a line.
However, its one decision variable implies it may not be well-suited to an MOEA’s search

capabilities. We rename this problem MOP1.

Fonseca’s second MOP is also selected. This two-objective function has an advantage
of arbitrarily adding decision variables (scalability) without changing PFj’s shape or
location in objective space [109]. This MOP’s PFy is a single concave Pareto curve and
its Pyye an area in solution space. Additionally, a closed form for this MOP’S Pipe is

claimed [109]. We rename this problem MOP2.

Next is Poloni’s MOP, a maximization problem. This two-objective function’s Py, is
two disconnected areas in solution space while its P Fye is two disconnected Pareto curves.
Its solution mapping into dominated objective space also appears more convoluted than

other MOPs from the literature. We rename this problem MOP3.

Kursawe’s MOP is included. This two-objective function’s Py is several discon-
nected and unsymmetric areas in solution space. Its PFyu. is three disconnected Pareto
curves. Like MOP3, its solution mapping into dominated objective space is also quite con-
voluted. Like MOP2, its number of decision variables is arbitrary. However, changing the
number of decision variables appears to slightly change PFip.’s shape and does change

its location in objective space.

Figure C.10 in Appendix A was derived using Kursawe’s MOP with two decision

variables. Compare this to Figure 5.8 which uses three decision variables. It is easily seen

!Note that the graphs’ scales for Pj.,. may be different than what is stated in Table 5.3 to show P 's
“shape” more clearly.
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that PFyme and the dominated vectors have shifted in objective space. Implementing this
MOP with four decision variables resulted in another shift. We can make no conclusive
claims about PFim.’s changing shape without increasing the computational resolution

used in constructing the graphs. We rename this function MOP4.

We also propose Viennet’s third MOP. This tri-objective function’s Pj.,e consists of
disconnected areas in solution space, and its P F},., a single, convoluted three-dimensional

Pareto curve. We rename this function MOPS5.

An MOP constructed using Deb’s methodology (and used by him as an example [83])
is selected. Like MOP4, this two-objective function’s Pyqye and P Fie are disconnected,
although its P Fye consists of four Pareto curves. Its solution mapping into dominated
objective space is not as convoluted as MOP4’s. This problem is used to compare MOEA
performance in finding similar phenotypes produced by different MOPs (c.f., MOP4). We
rename this function MOPG6.

Finally, we propose Viennet’s second MOP. This tri-objective MOP’s Pjye is a con-
nected region in solution space. Its PFym appears to be a surface and its mapping into

objective space appears straightforward. This function is primarily meant to complement

to MOP5. We rename this function MOPT.

Table 5.3 MOEA Test Suite Functions

| MOP | Definition | Constraints
MOP1 F = (f1(), f2(z)), where —10% <z < 10°
Ptrue con-
nected, fix) = 2,
P Fipye cOonvex fz(w) _ (z _ 2)2
MOP2 F = (f1(Z), f2(Z)), where —4<z;<4;1=1,2,3
Ptrue con-
nected, n 1
P Ftrye concave, fi(®) = 1—exp(— Z(mz - 7) )s
number of de- i=1 n
cision variables zn: 1
scalable fo(B) = 1—exp(— ) (z;i+—=)°)
i+1 vn
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Table 5.3 (continued)

| MOP | Definition | Constraints
MOP3 Maximize F = (fi(z,v), f2(z,y)), where —3.1416 < z,y < 3.1416,
Ptrue diS-
connected, filz,y) = —[1+(A1— Bl)2 + (Ag — 32)2], Ay 0.5sinl — 2cos1 +
PFtrue diS- . _ 2 2 . _
connected (2 fo(z,y) = [(+3)" + (y+1)7] sin 2' 1.5cos 2,
Pareto curves) A2 1.5sinl —cos1+
2sin2 — 0.5 cos 2,
B 0.5sinx — 2cosx +
siny — 1.5cos y,
B> 1.5sinz —cosz +
2siny — 0.5cosy
MOP4 F = (f1(Z), f2(Z)), where —-5<15;<5;1=1,2,3
Ptrue dis-
connected, n—1 —
PFirue discon- A@E = Z(floe(‘o'z)*v% +mi+1),
nected 3 i=1
Pareto curves), n
number of de- fo(Z) = Z(\zﬂo's + 5sin(z;)?)
cision variables i=1
scalable
MOP5 F= (fl(w7y)af2($7y))f3(way))) where —30 S z,y S 30
Ptrue dis-
connected and fi(z,y) = 0.5x (wZ + y2) + sin(w2 + y2),
unsymmetric, P P
3z —2 4 — 1
PFtrue con- fQ(SC,y) = ( il Y + ) (z Y t ) =+ 15,
nected (a 3-D 18 27
Pareto curve) - — 112%™
f3( ’y) (.’132 +y2 +1)
MOP6 F = (fi1(z,v), f2(z,y)), where 0<z,y<1,
Ptrue dis-
connected, fi(z,y) = =, qg = 4,
P Firye discon- _ _
nected (4 f2($8,’y) - (1 + 10'y)m* z - 2
Pareto curves), [1—¢( ) - sin(27qz)]
number of 1+ 10y 1+ 10y
Pareto curves
scalable
MOP7 F= (fl(mzy)7fz(may)afS(m7y))ﬂ where —400 S T,y S 400
Ptrye connect-
ed, P Firye dis- (z-2)2 (y+1)?
conn ected filz,y) = 2 + 13 +3,
z+y—3)2 (—z+y+2)?
(z+2y—1)* (2y—a)®
= —13
f3(1“7 y) 175 + 17

These proposed MOEA test functions address the issues mentioned in Section 5.2.
MOP1 and MOP2 are arguably “easy” MOPs. MOP2 and MOP4 are scalable as regards

decision variable dimensionality. MOPG6 is scalable as regarding the number of Pareto
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several show a lack of symmetry in both Py and PFypye. Taken together these MOPs
begin to form a coherent basis for MOEA comparisons. However, other relevant MOP
characteristics (as reflected in Tables 5.1 and 5.2) should also be addressed by further
MOPs selected for test suite inclusion. These additional MOPs may need to be constructed

in order to exhibit desired characteristics. Other MOP types should also be considered
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even though not pursued further in this research.

5-15

MOP5 and MOPT7 are tri-objective MOPs.

All are nonlinear, and
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Table 5.4 Side-Constrained MOEA Test Suite Functions
[ MOP | Definition | Constraints
MOP-C1 F=(11(%,9), 12(z, y)), where 0<z<5, 0<y<3,
filzy) = 42® +49°, > (z-5)+y* - 25,
folz,y) = (¢—5)°+(y—5) > —(z-8)"—

(y+3)2+7.7
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Table 5.4 (continued)

| MOP | Definition | Constraints
MOP-C2 F = (f1(®), f2(%)), where 0 < z1,z2,26 < 10,
1< zs,25 <3,
@) = —(25(x1 —2)% + (z2 — 2)2 + (z3 — 1)? 0< x4 <6,
+ (x4 — 4)2 + (x5 — 1)2
- 2( 2 )2(2 )2’ 2 0 < =z +z2 -2,
fo(€) = =1+z3+o33+7L+75+ TH
0 < 6—z1—2,
0 < 2-—=32+7,
0 < 2-—m +3z9,
0 < 4—(x3—3)%—u4,
0 < (z5—3)24a6—4
MOP-C3 F=(fl(w,y),fz(;c,y),fg(w,y)),Where 74S$7y§47
(-2  (y+1)° y < —dz+4,
3
fi(z,y) 5t s > 1,
(z+y—3)?  (2y—x)? -
= ~13 y >z
fa(=z,y) 75 7 ;
3z — 2y + 4)? z—y+1)2
foleyy) = CRTWEAT L EoVEIR

5.4.1 Side-Constrained Numeric MOEA Test Functions. Side-constrained nu-
meric MOPs should be included in any comprehensive MOEA test function suite; we here
propose suitable MOPs drawn from the published literature. However, one must be aware
that solving constrained MOPs with MOEAs brings in other open research issues, most

notably how the side constraints are accounted for to ensure feasible solutions.

Binh’s second MOP is selected. This two-objective function’s Py is an area in solu-
tion space and its P Fipye a single convex Pareto curve. We rename this problem MOP-C1.
Next is Osyczka’s second MOP, which is a heavily constrained, six decision variable prob-
lem. This two-objective function’s Py ’s shape is currently unknown while its P Fue is
three disconnected Pareto curves. We rename this problem MOP-C2. Finally, Viennet’s
fourth MOP is selected for inclusion. This three-objective function’s Py is an irregularly
shaped area in solution space. Its PFyueis a Pareto surface. We rename this prob-
lem MOP-C3. These MOPs’ mathematical formulations are shown in Table 5.4; figures

showing representations of each MOPS’ Py and P Fypye are found in Appendix D.
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Figure 5.13. MOP6 Py, Figure 5.14. MOP6 PFypye

5.4.2 Combinatorial and Real-World MOEA Test Functions. Although most
MOP test functions found in the MOEA literature are numeric, some combinatorial prob-
lems are used that provide differing algorithmic challenges. A combinatorial optimization

problem is mathematically defined as follows: [120]

Definition 12 (Combinatorial Optimization Problem): A combinatorial opti-
mization problem w is either a minimization or mazimization problem consisting of three

parts.

