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Abstract

Evolutionary algorithms (EAs) describe computer-based problem solving systems that use com-
putational models of evolutionary processes as primary elements of its design. Global search
abilities, adaptation to the task in hand, and robust performance are favorable characteristics of
EAs making them successful solving complex optimization problems.

This work focuses on genetic algorithms (GAs), one of the mainstreams of EAs. Canonical
GAs use a binary representation for the individuals, i.e. bit strings with {0,1} alphabet. Offspring
are generated by randomized process intended to model recombination and mutation. Crossover
exchanges segments of information between pairs of individuals with probability pc and then mu-
tation inverts bits with a probability pm per bit. In the absence of crossover (1 − pc) mutation is
applied alone. The canonical GA emphasizes crossover as the main genetic operator and considers
mutation only as a secondary “background” operator to be used with very small probability.

In addition, a common practice has been to run the GA with its search strategies fixed. A run
of a GA, however, is itself an intrinsically dynamic, adaptive process, and there is experimental
evidence suggesting that different strategies might be optimal at different stages of the evolutionary
process. Methods that modify its search strategies during the run of the algorithm are considered
as one of the most important and promising areas of research in evolutionary algorithms, because
they could lead to significant improvements in performance. Among these, some approaches that
seek to combine crossover with (higher) varying mutation rates during the course of a run have
been proposed recently. It has been shown that deterministically varying mutation rates over the
generations and/or across the representation can improve the performance of GAs. Self-adaptive
mutation rate schedules have also been proposed. Self-adaptive algorithms evolve simultaneously
strategy parameters and object variables and are regarded as the most promising way of combining
forms of control (strategy parameters co-adaptation).

From the application of operators standpoint, deterministic, adaptive, and self-adaptive vary-
ing mutation GAs have been mostly designed similar to a canonical GA. That is, crossover is
applied with high probability pc and then follows mutation. Thus, under these standard varying
mutation approaches, higher mutations are mostly applied serial to crossover. This model of stan-
dard varying mutation GAs raises several important questions regarding the interference between
crossover and high mutation, how this affects performance of the algorithm, whether this affect the
mutation rate control itself in the case of (adaptive) self-adaptive varying mutation algorithms, and
more generally whether this is an appropriate model for combining forms of control (co-adaptation
of strategy parameters).

This work proposes a model of parallel varying mutation GA that addresses the questions
raised by the standard model of varying mutation GAs. The proposed model detaches varying
mutation from crossover, applies “background” mutation (or none at all) after crossover (CM)
and varying mutations (SRM) only parallel to crossover, putting the operators CM and SRM in a
cooperative-competitive stand with each other by subjecting their offspring to extinctive selection.
The model relies in adaptive (self-adaptive) mutation schedules to increase the effectiveness of
SRM and enhance selection by eliminating fitness duplicates, which postpones genetic drift and
creates a fair competition between the offspring created by both operators. The motivation of this
work comes from the desire to design effective and efficient varying mutation GAs that can be
used in real-world applications.

There are several advantages in the proposed model. First, it gives an efficient framework to
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achieve better balances for varying mutation and crossover in which the strengths of the operators
can be kept without interfering one with the other. Second, since varying mutation is detached
from crossover, the instantaneous effectiveness of the varying mutation operator depends only
upon itself and its relative success can be directly tied to the mutation rate to create adaptive (self-
adaptive) schemes for mutation rate control. The same can be said for crossover, especially if no
“background” mutation is applied after it. Third, parallel varying mutation can be studied on its
own seeking to increase the performance of GAs. Fourth, the individual roles and the interaction
of crossover and varying mutation throughout the run of the algorithm can be better understood,
which could be important for co-adaptation studies.

The model is studied using two test problem generators. One of the generators is for 0/1 mul-
tiple knapsack problems, which allows to test the model on a broad range of classes of constrained
problems by varying the feasible region of the search space, number of constraints, and the size
of the search space. Real-world 0/1 multiple knapsack problems with known global optimum are
also used. These latter problems allow studying the global search abilities of the algorithms. The
second test problem generator is the well known Kauffman’s NK-Landscapes. NK-Landscapes are
stochastically generated fitness functions on bit strings, parameterized with N bits and K epistatic
interactions between bits. The term epistasis describes nonlinearities in fitness functions due to
changes in the values of interacting bits. For a giving N , we can tune the ruggedness of the fitness
function by varyingK. In the limits, K = 0 corresponds to a model in which there are no epistatic
interactions and the fitness contribution from each bit value is simply additive, which yields a sin-
gle peaked smooth fitness landscape. On the opposite extreme, K = N − 1 corresponds to a
model in which each bit value is epistatically affected by all the remaining bit values, yielding a
maximally rugged fully random fitness landscape. Varying K from 0 to N − 1 gives a family of
increasingly rugged multi- peaked landscapes. NK-Landscapes allow testing the model in a broad
range of classes of epistatic, non-linear, problems.

First, the internal structure of the proposed model (GA-SRM) is studied in depth using an
adaptive schedule for mutation. Important structural issues are the balance for offspring creation
between CM and SRM, the ratio between number of parents and number of offspring (extinctive
selection pressure), “background” mutation probability in CM, and the threshold to trigger adap-
tation in SRM. The effect of population size and number of evaluations is observed, too. Two
mutation strategies to select the bits that will undergo mutation are investigated. In addition, the
importance and effect on performance of extinctive selection and the interaction of varying muta-
tion parallel to crossover is assessed. It is found that GA-SRM greatly improves the performance
of GAs for global optimization in constrained problems. Extinctive selection accelerates the search
process and parallel varying mutation increase the convergence reliability of the algorithm. Ro-
bustness even with small populations is also a remarkable characteristic observed in the improved
GA-SRM. Mutation strategy for parallel varying mutation turns out to be an important issue to
improve the performance of parallel varying mutation.

Second, the proposed model is compared with the standard model of varying mutations GAs
across a broad range of problems using deterministic and self-adaptive schedules for mutation
rate control. The statistical significance of the results is verified with ANOVA tests. It is found
that the proposed model is more effective and efficient than the standard model. In deterministic
varying mutation GAs, a GA with varying mutation parallel to crossover showed faster conver-
gence and higher robustness to initial settings of mutation rate than a GA with varying mutation
serial to crossover. In self-adaptive varying mutation GAs, the convergence velocity of a parallel
self-adaptive mutation GA was matched by a serial self-adaptive mutation GA only when initial di-
versity of parameters was allowed. Convergence reliability of the parallel varying mutation model
was higher than the standard model of varying mutation in both deterministic and self-adaptive
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GAs. It was also found that the standard model of varying mutations in fact affects negatively the
(adaptive) self-adaptive mutation rate control. This strongly suggests that the standard model of
varying mutation GAs may not be appropriate for combining forms of control.

Then, the behavior of the parallel varying mutation GA-SRM is examined on epistatic prob-
lems using NK-Landscapes. Properties of NK-Landscapes are discussed and the effect on perfor-
mance of selection, drift, mutation, and recombination is verified. Mutation strategy for the vary-
ing mutation operator is also studied in detail. Experiments are conducted using NK-Landscapes
with nearest neighbor and random patterns of epistasis. Comparisons are made with a canonical
GA, a simple GA with extinctive selection, a mutation only EA, and a random bit climber RBC+.
It is shown that GAs can be robust algorithms on NK-Landscapes postponing drift by eliminating
fitness duplicates and using selection pressure higher than a canonical GA. Different to previous
works, even simple GAs with these two features perform better than the single bit climber RBC+
for a broad range of classes of problems. It is also shown that the interaction of parallel varying
mutation with crossover (GA-SRM), similar to constrained problems, improves further the relia-
bility of the GA. Contrary to intuition it is found that a mutation only EA can perform as well as
GA-SRM that includes crossover for small values of K , where crossover is supposed to be advan-
tageous; but the relative importance of crossover interacting with varying mutation increases with
K performing better than mutation alone for medium and high K. Better overall performance
by population based mutation only evolutionary algorithms over random bit climbers is also ob-
served. With regards to mutation strategy for parallel varying mutation, it is found that a dynamic
segment mutation strategy improves further the performance of GAs on problems with nearest
neighbor patterns of epistasis.

After analyzing the proposed model and comparing it with the standard model of varying
mutation GAs, it is shown that the fundamental concept of the model can be successfully extended
to other important classes of GAs and that it can be effectively applied to real-world problems.

An important area of research is the parallelization of GAs. Evolutionary algorithms are pop-
ulation based methods and it is considered that its full potential would come from implementing
the algorithm in parallel architectures. It is shown that the proposed model extended to a paral-
lel distributed GA (DGA-SRM) achieves higher search speed, higher convergence reliability, and
less communication cost for migration than a canonical distributed GA. It is also shown that DGA-
SRM scales up better as the difficulty of the problem increases and tolerates population reductions
better than a canonical distributed GA.

Next, it is shown that GA-SRM can be successfully applied to real world problems in which
efficiency in processing time and computer memory is a major issue. The improved GA-SRM
is extended to the two dimensional image halftoning problem and an accelerated image halfton-
ing technique using GA-SRM with tiny populations is proposed. Simulation results verify that
the proposed scheme impressively reduces computer memory and processing time, making the
improved approach appealing for practical implementation.

Furthermore, it is shown that the concept of GA-SRM can also be effective for multi-objective
optimization of real world applications, which is important due to the multi-objective nature of
most real-world problems. The improved GA-SRM is extended to a multi-objective optimization
GA to simultaneously generate halftone images with various combinations of gray level precision
and spatial resolution. Simulation results verify that the proposed scheme can effectively gener-
ate several high quality images simultaneously in a single run reducing even further the overall
processing time.

Finally, this work is summarized presenting conclusions and suggesting future research.
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Chapter 1

Introduction

This chapter presents a brief introduction to evolutionary algorithms. Then, it describes the back-
ground, motivation and goals of this research. Finally, it outlines the contents of this work.

1



1.1 Evolutionary Algorithms

An evolutionary algorithm describes a computer-based problem solving system that uses compu-
tational models of evolutionary processes as primary elements of its design and implementation.

The origins of evolutionary inspired algorithms for optimization and machine learning can be
traced to the 1950s and 1960s[1, 2, 3, 4, 5, 6]. In addition, several evolutionary biologists used
computers to simulate evolution for the purpose of controlled experiments[7, 8, 2, 9, 10]. How-
ever, historically the three mainstream instances of evolutionary algorithms that have received
considerably attention are Genetic Algorithms[11], Evolution Strategies[12, 13], and Evolution-
ary Programming[14]. These approaches have inspired the development of additional evolution-
ary algorithms such as genetic programming and classifier systems. Moreover, hybridizations of
evolutionary algorithms with other soft computing techniques, such neural networks and fuzzy
systems, or with other search heuristics, such local search, tabu search, and simulated annealing,
are intensely being developed.

Although a variety of evolutionary algorithms have been proposed, all of them share the fol-
lowing general and basic properties: (i) Evolutionary algorithms utilize the collective learning
process of a population of individuals. Each individual represents and encodes a search point in
the space of potential solutions to a given problem. (ii) By means of evaluating individuals in their
environment, a measure of quality or fitness can be assigned to the individuals. According to the
quality measure, a selection process favors fitter individuals to reproduce more often than those
that are relatively less qualified. (iii) Descendants of individuals are generated by randomized
process intended to model mutation and recombination. Mutation corresponds to an erroneous
self-replication of individuals and recombination interchanges information between two or more
individuals.

Figure 1.1 outlines a typical evolutionary algorithm (EA). A population P of individuals is
initialized and then evolved from generation t to generation t+1 by repeated application of fitness
evaluation, selection, recombination, and mutation. An evolutionary algorithm typically initializes
its population randomly, although domain-specific knowledge can also be used. Evaluation mea-
sures the fitness of each individual according to its worth in some environment (problem). Fitness
evaluation can be as simple as computing a function or as complex as running an elaborate sim-
ulation. Selection is often performed in two steps, parent selection and survival. Parent selection
decides who becomes parent and how many children the parents have; higher-fitness individuals
are more likely to be parents and have more offspring. Offspring are created via recombination and
mutation. Recombination exchanges information between parents and mutation further perturbs
the offspring. The offspring are then evaluated. Finally the survival step decides who survives in
the population.

Evolutionary algorithms have been used in a large number of scientific and engineering prob-
lems and models. Some of the areas where evolutionary algorithms are being used are optimiza-
tion, automatic programming, machine learning, economics, immune systems, ecology, popula-
tion genetics, evolution and learning, and social systems[15].

1.1.1 Genetic Algorithms

Genetic Algorithms (GAs) were invented and developed by Holland[11]. Holland’s original goal
was to formally study the phenomenon of natural adaptation and to develop ways in which its
mechanism might be imported into computer systems. GAs were presented as an abstraction of
biological evolution and derived its behavior from a genetic/evolutionary metaphor.

Traditionally, GAs use a binary representation for the individuals (chromosomes or structures).
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procedure EA();
begin
t = 0; /* Initial Generation */
initialize population(P (t));
evaluate(P (t));
while (not termination condition)
begin
P ′(t) = select parents(P (t));
P ′′(t) = recombine(P ′(t));
P ′′′(t) = mutate(P ′′(t));
evaluate(P ′′′(t));
P (t+ 1) = select survivors(P ′′′(t) ∪Q); /* Q ∈ {∅, P (t)} */
t = t+ 1; /* Next Generation */

end
end

Figure 1.1: The outline of an evolutionary algorithm

Recently, however, many applications have focused on other representations such integers, real-
valued vectors, graphs (neural networks), Lisp expressions, and ordered lists.

Selection is a probabilistic function based on relative fitness. With this selection method,
known as fitness-proportional selection, the expected number of times an individual will be se-
lected to reproduce is the individual’s fitness divided by the average fitness of the population. A
simple method of implementing fitness-proportional selection is roulette-wheel sampling[16]. The
number of offspring created is the same as the number of parents µ. Later, in the survivors selec-
tion step, the µ newly created offspring will replace the µ parents in the population. This form of
selection is not elitist1.

Offspring are created by recombination (crossover) of parent individuals with probability pc.
After that, mutation is applied with a very small probability pm per bit. In its initial conception,
GAs emphasize recombination (crossover) as the primary search operator and apply mutation
solely as a “background operator”. Interest in mutation has increased recently, partly due to the
influence of Evolution Strategies and Evolutionary Programming.

1.1.2 Evolution Strategies

Evolution strategies (ESs) were developed by Rechenberg[12], using selection, mutation, and a
population of one parent and one offspring. Schwefel[13] introduced recombination and pop-
ulations with more than one individual, and compared ESs with more traditional optimization
techniques.

Evolution strategies typically use real-valued, vector representations. Individuals to be parents
are selected randomly from a uniform distribution. The number of offspring λ created is greater
than the number of parents µ. The selection of survivors is deterministic and is implemented
in one of two methods. The first method selects the best µ out of λ offspring and replaces the
parents with this newly created individuals. In other words, only the best µ offspring are allowed
to survive. This method is known as a (µ,λ) selection strategy. The second method selects the
best µ individuals among µ parents and λ offspring. Thus, in this method both the best parents

1Elitist: the best individual always survive, ensuring that once an optimum is found it cannot be lost.
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and offspring are allowed to survive. This second method is known as a (µ+λ) selection strategy.
Both methods belong to the kind of extinctive (truncation) selection methods. (µ+ λ) selection is
elitist but (µ,λ) selection is not.

Offspring are created by recombination (when µ > 1) of parent individuals followed by muta-
tion. A variety of different recombination mechanisms are currently used in ESs and the operators
are sexual and panmictic. In sexual operators, recombination acts on two randomly chosen par-
ent individuals. Conversely, in panmictic operators, one parent is randomly chosen and held fixed
while for each component of its vectors the second parent is randomly chosen anew from the popu-
lation. Mutation perturbs the individuals using a normal distribution with expectation zero. In ESs
considerably effort has been put on (self) adapting the mutations during the run of the algorithm.
ESs allow each individual (or each variable within the individual) to have adaptive mutation rates
that are normally distributed with a zero expectation.

ESs emphasize recombination and mutation as essential operators for searching simultane-
ously in the variables space and in the strategy parameters space (self-adaptation).

1.1.3 Evolutionary Programming

Evolutionary programming (EP) was developed by Fogel et al. [14]. EP arose from the desire to
generate machine intelligence using selection and mutation to evolve finite-state machines.

EP traditionally has used representations for the individual that are tailored to the problem
domain. In the case of finite-state machine applications, the individuals within the population are
represented as graphs. For other applications, appropriate representations such real-valued vectors
and ordered lists are used.

Selection is a probabilistic function based on tournament. The number of offspring created is
the same as the number of parents µ. In the survivors selection step, µ individuals are chosen from
the 2µ (parents and offspring) individuals. This form of selection is elitist and can be considered
to be a (µ+ µ) selection strategy.

Offspring are created by mutation of parent individuals. The form of mutation is based on
the representation used, and similar to ESs is often (self) adaptive. For real valued optimization
problems, for example, it works with normally distributed mutations with expectation zero and ex-
tends the evolutionary process to the strategy parameters (self-adaptation). The forms of mutation
used are usually quite flexible and can produce perturbations similar to recombination, if desired.
However, EP emphasizes mutation and does not incorporate the recombination of individuals. The
justification for this is that in EP each individual is usually viewed as the analog of a species, and
there is no sexual recombination between species.

1.2 Background

This work concentrates on GAs. Canonical GAs use a binary representation for the individu-
als, i.e. bit strings with {0,1} alphabet. Crossover exchanges segments of information between
pairs of chromosomes with probability pc, and mutation inverts bits with a probability pm per
bit. Crossover and mutation are applied one after the other; in the absence of crossover (1 − pc),
mutation is applied alone. Holland[11] defined crossover as the main genetic operator and con-
sidered mutation only as a “background” operator to be used with very small mutation rates. The
role of crossover is to construct high order building blocks (hyperplanes) from low order ones;
whereas the primary role of mutation is to replace allele values lost from the population, assuring
that crossover has a full range of alleles so that the “adaptive plan” is not trapped on local optima.
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Common settings recommended for crossover probability pc are 0.60[17], 0.95[18], and 0.75-
0.95[19]. Similarly, common settings recommended for the mutation probability pm are 0.001[17],
0.01[18], and 0.005-0.01[19]. All these values were obtained by experimental investigations and
the combined setting of pc and pm, especially in [19], usually depends on population size.

Mutation rates within the ranges mentioned above are still widely used in applications of
canonical GAs (i.e. using binary representation), because these settings are consistent with Hol-
land’s proposal for mutation as a background operator and Goldberg’s recommendation to invert
on the order of one thousand bits by mutation[16]. Recently, some analytical results concerning
optimal schedules of the mutation rate in the cases of simple objective functions and simplified ge-
netic algorithms suggest that a 1/� constant mutation rate is almost optimal[20, 21, 22, 23], where
� is the bit string length. It is important to mention that not useful analytical results are known for
the dependence of the optimal mutation rates on offspring population size[24].

In addition, a common practice has been to run the GA with its parameters set to constant
values. A run of a GA, however, is an intrinsically dynamic, adaptive process, and there is ex-
perimental evidence suggesting that different values of parameters might be optimal at different
stages of the evolutionary process. In order to pursue better balances for crossover and mutation,
parameter control methods that modify the values of the strategy parameters during the run of the
algorithm by taking into account the actual search process are being proposed. These methods are
an alternative form to the common practice of tuning parameters “by hand” and are considered as
one of the most important and promising areas of research in evolutionary algorithms[25].

One way to pursue better dynamic balances is to use adaptive or self-adaptive mechanisms
to control the rate of operators[26, 27, 28]. Another approach seeks to combine crossover with
(higher) varying mutation rates during the course of a run. It has been shown that deterministi-
cally varying mutation rates over the generations and/or across the representation can improve the
performance of GAs[29, 30, 31]. Self-adaptive mutation rate schedules inspired from Evolution
Strategies and Evolutionary Programming have also been proposed to control the mutation rate of
generational and steady state GAs[31, 32, 33]. The deterministic approach uses one mutation rate
for all individuals in the population. Conversely, the principle of self-adaptation incorporates strat-
egy parameters into the representation of individuals evolving simultaneously strategy parameters
and object variables. The self-adaptive approach is regarded as the method having the advantage
of reducing the number of exogenous parameters[33] and is thought to be the most promising way
of combining forms of control (parameters co-adaptation)[25].

1.3 Issues and Goals

Varying mutation approaches differ from canonical GAs mainly in the mutation rate control. Also,
some approaches use a selection mechanism with higher selection pressure; for example, (µ,λ)
selection instead of proportional selection. However, from the application of operators standpoint,
deterministic, adaptive, and self-adaptive varying mutation GAs have been mostly designed similar
to a canonical GA. That is, crossover is applied with probability pc and then follows mutation; in
the absence of crossover (1 − pc), mutation is applied alone. As mentioned above, the probability
pc is usually set to 0.6 and higher values are often used. Thus, under these standard varying
mutation approaches, higher mutations are mostly applied serial to crossover.

This model of standard varying mutation GAs raises several important questions such as: Is
there interference between crossover and high mutation? If so, does it affect performance of the
algorithm? In the case of (adaptive) self-adaptive varying mutation algorithms, does it affect the
mutation rate control itself? And more generally, is it an appropriate model for combining forms
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of control (co-adaptation of parameters)?
The objective of this work is to design effective and efficient varying mutation GAs that can

be used in real world application. In order to achieve this goal it is important to explore models of
varying mutation GAs that address the questions raised by the standard model of varying mutation
GAs.

An alternative to standard varying mutation methods is to design approaches that apply back-
ground mutation after crossover (or none at all) and higher mutations only parallel to crossover.
There are several advantages in these models. First, such approaches could give an efficient frame-
work to achieve better balances for varying mutation and crossover in which the strengths of the
operators can be kept without interfering one with the other. Second, since varying mutation is
detached from crossover, the instantaneous effectiveness of the varying mutation operator depends
only upon itself and its relative success can be directly tied to the mutation rate to create adaptive
(self-adaptive) schemes for mutation rate control. Third, parallel mutation can be studied on its
own. For example, higher mutation rates raise the question of mutation strategy and its relevance
to a given epistatic pattern or class of problems. Fourth, the individual roles and the interaction
of crossover and varying mutation throughout the run of the algorithm can be better understood,
which could be important for co-adaptation studies.

From this point of view, this work explores a model of GA that applies varying mutations
parallel to crossover & background mutation putting the operators in a cooperative-competitive
stand with each other by subjecting their offspring to extinctive selection (GA-SRM)[34, 35].
Adaptation and mutation strategy are designed to improve the effectiveness of parallel varying
mutations. Selection is also enhanced by eliminating fitness duplicates to postpone drift and to
create a fair competition between operators.

Two test problem generators are used to study systematically the proposed model. One of the
generators is for 0/1 multiple knapsack problems (constrained problems). The other one is the well
known Kauffman’s NK-Landscapes (epistatic non-linear problems). These generators are well
suited to study the behavior of the model on classes of problems which characteristics resemble
those of the difficult, constrained, and non-linear problems found in real world-applications. The
model of parallel varying mutation GAs shall be compared against the standard model of varying
mutation GAs using deterministic and self-adaptive schedules for mutation rate control. This will
help to clarify and answer some of the questions raised above. The model should be able to
prove its worth in a real-world application and in order to have wide applicability the fundamental
concept of the model should be extended to other important classes of genetic algorithms such
distributed GAs and multiobjective GAs.

1.4 Outline

The central theme of this work is the design of efficient and effective generational parallel varying
mutation GAs that can be used in practical applications to optimize difficult and highly constrained
problems.

Chapter 2 describes and contrasts two models of designing generational varying mutation GAs.
One of the models is a simple extension of a canonical GA that applies varying mutations mostly
after crossover, which has been the standard approach for designing generational varying mutation
GAs. The second, called GA-SRM, is the proposed model that applies varying mutations only
parallel to crossover.

Chapter 3 describes two test problem generators used in this work for testing the performance
of genetic algorithms (GAs). One is a test problem generator for 0/1 multiple knapsacks problems,
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and the other one is the well known Kauffman’s NK-landscapes model.
Three chapters are dedicated to study the model of parallel varying mutation GAs. Chapter

4 focuses on studying the structure of the parallel varying mutation model GA-SRM. Important
structural issues include the balance between operators, the importance of mutation after crossover,
the contribution of parallel varying mutation to the search, extinctive pressure, and the threshold
parameter to trigger adaptation of the parallel varying mutation operator. The search velocity and
search reliability of the model is observed under various evaluation times and different population
sizes. Chapter 5 studies and compares in detail the impact on performance (convergence reliability
and convergence velocity) of extinctive selection and higher mutations in the standard and parallel
models of varying mutation GAs. Deterministic and self-adaptive mutation rate controls are used
for varying mutation in both models of GA. Chapter 6 examines the behavior of GA-SRM on
epistatic problems and looks into the effect of elimination of fitness duplicates to further improve
the model.

Another three chapters are dedicated to show that the fundamental concept of GA-SRM can
be extended successfully to other important classes of GAs, such parallel and multiobjective GAs,
and that it can be effectively applied to real world problems.

An important area of research is the parallelization of GAs. Evolutionary algorithms are pop-
ulation based methods and it is considered that its full potential would come from implement-
ing the algorithm in parallel architectures. Most models of parallel GAs have considered the
parallelization of the evaluation function, the structure of the population, and the selection strat-
egy. However, from a processing time standpoint, the parallel application of operators has been
overlooked because it is considered that only minor gains would come from parallelizing simple
operators. Chapter 7 extends GA-SRM to a parallel distributed GA (DGA-SRM) arguing that
the parallel application of crossover and higher varying mutations within parallel GAs is worth
exploring, because the parallelization of operators would exploit their interaction in a more effec-
tive way achieving significant gains in performance and robustness. Simulation results show that
DGA-SRM achieves higher search speed and higher convergence reliability with less communi-
cation cost for migration. It is also shown that DGA-SRM scales up better as the difficulty of the
problem increases and tolerates population reductions better than a canonical distributed GA.

Chapter 8 shows that GA-SRM can be successfully applied to real world problems in which
efficiency in processing time and computer memory is a major issue. Here, the improved GA-SRM
is extended to the two dimensional image halftoning problem and an accelerated image halftoning
technique using GA-SRM with tiny populations is proposed. Simulation results show that the
proposed scheme impressively reduces computer memory and processing making the improved
approach appealing for practical implementation.

The multiobjective nature of most real-world problems makes multiobjective optimization a
very important research topic. Chapter 9 shows that the concept of GA-SRM can also be effective
for multiobjective optimization of real world applications. The improved GA-SRM is extended to
a multiobjective optimization GA to simultaneously generate halftone images with various com-
binations of gray level precision and spatial resolution. Simulation results verify that the proposed
scheme can effectively generate several high quality images simultaneously in a single run reduc-
ing even further the overall processing time.

Finally, Chapter 10 summarizes this work, presents conclusions, and suggests future research.
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Chapter 2

Generational Varying Mutation Genetic
Algorithms

This chapter starts with a brief description of the main components of a canonical genetic algo-
rithm. Then, it describes the standard approach that has been used for designing generational
varying mutation GAs. This model is a simple extension of a canonical GA in which varying
mutations are mostly applied after crossover. Finally, it presents in detail the proposed model of
GA that applies varying mutations only parallel to crossover.
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2.1 A Canonical Genetic Algorithm

A canonical GA[11, 16] selects individuals from the parent population P (t) with a selection prob-
ability proportional to their fitness and applies crossover with probability pc followed by mutation
with a very small constant mutation probability pm per bit (background mutation). In the absence
of crossover (1 − pc) mutation is applied alone.

From the application of operators standpoint, it can be said that within the canonical GA the
probability of crossover pc enables an implicit parallel application of two operators. One of the
operators is crossover followed by mutation (CM) and the other one is mutation alone (M). Figure
2.1 presents a block diagram of the canonical GA and illustrates the implicit parallel application
of CM and M.

P(t) µ = λ = λCM
(t) + λM

(t)

Proportional Selection

λCM
(t)

λCM
(t)

C

M
λM

(t)

M

pm

pc 1 - pc

CM

P(t) µ = λ = λCM
(t) + λM

(t)

Proportional Selection

λCM
(t)

λCM
(t)

C

M
λM

(t)

M

pm

pc 1 - pc

CM

Figure 2.1: Canonical Genetic Algorithm

It should be noted that mutation in both CM and M is governed by the same constant mutation
probability pm and applies the same (bit by bit) mutation strategy. The number of offspring created
by CM and M, λ(t)

CM and λ(t)
M , respectively, depends on the probability of crossover pc and may

vary at each generation t due to the stochastic process. However, the total number of offspring λ
remains constant and is equal to the number of parents µ.

2.2 A Generational Standard Varying Mutation Genetic Algorithm

Generational standard varying mutation GAs differ from canonical GAs mainly in the mutation
rate control. Also, some of them use a selection mechanism with selection pressure higher than
the canonical GA; for example, (µ,λ) selection instead of proportional selection. However, the
application of operators has been similar to canonical GAs. That is, crossover is applied with
probability pc and then follows mutation with probability pm per bit.

Following the same line of thought used in 2.1, a GA that applies crossover with probability
pc followed by mutation with varying probability can also be seen as implicitly applying CM and
M in parallel with a sole mutation probability pm governing mutation rates in both CM and M.
Figure 2.2 illustrates the implicit parallel application of CM and M when varying mutations are
used.

Since the probability pc is usually set to 0.6, and higher values are often used[25], it turns
out that mutation is mostly applied serial to crossover. In canonical GAs pm is small, therefore
the amount of diversity introduced by mutation either through CM or M is modest. For the same
reason, the disruption that mutation causes to crossover in CM is also expected to be small. In
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Figure 2.2: Genetic Algorithm with Varying Mutation

varying mutation GAs, however, mutations are higher than canonical GAs and the combined effect
of crossover and mutation in CM as well as the effect of mutation alone in M should be carefully
reconsidered.

In the case of CM, besides those cases in which crossover and mutation aggregate in a positive
manner or are neutral, those cases in which one of the operators is working well but is being
hampered by the other should also be taken into account. For example, if mutation probabilities
were high then although crossover could be doing a good job it is likely that some of the just
created favorable recombinations would be lost, before they become fixed in the offspring, due to
the high disruption introduced by mutation. We can think of this case as a mutation interference
with crossover in the creation of beneficial recombinations. On the other hand, mutation could be
working well but crossover may produce poor performing individuals affecting the survivability
of beneficial mutations that can contribute to the search. We can think of this case as a crossover
interference with mutation in the introduction of beneficial mutations.

In the case of mutation alone M, its instantaneous effectiveness depends only upon itself and
does not diminish the effectiveness of other operator. High mutations in M, when are harmful,
will have a negative impact on the propagation of beneficial recombinations already present in
the parent population. However, it will not affect the creation of beneficial recombinations by
crossover as high mutation can do it in CM.

In the following these approaches that apply varying mutations after crossover are referred as
varying mutation serial to crossover. Although as explained above, due to the crossover probabil-
ity they also implicitly apply parallel varying mutation.

2.3 A Generational Model of Parallel Varying Mutation Genetic Al-
gorithm (GA-SRM)

2.3.1 Parallel Operators

The model of standard varying mutation GAs of 2.2 raises several important questions such as

1. Is there interference between crossover and high mutation? If so,

2. Does it affect performance of the algorithm?

3. Does it affect the mutation rate control itself?

4. Is it an appropriate model for combining forms of control (co-adaptation of parameters)?
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To answer the questions raised by the standard varying mutation approach, this work explores
a model of GA that explicitly differentiate the mutation operator applied parallel to crossover from
the mutation operator applied after crossover. There are some advantages to this differentiation.

1. Each mutation operator could be assigned its own mutation probability. Thus, varying mu-
tation can be applied only parallel to crossover and mutation after crossover can be applied
with a small mutation rate (or none at all) avoiding interferences between crossover and high
mutation.

2. Since in this case the instantaneous effectiveness of the varying mutation operator depends
only upon itself its relative success can be directly tied to the mutation rate to create adaptive
(self-adaptive) schemes for mutation rate control.

3. Parallel mutation can be studied on its own. For example, higher mutation rates raise the
question of mutation strategy and its relevance to a given epistatic pattern or class of prob-
lems.

4. The individual roles and the interaction of crossover and varying mutation throughout the
run of the algorithm can be better understood, which could be important for co-adaptation
studies.

Thus, this work explores a model of GA that in addition to crossover followed by background
mutation (CM) it also explicitly applies parallel varying mutation[34, 35]. To clearly distinguish
between the mutation operator applied after crossover and the mutation operator applied parallel
to crossover, the parallel varying mutation operator is called Self-Reproduction with Mutation
(SRM). In the following this model of GA is called GA-SRM.

As suggested above, the explicit parallel formulation of CM and SRM can give an efficient
framework to achieve better balances for mutation and crossover during the run of the algorithm in
which the strengths of higher mutation and crossover can be kept without interfering one with the
other. SRM parallel to CM implicitly increases the levels of cooperation to introduce beneficial
mutations and create beneficial recombinations. It also sets the stage for competition between
operators’ offspring.

