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Abstract

Many real-world problems involve two types of problem diffiy: i) mul-
tiple, conflicting objectives and ii) a highly complex sédagpace. On the one
hand, instead of a single optimal solution competing gosis gse to a set of
compromise solutions, generally denoted as Pareto-optimahe absence of
preference information, none of the corresponding treftieean be said to be
better than the others. On the other hand, the search spadeec®o large
and too complex to be solved by exact methods. Thus, effictitization
strategies are required that are able to deal with both dlififes.

Evolutionary algorithms possess several characterighias are desirable
for this kind of problem and make them preferable to classdgdimization
methods. In fact, various evolutionary approaches to whjkictive optimiza-
tion have been proposed since 1985, capable of searchimguitiple Pareto-
optimal solutions concurrently in a single simulation ridowever, in spite of
this variety, there is a lack of extensive comparative &sidin the literature.
Therefore, it has remained open up to now:

whether some techniques are in general superior to others,
which algorithms are suited to which kind of problem, and
what the specific advantages and drawbacks of certain metred

The subject of this work is the comparison and the improverkexisting
multiobjective evolutionary algorithms and their apptioa to system design
problems in computer engineering. In detail, the major Gbuations are:

An experimental methodology to compare multiobjectiverafers is devel-
oped. In particular, guantitative measures to assess Higygof trade-off fronts
are introduced and a set of general test problems is defingdhware i) easy
to formulate, ii) represent essential aspects of realdvorbblems, and iii) test
for different types of problem difficulty.

On the basis of this methodology, an extensive comparisomimferous evolu-
tionary techniques is performed in which further aspecthsas the influence
of elitism and the population size are also investigated.

A novel approach to multiobjective optimization, the sgggmPareto evolution-
ary algorithm, is proposed. It combines both establishednew techniques in
a unique mannetr.

Two complex multicriteria applications are addressedgiswolutionary algo-
rithms: i) the automatic synthesis of heterogeneous haalagstems and ii)
the multidimensional exploration of software implemeiatas for digital signal
processors.






Zusammenfassung

Viele praktische Optimierungsprobleme sind durch zweeBgghaften cha-
rakterisiert: a) mehrere, teilweise im Konflikt stehendelinktionen sind in-
volviert, und b) der Suchraum ist hochgradig komplex. Edeés fuhren wider-
spruchliche Optimierungskriterien dazu, dass es stadiseklar definierten Op-
timums eine Menge von Kompromisslosungen, allgemein atetB-optimal
bezeichnet, gibt. Insofern keine Gewichtung der Kritenerliegt, missen die
entsprechenden Alternativen als gleichwertig betrachgtien. Andererseits
kann der Suchraum eine bestimmte Grosse und Komplaxigschreiten, so
dass exakte Optimierungsverfahren nicht mehr anwendhdr gtrforderlich
sind demnach effiziente Suchstrategien, die beiden Aspejarecht werden.

Evolutionare Algorithmen sind aufgrund mehrerer Merkentiir diese Art
von Problem besonders geeignet; vor allem im Vergleich asdischen Metho-
den weisen sie gewisse Vorteile auf. Doch obwohl seit 198&cheedenste evo-
lutionare Ansatze entwickelt wurden, die mehrere Paopitmale Losungen in
einem einzigen Simulationslauf generieren konnen, maegen der Literatur
an umfassenden Vergleichsstudien. Folglich blieb bislarggeklart,

ob bestimmte Techniken anderen Methoden generell Ulerisind,
welche Algorithmen fur welche Art von Problem geeignetsimd

wo die spezifischen Vor- und Nachteile einzelner Verfahiegen.

Die vorliegende Arbeit hat zum Gegenstand, bestehendatemoire Mehr-
zieloptimierungsverfahren zu vergleichen, zu verbessathauf Entwurfspro-
bleme im Bereich der Technischen Informatik anzuwenderEimelnen wer-
den folgende Themen behandelt:

Eine Methodik zum experimentellen Vergleich von Mehrzptimierungsver-
fahren wird entwickelt. Unter anderem werden quantitatuealitatsmasse
fur Mengen von Kompromisslosungen eingefuhrt und mehfiestfunktionen
definiert, die a) eine einfache Problembeschreibung leesita) wesentliche
Merkmale realer Optimierungsprobleme reprasentieresh a)nerlauben, ver-
schiedene Einflussfaktoren separat zu Uberprifen.

Auf der Basis dieser Methodik wird ein umfangreicher Veidjeliverser evolu-

tionarer Techniken durchgefuhrt, wobei auch weitereeksp wie die Auswir-

kungen von Elitism und der Populationsgrosse auf den O@timgsprozess
untersucht werden.

Ein neues Verfahren, der Strength-Pareto-EvolutiondgeAthm, wird vorge-
stellt. Es kombiniert auf spezielle Art und Weise bewalurie neue Konzepte
miteinander.

Zwei komplexe Mehrzielprobleme werden auf der Basis evahdirer Metho-
den untersucht: a) die automatische Synthese von hetendtardware/Soft-
ware-Systemen und b) die mehrdimensionale ExplorationSaftwareimple-
mentierungen fur digitale Signalverarbeitungsprozesso
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Introduction

Almost every real-world problem involves simultaneoudmgtation of several
incommensurable and often competing objectives. Whileingls-objective
optimization the optimal solution is usually clearly defin¢his does not hold
for multiobjective optimization problems. Instead of agdaoptimum, there
is rather a set of alternative trade-offs, generally knos/Rareto-optimakolu-
tions. These solutions are optimal in the wider sense thatimer solutions in
the search space are superior to them wddeabjectives are considered.

In this chapter, the principles of multiobjective optintioa are outlined
and basic concepts are formally defined. This is followed Hisaussion about
traditional approaches to approximate the set of Paretiomapsolutions and
in particular their potential disadvantages. Afterwarlglutionary algorithms
are presented as a recent optimization method which pe&sssesgeral charac-
teristics that are desirable for this kind of problem. Thstdry of evolution-
ary multiobjective optimization is briefly outlined with epial emphasis on the
open questions in this research area. Finally, Sectionke#lses the scope of
the present work and gives an overview of the remaining @napt

Multiobjective Optimization

Basic Concepts and Terminology

Multiobjective optimization problems (MOPs) are commonor Example, con-
sider the design of a complex hardware/software systemamnibe found in
mobile phones, cars, etc. Often the cost of such systemshe tainimized,
while maximum performance is desired. Depending on theiegapn, further



6 Chapter 1. Introduction
objectives may be important such as reliability and powssigation. They can
be either defined explicitly as separate optimization Gater formulated as
constraints, e.g., that the size of the system must not dxgigen dimensions.
Formally, this can be defined as follows.

Def. 1: (Multiobjective Optimization Problem) A general MOP includes a set of n
parameters decision variablés a set of k objective functions, and a set of m
constraints. Objective functions and constraints are fioms of the decision
variables. The optimization goal is to

maximize Y= f(x) = (f1(x), fa(x), ..., fk(X))

subject to &€X) = (e1(X), €2(X), ..., em(X)) <0

(1.1)
where X= (X1, X2, ..., %) € X
y=0wnY2....,Y0 €Y
and x is thedecision vectary is theobjective vector X is denoted as the
decision spaceandY is called theobjective space
The constraintg(x) < 0 determine the set of feasible solutions.
Def. 2: (Feasible Set)Thefeasible setX ¢ is defined as the set of decision vect&rs x

that satisfy the constraine(®) :
Xi={xeX|ex) <0} (1.2)

The image ofXx%, i.e., the feasible region in the objective space, is dahate
Yi=f(X1)=Ugex, {FO}.

Without loss of generality, a maximization problem is asedrhere. For min-
imization or mixed maximization/minimization problemsetkefinitions pre-
sented in this section are similar.

Consider again the above example and assume that the twdiobgeper-
formance 1) and cheapnessf{), the inverse of cost, are to be maximized
under size constraint®y). Then an optimal design might be an architecture
which achieves maximum performance at minimal cost and doegolate the
size limitations. If such a solution exists, we actuallyyomve to solve a single-
objective optimization problem (SOP). The optimal solatfor either objec-
tive is also the optimum for the other objective. Howeveratmakes MOPs
difficult is the common situation when the individual optim@aresponding to
the distinct objective functions are sufficiently diffeterThen, the objectives
are conflicting and cannot be optimized simultaneouslytebud, a satisfactory
trade-off has to be found. In our example, performance aedmhess are gen-
erally competing: high-performance architectures suttisty increase cost,
while cheap architectures usually provide low performarizepending on the
market requirements, an intermediate solution (mediurfopeance, medium
cost) might be an appropriate trade-off. This discussiokas&lear that a new
notion of optimality is required for MOPs.

1The definitions and terms presented in this section corresfuomathematical formulations
most widespread in multiobjective optimization literausee, e.g., (Hwang and Masud 1979;
Sawaragi, Nakayama, and Tanino 1985; Steuer 1986; Rin$068).
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Def. 3:

lllustrative example of Pareto optimality in objective spdleft) and the possible rela-
tions of solutions in objective space (right).

In single-objective optimization, the feasible set is ctetgly (totally) or-
dered according to the objective functidn for two solutionsa, b € X either
f(a) > f(b)or f(b) > f(a). The goalisto find the solution (or solutions) that
gives the maximum value df (Cohon 1985). However, when several objectives
are involved, the situation changeX:; is, in general, not totally ordered, but
partially ordered (Pareto 1896). This is illustrated inUfg 1 on the left. The
solution represented by poiB is better than the solution represented by point
C: it provides higher performance at lower cost. It would berepreferable if
it would only improve one objective, as is the case@andD: despite equal
cost,C achieves better performance thBn In order to express this situation
mathematically, the relations, >, and> are extended to objective vectors by
analogy to the single-objective case.

For any two objective vectons andv,

u=v iff Vie{l,2 ....kl: ui =y
u>v iff Vie{l,2,....k}: u > (1.3)
u>v iff uvAu#v

The relations< and < are defined similarly.

Using this notion, it holds thaB > C, C > D, and, as a consequendé> D.
However, when comparing and E, neither can be said to be superior, since
B # E andE # B. Although the solution associated with is cheaper,

it provides lower performance than the solution represkbteB. Therefore,
two decision vectora, b can havehreepossibilities with MOPs regarding the
> relation (in contrast to two with SOPs)f (a) > f(b), f(b) > f(a), or
f@) # f(b)A f(b) # f(a). Here, the following symbols and terms are used
in order to classify the different situations.
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Def. 4:

Def. 5:

Def. 6:

(Pareto Dominance)For any two decision vecto and i,

a > b (a dominated) iff f(@ > f(b)
a > b (a weakly dominateb) iff f(a) > f(b) (1.4)
a ~ b (ais indifferent tob) iff f@ # f(b)A f(b) # f(a

The definitions for a minimization problem (<, ~) are analogical.

In Figure 1 on the right, the light gray rectangle encapssl#be region in ob-
jective space that is dominated by the decision vector sgmted byB. The
dark gray rectangle contains the objective vectors whosegponding deci-
sion vectors dominate the solution associated \BithAll solutions for which
the resulting objective vector is in neither rectangle adkfferent to the solu-
tion represented bi3.

Based on the concept of Pareto Dominance, the optimalitgrooyn for
MOPs can be introduced. Still referring to Figure A is unique among3,
C, D, andE: its corresponding decision vectaiis not dominated by any other
decision vector. That mearsjs optimal in the sense that it cannot by improved
in any objective without causing a degradation in at least @ther objective.
Such solutions are denotedRareto optimal sometimes also the ternoninfe-
rior (Cohon 1978) is used.

(Pareto Optimality) A decision vectoixxe Xy is said to benondominated
regarding a sethAC X iff

Aae A:a>X (1.5)

If it is clear within the context which sé& & meant, it is simply left out. More-
over, X is said to bePareto optimaiff X is nondominated regardin¥ X

In Figure 1 the white points represent Pareto-optimal gmhgt They are indif-
ferent to each other. This makes the main difference to S@Rs: ¢here is no
single optimal solution but rather a set of optimal tradis-ollone of these can
be identified as better than the others unless preferenaemation is included
(e.g., aranking of the objectives).

The entirety of all Pareto-optimal solutions is called Bageto-optimal set
the corresponding objective vectors form ®areto-optimal fronor surface

(Nondominated Sets and Fronts) et A C X;. The function pA) gives the
set of nondominated decision vectorsAn A

p(A) = {a € A| ais nondominated regarding}A (1.6)

The set PA) is thenondominated seegarding A the corresponding set of ob-
jective vectorsf fp(A)) is thenondominated frontegarding A Furthermore,
the setX, = p(X¢) is called thePareto-optimal seind the setry, = f(Xp)

is denoted as thBareto-optimal front
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Fig. 2:
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1.1.2

global Pareto-optimal front

-~
-
‘. . .
( feasible region

+
-
~
~
~
~
~.~
S
Sy A

>

O

.....

local Pareto-optimal front

fi

'

lllustration of locally optimal solution sets and globatiptimal solution sets in objec-
tive space.

The Pareto-optimal set comprises the globally optimaltsmhg. However, as
with SOPs there may also be local optima which constituterelominated set
within a certain neighborhood. This corresponds to the eptscof global and
local Pareto-optimal sets introduced by Deb (1998, 1999a):

Consider a set of decision vectobs A X .

. The setPAs denoted as bbcal Pareto-optimal seff

Vac A:Axe Xs:x>aA|x—al|l<en||fX)—f@]| <é (1.7

where|| - || is a corresponding distance metric aad> 0, § > O.

. The setAAs called aglobal Pareto-optimal séft

Vae A:Axe Xs:Xx>a (1.8)

The difference between local and global optima is visudlineFigure 2. The
dashed line constitutes a global Pareto-optimal frontlexthie solid line depicts
a local Pareto-optimal front. The decision vectors assediwith the latter are
locally nondominated though not Pareto-optimal, becahsesblution related
to point A dominates any of them. Finally, note that a global Paretoyap set
does not necessarily contain all Pareto-optimal soluteordsthat every global
Pareto-optimal set is also a local Pareto-optimal set.

Search and Decision Making

In solving an MOP, two conceptually distinct types of prabldifficulty can be
identified (Horn 1997): search and decision making. The &sgtect refers
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to the optimization process in which the feasible set is dadhfor Pareto-
optimal solutions. As with single-objective optimizatidarge and complex
search spaces can make search difficult and preclude thefeseaa opti-
mization methods like linear programming (Steuer 1986)e $bcond aspect
addresses the problem of selecting a suitable compromisgaspfrom the
Pareto-optimal set. A human decision maker (DM) is necgssamake the
often difficult trade-offs between conflicting objectives.

Depending on how optimization and the decision process angbmed,
multiobjective optimization methods can be broadly clésdiinto three cat-
egories (Hwang and Masud 1979; Horn 1997):

Decision making before search:The objectives of the MOP are aggregated
into a single objective which implicitly includes prefemninformation
given by the DM.

Search before decision making:Optimization is performed without any pref-
erence information given. The result of the search process set of
(ideally Pareto-optimal) candidate solutions from whihkk final choice
is made by the DM.

Decision making during search: The DM can articulate preferences during
the interactive optimization process. After each optimarastep, a num-
ber of alternative trade-offs is presented on the basis afiwthe DM
specifies further preference information, respectiveiggsithe search.

The aggregation of multiple objectives into one optimiaatcriterion has the
advantage that the classical single-objective optinmozesitrategies can be ap-
plied without further modifications. However, it requiresofound domain
knowledge which is usually not available. For example, impater engi-
neering design space exploration specifically aims at ggideeper knowledge
about the problem and the alternative solutions. Perfagrtiie search before
decision making overcomes this drawback, but excludegmete articulation
by the DM which might reduce the search space complexity.tergproblem
with this and also the third algorithm category might be trisualization and
the presentation of nondominated sets for higher dimeasii©OPs (Cohon
1985). Finally, the integration of search and decision mgks a promising
way to combine the other two approaches, uniting the adgastaf both.

In this thesis, the focus is on multiobjective optimizatimethods that are
capable of

. sampling intractably large and highly complex searcltepaand

. generating the exact Pareto-optimal set or approximsuod it.

This is the the first step in the direction of decision makingirng search and
forms the basis for further research in this area.
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1.2

1.2.1

1.2.2

Traditional Approaches

Classical methods for generating the Pareto-optimal ggtagte the objectives
into a single, parameterized objective function by analtmggtecision making
before search. However, the parameters of this functiomatrset by the DM,
but systematically varied by the optimizer. Several optation runs with dif-
ferent parameter settings are performed in order to acldeset of solutions
which approximates the Pareto-optimal set. Basicallyg fnocedure is inde-
pendent of the underlying optimization algorithm.

Some representatives of this class of techniques are thghtirey method
(Cohon 1978), the constraint method (Cohon 1978), goalrproming (Steuer
1986), and the minmax approach (Koski 1984). In place of #r®us methods,
the two first mentioned are briefly discussed here.

Weighting Method

The original MOP is converted to an SOP by forming a linear looration of
the objectives:

maximize y = f(X) = wy - f1(X) + w2 - f2(X) + ...+ wk - fk(X))

subjectto x € X (1.9)

Thew; are called weights and, without loss of generality, noreealisuch that
> w; = 1. Solving the above optimization problem for a certain nemaf
different weight combinations yields a set of solutions.

On condition that an exact optimization algorithm is usedi@hweights are
positive, this method will only generate Pareto-optimadlisons which can be
easily shown. Assume that a feasible decision vegtmaximizesf for a given
weight combination and is not Pareto optimal. Then, theaesislutionb which
dominatesa, i.e., without loss of generality;(b) > fi1(a) and fj(b) > fij(a@)
fori = 2,...,k. Therefore,f(b) > f(a), which is a contradiction to the
assumption thaf (a) is maximum.

The main disadvantage of this technique is that it cannatigee all Pareto-
optimal solutions with non-convex trade-off surfaces.sTiiillustrated in Fig-
ure 3 based on the embedded system design example. For fiigusue;, wo,
solutionx is sought to maximizg = wi- fl(x) + w2 - f2(X). This equation can
be reformulated ag,(x) = f 1(X) + =, which defines a line with slope

“’1 and mtercept— in objectlve space (SO|Id line in Figure 3). Graphically th
optlmlzatlon process corresponds to moving this line upamtil no feasible
objective vector is above it and at least one feasible olgeector (hereA and
D) is on it. However, the point8 andC will never maximizef. If the slope
is increasedD achieves a greater value df(upper dotted line); if the slope is
decreasedA has a greatef value thanB andD (lower dotted line).

Constraint Method

Another technique which is not biased towards convex postiaf the Pareto-
optimal front transform& — 1 of thek objectives into constraints. The remain-
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Fig. 3: Graphical interpretation of the weighting method (left)datime constraint method
(right).

ing objective, which can be chosen arbitrarily, is the otayecfunction of the

resulting SOP:
maximize y = f(X) = fr(X)
subjectto g(x) = fj(X) > ¢, L<i=<Kk,i#h) (1.10)
Xe Xs

The lower boundsgj, are the parameters that are varied by the optimizer in
order to find multiple Pareto-optimal solutions.

As depicted in Figure 3 on the right, the constraint methabig to obtain
solutions associated with non-convex parts of the trafletnfe. Settindh = 1
andez = r (solid line) makes the solution representedffeasible regarding
the extended constraint set, while the decision vectotaeln B maximizesf
among the remaining solutions. Figure 3 also shows a problgimthis tech-
nigue. If the lower bounds are not chosen appropriately< r’), the obtained
new feasible set might be empty, i.e., there is no solutidiéacorresponding
SOP. In order to avoid this situation, a suitable range aiesfor thes; has to
been known beforehand.

1.2.3 Discussion of Classical Methods

What makes traditional approaches attractive and why trepapular may be
attributed to the fact that well-studied algorithms for SGfan be used. For
large-scale problems, hardly amgal multiobjective optimization techniques
had previously been available (Horn 1997). By contrast,imgls-objective
optimization a wide range of heuristic methods have beemwkrtbat are capa-
ble of dealing with this complexity, e.g., random searcloatgms (Torn and
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Zilinskas 1989), stochastic local search algorithms (Harsl Pardalos 1995),
simulated annealing (Torn arifllinskas 1989), tabu search (Glover, Taillard,
and de Werra 1993), etc.

However, the preceding sections on weighting and constra@thods show
that some difficulties may also accompany classical optition strategies.

Some techniques, e.g., the weighting method, may be sengitihe shape of
the Pareto-optimal front.

Problem knowledge may be required which may not be available

Deb (1999b) mentions further potential problems with thasproaches, i.e.,
application areas where their use is restricted. More@lassical methods all
have in common that they require several optimization rensktain an ap-
proximation of the Pareto-optimal set. As the runs are peréal independently
from each other, synergies can usually not be exploited hyhit turn, may
cause high computation overhead. However, this again dispmmthe applica-
tion.

Recently, evolutionary algorithms have become estallisisean alternative
to classical methods through which i) large search spacededandled and
i) multiple alternative trade-offs can be generated inrgyka optimization run.
Furthermore, they can be implemented in a way such that kiotheoabove
difficulties are avoided.

Evolutionary Algorithms

The term evolutionary algorithm (EA) stands for a class o€kastic optimiza-
tion methods that simulate the process of natural evolufitee origins of EAs
can be traced back to the late 1950s, and since the 1970skevelutionary
methodologies have been proposed, mainly genetic algasitievolutionary
programming, and evolution strategies (Back, Hammel, Sdawefel 1997).
All of these approaches operate on a set of candidate sadutidsing strong
simplifications, this set is subsequently modified by the basic principles of
evolution: selection and variation. Selection represdrgscompetition for re-
sources among living beings. Some are better than othersnangl likely to
survive and to reproduce their genetic information. In atiohary algorithms,
natural selection is simulated by a stochastic selectiongss. Each solution
is given a chance to reproduce a certain number of times,ndiepé on their
quality. Thereby, quality is assessed by evaluating thidhgials and assigning
them scalar fitness values. The other principle, variatioitates natural capa-
bility of creating "new” living beings by means of recombiitan and mutation.

Although the underlying principles are simple, these atgors have proven
themselves as a general, robust and powerful search meaohaB&ack, Ham-
mel, and Schwefel (1997) argue that
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“[...] the most significant advantage of using evolutionsearch lies in
the gain of flexibility and adaptability to the task at hamdgombination
with robust performance (although this depends on the prololass) and
global search characteristics.”

