
Abstract

Barlow, Gregory John. Design of Autonomous Navigation Controllers for Unmanned Aerial

Vehicles Using Multi-objective Genetic Programming. (under the direction of Edward Grant.)

Unmanned aerial vehicles (UAVs) have become increasingly popular for many applications,

including search and rescue, surveillance, and electronic warfare, but almost all UAVs are con-

trolled remotely by humans. Methods of control must be developed before UAVs can become

truly autonomous. While the field of evolutionary robotics (ER) has made strides in using evo-

lutionary computation (EC) to develop controllers for wheeled mobile robots, little attention

has been paid to applying EC to UAV control. EC is an attractive method for developing UAV

controllers because it allows the human designer to specify the set of high level goals that are

to be solved by artificial evolution. In this research, autonomous navigation controllers were

developed using multi-objective genetic programming (GP) for fixed wing UAV applications.

Four behavioral fitness functions were derived from flight simulations. Multi-objective GP

used these fitness functions to evolve controllers that were able to locate an electromagnetic

energy source, to navigate the UAV to that source efficiently using on-board sensor measure-

ments, and to circle around the emitter. Controllers were evolved in simulation. To narrow the

gap between simulated and real controllers, the simulation environment employed noisy radar

signals and a sensor model with realistic inaccuracies. All computations were performed on a

92-processor Beowulf cluster parallel computer. To gauge the success of evolution, baseline

fitness values for a successful controller were established by selecting values for a minimally

successful controller. Two sets of experiments were performed, the first evolving controllers

directly from random initial populations, the second using incremental evolution. In each set

of experiments, autonomous navigation controllers were evolved for a variety of radar types.

Both the direct evolution and incremental evolution experiments were able to evolve controllers

that performed acceptably. However, incremental evolution vastly increased the success rate of

incremental evolution over direct evolution. The final incremental evolution experiment on the

most complex radar investigated in this research evolved controllers that were able to handle all

of the radar types. Evolved UAV controllers were successfully transferred to a wheeled mobile

robot. An acoustic array on-board the mobile robot replaced the radar sensor, and a speaker

emitting a tone was used as the target. Using the evolved navigation controllers, the mobile

robot moved to the speaker and circled around it. Future research will include testing the best

evolved controllers by using them to fly real UAVs.

DESIGN OF AUTONOMOUS NAVIGATION CONTROLLERS

FOR UNMANNED AERIAL VEHICLES USING

MULTI-OBJECTIVE GENETIC PROGRAMMING

BY

GREGORY J. BARLOW

A THESIS SUBMITTED TO THE GRADUATE FACULTY OF

NORTH CAROLINA STATE UNIVERSITY

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

ELECTRICAL AND COMPUTER ENGINEERING

RALEIGH

MARCH 2004

APPROVED BY:

Dedicated to

my parents, John Black Barlow, Jr. and Cheryl Stevens Barlow.

ii

Biography

Gregory John Barlow was born June 14, 1980 in Greensboro, North Carolina to John Black

Barlow, Jr. and Cheryl Stevens Barlow. He graduated from the North Carolina School of Sci-

ence and Mathematics, Durham, North Carolina in May 1999. He received Bachelor of Science

degrees in Electrical Engineering and Computer Engineering from North Carolina State Uni-

versity, Raleigh, North Carolina in May 2003. He received the Master of Science Degree in

Electrical Engineering from North Carolina State University, Raleigh, North Carolina in May

2004.

As an undergraduate, Gregory was a Barry M. Goldwater Scholar, a John T. Caldwell Scholar,

a Caldwell Fellow, and a University Scholar. He received a North Carolina State University

Undergraduate Research Award for the spring of 2001, a National Science Foundation Summer

Undergraduate Fellowship in Sensor Technologies at the University of Pennsylvania for the

summer of 2001, and was a winner of the 2001 North Carolina State University Undergraduate

Research Symposium and the 2001 Sigma Xi Student Research Symposium.

Gregory is a member of Eta Kappa Nu Electrical and Computer Engineering Honor Society,

Tau Beta Pi Engineering Honor Society, the Honor Society of Phi Kappa Phi, the Institute of

Electrical and Electronics Engineers, and the International Society for Genetic and Evolution-

ary Computation.

iii

Acknowledgments

I would like to thank the members of my committee, Dr. Edward Grant, Dr. Choong K. Oh,

Dr. Mark W. White, and Dr. H. Troy Nagle. I would like to thank Dr. Edward Grant for all of

his support and encouragement. In all the years I’ve been privileged to work with him, he has

given me so many opportunities to learn and grow. Dr. Grant has helped me to become a better

researcher and a better person. I would also like to especially thank Dr. Choong Oh for giving

me the opportunity to become involved in this research. Dr. Oh has been a wonderful mentor.

I would like to acknowledge the financial support of this work provided by the Office of Naval

Research (ONR) through the United States Naval Research Laboratory (NRL) under Dr. Mari-

bel Soto (ONR) and Dr. Choong Oh (NRL). Computer time on the 92 processor Beowulf

cluster was furnished by NRL (Code 5732).

I would like to thank all the members of the Center of Robotics and Intelligent Machines

(CRIM), past and present, for their collaboration and support. I have spent six wonderful years

in the CRIM and have had the chance to work with many great people. I would especially like

to thank Andrew Nelson, John Galeotti, Leonardo Mattos, and Marc Edwards.

Most of all, I would like to thank my parents, John and Cheryl Barlow. Their persistent and

wholehearted commitment to my education and growth as a person have made me what I am

today. I am forever grateful. I would also like to thank my three sisters, Logan, Lindsey, and

Gwendolyn, Liddy Gerchman, and all of my family and friends.

iv

Contents

List of Figures ix

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

1.1 Motivation and Research Goals . 1

1.2 Overview of Thesis Chapters . 2

2 Literature Review 4

2.1 Evolutionary Robotics . 5

2.1.1 History of Evolutionary Robotics Research 6

2.1.2 Evolutionary Robotics Controller Architectures 8

2.1.3 Simulation . 9

2.1.4 Robot Types . 10

2.2 Genetic Programming . 11

2.2.1 Evolutionary Process . 12

2.2.2 Concerns and Strategies . 13

2.3 Performance Evaluation . 14

v

2.3.1 Functional Fitness Functions . 16

2.3.2 Aggregate Fitness Functions . 17

2.3.3 Competitive Fitness Evaluation . 18

2.3.4 Multi-objective Optimization . 19

2.3.5 Incremental Evolution . 21

3 Unmanned Aerial Vehicle Control 25

3.1 Simulation Environment . 26

3.2 Unmanned Aerial Vehicles . 27

3.2.1 Characteristics . 28

3.2.2 Applications . 30

3.2.3 Operation . 32

3.2.4 Controller Architecture . 33

3.2.5 Simulation Flight Model . 33

3.3 Radar . 34

3.3.1 Radar Types . 34

3.3.2 Radar Modeling . 35

3.4 Sensors . 36

3.5 Problem Difficulty . 37

3.6 Transference to real UAVs . 38

4 Evolution and Fitness Evaluation 40

4.1 Multi-objective Genetic Programming . 42

4.1.1 Genetic Programming Parameters . 42

4.1.2 Functions and Terminals . 47

4.1.3 Parallel Evaluation . 49

vi

4.2 Fitness Functions . 50

4.2.1 Normalized distance . 51

4.2.2 Circling distance . 52

4.2.3 Level time . 53

4.2.4 Turn cost . 54

4.2.5 Combining the Fitness Measures . 55

4.3 Incremental Evolution . 56

4.3.1 Functional Incremental Evolution . 57

4.3.2 Environmental Incremental Evolution 58

5 Experiments and Results 60

5.1 Effectiveness of Fitness Functions . 61

5.2 Metrics for Post-evolution Controller Evaluation 63

5.3 Direct Evolution . 65

5.3.1 Continuously Emitting, Stationary Radar 65

5.3.2 Intermittently Emitting, Stationary Radar with Regular Period 70

5.3.3 Intermittently Emitting, Stationary Radar with Irregular Period 78

5.3.4 Continuously Emitting, Mobile Radar 86

5.3.5 Intermittently Emitting, Mobile Radar with Regular Period 94

5.4 Incremental Evolution . 102

5.4.1 Seed Populations . 102

5.4.2 Intermittently Emitting, Stationary Radar 103

5.4.3 Continuously Emitting, Mobile Radar 106

5.4.4 Intermittently Emitting, Stationary Radar with Multiple Increments . . 108

5.4.5 Intermittently Emitting, Mobile Radar with Multiple Increments 111

5.4.6 Analysis of Incrementally Evolved Controllers 112

5.5 Transference to a Wheeled Mobile Robot . 116

vii

6 Conclusion and Future Research 125

6.1 Conclusions . 125

6.2 Future Research . 128

7 References 129

Appendices 135

A Experimental Results 136

A.1 Direct Evolution . 136

A.1.1 Continuously Emitting, Stationary Radar 136

A.1.2 Intermittently Emitting, Stationary Radar with Regular Period 137

A.1.3 Intermittently Emitting, Stationary Radar with Irregular Period 138

A.1.4 Continuously Emitting, Mobile Radar 139

A.1.5 Intermittently Emitting, Mobile Radar with Regular Period 140

A.2 Incremental Evolution . 141

A.2.1 Seed Population . 141

A.2.2 Intermittently Emitting, Stationary Radar 142

A.2.3 Continuously Emitting, Mobile Radar 143

A.2.4 Intermittently Emitting, Stationary Radar with Multiple Increments . . 144

A.2.5 Intermittently Emitting, Mobile Radar with Multiple Increments 145

B Sample Results from Evolutionary Runs 147

B.1 Continuously Emitting, Stationary Radar . 147

B.2 Intermittently Emitting, Mobile Radar . 156

viii

List of Figures

3.1 The simulation area, as shown, is 100 nmi by 100 nmi. The UAV is placed

randomly along the southern edge of the simulation area, and the radar is placed

randomly anywhere within the environment. 27

3.2 The Predator medium altitude long endurance unmanned aerial vehicle. 28

3.3 The Dakota unmanned aerial vehicle. 29

3.4 The angle of arrival (AoA) is the angle between the UAV heading and the

incoming signal. 37

4.1 An example of the recombination process, with the crossover points high-

lighted. Two parent program trees (a and b) produce two children (c and d). . . 45

4.2 An example of the mutation process, with the mutation point highlighted. A

parent tree (a) produces a mutated child tree (b). 46

5.1 Histogram of the number of successful controllers for each evolutionary run

for continuously emitting, stationary radars. 67

5.2 Five sample flight paths for an evolved controller flying a UAV to continuously

emitting, stationary radars. 67

5.3 A sample flight path for a UAV guided by an evolved controller flying to a

continuously emitting, stationary radar. 69

5.4 A closeup of the UAV flight path shown in Figure 5.3 after 43 minutes and 20

seconds. The UAV has just begun to circle around the radar. 69

5.5 A closeup of the UAV flight path shown in Figure 5.3 after 47 minutes and 5

seconds. The UAV is circling around the radar. 70

5.6 Histogram of the number of successful controllers for each evolutionary run

for intermittently emitting, stationary radars. 72

ix

5.7 Flight path 1 for a UAV controller to an intermittently emitting, stationary radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 73

5.8 Flight path 2 for a UAV controller to an intermittently emitting, stationary radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 74

5.9 Flight path 3 for a UAV controller to an intermittently emitting, stationary radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 75

5.10 Flight path 4 for a UAV controller to an intermittently emitting, stationary radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 76

5.11 Flight path 5 for a UAV controller to an intermittently emitting, stationary radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 77

5.12 Histogram of the number of successful controllers for each evolutionary run

for intermittently emitting, stationary radars with an irregular period. 80

5.13 Flight path 1 for a UAV controller to an intermittently emitting, stationary radar

with an irregular period (a), the distance between the UAV and the radar, and

the emitting period and duration of the radar (b). 81

5.14 Flight path 2 for a UAV controller to an intermittently emitting, stationary radar

with an irregular period (a), the distance between the UAV and the radar, and

the emitting period and duration of the radar (b). 82

5.15 Flight path 3 for a UAV controller to an intermittently emitting, stationary radar

with an irregular period (a), the distance between the UAV and the radar, and

the emitting period and duration of the radar (b). 83

5.16 Flight path 4 for a UAV controller to an intermittently emitting, stationary radar

with an irregular period (a), the distance between the UAV and the radar, and

the emitting period and duration of the radar (b). 84

5.17 Flight path 5 for a UAV controller to an intermittently emitting, stationary radar

with an irregular period (a), the distance between the UAV and the radar, and

the emitting period and duration of the radar (b). 85

5.18 Histogram of the number of successful controllers for each evolutionary run

for continuously emitting, mobile radars. 88

x

5.19 Flight path 1 for a UAV controller to a continuously emitting, mobile radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 89

5.20 Flight path 2 for a UAV controller to a continuously emitting, mobile radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 90

5.21 Flight path 3 for a UAV controller to a continuously emitting, mobile radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 91

5.22 Flight path 4 for a UAV controller to a continuously emitting, mobile radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 92

5.23 Flight path 5 for a UAV controller to a continuously emitting, mobile radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 93

5.24 Histogram of the number of successful controllers for each evolutionary run

for intermittently emitting, mobile radars. 96

5.25 Flight path 1 for a UAV controller to an intermittently emitting, mobile radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 97

5.26 Flight path 2 for a UAV controller to an intermittently emitting, mobile radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 98

5.27 Flight path 3 for a UAV controller to an intermittently emitting, mobile radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 99

5.28 Flight path 4 for a UAV controller to an intermittently emitting, mobile radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 100

5.29 Flight path 5 for a UAV controller to an intermittently emitting, mobile radar

(a), the distance between the UAV and the radar, and the emitting period and

duration of the radar (b). 101

5.30 Histogram of the number of successful controllers for each evolutionary run of

the seed populations using continuously emitting, stationary radars. 104

xi

5.31 Evolutionary process for incremental evolution of controllers for intermittently

emitting, stationary radars. 105

5.32 Histogram of the number of successful controllers incrementally evolved on

intermittently emitting, stationary radars. 106

5.33 Evolutionary process for incremental evolution of controllers for continuously

emitting, mobile radars. 107

5.34 Histogram of the number of successful controllers incrementally evolved on

continuously emitting, mobile radars. 108

5.35 Evolutionary process for the incremental evolution of controllers for intermit-

tently emitting, stationary radars using multiple increments. 110

5.36 Histogram of the number of successful controllers incrementally evolved on

intermittently emitting, stationary radars over multiple increments. 111

5.37 Evolutionary process for the incremental evolution of controllers for intermit-

tently emitting, mobile radars using multiple increments. 113

5.38 Histogram of the number of successful controllers incrementally evolved on

intermittently emitting, mobile radars over multiple increments. 114

5.39 Depth by generation in the incremental evolution of controllers for intermit-

tently emitting, mobile radars. Transitions between the stages of evolution are

shown. 115

5.40 Complexity by generation in the incremental evolution of controllers for inter-

mittently emitting, mobile radars. Transitions between the stages of evolution

are shown. 115

5.41 EvBot II, a small, wheeled mobile robot. 118

5.42 Flight paths for a UAV controller to a continuously emitting, stationary radar

using a sensor accurate within (a) ±10◦ and (b) ±45◦. 120

5.43 Flight path in simulation for Controller 1 to a continuously emitting, stationary

radar using a sensor accurate within ±45◦. 121

5.44 Path for an EvBot running Controller 1 moving to a continuously emitting,

stationary speaker using a real acoustic array sensor. 122

5.45 Flight path in simulation for Controller 2 to a continuously emitting, stationary

radar using a sensor accurate within ±45◦. 123

5.46 Path for an EvBot running Controller 2 moving to a continuously emitting,

stationary speaker using a real acoustic array sensor. 124

xii

List of Tables

4.1 Genetic programming parameters . 43

5.1 Baseline values used to measure the performance of evolution. 64

5.2 Results for experiments with continuously emitting, stationary radars. 66

5.3 Fitness values for five UAV flight paths to continuously emitting, stationary

radars shown in Figure 5.2. 68

5.4 Fitness values for the flight path examined in Figures 5.3, 5.4, and 5.5. 68

5.5 Results for experiments with intermittently emitting, stationary radars with reg-

ular periods. 71

5.6 Fitness values for five UAV flight paths to intermittently emitting, stationary

radars shown in Figures 5.7, 5.8, 5.9, 5.10, and 5.11. 72

5.7 Results for experiments with intermittently emitting, stationary radars with ir-

regular periods. 79

5.8 Fitness values for five UAV flight paths to intermittently emitting, stationary

radars with irregular periods shown in Figures 5.13, 5.14, 5.15, 5.16, and 5.17. . 80

5.9 Results for experiments with continuously emitting, mobile radars. 87

5.10 Fitness values for five UAV flight paths to continuously emitting, mobile radars

shown in Figures 5.19, 5.20, 5.21, 5.22, and 5.23. 94

5.11 Results for experiments with intermittently emitting, mobile radars. 95

5.12 Fitness values for five UAV flight paths to intermittently emitting, mobile radars

shown in Figures 5.25, 5.26, 5.27, 5.28, and 5.29. 95

5.13 Results for seed population experiments evolved on continuously emitting, sta-

tionary radars. 103

xiii

5.14 Results for incremental evolution experiments evolved on intermittently emit-

ting, stationary radars. 105

5.15 Results for incremental evolution experiments evolved on continuously emit-

ting, mobile radars. 107

5.16 Results for incremental evolution experiments evolved on intermittently emit-

ting, stationary radars evolved in multiple increments. 109

5.17 Results for incremental evolution experiments evolved on intermittently emit-

ting, mobile radars evolved in multiple increments. 112

5.18 Incremental evolution experimental results . 113

xiv

List of Abbreviations

AI Artificial Intelligence

AL Artificial Life

ANN Artificial Neural Networks

AoA Angle of Arrival

EA Evolutionary Algorithm

EC Evolutionary Computation

ER Evolutionary Robotics

EW Early Warning (Radar)

GA Genetic Algorithm

GP Genetic Programming

GPS Global positioning system

nmi Nautical Miles

RC Remote Control

RCS Radar Cross Section

xv

TA Target Acquisition (Radar)

TT Target Tracking (Radar)

UAV Unmanned Aerial Vehicle

xvi

Chapter 1

Introduction

1.1 Motivation and Research Goals

Unmanned aerial vehicles (UAVs) have become increasingly popular for many applications,

including search and rescue, surveillance, and electronic warfare, but almost all UAVs are

controlled remotely by humans. For UAVs to become truly useful, especially for military ap-

plications, methods of autonomous control must be developed. While the field of evolutionary

robotics (ER) has made strides in using artificial evolution to develop controllers for wheeled

mobile robots, little attention has been paid to controlling UAVs. Evolutionary computation

(EC) is an attractive method for developing UAV control because it allows the human designer

to specify a set of high level goals to be solved by artificial evolution.

This research presents an approach to designing behavioral navigation controllers for fixed

wing UAVs. Multi-objective genetic programming (GP) was used to evolve these controllers

in simulation. The goal of the research was to produce controllers that could locate an electro-

magnetic energy source – a radar in this research – navigate the UAV to the source efficiently,

and then circle closely around the emitter. Four fitness functions, based on observations of

1

UAV flight tests, were established to measure these behaviors: the average normalized dis-

tance to the radar, the circling distance, the amount of time spent flying with a roll angle of

0◦, and a measure of the cost of turning sharply. These fitness functions were combined using

multi-objective optimization. Research began by examining a very simple radar type that was

continuously emitting and stationary. Experiments progressed to more difficult radar types,

including radars that emitted intermittently and radars that moved around the simulation area.

A second set of experiments used incremental evolution to improve the chance of evolving

successful controllers.

While there has been some success in evolving controllers directly on real robots, simula-

tion is much more common. For UAVs, simulation is the only feasible method for evolving

controllers. A UAV cannot be operated for long enough to evolve a sufficiently competent

controller, the use of an unfit controller could result in damage to the aircraft, and flight tests

are very expensive. The development of the simulation environment is extremely important to

the future success of evolved controllers. After being evolved in simulation, controllers must

be transfered to real UAVs, and ensuring that the evolved controllers are sufficiently robust

was an important consideration of the evolutionary process. Methods for effective transference

were incorporated into the simulation by abstracting navigation control from UAV flight, tuning

simulation parameters for equivalence to real aircraft, and adding noise to the simulation.

1.2 Overview of Thesis Chapters

Chapter 2 reviews literature related to the research, including the areas of evolutionary com-

putation, genetic programming, and evolutionary robotics. Methods for measuring fitness in

evolutionary robotics are also examined. Issues within the literature of particular concern to

this research, including transference and incremental evolution, are identified.

2

Chapter 3 describes the problem of controlling UAVs to locate radars. Considerations and cur-

rent trends in UAV technology are examined. The simulation environment, including models

for UAVs, radar sites, and sensors, is presented. The difficulty of the problem and the issue of

transference are discussed.

Chapter 4 presents the multi-objective GP algorithm used to evolve controllers. Four fitness

measures were designed to promote the evolution of good behaviors: normalized distance, cir-

cling distance, level time, and turn cost. The fitness functions and strategies used to evolve

controllers are presented along with the parameters used by GP. Methods of incremental evo-

lution used to evolve controllers are also presented.

Chapter 5 describes the use of multi-objective GP to evolve controllers for a variety of radar

types. First, the effectiveness of the four fitness functions in producing controllers that satisfy

the mission goals is analyzed. After presenting a post-evolution metric for performance eval-

uation, experimental results for controllers evolved on a variety of radar types are presented.

Results are presented for experiments using both direct and incremental evolution. Finally, the

transference of evolved controllers to real robots is described.

Chapter 6 presents concluding remarks on the success of the research. An overview of future

research is also included.

3

Chapter 2

Literature Review

To be truly helpful to humans, robots must be intelligent and able to function autonomously. To

be considered intelligent, a robot must not perform tasks mindlessly, and to be considered truly

autonomous, a robot must be able to function in a complex and noisy environment without

human aid [55]. However, most of the robots known to the general public, including Honda’s

ASIMO humanoid robot, robots shown on television, and most industrial robots, lack both

autonomy and intelligence. Instead, they are either directly controlled by humans or prepro-

grammed, often operating in a simplified environment. Robots have the potential to improve

our lives in many ways, performing difficult, dangerous, and repetitive tasks, but to make this

truly possible, robots must be intelligent and autonomous.

Since neurophysiologist W. Grey Walter designed Machina speculatrix in the early 1950’s [77],

the area of autonomous robots has been an active area of research. The Machina speculatrix,

a robot which Walter also called a tortoise, was a three-wheeled robot with a brain composed

of only a few analog neurons. The tortoise displayed simple behaviors including returning to a

recharging station when its battery was low and homing on a light source. Walter showed how

complex behavior could be obtained from a simple controller able to interact with a physical

4

environment.

As the field of artificial intelligence (AI) grew, so did research on autonomous robotics. The

dominant controller architecture used for autonomous agents was the classical [70] or hierar-

chical [55] architecture. In this architecture, the robot senses the world, plans the next action,

and then acts. An internal global world model is maintained to be used by the planner. The

planning stage might take a long time, and changes in the environment might be ignored. The

earliest example of a robot using this architecture is Shakey [61], a robot designed at the Stan-

ford Research Institute. Shakey used the STRIPS algorithm to generate plans.

In the mid-1980’s, Brooks suggested an alternative to the classical architecture [7], which he

would later call the subsumption architecture [8]. In the subsumption architecture, sensing and

action are tightly linked, and the world is used as its own model [9]. This research has expanded

into the field of behavior-based robotics [3]. Behavior-based robotics differs from the classical

architecture in the diminished importance of planning. While some behavioral architectures

still use planning, there is a much tighter reactive linking between sensing and action than in

the hierarchical architecture [55]. Behavioral architectures that are completely reactive, with

no planning at all, are called “model-free” controllers. Model-free controllers have no internal

environmental model, and effector outputs are a direct function of sensor inputs [35].

2.1 Evolutionary Robotics

The field of evolutionary robotics (ER) [62] combines research on evolutionary computation

(EC) [5,31] with behavior-based robotics and artificial life (AL) [1]. The primary goal of ER is

the automatic design of behavioral controllers with no internal environmental model. ER uses

a population-based evolutionary algorithm to evolve autonomous robot controllers for a target

task.

5

Many evolved robot controllers are model-free. It is possible to include explicit environmental

models for use by evolved controllers [35], but most research does not. While it is feasible

for evolution to produce internal world models, most environments investigated in ER are not

sufficiently inaccessible to require it. The evolution of internal models is also unlikely using

current ER techniques.

2.1.1 History of Evolutionary Robotics Research

Some of the earliest experimental ER work was done by Koza [40]. He used genetic program-

ming (GP) [39] to evolve a subsumption controller for the wall-following problem approached

by Mataric in [52]. The program evolved by Koza was similar in size to the subsumption pro-

grams written by Mataric. While the program evolved by GP was intended to control a real

robot, tests were done only in simulation, making it difficult to gauge the true effectiveness of

the evolved controller.

The research group at the University of Sussex [12] applied the term “evolutionary robotics” to

this field in 1993. Much of the early ER work was done by the Sussex group [12,28,29,33] or

the collaboration between Stephano Nolfi, Dario Floreano, and others [21,50,62,64]. Reviews

of the field of ER at various stages can be found in [29, 51, 57, 62].

Much of the early ER research studied obstacle avoidance navigation, and the evolution of this

type of behaviors continues in current research. Nolfi, Floreano, Miglino, and Mondada [64]

evolved navigation and obstacle avoidance on a real robot that used 8 infrared (IR) sensors

and was controlled by an artificial neural network (ANN). Successful behaviors were produced

after 100 generations, which took about 60 hours, since evolution was embodied on actual

robots. Jakobi, Husbands, and Harvey [33] evolved obstacle-avoiding behaviors in a simulated

robot controlled by an ANN and then successfully tested the evolved controller on a real robot.

6

Edner [16] evolved a GP controller for obstacle avoidance, first in simulation and then on a

real robot. Filliat, Kodjabachian, and Meyer [19] evolved obstacle avoidance in a six-legged

walking robot. In their research, the ANN controller was evolved in simulation, and then the

final controller was successfully tested on a real robot.

Homing is another common behavior studied in ER research. Floreano and Mondada [21]

evolved a neural network controller that could locate and periodically return to a battery charger

when energy levels got low. Evolution took place entirely on real robots. Lund and Hallam [47]

evolved a controller for a similar task, but evolution took place in simulation. They tested the

evolved ANN on a real robot, with behavior similar to simulation.

Another problem often studied in ER research is object movement. Lee, Hallam, and Lund

[43] evolved a GP controller to solve a box-pushing problem. The controller was evolved

in simulation and then transferred to real robots. Results showed that the evolved controller

was very capable at the task and there was no loss of performance when the controller was

transferred to a real robot. Kamio, Misuhashi, and Iba [34] evolved a GP controller for a

walking robot to push a box to a goal. The controller was evolved in simulation, and then

transferred to a real robot, where the controller was refined using Q-learning. Liu and Iba [44]

evolved GP controllers for two robots, one serving as a “hand”, the other as an “eye”. The

controller was evolved in simulation to carry an object to a goal. The controllers have been

transferred to real robots, but results on the success of transference are not yet available.

Another class of problems that has been studied in ER is game playing. Evolving robots to

play games can be more difficult than evolving simple behaviors, since successful strategies for

playing games may require multiple behaviors. Hsu and Gustafson [32] evolved agents to play

keep-away soccer. Their GP controllers were not tested on real robots. Nelson et al. [57–60]

evolved ANN controllers to play capture the flag. Evolved controllers were competitive with

rule-based controllers, and transferred well to real robots.

7

In many of these experiments, the problems to be solved were designed specifically for re-

search purposes. While simple problems generally require a small number of behaviors, more

complex real-world problems might require the coordination of multiple behaviors in order to

achieve the goals of the problem. Very little of the ER work to date has been intended for use

in real-life applications.

2.1.2 Evolutionary Robotics Controller Architectures

A variety of controller architectures have been used in ER. The subsumption architecture was

used by Koza [40] early in ER research, and continues to be used today by some researchers

[44]. Genetic algorithms have been used to evolve rule sets for control [49, 79]. The use of

evolvable hardware for robot control has also been studied [35]. The two most popular control

architectures, however, are artificial neural networks and genetic programming.

ANNs consist of many simple processing units, or neurons, with many interconnections [20].

ANNs are the most popular controller structure used in ER research [12, 19, 21, 28, 29, 33, 47,

50, 57–60, 62, 64]. To speed up evolution, many studies restrict the complexity of network

topologies [21]. In some studies, the network topology is allowed to evolve along with the

weights [45, 54, 57], vastly increasing the search space, but making the use of ANNs more

scalable to difficult problems.

Despite Koza’s early ER work with GP, ANNs have dominated ER research. However, GP

has also been shown to produce functional behaviors for autonomous robot control [16, 32,

34, 43, 44, 65]. While ANNs only require the designer to specify constraints on the network

topology, GP requires additional human involvement prior to evolution. The designer must

specify the functions available to evolution, a process which does introduce human bias into

the evolutionary process. For real-world problems, however, constraining evolution by using

8

GP is often not such a disadvantage; the natural constraints of the problem often make function

selection more obvious.

2.1.3 Simulation

Early in ER research, Brooks noted that the evolution of robot controllers would probably

need to occur in simulation [10]. While some controllers have been evolved in situ on phys-

ical robots, evolution requires many evaluations to produce good behaviors, which generally

takes an excessive amount of time on real robots. Evolving controllers in simulation is less

constraining, because evaluations are much faster and can be parallelized. Since simulation

environments cannot be perfectly equivalent to the conditions a real robot would face, transfer-

ence of controllers evolved in simulation to real robots has been an important issue.

Early in ER research, many studies evolved controllers directly on physical robots [21,62,64].

Though the availability of computational power has made simulation increasingly attractive,

some research using embodied evolution continues [16, 50]. Embodied evolution is often

preferable to evolution using simulation because a model of the world doesn’t need to be cre-

ated for simulation. Embodied evolution can directly test the performance of controllers on the

exact problems one is interested in solving, including the noise from the actual environment.

However, embodied evolution is very slow, which constrains the complexity of problems that

can be solved in a reasonable amount of time.

Simulation has been used since the beginning of ER research [40] with varying success for the

control of real robots. Some simulated controllers are never tested on actual robots, and some

fail to transfer well. However, many controllers evolved in simulation have been successfully

transferred to real robots [19, 29, 33, 34, 43, 47, 57, 59, 60]. Adding noise to the simulation is

one method that has proved successful in evolving controllers that transfer well to real robots.

This technique was introduced in [33] by Jakobi et al. with good success.

9

2.1.4 Robot Types

A variety of robot types have been used in ER research. By far the most common are wheeled

mobile robot experiments [16, 21, 29, 33, 35, 43, 44, 47, 50, 57–60, 62, 64]. The most popular

wheeled robot in use for ER research has been the Khepera [21,29,33,43,44,47,62,64]. Some

researchers using the Khepera have now begun using a larger robot by the same manufacturer

called the Koala [50]. Other research has used existing wheeled research robots [16, 35]. At

North Carolina State University, the EvBot [24] and EvBot II [53] mobile robots have been

designed specifically for ER research [57–60].