In the following GAs that explicitly apply varying mutations only parallel to crossover are
referred as varying mutation parallel to crossover.

2.3.2 Extinctive Selection

Recent works have given more insights to better characterize the roles of recombination and mu-
tation in evolutionary algorithms. An important issue to consider is the deleterious effects caused
by the operators and especially how to deal with them.

On the one hand, it has been shown that mutation is more powerful than recombination
(crossover) in terms of exploration or disruption[36, 37, 38, 39] and that mutation’s disruption
capabilities are directly related to the mutation rate[36, 38]. While the explorative effect of mu-
tation is desirable, we should expect that, at all times of the search process, only a number of
the individuals created by parallel mutation SRM would offer variability and still keep a reason-
able high performance (beneficial mutants). The others would be diverse but poor performing
individuals (harmful mutants).

On the other hand, it has also been shown that recombination (crossover) would have a deleteri-
ous effect especially on multimodal fitness landscapes[38, 39], performing worse as the number of
peaks increase. The recombination of individuals on different peaks will likely produce offspring
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in the valleys between peaks, where the fitness is lower. This effect will be more evident during
the latest stages of the search when the population moves towards the peaks of the landscape.

The parallel formulation of CM and SRM can avoid interferences between crossover and high
mutation; however it cannot prevent SRM from creating deleterious mutations or CM from pro-
ducing ineffective crossing over operations. To cope with these cases the model also incorporates
the concept of extinctive selection that has been widely used in Evolution Strategies[12]. Through
extinctive selection the offspring created by CM and SRM coexist competing for survival (the poor
performing individuals created by both operators are eliminated) and reproduction.

Among the various extinctive selection mechanisms available in the EA literature (µ, λ) pro-
portional selection[24] is chosen to implement the required extinctive selection mechanism. Se-
lection probabilities for this kind of selection are computed by

Ps(x
(t)
i ) =




f(x(t)
i )

µ∑
j=1

f(x(t)
j )

(1 ≤ i ≤ µ)

0 (µ < i ≤ λ)

(2.1)

where x
(t)
i is an individual at generation t which has the i-th highest fitness value f(x(t)

i ), µ is the
number of parents and λ is the number of offspring.

The parallel formulation of genetic operators tied to extinctive selection creates a cooperative-
competitive environment for the offspring created by CM and SRM.

2.3.3 Mutation Rate Control

Deterministic, adaptive, and self-adaptive mutation rate control schedules are used to study the
serial/parallel application of varying mutations. The adaptive schedule is applied only parallel to
crossover and the deterministic and self-adaptive schedules are applied both serial and parallel to
crossover.

Deterministic

The deterministic approach implements a time-dependent mutation schedule that reduces mutation
rate in a hyperbolic shape. It was originally proposed in [31] and is expressed by

p(t)
m =

(
ro +

n− ro
T − 1

t

)−1

(2.2)

where T is the maximum number of generations, t ∈ {0, 1, · · ·, T − 1} is the current generation,
and n is the bit string length. The mutation rate p(t)

m varies in the range [1/ro, 1/n]. In the original
formulation ro = 2. Here ro is included as a parameter in order to study different ranges for
mutation. In the deterministic approach the mutation rate calculated at time t is applied to all
individuals created by SRM.

Figure 2.3 illustrates the mutation rates over the generations by this schedule for three initial
mutation rates, p(0)

m = {0.5, 0.10, 0.05}.

Self-Adaptive

To include self-adaptation, each individual incorporates its own mutation probability within the
representation. SRM to produce offspring first mutates the mutation probability of the selected
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Figure 2.3: Deterministic Hyperbolic Schedule for Mutation Rate Control

individual and then mutates the object variable using the individual’s mutated probability. This
work applies the self-adaptive approach originally proposed in [31, 33], which uses a continuous
representation for the mutation rate and mutates the mutation probability of each individual by

p(t)
m (i) =

(
1 +

1 − p
(t−1)
m (i)

p
(t−1)
m (i)

exp(−γN(0, 1))

)−1

(2.3)

where i indicates the i-th individual, γ is a learning rate that control the speed of self-adaptation,
andN(0, 1) is a normally distributed random number with expectation zero and standard deviation
one. Note that individuals selected to reproduce with SRM at generation t could have been created
either by SRM or CM at generation t−1. Since the mutation rate of each individual is mutated only
by SRM, individuals created by CM do not carry an updated mutation rate. Thus, the mutation
rate of individuals that were created by CM at generation t− 1 is first updated by

p(t−1)
m (j) =

1
µSRM

µSRM∑
k=1

p(t−1)
m (k) (2.4)

where j indicates an individual created by CM at (t − 1), k indicates the individuals created by
SRM at (t − 1) that survived extinctive selection, and µSRM is the number of offspring created
by SRM that survived extinctive selection. In the case that no offspring created by SRM survived
extinctive selection, p(t−1)

m (j) is set to the mutation value of the best SRM’s offspring. SRM will
mutate this updated mutation in order to mutate the object variable.

It should be mentioned that besides the method described here, other self-adaptive approaches
exclusively for parallel varying mutation have been also implemented successfully[40].

Adaptive

Since the instantaneous effectiveness of SRM depends only upon itself its relative success can
be directly tied to the mutation rate to create adaptive (self-adaptive) schemes for mutation rate
control. In this work the adaptive mutation rate control dynamically adjusts the mutation rate
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within SRM every time a normalized mutants survival ratio γ falls under a threshold τ . The ratio
γ is specified by

γ =
µSRM

λSRM
· λ
µ

(2.5)

where µSRM is the number of individuals created by SRM present in the parent population P (t)
after extinctive selection at time t, λSRM is the number of offspring created by SRM, λ is the total
number of offspring (λCM + λSRM ), and µ is the number of individuals in P (t). The number of
offspring λCM and λSRM that will be created by CM and SRM, respectively, is deterministically
decided at the beginning of the run.

It should be noted that the deterministic and adaptive schedules use only one mutation rate
for all the individuals in the population. The self-adaptive schedule on the other hand, uses one
mutation rate per individual.

2.3.4 Mutation Strategy

In the case of background mutation we expect in the average to flip 1 bit (or less) in each individ-
ual at each generation. When higher mutations are applied, however, many more bits would be
flipped in the same individual. This raises the question of whether a mutation strategy to choose
the bits that will undergo mutation would be more effective than other and for which classes of
problems. To study this point, two mutation strategies are investigated for SRM: (i) adaptive
dynamic-segment (ADS), and (ii) adaptive dynamic-probability (ADP).

ADS (Adaptive Dynamic-Segment)

ADS directs mutation only to a segment of the chromosome using constant mutation probabilities
per bit

p(SRM)
m =

{
α (if the bit is in the segment)
0 (otherwise)

while the mutation segment size � is dynamically adjusted every time γ falls under τ . The segment
reduction is summarized below:

� = n (t = 0)
if (γ < τ) and (� > 1/α)
� = �/2

where the segment size � varies from n (bit string length) to 1/α, [n, 1/α] following a step de-
creasing approach as shown in Figure 2.4.

The segment initial position, for each chromosome, is chosen at random, si = N [0, n), and its
final position is calculated by

sf = (si + �) mod n. (2.6)

With this scheme, the average number of flipped bits goes down from nα to 1, [nα, 1].

ADP (Adaptive Dynamic-Probability)

With ADP, every bit in the chromosome is always subject to mutation with probability p(SRM)
m

varying each time γ falls under τ :
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Figure 2.5: ADP (Adaptive Dynamic-Probability) mutation.

p
(SRM)
m = α (t = 0)

if (γ < τ) and (p(SRM)
m > 1/n)

p
(SRM)
m = p

(SRM)
m /2

In other words, the segment size is kept constant, � = n, but p(SRM)
m follows a step decreasing

approach from α to 1/n per bit, p(SRM)
m = [α, 1/n] as shown in Figure 2.5.

Both schemes, ADS and ADP, impose an adaptive mutation rate control with the same ex-
pected average number of flipped bits; the difference lies whether mutation is applied locally
inside the segment (ADS) or globally inside the whole chromosome (ADP).

2.3.5 Duplicates Elimination

Genetic drift is postponed enhancing selection by eliminating fitness duplicates. If several indi-
viduals have exactly the same fitness then one of them is chosen at random and kept. The other

16



P(t) µ

Proportional Selection

λCM : λSRM

λCM

λCM

C

M λSRM

SRM

λ = λCM + λSRM

Extinctive Selection

pm
(CM)

CM

(µ < λ)

pm
(SRM)

µSRMP(t) µ

Proportional Selection

λCM : λSRM

λCM

λCM

C

M λSRM

SRM

λ = λCM + λSRM

Extinctive Selection

pm
(CM)

CM

(µ < λ)

pm
(SRM)

µSRM

Figure 2.6: GA with Parallel Varying Mutation

equal fitness individuals are eliminated from the population. The fitness duplicates elimination is
carried out before extinctive selection. Note that under this approach it is possible that two indi-
viduals with the same fitness may actually be different at the genotype level. Preventing duplicates
removes an unwanted source of selective bias[41] and allows a fair competition between offspring
created by CM and SRM.

2.4 GA-SRM’s Algorithm

The algorithm of the parallel varying mutation GA based on the proposed model is presented
below and its block diagram is shown in Figure 2.6.

procedure GA-SRM
begin
t := 0;
initialize (P (0));
evaluate (P (0));
while (not termination condition)
begin
P ′(t) = crossover and mutation (P (t)); /* creates λCM */
P ′′(t) = self-reproduction with mutation (P (t)); /* creates λSRM */
evaluate (P ′(t) ∪ P ′′(t)); /* λ = λCM + λSRM */
P ′′′(t)= eliminate fitness duplicates (P ′(t) ∪ P ′′(t));
P (t+ 1) = (µ, λ) proportional selection (P ′′′(t)); /* µ < λ */
t := t+ 1;

end
end
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Chapter 3

Test Problems Generators

Test function generators for broad classes of problems are seen as the correct approach for testing
the performance of genetic algorithms. This chapter describes two test problems generators and
the test data used in this work. One of generators is for 0/1 multiple knapsack problems, which
allows to test the algorithms on a broad range of classes of constrained problems by varying
the feasible region of the search space, number of constraints, and the size of the search space.
Real-world 0/1 multiple knapsack problems with known global optimum are also used. These
latter problems allow studying the global search abilities of the algorithms. The second generator
is the well known Kauffman’s NK-landscapes model of epistatic interactions that has been the
center of several theoretical and empirical studies both for the statistical properties of the generated
landscapes and for their GA-hardness. This generator allows testing the algorithms on a broad
range of classes of epistatic non-linear problems. Both, 0/1 multiple knapsack problems and NK-
Landscapes, are known to be NP-hard combinatorial problems.
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3.1 0/1 Multiple Knapsacks Problems

In the 0/1 multiple knapsack problem there are m knapsacks and n objects. The capacities of the
knapsacks are c1, c2, ..., cm. For each object there is a profit pi (1 ≤ i ≤ n) and a set of weights
wij (1 ≤ j ≤ m), one weight per knapsack. If an object is selected its profit is accrued and
the knapsacks are filled with the object’ weights. The problem consists on finding the subset of
objects that maximizes profit without overfilling any of the knapsacks with objects’ weights. The
0/1 multiple knapsack problem can be formulated to maximize the function

g(x) =
n∑

i=1

pixi (3.1)

subject to
n∑

i=1

wijxi ≤ cj (j = 1, ...,m) (3.2)

where xi ∈ {0,1} (i = 1, ..., n) are elements of a solution vector x = (x1, x2, ..., xn), which is
the combination of objects we are interested in finding. Solutions to this problem have a natural
binary representation in the GA constructed by mapping each object to a locus within the binary
chromosome. A 1 in locus i indicates that the object i is being selected and a 0 otherwise. A
solution vector x should guarantee that no knapsack is overfilled and the best solution should
yield the maximum profit. An x that overfills at least one of the knapsacks is considered as an
infeasible solution. Figure 3.1 illustrates the problem.
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Figure 3.1: Knapsack Problem

Besides defining the number of knapsacksm (number of constraints) and the number of objects
n (size of the search space, 2n), it is also possible to define the tightness ratio φ between knapsack
capacities and object weights (which implies a ratio between the feasible region and the whole
search space). Thus, by varyingm, n, and φ, 0/1 multiple knapsacks allows us to carefully observe
the behavior and scalability of the algorithms in three important aspects that are correlated to the
difficulty of a problem.

The 0/1 multiple knapsack problem is also known as the 0/1 multidimensional or m-dimensional
knapsack problem and can be regarded as a general statement of any zero-one integer program-
ming problem with non-negative coefficients. Indeed much of the early work on the problem
viewed the problem in this way.
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Table 3.1: Real world 0/1 multiple knapsack test problems.
Name n m Max

Petersen 3 15 10 4015
Petersen 4 20 10 6120
Petersen 5 28 10 12400
Petersen 6 39 5 10618
Petersen 7 50 5 16537

Sento 1 60 30 7772
Sento 2 60 30 8722
Weing 7 105 2 1095445

The 0/1 multiple knapsack problem is a NP-hard combinatorial optimization problem and its
importance is well known both from a theoretic and practical point of view. It is a generalization of
the 0/1 simple (m = 1) knapsack problem. Simple knapsack problems can be used as subproblems
to solve more complicated ones[42] and other combinatorial problems, such the partition problem,
can be polinomially transformed into it [43]. Also, well known NP-complete problems, such
satisfiability problems (SAT), can be formulated as special instances of a 0/1 multiple knapsack
problem [44].

In addition, many practical problems can be formulated as a 0/1 multiple knapsack problem.
For example, the capital budgeting problem where project i (object) has profit pi and consumes
wij units of resource j (knapsack). The goal is to find a subset of the n projects such that the total
profit is maximized and all resources constraints are satisfied. Other applications of the problem
include allocating processors and databases in a distributed computer system[45], project selection
and cargo loading[46], cutting stock problems[47], and maximizing the number of served clients
or the use of bandwidth for ad hoc networks[48].

Two sets of 0/1 multiple knapsacks problems are selected to test the algorithms. One of the
sets consists of real-world problems with known optimum solution. The other set consists of
larger randomly generated problems with unknown optimum solution. Both sets of problems
were obtained from the OR-Library1.

3.1.1 Real World Problems

The problems in this set range from 2 to 30 knapsacks and from 15 to 105 objects (see Table
3.1). Problems Petersen 3-7 are due to Petersen[49], Sento 1- 2 were introduced by Senyu and
Toyoda[50], and Weing-7 was introduced by Weingartner and Ness [51]. Since the optimum solu-
tion is known for these problems we can observe the behavior of the genetic algorithms for global
optimization. These problems have been used by other authors to test canonical GAs and standard
varying mutation GAs, allowing initial relative comparisons with other GA approaches.

The fitness function for the real-world knapsack problems introduces the same penalty term
used in [52] to deal with infeasible solutions (no repair strategy is used). Thus, the fitness function
is specified by

f1(x) = g(x) − s ·max{pi} (3.3)

where s (0 ≤ s ≤ m) is the number of overfilled knapsacks.
1http://mscmga.ms.ic.ac.uk/jeb/orlib/info.html
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Table 3.2: 7 Subclasses of problems (10 random problems in each subclass)

Paremeters
Subclass m n φ Comment

1 30 100 0.75 reducing
2 0.50 feasible
3 0.25 region
4 5 100 0.25 increasing
5 10 number

(3) 30 constraints
(3) 30 100 0.25 increasing
6 250 search
7 500 space

3.1.2 Large Random Problems

The problems in this set consists of classes of larger and highly constrained instances of 0/1 mul-
tiple knapsack. These classes of problems were created using a knapsack test problem generator.
The problems and the generator were initially proposed in [53]. The generator itself is based in
the procedure suggested in [54] and its main characteristics are as follows:

1. The weights wij are drawn at random from a uniform distribution U(0, 1000).

2. For each combination of m-n, the capacities of the knapsacks are set by

cj = φ
n∑

j=1

wij

where φ is the tightness ratio.

3. The profits of the objects are correlated to the weights of the objects2 by

pi =
m∑

i=1

wij/m+ 500qj

where qj is a real number drawn from a continuous uniform distribution U(0, 1).

To obtain a broader perspective on the performance of the GAs and to have a clear idea on
scalability the GAs are applied to several knapsacks problems systematically varying φ, m, and
n. Each combination of φ, m, and n defines a subclass of problem. Table 3.2 shows the com-
bination of values of the parameters φ, m, and n used to define the subclasses of problems. This
allows to observe the robustness of the algorithms reducing the feasible region (tightness ratio be-
tween knapsack capacities and object weights φ = {0.75, 0.50, 0.25}), increasing the number of
constraints (m = {5, 10, 30} knapsacks), and increasing the search space (n = {100, 250, 500}
objects). We use 7 subclasses and 10 random problems in each subclass.

The quality of the solutions found by the algorithms are measured by the average percentage
error gap in a subclass of problems, which is calculated as the normalized difference between the

2The difficulty of the problems is greatly increased by the correlation between profits and weights[42].
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best solutions found and the optimal value given by the linear programming relaxation (LP) (the
optimal integer solutions are unknown)[53]. The average error gap is taken for the 10 random
problems in each subclass performing 50 runs for each problem by

% Error Gap =
1
10

10∑
p=1

100 × LP − Problem Average

LP

Problem Average =
1
50

50∑
r=1

Best Solution

Similar to the real-world problems, to deal with infeasible solutions a penalty term is intro-
duced into the fitness function. The two following fitness functions are tried

f1(x) = g(x) − s ·max{pi} (3.4)

f2(x) =

{
g(x)/s ·max{oj} (s > 0)
g(x) (s = 0)

(3.5)

where s (0 ≤ s ≤ m) is the number of overfilled knapsacks and oj (> 1) is the overfilling ratio of
knapsack j calculated by

oj =
n∑

i=1

wijxi/cj . (3.6)

Note that the penalty term of f1 is merely a function of the number of violated constraints (s), but
has no direct correlation with any metric that indicates the distance from feasibility. On the other
hand, the penalty term of f2 is a function of both number of violated constraints (s) and distance
from feasibility (oj).

The fitness function f1 is the one used for the real-world problems, which has been success-
fully used before with smaller 0/1 multiple knapsacks problems [31, 34, 35, 52, 55]. In the larger
randomly generated problems, however, f1 did not produce feasible solutions or the results were
very poor especially on problems with restrictive knapsack capacity and small number of knap-
sacks. This is because the penalty term used in f1 is too weak for these problems, causing a major
portion of the infeasible region to end up with fitness higher than the feasible region. In such case,
the fitness function misleads the algorithm to search within the infeasible region of the search
space. Similar behavior with other penalty functions was observed in [30] for single (m = 1)
0/1 knapsack problems of restrictive capacity. Results by f1 are in agreement with [56]. That
is, penalties that are solely functions of the number of violated constraints are not likely to find
feasible solutions for problems having few constraints and reduced feasible region.

As mentioned above, the fitness functions f2 of Eq. (3.5) includes a penalty that is also a
function of the distance from feasibility. In this case, feasible solutions were found on all test
problems. In general, a good penalty function should balance the preservation of information
of the infeasible solutions with the pressure for feasibility[56]. The results reported here for the
randomly generated problems are obtained using f2.

3.2 NK-Landscapes

NK-Landscapes are stochastically generated fitness functions on bit strings, parameterized with
N bits and K epistatic interactions between bits. In biology, the term epistasis is used to describe
a range of non-additive phenomena due to the non-linear inter-dependence of gene values, i.e.
the expression of one gene masks the genotypic effect of another. In the context of GAs this
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Figure 3.2: An example of the fitness function f3(x3, z
(3)
1 , z

(3)
2 ) associated to bit x3 in which x3

epistatically interacts with its left and right neighboring bits, z(3)
1 = x2 and z(3)

2 = x4 (N = 8,
K = 2)

terminology is used to describe nonlinearities in fitness functions due to changes in the values of
interacting bits3.

More formally, an NK-Landscape is a function f : BN → � where B = {0, 1}, N is the
bit string length, and K is the number of bits in the string that epistatically interact with each
bit. Kauffman’s original NK-Landscape[57, 58] can be expressed as an average of N functions as
follows

f(x) =
1
N

N∑
i=1

fi(xi, z
(i)
1 , z

(i)
2 , · · · , z(i)

K ) (3.7)

where fi : BK+1 → � gives the fitness contribution of bit xi , and z(i)
1 , z

(i)
2 , · · · , z(i)

K are the K
bits interacting with bit xi in the string x. That is, there is one fitness function associated to each
bit in the string. NK-Landscapes are stochastically generated and usually the fitness contribution
fi of bit xi is a number between [0.0, 1.0] drawn from a uniform distribution. Figure 3.2 shows
an example of the fitness function f3(x3, z

(3)
1 , z

(3)
2 ) associated to bit x3 for N = 8,K = 2, in

which x3 epistatically interacts with its left and right neighboring bits, z(3)
1 = x2 and z(3)

2 = x4,
respectively.

For a giving N , we can tune the ruggedness of the fitness function by varying K. In the
limits, K = 0 corresponds to a model in which there are no epistatic interactions and the fitness
contribution from each bit value is simply additive, which yields a single peaked smooth fitness
landscape. On the opposite extreme, K = N − 1 corresponds to a model in which each bit value
is epistatically affected by all the remaining bit values yielding a maximally rugged fully random
fitness landscape. Varying K from 0 to N − 1 gives a family of increasingly rugged multi- peaked
landscapes.

Besides defining N and K, it is also possible to arrange the epistatic pattern between bit xi

and K other interacting bits. That is, the distribution of the K bits among the N . Kauffman
investigated NK-Landscapes with two kinds of epistatic patterns: (i) nearest neighbor, in which
a bit interacts with its K/2 left and right adjacent bits, and (ii) random, in which a bit interacts
with K other randomly chosen bits in the chromosome. By varying N , K , and the distribution
of K among the N , we can study the effects of the size of the search space, intensity of epistatic

3In this work a gene can be interpreted as a bit and an allele (gene value) as a bit value, i.e. 0 or 1
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interactions, and epistatic pattern on the performance of genetic algorithms.
The works of Altenberg[59, 60] Heckendorn et al.[61], and Smith and Smith[62, 63] are im-

portant contributions extending NK-landscapes to a more general framework of tunable random
landscapes and on their analysis. The simplest of the generalized NK-Landscapes[59, 61, 62] can
be expressed as the average of P functions as follows

f(x) =
1
P

P∑
j=1

fj(x
(j)
i , z

(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

K ) (3.8)

where fj : BK+1 → � gives the fitness contribution of the K + 1 interacting bits. That is, in
this model there could be zero, one, or more than one fitness function associated to each bit in the
string.

An implication of epistatic interactions among bits is that the fitness function develops con-
flicting constraints[59]. For example, a mutation in one bit may improve its own contribution to
fitness but may decrease the contributions of other bits with which it interacts. Conversely, if a bit
value at other interacting position in the bit string changes, a bit value that had been optimal may
not longer be optimal. Thus, epistatic interactions increase the difficulty in trying to optimize all
bits simultaneously.

The study of the effects of epistasis is of great interest to the evolutionary algorithm’s com-
munity because epistatic interactions are directly correlated to the underlying representation that
the evolutionary algorithm uses and to the multimodality and non-linearity of the fitness landscape
that the algorithm searches. Lately, the influence of epistasis on the performance of Genetic Al-
gorithms (GAs) is being increasingly investigated. NK-Landscapes, particularly, have been the
center of several theoretical and empirical studies both for the statistical properties of the gener-
ated landscapes and for their GA-hardness[60, 64, 65, 66, 67]. Previous works that investigate
properties of GAs with NK-Landscapes have mostly limited their study to small landscapes, typ-
ically 10 ≤ N ≤ 48, and observed the behavior of GAs only for few generations. Recently,
studies are being conducted on larger landscapes expending more evaluations[61, 68, 69, 70] and
the performance of GAs is being benchmarked against hill climbers[61, 68, 70].

In this work experiments are conducted on landscapes with random and near neighbor patterns
of epistasis forN = 48 andN = 96 varyingK from 0 toN−1 in intervals of 4. Each combination
of pattern of epistasis, N , and K defines a class of problem. For each one of these classes 50
random problems are created. This allows testing the performance of GAs on a broad range of
classes of epistatic non-linear problems.

There are several empirical and theoretical studies of the statistical properties of the generated
NK-Landscapes. The following is a synopsis of the results for one-mutant adaptive walks on NK
landscapes taken from [59].

For K = 0, the fitness function becomes the classical adaptive multilocus model.

1. There is a single globally attractive genotype.

2. The adaptive walk from any genotype will proceed by reducing the Hamming distance to
the optimum by one at each step, and the number of fitter one-mutant neighbors is equal to
this Hamming distance. Therefore, the expected number of steps to the global optimum is
N/2.

3. The fitness of one-mutant neighbor genotypes are highly correlated, as N − 1 of the N
fitness components are unrelated between the neighbors.

ForK = N − 1, the fitness function is equivalent to the random assignment of fitness over the
genotype space.
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1. The probability that a genotype is a local optimum is 1/(N + 1).

2. The expected total number of local optima is 2N/(N + 1).

3. The expected fraction of one-mutant neighbors that are fitter decreases by 1/2 each step of
the adaptive walk.

4. The expected length of adaptive walks is approximately ln(N − 1).

5. The expected number of mutants tested before reaching local optimum is
∑log2(N−1)−1

i=0 2i.

6. As N increases, the expected fitness of the local optimum reached from a random initial
genotype decreases towards the mean fitness of the entire space, 0.5. Kauffman[57, 58]
calls this the complexity catastrophe.

For intermediate K, it is found that

1. For small K, the highest local optima share many of their alleles in common. As K in-
creases, this allelic correlation among local optima falls away, and more rapidly for random
neighbors than adjacent neighbors.

2. For large K, the fitness of local optima are distributed with an asymptotically normal distri-
bution with mean approximately.

µ+ σ

(
2 ln(K + 1)
K + 1

)1/2

and variance approximately

(K + 1)σ2

N [K + 1 + 2(K + 2) ln(K + 1)]

where µ is the expected value of Fi, and σ2 its variance. In the case of uniform distribution,
µ = 1/2 and σ = (1/12)1/2 .

3. The average Hamming distance between local optima, which is roughly twice the length of
a typical adaptive walk, is approximately

N log2(K + 1)
2(K + 1)

4. The fitness correlation between genotypes that differ at d loci is

R(d) =
(

1 − d

N

((
1 − K

N − 1

)d

for the random neighborhood model, and

R(d) = 1 − K + 1
N

d+
1(
N
d

) min(K,N+1−d)∑
j=1

(K − j + 1)

(
N − j − 1
d− 2

)

for the adjacent neighborhood model.
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Chapter 4

Studying the Structure of the Parallel
Varying Mutation GA-SRM

This chapter studies in detail the internal structure of the parallel varying mutation GA-SRM
using adaptive mutations. It analyzes the impact of important issues that affect the performance
of GAs and study the contribution of extinctive selection, adaptation, mutation strategy, and the
interaction between parallel varying mutation and crossover. Real-world and randomly generated
0/1 knapsack problems are used to study and test the model. Comparisons are made with simple
GAs and other improved GAs.
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4.1 Introduction

The GA-SRM model applies varying mutations parallel (SRM) to crossover & background muta-
tion (CM) putting the operators in a cooperative-competitive stand with each other through extinc-
tive selection. Important structural issues to be studied are the balance between CM and SRM for
offspring creation, the mutation probability in CM, the ratio between number of parents, number
of offspring (extinctive selection pressure), and the threshold to trigger adaptation in SRM. Re-
combination in canonical GAs has been emphasized and deeply studied. It is known that different
crossover operators create dissimilar degrees of disruption and construction of building blocks.
Therefore it is also important to verify whether the kind of diversity that we expect from SRM
can be produced by other kinds of recombination operators. The impact of other important issues
related to the performance of GAs, such as population size and evaluation time, is observed, too.
Besides the internal structure, the effect on performance of extinctive selection, the interaction of
varying mutation parallel to crossover, and the effect of adaptation and mutation strategy are also
investigated. In this chapter, all these issues are studied using real-world and randomly generated
0/1 knapsack problems.

4.2 Experimental Setup

Experiments are conducted using the following algorithms: (i) a canonical GA denoted as cGA
(CM and proportional selection), (ii) a simple GA with (µ, λ) proportional selection denoted as
GA(µ, λ) (CM and extinctive proportional selection), and (iii) the proposed algorithm denoted as
GA-SRM(µ, λ) (CM, SRM and extinctive proportional selection). In GA-SRM, SRM is used with
ADS and ADP mutation strategies. Unless stated otherwise, the genetic algorithms used here are
set with the parameters specified in Table 4.1. It should be noted that throughout this chapter
elimination of fitness duplicates is not considered and that SRM’s mutation rate control is the
adaptive mechanism explained in 2.3.3.

Experiment with the real-world knapsack problems consisted of 100 independent runs for
each problem. For the randomly generated problems 50 runs were performed for each one of
the seventy problem in the seven subclasses of problems, as explained in 3.1.2. Each run was
set with a different seed for the random initial population and ended after T evaluations were
performed. The values of T used for each real-world problem are indicated in Table 4.4. For all
randomly generated problems the number of evaluations was set to T = 5 × 105. The number of
generations for each experiment is calculated as T/λ. In GA-SRM, the values of τ (threshold to
trigger adaptation in SRM) are sampled and the one that produces the overall higher performance
on the seven different classes of random problems is chosen. The threshold is set to τ = 0.64 for
ADS and τ = 0.54 for ADP. The values of τ used for the real-world problems are indicated in
Table 4.4.

4.3 Operators’ Balance

First, the importance of SRM and the operators’ balance for offspring creation is investigated.
Three general cases are considered.

1. The size of the parent population P (t) is equal to the size of CM’s and SRM’s offspring
populations, λSRM = µ = λCM .

2. P (t) is smaller than CM’s but bigger than SRM’s population, λSRM < µ < λCM .
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Table 4.1: Genetic algorithms parameters.

Parameter cGA GA(µ, λ) GA− SRM(µ, λ)
Representation Binary Binary Binary

Selection Proport. (µ, λ) Proport. (µ, λ) Proport.
Scaling Linear Linear Linear
Mating (xi,xj), i �= j (xi,xj), i �= j (xi,xj), i �= j
Crossover one point one point one point

pc 0.6 0.6 1.0
p
(CM)
m 1/n 1/n 1/n

p
(SRM)
m - -

{
α = 0.5, � = [n, 1/α] (ADS)
α = [0.5, 1/n], � = n (ADP )

µ : λ - 1 : 2 1 : 2
λCM : λSRM - - 1 : 1

3. P (t) is bigger than CM’s but smaller than SRM’s population, λSRM > µ > λCM .

In the case of equal size populations, both operators could allocate all their offspring to P (t).
Therefore, there is competition between the two operators’ offspring for every spot in P (t). The
normalized mutant survival ratio γ, specified by eq.(2.5), reflects the number of mutants winners
that survive after competing with CM’s offspring. Also, in this case the number of mutants that
survive selection equals the number of CM’s offspring being eliminated.

However, if one of the offspring populations is smaller than P (t), then it could at most cover a
fraction of the parent population. Hence, competition for survival between operators is not for the
µ spots but rather for µc specified by the size of the smaller population. This is because the best
µ − µc of the exceeding population need not to compete in order to survive. For example, if the
bigger population corresponds to SRM, µSRM in eq.(2.5) includes not only the mutants winners
but also those that survive without competition. Also, note that in this case the number of mutants
that survive selection does not equal to the number of CM’s offspring being eliminated.

To reflect the competition between operators when different offspring population sizes are
used the mutants survival ratio of eq.(2.5) is extended to

γ =
µw

SRM

λc
SRM

· λ
c

µc
(4.1)

where µw
SRM is the number of individuals created by SRM that compete and survive selection

(mutants winners), λc
SRM is the offspring number created by SRM that undergoes competition,

λc is the total offspring number that compete for survival (λc
CM + λc

SRM ), and µc is the number
of spots that SRM’s and CM’s offspring compete for in the parent population P (t). Note that
eqs.(2.5) and (4.1) are the same if equal size populations are used (case 1).

The balance between operators for offspring creation is studied using eq.(4.1). Setting the par-
ent and offspring population to (µ, λ) = (50, 100) several experiments are conducted especially
for Weing 71 varying the number of offspring created by CM and SRM from an all CM regime to a
90% SRM regime. A 100% CM regime represents a genetic algorithm that applies “background”
mutation after crossover and uses (µ,λ) Proportional Selection, i.e. GA(50,100). Also, note that

1For this problem the number of evaluations is set to T = 2 × 105. The same number of evaluations were used in
[31] and [52] using offspring populations of 100 and 50 individuals, respectively.
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Figure 4.1: Operators’ balance and search ability.

because SRM’s adaptive mutation schedule is based on a mutant survival ratio, which reflects the
competition among SRM’s and CM’s offspring, it is not possible to test the algorithm with an all
SRM regime and simultaneously keep its adaptive feature.