Moreover, EAs seem to be especially suited to multiobjeabptimization be-
cause they are able to capture multiple Pareto-optimatieakiin a single sim-
ulation run and may exploit similarities of solutions by eetbination. Some
researchers suggest that multiobjective search and @atiimin might be a prob-
lem area where EAs do better than other blind search stemt€gonseca and
Fleming 1995b; Valenzuela-Rendon and Uresti-Charre 19®Ithough this
statement must be qualified with regard to the “no free luntig#brems for
optimization (Wolpert and Macready 1997), up to now theesfaw if any al-
ternatives to EA-based multiobjective optimization (H&897). The numerous
applications and the rapidly growing interest in the aremaftiobjective evo-
lutionary algorithms (MOEAS) take this fact into account.

After the first pioneering studies on evolutionary multedijve optimiza-
tion appeared in the mid-1980s (Schaffer 1984; Schaffeb1B8urman 1985),
a few different MOEA implementations were proposed in tharge 991-1994
(Kursawe 1991; Hajela and Lin 1992; Fonseca and Fleming;198&, Naf-
pliotis, and Goldberg 1994; Srinivas and Deb 1994). Latexsé approaches
(and variations of them) were successfully applied to warimultiobjective
optimization problems (Ishibuchi and Murata 1996; Cunhbyi€a, and Co-
vas 1997; Valenzuela-Rendbdn and Uresti-Charre 1997; deanand Fleming
1998b; Parks and Miller 1998). In recent years, some reseeschave in-
vestigated particular topics of evolutionary multiobjeetsearch, such as con-
vergence to the Pareto-optimal front (Veldhuizen and Lam®88a; Rudolph
1998), niching (Obayashi, Takahashi, and Takeguchi 1388) elitism (Parks
and Miller 1998; Obayashi, Takahashi, and Takeguchi 1988ije others have
concentrated on developing new evolutionary techniquesghd Eiben 1997;
Laumanns, Rudolph, and Schwefel 1998). Meanwhile, sevgealiew and re-
view articles have also become available (Fonseca and Rteh995b; Tamaki,
Kita, and Kobayashi 1996; Horn 1997; Veldhuizen and Lam&@88b; Deb
1999b; Coello 1999a).

In spite of this variety, there is a lack of studies providoggformance com-
parisons and investigation of different aspects of the reéwevolutionary ap-
proaches. The few comparative studies that have been pabtlliemain mostly
qualitative and are often restricted to a few algorithms.aA®nsequence, the
following questions have remained open:

As Horn (Horn 1997) states

“it is far from clear which, if any, approaches are superior §eneral
classes of multiobjective problems.”

The question is which EA implementations are suited to wkimtt of problem
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and what are the specific advantages and drawbacks, reshgabif different
techniques.

In contrast to SOPs, there is no single criterion to assesgtélity of a trade-off
front; quality measures are difficult to define. This mighttbe reason for the
lack of studies in that area. Up to now, there has been no suifjcommonly

accepted definition of quantitative performance metricgrialtiobjective opti-

mizers.

There is no accepted set of well-defined test problems indhenwunity. This
makes it difficult to evaluate new algorithms in comparisatihwexisting ones.

The various MOEASs incorporate different concepts, e.gtiset and niching,
that are in principle independent of the fitness assignmetihod used. How-
ever, it is not clear what the benefits of these concepts ave.inBtance, the
question of whether elitism can improve multiobjectiversban general is still
an open problem.

Overview

The above issues sketch the scope of the present work artimeke following
research goals:

. Comparison and investigation of prevailing approaches.

. Improvement of existing MOEAS, possible development ok, alternative

evolutionary method.

. Application of the most promising technique to real-wigsfoblems in the do-

main of system design.

The first aspect aims at finding advantages and disadvaraatiesdifferent ap-
proaches and yielding a better understanding of the effaxtshe differences of
the various methods. This involves the careful definitioqudntitative perfor-
mance measures which ideally allow for different qualitiyesra. Furthermore,
appropriate test functions have to be designed that i) aderstandable and
easy to formulate, ii) represent essential aspects of ¢alpapplications, and
iii) test for various types of problem difficulty. The lasem is important for
identifying those problem features which cause the mostdify for MOEASs
to converge to the Pareto-optimal front. The comparisoo @sludes the ex-
amination of further factors of evolutionary search sucp@sulations size and
elitism. As a result, these investigations may either ¢buate to the problem
of sampling the search space more efficiently by improvingteg methods or
lead to the development of a new evolutionary approach. lligjiriee insights
gained from the comparison as well as the improvements\aathiill be used
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to address individual system design problems in compuggnegring. Usually,
these applications are by far too complex to be handled bgteimization
algorithms.

This monograph is divided into two parts. The first part (Geep2 and 3)
is devoted to the research goals one and two, while the apjolicside, which
is related to the third research goal, is treated in the sbpamnt (Chapters 4
and 5).

In Chapter 2, the key concepts of evolutionary multiobjectptimization
are discussed including a brief overview of salient MOEA liempentations.
In addition, a new evolutionary approach is presented anigersal elitism
scheme for MOEAs is proposed.

The comparison of different MOEA implementations is thejeabof the
third chapter. First, several quantitative performancesnees are introduced
and discussed, and the experimental design is fully detailéen, two kinds
of test problems are investigated. On the one hand, two N& jablems
are considered, the 0/1 knapsack problem and the travediegrean problem,
which are reformulated as MOPs. On the other hand, a set afosiinuous
functions is defined which test for different problem diffites separately.

In Chapter 4, the first application, the automated syntregsiemplex hard-
ware/software systems, is described. Three evolutiongpyoaches are com-
pared on this problem, and a design space exploration fatepviodec exam-
ple is performed with regard to the optimization criterisgerformance, and
power dissipation.

The second application (Chapter 5) addresses the problentamatically
generating software implementations for programmabléaligignal proces-
sors from dataflow specifications. Although being compatetily more ex-
pensive than existing state of the art algorithms, an EA @swshto find better
solutions in a reasonable amount of run-time when only orjectibe (data
memory requirement) is considered. Furthermore, the fpgematic multiob-
jective optimization framework for this problem is presshiwhich takes the
three objectives execution time, program memory requirgnad data mem-
ory requirement into account. The approach is demonstatieal sample rate
conversion system, where the trade-off fronts for a numbeed-known, com-
mercial digital signal processors are analyzed. MoredwerMOEAS are com-
pared on eleven practical digital signal processing appbas.

Finally, Chapter 6 summarizes the fundamental results isfttiesis and
offers future perspectives.
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Evolutionary Algorithms for Multiobjective
Optimization

Due to their inherent parallelism, EAs have the potentiafimding multiple
Pareto-optimal solutions in a single simulation run. Hogrewith many com-
plex applications it is not possible to generate noninfes@utions, much less
the entire Pareto-optimal set. Therefore, the optimiregioal for an MOP may
be reformulated in a more general fashion based on threetolgs:

The distance of the resulting nondominated front to the tBasptimal front
should be minimized.

A good (in most cases uniform) distribution of the solutiémsnd is desirable.

The spread of the obtained nondominated front should bermaed, i.e., for
each objective a wide range of values should be covered byahdominated
solutions.

The subject of this chapter is the question of how these salbgan be attained
in evolutionary multiobjective search. After the basianerology and the flow
of a general EA have been outlined in Section 2.1, fundarhielgias of MOEAS
are introduced in the following section, where in particudle differences be-
tween evolutionary single-objective and multiobjectiypdéimization are worked
out. Then, a brief summary of five salient evolutionary apgtes to multiob-
jective optimization is presented which will be later, indpter 3, empirically
compared on various test problems. Section 2.4 introdunesvaMOEA which
combines several features of previous evolutionary mhjkictive optimizers in
a unique manner, and in the last section a universal mechdaigrevent losing
nondominated solutions during the search process is pedpos
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2.1

Basic Principles of Evolutionary Algorithms

In general, an EA is characterized by three facts:

. a set of solution candidates is maintained, which
. undergoes a selection process and

. is manipulated by genetic operators, usually recominnand mutation.

By analogy to natural evolution, the solution candidatescaalledindividuals
and the set of solution candidates is called plopulation Each individual
represents a possible solution, i.e., a decision vectahdgroblem at hand
where, however, an individued nota decision vector but rather encodes it based
on an appropriate structure. Without loss of generalitg, structure is assumed
to be a vector here, e.g., a bit vector or a real-valued veattrough other
structures like trees (Koza 1992) might be used as well; ¢hefsall possible
vectors constitutes thiedividual spacel | In this terminology, the population
is a set of vectors € |, to be more precise a multi-set of vectors since it can
contain several identical individuals.

In the selection process, which can be either stochasticraptetely deter-
ministic, low-quality individuals are removed from the pdgtion, while high-
quality individuals are reproduced. The goal is to focussis@ch on particular
portions of the search space and to increase the averaggy quitiin the pop-
ulation. The quality of an individual with respect to the ioptzation task is
represented by a scalar value, the so-cdilagss Note that since the quality
is related to the objective functions and the constraimtsndividual must first
be decoded before its fitness can be calculated. This situiillustrated in
Figure 4. Given an individudl € 1. A mapping functiorm encapsulates the
decoding algorithm to derive the decision veckoe= m(i) fromi. Applying
f to x yields the corresponding objective vector on the basis a€kvh fitness
value is assigned tia

Recombination and mutation aim at generating new solutwitisin the
search space by the variation of existing ones. The crossparator takes
a certain number of parents and creates a certain numbeilafechby recom-
bining the parents. To mimic the stochastic nature of eumbta crossover
probability is associated with this operator. By contrés¢, mutation operator
modifies individuals by changing small parts in the assediatectors accord-
ing to a given mutation rate. Both crossover and mutatiorraipe work on
individuals, i.e., in individual space, and not on the destbdecision vectors.

Based on the above concepts, natural evolution is simulateuh iterative
computation process. First, an initial population is cedaat random (or ac-
cording to a predefined scheme), which is the starting pdithe evolution
process. Then a loop consisting of the steps evaluatior¢itassignment), se-
lection, recombination, and/or mutation is executed aagerumber of times.
Each loop iteration is called generation and often a predefined maximum
number of generations serves as the termination critefficimecloop. But also
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individual spacel decision space&X objective spate

individual i decision vectox objective vectory

mapping functionm objective functionf

x=m() y=f&)

Fig. 4:

Alg. 1.

Relation between individual space, decision space, arettbg space.

other conditions, e.g., stagnation in the population ostexice of an individual
with sufficient quality, may be used to stop the simulatiohthe end, the best
individual(s) in the final population or found during the ie@evolution process
is the outcome of the EA.

In the following, the basic structure of an EA, as it is usewtighout this
work, is formalized. The populatioR at a certain generatianis represented
by the symbolP¢, and the symbol stands for multi-set union in conjunction
with populations.

(General Evolutionary Algorithm)

Input: N (population size)
T (maximum number of generations)
pc  (crossover probability)
Pn  (mutation rate)

Output: A (nondominated set)

Step 1. Initialization: SetPy =@ andt=0. Fori =1,..., N do
a) Choossd ie | according to some probability distribution.
b) Setfy = Po+{i}.
Step 2: Fitness assignment: For each individualii € P; determine the en-

coded decision vectat x m(i) as well as the objective vectgr ¢
f (X) and calculate the scalar fitness valuéil-

Step 3: Selection: SetP =¢. Fori =1,..., N do

a) Select one individudl E P; according to a given scheme and
based on its fitness value(B.
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b) SethP = P’ + {i}.

The temporary populatioP'Rs called themating pool
Step 4. Recombination: SetP’ =@. Fori =1,..., % do

a) Choose two individuals ij € P" and remove them fro®'P

b) Recombiné and j. The resulting children ar&Hd < I.

c) Addk | to P” with probability p.. Otherwise add, j to P”.
Step 5: Mutation: SetP” = ¢. For each individualie P” do

a) Mutateiiwith mutation rate g,. The resulting individual i§ je

l.

b) Setl® = P"” +{j}.
Step 6: Termination: Set®,; = P”andt=t+ 1. Ift > T or an-

other stopping criterion is satisfied then $&t=Ap(m(P;)) else go to

Step 2.
It must be emphasized that this algorithm does not reflect AnnEts most
general form as, e.g., the population size need not be aestrand recombi-
nation can also involve more than two parents. Moreoverrgelaumber of
selection, crossover, and mutation operators have begroged for different
representations, applications, etc. which, however, ateresented here. A
thorough discussion of the various aspects of EAs can bealfouthe following
standard introductory material (Goldberg 1989; Koza 1¥ijel 1995; Back
1996; Mitchell 1996).

2.2 Key Issues in Multiobjective Search

As mentioned at the beginning of this chapter, with an MOPgbgmization
goal itself consists of multiple objectives. According teetthree objectives
listed on page 19, two major problems must be addressed wheA & applied
to multiobjective optimization:

. How to accomplish fitness assignment and selection, casply, in order to

guide the search towards the Pareto-optimal set.

. How to maintain a diverse population in order to preveahature convergence

and achieve a well distributed and well spread nondomirsged

In the following, a categorization of general techniquescivtdeal with these
issues is presented. The focus here is on cooperative pimpus@arches where
only one optimization run is performed in order to approxienthe Pareto-
optimal set. Moreover, another issue, elitism, is brieflycdssed since it is
different and more complicated with MOPs than with SOPs.
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Fitness Assignment and Selection

In contrast to single-objective optimization, where ohjexfunction and fithess
function are often identical, both fithess assignment algtgen must allow for
several objectives with MOPs. In general, one can distslgMOEAS where
the objectives are considered separately, approachearthbbsed on the clas-
sical aggregation techniques, and methods which maket disecf the concept
of Pareto dominance.

Selection by Switching Objectives

Instead of combining the objectives into a single scalae$ignvalue, this class
of MOEASs switches between the objectives during the selagbhase. Each
time an individual is chosen for reproduction, potentialdifferent objective
will decide which member of the population will be copiedaihe mating pool.
As a consequence, Steps 2 and 3 of the general EA flow on page Rually
integrated or executed alternately.

For example, Schaffer (1985) proposed filling equal podiohthe mating
pool according to the distinct objectives, while Fourma®83) implemented a
selection scheme where individuals are compared with detgaa specific (or
random) order of the objectives. Later, Kursawe (1991) satgyl assigning a
probability to each objective which determines whetheabjective will be the
sorting criterion in the next selection step—the probébgican be user-defined
or chosen randomly over time. All of these approaches mag hdwas towards
“extreme” solutions and be sensitive to non-convex Paogtornal fronts (Horn
1997).

Aggregation Selection with Parameter Variation

Other MOEA implementations build on the traditional teacjues for generat-
ing trade-off surfaces (cf. Section 1.2). As with these rod#) the objectives
are aggregated into a single parameterized objectiveiumdiowever, the pa-
rameters of this function are not changed for differentroation runs, but in-
stead systematically varied during the same run. Some aplpes (Hajela and
Lin 1992)(Ishibuchi and Murata 1996), for instance, usevikeghting method.
Since each individual is assessed using a particular we@hbination (either
encoded in the individual or chosen at random), all membietiseopopulation
are evaluated by a different objective function. Henceinoigation is done in
multiple directions simultaneously. Nevertheless, thieptial disadvantages of
the underlying scalarization method (e.g., a bias towandse&x portions of the
Pareto-optimal front) may restrict the effectiveness chsdMOEAs (Veldhuizen
1999).

Pareto-based Selection

The concept of calculating an individual’s fithess on thesagPareto domi-
nance was first suggested by Goldberg (1989). He presentexyaliitionary
10-line sketch” (Deb 1999b) of an iterative ranking proaeduFirst all non-
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dominated individuals are assigned rank one and tempprarioved from the
population. Then, the next nondominated individuals aseggagd rank two and
so forth. Finally, the rank of an individual determines itsidiss value. Re-
markable here is the fact that fithess is related to the whotilation, while
with other aggregation techniques an individual’s raw 88wealue is calculated
independently of other individuals.

This idea has been taken up by numerous researchers, mgsimtisev-
eral Pareto-based fithess assignment schemes, e.g, (B@mEEleming 1993;
Horn, Nafpliotis, and Goldberg 1994; Srinivas and Deb 199%jhough this
class of MOEASs is theoretically capable of finding any Paigttmal solution,
the dimensionality of the search space may influence itopegnce, as noted
by Fonseca and Fleming (1995b):

"[...] purePareto EAs cannot be expected to perform well on problems
involving many competing objectives and may simply fail toguce sat-
isfactory solutions due to the large dimensionality and stze of the
trade-off surface.”

Even so, Pareto-based techniques seem to be most popuiarfialtl of evolu-
tionary multiobjective optimization (Veldhuizen and Lamd 998b).

Population Diversity

In order to approximate the Pareto-optimal set in a singl@opation run,
evolutionary optimizers have to perform a multimodal skashere multiple,
widely different solutions are to be found. Therefore, nimng a diverse
population is crucial for the efficacy of an MOEA. Unfortualgt a simple (eli-
tist) EA tends to converge towards a single solution andhdéises solutions due
to three effects (Mahfoud 1995): selection pressure, 8efenoise, and opera-
tor disruption. The selection pressure is often definednmseof the takeover
time, i.e., the time required until the population is conglefilled by the best
individual when only selection takes place (Back 1996)e&n noise refers
to the variance of a selection scheme, while operator dismipelates to the de-
structive effects which recombination and mutation mayeh@vg., high-quality
individuals may be disrupted). To overcome this problemesd methods have
been developed; the ones most frequently used in evolutianaltiobjective
optimization are briefly summarized here.

Fitness Sharing

Fitness sharingGoldberg and Richardson 1987), which is the most frequent!
used technique, aims at promoting the formulation and reaarice of stable
subpopulationsniches. It is based on the idea that individuals in a particular
niche have to share the available resources. The more dhudilg are located in
the neighborhood of a certain individual, the more its fitnemue is degraded.
The neighborhood is defined in terms of a distance meakiirg ) and speci-
fied by the so-callediche radiusrshare Mathematically, the shared fitneBsi )
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of anindividuali € P is equal to its old fitnesB’(i ) divided by itsniche count

] F/(i)
F = — 2.1
=S sdi, ) 1)

An individual’s niche count is the sum gharing function(s) values between
itself and the individuals in the population. A commonlyedssharing function
is

di. )\ ..
S(d(l ) j)) = 1- <Ushare) If d(l ’ j) < Oshare (22)
0 otherwise

Furthermore, depending on how the distance functi@n j) is defined, one
distinguishes three types of sharing:

. fitness sharing in individual spaad{, j) = |li — j|I),
. fitness sharing in decision spacki( j) = ||[m(i) — m(j)|)), and

. fitness sharing in objective spacki(, j) = || f (m(i)) — f(m(j))])),

where|| - || denotes an appropriate distance metric. Currently, modERMm-

plement fitness sharing, e.g., (Hajela and Lin 1992; Fonaeddleming 1993;
Horn, Nafpliotis, and Goldberg 1994, Srinivas and Deb 198¢Eenwood, Hu,
and D’Ambrosio 1996; Todd and Sen 1997; Cunha, Oliviera,@onhs 1997).

Restricted Mating

Basically, two individuals are allowed to mate only if they avithin a certain
distance of each other (given by the parametgsid. As with fithess shar-
ing, the distance of two individuals can be defined in indiribspace, decision
space, or objective space. This mechanism may avoid theafamof lethal in-
dividuals and therefore improve the online performancezextbeless, as men-
tioned in (Fonseca and Fleming 1995b), it does not appeag widkespread in
the field of MOEASs, e.g., (Hajela and Lin 1992; Fonseca andniflg 1993;
Loughlin and Ranjithan 1997).

Isolation by Distance

This type of diversity mechanism assigns each individuatation (Ryan 1995)
where in general two approaches can be distinguished.rEthgatial structure
is defined on one population such that spatial niches carvewnlthe same
population, or there are several distinct populations tvldnly occasionally
exchange individuals (migration). Poloni (1995), for arste, used a distributed
EA with multiple small populations, while Laumanns, Rudulpnd Schwefel
(1998) structured the population by an underlying graphy@adimensional
torus, where each individual is associated with a differente.
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2.2.2.6

2.2.3

Overspecification

With this method, the individual contains active and inaetparts: the for-
mer specify the encoded decision vector, the latter arenciatht and have no
function. Since inactive parts can become active and vicgavauring the evo-
lution, information can be hidden in an individual. Diplgi@Goldberg 1989) is
an example of overspecification that is used in the MOEA pseddy Kursawe
(1991).

Reinitialization

Another technique to prevent premature convergence isriiadize the whole
or parts of the population after a certain period of time oendver the search
stagnates. For example, Fonseca and Fleming (1998a) prdsennified for-
mulation of evolutionary multiobjective optimization wigeat each generation
a small number of random immigrants is introduced in the patmn.

Crowding

Finally, crowding(De Jong 1975) and its derivates seem to be rather seldomly
implemented in MOEAS, e.g., (Blickle 1996). Here, new induals (children)
replace similar individuals in the population. In contrsflgorithm 1, not the
whole population is processed by selection, recombinaaod mutation, but
only a few individuals are considered at a time.

Elitism

De Jong (1975) suggested a policy to always include the bdstidual of Py
into P;,1 in order to prevent losing it due to sampling effects or opmardis-
ruption. This strategy, which can be extended to copyothest solutions to the
next generation, is denoted alitism In his experiments, De Jong found that
elitism can improve the performance of a genetic algorittmuoimodal func-
tions, while with multimodal functions it may cause prenmratgonvergence.
In evolutionary multiobjective optimization, elitism gla an important role, as
will be shown in the next chapter.

As opposed to single-objective optimization, the incogbion of elitism in
MOEAs is substantially more complex. Instead of one besividdal, there
is an elite set whose size can be considerable compared theation, for
instance, when the Pareto-optimal set contains an infiniteler of solutions.
This fact involves two questions which must be answeredigdbntext:

Population = Elite Set:
Which individuals are kept for how long in the elite set?

Elite Set— Population:
When and how are which members of the elite set re-insertedhie popula-
tion?