ER research has extended to other robot types as well. Some researchers have done ER exper-

iments with walking robots. Filliat et al. [19] evolved locomotion and obstacle avoidance for

a walking robot with six legs. Kamio et al. [34] evolved a controller for a Sony AIBO four-

legged walking robot. The goal of this robot was to solve a box pushing task. At the University

of Sussex, Harvey, Husbands, Cliff, Thompson, and Jakobi [28, 29] used a specialized gantry

robot to do ER research. This robot was composed of a camera assembly suspended from a

gantry. The camera was aimed at a mirror angled at 45◦ so the camera could see in a way

similar to a camera mounted on a wheeled mobile robot. The mirror could be rotated to change

the “direction” this robot was facing. The gantry enabled the camera mechanism to be moved

within a plane. This gantry robot could be used much like a wheeled mobile robot. A variety

of ER experiments including vision work were done with this robot.

A robot type that has received relatively little attention has been the unmanned aerial vehicle

(UAV). ER experiments on flying vehicles can be separated into two general classes of aircraft:

fixed wing and rotary wing. The most common type, especially for military applications, is the

fixed wing UAV [14]. Hoffmann, Koo, and Shakernia [30] evolved a rotary wing helicopter

autopilot using evolutionary strategies to evolve a fuzzy logic rule base. Shim, Koo, Hoffmann,

and Sastry [72] compared this approach to linear robust multi-variable control and nonlinear

10

tracking control in simulation. They showed that the evolved controller was able to handle un-

certainties and disturbances. Marin, Radtke, Innis, Barr, and Schultz [49] evolved a controller

for a UAV of an unspecified type. They evolved a set of rules to reactively control a UAV’s

flight based on target detection. Their experiments were only in simulation, the movement of

the UAV was grid-based, and the UAV could move in any direction at every time step. Be-

cause of the unrealistic nature of the simulation, it would have be difficult to control real UAVs

with the evolved controllers. In related work, Wu, Schultz, and Agah [79] evolved a control

scheme for micro air vehicles. Their evolved control system was distributed. Each vehicle had

its own controller, though all controllers were identical. Rule sets were evolved to control the

UAVs. Like the experiments in [49], only simulation was used, simulation was unrealistic, and

no testing on real UAVs was attempted. Meyer, Doncieux, Filliat, and Guillot [54] evolved a

neural network control system for a simulated blimp. Unlike rotary wing and fixed wing UAVs,

a blimp is very stable and easy to pilot. The goal of the research was to develop controllers

capable of countering wind to maintain a constant flying speed. The evolved control system

was only tested in simulation.

2.2 Genetic Programming

Genetic programming (GP) is a subfield of evolutionary computation (EC) [5] that uses a ge-

netic algorithm (GA) to evolve computer programs. EC uses a computer model of the naturally

occurring evolutionary process to solve problems [31]. A GA, a type of EC algorithm, oper-

ates on a population of individual objects, each with its own fitness, using genetic operators

like recombination and mutation to create a new generation. As this process is repeated, the

principle of survival of the fittest improves the fitness of the population.

GP uses a GA to evolve populations of computer programs. The GP paradigm was introduced

and championed by John Koza [36]. Koza has shown that GP is not simply random search, it

11

is much more effective [39]. GP allows for individuals to vary in size, which is necessary for

computer programs of varying lengths. Like most subfields of EC, GP is domain-independent.

GP has been applied to a diverse selection of problems. Extensive information on GP is avail-

able in Koza’s books [36–38].

2.2.1 Evolutionary Process

GP represents an individual as a tree, where each node represents a programming command.

Each non-leaf node is a function, which takes at least one argument, and each leaf node is a

terminal, which takes no arguments. A GP program tree can also be seen as an S-expression

similar to those in LISP, though GP systems are written in many languages.

The most common method for evolving computer programs using GP is generational evolution.

First, an initial population of random computer programs is generated. This population can be

generated in several ways, including setting the initial depth of all individuals to be the same,

ramping the initial depth of individuals over the population, or mixing these methods. After

the initial population has been created, evolution begins. During each generation, GP evaluates

each individual in the population and assigns it a fitness value using a fitness function. Then, a

new generation is formed by probabilistically selecting one or more parent programs from the

population and applying genetic operators to them. Three genetic operators are typically used,

and the percentage of time each is applied is set as a parameter of evolution. Reproduction

directly copies a selected individual to the new population. Crossover recombines two parent

programs to create new children. Mutation creates one new individual by mutating a single

parent. Mutation is typically done by selecting a node within the tree, destroying the subtree

below that point, and creating a new random subtree in its place. The mutation rate, the per-

centage of the time that mutation is applied, is usually set to be very small for GP, as mutation

is very disruptive. This operator is intended to aid in broad search and to help keep GP from

12

being stuck in local minima. Evolution takes place over a specified number of generations

or until a success criterion is satisfied. Koza [36–38] provides extensive information on the

specific implementation of GP in software.

2.2.2 Concerns and Strategies

While the general framework of GP is well defined, many parameters of the algorithm can be

altered. There have been large numbers of studies investigating all aspects of GP in the hope

of making the evolutionary process efficient and successful. Two important parameters for

controlling GP are the population size and the maximum number of generations. Crossover

benefits from a large population, though too large a population can make propagation of good

behaviors difficult. Another parameter for controlling evolution is the ratio between crossover

and mutation operations. Typically, GP uses the crossover operation more than 90 percent of

the time. Evolution can also be controlled by varying the crossover and selection types [38].

The evaluation method is also important to the success of GP. Panait and Luke [67] investigated

the impact of sampling method on robustness. They found that the best sampling method was

domain-dependent, demonstrating the need to take GP parameters into consideration before

beginning evolution.

An important consideration in GP research has been code growth, or bloat. Programs evolved

with GP tend to grow over time without necessarily increasing in fitness [75]. This is a problem

not only because code growth makes it difficult to tell what the program is actually doing, but

bloat also hinders the progress of evolution, creating stagnation [6]. Bloat tends to be made up

of neutral code, or introns, which are branches of the program tree which are never executed

under any circumstance or have no effect on the program’s outcome. Several studies of the

causes of bloat have been pursued [6, 75]. These works studied several possible causes of

bloat, but the main conclusion was that bloat is problem independent. A variety of techniques

13

have been devised to contain code bloat. Perhaps the most popular has been a fixed limit to

the depth of programs. Generally, this limit is constant over all generations, though Silva and

Almeida [73] have proposed a dynamic depth limit. Luke and Panait [46] have proposed a

method known as lexicographic parsimony pressure where size is taken into account during

selection. This technique can be used in combination with depth limiting.

2.3 Performance Evaluation

One of the great challenges of EC is the formulation of fitness functions for performance eval-

uation [5]. A fitness function (alternatively called a fitness measure, fitness metric, or objective

function) allows an individual within a population to be ranked based on its performance. This

ranking is used for selection in the evolutionary process. The success of evolution is heavily

dependent on the formulation of an effective measure of fitness.

For many applications, EC is used for the purpose of global optimization. In ER, the evolution-

ary process is used instead for primary generation. For a sufficiently complex task, finding the

absolute optimal response is generally not of interest. Instead, the goal is to generate a desired

set of complex behaviors or to successfully complete a desired task.

In a reactive controller, the robot receives sensor signals and then generates actuator com-

mands over many time steps. As the robot moves, its relationship to the environment changes,

changing the sensor values. The necessary actuation values to produce successful behaviors

are rarely known a priori; if they were, evolution would be unnecessary. Because the actuation

values for a desired behavior are generally not known, the fitness of actuator outputs cannot

be directly measured. Instead, populations of robot controllers must be evolved using fitness

functions that measure the expression of behaviors, rather than a sensor-actuator input-output

error.

14

In [62], Nolfi and Floreano describe a fitness space to classify fitness functions for autonomous

systems. Their fitness space has three continuous dimensions: functional-behavioral, explicit-

implicit, and external-internal. A given fitness function can be mapped to a point in this three-

dimensional space. The functional-behavioral dimension indicates what the fitness function

measures, functioning modes or behavior of the controller. For evolving robot behaviors, a

functional fitness metric would measure a sensor-actuator input-output error, while a behavioral

metric would measure the expression of desired behaviors. The explicit-implicit dimension is

defined by the number of variables and constraints in the fitness function. Implicit functions

tend to measure only very high level behaviors and have very few variables. Explicit functions

measure more subsystems and have more variables. The external-internal dimension indicates

whether the variables and constraints used to compute the fitness are directly available to the

evolving robot. External functions use require information not available to the robot; internal

functions require only information on-board the robot. The best location for a fitness function

in this three-dimensional space depends on the problem. For the evolution of autonomous

systems, a fitness function that leans toward the behavioral, implicit, internal corner of the

fitness space is best. If evolution is done in simulation, the external-internal dimension is

mostly unimportant.

While fitness function selection is perhaps the most challenging part of applying ER to com-

plex, real-world problems, there are a number of open issues which require further resolution.

First, there is a need to select for fitness in initial populations that have little to no measurable

ability to complete the overall tasks, which might be very complex. If the fitness measures

are so difficult that initial populations are comprised entirely of individuals with no detectable

level of fitness, then the evolution cannot effectively select more fit individuals. This is com-

monly called the Bootstrap Problem, and can lead to populations that stagnate easily. Second,

there is a desire to minimize human bias in the production of fitness measures. As problems

become more complex, effective fitness functions can no longer be designed based on human

15

knowledge of the domain. Third, evolution should be able to generate behaviors for multiple

objectives which might conflict. ER generally uses only a single fitness function, allowing in-

dividuals in the population to be ranked very easily. For problems with only a single objective,

this poses no difficulties. When a problem has multiple objectives, fitness function design and

evolution’s method of selection must be altered. Fourth, ER should be able to evolve controllers

that are capable of controlling real robots in realistic, real-world environments. All too often,

ER research has been done in simple, unrealistic domains, and has been completely unsuitable

for real-world applications.

Researchers have adapted a variety of strategies to address these problems. At the present time,

no single method has shown itself to be preferable for all problems. In this section, several of

the more successful fitness function strategies are presented and discussed. While some of

these methods are mutually exclusive, some are complementary.

2.3.1 Functional Fitness Functions

Functional fitness functions are a quantification of an individual’s fitness measuring some as-

pect of performance beyond a binary success measure. Functional fitness functions are often

formulated by trial and error or a human designer’s expertise (or both). Using functional fitness

functions introduces human bias into fitness function design because the human designer must

decide how important a particular behavior is to the overall fitness of the individual.

Traditional functional fitness functions, which produce a single value for each individual in

the population, are most useful for tasks that have a single, measurable objective. However,

functional fitness functions can be used to optimize over multiple objectives. To accomplish

this, a fitness function for each objective is formulated, and then a single function for all the

objectives is produced by summing each objective’s function. Typically, these functions are

16

weighted to give precedence to one or more objectives, and this weighting may introduce a

great deal of human bias into fitness function design.

Many ER experiments have used functional fitness functions. In [28], Harvey et al. designed

fitness functions to measure the distances between a robot and a series of targets where the task

was for the robot to move toward the target. Floreano and Mondada [21] used a functional fit-

ness measure to evolve a robot to navigate and avoid objects. The fitness function was designed

to maximize speed, straight line motion, and obstacle avoidance. These three components were

combined into a single function. Lee et al. [43] designed three fitness functions, the first for

simple box-pushing, the second for box-side-circling, and the third to combine the previous

two behaviors into a high level behavior. The first two fitness functions combined multiple

objectives into single value functions, while the third fitness function measured only a single

value.

2.3.2 Aggregate Fitness Functions

In a very different manner from functional fitness functions, aggregate fitness functions mea-

sure only the high-level success of individual controllers. Aggregate fitness selection (or “all-

in-one” evaluation) measures the fitness of an evaluation trial as a single binary value. The

final fitness is the sum of values from a number of trials.

While functional fitness functions often require a great deal of human bias, aggregate fitness

functions require much less human domain knowledge, reducing the amount of human bias in

the fitness function design. This reduction of human bias is viewed by some as extremely nec-

essary for the evolution of truly complex behaviors [57]. Because aggregate fitness functions

judge a particular trial as either a success or a failure, they are particularly useful in competitive

evolution, described in Section 2.3.3.

17

Despite these advantages, aggregate fitness functions also have many disadvantages. This

method has never been very popular in ER research because it is extremely subject to the Boot-

strap Problem (described in Section 2.3), where initial populations have no detectable fitness.

One method for overcoming this problem, a bimodal fitness function, was examined in [57].

Aggregate fitness functions also require a task where success can be clearly defined. Since

fitness is all or nothing, individuals that come very close to fulfilling a task receive the same

score as individuals that fail completely. Likewise, there is little evolutionary pressure for an

individual to improve beyond simply satisfying the goal. Also, if the problem in question does

not have an implicit boundary between success and failure, human bias must be introduced,

negating one of the major advantages of this technique.

2.3.3 Competitive Fitness Evaluation

Many researchers have examined competitive fitness evaluation as a method for overcoming

some of the current challenges related to fitness functions design in ER. Competitive fitness

evaluation uses direct competition between members of a population to direct evolution. Ag-

gregate fitness functions are typically used to evaluate the results of competition, as mentioned

in Section 2.3.2. Because individuals compete head to head with one another, the performance

of an individual is directly affected by the fitness of other individuals in the population. The

attraction of competitive fitness evaluation is the continual evolutionary pressure co-evolving

populations exert on each other. As one population evolves more fit behaviors, the evolutionary

pressure on the other increases, creating increasingly more complex behaviors.

Co-evolution can be implemented in two ways: with a set of multiple co-evolving popula-

tions, or with competitive selection in a single population. Examples in the literature [45, 63]

demonstrate the ability of co-evolving populations to continually change the fitness landscape,

promoting increasingly competent individuals. This trend of reciprocal increases in difficulty

18

is also seen in co-evolution using only a single population. As the fitness of individuals in the

population increases, the fitness landscape is altered, and the problem becomes more difficult.

This is known as the “Red Queen Effect” [22] for Lewis Carroll’s character in Through the

Looking Glass whose running never yielded any advancement, because the landscape moved

with her. There are successful examples of single population co-evolution in the literature that

demonstrate this effect [57, 67]. Competitive fitness evaluation allows the dynamics of evolu-

tion to exert pressure on populations to develop increasingly competent individuals. In more

traditional EC work, once the population has satisfied the objectives in the fitness function,

evolution has no incentive to continue to get better. This is a major advantage of co-evolution.

Despite the advantages of competitive fitness selection, this method is not perfect. First, for

multiple populations, the level of play possible depends highly on the opponent. If the competi-

tion is uneven, and one population has a more difficult task, or if one population is significantly

better than the other, evolution can stagnate. Also, co-evolution works best for problems where

there is already competition, like game playing [45, 57] or predator-prey problems [22, 63].

Without inherent competition, co-evolution usually requires changing the problem to fit the

competitive fitness model. It is possible to use co-evolution more generally by using two pop-

ulations; one population contains regular structures to be evolved, the other contains training

cases. Using co-evolution can help concentrate fitness calculations on difficult training cases.

The results in [67] suggest that co-evolution used in this manner is still very domain-dependent.

For some tasks, competitive fitness evaluation should be considered an excellent option, but it

cannot be applied equally well in all cases.

2.3.4 Multi-objective Optimization

Many problems have multiple objectives, and in order to optimize over more than one objec-

tive, EC techniques must be enhanced beyond a simple functional fitness function measuring

19

only one parameter. It is possible to continue using a single-value functional fitness function

by combining multiple objectives into a single function, as described in Section 2.3.1. How-

ever, this generally requires weighting, which forces the human designer to scale all functions

appropriately so as to emphasize them in order of importance. While this has been success-

ful [21,28,43], this method becomes more difficult as the complexity of the problem increases.

The human bias in choosing weights for each component of the function plays a major role in

the success or failure of evolution.

An alternative to conventional, single-valued fitness evaluation is the use of multi-objective op-

timization, where the evolutionary algorithm optimizes over multiple fitness measures instead

of a single function. Multiple objectives may conflict with one another, so that there may not be

a single optimal solution to the problem. Instead of finding a single best point based on some

human weighting of the fitness function, multi-objective optimization finds a set of solutions

known as the Pareto front where no individual has more optimal fitness values for all functions

than any other in the front [13].

Fitness values for multiple objectives cannot be ranked as simply as those for a single objective.

Multi-objective optimization uses a technique called a non-dominated sort to rank the members

of the population based on their fitness values. Individuals are sorted into ranks based on their

level of non-domination. The individuals in the first rank are not dominated by any other

individual in the population; no individual performs worse on all fitness functions than another

individual. Once the first front is found, the individuals in that front are set aside and the

process is repeated with the remaining members of the population [15]. A variety of multi-

objective optimization algorithms have been presented in the literature [13, 41, 42]. One of

the most successful algorithms has been the Non-Dominated Sorting Genetic Algorithm II, or

NSGA-II [15]. Multi-objective optimization has been applied to a variety of media, including

GP [69].

20

Multi-objective optimization produces a Pareto front of solutions, which can hinder the selec-

tion of a single best solution. Typically, the resulting evolved population must be evaluated

differently than it was during the evolutionary process. The decision about which member of

the population represents the best solution must usually be made by the human designer. No

matter the amount of human bias that contributes to this final selection, using multi-objective

optimization still frees the evolutionary process from the bias that accompanies complex func-

tional fitness functions.

2.3.5 Incremental Evolution

Incremental evolution is a method that has demonstrated success both in overcoming the boot-

strap problem and in evolving complex controllers. Incremental evolution is the process of

evolving a population on a simple problem and then using the evolved population as a seed to

evolve a solution to a more complex problem. Several increments can be undertaken before

training on the final problem.

Incremental evolution is appropriate for “hard” problems where evolution finds either the boot-

strap problem or producing a successful controller difficult. In [11], Clark and Thornton clas-

sified problems into two types. Problems of type-1 are statistical; these problems can be solved

using observable statistical effects. Problems that are not type-1 are type-2, problems Clark

and Thornton call relational. Earlier, Elman [17] had introduced the concept of incremental

learning to the training of neural networks. He studied grammar acquisition by a neural net-

work using backpropagation, and found that training the network only on complex examples

failed. However, by introducing training data incrementally - simple examples first and then

more complex examples - a network could be evolved to learn the grammar acquisition task.

Clark and Thornton note Elman’s results as evidence of the ability of incremental learning to

solve type-2 problems. Nolfi and Floreano [62] discuss these results in regard to evolution.

21

There are two types of incremental evolution. In functional incremental evolution, the difficulty

of the fitness function is incremented. The purpose of this is usually to evolve a controller for

a specific set of behaviors which the human designer believes are useful for accomplishing

the final task. Functional incremental evolution has been used successfully by a number of

researchers. Harvey et al. [28] used incremental evolution to evolve neural network robot con-

trollers guided by vision. The networks were first evolved to move toward a large rectangular

target. Networks were then evolved to find a smaller target, and then a moving target. Finally,

in the portion of incremental evolution where the fitness function was significantly altered, the

networks were evolved to avoid a rectangular target while moving toward a triangle. Gomez

and Miikkulainen [26] evolved an enemy evasion behavior using incremental evolution and

found it to be superior to direct evolution on the final problem. They first evolved a neural

network to avoid a single slow enemy, then two slow enemies, and finally two fast enemies.

In [27], they used a similar technique to evolve a controller for a finless rocket. Filliat et al. [19]

used incremental evolution to evolve a controller for a legged robot. Locomotion was evolved

first, and then obstacle avoidance. While most of the incremental evolution work has used neu-

ral networks, Winkeler and Manjunath [78] used incremental evolution with genetic program-

ming to evolve a controller to keep a moving object in the center of a camera’s field of view.

Solutions evolved using incremental evolution were often superior to those evolved through

direct evolution. GP has also been used in other incremental evolution experiments [32, 43].

Functional incremental evolution has met with criticism because evolution is very guided. In

some cases, it is inappropriate to consider the evolved controllers as having evolved novel

behaviors.

In the second method of incremental evolution, the difficulty of the individual’s environment

is incremented. For this to be different than simply incrementing the difficulty of the fitness

function, the fitness measure generally must be behavioral. While less popular than functional

incremental evolution, environmental incremental evolution has been used with success by

22

some researchers. Harvey et al. [28] changed the fitness function as part of their incremen-

tal evolution scheme, but the first step of incremental evolution was environmental; the only

change was the size of the rectangular target. Nakamura, Ishiguro, and Uchikawa [56] used

environmental incremental evolution throughout the evolution of a controller that would find a

peg, lift it, and remove it from the arena. The research identified a number of simple, ordered

sub-behaviors that a very fit controller would need to execute to be successful: explore→find

the peg→grasp→carry toward the wall→release the peg outside the arena. While functional

incremental evolution would have required a fitness function for each stage of the task, Naka-

mura et al. used environmental incremental evolution. They evolved a controller in three

stages: 1) the robot, already grasping the peg, is placed randomly, 2) the robot is positioned

with its arm down at the front of the peg but not grasping it, and 3) the robot is positioned with

its arm up at the front of the peg but not grasping it (the explore and find the peg behaviors

were not evolved). The fitness function remained the same for all stages of evolution. This

technique evolved a successful controller, while direct evolution on the final problem never

showed appreciable fitness. Nelson [57] used environmental incremental evolution to evolve

neural network robot controllers to play capture the flag. Avraham, Chechik, and Ruppin [4]

used incremental evolution to evolve a neural network solution for a generalized XOR problem

for a mobile agent. The sizes of objects to be recognized were made incrementally harder to

enable the evolution of a successful network.

While incremental evolution has worked well in many cases, it does have some problems that

must be kept in mind. First, using incremental evolution requires the human designer to play

a much larger role in the evolutionary process. The selection of training increments heavily

influences the success of evolution, and for many problems, these training increments are not

obvious. If the wrong increments are chosen, evolution may fail, especially for functional

incremental evolution, which can force the use of particular behaviors. Another consideration

is the diversity of the population during incremental evolution [18]. If a population is over-

23

trained on a simple task, there may not be sufficient diversity available for complex tasks. For

mutation-only systems, like [57], this is not much of a concern, but for crossover-dependent

evolution that depends on diversity, it must be kept in mind.

In this research, controllers were evolved over multiple goals using multi-objective optimiza-

tion. Both function and environmental incremental evolution were also used to improve the

ability of evolution to produce fit controllers for complex radar types. The simulation environ-

ment, described in Chapter 3, was designed to promote the evolution of controllers that could

be transferred to real UAVs. The multi-objective GP algorithm and techniques of incremental

evolution using in this work are described in Chapter 4.

24

Chapter 3

Unmanned Aerial Vehicle Control

The recent successes of the unmanned aerial vehicle (UAV) have helped prove it to be a cost-

effective platform for military operations. The many cost and flexibility advantages of UAVs

makes them attractive for many applications, including surveillance, search and rescue, and

electronic warfare. At present, UAVs are usually remotely controlled by humans, but as UAV

technology is deployed more widely, the need for autonomous control will grow.

The goal of this research was the development of a navigation controller for a fixed wing UAV.

The UAV’s mission is to autonomously locate, track, and then orbit around a radar site. There

are three main goals for an evolved controller. First, it should move to the vicinity of the radar

as quickly as possible. The sooner the UAV arrives in the vicinity of the radar, the sooner it

can begin its primary mission, which may be jamming the radar, surveillance, or another of the

many applications for this type of controller. Second, once in the vicinity of the source, the

UAV should circle as closely as possible around the radar. This goal is especially important

for radar jamming, where the distance from the source has a major effect on the necessary

jamming power. Third, the flight path should be stable and efficient; the roll angle should

change as infrequently as possible, and any change in roll angle should be small. Making

25

frequent changes to the roll angle of the UAV could create dangerous flight dynamics and

reduce the flying time and range of the UAV.

Behavioral navigation controllers for fixed wing UAVs were evolved using multi-objective

genetic programming. While there has been success in evolving controllers directly on real

robots [64], simulation is the only feasible way to evolve controllers for UAVs. A UAV cannot

be operated continuously for long enough to evolve a sufficiently competent controller, the use

of an unfit controller could result in damage to the aircraft, and flight tests are very expensive.

For these reasons, the simulation must be capable of evolving controllers which transfer well

to real UAVs.

In this chapter, the problem of UAV control and a description of the simulation used by evolu-

tion are presented. First, an overview of the simulation environment is given. Next, the models

for UAVs, radars, and sensors used in the simulation are presented. Finally, the difficulty of

this problem for both human designers and evolution is described and issues of transference to

real UAVs are addressed.

3.1 Simulation Environment

The simulation environment is a square, 100 nautical miles (nmi) on each side. Two types of

agents exist in this environment: UAVs and radars. The UAV model is described in Section 3.2.

The radar models available in the simulation are presented in Section 3.3. In addition to UAV

and radar agents, the simulation models propagation of electromagnetic energy throughout the

environment. The sensor model used in the simulation is described in Section 3.4.

The fitness of a controller is calculated by running some number of simulation trials. The initial

positions of the UAV and the target radar are set randomly at the beginning of each simulation.

26

0 50 100
0

50

100

UAV

Radar Site

x (nmi)

y
(n

m
i)

Figure 3.1: The simulation area, as shown, is 100 nmi by 100 nmi. The UAV is placed randomly

along the southern edge of the simulation area, and the radar is placed randomly anywhere

within the environment.

The simulator gives the UAV a random initial position in the middle half of the southern edge

of the environment with an initial heading of due north and the radar site a random position

within the environment every time a simulation is run. An example of these random placements

is shown in Figure 3.1. Each trial involves four hours of simulated time. The simulation period

is divided into time steps, each one second long. The state of the world and the state of each

agent in the world update at every time step.

3.2 Unmanned Aerial Vehicles

A UAV can be viewed as an extension of several more familiar vehicles. First, a UAV can be

seen as a sophisticated remote control (RC) plane. The primary differences between a UAV

and an RC plane are that a UAV usually has a more complex flight control system, on-board

sensors, and can be flown beyond line of sight. Second, a UAV can be seen as a flying robot,

27

Figure 3.2: The Predator medium altitude long endurance unmanned aerial vehicle.

a view which is adopted in this work. The complex control system, on-board sensors, and

potential for autonomy are all characteristics of autonomous robotic systems.

3.2.1 Characteristics

UAVs can be divided into two general classes: fixed wing and rotary wing. Fixed wing UAVs

are the most common type used for military applications. The potential applications of fixed

wing UAVs are similar to the tasks that planes now perform. Rotary wing UAVs, also known as

helicopters, are applicable to some of the same tasks as fixed wing UAVs, though helicopters

are more useful in urban areas and other areas where fixed wing aircraft have difficulty ma-

neuvering. Like their manned counterparts, fixed wing UAVs are typically much faster than

helicopter UAVs and have much greater flight range. This research focused only on fixed wing

UAVs, though it might be possible to transfer these controllers to helicopter UAVs.

UAVs exist in a variety of sizes. The range and payload capacity, which depend largely on

the wingspan, dictate the mission length, number of sensors, and general range of applications

of a UAV. Of military UAVs in use today, the Predator UAV, shown in Figure 3.2, is perhaps

the most well-known. Used in Afghanistan for a variety of missions, the Predator is a large,

long-endurance UAV. It has a wingspan of 49 feet, a range of 400 nautical miles, and can carry

28

Figure 3.3: The Dakota unmanned aerial vehicle.

a payload of 450 lbs [76]. The Predator is commonly used for armed reconnaissance and target

acquisition. An even larger UAV used by the military is the Global Hawk, with a wingspan

of 116 feet and a range of 12,000 nautical miles [76]. One mid-size class UAV is the Dakota,

shown in Figure 3.3. This platform is much less expensive than the long-endurance platforms

of larger UAVs. The Dakota has a wingspan of 16 feet, a payload capacity of 80 lbs, and can

fly for up to 6 hours [25]. Due to shorter ranges and smaller payload capacities, mid-size UAVs

have more limited mission capabilities than larger UAVs. However, the cost per aircraft is much

less. Micro UAVs (sometimes called mini UAVs or micro air vehicles) are even more cost

effective than mid-size UAVs, but with a great trade-off in payload and range. One example

of a micro UAV is the Dragon Eye, a UAV developed at the Naval Research Laboratory for

use by Marines in reconnaissance. The Dragon Eye has a wingspan of 45 inches, a maximum

payload of 1.8 lbs, and a maximum flight time just over one hour [14]. Micro UAVs might also

have flight stability problems due to external disturbances such as wind gusts, since the size

and weight of the UAVs are so small.

The UAV is becoming increasingly popular for many applications, particularly where high risk

29

or accessibility are issues. Manned flights, regardless of the mission, place pilots in danger,

but by using UAVs, the danger to humans is reduced. Manned aircraft are also generally much

more expensive than unmanned craft, and because of this, UAVs can be used in nontraditional

ways. For a large, expensive, manned aircraft, survivability is an essential mission goal. How-

ever, for a small, expendable, unmanned aircraft this is not always the case. If survivability

is not a mission goal, the effective range of a UAV is increased, since it needn’t plan to re-

turn to a recovery area. In general, larger UAVs like the Predator and Global Hawk are too

expensive to lose during a mission; it is the mid-size and micro UAVs that offer the advantage

of low cost and expendability. However, tradeoffs come with the lower cost. The smaller the

UAV, the shorter the range and smaller the payload, decreasing the flexibility of the aircraft. To

overcome this, smaller UAVs can be flown in groups with diverse and complementary abilities.

3.2.2 Applications

Both UAV technology and complementary subsystem technologies have progressed to the point

where mid-size and micro UAVs can accomplish realistic and meaningful missions. UAVs are

useful for a wide variety of applications, many of which are military in nature. UAVs are now

considered sufficiently mature to serve as sensor and weapons platforms [48]. Smaller UAV

platforms are particularly suited to radar jamming, surveillance, signals collection, data relay,

and search.

A major advantage of the small size of a UAV is the ability to fly close to targets. Radar jam-

ming benefits greatly from proximity to the target [14]. A common method for radar jamming

is stand-off jamming, where the aircraft is outside the range of enemy weapons [2]. The power

necessary to jam a radar at a given range is proportional to the square of the range between the

radar and the jammer, so stand-off jamming requires large amounts of power [71]. For stand-in

jamming, the jamming platform is within range of enemy weapons. The great advantage of

30

stand-in jamming is the large decrease in the power necessary to effectively jam a radar. Be-

cause stand-in jamming places the jamming platform at risk, this technique is commonly used

only for self-preservation in manned aircraft, since large planes can be easily tracked before

jamming has begun. Small UAVs, however, have a great advantage in this type of mission. The

ability of a radar to track an aircraft depends heavily on the radar cross section (RCS), the area

of the aircraft visible to radar. Due to the small size of UAVs, the RCS tends to be very small,

sometimes even similar to the size of a bird. This makes smaller UAVs more difficult to track

than manned aircraft, opening the possibility for UAVs carrying jammers to fly very close to

enemy radar. The combination of low radar signatures and expendability make UAVs excellent

candidates for radar jamming applications.

Some other potential applications of UAVs are signals collection and data relay. Collecting

information on electromagnetic signals is an important task for many military operations [14].