1. A domain D, of instantiations;

2. For each instance I € D, a finite set S;(I) of candidate solutions for I; and
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3. A function m, that assigns a positive rational number m,(I,0) to each candidate
solution o € Sy(I) for each instance I € Dy. my(I,0) is called the solution value

for o.

a

An MOEA is able to search these finite (discrete) solution spaces but may require
specialized EVOPs ensuring only feasible solutions (i.e., S;(I)) are generated for evalua-
tion. However, the phenotype domain of combinatorial MOPs is slightly different than that
of its numeric counterparts. These MOPs’ mapping into objective space is discrete and
offers only isolated points (vectors) in objective space. As only a finite number of solutions
exist only a finite number of corresponding vectors may result. Although these vectors may
appear to form a continuous front when plotted, the genotype domain’s discrete nature

implies no solutions exist mapping to vectors between those composing P Fypye -

Various combinatorial MOPs are reflected in the MOEA literature. Horn [154] and
Deb [83] present combinatorial (unitation) MOPs. Louis converts a deceptive GA prob-
lem into an MOP [207]. NP-Complete problems are combinatorial optimization prob-
lems and many N P-Complete MOP test functions are used. For example, a group of
Japanese researchers focus on the use of fuzzy logic and MOEAs in solving Multiobjective
0-1 Programming problems (e.g., [173, 280, 302]). Several efforts investigate Multiob-
jective Solid Transportation Problems [44, 168, 122, 198, 197]. Other traditional N P-

Complete problems are also transformed into MOPs, including Multiobjective Flowshop
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Table 5.5.  Possible Multiobjective N P-Complete Functions

‘ NP-Complete Problem ‘ Example

0/1 Knapsack - Bin Packing Max profit; Min weight

Traveling Salesperson Min energy, time, and/or distance;
Max expansion

Coloring Min number of colors, number of each
color

Set/Vertex Covering Min total cost, over-covering

Maximum Independent Set | Max set size; Min geometry

(Clique)

Vehicle Routing Min time, energy, and/or geometry

Scheduling Min time, missed deadlines, waiting
time, resource use

Layout Min space, overlap, costs

NP-Complete Problem Com- | Vehicle scheduling and routing

binations

Scheduling [164], Multiobjective Job Shop Scheduling [199], and Multiobjective Knapsack
Problems [280, 358, 359].

Thus, we should consider the use of combinatorial MOPs in any proposed MOEA test
suite. On the one hand, EAs often employ specialized representations and operators when
solving these real-world problems which usually prevents a general comparison between
various MOEA implementations. On the other hand, these problems’ inherent difficulty
should present desired algorithmic challenges and complement other test suite MOPs.
Table 5.5 outlines possible IV P-Complete MOPs for inclusion. However, no known solution
databases such as T'SPLIB [271], MP-Testdata [360], or OR Library [24] exist for these N P-
Complete MOPs.

Finally, real-world applications should be considered for inclusion in any compre-
hensive MOEA test suite. These MOPs may be numeric, non-numeric, or both, and are
probably more constrained (in terms of resources) than the problems we have considered
here. We note that many real-world applications require extensive fitness function (e.g.,
computational fluid dynamics or computational electromagnetic) software requiring data

interchange and mapping (c.f., [210, 170, 41, 248, 318, 240, 262]).
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5.5 Summary

In the tradition of providing test suites for evolutionary algorithms we propose an
extensive list of specific MOEA test functions. The development of this list is based upon
accepted and historic EA test suite guidelines. Specific MOEA test suites can evolve
from this proposed list based upon individual research objectives and problem domain
characteristic classifications. With a generic MOEA test suite, researchers can compare
their multiobjective numeric and combinatorial optimization problem results (regarding
effectiveness and efficiency) with others, over a spectrum of MOEA instantiations. Using
our test suite functions MOEA comparisons can be made more precise and their results

more informative. We describe such an effort in the next chapter.
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VI. MOEA Ezxperiments

“Wesley, under Point Four, we'll have to close all research departments, experimental labo-
ratories, scientific foundations, and all the rest of the institutions of that kind. They’ll have
to be forbidden.”
... Close all those damn research laboratories — and the sooner, the better.’

. "The State Science Institute, too?” asked Fred Kinnan.
“Oh, no!” said Mouch. “That's different. That's government. Besides, it's a non-profit
institution. And it will be sufficient to take care of all scientific progress.
“Quite sufficient,” said Dr. Ferris.

Ayn Rand, Atlas Shrugged

6.1 Introduction

The careful design of MOEA experiments should draw heavily from outlines pre-
sented by Barr et al. [23] and Jackson et al. [166]. These articles discuss computational
experiment design for heuristic methods, providing guidelines for reporting results and en-
suring their reproducibility. Specifically, they suggest a well-designed experiment follows
these steps: (1) Define experimental goals; (2) Choose measures of performance (metrics);
(3) Design and execute the experiment; (4) Analyze data and draw conclusions; and (5)

Report experimental results.

The authors also note metrics usually fall into one of four categories: (1) Efficiency
(measuring computational effort to obtain solutions, e.g., CPU time, number of evalu-
ations/iterations), and Effectiveness (measuring the accuracy of obtained solutions); (2)
Robustness (measuring how well the code recovers from improper input); (3) Reliabil-
ity (measuring how large a class of problems the code can solve); and (4) Ease of use

(measuring the amount of effort required to use the software).

Following these guidelines, the reasons for and goals of these experiments are pre-
sented in Section 6.2. The experimental design and performance metrics are described
within the methodology proposed in Section 6.3. Experimental results and analyses are

then presented in Chapter VII.



6.2 MOEA Ezperiments: Motivation and Objectives

The major goal of these experiments is to compare well-engineered MOEAs in terms
of effectiveness and efficiency as regards carefully selected test problems from the same class.
Jackson et al. [166] imply this should suffice to show MOEA feasibility and promise. We
are not claiming that MOEAs are the only algorithms able to solve these test problems
efficiently and effectively, but wish to see if one MOEA performs “better” than another over
this problem domain class, and if so determine why. If all MOEAs perform equally well, we
also wish to determine why, as that situation implies MOEA implementation choice may
not be crucial. Other interesting observations may also arise during experiment execution

and result analysis.

The first selected experimental MOEA is the MOMGA, discussed in detail in Chap-
ter IV. It is a new, unique, and innovative extension of a single-objective EA incorporating
mechanisms that should theoretically result in effective performance. The other experimen-
tal MOEAs (described in Section 6.3.2) are also based on similar theoretical mechanisms.
These MOEAs have been tested on various numeric problems and used in many scientific
and engineering applications. Examples prove nothing but these MOEAs have a good
track record. Thus, we choose to compare these MOEASs’ performance in solving carefully

selected MOPs based on appropriately defined metrics.

We wish to report relevant quantitative MOEA performance based on appropriate
experiments. Almost all comparisons cited in the current literature visually compare algo-
rithmic results. As experimental numeric MOPS’ Py and P Flpye are often not known (and
almost never presented) these conclusions are then relative. The methodology described
in the next section gives a basis for absolute conclusions regarding MOEA performance.
Finally, the last experimental goal is determining how well the test problems and proposed

metrics capture and report essential MOP and MOEA characteristics and performance.

6.3 Ezxperimental Methodology

Having investigated the MOP and MOEA domains in Chapters II and III, meaning-

ful MOEA experiments may now be conducted. Although test suite functions do provide



a common basis for MOEA comparisons, results are empirical unless the global optima
are known. We again note that finding a general MOP’s Pareto optimal solution set is
NP-Complete [17:pg. 56]. However, there is a way to determine Py, for certain prob-
lems! Teaming this data with appropriate metrics then allows desired quantitative MOEA

comparisons.

6.3.1 MOP Pynye Determination. When the real- (continuous) world is modeled
(e.g., via objective functions) on a computer (a discrete machine), there is a fidelity loss be-
tween the (possibly) continuous mathematical model and its discrete representation. Any
formalized MOP being computationally solved suffers this fate. However, at a “standard-
ized” computational resolution and representation, MOEA results can be quantitatively
compared not only against each other but against certain MOPs’ P Fj,. . Thus, whether or
not these selected MOPs’ PFy. is actually continuous or discrete is not an experimental

concern, as the representable Py, and PFy.,. are fixed based on certain assumptions.

6.3.1.1 Computational Grid.  For purposes of these experiments we define
a computational grid by placing an equidistantly spaced grid over decision variable space,
allowing a uniform sampling of possible solutions. Each grid intersection point (computable
solution) is then assigned successive numbers using a binary representation. For example,
given a fixed length binary string, decision variable values are determined by mapping the
binary (sub)string to an integer int and then solving the following for each z;:

int * (u —1)
2 —1 ’

(6.1)

where [ and u correspond to the lower and upper decision variable bounds and n is the
length of the binary string (for each ;). For example, given the binary string 1011100001,
x1 represented by the first three bits and x9 by the last seven, and upper and lower bounds
for both variables set at 4.0 and -4.0 respectively, int for z; = 5 and z1 = 1.714, while int
for 9 = 97 and x5 = 2.110.

EA binary encodings have identified shortfalls (e.g., Hamming cliffs [17:pg. 229])

so other encodings are often used. Although restricting MOEA genetic representation to



binary strings may result in less effective results it does allow for the desired standard
comparison between MOEAs. If one algorithm uses real-valued genes its computational
grid’s “fidelity” is much finer, giving it a search advantage because it is able to “reach”
more discrete points in the solution space. Additionally, different computational platforms
may allow different resolutions (i.e., different € values — the smallest computable difference
between 1 and the next smallest value) and different numbers of distinct values (i.e., how

many distinct numbers can be computed).