In general, two basic elitist approaches can be found in MOtefature. One
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strategy, which directly uses De Jong’s idea, is to copyedhodividuals from
P; automatically toP;,1 whose encoded decision vectors are nhondominated
regardingm(Py) (Tamaki, Mori, Araki, Mishima, and Ogai 1994). Sometimes
a more restricted variant is implemented where onlykhedividuals whose
corresponding objective vectors maximize one ofklodjectives constitute the
elite set (Anderson and Lawrence 1996; Murata, Ishibuaid, Banaka 1996;
Todd and Sen 1997). Also the so-called 1) selection mainly used in the
area of evolutionary strategies (Back 1996) belongs tdlaiss of elitist strate-
gies. For example, Rudolph (1998) examined a simplifiedopisf the MOEA
originally presented in (Kursawe 1991) which is based orij-kelection.

Often used is also the concept of maintaining an externaPsef indi-
viduals whose encoded decision vectors are nondominated@ail solutions
generated so far. In each generation, a certain percenfdabge population is
filled up or replaced by members of the external set—thesebaesyare either
selected at random (Cieniawski, Eheart, and Ranjithan;18BBbuchi and Mu-
rata 1996) or according to other criteria, such as the peahatian individual
has stayed in the set (Parks and Miller 1998). Since theredteet may be con-
siderably larger than the population, Parks and Miller @3&nly allow those
individuals to be copied into the elite set which are suffidiedissimilar to the
existing elite set members.

Occasionally, both of the above two elitist policies are legop(Murata,
Ishibuchi, and Tanaka 1996; Todd and Sen 1997).

2.3 Overview of Evolutionary Techniques

Five of the most salient MOEAS have been chosen for the caatiparstudies
which will be presented in the next chapter. A brief summdrheir main fea-

tures and their differences is given in the following. Foharbugh discussion
of different evolutionary approaches to multiobjectiveioypzation, the inter-

ested reader is referred to (Fonseca and Fleming 1995b; 18Ty Veldhuizen
and Lamont 1998b; Coello 1999a).

2.3.1  Schaffer's Vector Evaluated Genetic Algorithm

Schaffer (1984, 1985) presented an MOEA calledtor evaluated genetic al-
gorithm(VEGA) which is a representative of the category selectipswitch-

ing objectives. Here, selection is done for each ofklabjectives separately,
filling equally sized portions of the mating pool. That isgf 2 and 3 of
Algorithm 1 are executell times per generation, respectively replaced by the
following algorithm:

Alg. 2: (Fitness Assignment and Selection in VEGA)

Input: P: (population)
Output: P’ (mating pool)
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2.3.2

Alg. 3:

Step 1. Seti= 1and mating poolPP = ¢.
Step 2: For each individualie P; do F(i) = fi(m()).

Step 3: For j = 1,..., N/k do select individuai from P; according to a
given scheme and copy it to the mating poel:=P P’ + {i}.

Step 4: Seti=i+ 1.
Step 5: Ifi < k then go to Step 2 else stop.

This mechanism is graphically depicted in Figure 5a wheeehibst individ-
uals in each dimension are chosen for reproduction. Aftetsyathe mating
pool is shuffled and crossover and mutation are performedaal.uSchaffer
implemented this method in combination with fithess prdpogte selection
(Goldberg 1989).

Although some serious drawbacks are known (Schaffer 1988séta and
Fleming 1995b; Horn 1997), this algorithm has been a stramgt jof reference
up to now. Therefore, it has been included in this invesigat

Hajela and Lin’s Weighting-based Genetic Algorithm

Another approach, which belongs to the category aggreyatdection with
parameter variation, was introduced in (Hajela and Lin }gB2the following
referred to as HLGA—Hajela and Lin’s genetic algorithm)isltbased on the
weighting method, and to search for multiple solutions iraflal, the weights
are not fixed but instead encoded in the individual’s vedttence, each indi-
vidual is evaluated with regard to a potentially differemight combination (cf.
Figure 5b). In detail, the fitness assignment procedure(Sia Algorithm 1)
is as follows:

(Fitness Assignment in HLGA)

Input: P: (population)
Output: F (fitness values)

Step 1: For each individualie P; do
a) Extractweightsoj (j =1,..., k) fromi.
b) SetRi)=wi- fi(mM(@i)) + ...+ wk- fk(m()).

The diversity of the weight combinations is promoted by fieharing in ob-
jective space. As a consequence, the EA evolves soluticshsvaight com-
binations simultaneously. Finally, Hajela and Lin (199&)mhasized mating
restrictions to be necessary in order to “both speed coememyand impart sta-
bility to the genetic search”.

It has been mentioned before that the weighting method erertily biased
towards convex portions of the trade-off front, which is sequently also a
problem with HLGA. Nevertheless, weighted-sum aggregadippears still to
be widespread due to its simplicity. HLGA has been choserpoesent this
class of MOEAs.
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2.3.3 Fonseca and Fleming’s Multiobjective Genetic Algothm

Fonseca and Fleming (1993) proposed a Pareto-based ramkiogdure (here
the acronym FFGA is used), where an individual’s rank eqtr@snumber of
solutions encoded in the population by which its correspandecision vector
is dominated. The fitness assignment procedure (Step 2 wrifigh 1), which

slightly differs from Goldberg’s suggestion (cf. Sectior22.3), consists of
three steps:

Alg. 4: (Fitness Assignment in FFGA)

Input: P: (population)
oshare (Niche radius)
Output: F (fitness values)

Step 1: Foreachii e P; calculateitsrank: i) = 1+1|{j | j € PtAj =i}

Step 2: Sort population according to the ranking r. Assign each P; a raw
fitness F(i) by interpolating from the best (r) = 1) to the worst
individual (r(i) < N); in this work linear ranking (Baker 1985) is
used.

Step 3: Calculate fitness values(F) by averaging and sharing the raw fithess
values F(i) among individuald ie P; having identical ranks € )
(fitness sharing in objective space).

Note that the symbdl- | used in Step 1 denotes the number of elemenZim
conjunction with a (multi) seZ.

In Figure 5c, a hypothetical population and the correspupdanks of the
individuals are shown. The individuals whose associatedisas are nondom-
inated regardingn(P) have rank 1 while the worst individual was assigned
rank 10. Based on the ranks, the mating pool is filled usinghststic universal
sampling (Baker 1987).

The basic concept has been extended meanwhile by, e.gtivedaimess
sharing and continuous introduction of random immigraRtsx6eca and Flem-
ing 1995a; Fonseca and Fleming 1998a), which is, howeveregarded here.

2.3.4 Horn, Nafpliotis, and Goldberg’s Niched Pareto Genet Algorithm

The niched Pareto genetic algorithm (NPGA) proposed in iHord Nafplio-
tis 1993)(Horn, Nafpliotis, and Goldberg 1994) combinagt@ament selection
(Blickle and Thiele 1996) and the concept of Pareto domieamthe following
way (Steps 2 and 3 of Algorithm 1):

Alg. 5: (Fitness Assignment and Selection in NPGA)

Input: Py  (population)

oshare (niche radius)

tdom (domination pressure)
Output: P’ (mating pool)
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2.3.5

Alg. 6:

Step 1. Seti= 1and mating poolPP = ¢.

Step 2: Select two competitoris j € P; and a comparison seRBmn C P;
of tygom individuals at random (without replacement).

Step 3: If m(i) is nondominated regardin(® 4o and mm(j) is not thenii
is the winner of the tournamenP’P= P’ + {i}.

Step 4: Else if m(j) is nondominated regardingn@®gom) and mm(i) is not
then jjis the winner of the tournamen®’P= P’ + {j}.

Step 5: Else decide tournament by fitness sharing:

a) Calculate the number of individuals in the partially fdlenating
pool that are inogharedistance toii n(i) = |{k | k € P' A
d(i, K) < osharg|. DO the same fojj.j

b) Ifni) <n(j)thenP =P’ + {i} else® = P’' + {j}.
Step 6: Seti=1i+ 1. Ifi < N then go to Step 2 else stop.

The slightly modified scheme of fithess sharing which is immated in Step 4
operates in the objective space.

The mechanism of the binary Pareto tournaments is illuedrit Figure 5d:
two competing individuals and a set t, individuals are compared. The
competitor represented by the white point is the winner eftturnament since
the encoded decision vector is not dominated with regardeg@omparison set
in contrast to the other competitor.

Srinivas and Deb’s Nondominated Sorting Genetic Alg@thm

Among the Pareto-based MOEAs, Srinivas and Deb (1994) map&mented
Goldberg’s sketch most directly. The different trade-odits in the population
are, figuratively speaking, peeled off step by step (cf. Fadhe), and fithess
sharing is performed for each front separately in order tintae diversity.
In detail, fitness assignment is accomplished by an itexgirecess (Step 2 in
Algorithm 1):

(Fitness Assignment in NSGA)

Input: P: (population)
oshare (Niche radius)
Output: F (fitness values)

Step 1. SetMBemain = Pt and initialize the dummy fithess valug With N.

Step 2: Determine sePRongomOf individuals in Bemain Whose decision vec-
tors are nondominated regardimg(R emain). Ignore them in the fur-
ther classification process, i.eP,d?hain = Premain — Pnondom (multi-
set subtraction).

Step 3: Set raw fitness of individuals iR Bhdomt0 Fq and perform fithess
sharing in decision space, however, onligthin Pnondom
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2.4

Step 4. Decrease the dummy fitness valug deich that it is lower than the
smallest fitness i Rndom 0 < Fq < min{F (i) | i € Pnondon-

Step 5: If Premain # ¥ then go to Step 2 else stop.

Note that high fithess values correspond here to high reptmfuprobabilities
and that fithess sharing is done in decision space, whichisany to FFGA and
NPGA. In the original study (Srinivas and Deb 1994), thisdgs assignment
method was combined with a stochastic remainder seledBotdperg 1989).

Strength Pareto Evolutionary Algorithm

Here, a new approach to multiobjective optimization,gtrength Pareto evolu-
tionary algorithm(SPEA), is introduced. SPEA uses a mixture of established
and new techniques in order to approximate the Pareto-apset. On one
hand, similarly to other MOEASs, it

stores those individuals externally that represent a narmaited front among
all solutions considered so far (cf. Section 2.2.3);

uses the concept of Pareto dominance in order to assigir Sitadess values to
individuals; and

performs clustering to reduce the number of individualedlly stored with-
out destroying the characteristics of the trade-off front.

On the other hand, SPEA is unique in four respects:
It combines the above three techniques in a single algorithm

The fitness of a population member is determined only frominlklé/iduals
stored in the external set; whether individuals in the papoh dominate each
other is irrelevant.

All individuals in the external set participate in seleatio

A new Pareto-based niching method is provided in order tsgike diversity
in the population.

The flow of the algorithm is as follows (the recombination andtation
steps are identical to Algorithm 1).

1This algorithm was first published in (Zitzler and Thiele 889 and subsequently in (Zit-
zler and Thiele 1999) and has been discussed by differesurelsers (Deb 1998; Deb 1999b;
Veldhuizen 1999).
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Alg. 7.

(Strength Pareto Evolutionary Algorithm)

Input:

Output:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:
Step 6:
Step 7:

N (population size)

N (maximum size of external set)

T (maximum number of generations)
pc  (crossover probability)

Pm  (mutation rate)

A (nondominated set)

Initialization: Generate an initial populatiorPB according to Step 1
in Algorithm 1 and create the empty external Bgt= ¢. Set t= 0.

Update of external set: Set the temporary external Bt = Ps.

a) Copy individuals whose decision vectors are nondomehege
gardingmP) to P: P = P +{i | i € PrAmi) e
p(m(Py))}.

b) Remove individuals froR whose corresponding decision vec-
tors are weakly dominated regardirrg(ﬁ) i.e., as long as
there eX|sts a paiti, j) withi, j € P and mi) > m(j) do
P =P —(j).

c) Reduce the number of individuals externally stored bynae

clustering, i.e., call Algorithm 9 with parameteﬁ/ andN, and
assign the resulting reduced setRy. ;.

Fitnessassignment: Calculate fitness values of individuals # Bnd

P: by invoking Algorithm 8.

Selection: SetP =¢. Fori =1,..., N do

a) Select two individuals,ij € Py + Py at random.

b) If F(i) < F(j)then® = P’ +{i} else® = P’ + {j}. Note
that fitness is to be minimized here (cf. Section 2.4.1).

Recombination: ...

Mutation: ...

Termination: Set®,; = P” andt=t+ 1 Ift > T or an-
other stopping criterion is satisfied then &t=Ap(m(P;)) else go to
Step 2.

The main loop of the algorithm is outlined in Figure 6. At thegbning
of each loop iteration (Step 2), the external &eis updated and reduced if
its maximum sizeN is overstepped. Then, individuals P and P are eval-
uated interdependently from each other and assigned fitradsss. The next
step represents the selection phase where individualsRerP, the union of
population and external set, are selected in order to filhthéng pool—here,
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populationP

@ update of external set

© fitness assignmen

mutation@®
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recombination@@® o

external seP

mating poolP’

Fig. 6: Basic steps in the strength Pareto evolutionary algorithihe numbers of the steps are
in accordance with Algorithm 7.

binary tournament selection with replacement is used. llginossover and
mutation operators are applied as usual.

In the next two sections, the fithess assignment mechanisgoiitm 8) as
well as the clustering procedure (Algorithm 9) are desctilpedetail.

2.4.1 Fitness Assignment

The fitness assignment procedure is a two-stage process, the individuals
in the external seP are ranked. Afterwards, the individuals in the populatfon
are evaluated. The following procedure corresponds to SteAlgorithm 1.

Alg. 8: (Fitness Assignment in SPEA)

Input: Et (population)
P: (external set)
Output: F (fitness values)

Step 1: Each individualii e Py is assigned a real value(® < [0, 1), called
strengti; S(i) is proportional to the number of population members

2This term is adopted from (Holland 1992) where it was intrcetliin the context of classi-
fier systems; it stands for a quantity summarizing the usefid of a rule. Here, it reflects the
usefulness of a nondominated solution.
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j € P for whichmm(i) > m(j):

I{i 1] € Peam() > m(j)}
N+ 1

The fitness of is equal to its strength: A) = S(i).

Step 2: The fitness of an individual g P is calculated by summing the
strengths of all externally stored individualsd P; whose decision
vectors weakly dominate). We add one to the total in order to
guarantee that members &; have better fithess than members of
P; (note that fitness is to be minimized here, i.e., small fituakges
correspond to high reproduction probabilities):

F(j)=1+ > S(i) where Kj) €[1, N).

iePy,m(@)>=m(j)

Si) =

To make the effect of this ranking method clear, take a lookigtire 5f.
Graphically, the objective space which is dominated by tredicision vectors
represented by the white points is divided into distinctargles. Each subset
P’ of P defines one such rectangle which represents the region objketive
space dominated by all decision vectorsmiP’) in common. For instance,
the dark-shaded rectangle in the lower-left corner is dateith by all decision
vectors inm(P), while the upper-left bright-shaded rectangle is only duated

by onex € m(P). These rectangles are considered as niches, and the goal is t

distribute the individuals over this “grid” such that

a) (brighter-shaded) rectangles dominated by only aXew P contain more
individuals than (darker-shaded) rectangles that are dat®d by manx € P,
and

b) arectangle comprises as many individuals as other (ggsizded) rectangles
which are dominated by the same number of decision vectarg B).

This mechanism intuitively reflects the idea of preferringividuals near the
Pareto-optimal front and distributing them at the same thoag the trade-off
surface. In Figure 5f, the first aspect can be easily seeividudls located in
the bright rectangles achieve better fithess values tharethaining population
members. To demonstrate the second aspect, imagine threeobjective vec-
tors plotted in the lower rectangle containing one indialdwith fithess the 96
(cf. Figure 7). The corresponding externally stored irdlivli gets “stronger”
(S(i) = 6/9), and as a result, the crowded niche is diminished relgtive
fitness (1%9), while the individual in the other of the two rectanglepioves
(12/9).

The main difference with fithess sharing is that niches atedefined in
terms of distance but Pareto dominance. This renders ttirgsef a distance
parameter superfluous, although the paramiténfluences the niching capa-
bility, as will be discussed in the next section. Furthergpdrr has to be men-
tioned that this kind of fitness assignment using two int@nggopulations has
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Demonstration of the niching mechanism used in SPEA. Byradtiree individuals
to a particular niche, the reproduction probabilities @ tiche members are decreased
(i.e., the fitness values are increased).

been inspired by (Forrest and Perelson 1991; Smith and $td892; Smith,

Forrest, and Perelson 1993; Forrest, Javornik, Smith, anel$dn 1993; Pare-
dis 1995). Paredis (1995) studied the use of cooperatinglptpns in EAs

and showed that symbiotic evolution can speed up the seaocess. In (For-

rest and Perelson 1991; Smith and Forrest 1992; Smith, $tpaed Perelson
1993; Forrest, Javornik, Smith, and Perelson 1993), a airadncept was ap-
plied to immune system models in which two cooperative pafpahs were used
to maintain population diversity; Smith, Forrest, and e (1993) reported
that this method has emergent properties which are sinalitrtess sharing.
However, preliminary investigations indicated that it iffidult to directly use

these concepts in evolutionary multiobjective optimiaati Two implementa-
tions, which were based on the above ideas, were found taffatiently cover

the Pareto-optimal set with a simple test function propdse8chaffer (1984)
(cf. next section).

Reducing the Nondominated Set by Clustering

In certain problems, the Pareto-optimal set can be extielagje or even con-
tain an infinite number of solutions. However, from the DM of view, pre-
senting all nondominated solutions found is useless wheintlumber exceeds
reasonable bounds. Moreover, the size of the externalfagtintes the behavior
of SPEA. On the one hand, sin€eparticipates in selection, too many external
individuals might reduce selection pressure and slow ddwrsearch (Cunha,
Oliviera, and Covas 1997). On the other hand, the strengtiing mechanism
relies on a uniform granularity of the “grid” defined by thetexal set. If the
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Fig. 8:

Alg. 9:
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The principles of pruning a nondominated set: i) solutioltse& to each other are
grouped into clusters, ii) per cluster a representativetsnl is determined, and iii) the
remaining solutions are removed from the set. Note thatdlastering is performed in
objective space, although distance may also be defined isidespace or individual
space.

individuals in P are not distributed uniformly, the fitness assignment m#tho
is potentially biased towards certain regions of the seapate, leading to an
unbalance in the population. Thus, pruning the externalvbde maintaining
its characteristics might be necessary or even mandatory.

A method which has been applied to this problem successinitlystudied
extensively in the same context is cluster analysis (Mog&®)(Rosenman and
Gero 1985). In general, cluster analysis partitions a cbhta of p elements
into g groups of relatively homogeneous elements, witgre p. The aver-
age linkage methqd clustering approach that has proven to perform well on
this problem (Morse 1980), has been chosen here. The untgpyinciple is
illustrated in Figure 8.

(Clustering)

Input: P (external set)
N (maximum size of external set)
Output: Pi;1 (updated external set)

Step 1: Initialize cluster set C; each individual & P’ constitutes a distinct
cluster: C= |, g {{i}}.

Step 2: If |C| < N, go to Step 5, else go to Step 3.

Step 3: Calculate the distance of all possible pairs of clusterse Tistance
dc of two clusters ¢ and @ € C is given as the average distance
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between pairs of individuals across the two clusters

1
do= —— . E d(iq,i
ST (2. 12)

i]_ECl,i2€CQ

where the function d reflects the distance between two ohaiVsiiy
andiio (here the distance in objective space is used).

Step 4: Determine two clusters@nd ¢ with minimal distance g the chosen
clusters amalgamate into a larger cluster: € C\ {c1, co}U{c1UCy}.
Go to Step 2.

Step 5: Per cluster, select a representative individual and remalNether
individuals from the cluster . We consider the centroid ftbant with
minimal average distance to all other points in the clustes)the
representative individual. Compute the reduced nondotathaet by
uniting the representatives of the clustePx,1 = Ucec C-

The effect of this clustering procedure is demonstratediguré 9, which
shows the outcomes of three SPEA runs and one VEGA run on destegt
function used by Schaffer (1984):

minimize f(xX) = (f1(X), f2(X))
subjectto f1(x) = x2 (2.3)
fo(x) = (x — 2)2

The Pareto-optimal se&X consists of all solutions & x < 2, the corre-
sponding trade-off front i¥ , = {(y1,y2) € Y |0 <y1 <4A0=<y, <4}
For SPEA three different combinations of population sizeé external set size
were tried (935, 70/30, 3Q/70), where in each casé+N = 100, while VEGA
used a population size of 180As can be observed from Figure 9, the objec-
tive vectors represented by the external set well appraeitine Pareto-optimal
front depending on the parametér Moreover, in comparison to VEGA, SPEA
evolved more Pareto-optimal solutions and distributedntimeore uniformly
along the trade-off front.

Cunha et al. (Cunha, Oliviera, and Covas 1997) also combinBtDEA
with a clustering approach in order to achieve reasonaladsnondominated
sets. This algorithm, however, uses a different clustemm&hod which has
been proposed in (Rosenman and Gero 1985); thereby, foragebtive, a
tolerance value must specified. Moreover, it differs fronE8Rwvith regard to
the following two aspects: i) no external set is maintairaed] ii) fithess sharing
is incorporated to preserve diversity in the population.

3A 14-bit vector was used to encode real numbers betwegand 6; the other parameters
were: pc = 1, pm = 0, andT = 100. Furthermore, each run was performed using the same
initial population. Although only limited weight can be @ to a single run per parameter
combination, the results looked similar when the simutatiowere repeated with different initial
populations.
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Fig. 9: Performance of SPEA and VEGA on Schaffer’s test functionthV8PEA the boxes
represent the individuals included in the external seteagtid of each run; with VEGA
all nondominated solutiors € p(m(U;_,P;)) are plotted in objective space.

2.5 Universal Elitism Scheme

The elitism mechanism used in SPEA can be generalized forpocation in
arbitrary MOEA implementations. The only difference isttttze population
and the external set are already united before (and no) #fiefitness assign-
ment phase. This guarantees that any fitness assignmeniesclaa be used in
combination with this elitism variant. The general algomitis presented below,
where Steps 4 to 7 are identical to the corresponding stefkgorithm 1.

Alg. 10: (General Elitist Multiobjective Evolutionary Algorithm)

Input: N (population size)
N (maximum size of external set)
T (maximum number of generations)
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pc  (crossover probability)
pm  (mutation rate)
Output: A (nondominated set)

Step 1: Initialization: SetPy = ¢ and t = 0. Initialize Pg according to
Step 1 in Algorithm 1.