UAVs could record wireless audio communications from enemies on the ground, monitor com-

munications from friendly vehicles in the area, or use communication data to track movement.

In addition to collecting signals, UAVs could also function as data relays. A UAV able to com-

municate with a satellite or equipped with a long range transmitter could relay data between

unmanned ground vehicles, other UAVs, and military personnel.

Search and surveillance are also excellent applications for UAVs. Surveillance from a UAV

could take many forms. A UAV remotely controlled by a human could be equipped with

one or more cameras and then flown for reconnaissance. The aircraft could either be fully

controlled by a human or semi-autonomous, requiring the human to enter waypoints [14].

With the proper sensors, UAVs could also monitor an area for chemical or biological agents. In

addition to human control, autonomous controllers can be designed for search and surveillance

[79]. Search and surveillance place great importance on sensors for accomplishing a goal. For

smaller UAVs, sensors must be light enough to meet payload limitations.

31

3.2.3 Operation

An important consideration for using UAVs is operation, as methods for generating plans to

accomplish a desired task vary. Navigation of a UAV requires balancing a number of priorities,

including safety, efficiency, and performance [23]. Control can be done entirely by a human,

semi-autonomously with a human to set goals, or completely autonomously.

Direct human control is currently a common way to operate UAVs. Full control over the

aircraft is retained, but there is no longer any danger to the human pilot. While human control

of UAVs is generally as robust as human control over manned aircraft, there are a number of

disadvantages associated with this control method. First, each aircraft requires a flight crew of

at least one and up to three humans, which makes coordination of large swarms of UAVs just as

difficult as coordination between conventional manned planes [68]. Communication channels

to the aircraft must always be open in order for the remote pilot to maintain control over the

UAV. For long range missions, this almost necessitates satellite communication, which takes

up payload weight and consumes power.

Introducing some autonomous behavior can partially overcome these limitations. Semi-autonomous

flight control allows the human to provide broad scale navigation planning, while a low level

autopilot flies the UAV. Humans typically set waypoints along the UAV’s path, and the autopi-

lot flies between these points. While the immediate actions of the UAV might be autonomous,

a human must still guide the aircraft. By making aircraft semi-autonomous, it is possible for

one human to control multiple UAVs.

For situations where no human has complete information, fully autonomous control may be

preferable to human guided control. While a human may set goals for the UAV, both high and

low level flight control are done autonomously. With methods for flight coordination, large

numbers of autonomous controllers can be deployed in a single mission. Coordination between

32

UAVs can be included in the autonomous controllers. While coordination is more feasible with

humans out of the loop, hand programming controllers for multi-UAV systems remains diffi-

cult. Autonomous controllers can also be very reactive to the environment, something that may

be difficult for remote human operation. Automatic methods of developing autonomous con-

trollers – like evolutionary computation – have great potential to make controller development

easier.

3.2.4 Controller Architecture

The controller architecture of the flight system for this research is divided into two parts: nav-

igation and low level control. Only the navigation portion of the flight controller is evolved;

the low level flight control is done by an autopilot. The navigation controller receives radar

electromagnetic emissions as input, and based on this sensory data and past information, the

navigation controller changes the desired roll angle of the UAV control surface. The autopilot

then uses this desired roll angle to change the heading of the UAV. This autonomous navigation

technique results in a general controller model that can be applied to a wide variety of UAV

platforms; the evolved controllers are not designed for any specific UAV airframe or autopilot.

3.2.5 Simulation Flight Model

A model approximating the flight of a UAV is used in the simulation [80]. At every time step,

the position and orientation of the UAV is updated based on the roll angle, the single output

variable available to the navigation controller. For this research, each time step is 1 second

long. The speed of the UAV is fixed at 80 knots and the altitude is held constant. At each time

step, after the new roll angle has been set by the navigation controller, the simulation updates

33

the position of the UAV. First the roll angle is used to calculate a turn rate. The turn rate is used

to calculate the new UAV heading, which is then used to find the new position of the UAV.

3.3 Radar

The goal of this research was to evolve UAV controllers to fly to radars and circle closely

around the radar sites. The primary application of this type of controller is radar jamming,

though a UAV equipped with this type of controller could be used for reconnaissance or even

to carry weapons to attack a hostile radar.

3.3.1 Radar Types

The simulation can model a wide variety of radars. The site type, emitter function, frequency,

gain, noise, power, pulse compression gain, bandwidth, minimum emitting period, mean emit-

ting period, minimum emitting duration, and mean emitting duration are all configurable in the

simulation. For the purposes of this research, most of these parameters were held constant.

Radars used in experiments can be described based on a few characteristics of the radar: 1)

site type, 2) emitter function, and 3) emitting pattern. The site type of the radar determines the

target radar’s mobility.

The available site types are stationary sites and mobile sites; the latter models a surface-to-air

missile (SAM) site. The stationary site has a fixed position for the entire simulation period.

The mobile site is modeled by a finite state machine with the following states: move, setup,

deployed, and tear down. When the radar moves, the new location is random, and can be

anywhere in the simulation area. The finite state machine is executed for the duration of sim-

ulation. The radar site only emits when it is in the deployed state; while the radar is in the

34

move state, the UAV receives no sensory information. The time in each state is probabilistic,

and the minimum amount of time spent in the deployed state is an hour, 25 percent of the total

simulation time.

Two emitter functions are used in this research. The first type is early warning (EW) radar, a

generally low-resolution, low-frequency search radar. This is a common emitter type for sta-

tionary radars. The second type is target acquisition (TA), an emitter function used by surface-

to-air missiles to find targets [71]. SAM sites have both TA and target tracking (TT) radar, both

of which are modeled in the simulation, but TT radar was not used to evolve controllers. Since

TT radar is generally only used once TA radar has acquired a target, TA radar is a more reliable

way to track a SAM site. In this research, all stationary radars use EW radar and all mobile

radars use TA radar.

The last characteristic used to describe radars in this research is the emitting pattern of a target

radar site. Radars can emit continuously, intermittently with a regular period, or intermittently

with an irregular period. This aspect of the radar is configured by setting the minimum emitting

period, mean emitting period, minimum emitting duration, and mean emitting duration. If all

four parameters are set to infinity, the radar is continuous. If the minimum and mean are the

same for both period and duration, then the radar is considered to be emitting with a regular

period. If the minimum and mean are different, the radar is emitting with an irregular period.

3.3.2 Radar Modeling

Almost all radar antennas are directive, focusing most of the transmitting power into the main

beam. The main beam, which tends to be narrow for directive radar, is the portion of the

emitted signal used by the radar for detection and tracking. The sidelobes are the parts of the

emitted signal that are not part of the main beam [74]. The main beam is the effective portion

35

of the radiation emitted by the radar, so sidelobes have a much lower power than the main lobe,

making them harder to detect. However, sidelobes exist in all directions, while the main beam

is visible only in the direction in which the radar is pointed. For this reason, if a controller can

track a radar based only on the sidelobes, the radar can be tracked no matter the direction in

which it is pointed. The simulation for this research models only the sidelobes of the radar;

this model is intended to increase the robustness of the system, so that the controller doesn’t

need to rely on a strong signal from the main beam.

While the simulation area includes no other sources of radiation other than the radar, real radars

operate in an environment with many external sources of noise. Radars themselves produce

noise, such that the emitted signal is not always perfectly ideal. When simulating a radar, noise

should be included in the model. In this simulation, Gaussian noise is added to the amplitude

of the radar signal. This helps to model the noise a sensor would pick up when sensing a

radar signal. In addition to making the simulation more realistic, the addition of noise to the

simulation environment helps to promote the evolution of robust controllers [33].

3.4 Sensors

A key component of the UAV system is the receiving sensor. In this research, the sensor detects

electromagnetic signals from radars in the simulation. The receiving sensor can perceive only

two pieces of information: the amplitude and the angle of arrival (AoA) of incoming radar

signals. These two sensor values and the slope of the amplitude are available to the controller.

The slope of the amplitude is found by computing a quadratic least squares fit of the amplitude

over the previous five minutes.

The AoA measures the angle between the heading of the UAV and the source of incoming elec-

tromagnetic energy (as shown in Figure 3.4). Real AoA sensors do not have perfect accuracy

36

UAV heading

Incoming signal

Angle of Arrival (AoA)

Figure 3.4: The angle of arrival (AoA) is the angle between the UAV heading and the incoming

signal.

in detecting radar signals, so the simulation models an inaccurate sensor. The accuracy of the

AoA sensor can be set in the simulation. In the experiments described in this research, the AoA

is accurate to within ±10◦ at each time step, a realistic value for this type of sensor.

3.5 Problem Difficulty

While a human could design a controller capable of homing in on a radar under perfectly ideal

conditions, the real-world application for these controllers is far from ideal. As noise increases,

this problem becomes much more difficult for humans to solve well. While sensors to detect

the amplitude and angle of arriving electromagnetic signals can be very accurate, the more

accurate the sensor, the larger and more expensive it tends to be. One of the great advantages

of UAVs is their low cost, and the feasibility of using UAVs for many applications may also

depend on keeping the cost of sensors low. By using evolution to design controllers, cheaper

sensors with much lower accuracy can be used without a significant drop in performance. As

the accuracy of the sensors decreases and the complexity of the radar signals increases – as the

radars move or emit periodically – the problem becomes far more difficult for human designers.

37

This research is interested in evolving controllers for these difficult, real-world problems.

3.6 Transference to real UAVs

Transference of controllers to a real UAV is an important issue. Evolved controllers could

exhibit excellent behavior in simulation, but if these same controllers fail to perform well in

the real world, then evolution can hardly be considered a success. Flying a physical UAV

with an evolved controller is planned as a demonstration of the research, so transference was

taken into consideration from the beginning. Several aspects of the controller evolution were

designed specifically to aid in this process. First, navigation was abstracted from direct control

of the UAV’s flight. Second, simulation was tuned for equivalence to real UAVs. Third, noise

was added to the simulation to encourage the evolution of robust controllers.

Rather than attempting to evolve direct control, only navigation was evolved. The navigation

control was abstracted from the flight of the UAV both to aid in transference of controllers to

real UAVs and to make evolved controllers applicable to a variety of airframes. By modeling

only navigation, the simulation did not need to include a specific, accurate model. If direct con-

trol had been evolved, an in-depth model of a specific airframe would have had to be included,

making development of the simulation environment more difficult and limiting the applicabil-

ity of evolved controllers. By using an autopilot for the low level control and only evolving the

high level navigation control, evolved controllers could be used for different UAV airframes.

Using an autopilot capable of low level control of a particular airframe, the evolved controller

can manage the navigation of the UAV.

The simulation parameters were designed to be tuned for equivalence to real aircraft. While the

use of navigation control allowed a general model of the UAV in simulation, the adjustment

of some parameters could aid in transference. For example, the simulated UAV is allowed

38

to update the desired roll angle once per second reflecting the update rate of the autopilot

controlling a real UAV being considered for flight demonstrations of the evolved controller.

For autopilots with slower response times, this parameter could be increased. The speed of the

UAV in simulation could also be adjusted to correspond to the speed of a particular UAV.

Noise was added to the simulation to encourage the evolution of robust controllers. The addi-

tion of appropriate levels of noise to a simulation was shown in [33] to aid in the transference

of evolved controllers to real robots. By adding noise to the emitted radar signal and model-

ing sensor inaccuracies, the problem solved by evolution becomes more realistic, and evolved

controllers are better equipped to respond to noise in the real world. A noisy simulation envi-

ronment encourages the evolution of robust controllers that are more applicable to real UAVs.

39

Chapter 4

Evolution and Fitness Evaluation

The goal of this research was to use genetic programming (GP) to evolve navigation controllers

for unmanned aerial vehicles. During each evolutionary run, GP evolved a population of pro-

grams to fly a UAV to a radar and circle closely around it. During flight, the UAV was also

supposed to maintain an efficient flight path by flying with the wings level to the ground for as

much time as possible and by avoiding sudden, sharp turns.

To use GP, a human designer must make choices about several aspects of the evolutionary

algorithm that will be used. The parameters of GP are configurable, and the human designer

selects parameters that will encourage evolution to find an appropriate solution. The types and

frequencies of crossover and mutation, the method of selection, the method of evaluation, and

many other parameters of GP are all chosen before evolution begins. Many of these parameters

can be selected based on previous research.

Another area of the GP algorithm where the human designer must make choices is in the se-

lection of functions and terminals. Every individual program in a GP population is represented

as a tree, where non-leaf nodes are functions and leaf nodes are terminals [36]. Terminals are

commands that take no arguments, while functions take at least one argument. The number

40

of arguments that a function takes equals the number of children for corresponding node. The

human designer provides these basic lists of commands that an evolved program is built from.

The human designer also chooses an appropriate method for measuring the fitness of an indi-

vidual. The formulation of fitness functions has always been one of the major difficulties of

EC research [5]. For many problems explored to date in ER, fitness functions that combined

multiple objectives were synthesized using extensive human knowledge of the domain or trial

and error. For proof of concept research, the problem to be solved has often been adapted in

ways that made the formulation of these fitness metrics easier, such as the simplification of

the environment [57]. Co-evolution and competitive fitness metrics have been used to gener-

alize fitness function formulation, but these methods usually require changing the problem to

fit the competitive fitness model [58, 67]. For problems without a single, easily quantifiable

objective, an alternative that has attracted a great deal of research in the last several years is

multi-objective optimization, which allows the evolutionary algorithm to optimize on multiple

fitness metrics [13]. Multi-objective genetic programming with four fitness functions is used

in this research.

A variety of strategies for evolving robust programs have been investigated. These strategies

are intended to address difficulties like the bootstrap problem where no appreciable fitness ex-

ists in early populations, premature convergence on a suboptimal solution, or problems too

large for direct evolution on a final fitness function. Techniques to address these problems in-

clude competitive co-evolution, incremental evolution, multiple populations, steady-state evo-

lution, and many other methods. Incremental evolution addresses many difficulties of evolution

by starting with a simple problem and increasing the difficulty incrementally. In this work, two

types of incremental evolution, functional and environmental, are used to aid evolution.

In this chapter, the evolutionary system used in this research is presented. In Section 4.1, the

multi-objective genetic programming algorithm used to evolve controllers is described. The

41

parameters of the algorithm, lists of functions and terminals, and the method of evaluation are

all given. In Section 4.2, the four fitness functions are described. The method for combining the

four fitness functions is also described. In Section 4.3, incremental evolution techniques used

in the research are presented. Explanations of both functional and environmental incremental

evolution methods are described.

4.1 Multi-objective Genetic Programming

Multi-objective optimization has been growing in popularity and usefulness recently [13], but

it has only begun to be applied to GP in the last several years [69]. Multi-objective optimization

allows evolution to use multiple fitness functions. Unlike traditional EC, where individuals in

a population can be ranked in order, multi-objective optimization uses a non-dominated sort to

rank individuals. In addition to the relative rank of the individual, multi-objective algorithms

often measure the diversity of individuals in the population using crowding distance. The multi-

objective genetic programming algorithm used by the evolutionary process in this research is

very similar to NSGA-II, developed by Deb, Agrawal, Pratap, and Meyarivan [15].

4.1.1 Genetic Programming Parameters

When using GP, the parameters of the algorithm must be chosen so that evolution has a good

chance of producing fit controllers. The speed of the algorithm and methods of evaluation must

also be taken into account. Parameters used in this research, shown in Table 4.1, were chosen

with these issues in mind.

One parameter of GP is whether evolution is generational or steady-state. While generational

evolution is more common, steady-state evolution is widely used. In this research, GP evolved

42

Table 4.1: Genetic programming parameters

Parameter Value

Generations 600

Population Size 500

Initialization Scheme Ramped half-and-half

Selection Scheme Tournament

Maximum Initial Depth 5

Maximum Depth 21

Crossover Rate 0.9

Mutation Rate 0.05

Tournament Size 2

Trials per evaluation 30

each population of 500 individuals for 600 generations. One reason for using generational

evolution with a fixed number of generations is because this problem has no clear cutoff where

evolution can be stopped.

When creating a new GP population, a variety of initialization methods may be employed. The

two basic methods for generating random program trees are the “full” method and the “grow’

method. In the “full” method, the path between the root node and every leaf node is the same.

A “full” tree is generated by selecting random members of the function set to fill all nodes

until the desired depth is reached, when nodes are selected from the terminal set. Individuals

in populations initialized using the “full” method can all have the same depth or the depth can

be ramped. When ramping is used, there are an equal number of trees of each depth between 2

and the maximum. In the “grow” method, the maximum depth of the tree is the same, but the

paths from the root node to all leaf nodes are not equal. The “grow” method creates variably

shaped program trees. A “grow” tree is generated by selecting a random member of the union

of the function and terminal sets for each node until the maximum initial depth is reached.

This initialization function can also be ramped. The preferred method for GP is the “ramped

half-and-half” method. This method combines the “full” and “grow” methods, creating a wide

43

variety of tree sizes and shapes. Half of the population is initialized using the “ramped full”

method and the other half is initialized using the “ramped grow” method. The “ramped half-

and-half” method is used in this research.

To use these generative methods, a maximum initial depth must be specified. Ramping occurs

between the minimum depth of 2 and the maximum, which in this research is set to 5. Code

growth, or bloat, is a common phenomenon in variable-length genome EC research like GP

[6, 75]. To prevent trees from growing out of control, a maximum depth limit is set. In this

research, the maximum tree depth was 21.

Selection is an extremely important step in the evolutionary process, and there are a variety

of selection methods. In fitness-proportionate selection, the probability of selecting a given

individual is based on its fitness and the total fitness of the population. This method generally

requires sorting which is computationally expensive. Also, when fitness values are close to-

gether, this method is not much better than other methods. Another selection method is rank

selection. In this method, members of the population are sorted into ranks of fixed size, with

the probability of selection based on the rank the individual is in. This method works well

when fitness values are clumped together, helping to prevent premature convergence, but it still

requires sorting. The method used in this research is tournament selection. In this method,

several individuals are selected at random from the population and the individual with the best

fitness value is selected. Tournament selection functions as probabilistic rank selection, reduc-

ing the importance of sorting the population. A tournament size of 2 is used in this research.

The primary genetic operator used in GP is crossover, also called recombination. This opera-

tion starts with two parent individuals and produces two children. Once two parents have been

selected from the population, one node in each parent is randomly selected as the crossover

point. The subtrees with each of these nodes for roots are then swapped. Figure 4.1 demon-

strates this process. Figure 4.1a and Figure 4.1b show two parent program trees with the

44

OR

NOT AND

X1 X2 X3

(a)

AND

AND OR

NOT NOT

X1 X2

X2 NOT

X1

(b)

OR

OR AND

X2 NOT

X1

X2 X3

(c)

AND

AND NOT

NOT NOT

X1 X2

X1

(d)

Figure 4.1: An example of the recombination process, with the crossover points highlighted.

Two parent program trees (a and b) produce two children (c and d).

45

OR

NOT AND

X1 X2 X3

(a)

OR

NOT AND

AND

OR X3

X1 X2

X2 X3

(b)

Figure 4.2: An example of the mutation process, with the mutation point highlighted. A parent

tree (a) produces a mutated child tree (b).

crossover points highlighted. Figure 4.1c and Figure 4.1d show the children that result from

crossover. As long as the resulting subtrees are not deeper than the maximum depth allowed,

the children are added to the new generation of the population. The crossover method used

in this research is equivalent to the method described by Koza [36]. The crossover rate, the

probability of performing crossover as a genetic operator, is 0.9 in this work.

The other genetic operator used by GP is mutation. Mutation is used much less frequently than

crossover and is primarily intended to introduce diversity into the population. The mutation

operator starts with a single parent and produces a single child. After the parent is selected

from the population, a node is randomly selected as the mutation point. The subtree rooted at

this point is destroyed, and a randomly generated subtree is inserted at that node. Figure 4.2

demonstrates this process. Figure 4.2a shows a parent program tree with the mutation point

46

highlighted. The subtree rooted at that node is destroyed, and a random subtree is generated

and placed at that point. The child produced by mutation, shown in Figure 4.2b, is then inserted

into the new population. Like crossover, the mutation method used in this work is equivalent

to the method described by Koza [36]. The mutation rate is 0.05 in this research.

The individuals in the population all represent UAV controllers, so to evaluate the population

it is necessary to simulate the flight of each controller. Since the initial conditions of the

simulation are random, it is desirable to evaluate each controller over a number of simulated

trials. While the results are more accurate the greater the number of trials, performing a large

number of simulations is computationally expensive, so there must be some balance between

the two. In this research, each individual is evaluated over 30 trials.

4.1.2 Functions and Terminals

The function and terminal sets used in this research combine a set of very common functions

used in GP experiments and some functions specific to this problem. The function set is defined

as:

F = { Prog2, Prog3, IfThen, IfThenElse, And, Or, Not, <,≤, >, ≥, < 0 , > 0, =, +,

-, *, ÷, X < 0, Y < 0, X > max, Y > max, Amplitude > 0, AmplitudeSlope > 0,

AmplitudeSlope < 0, AoA > 0, AoA < 0 }

The Prog2 and Prog3 functions take two and three arguments respectively. Both of these

functions simply execute all of the arguments in order. The IfThen and IfThenElse functions

act as conditionals. The IfThen function takes two arguments; if the first argument is true,

the other argument is executed. The IfThenElse function takes three arguments; if the first

argument is true, the second arguments is executed, otherwise, the third argument is executed.

47

The And, Or, and Not functions are logic functions with two arguments each. The relation

arguments <,≤, >, ≥, < 0 , > 0, and = as well as the arithmetic arguments +, -, *, and ÷ all

take two arguments.

The UAV has a global positioning system (GPS) on-board, and the position of the UAV is given

by the x and y distances from the origin, located in the southwest corner of the simulation area.

This position information is available using the functions that include X and Y, with max equal

to 100 nmi, the length of one side of the simulation area. The radar is always placed inside the

simulation area, but the UAV is free to move beyond it. The X < 0, Y < 0, X > max, and Y

> max functions act as conditionals. For each function, the single argument is executed if the

condition is true.

The two available sensor measurements are the amplitude of the incoming radar signal and the

AoA, or angle between the heading and the source of incoming electromagnetic energy. Addi-

tionally, the slope of the amplitude with respect to time is available to GP. The Amplitude > 0,

AmplitudeSlope > 0, AmplitudeSlope < 0, AoA > 0, and AoA < 0 functions act as conditionals

with a single argument.

The terminal set is composed of commands that take no arguments, and is defined as:

T = { HardLeft, HardRight, ShallowLeft, ShallowRight, WingsLevel, NoChange,

rand, 0, 1 }

When turning, there are six available actions. Turns may be hard or shallow, with hard turns

(HardLeft, HardRight) making a 10◦ change in the roll angle and shallow turns (ShallowLeft,

ShallowRight) a 2◦ change. The WingsLevel terminal sets the roll angle to 0, and the NoChange

terminal keeps the roll angle the same as before this command was executed. Multiple turning

actions may be executed during one time step, since the roll angle is changed as a side effect of

48

each terminal. The final roll angle is passed to the autopilot after execution of the navigation

controller. The maximum roll angle is 45◦. Each of these six terminals returns the current roll

angle. The final three terminals, rand, 0, and 1 have no side effects, the commands simple

return a value. The value of the rand terminal is fixed for a given node when that node is

created.

4.1.3 Parallel Evaluation

In GP, evaluating the fitness of the individuals within a population takes significant computa-

tional time. The evaluation of each individual requires multiple trials, 30 trials per evaluation

in this research. During each trial, the UAV and the radar are placed randomly and four hours

of flight time are simulated. Evaluating an entire population of 500 individuals for a single gen-

eration requires 15,000 trials. Therefore, using massively parallel computational processors to

parallelize these evaluations is advantageous.

Many methods of parallel computing exist, but two methods are widely used in EC research

done with parallel computers. The island model of parallel processing has been used with

success by Koza [38] and others. Traditionally, GP uses a single population, but for parallel

computation, splitting the total population in sub-populations, one per computer, helps to re-

duce the amount of communication necessary. Every computer in a cluster has an independent

GP system, and individuals can migrate between computers.

Another popular method of parallel computation employs the concept of master and slave

nodes. One computer in a parallel cluster is designated as the master node, and this computer

manages the evolutionary process. The evaluations are the computationally expensive portion

of GP, so the master node distributes individual evaluations among the other computers in the

cluster, which are designated as slave nodes. Once a slave node has completed an evaluation,

49

the results are returned to the master node. After the master node collects all the fitness values

associated with each individual evaluation from the slave nodes, GP moves to the selection

process. The master-slave parallel model allows the traditional single population model to be

used while benefiting from the increased speed of parallel processing.

In this research, the master-slave model of parallel processing was used. The data communica-

tion between master and slave processors was done using the Message Passing Interface (MPI)

standard [66] under the Linux operating system. The master node ran the GP algorithm and did

all computations related to selection, crossover, and mutation. Evaluations of individuals in the

population were sent to slave nodes for processing. The parallel computer used for the experi-

ments was a Beowulf cluster made up of 46 computers running Red Hat Linux. Each computer

had two 2.4 GHz Pentium 4 processors with hyper-threading, for a total of 92 processors in

the cluster. Hyper-threading provides a small performance gain for multiple simultaneous pro-

cesses, so two slave nodes were run on each processor, for a total of 184 slave nodes spread

over the 92 processors in the cluster.

4.2 Fitness Functions

Four fitness functions determine the success of individual UAV navigation controllers in this

work. The fitness of a controller was measured over 30 simulation trials, where the UAV and

radar positions were different for every run. The four fitness measures were designed to satisfy

the four goals of the evolved controller: moving toward the emitter, circling the emitter closely,

stable flight, and efficient flight.

50

4.2.1 Normalized distance

The primary goal of the UAV in this research is to fly from its initial position to the target radar

site as quickly as possible. To develop a fitness function that could effectively promote this

behavior, the average squared distance between the UAV and the radar is measured. The intent

of this fitness function is to reward controllers that fly toward the radar as directly as possible

and to punish those that take less direct paths or fly away from the radar.

The random placement of both the UAV and the radar for each simulation poses a slight prob-

lem in developing fitness functions to measure this behavior. The fitness values for cases where

the initial distance between the radar and the UAV is large will be much greater than for cases

where this initial distance is small. When averaging these fitness values, those cases with large

initial distances will come to dominate the final fitness value. To counter this, the distance

between the radar and the UAV is normalized using the initial distance. Some small biases do

still exist. For large initial distances, it still takes longer for the UAV to reach the radar than for

shorter initial distances, and for shorter initial distances, small deviations have greater weight

in the final fitness value than for cases with large initial distances.

The normalized distance fitness measure is given as the average over all time of the square of

the distance between the UAV and the radar for each time step divided by the initial distance

between the UAV and the radar

fitness1 =
1

T

T
∑

i=1

[

distancei

distance0

]2

(4.1)

where T is the total number of time steps, distance0 is the initial distance, and distancei is the

distance at time i. Evolution is trying to minimize fitness1.

While this fitness function does have some minor biases, evaluating each controller over a

large number of trials helps to mitigate these biases. Since placement of radars and UAVs

51

for each trial is random, the evaluation for a single controller includes a variety of initial dis-

tances. Rather than focusing on optimization, this fitness measure was designed to promote the

evolution of a particular behavior in the controllers being evolved by GP.

4.2.2 Circling distance

The second major goal of the UAV controller in this research is to circle around the radar once

the UAV has arrived in the radar’s vicinity. Many of the potential applications of this type of

controller benefit heavily from a small circling distance. In particular, radar jamming requires

much less power when the jammer is close to the source, since the power required for effective

jamming increases proportional to the square of the distance. To promote the evolution of tight

circling behaviors in controllers, a circling distance fitness function was designed.

The normalized distance fitness function (fitness1) does measure circling behavior, but be-

cause circling is such a small percentage of the initial distance between the UAV and the radar,

circling has only a minor influence on the final fitness value, and very little evolutionary pres-

sure is applied to develop good circling behavior. The addition of a separate circling fitness

metric helps to place more emphasis on this aspect of the controller’s behavior. In this function,

an arbitrary distance much larger than the desired circling radius is defined as the in-range dis-

tance. For this research, the in-range distance was set to 10 nmi. The circling distance fitness

metric measures the average distance between the UAV and the radar over the time the UAV is

in-range.

The circling distance fitness function is given as the average over the time the UAV spends

in-range of the radar of the square of the distance to the radar

fitness2 =
1

N

T
∑

i=1

in_range ∗ (distancei)
2 (4.2)

52

where T is the total number of time steps, N is the amount of time the UAV spent within the

in-range boundary of the radar, distancei is the distance at time i, and in_range is 1 when the

UAV is in-range and 0 otherwise. Evolution is trying to minimize fitness2.

It was not necessary to normalize the circling distance fitness function because this function

only applies when the UAV is in-range of the radar. There are no biases associated with the

initial distance between the UAV and the radar. This fitness metric effectively promotes the

evolution of controllers that circle tightly around a radar site.

4.2.3 Level time

Flying to the radar and then circling closely around it are the primary goals of the UAV con-

troller. For a controller designed to work only in simulation, the first two fitness functions

would probably be sufficient. However, the controllers evolved in this research were intended

for use on real UAVs, which have less ideal flight characteristics than simulated aircraft. In

simulation, UAVs can be flown with any control scheme that accomplishes the primary tasks,

but physical UAVs do not respond well to frequent and drastic changes in roll angle. This

manner of control can create dangerous flight dynamics, reduce the flight range of the UAV, or

even lead to crashes.

The first of two fitness metrics that measure the efficiency of the flight path is the level time, the

amount of time the UAV spends with a roll angle of 0◦. This is the most stable flight position

for a UAV, and the UAV should spend as much time as is feasible at this roll angle. The level

time fitness measure applies in opposite situations from the circling distance fitness function.

The circling distance metric applies only when the UAV is in-range of the radar, but the level

time fitness metric only applies when the UAV is outside the in-range distance. While the UAV

is not in-range, it should fly straight, but once the UAV is in-range, it should circle around the

radar, which requires the UAV to increase the magnitude of its roll angle.

53

The level time fitness function is given as the number of time steps that the UAV spends level

out of range divided by the total time spend out of range

fitness3 =
1

T − N

T
∑

i=1

(1 − in_range) ∗ level (4.3)

where T is the total number of time steps, N is the amount of time the UAV spent within the in-

range boundary of the radar, in_range is 1 when the UAV is in-range and 0 otherwise, and level

is 1 when the roll angle has been equal to 0◦ for two consecutive time steps and 0 otherwise.

Evolution is trying to maximize fitness3.

This fitness measure promotes the evolution of controllers that change roll angle infrequently.

The level time fitness function is designed to work in cooperation with other fitness measures.

If a controller was optimized only for this function, the ideal behavior would be to fly straight

and level for the entire four hour period, not at all the desired behavior for a UAV controller.

The conflict between maximizing this function and satisfying the other functions is why multi-

objective optimization is so well suited to this problem.

4.2.4 Turn cost

A fitness function that encourages keeping a roll angle of 0◦ helps to promote the evolution of

controllers that exhibit efficient flight paths, but it does little to discourage the common and

potentially dangerous control scheme of frequent roll angle changes. A very simple way to

home in on a radar is to try to always keep the AoA at 0◦. However, because the AoA sensor

is noisy and inaccurate, this control scheme would require changing the roll angle at every

time step, often by large amounts. While UAVs are capable of very quick, sharp turns, it is

preferable to avoid them in real flight. Switching between right and left banking turns every

second could lead to an unstable flight and a possible crash.