Thus, even though a binary representation restricts a search space’s size it allows for
a quantitative MOEA comparison, determination of an MOP’s P Fy,,. (at some resolution),
and an enumeration method for deterministically searching a solution space (see the next
section). The underlying resolution may be increased/decreased as desired, at least up to
some point where computation becomes impractical or intractable. This methodology is
designed for experimentation and used to make judgments about proposed MOEAs and

their implementations.

6.3.1.2 Search Space Enumeration. Our enumerative search concept is in
part due to a paper suggesting that exhaustive deterministic enumeration may be the
only viable approach to solving irregular or chaotic problems [235]. Its authors propose
harnessing ever-expanding computational capability to obtain the desired solutions. We
constructed such a program executing on parallel high-powered computers whose purpose
is to find Pypye and PFipye for several numeric MOPs. The resulting sets are still only a
discrete representation of their continuous counterparts, but are the “best possible” at a

given computational resolution.

The IBM SP computers at both the Aeronautical Systems Center’s Major Shared
Resource Center (ASC MSRC) and the U. S. Army Corps of Engineers Waterways Ex-
periment Station’s (CEWES) MSRC are used to deterministically enumerate all possible

solutions for a given MOP at a given computational resolution as previously defined.!

'Developmental work was performed on a Sun Network of Workstations (NOWSs). The program uses 64-
bit accuracy and currently executes on NOWs, Silicon Graphics Origin 2000 and Power Challenge systems,
and the IBM SP-2.
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The program is written in “C” and uses the Message Passing Interface (MPI) to dis-
tribute function evaluations among many processors. A parallel implementation is selected

to efficiently process large solution spaces, e.g., 224

and larger. For a given MOP, each pro-
cessor evaluates some subset of solutions and stores the resultant Pareto optimal solutions
and their corresponding nondominated vectors on disk. Noting that Pareto optimality
places a partial ordering on the search space, combining the separate solutions/vectors
from different processors and again comparing the vectors results in Py, at that particular
computational resolution. Figure 6.1 illustrates this process; Py is the Pareto optimal
set as regards the solutions evaluated by each processor. Program timing and processor

loadings may also be recorded to determine problem scaling. This program easily “solves”

bi- and tri-objective MOPs of size 224 — 226 using 32 or more processors on the SP-2.

Using the Py database various MOEA results may be compared not only against
each other, but also against the true MOP optimum. However, these MOEAs must use
a binary encoding and mapping as explained in Section 6.3.1.1. At least for selected
MOPs a true quantitative comparison is then possible. This methodology allows absolute

performance observations.

OONONOAAOA

Processor 1

b
TIUOUOOO DD local
NONNANARAR
L nnnnannas NONNONNORD
000....01 } s
000...10 Processor 2 Plocal P
L]
0 } Sp TOIUOOOO O true Database
e o . —
[ ] L] L[]
101 . P "l
. local
111....10} Sn . e i ‘
11,41 .
ooooooooo AONAANAAND IOOOOouon
Master
Processor n Master
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Figure 6.1.  Deterministic Enumeration Process

6.3.2 MOEA Test Algorithms. Four MOEAs were selected for testing. These

algorithms and their original raison d’etre are:

1. MOGA. Implemented by Fonseca and Fleming [114]. Used to explore incorporation

of decision maker goals and priorities in the multiobjective search process.
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2. MOMGA. Implemented by Van Veldhuizen and Lamont (see Chapter IV). Used to
explore use of BBs in constructing MOP solutions where BB desirability may differ

with respect to the k functions.

3. NPGA. Implemented by Horn et al. [154]. Used to explore benefits of providing

Pipnown as input to a Multi Attribute Utility Analysis [177] process.

4. NSGA. Implemented by Srinivas and Deb [306]. Used to explore Goldberg’s Pareto

ranking [126] and preventing bias in exploring the Pareto front.

Rather than describe these algorithms in detail the reader is referred to the literature
(for the MOGA [114], NPGA [154], and NSGA [306]) and to Chapter IV. However, we
note here that these algorithms were selected because they specifically incorporate what
appear to be key theoretical problem/algorithm domain aspects such as Pareto ranking,
niching, and fitness sharing (see Section 3.3.2). Other researchers appear to share these
thoughts as the MOGA, NPGA, and NSGA (or variants thereof) are the literature’s most

cited and imitated (see Section 3.4).

The MOGA, NPGA, and NSGA are based on “traditional” GAs; the MOMGA
is based on the mGA and can be considered non-standard. However, the conceptual
evolutionary process modeled by each algorithm is the same and gives the basis for their
direct comparison. Table 6.1 lists each MOEAs’ key characteristics which are explained
in the next section. Figures 6.2 through 6.4 show the pseudocode for the MOGA, NPGA,
and NSGA implementations; MOMGA pseudocode is shown in Figure 4.9 in Section 4.6.

We consider three other algorithms for inclusion in these experiments. These are
random search, VEGA, and SPEA. As several MOEA comparisons have shown random
search performs much worse than other tested algorithms (see Table A.15 in Section A.5.1)
we choose not to include it. VEGA is excluded because it is biased towards solutions
performing “well” in only one dimension [152], and because several efforts indicate VEGA
performs “worse” than their proposed MOEA (see Section A.5.1). Finally, we choose not to
include SPEA because of its explicit incorporation of a secondary population in the fitness
assignment process [358] which may unfairly impact performance (see Section 3.3.3). Of

course, these and other alternative MOEAs may be considered in later experiments.
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Table 6.1. Key Experimental MOEA Characteristics

Algorithm | EVOPs Fitness Sharing and Population
Assignment Niching

MOGA Crossover Linear interpola- | Phenotypic Randomly
and Muta- | tion wusing Fon- | (04pqpe - Fitness) initialized;
tion (p. = 1, | seca’s [108] Pareto N =50
Pm = 505) ranking

MOMGA “Cut and | Tournament Phenotypic Determin-
splice” (tgom = 3) (0 share - Dom- | istically
(Peut = 0.02, ination) initialized;
Psplice = 1) N =100

NPGA Crossover Tournament Phenotypic Randomly
and Muta- | (tgom = 5) (O share - Dom- | initialized;
tion (p. = 1, ination) N =50

_ 1
Pm = m)

NSGA Crossover “Dummy” fitness | Phenotypic Randomly
and Muta- | using Gold- | (0spare - Fitness) initialized;
tion (p. = 1, | berg’s [126] N =50
P = 0_0%) Pareto ranking

Although the NFL theorems [346] show there is no “best” EA, certain EAs have been
experimentally shown to be more likely effective than others for some real-world problems.
Nothing like this has yet been shown for MOEAs. Additionally, no studies have been
performed showing which parameters (or parameter values) are key to good performance.
In the next section many crucial MOEA components are described in the context of the

parameter settings used in these experiments.

6.3.83 Key Algorithmic Parameters.  Many EA experiments vary key algorithmic
parameters in an attempt to determine the most effective and efficient implementation for
a particular problem instantiation or class. A parameter analysis investigating effects of
differing parameter values is beyond the scope of these experiments. These experiments’
purpose is to determine general MOEA performance and to explore the algorithm domain,
not to “tune” MOEAs for good performance on some problem class. These algorithms are
then executed with default parameter values as reported in the literature, implementing
each MOEA “out of the box” as it were. However, using the term “default” is somewhat

of a misnomer as no MOEA parameter value studies are known.



Initialize Population
Evaluate Objective Values
Assign Rank Based on Pareto Dominance
Compute Niche Count
Assign Linearly Scaled Fitness
Assign Shared Fitness
Fori=1to G
Selection via Stochastic Universal Sampling
Single Point Crossover
Mutation
Evaluate Objective Values
Assign Rank Based on Pareto Dominance
Compute Niche Count
Assign Linearly Scaled Fitness
Assign Shared Fitness
End Loop

Figure 6.2. MOGA Pseudocode

The MOEA literature typically reports using default single-objective EA parameter
values, except perhaps for population size. Because MOEAs track a set of solutions, and
because more objectives imply the possibility of more Pareto optimal solutions (by defi-
nition when using a discrete representation), researchers sometimes enlarge the MOEA’s
generational population. We again note that these experiments’ purpose is MOEA perfor-
mance comparison and not determination of ideal parameter settings for some (class of)
MOPs. If possible, key MOEA parameter values are then kept identical. A discussion of

these key parameters follows.

6.3.3.1 Population Initialization. = The MOGA, NPGA, and NSGA all use
a random population initialization scheme. That is, given some genetic representation, all
solutions in the initial generational population are uniformly selected from the solution
space. The MOMGA uses a deterministic scheme. For each era (signified by k) the
MOMGA generates all possible BBs of size k. Thus, its initial population composition is

always known. However, the initial competitive templates are randomly generated.

6.3.3.2 Mating Restriction. As discussed in Section 3.3.2.4, mating re-

striction has both its proponents and opponents. Existing empirical experimental results



Initialize Population
Evaluate Objective Values
Fori=1to G
Specialized Binary Tournament Selection
Only Candidate 1 Dominated: Select Candidate 2
Only Candidate 2 Dominated: Select Candidate 1
Both Candidates Dominated or Both Not Dominated:
Perform Specialized Fitness Sharing
Return Candidate with Lower Niche count
Single Point Crossover
Mutation
Evaluate Objective Values
End Loop

Figure 6.3. NPGA Pseudocode

sometimes indicate it is necessary for good performance, and at other times various MOEA
implementations seem to operate well without it. These empirical results indicate the NFL
theorems are alive and well [346]. As incorporating mating restriction in some experimen-
tal software required major code modifications, and because of its uncertain usefulness in

the MOP domain, mating restriction is not incorporated in any experimental MOEA.