Step 2: Update of external set: Set the temporary external sBt = Px.

a) Copy individuals whose decision vectors are nondomahede
gardingm(P) to P: P =P +{i | i € P Am() ¢
p(m(P1))}.

b) Remove individuals froR whose corresponding decision vec-
tors are weakly dominated regarding(ﬁ), i.e., as long as
there exists a paifi, j) with i, j € P and mi) > m(j) do
P =P —{j).

c) Reduce the number of individuals externally stored bynaed

clustering, i.e., call Algorithm 9 with parameteﬁ/ andN, and
assign the resulting reduced setRy. ;.

Step 3: Elitism: Set® = P; + P;.
Step 4: Fitnessassignment: ...
Step 5: Selection: ...

Step 6: Recombination: ...

Step 7: Mutation: ...

Step 8: Termination: SetP,; = P”andt=t+ 1 Ift > T oran-
other stopping criterion is satisfied then &t=Ap(m(P;)) else go to
Step 2.

It has to be mentioned that after Step 3 the population isnaattically reduced
to its original size by the selection process; ohlyindividuals are copied to
the mating pool according to Step 3 of Algorithm 1. Furtherepamote that in
Step 3 not the updated external &at,; is added to the populatioR; but the
previous external sé®;. Some authors (Parks and Miller 1998) use the updated
external set when re-inserting elite set members into tpalation. As a result,
some good individuals that were member$ef 1 may be lost due to the update
operation.

In the next chapter it is shown that the universal elitismesal proposed
here can substantially improve the performance of norseMOEASs.



Comparison of Selected Evolutionary Approaches

Two kinds of test problems are used in the present work inrameompare
the MOEA implementations discussed in the previous chapibke first kind
of MOP are NP hard problems (extended to the multiobjectasey. Although
easy to formulate and understand, they represent cerasses of real-world
applications and are difficult to solve. Here, the 0/1 knakgaoblem and the
traveling salesman problem are considered (Garey and doh879). Both
problems have been extensively studied, and several tiblis in the domain
of evolutionary computation are related to the knapsacklpro (Khuri, Back,
and Heitkotter 1994; Michalewicz and Arabas 1994; Spihmi&95; Sakawa,
Kato, and Shibano 1996) as well as the traveling salesmdngm e.g., see
(Banzhaf et al. 1999). While these problems are discregeséitond kind of
MOP refers to continuous functions which test for differprdblem difficulties
separately. This allows specification of which algorithmes suited to which
sort of problem and the determination of areas which caosbke for particular
techniques.

Besides the choice of appropriate test functions, the pedace assessment
by means of quantitative metrics as well as the experimetgsign are im-
portant issues when comparing multiobjective optimizérsey are discussed
in Section 3.1 and Section 3.2, respectively. Afterwarlls, éxperiments re-
garding the knapsack problem, traveling salesman proldech¢continuous test
functions are described separately in Sections 3.3 to 3.5urAmary of the
major results concludes the chapter.
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3.1 Performance Measures

As stated at the beginning of Chapter 2, the optimization gban MOP con-
sists itself of three objectives: i) minimal distance to Bageto-optimal front, ii)
good distribution, and iii) maximum spread. Performaneeasment of multi-
objective optimizers should take all of these objectivés atcount.

311 Related Work

In the literature, some attempts can be found to formalizeaiove criteria
by means of quantitative metrics. Performance assessmaigf thhe weighting
method was introduced by Esbensen and Kuh (1996). Therd, A gskdeci-
sion vectors is evaluated regarding a given linear comioindty determining
the minimum weighted-sum of all corresponding objectivetoes of A. Based
on this concept, a sample of linear combinations is chosesnalom (with re-
spect to a certain probability distribution) and the minimweighted-sums for
all linear combinations are summed up and averaged. Thétingsualue is
taken as a measure of quality. A drawback of this metric isdhby the “worst”
solution determines the quality value per linear combaorati Although sev-
eral weight combinations are used, non-convex regionseofritde-off surface
contribute to the quality more than convex parts and may, esnaequence,
dominate the performance assessment. Finally, the distsibas well as the
extent of the nondominated front is not considered.

Another interesting way of performance assessment waopeapby Fon-
seca and Fleming (1996). Given a nondominateddset X, a boundary func-
tion divides the objective space into two regions: the negieakly dominated
by A and the region corresponding to decision vectors which dataimem-
bers of A. They call this particular function, which can also be sesrhe
locus of the family of tightest goal vectors known to be atsdile, the attain-
ment surface. Taking multiple optimization runs into aaup@ method is de-
scribed to compute ax%-attainment surface by using auxiliary straight lines
and sampling their intersections with the attainment sedaobtained. Here,
the x%-attainment surface represents the family of goal vedtasare likely
to be attained in exactly% of the runs X can be chosen arbitrarily). As aresult,
the samples represented by #8é-attainment surface can be assessed relatively
by means of statistical tests and therefore allow compaxgthe performance
of two or more multiobjective optimizers. A drawback of tlaigproach is that
it remains unclear how the quality difference can be exgesise., how much
better one algorithm is than another.

In the context of investigations on convergence to the Basptimal set,
some authors (Rudolph 1998; Veldhuizen and Lamont 1998es t@nsidered
the distance of a given nondominated front to the Paretwrgptiront. The
distribution was not taken into account, because the foassnet on this matter.
However, in comparative studies distance alone is not serdftior performance
evaluation, since extremely differently distributed ftemay have the same
distance to the Pareto-optimal front.



3.1. Performance Measures 43

3.1.2

Def. 8:

Def. 9:

Scaling-Independent Measures

In the present work, two complementary measures are usedligge the trade-
off fronts produced by the various MOEAs. Both are scalindeippendent, i.e.,
they do not require the objective values to be scaled evamgththe magni-
tude of each objective criterion is quite different. Thefpenance assessment
method by Fonseca and Fleming (1996) is scaling-indepéragewell, while
the measures used in (Esbensen and Kuh 1996; Rudolph 1988uizen and
Lamont 1998a) depend on an appropriate scaling of the dgefcinctions.

The functions is a measure of how much of the objective space is weakly
dominated by a given nondominated get

(Size of the dominated spacelet A = (X1, X2, ..., X)) € X be a set of |
decision vectors. The functiof{ A) gives the volume enclosed by the union of
the polytopes 4 p2, ... pi, where each jpis formed by the intersections of the
following hyperplanes arising out &f xalong with the axes: for each axis in the
objective space, there exists a hyperplane perpendicaldrd axis and passing
through the point( f1(X;), f2(X;), ..., fk(X;)). In the two-dimensional case,
each p represents a rectangle defined by the poit®) and( f1(x;), f2(x;i)).t

In (Veldhuizen 1999) it is stated that this metric may be gasling if the Pareto-
optimal front is non-convex. However, independent of wketthe trade-off
front is non-convex or convex, different Pareto-optimautons may cover
differently large portions of the objective space. In thé¢hats opinion, the
only conclusion that can be drawn from this fact is that theecage of the
objective space is only one of several possible criteriav&buate the quality of
a nondominated front.

An advantage of th& metric is that each MOEA can be assessed indepen-
dently of the other MOEAs. However, thevalues of two setd\, B cannot be
used to derive whether either set entirely dominates theroitherefore, a sec-
ond measure is introduced here by which two sets can be ceapelatively
to each other.

(Coverage of two setslet A B C X be two sets of decision vectors. The
functionC maps the ordered paifA, B) to the intervall0, 1]:

{be B|3ac A:a> b}

C(A B) = 5 (3.1)

The valueC (A, B) = 1 means that all decision vectorsBhare weakly domi-
nated byA. The opposite@ (A, B) = 0, represents the situation when none of
the points inB are weakly dominated bA. Note that always both directions
have to be considered, sinC¢A, B) is not necessarily equal to1 C(B, A).

1A maximization problem is assumed here where the minimumevéfmin that objec-
tive f; can take is equal to zero for dll= 1,..., k. When (fmin fmin fminy £ 0,
each polytopep; is formed by the pointg f/™", ;" .., fe"") (instead of the origir0p
and (f1(Xj), f2(Xp), ..., fk(Xi)). Accordingly, the polytopep; is defined by the points



44

Chapter 3. Comparison of Selected Evolutionary Approaches

only covered by front 1

covered by front 1 and front 2

only covered by front 2

fl

\j

Fig. 10

Def. 10:

Potential problem with th& metric (left) and illustration of the alternativ® metric
(right).

The $ and theC measures, which were first published in (Zitzler and Thiele
1998b) and have been taken up by some researchers meanavbile(Lau-
manns, Rudolph, and Schwefel 1999; Coello 1999b; Veldmu1899), are suf-
ficient here as the experimental results show (cf. Sectidh®3.5). However,
there is a potential problem with ti@metric as illustrated in Figure 10 on the
left. Front 2 is actually closer to the Pareto-optimal friwn front 1, but both
fronts are equal regarding tiéemetric (the coverage is 50% in each case). Dur-
ing the final stages of this work, another measure has beeriaped in order
to overcome this problem. It is presented here; however# mot used for the
performance comparisons in Sections 3.3 to 3.5.

(Coverage difference of two setshet A, B C X be two sets of decision vec-
tors. The functiorD is defined by

D(A, B) := $(A+ B) — 8(B) (3.2)
and gives the size of the space weakly dominate®l bytAot weakly dominated
by B (regarding the objective space).

To illustrate this definition consider Figure 10 on the rightl assume tha is
related to front 1 andB to front 2. On the one hand, there is the area of aize
that is covered by front 1 but not by front 2; on the other hdretd is an area
of sizep that is covered by front 2 but not by front 1. The dark-shaded éof
sizey) is covered by both fronts in common. It holds t#atA, B) = « and

(fo(Xi), f2(x)) fk(xi)) and (£ £ f"®) when the objectives are to be mini-
mized (" represents the maximum value of objectiyp Mixed maximization/minimization
problems are treated analogously.

.....
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3.1.3

Def. 11:

D(B, A) = B since

a+p+y = 8(A+B) (3.3)
aty = 8(A (3.4)
B+y = 4(B). (3.5)

In this example D (B, A) > D(A, B) which reflects the quality difference
between the two fronts in contrast to tBemetric. In addition, theD measure
gives information about whether either set entirely dort@sahe other set, e.g.,
D(A, B) =0andD (B, A) > 0 means thaf is dominated byB.

Ideally, theD metric is used in combination with themetric where the val-
ues may be normalized by a reference volihd-or a maximization problem,
the value

k
V = 1_[( fimax_ fimin)
i=1

is suggested here, whef® and f,M" is the maximum respectively minimum
value objectivef; can take. However, other values, e¥.= 8(Xp) as pro-
posed by Veldhuizen (1999), may be used as well. In conseguévur values
are considered when comparing two sAtB € X+:

$(A)/V, which gives the relative size of the region in objective spmat is
weakly dominated b,

$(B)/V, which gives the relative size of the region in objective sptmat is
weakly dominated byB,

D(A, B)/V, which gives the relative size of the region in objective spthat
is weakly dominated byA andnotby B, and

D(B, A)/V, which gives the relative size of the region in objective spthat
is weakly dominated b8 andnotby A.

As the D measure is defined on the basis of theneasure, no additional im-
plementation effort is necessary.

Scaling-Dependent Measures

The following set of metrics is an alternative to thieC and D measures by
which each of the three criteria (distance, distributiqgpread) can be assessed
separately. Although this allows a more accurate perfoo@@omparison, the
measures below are scaling-dependent as they rely on ackstaetric.

Given a nondominated s& & X, a neighborhood parameter > 0 (to be
chosen appropriately), and a distance metfic|. Three functions are intro-
duced to assess the quality Afrégarding the decision space:
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. The functionM gives the average distance to the Pareto-optimabégt X
1 .
M1(A) = A Z min{la — x|| | X € Xp} (3.6)
acA
. The functionM > takes the distribution in combination with the number of hon
dominated solutions found into account:
1
Mo(A) = A1 Y lfbe Alja—b] > o} (3.7)
acA
. The functionM3 considers the spread of the s&t A
n
Ma(A) = | ) max]a —bil |a.be Al (3.8)
i=1
Analogously, three metric&(, M3, andM3 are defined on the objective space,
wheres* > Qis given as beforeand &= f(A) C Y:
1 .
MiU) = —> "min{lu—y| |yeYp (3.9)
|U | ueU
M5U) = Y lfveU|u=—v|>o*) (3.10)
|U |- 1 ueU
k
M5U) = | Y max(|ui — vl |u, v e U} (3.11)
i=1
While M7 and.M] are intuitive M2 and.M 3 (respectivelyM; and.M3) need
further explanation. The distribution metrics give a vaWi¢hin the interval
[0, |AJ] ([0, [U|]) which reflects the number af-niches ¢ *-niches) inA (U).
Obviously, the higher the value the better the distribufienan appropriate
neighborhood parameter (e.g5(U) = |U| means that for each objective
vector there is no other objective vector withif-distance to it). The functions
M3 and M3 use the maximum extent in each dimension to estimate therang
to which the nondominated set respectively front spreatddthe case of two
objectives, this represents the distance of the two outatisps.
3.2 Methodology

In the following general implementation aspects as wellhasgerforming of
the experiments are described.
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3.2.1

3.2.2

3.2.3

Selection and Fitness Sharing

Actually, each MOEA should be combined with the selectidmesee originally
applied. But the influence of the selection scheme on theoowtf an EA can-
not be neglected, e.qg., fitness proportionate selectioichwk used in VEGA,
is well known to have serious disadvantages (Blickle an@[Ehi996). In order
to guarantee a fair comparison, all MOEAs except FFGA wenglemented
with the same selection scheme: binary tournament sefhegiith replacement.
In FFGA, the originally proposed stochastic universal siamypvas employed,
because fitness assignment is closely related to this pkntiselection algo-
rithm.

Unfortunately, a conventional combination of fithess stgrand tourna-
ment selection may lead to chaotic behavior of the EA (OeildB&rg, and
Chang 1991). Therefore, both NSGA and HLGA were implementsidg
a slightly modified version of sharing, callesbntinuously updated sharing
which was proposed by the same researchers. With it, thiy fiietd next gen-
eration is taken to calculate the niche count rather tharcdineent generation.
Horn and Nafpliotis (1993) introduced this concept in NPGAneell.

Furthermore, the guidelines given in (Deb and Goldberg 1989e used
to calculate the niche radius, assuming normalized distai®nce NSGA is
the only MOEA under consideration which performs fitnessisigan decision
space, two niche radii are specified per test problem. Th&sl#ghaerefers to
the one used by HLGA, FFGA, and NPGA, whit§SCAgives the niche radius
for NSGA.

Elitism

In order to investigate the influence of this concept in etiohary multiobjec-
tive search, the elitism mechanism used in SPEA was geredadis described
in Section 2.5, and FFGA, NPGA, HLGA, VEGA, and NSGA were ieyl
mented on the basis of Algorithm 10. The elitism varianthefalgorithms are
marked by an asterisk in order to distinguish them from tlobriegyues origi-
nally proposed by the corresponding authors. Note thatltlstering procedure
which is invoked in Algorithm 10 requires a distance methiccase of NSGA,
the distance on the decision space was taken, while the alperthms used
the distance on the objective space.

Reference Algorithms

As additional points of reference, two further optimizatimethods were con-
sidered: random sampling and multiple independent sagupliime first algo-
rithm (RAND) randomly generates a certain number of indmals per genera-
tion, according to the rate of crossover and mutation (thawgjther crossover,
mutation nor selection are performed). Hence the numbemads evaluations
was the same as for the MOEAs. The second algorithm is astditigle-
objective EA using the weighting method. In contrast to thieeo algorithms
under consideration, 100 independent runs were perforreedegt problem,
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3.24

3.3

3.3.1

each run optimizing towards another randomly chosen ligeanbination of
the objectives. The nondominated solutions among all solstgenerated in
the 100 runs formed the trade-off front achieved on a pderaest problem.
Furthermore, three versions of the single-objective EAenesed: one with 100
generations per linear combination (SO-1), one with 25Cg#ions (SO-2),
and another one that terminated after 500 generations iy sirggle optimiza-
tion run (SO-5). The other parameters (population sizessmeer probability,
mutation rate) were the same as for the MOEAS per test problem

Performance Assessment

In case of the MOEAs as well as RAND, altogether 30 independetimiza-
tion runs were considered per test problem, where the ptpalavas mon-
itored for nondominated solutions and the resulting nornidated setA =
p(m(UtTZOPt)) was taken as the outcome of one simulation run (offline per-
formance). For each algorithm there was a sample of 88lues respectively
for each ordered pair of algorithms there were(30alues per test problem ac-
cording to the 30 runs performed. Note that e@ctalue was computed on the
basis of the nondominated sets achieved by two algorithristive same initial
population.

Moreover,box plots(Chambers, Cleveland, Kleiner, and Tukey 1983) are
used to visualize the distribution of these samples. A boxgbnsists of a box
summarizing 50% of the data. The upper and lower ends of tlkeab® the
upper and lower quartiles, while a thick line within the baxcedes the median.
Dashed appendages summarize the spread and shape of thmititist, and
dots represent outside values.

Multiobjective Knapsack Problem

Problem Statement

Generally, a 0/1 knapsack problem consists of a set of iteraght and profit
associated with each item, and an upper bound for the cgpdc¢he knapsack.
The task is to find a subset of items which maximizes the tdtdieprofits in
the subset, yet all selected items fit into the knapsacktie total weight does
not exceed the given capacity (Martello and Toth 1990).

This SOP can be extended directly to an MOP by allowing arraryinum-
ber of knapsacks. Formally, the multiobjective 0/1 knaggaoblem consid-
ered here is defined in the following way: Given a sehdems and a set d€
knapsacks, with

pi,j = profitofitemj according to knapsaak
wi,j = weightofitem] according to knapsadk
¢ = capacity of knapsack
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3.3.2

3.3.3

find a vectorx = (x1, X2, ..., Xn) € {0, 1}", such that the capacity constraints
n
6(X) = wij X <G 1<i<k (3.12)
j=1
are satisfied and for whiclf (X) = (f1(X), fa(X), ..., fx(X)) is maximum,
where .
fi(x) = Z Pij - X (3.13)
j=1

andxj = 1ifand only if item]j is selected.

Test Data

In order to obtain reliable and sound results, nine diffetest problems were
investigated where both the number of knapsacks and the erunhliems were
varied. Two, three, and four objectives were taken undesidenation, in com-
bination with 250, 500, and 750 items.

Following suggestions in (Martello and Toth 1990ncorrelatedprofits and
weights were used, wheng ; andwj j were random integers in the interval
[10, 100]. The knapsack capacities were set to half the total wegpgarding
the corresponding knapsack:

m
G=05) wj (3.14)
j=1

As reported in (Martello and Toth 1990), about half of thengeare expected to
be in the optimal solution (of the SOP) when this type of ka@gscapacity is
chosen. Also more restrictive capacities £ 200) were examined where the
solutions contain only a few items.

Constraint Handling

Concerning the representation of individuals as well agtestraint handling,
this work drew upon results published by Michalewicz andoas(1994), who
examined EAs with different representation mappings amgstraint handling
technigues on the (single-objective) 0/1 knapsack probl@wncluding from
their experiments, penalty functions achieve best resuitdata sets with ca-
pacities of half the total weight; however, they fail on perhs with more
restrictive capacities. Since both kinds of knapsack atipacvere to be in-
vestigated, a greedy repair method was implemented thdtipeal the best out-
comes among all algorithms under consideration when bghaity types were
regarded.

In particular, an individual € {0, 1}" encodes a solutiox € {0, 1}". Since
many codings lead to infeasible solutions, the mappingtfanan(i) realizes
a simple repair method that decodes an individuatcording to the following
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3.34

3.3.5

scheme: First, set = i; then remove step by step items fronas long as any
capacity constraints is violated. The order in which thengeare deleted is de-
termined by the maximum profit/weight ratio per item; fonitg¢ the maximum
profit/weight ratiog; is given by the equaticn

@ = ma_, | P2} (3.15)
wu

The items are considered in increasing order ofthe.e., those achieving the

lowest profit per weight unit are removed first. This mecharirsgends to fulfill

the capacity constraints while diminishing the overallfppras little as possible.

Parameter Settings
Independent of the algorithm and the test probl&mp., and p,, were fixed:

Number of generation$ . 500
Crossover ratgc (one-point) : 0.8
Mutation ratepm, (per bit) . 0.01

Following Srinivas and Deb (1994), the crossover probigbilias set to a rather
high value; the mutation rate was chosen according to Gsedére (1986). Con-
cerningT, the same value as used in Michalewicz and Arabas (1994)akan t
The remaining parameters were chosen to be dependent @stipedblem (see
Table 1). Concerning SPEA was set to 45 andN to 1/4 of the population
size given in Table 1, for reasons of fairness. Moreoverdibrmination pres-
suretqom, a parameter of NPGA, was determined experimentally. AIGRAP
simulations were carried out five times, each time usinglerotalue fortgom
(5%, 10% 15% 20% and 25% of the population size). At the end, the param-
eter value which achieved the best results forghmeasure was chosen per test
problem (cf. Table 1).

Experimental Results

The following algorithms were compared: RAND, HLGA, NPGAEGA,
NSGA, SO-1, SO-5, and SPEA. In addition, a slightly modifiedsion of
SPEA was examined (SP-S) whdaloes not participate in the selection phase;
there, the population size was the same as for the other Bégha size of the
external nondominated set was restricted té -IN.

The results concerning th& measure (size of the dominated space) are
shown in Figure 11, the direct comparison of the differegodathms based
on theC measure (coverage) is depicted in Figure 13. In Figure 18 #de-off
fronts obtained by the EAs in 5 runs are plotted for the twoehsional prob-
lems. As the relative performance of the MOEAs was similahwioth kinds
of knapsack capacities, only the results concerning theemelaxed capacity
type (half the total weight) are presented in the following.