The relationship between operators’ offspring balance and search ability (best individuals’ av-
erage and number of times the global optimum was found in 100 runs, Average and N respectively)
is shown in Figure 4.1 when SRM is implemented with ADS. From this figure the following ob-
servations can be drawn. Ratios that favor SRM’s offspring, i.e. λSRM > 50%, produce better
results than its opposites. A λCM : λSRM = 1 : 1 ratio is the best choice for stable and robust
performance that simultaneously maximizes N and Average. In the following sections we use the
best 1 : 1 operators’ balance.

4.4 Mutation Probability in CM

Second, the relevance of CM’s mutation probability is studied fixing λCM : λSRM = 50 : 50.
The model’s searching ability for p(CM)

m values in the range [0.5/n, 1.5/n] are shown in Figure
4.2, where n is the bit string length. From this figure the following observations are relevant. A
p
(CM)
m = 1/n turns out to be the probability that gives the highest values for Average and N , that

is a coincidence with the results in [24]. Values of p(CM)
m > 1/n are less deteriorative than values

of p(CM)
m < 1/n are.
Segment size reduction, �, as well as the number of individuals produced by SRM that survive

selection, µSRM , are shown for one of the runs for p(CM)
m = 1/n in Figure 4.3 (a). Here it can be

observed that SRM contributes to the survivor parent population in every generation of the search
process. The key factor for SRM to be an effective operator lies in its own regulation mechanism,
i.e. the mutation rate is adjusted every time the number of mutants that survive selection falls
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Figure 4.2: CM’s mutation probability and search ability (elimination of fitness duplicates is off).

under a minimum level τ . Also, the average number of SRM’s offspring that survive selection
increases as the mutation segment is reduced.

For p(CM)
m ≤ 0.5/n it is observed that SRM’s offspring fitness cannot compete with CM’s

offspring, which is specially critical during the early stages of the search, causing a premature
reduction of SRM’s mutation rate, lost of diversity in the population and convergence to a local
optimum. Another typical figure on SRM’s contribution µSRM and segment size reduction � for
p
(CM)
m = 0 (without mutation after crossover) is shown in Figure 4.3 (b) to compare with Figure

4.3(a). Small mutation after crossover is required in CM to achieve a robust search performance
by keeping an appropriate balance between CM and SRM. Note that in this case, elimination of
fitness duplicates is not being considered.

4.5 Extinctive Selection Pressure

Next, the effect that extinctive selection has in the model is studied varying the size of the parent
population µ and setting λCM : λSRM = 50 : 50, p(CM)

m = 1/n. Figure 4.4 shows results for
(µ, λ) = ({10, 20, ..., 90}, 100).

High values of Average are attained for ratios of extinctive selection pressure in the range
µ/λ=[40/100, 70/100]. For µ < 50 both CM and SRM produce offspring in excess of the parent
population’s requirement (λCM > µ and λSRM > µ). In this case, there exists competition for
survival even among CM’s offspring, and SRM’s offspring have to outperform CM’s best offspring
to survive. As the parent population size is reduced competition conditions become severer.

Conversely, for µ > 50 neither CM alone nor SRM can cover the parent population’s demand
(λCM < µ and λSRM < µ). In this situation, even if CM totally outperforms SRM, the latter has
guaranteed at least µ−λCM of its best progeny for the next generation. However, with this scheme
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Figure 4.3: SRM’s offspring number after extinctive selection.

the removal of CM’s offspring that are performing poorly is not facilitated. Note that for the worst
CM’s offspring to be eliminated it has to be worse than the best µ− λSRM SRM’s offspring.
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Figure 4.4: Extinctive selection pressure and search ability.

4.6 SRM’s Adaptive Minimum Level τ

Figure 4.5 plots Average and N for values of τ in the range [0.20,0.52] for Weing 7. SRM’s
offspring that survive selection increases as mutation rates are reduced. Therefore, if τ is too
small the mutation rate could remain too high at the end of the search, i.e. after certain point there
are no further reductions in SRM’s mutation rate because the mutants survival ratio γ is always
higher than τ . In the experiments the minimum mutation rates were 3/n in more than 90% of the
runs for τ ≤ 0.28 and 1.5/n in 92% of the runs for τ = 0.32. In both cases Average is high but
there is a big difference in N.

As τ is increased the minimum value of the mutation rate will tend to be 1/n and its reduction
will be faster. In this example, the average time (on the hundred runs) at which 1/n mutation rate
is reached is about 0.5T for τ = 0.48, and 0.25T for τ = 0.52. A proper reduction speed of
SRM’s mutation rates guarantees a high Average and a SRM’s mutation rate close to 1/n during
the final stage of the search helps to locate the global optimum.

From Figure 4.5, it can be observed that there is a broad range for the threshold τ in which
the Average is very high. Also, that there is a safety-range in which both Average and N are high.
Similar behavior is observed on other problems used to test the model.

4.7 Two-point and Uniform Crossover

Experiments using two point and uniform crossover are also conducted. Results using two point
crossover by cGA and GA(µ,λ) after T evaluations are (N, Ave, Stdev)={(0, 1086886.8, 1590.8),
(0, 1092647.5, 3032.0)}, respectively. Similarly, results using uniform crossover are (N, Ave,
Stdev)={(0, 1090392.1, 1020.7), (0, 1093748.4, 1776.9)}.
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Figure 4.5: SRM’s minimum level and search ability.

These results are better than those obtained with one point crossover, yet the global optimum
solution could not be found. In the case of GA-SRM(µ,λ), however, the obtained results are quite
similar to one point crossover.

4.8 Impact of the Population Size

The impact of the population size in the method’s robustness is verified in Table 4.2 (a) and (b)
by GA-SRM using ADS and ADP, respectively. All population configurations use the same T
evaluations. The right number indicates the value of the global (local) optimum and the left one
the number of times it was found. At the bottom of each column, Average and Stdev are also
presented.

From Table 4.2 it can be seen that the model using only 40% of the population size still
produces high values for Average and N. These results are encouraging and suggest that another
important benefit of the cooperative-competitive model could be the reduction of the population
size. Results by a larger population configuration, i.e. GA-SRM(100,200), are also included.
Under the same evaluation time, no considerable difference in results by GA-SRM could be seen
varying its configuration from (100,200) to (30,60) for this particular problem.

4.9 Search Ability and Number of Evaluations

The global search ability at various evaluation times is observed by letting the algorithms run for
4T evaluations. Table 4.3 presents results by GA-SRM for some intermediate times, where Stdev
denotes the value of standard deviation around Average. Results by cGA and GA(µ,λ) after 4T
evaluations are (N, Ave, Stdev)={(0, 1087312.0, 1555.2), (0, 1093797.3, 1624.1)}, respectively.
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Table 4.2: Results for Weing 7 using GA-SRM with different population sizes.
(a) ADS.

GA-SRM(100,200) GA-SRM(50,100) GA-SRM(30,60) GA-SRM(20,40)

p
(CM)
m = 0.01 p

(CM)
m = 0.01 p

(CM)
m = 0.01 p

(CM)
m = 0.01

τ = 0.46 τ = 0.40 τ = 0.33 τ = 0.30
22 1095445 26 1095445 22 1095445 15 1095445
58 1095382 47 1095382 43 1095382 34 1095382

2 1095357 15 1095357 12 1095357 13 1095357
4 1095352 2 1095352 3 1095352 5 1095352
1 1095295 3 1095266 2 1095266 1 1095295
4 1095264 5 1095264 4 1095266

7 1095264
9 < 1095264 7 < 1095264 13 < 1095264 21 < 1095264

Ave = 1095344.1 Ave = 1095345.47 Ave = 1095350.46 Ave = 1095265.45
Stdev = 267.9 Stdev = 337.17 Stdev = 174.50 Stdev = 498.52

(b) ADP.

GA-SRM(100,200) GA-SRM(50,100) GA-SRM(30,60) GA-SRM(20,40)

p
(CM)
m = 0.01 p

(CM)
m = 0.01 p

(CM)
m = 0.01 p

(CM)
m = 0.01

τ = 0.46 τ = 0.40 τ = 0.33 τ = 0.30
11 1095445 11 1095445 13 1095445 5 1095445
21 1095382 25 1095382 24 1095382 29 1095382
11 1095357 8 1095357 14 1095357 4 1095357
1 1095352 2 1095352 3 1095266 3 1095295
3 1095295 2 1095295 3 1095264 2 1095266

15 1095264 4 1095266 13 1095264
6 1095264

38 < 1095264 42 < 1095264 43 < 1095264 44 < 1095264
Ave = 1095050.63 Ave = 1094908.34 Ave = 1094877.47 Ave = 1094823.49
Stdev = 752.3 Stdev = 1106.3 Stdev = 986.56 Stdev = 1032.36

Table 4.3 empirically show the effect of the proposed cooperative-competitive model in terms
of higher search velocity and higher search reliability (reach better solutions with small Stdev
values). Note the Average, N and Stdev for 0.25T and 0.5T . They also indicate that SRM is a
continuous and effective source of diversity, which at the expense of time could be used to improve
the search results. For example, when the algorithm was allowed to run for 2T evaluations for this
particular problem, a remarkable improvement was achieved finding the global maximum 57% of
the times with Average greater than the second known optimum and very small Stdev values.

4.10 Contribution of Parallel Genetic Operators and Extinctive Se-
lection

In order to isolate the contributions of parallel genetic operators and higher selection pressure in-
duced by extinctive selection several additional experiments are conducted using cGA, GA(µ, λ),
and GA-SRM(µ, λ). Figure 4.6 plots the average objective fitness in 100 runs of the best-so-far
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Table 4.3: Results for Weing 7 using GA-SRM(50,100) with ADS under various evaluation times.

Maximum 0.25 T 0.5 T T = 2 × 105 2 T 4 T
1095445 2 11 26 57 77
1095382 8 29 47 41 23
1095357 2 8 15 1
1095352 1 2 2 1
< 1095352 87 50 3

Average 1094854.1 1095177.6 1095345.5 1095417.4 1095430.5
Stdev 602.8 545.3 337.2 41.6 27.63

individual over the generations by a cGA(100), GA(50,100), and GA-SRM(50,100). From this
figure it can be seen that the higher selection pressure of extinctive selection causes an increase
on search velocity. GA(µ,λ) in this problem also exhibits higher convergence reliability than cGA
without extinctive selection; however, GA(µ,λ) is still not able to find the global optimum and the
Average is lower compared to GA-SRM(µ,λ) (See Table 4.5 for Weing 7).

The only difference between GA(µ,λ) and GA-SRM(µ,λ) is the inclusion of adaptive muta-
tion SRM in the latter. Therefore any difference in performance between these algorithms can
be attributed to SRM. To better observe SRM’s contribution experiments are conducted in which
starting with a GA(µ,λ) configuration (all CM and extinctive selection) after a predetermined
number of evaluations the algorithm switches to a GA-SRM(µ,λ) configuration (CM, SRM and
extinctive selection). Figure 4.7 plots results by an algorithm that makes the configuration tran-
sition from GA(50,100) to GA-SRM(50,100) at {0.02T, 0.05T, 0.10T, 0.20T, 0.5T } evaluations,
respectively. As a reference it also includes the results presented in Figure 4.6 by GA(µ,λ) and
GA-SRM(µ,λ). From Figure 4.7 it can be seen that as soon as SRM is included fitness starts to
pick up increasing the convergence reliability of the algorithm. Also, early transitions produce
higher performance. For example, final results for the algorithms that perform transitions at 0.10T
and 0.50T are (N, Ave)={(22, 1095242.1), (10, 1094912.8)}, respectively.

Summarizing Figure 4.6 and Figure 4.7, GA-SRM(µ,λ) gains its increase on search veloc-
ity from extinctive selection and its higher convergence reliability from the inclusion of parallel
adaptive mutation.

To further clarify the contribution of the interaction between CM and SRM during the lat-
est stages of the search experiments are also conducted in which starting with a GA-SRM(µ,λ)
configuration, after the mutation rate on SRM has reached a predetermined value, the algorithm
switches either to a all CM regime with extinctive selection or to a all SRM regime with extinctive
selection (in the latter case no further reductions on SRM’s mutation rate are done). Figure 4.8
plots results by an algorithm that makes the configuration transition from GA-SRM(50,100) when
the mutation segment length in SRM has reached � = {6, 3}. As a reference it also includes the
results presented in Figure 4.6 by GA-SRM(µ,λ). From Figure 4.8 it can be seen that neither CM
nor SRM alone but the interaction of both CM and SRM leads to a higher convergence reliability.

To explain why the interaction of both CM and SRM works better than CM alone diversity
values and performance should be looked at simultaneously. Figure 4.9 presents the fitness value
of the best individual in the population and the average hamming distance to the best individual
h̄ over the generations for one of the runs by cGA and GA-SRM. The SRM’s mutation segment
reduction � is also presented for GA-SRM.

It can be seen that cGA ends up with values of h̄ higher than GA-SRM after T evaluations.
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Figure 4.6: Average fitness in 100 runs of the best-so-far individual.
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Figure 4.7: Configuration transition: GA(50,100) to GA-SRM(50,100).

Also, at the end of the run the number of diverse individuals in the parent population is about 95%
in cGA and 83% in GA-SRM. Letting the cGA run for 4T it is found that h̄ and the number of
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Figure 4.8: Configuration transition: GA-SRM(50,100) to all SRM or all CM.
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Figure 4.9: Diversity and search ability.

diverse individuals remains at the same levels and that the quality of the solution does not increase
significantly (See 4.9). The higher levels of diversity observed in cGA after T evaluations and the

38



lack of improvement in the quality of solutions after 4T evaluations seem rather contradictory. The
explanation for this comes from the highly multimodal nature of the landscape that the problem
used in our simulations has and it is in accordance with the findings in [38]. In [38] it is shown
that the recombination of high fitness individuals located on multiple peaks can often produce poor
performing individuals in the valley between peaks, with the side effect of increasing the values of
diversity metrics such as h̄ and the number of diverse individuals. On the other hand, the presence
of multiple peaks will have less influence on the mutation of a high fitness individual on a particular
peak (assuming small mutation probabilities). The values of h̄ in Figure 4.9 rather than being an
indication of the cGA’s ability to keep diversity show that CM alone has difficulties pulling the
population to higher peaks. In the case of GA-SRM, the lost of effectiveness by CM during the
final stages of the search is supplemented by the augment of SRM’s contribution conform mutation
rates are reduced as shown in Figure 4.3(a).

4.11 Results for Real-World 0/1 Multiple Knapsack Problems

In this section additional results for various real-world 0/1 multiple knapsack problems are pre-
sented. In Table 4.4 column Problem indicates the knapsack instance Name, the number of objects
n (it corresponds to the chromosome bit string length), the number of knapsacks m and the known
global optimum value Max. Column Parameters shows the specific values set for τ (used only
in GA-SRM), CM’s mutation probability p(CM)

m ≈ 1/n, and number of evaluations T . Table
4.5 show results by cGA (population of 100 individuals), GA(50,100), and GA-SRM(50,100) us-
ing either adaptive dynamic segment SRM-ADS or adaptive dynamic probability SRM-ADP. As a
reference for comparison, Table 4.6 presents results for the same problems reported by Khuri et
al.[52] running a genetic algorithm for the same T evaluations with a population of 50 individuals.
Table 4.7 shows the latest results by Bäck et al.[31] particularly for Weing 7 running a genetic
algorithm with constant mutation rates and other enhanced genetic algorithms that apply varying
mutations for the same T = 2 × 105 evaluations using offspring populations of 100 individuals.

From Table 4.5 it can be seen that the proposed method outperforms cGA and GA(µ,λ) in
every knapsack test problem where simulations were conducted. Also, although direct compar-
isons are not possible between GA-SRM(µ,λ) and the algorithms used in [31] and [52], looking at
Table 4.5, Table 4.6 and Table 4.7 it can be seen that the proposed algorithm gives better results.
It should be specially noticed the results obtained for Weing 7 where the proposed GA-SRM found
the global optimum 26% of the runs. In the same problem, genetic algorithms with either constant
mutation rate or self-adaptive mutation rates could not find the global optimum. Note that the
algorithm that uses a time dependent hyperbolic deterministic schedule for mutation rate control
with a (15,100) selection mechanism found it only 3% of the runs[31, 52]. Based on observations
of the final feasible solutions reached by the algorithms used in the simulations, it can be seen
that for Weing 7 in the ranges [1095000,1095445], [1094000,1095445], and [1093000,1095445],
there are at least 30, 134, and 189 peaks of different heights, respectively. This data might help to
visualize the kind of landscape and the global search ability of the algorithms.

It should be mentioned that ADS and ADP exhibit similar behavior. Although better results
were obtained with ADS for most of the knapsack test problems used here, at this time it cannot
be concluded whether ADS is superior to ADP. Also, the difference in performance between ADS
and ADP might be relevant to the kind of epistasis[59] associated to the test problem. For the test
problems used here there is no knowledge about the degree or the pattern of epistasis of the test
problems. More investigation should be done to clarify this point in the future.
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Table 4.4: Knapsack test problems.

Problem Parameters
Name n m Max τ p

(CM)
m T

Petersen 3 15 10 4015 0.48 0.067 5 × 103

Petersen 4 20 10 6120 0.52 0.050 104

Petersen 5 28 10 12400 0.48 0.036 5 × 104

Petersen 6 39 5 10618 0.48 0.030 105

Petersen 7 50 5 16537 0.48 0.020 105

Sento 1 60 30 7772 0.52 0.017 105

Sento 2 60 30 8722 0.52 0.017 105

Weing 7 105 2 1095445 0.40 0.01 2 × 105

Table 4.5: Results for various knapsack test problems.

GA-SRM(50,100)
cGA(100) GA(50,100) SRM-ADS SRM-ADP

Name N Average Stdev N Average Stdev N Average Stdev N Average Stdev
Petersen 3 48 4007.0 12.0 85 4013.4 3.8 100 4015.0 0.0 97 4014.7 1.2
Petersen 4 6 6031.1 50.8 35 6099.7 59.6 42 6112.5 8.4 54 6113.5 8.1
Petersen 5 2 12278.0 55.7 50 12375.1 67.5 94 12398.9 5.5 98 12399.8 1.2
Petersen 6 - 10454.5 36.5 4 10524.7 67.4 16 10588.2 37.6 16 10587.3 24.5
Petersen 7 - 16300.9 53.7 - 16367.8 93.6 23 16485.2 53.1 21 16474.2 50.0

Sento 1 - 7505.1 50.5 14 7712.7 57.8 85 7770.3 5.4 67 7765.1 9.0
Sento 2 - 8506.3 33.9 - 8682.1 31.7 55 8718.5 5.3 50 8717.7 6.6
Weing 7 - 1085421.8 1881.2 - 1092615.0 2843.4 26 1095345.5 337.17 11 1094908.3 1106.3

Table 4.6: Results by Khuri et al. [52].
Name N Average

Petersen 3 83 4012.7
Petersen 4 33 6102.3
Petersen 5 33 12374.7
Petersen 6 4 10536.9
Petersen 7 1 16378.0

Sento 1 5 7626
Sento 2 2 8685
Weing 7 - 1093897

Table 4.7: Results for Weing 7 using other mutation schedules [31].

Mutation Schedule Selection N Average
Constant mutation rate pm = 1/n (15,100) selection - 1091268

proportional selection - 1093924
Self-adaptive (15,100) selection - 1092743

proportional selection - 1094311
Time-dependent hyperbolic deterministic (15,100) selection 3 1094711

proportional selection - 1094479
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4.12 Results for Random 0/1 Multiple Knapsack Problems

In the previous sections the structure of GA-SRM has been deeply examined. The effect of ex-
tinctive selection, varying mutation parallel to crossover, and the interaction of adaptively varying
mutations parallel to crossover on several small real-world knapsacks problems were studied too.

In this section, to obtain a broader perspective on performance and scalability, the algorithms
used before are applied to classes of larger random knapsacks problems varying the difficulty of
the problem. As mentioned before, factors related to the difficulty of the problem are the number
of knapsacks m (constraints), the size of the search space (number of objects n), and the tightness
ratio φ (ratio of the feasible region to the whole search space).

First, the performance of the algorithms on classes of problems with different ratios of the
feasible region (φ) is observed. Figure 4.10 illustrates results by the algorithms on problems with
m = 30 knapsacks, n = 100 objects, and ratio φ = {0.75, 0.50, 0.25}. The main conclusions
drawn from Figure 4.10 are as follows. (i) The quality of solutions found by the GAs decrease
(larger Gap values) as the ratio φ is reduced. These results are quite intuitive since reductions on
φ imply reductions on the fraction of possible subsets of objects that constitute feasible solutions.
Consequently, the ratio between the feasible part of the search space and the whole search space
gets smaller and the smaller this ratio is the harder it is to find feasible results. This was also
observed for 0/1 single (m = 1) knapsack problems in [30]. (ii) The performance of GA(50,100)
is by far superior to cGA(100) for all values of φ, indicating that extinctive selection is an important
factor to increase the performance of GAs in problems with infeasible regions. (iii) The algorithms
that combine extinctive selection with varying mutations give better results than a simple GA with
extinctive selection. (iv) GA-SRM with ADS is superior to GA-SRM with ADP; the gain in quality
of the solutions comes from the use of segment mutation strategy (ADS). Note that the difference
in performance between GA-SRM with ADS and the other algorithms becomes more apparent for
problems with larger infeasible regions (more difficult problems).

Second, the effect of the number of constraints (knapsacks m) is observed fixing the size of the
search space (number of objects n) and the ratio of the feasible region to the whole search space
(tightness ratio φ). Figure 4.11 illustrates results by the GAs on problems of m = {5, 10, 30}
capacities, n = 100 objects, and ratio φ = 0.25.

Similar to the tightness ratio φ of the feasible region, from Figure 4.11 it can be seen that
increasing the number of constraints (knapsacks m) also has an strong impact on the performance
of the algorithms. The behavior of the algorithms is similar to that observed in Figure 4.10.
Looking at Figure 4.10 and Figure 4.11, judging from the relative increase on the Gap values and
from the slopes of the curves, reducing the ratio of the feasible region (φ) has an stronger impact
than increasing the number of constraints (knapsacks m).

Third, the effect of the size of the search space (number of objects n) is observed fixing the
number of constraints (knapsacksm) and the ratio of the feasible region (tightness ratio φ). Figure
4.12 illustrates results by GAs on problems of m = 30 knapsacks, n = {100, 250, 500} objects,
and ratio φ = 0.25. From Figure 4.12 it can be seen that increasing the size of the search space
also makes it harder for the algorithms to find high quality solutions. Looking at Figure 4.10,
Figure 4.11, and Figure 4.12 and again judging from the slopes of the curves, it can be seen that
(for the values of n, m, and φ used here) increasing the size of the search space (n) presents less
difficulties to the GAs than reducing the feasible region (φ) or increasing the number of constraints
(m).

An important observation is that changing the mutation strategy from ADP to ADS in SRM
noticeably increases the quality of results achieved by GA-SRM. The better results achieved by
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Figure 4.10: Reducing the feasible region φ = {0.75, 0.50, 0.25}, m = 30, n = 100.
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Figure 4.11: Increasing the number of constraints m = {5, 10, 30}, n = 100, φ = 0.25.

GA-SRM with ADS2 suggests that the design of parallel mutation could be an important factor to
improve further the search performance of GAs.

The mutation strategies used by parallel mutation (SRM-ADS and SRM-ADP) is studied in
detail in chapter 6 using NK-Landscapes[57] for problems having either nearest neighbor or ran-
dom fitness epistatic patterns among bits. It is shown that SRM-ADS’s convergence reliability

2GA-SRM with ADS has proven effective for other problems as well[71, 72]
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Figure 4.12: Increasing the search space n = {100, 250, 500}, m = 30, φ = 0.25

(which applies mutation within a continuous segment of the chromosome) is higher than SRM-
ADP’s on problems with nearest neighbor epistatic patterns. When random epistatic patterns are
present convergence reliability by SRM-ADS and SRM-ADP are similar[69, 73].

Since the object weights of the knapsack problems are drawn from a uniform generator, as
mentioned in 5.2, random fitness epistatic patterns among bits would seem more likely to be
present. However, the results obtained in this work by GA-SRM with ADS resemble those
achieved in NK-Landscapes with nearest neighbor epistatic patterns (especially for medium and
large values of K; that is, for highly multimodal problems).

It should be noticed that in NK-Landscapes the whole search space constitutes a feasible region
whereas the knapsack problems are highly constrained. Since a penalty term is used in the fitness
function, unfeasible solutions would map to low fitness values increasing the sharpness around the
peaks. However, it is not clear whether and how the constraints (number of knapsacks m) and the
restrictiveness of the capacities (ratio φ) could affect the fitness epistatic interactions among bits.
This deserves further research.

Similar to the case of real-world knapsack problems, the contribution of parallel adaptive
mutation SRM and the robustness of its adaptive mechanism in the larger random problems are
also verified. Figure 4.13 plots results by an algorithm that makes the configuration transition
from GA(50,100) to GA-SRM(50,100) at {0.10T, 0.20T, 0.5T} evaluations, respectively. Every
time a transition takes place, initial mutation probability for SRM is set to p(SRM)

m = 0.5. As
a reference it also includes results by GA(50,100) and GA-SRM(50,100). From Figure 4.13 it
can be seen that as soon as SRM is included fitness starts to pick up increasing the convergence
reliability of the algorithm. The almost instantaneous pick up on fitness after the transitions in
Figure 4.13 is also an indication of the robustness of the adaptation mechanism. That is, it quickly
finds the suitable mutation probability regardless of the stage of the search.

Figure 4.14 plots results by an algorithm that makes the configuration transition from GA-
SRM(50,100) to a all CM regime with extinctive selection or to a all SRM regime with extinctive
selection (in the latter case no further adaptations on SRM’s mutation rate are done) as soon as
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Figure 4.13: Transition from GA(50,100) to GA-SRM(50,100) at various fractions of T
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Figure 4.14: Transitions from GA-SRM(50,100) to either all CM(50,100) or all SRM(50,100)
regimes at � = {2, 3}

the mutation segment length in SRM has reached � = {2, 3}. As a reference it also includes the
results by GA-SRM(50,100). From Figure 4.14 it can be seen that neither CM nor SRM alone
but the interaction of both CM and SRM leads to a higher convergence reliability. Figure 4.14
shows that CM alone (even though extinctive selection is on) has difficulties pulling the population
to higher peaks. In the case of GA-SRM, the lost of effectiveness by CM during the final stages
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Figure 4.15: SRM’s contribution to the parent population (µSRM ) and number of bits actually
flipped by SRM (b) for CM’s mutation probabilities of p(CM)
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Figure 4.16: Fitness Transition for CM’s mutation probabilities of p(CM)
m = {0, 1/n}

of the search is supplemented by the augment of SRM’s contribution conform mutation rates are
reduced as shown in Figure 4.15 (p(CM)

m = 1/n).
Furthermore, the behavior of GA-SRM when CM’s mutation probability is either on or off is

also verified for random problems. Figure 4.15 plots SRM’s average contribution (in 50 runs)
to the parent population (µSRM ) and the average number of bits actually flipped by SRM (b) for
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CM’s mutation probabilities of pCM
m = {0, 1/n}, respectively. From Figure 4.15 it can be seen

that when p(CM)
m = 1/n the average number of SRM’s offspring that survive selection (µSRM )

increases as SRM’s mutation rates are reduced. For p(CM)
m = 0, however, it can be seen that after

few generations SRM does not contribute to the parent population, causing a premature reduction
of SRM’s mutation rate, lost of diversity in the population and convergence to a local optimum.
Note that in this case diversity is not being introduced at all neither by CM (p(CM)

m = 0) nor by
SRM (µSRM = 0).

Finally, Figure 4.16 shows the fitness of the best so far individual by GA-SRM(50,100) and
GA-hM(50,100) when CM’s mutation probability is either on or off. GA-hM(50,100) is a parallel
varying mutation algorithm that includes deterministic varying mutations instead of the adaptive
approach. Results by cGA(100) and GA(50,100) are also included for comparison. The major
conclusion from this figure is that the lack of “background” mutation in CM affects negatively the
convergence reliability even if deterministic mutation is used, although in this case the mutation
schedule is not affected because mutation rate depends on time.

Again, in the case that fitness duplicates are not eliminated, small mutation after crossover in
CM helps to achieve a robust search performance on random problems by keeping an appropriate
balance between CM and SRM.

4.13 Conclusions

This chapter has studied the internal structure of GA-SRM applying adapting varying mutations
(SRM) parallel to crossover & background mutation (CM) putting the operators in a cooperative-
competitive stand with each other by way of extinctive selection. Important structural issues such
the balance between CM and SRM for offspring creation, the mutation probability in CM, the
ratio between number of parents and number of offspring (extinctive selection pressure), and the
threshold to trigger adaptation in SRM were analyzed. It was found that the sexual operator CM
performs better than the asexual operator SRM during the initial stages of the search. On the
other hand, SMR’s contribution significantly increases as the search progresses, mutation rates
are reduced, and the population approaches the global optimum. Also, in spite of CM’s initial
effectiveness, configurations favoring SRM (mutation in general) result into better performance
than configurations favoring CM. Properly balancing the operators the cooperation expected from
CM and SRM emerges producing a higher search velocity and higher search reliability in both real-
world and random generated 0/1 multiple knapsacks problems. Small mutation after crossover in
CM helps to achieve a robust search performance by keeping an appropriate balance between
CM and SRM. The robustness of the adaptation mechanism in SRM was verified and it was also
shown that neither CM nor SRM alone but the interaction of both CM and SRM leads to higher
convergence reliability. Regarding mutation strategy, it was found that ADS performs better than
ADP in these classes of problems. Comparisons were performed with canonical GAs and other
enhanced GAs.
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Chapter 5

Comparing Standard and Parallel
Varying Mutation GAs: Effect of the
Major Components

This chapter compares the proposed model of parallel varying mutation with the standard model
of varying mutation across a broad range of problems. The statistical significance of the results is
verified with ANOVA tests. First, the models are compared using deterministic varying mutations.
Then, the models are compared using self-adaptive mutations. It is found that the proposed model
is more effective and efficient than the standard model in both deterministic and self-adaptive vary-
ing mutation GAs. It is also found that the standard model of varying mutations affects negatively
the (adaptive) self-adaptive mutation rate control. This strongly suggests that the standard model
of varying mutation GAs may not be appropriate for combining forms of control.
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5.1 Introduction

The standard model of varying mutation GAs raises several important questions such as: Is there
interference between crossover and high mutation? If so, does it affect performance of the al-
gorithm? In the case of (adaptive) self-adaptive varying mutation algorithms, does it affect the
mutation rate control itself? And more generally, is it an appropriate model for combining forms
of control (co-adaptation of parameters)?

This chapter tries to answer such questions by comparing the performance of standard and
parallel models of varying mutation GAs using deterministic and self-adaptive mutation rate con-
trols for varying mutation[74, 75, 76]. As explained in 2.3.3. The deterministic time-dependent
schedule reduces mutation rates in a hyperbolic shape[31]. The self-adaptive approach uses a
continuous representation for mutation rates and updates mutation probabilities using a learning
rate[31, 33]. In the following varying mutation serial to crossover refers to the standard model
of varying mutation and varying mutation parallel to crossover refers to the proposed model of
varying mutation.

The effect on performance of extinctive selection and higher mutations is studied in both mod-
els of varying mutation GAs.

5.2 Experimental Setup

The following GAs are used in the simulations. A simple canonical GA that applies crossover
followed by background mutation, denoted as cGA. A GA with deterministic varying mutation
serial (parallel) to crossover, denoted as hGA (GA-hM). A GA with self-adaptive varying mutation
serial (parallel) to crossover, denoted as sGA (GA-sM).

The GAs use either proportional selection or (µ,λ) proportional selection. This is indicated
by appending to the name of the GA (µ) or (µ,λ), respectively1. All algorithms use fitness linear
scaling and mating is restricted to (xi,xj), i �= j, so a solution will not cross with itself. For
cGA, hGA, and sGA pc = 0.6 and for GA-hM and GA-sM the ratio for offspring creation is set
to λCM : λSRM = 1 : 1. Background mutation is set to p(CM)

m = 1/n. The learning rate for
self-adaptation is set to γ = 0.2.

This chapter uses the difficult, large, and highly constrained, 0/1 multiple knapsack prob-
lems2[53], created by the test problem generator as explained in 3.1, to observe the behavior of
the varying mutation GAs in a broad range of classes of problems. Results are averaged over 10
problems for each of the seven classes of problems (50 runs per problem) and the number of gen-
erations is set to T = 5000. Vertical bars overlaying the mean curves represent 95% confidence
intervals. The statistical significance of the results is verified using ANOVA tests.