6.3.3.3 Fitness Assignment. The MOMGA and NPGA employ tourna-
ment selection and so require no specific solution fitness manipulation besides those values
returned by the MOP fitness function. The MOGA first evaluates all solutions, then as-
signs fitness by sorting the population on rank (‘0’ being the best and ‘N’ the worst — see
Equation 3.1 in Section 3.3.2.2). Fitness is assigned linearly to each ordered solution; final
fitness is determined by averaging the fitnesses for identically ranked solutions and then
performing fitness sharing. The NSGA also evaluates and sorts the population by rank.
However, it assigns some large “dummy” fitness to all solutions of the best rank. After
fitness sharing it assigns a “dummy” fitness smaller than the current lowest fitness to those
solutions of the next best rank, and so on. We note here that all experimental MOEAs

employ fitness scaling as each objective dimension’s magnitude may be vastly different.

6.3.3.4 Fitness Sharing.  All experimental MOEAs incorporate phenotypic-

based sharing using the “distance” between objective vectors for consistency. For the



Initialize Population
Evaluate Objective Values
Assign Rank Based on Pareto Dominance in Each “Wave’
Compute Niche Count
Assign Shared Fitness
Fori=1to G
Selection via Stochastic Universal Sampling

i

Single Point Crossover
Mutation
Evaluate Objective Values
Assign Rank Based on Pareto Dominance in Each “Wave”
Compute Niche Count
Assign Shared Fitness
End Loop

Figure 6.4. NSGA Pseudocode

MOGA and NSGA, ogp4re is computed and a sharing matrix formed via the standard
sharing equation [126]. Finally, fitness sharing occurs only between solutions with the

same rank [114, 306].

The NPGA and MOMGA use a slightly different sharing scheme. As explained in
Section 4.5.3, two solutions undergoing tournament selection are actually compared against
those in a small comparison set. Sharing occurs only if both solutions are dominated or
nondominated with respect to the comparison set. A ogp4re value is used, however, the
associated niche count is simply the number of vectors within o4 in phenotypic space
rather than a degradation value applied against unshared fitness. The solution with the
smaller niche count is selected for inclusion in the next generation. Horn [155] labels this
equivalence class sharing. An identical scheme is implemented in the MOMGA as it also
uses tournament selection. Per Horn’s recommendation, continuously updated sharing is
used by both the NPGA and the MOMGA due to the observation that chaotic niching

behavior may result when combining fitness sharing and tournament selection [154].

O share TePresents how “close” two individuals must be in order to decrease each other’s
fitness. This value commonly depends on the number of optima in the search space. As

this number is generally unknown, and because PFyn.’s shape within objective space is
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also unknown, we assign o gpene s value using Fonseca’s suggested method [114]:

k k
N = Hi:l(Ai + Uzhare) - Hi:l A : (6.2)

g

share

where N is the number of individuals in the population, A; is the difference between the
maximum and minimum objective values in dimension 2, and k is the number of distinct
MOP objectives. As all variables but one are known o4 can be easily computed. For

example, if £ =2, A} = Ay =1, and N = 50, the above equation simplifies to:

Ay + Ay

This appears a reasonable way to obtain o4 values, although Horn also presents equa-
tions bounding P Fy s possible size [154] but leaves the user to choose specific o gpqpe val-
ues. Finally, as each MOP’s objective values may span widely disparate ranges all objective
values are scaled before ogp,re is computed. This action is meant to prevent unintentional

niching bias.

6.3.3.5 Representation and EVOPs. As described in Section 6.3.1.1, the
experimental methodology requires each MOEA to use a binary representation. Thus, all
MOEASs use an [-bit (I = 24) string for each solution and identical minimum/maximum
values in each decision variable dimension. Using this scheme ensures identical “reacha-
bility” of the test algorithms for a given MOP. The bit length may be increased in later

experiments to examine larger search spaces.

However, the MOEAs employ different binary- to real-value mappings. The MOMGA,
NPGA, and deterministic enumeration program use the mapping shown in Equation 6.1;
the MOGA and NSGA execute as part of a larger program (see Section 6.3.5) that uses
a different mapping. This may result in differing mapped values due to truncation or

round-off errors as the schemes are implemented.

The mGA’s “cut and splice” EVOPs’ effect (when both are used) is intended to be
similar to recombination’s [130]. The MOMGA used mGA default parameters for these

operators, namely pc,; = 0.2 (only one cut allowed per string) and pgpice = 1.0. There is
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not yet a “default” MOEA crossover rate but past experiments used crossover probabilities
in the range p. € [0.7,1.0] [154, 113, 306]. Thus, the other experimental MOEAs used
single-point crossover with p. = 1.0. All but the MOMGA used a mutation rate of p,, = %
where [ is the number of binary digits. The MOMGA did not employ mutation (i.e.,
Pm = 0). As in the original mGA presentation [130], this results in the most stringent
possible testing. As mutation is not available to provide diversity and “recreate” BBs,

losing a BB from the population means it is gone forever.

6.3.3.6 Termination, Solution Ewaluations, and Population Size. When
should an MOEA stop executing? The easy answer is after convergence occurs — but when
is that? Some “best guess” is normally made and appropriate termination flags set. We do
the same in this experimental series and terminate search based on the number of solution

evaluations.

Like Goldberg et al. in their early mGA experiments [130], we compare experimental
MOEA results derived after an identical number of solution evaluations are performed,
using that factor as a measure of common computational effort. However, the number
of executed solution evaluations differs between MOMGA runs (even those solving the
same MOP) because of internal parameters dynamically governing its operation. In these
experiments, the MOMGA is set to execute for three eras and to contain 100 individuals
in each juxtapositional population. These values are the mGA defaults, reflecting our
desire to execute each experimental MOEA “out of the box” and because Goldberg et al.
indicate the juxtapositional generation size should be “about” that of a usual GA [130].
The MOMGA is set to execute a maximum of 20 juxtapositional generations in each era
and its execution is terminated before the total number of solution evaluations for a run
exceeds 65,536 (216). Thus, the total fraction of explored search space is then bounded
above by g; = 0.39%. Historically, EAs often execute at most tens of thousands of fitness
evaluations and this experimental limit is within that range. As it explores only a small
fraction of the search space an MOEA’s effectiveness should be readily apparent in how

well its results (Pgpown and P Flpopn ) compare to Pyye and P Fipye (if known).
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Thus, for all test MOPs, the MOMGA was executed first and the number of executed
solution evaluations per run determined. The other MOEAs (each with population size
N = 50) were then set to execute almost the same number of evaluations (N multiplied

by the number of generations), ensuring a very nearly equivalent computational effort for

each tested MOEA.

The literature sometimes indicates that more objectives imply a larger generational
population size is necessary. However, as these experiments involve only bi- and tri-
objective MOPs, population size is left at the suggested single-objective GA default size
of 50 [17:pg. 123]. The exception was the MOMGA, instead using the mGA default
population size of 100 individuals per juxtapositional generation. We again note these ex-
periments’ purpose is to explore MOEA performance and not to determine ideal parameter

settings over the test functions.

6.3.4 MOEA Ezperimental Metrics. What metrics might adequately measure
an MOEA’s results or allow meaningful comparisons of specific MOEA implementations?
Appropriate metrics must be selected upon which to base MOEA performance claims, and
as the literature offers few quantitative MOEA metrics, proposed metrics must be carefully
defined to be useful. Additionally, no single metric can entirely capture total MOEA
performance, as some measure algorithm effectiveness and others efficiency. Temporal
effectiveness and efficiency may also be judged, e.g., measuring an MOEA’s progress each
generation. All may be considered when judging an MOEA. Following are possible metrics
developed for use in analyzing these experiments, but they should not be considered a

complete list.

The metrics identified in this section measure performance in the phenotype domain.
Whereas Benson and Sayin indicate many OR researchers attempt to generate Py (and
thus implicitly measure performance in genotype space) [28], MOEA researchers have
mainly focused on generating PFj.,. (and thus measure performance in phenotype space).
As there is a direct correspondence between solutions in Pj.e and vectors in P Fj.,e one
method may not be “better” than another. However, we do note that multiple solutions

may map to an identical vector.

6-13



Although here described in terms of measuring final MOEA performance, many of
these metrics may also be used to track performance of generational populations. This then
indicates performance during execution (e.g., rate of convergence to the MOEA optimum)
in addition to an overall performance metric. Although presented using two-objective

examples, these metrics may be extended to MOPs with an arbitrary number of objective

dimensions.
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Figure 6.5.  PFypown /P Firue Example
6.3.4.1 Error Ratio. An MOEA reports a finite number of vectors in

P Fipown which are or are not members of PFjype . If they are not members of PFye the

MOEA has erred or perhaps not converged. This metric is mathematically represented by:
n .
E2 Lzl . (6.4)
where n is the number of vectors in P Fjyoyn and

0 if vector i,i = (1,... ,n) € PFiye,
e = (6.5)

1 otherwise.
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For example, E = 0 indicates every vector reported by the MOEA in P Fypgyn is actually
in PFye; F = 1 indicates that none are. The example in Figure 6.5 has F = % We also
note a similar metric [359, 358] measuring the percentage of solutions in some set (e.g.,

Pipown ) dominated by another solution set’s members (e.g., Pyme )-

6.3.4.2 Generational Distance. ~ Used in other experiments [325] this metric

is a value representing how “far” P Flyoun is from PFy.,. and is defined as:

oo (S

n

: (6.6)

where n is the number of vectors in PFypopn , » = 2, and d; is the Euclidean distance (in
objective space) between each vector and the nearest member of PFyy.. A result of 0
indicates PFyye = PFhpown ; any other value indicates P Fyy 4 deviates from PFy.,. . The
example in Figure 6.5 has d; = /(2.5 —2)2 + (9 —8)2, dy = /(3 —3)2 + (6 — 6)2, and
ds=+/(5—4)2+(4—4)2, and G = V/1.118%2 + 02 + 12/3 = 0.5.