2This is a straight-forward extension to the single-objextpproach by Michalewicz and
Arabas (1994) whergj = py,j/wa,j.
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Parameters for the knapsack problem that were adjustee far¢blem complexity.

knapsacks | parameter items
250 500 750
N 150 200 250
) Oshare 0.4924 0.4943 0.4954
oNSCA 115 236 357
tdom 7 10 12
N 200 250 300
3 Oshare 0.4933 0.4946 0.4962
oNSGA 113 233 354
tdom 30 25 15
N 250 300 350
4 Oshare 0.4940 0.4950 0.4967
oNSGA 112 232 352
tdgom 50 75 35

Generally, the simulation results prove that all MOEAs dtidrethan the
random search strategy. Figure 13 shows that the tradeeoffsf achieved by
RAND are entirely dominated by the fronts evolved by the pthgorithms
(with regard to the same population). Concerning&lustributions, the RAND
median is less by more than 20 quartile deviations than thdians associated
with the EAs when the maximum quartile deviation of all sa@sps considered.

Among the non-elitist MOEAs, NSGA seems to provide the bestqp-
mance. The median of th& values is for each test problem greater than the
corresponding medians of the other three non-elitist MOB@snore than 5
quartile deviations. In addition, on eight of the nine tesigpems NSGA weakly
dominates more than 70% of the fronts computed by HLGA, NP&W,VEGA
in more than 75% of the runs; in 99% of the runs NSGA weakly a@atés more
than 50%. In contrast, those three MOEAs weakly dominatetiesn 10% of
the NSGA outcomes in 75% of all runs and less than 25% in 99%e0fuins (on
eight of the nine problems). For 4 knapsacks and 250 iteras;dlierage rates
scatter more, however, NSGA achieves higieralues in comparison with the
other non-elitist MOEASs.

Comparing NPGA and VEGA, there is no clear evidence that tgurithm
outperforms the other, although VEGA seems to be slighthesor to NPGA.
Only on two of the test problems (2 knapsack, 500 and 750 jtelmshe me-
dians of thes distributions of the two EAs deviate by more than 3 quartée d
viations (in favor of VEGA). In the direct comparison basettbe measure,
VEGA weakly dominates more than 50% of the NPGA outcomes eanage,
while NPGA achieves less than 25% coverage regarding VEGAvemnage.
Furthermore, both algorithms generate better assessmecdsnparison with
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2 knapsacks 250 items 2 knapsacks 500 items 2 knapsacks 750 items
SO-5 ] SO-5 ] SO-5 ]
SO-1 ' SO-1 ' SO-1 '
SPEA o SPEA - SPEA ry
SP-S i1 SP-s|, 5| SP-s| T
NSGA B NSGA H NSGA e o
VEGA H VEGA e VEGA s
NPGA ¢ NPGA HH NPGA g
HLGA i HLGA e . HLGA HE e
8.5-10° 9.3-10 33-100 36-1C¢ 6.9-10° 7.5-10°
3 knapsacks 250 items 3 knapsacks 500 items 3 knapsacks 750 items
SO-5 | SO-5 | SO-5 |
SO-1 | SO-1 | SO-1 |
SPEA e SPEA ' SPEA H
SP-S e SP-S e SP-S -
NSGA 'y NSGA 'y NSGA '
VEGA ¥ VEGA #+ VEGA r
NPGA - NPGA e NPGA 'S
HLGA e HLGA e HLGA e
6.9- 10" 8.1.10" 5.1-102 6.1-10% 1.7-108  2..108
4 knapsacks 250 items 4 knapsacks 500 items 4 knapsacks 750 items
SO-5 0 SO-5 0 SO-5 0
SO-1 | SO-1 ) SO-1 |
SPEA 'R SPEA $ SPEA *
SP-S HH SP-S e SP-S 4
NSGA 4 NSGA 4 NSGA 4
VEGA 4 VEGA = VEGA 4
NPGA i NPGA ' NPGA )
HLGA - HLGA o HLGA e
5.2-10% 6.4-10% 7.4-10'° 9.5.10% 3.6- 107 4.6- 10

Fig. 11: Distribution of the4 values. RAND is not considered here in order not to blur the

differences between the MOEAS.

HLGA. With 3 and 4 knapsacks, the fronts produced by HLGA aymithated

by the NPGA and VEGA fronts by 99% (cf. Figure 13), and the raediof the

4 values associated with HLGA are more than 10 quartile deviatless than
the § medians related to NPGA and VEGA. For 2 knapsacks,sttukstribu-
tions are closer together; however, theneasure indicates clear advantages of
NPGA and VEGA over HLGA.

Moreover, SPEA achieves the best assessments among the SIOEA
weakly dominates all of the nondominated solutions foundHhA, NPGA,
VEGA, and NSGA with eight of the nine test problems; for 4 keagks and 250
items at least 87% are weakly dominated. Vice versa, thggeitims weakly
dominate less than 5% of the SPEA outcomes in all 270 runscé&amg the
size of the dominated space, the medians oftléstributions related to SPEA
are greater than the corresponding medians of the other MigAnore than
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2 knapsacks 250 items
10000
A SO-5
¢ SP-S
9000 o SO-1
e NSGA
o VEGA
o HLGA
8000
8000 8500 9000 9500
2 knapsacks 500 items 2 knapsacks 750 items
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Fig. 12: Trade-off fronts for two knapsacks regarding the first 5 ruRsr better visualization,
the points of a front are connected by dashed lines and RANDtisonsidered here.

10 quartile deviations. These results indicate that eliisimportant for the ef-
fectiveness of the search, as SP-S also performs subdiiantiase than SPEA.
Nevertheless, SP-S appears to do slightly better than NSG#hethree- and
four-dimensional problems. Both tHevalues (the median distance to NSGA is
greater than 3 quartile deviations) and thevalues suggest a slight advantage
for SP-S over NSGA. For 2 knapsacks, the results are ambsgaod do not
allow a final conclusion to be made.

Finally, the fact that SO-5 weakly dominates on average riae 90% of
the nondominated solutions computed by HLGA, NPGA, VEGA] &8GA
and achieves significantly greatéwvalues (the median is greater by more than
21 quartile deviations than the other medians per test pmapkuggests that
none of the non-elitist MOEASs converges to the Pareto-agitinont using the
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Fig. 13: Box plots based on thé measure. Each rectangle contains nine box plots repregenti
the distribution of the® values for a certain ordered pair of algorithms; the three bo
plots to the left relate to 2 knapsacks and (from left to HdH®0, 500, and 750 items;
correspondingly the three middle box plots relate to 3 kaeks and the three to the
right to 4 knapsacks. The scale is 0 at the bottom and 1 at fhpdaprectangle. Fur-
thermore, each rectangle refers to algorithnassociated with the corresponding row
and algorithmB associated with the corresponding column and gives thédraof B

weakly dominated byA (C(A, B)).
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3.4

3.4.1

3.4.2

3.4.3

chosen parameter settings. This can also be observed ireFiguHowever, as
this figure also indicates, SPEA can find solutions that areetlto the Pareto-
optimal front than those produced by SO-5 in spite of lessmdation effort.
This observation is supported by the fact that SO-5 weakigidates only 48%
of the SPEA front with eight of the nine test problems (SO<sslthan 12%).
Taking into account that the outcome of each SPEA run is coatp@® a front
produced in 100 SO-1 (SO-5) runs, it becomes obvious thais(eMOEAs
have clear advantages over multiple single-objectivecbest In the case of
SO-1, SPEA had 20 times less computation effort; in the case(5, the
computation effort was even 100 times less.

Multiobjective Traveling Salesman Problem

Problem Statement

The general traveling salesman problem (Garey and Johr&®) is defined
by a numbetl of cities and d x| matrixC = (¢, j) which gives for each ordered
pair (i, j) of cities the nonnegative distancg;j to be covered to get from ciiy
to city j. The optimization goal is to find the shortest route for wheelch city
is entered and left exactly once.

By adding an arbitrary number of distance matrices, this $&Pbe trans-
formed to an MOP. Formally, givencities and a sefC1, C», ..., Cx} of | x |
matrices withCp, = (cﬂj), minimize f (7)) = (f1(), f2(), ..., fk(7)) with

-1
) — i i
fi(m) = ch(j),n(ﬂ—l) T Gy
=1

and wherer is a permutation over the sgt, ..., 1}.2

Test Data

Altogether, three problem instances were considered with 250, and 500
cities, each having two objectives. The distance matricesevgenerated at
random, where eaal:ﬁjj was assigned a random number in the interval (i0].

Parameter Settings

The experiments were carried out using the following patamsettings:

3Independently of this work, Veldhuizen and Lamont (1998a)hpresented a slightly dif-
ferent formulation of a two-dimensional multiobjectivaveling salesman problem.
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Fig. 14: Trade-off fronts for the traveling salesman problem regmydhe first 5 runs. The
points of one front are connected by dashed lines, and tlok bllats represent the 5
initial populations.

Number of generation$
Population sizeN
Crossover ratgc

Mutation ratepm, (per individual)

Niche radiusrshare

500
: equal td (number of cities)
. 0.8

0.1

0.4886

As with the other test problems, the elitist MOEAs (SPEA aRGR*) ran with

a population size of /6 - N and an external set size of4.- N.

Concerning the encoding, an individual is a vector nbmbers where each
integer from 1 td appears exactly once. When creating the initial population
Py, it is assured that only permutations are generated. Duhagecombi-
nation and mutation phases, special order-based genedratops ensure that

the permutation property of individuals is not destroyede Dperators used
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FFGA

FFGA*

SPEA

Fig. 15: Box plots based on the@ measure. Each rectangle contains three box plots repiggent
the distribution of the® values for a certain ordered pair of algorithms; the box fuot
the left relates to 100 cities, the one in the middle to 25@s;itand the right box plot to
500 cities. The scale is 0 at the bottom and 1 at the top peanglet. Furthermore, each
rectangle refers to algorithrA associated with the corresponding row and algoritdm
associated with the corresponding column and gives th&drecf B weakly dominated
by A (C(A, B)).

here are uniform order-based crossover and swap mutatienv@lues of two
arbitrary positions within the vector are swapped) (Da@91).

3.4.4 Experimental Results

With the traveling salesman problem, three MOEASs were itigated: FFGA,
FFGA", and SPEA. A clear hierarchy of algorithms emerged, as caeée in
Figures 14 and 15. The fronts achieved by SPEA completelymatethe fronts
produced by the other two MOEAs more than 96% of the time, dr@A*
clearly outperforms FFGA. It seems a likely suppositiort gigism is impor-
tant here, although fitness assignment plays a major roleesisince there is
also a performance gap between the two elitist MOEASs.

3.5 Continuous Test Problems

3.5.1 Test Functions for Different Problem Features

Deb (1998) has identified several features which may caudBeudties for an
MOEA in i) converging to the Pareto-optimal front and ii) m&ining diver-
sity within the population. Concerning the first issue, nmutidality, deception,
and isolated optima are well-known problem areas in siogiective evolu-
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Def. 12:

tionary optimization. The second issue is important in otdeachieve a well
distributed nondominated front. However, certain chanastics of the Pareto-
optimal front may prevent an MOEA from finding diverse Pareftimal solu-
tions: convexity or non-convexity, discreteness, and aoifiermity. For each of
the six problem features mentioned a corresponding testitumis constructed
following the guidelines in (Deb 1998). This investigatisirestricted to only
two objectives, in order to investigate the simplest cast. fim the author’s
opinion, two-dimensional problems already reflect esaéatipects of MOPs.

Each of the test functions defined below is structured in #r@eesmanner
and consists itself of three functiorig, g, h (Deb 1998, p.15):

Minimize t(X) = (fi1(Xp), f2(X))
subjectto fa(X) = g(Xo2,...,Xn) - h(f1(X1), g(X2, ..., Xn)) (3.16)
where X = (Xg,...,%Xn)

The functionfy is a function of the first decision variable ontyjs a function
of the remainingh — 1 variables, andh takes the function values df andg.
The test functions differ in these three functions as welinathe number of
variablesn and in the values the variables may take.

Six test functionsit . .., tg are defined following the scheme given in Equa-

tion 3.16:

The test functiont has a convex Pareto-optimal front:

f1(x1) = X1
g(X2, ..., %) = 1+4+9-Q 1, %)/(n—1) (3.17)
h(f1, 9) = 1-fi/g

where n= 30and % € [0, 1]. The Pareto-optimal front is formed with-g 1.

The test function4 is the non-convex counterpart te:t

f1(X1) = X1
gx2, . Xn) = 14+9- (XM ,%)/(N—1) (3.18)
h(f1, 9) = 1-(f1/9)?

where n= 30and % € [0, 1]. The Pareto-optimal front is formed with-g 1.

The test functiobgrepresents the discreteness features: its Pareto-opfimiad
consists of several non-contiguous convex parts:

f1(xq) = X1
g2, ..., %) = 14+9-,%)/(n—1) (3.19)
h(f1, 9 = 1-/f1/9— (f1/9) sin(107 f1)

where n= 30and % € [0, 1]. The Pareto-optimal front is formed withg 1.
The introduction of the sine function in h causes discoiitlynin the Pareto-
optimal front. However, there is no discontinuity in theeaatijve space.
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The test function4 contains21° local Pareto-optimal sets and therefore tests
for the EA’s ability to deal with multimodality:

f1(x1) = X1
g2, ..., Xn) = 14+10(n—1)+ 3 (x> — 10cogdrx))  (3.20)
h(f1,9) = 1-JTi/g

where n= 10, x; € [0, 1] and X%, ..., X, € [—5, 5]. The global Pareto-optimal
front is formed with g= 1, the best local Pareto-optimal front withg 1.25.
Note that not all local Pareto-optimal sets are distinguble in the objective
space.

The test functiond describes a deceptive problem and distinguishes itseti fro
the other test functions in that represents a binary string:

f]_(X]_) = 1+U(X1)
g(X2, .-, Xn) = D, v(U(X)) (3.21)
h(f1, 9) = 1/f;

where ux;) gives the number of ones in the bit vectpfunitation),

| 24+ux) ifux) <5
v(U(x)) —{ 1 if u(x) =5 }

andn= 11, x; € {0,1}°%and %, ..., x, € {0, 1}°. The true Pareto-optimal
frontis formed with g= 10, while the best deceptive Pareto-optimal set includes
all solutionsx for which gxo, ..., Xn) = 11. The global Pareto-optimal front
as well as the local ones are convex.

The test functiortg includes two difficulties caused by the non-uniformity of
the objective space: Firstly, the Pareto-optimal solucare non-uniformly
distributed along the global Pareto front (the front is bessfor solutions for
which f,(x1) is near one); secondly, the density of the solutions is laaar
the Pareto-optimal front and highest away from the front:

f1(x1) = 1— exp(—4xy) siff(67rxq)
902 .. %) = 149 (X,x)/(n—1)%% (3.22)
h(f1, 9) = 1-(f1/9)?

where n= 10, x; € [0, 1]. The Pareto-optimal front is formed with-g 1 and
IS non-convex.

Each function will be discussed in more detail in Section3.%here the
corresponding Pareto-optimal fronts are visualized a& wel
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3.5.2

3.5.3

Parameter Settings

Independent of the algorithm and the test function, eachulsition run was
carried out using the following parameters:

Number of generations . 250
Population sizeN . 100
Crossover ratg (one-point) : 0.8
Mutation ratepm, (per bit) . 0.01
Niche radiusrspareandoNSCA . 0.4886

- share
Domination pressurom .10

Since NSGA uses fitness sharing in individual spacdgra different value
oNSSA= 34 was chosen for this particular case. Concerning NPGAgtbem-
mended value fotyom = 10% of the population size was taken (Horn and Naf-
pliotis 1993). Furthermore, SPEA as well as the elitistaats of the MOEAS
ran with a population size of 80 where the external nondotathaet was re-
stricted to 20.

Regarding the encoding of the decision vector, an indiMidua bit vector
where each parametar is represented by 30 bits; the parameters. . ., Xmn

only comprise 5 bits for the deceptive functibn

Experimental Results

In Figures 16 to 21, the nondominated sets achieved by RANGA; NPGA,
HLGA, VEGA, NSGA, SO-2, and SPEA are visualized in the ohjertpace.
Per algorithm and test function, the outcomes of the firstriives were unified,
and then the dominated solutions were removed from the ws@grthe remain-
ing points are plotted in the figures. Also shown are the Basptimal fronts
(lower curves) as well as additional reference curves (uppeves). The latter
curves allow a more precise evaluation of the obtained tcdideonts and were
calculated by adding.@ - | max{ f2(x)} — min{ f2(x)}| to the f, values of the
Pareto-optimal points. However, the curve resulting fer dieceptive function
t5 is not appropriate here, since it lies above the fronts prediy the random
search algorithm. Instead, all solutiaxsvith g(x», ..., X,) = 2-10 are consid-
ered, i.e., for which the parameters are set to the decegitiaetors. In addition
to the graphical presentation, the different algorithmsanessessed in pairs us-
ing theC© metric which is shown in Figure 22. There, the shortcut REflaSds
for reference set and represents for each test function af 4€0 equidistant
points which are uniformly distributed on the correspodieference curve.
As with the knapsack problem, all MOEASs do better than RANDwiver,
the box plots reveal that HLGA, NPGA, and FFGA do not always\ohate the
randomly created trade-off front completely. Furthermatrean be observed
that NSGA clearly outperforms the other non-elitist MOEAgarding both dis-
tance to the Pareto-optimal front and distribution of thedmminated solutions.
This confirms the results presented in Section 3.3. Furtbexmt is remark-
able that VEGA performs well compared to NPGA and FFGA, altffosome
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Fig. 22: Box plots based on the metric. Each rectangle contains six box plots representing
the distribution of theC values for a certain ordered pair of algorithms; the leftmos
box plot relates td;, the rightmost tats. The scale is 0 at the bottom and 1 at the
top per rectangle. Furthermore, each rectangle refergtwitim A associated with
the corresponding row and algorithBrassociated with the corresponding column and

gives the fraction oB weakly dominated byA (C (A, B)).
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3.54

serious drawbacks of this approach are known (Fonseca amairi 1995b).
The reason for this might be that here the offline performascensidered in
contrast to other studies which examine the online perfacedHorn and Naf-
pliotis 1993; Srinivas and Deb 1994). Finally, the best geniance is provided
by SPEA. Apart fromts, it even outperforms SO-2, in spite of substantially
lower computational effort and although SO-2 uses an editiategy as well.

Considering the different problem features separatelgyexity seems to
cause the least amount of difficulty for the MOEAs. All algbms evolved
reasonably distributed fronts, although there was a diffee in the distance to
the Pareto-optimal set. On the non-convex test fundtigrhowever, HLGA,
VEGA, and SO-2 have difficulties finding intermediate saug, which is in
accordance with the discussion in Section 1.2.1. Pareteebalgorithms have
advantages here, but only NSGA and SPEA evolved a sufficienber of non-
dominated solutions. In the case ©f (discreteness), HLGA and VEGA are
superior to both FFGA and NPGA. While the fronts achieved ey former
weakly dominate about 25% of the reference set on averagéattier come up
with 0% coverage. Among the considered test functibpsndts seem to be
the hardest problems, since none of the algorithms was algedaive a global
Pareto-optimal set. The results on the multimodal probledicate that elitism
is helpful here; SPEA is the only algorithm which found a vydeistributed
front. Remarkable is also that NSGA and VEGA outperform S@ng,. Again,
comparison with the reference set reveals that HLGA and VEG}% cov-
erage) surpass NPGA (50% coverage) and FFGA (0% coveragecething
the deceptive function, SO-2 is best, followed by SPEA andGNSAmong
the remaining MOEASs, VEGA appears to be preferable hereklyemminat-
ing about 20% of the reference set, while the others weakiyidate 0% in
all runs. Finally, it can be observed that the biased segrahestogether with
the non-uniform represented Pareto-optimal frdg} (hakes it difficult for the
MOEAs to evolve a well-distributed nondominated set. THso affects the
distance to the global optimum, as even the fronts produgedSGA do not
dominate any of the points in the reference set.

Influence of Elitism

With all test problems investigated in this work, SPEA twtoeit to be superior
to the other MOEASs under consideration. This observatiadsdo the question
of whether elitism would increase the performance of the-eldist MOEAS.
The experiments concerning the traveling salesman proslawed this holds
for FFGA on this particular problem. For a deeper invesitgaof this matter,
VEGA*, HLGA*, FFGA", NPGA", and NSGA, ran on the test functions using
the same parameters as SPEA.

The results fot, andt, are shown in Figure 23 respectively 24. Obviously,
elitism is helpful on these two functions, although the giguresentation has to
be interpreted with care as only five runs are consideredinstance, NSGA
and SPEA seem to perform equally well here using those pé#atiparameter
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Fig. 24: Results on test functioty (non-convex) using elitism.
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Fig. 25: Box plots comparing each non-elitism algorithlwith its elitism-variantA*.

3.5.5

settings. Moreover, the figures indicate that elitism cagnevelp MOEAS to
surpass the performance of a weighted-sum single-obgEtvin spite of sig-
nificantly lower computation effort. However, both testétions and the metric
used are not sufficient here to also compare the elitist ariaith each other.
Testing different elitist strategies and different etiidOEAs on more difficult
test functions is an interesting subject of future researcthis field.

Nevertheless, each algorithm was compared with its eliigant based on
the © metric. As can be seen in Figure 25, elitism appears to be poriant
factor to improve evolutionary multiobjective optimizati. Only in one case
(NSGA on the deceptive problem) was the performance of thistelariant
worse than the non-elitist version. Investigation of thiattar will also be an
important part of an elitism study.

Influence of Population Size

On two test functionstg andts), none of the algorithms under consideration
was able to find a global Pareto-optimal set regarding theam@arameters.
Therefore, several runs were performed in order to invasithe influence of
the population size as well as the maximum number of gel@stonverging
towards the Pareto-optimal front.

In Figures 26 and 27, the outcomes of multiple NSGA runs asealized.
On the deceptive test functidy, NSGA found a subset of the globally optimal
solutions using a population size of 1000. In contréstseems to be a diffi-
cult test problem, since even a population size of 10000 wasulfficient to
converge to the optimal trade-off front after 250 genertiorlhis did also not
change when the maximum number of generations was increatstantially
(T = 10000). In the later case, the resulting front was (usingpulation size
of 500) almost identical to the one achieved by NSGAnning 1000 gener-
ations. However, the incorporation of elitism finally erebINSGA to find a
global Pareto-optimal set after 10000 generations.