54

To avoid rapid, drastic changes in the roll angle, a measure of the turn cost is used as the

last fitness function. Turns that contribute to this fitness function must be large; small turns

have less potential harm. The turn cost fitness measure is intended to penalize controllers that

navigate using a large number of sharp, sudden turns. The UAV can achieve a large turning

radius without penalty by changing the roll angle gradually; this fitness metric only accounts

for cases where the roll angle has changed by more than 10◦ since the last time step.

The turn cost is given as the average over all time of changes in roll angle over 10◦

fitness4 =
1

T

T
∑

i=1

h_turn ∗ |roll_anglei − roll_anglei−1| (4.4)

where T is the total number of time steps, roll_angle is the roll angle of the UAV and h_turn

is 1 if the roll angle has changed by more than 10◦ since the last time step and 0 otherwise.

Evolution is trying to minimize fitness4.

By penalizing drastic turns, the turn cost fitness function promotes controllers that use shallow

turns rather than large, sharp turns. This fitness measure does not forbid controllers from using

large roll angles, it simply encourages gradual changes in the roll angle over time. Optimizing

this fitness measure is only worthwhile if the other functions are also successful.

4.2.5 Combining the Fitness Measures

Each of the four fitness functions was designed to evolve a particular behavior. The normalized

distance fitness function was intended to produce controllers that would move quickly to a

radar. The circling distance fitness function was designed to promote tight circling behavior.

The level time fitness function was intended to encourage changing the roll angle infrequently

and flying level for long periods. The turn cost fitness function was designed to discourage

55

large changes in roll angle. Each of these desired behaviors could be identified and quantified

by human designers.

What is most encouraging about these fitness functions is that it isn’t particularly of interest

to evolve controllers that optimize one of the fitness functions. A good controller should have

evolved all of these behaviors, and success at one shouldn’t come at cost to another.

Multi-objective optimization seemed a natural method for combining these fitness functions.

Using some weighted function that produced a single fitness value from the four fitness func-

tions would have been preferable if some ratio of importance between the functions was known

a priori, but this was not the case. Finding a Pareto front of solutions using a non-dominated

sort as part of multi-objective optimization was far more attractive.

Applying the term multi-objective optimization to this evolutionary process is a misnomer, be-

cause this research was concerned with the generation of behaviors, not optimization. In the

same way that a traditional genetic algorithm can be used for both optimization and generation,

so can multi-objective optimization. When considering this evolutionary system, the distinc-

tion between optimization and generation should be taken into account. Also, even though the

controller doesn’t generate the most optimized controllers possible, it can obtain near-optimal

solutions.

4.3 Incremental Evolution

Many techniques exist – with varying levels of success – for overcoming problems associated

with evolving solutions to difficult problems. As discussed earlier, the bootstrap problem,

where no individuals in early populations have measurable levels of fitness, can be a major

problem in EC. Another major problem is the inability of evolution to overcome local fitness

56

peaks, where a population converges quickly on a sub-optimal result and is unable to make

further progress. Many of the techniques used in EC to counter these problems are discussed

in Section 2.3.

In this research, incremental evolution is used to aid evolution in designing robust and fit con-

trollers. In traditional direct evolution, a randomly initialized population is directly evolved

on the final task problem. In incremental evolution, the initial population is evolved on a sim-

pler problem, and the resulting population is used as a seed for evolution on a more difficult

problem. Evolution can proceed directly to the final task or use a series of increments.

There are two types of incremental evolution. Functional incremental evolution changes the

difficulty of the fitness function in order to increase the difficulty of the problem. Environmen-

tal incremental evolution changes the environment to increase difficulty without changing the

fitness function. These two types of incremental evolution are described in Section 2.3.5. Both

types of incremental evolution were used in this research.

Maintaining sufficient diversity in the population is often an issue when using incremental

evolution [18]. If the diversity of a population decreases too much during an early stage of

evolution, the final evolution might still have a very difficult time producing a good solution.

While this was always a concern in this research, one of the features of the multi-objective opti-

mization algorithm had potential to counter loss of diversity. Like NSGA-II [15], the algorithm

used for this research attempts to spread solutions across the Pareto front by incorporating a

crowding distance into fitness evaluation, encouraging diversity in the population.

4.3.1 Functional Incremental Evolution

Functional incremental evolution incrementally changes the fitness function to increase the

difficulty of the problem. A simple form of functional incremental evolution was used in

57

this work. Controllers were evolved for 600 generations, and for the first 200 generations,

only one of the four fitness functions was used. Of the behaviors the fitness functions were

trying to evolve, flying to the goal was the most basic and most important. To place more

importance on this behavior, only the normalized distance fitness function was used for the

first 200 generations. For the last 400 generations, all four of the fitness functions were used.

While some doubt has been raised about using functional incremental evolution, for this prob-

lem it works well and makes a great deal of sense. The use of multi-objective optimization for

the majority of evolution means that the fitness evaluation does not change completely, but only

becomes more difficult as the additional three fitness functions are added. For this research, it

is also very clear that this is the most important behavior to evolve and the simplest.

This use of incremental evolution is aimed at overcoming the bootstrap problem. The most

important goal of the UAV controller is flying to the radar, but early generations can be very

unsuccessful at this task. A controller might have very good scores for the level time and turn

cost fitness functions and still be completely inept, so it is important to bring the population to

a higher level of competency before introducing those fitness functions. The use of functional

incremental evolution helps to overcome this problem.

4.3.2 Environmental Incremental Evolution

Environmental incremental evolution incrementally increases the difficulty of the environment

or task faced by evolution, while leaving the fitness function unchanged. This second type of

incremental evolution is also used in this research to boost the success of evolution in producing

fit controllers for the more difficult radar types. First, controllers are evolved for continuously

emitting, stationary radars. This baseline radar type is the easiest of the types used in this

research for evolution to handle. The resulting population is then used as a seed for more

difficult radar types.

58

In the simplest case, environmental incremental evolution is done in two stages. A new ran-

dom population is initialized and then evolved for 600 generations on continuously emitting,

stationary radars. Then, the resulting population is used as the initial population for a new evo-

lutionary run. This second run is evolved for 400 generations using a different type of radar,

like an intermittently emitting, stationary radar or a continuously emitting, mobile radar. The

seed population is not immediately able to solve this new problem well, but since many as-

pects of the problem are similar, the seed population provides an excellent basis for evolving

fit controllers for the new task.

Additional stages can be added to increase the effects of incremental evolution. For example,

after the first stage of evolution on a continuously emitting, stationary radar, a population might

be evolved on a continuously emitting, mobile radar and then on an intermittently emitting,

stationary radar. For the most difficult radar types, such as the intermittently emitting, mobile

radar, incremental evolution can be done in many stages, with multiple increments on both

mobile and intermittent radars. This technique can also be used to develop a single controller

that is capable of handling all radar types.

59

Chapter 5

Experiments and Results

In this chapter, experiments using the evolutionary system described in Chapter 4 are presented.

These experiments were designed to test the ability of the multi-objective genetic programming

system to evolve controllers for UAVs. Controllers were evolved on radar types of varying

difficulties.

The four fitness functions used in this research were designed based on the behaviors desired

in the final controller. In order to test the impact of each of the fitness functions, subsets

of the four fitness functions were used to evolve controllers for the simplest radar type, a

continuously emitting, stationary radar. The behaviors of controllers evolved using less than

four fitness functions were compared with those of controllers evolved with all four functions.

A comparison was also made between a human-designed controller and an evolved controller.

These experiments are described in Section 5.1.

While traditional evolution produces a single best individual that can be compared with the best

individual from a separate evolutionary run, multi-objective optimization produces a Pareto

front of solutions, making comparisons between individuals more difficult. In order to gauge

60

the performance of evolution, a method was devised to measure a controller’s performance on

the final task. This metric is described in Section 5.2.

Sections 5.3 and 5.4 present the evolutionary experiments performed in this research. The

first set of experiments, presented in Section 5.3, directly evolved controllers for a variety

of radar types from random initial populations. The second set of experiments, presented

in Section 5.4, evolved controllers using incremental evolution. Experiments used five radar

types: 1) continuously emitting, stationary radars, 2) intermittently emitting, stationary radars

with regular periods, 2) intermittently emitting, stationary radars with irregular periods, 4)

continuously emitting, mobile radars, and 5) intermittently emitting, mobile radars.

Though the UAV navigation controllers were evolved in simulation, the major goal of the

research is using these controllers to fly real UAVs. The transference of controllers from simu-

lation to the real world was an important factor in the simulation design. Flight tests of UAVs

using these controllers are planned, but to test the real-world performance of the controllers in

the near term, evolved navigation controllers were transferred to a wheeled mobile robot. In

Section 5.5, the results of this experiment are presented.

5.1 Effectiveness of Fitness Functions

Based on initial results from evolution, it appeared that the four fitness functions selected for

this research were effective in producing controllers with all the desired behaviors. However,

since the individual impacts of each of the functions was unknown, it was difficult to tell

how necessary all four functions were to the success of evolution. To test the effectiveness

of each of the four fitness measures, evolutions were run with various subsets of the fitness

metrics. These tests were done using the stationary, continuously emitting radar, the simplest

61

of the three radar types presented above. The first fitness measure, the normalized distance

(fitness1), was included in every subset.

When only fitness1 was used to measure controller fitness, flight paths were very direct. The

UAV flew to the target in what appeared to be a straight line. To achieve this direct route to the

target, the controller would use sharp and alternating turns. The UAV would almost never fly

level to the ground, and all turns were over 10◦. Circling was also not consistent; the controllers

frequently changed direction while within in-range boundary of the radar, rather than orbiting

in a circle around the target. For this simplest of fitness measures, evolution tended to select

very simple bang-bang control, changing the roll angle at every time step using sharp right and

left turns, with the single goal of minimizing the AoA. In a comparison, evolved controllers

exhibited slightly better performance than a human-designed, rule-based controller. Further

comparisons were not made, because the human-designed controller’s performance degraded

rapidly as additional fitness measures and radar types were considered.

Using only two fitness measures was also not sufficient to achieve the desired behaviors. If

fitness1 and fitness2 were used, the circling behavior improved, but the efficiency of the

flight path was unchanged. If fitness1 and fitness3 were used, the UAV would fly level

a large amount of the time, but circling was very poor, with larger radius orbits or erratic

behavior close to the target. Sharp turns were also very common. If fitness1 and fitness4

were used, turns were shallower, but the UAV still failed to fly with its wings level to the ground

for long periods. Circling around the target also became more erratic and the size of the orbits

increased.

If three of the fitness measures were used, evolved behavior was improved, but not enough to

satisfy the mission goals. If all fitness measures were used except fitness2, the UAV would fly

efficiently to the target, staying level and using only shallow turns. Once in range of the radar,

circling was generally poor. Evolved controllers either displayed large, circular orbits or very

62

erratic behavior that was unable to keep the UAV close to the radar. If fitness1, fitness2,

and fitness4 were used, the UAV would circle well once it flew in range of the radar. While

flying toward the radar, the UAV failed to fly level, though turns tended to be shallow. The

best combination of three fitness measures was when only fitness4 was removed. In this

case, circling was good and the UAV tended to fly straight to the target. The level time fitness

measure also tended to keep the turns shallow and to eliminate alternating between right and

left turns. However, turn cost was still high, as many turns were sharp.

When all four of the fitness functions were used, the evolved controllers were sufficiently

robust. A variety of strategies were evolved, and many controllers were sufficiently fit to be

considered successful. The evolved controllers were able to overcome a noisy environment and

inaccurate sensor data in tracking and orbiting a radar site. The four fitness measures selected

all had an impact on the behavior of the evolved controllers, and all four were necessary to

achieve the desired flight characteristics.

5.2 Metrics for Post-evolution Controller Evaluation

Multi-objective optimization is an effective method for evolving solutions to problems with

multiple, competing objectives. One problem with the use of multi-objective optimization is

the difficulty in comparing results. In traditional evolution, where each individual has a single

fitness value, two evolutionary runs can be compared using the best individual from each run.

Since multi-objective optimization produces a Pareto front of solutions, rather than a single

best solution, the performance of evolution cannot be easily gauged. In order to measure the

performance of evolution in this research, a method of evaluating an evolved multi-objective

population was needed.

The four fitness functions used in this work represented ways of measuring four different be-

63

Table 5.1: Baseline values used to measure the performance of evolution.

Fitness Function Baseline Value

Normalized distance (fitness1) 0.15

Circling distance (fitness2) 4

Level time (fitness3) 1000

Turn cost (fitness4) 0.05

haviors that a UAV controller should exhibit. The performance of evolved controllers on these

four behaviors varied, but it was possible to identify certain levels of fitness that could be

deemed acceptable. To measure the performance of evolution, a set of baseline values for the

four fitness metrics were chosen. These values were those considered minimally successful for

the four behaviors desired from a UAV controller. Each controller that satisfied these values

was able to successfully complete the task laid out in this research.

The baseline values used in this research are shown in Table 5.1. These values define a min-

imally successful UAV controller as able to move quickly to the target radar site, circle at an

average distance under 2 nmi, fly with the wings level to the ground for at least 1,000 seconds,

and turn sharply less than 0.5 percent of the total flight time. If a controller had a normalized

distance fitness value (fitness1) of less than 0.15, a circling distance (fitness2) of less than 4

(the circling distance fitness metric squares the distance), a level time (fitness3) of greater than

1,000, and a turn cost (fitness4) of less than 0.05, the evolution was considered successful.

These baseline values were determined largely by observation of early evolved solutions. The

baseline value for the circling distance (fitness2) was the easiest to select, because the fitness

function has a very direct correspondence with an easily identifiable quantity, the circling ra-

dius. Values for the other three fitness functions were more difficult to select, and were chosen

based on the results of evolved solutions. The selection of any cutoff value for a particular

fitness function is, in many ways, arbitrary. If this human bias were part of the evolutionary

process, this might be a cause for concern. However, these baselines values were used only

64

for the analysis of evolved populations, not during the evolutionary process itself. This is an

important distinction, because multi-objective evolution is allowed to evolve solutions across

the entire Pareto front, not just the segment we as humans would prefer to choose from. This

freedom of evolution is important, because individuals that are not necessarily attractive for

all four fitness functions contribute to the diversity of the population. These individuals might

also contain subtrees that could be used to create better individuals. This method of evaluating

the performance of evolution is not only designed to effectively analyze the quality of evolved

populations but to avoid adding human bias to the evolutionary process.

5.3 Direct Evolution

This first set of experiments all used direct evolution. Each evolution started with a random

initial population and was evolved for 600 generations. Five radar types were used for these

experiments: 1) continuously emitting, stationary radars, 2) intermittently emitting, stationary

radars with regular periods, 3) intermittently emitting, stationary radars with irregular periods,

4) continuously emitting, mobile radars, and 5) intermittently emitting, mobile radars. Evo-

lution was successful in producing controllers that satisfied the baseline values for acceptable

controllers, but evolving controllers for the more complex radar types had a much lower suc-

cess rate.

5.3.1 Continuously Emitting, Stationary Radar

The first experiment evolved controllers on a stationary, continuously emitting radar. Of all the

experiments, this was the simplest task presented to evolution. During the four hour simulation

time, the radar continuously emits a signal and never moves. The simulation is set up as

described in Chapter 3, and the evolutionary process is performed as described in Chapter 4.

65

Table 5.2: Results for experiments with continuously emitting, stationary radars.

Number of evolutionary runs 50

Number of successful runs 45

Success percentage 90%

Total number of successful controllers 3,149

Average successful controllers per run 62.98

Maximum successful controllers for a run 170

Minimum successful controllers for a run 1

In this experiment, 50 complete evolutions, or evolutionary runs, were performed. For the evo-

lutionary runs, each new population of 500 individuals was randomly initialized and evolved

for 600 generations. Results from this experiment are summarized in Table 5.2. Of the 50

evolutionary runs, 45 runs were acceptable under the baseline values, a 90 percent success

rate. The number of acceptable controllers evolved during an individual run ranged from 1 to

170. Figure 5.1 shows a histogram of the number of acceptable controllers evolved in each

successful run. This plot shows that the evolutionary runs were in a variety of stages when

evolution ended. Many had produced only a few very competent individuals which had yet to

spread themselves across the population, as seen by the large spike near zero. However, many

of the runs produced at least 50 successful controllers, suggesting that the subtrees leading to

successful behavior were being propagated across the population. Overall, 3,149 acceptable

controllers were evolved, for an average of 62.98 successful controllers per evolutionary run.

Figure 5.2 shows five sample flight paths to five different emitter locations for an evolved

controller. The fitness values for these five flights are shown in Table 5.3. From these five

flights, one can see that the evolved controller flies to the target very efficiently, staying level a

majority of the time. Almost all turns are shallow. Once in range of the target, the roll angle is

gradually increased. Once the roll angle reaches its maximum value to minimize the circling

radius, no change to the roll angle is made for the remainder of the simulation. Populations

tended to evolve to favor turning left or right.

66

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

9

successful controllers per run

ev
ol

ut
io

na
ry

 r
un

s

Figure 5.1: Histogram of the number of successful controllers for each evolutionary run for

continuously emitting, stationary radars.

0 50 100
0

50

100

1

2

3

4

5

x (nmi)

y
(n

m
i)

Figure 5.2: Five sample flight paths for an evolved controller flying a UAV to continuously

emitting, stationary radars.

67

Table 5.3: Fitness values for five UAV flight paths to continuously emitting, stationary radars

shown in Figure 5.2.

Flight Normalized Distance Circling Distance Level Time Turn Cost

1 0.067 1.299 2,346 0.014

2 0.044 1.189 1,384 0.007

3 0.094 1.440 3,531 0.023

4 0.064 1.291 2,245 0.014

5 0.085 1.383 3,122 0.008

Baseline 0.15 4 1,000 0.05

Table 5.4: Fitness values for the flight path examined in Figures 5.3, 5.4, and 5.5.

Fitness Function Fitness Value

Normalized Distance 0.0596

Circling Distance 1.2485

Level Time 2,052

Turn Cost 0.0067

Figures 5.3, 5.4, and 5.5 show the circling behavior of this evolved controller in more detail.

The full flight path of the UAV is shown in Figure 5.3 and the fitness values are shown in Table

5.4. Figure 5.4 shows the UAV as it begins to circle around the radar. The UAV approaches the

radar flying straight and level, and as it begins to close in, it gradually increases its roll angle

by increments of 8◦ until the roll angle reaches the maximum value of 45◦, making corrections

when necessary to keep the radar inside the circle. In Figure 5.4, the UAV is just about to

complete its first orbit around the radar. In Figure 5.5, the UAV has been orbiting around the

radar for several minutes. The UAV is circling in the tightest orbit possible. The radar is not

exactly in the center of this circle, but it is very close.

68

0 50 100
0

50

100

x (nmi)

y
(n

m
i)

Figure 5.3: A sample flight path for a UAV guided by an evolved controller flying to a contin-

uously emitting, stationary radar.

53.25 53.5

52.5

52.75

x (nmi)

y
(n

m
i)

UAV
Radar

Figure 5.4: A closeup of the UAV flight path shown in Figure 5.3 after 43 minutes and 20

seconds. The UAV has just begun to circle around the radar.

69

53.25 53.5

52.5

52.75

x (nmi)

y
(n

m
i)

UAV
Radar

Figure 5.5: A closeup of the UAV flight path shown in Figure 5.3 after 47 minutes and 5

seconds. The UAV is circling around the radar.

5.3.2 Intermittently Emitting, Stationary Radar with Regular Period

The next type of radar examined was an intermittently emitting, stationary radar. Most aspects

of the simulation were identical to the continuously emitting case. The initial position of

the radar is randomly determined for each simulation trial and the radar is stationary for the

entire simulated period. The difference in this radar type is that the emitter is not emitting

continuously. Instead, the radar emits periodically. The radar was set to emit for 5 minutes and

then turned off for 5 minutes, giving a regular period of 10 minutes and a 50 percent duty cycle.

This intermittent rather than continuous emission was the only change from the continuously

emitting, stationary case described previously.

Unlike the continuously emitting case, this intermittently emitting radar was quite difficult for

evolution. This should come as no surprise; the sensors on-board the UAV receive only half

as much information from this type of radar as from a continuously emitting radar. Since the

70

Table 5.5: Results for experiments with intermittently emitting, stationary radars with regular

periods.

Number of evolutionary runs 50

Number of successful runs 25

Success percentage 50%

Total number of successful controllers 1,891

Average successful controllers per run 37.82

Maximum successful controllers for a run 156

Minimum successful controllers for a run 2

controllers evolved in this research have no a priori knowledge of the radar’s location and no

internal model of the world, evolution must devise a strategy for the times when the emitter is

turned off.

As in the previous experiment, 50 evolution runs were performed. Again, for each run, a new

population was randomly initialized and evolved for 600 generations. The results of this series

of evolutionary runs are summarized in Table 5.5. Of the 50 runs, only 25 runs, or 50 percent,

were successful. The number of acceptable controllers evolved in successful runs ranged from

2 to 156. Figure 5.6 shows a histogram of the the number of acceptable controllers evolved

for each of the 25 successful runs. In comparison to the continuously emitting, stationary

radar experiment, the results seen here are clumped more toward zero. While good individuals

did manage to spread across some populations, as seen by the large spike near 140, many

evolutionary runs were only able to produce a few good controllers. A total of 1,891 successful

controllers were evolved for an average of 37.82 acceptable controllers per evolutionary run.

Figures 5.7a, 5.8a, 5.9a, 5.10a, and 5.11a show five flight paths for UAVs flying to intermit-

tently emitting, stationary radars. Figures 5.7b, 5.8b, 5.9b, 5.10b, and 5.11b show the distance

between the UAV and the radar for each of these flights during the simulated flight time as well

as the emitting durations of the radars. The fitness values for these flights are shown in Table

5.6. The flight paths for these controllers were similar to those for the continuously emitting

71

0 20 40 60 80 100 120 140
0

1

2

3

4

5

successful controllers per run

ev
ol

ut
io

na
ry

 r
un

s

Figure 5.6: Histogram of the number of successful controllers for each evolutionary run for

intermittently emitting, stationary radars.

Table 5.6: Fitness values for five UAV flight paths to intermittently emitting, stationary radars

shown in Figures 5.7, 5.8, 5.9, 5.10, and 5.11.

Flight Normalized Distance Circling Distance Level Time Turn Cost

1 0.073 1.363 2,657 0.024

2 0.056 1.333 1,957 0.032

3 0.097 1.505 3,748 0.043

4 0.095 1.422 3,426 0.014

5 0.111 1.505 4,286 0.028

Baseline 0.15 4 1,000 0.05

72

0 50 100
0

50

100

1

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.7: Flight path 1 for a UAV controller to an intermittently emitting, stationary radar

(a), the distance between the UAV and the radar, and the emitting period and duration of the

radar (b).

73

0 50 100
0

50

100

2

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.8: Flight path 2 for a UAV controller to an intermittently emitting, stationary radar

(a), the distance between the UAV and the radar, and the emitting period and duration of the

radar (b).

74

0 50 100
0

50

100

3

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.9: Flight path 3 for a UAV controller to an intermittently emitting, stationary radar

(a), the distance between the UAV and the radar, and the emitting period and duration of the

radar (b).

75

0 50 100
0

50

100

4

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.10: Flight path 4 for a UAV controller to an intermittently emitting, stationary radar

(a), the distance between the UAV and the radar, and the emitting period and duration of the

radar (b).

76

0 50 100
0

50

100
5

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.11: Flight path 5 for a UAV controller to an intermittently emitting, stationary radar

(a), the distance between the UAV and the radar, and the emitting period and duration of the

radar (b).

77

radars. In Figures 5.7, 5.9, and 5.11, the UAV flies directly to the radar and then circles around

it. In Figure 5.8, the UAV flies directly to the radar, but at the point the UAV reaches the radar’s

location, the radar is not emitting. The UAV flies past the radar, and once the radar begins

to emit again, the UAV returns and begins to circle the radar. Subsequent periods where the

radar does not emit do not change the circling behavior of the UAV. In some cases, controllers

evolved a waiting behavior, where near the beginning of flight, the UAV would circle during

the period when the radar was not emitting. This behavior can be seen in Figure 5.11. At one

point in the flight, the radar stops emitting, and until it resumes, the UAV circles approximately

40 nmi from the radar. In some cases, when the UAV is unsure of the proper direction to head,

this behavior is useful. For the best controllers this behavior is very infrequent.

Despite the increased difficulty of this experiment, evolution was able to produce a large num-

ber of successful controllers. The vast drop in the success rate of evolution can be attributed

to the difficulty posed by having sensor information only 50 percent of the time. This makes

evolving very good controllers more difficult.

5.3.3 Intermittently Emitting, Stationary Radar with Irregular Period

The next experiment was also done on intermittently emitting, stationary radars. Unlike the

previous experiment, the radar used in this series of evolutionary runs did not have a regular

period. Both the period and the duration of emission were random within certain bounds. The

minimum period was 8 minutes and the mean period was 12 minutes. The minimum emitting

duration was 4 minutes and the mean emitting duration was 6 minutes. At every new period,

a new period length and duration length were set randomly. Like the intermittently emitting

case with a regular emission period, this radar was difficult for evolution. Like the periodically

emitting radar, there were frequent periods of no emission, where the UAV was unable to sense

its target at all. However, these times were more random in length and frequency.

78

Table 5.7: Results for experiments with intermittently emitting, stationary radars with irregular

periods.

Number of evolutionary runs 50

Number of successful runs 29

Success percentage 58%

Total number of successful controllers 2,374

Average successful controllers per run 47.48

Maximum successful controllers for a run 172

Minimum successful controllers for a run 8

As in the previous experiment, 50 evolution runs were performed. For each run, a new popu-

lation was randomly initialized and evolved for 600 generations. The results are summarized

in Table 5.7. Out of the 50 runs, 29 runs were successful, for a 58 percent success rate. The

number of acceptable controllers evolved in successful runs ranged from 8 to 172. Figure

5.12 shows a histogram of the the number of acceptable controllers evolved for each of the 29

successful runs. A total of 2,374 successful controllers were evolved for an average of 47.48

acceptable controllers per evolutionary run.

Figures 5.13a, 5.14a, 5.15a, 5.16a, and 5.17a show five flight paths for UAVs flying to inter-

mittently emitting, stationary radars. Figures 5.13b, 5.14b, 5.15b, 5.16b, and 5.17b show the

distance between the UAV and the radar for each of these flights during the simulated flight

time as well as the emitting durations of the radars. The fitness values for these flights are

shown in Table 5.8. The flight paths for these controllers were similar to those for the inter-

mittently emitting radars with regular periods. In Figure 5.14, the UAV flies directly to the

radar and then circles around it. In Figures 5.15, 5.16, and 5.17, the UAV flies directly to the

radar, but passes the radar while the radar is not emitting. Once the radar begins to emit again,

the UAV returns and begins to circle around the emitter. As for those radars with a regular

period, some controllers evolved a waiting behavior, where near the beginning of flight, the

UAV would circle during the period when the radar was not emitting. A slightly different form

79

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

9

successful controllers per run

ev
ol

ut
io

na
ry

 r
un

s

Figure 5.12: Histogram of the number of successful controllers for each evolutionary run for

intermittently emitting, stationary radars with an irregular period.

Table 5.8: Fitness values for five UAV flight paths to intermittently emitting, stationary radars

with irregular periods shown in Figures 5.13, 5.14, 5.15, 5.16, and 5.17.

Flight Normalized Distance Circling Distance Level Time Turn Cost

1 0.149 2.148 4,963 0.000

2 0.053 1.593 1,622 0.002

3 0.056 1.821 1,828 0.000

4 0.077 1.697 2,684 0.000

5 0.066 1.740 2,273 0.001

Baseline 0.15 4 1,000 0.05

80

0 50 100
0

50

100
1

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.13: Flight path 1 for a UAV controller to an intermittently emitting, stationary radar

with an irregular period (a), the distance between the UAV and the radar, and the emitting

period and duration of the radar (b).

81

0 50 100
0

50

100

2

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.14: Flight path 2 for a UAV controller to an intermittently emitting, stationary radar

with an irregular period (a), the distance between the UAV and the radar, and the emitting

period and duration of the radar (b).

82

0 50 100
0

50

100

3

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.15: Flight path 3 for a UAV controller to an intermittently emitting, stationary radar

with an irregular period (a), the distance between the UAV and the radar, and the emitting

period and duration of the radar (b).

83

0 50 100
0

50

100

4

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.16: Flight path 4 for a UAV controller to an intermittently emitting, stationary radar

with an irregular period (a), the distance between the UAV and the radar, and the emitting

period and duration of the radar (b).

84

0 50 100
0

50

100

5

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.17: Flight path 5 for a UAV controller to an intermittently emitting, stationary radar

with an irregular period (a), the distance between the UAV and the radar, and the emitting

period and duration of the radar (b).

85

of this behavior than was seen previously can be seen in Figure 5.13. At one point in the flight,

the radar stops emitting, and until it resumes, the UAV circles very widely approximately 75

nmi from the radar. Again, in some cases, this behavior is useful. For the best controllers this

behavior is very infrequent.

This experiment was slightly easier for evolution than the previous series with a regular period,

though the results were similar. In all likelihood, this difference is related to beginning the

circling behavior. For radars with a regular period, there are always 5 minutes ranges when

they might pass by the radar. While these segments of time might be longer for radars with

an irregular period, they might also be shorter. In the 5 flight paths shown, one can identify

periods of time where the radar is emitting more than half the time, and this is often when the

UAV finds the radar. As shown previously, once the radar has been properly found, the UAV

has no difficulty staying nearby, so the difficult part of the problem is finding the radar. For

irregular periods of the type used here, this is often easier, making the success of evolution

slightly better than for intermittently emitting radars with regular periods.

5.3.4 Continuously Emitting, Mobile Radar

The next type of radar to be explored was a continuously emitting, mobile radar. The mobility

was modeled as a finite state machine with the following states: move, setup, deployed, and

tear down. When the radar moves, it is placed randomly anywhere in the simulation area. The

finite state machine is executed for the duration of simulation. The radar site only emits when

it is in the deployed state; while the radar is in the move state, the UAV receives no sensory

information. The time in each state is probabilistic, and the minimum amount of time spent in

the deployed state is an hour or 25 percent of the simulation time. The simulation is identical

to the other experiments other than the configuration of the radar site’s movement.

86

Table 5.9: Results for experiments with continuously emitting, mobile radars.

Number of evolutionary runs 50

Number of successful runs 36

Success percentage 72%

Total number of successful controllers 2,266

Average successful controllers per run 45.32

Maximum successful controllers for a run 206

Minimum successful controllers for a run 1

Like intermittently emitting radars, mobile radars proved more difficult for evolution than con-

tinuously emitting, stationary radars. This was true not only because the radar changes location,

forcing the UAV to leave the circling state and relocate the radar, but because while the radar

is moving, the UAV receives no sensor data from the radar. Like the intermittently emitting

radar, there are periods where the radar is invisible to the UAV. The difficulty of this problem

also depends highly on the random placements of the radars. The large number of trials used

to evaluate an individual in this research are particularly beneficial for evolving controllers for

this type of radar.