Schott proposes a “7-Point” distance measure that is similar to our generational
distance [292]. In his experiments neither Py or PFyy are known, so he generates seven
points (vectors) in objective space for comparison. Assuming a bi-objective minimization
MOP and an (f1, f2) coordinate system with origin at (0,0), first determine the maximum
value in each objective dimension. Two equidistantly spaced points are then computed
between the origin and each objective’s maximum value (on the objective axis). The
“full” measure is then created by averaging the Euclidean distances from each of the seven
axis points to the member of P Fjy,oun closest to each point. Given a general bi-objective

minimization MOP F(Z) = (f1(£), f2(%)), the seven points are:

{(07 (max fQ(f))/:;)’ (Oa 2 % (max fQ(j))/:i)a (0’ (max fQ(f)))a (Oa O)a
((max f1(£))/3,0), (2 * (max f1(£))/3,0), ((max f1(Z)),0)}. (6.7)

6.3.4.3 Maximum Pareto Front Error. It is difficult to measure how well
some set of vectors compares to another. For example, in comparing PFypown t0 PFipye ,

one wishes to determine how far “apart” the two sets are and how well they conform
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in shape. This metric determines a maximum error band which when considered with
respect to PFrpown , €ncompasses every vector in PFy.e. . Put another way, this is the
largest minimum distance between each vector in P Fj,,, and the corresponding closest
vector in PFyp. . This metric is defined as:
A . (= j = (= j (= 1

ME £ max(min | £(2) - (2) P +| £5@ - (@) P, (6.8)
where ¢ = 1,... ,n1 and j = 1,... ,n9 index vectors in PFlyoyn and P Fipye respectively,
and p = 2. A result of 0 indicates PFypown C PFirye; any other value indicates at least

one vector in P Fyygyn 18 not in P Fyye . The vectors in Figure 6.5’s Pypown are 1.118,0, and

1 units away from the closest vector in Pjpye . Thus, M E = 1.118.

6.3.4.4 Hyperarea and Ratio. Zitzler and Thiele propose an MOEA com-
parative metric [359] which we term hyperarea. Hyperarea defines the area of objective
value space covered by PFypoun (i-€., the “area under the curve”). For example, a vec-
tor in P Flpoun for a two-objective MOP defines a rectangle bounded by an origin and
(f1(£), f2(Z)). The union of all such rectangles’ area defined by each vector in P Fy,puy is

then the comparative measure and is defined as:

H= {U a; | v; € PFnoun }7 (6.9)

K3

where v; is a nondominated vector in PFjpgyun and a; is the hyperarea determined by the
components of v; and the origin. Using the Pareto fronts in Figure 6.5 as an example, the
rectangle bounded by (0,0) and (4,4) has an area of 16 units. The rectangle bounded by
(0,0) and (3,6) then contributes (3 % (6 — 4)) = 6 units to the measure, and so on. Thus,
Pipye’s H=16 + 6 + 4+ 3 = 29 units?, and PFyqe’s H = 20 4+ 6 + 7.5 = 33.5 units’.

Zitzler and Thiele do note that this metric may be misleading if P Fpyoyn is non-
convex. They also implicitly assume the MOP’s objective space origin coordinates are
(0,...,0), but this is not always the case. The vectors in P Fjyygqyy, can be translated to
reflect a zero-centered origin, but as each objective’s ranges may be radically different

between MOPs, optimal H values may vary widely. We thus also propose a hyperarea
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ratio metric defined as:
(6.10)

where Hj is the hyperarea of P Fjy, oy, and Hy that of PFjy.,. . In a minimization problem,
this ratio is 1 if PFluoun = PFime and greater than one if PFlyqn 's hyperarea is larger

than PFypye’s. The example in Figure 6.5 has an HR = % = 1.155.

6.3.4.5 Spacing. We wish to measure the spread (distribution) of vectors
throughout PFypown - The experimental MOEAs perform fitness sharing in an attempt
to spread each generational population (PFiyprent (t)) evenly along the front. Because
PFrpown s “beginning” and “end” are known, a suitably defined metric judges how well
P Fipown is distributed. Schott [292] proposes such a metric measuring the range (distance)

variance of neighboring vectors in P Fypyn - Called spacing, he defines this metric as:

n

1 _
S £ n_1§ (d —d;)?, (6.11)
i+1

where d; = min;(| fi{(Z) — ff(:i") | + | fa(&) — fg(f) ), 4,5 =1,... ,n, d is the mean of all
d;, and n is the number of vectors in PFlpuoun - A value of zero for this metric indicates all
members of P Fyyoun are equidistantly spaced. We again note (see Section 5.3.1) that the
vectors composing PFy.e in objective space may not be uniformly spaced. The example

in Figure 6.5 has an S = 0.25.

Some MOPs (e.g., MOP3, MOP4, and MOP6) have PFy.,. s that are composed of
two or more Pareto curves. Including the distance between the endpoints of two succes-
sive curves may skew this metric. Thus, for MOPs with this characteristic, the distance
corresponding to the “breaks” in the front are removed from the spacing computation.
However, this metric may also then be applied to portions of PFlpoyn in isolation (those
of high interest). Srinivas and Deb [306] define a similar measure expressing how well an

MOEA has distributed Pareto optimal solutions over a nondominated region (the Pareto
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optimal set). This metric is defined as:

+1 _
LA (i(%)p)w : (6.12)
i=1 !
where ¢ is the number of desired optimal points and the (¢ + 1)-th subregion is the domi-
nated region, n; is the actual number of individuals serving the ith subregion (niche) of the
nondominated region, 7; is the expected number of individuals serving the ith subregion
of the nondominated region, p = 2, and 0'Z~2 is the variance of individuals serving the ith
subregion of the nondominated region. They show that if the distribution of points is ideal
with 7; number of points in the 7th subregion, the performance measure ¢ = 0. Thus, a low
performance measure characterizes an algorithm with a good distribution capacity. This
metric may be modified to measure the distribution of vectors within the Pareto front. In
that case both metrics (S and ¢) then measure only uniformity of vector distribution and

thus complement the generational distance and maximum Pareto front error metrics.

6.3.4.6 Qwverall Nondominated Vector Generation and Ratio. The tested
MOEAs add P.yrrent t0 Prrown €ach generation, possibly resulting in different cardinalities
for Prpown - This metric then measures the total number of nondominated vectors found

during MOEA execution and is defined as:
ONVG 2| PFrnoun | - (6.13)

Schott [292] uses this metric (although defined over the Pareto optimal set, i.e., | Prpown |)-
Genotypically or phenotypically defining this metric is probably a matter of preference,
but we again note multiple solutions may map to an identical vector, or put another way,
| Prnown |=| PFrnown |- Although counting the number of nondominated solutions gives
some feeling for how effective the MOEA is in generating desired solutions, it does not
reflect on how “far” from P Fjpe the vectors in P Fyyoun are. Additionally, too few vectors

and P Fjl,oun s representation may be poor; too many vectors may overwhelm the DM.

It is difficult to determine what good values for | ONVG | might be. PFipnoun’s

cardinality may change at various computational resolutions as well as differing (perhaps
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radically) between MOPs. Reporting the ratio of PFly,yp 's cardinality to the discretized
Pirye ’s gives some feeling for the number of nondominated vectors found versus how many

exist to be found. This metric is then defined as:

| PFkno'um |

ONVGR 2 )
| PFtrue |

(6.14)

A value of 1 indicates the MOEA has found the same number of nondominated vectors

as exists in PFyye . The example in Figure 6.5 has an ONV G = 3 and an ONVGR = 0.75.

6.3.4.7 Progress Measure. Back defines a parameter used in assessing
single-objective EA convergence velocity called a Progress Measure [17], which quantifies

relative rather than absolute convergence improvement by:

fmax(o)

P& ,
fmam(T)

(6.15)

where f4:(2) is the best objective function value in the parent population at generation
i.

To account for the (possible) multiple solutions in Py, we modify this definition

G
RP21n/ 2, (6.16)
Gr

where G7 is the generational distance at generation 1, and G the distance at generation

T.

to the following:

6.3.4.8 Generational Nondominated Vector Generation.  This metric tracks

how many nondominated vectors are produced each MOEA generation and is defined as:

GNVG 2| PFumrens(t) | - (6.17)

6.3.4.9 Nondominated Vector Addition.  As globally nondominated vectors

are sought, one hopes to add new nondominated vectors (that may or may not dominate
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existing vectors) to P Fypoun each generation. This metric is then defined as:

NV A é' PFknown(t) | - | PFknown(t - 1) | . (6'18)

However, this metric may be misleading. A single vector added to P Fygyy (t) may
dominate and thus remove several others. P Flyoun (t)’s size may also remain constant for

several successive generations even if GNV G # 0.