In summary, it can be said that the choice of the populatine strongly
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3.6

influences the MOEA's capability to converge towards theeRaoptimal front.
Obviously, small populations do not provide enough divgramong the indi-
viduals. Increasing the population size, however, doesaatamatically yield
an increase in performance, as can be observed with thenmaalél function.
The same holds for the number of generations to be simul&igdm, on the
other hand, seems to be an appropriate technique to presemafure conver-
gence. Even after 1000 generations, better solutions, aaltlyfPareto-optimal
solutions, evolved with,.

Key Results

A systematic comparison of different MOEA implementatibas been carried
out on several test problems. Major results are:

The two quantitative performance measures used were faube sufficient
to show the performance differences among different MOE@s. the basis
of these measures, it was possible to provide extensive aosons taking a
large number of optimization runs into account in contraghbst comparative
studies available. Moreover, further performance measwiéch allow more
accurate investigations have been proposed.

The suggested test problems provide sufficient complegityoimpare multi-
objective optimizers. With all functions, differences iarfpormance could be
observed among the algorithms under consideration. Reggodrticular prob-
lem features, multimodality and deception seem to causmtst difficulty for
evolutionary approaches. However, non-convexity is algwablem feature
which mainly weighted-sum based algorithms appear to hesagms with.

In contrast with what was suspected beforehand, a hieravEhatgorithms
emerged regarding the distance to the Pareto-optimal iinasiéscending order
of merit:

SPEA
NSGA
VEGA
NPGA, HLGA
6. FFGA

A N PRE

While there is a clear performance gap between SPEA and NSGkel as
between NSGA and the remaining algorithms, VEGA, HLGA, NEGAd
FFGA are rather close together. However, the results itelibat VEGA might
be slightly superior to the other three MOEAS, while the aitbn concerning
NPGA and HLGA is ambiguous: NPGA achieves better assessnoenthe
knapsack problem; on the continuous test functions HLGAviples slightly
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better performance. Regarding FFGA, its rank has to bepraeed carefully,
as it has not been tested on the knapsack problem and anekbetian scheme
was incorporated, the influence of which must not be discsghrFinally, ran-
dom search performed much worse than the MOEAs.

Elitism is an important factor in evolutionary multiobjee optimization. This
statement is supported by the fact that SPEA i) clearly atdpas the other
MOEAs and ii) is the only method among the ones under coraiider which

incorporates elitism as a central part of the algorithm. ddi&gon, the perfor-
mance of the other algorithms improved significantly wheE&® elitist strat-

egy was included. This result agrees with the one presetatks and Miller
(1998), who showed for a pressurized water reactor reloaddgroblem that
NSGA performs substantially better when using elitism.

In the case of two objectives, SPEA was found to be superitra@aveighting

method using a single-objective EA despite 100 times lesspetation effort

(regarding the distance to the Pareto-optimal front). Dhiservation indicates
that elitist MOEASs can find better solutions in one simulatron than tradi-

tional approaches in several runs. With more objectivashén investigations
are necessary to draw a final conclusion, as neither algorthuld be said to
be better. But also here, SPEA found several solutions in racthat were not
generated by the single-objective EA in 100 runs.

Recently, further comparative studies based on quanttggchniques have
been published. Veldhuizen (1999) compared four MOEA immaetations on
six test functions using a set of six performance metricsowdas and Corne
(1999a, 1999b) implemented the performance assessmembangescribed in
(Fonseca and Fleming 1996) in order to compare NPGA, NSGAPALES, an
MOEA proposed by the authors. Shaw, Fonseca, and Flemirg9{IEmon-
strated a statistical method for performance assessmeiat) v based on (Fon-
seca and Fleming 1996) as well, on the 0/1 knapsack problesepted in
Section 3.3; there, a weighted-sum MOEA is compared with retBdased
MOEA. Using the same technique, four implementations of ZDEM were
tested on a batch process scheduling problem in (Shaw €229)1
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System Synthesis

The first application is a complex problem in the domain of pater engi-
neering that is concerned with the automated synthesistefdgeneous hard-
ware/software systems. Given a system specification, sleisato find the
Pareto-optimal set among all feasible implementationscally with regard to
the two optimization criteria cost and performance. Thisalleddesign space
explorationallows the engineer to arrive at a final implementation whiekt
fits the market requirements. In addition, it can help to oedilne risk and to
shorten the time-to-market of new products.

Blickle et al. (1996, 1997, 1998) have presented an evalatipapproach
to this problem which is used here as the starting-point foingplementation
based on SPEA. Their MOEA is described in Section 4.2 afterpitoblem
statement in Section 4.1. On the basis of a video codec exargir imple-
mentation and the SPEA implementation are compared; aniiflobence of a
further objective, power consumption, is investigatedim last section.

Problem Description

Blickle, Teich, and Thiele (1998) consider system-leveithesis as the prob-
lem of optimally mapping a task-level specification onto tehegeneous hard-
ware/software architecture. This model is outlined in thiéofving; however,
for further reaching information the reader is referrechariginal publication.

Specification Model
The specification of a system consists of three components:
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Fig. 28: lllustration of the problem of system-level synthesis dlstly modified example
from (Blickle 1996)). On the left, a system specification isualized consisting of
problem graph, mapping set, and architecture graph. Onighg & possible imple-
mentation is shown where allocation and binding are emplddy thick lines.

1. A behavioral description of a hardware/software systesyhthesize. The be-
havior is defined by a acyclic directed graf@p = (Vp, Ep), the problem
graph where the nodes € Vp stand for functional objects like algorithms,
tasks, procedures, or processes and the exlgelSp represent data interdepen-
dencies of the functional objects.

2. A structural specification of the system @ class of possible architectures)
given by a directed grapG&a = (Va, Ea), thearchitecture graph Structural
objects are general- or special- purpose processors, ABlSss, and memo-
ries, which are represented by the nodes Va. The edge® € Ea model
connections between them.

3. AsetM C Vp x Va which specifies the space of possible mappings. When
(a,b) € M, the taska € Vp can be mapped to, i.e., executed on, the resource
b € Va, otherwise not. Note that for eaehe Vp there has to be at least one
pair(a, -) € M.

An example for a system specification is depicted in Figurer2ghe left.
The problem graph consists of seven functional objects e/sbaded nodes
stand for communication operations. The architecturetgrapludes a RISC
processor, a digital signal processor (DSP), and an apipincapecific inte-
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4.1.2

grated circuit (ASIC) which are interconnected by two bus&he mapping
setM is represented by the dashed arrows from the functionalestiiuctural
objects and contains 17 paifa, b) € Vp x Va. For instance, task 7 can be
mapped to any chip, while task 1 has to be executed on the Ri&essor.

Implementation Model

Given a system specification, an implementation, i.e., aaimggof this specifi-
cation onto a hardware/software architecture, is desgtiyea triple(A, B, S):

. Anallocation AC Va which is a set of the selected structural objeétstefines

the architecture.

. A binding BC M which binds each task € Vp to a resourcé € Va; B maps

the problem graph onto the architecture.

. Aschedule & S* which assigns each taske Vp a nonnegative integes(v);

S(v) is the start time of the execution of The set of all possible schedules is
denoted as*.

Thus, the decision spacé is defined asX = 2(VAUEA)  2M » S¢ where
2% denotes the power set of a sBt The feasible se¢ < X is usually
substantially smaller thaiX and contains all implementation#\, B, S) that
satisfy the following criteria:

The task seW¥p is unambiguously mapped onto the allocated resources, i.e.
|IBl=1Vel,{al (a ) € B}=Vpand{b| (-, b) € B} = A.

Each communication can be handled, i.e., two communicédisigsa, @' € Vp
with (a,a’) € Ep and(a, b), (a’,b’) € B are either mapped onto the same
resourcelf = b’) or there is a directed connectigh, b’) € Ea between the
corresponding resourcésandb’.

The schedule is deadlock free, i.e., for each task Vp all predecessora’ ¢
Vp with (@', a) € Ep have finished befora starts:S(a’) + R(@’) < S(a) where
R(@") denotes the (implementation dependent) run-time of éask

At any point in time, at most one task is executed on each respie., all
tasksa, a’ € Vp with (a, b), (@, b) € B have non-overlapping execution times:
S@) + R@) < S(@ v S(@ + R(a) < S@).

On the right-hand side of Figure 28, a sample implementasashown for
the specification discussed above. All computing resouegespt BUS 2 are
selected, thus all communications are handled by BUS 1 ighatso reflected
by the binding that maps the communication nodes 2, 4, andBau$ol). An
infeasible implementation would emerge if task 2 would b@peal to the RISC
processor; then the communication between tasks 2 and @ notibe realized.
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41.3

4.2

42.1

Optimization Task

Basically, the specification and the implementation modetsindependent of
the optimization criteria. Thus, various metrics can berdefi cost, perfor-
mance, power dissipation, capacity usage, etc. BlickliehTand Thiele (1998)
consider the two objectives cost and latency using theviatig model:

With each structural objeat € Va a fixed costC(v) is associated that arises
when the particular resource is realized. The cost of anemphtation is equal
to the total cost of the allocated resources.

A latency functionL gives the estimated time(a, b) that is necessary to exe-
cute taska € Vp on resourcé € Va, i.e., R(a) = L(a, b). The latency of an
implementation is defined as the earliest point in time bychlall tasks have
been executed.

The resulting MOP can be formulated as

minimize f(A, B, S = (f1(A, B, S), f2(A, B, S)
subjectto f1(A, B, S =3y, Cv)

fo(A, B, S =maxS(a) + L(a,b) | (a,b) € B}
where (A,B,S) e X+

(4.1)

The first objectivef; reflects the total cost, whilé, gives the latency of the
implementation.

Implementation

In (Blickle, Teich, and Thiele 1998) a hybrid approach togheblem of system-
level synthesis is proposed. An EA is used to determine tbeatlon and the
binding, because the search space for these two subprolsidarge and dis-
crete and in addition the determination of a feasible bigdsnNP-complete
(Blickle 1996). In contrast, scheduling is a well-known Ipleom which has been
extensively studied and for which good heuristics are atséel. Hence, this sub-
problem is solved by means of a deterministic method on tbislod allocation
and binding. This makes the complexity of the search spacageable.

The overall algorithm is fully detailed in Section 4.2.2 eBeding this dis-
cussion, the coding and decoding of hardware/softwareamghtations as well
as the genetic operators used are described.

Representation and Genetic Operators

Each individual encodes both allocation and binding, wasithe schedule is
computed deterministically by a heuristic list-schedglalgorithm incorporat-
ing software pipelining. An allocation is represented byitavbctor of length
|Va| which defines for each structural object whether it is sekkar not. In
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individual i mapping functionm implementation (A,B,S)

[ allocation vector }\

allocation A ]

[

binding lists ] O repair allocation binding B ]

]

' updated allocation] schedule S |
!

_repaired allocation]

@ update allocation

o binding
@ compute binding © nheuristic list scheduler

Fig. 29: lllustration of the individual space to decision space niagp Each individual con-

4.2.2

sists of two parts, an allocation vector and a set of bindisig.| In the first step of

the decoding process, a repaired allocation is computetiebdsis of the allocation
vector. Afterwards, the binding lists as well as the reghakocation are used in order
to determine the binding. As not all allocated resources bwgssigned a task, the
allocation is updated in the next step. Finally, a list-sithieg heuristic calculates a
schedule corresponding to the binding. Note that in Step @aailble binding is not

necessarily found.

order to reduce the number of infeasible solutions, allooatare partially re-
paired by a heuristic whenever an individual is decoded.tfk®isame reason,
bindings are not encoded directly by a bit vector but rathdirectly using sev-
eral lists: the first list, which represents a permutatioalbfunctional objects
in the problem graph, determines the order in which the tasgsmapped to
the computing resources with respect to the repaired aitotaFurther lists,
permutations of the set of resources, define separatelyafdr sk which re-
source is to be checked next for mapping. Based on the dedndéuhg, the
list scheduler computes the final schedule. The relationdst individuals and
implementations as well as the decoding algorithm are tieghia Figure 29.

Since allocation and binding are represented differetitigy have to be
treated separately in the recombination and mutation gh&ncerning the al-
location, uniform crossover (Syswerda 1989) and bit-fligation were chosen.
For bindings lists, uniform order-based crossover and smafation (Davis
1991) ensure that the permutation property is preserved.

Fitness Assignment and Selection

Blickle, Teich, and Thiele (1998) used the same Pareto ngkiethod as Fon-
seca and Fleming (1993) (cf. Algorithm 4). For the purposa di’erse popula-
tion, a crowding technique calledstricted tournament selectigiiarik 1995)
was incorporated. The algorithm is in the following referte as BTTA.
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Alg. 11: (Blickle, Teich, and Thiele’s Multiobjective Evolutionary Algorithm)
Input: N  (population size)
T  (maximum number of generations)
pc (crossover probability)
Pm (mutation rate)
w  (window size for restricted tournament selection)
Output: A  (nondominated set)
Step 1: Initialization: Sett = 0 and generate the initial populatioRac-
cording to Step 1 of Algorithm 1.
Step 2: Set® = P;. Fori =1,...,N/2do
a) Selection for reproduction: Select two individuals,ij € P at
random.
b) Recombination: Recombiné iand j; the resulting children are
k andll. With probability p setii’ =i and j’ = j, otherwise
i"=kandj =1.
c) Mutation: Mutateii’ and j’ with mutation rate p,. The resulting
individuals areii’ and j".
d) Replacement: Call Algorithm 12 with parameterd &= {i”, j”},
P’, andw. The populatiorPP? is returned. SePP= P”.
Step 3: Termination: Setl®.; = P andt=t+1. Ift > T or another stop-
ping criterion is satisfied then s& A p(m(P;)) else go to Step 2.
Alg. 12: (Restricted Tournament Selection)

Input: J  (multi-set of individuals)
P’ (current population)
w  (window size)

Output: P” (updated population)

Step 1: SetP® = P’. Foreachjje J do
a) Select a seKKof w individuals fromP? at random.

b) Determine individuakke K with minimum distance to the can-
didateji VI € K : d(j,l) >d(j, k).

c) If|{ieP”]i<j} <|{i e P"|i <k} then replacekkby j:
P// — (P// _ {k}) + {j}

The distance functiod in Algorithm 12 is defined as the number of differ-
ent binding pairsid(i, j) = |B\ B’| wherem(i) = (A, B, S andm(j) =
(A, B/, S). If (A, B, S or(A, B, S)isinfeasible, thew(i, j) = 0. Further-
more, individuals representing infeasible solutions asigned the objective
vector (oo, co) when checking for domination in Step 1c of Algorithm 12.
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4.3 Case Study: Video Codec

4.3.1 Comparison of Three Evolutionary Techniques

The synthesis of a video codec, based on the H.261 standactt|€B1996,
Chapter 9), was chosen as a sample application in order tpax@the BTTA
implementation (Algorithm 11), a SPEA implementation, @mdEA using the
constraint method (cf. Section 1.2.2) on the system syighmeblem. With
this application, the search space contains ab@ut1l0?’ possible bindings.

The SPEA implementation corresponds to Algorithm 7 on pa&)evBere
the representation, the mapping functimpand the genetic operators (cf. Sec-
tion 4.2.1) as well as the objective functions (cf. Sectidh3) were the same
as with BTTA and the single-objective EA. All three algoritk used the pa-
rameters chosen in (Blickle 1996); there, different parn@mealues were inves-
tigated experimentally:

Population sizeN . 30
Number of generation® . 100
Crossover rat@. : 05

Mutation ratepm, (per individual) : 0.2

Regarding SPEA, the population sikewas set to 20 and the external set size
N to 10. BTTA ran with a window size ofv = 20 (parameter for restricted
tournament selection). Furthermore, 10 independent rens performed in the
case of BTTA and SPEA; the solutions hondominated amondpalsolutions
generated in the 10 runs were taken as the outcome of the twBA40O In
contrast, 22 different SOPs were considered in the caseeatdhstraint EA:
11 SOPs which minimize cost under different latency comsisaand 11 SOPs
which minimize latency under different cost constraintst €ach SOP, the best
result out of 10 independent runs (100 generations each)takes, and the
nondominated solutions of all 22 single-objective resatiastituted the final
nondominated set.

As can be seen in Table 2, SPEA weakly dominates 100% and dtasin
50% of the solutions found by BTTA. Although the offline perfaance over
10 runs is considered here, the situation was similar whempeoing distinct
runs directly. Regarding the constraint method, SPEA wedé&minates 100%
and dominates 33% of the nondominated set achieved by tusitim. This
shows again that (elitist) MOEAs have advantages over t#&sdal methods:
despite 22 times less computation effort, SPEA found bstikrtions than the
constraint EA. Moreover, Blickle (1996) reported that BTaghieved the same
front as the constraint EA (Table 2, middle row) when the cotapon time
was increasedN = 100 andT = 200). The fact that independently of the
algorithm and the parameters only six nondominated saistwere generated
indicates that the Pareto-optimal set seems to be rathdr (sftlaough there is
no evidence that the best front, which was found by SPEAg#&#treto-optimal
front).
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Tab. 2:

Video Codec: Nondominated fronts found by the three difiemmethods. In each
column, the pairs marked by a surrounding box representisofuthat are dominated
by any solution produced by the two other algorithms. Theauies of the constraint

EA are taken from (Blickle 1996, p. 203).

SPEA constraint EA BTTA
(180,166) (180,166) (180,166)
(230,114) (230,114) (230,114)

(280,78) (280,78) (280,78)
(330,48) (330,54) (330,54)
(340,36) (340,42) (350,23)
(350,22) (350,22) (370,22)

4.3.2 Trading-Off Cost, Latency, and Power Consumption

Besides cost and latency, power consumption becomes gioghaimportant
in the design process of hardware/software systems lige, @llular phones.
In order to incorporate this criterion into the model progabby (Blickle, Teich,
and Thiele 1998), two additional functions are introdugethie specification:

1. P(v) gives for each structural objecte Vp in the architecture graph the esti-
mated power consumption in the idle state, i.e., when noitaskecuted.

2. P(a, b) defines for each functional objeat e Vp the additional power con-
sumption affected by the executionabn the computing resourdee Va.

Based on these two functions, a third objective, power compion, can be
added to the problem formulation in Section 4.1.3:

Y P(@.b)

(a,b)eB

f3(A, B, S) = <Z P(v)) +

veA

Again, the video codec was taken as a sample applicationré-&p depicts
the nondominated front produced in a single SPEA min=£ 100, N = 100,
T = 200) with regard to the three objectives cost, latency, andep con-
sumption. Some interesting trade-off solutions are alsted in Table 3 with
regard to three cost categories. First of all, it is remalkabat the number
of solutions in the nondominated set increases signifigdntlintroducing a
third objective (34 in comparison with 6 in the two-dimensab case). The
same situation arose with the knapsack problem in Secti®n Bhis is also
in accordance to what other researchers observed on rekl-aoplications
(Fonseca and Fleming 1995b). Furthermore, the obtaindeé-wé front well
reflects the conflicts between the objectives. The cheapksian provides the
lowest performance at maximum power dissipation (cdst= 180, latency:
fo = 166, power consumptionf3 = 299); as can be seen in Figure 31 on
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Fig. 30: Three-dimensional trade-off front for the video codec.

the top, it consists of a general-purpose RISC processor)/devices, and
a slow memory module connected by a slow bus. In contrasfasiest solu-
tion (Figure 31 on the bottom), which includes several sdezgd computing
resources and a fast bus, causes the maximum cost at medwen gissipa-
tion (cost: f1 = 520, latency: fo = 22, power consumptionfz = 218). A
good compromise solution could be the one represented ybiketive vector
(fq1, o, f3) = (360,42, 154): low power dissipation and good performance at
medium cost. It differs from the fastest solutions in thaisés a slower bus and
the subtraction/adder module instead of the faster digitalal processor, cf.
Figure 31.

The bindings and the schedules of the three implementatisngssed here
are depicted in Figure 32. These illustrations show thddrattks of the alter-

Tab. 3: Some of the nondominated solutions found by SPEA during ptienezation run. The
pairs marked by a surrounding box represent the soluticatsatie shown in Figures 31
and 32.

low cost medium cost

high cost

[ (180,166,299) |
(230,114,125)
(250,114,120)
(280,81,133) |

(300,81,128)
(310,78,159)
(330,48,244)
(360,42,154) |
(390,32,161)

(400,23,219)
(410,32,156)
(420,23,214)
(500,22,231)

(520,22,218)

(290,78,164)
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native solutions. For the cheapest implementation, theCRi®cessor essen-
tially determines the latency. The bottleneck of the fastekition is the block
matching module, while the bus restricts the performancit@fcompromise
solution.
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Cost: 180 Latency: 166 Power Consumption: 299
input module INM
shared
bus
ingl dule | DPFM | | SBF | | RISC2 bl
single port memory module programmable RISC processor
(slow)
output module
Cost: 360 Latency: 42 Power Consumption: 154
input module INM SAM subtraction/adder module
shared
bus
dual dule | DPFM | | SBF | | BMM block hi dul
ual port memory module ock matching module
(medium)
output module module for DCT/IDCT operations
Huffman coder
Cost: 520 Latency: 22 Power Consumption: 218
input module INM DSP digital signal processor
shared
bus
dual dule | DPFM | SBF | BMM block hi dul
ual port memory module ock matching module

output module |OUTM

Fﬂ
15

DCTM| module for DCT/IDCT operations

HC Huffman coder

Fig.

31: Architectures of three alternative implementations.
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Cost: 180 Latency: 166 Power Consumption: 299
GanttChart [
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Fig. 32: Gantt charts of three alternative implementations; theesponding architectures are

depicted in Figure 31. Each Gantt chart visualizes the secomputing resources
(allocation A), the mapping of functional objects to structural objetisding B), and
the schedules of a particular implementatiogA, B, S). Note that the transmission
tasks, which are mapped to the I/O devices INM and OUTM as aglhe memory
modules (FM, DPFM), are not shown as they are assumed to éakdime due to the
small amount of data to be transferred, cf. (Blickle 19969p).



Software Synthesis

The automatic synthesis of software implementations foggammable digital
signal processors (PDSPs) is the second application aresichere. As with
the system synthesis problem, the specification is based graph-oriented
model where the nodes represent computations and the ddgéiew of data.
Concerning the optimization criteria, three implemermtatmetrics are crucial
with many digital signal processing (DSP) systems: progna@mory require-
ment, data memory requirement, and execution time.