5.3 Simple GA and Extinctive Selection

First, we observe the effect of extinctive selection on the performance of a simple GA. Figure 5.1
plots the fitness of the best-so-far individual over the generations by the canonical cGA(100) and
a simple GA using (µ, λ) = {(15, 100), (50, 100)} extinctive ratios. From this figure we see that
extinctive selection alone remarkable improves the solution quality reached by the cGA in this
kind of problems.

1a simple GA with (µ,λ) Proportional Selection is denoted GA(µ,λ)
2http://mscmga.ms.ic.ac.uk/jeb/orlib/info.html
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Figure 5.1: Effect of Extinctive Selection on a simple GA: Fitness transition over the generations
by cGA and GA(µ, λ)
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Figure 5.2: Effect of Extinctive Selection on a simple GA: M’s contribution to the parent popula-
tion (µM ) in GA(µ, λ) (pc = 0.6)

Figure 5.2 plots the number of individuals created by implicit parallel mutation M3 present in
the parent population after extinctive selection (µM ). Looking at GA(50,100), for example, we
can see that µM ∼ 20 throughout the run. That is, only about 50% of the offspring created by
CM survive extinctive selection (pc = 0.6). Since GA(50,100) exhibits higher convergence than
cGA(100), this suggests that the crossover based operator is highly disruptive.

3Implicit parallel mutation M refers to mutation when is applied alone in the absence of crossover (1 − pc), see 2.2
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As mentioned before, the problems used in this study are highly constrained with sparse feasi-
ble regions where algorithms with penalty functions have a hard time finding feasible solutions[30,
53]. A higher selection pressure in these problems is helping the algorithm to focus the search
around the feasible regions.

Extinctive selection has also another effect. It increases the convergence speed of the algorithm[24].
Both GA(15,100) and GA(50,100) are faster than cGA(100). However, between (15,100) and
(50,100) we observe that the latter gives better final results than the former.

5.4 Varying Mutation without Extinctive Selection

Second, we observe the effect of deterministically varying mutations either serial or parallel to
crossover when no extinctive selection is being used. Figure 5.3 plots results by hGA(100)
and GA-hM(100). In both algorithms the range for either serial or parallel varying mutation is
[0.5, 1/n]. As a reference for comparison, it also presents results obtained by cGA(100) and
GA(50,100).

cGA (100)
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GA-hM (100)
hGA (100)

Generations

Fitness

0 1000 2000 3000 4000 5000
14000

16000

18000

20000

22000

Figure 5.3: Deterministic Varying Mutation without Extinctive Selection

From Figure 5.3 we can observe that varying mutations either serial or parallel to crossover
without extinctive selection undermines the reliability of the algorithm (final results are poorer
than cGA’s). Convergence velocity is considerably affected as well.

It should be remarked that there is an initial period consisting of a large number of generations
in which the fitness of the best-so-far individual by hGA and GA-hM corresponds to the best
feasible individual randomly created at generation 0 (horizontal lines). The mutation probability
applied by these algorithms is too high at the beginning of the search. As mutation is reduced with
the number of generations, the mutation probability becomes more suitable for these constrained
problems and fitness picks up.

In the case of GA-hM this initial flat period can be attributed exclusively to a too high mutation
probability used by the varying mutation operator. However, in the case of hGA the disruption
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that mutation causes to crossover also contributes to extend this flat period. Note that between
hGA and GA-hM, which apply the same determinist schedule for mutation rate control, GA-hM’s
fitness picks up much earlier than hGA’s. This is a clear indication of the disruption caused by
high mutation after crossover in the case of hGA.

5.5 Extinctive Selection and Varying Mutation

5.5.1 Deterministic Varying Mutation

Deterministic mutation varies mutation rates with exactly the same schedule whether it is applied
serial (hGA) or parallel to crossover (GA-hM) and therefore is an ideal candidate to isolate and
observe the impact of higher mutations in both models of GAs.

In order to observe in detail the effect of extinctive selection and deterministic varying mu-
tation serial/parallel to crossover experiments are conducted using various populations (µ, λ) =
{(15, 100), (50, 100), (100, 100)} and initial mutation probabilities p(t=0)

m = {0.50, 0.10, 0.05}.
Figure 5.4 and 5.5 plot the average fitness of the best-so-far individual over the generations illus-
trating the convergence behavior by hGA and GA-hM, respectively. Results by the simple GA
with extinctive selection GA(50,100) are also included for comparison.

Looking at Figure 5.3 and Figure 5.4 we can see that extinctive selection, similar to the case
of cGA, increases the performance of hGA. Moreover, the combination of extinctive selection
and varying mutation produces results with better final quality than the simple GA with extinctive
selection.

As we increase the extinctive pressure (reduce µ while keeping constant λ) the initial flat
period is shorten. See for example hGA(50,100) and hGA(15,100) for p(t=0)

m = 0.5. In these
cases mutation would not be less harmful than it is in hGA(100) of Figure 5.3, but extinctive
selection will discard much of the poor performing individuals. Note, however, that better final
results are given by (µ,λ)=(50,100) rather than by (µ,λ)=(15,100).

Also, as expected, using lower values for the initial mutation probability helps to speed up
convergence. See for example hGA(50,100) for p(t=0)

m = 0.5 and p(t=0)
m = 0.05. These smaller

initial mutation values, however, do not help to increase the quality of the final results.
If convergence speed is to be considered, then from this figure it also becomes clear that

deterministic varying mutations mechanisms, besides the number of generations, incorporates the
initial mutation probability as an additional parameter, which must be set properly in order to
achieve high performance.

From Figure 5.5 we can see that the inclusion of extinctive selection and the reductions of the
initial mutation probability in GA-hM produce similar effects to those remarked for hGA.

Looking at both Figure 5.4 and Figure 5.5 becomes more apparent that varying mutation
parallel to crossover is less disruptive than varying mutation serial to crossover. Contrary to
hGA, in the case of GA-hM the initial flat periods have disappeared and in all cases GA-hM
converges faster than hGA for similar values of (µ,λ) extinctive ratio and initial mutation proba-
bility p(hM)(t=0)

m . Also, GA-hM(50,100)’s final quality is better than hGA(50,100)’s (the statistical
significance is shown below).

As a consequence of the less disruptiveness of mutation parallel to crossover, the initial value
p
(t=0)
m set for varying mutation in GA-hM has a smaller impact on convergence speed than it does

in hGA. See for example GA-hM(50,100) for p(t=0)
m = 0.5 and p(t=0)

m = 0.05 and compare it
with hGA for similar settings in Figure 5.4. Thus, GA-hM can be considered as a more robust
algorithm than hGA.
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Figure 5.4: Deterministic Varying Mutation Serial to Crossover (m = 30, n = 100, φ = 0.25)
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Figure 5.5: Deterministic Varying Mutation Parallel to Crossover (m = 30, n = 100, φ = 0.25)

In GA-hM, similar to GA and hGA, a (µ, λ)=(50,100) extinctive ratio gives better final re-
sults than (µ, λ)=(15,100). In fact, notice that GA-hM(15,100)’s final quality is not better than
GA(50,100)’s, which does not apply varying mutations. This is because the offspring created by
varying parallel mutation hM within GA-hM have to compete with CM’s offspring (that always
applies M with background mutation) and a (15,100) extinctive selection turns out to be too strong.
A less strong selection pressure, such (50,100), gives better chances to hM’s offspring, which in
turn would help to improve the search process.

Figure 5.6, Figure 5.7, and Figure 5.8 plot the average percentage error gap by hGA and
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Figure 5.6: Convergence Reliability of Deterministic Varying Mutation GAs: Reducing the feasi-
ble region φ = {0.75, 0.50, 0.25}, m = 30, n = 100.
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Figure 5.7: Convergence Reliability of Deterministic Varying Mutation GAs: Increasing the num-
ber of constraints m = {5, 10, 30}, n = 100, φ = 0.25.

GA-hM. These figures show the effect on convergence reliability of reducing the feasible region
(φ), increasing the number of constraints (m), and increasing the search space (n), respectively.
The vertical bars, overlaying the mean curves, represent 95% confidence intervals.

The statistical significance of the results achieved by hGA and GA-hM is verified. Table
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Figure 5.8: Convergence Reliability of Deterministic Varying Mutation GAs: Increasing the
search space n = {100, 250, 500}, m = 30, φ = 0.25.

5.1 summarizes the three two-factor factorial analysis of variance (ANOVA) corresponding to the
plots presented in Figure 5.6, Figure 5.7, and Figure 5.8. In Table 5.1 Source indicates the
source of variation, df the degrees of freedom, F is the ratio between the mean square treatment
and the mean square error, and Pval is the p value (the smallest significant level α that would allow
rejection of the null hypothesis). The treatment means are illustrated in Table 5.2, Table 5.3, and
Table 5.4, respectively.

From Table 5.1, inspection of the p values reveals that in the case of reducing the feasible
region (φ) there is some indication of an effect by the GA type factor (serial/parallel application of
deterministic varying mutation). Note that Pval = 0.0766 is not much greater than α = 0.05. In
the cases of increasing the number of constraints (m) and the size of the search space (n) there are
indications of a strong main effect by the GA type concluding that the parallel deterministic vary-
ing mutation (GA-hM) attains significantly smaller error than the standard deterministic varying
mutation GA (hGA). Notice that the p values 0.0157 and 0.0047, respectively, are considerably
less than 0.05. Furthermore, note that in all three cases there is indication of a main effect by the
problem difficulty factor (φ,m, and n) but the interaction between GA type and problem difficulty
factor was not significant.
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Table 5.1: Factorial ANOVA for hGA and GA-hM

Source SS df MS F Pval
GA 0.18371 1 0.18371 3.260 0.0766
φ 132.47870 2 66.23935 1175.553 0.0000

GA-φ 0.05120 2 0.02560 0.454 0.6373
Error 3.04276 54 0.05635
Total 135.75637 59
GA 0.40017 1 0.40017 6.219 0.0157
m 70.77277 2 35.38639 549.927 0.0000

GA-m 0.00654 2 0.00327 0.051 0.9505
Error 3.47476 54 0.06435
Total 74.65424 59
GA 0.54150 1 0.54150 8.685 0.0047
n 11.72973 2 5.86487 94.062 0.0000

GA-n 0.00121 2 0.00060 0.010 0.9903
Error 3.36696 54 0.06235
Total 15.63940 59

Table 5.2: Error Gap Means by hGA and GA-hM reducing the feasible region (ratio φ)

GA Ratio φ
0.75 (φ1) 0.50 (φ2) 0.25 (φ3)
1.49, 1.48 2.56, 2.38 4.92, 5.14

hGA 1.37, 1.31 2.51, 2.63 5.22, 5.33
(g1) 1.48, 1.42 2.74, 2.7 4.96, 5.5

1.36, 1.65 2.32, 2.36 4.7, 5.39
1.45, 1.57 2.56, 2.37 5.17, 4.34

14.58 25.13 50.67 Tg1 = 90.38
1.46 2.51 5.07 µg1 = 3.01

1.38, 1.42 2.46, 2.27 4.88, 5.02
GA-hM 1.35, 1.3 2.38, 2.56 5.06, 5.13

(g2) 1.54, 1.36 2.56, 2.57 4.59, 5.33
1.31, 1.59 2.36, 2.26 4.43, 5.22
1.35, 1.47 2.46, 2.34 5.06, 4.05

Totals 14.07 24.22 48.77 Tg1 = 87.06
Averages 1.41 2.42 4.88 µg2 = 2.90

Totals Tφ1 = 28.65 Tφ2 = 49.35 Tφ3 = 99.44
Averages µφ1 = 1.43 µφ2 = 2.47 µφ3 = 4.97
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Table 5.3: Error Gap Means by hGA and GA-hM increasing the number of constraints (knapsacks
m)

GA Knapsacks m
5 (m1) 10 (m2) 30 (m3)

2.27, 2.43 3.35, 3.44 4.92, 5.14
hGA 2.53, 2.22 3.64, 3.43 5.22, 5.33
(g1) 2.50, 2.42 3.55, 3.71 4.96, 5.50

2.60, 2.24 3.44, 3.58 4.70, 5.39
2.30, 2.36 3.68, 3.91 5.17, 4.34

Totals 23.87 =35.73 50.67 Tg1 = 110.27
Averages 2.39 3.57 5.07 µg1 = 3.68

2.10, 2.36 3.25, 3.36 4.88, 5.02
GA-hM 2.35, 1.99 3.55, 3.11 5.06, 5.13

(g2) 2.24, 2.39 3.56, 3.35 4.59, 5.33
2.49, 2.25 3.29, 3.48 4.43, 5.22
2.02, 2.29 3.44, 3.73 5.06, 4.05

Totals 22.48 34.12 48.77 Tg2 = 105.37
Averages 2.25 3.41 4.88 µg2 = 3.51

Totals Tm1 = 46.35 Tm2 = 69.85 Tm3 = 99.44
Averages µm1 = 2.32 µm2 = 3.49 µm3 = 4.97

Table 5.4: Error Gap Means by hGA and GA-hM increasing the search space (number of objects
n)

GA Objecs n
100 (n1) 250 (n2) 500 (n3)

4.92, 5.14 4.34, 4.04 3.94, 4.34
hGA 5.22, 5.33 4.21, 4.05 4.11, 4.12
(g1) 4.96, 5.5 3.89, 4.25 4.16, 3.76

4.7, 5.39 4.21, 4.27 4.19, 4.13
5.17, 4.34 4.31, 4.27 4, 4.09

Totals 50.67 41.84 40.84 Tg1 = 133.35
Averages 5.07 4.18 4.08 µg1 = 4.45

4.88, 5.02 4.02, 3.86 3.98, 4.1
GA-hM 5.06, 5.13 4, 3.95 3.93, 3.87

(g2) 4.59, 5.33 3.64, 4.1 3.91, 3.6
4.43, 5.22 4.17, 4.01 4.01, 3.91
5.06, 4.05 4.14, 4.16 3.73, 3.79

Totals 48.77 40.05 38.83 Tg2 = 127.65
Averages 4.88 4.01 3.88 µg2 = 4.26

Totals Tn1 = 99.44 Tn2 = 81.89 Tn3 = 79.67
Averages µn1 = 4.97 µn2 = 4.09 µn3 = 3.98
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5.5.2 Self-Adaptive Varying Mutation

A self-adaptive scheme uses one mutation rate per individual, which are usually set at t = 0 to
random values in the range allowed for mutation. Two important ingredients of self-adaptation
are the diversity of parameter settings and the capability of the method to adapt the parameters. It
has been indicated that some of the implementations of self-adaptation exploit more the diversity
of parameter settings rather than adapting them. However, it has also been argued that the key
to the success of self-adaptation seems to consist in using at the same time both a reasonably
fast adaptation and reasonably large diversity to achieve a good convergence velocity and a good
convergence reliability, respectively[33].

To observe the influence that the serial/parallel application of varying mutations could have on
the self-adaptive capability itself we avoid initial diversity of parameters. Experiments are con-
ducted using populations (µ, λ) = {(15, 100), (50, 100)} and mutation ranges of pm = [pmin

m , pmax
m ] =

[1/n, {0.50, 0.25, 0.10, 0.05}]. In all cases initial mutation for each individual is set to the max-
imum value allowed for the range, p(t=0)

m = pmax
m . Figure 5.9 and Figure 5.10 plot the average

fitness of the best-so-far individual over the generations illustrating the convergence behavior by
sGA and GA-sM, respectively. Results by GA(50,100) are also included for comparison.

From these and previous figures it is worth noting the following. (i) Self-adaptive mutation in-
creases convergence speed compared to deterministic mutation either serial or parallel to crossover.
Looking at Figure 5.9 and Figure 5.4, note that in sGA the initial flat periods observed in hGA
have disappeared completely. Also, looking at Figure 5.10 and Figure 5.5 we can see that GA-
sM(50,100)’s fitness picks up much earlier than GA-hM(50,100)’s for similar values of p(t=0)

m .
Between sGA and GA-sM, however, looking at Figure 5.9 and Figure 5.10 note that sGA can
match GA-sM’s convergence velocity only for small values of p(t=0)

m . This is an indication that
even in the presence of adaptation the convergence velocity of a GA that applies varying muta-
tion serial to crossover would depend heavily on initial mutation rates, which is not an issue if
adaptive mutation is applied parallel to crossover. (ii) Contrary to deterministic varying mutation,
convergence reliability of self-adaptive mutation serial to crossover could be severely affected,
which becomes quite notorious if no initial diversity of parameters is allowed. Note in Figure 5.9
that only the configurations of sGA(50,100) having p(t=0)

m = {0.10, 0.05} achieved better final re-
sults than GA(50,100). On the other hand, the initial lack of diversity of parameters does not affect
convergence reliability of GA-sM. Note in Figure 5.10 that for the same selection pressure conver-
gence reliability of GA-sM is similar for all values of p(t=0)

m . (iii) Similar to deterministic varying
mutation, better results are achieved by (µ, λ) = (50, 100) rather than by (µ, λ) = (15, 100).

Next, we allow for initial diversity of parameters setting p(t=0)
m to a random value between

the minimum and maximum value allowed for mutation. In this case, the disruption that higher
serial mutation causes to crossover becomes less apparent due to the initial diversity of parameters
and convergence speed is similar for both sGA and GA-sM. Convergence reliability of sGA also
improves. However, the negative impact on reliability remains quite significant for sGA. Figure
5.11 and Figure 5.12 illustrate the fitness transition and the average flipped bits (Log scale) by
sGA and GA-sM both with random initial mutation rates between [1/n,0.50]. Results for hGA
and GA-hM are also included in Figure 5.11 for comparison. From these figures note that sGA
converges to lower fitness and reduces mutation rates faster than GA-sM.

The self-adaptation principle tries to exploit the indirect link between favorable strategy pa-
rameters and objective function values. That is, appropriate parameters would lead to fitter indi-
viduals, which in turn are more likely to survive and hence propagate the parameter they carry with
them to their offspring. A GA that applies varying mutation parallel to crossover as GA-sM can
interpret better the self-adaptation principle and achieve higher performance because (i) inappro-
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Figure 5.9: Self-Adaptive Varying Mutation Serial to Crossover , p(t=0)
m (i) = pmax

m (m = 30,
n = 100, φ = 0.25).
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Figure 5.10: Self-Adaptive Varying Mutation Parallel to Crossover, p(t=0)
m (i) = pmax

m (m = 30,
n = 100, φ = 0.25).

priate mutation parameters do not disrupt crossover, and (ii) it preserves mutation rates (see Eq.
(2.4)) that are being useful to the search. A GA that applies varying mutation serial to crossover
as sGA, however, can mislead the mutation rate control because (i) appropriate parameters can
be eliminated due to ineffective crossover operations, and (ii) in sGA an appropriate parameter
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Figure 5.11: Convergence Velocity (m = 30, n = 100, φ = 0.25). p(t=0)
m = 0.5 for hGA and

GA-hM. p(t=0)
m (i) = rand[1/n, 0.5] for sGA and GA-SM

Generations

Flipped 
      Bits

GA-sM

sGA

1 10 100 1000
0

4

8

12

16

20

24

Figure 5.12: Average Number of Flipped Bits (m = 30, n = 100, φ = 0.25). p(t=0)
m = 0.5 for

hGA and GA-hM. p(t=0)
m (i) = rand[1/n, 0.5] for sGA and GA-SM

implies parameters that would not affect greatly crossover. Thus, in sGA there is a selective bias
towards smaller mutation rates.

Figure 5.13 , Figure 5.14, and Figure 5.15 plot the average percentage error gap by sGA
and GA-sM showing the effect on performance of reducing the feasible region (φ), increasing the
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Figure 5.13: Convergence Reliability of Self-Adaptive Varying Mutation GAs: Reducing the fea-
sible region φ = {0.75, 0.50, 0.25}, m = 30, n = 100.
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Figure 5.14: Convergence Reliability of Self-Adaptive Varying Mutation GAs: Increasing the
number of constraints m = {5, 10, 30}, n = 100, φ = 0.25.

number of constraints (m), and increasing the search space (n). Table 5.5 summarizes the three
two-factor factorial ANOVA corresponding to the plots presented in Figure 5.13, Figure 5.14,
and Figure 5.15. The treatment means are illustrated in Table 5.6, Table 5.7, and Table 5.8,
respectively.
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Figure 5.15: Convergence Reliability of Self-Adaptive Varying Mutation GAs: Increasing the
search space n = {100, 250, 500}, m = 30, φ = 0.25.

From Table 5.5, inspection of the p values reveals that in all three cases (reducing the feasible
region, increasing the number of constraints, and increasing the size of the search space) there
are indications of a strong main effect by the GA type concluding that the parallel self-adaptive
varying mutation GA (GA-sM) attains significantly smaller error than the standard self-adaptive
varying mutation GA (sGA). Notice that the p values 0.0029, 0.0009, and 0.0000, respectively,
are considerably less than 0.05. Furthermore, note that in all three cases there are indications of a
main effect by the problem difficulty factor (φ, m, and n). In other words, increasing the difficulty
of the problem makes it more difficult for the self-adaptive GA to find good solutions. In addition,
note that the interaction between GA type and problem difficulty factor was significant for ratio
φ and number of constraints m, which means that the self-adaptive parallel varying mutation GA
(GA-sM) not only performs better but also scales up better than the standard self-adaptive varying
mutation GA (sGA) as the difficulty of the problem increases.

5.6 Conclusions

We have studied the application of varying mutation either serial or parallel to crossover and
discussed its effect on the performance of deterministic and self-adaptive varying mutation GAs.
Experiments were conducted with several classes of 0/1 multiple knapsacks problems. We found
that mutation parallel to crossover is more effective and efficient than mutation serial to crossover.

In deterministic varying mutation GAs, a GA with varying mutation parallel to crossover
showed faster convergence and higher robustness to initial settings of mutation rate than a GA
with varying mutation serial to crossover. Reducing the feasible region (φ) an ANOVA gave some
indication of higher convergence reliability by the parallel application of deterministic varying
mutation. Increasing the number of constraints (m) and the size of the search space (n) there
are indications of a strong main effect concluding that the parallel deterministic varying mutation
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Table 5.5: Factorial ANOVA for sGA and GA-sM

Source SS df MS F Pval
GA 0.70634 1 0.70634 9.731 0.0029
φ 82.77031 2 41.38516 570.167 0.0000

GA-φ 0.59193 2 0.29596 4.078 0.0224
Error 3.91955 54 0.07258
Total 87.98813 59
GA 0.89060 1 0.89060 12.418 0.0009
m 74.48359 2 37.24180 519.263 0.0000

GA-m 0.69806 2 0.34903 4.867 0.0114
Error 3.87291 54 0.07172
Total 79.94516 59
GA 3.33233 1 3.33233 42.053 0.0000
n 9.25077 2 4.62539 58.371 0.0000

GA-n 0.08025 2 0.04013 0.506 0.6055
Error 4.27902 54 0.07924
Total 16.94237 59

Table 5.6: Error Gap Means by sGA and GA-sM reducing the feasible region (ratio φ)

GA Ratio φ
0.75 (φ1) 0.50 (φ2) 0.25 (φ3)
1.73, 1.8 2.97, 2.95 4.75, 4.92

sGA 1.84, 1.85 3, 3.2 4.96, 5.05
(g1) 1.86, 1.82 3.36, 3.22 4.8, 5.73

1.77, 1.93 2.76, 3.01 4.49, 5.13
1.76, 1.99 3.09, 2.66 5.05, 4.08

Totals 18.35 30.22 48.96 Tg1 = 97.53
Averages 1.84 3.02 4.90 µg1 = 3.25

1.78, 1.72 2.78, 2.93 4.33, 4.44
GA-sM 1.61, 1.58 2.93, 3.22 4.48, 4.71

(g2) 1.75, 1.78 3.2, 3.24 4.22, 4.82
1.63, 1.93 2.73, 2.93 3.95, 4.81
1.74, 1.77 3.06, 2.71 4.62, 3.62

Totals 17.29 29.73 44.00 Tg2 = 91.02
Averages 1.73 2.97 4.40 µg2 = 3.03

Totals Tφ1 = 35.64 Tφ2 = 59.95 Tφ3 = 92.96
Averages µφ1 = 1.78 µφ2 = 3.00 µφ3 = 4.65
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Table 5.7: Error Gap Means by sGA and GA-sM increasing the number of constraints (knapsacks
m)

GA Knapsacks m
5 (m1) 10 (m2) 30 (m3)

1.73, 1.99 3.08, 3.21 4.75, 4.92
sGA 2.09, 1.66 3.3, 2.93 4.96, 5.05
(g1) 1.98, 2.02 3.39, 2.95 4.8, 5.73

2.12, 1.74 3.22, 3.13 4.49, 5.13
1.86, 1.98 3.18, 3.48 5.05, 4.08

Totals 19.17 31.87 48.96 Tg1 = 100.00
Averages 1.92 3.19 4.90 µg1 = 3.33

1.79, 1.99 2.76, 2.9 4.33, 4.44
GA-sM 2.1, 1.78 3.05, 2.67 4.48, 4.71

(g2) 2.04, 1.95 2.9, 2.9 4.22, 4.82
2.01, 1.89 2.83, 2.96 3.95, 4.81
1.97, 1.96 2.94, 3.3 4.62, 3.62

Totals 19.48 29.21 44.00 Tg2 = 92.69
Averages 1.95 2.92 4.40 µg2 = 3.09

Totals Tm1 = 38.65 Tm2 = 61.08 Tm3 = 92.96
Averages µm1 = 1.93 µm2 = 3.05 µm3 = 4.65

Table 5.8: Error Gap Means by sGA and GA-sM increasing the search space (number of objects
n)

GA Objecs n
100 (n1) 250 (n2) 500 (n3)

4.75, 4.92 4.01, 4.04 4, 4.11
sGA 4.96, 5.05 4.09, 3.86 4.02, 3.93
(g1) 4.8, 5.73 3.76, 4.12 4.06, 3.7

4.49, 5.13 4.33, 4.75 3.94, 3.98
5.05, 4.08 4.28, 4.33 3.76, 3.96

Totals 48.96 41.57 39.46 Tg1 = 129.99
Averages 4.90 4.16 3.95 µg14.33

4.33, 4.44 3.56, 3.47 3.59, 3.74
GA-sM 4.48, 4.71 3.57, 3.54 3.52, 3.57

(g2) 4.22, 4.82 3.28, 3.65 3.77, 3.29
3.95, 4.81 3.7, 3.88 3.62, 3.57
4.62, 3.62 3.67, 3.79 3.52, 3.55

Totals 44.00 36.11 35.74 Tg2 = 115.85
Averages 4.40 3.61 3.57 µg2 = 3.86

Totals Tn1 = 92.96 Tn2 = 77.68 Tn3 = 75.20
Averages µn1 = 4.65 µn2 = 3.88 µn3 = 3.76
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attains significantly smaller error than the standard deterministic varying mutation GA.
In self-adaptive varying mutation GAs, the convergence velocity of a parallel self-adaptive

mutation GA was matched by a serial self-adaptive mutation GA only when initial diversity of
parameters was allowed. Convergence reliability was higher for the parallel varying self-adaptive
mutation GA with or without initial diversity of parameters. An ANOVA gave a strong indication
in this direction weather the feasible region (φ) is reduced, the number of constraints (m) are
increases, or the size of the search space (n) is enlarge. We also found that the standard model
of varying mutations in fact affects negatively the (adaptive) self-adaptive mutation rate control.
This strongly suggests that the standard model of varying mutation GAs may not be appropriate
for combining forms of control.

Among deterministic and self-adaptive varying mutation GAs, best performance was achieved
by a parallel varying mutation self-adaptive GA.
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Chapter 6

Studying the Behavior of GA-SRM on
Epistatic Problems

This chapter examines the behavior of the parallel varying mutation GA-SRM on epistatic prob-
lems using NK-Landscapes. We discuss properties of NK-Landscapes and analyze the major
components of GA-SRM. Comparisons are made with a canonical GA, a simple GA with extinc-
tive selection, a mutation only evolutionary algorithm, and a random bit climber RBC+. We show
that avoiding unwanted selective bias by eliminating fitness duplicates and using an appropriate
selection pressure make GAs quite robust in NK-Landscapes. We also show that parallel varying
mutation improves further reliability of the GA and that mutation strategy is an important factor to
improve the performance of GAs on problems with nearest neighbor patterns of epistasis. Similar
to recent works, relatively larger landscapes than previous studies are used in order to be a step
closer to problems found in real world applications.

65



6.1 Introduction

Test function generators[64] for broad classes of problems are seen as the correct approach for test-
ing the performance of genetic algorithms (GAs). Kauffman’s NK-Landscapes model of epistatic
interactions[57, 58] is a well known example of a class of test function generator and has been
the center of several theoretical and empirical studies both for the statistical properties of the gen-
erated landscapes and for their GA-hardness[60, 64, 65, 66, 67]. Previous works that investigate
properties of GAs with NK-Landscapes have mostly limited their study to small landscapes, typ-
ically 10 ≤ N ≤ 48, and observed the behavior of GAs only for few generations. Recently,
studies are being conducted on larger landscapes expending more evaluations[61, 68, 69, 70] and
the performance of GAs is being benchmarked against hill climbers[61, 68, 70].

Heckendorn et al.[61] analyzed the epistatic features of embedded landscapes showing that
for NK-Landscapes all the schema information is random if K is sufficiently large predicting that,
“since genetic algorithms theoretically only perform well when the algorithm can effectively ex-
ploit relationships between schemata”[61], a standard GA would have no advantage over a strictly
local search algorithm. To verify this, the authors empirically compared the performance of a
random bit climber (RBC+), a simple GA, and an enhanced GA (CHC)[77] known to be robust
in a wide variety of problems. Experiments were conducted for N = 100 varying K from 0 to
65. A striking result of this study was the overall better performance of the random bit climber
RBC+. The authors encourage test generators for broad classes of problems but suggest that
NK-Landscapes (and kSAT) seem not to be appropriate for testing the performance of genetic al-
gorithms. Motivated by [61], Mathias et al.[68] provided an exhaustive experimental examination
of the performance of similar algorithms including also Davis’ RBC[78]. A main conclusion of
this study is that over the range 19 ≤ N ≤ 100 there is a niche for the enhanced CHC in the region
of N > 30 for K = 1 and N > 60 for 1 ≤ K < 12. Yet, this niche is very narrow compared to
the broad region where RBC and RBC+ show superiority.

Adaptive evolution is a search process driven by mutation, recombination, drift, and selection
over fitness landscapes[58]. All of these are important components in a GA and are carefully
considered within GA-SRM. (i) GA-SRM applies varying mutation (SRM) parallel to crossover
& background mutation (CM) using extinctive selection to put higher mutations and crossover in
a cooperative-competitive stand with each other. (ii) It relies in adaptation and mutation strategy
to increase effectiveness of the parallel varying mutation operator. (iii) It eliminates fitness dupli-
cates enhancing selection by removing an unwanted source of selective bias, postponing drift, and
providing a more fair competition between CM and SRM.

This chapter examines the behavior of the parallel varying mutation GA-SRM on epistatic
problems using NK-Landscapes[70]. Properties of NK-Landscapes are discussed and the effect
on performance of the four major processes mentioned above (mutation, recombination, drift, and
selection) is verified. Mutation strategy for the varying mutation operator is also studied in detail.
Experiments are conducted with NK-Landscapes for N = 48 and N = 96 varying K from 0
to N − 1 in increments of 4. Comparisons are made with a canonical GA, a simple GA with
extinctive selection, a mutation only EA, and the random bit climber RBC+.

It is shown that avoiding unwanted selective bias by eliminating fitness duplicates and using an
appropriate selection pressure make GAs quite robust in NK-Landscapes. With regards to strictly
local search algorithms, different to previous works, it is shown that even simple GAs with these
two features perform better than RBC+ for a broad range of classes of problems (K ≥ 4). It
is also shown that the interaction of parallel varying mutation with crossover improves further
the reliability of the GA for 12 < K < 32. Contrary to intuition, it is found that for small K
a mutation only EA is very effective and crossover may be omitted; but the relative importance
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of crossover interacting with varying mutation increases with K performing better than mutation
alone for K > 12. Finally, Mutation strategy for parallel varying mutation turns out to be an
important factor to improve the performance of GAs on problems with nearest neighbor patterns
of epistasis.

6.2 RBC+

RBC+[61] is a variant of a random bit climber (RBC) defined by Davis[78]. Both are local search
algorithms that use a single bit neighborhood. We implement RBC+ following indications given
in [61, 68, 78].

RBC+ begins with a random string of length N . A random permutation of the string positions
is created and bits are complemented (i.e. flipped) one at the time following the order indicated by
the random permutation. Each time a bit is complemented the string is re-evaluated. All changes
that results in equally good or better solutions are kept and accounted as an accepted change. After
testing all N positions indicated by the random permutation, if accepted changes were detected
a new permutation of string positions is generated and testing continues. If no accepted changes
were detected a local optimum has been found, in which case RBC+ opts for a “soft-restart”. That
is, a random bit is complemented, the change is accepted regardless of the resulting fitness, a new
permutation of string positions is generated, and testing continues. These soft-restarts are allowed
until 5 × N changes are accepted (including the bit changes that constituted the soft restarts).
When RBC+ has exhausted the possibility of a soft-restart it opts for a “hard-restart” generating a
new random bit string. This process continues until a given total number of evaluations have been
expended. The difference between RBC and RBC+ is the inclusion of soft-restarts in the latter.