6.3.4.10 Additional MOEA Experimental Metrics.  Although implemented
in the phenotype domain several experimental metrics may also be defined in a genotypic
fashion. For example, the error ratio, generational distance, spacing, and overall non-
dominated vector generation metrics are valid when modified to reflect a genotypic basis.
However, note that decision variable dimensionality may easily exceed the number of ob-
jective dimensions, which may require further metric refinement. In addition, Schott uses
three other metrics in his thesis effort [292]: cost function evaluations, clone proportion,

and total clones identified. These measures are not relevant to the current experiments.

This effort uses the number of function (solution) evaluations as a constant between
MOEASs ensuring “equal” computational effort by each; Schott appears interested only in
measuring the results of a single MOEA. We currently make no effort to identify clones
(previously evaluated solutions) during execution. As shown in the next section these
MOEASs execute quickly. When compared to many real-world MOPs, where each fitness
evaluation may take from minutes to hours, it makes no sense to incorporate the overhead of
clone identification within these experiments. Thomas’ use of MOEASs in submarine stern
design, where each individual’s fitness evaluation took about 10 minutes, is a case where
clone identification is more useful [318]. As no clones are identified in these experiments
clone proportion is not considered. Later experiments can easily include these and other

metrics.

6.3.5 Computational Environment and Implementation. All MOEAs are exe-

cuted on the same computational platform for consistency. The host is a Sun Ultra 60
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workstation with dual 300 MHz processors and 512 MB RAM, running Solaris 2.5.1. Many

other computational platforms would suffice but this high-end host offers exclusive access.

The MOMGA and NPGA are extensions of existing algorithms and specific software
(the mGA and SGA-C) from the Illinois Genetic Algorithms Laboratory (IlliGAL) [162].
The NPGA is the original code used by Horn in his MOEA research [154, 155]. Both
the MOMGA and NPGA are written in “C” and are compiled using the Sun WorkShop
Compiler version C 4.2. Much of our associated research and related experimentation
employs the GEATbx v2.0 for use with MATLAB [255]. This toolbox offers the user
several “default” EA instantiations (e.g., real- or binary-valued GA, ES; EP) and excellent
visualization output to aid in analysis. GEATDbx requires only a limited amount of user
effort to implement a specific EA. Thus, the MOGA and NSGA are written as self-contained
“m-files” using other pre-defined toolbox routines. They were constructed using definitions
given in the literature [114, 306]. These MOEAs are also executed on the Sun platform
described previously but within the MATLAB 5.2 environment.

Timing results are not of specific experimental concern. However, for all experimental
MOPs, each MOEA run executes in a matter of minutes. Empirical observations indicate
that the MOMGA and NPGA execute more quickly than the other MOEAs. This result
is expected as the latter algorithms are executing via interpretation within the MATLAB
environment while the former are compiled codes. Further issues are discussed in Sec-
tion 7.3.2, but we note these MOEAs exhibit roughly the same computational complexity
(see Tables 3.2 and 3.3).

6.3.6 Ezperimental Test Suite MOPs. Several MOPs are substantiated and
proposed for use in an MOEA test function suite (Section 5.4). For these experiments’

test functions we select the following MOPs: MOP1, MOP2, MOP3, MOP4, and MOPG.

These are all bi-objective MOPs and are validated in Section 5.4.

6.4 Summary

This chapter presents an experimental methodology for quantitatively comparing

MOEA performance. After motivating the experiments, key methodology components are

6-21



discussed. The test algorithms and their parameter settings are presented in detail. Several
appropriate metrics are proposed, classified, and analyzed, and example values derived.
The chapter concludes by discussing the experimental computational environment and

selected test problems.

6-22



VII. MOEA Experiment Results and Analyses

You know that | write slowly. This is chiefly because | am never satisfied until | have said
as much as possible in a few words, and writing briefly takes far more time than writing at
length.

Karl Friedrich Gauss

7.1 Introduction

The purpose of these experiments is to compare well-engineered algorithms in terms
of effectiveness as regards carefully selected test problems. We wish to determine selected
MOEA performance over the MOP domain class, to evaluate the usefulness of proposed test
functions and metrics, and to record other germane observations arising during experiment

execution and result analysis.

This chapter presents the experimental results derived from applying four MOEAs
to the proposed MOEA test suite functions. Section 7.2 discusses the experimental results
and statistical analyses for the test suite functions identified in Section 6.3.6. Section 7.3

then presents more general observations about these and related experiments.

7.2 MOEA Ezperiment Approach and Analyses

Appropriate metrics should be selected for use in judging experimental results as
concerning MOEA effectiveness (producing an acceptable result). Thus, specific effective-
ness metrics are drawn from those discussed in Section 6.3.4 and listed in alphabetical
order in Table 7.1. They are initially used to compare final MOEA results; in Section 7.3.4
we discuss using these and/or other metrics to investigate an MOEA’s efficiency (rate of
convergence). These metrics are selected because they initially appear to be the most ap-
propriate indicators of MOEA performance and thus provide a validated basis for MOEA

comparison.

All MOP test functions used are formulated as stated in Table 5.3 in Section 5.4; other

experimental and algorithmic parameters are as discussed in Section 6.3. For statistical



Table 7.1.  Selected MOEA Experimental Metrics

| Metric | Desired Value
Error Ratio (F) 0
Generational Distance (G) 0
Hyperarea Ratio (HR) 1
Maximum Error (ME) 0

Overall Nondominated Vector | > 1 (MOP Dependent)
Generation (ONV Q)
Overall Nondominated Vector | 1 (MOP Dependent)
Generation Ratio (ONVGR)
Spacing (.5) 0

comparison purposes, the four experimental MOEAs were each executed ten times for each
MOP, providing a statistical sample with which to derive metric values. Each MOEA’s
results for each MOP are separately analyzed followed by a discussion of their performance

across all tested MOPs.

A figure containing seven individual graphs is presented for each MOP tested (all
figures are located at the chapter’s end for ease of comparative evaluation). Each graph’s
z-axis contains four entries corresponding to each MOEA. Each y-axis is labeled with the
graph’s measured metric. Note that the y-axis scales may change between metrics and
between MOPs, and that graphs (a) through (e) represent metrics where minimum values
are desired, whereas graphs (f) and (g) reflect the opposite. For each graph, the metric’s
value for each MOEA run is represented by a dot (’.”) above the appropriate algorithm
name. The error bars for each algorithm are 20 in length (¢ + o, ¢ — o, with g the mean

and o the standard deviation). Additionally, Tables 7.3 and 7.4 (located at the chapter’s

end) give the mean and standard deviation for each MOEA-metric combination.

7.2.1 Bi-Objective MOP Ezperimental Results. The following sections (7.2.1.1
through 7.2.1.5) discuss MOEA results as applied to a single MOP. Section 7.2.2 presents
observations about the experimental metrics and and MOP instantiations; Section 7.2.3

then analyzes MOEA performance across the five bi-objective test suite functions (see

Section 5.4).



7.2.1.1 MOP1 Ezxperimental Results.  Figure 7.17 presents MOP1’s results
for each metric and MOEA. We first observe that MOP1’s (and the others) reported error
ratio (Figure 7.17(a)) is somewhat misleading. As noted in Section 6.3.3.5, even identical
binary- to real-value mapping algorithms may give slightly different results on different
architectures due to truncation or round-off errors. Py was computed on one architecture
(an IBM SP-2); the four MOEAs executed on another (Sun Ultra 60). Additionally, the
MOGA and NSGA use a different binary- to real-value mapping than the MOGA and
NSGA, as they execute under GEATbx and use its predefined routines. As all computation
and metric derivation is performed using double precision, MOEA experiments with MOP1

clearly show these induced errors.

Consider some Pipye defined as containing all solutions within a given range, i.e.,
Pipye = {z | L <z < U}. Any solution lying within that range but not ezactly identical to
a computed Py solution within it can differ only by some small €. Thus, if a computed
Pareto optimal solution . € Pgpoyn is close but not identical to a solution x, € Py , then
x. € [xp — €, 2, + €]. Determining an appropriate € value is difficult and we thus choose to
evaluate the error metric as originally proposed. For MOP1, note that only the MOMGA

returns vectors in P Fype resulting in error ratios between 97% and 100%.

The NPGA and NSGA in each run returned only one or two Pareto optimal solutions.
Thus, the spacing metric (Figure 7.17(b)) is undefined in those cases because there are zero
or one distances d;; this situation is represented by a value of —1. The MOGA resulted
in comparatively large spacing values (about 0.5 to 5) but this can be attributed to the
large objective space and relatively few numbers of nondominated vectors in PFrppyn - All

MOMGA runs resulted in spacing values between 0 and 0.5.

The generational distance values (Figure 7.17(c)) for the NPGA (near 0 to 325)
and NSGA (near 0 to 41) are quite large compared to the other MOEAs whose values
are almost all near 0. This is again due to the large objective space. The same holds
for the MOEAs’ maximum error (Figure 7.17(d)). For MOP1 these two metrics’ results
as regards the NPGA and NSGA are the same, as many runs returned only one Pareto

optimal solution. The large objective space also skews the hyperarea ratio graph due to



the NPGA’s large values (Figure 7.17(e)). The NSGA’s values range between near 0 and
300; MOGA and MOMGA values are between 0 and 4.5.