The complexity of this problem arises not only from the numdfeobjec-
tives involved but also from the fact that the size of the gleapace can be ex-
ponential in the size of the specification graph. This prev&thniques based
on enumeration from being applicable. Instead, the coniglexoften reduced
by focusing on only one objective and restricting the seaoch subclass of
all possible software implementations. Deterministicoaltpms (heuristics or
optimization methods) are usually used to solve the reguSiOP.

Here, EAs are taken as the underlying optimization techadue to two
reasons:

The market of DSP applications is driven by tight cost andgoerance con-
straints; thus, code-optimality is often critical (Marveédnd Goossens 1995).

Frequently, DSP systems are programmed once to run fottesecg, optimiza-
tion and exploration times in the order of minutes, hoursgvan days are ne-
glectable.

The motivation was to develop a methodology that can exploieased toler-
ance for long compile time to significantly improve resultsguced by state of
the art algorithms. In the first step, an EA was compared witieag heuristics
on the SOP for minimizing the data memory requirement of Emegmemory
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5.1

5.1.1
Def. 13:

optimal software implementations. As the results were go1g, the EA im-
plementation was extended to perform a multiobjectivenjatation with regard
to the three objectives mentioned above. This was the first the trade-offs
between these optimization criteria could be investigé&tedrbitrary software
implementations.

This chapter is divided into three parts. The first part (®adc.1) comprises
a description of both the specification model and the impleateon model
used. In the second part (Section 5.2), the single-obg&# for minimizing
the data memory requirement is presented and compareddoasalternative
algorithms. The last part (Section 5.3) is devoted to despgice exploration. In
particular, the trade-off fronts for different well-knoADSPs are analyzed for
a sample rate conversion system, and furthermore two MOEAeimentations
(SPEA and NPGA) are compared on nine practical DSP appiitsti

Synchronous Data Flow

Synchronous data flow (SDF) is a restricted form of data flommiych an
important class of DSP algorithms can be represented @atyya, Murthy,
and Lee 1996). With it, a DSP system is described by a direptaph where
the nodes calledctorsstand for functional components and the edges represent
interactions between them. Furthermore, for each edgsasified how many
data values calletbkensare i) initially on it and ii) written to and read from
it by the interconnected DSP subsystems. The SDF model ésinsedustrial
DSP design tools, e.g., SPW by Cadence, COSSAP (now) by Syspps
well as in research-oriented environments, e.g., PtolddugK, Ha, Lee, and
Messerschmitt 1994), GRAPE (Lauwereins, Engels, Pepetsir Steegmans,
and Ginderdeuren 1990), and COSSAP (Ritz, Pankert, and M392).

Background and Notation

(SDF graph) An SDF graph G= (V, E) is a directed graph in which each
edge e= (v,v') € E C V x V has three attributes:

delay(e) gives the number of initial tokens that reside on e.

producede) indicates the number of tokens written to e per invocatiothef
actorv.

consumece) specifies the number of tokens read (and removed) from e per
invocation of the actor’.

An example of an SDF graph is depicted in Figure 33a. It comgé two
actors and a single delay-less edge; aé&t@roduces two tokens per invocation
while actor B consumes three. Conceptually, a queue is associated with th
edge which represents a buffer intermediately storingakerts going fromA
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Fig. 33: lllustration of a simple SDF graph (left) and the executida schedule (right).

to B. A firing, i.e., invocation of actoA corresponds to adding two tokens to
the buffer. WhenB fires, the first three tokens are removed from the buffer.
ConsequentlyA has to be executed at least two times befdrean fire.

If we consider a sequence of actor firings, the techedulas used. The
generation of a schedule is a central part of the compilgironess in which a
PDSP implementation is derived from a given SDF specificatio

Def. 14: (Flat Schedule)Given an SDF graph G= (V, E), a sequence & vivs...vq
of actor instances; € V is denoted as #at schedule

The concept of a flat schedule can be extended by introducimegdsile loops,
which allow a more compact representation of firing sequence

Def. 15: (Looped Schedule)Given an SDF graph G= (V, E), a parenthesized term of
the form(c §$... Sy) is referred to as achedule loofavingiteration count
c anditerandsS,, S, ... Sp; an iterand is either an actop € V or another
schedule loop. Aooped schedules a sequence & T1T,... Tq where each T
is either an actow € V or a schedule loop.

According to these definitions, each flat schedule is at theedame a looped
schedule which contains no schedule loops, i.e., the sdt fiitaschedules is
a subset of the set of looped schedules. For instance, thesegAAB ABis

a flat (and also a looped) schedule for the SDF graph depictEdjure 33; its
execution is illustrated in the same figure on the right-r&idd. In contrast, the
term A(2 AB) is a looped but not a flat schedule. Furthermore, note thdit eac
looped schedule can be converted to a flat schedule by usipguorolling.
The firing sequence represented by a schedule (0dpS; ... Sp) is the term
SS$...5...59...S) where the loop bod$s S . .. Sy, appears exactly
times. Transforming recursively all schedule loops corgdiin a looped sched-
ule into the corresponding actor firing sequences yieldstadlaedule. Con-
sider, e.g., the looped schedu®A(2 AB)); the corresponding flat schedule is
AABABAABAB
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Def. 16:

5.1.2

Moreover, looped schedules may be characterized by diff@m@perties.
Let G= (V, E) be an SDF graph and S a looped schedule. S is called

admissible scheduldf S is deadlock-free, i.ey; is the ith actor firing of S,
wherevivz. .. vj ... vq is the flat schedule corresponding to S;

periodic scheduldf each actorv € V fires at least once, and the state of G is
the same before and after the execution of S concerning timb@uof tokens
per queue;

single-appearance schedifféor each actor € V there is exactly one instance
inS.

Here, S denotes the set of all admissible, periodic looped schedelgarding
G. The entirety of all admissible, periodic looped singfgaarance schedules
is represented by the sef & S*.

The actor sequenc&AB ABis an admissible, periodic flat schedule for the
example SDF graph in Figure 33, while the schedd2 AB) is in S* as well,
but contains a schedule loop. However, the order of the #idiags is identical
for AABABand A(2 AB). In the remainder of this chapter, the general term
schedule is used for members®funless it is stated differently in the context.
Examples for schedules not containedSihare B AB AA which is not admis-
sible; andA AB, which is not periodic. Furthermoré3 A)(2 B) represents a
single-appearance scheduleSn while A(2 B) is a single-appearance schedule
which is neither admissible nor periodic.

SDF graphs for whicl§* # ¢ are calledconsistengraphs. Systematic
techniques exist to efficiently determine whether or notveergiSDF graph is
consistent and to compute the minimum number of times that eator must
be executed in the body of a sched@e= S* (Lee and Messerschmitt 1987).
In the following,q(v) denotes the minimum number of firings for actoe V
with regard to a given SDF grapB.

Implementation Model

Today’s DSP compilers still produce several hundred perokoverhead with
respect to assembly code written and optimized by hand.eftve, a common
approach in SDF-based DSP programming environments isitdainaa library
which contains optimized assembly code for each actor. guréi 34 the pro-
cess of generating machine code from a given schedule ialized: First the
schedule is translated into a program containing the qooreging actor code
blocks from the library, and then additional instructiome aserted in order
to handle the data transfers between communicating agtmsade allocation
phase).

In this compilation model, which is also used here, the suleeid of cru-
cial importance. However, the generated machine code hptepends on the
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actor library
2 3 so $ Ca 7
@ @ > scheduler > code generator s addi $sp, $fp,-8 3
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storage allocation > m $ra

target code

Fig. 34:

Def. 17:

5.1.2.1

SDF compilation model from (Bhattacharyya, Murthy, and 1886, p.17).

order in which the actors are executed but is also influengethd® underly-
ing code generation model. Schedules can be implementeatioug ways as
shown in Figure 35. On the one hand, there is a choice betwdiamg and
subroutine calls. Using subroutines, the final program awsep the code for
each actor only once and the schedule is realized by a sesjo¢isabroutine
calls. In contrast, inlining means that a schedule is mappeda sequence of
actor code blocks where each block appears in the progranaag times as
the corresponding actor fires. On the other hand, loopingttates another
degree of freedom. Most firing sequences can be represepteéidi schedule
or alternatively by a schedule containing loops. Henceetiealso a choice
between looped and flat programs, assuming that schedyje kre directly
transformed into software loops.

From the above discussion it becomes clear that a softwareimentation
is described by a schedud@da code generation scheme.

(Software implementation) A (software) implementation for an SDF graph
G = (V, E)isatuple(S, F) where

S e S is an admissible periodic schedule, and

the implementation function EV — {0, 1} determines for each actar € V
separately whether it is implemented as a subroutin@{F~ 1) or by inlining
(F(v) =0).

Based on this definition, various objectivgsS, F) can be introduced. Here,
the three optimization criteria (data memory requiremprdggram memory re-
quirement, and execution time) are formalized.

Data Memory

The buffer capacity that is necessary to execute the sohedskntially defines
the amount of data memory required by a software implemientaf an SDF

graph. In addition, the organization of the buffer memofg@&s the total of the
memory cells needed. The memory assigned to a buffer candskdixshared
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AABAB AABAB AABAB A(2 AB)
BEG N PROCEDURE A PROCEDURE B PROCEDURE B
CODE( A) BEG N BEG N BEG N
CODE( A) CODE( A) CODE( B) CODE( B)
CODE( B) END END END
CODE( A)
CODE( B) PROCEDURE B BEG N BEG N
END BEG N CODE( A) CODE( A)
CCDE( B) CODE( A) FOR i =1 TO 2 DO
END CALL(B) CODE( A)
CODE( A) CALL(B)
BEG N CALL( B) (o))
CALL(A) END END
CALL( A)
CALL(B)
CALL( A)
CALL(B)
END
inlining subroutines flat looping

Fig. 35:

5.1.2.2

Different ways of implementing a sequence of actor firingsesented by the schedules
AABABand A(2 AB). Combinations of them are also possible as indicated on the
right-hand side.

among different queues. Furthermore, a buffer can be ceresichs existing the
whole time or only as long as it is used.

For simplicity, it is assumed here that a distinct segmebudier memory is
allocated for each edge of a given SDF graph. For this undimeenory model,
the total of the data memor (S) needed by a schedufis equal to the sum
of the minimally required capacities per buffer:

D(S) = ) maxtokense, S)

ecE

(5.1)

Here, maxtokensge, S) denotes the maximum number of tokens that accumu-
late on edge during the execution o8.

For instance, the schedul® A)(2 B) requires a minimal buffer size of 6
considering the SDF graph in Figure 33a, because 6 tokenm@deced when
actor A fires three times in succession. If another actor sequenakes S =
AAB AB), the data memory requirement can be decreaBg®)(= 4).

Finally, note that the individual actor code blocks mighed@dditional data
memory for storing local variables. As this is a fixed amouhtoh is the same
for all schedules and independent of whether inlining, sutines, or looping
is used, only the pure buffer memory is considered here.

Program Memory

Assuming that for each actere V the size size) of the corresponding actor
code block in the library is given, the program memory regmentP (S, F) of



5.1. Synchronous Data Flow 91

an implementationS, F) is modeled as follows:
P(S, F) = Piniine(S, F) + PsubroutindS, F) + Ploop(s) (5-2)

The first termPiine(S, F) only considers those actarsvhich are implemented
by inlining (F (v) = 0). Let apgv) be the number of times thatappears in the
schedules (this value is less than or equal to the number of firings)of

0 fS=vVeVav £v
1 fS=veVaAar=uv
PRV S =1 58 app, Ty if S=TiTz... T, (5.3)
P appv, §) fS=(€SS...S)
Then, the program memory requirement caused by inlining is:
Piiine(S, F) = ) _ sizev) - app(v, S) - (1 — F(v)) (5.4)

veV

In contrast, the usage of subroutines is accompanied by @gsor-specific
overhead PQroutinewhich takes additional code for, e.g., the jump instruction
per subroutine invocation into account:

Psubroutind S, F) = ) _(siz&(v) + app(v, S) - POsubrouting - F(v)  (5.5)
veV

Finally, the additive termPoop(S) denotes the program overhead caused by
schedule loops. It depends on the processor-dependenteni?@gop of in-
structions needed for i) loop initialization and ii) loopusder increment, loop
exit testing, and branchindoop(S) is equal to the number of schedule loops in
Smultiplied by PQyop:

0 fS=veV
Ploop(S) = Ziq=1 Ploop(Ti) if S=TiTy... Ty (5.6)
PQoop + Zip=1 Poop(S) if S=(€c §%...5)

It must be emphasized here that this model only estimatestiial program
size. For instance, code that is added in the storage dbbocphase of the
compilation process is not included in the above computatio

5.1.2.3 Execution Time

Here, the execution time denotes the overhead in clock syélihe target PDSP
caused by i) subroutine calls, ii) software loops, and i@jadtransfers in one
schedule iteration. Formally, the execution time overh€é8, F) of a given
software implementatio(sS, F) is defined as

T(S, F) = Tsubroutind S, F) + Tioop(S) + Tio(S) (5.7)
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5.2

The subroutine call overhea@yproutind S, F) takes the number of T&broutine
cycles into account that are necessary to save and restpsterecontents as
well as perform the call and return instructions:

Tsubroutind S, F) = Z app(v, S) - TOsybroutine: F(v) (5.8)
veV

Concerning looping, there are in general two quantitieghe)time qugp for

initializing a loop, and ii) the time T{§;2"%" which is needed per loop iteration
in order to increment the counter, to check the exit condjteic. For instance,

if a single loop is executed times, it produces an overhead of rggg +cC-

TOeration cycles with this model. As schedul&e S* may contain nested

loops, the total loop overhead is defined recursively:
0 fS=veV
Ziqzl Tioop(Ti) if S=TTo... Ty

p
TIoop(S) = 9 -I-Oinit +c- (Toiteration + ZTloop(Sl)) (5.9
i=1

loop loop

ifS=(€SS...5)
The last additive componenfi,(S) represents the communication time over-
head, i.e, the time necessary to transfer data between thes.adn general,
Tio(S) is influenced by i) the processor capabilities (e.g., som8PPoffer ef-
ficient ways to handle buffer accesses) and ii) the choseferbofodel (e.g.,
fixed versus shared buffers). Assuming that each inputihwaperation (read
data token from buffer, write data token to buffer) takesvarage TQ, cycles,
the total communication time overhead can be initially agpnated by

Tio(S = (Zez(v,v’)eE app(v, S) - producede) - TOjo) +
(X e—v.vyeE @PAY', S) - consumeck) - TOio)

TOp (as well as TQubroutine To:ggp, and T 'oeorg“"”) depends on the chosen
processor.

As with the other two optimization criteria, certain asgast the actual im-
plementation are disregarded in the execution time modwe. amount of time
needed to execute only the actor code blocks is assumed toelolg(éind there-
fore not included inT (S, F)) due to two reasons. First, the schedule is static
(i.e., unchanged during run-time) and thus an actor firing loa performed
without interrupts and/or wait cycles for polling. Secoond)y actor firing se-
guences of minimal length are considered in the followinigere each actaris
executed exactlyg(v) times per schedule iteration (cf. Section 5.1.1, page 88).

(5.10)

Minimizing Data Memory Requirements

Most approaches to software synthesis from data flow spatdits restrict the
search to a certain class of implementations in order to lbahd complexity
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individual i mapping functionm implementation S

actor permutation ] .............................................. -l [ looped Sing|e ) Schedule]s

] !

topological actor sort

@ repair permutation 9 run GDPPO

Fig. 36: Mapping of actor permutations to looped single-appearanbedules.

5.2.1

5.2.2

of the problem. In (Bhattacharyya, Murthy, and Lee 1996@, ithinimization
of data memory requirements for looped single-appearacivedsiles is con-
sidered under the inlining code generation model. Two lséus have been
developed that attempt to construct a buffer memory minsobeduleS € S
for a given SDF graph. Here, an EA is applied to this SOP andpeoed to
those and other algorithnis.

Problem Statement
Formally, the SOP under consideration is

minimize f(S) = D(S

where  Se X =Y (®-11)

where§] is the set of all admissible, periodic single-appearanhedales for a
given SDF graplG = (V, E); note thatG is assumed to be acyclic here. Since
only inlining and looping are used as code generation schethe functionF

is fixed with F(v) = O for all v € V. Therefore, a software implementation is
entirely described by the schedule.

Implementation

The EA uses a procedure called GDPPO (Murthy, Bhattachaayndlee 1994)

on which the above two heuristics are also based. GDPPO hvaténds for
generalized dynamic programming post optimization, takéspological sort

of the actors of an SDF grap@ = (V, E) as input and constructs a sched-
ule S € S whose data memory requirement is minimal among all single-
appearance schedul& e S that have the same lexical ordering of actors.
Thus, the EA explores the space of possible topologicakdort G, while
GDPPO accomplishes the transformation of topologicakgor{data memory
optimal) single-appearance schedules.

1A detailed presentation of this study can be found in (TeKilgler, and Bhattacharyya
1998), (Zitzler, Teich, and Bhattacharyya 1999d), andz{&it Teich, and Bhattacharyya
1999b).
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Alg. 13:

5.2.3

Concerning the representation, an individual is a perriartat over the set
of actors. Since each topological sort is a permutation notitevery permu-
tation is a topological sort, a repair mechanism is necgdganrder to avoid
infeasible solutions. The entire decoding process is tieghia Figure 36. First,
an individuali is unambiguously mapped to a topological sorby the follow-
ing sort algorithm:

(Special Topological Sort Algorithm)

Input: G = (V,E) (acyclic SDF graph)
i (actor permutation)
Output: =’ (topological actor sort)

Step 1: Seti=1and G = G with G = (V’, E’). While V' # ¢ do

a) Find actorv € V/ which has no incoming edge in’ Bnd is at
the “leftmost” position regardingr :
e Setj=1. While j<|V|doifx(j) e V and A, v") €

E’ :v” = vthenstop else set5 j + 1.

e If j > |V]then error (cyclic SDF graph) else= 7 (j).

b) Setr/(i) =v.

c) Remove and all edges coming from or going tofrom G
o V' =V'\{v},
o E' ={0W,V)eFE v #£AvAv £}

d) Seti=i+ 1

For instance, the permutation(l) = B, 7n(2) = A over the nodes of the
SDF graph depicted in Figure 33 would be transformed intottip@logical
sort7’(1) = A, n/(2) = B. Afterwards, GDPPO is applied to' and the data
memory requirement of the resulting schedBle- m(i) gives the fitness value
ofi: F(i) = D(9S).

As with the traveling salesman problem in Chapter 3, two eh#sed ge-
netic operators are used: uniform order-based crossoves@amble sublist
mutation (Davis 1991). Both ensure that the permutatiopgnty of individu-
als is preserved.

Comparing the Evolutionary Algorithm and Other Optim ization Methods

The EA was tested on several practical examples of acyclidtinate SDF
graphs as well as on 200 acyclic random graphs, each camyebli nodes and
having 100 edges in average. The obtained results were cethpgainst the
outcomes produced by the following algorithms:

APGAN (acyclic pairwise grouping of adjacent nodes) (Bheltaryya, Murthy,
and Lee 1996) is the first of the two mentioned heuristics & bottom-up ap-
proach and attempts to construct a single-appearancegeheih minimal



5.2. Minimizing Data Memory Requirements 95

5.2.3.1

data memory requirements. This procedure of low polynotima complex-
ity has been proven to give optimal results for a certainsctafsgraphs with
relatively regular structure.

RPMC (recursive partitioning by minimum cuts) (Bhattagtya, Murthy, and
Lee 1996) is the second heuristic for generating data memammal sched-
ulesS e S}. In contrast to APGAN, it works top-down and shows bettefqrer
mance on irregular SDF graphs. RPMC (as well as APGAN) is ¢oeabwith
GDPPO here.

RAND is the random search strategy described in Sectio3 8r2page 47.

HC stands for hill climbing, a stochastic optimization nathwhich operates
on a single solution. Starting with a random solution, theustble sublist mu-
tation operator is repeatedly applied until a better sofuts found. Then, the
same procedure is performed for the improved solution. Heeesame coding,
mapping function and mutation rate as with the EA are used.

EA+APGAN is a combination of EA and APGAN where the APGAN dao
is inserted into the initial population of the EA.

RAPGAN is a randomized version of APGAN and is described taitlia (Zit-
zler, Teich, and Bhattacharyya 1999d). It is controlled pasametep which
determines the “degree of randomness” that is introdudedire APGAN ap-
proach. The valug = 1 means that RAPGAN behaves like the deterministic
APGAN algorithm (no randomization), and gsdecreases from 1 to 0, the
deterministic factors that guide APGAN have progressilesdg influence.

Based on preliminary experiments, see (Zitzler, Teich, Bhdttacharyya
1999d), the population size was setNo= 30 and the probabilities associated
with the operators tgp; = 0.2 andpy = 0.4. All stochastic algorithms (EA,
RAND, HC, EA+APGAN) ran for 3000 fitness evaluations eac#,, ithe op-
timization runs were aborted after the mapping functoiad been invoked
3000 times. In the case of RAPGAN, several runs were carnigger graph,
such that the total of the run-time was equal to the EA's inreton that par-
ticular graph; the best value achieved during the varions mwas taken as the
final result. The randomization paramefeof RAPGAN was set tg = 0.5.

Practical Examples of SDF Graphs

In all of the practical benchmark examples that make up Tdbillee results
achieved by the EA equal or surpass the ones generated by ReMtpared
to APGAN on these practical examples, the EA is neither iofemor supe-
rior; it shows both better and worse performance in two casel. However,
the randomized version of APGAN is only outperformed in oasecby the
EA. Furthermore, HC and EA show almost identical perforneamdile RAND

achieves slightly worse results than the other probaiuil&gorithms.
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Tab. 4: Comparison of data memory requirement on eleven practiGahples? The first ten
DSP applications are the same as considered in (Bhattaehdwurthy, and Lee 1996),
while the satellite receiver example (11) is taken fromZR#Willems, and Meyr 1995).
Example] APGAN RPMC RAND HC EA EA +
(RAPGAN) APGAN
1 47 (47) 52 47 47 47 47
2 99 (99) 99 99 99 99 99
3 137 (126) 128 143 126 126 126
4 756 (642) 589 807 570 570 570
5 160 (160) 171 165 160 160 159
6 108 (108) 110 110 108 108 108
7 35 (35) 35 35 35 35 35
8 46 (46) 55 46 47 46 46
9 78 (78) 87 78 80 80 78
10 166 (166) 200 188 190 197 166
11 1542 (1542) 2480 1542 1542 1542 1542
Although the results are nearly the same when considerilygl&@0 fithess
evaluations, the stochastic optimization methods canmopete with APGAN
or RPMC concerning run-time performance. For example, ARGweds less
than 23 seconds for all graphs on a SUN SPARC 20, while the run-tiftileeo
EA varies from 01 seconds up to 5 minutes (3000 fitness evaluations).
5.2.3.2 Random SDF Graphs

The experiments concerning the random graphs are summianzEable 53
Interestingly, for these graphs APGAN is better than RANIyam 15% of all
cases and better than the EA only in two cases. However, littfgeoformed by
the EA 99% of the time. This is almost identical to the comgamiof HC and
APGAN. As RPMC is known to be better suited for irregular draphan AP-
GAN (Bhattacharyya, Murthy, and Lee 1996), its better penfance (635%) is
not surprising when directly compared to APGAN. Neverths|é is beaten by
the EA as well as HC more than 95% of the time. Also, RAPGAN etftrms
APGAN and RPMC by a wide margin; compared to both EA and HCctlye
it shows slightly worse performanée.