6.3 Experimental Setup

The study is conducted on NK Landscapes with N = 48 and N = 96 bits varying the number of
epistatic interactions fromK = 0 toK = N−1 in increments of 4. Two kinds of epistatic patterns
are investigated for the distribution of theK bits among the N : (i) nearest neighbor, in which each
bit interacts with its K/2 left and right adjacent bits, and (ii) random, in which each bit interacts
withK other randomly chosen bits in the chromosome. Circular genotypes are considered to avoid
boundary effects. The landscapes created with random espistatic pattern correspond to Kauffman’s
random neighborhood whereas the landscapes created with nearest neighbor epistatic pattern are
of two types: Kauffman’s adjacent neighborhood and generalized NK-Landscapes with P = N .
Unless indicated otherwise, results are reported for landscapes with random epistatic pattern

In order to observe and compare the effect on performance of selection pressure, parallel
varying mutation, and recombination, GA-SRM is decomposed to create the four following al-
gorithms: (i) A simple canonical GA with proportional selection and crossover & background
mutation (CM), denoted as cGA; (ii) a simple GA with (µ, λ) proportional selection and CM,
denoted as GA(µ, λ); (iii) a GA that uses (µ, λ) proportional selection, CM, and parallel vary-
ing mutation SRM, denoted as GA-SRM(µ, λ); and (iv) a version of GA-SRM(µ, λ) with no
crossover (pc = 0.0), denoted as M-SRM(µ, λ). To observe the effect of drift the algorithms are
used with the fitness duplicates elimination feature either on or off. The superscript ed attached to
the name of a GA indicates that the elimination of duplicates feature is on, i.e cGAed, GAed(µ, λ),
GA-SRMed(µ, λ), and M-SRMed(µ, λ). GA-SRM’s adaptive mutation strategies, ADS and ADP,
are used to study the relevance of mutation strategy to epistatic pattern.
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Table 6.1: GAs Parameters

Parameter GA
GA-SRM(µ, λ)

cGA GA(µ, λ) ADS ADP
Selection Proportional (µ, λ) Prop. (µ, λ) Prop. (µ, λ) Prop.

pc 0.6 0.6 0.6 0.6
p
(CM)
m 1/N 1/N 1/N 1/N

p
(SRM)
m – – α = 0.5 α = [0.5, 1/N ]

� = [N, 1/α] � = N
λCM : λSRM – – 1 : 1 1 : 1

Similar to [64], for CM two-point crossover is used with probability pc as the recombination
operator and the standard bit-flipping method with probability p(CM)

m as the mutation operator after
crossover. In the case of GA-SRM, SRM is used with ADS or ADP with mutation rate p(SRM)

m .
Also, since adaptation is used for SRM the threshold τ that triggers adaptation is sampled for all
combinations of mutation strategy, N and K. Results presented here for ADS and ADP are for
its best sampled τ . The number of evaluations is set to 2 × 106 for all GAs and RBC+. The
offspring population λ is set to 200. Several parent populations (µ) are tried for the GAs that use
extinctive selection. All GAs use linear scaling. The parameters used for the GAs are summarized
in Table 6.1. The parameters for M-SRM(µ, λ) are the same as GA-SRM(µ, λ) with ADP, except
that pc = 0.0 (no recombination).

Results presented here are the mean value of the best solution observed over 50 different
randomly generated problems starting each time with the same initial population. The vertical
bars overlaying the mean curves in the plots represent 95% confidence intervals. Note that the
problems are maximized.

6.4 Selection Pressure

First, the effect of a higher selection pressure on the performance of a simple GA is observed.
Figure 6.1 plots results by cGA(200) and GA with (µ, λ)={(100,200), (60,200), (30,200)}. Results
by the random bit climber RBC+ are also included for comparison.

K = 0 and K = N − 1

In the limits, K = 0 corresponds to an additive genetic model in which there are no epistatic
interactions and yields a single peaked smooth fitness landscape. On the opposite extreme, K =
N − 1 corresponds to a maximally rugged fully random fitness landscape in which each gene is
epistatically affected by all the remaining genes. In the extremes the performance of the algorithms
is expected to be similar. This can be seen for K = 0 in Figure 6.1.

0 < K < N − 1

In [57, 58] sampling the landscapes by one-mutant adaptive walks, it was observed that low levels
of epistatic interactions seem to bend the landscape and yield higher optima than the K = 0
landscape. Increasing K, however, would both cause a complexity catastrophe (the attainable
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Figure 6.1: Higher selection pressure. Landscapes with random patterns of epistasis.

optima falls toward the mean fitness of the landscape) and make fitness landscapes more multi-
peaked. Recent works, using exhaustive search for N ≤ 25, confirm that there is a positive
correlation between K and the number of peaks[62] and that the global optima of the landscape
increase for small K[68]. Note from Figure 6.1 that the highest optima is for small K. Contrary
to [57, 58], however, [62] and [68] show that the global optima is not a function of K for a given
N as K increases from small to large values. Thus, the decreasing best values found by the
algorithms when K increases indicates that the search performance is in fact worsening, and not
that the values of the optima in the NK-Landscapes are decreasing.

For 0 < K < N − 1, different from K = 0 and K = N − 1, differences in performance by
the GAs can be seen. Some important observations are as follows.

1. cGA does relatively well for very low epistasis (K ≤ 8) but its performance falls sharply
for medium and high epistasis (K ≥ 12). Similar behavior by another simple GA has been
observed in [61] and [68].

2. The behavior of GA(µ,λ) is revealing. GA(µ, λ) that includes an stronger selection pressure
performs worse than cGA for low epistasis but it outperforms cGA(200) for medium and
high epistasis (K ≥ 12). The behavior of GA(100,200), GA(60,200), and GA(30,200) are
similar. Results by cGA and GA(µ, λ) indicate the importance of an appropriate selection
pressure to pull the population to fittest regions of the search space (note that the genetic
operators are the same in both algorithms). The selection pressure induced by proportional
selection seems to be appropriate only for very smallK. AsK increases a stronger selection
pressure works better. It is worth noting that a similar behavior by extinctive selection
has been observed in large, difficult, and highly constrained combinatorial optimization
problems[79].

3. The overall performance of RBC+ is better than both cGA and GA(µ, λ).
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6.5 Parallel Varying Mutation, Mutation Strategy, and Patterns of
Epistasis

Second, the effect of the mutation strategy used in parallel varying mutation is investigated on
landscapes with different patterns of epistasis. Figure 6.2 and Figure 6.3 present the mean
fitness of the best solutions achieved by GA-SRM(100,200) with ADS, and GA-SRM(100,200)
with ADP on landscapes with nearest neighbor and random epistatic patterns for N = 48 and
K = 0, · · · , N − 1. Similarly, Figure 6.4 and Figure 6.5 present results for N = 96. Results by
cGA and GA(100,200) are also included for comparison.

Kauffman[57, 58] has observed that (i) the actual fitness of optima are largely insensitive to
the distribution of K among N . That is, for the same values of N and K, the expected attainable
optima is similar for nearest neighbor and random epistatic patterns. Also, he showed that (ii)
for small values of K and two alleles either for random or nearest neighbor epistatic patterns
there is a global structure to the fitness landscape. That is, the global optima are not distributed
randomly in genotype space but instead are near one another. As K increases this correlation
drops, more rapidly for random than for nearest neighbor epistatic pattern. The correlation of K
to the dispersion of sub optima, its relative fitness and Hamming distance from the global optimum,
is corroborated in [62].

Looking at Figure 6.2 and Figure 6.3 it can be seen that for same values of K (N = 48)
higher optima are achieved by the GAs when nearest neighbor epistatic interactions exist (4 <
K < N − 1). Similar behavior can be observed for N = 96 in Figure 6.4 and Figure 6.5.
If Kauffman’s observation that the achievable optima is similar for random and nearest neighbor
epistatic patterns holds, this indicates that the GAs perform better on the presence of nearest
neighbor epistatic patterns. Otherwise, this suggests that a nearest neighbor epistatic pattern does
not only impose a stronger structure to the landscape as showed by Kauffman but also that it is
capable of bending the landscape more than a random epistatic pattern does, which yields higher
achievable optima. Either case, the epistatic pattern should be taken into account during the design
of representations for problems to be solved by GAs. Representations that induce nearest neighbor
epistatic interactions should be preferred over those that produce random interactions.

From Figure 6.2 and Figure 6.4 looking at the results by ADS and ADP it is observed that in
the case of a nearest neighbor epistatic pattern the strategy that mutates within a continue mutation
segment, i.e. ADS, performs significantly better than the strategy that mutates any bit of the
chromosome, i.e. ADP. Bigger differences are observed for N = 96 than N = 48, which suggest
that mutation strategy could be a more significant factor as the search space increases. ADP
performs similar to ADS only for low epistatic levels, K ≤ 8 and K ≤ 4 for N = 48 and
N = 96, respectively.

In the case of a random epistatic pattern, from figure Figure 6.3 it can be seen that for N = 48
there is no difference in performance by ADS and ADP for any value of K. From Figure 6.5,
however, it can be observed that when N = 96 ADS performs better than ADP as K increases
from medium to high levels of epistatis (K ≥ 20).

ADS’s better performance is explained from Kaufmman’s findings that epistatic interactions,
even a random epistatic pattern, inflict a global structure to the fitness landscape in which high
peaks are close in genotype space. In such case a segment mutation strategy as ADS can take
advantage of this underlying structure to perform a more effective search. The global structure of
the landscape is stronger for a nearest neighbor epistatic pattern and the difference in performance
between ADS and ADP can be clearly noticed as indicated above. In the case of a random epistatic
pattern this structure is weaker and its effect would remain hidden in small search spaces as N =
48, but would become more evident for medium and high K as N increases.
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Figure 6.2: Nearest neighbor patterns of epistasis: Mean fitness after 104 generations for N = 48,
K = 0, · · · , N − 1
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Figure 6.3: Random patterns of epistasis: Mean fitness after 104 generations for N = 48, K =
0, · · · , N − 1

Figure 6.6 and Figure 6.7 illustrate typical fitness transitions of the best so far individual on
landscapes with nearest neighbor and random epistatic patterns for N = 48 and medium epistasis
K = 12. Similarly, Figure 6.8 and Figure 6.9 present results for N = 96 and K = 24. Note that
the plots for N = 96 are for 105 rather than 104 generations so the behavior of the algorithms can
be observed in the long run.

From these figures it can be seen that GA(µ, λ) and GA-SRM(µ, λ) that include extinctive
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Figure 6.4: Nearest neighbor patterns of epistasis: Mean fitness after 104 generations for N = 96,
K = 0, · · · , N − 1
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Figure 6.5: Random patterns of epistasis: Mean fitness after 104 generations for N = 96, K =
0, · · · , N − 1

selection converge faster than cGA. As mentioned above, because of the higher selection pressure
of extinctive selection, GA(µ, λ) also converges to higher optima than cGA (for medium and
higher epistasis). However, it stagnates because of lack of diversity. GA-SRM(µ, λ), either with
ADS or ADP, can improve further the fitness achieved by GA(µ, λ) because of its better balance
between higher selection pressure and diversity introduced by SRM.
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Figure 6.6: Nearest neighbor patterns of epistasis: Fitness transition of best so far, N = 48,
K = 12, 104 generations
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Figure 6.7: Random patterns of epistasis: Fitness transition of best so far, N = 48, K = 12, 104

generations

6.6 Duplicates Elimination

Third, the effect of genetic drift is observed by setting on the fitness duplicates elimination fea-
ture. Figure 6.10 plots results by cGAed(200) and GAed(µ, λ) with (µ, λ)= {(100,200), (60,200),
(30,200)}. Results by cGA(200) and RBC+ are also included for comparison. From this fig-
ure it can seen that eliminating duplicates affects differently the performance of the GAs. (i) It
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Figure 6.8: Nearest neighbor patterns of epistasis: Fitness transition of best so far, N = 96,
K = 24, 105 generations
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Figure 6.9: Random patterns of epistasis: Fitness transition of best so far, N = 96, K = 24, 105

generations

deteriorates even more the performance of cGA. (ii) Conversely, the combination of higher se-
lection pressure with duplicates elimination produces a striking increase on performance. Note
that all GAed(µ, λ) algorithms achieved higher optima than RBC+ for 4 ≤ K ≤ 40. The optima
achieved by GAed(100,200) is lower than RBC+ for K = 48. However, note that GAed(60,200)
and GAed(30,200) achieved higher optima than RBC+. This suggest that for K = 48 even the
pressure imposed by (µ, λ)=(100,200) is not strong enough.
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Figure 6.10: Duplicates elimination: Higher selection pressure.
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Figure 6.11: Duplicates elimination: Effect of number of evaluations (mean fitness after 2 × 105

and 2 × 106 evaluations).

In this study the algorithms are run for 2 × 106 evaluations whereas only 2 × 105 evalua-
tions have been used in previous studies[61, 68]. Figure 6.11 illustrates the optima achieved by
GAed(100,200) and RBC+ after 2 × 105 and 2 × 106 evaluations. From this figure it can be seen
that allocating more evaluations allows both algorithms to find higher optima, being the rate of im-
provement by the GA greater than the random bit climber RBC+. Note that for most values of K,
even after 2 × 106 evaluations, RBC+ still does not reach the optima achieved by GAed(100,200)
after 2 × 105 evaluations.
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As shown in 6.4, as K increases a higher selection pressure improves the performance of the
simple GA. However, it would also increase the likelihood of duplicates. Preventing duplicates
distributes more fairly selective pressure in the population, removes an unwanted source of se-
lective bias in the algorithm[41] and postpones genetic drift[80, 81]. GAed(µ, λ) takes advantage
of the higher selection pressure avoiding the unwanted selective bias. The drop in performance
by cGAed compared to cGA suggests that the latter uses the duplicates as a way to increase its
selection pressure. In the following the effects of no eliminating duplicates are elaborated further.

Figure 6.12 illustrates with the thicker lines the ranking of the λ offspring by the GA(100,200),
which does not eliminates duplicates, for generations 10, 100 and 2000 during one run of the al-
gorithm (K = 12). The offspring with highest fitness is giving rank 1. The horizontal segments
in those lines indicate the presence of duplicates. This figure also illustrates with the thinner lines
what the rank of the λ− d not duplicates offspring would be, where d is the number of duplicates.
From this figure it can be seen that if duplicates are not eliminated they accumulate rapidly. In this
example, the number of duplicates at generation 10 is 7, which increases to 62 at generation 100
and to 80 at generation 2000. Figure 6.13 presents a similar plot for GAed(100,200), which does
eliminate duplicates. In this case the thicker (thinner) lines indicate the ranking of the offspring
after (before) duplicates elimination. From this figure it can seen that, compared to GA(100,200),
eliminating duplicates at each generation prevent them from increasing their number. Note that at
generation 100 there are only 13 duplicates and that at generation 2000 their number remains sim-
ilar. This effect, that in the case of GAed (µ,λ) the number of fitness duplicates remains relatively
constant throughout the generations for a given K, can be observed with more detail in Figure
6.15 for various values of K. An important conclusion from both Figure 6.12 and Figure 6.13
is that by eliminating duplicates the likelihood that the algorithm will explore a larger number of
different candidate solutions increases substantially, augmenting the possibility of finding higher
optima.

Another important aspect of duplicates is related to selection. In the case of algorithms that
do not eliminate duplicates, such GA(100,200), selection of parents will be based on the ranking
of the all λ offspring as shown by the thicker lines in Figure 6.12, which contains ensembles of
clones (i.e. individuals with the same genotype besides having the same fitness). From a genotype
uniqueness point of view, each ensemble of clones represents one individual. However, the selec-
tion mechanism will assign a selection probability to each clone, the same for all clones within
an ensemble, as if they were different individuals. As a consequence, the chances of selecting a
given genotype are multiplied by the number of clones of that genotype present in the offspring
population. To illustrate this better, Figure 6.14 plots the fitness of unique genotypes when dupli-
cates are not eliminated. Here, an ensemble of clones is treated as one individual and its fitness is
the accumulated fitness of the clones in the ensemble. In the figure, ensembles of clones can be
clearly recognized by the peaks in the curves. This figure clearly indicates that low fitness geno-
types (due to the duplicates effect) can end up with higher selective advantage than high fitness
unique genotypes. It should be noted that this unwanted selective bias, which is not based in actual
fitness, cannot be avoided by fitness scaling mechanisms, ranking procedures, or even extinctive
(truncated) deterministic selection schemes (such (µ, λ) Selection).

In the case of eliminating duplicates, selection of parents will be based on the ranking of the
λ−d unique genotype offspring as shown by the thicker lines in Figure 6.13. In this case, selection
will depend exclusively on the fitness of the individuals.

Figure 6.15 illustrates the number of fitness duplicates1 over the generations eliminated in

1Fitness duplicates are counted and eliminated while the offspring population is being truncated from λ to µ. Thus,
the number of duplicates of Figure 6.15 indicate only those counted until the best µ are found. The number of duplicates
in λ can be a little higher.
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Figure 6.12: Offspring ranking by GA(µ, λ) (K = 12).
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Figure 6.13: Offspring ranking by GAed(µ, λ) (K = 12).

GAed(100,200) for landscapes with values of K = {4, 12, 24, 48} and the number of duplicates
eliminated in GAed(60,200) for K = 48. Most of this fitness duplicates were actual clones. For
example for K = 4, 148993 fitness duplicates were created during the 10000 generations (average
in the 50 runs). Out of these, 99.88% corresponded to actual clones. Similar percentages were
observed for other values of K. This indicates that the approach is quite effective eliminating
clones while being computationally efficient (there is no need to calculate and check hamming
distances). Note that (µ,λ) proportional selection is a kind of truncation selection and sorting of
the whole population is necessary. Once sorting has been done, the non-duplicates policy requires
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Figure 6.14: Accumulated fitness of the unique genotype offspring, which is reflected in the selec-
tion probabilities of GA(µ, λ) (K = 12). An ensemble of clones is treated as one individual and
its fitness is the accumulated fitness of the clones in the ensemble.
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Figure 6.15: Number of eliminated duplicates.

at most O(λ) to eliminate fitness duplicates.

6.7 Eliminating Fitness Duplicates and Parallel Varying Mutation

Four, the effect of the mutation strategy used in parallel varying mutation is investigated on land-
scapes with different patterns of epistasis when the fitness duplicates feature is on. Figure 6.16
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plots results for NK-Landscapes with random pattern of epistasis by GA-SRMed(100,200) with
either ADS or ADP. Results by cGA(200), GAed(100,200) and RBC+ are also included for com-
parison. From this figure the following observations are relevant. (i) The inclusion of parallel
varying mutation can improve further convergence reliability. Note that GA-SRMed(100,200)
with ADS or ADP achieves higher optima than GAed(100,200) for 4 ≤ K < 32. For K = 32 and
K = 40, however, GA-SRMed(100,200) is not better than GAed(100,200), which indicates that
varying mutation is not working properly at this values of K . (ii) Mutation strategy seems not
to have effect in landscapes with random pattern of epistasis when the fitness duplicates feature
is on. Note that performance by GA-SRMed(100,200) with ADS or ADP is very similar for any
value of K. It should be remembered from 6.5 that when the duplicates elimination feature is
off ADS shows better performance than ADP. This suggests that enhancements in selection could
hide the lack of effectiveness of genetic operators, in this case of ADP. It would be interesting to
observe whether differences between ADP and ADS appear whenN is increased. (iii) The optima
achieved by GAed(100,200) is lower than RBC+ for K = 48, which seems to be caused by a lack
of appropriate selection pressure as mentioned in 6.6. However, for the same selection pressure,
GA-SRMed(100,200) achieved higher optima than RBC+. This nicely shows that the effectiveness
of a given selection pressure is not only correlated to the complexity of the landscape, but also to
the effectiveness of the operators searching in that landscape. In the case of GA-SRMed(100,200),
the inclusion of varying mutation increases the effectiveness of the operators, hiding selection
deficiencies. It would be better to correct selection pressure and try to use mutation to improve
further the search.

Figure 6.17 plots results for NKP-Landscapes with nearest neighbor pattern of epistasis. Sim-
ilar to landscapes with random pattern of epistasis, parallel varying mutation improves further
convergence reliability. Note that GA-SRMed(100,200) with ADS achieves higher optima than
GAed(100,200)for 4 ≤ K ≤ 48, being more evident for K < 40. In this case, contrary to ran-
dom pattern of epistasis, it is observed that for 4 ≤ K < 32 the strategy that mutates within a
continue mutation segment, i.e. ADS, performs better than the strategy that mutates any bit of
the chromosome, i.e. ADP. As mentioned before in 6.5, ADS’s better performance is explained
from Kaufmman’s[57, 58] findings that epistatic interactions for small K , even a random epistatic
pattern, inflict a global structure to the fitness landscape in which high peaks are close in geno-
type space. The global structure of the landscape falls as K increases and is stronger for nearest
neighbor than random epistatic patterns. In such case a segment mutation strategy as ADS can
take advantage of this underlying structure to perform a more effective search.

Looking at Figure 6.16 and Figure 6.17 it can be seen that the behavior of RBC+ is similar
in both kinds of landscapes with the exception of K = 4. Note also that the behavior of cGA is
more robust in landscapes with nearest neighbor than random pattern of epistasis.

6.8 No Crossover

Finally, the effect of (not) using recombination is observed on NK-Landscapes with random pat-
terns of epistasis. Figure 6.18 plots results by M-SRMed(100,200), which is a GA-SRMed(100,200)
using ADP with crossover turned off. Results by GA-SRMed(100,200) with ADP, GAed(100,200),
and RBC+ are also included for comparison. From this figure the following observations are im-
portant. (i) For K ≤ 12 the mutation only algorithm M-SRMed(100,200) performs similar or
better than GA-SRMed(100,200) that includes crossover. For some instances of other combinato-
rial optimization problems it has also been shown that a mutation only evolutionary algorithm can
produce similar or better results with higher efficiency than a GA that includes crossover, see for
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Figure 6.16: Parallel varying mutation and mutation strategy on NK-Landscapes with N = 96
and random epistatic pattern . Duplicates elimination feature is turned on
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Figure 6.17: Parallel varying mutation and mutation strategy on NKP-Landscapes with N = P =
96 and nearest neighbor epistatic pattern. Duplicates elimination feature is turned on

example [82]. For K ≥ 16, GA-SRM that includes both crossover and parallel varying mutation
achieves higher optima; note that the difference between GA-SRM and M-SRM increases with
K. (ii) Similar to GA-SRM, the mutation only algorithm M-SRM achieves higher optima than
RBC+ for K ≥ 4, which illustrates the potential of evolutionary algorithms, population based,
with or without recombination, over strictly local search algorithms in a broad range of classes of
problems. This is in accordance with theoretical studies of first hitting time of population-based
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Figure 6.18: No recombination, M-SRMed(100,200)

evolutionary algorithms. He and Yao[83] have shown that in some cases the average computation
time and the first hitting probability of an evolutionary algorithm can be improved by introducing
a population.

The behavior of M-SRM compared with GA-SRM is at first glance counterintuitive and de-
serves further explanation. Results by Heckendorn et al.[61] imply that the usefulness of recom-
bination would decrease with K . However, Figure 6.18 seems to imply exactly the opposite. A
sensible explanation for these apparently opposing results comes from the structure of the under-
lying fitness landscape. As indicated above, Kauffman[57, 58] has shown that clustering of high
peaks can arise as a feature of landscapes structure without obvious modularity, as is the case
of NK-Landscapes with K epistatic inputs to each site chosen at random among sites. In this
case, recombination would be a useful search strategy because the location of high peaks carry
information about the location of the other high peaks[57, 58].

In the case of small K the problems are the easier and a mutation only EA proves to be very
effective, although the landscape is more structured than for high K. As K increases the structure
of the landscape fades away decreasing also the effectiveness of recombination. However, what
Figure 6.18 is showing is that the decay of mutation alone seems to be faster than the decay of
recombination interacting with varying mutation as the complexity of the landscape increases with
K and its structure fades. In other words, the relative importance of recombination interacting with
varying mutation increases with K respect to mutation alone.

It should be mentioned that recent developments and discussions on the status of the schema
theorem[84] might give new insights to better understand the behavior of GAs than the traditional
interpretation of the theorem.
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6.9 Conclusions

This chapter has examined the behavior of the parallel varying mutation GA-SRM on epistatic
problems using NK-Landscapes. Properties of NK-Landscapes were discussed and the effect on
performance of selection, drift, mutation, and recombination was verified. Mutation strategy for
the varying mutation operator was also studied in detail. Experiments were conducted with NK-
Landscapes with nearest neighbor and random patterns of epistasis for N = 48 and N = 96
varying K from 0 to N − 1 in increments of 4. Comparisons were made with a canonical GA, a
simple GA with extinctive selection, a mutation only EA, and a random bit climber RBC+.

It was shown that GAs can be robust algorithms on NK-Landscapes postponing drift by elim-
inating fitness duplicates and using selection pressure higher than a canonical GA. Different to
previous works, even simple GAs with these two features performed better than the single bit
climber RBC+ for a broad range of classes of problems (K ≥ 4). It was also shown that the
interaction of parallel varying mutation with crossover (GA-SRM) improves further the reliability
of the GA for 12 < K < 32. Contrary to intuition it was found that a mutation only EA can
perform as well as GA-SRM that includes crossover for small values of K, where crossover is
supposed to be advantageous; but the relative importance of crossover interacting with varying
mutation increased with K performing better than mutation alone for K > 12. Better overall
performance by population based mutation only evolutionary algorithms over random bit climbers
was also observed. With regards to mutation strategy for parallel varying mutation, it was found
that a dynamic segment mutation strategy improves the performance of GAs on problems with
nearest neighbor patterns of epistasis.

It is concluded that NK-Landscapes are useful for testing the overall behavior and performance
of GAs on a broad range of classes of problems and for testing each one of the major processes
involved in a GA, which gives valuable insights to improve GAs by understanding better the non-
linear, complex, and interesting behavior that arises from the interaction of such processes.

In the future the relationship among selection pressure, the range for varying mutation, and
K should be studied deeper. This could give important insights to incorporate heuristics that can
increase the adaptability of GAs according to the complexity of the problem.
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Chapter 7

Distributed GA with Parallel Varying
Mutation

In this chapter we extend GA-SRM that incorporates in its core parallel cooperative-competitive
genetic operators to a parallel distributed GA (DGA-SRM). Crossover and mutation, from a pro-
cessing time stand, are usually simple and their parallelization has been mostly overlooked pre-
cisely because any gain we might expect reducing the overall time to completion of the algorithm
would seem minor. We argue that rather than as a hardware accelerator, the more significant gains
from the parallel application of crossover and higher mutations within parallel GAs could come
from exploiting their interaction in a better way. Experiments are conducted using real world 0/1
multiple knapsack problems and various instances of large and difficult 0/1 multiple knapsack
problems generated by the test problem generator. Comparisons are made between DGA-SRM
and a canonical distributed GA. In our study we observe the effectiveness of extinctive selection
and high mutation parallel to crossover in distributed GAs. Furthermore, we examine the influ-
ence of the problem difficulty, subpopulation size, and migration rate on the robustness of the
distributed GAs.
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7.1 Introduction

The development of parallel implementations of algorithms has been mainly motivated by the
desire to reduce the overall time to completion of a task by distributing the work implied by a
given algorithm to processing elements working in parallel[85]. An alternative approach explores
parallel computational models that can exploit interactions among primitive components inducing
emergent synergetic behaviors for the entire system[86].

There are a variety of models for parallelizing Genetic Algorithms (GAs) in the evolutionary
algorithms literature. They have been separated in four main categories: global master-slave,
island, cellular, and hierarchical parallel GAs[87, 88, 89]. In a global master-slave GA there is a
single population and the evaluation of fitness is distributed among several processors. Selection,
crossover and mutation consider the entire population[90]. A cellular or fine-grained GA consists
of one spatially structured population. Selection and mating are restricted to a small neighborhood.
The neighborhoods are allowed to overlap permitting some interaction among individuals[91, 92].
An island GA, also known as coarse-grained or distributed GA, consists on several subpopulations
evolving separately with occasional migration of individuals between subpopulations [85, 93, 94].
Finally, a hierarchical parallel GA combines an island model with either a master-slave or cellular
GA[89].

The global master-slave GA does not affect the behavior of the algorithm and can be consid-
ered only as a hardware accelerator. However, the other parallel formulations of GAs are very
different from canonical GAs[11, 16], especially with regards to population structure and selec-
tion mechanisms. These modifications change the way the GA works affecting its dynamic and
the trajectory of evolution. For example, the subpopulation size, migration rate, and migration fre-
quency are crucial to the performance of island models. Cellular, island and hierarchical models
perform as well as or better than canonical versions and have the potential of being more than just
hardware accelerators[87, 88, 89].

Another aspect of GAs that can be parallelized is the application of crossover and mutation.
These operators, from a processing time stand, are usually simple and any gain we might expect
reducing the overall time to completion could seem minor. However, the processing time view-
point alone misses the dynamics that can arise from operators with complementary roles acting
in parallel. The balance between crossover and mutation is crucial to the performance of GAs.
One way to pursue better balances, and therefore better performance, is to combine crossover with
higher mutation rates. Higher mutations parallel to crossover can give an efficient framework to-
wards this goal, in which the strengths of the individual operators can be kept without interfering
one with the other. Rather than as a hardware accelerator, the more significant gains from the
parallel application of operators within parallel GAs could come from exploiting in a better way
the interaction between them.

In this chapter we focus on distributed GAs and study the performance of a distributed GA that
incorporates in its core parallel cooperative-competitive genetic operators. We conduct a series of
controlled experiments using various large and difficult 0/1 multiple knapsack problems to test
the robustness of the distributed GA. Simulation results verify that the proposed distributed GA
compared with a canonical distributed GA significantly gains in search speed and convergence
reliability with less communication cost for migration.

7.2 Distributed GA (Island Model)

The island model GA consists on several subpopulations evolving separately and concurrently
with occasional migration of individuals between subpopulations[85]. Selection, recombination
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and mutation are applied within each subpopulation. The basic island model uses the same val-
ues for crossover and mutation rates in all subpopulations. However, different values for these
parameters can be chosen for each subpopulation[94]. Migration of individuals is controlled by
several parameters such as: (i) the communication topology that defines the connections between
subpopulations, (ii) a migration rate that controls how many individuals migrate, and (iii) a migra-
tion interval that affects the frequency of migration. Also, migration must include strategies for
migrant selection and for their inclusion in their new subpopulations.

The communication topology can be defined as a graph in which the subpopulations Pi (i =
0, 1, ...,K−1) are the vertices and each defined edge Lj,k specifies a communication link between
the incident vertices Pj and Pk (neighbor subpopulations). In general, assuming a directed graph,
for each defined link Lj,k we can indicate the number of individuals Rj,k that will migrate from
Pj to Pk (migration rate) and the number of generations M between migration events (migration
interval). The communication topology and migration rates could be static or dynamic and mi-
gration could be asynchronous or synchronous. Various strategies for choosing migrants, such as
selection of the best and random selection, have been applied.

The basic island model considers an overall population of λtotal individuals that is partitioned
into K subpopulations. For an even partition each subpopulation has λ = λtotal/K individuals.
It also considers a static topology that is specified at the beginning of the run and synchronous
migration occurring every M generations with a constant migration rate R for each defined link
Lj,k.

Distributed GAs are more complex than single population GAs. The subpopulation size, the
communication topology (its degree of connectivity), migration rate, and migration frequency are
important factors related to the performance of distributed GAs[89]. There is some experimental
evidence that distributed GAs can produce solutions with similar or better quality than single pop-
ulation GAs while reducing the overall time to completion in an factor that is almost in reciprocal
proportion to the number of processors.

7.3 DGA-SRM

7.3.1 Communication Topology

To create a distributed GA here we use a +1+...+L communication topology[95] in which each
subpopulation Pi (i = 0, 1, ...,K − 1) is linked to the next L subpopulations. The neighbor
populations are defined by the directed links Lj,k where

k = {j + 1, ..., j + L} mod K. (7.1)

Figure 7.1 illustrates a +1+2 island model in which each subpopulation is linked to two neigh-
bors (L = 2). In this example, for instance, subpopulation P0 can only send individuals to P1 and
P2 and receive migrants from P4 and P5.

7.3.2 CM and SRM in DGA

In the above setting, the extension of GA-SRM to a distributed GA[55, 79, 96] is straightforward.
The basic components of the single population GA-SRM are mostly preserved in each subpopu-
lation Pi(t) (i = 0, 1, ...,K − 1) at the t−th generation. CM creates offspring by conventional
one-point crossover and successive background mutation operator[11, 16] in each Pi(t). The same
crossover rate pc is used in all Pi(t). The mutation probability p(CM)

m is set to a constant small
value and is also the same in all Pi(t). CM creates λCM offspring within Pi(t) and is expected
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Figure 7.1: +1+2 communication topology.

to propagate beneficial genetic information into the subpopulation by combining segments from
parent individuals.