The ONVGR values (Figure 7.17(f)) indicate only the number of P Flpoyn vectors
presented versus those in PFyye. This metric is driven by the ONVG metric (Fig-
ure 7.17(g)). We see the MOMGA always returning more vectors (between 1 and 168)
than the other MOEAs, and the MOGA (between 3 and 14) more than the other two. In
all cases the NPGA and NSGA return only one or two vectors in PFypoun - As all MOEAs
explicitly seek nondominated vectors this is a somewhat surprising result, but one likely

due to the large objective space.

MOP1 was thought to be an “easy” MOP for MOEAs to solve because its Pjpye is
convex and is formulated with only one decision variable. It appears this may not be the
case, likely due to the very large MOP decision variable bounds resulting in a situation
similar to that described in Section 5.3.1. As in that case, the difficulty in solving this con-
tinuous MOP instantiation appears due to the extremely small number of computationally
discrete points representing MOP1’s Py . Although the current bounds may make MOP1
too “hard”, smaller bounds make it too “easy.” The MOEA literature often presents MOP1
as an example but all other known instantiations use a much smaller search space. For
example, Schaffer’s original proposition appears to use, and Horn does use, a search space
bounded by {z | z € [-6,6]} [289, 154]; Norris and Crossley use {z | z € [-10,10]} [237].
The largest implemented known bounds (besides ours) are {z | z € [-1000,1000]} used
by Srinivas and Deb [306]. MOP1’s search space is two orders of magnitude larger, and
leads to even larger metric results because the objective vectors may take on the following

values:

{(f1, f2) | f1 €10,(10°)’] A f5 € [0,(—10° — 2)]}. (7.1)

Analogous to executing several single-objective EAs and selecting the “best over-

all fitness” found as the final answer, we conclude MOP1’s analysis by combining each



MOEAS’ run’s results, i.e.,

10
PFknown = U PFlmowni ) (7'2)

i=1
where each PFpopn;, was returned by a single MOEA run. Thus, Figure 7.1 visually
presents each MOEA’s overall qualitative performance by plotting MOP1’s P Fi,. against
each MOEA’s respective overall PFjyy, oy, - This figure implies that the MOGA performed
“well” in solving MOP1 and the MOMGA “very well”, while the NPGA and NSGA did
a poor job of “covering” PFy... Table 7.5 (at the chapter’s end) gives selected metric

values for PFypye and PFlpouwn -
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Figure 7.1. MOP1 P Fyppyn Comparison

7.2.1.2 MOP2 Ezperimental Results.  Figure 7.18 presents MOP2’s results
for each metric and MOEA. Only the NPGA returned any vectors in P Fjpye , with error
ratios ranging from 92% to 100% (Figure 7.18(a)). As regards spacing (Figure 7.18(b)), the



NSGA consistently returned vectors less evenly distributed (values from 0.08 to 0.12) while
the other MOEAS’ results were all below 0.03. The same trend is seen when considering
generational distance (Figure 7.18(c)). The maximum error results (Figure 7.18(d)) show
more consistency in the MOGA and NPGA cases (values from 0.015 to 0.04), while both
the MOMGA and NSGA show result values ranging from 0.02 to 0.17. Several MOMGA
and NSGA runs returned a vector farther away from PF}.,.than any found in all the

MOGA and NPGA runs.

The hyperarea ratios (Figure 7.18(e)) for all MOGA and NPGA runs are consistent
and near 1.1, whereas the other two algorithms’ results are more varied (from 1.01 to
1.12). However, one NSGA run returns a HR value below one, which is possible because
of MOP2’s concave P Fyy, (see Section 6.3.4.4). Most notable about the last two metrics
(Figures 7.18(f) and 7.18(g)) is that the NSGA again returns far fewer nondominated
vectors than the other MOEAs. At most the NSGA returns 20 vectors in P Fpgyun , While
the other three MOEAS’ return from 48 to 131.

Figure 7.2 visually presents each MOEA'’s overall qualitative performance by plotting
MOP2’s PFyye against each MOEA’s respective overall PFlyoun - This figure implies all
MOEASs except the NSGA performed “very well” in solving MOP2, although the NSGA’s
returned P Flypoyn does “cover” and come close to most of PFy,. . In general, the figure
reflects each MOEA’s spacing, generational distance, and ONV G results. However, the
NSGA’s “worse” results (considering those metrics) are easily seen. Its P Flpoup is not as
evenly spaced, the vectors are not as close to PFyme, and they do not cover as much of
PFypye as the other three. Table 7.5 (at the chapter’s end) gives selected metric values for
PFyye and PFypoun -

7.2.1.8 MOPS3 Ezperimental Results.  Figure 7.19 presents MOP3’s results
for each metric and MOEA. Note that MOP3 is a maximization MOP. Here, the MOGA
and NPGA return vector(s) in P Fyye (Figure 7.19(a)); the NPGA does so consistently with
error ratios ranging from 88% to 95%. All MOEAS’ spacing results vary (Figure 7.19(b)),
but like MOP1 this is expected due to a “larger” objective space. Values here range

from near zero to 0.43. Although several of the maximum errors are between 3 and 4
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Figure 7.2. MOP2 P Fyppyn Comparison

(Figure 7.19(d)), the much larger number of nondominated vectors returned by each MOEA
(Figure 7.19(g)) means this metric has a smaller impact on the generational distance
(Figure 7.19(c)) than it might otherwise have had. All MOEA runs resulted in “very
good” hyperarea ratios (Figure 7.19(e)) near 1.001. However, note that as MOP3 is a

maximization problem the metric is actually the inverse of that stated in Section 6.3.4.4.

Because of Py, ’s cardinality and ONV G values, all ONV GR results (Figure 7.19(f))
are nicely clustered. The MOEAs generally return a few hundred nondominated vectors,
although the NSGA in most cases again returns far fewer. Figure 7.3 visually presents each
MOEA'’s overall qualitative performance by plotting MOP3’s P Fy.,e against each MOEA’s
respective overall PFluoun - This figure implies that all MOEAs performed “very well” in
solving MOP3 as each MOEA’s P Fyyoun solidly covers PFypy,. . Table 7.5 (at the chapter’s

end) gives selected metric values for PFyye and P Fypoun, -
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7.2.1.4 MOP4 Experimental Results.  Figure 7.20 presents MOP4’s results
for each metric and MOEA. Only the NPGA returned vectors in PFj.. with all runs
but one returning error ratios from 82% to 95% (Figure 7.20(a)). Spacing results (Fig-
ure 7.20(b)) are fairly consistent between runs with all values between 0.1 and 0.7. As this
MOP also encompasses a larger objective space the spacing, generational distance (Fig-
ure 7.20(c)), and maximum error (Figure 7.20(d)) values appear reasonable, although the
MOMGA and NSGA results show more variability between runs. This is also reflected in
the hyperarea ratio (Figure 7.20(e)), where all but the NSGA have consistently returned
vectors close to PFywe. Several HR values are below one due to PFppoun s nonconvex

shape.

The ONVGR values (Figure 7.20(f)) are again driven by the number of nondom-
inated vectors returned. All but the MOMGA have fairly well clustered ONV G values
(Figure 7.20(g)) although the NSGA again returns far fewer. The NSGA returns at most

23 vectors, while the other MOEAs return from 23 to 121. Figure 7.4 visually presents each
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MOEA'’s overall qualitative performance by plotting MOP4’s P Fy.e against each MOEA’s
respective overall P Fyy, oy, - This figure implies that the MOGA and NSGA did not perform
“well” in solving MOP4. The MOMGA and NPGA are close to and do cover PFjp, ; the
MOGA and NSGA approximate PFyn.’s entire shape but their P Flyqqn becomes farther
from PFj (in distance) as one travels down and right. Table 7.5 (at the chapter’s end)
gives selected metric values for PFye and PFlyoun - Note that in this case, these values

do not necessarily reflect what is concluded visually regarding MOEA performance.
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Figure 7.4. MOP4 P Fyypyn Comparison

7.2.1.5 MOPG6 Ezperimental Results.  Figure 7.21 presents MOPG6’s results
for each metric and MOEA. The MOMGA always returns vectors in PFyqe while the
NPGA often does (Figure 7.21(a)). These are the best values yet seen for the error ratio
metric with the MOMGA’s error ratio values ranging from 13% to 60%. Spacing results
(Figure 7.21(b)) are fairly tight and below 0.1 for all algorithms but the NPGA, whose
values range from 0.08 to 0.2. For MOP6, the MOGA and MOMGA return excellent val-



ues for generational distance and maximum error (Figures 7.21(c) and Figure 7.21(d)); the
other two algorithms have a fairly large spread. The NPGA’s and NSGA’s generational
distance values range from 0.01 to 0.55, and maximum error values from 0.2 to 9.4. This
is also reflected by the hyperarea ratio results (Figure 7.21(e)), where we again see several
HR values less than one. Finally, ONVGR (Figure 7.21(f)) and ONV G results (Fig-
ure 7.21(g)) show the MOMGA returning significantly more nondominated vectors (max
of 443), followed by the MOGA (max of 121), NSGA (max of 39), and the NPGA (max
of 27).