For 50 evolutionary runs, a new population was randomly initialized and evolved for 600 gen-

erations. The results of this series of evolutionary runs are summarized in Table 5.9. Of 50

evolutionary runs, 36 were successful. The number of successful controllers evolved in a run

ranged from 1 to 206. Figure 5.18 shows a histogram of the number of acceptable controllers

evolved for each of the 36 successful runs. Successful controllers had a hard time spreading

throughout the population, evidenced by the large number of runs that produced less than 50

successful controllers. A total of 2,266 successful controllers were evolved for an average of

45.32 successful controllers per evolutionary run.

Figures 5.19a, 5.20a, 5.21a, 5.22a, and 5.23a show five flight paths for UAVs flying to continu-

ously emitting, mobile radars. Figures 5.19b, 5.20b, 5.21b, 5.22b, and 5.23b show the distance

87

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

successful controllers per run

ev
ol

ut
io

na
ry

 r
un

s

Figure 5.18: Histogram of the number of successful controllers for each evolutionary run for

continuously emitting, mobile radars.

between the UAV and the radar for each of these flights during the simulated flight time as

well as the emitting durations of the radars. The fitness values for these flights are shown in

Table 5.10. In Figure 5.19, the UAV is flying to the radar when the radar stops emitting and

then moves. Since the UAV has no idea where to go, it circles in place until it receives new

sensory information from the radar. After finding the radar’s new location, it circles around the

radar until the radar moves again. At the very end of the simulation period, the UAV finds the

radar’s third location and begins circling around the radar. In Figures 5.20, 5.21, and 5.23, the

UAV flies directly to the radar and after the radar has moved, the UAV quickly finds it again.

In Figures 5.21 and 5.23, the UAV flies away from the radar briefly because the radar begins

emitting again as the UAV is headed away from the radar. In Figure 5.22, the UAV begins to

fly to the first position, but he radar moves very quickly with almost no pause in deployment.

The UAV then moves very quickly to the second position. The UAV never receives sensor

information from the radar at the third position because it never deploys before moving to the

88

0 50 100
0

50

100

3
2

1

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.19: Flight path 1 for a UAV controller to a continuously emitting, mobile radar (a),

the distance between the UAV and the radar, and the emitting period and duration of the radar

(b).

89

0 50 100
0

50

100

2

1

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.20: Flight path 2 for a UAV controller to a continuously emitting, mobile radar (a),

the distance between the UAV and the radar, and the emitting period and duration of the radar

(b).

90

0 50 100
0

50

100
1

2

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.21: Flight path 3 for a UAV controller to a continuously emitting, mobile radar (a),

the distance between the UAV and the radar, and the emitting period and duration of the radar

(b).

91

0 50 100
0

50

100

1
2

4

3

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.22: Flight path 4 for a UAV controller to a continuously emitting, mobile radar (a),

the distance between the UAV and the radar, and the emitting period and duration of the radar

(b).

92

0 50 100
0

50

100

1

2

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.23: Flight path 5 for a UAV controller to a continuously emitting, mobile radar (a),

the distance between the UAV and the radar, and the emitting period and duration of the radar

(b).

93

Table 5.10: Fitness values for five UAV flight paths to continuously emitting, mobile radars

shown in Figures 5.19, 5.20, 5.21, 5.22, and 5.23.

Flight Normalized Distance Circling Distance Level Time Turn Cost

1 0.091 4.279 2,929 0.000

2 0.078 3.079 2,997 0.000

3 0.108 3.568 4,578 0.000

4 0.067 2.969 2,088 0.000

5 0.084 3.211 3,507 0.001

Baseline 0.15 4 1,000 0.05

fourth position. Once the radar has moved to its fourth and final position, the UAV flies to it

quickly.

Like the intermittently emitting radar, the mobile radar adds difficulty to the simplest radar

case. However, the mobile radar is not as difficult for evolution as the intermittently emitting,

stationary radar. This helps to suggest that the movement of the radar is not the most difficult

part of the problem. Instead, evolution has the hardest time finding strategies to cope with the

periods of sensor blindness.

5.3.5 Intermittently Emitting, Mobile Radar with Regular Period

The final type of radar to be explored with direct evolution was an intermittently emitting,

mobile radar. This radar combined the intermittently emitting radar with a regular period with

a mobile radar site. The radar emissions were modeled as a combination of the two types

of radars. The radar moves using the same finite state machine as the continuously emitting,

mobile radar does, but during the deployed state, the radar emits with a regular period. This

type of radar was anticipated to be the most difficult for evolution because it combined all the

most difficult aspects of the other experiments into a single radar type.

For each of the 50 evolutionary runs, a new population was randomly initialized and evolved

94

Table 5.11: Results for experiments with intermittently emitting, mobile radars.

Number of evolutionary runs 50

Number of successful runs 16

Success percentage 32%

Total number of successful controllers 569

Average successful controllers per run 11.38

Maximum successful controllers for a run 93

Minimum successful controllers for a run 1

Table 5.12: Fitness values for five UAV flight paths to intermittently emitting, mobile radars

shown in Figures 5.25, 5.26, 5.27, 5.28, and 5.29.

Flight Normalized Distance Circling Distance Level Time Turn Cost

1 0.048 3.187 1,464 0.006

2 0.089 3.527 3,234 0.003

3 0.057 1.954 1,288 0.005

4 0.050 3.168 1,958 0.004

5 0.055 3.132 1,795 0.001

Baseline 0.15 4 1,000 0.05

for 600 generations. The results of this series of evolutionary runs are shown in Table 5.11.

Of 50 evolutionary runs, only 16 were successful, for a success percentage of 32 percent. The

number of successful controllers evolved in a run ranged from 1 to 93. Figure 5.24 shows a

histogram of the number of acceptable controllers evolved for each of the 16 successful runs. A

total of 569 successful controllers were evolved for an average of 11.38 successful controllers

per evolutionary run.

Figures 5.25a, 5.26a, 5.27a, 5.28a, and 5.29a show five flight paths for UAVs flying to continu-

ously emitting, mobile radars. Figures 5.25b, 5.26b, 5.27b, 5.28b, and 5.29b show the distance

between the UAV and the radar for each of these flights during the simulated flight time as well

as the emitting durations of the radars. The fitness values for these flights are shown in Table

5.10. In Figure 5.25, the UAV flies directly to the first radar position and after the radar moves

95

0 20 40 60 80
0

1

2

3

4

5

successful controllers per run

ev
ol

ut
io

na
ry

 r
un

s

Figure 5.24: Histogram of the number of successful controllers for each evolutionary run for

intermittently emitting, mobile radars.

to the second position, the UAV responds quickly. When the radar moves to the third position,

it takes the UAV a little more time to begin circling because the radar is off when the UAV gets

close. The flight path shown in Figure 5.26 looks very similar to the behavior shown by UAVs

flying to continuously emitting, mobile radars. In this case, the periodic signal does not hinder

the UAVs ability to find the target. In Figure 5.27, the UAV is heading toward the radar’s first

position when the radar moves. After circling the second position, the UAV moves to follow

the radar to the third position. The UAV never has time to move to the radar’s fourth position

because the simulation ends. Similarly, Figure 5.28 shows a case where the UAV overshoots

slightly while finding new radar positions. This is due to the intermittently emitting radar.

Figure 5.29 shows a UAV that flies directly to the radar’s initial position and once the radar

moves, the UAV flies directly to the new position. All five of these flight paths show how fit

the evolved controllers are in flying UAVs to intermittently emitting, mobile radars.

It should not be surprising that evolution did so poorly on this experiment. The radar type

96

0 50 100
0

50

100

1 2

3

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.25: Flight path 1 for a UAV controller to an intermittently emitting, mobile radar (a),

the distance between the UAV and the radar, and the emitting period and duration of the radar

(b).

97

0 50 100
0

50

100

1
2

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.26: Flight path 2 for a UAV controller to an intermittently emitting, mobile radar (a),

the distance between the UAV and the radar, and the emitting period and duration of the radar

(b).

98

0 50 100
0

50

100

1

4

2

3

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.27: Flight path 3 for a UAV controller to an intermittently emitting, mobile radar (a),

the distance between the UAV and the radar, and the emitting period and duration of the radar

(b).

99

0 50 100
0

50

100

1
3

2

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.28: Flight path 4 for a UAV controller to an intermittently emitting, mobile radar (a),

the distance between the UAV and the radar, and the emitting period and duration of the radar

(b).

100

0 50 100
0

50

100

1

2

x (nmi)

y
(n

m
i)

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

time (hours)

di
st

an
ce

 (
nm

i)

Distance
Emitting

(b)

Figure 5.29: Flight path 5 for a UAV controller to an intermittently emitting, mobile radar (a),

the distance between the UAV and the radar, and the emitting period and duration of the radar

(b).

101

used, an intermittently emitting, mobile radar, combined two previous experiments that were

difficult for evolution. Attempting to evolve a fit controller from a random initial population for

this radar is very difficult because a UAV receives sensor information less than half the time.

Evolution must be able to devise complex strategies, something it found difficult to do in this

experiment.

5.4 Incremental Evolution

Environmental incremental evolution was used in an attempt to improve the chances of multi-

objective genetic programming successfully evolving acceptable controllers for the more com-

plex radar types. Unlike the direct evolution experiments, which always started with a random

initial population, these experiments used evolved populations from simpler radar types as

seed populations. The evolution of a seed population using continuously emitting, stationary

radars is presented. Then, incremental evolution results are presented for several radar types:

1) intermittently emitting, stationary radars evolved from the seed population, 2) continuously

emitting, mobile radars evolved from the seed population, 3) intermittently emitting, stationary

radars evolved in multiple increments, and 4) intermittently emitting, mobile radars evolved

in multiple increments. Incremental evolution greatly aided the evolution of fit controllers for

complex radar types.

5.4.1 Seed Populations

The first stage of evolution for the incremental evolution experiments was evolving seed pop-

ulations on the continuously emitting, stationary radar. This experiment was set up identically

to the experiment described in Section 5.3.1. This new set of evolutionary runs was used not

102

Table 5.13: Results for seed population experiments evolved on continuously emitting, station-

ary radars.

Number of evolutionary runs 50

Number of successful runs 45

Success percentage 90%

Total number of successful controllers 2,815

Average successful controllers per run 56.30

Maximum successful controllers for a run 166

Minimum successful controllers for a run 1

only as a seed for incremental evolution experiments, it was also used to verify the previous

experiment on continuously emitting, stationary radars.

In this experiment, 50 new evolutionary runs were performed. For each run, a new population

was randomly initialized and then evolved for 600 generations. The results for this experiment

are summarized in Table 5.2. Like the previous experiments using continuously emitting, sta-

tionary radars, 45 of the 50 evolutionary runs were successful, for a success rate of 90 percent.

The number of acceptable controllers evolved during a successful run ranged from 1 to 166.

Figure 5.30 shows a histogram of the number of acceptable controllers evolved in each suc-

cessful run. Over all 50 runs, 2,815 acceptable controllers were evolved for an average of 56.30

successful controllers per evolutionary run.

5.4.2 Intermittently Emitting, Stationary Radar

In this experiment, 50 evolutionary runs were performed. Each of the seed populations evolved

in Section 5.4.1 was used as the initial population for an evolutionary run. These incremental

evolution runs used intermittently emitting, stationary radars with regular periods. The seeded

populations were evolved for 400 generations on all four fitness functions, as described in

Section 4.3.2. The evolutionary process is shown in Figure 5.31. This figure shows that in

103

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

successful controllers per run

ev
ol

ut
io

na
ry

 r
un

s

Figure 5.30: Histogram of the number of successful controllers for each evolutionary run of

the seed populations using continuously emitting, stationary radars.

the first stage of evolution, the population is randomly initialized and the radar type used was

continuously emitting and stationary. The evolved population was used in the second stage of

evolution and the radar type was intermittently emitting and stationary. The results of these

evolutionary runs are summarized in Table 5.14. The use of incremental evolution improved

the success rate of evolution on this type of radar. Of the 50 evolutionary runs, 34 were success-

ful, for a 68 percent success rate. The number of successful controllers evolved during a run

ranged from 1 to 184. Figure 5.32 shows a histogram of the number of acceptable controllers

evolved in each successful run. While there were still many runs that only produced a few

successful controllers, many runs did appear to propagate good subtrees effectively. A total of

2,526 acceptable controllers were evolved for an average of 50.52 successful controllers per

evolutionary run.

Using incremental evolution to evolve controllers for intermittently emitting, stationary radars

was more successful than simply using direct evolution. The success rate of this evolutionary

104

Table 5.14: Results for incremental evolution experiments evolved on intermittently emitting,

stationary radars.

Number of evolutionary runs 50

Number of successful runs 34

Success percentage 68%

Total number of successful controllers 2,526

Average successful controllers per run 50.52

Maximum successful controllers for a run 184

Minimum successful controllers for a run 1

population

Seed
Population

Random
Initial

Population

Radar

Intermittently
emitting,

stationary radar

population

Evolved
PopulationEvolution

Stage 2
Evolution
Stage 1Radar

Continuously
emitting,

stationary radar

Figure 5.31: Evolutionary process for incremental evolution of controllers for intermittently

emitting, stationary radars.

105

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

successful controllers per run

ev
ol

ut
io

na
ry

 r
un

s

Figure 5.32: Histogram of the number of successful controllers incrementally evolved on in-

termittently emitting, stationary radars.

system increased from 50 percent to 68 percent as the number of successful evolutionary runs

increased from 25 to 34. Clearly, incremental evolution was beneficial. However, this success

rate is still low, suggesting that this radar type might benefit from multiple increments of evo-

lution. Based on all the results from intermittently emitting radars, it seems that evolution has

a very difficult time creating effective strategies for intermittent emitters, where sensor data is

much less frequent than for continuous emitters.

5.4.3 Continuously Emitting, Mobile Radar

For this experiment, 50 evolutionary runs were performed. The evolutionary process was sim-

ilar to that for incrementally evolving controllers on intermittently emitting, stationary radars.

Each of the seed populations evolved in Section 5.4.1 was used as the initial population for

an evolutionary run, which evolved for 400 generations. The evolutionary process is shown in

106

Table 5.15: Results for incremental evolution experiments evolved on continuously emitting,

mobile radars.

Number of evolutionary runs 50

Number of successful runs 45

Success percentage 90%

Total number of successful controllers 2,774

Average successful controllers per run 55.48

Maximum successful controllers for a run 179

Minimum successful controllers for a run 1

population

Seed
Population

Random
Initial

Population
population

Evolved
PopulationEvolution

Stage 2
Evolution
Stage 1Radar

Continuously
emitting,

stationary radar

Radar

Continuously
emitting,

mobile radar

Figure 5.33: Evolutionary process for incremental evolution of controllers for continuously

emitting, mobile radars.

Figure 5.33. The results of these evolutionary runs are summarized in Table 5.15. The use of

incremental evolution vastly improved the success rate of evolution on this type of radar. Of

the 50 evolutionary runs, 45 were successful, for a 90 percent success rate. Using incremental

evolution made the success rate for continuously emitting, mobile radars equal to that of the

simpler continuously emitting, stationary radars. The number of successful controllers evolved

during a run ranged from 1 to 179. Figure 5.34 shows a histogram of the number of acceptable

controllers evolved in each successful run. While this histogram looks very similar to the one

for the direct evolution experiment on the same type of radar, in this case more of the evo-

lutionary runs produced high numbers of acceptable controllers. A total of 2,774 acceptable

controllers were evolved for an average of 55.48 successful controllers per evolutionary run.

107

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

successful controllers per run

ev
ol

ut
io

na
ry

 r
un

s

Figure 5.34: Histogram of the number of successful controllers incrementally evolved on con-

tinuously emitting, mobile radars.

Using incremental evolution to produce controllers for continuously emitting, mobile radars

was extremely successful. The number of successful evolutionary runs increased from 36 to 45

for an increase in the success rate from 72 percent to 90 percent, an equal success rate to the

seed populations from which these results were evolved. While the success rates for the two

sets of populations were equal, the success of an evolutionary run in this experiment did not

correspond directly to the success of its seed population. While it might be possible to achieve

an even higher success rate for continuously emitting, mobile radars, equaling the success rate

for the simplest case of continuously emitting, stationary radars is more than satisfactory.

5.4.4 Intermittently Emitting, Stationary Radar with Multiple Increments

This experiment used multiple increments of evolution to arrive at the final evolved population.

Like the other experiments, 50 evolutionary runs were performed. Each of the evolved popu-

108

Table 5.16: Results for incremental evolution experiments evolved on intermittently emitting,

stationary radars evolved in multiple increments.

Number of evolutionary runs 50

Number of successful runs 42

Success percentage 84%

Total number of successful controllers 2,083

Average successful controllers per run 41.66

Maximum successful controllers for a run 143

Minimum successful controllers for a run 1

lations from Section 5.4.3 was used as a seed population for 400 generations of evolution on

intermittently emitting, stationary radars with regular periods. The full evolutionary process, as

shown in Figure 5.35, started with a random initial population which was subsequently evolved

on continuously emitting, stationary radars. The resulting population was used as a seed for

evolving on continuously emitting, mobile radars. Then, the population was evolved on inter-

mittently emitting, stationary radars. The results of this experiment are summarized in Table

5.16. The use of incremental evolution over multiple increments vastly improved the success

rate of evolution on this type of radar. Of the 50 evolutionary runs, 42 were successful, for

an 84 percent success rate. The number of successful controllers evolved during a run ranged

from 1 to 143. Figure 5.36 shows a histogram of the number of acceptable controllers evolved

in each successful run. A total of 2,083 acceptable controllers were evolved for an average of

41.66 successful controllers per evolutionary run.

Using multiple stages of incremental evolution vastly increased evolution’s ability to success-

fully produce good results for this problem. The success rates for intermittently emitting, sta-

tionary radars were 50 percent for direct evolution, 68 percent for incremental evolution from

the seed population, and 84 percent in this experiment. The number of successful evolutionary

runs increased from 25 to 34 to 42. This vast increase in success rate suggests that incremental

evolution is a very effective technique for this problem. These results also help to confirm that

109

population

Seed
Population

Random
Initial

Population

Radar

Intermittently
emitting,

stationary radar

population

Incremental
Populationpopulation

Evolved
Population Evolution

Stage 3

Evolution
Stage 2

Evolution
Stage 1Radar

Continuously
emitting,

stationary radar

Radar

Continuously
emitting,

mobile radar

Figure 5.35: Evolutionary process for the incremental evolution of controllers for intermittently

emitting, stationary radars using multiple increments.

110

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

successful controllers per run

ev
ol

ut
io

na
ry

 r
un

s

Figure 5.36: Histogram of the number of successful controllers incrementally evolved on in-

termittently emitting, stationary radars over multiple increments.

the lack of sensory data is the most difficult hurdle for evolution to overcome, and presenting

radars in order of the percentage of time the radar is emitting is perhaps the best method for

incrementally evolving controllers.

5.4.5 Intermittently Emitting, Mobile Radar with Multiple Increments

In this final experiment incrementally evolving controllers for UAVs, multiple increments of

evolution were used to arrive at the final evolved population. For each evolutionary run, the

seed population was taken from the final population of the experiment described in Section

5.4.4. For the 50 evolutionary runs, each of the seed populations was evolved for 400 gen-

erations on intermittently emitting, mobile radars with regular periods. The full evolutionary

process, shown in Figure 5.37, started with a random initial population which was first evolved

on continuously emitting, stationary radars, second on continuously emitting, mobile radars,

111

Table 5.17: Results for incremental evolution experiments evolved on intermittently emitting,

mobile radars evolved in multiple increments.

Number of evolutionary runs 50

Number of successful runs 37

Success percentage 74%

Total number of successful controllers 1,602

Average successful controllers per run 32.04

Maximum successful controllers for a run 143

Minimum successful controllers for a run 2

and third on intermittently emitting, stationary radars. The results of this experiment are sum-

marized in Table 5.17. The use of incremental evolution over multiple increments vastly im-

proved the success rate of evolution on this type of radar. Of the 50 evolutionary runs, 37 were

successful, for a 74 percent success rate. The number of successful controllers evolved during

a run ranged from 2 to 143. Figure 5.38 shows a histogram of the number of acceptable con-

trollers evolved in each successful run. A total of 1,602 acceptable controllers were evolved

for an average of 32.04 successful controllers per evolutionary run.

The use of multiple increments, or stages of evolution, dramatically increased the ability of

evolution to produce adept controllers for this type of radar. The success rate for intermittently

emitting, mobile radars was 32 percent for direct evolution, but with incremental evolution,

the success rate jumped all the way to 74 percent. The number of successful evolutionary

runs increased from 16 to 37. This final evolutionary experiment further demonstrates the

effectiveness of incremental evolution.

5.4.6 Analysis of Incrementally Evolved Controllers

Incremental evolution dramatically increased the success rates of evolution for the more com-

plex radar types. Table 5.18 shows the results for each incremental evolution experiment.

112

population

Seed
Population

Random
Initial

Population

Radar

Intermittently
emitting,

stationary radar

Radar

Intermittently
emitting,

mobile radar

population

Incremental
Population 2

population

Incremental
Population 1

population

Evolved
Population

Evolution
Stage 4

Evolution
Stage 3

Evolution
Stage 2

Evolution
Stage 1Radar

Continuously
emitting,

stationary radar

Radar

Continuously
emitting,

mobile radar

Figure 5.37: Evolutionary process for the incremental evolution of controllers for intermittently

emitting, mobile radars using multiple increments.

Table 5.18: Incremental evolution experimental results

Runs

Radar Type Total Successful Percentage

Continuous, Stationary (5.4.1) 50 45 90%

Intermittent, Stationary (5.4.2) 50 34 68%

Continuous, Mobile (5.4.3) 50 45 90%

Intermittent, Stationary (5.4.4) 50 42 84%

Intermittent, Mobile (5.4.5) 50 37 74%

113

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

successful controllers per run

ev
ol

ut
io

na
ry

 r
un

s

Figure 5.38: Histogram of the number of successful controllers incrementally evolved on in-

termittently emitting, mobile radars over multiple increments.

These results demonstrate how incremental evolution encourages the evolution of fit controller

for complex problems.

A major issue in GP is code growth, or bloat. EC problems with genomes of variable length

tend to grow over time, making recombination less likely to benefit the fitness of a population.

Like most GP applications, the experiments presented in this research suffered from some code

growth. The maximum depth of an individual in the population, for instance, quickly went to

the 21, the maximum depth allowed by the GP algorithm. Early in evolution, both depth and

complexity (the number of nodes in a program tree) increase dramatically, as seen in Figures

5.39 and 5.40. However, the averages of both depth and complexity tended to fluctuate in

this research, rather than increasing throughout evolution. For incremental evolution in this

research, where controllers were evolved for thousands of generations, code growth proved not

to be an enormous problem. As mentioned in Section 4.3, diversity is often an issue when using

incremental evolution. In these experiments, populations tended to remain diverse, possibly

114

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

20

25

Generation

D
ep

th

Max depth
Avg depth
Min depth

Figure 5.39: Depth by generation in the incremental evolution of controllers for intermittently

emitting, mobile radars. Transitions between the stages of evolution are shown.

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

Generation

C
om

pl
ex

ity

Max complexity
Avg complexity
Min complexity

Figure 5.40: Complexity by generation in the incremental evolution of controllers for intermit-

tently emitting, mobile radars. Transitions between the stages of evolution are shown.

115

because of the use of crowding distance in the multi-objective GP algorithm.

Rather than using a different controller for each radar type, it would be advantageous if the

controller flying a UAV could handle multiple radar types. The controllers evolved in the

experiment described in Section 5.4.5 were incrementally evolved on most of the radar types

examined in this research. Of the 25,000 controllers produced over the 50 evolutionary runs of

this experiment (for each of the 50 runs, 500 controllers were evolved), 1,602 were successful

on intermittently emitting, mobile radars. These controllers were then evaluated on five radar

types: 1) continuously emitting, stationary radars, 2) intermittently emitting, stationary radars

with regular periods, 3) intermittently emitting, stationary radars with irregular periods, 4)

continuously emitting, mobile radars, and 5) intermittently emitting, mobile radars. Every one

of the 1,602 controllers was successful for each of the five radar types. Incremental evolution

produced a set of controllers that could be used for any of the radar types in this research.

When autonomous navigation controllers are used to fly real UAVs, it is essential to have

a single controller that can handle multiple radar types. Based on the information available

to the UAV, it is difficult to know what kind of radar the UAV is approaching, and it is far

easier to have one robust controller that is used all the time rather than switching between

several simpler controllers. The evolution of controllers able to handle many different tasks

demonstrates another advantage to incremental evolution.

5.5 Transference to a Wheeled Mobile Robot

The main goal of this research was to develop autonomous navigation controllers that could be

used to fly real UAVs. However, UAVs are very expensive, and flight tests on physical UAVs

generally require the scheduling of large flight ranges. A UAV was not available for testing at

the time of this research, though future tests are planned.

116

Rather than not attempting the transference of evolved controllers at all, controllers were tested

on a wheeled mobile robot. This experiment used one of the robots in a colony of small,

computationally powerful, mobile robots designed for ER research in the Center for Robotics

and Intelligent Machines at North Carolina State University. These robots are called EvBots

[24]. The robot used in this experiment was an EvBot II [53], one of the second generations

EvBots.

The EvBot II platform, shown in Figure 5.41, is 9 inches wide by 12 inches long by 10 inches

high. Each of the EvBots is autonomously controlled by a PC/104 based on-board computer

running a custom Linux distribution, Infinite Atom Linux 2.0, derived from Red Hat Linux 8.0.

Every EvBot has a USB video camera and wireless network card on-board. The robots have

two sets of treads and move using differential steering. Far more information about the EvBots

can be found in [24], [53], and [57].

In addition to the computational power of the EvBot II, the main attractive feature with regard

to this research was the acoustic array sensor for the EvBot II [53]. This sensor can find an angle

and an amplitude for incoming sounds. In many ways, this acoustic array can be seen as similar

to the sensor used in the simulation for this research, with sound used as the signal instead of

radar emissions. Since the acoustic array can provide the same sensory information as the

sensor used in the simulation for this research, it was possible to transfer evolved controllers to

an EvBot.

One major difference between the acoustic array and the AoA sensor used in simulation was the

accuracy. While the AoA sensor modeled in simulation was accurate within ±10◦, the acoustic

array on the EvBots is less accurate, approximately ±45◦. As might be expected, controllers

evolved on lower assumed levels of error were not particularly fit when error increased this

much. Figure 5.42a shows a controller evolved for a continuously emitting, stationary radar

with a sensor accurate within ±10◦ tested with the same sensor, and Figure 5.42b shows the

117

Figure 5.41: EvBot II, a small, wheeled mobile robot.

118

same controller tested with a sensor accurate within ±45◦. Rather than using one of the con-

trollers that had already been evolved, a new evolutionary run was done where the simulated

sensor was accurate within ±45◦.

The experiment was done in an arena constructed for EvBot tests. This 153 inch by 122 inch

area can be set up as a maze for certain experiments, but for this experiment it was completely

open. A video camera with a fisheye lens is mounted above the maze environment to docu-

ment experiments. To test the controllers, a series of experiments were performed. In each

experiment, the robot was placed along one wall facing toward the middle of the environment.

A speaker was suspended a foot above the ground and continuously emitted a 300 Hz tone. A

circle was placed directly underneath the speaker as a visual reference point, since the fisheye

lens tended to distort the location of the speaker. The robot’s movement was discretized into

steps, much like the simulation. At each time step, the controller was executed to produce a

roll angle. Since the EvBot is not controlled by a roll angle, the robot would turn to control

direction. The differential drive system on the EvBot allowed all turns to happen in place,

without changing the location of the robot. The EvBot was only calibrated to turn at multiples

of 5◦ and the magnitude of the turn angle was always rounded down to the nearest multiple of

5. Calibrating the EvBot to turn at angles smaller than 5◦ would have been unreliable due to the

size of the EvBot and the characteristics of its motors. After turning, the EvBot would always

move forward the same amount, mimicking the constant speed of the UAV in simulation. The

EvBot moved 3 inches per time step, and in simulation the UAV moved 0.0222 nautical miles

per time step. If these values are used to scale the maze environment, then the maze would

represent an area approximately 1.13 nmi by 0.90 nmi. Hence, these experiments were not

testing the entire flight path, only the very end of flight when the vehicle nears the target.

Two evolved controllers were each tested 5 times on an EvBot II. The controllers were chosen

based on good fitness values for normalized distance and circling distance, though level time

and turn cost were also used. Both of these controllers were able to successfully drive the

119

0 50 100
0

50

100

x (nmi)

y
(n

m
i)

(a)

0 50 100
0

50

100

x (nmi)

y
(n

m
i)

(b)

Figure 5.42: Flight paths for a UAV controller to a continuously emitting, stationary radar

using a sensor accurate within (a) ±10◦ and (b) ±45◦.

120

0 50 100
0

50

100

x (nmi)

y
(n

m
i)

Figure 5.43: Flight path in simulation for Controller 1 to a continuously emitting, stationary

radar using a sensor accurate within ±45◦.

EvBot from its starting position to the speaker and then circle around the speaker. The small

number of tests was enough to confirm that the controllers were consistently able to perform

the task as desired.

A simulated flight path for the first controller, Controller 1, is shown in Figure 5.43. This

controller had good fitness values, though it is clear from the figure that the controllers evolved

with a more inaccurate sensor were not as well adapted as those shown in the rest of the

research. When this controller was transferred to the EvBot, similar behavior is exhibited.

Figure 5.44 shows the path from one experiment where this controller was used to navigate the

robot.

Figure 5.45 shows a simulated flight path for Controller 2. This controller also had good

fitness values, though the level time fitness value was lower for this controller than it was for

Controller 1. This controller was very successful when transferred to the EvBot. Figure 5.46

121

Start

x (nmi)

y
(n

m
i)

 0 1.13

0.9

 0

Figure 5.44: Path for an EvBot running Controller 1 moving to a continuously emitting, sta-

tionary speaker using a real acoustic array sensor.

122

0 50 100
0

50

100

x (nmi)

y
(n

m
i)

Figure 5.45: Flight path in simulation for Controller 2 to a continuously emitting, stationary

radar using a sensor accurate within ±45◦.

shows a path from one of the experiments using this controller. A comparison of Figure 5.46

to Figure 5.5 shows how the circling behavior of the controller on the EvBot is very similar to

the controller in simulation.

These two controllers have less efficient paths than some of the other controllers evolved in this

research because the sensor was less accurate. However, the paths in simulation and on the real

robots are good. One sign of an extremely fit controller is a centering of the emitter when the

controller begins to circle. These controllers are less well evolved because of the less accurate

sensor, so the speaker is not perfectly centered inside the circling area.

123

Start

x (nmi)

y
(n

m
i)

 0 1.13

0.9

 0

Figure 5.46: Path for an EvBot running Controller 2 moving to a continuously emitting, sta-

tionary speaker using a real acoustic array sensor.

124

Chapter 6

Conclusion and Future Research

6.1 Conclusions

In this research, genetic programming and multi-objective optimization were used to evolve

autonomous navigation controllers for unmanned aerial vehicles. These controllers were able

to fly to a target radar site, maintain an efficient flight path, and then circle around the radar.