On the other hand, SRM creates offspring by an adaptive mutation operators called Adaptive
Dynamic Segment (ADS)[34, 35, 55], which directs mutation only to a segment of the chromo-
some using constant high mutation probabilities per bit in all Pi(t),

p(SRM )
m =

{
α (if the bit is in the segment)
0 (otherwise)

However, the mutation segment size �i (i = 0, 1, ...,K − 1) is independently adjusted in each
Pi(t) based on a normalized mutants survival ratio specified by

γi =
µSRMi

λSRM
· λ
µ
, (7.2)

where µSRMi is the number of SRM’s offspring that survive extinctive selection, λSRM is the
offspring number created by SRM, λ is the total offspring number (λCM + λSRM ), and µ is the
number of parent individuals in Pi(t).

In each Pi(t), �i varies dynamically from n0 (initial segment mutation size) to 1/α by reducing
it to �i/β (β > 1) every time γi falls under a predetermined threshold τ (γi < τ ). Hence, the
expected average number of flipped bits goes down from n0α to 1. Also, the segment initial
position, for each chromosome, is chosen at random. SRM is expected to introduce diversity
into each subpopulation and its adaptation mechanism to provide better balances for mutation and
crossover throughout the course of a run.
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Figure 7.2: Migration policy and extinctive selection.

7.3.3 (µ, λ) Proportional Selection in DGA

In order to implement the extinctive selection mechanism, we use (µ, λ) Proportional Selection[24].
Selection probabilities within each subpopulation Pi(t) are computed by

Prob(x(t)
j ) =




f(x(t)
j )

µ∑
k=1

f(x(t)
k )

(1 ≤ j ≤ µ)

0 (µ < j ≤ λ)

(7.3)

where x
(t)
j is an individual at generation twhich has the j-th highest fitness value f(x(t)

j ) in Pi(t).

7.3.4 Migration Policy

Migration implements a synchronous elitist broadcast strategy[97] occurring everyM generations.
Each subpopulation broadcasts a copy of its R best individuals to all its neighbor subpopulations.
Hence, every subpopulation in every migration event receives λm = L × R migrants. In the
target subpopulations, the arriving λm migrants replace the same number of worst performing
individuals. Replacement occurs before extinctive selection. Thus, λm migrants also compete to
survive with the best λ − λm offspring produced by SRM and CM inside Pi(t). In the following
the migration rate is calculated as 100 × λm/λ. Figure 7.2 illustrates the migration process to
a given subpopulation from its two neighbors (assuming a +1+2 communication topology). As
mentioned in 7.3.2, SRM’s adaptation occurs locally in each subpopulation Pi(t) but it is not
realized at the generations in which migration is performed.

7.3.5 Algorithm of DGA-SRM

The algorithm of DGA-SRM is presented in Figure 7.3.
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Procedure DGA-SRM;
Concurrently for each subpopulation Pi do
begin
t := 0
initialize (Pi(0))
evaluate (Pi(0))
while (not termination condition) do

begin
P ′

i (t) = CM (Pi(t))
P ′′

i (t) = SRM (Pi(t))
evaluate (P ′

i (t) ∪ P ′′
i (t))

if (t+ 1 mod M) == 0 then
for each neighbor j of i do

migration (P ′
i (t) ∪ P ′′

i (t), P ′
j(t) ∪ P ′′

j (t))
Pi(t+ 1) = (µ, λ) proportional selection
(P ′

i (t) ∪P ′′
i (t))

if (γ < τ ) then
adapt SRM’s mutation rate

t := t+ 1
end

end

Figure 7.3: Algorithm of DGA-SRM

7.4 Experimental Setup

We test two kinds of distributed GAs in our simulations. (i) A distributed canonical GA (denoted
as DGA), and (ii) the proposed distributed GA-SRM (denoted as DGA-SRM). Table 7.1 details
the parameters used within each subpopulation by DGA and DGA-SRM. DGA implements the
same +1+...+L communication topology and migration policy used by DGA-SRM described in
7.3.1 and 7.3.4.

The problems we conduct experiments with are the 0/1 multiple knapsack problems described
in 3.1. The large, difficult, and highly constrained1[53] problems generated by the problem test
generator are used to study performance and scalability of the algorithms in a broad range of
classes of problems. Instances of real-world problems with known global optimum, which from
previous efforts seem to be fairly difficult for GAs[52],[31], are also used to show the ability of
the algorithm for global optimization.

7.5 Results and Discussion for Large Random 0/1 Multiple Knap-
sack Problems

As a point of reference for the quality of solutions, Table 7.2 shows results for some of the
test problems obtained by the single population versions of the distributed GAs, denoted as cGA
and GA-SRM, respectively, set with a population size of λ = 100 individuals, T = 106 function
evaluations, and SRM’s adaptation threshold τ = 0.64. In Table 7.2 column Problem identifies the

1http://mscmga.ms.ic.ac.uk/jeb/orlib/info.html
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Table 7.1: Genetic algorithms parameters

Parameter DGA DGA-SRM
Selection Proport. (µ, λ) Proport.
Scaling Linear Linear
Mating (xi,xj), i �= j (xi,xj), i �= j
pc 0.6 1.0

p
(CM)
m 1/n 1/n

p
(SRM)
m - α = 0.5, � = [n, 2]
β - 2

µ : λ - 1 : 2
λCM : λSRM - 1 : 1

Table 7.2: Results by single population cGA and GA-SRM

Problem cGA GA-SRM
Name m n φ Average Stdev Gap Average Stdev Gap

5.100 − 00 5 100 0.25 23271.3 125.75 5.35 24242.8 33.78 1.40
10.100 − 00 10 100 0.25 21846.3 198.94 6.96 22855.4 67.3 2.66
30.100 − 00 30 100 0.25 20494.2 180.49 9.23 21711.8 116.76 3.84
30.100 − 10 30 100 0.50 38509.1 186.49 6.70 40241.9 144.31 2.51
30.100 − 20 30 100 0.75 55348.4 244.34 4.55 57046.1 241.98 1.62
30.250 − 00 30 250 0.25 51920.6 180.11 9.59 55703.9 117.55 3.01
30.500 − 00 30 500 0.25 106023.5 395.15 9.09 113135.3 280.52 2.99

problem instance. Name is the name of the problem, m the number of knapsacks, n the number of
objects, and φ the tightness ratio between knapsack capacities and object weights (restrictiveness
of the capacities). Average is the average of the best solutions in 10 runs, Stdev is the standard
deviation around Average, and Gap indicates the percentage gap between Average and the optimal
value given by the linear programming relaxation[53] (the optimal integer 0/1 solutions for the test
problems are not known).

In our study we observe the influence of the problem difficulty, the subpopulation size, and the
migration rate on the robustness of the distributed GAs. The distributed GAs use a λtotal = 800
individuals and the same T = 106 function evaluations. Also, unless indicated otherwise, the
distributed GAs use a configuration of K = 16 subpopulations (λ = 50), SRM’s adaptation
threshold τ = 0.56, and a 10% migration rate.

7.5.1 Problem Difficulty

Factors related to the difficulty of the problem are the tightness ratio φ, the number of objects n,
and the number of knapsacks m.

First we observe the performance of the distributed GAs on problems with different ratio φ.
Figure 7.4 illustrates results by DGA and DGA-SRM on problems of m = 30 capacities, n = 100
objects, and ratio φ = {0.25, 0.50, 0.75}. To present a broader picture this and the subsequent
figures plot the error Gap for migration intervals of M = {2, 5, 10, 20, 40, 100} generations as
well as results when no migration is used and the subpopulations evolve in total isolation (indicated
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by NM). Results obtained by the single population GAs are also indicated on the left Y axis.
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Figure 7.4: Tightness of the Capacities φ (K = 16, 10% migration, m = 30, n = 100).
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Figure 7.5: Objects n (K = 16, 10% migration, m = 30, φ = 0.25).

The main conclusions drawn from Figure 7.4 are as follows. (i) The quality of the solutions
found by both DGA and DGA-SRM decreases (largerGap values) as the ratio φ is reduced. These
results are quite intuitive since reductions on φ imply reductions on the fraction of possible subsets
of objects that constitute feasible solutions. Consequently, the ratio between the feasible part of
the search space and the whole search space gets smaller and the smaller this ratio is the harder
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Figure 7.6: Knapsacks m (K = 16, 10% migration, n = 100, φ = 0.25).

it is to find feasible results. This was also observed for 0/1 single (m = 1) knapsack problems
in [30]. (ii) The performance of DGA-SRM without migration is by far superior to DGA without
migration indicating that a better search is being carried out within each subpopulation in DGA-
SRM. (iii) DGA is far away from DGA-SRM unless DGA uses very short migration intervals (2
generations). DGA-SRM achieves high performance with less communication cost for migration,
which could be a big advantage for implementation (note that DGA-SRM even without migration
performs better than DGA with migration intervals of 5 generations). It seems that DGA-SRM has
an optimum range of migration interval (around 10 ∼ 20, for a 10% migration rate) that attains the
minimum error gap. Different from DGA, very short migration intervals (less than 10 generation)
deteriorates the performance of DGA-SRM. (iv) DGA and DGA-SRM can achieve better results
than its single population versions if migration is included.

Second we fix the number of capacities m and tightness ratio φ and observe the effect of the
number of objects n. Figure 7.5 illustrates results by DGA and DGA-SRM on problems of
m = 30 capacities, n = {100, 250, 500} objects, and ratio φ = 0.25. From Figure 7.5 we can see
that increasing the number of objects n also makes it harder for the algorithms to find high quality
solutions. Also, we can clearly see the DGA-SRM’s optimum migration interval in this figure.
The general behavior by DGA-SRM and DGA are similar to that observed in Figure 7.4.

Third, we observe the effect of the number of knapsacks m fixing the number of objects n
and tightness ratio φ. Figure 7.6 illustrates results by DGA and DGA-SRM on problems of
m = {5, 10, 30} capacities, n = 100 objects, and ratio φ = 0.25. Similar to φ and n, from
Figure 7.6 we can see that increasing the number of knapsacks m has an strong impact on the
performance of the algorithms and that between DGA and DGA-SRM the latter exhibits higher
robustness. Also, looking at Figure 7.5 and Figure 7.6, judging from the relative increase on
the Gap values, increasing the number of knapsacks (constraints) has an stronger impact than
increasing the number of objects (search space).
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7.5.2 Subpopulation Size

Fourth, we choose one problem (m = 30, n = 100, and φ = 0.25) and observe the effect
of reducing the subpopulation size while increasing the number of subpopulations (the overall
number of offspring and the total number of function evaluations are kept constant to λtotal = 800
individuals and T = 106 evaluations). Figure 7.7 illustrates results by DGA and DGA-SRM
using K = {8, 16, 32} subpopulations with subpopulations sizes of λ = {100, 50, 252} and τ =
{0.64, 0.56, 0.50}, respectively.

DGA-SRM tolerates population reductions better than DGA (see NM for both algorithms)
and can still approach GA-SRM’s performance relaying on migration. We could not recognize big
performance differences between K = 8 and K = 16 while smaller subpopulations (K = 32)
tend to require shorter migration intervals.
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Figure 7.7: Subpopulation size λ, K (10% migration, m = 30, n = 100, φ = 0.25).

7.5.3 Migration Rate

Fifth, the effect of the migration rate is also observed. Figure 7.8 illustrates results by DGA and
DGA-SRM on one of the problems using migration rates of {5%,10%,15%}.

In DGA-SRM smaller migration rates need shorter migration intervals and vice versa. To
reduce communication cost, it may be better to use larger migration intervals with higher migration
rates in DGA-SRM.

7.5.4 Adaptation

Figure 7.9 illustrates the adaptation of mutations rates in DGA-SRM. The figure shows the average
number of the actual bits flipped by SRM over the generations for some of the subpopulations.
From Figure 7.9 we can see that adaptation of mutation rates follow similar trajectories and that

2When K = 32 DGA-SRM uses only λ = 24 to keep a 1 : 1 balance for offspring creation between CM and SRM.
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Figure 7.8: Migration Rate λm/λ (K = 16, m = 30, n = 100, φ = 0.25).

for most of the run the mutation rates are higher than the usual expected 1 flipped bit of canonical
algorithms. It should also be noticed that the instantaneous averages differ, which is a consequence
of the local adaptation within each subpopulation. The local adaptation, besides varying mutation
rates, also induces different mutation rates for each subpopulation Pi(t).
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Figure 7.9: SRM’s adaptation in DGA-SRM (K = 16, m = 30, n = 100, φ = 0.25).
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7.5.5 Extinctive Selection

The remarkable increase in solution quality by the canonical DGA when very short migration
intervals are used, i.e. 2 generations, seems at first glance rather counterintuitive (with such mi-
grations intervals one might expect faster convergence but not higher solution quality). However,
this is explained by the nature of the test problems and the additional selection intensity caused by
migration.

As mentioned above, the problems used in this study are highly constrained with sparse feasi-
ble regions where algorithms with penalty functions have a hard time finding feasible solutions[53,
30]. A higher selection pressure in these problems is helping the algorithms to focus the search
around the feasible regions (this point has been previously verified in [35] for single population
GAs).

The strategies chosen in this work for migrants selection and replacement (selection of the
best and replacement of the worst) causes an increase in the overall selection intensity[97]. These
strategies combined with very short migration intervals are capable of producing significant selec-
tion pressures, which are being used by the DGA. In the case of DGA-SRM, the higher selection
pressure is incorporated within the selection mechanism.

Figure 7.10 illustrates the effect of extinctive selection in the distributed algorithms and clari-
fies the contributions of extinctive selection and adaptive mutation SRM in DGA-SRM. We show
results by the canonical DGA with λ = 50 individuals (DGA(50)) in each subpopulation, a DGA
using (µ, λ) Proportional Selection with µ = 25 parents and λ = 50 offspring in each subpopula-
tion (DGA(25,50)), and the DGA-SRM with similar population sizes (DGA-SRM(25,50)). From
this figure we see that extinctive selection alone increases the reliability of the distributed GA in
this kind of problems. However, when adaptive parallel mutation, SRM, is used the robustness of
the algorithm is improved further.

Figure 7.11 plots the average fitness in the 10 runs of the best solution over the generations
by DGA-SRM and DGA. From this figure it can be observed that DGA-SRM has not only higher
convergence reliability due to SRM but also a higher search speed caused by extinctive selection.

7.6 Results and Discussion for Real-World 0/1 multiple knapsack
problems

In this section we show results on real world instances of 0/1 multiple knapsack problems for
which the global optima are known. We especially show results for Weing7[98], which is a well-
known problem in which GAs have had problems finding the global optimum. For this problems
the fitness function used is f1 as described in 7.4 similar to to [35],[52]. Every experiment
presented here consists of 100 independent runs. Each run uses a different seed for the random
initial population. The parameters used by GAs are the same used in the previous sections and
are indicated in Table 7.1. The results achieved in real world problems confirm our conclusions
obtained using random problems generated by the test problem generator.

First Table 7.3 presents results for problem Weing7 by the single population cGA and GA-
SRM running for T = 8×105 function evaluations in each run and using offspring populations of
{800, 400, 200, 100, 50, 253} individuals. In Table 7.3 µ and λ indicate the parent and offspring
population sizes, G is the number of generations, N is the number of times the global optimum

3For GA-SRM we use only 24 individuals instead of 25 to keep a 1 : 1 balance for offspring creation by CM and
SMR. In this case, the number of evaluations performed by GA-SRM is less than T . The exact number can be calculated
by G × λ.
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Figure 7.10: Effect of Extinctive Selection (K = 16, m = 30, n = 100, φ = 0.25).
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Figure 7.11: Fitness Transition (K = 16, m = 30, n = 100, φ = 0.25, M = 20).

was found in the 100 runs, Average is the average of the best solutions, and Stdev is the standard
deviation around Average, respectively.

Table 7.3 shows that the inclusion of parallel adaptive mutation, SRM, and extinctive selection
significantly increases the reliability of the single population GA in all configurations of population
size. Since the population size itself is an important parameter, especially in distributed genetic
algorithms, a robust performance in various population sizes is desirable. GA-SRM produces
high values for N and Average while reducing Stdev. cGA, however, fails to locate the global
optimum in all occasions and Average is very poor. It should be noticed that GA-SRM using
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Table 7.3: Results for Weing7 (105,2) by cGA and GA-SRM using different population sizes
(T = 8 × 105)

cGA GA-SRM
G λ N Average Stdev µ λ τ N Average Stdev

250 800 0 1086807.61 1584.24 400 800 0.58 35 1095401.42 34.55
500 400 0 1087025.10 1401.86 200 400 0.52 39 1095406.57 30.73

1000 200 0 1087515.92 1377.19 100 200 0.46 59 1095418.01 34.34
2000 100 0 1087311.95 1555.19 50 100 0.4 77 1095430.51 26.51
4000 50 0 1086579.32 1304.48 25 50 0.3 60 1095417.55 40.30
8000 25 0 1085391.20 1964.27 12 24 0.2 21 1095302.72 435.54

Table 7.4: Results for Weing7 (105,2) by DGA and DGA-SRM (λtotal = 800, T = 8 × 105).

DGA DGA-SRM
K λm/λ L R M N Average Stdev M N Average Stdev
2 10% 1 40 5 0 1092188.75 819.12 100 41 1095401.69 43.94
2 5% 1 20 5 0 1091514.5 963.76 100 45 1095408.92 34.74
2 1% 1 4 5 0 1089631.68 1239.06 80 55 1095415.47 34.67
2 NM - - 0 1086895.44 1397.73 - 44 1095409.42 31.68
4 10% 2 10 5 0 1093376.30 602.03 60 48 1095411.94 31.90
4 5% 2 5 5 0 1092294.43 752.08 60 57 1095417.66 31.57
4 1% 2 1 5 0 1090015.36 1208.44 80 61 1095420.43 30.73
4 NM - - 0 1087401.30 1342.98 - 52 1095414.46 31.93
8 10% 5 2 5 0 1094423.4 433.38 80 63 1095421.44 30.84
8 5% 5 1 5 0 1093284.95 733.24 100 66 1095423.58 29.84
8 1% 1 1 5 0 1089452.96 1082.41 80 77 1095430.51 26.51
8 NM - - 0 1087385.56 1729.4 - 60 1095419.80 30.86

16 10% 5 1 5 0 1094266.87 449.20 40 67 1095424.21 29.62
16 5% 3 1 5 0 1092943.14 686.05 30 66 1095423.33 30.29
16 1% 1 1 5 0 1090143.21 1114.66 10 62 1095421.06 30.58
16 NM - - 0 1086404.14 1818.83 - 39 1095404.52 35.44
32 10% 3 1 5 0 1093783.26 514.6 20 51 1095414.13 31.49
32 5% 1 1 5 0 1090507.10 1063.99 10 49 1095412.62 31.84
32 NM - - 0 1084922.07 1817.16 - 9 1095284.11 119.23

only a (µ, λ) = (12, 24) population configuration performs better than any cGA. For the same
number of function evaluations there is an appropriate combination of population size and number
of generations to achieve better results. Intermediate population sizes running for intermediate
number of generations perform better than (i) bigger populations running for a small number of
generations and (ii) smaller populations running for a higher number of generations.

Next, we observe the effect that the parallel formulation of genetic operators tied to extinc-
tive selection has on the performance of distributed GAs. We fix the overall population size of
the distributed algorithms to λtotal = 800 and the overall function evaluations to T , and con-
duct several experiments partitioning λtotal into K = {2, 4, 8, 16, 32} populations. For each
subpopulation configuration in our experiments we keep the same ratio of the number of arriving
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Table 7.5: Results for other problems by DGA and DGA-SRM (K = 16, λtotal = 800, T =
4 × 105)

DGA DGA-SRM (τ = 0.35)
Problem (n,m) K λm/λ L R M N Average Stdev M N Average Stdev

Petersen6 (39,5) 16 10% 5 1 5 0 10552.96 19.46 80 54 10611.63 6.91
16 1% 1 1 5 0 10506.90 26.11 140 77 10614.82 5.82
16 NM - - 0 10490.91 30.19 - 71 10614.03 6.22

Petersen7 (50,5) 16 10% 5 1 5 0 16442.39 21.52 40 89 16535 5.94
16 NM - - 0 16347.02 32.03 - 60 16530.18 9.28

Sento1 (60,30) 16 10% 5 1 5 0 7694.22 9.97 40 98 7771.78 1.54
16 NM - - 0 7563.32 43.62 - 89 7770.79 3.44

Sento2 (60,30) 16 10% 5 1 5 0 8661.23 19.18 40 84 8721.32 2.11
16 NM - - 0 8559.52 25.4 - 70 8720.89 2.31

migrants to the offspring subpopulation size λm/λ = L × R/λ and vary the migration interval
M = {5, 10, 20, 30, 40, 60, 100}.

Table 7.4 presents the results by DGA and DGA-SRM for migration rates of 100 × λm/λ =
{10, 5, 1} (values for number of links L and the number of migrants R are chosen accordingly).
Only the best results achieved in the migration intervals M mentioned above are shown. It also
presents the results when there is no migration and the subpopulations evolve in total isolation
(denoted NM in the table).

Table 7.4 shows that DGA-SRM outperforms DGA for any configuration of number of sub-
populations and subpopulation sizes. It should be noticed that the performance by DGA-SRM
even without migration is higher than DGA. Similarly, DGA-SRM also exhibits higher conver-
gence reliability (higher values of N and Average with smaller Stdev) than its corresponding sin-
gle population GA-SRM (800 offspring and T evaluations in Table 7.3). Actually, except for
K = 32, DGA-SRM without migration produce better results than GA-SRM. If low migration
rates are included then DGA-SRM further improves GA-SRM results. A 10% migration rate turns
out to be too high for DGA-SRM in configurations of K = {2, 4, 8} subpopulations. Especially
for K = {2, 4} DGA-SRM without migrations performs better than DGA-SRM with migration.
For these population sizes a 1% migration rate is enough. As we increase the number of subpopu-
lations and reduce the subpopulation sizes migration is required with more frequency. Something
similar happens when migration rate is reduced. Better results are obtained by DGA-SRM with
10% migration rate. However, results by 1% migration rate are still pretty high.

DGA also presents convergence reliability higher than cGA. However, significant improve-
ments by DGA are achieved only if migration is performed very frequently (small values of M ).
For higher migration intervals the performance of DGA approaches to that of cGA. Also, It should
be noticed that convergence reliability of the single population GA-SRM is higher than the dis-
tributed canonical GA (DGA).

Table 7.5 shows the results for other real world 0/1 multiple knapsack problems by DGA and
DGA-SRM running for T = 4 × 105 using K = 16 subpopulations and a 10% migration rate.
The distributed algorithms present a similar behavior to that observed in Weing7 problem.

The migration rate that leads to higher performance could be different for each distributed
configuration of K and λ. Thus, values for N , Average, and Stdev presented in Table 7.4 and
Table 7.5 do not necessarily show the best results that can be achieved by the distributed algorithms
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Figure 7.12: Effect of the Migration Interval: Four subpopulations (K = 4), migration rate
λm/λ = 10%.
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Figure 7.13: Effect of the Migration Interval: Sixteen subpopulations (K = 16), migration rate
λm/λ = 10%.

but rather a more general tendency when we scale down subpopulation sizes and increase the
number of subpopulations using a unified migration rate criteria.

Figure 7.12 and Figure 7.13 illustrate the effect of the migration interval M in the distributed
GAs using configurations of K = 4 and K = 16 subpopulations and a 10% migration rate. From
this figures we should notice that DGA-SRM maintains high Average regardless of the migra-
tion interval while DGA achieves its better results for very small values of M (high migration
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Figure 7.14: Fitness transition over the generations (K = 16)
Fitness

Time

DGA-SRM(25,50), K=16
GA-SRM(400,800)
DGA(50), K=16
cGA(800)

1.00.5 0.750.25
1.070

1.075

1.080

1.085

1.090

1.095

(×106)

Figure 7.15: Fitness transition over time (K = 16)

frequency). Smaller migration cost without deterioration of performance is also an important
feature of DGA-SRM. DGA performance decreases notoriously as M is increased. DGA-SRM
for K = 16 subpopulations (50 offspring individuals each) with intermediate migration inter-
vals (around 40 generations) produces best results. Also, if M is too small the performance by
DGA-SRM is worse than DGA-SRM without migration. This is because the selection pressure
induced by migration becomes too high for DGA-SRM as the migration interval M reduces. It is
interesting to note that for K = 4 subpopulations best results are achieved by DGA-SRM without
migration rather than by DGA-SRM with migration. In this case, the selection pressure induced
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by a 10% migration rate in K = 4 large subpopulations (200 offspring individuals each) is already
too high for DGA-SRM.

Figure 7.14 plots the average in 100 runs of the best so far solutions over the generations by
the single population algorithms and the distributed algorithms for K = 16. Similarly, Figure
7.15 illustrates the solution quality over actual time by the same algorithms. These figures clearly
show the higher convergence reliability and higher search speed by the single and distributed
algorithms using parallel genetic operators. Also, it should be noted that using the distributed
version of the parallel formulation of genetic operators we could remarkably reduce the overall
time to completion while keeping high solution quality.

7.7 Conclusions

In this chapter we have studied the performance of a distributed GA that incorporates parallel
cooperative-competitive genetic operators (DGA-SRM). A series of controlled experiments using
various large and difficult 0/1 multiple knapsack problems were conducted to test the robustness of
DGA-SRM. Comparisons were made between DGA-SRM and a canonical distributed GA (DGA).

We observed that high selection intensity helps to perform a better search in this kind of com-
binatorial problems. The DGA-SRM incorporates a higher selection pressure within its selection
mechanism. The canonical DGA, however, has to rely in the higher selection intensity introduced
by migration and can achieve high results only at the expense of very high communication cost.

The inclusion of high mutation parallel to crossover within DGA-SRM improves further the
convergence reliability of the canonical DGA regardless of the difficulty of the problem. Also,
due to the high selection intensity within each subpopulation and its built-in source of diversity by
SRM, the search speed of the algorithm is increased without sacrificing the quality of solutions.
DGA-SRM even without migration produces very high results compared to canonical DGA with
small migration intervals.

As future works, the effect that other communication topologies and migration policies have
on the performance of this kind of hierarchical GA should be investigated. Also, we would like to
extend the concept of GA-SRM to cellular models.
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Chapter 8

Real World Application: Halftone
Image Generation

This chapter shows that GA-SRM can be successfully applied to real world problems in which
efficiency in processing time and computer memory is a major issue. The improved GA-SRM is
extended to the two dimensional image halftoning problem and an accelerated image halftoning
technique with tiny populations is presented. Simulation results show that the proposed scheme
is impressively efficient reducing computer memory and processing time required to obtain high
quality halftone images, making the improved scheme appealing for practical implementations of
the image halftoning technique using GAs.
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8.1 Introduction

Evolutionary computation (EC) is a multidisciplinary growing field that simulates evolution for
problem solving. Global search abilities, adaptation to the task in hand, and robust performance
are favorable characteristics of evolutionary algorithms that have made them successful to solve
various kinds of complex optimization problems[15, 99]. In particular, Genetic Algorithms (GAs)
have vigorously been developed and analyzed since Holland’s[11] and Goldberg’s[16] contribu-
tions and employed in different kinds of application domains. In the signal processing area, a
number of application methods using GA are also being increasingly developed[100]. Though
evolutionary algorithms are having great success, it is known that evolutionary algorithms have
not been able to comply especially with efficiency requirements in several applications that require
intensive processing time. Research towards improving the effectiveness and efficiency of evolu-
tionary algorithms is needed in order to broaden their field of application in industry and real world
problems. With this motivation, in previous chapters we have proposed, analyzed, and showed that
GA-SRM, a GA that applies crossover and varying mutation in a parallel cooperative-competitive
manner, greatly improves the performance of GAs for global optimization problems[101, 34]. Ac-
celeration of the search process and robustness even with small populations are also remarkable
characteristics observed in the improved GA-SRM.

In this chapter we show that GA-SRM can be successfully applied to real world problems
in which efficiency in processing time and computer memory is a major issue. In our work, we
especially focus on the image halftone technique using GA. Kobayashi et al[102, 103] use a GA
to generates bi-level halftone images with quality higher than conventional techniques such as or-
dered dithering, error diffusion and so on[104]. Both high gray level and high spatial resolution
are attained in the halftone images generated by this scheme. However, this scheme uses a sub-
stantial amount of computer memory and processing time[102, 103] that deprive it from practical
implementations.

We extend the improved GA[101, 34] to the two dimensional image halftoning problem with
the objective to obtain a new efficient GA based image halftoning scheme that can be suitable for
practical implementations[105, 106]. That is, a scheme that can generate high quality images, such
as those obtained by the conventional scheme using GA[102, 103], but minimize computer mem-
ory and processing time simultaneously. The proposed scheme is applied to SIDBA’s benchmark
images in our simulation. Simulation results show that our scheme impressively reduces computer
memory and processing time required to generate high quality images. For example, compared to
the conventional halftoning technique with GA[102, 103], our scheme using only a 2% population
size1 requires about 15% of the objective function evaluations (processing time) to generate high
quality images. The results make our scheme appealing for practical implementations of the image
halftoning technique using GA.

8.2 Conventional Image Halftoning Technique Using GA

In the conventional image halftoning technique using GA an input gray scale image is first divided
into non-overlapped blocks of n × n pixels. Then, the two dimensional optimum binary pattern
for each image block is searched using a GA[102, 103]. The GA uses a n × n two dimensional
binary representation for the chromosomes. Crossover is implemented to interchange either sets
of adjacent rows or columns between two chromosomes. Mutation inverts bits with a very small

1A 2 parents and 4 offspring configuration in our method against a 200 parents and 200 offspring configuration used
in [102, 103].
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probability per bit and it is applied after crossover similar to canonical GA[11, 16].
Individuals are evaluated for two factors required to obtain visually high quality halftone im-

ages. (i) One is high gray level resolution (local mean gray levels close to the original image), and
(ii) the other is high spatial resolution (appropriate contrast near edges)[102, 103]. The function
that measures the individuals’ error to simultaneously satisfy these conditions is expressed by

e(x(t)
i ) = ωmEm(x(t)

i ) + ωcEc(x
(t)
i ) (1)

where x
(t)
i is i-th individual at t-th generation, Em and Ec are the errors for gray level factor and

contrast one, and ωm and ωc are their weighting parameters, respectively. Then individuals’ fitness
is assigned by

f(x(t)
i ) = e(x(t)

W ) − e(x(t)
i ) (2)

where e(x(t)
W ) is the error associated with the worst individual at t-th generation. GA is used to

find the optimum compromise between (i) and (ii) with the above fitness function. High qual-
ity, visually satisfactory, halftone images are obtained with 200 individuals and 200 generations
(totally 40,000 objective function evaluations per block)[102, 103].

8.3 Accelerated Halftoning Scheme Using GA-SRM

8.3.1 Extension to Two Dimensional Image Halftoning Problem

In this section, the improved GA[101, 34] is extended to the two dimentional image halftoning
problem. The nature of the problem must be taken into account and reflected in the representation
used for the chromosome and in the implementation of two kinds of genetic operators as well. The
extended scheme is described in detail as follows.

Two Dimensional Representation

A chromosome is represented as a n × n 2-dimensional binary structure[102, 103]. That is, the
chromosome is interpreted as having n rows and n columns. Thus, let us generally denote a bit in
the individual x

(t)
i as b(u, v) (0 ≤ u ≤ n− 1, 0 ≤ v ≤ n− 1) from now on.

Two Dimensional CM

Crossover is implemented for two dimentional chromosomes similar to [102, 103]. Two random
numbers, ct and cp, define its method of operation. First, ct = N [0, 1], is sampled to decide
whether to interchange chromosomes’ rows or columns from two previously selected parents, say
(i) if ct = 0, interchange rows and (ii) if ct = 1, interchange columns. Then, cp = N [0, n]
indicates the crossing point. Both ct and cp are sampled anew for each individual created by CM.
An example2 of the 2-dimensional crossover is shown in Figure 8.1. Although crossover can
potentially create two offspring at a time, only one of them is kept being this decision also made
at random in our scheme.

After crossover, mutation inverts3 bits with a small probability per bit, p(CM)
m , analogous to

canonical GA[11, 16]. Thus, mutation in CM is of a quantitative nature after which the number of
0s and 1s in the chromosome may change.

2Only one of the two possible offspring is shown for both types of interchange.
3For every bit actually selected for mutation a 0 becomes 1 and vice versa.
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Figure 8.1: Illustration of 2D Crossover

Tow Dimensional SRM

In order to produce offspring with SRM, individuals are selected from the parent population P (t),
an exact copy is created and then mutation is applied only to the bits inside a mutation block.
SRM is provided with an Adaptive Dynamic-Block (ADB) mutation schedule similar to Adaptive
Dynamic-Segment mutation (ADS)[101, 34].