Figure 7.5 visually presents each MOEA’s overall performance by plotting MOP6’s
PFyye against each MOEA’s respective overall PFlpuoyy, . This figure implies that all
MOEAs performed “well” in solving MOPG6, although the NPGA and NSGA report a
total of three vectors in P Fypyy, that are not in PFy,. . Table 7.5 (at the chapter’s end)

gives selected metric values for PFiye and P Fipoun -
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Figure 7.5. MOPG6 P Fyyppyn Comparison
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7.2.2 MOEA Ezxperimental Metrics and MOPs.  Although the experimental met-
rics and MOPs were previously theoretically validated, these experiments highlight practi-
cal implementation difficulties. The discussions in Sections 7.2.1.1 through 7.2.1.5 indicate
some metrics appear not as valuable as others. For example, the error ratio metric reports
values for only two of the four algorithms, thus preventing a general comparison. The
maximum error metric shows how far one vector is from Pj. , but the derived value does
depend on the objective space’s size within which distance is being measured. The hyper-
area ratio metric sometimes gives misleading values (when applied to nonconvex Pareto
fronts) and requires the inverse value of a maximization MOP. Finally, the ONVGR is
largely dependent upon the number of vectors in PFyp.. Therefore, using their current
definitions, we consider spacing, generational distance, and ONV G as the most meaning-
ful metrics for analysis. Although generational distance is dependent upon objective space

size, spacing and ONV G values may not be as much so.

Taken overall, the selected test suite MOPs appear useful in practice as well as in the-
ory. We do make the following recommendations, however. Due to the difficulties discussed
in Section 7.2.1.1 (primarily concerning metric values), further experiments incorporating
MOP1 should use smaller decision variable bounds, e.g., {z | z € [-1000,1000]}. MOP2
should incorporate additional decision variables to introduce further dimensional complex-
ity. MOP4 appears to be an “MOEA challenging” problem and should be investigated

further. Incorporate additional decision variables in this MOP, also.

7.2.83 OQwerall Ezperimental Statistical Analyses.  Figures 7.17 — 7.21 imply each
algorithm’s observations are not normally distributed, and that the variance is noticeably
different for different MOEAs. This data may not satisfy necessary assumptions for para-
metric mean comparisons and we thus consider non-parametric statistical techniques for
analyzing these experimental results. Based on the previous discussion we perform these

tests only on the generational distance, ONV G, and spacing metrics.

The Kruskal-Wallis H-Test requires no assumptions about the probability distribu-
tions being compared [213]. However, other assumptions must be satisfied in order to

apply this test: that five or more measurements are in each sample and that the samples
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are random and independent; and that the probability distributions from which the sam-
ples are drawn are continuous. The results presented in Sections 7.2.1.1 — 7.2.1.5 meet this

criteria so we test the following hypotheses:

Hjy: The probability distributions of MOGA, MOMGA, NPGA, and NSGA
results applied to MOPX are identical.

H,: At least two of the experimental MOEASs’ result distributions differ.

Table 7.6 (at the chapter’s end) shows the Kruskal-Wallis H-Test results for each
MOP. The listed values are p-values, also called the observed significance levels, for the
Kruskal-Wallis H-Test. We reject the null hypothesis whenever p < «. Using a significance
level @ = 0.1, we in all cases see there is enough evidence to support the alternative
hypothesis and conclude that for each MOP and recorded metrics, at least two MOEASs’

results’ distributions differ.

This result allows use of the Wilcoxon rank sum test in comparing the results of
MOEA “pairs,” attempting now to determine which of a given two MOEAs does “better.”
This test assumes the sample of differences is randomly selected and that the probability
distributions from which the sample of paired differences is drawn is continuous [213]. The
results presented in Sections 7.2.1.1 — 7.2.1.5 meet this criteria so we test the following

hypotheses:

Hy: The probability distributions of MOEA; and MOEA; results applied
to MOPX are identical.

H,: The probability distributions differ for the two MOEAs.

There are six possible MOEA pairings: MOGA and MOMGA, MOGA and NPGA,
MOGA and NSGA, MOMGA and NPGA, MOMGA and NSGA, and NPGA and NSGA.
If ¢ Wilcoxon rank sum tests are performed with an overall level of significance «, the Bon-
nferroni technique [234] allows us to conduct each individual test at a level of significance

a* = a/c [213]. For these tests we select an overall significance level & = 0.2 due to the

fact we have only 10 data points per MOEA. Thus, o* = 0.2/6 = 0.03333.
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Table 7.6 (at the chapter’s end) also shows the Wilcoxon rank sum tests for each
MOEA pair. The listed values are p-values, also called the observed significance levels, for
the Wilcoxon rank sum test. We reject the null hypothesis whenever p < a*. These tests
show the majority of pairwise MOEA comparisons provide enough evidence to support the
alternative hypothesis, and we can thus conclude in those cases that there is a significant
statistical difference between the MOEAs. We are then able to make conclusions about
each MOEA’s results as regards each of the three metrics. For each metric, a figure
presenting mean metric performance (p) is plotted for each MOP by algorithm with error

bars as above.
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Figure 7.6.  Overall Generational Distance Performance

7.2.3.1 Generational Distance Statistical Analysis. Figure 7.6 presents
MOEA performance as regards generational distance. The MOP1 values for both the
NPGA and NSGA were large enough to skew the results when viewed in this format —
the graph truncates those two bars (their respective results are G =~ 66 and G ~ 11).
The pairwise Wilcoxon rank sum tests indicate the following MOEA pairs’ results are
statistically insignificant: (MOP1) MOGA and MOMGA, MOGA and NSGA, NPGA
and NSGA; (MOP2) MOGA and MOMGA, MOGA and NPGA, MOMGA and NPGA;
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(MOP3) MOGA and NPGA, MOGA and NSGA, MOMGA and NSGA; and (MOP4)
MOMGA and NPGA. All other results are statistically significant.

This allows us to state that in general, when considering generational distance the
MOGA, MOMGA, and NPGA gave better results than the NSGA over the test suite
problems. This is certainly true for MOP4; the MOGA and MOMGA perform much
better than the other two MOEAs on MOPS6.

0.7~

MOP2

MOP3

i MOP4
06 MOP6

0.4r

Spacing

0.3F

0.2~

1 i '
0 I

1
MOGA MOMGA NPGA NSGA
Algorithm

1

Figure 7.7.  Overall Spacing Performance

7.2.8.2 Spacing Statistical Analysis. Figure 7.7 presents overall MOEA
performance as regards spacing. This graph does not report MOP1 results as they are
(possibly) somewhat misleading (see Section 7.2.1.1). The pairwise Wilcoxon rank sum
tests indicate the following MOEA pairs’ results are statistically insignificant: (MOP2)
MOGA and MOMGA, MOGA and NPGA, MOMGA and NPGA; (MOP3) MOGA and
NPGA, MOMGA and NPGA, MOMGA and NSGA; and (MOP4) MOMGA and NPGA.

All other results are statistically significant.

7-14



This allows us to state that in general, when considering spacing the NSGA gave
worse results over the test suite problems. This is certainly true for MOP2 and MOP4;
the MOGA and MOMGA perform much better than the other two MOEAs on MOPG6.

400 -

MOP1
MOP2
3501 MOP3
MOP4
MOP6

300 -

2 200t
150
100

50 ’_:LL‘

. [
MOGA MOMGA NPGA NSGA
Algorithm

Figure 7.8.  Overall ONV G Performance

7.2.3.8 ONVG Statistical Analysis. Figure 7.8 presents overall MOEA
performance as regards ONV . The pairwise Wilcoxon rank sum tests indicate the fol-
lowing MOEA pairs’ results are statistically insignificant: (MOP1) MOGA and MOMGA,
NPGA and NSGA; (MOP2) MOGA and MOMGA, MOGA and NPGA, MOMGA and
NPGA; (MOP3) MOGA and NPGA; and (MOP4) MOGA and MOMGA, MOMGA and

NPGA. All other results are statistically significant.

This allows us to state that in general, when considering ONV G the NSGA again
gave worse results over the test suite problems. Disregarding MOP1 allows us to state
the these three algorithms always outperformed the NSGA. This is a surprising result. Al-
though sometimes performing worse (when considering spacing and generational distance),
the NSGA generally returned values “close” to the other algorithms. In this case the NSGA

consistently returns fewer (often less than half) the number of nondominated vectors than
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the other algorithms. We highlight this result as we are attempting to provide a DM with

a number of choices represented by the nondominated vectors composing P Flpoun -

7.8 MOEA Ezperiment Observations

A number of related experiments are executed in support of those analyzed in this
chapter. Selected results and observations gleaned through the experimental process are

reported in this section.
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Figure 7.9. MOP7 Metrics

7.8.1 MOP7T Experimental Results. Figure 7.9 presents MOP7’s results for three
MOEAs as regards three metrics. MOPT was selected as it is a tri-objective MOP, il-
lustrating that MOEAs and experimental metrics can be extended to MOPs with more
objectives. However, as the NPGA code used in these experiments is currently limited to

two objectives, it was not used in solving MOP7.

Figures 7.9(a) and Figure 7.9(b) imply that MOP7’s objective space is quite large. It
also appears that the MOMGA and NSGA performed better than the MOGA as concerning

spacing and generational distance, although further statistical analysis is necessary to state
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that with finality. As the scale in Figure 7.9(b) is quite large, we note that the MOMGA’s
results range from nearly 0 to about 1.07 and the NSGA’s from 0.07 to about 20. The

MOEAs in general return fewer nondominated vectors than in the other MOP experiments
(Figure 7.9(c)).

Figure 7.10 visually presents each MOEA’