UAV controllers were evolved to be able to accomplish this task for a wide variety of radar

types using inaccurate sensors in a noisy environment.

UAV navigation controllers were evolved in simulation. The control architecture used in this

research was designed to be easily transferable to a large number of UAV platforms. The

evolved controllers were only responsible for navigation. Low-level control was handled by an

autopilot. A variety of radar types could be modeled by the simulation. Radars were described

primarily by mobility and the pattern of the signal emitted by the radar. The sensors on-

board the simulated UAV used in this research were able to detect the angle and amplitude of

incoming electromagnetic signals. These sensors were modeled to be inaccurate, since real

sensors are not ideal.

125

Multi-objective GP was used to evolve the navigation controllers. Parameters were selected

to promote the evolution of fit controllers and to allow for parallel evaluation of individuals

in the population. Both functional and environmental incremental evolution were used in this

research. Four fitness functions were designed to promote the evolution of controllers able

to fly to a radar, circle closely around it, and maintain an efficient flight path. The four fit-

ness functions were 1) normalized distance, 2) circling distance, 3) level time, and 4) turn

cost. Rather than focusing on optimization, the fitness functions were behavioral, intended to

promote certain types of behavior in the final controllers.

The four fitness functions used for this research were sufficient to produce the desired behav-

iors, and all four measures were necessary to produce fit controllers. Since multi-objective

optimization produces a Pareto front of solutions, rather than a single best solution, a method

was needed to gauge the performance of evolution. Performance was measured by selecting a

set of cutoff values for each fitness function that defined a successful controller. Two sets of

experiments were successfully able to evolve navigation controllers for UAVs.

The first set of experiments started with random initial populations and evolved controllers

for 5 types of radars: 1) continuously emitting, stationary radars, 2) intermittently emitting,

stationary radars with regular periods, 3) intermittently emitting, stationary radars with irreg-

ular periods, 4) continuously emitting, mobile radars, and 5) intermittently emitting, mobile

radars. For each of these direct evolution experiments, the GP algorithm was able to success-

fully evolve programs to accomplish the task. Each experiment was made up of 50 evolutionary

runs, and as the radar type became more complex, the percentage of evolutionary runs that was

able to produce successful controllers decreased. The continuously emitting, stationary radar

was the simplest radar type for evolution, and the intermittently emitting, mobile radar was the

most difficult.

The second set of experiments used environmental incremental evolution to improve the abil-

126

ity of the evolutionary system to produce acceptable controllers. Five experiments were per-

formed: 1) direct evolution of a seed population on continuously emitting, stationary radars,

2) incremental evolution on intermittently emitting, stationary radars from the seed population,

3) incremental evolution on continuously emitting, mobile radars from the seed population, 4)

incremental evolution on intermittently emitting, stationary radars from the population evolved

on continuously emitting, mobile radars, and 5) incremental evolution on intermittently emit-

ting, mobile radars from the last population. Again, each experiment was made up of 50

evolutionary runs. The use of incremental evolution significantly increased the success rates

for the more difficult radar types. The controllers evolved for intermittently emitting, mobile

radars were able to successfully accomplish the task for any radar type.

The goal of this research is to fly physical UAVs using evolved controllers. Methods were used

to aid in the transference of evolved controllers to real UAVs. Simulated UAVs had inaccurate

sensors and operated in a noisy environment. To test the transference of the evolved controllers,

the navigation controllers evolved for UAVs were tested on a wheeled mobile robot. The results

from this experiment demonstrate that evolved controllers are capable of transference to real

physical vehicles.

The results of the experiments pursued in this research were very encouraging. Evolution

was able to produce large numbers of autonomous navigation controllers capable of flying to

a radar, circling around the radar, and maintaining an efficient flight path. Controllers were

evolved for a variety of radar types, and the use of incremental evolution increased evolution’s

chances of evolving fit controllers.

127

6.2 Future Research

A major direction for future research will be the transference of evolved controllers to physical

UAVs. Evolved controllers will be used in multiple flight tests. The first test will use a single

UAV and a single continuously emitting, stationary radar. Additional flight tests will use more

complex radar types. Flight tests may also be done with multiple UAVs and multiple radars.

The transference of the controllers developed in this research to real UAVs should be relatively

straightforward, as demonstrated by the transference experiments presented in Section 5.5. To

use a controller evolved in this research, a UAV would need to have an autopilot that can accept

roll angle as input and a sensor capable of providing the angle and amplitude of an incoming

signal. The experiments presented as part of this research also suggest that these controllers

are easily transferable to embedded hardware.

This research has focused primarily on situations where a single UAV acts against a single

radar. In a more useful scenario, multiple UAVs would cooperate to act on multiple radars.

In the near term, research will focus on evolving UAV navigation controllers for distributed

multi-agent tasks. In this expanded work, the basic task for each UAV remains the same.

Each UAV should find a radar and circle closely around it while maintaining an efficient flight

path. However, the global task will expand from responding to a single radar to spreading

the available UAVs across the target radars. The difficulty of the problem will increase as

communication capabilities are added to the function and terminal sets for GP. A variety of

radar types will be tested, potentially including a heterogeneous group of radars. Based on the

results from the incremental evolution experiments described in this work, future work will use

incremental evolution to attempt to overcome these added difficulties.

128

References

[1] Christoph Adami. Introduction to Artificial Life. Springer-Verlag, New York, 1998.

[2] David Adamy. EW 101: A First Course in Electronic Warfare. Artech House, 2001.

[3] Ronald C. Arkin. Behavior-based Robotics. MIT Press, 1998.

[4] Hezi Avraham, Gal Chechik, and Eytan Ruppin. Are there representations in embodied

evolved agents? taking measures. In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim,

and J. Ziegler, editors, Advances in Artificial Life - Proceedings of the 7th European

Conference on Artificial Life, 2003.

[5] Thomas Back, Ulrich Hammel, and Hans-Paul Schwefel. Evolutionary computation:

Comments on the history and current state. IEEE Transactions on Evolutionary Compu-

tation, 1(1), April 1997.

[6] W. Banzhaf and W. B. Langdon. Some considerations on the reason for bloat. Genetic

Programming and Evolvable Machines, 3(1):81–91, 2002.

[7] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, 2(1):14–23, 1986.

[8] Rodney A. Brooks. Elephants don’t play chess. Robotics and Automation Systems, 6:3–

15, 1990.

[9] Rodney A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–

159, 1991.

[10] Rodney A. Brooks. Artificial life and real robots. In Toward a Practice of Autonomous

Systems: Proceedings of the First European Conference on Artificial Life, pages 3–10,

Cambridge, MA, 1992. MIT Press.

[11] Andy Clark and Chris Thornton. Trading spaces: Computation, representation and the

limits of uninformed learning. Behavioral and Brain Sciences, 20:57–90, 1997.

[12] Dave Cliff, Inman Harvey, and Philip Husbands. Explorations in evolutionary robotics.

Adaptive Behavior, 2:73–110, 1993.

129

[13] Carlos A. Coello Coello. An updated survey of evolutionary multiobjective optimiza-

tion techniques: State of the art and future trends. In Proceedings of the Congress on

Evolutionary Computation, pages 3–13, 1999.

[14] Timothy Coffey and John A. Montgomery. The emergence of mini UAVs for military

applications. Defense Horizons, (22):1–8, December 2002.

[15] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan. A fast and elitist multi-

objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,

6(2):182–197, April 2002.

[16] Marc Ebner. Evolution of a control architecture for a mobile robot. In Proceedings of the

Second International Conference on Evolvable Systems, pages 303–310, 1998.

[17] Jeffrey L. Elman. Learning and development in neural networks: The importance of

starting small. Cognition, 48:71–99, 1993.

[18] Roger I. Eriksson. An initial analysis of the ability of learning to maintain diversity

during incremental evolution. In A. A. Freitas, editor, Data Mining with Evolutionary

Algorithms, pages 120–124, 2000.

[19] D. Filliat, J. Kodjabachian, and J.-A. Meyer. Incremental evolution of neural controllers

for navigation in a 6-legged robot. In Sugisaka and Tanaka, editors, Proceedings of the

Fourth International Symposium on Artificial Life and Robots, 1999.

[20] Gary W. Flake. The Computational Beauty of Nature. MIT Press, 1998.

[21] Dario Floreano and Francesco Mondada. Evolution of homing navigation in a real mobile

robot. IEEE Transactions on Systems, Man, and Cybernetics, 26(3):396–407, 1996.

[22] Dario Floreano and Stephano Nolfi. God save the red queen! competition in co-

evolutionary robotics. In Genetic Programming 1997: Proceedings of the Second Annual

Conference, pages 398–406, 1997.

[23] Emilio Frazzoli. Maneuver-based motion planning and coordination for multiple UAVs.

In Proceedings of the AIAA/IEEE Digital Avionics Systems Conference, 2002.

[24] John M. Galeotti. The EvBot: A small autonomous mobile robot for the study of evolu-

tionary algorithms in distributed robotics. Master’s thesis, North Carolina State Univer-

sity, Raleigh, NC, 2002.

[25] Geneva Aerospace. Dakota Unmanned Aerial Vehicle.

[26] Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex general be-

havior. Adaptive Behavior, 5:317–342, 1997.

[27] Faustino J. Gomez and Risto Miikkulainen. Active guidance for a finless rocket using

neuroevolution. In E. Cantu-Paz, editor, Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2003), pages 2084–2095, Chicago, July 2003.

130

[28] I. Harvey, P. Husbands, and D. Cliff. Seeing the light: Artificial evolution, real vision. In

Proceedings of the Third International Conference on Simulation of Adaptive Behavior,

pages 704–720. MIT Press, 1994.

[29] Inman Harvey, Philip Husbands, Dave Cliff, Adrian Thompson, and Nick Jakobi. Evolu-

tionary robotics: the Sussex approach. Robotics and Autonomous Systems, 20:205–224,

1997.

[30] Frank Hoffmann, Tak John Koo, and Omid Shakernia. Evolutionary design of a helicopter

autopilot. 3rd On-line World Conference on Soft Computing, 1998.

[31] John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan

Press, Ann Arbor, MI, 1975.

[32] William H. Hsu and Steven M. Gustafson. Genetic programming and multi-agent layered

learning by reinforcements. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-2002), New York, July 2002.

[33] Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap: The use of

simulation in evolutionary robotics. In Proceedings of the 3rd European Conference on

Artificial Life, pages 704–720, 1995.

[34] Shotaro Kamio, Hideyuki Misuhashi, and Hitoshi Iba. Integration of genetic program-

ming and reinforcement learning for real robots. In E. Cantu-Paz et al., editor, Proceed-

ings of the Genetic and Evolutionary Computation Conference (GECCO-2003), pages

470–482, Chicago, July 2003.

[35] Didier Keymeulen, Masaya Iwata, Kenji Konaka, Ryouhei Suzuki, Yasuo Kuniyoshi, and

Tetsuya Higuchi. Off-life model-free and on-line model-based evolution for tracking

navigation using evolvable hardware. In Proceedings of the First European Workshop on

Evolutionary Robotics, Paris, April 1998.

[36] John Koza. Genetic Programming. MIT Press, 1992.

[37] John Koza. Genetic Programming II. MIT Press, 1994.

[38] John Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane. Genetic Program-

ming III. Morgan Kaufmann, 1999.

[39] John R. Koza. A hierarchical approach to learning the boolean multiplexer function. In

G. Rawlins, editor, Proceedings of Workshop on the Foundations of Genetic Algorithms

and Classifier Systems, Bloomington, IN, July 1990. Morgan Kaufmann.

[40] John R. Koza. Evolution of subsumption using genetic programming. In Proceedings of

the First European Conference on Artificial Life, pages 110–119. MIT Press, 1992.

131

[41] Rajeev Kumar and Peter Rockett. Improved sampling of the pareto-front in multiobjective

genetic optimizations by steady-state evolution: A pareto converging genetic algorithm.

Evolutionary Computation, 10(3):283–314, 2002.

[42] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. Combining con-

vergence and diversity in evolutionary multi0bjective optimization. Evolutionary Com-

putation, 10(3):263–282, 2002.

[43] Wei-Po Lee, John Hallam, and Henrik Hautop Lund. Applying genetic programming to

evolve behavior primitives and arbitrators for mobile robots. In Proceedings of the IEEE

International Conference on Evolutionary Computation, pages 495–499, 1997.

[44] Hongwei Liu and Hitoshi Iba. Multi-agent learning of heterogeneous robots by evo-

lutionary subsumption. In E. Cantu-Paz et al., editor, Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO-2003), pages 1715–1728, Chicago, July

2003.

[45] Alex Lubberts and Risto Miikkulainen. Co-evolving a go-playing neural network. In Co-

evolution: Turning Adaptive Algorithms upon Themselves, Birds-of-a-Feather Workshop,

GECCO, 2001.

[46] Sean Luke and Liviu Panait. Lexicographic parsimony pressure. In Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO-2002), pages 829–836,

2002.

[47] Henrik Hautop Lund and John Hallam. Evolving sufficient robot controllers. In Proceed-

ings of the IEEE International Conference on Evolutionary Computation, pages 495–499,

1997.

[48] Joseph N. Mait and Jon G. Grossman. Relevancy and risk: The U.S. Army and future

combat systems. Defense Horizons, (13):1–8, May 2002.

[49] John A. Marin, Robert Radtke, David Innis, Donald R. Barr, and Alan C. Schultz. Using

a genetic algorithm to develop rules to guide unmanned aerial vehicles. In Proceedings of

the IEEE International Conference on Systems, Man and Cybernetics, pages 1055–1060,

Tokyo, Japan, 1999.

[50] Davide Marocco and Dario Floreano. Active vision and feature selection in evolutionary

behavioral systems. In From Animals to Animats 7. MIT Press, 2002.

[51] Maja Mataric and Dave Cliff. Challenges in evolving controllers for physical robots.

Robotics and Automation Systems, 19(1):67–83, November 1996.

[52] Maja J. Mataric. A distributed model for mobile robot environmental-learning and navi-

gation. Technical Report AI-TR-1228, MIT Artificial Intelligence Laboratory, May 1990.

[53] Leonardo Serra Mattos. The EvBot II. Master’s thesis, North Carolina State University,

Raleigh, NC, 2003.

132

[54] Jean-Arcady Meyer, Stephane Doncieux, David Filliat, and Agnes Guillot. Evolutionary

approaches to neural control of rolling, walking, swimming and flying animats or robots.

In Richard J. Duro, Jose Santos, and Manuel Grana, editors, Biologically Inspired Robot

Behavior Engineering, volume 109 of Studies in Fuzziness and Soft Computing, chapter 1,

pages 1–43. Physica-Verlag, 2003.

[55] Robin R. Murphy. Introduction to AI Robotics. MIT Press, 2000.

[56] Hiroshi Nakamura, Akio Ishiguro, and Yoshiki Uchikawa. Evolutionary construction of

behavior arbitration mechanisms based on dynamically-rearranging neural networks. In

Proceedings of the 2000 Congress on Evolutionary Computation, pages 158–165, 2000.

[57] Andrew L. Nelson. Competitive Relative Performance and Fitness Selection for Evolu-

tionary Robotics. PhD thesis, North Carolina State University, Raleigh, NC, 2003.

[58] Andrew L. Nelson, Edward Grant, Gregory Barlow, and Mark White. Evolution of com-

plex autonomous robot behaviors using competitive fitness. In Proceedings of the IEEE

International Conference on Integration of Knowledge Intensive Multi-Agent Systems,

Boston, MA, September 2003.

[59] Andrew L. Nelson, Edward Grant, Gregory J. Barlow, and Thomas C. Henderson. A

colony of robots using vision sensing and evolved neural controllers. In Proceedings of

the IEEE Conference on Intelligent Robots and Systems, Las Vegas, October 2003.

[60] Andrew L. Nelson, Edward Grant, and Thomas C. Henderson. Competitive relative per-

formance evaluation of neural controllers for competitive game playing with teams of real

mobile robots. In Proceedings of the 2002 PerMIS Workshop, pages 43–50, August 2002.

[61] Nils J. Nilsson. Shakey the robot. Technical Note 323, SRI AI Center, Menlo Park, CA,

1984.

[62] Stefano Nolfi and Dario Floreano. Evolutionary Robotics. MIT Press, 2000.

[63] Stephano Nolfi and Dario Floreano. Co-evolving predator and prey robots: Do "arms

races" arise in artificial evolution? Artificial Life, 4(4):311–335, 1998.

[64] Stephano Nolfi, Dario Floreano, Orazio Miglino, and Francesco Mondada. How to evolve

autonomous robots: Different approaches in evolutionary robotics. In Rodney A. Brooks

and Pattie Maes, editors, Proceedings of the Fourth International Workshop on the Syn-

thesis and Simulation of Living Systems, Cambridge, MA, July 1994. MIT Press.

[65] Choong K. Oh and Gregory J. Barlow. Autonomous controller design for unmanned aerial

vehicles using multi-objective genetic programming. In Proceedings of the Congress on

Evolutionary Computation, Portland, OR, June 2004.

[66] Peter Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers, Inc.,

1996.

133

[67] Liviu Panait and Sean Luke. Methods for evolving robust programs. In E. Cantu-Paz et al.,

editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-

2003), pages 1715–1728, Chicago, July 2003.

[68] H. Van Dyke Parunak, Michael Purcell, and Robert O’Connell. Digital pheromones for

autonomous coordination of swarming uav’s. In Proceedings of the First AIAA Unmanned

Aerospace Vehicles, Systems, Technologies, and Operations Conference, April 2002.

[69] Katya Rodriguez-Vazquez, Carlos M. Fonseca, and Peter J. Fleming. Multiobjective ge-

netic programming: A nonlinear system identification application. In Late Breaking Pa-

pers at the 1997 Genetic Programming Conference, pages 207–212, 1997.

[70] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 1995.

[71] D. Curtis Schleher. Introduction to Electronic Warfare. Artech House, 1986.

[72] H. Shim, Tak John Koo, Frank Hoffmann, and S. Sastry. A comprehensive study of

control design for an autonomous helicopter. In Proceedings of the IEEE Conference on

Decision and Control, December 1998.

[73] Sara Silva and Jonas Almeida. Dynamic maximum tree depth: A simple technique for

avoiding bloat in tree-based gp. In E. Cantu-Paz et al., editor, Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2003), pages 1776–1787, Chicago,

July 2003.

[74] Merrill I. Skolnik. Introduction to Radar Systems. McGraw HIll, New York, 3rd ed.

edition, 2001.

[75] Terence Soule and Robert B. Heckendorn. An analysis of the causes of code growth in

genetic programming. Genetic Programming and Evolvable Machines, 3(3):283–309,

2002.

[76] United States Air Force. Aircraft Fact Sheets.

[77] W. Grey Walter. The Living Brain. W. W. Norton, New York, 1953.

[78] Jay F. Winkeler and B. S. Manjunath. Incremental evolution in genetic programming. In

Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 403–

411, 1998.

[79] Annie S. Wu, Alan C. Schultz, and Arvin Agah. Evolving control for distributed micro air

vehicles. In IEEE Conference on Computational Intelligence in Robotics and Automation,

November 1999.

[80] Thomas R. Yechout, Steven L. Morris, David E. Bossert, and Wayne F. Hallgren. Intro-

duction to aircraft flight mechanics. AIAA Press, 2003.

134

Appendices

Appendix A

Experimental Results

This appendix contains results from all of the experiments presented. For each experiment,

50 evolutionary runs were completed. In this appendix, the number of successful controllers

for each evolutionary run is shown, as are the summaries of evolution’s performance on each

experiment. The results shown here correspond to those experiments presented in Chapter 5.

A.1 Direct Evolution

A.1.1 Continuously Emitting, Stationary Radar

case-2003-10-10-1313-01 10

case-2003-10-10-1313-02 80

case-2003-10-10-1313-03 11

case-2003-10-10-1313-04 104

case-2003-10-10-1313-05 68

case-2003-10-10-1313-06 137

case-2003-10-10-1313-07 2

case-2003-10-10-1313-08 19

case-2003-10-10-1313-09 108

case-2003-10-10-1313-10 106

case-2003-10-10-1313-11 64

case-2003-10-10-1313-12 8

136

case-2003-10-10-1313-13 0

case-2003-10-10-1313-14 71

case-2003-10-10-1313-15 0

case-2003-10-10-1313-16 96

case-2003-10-10-1313-17 58

case-2003-10-10-1313-18 104

case-2003-10-10-1313-19 81

case-2003-10-10-1313-20 41

case-2003-10-10-1313-21 39

case-2003-10-10-1313-22 66

case-2003-10-10-1313-23 86

case-2003-10-10-1313-24 0

case-2003-10-10-1313-25 107

case-2003-10-10-1313-26 91

case-2003-10-10-1313-27 46

case-2003-10-10-1313-28 40

case-2003-10-10-1313-29 118

case-2003-10-10-1313-30 136

case-2003-10-10-1313-31 112

case-2003-10-10-1313-32 73

case-2003-10-10-1313-33 0

case-2003-10-10-1313-34 36

case-2003-10-10-1313-35 163

case-2003-10-10-1313-36 0

case-2003-10-10-1313-37 96

case-2003-10-10-1313-38 1

case-2003-10-10-1313-39 56

case-2003-10-10-1313-40 12

case-2003-10-10-1313-41 170

case-2003-10-10-1313-42 64

case-2003-10-10-1313-43 60

case-2003-10-10-1313-44 5

case-2003-10-10-1313-45 143

case-2003-10-10-1313-46 14

case-2003-10-10-1313-47 34

case-2003-10-10-1313-48 125

case-2003-10-10-1313-49 72

case-2003-10-10-1313-50 16

5 failures, 45 successes (success rate: 90.00%)

3149 successful controllers (mean: 62.98)

A.1.2 Intermittently Emitting, Stationary Radar with Regular Period

case-2003-10-28-1640-01 42

case-2003-10-28-1640-02 151

case-2003-10-28-1640-03 20

case-2003-10-28-1640-04 0

case-2003-10-28-1640-05 0

case-2003-10-28-1640-06 0

case-2003-10-28-1640-07 70

case-2003-10-28-1640-08 49

case-2003-10-28-1640-09 0

case-2003-10-28-1640-10 26

case-2003-10-28-1640-11 0

case-2003-10-28-1640-12 0

case-2003-10-28-1640-13 97

case-2003-10-28-1640-14 0

137

case-2003-10-28-1640-15 90

case-2003-10-28-1640-16 156

case-2003-10-28-1640-17 32

case-2003-10-28-1640-18 0

case-2003-10-28-1640-19 0

case-2003-10-28-1640-20 34

case-2003-10-28-1640-21 0

case-2003-10-28-1640-22 0

case-2003-10-28-1640-23 0

case-2003-10-28-1640-24 0

case-2003-10-28-1640-25 79

case-2003-10-28-1640-26 155

case-2003-10-28-1640-27 49

case-2003-10-28-1640-28 70

case-2003-10-28-1640-29 0

case-2003-10-28-1640-30 0

case-2003-10-28-1640-31 19

case-2003-10-28-1640-32 8

case-2003-10-28-1640-33 20

case-2003-10-28-1640-34 2

case-2003-10-28-1640-35 0

case-2003-10-28-1640-36 0

case-2003-10-28-1640-37 0

case-2003-10-28-1640-38 0

case-2003-10-28-1640-39 143

case-2003-10-28-1640-40 124

case-2003-10-28-1640-41 0

case-2003-10-28-1640-42 145

case-2003-10-28-1640-43 0

case-2003-10-28-1640-44 136

case-2003-10-28-1640-45 45

case-2003-10-28-1640-46 0

case-2003-10-28-1640-47 0

case-2003-10-28-1640-48 0

case-2003-10-28-1640-49 129

case-2003-10-28-1640-50 0

25 failures, 25 successes (success rate: 50.00%)

1891 successful controllers (mean: 37.82)

A.1.3 Intermittently Emitting, Stationary Radar with Irregular Period

case-2003-11-26-1111-01 0

case-2003-11-26-1111-02 79

case-2003-11-26-1111-03 91

case-2003-11-26-1111-04 0

case-2003-11-26-1111-05 10

case-2003-11-26-1111-06 108

case-2003-11-26-1111-07 0

case-2003-11-26-1111-08 125

case-2003-11-26-1111-09 102

case-2003-11-26-1111-10 0

case-2003-11-26-1111-11 72

case-2003-11-26-1111-12 98

case-2003-11-26-1111-13 0

case-2003-11-26-1111-14 70

case-2003-11-26-1111-15 0

case-2003-11-26-1111-16 109

138

case-2003-11-26-1111-17 0

case-2003-11-26-1111-18 0

case-2003-11-26-1111-19 0

case-2003-11-26-1111-20 110

case-2003-11-26-1111-21 141

case-2003-11-26-1111-22 99

case-2003-11-26-1111-23 62

case-2003-11-26-1111-24 0

case-2003-11-26-1111-25 0

case-2003-11-26-1111-26 102

case-2003-11-26-1111-27 134

case-2003-11-26-1111-28 0

case-2003-11-26-1111-29 68

case-2003-11-26-1111-30 0

case-2003-11-26-1111-31 38

case-2003-11-26-1111-32 41

case-2003-11-26-1111-33 0

case-2003-11-26-1111-34 0

case-2003-11-26-1111-35 18

case-2003-11-26-1111-36 0

case-2003-11-26-1111-37 93

case-2003-11-26-1111-38 31

case-2003-11-26-1111-39 172

case-2003-11-26-1111-40 99

case-2003-11-26-1111-41 0

case-2003-11-26-1111-42 22

case-2003-11-26-1111-43 76

case-2003-11-26-1111-44 0

case-2003-11-26-1111-45 0

case-2003-11-26-1111-46 0

case-2003-11-26-1111-47 104

case-2003-11-26-1111-48 8

case-2003-11-26-1111-49 92

case-2003-11-26-1111-50 0

21 failures, 29 successes (success rate: 58.00%)

2374 successful controllers (mean: 47.48)

A.1.4 Continuously Emitting, Mobile Radar

case-2003-11-07-1113-01 6

case-2003-11-07-1113-02 5

case-2003-11-07-1113-03 25

case-2003-11-07-1113-04 125

case-2003-11-07-1113-05 179

case-2003-11-07-1113-06 98

case-2003-11-07-1113-07 32

case-2003-11-07-1113-08 110

case-2003-11-07-1113-09 30

case-2003-11-07-1113-10 206

case-2003-11-07-1113-11 0

case-2003-11-07-1113-12 75

case-2003-11-07-1113-13 3

case-2003-11-07-1113-14 84

case-2003-11-07-1113-15 19

case-2003-11-07-1113-16 0

case-2003-11-07-1113-17 2

case-2003-11-07-1113-18 0

139

case-2003-11-07-1113-19 0

case-2003-11-07-1113-20 72

case-2003-11-07-1113-21 2

case-2003-11-07-1113-22 0

case-2003-11-07-1113-23 135

case-2003-11-07-1113-24 0

case-2003-11-07-1113-25 0

case-2003-11-07-1113-26 86

case-2003-11-07-1113-27 26

case-2003-11-07-1113-28 50

case-2003-11-07-1113-29 83

case-2003-11-07-1113-30 1

case-2003-11-07-1113-31 1

case-2003-11-07-1113-32 0

case-2003-11-07-1113-33 0

case-2003-11-07-1113-34 0

case-2003-11-07-1113-35 0

case-2003-11-07-1113-36 37

case-2003-11-07-1113-37 0

case-2003-11-07-1113-38 24

case-2003-11-07-1113-39 130

case-2003-11-07-1113-40 30

case-2003-11-07-1113-41 131

case-2003-11-07-1113-42 0

case-2003-11-07-1113-43 26

case-2003-11-07-1113-44 143

case-2003-11-07-1113-45 156

case-2003-11-07-1113-46 1

case-2003-11-07-1113-47 1

case-2003-11-07-1113-48 123

case-2003-11-07-1113-49 9

case-2003-11-07-1113-50 0

14 failures, 36 successes (success rate: 72.00%)

2266 successful controllers (mean: 45.32)

A.1.5 Intermittently Emitting, Mobile Radar with Regular Period

case-2003-12-08-1039-01 0

case-2003-12-08-1039-02 0

case-2003-12-08-1039-03 53

case-2003-12-08-1039-04 0

case-2003-12-08-1039-05 0

case-2003-12-08-1039-06 9

case-2003-12-08-1039-07 0

case-2003-12-08-1039-08 0

case-2003-12-08-1039-09 6

case-2003-12-08-1039-10 0

case-2003-12-08-1039-11 26

case-2003-12-08-1039-12 0

case-2003-12-08-1039-13 0

case-2003-12-08-1039-14 0

case-2003-12-08-1039-15 0

case-2003-12-08-1039-16 34

case-2003-12-08-1039-17 80

case-2003-12-08-1039-18 0

case-2003-12-08-1039-19 93

case-2003-12-08-1039-20 0

140

case-2003-12-08-1039-21 84

case-2003-12-08-1039-22 0

case-2003-12-08-1039-23 6

case-2003-12-08-1039-24 53

case-2003-12-08-1039-25 0

case-2003-12-08-1039-26 0

case-2003-12-08-1039-27 0

case-2003-12-08-1039-28 0

case-2003-12-08-1039-29 0

case-2003-12-08-1039-30 0

case-2003-12-08-1039-31 0

case-2003-12-08-1039-32 2

case-2003-12-08-1039-33 0

case-2003-12-08-1039-34 0

case-2003-12-08-1039-35 0

case-2003-12-08-1039-36 22

case-2003-12-08-1039-37 22

case-2003-12-08-1039-38 0

case-2003-12-08-1039-39 38

case-2003-12-08-1039-40 0

case-2003-12-08-1039-41 0

case-2003-12-08-1039-42 0

case-2003-12-08-1039-43 40

case-2003-12-08-1039-44 0

case-2003-12-08-1039-45 1

case-2003-12-08-1039-46 0

case-2003-12-08-1039-47 0

case-2003-12-08-1039-48 0

case-2003-12-08-1039-49 0

case-2003-12-08-1039-50 0

34 failures, 16 successes (success rate: 32.00%)

569 successful controllers (mean: 11.38)