These results are promising, but have to be considered atiagsn with
their quality, i.e., the magnitude of the data memory rezgyaignt achieved. In

2The following DSP systems were considered: 1) fractionairdetion; 2) Laplacian pyra-
mid; 3) nonuniform filterbank (1/3, 2/3 splits, 4 channek);nonuniform filterbank (1/3, 2/3
splits, 6 channels); 5) QMF nonuniform-tree filterbank; yIRfilterbank (one-sided tree); 7)
QMF analysis only; 8) QMF tree filterbank (4 channels); 9) Qiie filterbank (8 channels);
10) QMF tree filterbank (16 channels); 11) satellite reaeive

3The EA ran about 9 minutes on each graph, the time for runniPGAN was consistently
less than 3 seconds on a SUN SPARC 20.

4This holds for different values of the randomization pareme as has been verified ex-
perimentally.
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Tab. 5:

Comparison of performance on 200 50-actor SDF graphs; fcin eaw the numbers
represent the fraction of random graphs on which the cooretipg heuristic outper-
forms the other approaches.

<

APGAN

RAPGAN

RPMC

RAND

HC

EA

EA +
APGAN

APGAN

0%

0.5%

34.5%

15%

0%

1%

0%

RAPGAN

99.5%

0%

94.5%

93.5%

15.5%

27.5%

21%

RPMC

65.5%

5.5%

0%

29.5%

3.5%

4.5%

2.5%

RAND

85%

6.5%

70.5%

0%

0.5%

0.5%

1%

HC

100%

84.5%

96.5%

99.5%

0%

70%

57%

EA

99%

72%

95.5%

99.5%

22%

0%

39%

EA + APGAN

100% 78.5% 97.5% 99% 32.5% 53.5% 0%

5.3

average the data memory requirement achieved by the EAfigheabne com-
puted by APGAN and only 63% of the RPMC outcome. Moreoverngorove-

ment by a factor 28 can be observed on a specific random grdaphesgpect to
APGAN (factor of 10 regarding RPMC). Compared to RAND, ithe tsame,
although the margin is smaller (in average the results oEthere 0.84% of
the results achieved by RAND). HC, however, might be an adtéve to the

EA, although the memory requirement achieved by the EA desitom the

outcomes produced by HC by only a factor of 0.19% on averades dlso

suggests that i) the EA might be improved using a more speedtrossover
operator and ii) simulated annealing, for instance, coldd ae a good opti-
mization algorithm with this problem. However, this has heen investigated
further in this work. Finally, the RAPGAN results perform e than 3% of
the EA results with regard to the magnitude of the data memeayirement.

Trading-off Execution Time and Memory Require-
ments

Bhattacharyya, Murthy, and Lee (1996) have focused on tteerdamory min-
imization of looped single-appearance schedules. Evigehis type of sched-
ule is nearly program memory optimal when only inlining aadping is used.
However, it may not be data memory minimal, and in generahay be de-
sirable to trade-off some of the run-time efficiency of imig with further re-
duction in program memory requirement by using subroutiaspecially with
system-on-a-chip implementations.

Here, the space of arbitrary software implementatid®s-) is explored
where each of the three criteria data memory, program merandyexecution
time is considered as a separate objective. Figure 37 shmwsade-offs be-
tween these goals. On the one hand, there is a conflict bepwwvegram memory
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‘ execution time

inlining / subroutines
flat / looping

program memor)I ‘ data memory

A .4

flat / looping

Fig. 37: Trade-offs between the three optimization criteria acicgrdo the code generation al-

5.3.1

5.3.2

ternatives.

requirement and execution time. While subroutines savgrpm memory, they
are accompanied by an execution time overhead; the sams fawldoftware
loops. In contrast, the pure inlining code generation mgeelerally produces
faster, but also larger programs. On the other hand, loaptngduces a conflict
between data memory and program memory requirements. Therdamory
needed by an implementation only depends on the order ofdioe frings.
However, the firing sequence also determines to which elteping is appli-
cable; thus certain data memory minimal schedules may ntwdped which,
in turn, affects the code size.

In the following, an MOEA implementation for this MOP is pezged. It
is applied to a sample rate conversion system as well as afithe eleven
practical DSP examples from Section 5.2.3.1. This work heenlpublished
in (Zitzler, Teich, and Bhattacharyya 1999a; Teich, Zitzénd Bhattacharyya
1999; Zitzler, Teich, and Bhattacharyya 1999c).

Problem Statement

Based on the implementation metrics presented in 5.1 2MRP can be for-
mulated for a given SDF graph = (V, E) as follows:

minimize f(S, F) = (f1(S, F), f2(S, F), f3(S, F))

subjectto f1(S, F) = D(S)
fo(S, F) = P(S, F) (5.12)
f3(SSF)=T(S F)

where (SF)e X=S"x F*

andF* denotes the set of all possible implementation functiens/ — {0, 1}.

Implementation

As depicted in Figure 38, each individual consists of founponents: i) actor
firing sequence, ii) loop flag, iii) actor implementation t@¢ and iv) imple-
mentation model.
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individual i mapping functionm implementation (S,F)

.............................................. ==
actor firing sequence } ,[ looped schedule S ]

loop flag } | implementation function F |

i

actor implementation vectoﬂ\

0 schedule repair

[
[
[
[

implementation model ] flat schedule

\

9 run CDPPO if loop flag set

© for each actor determine: inlining or subroutine

Fig. 38:

Alg. 14:

Design space exploration of DSP software implementatiomgpping from individual
space to decision space.

The first component represents the order of actor firingsafixed in length
because the minimal numbeg¢v) of firings of an actow € V is known a priori
(cf. Section 5.1.1, page 88). Since arbitrary actor firingussices may contain
deadlocks, a repair mechanism is applied in order to cottsdrilat, admissible,
and periodic schedule from the encoded information (Step theé decoding
process, cf. Figure 38):

(Schedule Repair)

Input: G = (V,E) (SDF graph)
S (actor firing sequence)
Output: S’ (admissible schedule)

Step 1: Initialize S’ with the empty schedule. For eacleeE dotoken(e) =
delaye).

Step 2: Choose the leftmost actor instancén S which is fireable, i.eYv'
V : (W, v) € E = tokenv’, v) > consume@’, v).

Step 3: Remove the actor instanedrom S and append itto 'S

Step 4: Simulate the firing of the chosen actari.e, for each incoming edge
e = (-,v) € E settokene) = tokene) — consumece) and for
each outgoing edge’ e= (v,:) € E settoken€) = token€) +
producede).

Step 5: If S is not empty then go to Step 2 else stop.
In each loop iteration, the first fireable actor instance liscied (and removed)

from the sequence, and the execution of the corresponding iacsimulated.
This process stops when the entire sequence has been wditked o
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Fig. 39:

5.3.3

CD DAT

A sample rate conversion system (Zitzler, Teich, and Bhh#eyya 1999c): a digital

audio tape (DAT) operating at a sample rate of 48kHz is camdletm a compact disc

(CD) player operating at a sample rate of 44.1kHz, e.g., édoprding purposes. See
(Vaidyanathan 1993) for details on multistage sample rate@rsion.

The loop flag determines whether to use loops as a means twerpdagram
memory. If it is set, a looping algorithm called CDPPO (cailee dynamic
programming post optimization) is invoked which transferthe repaired flat
scheduleS’ into an optimally looped schedule (Step 2 in Figure 38); other-
wise the schedule remains fl& & S’). Since the run-time of CDPPO is rather
high (@ (n*)) considering larg@, wheren is the size of the input schedule, the
algorithm can be sped up at the expense of optimality. Attugre there are
four parameters, a2, B1, B2 by which the accuracy of the optimization can
be traded-off with the required run-time. These parametesset by the user
and fixed per optimization run. Details on CDPPO, which is@egalization of
GDPPO, can be found in (Bhattacharyya, Murthy, and Lee 18@8gr, Teich,
and Bhattacharyya 1999c).

The implementation functioir is encoded by the implementation model
and the actor implementation vector components (Step 3junr€i38). The for-
mer component fixes how the actors are implemented: i) alraetre realized
as subroutinesfp € V : F(v) = 1), ii) only inliningisused{v € V : F(v) =
0), or iii) subroutines and inlining are mixed. For the laase, the actor im-
plementation vector, a bit vector of lengi|, defines for each actor separately
whether it appears as inlined or subroutine code in the firgagam.

Due to the heterogeneous representation, a mixture ofreliffecrossover
and mutation operators accomplishes the generation ofmdiwiduals. Similar
to the single-objective EA implementation in Section 5, Rrdform order-based
crossover and scramble sublist mutation are used for tloe flGhg sequence
(Davis 1991). The other components of an individual are biters; there,
one-point crossover and bit flip mutation (Goldberg 1988)agpplied.

Case Study: Sample Rate Conversion

SPEA was used to compare the design spaces of three real RID8Rme
fictive PDSP on a sample rate conversion system (CDtoDATg. SBF graph
for this DSP application, in which a compact disc player isreected to a digital
audio tape, is depicted in Figure 39. It is consistent bee&iss not empty;
for instance, the schedul@(7(3AB)(2C))(4D))(32E(5F)) is an admissible,
periodic looped schedule for this graph. The minimum nunabexctor firings
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Tab. 6:

5.3.3.1

The parameters of three well-known PDSPs. All are capabpedbrming zero over-
head looping. For the TMS320C40, however, it is recommendete a conventional
counter and branch implementation of a loop in case of ndetgas. P1 is a fictive
processor modeling high subroutine overheads.

parameter Motorola ADSP 2106x TI P1
DSP56k TMS320C40

P Ooop 2 1 1 2

P Osubroutine 2 2 2 10

T qiggp 6 1 1

T ié%rgnon 0 0 8 0

T Osubroutine 8 2 8 16

isq(A) = q(B) = 147,q(C) = 98,q(D) = 28,q(E) = 32,q(F) = 160 and
consequently the firing sequence encoded in an individuafl lsngth 147+
147498+ 28+ 32+ 160= 612.

Target Processors

The PDSPs under consideration are modeled on the basis of/éneead pa-
rameters defined in Sections 5.1.2.1t05.1.2.3:

PQoop: the number of program words for a complete loop; this vasikes the
overhead for the loop initialization into account as welllasinstructions which
are executed in each loop iteration (e.g., exit testing).

PQsubroutine Subroutine call overhead in program words; for simpliditys as-
sumed here that the actors are independent and therefoomtextinformation
must be saved and restored except PC and status registers.

To:gi;p: gives the processor clock cycles needed for loop initdian.

TO}}%S“O”: loop overhead (clock cycles) per iteration, which can hesed by

counter increment, branch instructions, etc.

TOsuproutine the number of cycles required to execute a subroutine oallaa
return instruction and to store and recover context infaiona(PC and status
registers).

As can be observed from Table 6 the DSP56k and the TMS320CGA0Hgh
subroutine execution time overhead; the DSP56k, howeasralzero loop iter-
ation overhead and high loop initialization overhead; drelTIMS320C40 has
a high loop iteration overhead but low loop initializatiomeohead. The fictive
processor P1 models a PDSP with high subroutine overheads.
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5.3.3.2

Experimental Results

For each of the real processors two kinds of experiments penfermed: one
time the parameters of CDPPO were satic= 1, oo = 00, B1 = 10, B2 = 40
leading to suboptimal loopirRganother time the focus was on optimal looping,
where both accuracy and run-time of the CDPPO algorithm weagimum.
For P1 only suboptimal looping was considered.

For both types of experiments, the remaining optimizatimrameters were:

Number of generations . 250
Population sizeN : 100
Maximum size of external nondominated $ét : oo
Crossover ratg. : 0.8
mutation ratepn, (scramble sublist) : 0.1
mutation ratep, (bit flip) :1/L

Concerning the bit vector mutation ratedenotes the length of the correspond-
ing vector. The size of the external nondominated set wasstmeted in order
to find as many solutions as possible; as a consequence, sterahg was per-
formed.

Moreover, before every run APGAN was applied to the CDtoDA&raple.
The resulting solution was inserted in two ways into thaahgopulation: with
and without schedule loops; in both cas€gp) = 0 for each acton € V
(inlining). Finally, the setA = m(P) = p(m(U_,P)), which contains all
nondominated solutions found during the entire evolutimtpss, was consid-
ered as the outcome of a single optimization run.

The nondominated fronts achieved by SPEA in the differems$ mre shown
in Figures 40 to 43. To make the differences between the psocs clearer, the
plots have been cut at the top without destroying their adtarsstics.

The trade-offs between the three objectives are very widated by the
extreme points. The rightmost points in the plots represefttvare implemen-
tations that neither use looping nor subroutine calls. &toge, they are optimal
in the execution time dimension, but need a maximum of prognaemory
because for each actor firing there is an inlined code blookcohtrast, the
solutions represented by the leftmost points make exaessi® of looping and
subroutines which leads to minimal program memory requemsy however
at the expense of a maximum execution time overhead. Anettiegme point
(not shown in the figures) satisfi€y S) = 1021, but has only little overhead in
the remaining two dimensions. It stands for an implemeoatrhich includes
the code for each actor only once by using inlining and logpifhe schedule
associated with this implementation is the looped singigearance schedule
computed by APGAN. This indicates that single-appearanbedules can in-
duce significantly higher data memory requirements thart vghechievable by
using multiple-appearance schedues S*\ S/

SThese CDPPO parameters were chosen based on preliminanmyragpts.



5.3. Trading-off Execution Time and Memory Requirements 103

program
memory

6000 €xecution

6000 €xecution
time memory

time

N

10000 > 5000

Fig. 40: Trade-off surfaces for the Motorola DSP56k (left: suboptinooping, right: optimal
looping).
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Fig. 41: Trade-off surfaces for the ADSP 2106x (left: suboptimalpiog, right: optimal loop-
ing).
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Fig. 42: Trade-off surfaces for the TMS320C40 (left: suboptimalpliong, right: optimal loop-
ing).
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Fig. 43: Trade-off surface for the fictive processor P1 (suboptimaping).
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Tab. 7:

Comparison of the trade-off fronts achieved with differ€mPPO parameters (subopti-
mal versus optimal looping). The first two rows give for ea€yP the sizes of the two
nondominated sets found. In the last two rows, the nonddeilnsets are compared for

each PDSP separately using thenetric.

Motorola ADSP 2106x TI

DSP56k TMS320C40
#solutions (subopt. loop.) 371 350 336
#solutions (opt. loop.) 112 88 73
C(subopt. loop.opt. loop) 49.2% 65.9% 16.4%
C(opt. loop, subopt. loop. 67.4% 617% 66.7%

Furthermore, the influence of looping and subroutine callemarkable.
Using subroutines does not interfere with data memory requent; there is
only a trade-off between program memory requirement andugia time.
Subroutine calls may save much program memory, but at the sane they
are expensive in terms of execution time. This fact is redldiy “gaps” on
the execution time axis in Figures 40 and 42. Looping, howelepends on
the schedule: schedules which can be looped well may hahedaiga memory
requirements and vice versa. This trade-off is responstsléhe variations in
data memory requirements and is illustrated by the poirtisate close to each
other regarding program memory and execution time, bubgtyadiffer in the
data memory dimension.

Comparing the three real processors, one can observe hADBP 2106x
produces less execution time overhead than the other PDBIEB s in accor-
dance with Table 6. Subroutine calls are most frequently uisease of the
TMS320C40 because of the high loop iteration overhead.

For processor P1 (Figure 43), it can be seen that implemensatith min-
imal code size require much more program memory than theegponding
program memory minimal solutions for the other PDSPs. Tlasaor is that
subroutines are accompanied by a high penalty in programamneamd execu-
tion time with P1. In fact, none of the 186 nondominated sohg found used
subroutine calls for any actor.

The effect of CDPPO on the obtained nondominated front caaoldxsely
seen by comparing the results for suboptimal and optimalitapin Figures 40
to 42. In general, the nondominated solutions found redess data mem-
ory when the CDPPO parameters for maximum accuracy (andime)-were
used; the trade-off surface becomes much more flat in thigmson. It is
also remarkable that for each real PDSP several solutions generated that
need less program memory than the implementation with tiwedbcode size
when using suboptimal looping. Furthermore, Table 7 shdwas the fronts
for optimal looping cover the corresponding fronts for spimal looping by
approximately two thirds, although the former contain sabsally less points
than the latter. As a result, the optimization time spentiggl@DPPO algorithm
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Fig. 44: Comparison of SPEA and NPGA on nine practical DSP applinatidach rectangle

5.34

contains nine box plots representing the distribution ef@hvalues; the leftmost box
plot relates to DSP system 1 from Table 4, the rightmost to Bx@em 9. The scale
is 0 at the bottom and 1 at the top per rectangle. Furtherrtfugejpper right rectangle
gives the fraction of the SPEA fronts weakly dominated bydbaesponding NPGA
fronts. The other rectangle refers to the other directidh($PEA NPGA)”).

has a large influence on the shape of the nondominated front.

Comparing Two Evolutionary Multiobjective Optimizers

The first nine practical DSP applications from Table 4 forrttexlbasis to com-
pare the performance of the SPEA implementation with an NR@G#lemen-
tation. With these SDF graphs, the number of actors varitgdsn 12 and 92,
the minimum length of the associated actor firing sequerarages from 30 to
313.

On each example, SPEA and NPGA ran in pairs on the same ipa@
ulation, using optimal looping; then the two resulting nomdnated sets were
assessed by means of t@efunction. As with the other MOEA comparisons,
the offline performance was considered, i.e., theAet p(m(UtT=0 P:)) was
the outcome of an optimization run. Altogether, eight ofséh@airwise runs
were performed per application, each time operating onfardifit initial pop-
ulation. Furthermore, the same parameters as listed in ga pd2 were used
except that for SPEA the population size was reducel te 80 and the size
of the external nondominated set was limitedNo= 20. Concerning NPGA,
the domination pressure was settgen, = 10 following the recommendations
given in (Horn and Nafpliotis 1993); the niching parametgfe = 0.4886 was
calculated based on guidelines described in (Deb and Gad!$89).

The experimental results are summarized in Figure 44. Omradl applica-
tions, SPEA weakly dominates more than 78% of the NPGA ouésofim av-
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5.4

erage more than 90%), whereas NPGA weakly dominates in gedeas than
10% of the SPEA outcomes. In other words, the nondominatsdyemerated
by SPEA dominate most parts of the corresponding NPGA sdtsraas only
very few solutions found by NPGA are not covered. This suligtes the re-
sults presented in Chapter 3 and indicates that the propesggroblems reflect
important characteristics of this real-world application

Summary

In this chapter, the problem of automatic software synthfgem synchronous
data flow graphs was addressed. Major results are:

When disregarding the additional run-time needed, an EA stasvn to be
superior to two state of the art heuristics for minimizingedanemory require-
ments with regard to a restricted class of software impldgatems. However,
other stochastic approaches like hill climbing might beralatives to the EA.

A design space exploration for this problem was performedguan MOEA.
The investigation revealed that there is a variety of déffeisoftware implemen-
tations representing possible trade-offs between theritlata memory, pro-
gram memory, and execution time. Prior work in this field hasmy focused
on one of the objectives, not taking the trade-off issue atwount. Moreover,
it could be observed that the shape of the obtained tradsuoface strongly
depends on the chosen target processor.

As with the “artificial” test problems, SPEA provided betparformance than
NPGA on this application. This supports the supposition ¢liism is manda-
tory in evolutionary multiobjective optimization.
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6.1

Conclusions

Fundamental Results

The goal of the present thesis was to compare and improvirgxevolutionary
approaches to multiobjective optimization, and to applyla@tonary multicri-
teria methods to real-world problems in the domain of sysdesign. Essential
results are:

A comprehensive experimental methodology to quantithtigempare multi-
objective optimizers has been presented. In particulagraéquantitative per-
formance measures as well as a set of test functions rangingNIP-hard to
continuous problems have been proposed. As the experihrestdts have
shown, both measures and test problems are sufficient talrneeperformance
differences of various MOEA implementations.

The first time, numerous evolution-based techniques hage bempared em-
pirically on different problems by means of quantitativetrivs. In contrast
to what was expected beforehand, a hierarchy of algorithmesged. Further-
more, elitism has been proven to be an important factor itudemary multi-
objective search.

A novel approach, the strength Pareto evolutionary algorSPEA), has been
introduced which combines established and new technigqueeamique manner.
It clearly outperformed other MOEA implementations on testtproblems as
well as the two real-world applications under consideratio

The elitism scheme of SPEA has been generalized for incatiporin arbitrary
evolutionary approaches. lIts efficiency has been shownewgral non-elitist
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MOEAs: performance improved significantly when using trastigular elitism
concept.

The widespread opinion that (elitist) MOEAs can have clehraatages over
traditional multicriteria optimization methods has beerstantiated experi-
mentally. In spite of significantly less computation eff@PEA provided better
solutions than the weighting and the constraint methode@hto-dimensional
test problems as well as on the system synthesis application

The first systematic approach to the multidimensional egpion of software
implementation for digital signal processing algorithras been presented. The
optimization framework takes all of the three objectivesadaemory require-
ment, program memory requirement, and execution time intmant, while
prior work has mainly focused on the single-objective optation of a more
restricted class of implementations.
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