With ADB mutation is directed only to a block (square region) of the chromosome and the
mutation block area �× � is dynamically adjusted every time a normalized mutants survival ratio
falls under a threshold, γ < τ . The normalized mutant survival ratio is specified by

γ =
µSRM

λSRM
· λ
µ

(3)

where µ is the number of individuals in the parent population P (t), µSRM is the number of
individuals created by SRM present in P (t) after selection, λSRM is the offspring number created
by SRM and λ is the total offspring number, λCM + λSRM . The block’s side length reduction is
summarized below:

� = n, (t = 0)
if (γ < τ) and (� > 2)
� = �/2

where the block’s side length � varies from n to 2, [n, 2] following a decreasing approach as shown
in Figure 8.2. The offset position of the mutation block, ∆s = (φs, ψs), for each chromosome is
chosen at random. Thus, φs = N [0, n − �] and ψs = N [0, n − �]. The final position is calculated
by ∆f = (φf , ψf ) = (φs + �− 1, ψs + �− 1).

Two kinds of mutation schemes are investigated for ADB: (i) quantitative and (ii) qualitative
mutation. Quantitative mutation in ADB is implemented as the standard bit flipping process, i.e.
0 becomes 1 and vice versa. Mutation probability for the bits inside the segment is p(SRM)

m = α.
After this kind of mutation has been applied, the contrast near edges and the local mean average
might change in an individual affecting both Ec and Em in Eq. (1). Quantitative mutation would
allow observing the general effect of parallel mutation in this problem. We call this mutation
scheme quantitative mutation from now on.

On the other hand, qualitative mutation in ADB is implemented as a bit swapping process.
First, a set B is initialized with every bit in the mutation block. A pair of bits are randomly
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Figure 8.2: Adaptive Dynamic-Block mutation (ADB)

marked4 and then swapped. The marked bits are removed from B and the process is repeated until
there are no remaining bits in B. The whole process is summarized in Figure 8.3 and Figure 8.4
enlarges a 4× 4 mutation block to illustrate the bit swapping process for two of the bits. Note that
it is not necessary to set a mutation probability in qualitative mutation since all pairs of bits within
the mutation block are simply swapped. We call this mutation scheme qualitative mutation from
now on.

Note that after qualitative mutation the number of 0s and 1s remains unchanged. In other
words, qualitative mutation has an impact only on the evaluation of the spatial resolution’s error,
Ec, but not on the gray level resolution’s error, Em, in Eq.(1). This kind of mutation could take
better advantage of the high correlation among contiguous pixels in an image[107], and contribute
to a more effective search.

The adaptive mechanism in SRM is designed to control the required exploration-exploitation
balance during the search process.

Selection

(µ, λ) Proportional Selection[108] implements the required extinctive selection mechanism. Se-
lection probabilities are computed by

p(x(t)
i ) =




f(x(t)
i )

µ∑
j=1

f(x(t)
j )

(1 ≤ i ≤ µ)

0 (µ < i ≤ λ)

(5)

where x
(t)
i is an individual at t-th generation which has the i-th highest fitness value f(x(t)

i ),
µ is the number of parents and λ is the number of offspring. This kind of selection has been
characterized as dynamic, extinctive pure selection[108]. Also, selection is reinforced to assure
that the two parents selected for crossover are different avoiding that an individual crosses with
itself,5 i.e. the parents for crossover are x

(t)
i and x

(t)
j (i �= j).The extinctive nature of this selection

mechanism subjects SRM’s and CM’s offspring to compete for survival.
4The bits’ coordinates are different but the bit values could be the same; for example, b(0, 0) = 0 and b(3, 2) = 0.
5Note that for parent selection we do not check whether two individuals have identical genetic information.
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B = {b(u, v);φs ≤ u ≤ φf , ψs ≤ v ≤ ψf}
while B is not empty
mark(B); randomly mark b′, b′′ ∈ B(b′ �= b′′)
sawp(b′, b′′); swap the bits b′ and b′′,

then B = B − {b′, b′′}

Figure 8.3: Bit swapping

0 0 0 1
1 0 1 1
1 1 1 0
1 1 1 0

����
����

mark(B)
�
�
�
�
��	

b′





�b
′′ swap(b′, b′′)

0 1 0 1
1 0 1 1
1 1 1 0
0 1 1 0

����
����

Figure 8.4: Illustration of bit swapping process for qualitative mutation (4 × 4 mutation block)

8.4 Experimental Results and Discussion

8.4.1 Experimental Setup

The improved GA extended to the two dimensional image halftoning problem is applied to SIDBA’s
benchmark images in our simulation. The size of the original image is 256 × 256 pixels with 256
gray levels. The evaluation function is the same used in [102, 103] and the weighting parame-
ters are set to wm = 0.2 and wc = 0.8. An image is divided into 256 blocks, each one of size
16 × 16 pixels. For each block, the algorithm was set with different seeds for the random initial
population and ended after the same T = 4 × 104 evaluations used in [102, 103] were performed
(the number of generations is calculated as T/λ in this scheme). Mutation probability for CM is
set accordingly to p(CM)

m = 0.001. Unless stated otherwise, in every experiment in the following
subsections we use “Girl” as the experimental image, λCM : λSRM = 1 : 1 for offspring creation,
and µ : λ = 1 : 2 (extinctive pressure) which in [101, 34] proved to be the best parameters’
balance for a robust and reliable search. Also, we use a τ = 0.40 as a threshold for the normalized
mutant survival ratio specified by Eq. (3). Mutation probability for ADB when it is implemented
with quantitative mutation is set to p(SRM)

m = 0.125. Again, note that it is not necessary to set a
mutation probability in qualitative mutation as mentioned in 3.2.3.

8.4.2 Performance Observation with Same Size Offspring Population Used by Con-
ventional Scheme

First, in order to observe the performance by the proposed algorithm (GA-SRM), i.e. the evo-
lution of image quality and its convergence speed, we set the population sizes to µ = λCM =
λSRM = 100. With this values our scheme creates the same number of offspring (200 off-
spring from 100 parents) as the conventional scheme with GA (cGA) does (200 offspring from
200 parents)[102, 103] to attain high quality images. Figure 8.5 shows the image’s average-error
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Figure 8.5: cGA and GA-SRM’s performance using same size offspring population
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Figure 8.6: Mutation block’s side length reduction and SRM-ADB offspring that survive selection

transition, calculated as the average of the best individuals’ error in the 256 image blocks, by the
two schemes. From Figure 8.5 it can be seen that GA-SRM converges faster and reaches better
quality levels than cGA. Also, as expected, qualitative mutation performs better than quantitative
mutation. Under this population configuration, GA-SRM needs only 0.34 T evaluations to sur-
pass the final image quality levels obtained by cGA when qualitative mutation is used (GA-SRMs)
whereas 0.7 T evaluations are needed in the case of quantitative mutation (GA-SRMf).

SRM’s behavior can be observed from Figure 8.6, which presents the block’s side length
reduction, �, and the number of individuals produced by SRM-ADB that survive selection, µSRM ,
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Figure 8.7: Performance by cGA with different populations sizes

for one image block. From this figure it is clear that (i) SRM contributes with beneficial mutations
(carried by mutants that survive selection) in every generation of the search process, and (ii) the
key factor for SRM to be an effective operator lies in its own regulation mechanism: mutation
block adjusted every time the number of mutants that survive selection falls under a minimum
level τ .

8.4.3 Effect of Population Size Reduction

Next, since GA-SRM introduce higher levels of diversity than cGA we also want to observe the
performance of the algorithms with smaller populations where diversity is even a more impor-
tant issue. Figure 8.7 show results by cGA using {200,100,40,20,4} population configurations.
Figure 8.8 and Figure 8.9 present results for equivalent configurations µ = λCM = λSRM =
{100, 50, 20, 10, 2} by GA-SRMf and GA-SRMs, respectively, along with those obtained by
cGA using a 200 population. From Figure 8.7 we can see that the 200 population size leads to the
best image quality in cGA. As the population size is reduced the final image quality is also dete-
riorated. Figure 8.8 shows that the introduction of quantitave mutation allows us to considerably
reduce population sizes from 100 to 10 and still obtain a gain on search speed to generate images
of quality similar or a little better compared to cGA. However, a further reduction in population
sizes from 10 to 2 is not effective. In this minimum configuration the levels of mutation introduce
by GA-SRMf are too high, which does not allow SRM’s offspring to compete properly against
CM’s offspring. We should also mention that a population size of 2 individuals was tried for cGA
obtaining a final image’s average-error above 112.

In Figure 8.9 we observe that GA-SMRs using qualitative mutation with bigger populations
eventually achieve a higher image quality (this trend is similar in cGA and GA-SRMf as well).
However, smaller populations converge faster and always produce a better image quality that the
one obtained by cGA. In this case, qualitative mutation not only allows to reach higher levels of
image quality but also to reduce the population configuration to its minimum level. This is because
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Figure 8.8: Performance by GA-SRMf (quantitative mutation) with different population sizes

��������
�����	

����
�����	

���
�����	

���
�����	

���
�����	

��

������������

���������
���

����������


���

���

���

�� 

��!

���

���

Figure 8.9: Performance by GA-SRMs (qualitative mutation) with different population sizes

SRM with this kind of mutation always contributes to introduce diversity in levels such that SRM
could be competitive with CM regardless of the population size, avoiding premature convergence,6

which is an important concern in cGA[11, 16]. It should be noticed that the probability of cloning
with this operator is higher when the mutation block’s lenght has reached its minimum lenght.
In this way qualitative mutation also introduces a kind of implict elitism. These characteristic

6All the individuals are trapped on local optima in earlier generations.
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Figure 8.10: Performance with different parameter balance for offspring creation (µ = 2 and
λ = 4 configuration)

explains the GA-SRM’s robust performance even with tiny populations and allows us to choose
the smallest memory configuration to generate halftone images without compromising the image
quality. In fact, the improved GA-SRM using qualitative mutation with µ = 2 and λ = 4 configu-
ration (merely 2% of the population size used in [102, 103]) attained after only 0.15T evaluations
the same image quality obtained by cGA after T evaluations, especially for “Girl” image.

8.4.4 Effect of Parameters’ Balance for Offspring Creation

Furthermore, the parameter’s balance for offspring creation is studied for the smallest configura-
tion µ = 2 and λ = 4. Results obtained by GA-SRMs using configurations of (µ, λCM , λSRM ) =
{(2, 4, 0), (2, 3, 1), (2, 2, 2), (2, 1, 3)} are shown in Figure 8.10. This figure clearly shows
that the diversity required to find the global optimum comes from SRM. That is, when no in-
dividuals are created by SRM, (µ, λCM , λSRM ) = (2, 4, 0), the algorithm converges prema-
turely with worse performance than cGA whereas even a one SRM’s offspring configuration,
(µ, λCM , λSRM ) = (2, 3, 1), outperforms cGA.

Figure 8.10 also highlights the importance of a proper balance between operators. A config-
uration that emphasizes CM’s over SRM’s offspring number will tends to converge faster. For
example, see (µ, λCM , λSRM ) = (2, 3, 1) and (µ, λCM , λSRM ) = (2, 1, 3). On the other hand,
the lack of enough SRM’s offspring may result in a lower optimum. In this work, analogous to
[101, 34], a 1 : 1 operators’ balance has proved again to be the best choice for offspring creation
that leads to a better optimum in the shortest time. This is because the operators are properly
balanced and SRM is implemented to be competitive to CM, and consequently the cooperation
expected from them emerges producing a higher convergence velocity and reliability. Although
the same operators’ balance is used for all image blocks and it is kept constant through the en-
tire evolution in this work, it may be worth assigning dynamic configurations based on individual
block’s characteristics. For example, blocks that not include contrast near edges may be favored by
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Figure 8.11: cGA and GA-SRMs’s performance for “Moon Surface” and “Aerial”
((µ, λCM , λSRM ) = (2, 2, 2) configuration in GA-SRMs)

a configuration that either emphasizes CM’s over SRM’s offspring or starting with a 1 : 1 balance
later on switches to a CM intensive regime. This point deserves future research.

8.4.5 Other Benchmark Images

It should be mentioned that similar behavior was also observed for other benchmark images and
weighting parameters in Eq. (1). Main results for “Moon Surface” and “Aerial” images obtained
by the proposed GA-SRM using qualitative mutation with a (µ, λCM , λSRM ) = (2, 2, 2) config-
uration are shown in Figure 8.11, where the weighting parameters are the same used for “Girl”,
wm = 0.2 and wc = 0.8. Analogous to the case of “Girl”, the evolution is accelerated by GA-
SRMs even with the smallest memory configuration, and the evaluation times necessary to reach
the final result obtained by cGA are remarkably reduced. The exact reduction of the number of
evaluations would depend on the characteristics of the input image. For example, as shown in
Figure 8.11, 0.29 T and 0.30 T evaluations were requiered for “Moon Surface” and “Aerial”,
respectively.

8.4.6 Generated Images

Figure 8.12 shows the original image “Girl”, the generated halftone image by cGA after T and
0.15 T evaluations and those generated by GA-SRM using qualitative mutation after T and 0.15
T evaluations for visual comparison. There is a notorious difference between (c) and (d). On the
other hand, we cannot visually recognize the difference between (b) and (d).

Figure 8.13 shows the original image and the generated halftone images for “Moon Surface”
and “Aerial”. Although in the plots of Figure 8.11 we can observe that GA-SRM obtains better
quality images than cGA, from the generated images in Figure 8.13 we cannot visually recognize
the difference between (b) and (c) in the case of “Moon Surface” at 0.29 T , and also between (g)
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and (h) in the case of “Aerial” at 0.30 T , which differs from the case of “Girl”. However there is
a notorious visual difference at 0.15 T evaluations between (d) and (e) for “Moon” and between
(i) and (j) for “Aerial”, analogous to the case of “Girl”. It should be noticed that our scheme still
keeps enough image quality even at 0.15 T evaluations, and thus almost no deterioration from
(c) to (e), and from (h) to (j) is visually recognized. Summarizing our study, with the proposed
scheme almost the same results as the conventional scheme can be surely obtained for various
images if we spend at most about 0.3 T evaluations. In addition, from a practical point of view, we
can obtain halftone images with enough high quality if we spend only about 0.15 T evaluations
(6,000 evaluations).

It should be mentioned that recently the bi-level halftoning technique has been extended to
generate multi-level halftone images. In the multi-level problem the search space becomes signif-
icantly larger than the bi-level problem. Similar to the bi-level case, GA-SRM proved to be very
effective[109, 110].

8.5 Conclusions

In this chapter, based on a new cooperative model for genetic operators, we have extended an
improved GA to the 2-dimensional image halftoning problem. For this kind of problem, the pro-
posed scheme manages to introduce diversity regardless of population size avoiding premature
convergence even when tiny populations are used. This allows us to choose the smallest popu-
lation configuration to generate bi-level images without compromising the higher image quality.
The simulation results show that our scheme impressively reduces computer memory and pro-
cessing time required to generate high quality bi-level halftone images. For example, compared
to the conventional halftoning technique with GA[102, 103], our scheme using only a 2% popu-
lation size (2 parents and 4 offspring configuration) requires about 15% evaluations to generate
high quality images. The results make our scheme appealing for practical implementations of the
image halftoning technique using GA.

As future works, higher levels of adaptation for the improved GA and its application to other
imaging problems should be investigated.

112



(a) Original image

(b) T evaluations (c) 0.15 T evaluations
Halftone by cGA (200 individuals)

(d) 0.15 T evaluations (e) T evaluations
Halftone by GA-SRMs (2 individuals)

Figure 8.12: Original and generated halftone images (“Girl”)
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(a) Original image “Moon Surface”

(b) cGA 0.29 T evaluations
(200 individuals)

(c) GA-SRMs 0.29 T evaluations
(2 individuals)

(d) cGA 0.15 T evaluations
(200 individuals)

(e) GA-SRMs 0.15 T evaluations
(2 individuals)
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(f) Original image “Aerial”

(g) cGA 0.30 T evaluations
(200 individuals)

(h) GA-SRMs 0.30 T evaluations
(2 individuals)

(i) cGA 0.15 T evaluations
(200 individuals)

(j) GA-SRMs 0.15 T evaluations
(2 individuals)

Figure 8.13: Original and generated halftone images (“Moon Surface” and “Aerial”)
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Chapter 9

Simultaneous Halftone Image
Generation with Multiobjective
GA-SRM

The multiobjective nature of most real-world problems makes multiobjective optimization a very
important research topic. In this chapter we show that the concept of GA-SRM can also be effec-
tive for multi-objective optimization of real world applications. The halftoning problem studied in
the previous chapter is in fact a true multiobjective optimization problem. So far, however, the GA
based halftoning techniques have treated the problem as a single objective optimization problem.
Here, the improved GA-SRM is extended to a multiobjective optimization GA to simultaneously
generate halftone images with various combinations of gray level precision and spatial resolution.
Simulation results verify that the proposed scheme can effectively generate several high quality
images simultaneously in a single run reducing even further the overall processing time.
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9.1 Introduction

The multiobjective nature of most real-world problems makes multiobjective optimization (MO)
a very important research topic. Evolutionary algorithms (EAs) seem particularly desirable to
solve MO problems because they evolve simultaneously a population of potential solutions to the
problem in hand, which allows to search for a set of Pareto optimal solutions concurrently in a
single run of the algorithm. Many authors have been increasingly investigating MO using EAs in
recent years and the number of applications has been rapidly growing [111, 112, 113, 114]. In the
signal processing area, application methods using EAs, especially genetic algorithms (GAs), are
also steadily being developed[100].

In this chapter, we especially focus on the image halftoning technique using GAs. Kobayashi
et al.[102, 103] use a simple GA to generate bi-level halftone images with quality higher than
conventional techniques such as ordered dithering, error diffusion and so on[104]. However, it
uses a substantial amount of computer memory and processing time[102, 103]. Recently, Aguirre
et al.[106, 71] have proposed an improved GA-SRM to overcome these two drawbacks of the con-
ventional halftoning technique with GAs. GA-SRM applies varying mutation parallel to standard
crossover & background mutation, putting the operators in a cooperative-competitive stand with
each other[101, 34, 35, 115]. The improved GA-SRM, extended to the halftoning problem, can
generate high quality images achieving a 98% reduction in the population size and an 85%-70%
reduction in processing time.

The halftoning problem is a true MO problem in which high gray level precision and high
spatial resolution must be sought to achieve visually high quality images. The appropriate com-
bination of these two factors is not only device but also application dependent. Moreover, a
combination that is appropriate for one image may not be the best for other, depending on the
characteristics of the individual images. Hence, it is desirable to have a set of generated images
where to choose from the images that best suit an application. The GA based halftoning techniques
mentioned above, however, treat the problem as a single objective optimization problem and can
generate only one image at a time. Thus, to generate a set of images these techniques must do it
sequentially, one at the time.

In this chapter, we extend the improved GA-SRM[106, 71] to a multiobjective optimization
GA and study its behavior and applicability generating simultaneously halftone images with var-
ious combinations of gray level precision and spatial resolution. We especially pay attention to
the dynamics produced by the information sharing in concurrent processes and show how evolu-
tionary multiobjective techniques, besides finding multiple solutions, can also be used as a way of
accelerating the search, which is a significant issue in the halftoning problem. Another important
aspect we look at is the relevance of genetic operators with complementary roles acting in paral-
lel and the importance of using different configurations of the algorithm to search on the various
landscapes of a multiobjective problem. The simulations results show that the proposed scheme
can effectively generate several images in a single run reducing even further the overall processing
time.

9.2 Halftoning Problem with GAs

Kobayashi et al.[102, 103] use a GA to generates bi-level halftone images with quality higher than
traditional techniques such as ordered dithering, error diffusion and so on[104]. An input gray
tone image of R gray levels is divided into non-overlapping blocks of r× r pixels, and then the 2-
dimensional optimum binary pattern for each image block is searched using a GA[102, 103]. The
GA uses an r× r 2-dimensional binary representation for the individuals. Crossover interchanges
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either sets of adjacent rows or columns between two individuals and mutation inverts bits with
a very small probability per bit after crossover similar to canonical GA[11, 16]. Individuals are
evaluated for two factors required to obtain visually high quality halftone images. (i) One is high
gray level precision (local mean gray levels close to the original image), and (ii) the other is high
spatial resolution (appropriate contrast near edges)[102, 103]. The gray level precision error is
calculated by

Em(x(t)
i ) =

1
r2

∑
(j,k)∈block

| p(j, k) − pb(j, k) | (9.1)

where x
(t)
i is i-th individual at t-th generation, p(j, k) is the gray level of the (j, k)-th pixel in the

original image block, and pb(j, k) is the estimated gray level associated to the (j, k)-th pixel from
the generated binary block. To obtain pb(j, k), a reference region around the (j, k)-th binary pixel
(for example 5 × 5 pixels) is convoluted by a gaussian filter that models the correlation among
pixels. On the other hand, the spatial resolution error is calculated by

Ec(x
(t)
i ) =

1
r2

∑
(j,k)∈block

| p̂(j, k) − q̂(j, k) | (9.2)

p̂(j, k) = p(j, k) − p̄(j, k) (9.3)

q̂(j, k) = (q(j, k) − 1
2
)R (9.4)

where p̄(j, k) is the local mean gray level around the (j, k)-th pixel (within a reference region)
in the original image block, and q(j, k) is the binary level of the (j, k)-th pixel in the generated
image block. These two errors are combined into one single objective function as

e(x(t)
i ) = ωmEm(x(t)

i ) + ωcEc(x
(t)
i ) (9.5)

where ωm and ωc are the weighting parameters for gray level precision and spatial resolution
errors, respectively. The individuals’ fitness is assigned by

f(x(t)
i ) = e(x(t)

W ) − e(x(t)
i ) (9.6)

where e(x(t)
W ) is the combined error associated with the worst individual at t-th generation. The

high image quality that can be achieved is the method’s major strength. However, it uses a substan-
tial amount of computer memory and processing time. High quality, visually satisfactory, halftone
images are obtained with 200 individuals and 200 generations (totally 40,000 evaluations) per
image block[102, 103].

Recently, Aguirre et al.[106, 71] have proposed an improved GA (GA-SRM) to overcome
these two drawbacks of the conventional halftoning technique with GAs. GA-SRM is based on
an empirical model of GA that applies genetic operators in parallel putting them in a cooperative-
competitive stand with each other[101, 34, 35, 115]. GA-SRM is applied to the halftoning image
problem using genetic operators properly modified for this kind of problem(see 9.4.1). GA-SRM
with parallel adaptive dynamic block (ADB) mutation impressively reduces processing time and
computer memory to generate high quality images. For example, GA-SRM with qualitative ADB
mutation using a 2 parent 4 offspring configuration needs about 6,000-12,000 evaluations per
image block, depending on the input image, to obtain results of similar quality to those achieved
by the conventional image halftoning technique using GAs. These data represent a 98% reduction
in the population size and an 85%-70% reduction in processing time.
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9.3 Multiobjective Optimization (MO)

MO methods deal with finding optimal solutions to problems having multiple objectives. Let us
consider, without loss of generality, a minimization multiobjective problem with M objectives:

minimize g(x) = (g1(x), · · · , gM (x)) (9.7)

where x ∈ X is a solution vector in the solution space X , and g1(·), · · · , gM (·) the M objectives
to be minimized. Key concepts used in determining a set of solutions for multiobjective problems
are dominance, Pareto optimality, Pareto set, and Pareto front. These concepts can be defined as
follows.

A solution vector y ∈ X is said to dominate a solution vector z ∈ X , denoted by g(y) �
g(z), if and only if y is partially less than z, i.e., ∀m ∈ {1, · · · ,M}, gm(y) ≤ gm(z) ∧ ∃m ∈
{1, · · · ,M} : gm(y) < gm(z).

A solution vector x ∈ X is said to be Pareto optimal with respect to X if it is not dominated by
any other solution vector, i.e., ¬∃ x0 ∈ X : g(x0) � g(x). The presence of multiple objectives,
usually conflicting among them, gives rise to a set of optimal solutions. The Pareto optimal set is
defined as:

P = {x ∈ X|¬∃ x0 ∈ X : g(x0) � g(x)} (9.8)

and the Pareto front is defined as:

PF = {g(x) = (g1(x), · · · , gM (x)) |x ∈ P} (9.9)

The multiobjective nature of most real-world problems makes MO a very important research
topic. The presence of various objectives, however, implies trade-off solutions and makes these
problems complex and difficult to solve. EAs seem particularly desirable to solve MO problems
because they evolve simultaneously a population of potential solutions to the problem in hand,
which allows to search for a set of Pareto optimal solutions concurrently in a single run of the
algorithm.

Many authors have been increasingly investigating MO using EAs (MOEA) and the number of
applications has been rapidly growing. The list of contributors to the field is extensive and compre-
hensive reviews can be found in [111, 112, 113, 114]. Fonseca and Fleming[111] and Horn[112]
examined major MOEA techniques, Coello [113] presented a MOEA review classifying imple-
mentations from a detailed algorithmic standpoint, discussing the strengths and weaknesses of
each technique. Recently, Van Veldhuizen and Lamont[114] expanded upon these reviews.

9.4 Multiobjective GA-SRM for Halftoning Problem

In order to extend GA-SRM to MO for halftoning image generation[116, 117, 118] we follow a
cooperative population search with aggregation selection[112, 119, 120, 121, 122]. The popula-
tion is monitored for non-dominated solutions; however, Pareto based fitness assignment is not
directly used. A predetermined set of weights W , which ponder the multiple objectives, defines
the directions that the algorithm will search simultaneously in the combined space of the multiple
objectives. W is specified by

W = {ω1,ω2, · · · ,ωN} (9.10)

where N indicates the number of search directions. The n-th search direction ωn is a vector of
nonnegative weights specified by

ωn = (ωn
1 , · · · , ωn

M ) (9.11)
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Figure 9.1: Block diagram of the extended multiobjective GA-SRM

where M indicates the number of objectives and its components satisfy the following conditions

ωn
m ≥ 0 (m = 1, · · · ,M), (9.12)

M∑
m=1

ωn
m = 1. (9.13)

We evaluate individuals for the same two factors indicated in 9.2, (number of objectives
M = 2): (i) high gray level precision and, (ii) high spatial resolution. Here we use the same
evaluation functions Em and Ec, respectively, proposed in [102, 103] to calculate objective values
and assign its normalized values to each individual as indicated by

g1(x
(t)
i ) =

100 × (Em(x(t)
i ) − Emin

m )
Emax

m − Emin
m

, (9.14)

g2(x
(t)
i ) =

100 × (Ec(x
(t)
i ) − Emin

c )
Emax

c − Emin
c

(9.15)

where Emax
m , Emin

m , Emax
c , and Emin

c are maximum and minimum values for Em and Ec, respec-
tively, obtained experimentally using various test images.

The objective values are calculated once for each individual in the offspring population. How-
ever, we keep as many fitness values as search directions have been defined. A combined objective
value is calculated for each search direction ωn by

gn(x(t)
i ) =

M∑
m=1

ωn
mgm(x(t)

i )

= ωn
1 g1(x

(t)
i ) + ωn

2 g2(x
(t)
i ) (9.16)

and the individuals’ fitness in the n-th search direction is assigned by

fn(x(t)
i ) = gn(x(t)

W ) − gn(x(t)
i ) (9.17)
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where gn(x(t)
W ) is the combined objective value associated with the worse individual in the n-th

search direction at the t-th generation.
For each search direction ωn, CM creates a corresponding λn

CM number of offspring. Simi-
larly, SRM creates λn

SRM offspring (see detailed information about CM and SRM implementation
for halftoning problem in 9.4.1). Thus, the total offspring number for each search direction is

λn = λn
CM + λn

SRM . (9.18)

The offspring created for all N search directions coexist within one single offspring population.
Hence the overall offspring number is

λ =
N∑

n=1

λn. (9.19)

SRM’s mutation rates are adapted based on a normalized mutants survival ratio. The normal-
ized mutant survival ratio used in [106, 71] is extended to

γ =

N∑
n=1

µn
SRM

N∑
n=1

λn
SRM

· λ
N∑

n=1

µn

(9.20)

where µn is the number of individuals in the parent population of the n-th search direction Pn(t),
µn

SRM is the number of individuals created by SRM present in Pn(t) after extinctive selection,
λn

SRM is the offspring number created by SRM and λ is the overall offspring number as indicated
in Eq. (9.19).

We chose (µ, λ) Proportional Selection[24] to implement the extinctive selection mechanism.
Since we want to search simultaneously in various directions, selection to choose the parent in-
dividuals that will reproduce either with CM or SRM is accordingly applied for each one of the
predetermined search directions. Thus, selection probabilities for each search direction ωn are
computed by

Probn(x(t)
i ) =




fn(x(t)
i )

µn∑
j=1

fn(x(t)
j )

(1 ≤ i ≤ µn ≤ λn)

0 (µn < i ≤ λ)

(9.21)

where x
(t)
i is an individual at generation t which has the i-th highest fitness value in the n-th

search direction fn(x(t)
i ), µn is the number of parents and λn is the number of offspring in the

n-th search direction, and λ is the overall number of offspring.
Note that for each search direction only λn < λ individuals are created. However, the parent

population µn is chosen among the overall λ offspring population. In this way information shar-
ing is encouraged among individuals created for neighboring search directions provided that the
neighbors’ fitness are competitive with the locals’. Figure 9.1 presents the block diagram of the
extended multiobjective GA-SRM for the image halftoning problem.

Once the offspring has been evaluated, a set of non-dominated solutions is sought for each
search direction, i.e. for the n-th search direction non-domination is checked only among the
offspring created for that search direction. Two secondary populations keep the non-dominated
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solutions. Pcur(t) keeps the non-dominated solution obtained from the offspring population at
generation t and Pnds keeps the set of the non-dominated solutions found through the generations.
Pnds is updated at each generation with Pcur(t). In the halftoning problem an image is divided
into blocks and the GA is applied to each image block. Hence, the GA would generate a set of non-
dominated solutions for each image block. Since we are interested in generating simultaneously
various Pareto optimal “whole” images, a decision making process is integrated to choose only one
solution for each search direction in each image block. Thus, among the various non-dominated
solutions found for a given search direction, we choose the one that minimizes the combined error
Em and Ec in that particular direction. Figure 9.2 illustrates the algorithm to simultaneously
generate N halftone images with the extended multiobjective GA-SRM.

begin
split original image in blocks
set N search directions W ={(ω1, · · · ,ωN )}
for (each image block Bu)
t = 0
initialize (P (0))
mo evaluation (P (0))
while (not termination condition)

for (each search direction ωn)
Pn(t) = (µ, λ) proportional selection (P (t))
P (t+ 1) += CM(Pn(t))
P (t+ 1) += SRM (Pn(t))

done
mo evaluation (P (t+ 1))
get Pcur(t+ 1) from P (t+ 1)
update Pnds with Pcur(t+ 1)
t = t+ 1

done
Gu= Pnds, keep N generated block images from Bu

done
generate N images (Gu)

end

Figure 9.2: Algorithm to simultaneously generate N halftone images with the extended multiob-
jective GA-SRM

9.4.1 CM and SRM for Halftoning Problem

In the halftoning problem an individual is represented as an r × r two-dimensional structure. In
this work we use the same two-dimensional operators, CM (Crossover and Mutation) and SRM-
ADB (Self Reproduction with Mutation - Adaptive Dynamic Block), presented in [106, 71] to
create offspring.

CM first crosses over two previously selected parents interchanging either their rows or columns,
similar to [102, 103], and then it applies standard mutation inverting bits with a small mutation
probability per bit, p(CM)

m , analogous to canonical GAs.
SRM, on the other hand, first creates an exact copy of a previously selected individual from the
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Table 9.1: Genetic algorithms parameters
Parameter cGA moGA GA-SRM moGA-SRM
Selection Proport. (µ, λ) Proport. (µ, λ) Proport. (µ, λ) Proport.
Mating (xi,xj), i �= j (xi,xj), i �= j (xi,xj), i �= j (xi,xj), i �= j
pc 0.6 0.6 1.0 1.0

p
(CM)
m 0.001 0.001 0.001 0.001

µn : λn - 1 : 1 1 : 2 1 : 2
λn

CM : λn
SRM - - 1 : 1 1 : 1

parent population and then applies mutation only to the bits inside a mutation block. SRM is pro-
vided with an Adaptive Dynamic-Block (ADB) qualitative mutation schedule similar to Adaptive
Dynamic-Segment mutation (ADS)[34, 115]. This kind of mutation could take better advantage of
the high correlation among contiguous pixels in an image[107], and contribute to a more effective
search. See [106, 71] in detail.

9.5 Experimental Results and Discussion

9.5.1 Experimental Setup

We observe and compare the performance of four kinds of GAs generating halftone images: (i) a
simple GA that uses CM and proportional selection, similar to that used in [102, 103], (denoted as
cGA) (ii) an extended cGA using the same multiobjective technique described in 9.4 (denoted as
moGA), (iii) a GA with SRM that uses CM, SRM and (µ, λ) proportional selection[106, 71] (de-
noted as GA-SRM), and (iv) the proposed extended multiobjective GA-SRM (denoted as moGA-
SRM).