A.2 Incremental Evolution

A.2.1 Seed Population

case-2003-12-19-1049-01-A 6

case-2003-12-19-1049-02-A 64

case-2003-12-19-1049-03-A 66

case-2003-12-19-1049-04-A 156

case-2003-12-19-1049-05-A 63

case-2003-12-19-1049-06-A 78

case-2003-12-19-1049-07-A 14

case-2003-12-19-1049-08-A 0

case-2003-12-19-1049-09-A 50

case-2003-12-19-1049-10-A 40

case-2003-12-19-1049-11-A 78

case-2003-12-19-1049-12-A 99

case-2003-12-19-1049-13-A 34

case-2003-12-19-1049-14-A 35

case-2003-12-19-1049-15-A 161

case-2003-12-19-1049-16-A 59

141

case-2003-12-19-1049-17-A 88

case-2003-12-19-1049-18-A 81

case-2003-12-19-1049-19-A 67

case-2003-12-19-1049-20-A 66

case-2003-12-19-1049-21-A 135

case-2003-12-19-1049-22-A 51

case-2003-12-19-1049-23-A 70

case-2003-12-19-1049-24-A 38

case-2003-12-19-1049-25-A 68

case-2003-12-19-1049-26-A 35

case-2003-12-19-1049-27-A 1

case-2003-12-19-1049-28-A 112

case-2003-12-19-1049-29-A 56

case-2003-12-19-1049-30-A 45

case-2003-12-19-1049-31-A 68

case-2003-12-19-1049-32-A 58

case-2003-12-19-1049-33-A 0

case-2003-12-19-1049-34-A 79

case-2003-12-19-1049-35-A 0

case-2003-12-19-1049-36-A 35

case-2003-12-19-1049-37-A 61

case-2003-12-19-1049-38-A 36

case-2003-12-19-1049-39-A 5

case-2003-12-19-1049-40-A 27

case-2003-12-19-1049-41-A 0

case-2003-12-19-1049-42-A 18

case-2003-12-19-1049-43-A 129

case-2003-12-19-1049-44-A 34

case-2003-12-19-1049-45-A 54

case-2003-12-19-1049-46-A 44

case-2003-12-19-1049-47-A 79

case-2003-12-19-1049-48-A 166

case-2003-12-19-1049-49-A 0

case-2003-12-19-1049-50-A 6

5 failures, 45 successes (success rate: 90.00%)

2815 successful controllers (mean: 56.30)

A.2.2 Intermittently Emitting, Stationary Radar

case-2003-12-19-1049-01-B 0

case-2003-12-19-1049-02-B 56

case-2003-12-19-1049-03-B 134

case-2003-12-19-1049-04-B 90

case-2003-12-19-1049-05-B 0

case-2003-12-19-1049-06-B 26

case-2003-12-19-1049-07-B 44

case-2003-12-19-1049-08-B 0

case-2003-12-19-1049-09-B 54

case-2003-12-19-1049-10-B 0

case-2003-12-19-1049-11-B 100

case-2003-12-19-1049-12-B 13

case-2003-12-19-1049-13-B 126

case-2003-12-19-1049-14-B 48

case-2003-12-19-1049-15-B 174

case-2003-12-19-1049-16-B 46

case-2003-12-19-1049-17-B 23

case-2003-12-19-1049-18-B 73

142

case-2003-12-19-1049-19-B 43

case-2003-12-19-1049-20-B 104

case-2003-12-19-1049-21-B 78

case-2003-12-19-1049-22-B 90

case-2003-12-19-1049-23-B 87

case-2003-12-19-1049-24-B 0

case-2003-12-19-1049-25-B 1

case-2003-12-19-1049-26-B 44

case-2003-12-19-1049-27-B 13

case-2003-12-19-1049-28-B 24

case-2003-12-19-1049-29-B 0

case-2003-12-19-1049-30-B 0

case-2003-12-19-1049-31-B 165

case-2003-12-19-1049-32-B 0

case-2003-12-19-1049-33-B 0

case-2003-12-19-1049-34-B 105

case-2003-12-19-1049-35-B 0

case-2003-12-19-1049-36-B 0

case-2003-12-19-1049-37-B 91

case-2003-12-19-1049-38-B 108

case-2003-12-19-1049-39-B 0

case-2003-12-19-1049-40-B 104

case-2003-12-19-1049-41-B 0

case-2003-12-19-1049-42-B 1

case-2003-12-19-1049-43-B 10

case-2003-12-19-1049-44-B 0

case-2003-12-19-1049-45-B 0

case-2003-12-19-1049-46-B 6

case-2003-12-19-1049-47-B 125

case-2003-12-19-1049-48-B 136

case-2003-12-19-1049-49-B 184

case-2003-12-19-1049-50-B 0

16 failures, 34 successes (success rate: 68.00%)

2526 successful controllers (mean: 50.52)

A.2.3 Continuously Emitting, Mobile Radar

case-2004-02-02-1012-01-B 0

case-2004-02-02-1012-02-B 115

case-2004-02-02-1012-03-B 54

case-2004-02-02-1012-04-B 93

case-2004-02-02-1012-05-B 16

case-2004-02-02-1012-06-B 139

case-2004-02-02-1012-07-B 7

case-2004-02-02-1012-08-B 0

case-2004-02-02-1012-09-B 81

case-2004-02-02-1012-10-B 1

case-2004-02-02-1012-11-B 109

case-2004-02-02-1012-12-B 127

case-2004-02-02-1012-13-B 45

case-2004-02-02-1012-14-B 79

case-2004-02-02-1012-15-B 179

case-2004-02-02-1012-16-B 59

case-2004-02-02-1012-17-B 60

case-2004-02-02-1012-18-B 105

case-2004-02-02-1012-19-B 33

case-2004-02-02-1012-20-B 31

143

case-2004-02-02-1012-21-B 78

case-2004-02-02-1012-22-B 139

case-2004-02-02-1012-23-B 63

case-2004-02-02-1012-24-B 8

case-2004-02-02-1012-25-B 56

case-2004-02-02-1012-26-B 28

case-2004-02-02-1012-27-B 0

case-2004-02-02-1012-28-B 15

case-2004-02-02-1012-29-B 16

case-2004-02-02-1012-30-B 16

case-2004-02-02-1012-31-B 84

case-2004-02-02-1012-32-B 21

case-2004-02-02-1012-33-B 37

case-2004-02-02-1012-34-B 93

case-2004-02-02-1012-35-B 0

case-2004-02-02-1012-36-B 153

case-2004-02-02-1012-37-B 68

case-2004-02-02-1012-38-B 89

case-2004-02-02-1012-39-B 30

case-2004-02-02-1012-40-B 24

case-2004-02-02-1012-41-B 16

case-2004-02-02-1012-42-B 29

case-2004-02-02-1012-43-B 82

case-2004-02-02-1012-44-B 3

case-2004-02-02-1012-45-B 0

case-2004-02-02-1012-46-B 6

case-2004-02-02-1012-47-B 118

case-2004-02-02-1012-48-B 152

case-2004-02-02-1012-49-B 12

case-2004-02-02-1012-50-B 5

5 failures, 45 successes (success rate: 90.00%)

2774 successful controllers (mean: 55.48)

A.2.4 Intermittently Emitting, Stationary Radar with Multiple Increments

case-2004-02-10-1428-01-C 0

case-2004-02-10-1428-02-C 47

case-2004-02-10-1428-03-C 13

case-2004-02-10-1428-04-C 81

case-2004-02-10-1428-05-C 10

case-2004-02-10-1428-06-C 138

case-2004-02-10-1428-07-C 24

case-2004-02-10-1428-08-C 12

case-2004-02-10-1428-09-C 143

case-2004-02-10-1428-10-C 0

case-2004-02-10-1428-11-C 55

case-2004-02-10-1428-12-C 56

case-2004-02-10-1428-13-C 27

case-2004-02-10-1428-14-C 61

case-2004-02-10-1428-15-C 23

case-2004-02-10-1428-16-C 19

case-2004-02-10-1428-17-C 47

case-2004-02-10-1428-18-C 117

case-2004-02-10-1428-19-C 109

case-2004-02-10-1428-20-C 68

case-2004-02-10-1428-21-C 24

case-2004-02-10-1428-22-C 47

144

case-2004-02-10-1428-23-C 26

case-2004-02-10-1428-24-C 19

case-2004-02-10-1428-25-C 22

case-2004-02-10-1428-26-C 0

case-2004-02-10-1428-27-C 14

case-2004-02-10-1428-28-C 105

case-2004-02-10-1428-29-C 0

case-2004-02-10-1428-30-C 22

case-2004-02-10-1428-31-C 80

case-2004-02-10-1428-32-C 0

case-2004-02-10-1428-33-C 30

case-2004-02-10-1428-34-C 88

case-2004-02-10-1428-35-C 0

case-2004-02-10-1428-36-C 139

case-2004-02-10-1428-37-C 39

case-2004-02-10-1428-38-C 26

case-2004-02-10-1428-39-C 1

case-2004-02-10-1428-40-C 10

case-2004-02-10-1428-41-C 55

case-2004-02-10-1428-42-C 24

case-2004-02-10-1428-43-C 43

case-2004-02-10-1428-44-C 8

case-2004-02-10-1428-45-C 0

case-2004-02-10-1428-46-C 0

case-2004-02-10-1428-47-C 52

case-2004-02-10-1428-48-C 122

case-2004-02-10-1428-49-C 24

case-2004-02-10-1428-50-C 13

8 failures, 42 successes (success rate: 84.00%)

2083 successful controllers (mean: 41.66)

A.2.5 Intermittently Emitting, Mobile Radar with Multiple Increments

case-2004-02-18-1108-01-D 0

case-2004-02-18-1108-02-D 62

case-2004-02-18-1108-03-D 3

case-2004-02-18-1108-04-D 69

case-2004-02-18-1108-05-D 8

case-2004-02-18-1108-06-D 59

case-2004-02-18-1108-07-D 90

case-2004-02-18-1108-08-D 0

case-2004-02-18-1108-09-D 18

case-2004-02-18-1108-10-D 0

case-2004-02-18-1108-11-D 62

case-2004-02-18-1108-12-D 6

case-2004-02-18-1108-13-D 47

case-2004-02-18-1108-14-D 10

case-2004-02-18-1108-15-D 100

case-2004-02-18-1108-16-D 2

case-2004-02-18-1108-17-D 41

case-2004-02-18-1108-18-D 79

case-2004-02-18-1108-19-D 30

case-2004-02-18-1108-20-D 7

case-2004-02-18-1108-21-D 0

case-2004-02-18-1108-22-D 51

case-2004-02-18-1108-23-D 46

case-2004-02-18-1108-24-D 40

145

case-2004-02-18-1108-25-D 11

case-2004-02-18-1108-26-D 19

case-2004-02-18-1108-27-D 0

case-2004-02-18-1108-28-D 14

case-2004-02-18-1108-29-D 0

case-2004-02-18-1108-30-D 0

case-2004-02-18-1108-31-D 105

case-2004-02-18-1108-32-D 0

case-2004-02-18-1108-33-D 64

case-2004-02-18-1108-34-D 60

case-2004-02-18-1108-35-D 0

case-2004-02-18-1108-36-D 123

case-2004-02-18-1108-37-D 11

case-2004-02-18-1108-38-D 34

case-2004-02-18-1108-39-D 0

case-2004-02-18-1108-40-D 48

case-2004-02-18-1108-41-D 3

case-2004-02-18-1108-42-D 19

case-2004-02-18-1108-43-D 0

case-2004-02-18-1108-44-D 12

case-2004-02-18-1108-45-D 0

case-2004-02-18-1108-46-D 61

case-2004-02-18-1108-47-D 143

case-2004-02-18-1108-48-D 39

case-2004-02-18-1108-49-D 6

case-2004-02-18-1108-50-D 0

13 failures, 37 successes (success rate: 74.00%)

1602 successful controllers (mean: 32.04)

146

Appendix B

Sample Results from Evolutionary Runs

B.1 Continuously Emitting, Stationary Radar

The results from one of the evolutionary runs described in Section 5.3.1 are shown. The evo-

lutionary run was case-2003-10-10-1313-10. Successful individuals are marked (->).