The GAs are applied to SIDBA’s benchmark images in our simulation. The size of the original
image is 256 × 256 pixels with 256 gray levels. An image is divided into 256 non-overlapping
blocks, each one of size 16 × 16 pixels. For each block, the algorithms were set with different
seeds for the random initial population.

We define 11 search directions,N = 11, setting W = {ω1,ω2, · · · ,ω11} = {(0.0, 1.0), (0.1, 0.9), · · · ,
(1.0, 0.0)} between Em (gray level precision) and Ec (spatial resolution). With ω1 = (0.0, 1.0)
the search focuses exclusively in Ec’s space and with ω11 = (1.0, 0.0) in Em’s; whereas with ωn,
2 ≤ n ≤ 10, the search focuses in the combined space of Ec and Em. moGA and moGA-SRM
generate simultaneously 11 images, one image for each direction, in a single run. On the other
hand, to generate the 11 images with either cGA or GA-SRM an equal number of separate runs
are carried out, each one using a different ωn as weighting parameter. Unless stated otherwise, the
GAs are set with the parameters detailed in Table 9.11. The values set for crossover and mutation
probabilities in cGA are the same used in [102, 103]. The image quality attained by the cGA with
a 200 parent population and the same T = 4 × 104 evaluations used in [102, 103] are taken as a
reference for comparison in our study. The number of generations performed for each algorithm
is calculated as T/λ.

1GA-SRM search only in one direction at a time and the population related parameters µn, λn, λn
CM , and λn

SRM

should be read without the index n
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Table 9.2: Evaluations needed to generate high quality images by cGA(200)
(a) Lenna

W = {!1, !2, · · · , !11}
Algorithm !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 TW

combined error 121.0 111.4 100.6 89.5 78.2 66.9 55.5 44.2 32.8 21.5 10.1 −
cGA(200) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 11T 2

moGA(18, 198) 1.43 2.43 1.65 1.27 1.21 1.00 0.86 0.76 0.70 0.65 0.72 2.43T 3

moGA(4, 44) 1.12 2.30 1.44 1.36 1.20 1.02 0.85 0.79 0.73 0.66 0.79 2.30T 3

GA-SRM(2, 4) 0.40 0.23 0.15 0.13 0.12 0.11 0.10 0, 09 0.09 0.08 0.08 1.58T 2

moGA-SRM(9, 198) 1.12 1.07 0.58 0.44 0.30 0.27 0.24 0.23 0.22 0.21 0.21 1.12T 3

moGA-SRM(2, 44) 1.56 1.03 0.50 0.30 0.20 0.16 0.15 0.13 0.12 0.12 0.12 1.56T 3

(b) Girl
W = {!1, !2, · · · , !11}

Algorithm !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 TW

combined error 121.9 112.7 101.7 90.3 78.8 67.3 55.8 44.3 32.8 21.3 9.7 −
cGA(200) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 11T 2

moGA(18, 198) 1.84 2.14 1.54 1.15 1.04 0.85 0.78 0.68 0.62 0.64 0.64 2.14T 3

moGA(4, 44) 1.69 2.08 1.18 0.86 0.90 0.75 0.63 0.58 0.51 0.54 0.53 2.08T 3

GA-SRM(2, 4) 0.48 0.24 0.16 0.13 0.12 0.11 0.10 0.10 0.10 0.10 0.14 1.78T 2

moGA-SRM(18, 198) 1.58 1.25 0.61 0.43 0.37 0.30 0.28 0.26 0.26 0.26 0.26 1.58T 3

moGA-SRM(2, 44) 3.81 1.23 0.54 0.29 0.20 0.17 0.16 0.15 0.15 0.15 0.15 3.81T 3

(c) Aerial
W = {!1, !2, · · · , !11}

Algorithm !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 TW

combined error 113.0 104.9 95.5 85.4 74.9 64.3 53.6 42.9 32.3 21.7 11.1 −
cGA(200) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 11T 2

moGA(18, 198) 1.29 1.30 1.29 1.30 1.11 0.92 0.80 0.69 0.59 0.52 0.47 1.30T 3

moGA(4, 44) 1.15 1.37 1.02 1.18 1.14 0.85 0.69 0.59 0.50 0.42 0.37 1.37T 3

GA-SRM(2, 4) 0.37 0.26 0.20 0.17 0.15 0.13 0.11 0.10 0.09 0.09 0.14 1.82T 2

moGA-SRM(18, 198) 1.49 0.97 0.91 0.82 0.61 0.50 0.40 0.33 0.29 0.26 0.24 1.49T 3

moGA-SRM(2, 44) 1.88 1.14 1.02 0.58 0.50 0.37 0.27 0.20 0.17 0.16 0.15 1.88T 3

(d) Moon
W = {!1, !2, · · · , !11}

Algorithm !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 TW

combined error 121.5 111.7 100.8 89.7 78.4 67.1 55.7 44.3 32.8 21.3 9.9 −
cGA(200) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 11T 2

moGA(18, 198) 1.62 1.72 1.29 1.27 1.04 0.95 0.90 0.79 0.68 0.70 0.66 1.72T 3

moGA(4, 44) 1.65 1.29 1.07 1.04 0.93 0.88 0.83 0.82 0.72 0.76 0.76 1.65T 3

GA-SRM(2, 4) 0.83 0.33 0.19 0.15 0.12 0.10 0.10 0.09 0.09 0.08 0.17 2.24T 2

moGA-SRM(18, 198) 1.47 1.14 0.71 0.50 0.41 0.33 0.26 0.23 0.21 0.21 0.21 1.47T 3

moGA-SRM(2, 44) 3.74 1.57 0.54 0.40 0.26 0.21 0.17 0.14 0.13 0.13 0.12 3.74T 3

9.5.2 Comparison Between Simple and Multiobjective GAs

Table 9.2 presents results for four typical benchmark images: “Lenna”,“Girl”, “Aerial”, and
“Moon”. It shows under column W the average in all image blocks of the non-normalized com-
bined errors en(x) = ωn

1Em(x) + ωn
2Ec(x) by cGA(200) after T evaluations for each search

direction ωn, 1 ≤ n ≤ 11. For the other algorithms under W we present the fraction of T at
which the algorithms reach similar image quality (for cGA(200) these values are all 1.00 and are
shown right below the combined error). Column TW indicates the overall evaluations needed to
generate the 11 images. Since the cGA generates one image at a time, it needs 11T 2 evaluations
to generate all 11 images.

The first moGA row show results by the multiobjective simple GA with a µn = 18 parents
2The entire number of evaluations required by the single objective GAs to generate all 11 images are given by the

sum of the evaluations expended in each direction
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and a λn = 18, λ = 198 offspring configuration. moGA simultaneously generates the 11 images
and needs, depending on the input image, about 1.30T to 2.43T 3 to guarantee that the images in
all search direction have at least the same quality as cGA(200).

moGA’s second row show results by moGA with a µn = 4 parents and a λn = 4, λ = 44
offspring configuration. In this case population size reduction in moGA accelerates a little bit more
the overall convergence in most of the benchmark images (only in “Aerial” convergence is slightly
delayed in ω2 search direction) needing about 1.37T to 2.30T to produce better images than
cGA(200). It should be noticed that population reductions in cGA accelerates convergence but it
is affected by a loss of diversity and the final image quality is inferior than cGA(200)’s[102, 103].
moGA benefits from the information sharing induced by selection (see explanation below for
Figure 9.3 and Figure 9.4) and can tolerate population reductions. Compared with cGA, the
results by moGA represents an enormous reduction in processing time and illustrates the benefits
that can be achieved by including multiobjective techniques within GAs.

Row GA-SRM(2,4) presents results by GA-SRM with a 2 parents and 4 offspring configu-
ration. GA-SRM even with a very scaled down population configuration considerably reduces
processing time to sequentially generate high quality images for all combinations of weighting
parameters in all benchmark images. Compared with the 11T needed by cGA, GA-SRM needs
only about 1.58T to 2.24T . Also, note that taking the slower overall generation time among all
benchmark images, GA-SRM is faster than moGA.

The first moGA-SRM row show results by the proposed multiobjective GA-SRM with a µn =
9 parents and a λn = 18, λ = 198 offspring configuration. Compared with moGA we can see that
the inclusion of SRM notoriously improves the multiobjective algorithm’s performance needing
no more than 1.12T to 1.58T 3 to generate the 11 images in all the benchmark cases, being faster
than both GA-SRM and moGA. From GA-SRM and moGA-SRM results we see that parallel
mutation SRM can greatly improve the performance of single objective as well as multiobjective
genetic algorithms in the halftoning problem.

Results by a scaled down population configuration is shown in row moGA-SRM(2,44) that
represents a µn = 2 parents and a λn = 4, λ = 44 offspring configuration. The population size
reduction in moGA-SRM notoriously accelerates convergence in almost all the search directions.
However it delays convergence in ω1 direction in all benchmark images making the overall eval-
uation time to be slower than GA-SRM and moGA (in the case of “Aerial” this effect extends to
ω2 and ω3 and in the case of “Moon” to ω2). This behavior deserves further analysis and we shall
return to this point in 9.5.5.

9.5.3 Non-dominated Pareto Solutions

Throughout this work Pareto optimal solutions refer to strongly non-dominated solutions. Our
objective is to generate a set of strongly non-dominated images (in this case, one image for each
one of the N = 11 predefined search directions). The generation of a set of images implies a three
step processes: (i) generation of non-dominated solutions, (ii) clustering the solutions around the
N search directions, and (iii) selection of the preferred solution for each search direction.

In the halftoning problem the input image is divided into blocks and processed one at a time.
So the above three steps process is translated to the block level. Steps (i) and (ii) are intertwined
and can be accomplished following two approaches. (a) One is to check non-dominance among
the overall offspring produced for all search directions, which will give us a set of non-dominated
solutions per image block. However, the number of these solutions will vary from block to block

3In the case of multiple objective GAs, due to the concurrent search, the maximum number of the evaluations among
all search directions determines the overall number of evaluations needed to generate all 11 images
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Table 9.3: Obtained Pareto front (Lenna)
Typical Image Blocks
Ba Bb Whole Images

W Em Ec Em Ec Ēm Ēc

ω1 33.22 113.61 43.06 123.97 43.4 121.0
ω2 26.67 113.71 16.48 124.35 21.0 121.3
ω3 23.95 113.86 14.43 124.43 16.9 121.5
ω4 16.22 114.87 13.65 124.58 12.3 122.1
ω5 13.20 115.37 8.12 125.57 11.4 122.2
ω6 13.19 115.41 7.86 125.72 9.8 122.7
ω7 13.08 115.46 7.75 125.75 9.6 122.8
ω8 10.11 118.36 7.53 125.93 9.4 123.5
ω9 9.61 118.90 7.53 125.93 9.3 123.7
ω10 9.52 119.04 7.05 126.06 9.2 123.8
ω11 9.49 119.18 7.05 126.06 9.1 124.0

depending on the individual characteristics of the blocks. We observe that for some of the blocks
the number of generated solutions are greater than N but for others it could be smaller than N .
Thus, with this approach we obtain the non-dominated solutions but their clustering around N
search directions is still unsolved and could become a problem especially on those blocks where
the generated images are smaller than N . (b) Another approach is to constraint non-dominance
to the offspring generated for each search direction. By doing so N non-dominated solution sets
are generated for each image block (one per search direction). With this approach the problem of
clustering the solutions around the N search directions is also implicitly solved. Each set covers
the subspace corresponding to each search direction and it is possible that two sets overlap (that
will depend on the characteristics of the images block). In other words, although within each set
there are only non-dominated solutions a solution may be present in more than one set.

We use approach (b) to generate solutions. For step (iii), only one solution is chosen from each
one of the N sets of non-dominated solutions. The preferred solution in a given search direction is
the solution in the corresponding set of non-dominated solutions that has the minimum combined
error for that search direction. Thus, we select N preferred solutions, one per search direction, in
each image block. Once we have processed all image blocks, N images are output by assembling
the blocks in the corresponding search directions.

In Table 9.3, under columns Ba and Bb we present the preferred solutions obtained for each
search direction in two typical image blocks. Column Ba illustrates a block in which the clusters
are separated one from each other and the preferred solutions also form a strongly non-dominated
Pareto front. On the other hand, column Bb illustrates a block in which some clusters are very
close one to another and the final preferred solution is the same in more than one search direction
(see for example ω8 and ω9, or ω10 and ω11). Also, from these two columns we can see that the
errors’ ranges vary depending on the characteristics of the image block. Under Whole Images we
present the mean errors Ēm and Ēc on all image blocks of the assembled images for each search
direction. We can see that in the average the proposed method induces a strongly non-dominated
Pareto front for the generated images.

The closeness of the solutions is also relative to the characteristics of the individual blocks. For
instance for block Ba the minimum and maximum values found for Em and Ec are (9.49, 40.11)
and (113.61, 126.71), respectively. Similarly, the values forBb are (7.05, 54.91) and (123.97, 127.92).
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Table 9.4: Actual percentage of evaluations expended in each direction by the GAs (Lenna)
W = {!1, !2, · · · , !11}

Algorithm !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11

cGA(200) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
moGA(18, 198) 13.0 22.1 15.0 11.5 11.0 9.1 7.8 6.9 6.4 5.9 6.5
moGA(4, 44) 10.2 20.9 13.1 12.4 10.9 9.3 7.7 7.2 6.6 6.0 7.2

GA-SRM(2, 4) 40.0 23.0 15.0 13.0 12.0 11.0 10.0 9.0 9.0 8.0 8.0
moGA-SRM(9, 198) 10.2 9.7 5.3 4.0 2.7 2.5 2.2 2.1 2.0 1.9 1.9
moGA-SRM(2, 44) 14.2 9.4 4.5 2.7 1.8 1.5 1.4 1.2 1.1 1.1 1.1

9.5.4 Effect of Information Sharing

It should be noticed that in Table 9.2 moGA’s and moGA-SRM’s rows show the evaluations
expended by the algorithm in all search directions. The actual percentage of the evaluations ex-
pended in each search direction is shown for “Lenna” image in Table 9.4. From this table it can be
seen that with the multiobjective algorithms there is a substantial reduction of the actual number
evaluations for each search direction. These reductions are explained by the effect of information
sharing induced by the selection process. As mentioned in sub 9.4 and indicated by Eq. (9.21), the
individuals with higher fitness in an specific direction are selected as parents. Thus, the individuals
chosen to be parents for the n-th search direction at generation t may have been created for neigh-
boring directions at generation t-1. In order to verify this point we also observe the composition
of the parent population for each search direction. Figure 9.3 and Figure 9.4 show the average
distribution for some of the ωn directions after 0.1T and T evaluations for “Lenna” image, re-
spectively. For example, in Figure 9.3, the parent population of ω4 is in average composed by
18% of individuals coming from ω3, 30% from ω4 itself, and 13% from ω5. From these figures
we can see that each search direction benefits from individuals that initially were meant for other
neighboring directions. This information sharing pushes forward the search reducing convergence
times. Looking at Figure 9.3 and Figure 9.4 we can see that the effect of information sharing is
higher during the initial stages of the search.

Figure 9.5 illustrates typical transitions of the non-normalized combined error e(x) over the
number of evaluations for some of the search directions by the GAs. The plots are for “Lenna” and
are cut after T evaluations. From this figures it can be visually appreciated the higher convergence
velocity and higher convergence reliability (lower errors) by the algorithms that include SRM, GA-
SRM and moGA-SRM. In general, moGA is faster than the cGA, but their final image quality tends
to be the same. Also, it should be noticed that results by moGA and moGA-SRM are achieved
simultaneously in one run (thus, T for these algorithms indicates the evaluations expended in all
search directions).

9.5.5 Dynamic Configurations for Further Improvement

In this subsection we carefully study the behavior of moGA-SRM(2,44) and propose dynamic
configurations for the algorithm in order to improve its robustness in all search directions with less
overall evaluation time for the various kinds of test images.

First, we observe that moGA(2,44), which uses CM but not SRM, only for ω1 produces faster
convergence than moGA-SRM(2,44) (e1 = 0.0Em + 1.0Ec) in the four test images (only in
“Moon” this is also true for ω2). It seems that CM alone is particularly useful for searching in
Ec’s search space. However, when the search involves both Em’s and Ec’s spaces the interaction
of CM and SRM produces by far better results. To confirm this point we conduct an experiment
in which we favor CM’s offspring over SRM’s only in the ω1 direction, i.e. λ1

CM = 4, λ1
SRM = 0
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Figure 9.3: moGA-SRM’s average parent population distribution after 0.1T (Lenna)
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Figure 9.4: moGA-SRM’s average parent population distribution after T evaluations (Lenna)

and λn
CM = 2, λn

SRM = 2 for 2 ≤ n ≤ 11. Results by this configuration are shown in row moGA-
SRM∗(2,44) of Table 9.5 (for an easy comparison we also include results by moGA-SRM(2,44)).
As expected, this has the effect of accelerating convergence in ω1. But, it also has a negative
impact in the neighboring ω2 search direction. As mentioned above, the interaction of CM and
SRM performs very well in the combined search space ofEc andEm and by using CM alone in ω1

we are also reducing the amount of information that can be effectively shared with the neighboring
ω2 search direction, which is located precisely in the combined space of Ec and Em.

Second, as a general tendency we see that for directions closer to Em the algorithms need
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Figure 9.5: Error transition for various ωn (Lenna)

less time to converge. It should be especially noticed that for ωn with n ≥ 8, 0.2T is enough to
find high quality images by moGA-SRM. This suggests that dynamic configurations that assign
more evaluations to those directions that require more time to converge could reduce the overall
time to convergence. Row moGA-SRMD(2,44) in Table 9.5 shows results by an algorithm that
at 0.2T stops searching for ω8, ...,ω11, at 0.35T stops searching for ω6,ω7, and from 0.50T
focuses only in ω1,ω2,ω3 search directions. That is, moGA-SRMD(2,44) starting with a moGA-
SRM(2,44) (n ≤ 11) configuration gradually reconfigures itself to moGA-SRM(2,28) (n ≤ 7),
moGA-SRM(2,20) (n ≤ 5), and moGA-SRM(2,12) (n ≤ 3). As expected, a better assignment of
evaluations helps to significantly reduce the overall time to convergence.

Finally, we combine these two explored approaches to set a robust algorithm that can work
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Table 9.5: Reduced evaluations to generate high quality images by moGA-SRM(2,44) with dy-
namic configurations

(a) Lenna
Algorithm W = {!1, !2, · · · , !11}

moGA-SRM !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 TW

(2, 44) 1.56 1.03 0.50 0.30 0.20 0.16 0.15 0.13 0.12 0.12 0.12 1.56T 3

∗(2, 44) 0.88 1.53 0.39 0.30 0.22 0.17 0.14 0.13 0.12 0.12 0.12 1.53T 3

D(2, 44) 0.72 0.55 0.36 0.26 0.21 0.17 0.14 0.13 0.12 0.12 0.12 0.72T 3

D∗(2, 44) 0.59 0.57 0.40 0.28 0.21 0.17 0.14 0.13 0.13 0.12 0.12 0.59T 3

(b) Girl
Algorithm W = {!1, !2, · · · , !11}

moGA-SRM !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 TW

(2, 44) 3.81 1.23 0.54 0.29 0.20 0.17 0.16 0.15 0.15 0.15 0.15 3.81T 3

∗(2, 44) 1.24 1.76 0.46 0.33 0.24 0.17 0.16 0.15 0.15 0.15 0.15 1.76T 3

D(2, 44) 1.53 0.61 0.31 0.28 0.21 0.17 0.16 0.15 0.14 0.14 0.14 1.53T 3

D∗(2, 44) 0.68 0.62 0.39 0.26 0.21 0.18 0.16 0.15 0.15 0.15 0.15 0.68T 3

(c) Aerial
Algorithm W = {!1, !2, · · · , !11}

moGA-SRM !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 TW

(2, 44) 1.88 1.14 1.02 0.58 0.50 0.37 0.27 0.20 0.17 0.16 0.15 1.88T 3

∗(2, 44) 1.01 1.94 0.84 0.66 0.50 0.37 0.26 0.21 0.17 0.16 0.15 1.94T 3

D(2, 44) 0.98 0.53 0.51 0.43 0.36 0.30 0.32 0.20 0.17 0.15 0.14 0.98T 3

D∗(2, 44) 0.63 0.58 0.50 0.43 0.32 0.29 0.31 0.20 0.17 0.15 0.14 0.63T 3

(d) Moon
Algorithm W = {!1, !2, · · · , !11}

moGA-SRM !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 TW

(2, 44) 3.74 1.57 0.54 0.40 0.26 0.21 0.17 0.14 0.13 0.13 0.12 3.74T 3

∗(2, 44) 1.02 2.00 0.51 0.39 0.28 0.21 0.16 0.13 0.12 0.12 0.12 2.00T 3

D(2, 44) 1.95 0.60 0.41 0.31 0.24 0.19 0.16 0.14 0.12 0.12 0.12 1.95T 3

D∗(2, 44) 0.64 0.61 0.39 0.31 0.25 0.19 0.16 0.14 0.12 0.12 0.12 0.64T 3

effectively in all search directions for different kinds of test images. moGA-SRMD∗(2,44) row
in Table 9.5 shows results by an algorithm that: (i) reconfigures itself as moGA-SRMD(2,44)
and (ii) from 0.50T it searches in ω1 direction using only CM, i.e. λ1

CM = 4, λ1
SRM = 0. In

other words, at the beginning we keep CM and SRM in ω1 direction so that neighboring directions
could take advantage of the effect of information sharing, which is more intense at the beginning
of the search, and later we use only CM to improve ω1 convergence. With moGA-SRMD∗(2,44) at
most 0.70T evaluations are needed to simultaneously generate 11 images. Figure 9.6, similar to
Figure 9.5, illustrates typical transitions of the non-normalized combined error e(x) for some of
the search directions by moGA-SRMD∗(2,44) running for 0.70T and include results by the other
GAs.

In this study we take as a reference the image quality obtained by a canonical GA (cGA) and
the number of evaluations it expends. We decide about T based on these results. The values of the
fraction of T at which the algorithms moGA-SRMD(2,44) and moGA-SRMD∗(2,44) reconfigure
themselves (0.2T , 0.35T and 0.5T ) are upper bounds obtained experimentally for which high
performance (at least that achieved by cGA) was observed in all test images. Lower values work
fine and lead to better results in some of the images, such as “Lenna” or “Girl” in the examples
presented here, but those lower values are not effective for other images. Thus these values of
T are not optimum values and although several kinds of test images were tried its generality is
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Figure 9.6: Error transition for various ωn using GA-SRMD∗(2, 44) (Lenna) running for
0.70T (Lenna)

restricted. The optimality of T is a very important issue and should be investigated further. For
example, to achieve more optimum and robust T it might be worth pursuing an approach that
would decide the stopping time based on the progress that the algorithm achieves reducing the
errors. However, this implies taking adaptation at the block level and rises other issues that will
need to be addressed. Also, the canonical GA cannot be a reference any more and we will need
another way of comparison. We are planning to undertake these topics in future works.

Figure 9.7, Figure 9.8, Figure 9.9, and Figure 9.10 show some of the original benchmark
images and some of the simultaneously generated images by moGA-SRMD∗(2,44) after 0.70T .
As can be observed, the images for each search direction are high quality images and the difference
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in contrast and gray level precision can be visually appreciated.

9.6 Conclusions

In this chapter we have extended the improved GA-SRM to a multiobjective optimization GA
(moGA-SRM) for the image halftoning problem with the aim of simultaneously generating halftone
images with various combinations of gray level precision and spatial resolution.

GA-SRM is based on an empirical model of GA that puts parallel genetic operators in a
cooperative-competitive stand with each other. To extend GA-SRM we followed a cooperative
population search with aggregation selection preserving the fundamental features of the cooperative-
competitive model. We compared the performance of four genetic algorithms generating halftone
images: (i) a single objective simple GA (cGA), (ii) a single objective GA-SRM, (iii) a multiob-
jective simple GA (moGA), (iv) the proposed multiobjective GA-SRM (moGA-SRM).

From our experimental results we have observed that multiobjective techniques benefit from
the effect of information sharing and can greatly reduce processing time to simultaneously gener-
ate high quality images. To generate 11 images moGA requires only about 21% of the evaluations
used by cGA. The cooperative-competitive model for parallel operators helps to improve the per-
formance of single and multiobjective GAs in this problem reducing even further processing time.
GA-SRM requires about 20% and moGA-SRM using a simple dynamic configuration needs at
most 6.4% of the evaluations used by cGA.

The optimality and generality of the number of evaluations needed to generate high quality
images is a very important issue and should be investigated further. As future works, it might be
worth pursuing higher levels of adaptations in GA-SRM. For example, an algorithm that adapt
its configuration and decides the stopping time based on the characteristics of each image block.
Also, the application of GA-SRM to other real-world problems should be investigated.
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Figure 9.7: Lennas’s original and simultaneously generated halftone images by moGA-
SRMD∗(2,44) after 0.70T
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Figure 9.8: Girls’s original and simultaneously generated halftone images by moGA-
SRMD∗(2,44) after 0.70T
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Figure 9.9: Aerial’s original and simultaneously generated halftone images by moGA-
SRMD∗(2,44) after 0.70T
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Figure 9.10: Moon’s original and simultaneously generated halftone images by moGA-
SRMD∗(2,44) after 0.70T
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Chapter 10

Conclusions

The standard model of varying mutation GAs raises several important questions regarding the
interference between crossover and high mutation, how this affects performance of the algorithm,
whether this affect the mutation rate control itself in the case of (adaptive) self-adaptive varying
mutation algorithms, and more generally whether this is an appropriate model for combining forms
of control (co-adaptation of strategy parameters).

This work has proposed a model of parallel varying mutation GA that addresses the questions
raised by the standard model of varying mutation GAs. The proposed model detaches varying
mutation from crossover, applies “background” mutation (or none at all) after crossover (CM)
and varying mutations (SRM) only parallel to crossover, putting the operators CM and SRM in a
cooperative-competitive stand with each other by subjecting their offspring to extinctive selection.
The model relies in adaptive (self-adaptive) mutation schedules to increase the effectiveness of
SRM and enhance selection by eliminating fitness duplicates, which postpones genetic drift and
creates a fair competition between the offspring created by both operators.

It was argued that there are several advantages in the proposed model. First, it gives an efficient
framework to achieve better balances for varying mutation and crossover in which the strengths of
the operators can be kept without interfering one with the other. Second, since varying mutation is
detached from crossover, the instantaneous effectiveness of the varying mutation operator depends
only upon itself and its relative success can be directly tied to the mutation rate to create adaptive
(self-adaptive) schemes for mutation rate control. The same can be said for crossover, especially if
no “background” mutation is applied after it. Third, parallel varying mutation can be studied on its
own seeking to increase the performance of GAs. Fourth, the individual roles and the interaction
of crossover and varying mutation throughout the run of the algorithm can be better understood,
which could be important for co-adaptation studies.

The model was studied using two test problem generators. One of generators was for 0/1
multiple knapsack problems, which allowed testing the model on a broad range of classes of
constrained problems by varying the feasible region of the search space, number of constraints,
and the size of the search space. Real-world 0/1 multiple knapsack problems with known global
optimum were also used. These latter problems allowed studying the global search abilities of
the algorithms. The second generator was the well known Kauffman’s NK-Landscapes, which
allowed testing the model in a broad range of classes of epistatic non-linear problems.

First, the internal structure of the proposed model (GA-SRM) was studied in depth using and
adaptive schedule for mutation. Important structural issues studied were the balance for offspring
creation between CM and SRM, the ratio between number of parents and number of offspring
(extinctive selection pressure), “background” mutation probability in CM, and the threshold to
trigger adaptation in SRM. The effect of population size and number of evaluations was observed,
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too. Two mutation strategies to select the bits that will undergo mutation were investigated. In
addition, the importance and effect on performance of extinctive selection and the interaction of
varying mutation parallel to crossover was assessed. We found that that GA-SRM greatly improves
the performance of GAs for global optimization in constrained problems. Extinctive selection
accelerated the search process and parallel varying mutation increased the convergence reliability
of the algorithm. Robustness even with small populations was also a remarkable characteristics
observed in the improved GA-SRM. Mutation strategy for parallel varying mutation turned out to
be an important issue to improve the performance of parallel varying mutation.

Second, the proposed model was compared with the standard model of varying mutations
GAs across a broad range of problems. The statistical significance of the results was verified
with ANOVA tests. It was found that the proposed model is more effective and efficient than
the standard model. In deterministic varying mutation GAs, a GA with varying mutation parallel
to crossover showed faster convergence and higher robustness to initial settings of mutation rate
than a GA with varying mutation serial to crossover. In self-adaptive varying mutation GAs, the
convergence velocity of a parallel self-adaptive mutation GA was matched by a serial self-adaptive
mutation GA only when initial diversity of parameters was allowed. Convergence reliability was
higher for the parallel varying self-adaptive mutation GA in both deterministic and self-adaptive
GAs. It was also found that the standard model of varying mutations in fact affects negatively the
(adaptive) self-adaptive mutation rate control. This strongly suggested that the standard model of
varying mutation GAs may not be appropriate for combining forms of control.

Then, the behavior of the parallel varying mutation GA-SRM was examined on epistatic prob-
lems using NK-Landscapes. Properties of NK-Landscapes were discussed and the effect on per-
formance of selection, drift, mutation, and recombination was verified. Mutation strategy for the
varying mutation operator was also studied in detail. Experiments were conducted using NK-
Landscapes with nearest neighbor and random patterns of epistasis. Comparisons were made with
a canonical GA, a simple GA with extinctive selection, a mutation only EA, and a random bit
climber RBC+. It was shown that GAs can be robust algorithms on NK-Landscapes postponing
drift by eliminating fitness duplicates and using selection pressure higher than a canonical GA.
Different to previous works, even simple GAs with these two features performed better than the
single bit climber RBC+ for a broad range of classes of problems. It was also shown that the
interaction of parallel varying mutation with crossover (GA-SRM) improves further the reliability
of the GA. Contrary to intuition it was found that a mutation only EA can perform as well as
GA-SRM that includes crossover for small values of K, where crossover is supposed to be ad-
vantageous; but the relative importance of crossover interacting with varying mutation increased
with K performing better than mutation alone for medium and high K. Better overall perfor-
mance by population based mutation only evolutionary algorithms over random bit climbers was
also observed. With regards to mutation strategy for parallel varying mutation, it was found that
a dynamic segment mutation strategy improves the performance of GAs on problems with nearest
neighbor patterns of epistasis.

After analyzing the model and comparing with standard model of varying mutation GAs, it was
shown that the fundamental concept of the model can be successfully extended to other important
classes of GAs and that can be effectively applied to real-world problems. An important area of
research is the parallelization of GAs. Evolutionary algorithms are population based methods and
it is considered that its full potential would come from implementing the algorithm in parallel
architectures. It was shown that the proposed model extended to a parallel distributed GA (DGA-
SRM) achieves higher search speed, higher convergence reliability, and less communication cost
for migration than a canonical distributed GA. It was also shown that DGA-SRM scales up better
as the difficulty of the problem increases and tolerates population reductions better than a canonical
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distributed GA.
Next, it was verified that GA-SRM can be successfully applied to real world problems in

which efficiency in processing time and computer memory is a major issue. The improved GA-
SRM was extended to the two dimensional image halftoning problem and an accelerated image
halftoning technique with tiny populations was presented. It was shown that the proposed scheme
impressively reduced computer memory and processing time to generate high quality images,
making the improved approach appealing for practical implementation.

Finally, the multiobjective nature of most real-world problems makes multiobjective optimiza-
tion a very important research topic. It was shown that the concept of GA-SRM can also be ef-
fective for multi-objective optimization of real world applications. The improved GA-SRM was
extended to a multiobjective optimization GA to simultaneously generate halftone images with
various combinations of gray level precision and spatial resolution. Simulation results verified
that the proposed scheme can effectively generate several high quality images simultaneously in a
single run reducing even further the overall processing time.

As future works, it would be worth pursuing co-adaptation in GA-SRM and investigating
forms to increase its performance in problems that exhibit strong epistasis. Also, we would like to
extend the concept of GA-SRM to cellular GAs, which is another important class of parallel GAs.
The application of the improved GA-SRM to other imaging problems, and to domains that present
serious challenges to optimization techniques, such as bioinformatics, should be investigated. In
addition, in this work we have shown that the concept of parallel varying mutation can be suc-
cessfully extended to parallel distributed GAs and multiobjective GAs as well. A next step would
be to compare the standard model with the parallel model of varying mutation in these classes of
GAs, in order to asses the impact or benefit of one model over the other. This is important because
parallel and multiobjective GAs are very different from single population GAs and what is known
for single population GAs can not be directly inferred for parallel and multiobjective GAs.
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