Normalized Dist Circling Dist Level Time Turn Cost

--

0.328820 3.543143 4070.666810 0.000000

-> 0.043496 2.027485 3690.166630 0.044907

0.313649 13.205677 6930.766660 0.000056

0.310075 25.628654 7200.000000 0.000000

0.301030 3.518343 4716.600040 0.002472

0.046516 1.578667 552.766720 0.175590

0.277222 9.667850 7020.499990 0.000139

0.303224 2.151518 4289.366760 0.050394

0.316156 4.130311 4808.300020 0.002056

0.304225 11.200435 6905.200000 0.000056

0.238432 2.549245 3841.133420 0.001870

0.239488 2.317055 4194.933470 0.010602

0.060962 1.370775 0.000000 0.296808

0.319152 3.752388 5085.200040 0.011481

0.299405 3.539395 5167.266690 0.012037

0.256112 1.789918 2872.866520 0.823625

0.223748 2.518139 3844.266660 0.002593

0.058804 1.506111 0.433350 0.092806

0.320791 3.892854 4891.799930 0.002028

0.274823 2.436951 3234.400020 0.000056

147

0.267754 3.344972 4382.099910 0.002463

0.291799 2.270008 3860.000000 0.004667

0.269604 3.001440 5047.233280 0.011620

0.324462 3.746637 4942.033390 0.002213

0.306368 3.086205 4293.833310 0.002444

0.321781 6.025094 5131.166690 0.000028

0.257992 2.391825 4079.566650 0.002639

0.241385 4.334878 4660.366670 0.002208

0.236384 3.228717 4264.100040 0.002398

0.282776 3.665463 4527.333370 0.002065

0.290233 5.989334 4925.966640 0.000037

0.283623 5.758885 5290.433350 0.001903

0.260676 4.258947 4581.633300 0.010972

0.188623 10.873907 6154.400020 0.000167

0.325985 4.904173 5325.033260 0.001917

0.206922 17.458660 6466.500020 0.000120

0.232861 5.522527 5038.833310 0.002306

0.271703 3.648474 4792.700040 0.010417

0.182618 5.172512 4605.833440 0.001935

0.218467 2.231208 2701.300050 0.000046

0.230024 4.586133 4451.666560 0.002639

0.180701 7.093325 5445.099950 0.000056

0.272630 2.606339 4455.566710 0.010556

0.234449 3.777302 4815.266720 0.011157

0.201870 29.314140 7200.000000 0.090951

0.326543 2.269419 3818.299870 0.004421

0.208220 1.875763 3134.333190 0.045463

0.323054 3.517340 4556.433410 0.002426

0.284905 3.244854 4062.366640 0.001731

0.264632 2.313873 2824.266660 0.000046

0.177821 7.559918 5575.200040 0.000083

0.287924 2.940615 4504.233400 0.008676

0.200530 9.728267 5998.799970 0.000056

-> 0.094156 1.812824 2554.733280 0.043472

0.231354 4.105953 4481.566770 0.001889

0.289041 7.971835 6123.666690 0.000083

0.259654 9.857268 6721.966670 0.000037

0.265673 1.971685 2778.533330 0.003167

0.196898 2.309340 3674.133300 0.009931

0.244472 5.341781 4146.799930 0.000028

0.222073 2.249782 3544.500120 0.002491

0.154483 5.259242 3537.966610 0.000028

0.278709 3.101660 4180.400090 0.002083

0.296840 3.736434 4658.733370 0.002361

0.153186 5.854900 4171.366580 0.000028

0.193374 2.045116 2316.499940 0.002611

-> 0.120276 2.106473 2021.766970 0.000000

0.219799 10.621859 6237.666700 0.000111

0.316809 9.504509 6488.766630 0.000111

0.079355 1.473197 1137.800290 1.436192

0.298255 4.880388 4960.599980 0.001944

0.261762 2.362818 4589.599910 0.010995

-> 0.092876 2.060139 2653.333440 0.009505

0.224780 9.858183 6489.100040 0.000000

0.279769 8.791500 6234.599990 0.000028

0.281483 2.531167 4347.699890 0.010394

0.175818 2.866533 3428.200070 0.000000

0.190072 2.441378 3379.433290 0.002333

0.192680 2.022956 2575.466610 0.004667

0.270622 2.943931 3609.200130 0.000102

0.214735 1.884999 3053.566590 0.040694

0.195780 1.905717 3258.233340 0.043194

0.253177 2.282519 4348.099980 0.011065

0.249192 11.981641 6910.066660 0.000083

0.252003 6.052683 4780.299990 0.000000

0.078552 1.483501 1157.566530 1.368289

148

-> 0.146897 2.068794 1784.666750 0.000000

0.191846 1.972041 3460.499880 0.046481

0.179657 15.666398 6435.266650 0.000185

0.278084 2.033293 3704.266660 0.045625

0.110042 5.866265 3935.633240 0.000028

0.162199 5.580391 3959.366760 0.000056

-> 0.090710 1.784386 2350.299990 0.039537

0.183969 2.863065 3110.533450 0.000000

0.254154 2.225771 4210.466610 0.012454

-> 0.099449 1.836767 2862.566530 0.048981

0.243109 2.396750 4020.799870 0.008898

0.297805 2.835974 4252.799990 0.002718

0.323636 2.098077 4208.166810 0.048171

0.225324 2.547789 4267.466740 0.012222

0.273659 3.207853 4452.766720 0.002116

0.141800 1.579565 1996.233520 0.798569

0.242260 2.163006 4030.166630 0.013194

0.172593 23.851023 6922.733330 0.132113

0.318003 4.602868 5089.299930 0.002306

0.210684 7.544898 5921.233370 0.000167

-> 0.109155 1.805050 2920.499880 0.040648

0.048246 1.594425 399.666750 0.059350

0.243677 36.932926 7200.000000 0.015616

0.052121 1.581823 445.766600 0.059889

0.208793 7.302366 5712.033390 0.000111

0.072926 1.442787 1049.066770 1.449736

0.066020 1.386420 879.733280 1.042463

0.167870 1.908485 2970.066530 0.038935

-> 0.146090 2.291370 3673.433230 0.009120

0.293331 10.220240 6941.066670 0.000083

0.165084 2.137643 2184.666750 0.000000

0.077853 1.423778 1070.333250 1.092616

0.327857 2.181463 4467.133480 0.049514

0.138658 11.297136 5777.100070 0.000000

0.228153 2.133630 3887.733460 0.043843

-> 0.088123 2.014827 2583.733220 0.008241

-> 0.071040 1.686669 1168.366700 0.041523

0.140881 6.746524 5077.866670 0.000111

0.258950 1.993392 3755.233460 0.047083

0.227561 2.222646 2679.866640 0.000000

0.181616 2.067945 3705.166630 0.011481

0.071843 1.480278 1004.633180 1.499153

0.080165 1.590129 1145.700070 0.692074

-> 0.144676 2.328420 3293.933410 0.009722

0.052873 1.607855 648.699950 0.197396

0.287231 20.099016 7116.333330 0.000139

0.251144 2.174154 4225.700070 0.050185

0.161347 1.932470 3451.000060 0.042685

0.124289 1.652987 1334.066770 0.583449

0.212667 2.409988 4078.200070 0.008981

0.285461 3.476030 4072.766720 0.001833

0.075567 1.438212 1133.066410 1.336458

0.068490 1.368270 950.866700 0.997535

0.142272 9.163619 5323.800050 0.000028

-> 0.135120 1.739015 2376.700130 0.048056

-> 0.085127 1.729598 2168.466800 0.040324

-> 0.137580 2.060590 2744.866640 0.008472

0.057187 1.613153 732.566530 0.208241

-> 0.115988 1.919777 1762.500000 0.003861

0.170906 2.585834 3512.533260 0.002194

0.065161 1.559165 0.633540 0.105035

-> 0.123545 2.796618 2450.266720 0.000093

0.194325 2.154107 3424.833370 0.009329

0.175257 1.909556 3185.466610 0.047222

0.168702 5.857605 4374.033200 0.000028

0.215346 2.129191 3522.466740 0.002671

149

0.063171 1.409424 858.400270 1.316169

0.206156 2.262801 4015.700070 0.009167

0.076409 1.499340 1133.900150 1.328637

0.286158 7.467243 5857.899930 0.000028

0.317776 3.558345 4537.166750 0.000000

0.151334 1.921682 3245.933230 0.041620

0.289663 5.991089 5332.200010 0.002042

0.062559 1.334128 832.100220 0.968877

0.166988 1.908238 3100.033260 0.046065

-> 0.123074 2.056466 1762.800290 0.000000

-> 0.133514 2.809313 3373.233340 0.002056

-> 0.104534 1.798739 2558.533330 0.042847

0.252646 2.891489 3848.900150 0.001639

0.074673 1.464298 1060.999760 1.382817

0.226185 1.649907 2341.533200 0.707319

0.178724 2.064924 3043.533330 0.002407

0.266344 2.422918 4324.333190 0.010856

0.096010 5.593229 3524.766540 0.000213

-> 0.135918 1.920369 3059.866640 0.045023

0.118618 5.552805 3772.666630 0.000028

0.049359 1.862902 0.000000 0.000102

0.209574 5.777194 4909.666600 0.000111

0.096741 1.566996 914.866940 0.542431

0.295287 2.401360 5035.700070 0.009769

0.121242 1.469103 1613.900150 1.368204

0.245381 11.819967 7200.000000 0.000347

0.114964 5.920982 4173.099980 0.000111

0.114135 1.540771 1309.000240 0.579204

0.066877 1.424705 917.833250 1.261718

0.187969 15.073728 6787.000010 0.000139

0.048756 1.605561 588.966670 0.183687

0.166184 3.254321 3635.966800 0.002120

0.217830 1.781222 2535.433350 0.040741

0.209940 6.435883 5367.933350 0.000000

0.152148 11.015396 5496.133270 0.000111

-> 0.107103 2.234087 3000.766600 0.009190

0.127788 5.265575 3152.066650 0.000000

0.165875 2.127235 2176.766660 0.000000

-> 0.089181 2.141595 1693.066410 0.000000

0.055922 1.632667 694.066770 0.209829

0.185083 2.734225 3940.400090 0.002306

0.176794 8.754511 5809.433290 0.000028

-> 0.092294 1.740000 2417.933350 0.042741

0.057949 1.636603 910.399780 0.034685

0.171710 1.894420 2967.999880 0.039120

0.077234 1.472978 1102.266850 1.301410

0.139551 1.599112 2141.633300 0.716509

0.072324 1.389745 1012.366940 1.097461

0.232398 1.996413 3636.266780 0.043912

0.143046 1.634357 2160.266720 0.779139

-> 0.111555 2.658652 2264.233400 0.000000

-> 0.138236 2.544327 3210.833440 0.004000

-> 0.101203 2.171790 2778.833310 0.002333

-> 0.122369 2.744834 3103.299870 0.002935

0.286657 9.676486 6691.633340 0.000083

0.213822 7.299954 5810.099950 0.000083

-> 0.087559 1.911703 2098.866580 0.004005

0.156819 11.710814 5780.599980 0.000083

-> 0.149904 2.272169 3069.766540 0.002269

0.226863 3.588670 4093.066710 0.000000

-> 0.127110 1.808159 2525.166630 0.039398

-> 0.102791 2.738637 2005.233150 0.000000

-> 0.088869 1.737977 2165.233460 0.034611

0.073674 1.596617 1122.633060 1.464984

-> 0.110632 2.516468 2897.833250 0.002611

0.084413 1.749138 0.033570 0.005713

150

0.150468 1.954050 3174.700010 0.044074

-> 0.101906 1.956894 2803.200070 0.045046

0.185790 6.812111 5080.566710 0.000028

-> 0.098730 1.920210 2733.066710 0.009815

0.247918 6.199330 5393.699950 0.000389

0.173090 3.847470 3913.833310 0.002000

0.231781 2.120585 2201.400150 0.000208

0.294663 3.104473 4422.399900 0.002319

0.197490 14.641774 6591.166650 0.009949

-> 0.085649 2.895359 2360.533450 0.002139

0.134677 8.986752 5563.166660 0.000204

0.203166 2.143956 3920.466610 0.008958

0.296140 7.813691 6461.900020 0.000111

-> 0.131972 1.837751 2694.633480 0.038519

0.190954 4.009045 4255.700070 0.001944

0.051514 1.623353 624.500120 0.193303

-> 0.112177 1.865415 2909.033200 0.034606

0.176913 7.079608 5427.299960 0.000139

-> 0.132885 1.936081 3294.166560 0.049500

0.115262 8.508290 4439.066770 0.000000

0.061682 1.919829 0.000000 0.000000

0.211313 12.597135 6262.966690 0.000074

0.119602 5.467021 3606.433410 0.000028

0.270179 2.188156 4135.366520 0.010185

-> 0.148953 1.943068 3368.366700 0.047176

-> 0.137002 2.706971 2723.299870 0.000056

0.080638 1.444545 468.133540 0.475155

0.156214 9.301848 5631.266630 0.000083

0.055335 1.590526 467.466430 0.066826

0.197940 7.396869 5661.933290 0.000111

0.274031 6.239582 5680.500030 0.000139

0.181990 1.802356 2407.399900 0.039491

0.184696 2.770066 4011.266780 0.010046

0.235698 3.014919 4432.866520 0.008954

0.073984 1.342833 991.666870 2.618715

0.263848 3.125758 4628.033450 0.009519

0.213146 2.312295 2624.733280 0.000000

0.143352 8.104529 4733.566740 0.000028

0.064315 1.932548 0.033570 0.000000

-> 0.063760 1.672294 1074.000240 0.039002

0.163473 2.121502 3189.633480 0.004083

0.119254 7.306860 5093.500060 0.000056

-> 0.130578 2.157886 2197.233280 0.000000

0.229393 2.308475 4102.933350 0.009630

-> 0.126726 1.805576 2497.666630 0.040056

0.170282 2.282141 3764.033200 0.010769

0.262945 3.324694 4265.599980 0.002042

-> 0.095573 2.778254 2779.433290 0.002389

0.159104 11.595980 6148.799970 0.000083

0.220851 2.781375 3687.200010 0.002083

0.187508 10.155241 6102.699970 0.000514

-> 0.087055 2.004236 1424.433590 0.000000

-> 0.100663 2.091127 2135.566710 0.002676

0.173637 9.283154 5711.433260 0.000083

-> 0.129865 2.476919 3037.433470 0.002222

-> 0.097593 1.916116 2613.999940 0.037546

0.328758 3.743015 4850.066680 0.004199

0.211890 2.168441 2400.700070 0.000194

0.249939 15.920287 6981.866660 0.000093

0.258363 19.484579 6551.399990 0.000046

-> 0.147583 2.858304 3081.233220 0.000000

0.128212 6.156535 4202.366640 0.000000

0.198495 5.971496 3933.200070 0.000000

0.105664 1.490751 1375.733030 0.719671

-> 0.149401 2.529089 3414.599910 0.008981

0.047393 1.590574 394.866940 0.057586

151

0.107710 6.538826 4779.900050 0.000083

0.255273 2.060595 4110.966800 0.011343

0.154874 2.620379 3575.666810 0.002444

0.086168 1.528718 1212.933350 0.609167

0.169931 2.237469 3149.200130 0.002477

0.205725 2.395374 3750.766600 0.004662

-> 0.106257 1.760780 2211.866760 0.039954

0.155429 2.605528 3841.199950 0.009676

0.051093 1.608321 430.200200 0.062447

0.050580 1.278418 636.433110 1.049324

0.198893 1.987814 3504.933470 0.043704

0.307000 11.482088 7099.833340 0.001083

0.235209 2.567712 4365.533450 0.009676

0.103870 6.894420 4876.466670 0.000056

0.111098 1.529349 1615.966800 0.767579

0.164014 1.875882 3001.300050 0.047824

0.113336 10.188980 4170.433350 0.000000

-> 0.095039 2.189666 2511.366580 0.003157

0.294035 2.385769 3950.366520 0.008148

-> 0.132488 2.224407 2787.999880 0.002333

0.267153 2.631441 3907.533260 0.002356

0.292680 2.582195 4152.900090 0.002852

0.070548 1.376981 959.933470 1.073012

-> 0.126134 2.027290 3184.633480 0.009028

-> 0.103609 1.785167 2351.933290 0.041528

0.263635 2.355022 4291.600040 0.010338

0.262272 2.876414 5067.299960 0.012935

0.327859 13.366334 6697.966650 0.000028

0.205214 2.196081 2509.933470 0.000088

-> 0.075157 1.716776 1297.433470 0.043685

0.108052 1.561376 1829.899900 0.712130

0.228873 2.437615 3676.600040 0.002056

0.191187 2.362020 2919.200130 0.000000

0.204361 5.438784 3933.699950 0.000028

0.217356 2.979040 3922.466740 0.000000

-> 0.086594 1.868031 1707.333370 0.005222

0.145407 6.493283 4940.200040 0.000139

0.124803 5.185487 3494.299930 0.000028

-> 0.094656 2.529356 1996.266480 0.000028

0.190158 17.369381 6988.866670 0.211181

0.167364 6.042999 5013.566740 0.000056

0.061986 1.355383 331.933590 0.368528

0.047296 1.278870 203.099980 0.363042

0.216941 1.984444 3516.799930 0.046852

0.241720 6.324976 5170.166630 0.000056

-> 0.129078 2.023129 3283.566590 0.008556

0.187003 2.138104 2960.400090 0.002370

0.202428 2.233839 2686.300050 0.000093

0.128742 8.936490 5195.866700 0.000111

0.150954 2.970555 3094.033200 0.000139

0.200083 1.858249 2929.233400 0.045509

0.053958 1.609353 465.833130 0.066431

0.308103 3.371641 5646.166690 0.012083

0.067880 1.698506 1339.866940 0.253972

0.065534 1.379713 851.799930 1.093567

0.160936 2.039658 3463.733220 0.011065

0.081176 1.537926 1196.433110 1.596155

0.169340 2.148153 3690.000000 0.010926

0.058280 1.900315 0.000000 0.000028

0.204825 6.062325 4356.266780 0.000000

0.069128 1.381920 396.733400 0.408713

0.295808 4.261728 4896.566620 0.001861

0.246178 6.563236 5379.499970 0.000000

0.097155 1.522639 1326.533200 0.580676

0.308644 3.703122 5081.199950 0.009815

0.158610 2.158397 3566.400150 0.009167

152

0.083006 1.465377 1188.499760 1.171729

0.070129 1.385426 967.700200 1.072340

-> 0.106606 2.361647 2841.366580 0.008843

0.280271 2.140215 4165.400090 0.012130

0.309264 2.391415 3965.666810 0.002620

0.162824 2.633784 3751.333310 0.009398

-> 0.076764 1.724398 1356.166380 0.045808

-> 0.091468 1.823706 2357.466740 0.040046

-> 0.084074 2.073960 2537.833250 0.008657

-> 0.082604 2.911652 2453.066710 0.002778

-> 0.089968 2.287374 2564.766540 0.003167

-> 0.102965 2.430966 2568.800050 0.000370

0.174605 5.072166 4686.699980 0.004046

0.215939 3.057092 4153.500060 0.002653

0.309479 3.639834 4264.599910 0.000000

0.266841 8.991049 6157.833330 0.000083

-> 0.098117 2.655870 2997.600100 0.008611

-> 0.118007 2.606844 3091.666560 0.003546

0.158255 10.106637 5707.799990 0.000028

0.174052 9.124874 5652.366640 0.000194

0.171501 7.661305 5419.666600 0.000056

0.056430 1.647215 709.266970 0.208646

0.157282 2.170696 3146.233220 0.002755

0.049913 1.563288 389.033200 0.060051

-> 0.113847 2.622050 2928.900150 0.002583

0.245613 3.605893 4509.500120 0.011690

-> 0.117288 1.926753 2170.633240 0.004083

0.248432 2.682995 4628.566590 0.012130

0.274663 8.248817 6118.300020 0.000056

-> 0.100170 1.935462 2475.433350 0.008750

-> 0.129616 2.371081 3017.466740 0.002130

0.069700 1.652285 1085.300290 0.285741

0.155810 2.282239 2489.766540 0.002130

0.216481 7.590241 5657.833400 0.000056

0.144043 7.124513 5332.400050 0.000083

0.199426 1.909960 3435.266720 0.044630

0.139745 6.611647 5062.766720 0.000139

0.159579 2.020190 2752.166750 0.009981

0.131458 5.705298 4038.866580 0.000028

-> 0.125173 1.842356 2622.266540 0.036852

-> 0.105045 2.095453 1523.066410 0.000000

0.246736 2.018926 3456.766660 0.010463

0.203773 1.900150 3072.066650 0.041528

0.140325 6.900012 4897.566680 0.000083

0.234772 2.078118 3719.066770 0.054630

-> 0.091468 1.823688 2357.333370 0.040093

0.056724 1.607440 493.200070 0.067806

0.112930 1.678895 1840.366820 0.698597

-> 0.112582 1.790687 2589.233400 0.047431

-> 0.067137 1.701929 1127.733150 0.039544

0.160488 7.107420 5375.466610 0.000167

-> 0.082182 1.739538 2134.933470 0.041019

0.220339 2.314074 3010.566710 0.000028

0.152828 2.557069 3336.799930 0.002069

0.067629 1.405145 937.600100 1.126023

0.221499 2.775584 3771.233220 0.002144

-> 0.090001 1.754084 2268.666690 0.041157

0.148385 4.981453 4664.799960 0.002074

0.202738 8.672126 5860.233310 0.000167

-> 0.116599 2.954058 2795.533450 0.000000

0.184082 1.620524 1563.499760 0.619306

-> 0.136567 1.734678 2233.099980 0.041111

-> 0.101741 1.989125 1342.833250 0.000000

0.280614 4.648739 5352.633360 0.010463

0.054916 1.602092 667.800290 0.203507

0.164553 2.760484 2912.799990 0.000000

153

-> 0.117214 2.388905 2923.900150 0.002352

-> 0.081856 2.401320 2192.799990 0.002630

0.236209 4.761230 4575.833440 0.002389

0.247354 2.381311 2922.966610 0.000000

0.307553 26.691856 7200.000000 0.000028

0.054409 1.596664 447.899780 0.065681

-> 0.145561 2.264740 3526.333310 0.009722

0.250151 23.218376 7200.000000 0.000042

0.152443 3.947146 3845.400090 0.003218

0.081494 1.511928 1222.333370 1.344282

0.186637 6.215370 5658.866730 0.000083

0.226497 3.590280 4107.333370 0.002417

0.213663 2.356901 2646.533200 0.000000

0.262664 2.683252 3857.366640 0.002306

0.053392 1.619068 451.333620 0.066153

0.050160 1.278336 584.533080 0.915623

0.179212 10.834148 5715.899960 0.000000

0.199668 1.472187 1574.466550 0.671060

0.292711 2.286567 3410.433350 0.000000

-> 0.136282 1.954420 2330.866700 0.003861

0.163029 1.971523 3502.133480 0.047731

0.221306 6.770026 5824.833370 0.000028

-> 0.125575 1.893157 3058.566590 0.043069

0.169075 2.252194 2621.066590 0.002250

0.157804 5.063101 3685.299990 0.000000

0.144128 6.766976 4554.266660 0.000028

0.306489 2.437555 3495.033260 0.000000

-> 0.147854 1.947944 3002.566530 0.010787

0.294244 4.780453 4786.266630 0.002000

-> 0.083588 2.111602 2503.066710 0.007870

-> 0.130844 2.649191 2927.533260 0.000167

0.105305 1.705421 1461.866460 0.675801

0.247234 2.353060 4498.333440 0.012269

-> 0.108604 1.778091 2442.433470 0.042639

-> 0.134084 2.101109 3067.300110 0.008356

0.195390 2.726004 3151.933290 0.000000

-> 0.098402 1.727059 2092.933350 0.040648

0.131198 1.628699 1458.233030 0.559565

0.280968 2.263729 4410.366520 0.011250

0.160185 5.535900 3841.366580 0.000028

0.116483 1.513529 1683.066410 0.656236

0.118094 8.518476 4914.966740 0.000083

0.159877 3.144639 3934.166560 0.002435

-> 0.121418 2.128010 2126.666560 0.000046

0.203933 1.925577 3346.499940 0.040301

0.250621 5.957766 4258.699950 0.000000

0.254625 2.831851 3291.466670 0.000000

-> 0.083452 1.983373 1062.266850 0.000000

-> 0.092562 2.568306 2513.466800 0.002602

-> 0.121833 2.124071 2083.533330 0.000000

0.194839 6.911875 5183.133390 0.000056

0.211707 2.929800 3800.599980 0.002111

0.222048 3.411309 4014.166560 0.001944

0.069343 1.448476 974.366460 1.302597

-> 0.134061 2.103528 1806.799930 0.000000

0.053546 1.368817 653.633420 1.335484

-> 0.125819 2.138354 3101.499940 0.002481

0.246465 2.014380 3448.766780 0.010926

-> 0.140507 3.730721 3723.466800 0.002167

0.064165 1.262791 827.733150 2.342995

0.307419 4.003674 4401.733400 0.000000

0.174442 2.300458 2427.166750 0.001458

0.195165 15.495749 6226.800000 0.000093

-> 0.108670 2.921218 2738.933410 0.002329

0.216157 13.564490 6402.799990 0.000046

0.308414 2.435696 4081.766660 0.003088

154

0.220105 4.344788 3987.600100 0.000000

0.254737 4.369454 4722.233280 0.002083

0.164393 2.902336 3872.166750 0.002352

0.255165 2.256413 3763.433230 0.003898

-> 0.121997 1.770952 2500.033260 0.041477

0.186132 1.786236 2334.599910 0.038843

-> 0.148215 2.211723 2348.466800 0.000093

0.250738 7.987927 5991.933360 0.000028

0.157620 2.002423 2486.300050 0.004431

0.229046 2.094451 3064.066770 0.004028

0.281227 1.772417 2565.933230 0.625329

0.194588 1.931347 3254.266660 0.042315

0.248399 2.083916 3335.899960 0.003991

0.054642 1.608830 683.733520 0.203565

0.186323 1.601910 1832.666630 0.564616

-> 0.100240 1.820829 2559.566650 0.044074

0.178993 5.789515 4435.199890 0.000028

0.329759 9.792069 7200.000000 0.000056

155

B.2 Intermittently Emitting, Mobile Radar

These are the results from one of the evolutionary runs described in Section ??. The evolution-

ary run was case-2004-02-18-1108-15-D. Successful individuals are marked (->).

Normalized Dist Circling Dist Level Time Turn Cost

--

-> 0.062796 2.343945 1842.100220 0.029593

0.214082 34.205872 7200.000000 0.000000

0.076570 3.302818 2715.733340 32.010311

20.027145 6.830411 7200.000000 0.114639

-> 0.063831 2.355052 1523.800050 0.027201

0.297943 6.098861 5709.033360 0.000000

2.296083 2.857692 3066.766660 0.213556

-> 0.075052 2.734460 1582.033080 0.027171

-> 0.075100 2.698218 1703.499760 0.025898

0.076610 6.069944 3255.700070 7.664083

0.302084 7.570784 6907.233330 15.999040

0.181147 32.176781 6862.500000 0.034648

0.148495 7.585789 5681.566620 4.911968

0.131665 6.780853 4721.033330 5.910549

0.094504 5.431774 3791.366580 27.815166

0.178577 29.506134 6771.433330 0.000000

0.083430 3.209027 2968.200070 1.090778

0.093374 9.293422 4254.933470 0.271750

0.080142 3.055355 3116.466670 18.287130

-> 0.073351 2.779958 2398.433230 0.033887

0.189929 26.890627 6696.333350 0.000000

0.131911 4.416654 4215.899960 0.000000

-> 0.079183 3.553635 2190.033260 0.026711

0.092260 4.115616 3150.566710 0.026882

0.143494 11.232306 5128.699950 0.000185

0.123276 3.497137 3820.266720 20.764973

0.153763 5.028705 4635.133360 0.000208

0.180660 5.209774 4757.466740 0.000000

-> 0.072909 2.994869 1821.933590 0.028970

0.286044 25.626274 6842.433320 0.000000

0.084081 3.616164 3241.099850 18.686634

-> 0.088742 2.784264 2329.766540 0.026088

0.283084 6.392275 5754.533390 0.000000

0.268195 15.287744 6739.100000 0.035255

0.294720 8.889200 6529.333340 0.039139

0.091166 6.682488 4184.566650 0.026632

0.314841 4.904294 6365.166700 0.033065

-> 0.075218 3.423527 2155.766600 0.026532

-> 0.071799 3.015669 1788.733520 0.026264

0.110011 4.096508 2821.266780 0.000134

-> 0.076083 2.746397 2368.533330 0.030512

0.162163 12.016426 5956.833340 0.046296

0.069005 3.137994 2686.900020 31.163347

0.093426 3.814959 3685.499880 23.154144

0.290193 5.568099 6501.266630 0.038042

0.222820 14.400504 6670.600010 0.033780

-> 0.071473 3.284093 1872.299800 0.025789

0.154232 12.870954 5549.166720 0.032847

0.390041 4.334053 6131.800000 0.037343

0.196979 3.606488 4095.633240 26.576374

156

0.135607 3.950111 4208.166810 27.592751

0.266146 4.730499 6335.266650 0.035627

0.207208 23.320135 7181.700000 0.157611

0.076131 3.539616 2488.966670 0.151525

0.210033 5.003224 4663.999940 0.000120

0.101722 4.880534 4134.833370 0.820944

0.159422 3.668174 3590.799870 0.029174

0.221934 26.278076 7019.699990 0.000144

0.187278 4.279787 5099.900050 0.034954

0.136961 4.874965 4847.866670 0.037359

0.085591 5.114722 3215.133360 0.026646

0.076975 4.504138 2849.833370 25.531561

-> 0.073413 2.765371 2312.000120 0.033741

0.118011 9.703473 4818.533330 5.844199

-> 0.081706 3.004213 2520.033260 0.032949

0.298347 3.731478 5489.633330 0.042301

-> 0.087217 2.658624 2647.600100 0.032593

0.157265 21.758945 6767.200010 0.153028

0.250648 4.351111 5041.666720 0.032310

0.264967 18.126720 7036.766660 0.045410

-> 0.079268 2.608000 1915.999760 0.024241

0.250983 6.784039 5981.666640 0.000282

0.197072 23.236704 6822.533340 0.000208

0.093395 3.727706 3627.333370 24.264030

0.085830 3.800285 3370.966800 29.177841

0.100700 11.008328 4547.033390 0.035454

-> 0.100977 3.650596 3325.733340 0.028826

0.093925 5.561399 3649.666750 0.043505

-> 0.078630 3.406617 1937.700200 0.025153

0.121179 6.310108 4160.366520 0.000000

0.093698 4.124692 3529.400020 0.033278

0.086686 3.855139 3463.033450 24.438061

0.096764 4.554658 3894.733280 16.766430

-> 0.072768 3.262966 2293.966670 0.034023

0.105186 3.038821 3354.800110 30.232035

0.166251 11.053700 5520.666660 0.024343

0.089439 5.427857 3484.100040 0.024824

0.163896 16.693291 5941.966630 0.000000

0.117623 6.783916 4523.366700 0.025252

0.154441 18.703705 6012.200010 0.000185

0.261027 4.685683 5732.200010 0.033188

0.235983 6.277143 5774.266660 0.034109

0.098877 3.735565 3574.066770 0.800685

0.435428 3.696289 5504.566650 0.034581

-> 0.112109 2.645873 2541.566770 0.027894

-> 0.075269 3.265632 1891.699830 0.024030

0.094142 5.649949 3850.033260 0.026937

0.333976 4.570414 5569.933320 0.000000

0.168999 24.186157 6801.066670 0.163924

0.082699 9.747924 3564.833370 6.971514

0.092493 4.724902 3610.933230 0.047081

0.097618 7.216063 3512.000120 0.000000

0.147337 12.179194 5535.033260 0.000000

0.129291 5.558990 4610.433350 21.194805

-> 0.071086 2.675460 1553.533330 0.026090

0.135135 17.945797 5468.999940 0.000190

0.145999 12.798586 5458.933260 0.041310

0.138514 8.103776 4902.333370 0.032421

0.319141 24.655748 7008.233340 0.000000

0.370813 4.310419 5873.166660 0.031093

-> 0.071805 3.031048 1852.233280 0.028947

0.302188 23.430326 6989.533330 0.000000

0.299280 4.426123 4920.899960 0.000292

0.163832 3.485074 3713.933410 0.029250

0.177498 22.701588 6720.499990 0.053419

-> 0.085086 2.845344 2419.633480 0.029201

157

0.192015 15.647902 5639.900050 0.000120

-> 0.074605 3.094558 2465.899960 0.031470

-> 0.077275 3.892542 2567.500000 0.031789

-> 0.096395 3.917679 3827.033390 0.026771

0.422489 8.007991 6937.433340 0.025231

0.069312 2.961613 2242.000120 27.097231

0.311917 3.613388 4828.866730 0.030722

-> 0.078882 2.573016 1757.866820 0.022252

0.464442 6.837708 7095.433330 0.000000

0.330896 7.376103 6622.866670 0.000181

0.177341 17.250416 6289.333340 0.000000

-> 0.064238 2.488128 1540.533450 0.024787

0.094565 5.833634 4267.133480 0.026556

0.090009 7.403148 4081.900020 6.426412

-> 0.075132 2.932461 2115.599980 0.032338

0.198468 7.913723 6067.533340 0.000000

0.124765 7.489634 4695.633390 0.027125

0.100883 5.175179 4045.400090 17.531746

0.072240 3.565946 2760.400090 0.238873

0.224224 5.194539 4865.399930 0.000000

-> 0.074077 3.851790 2354.666750 0.032644

0.167147 14.963200 6058.466640 0.035949

0.211560 6.887725 6376.299970 0.000000

0.156320 5.081725 4598.066710 0.000000

0.084849 4.136893 2889.800110 0.000000

1.154532 9.257181 7116.800000 0.000208

0.078305 3.111092 2951.766660 23.550722

0.097487 4.854428 3544.866640 0.000185

0.095756 6.229539 4111.566770 0.024262

0.401579 13.824764 7163.166670 0.000144

0.084810 5.700747 3307.333370 0.000000

0.115286 9.995122 5180.333400 0.039861

0.151224 13.466304 6026.133350 0.040609

0.113500 5.279205 4413.599850 0.000208

0.124605 8.718957 5063.500060 0.000000

0.100542 8.003244 4360.100100 0.022208

0.310429 4.606116 6278.266680 0.038377

0.328600 5.191656 5906.933290 0.030623

0.114648 12.032801 4891.333310 0.033947

0.272296 5.555336 5083.033290 0.000000

0.584188 3.699486 2026.966550 0.006391

0.079569 4.032666 2734.866640 0.000148

-> 0.089496 3.547662 2279.233400 0.022259

0.233163 6.659484 5623.233340 0.000000

-> 0.086869 3.076712 2628.266600 0.031403

0.174040 19.278118 6982.066670 0.165296

0.156903 5.619088 4875.866700 0.000167

0.212167 19.570333 6661.266670 0.032449

0.255794 4.512806 6185.299990 0.034891

-> 0.077277 3.042772 1728.933110 0.024877

0.211360 5.475601 4803.666690 0.000134

0.111117 4.489795 4017.666630 22.904655

0.255390 27.455572 6852.433320 0.000000

0.071943 4.413971 2703.299870 18.912458

0.110546 4.122207 3949.933470 0.256676

-> 0.077030 2.912704 2550.899960 0.036215

0.098790 2.944907 2904.633480 0.228167

0.184869 14.841856 6478.733370 0.035016

-> 0.082478 2.908699 2580.466610 0.033012

0.081929 4.309336 2742.333370 0.018051

-> 0.071987 2.768710 1715.233150 0.026106

0.311648 10.596071 6966.766660 0.126593

0.147693 16.588406 7068.833330 0.201431

0.315992 4.745694 6152.766650 0.032509

0.196606 13.813396 5723.099980 0.000000

0.177056 7.255970 5922.333300 0.255579

158

-> 0.080936 3.928435 3105.466610 0.031789

0.146409 5.760113 4336.966550 0.000000

0.142958 17.728558 6225.500030 0.000602

0.638324 4.352890 6217.133330 0.035465

0.205741 4.038198 4620.499880 0.000667

0.195879 20.053480 6727.866670 0.156030

0.114469 14.020228 4987.333370 0.035560

0.094764 4.847567 3728.933410 0.000194

0.358695 6.190195 6705.700000 0.036600

0.196581 18.928171 7079.400000 0.171921

-> 0.078153 3.200107 2016.666870 0.028479

0.196745 5.675281 4943.566740 0.000056

0.091926 4.660229 3193.466800 0.021769

-> 0.095985 3.058718 2663.399960 0.034627

0.127509 4.392328 4167.399900 0.000171

0.158551 16.065483 6170.533370 0.033674

0.097213 5.178959 3771.566770 0.000056

-> 0.087344 3.846602 3091.199950 0.031896

0.089510 3.761667 3498.766780 24.848162

-> 0.073531 3.186256 1903.533330 0.028963

-> 0.070090 2.831940 2002.366940 0.032866

0.101542 4.937004 4326.166690 19.308685

0.201965 9.601380 6113.866650 0.149407

-> 0.078926 2.943133 2083.966670 0.028086

0.186826 7.822977 5895.399930 0.036648

0.270639 6.964880 6489.433360 0.037301

0.086304 3.544233 3298.666690 18.475163

0.104754 5.008738 3878.933410 0.031836

0.170998 9.866519 5392.766720 0.000000

0.137227 13.468022 5603.300020 0.000000

0.222392 21.761541 7050.933330 0.030785

0.465270 4.433714 6392.799990 0.033567

0.097381 6.441845 3935.066530 0.000185

0.086193 3.946472 3443.900150 29.392681

0.113968 4.536852 4377.333370 0.000208

0.088302 3.487366 3382.233280 18.749578

0.358365 6.108839 6108.366700 0.000153

0.074838 3.242904 2694.433290 25.975269

0.104744 3.572748 3926.000060 29.720606

0.114475 4.364361 3998.299870 0.000000

0.166930 4.772071 4450.966800 0.000000

-> 0.082112 3.114929 2672.066650 0.030296

0.187665 4.741127 4485.466610 0.003106

0.141757 15.062550 5698.466640 0.034995

-> 0.078050 2.443440 2072.999880 0.028766

0.237255 5.652805 6086.600040 0.044366

-> 0.102202 3.736198 3911.533200 0.033176

0.176405 5.211039 5203.000030 0.038750

0.164803 4.512019 5379.666600 0.143725

0.090881 4.912820 3740.599980 19.811543

0.187813 11.046568 5590.899960 0.022363

0.286073 3.802347 5349.766690 0.033456

0.081119 3.914405 3180.299990 0.859486

0.224669 27.682968 7146.933330 0.000185

0.158823 6.865313 5224.900050 0.002060

-> 0.071200 3.392723 1770.200200 0.027435

0.158883 4.780229 4350.866700 0.000000

0.127708 7.235388 4282.699890 0.000037

0.150468 14.319886 5669.733280 0.037377

0.143251 7.540841 4976.133270 0.144537

0.428082 5.226823 6892.233330 0.032025

0.258514 5.458655 6248.033370 0.040032

0.173175 18.330124 6201.999970 0.000032

-> 0.110273 3.927333 3393.566590 0.024722

-> 0.084396 3.496424 2872.366640 0.029157

0.290353 4.974261 5192.466740 0.003190

159

0.195135 4.193498 4566.700130 0.037384

0.301524 3.991582 5785.766600 0.136755

0.195724 5.356804 5423.899990 0.034248

0.262158 3.327318 4932.433320 0.033463

0.465672 9.404505 7116.500000 0.038845

0.409282 5.672105 6237.200010 0.000000

0.770776 6.192739 6581.666680 0.031431

0.082492 2.985482 2854.333190 0.239176

0.119943 9.015676 4679.166720 0.000000

0.090574 3.335271 3162.266540 0.223141

0.324166 4.572963 5662.033390 0.034826

0.382324 5.215993 5885.433350 0.000042

0.101867 10.958806 4556.700130 0.036292

0.291532 5.778160 6313.233340 0.002375

0.366743 19.637897 7138.033330 0.154313

0.398475 7.230349 6643.366660 0.000056

-> 0.072885 3.067424 2213.566590 0.029475

0.079348 4.234262 3040.366520 21.605257

0.238101 5.513823 5647.299960 0.000361

0.220367 3.803610 4429.266660 0.032697

-> 0.079607 3.724039 1959.066770 0.024595

0.198883 4.648989 5215.933380 0.035884

0.331840 4.443915 6326.766660 0.030757

-> 0.085571 3.164672 2267.333370 0.026667

0.291318 9.420722 6437.266690 0.000000

0.336451 6.626372 6950.533330 0.114375

-> 0.110186 3.440856 3204.733280 0.032019

0.440469 4.433465 6090.866700 0.035924

0.115707 6.640939 4435.799870 0.000176

0.272630 12.630587 6468.466640 0.000106

0.158906 13.452278 5613.699950 0.034067

0.120514 9.957024 4774.966740 0.000000

0.284243 4.666306 4495.066530 0.000102

0.181776 5.508034 4957.133330 0.000528

0.117499 5.525406 4031.633300 0.000171

0.096241 5.333781 3870.799870 0.026625

0.117531 3.295798 3759.299930 0.139815

0.075823 5.386506 2988.433230 0.236792

0.111167 8.172285 4383.633420 17.675913

0.344622 9.127618 6787.466660 0.035009

-> 0.073664 2.915197 1949.233400 0.026715

-> 0.082297 2.944597 2041.833500 0.023106

0.485080 3.643364 5580.233310 0.034558

-> 0.074703 3.619691 2621.199950 0.043053

-> 0.081441 3.375690 2593.066710 0.027067

0.323946 19.314249 7003.733330 0.000319

0.170162 12.106651 5999.599990 0.035796

0.225624 12.061184 6407.533340 0.045493

0.201896 5.677804 5238.899990 0.000000

0.217403 5.672579 5028.699950 0.000000

0.210662 20.473927 7088.000000 0.034981

0.077935 4.673529 2915.433350 0.000000

0.098674 5.356060 3857.999880 0.000000

0.297789 6.249142 5826.033330 0.000000

0.100963 5.682649 3968.133240 0.025463

-> 0.106735 3.587229 3023.800050 0.029266

0.262419 20.933962 6879.000020 0.000190

0.188304 12.375067 6304.599990 0.035648

0.260648 6.442537 6420.566640 0.000000

0.186007 15.968978 5931.466670 0.000000

0.264761 3.966299 5438.999940 0.033544

0.091814 5.984135 3680.499880 0.024813

-> 0.133256 3.318030 3433.433230 0.027340

0.135681 9.842681 5325.800020 0.034787

0.225354 27.494074 7199.500000 0.000000

0.367423 4.816131 5855.233310 0.001486

160

-> 0.079651 2.797768 2131.433410 0.026720

0.201126 3.837906 3981.833190 0.029567

0.215881 13.270284 6615.000000 0.031410

0.129218 9.514103 5294.100040 0.159315

-> 0.085395 3.925315 2938.966670 0.027644

-> 0.125671 2.818734 2975.199890 0.026894

0.090639 3.363204 3621.666560 25.868908

0.089256 4.294303 3556.633300 0.167132

0.240207 5.719955 5367.400050 0.000000

0.218171 20.280954 6781.933330 0.032275

0.141419 11.660628 5337.200010 0.037794

0.122607 4.847897 4507.166750 0.000079

0.095440 6.277286 4057.966610 0.026227

0.075595 3.479733 2960.133360 25.614222

-> 0.081245 3.262640 1832.233280 0.005053

0.078167 4.282127 3056.533200 22.508505

0.253292 22.492622 7129.366660 0.051306

0.137618 18.406523 7156.433330 0.183720

0.123981 4.068509 3919.700010 26.864450

0.206542 3.755182 2607.166750 0.006523

0.356388 3.538597 5065.166630 0.032891

-> 0.084526 2.886003 2148.900150 0.025484

0.088188 4.444841 3665.066530 0.157988

-> 0.073057 3.288718 2228.733220 0.033273

0.394616 6.530215 6608.166660 0.000000

0.073095 3.483655 2770.366520 19.266588

0.169290 21.194857 6296.933360 0.049181

0.095868 4.432713 3340.766600 0.000153

0.120701 6.217556 4012.133480 0.000000

-> 0.145178 3.832266 4395.666810 0.040410

0.078910 3.216644 3059.166560 21.718834

0.286981 6.356273 6041.100010 0.033113

0.196719 17.830254 6921.966670 0.051123

0.160831 11.929644 5141.966710 0.000190

0.146811 8.152633 5279.100040 0.024593

-> 0.086107 2.890382 2802.500000 0.035380

0.117559 7.339276 4583.166810 0.003546

0.740505 4.023455 5991.699980 0.033993

0.084359 4.789759 3013.566590 0.000106

0.222427 4.969787 4965.000000 0.001333

0.234361 10.728419 6460.633320 0.031366

0.488537 6.353385 6645.033340 0.027204

-> 0.093113 3.770827 3405.266720 0.032127

0.298569 4.607231 5154.166720 0.000000

-> 0.078560 2.886709 2097.200010 0.029153

-> 0.081105 3.882784 2809.133300 0.032500

0.093412 7.929063 3961.000060 0.000000

0.156193 6.595695 4996.233370 0.000000

0.144855 4.190195 4038.966670 19.995718

0.116475 3.439633 3287.133480 0.839380

0.258534 5.121312 4792.700040 0.000000

0.141577 13.598656 5837.599950 0.053319

0.296348 9.685772 6596.800000 0.000000

0.166510 19.526556 6875.533330 0.174130

0.103885 5.191892 3745.400090 0.000000

0.251358 27.991718 7200.000000 0.000208

0.076179 3.779242 2789.866640 0.257130

0.252171 3.590072 4471.566770 0.032106

0.247645 6.222779 6262.666700 0.039178

0.076119 4.000607 2776.166690 25.152298

-> 0.074229 3.541429 1780.866700 0.023715

-> 0.083265 3.431887 2103.066710 0.023303

0.174210 4.473197 5020.633390 0.039479

0.343766 8.439275 6901.866660 0.037211

0.079046 4.554770 3419.566650 20.300913

0.168964 12.751604 6196.866680 0.034988

161

0.087457 4.078993 3172.799990 0.032178

0.289402 10.506582 6427.433320 0.033049

0.180543 17.765306 6541.600040 0.053403

0.163716 4.757383 4402.999880 0.000000

0.101057 4.874676 4078.566590 23.783274

0.160151 9.598970 5402.666630 0.003505

0.154105 15.952764 6400.166700 0.188132

0.106563 12.795372 4297.166750 0.000185

0.106141 8.382743 4515.233460 0.024231

0.280538 5.974291 5688.633270 0.000153

0.176318 21.460972 6157.066650 0.000000

0.123889 7.874401 4785.200040 0.028447

0.082728 3.616150 3280.233460 25.311323

0.117655 7.891411 4764.633330 0.026810

0.148659 7.168437 4693.233340 0.000000

-> 0.070829 3.141914 2135.833440 0.038711

0.107685 4.623549 3004.566650 0.000000

0.078633 4.562937 2925.466610 18.809538

0.089339 4.250891 3457.266540 17.772486

-> 0.077866 3.178069 1987.566530 0.027424

-> 0.085865 3.315548 2877.300110 0.029764

0.111167 4.796078 4122.833250 0.276403

0.085507 3.729663 3267.533260 0.240738

0.166452 10.322081 5841.399990 0.130051

0.224505 4.714035 5251.666720 0.031586

0.252665 5.150788 5317.733310 0.000338

0.348887 20.779663 7127.333330 0.166356

0.186193 7.866537 5796.799930 0.037377

-> 0.081215 2.815497 2048.400270 0.023766

0.407495 7.072224 6813.800010 0.037546

-> 0.078575 2.923535 2504.133300 0.032630

0.134487 4.318389 3896.333310 0.031736

0.228326 3.935208 5091.699980 0.033949

0.176842 17.956362 6590.400010 0.000000

0.124624 7.471703 4459.366760 0.000000

0.153568 12.132035 5167.799990 0.000185

0.326882 10.681141 7060.433330 0.000000

0.238569 19.533554 6958.400000 0.031838

0.135398 4.238501 3988.500060 0.031076

0.090522 4.117125 3034.333190 0.028942

0.146278 9.535438 5266.333310 0.035086

0.199761 5.050543 4579.166560 0.000097

0.108683 10.224491 4071.033330 0.000185

-> 0.088256 2.880984 2202.000120 0.027255

-> 0.082938 3.712420 3051.033330 0.030472

0.089213 6.438528 3363.599850 0.000144

-> 0.077876 3.043437 1975.033570 0.025602

0.081567 3.646860 2996.199950 0.255345

-> 0.074113 3.273577 1742.100220 0.025498

0.140298 7.071510 4672.899930 0.000000

-> 0.074162 2.872223 2428.299870 0.032375

-> 0.071549 3.792227 1971.333620 0.029734

0.300442 10.441777 6919.699990 0.000000

0.203094 26.012627 7053.500000 0.149470

0.110791 9.562461 4307.733460 0.000000

-> 0.078071 3.113672 2505.966800 0.033245

-> 0.084100 3.939233 2459.166560 0.014861

0.141098 17.945171 6259.833300 0.150569

0.077815 4.168735 2435.633240 0.005965

0.122207 8.112834 5010.700070 0.163150

0.253865 15.361819 6451.900020 0.000000

-> 0.080509 3.930657 2450.266720 0.021685

0.141646 11.445749 5245.933380 0.033340

0.098159 4.811917 3660.833440 0.000208

-> 0.097919 3.577524 2255.266720 0.016810

0.098282 5.232728 3715.733340 0.000000

162

0.283803 11.720780 6806.399990 0.000208

0.365166 4.582450 6039.333340 0.026787

0.300036 5.042267 5438.633270 0.029648

-> 0.090901 2.444361 1992.500000 0.026461

0.215848 5.788708 5811.600040 0.039852

0.328132 3.924232 5285.233310 0.029097

0.203909 5.579766 5005.366670 0.000000

0.358941 7.199223 6546.566700 0.000000

0.260190 6.420764 6448.466640 0.040729

0.199650 6.408276 5263.000030 0.000264

0.486367 3.483807 5304.499970 0.033359

0.165076 11.049400 5802.466740 0.145375

0.330980 4.696335 6556.033330 0.031949

0.301347 5.106495 5817.133330 0.032424

-> 0.086239 2.848985 2443.566590 0.028905

0.089490 5.510273 3494.733280 0.000000

0.139348 14.893899 6166.933360 0.045938

0.110667 6.872192 4290.100100 0.000185

0.245006 14.382654 6561.199990 0.001537

0.171415 21.377731 6572.033350 0.159303

0.082113 5.685102 3412.666630 0.028544

0.085021 4.820104 3081.033330 0.031352

-> 0.085856 3.805350 3076.900020 0.030748

0.234657 6.001910 5416.000060 0.000139

-> 0.080080 3.067794 2061.266480 0.025738

-> 0.089120 3.996341 2601.499940 0.016343

0.096225 4.615229 3345.366520 0.000208

0.253786 4.831155 5852.733310 0.040236

-> 0.082157 2.684271 2357.833250 0.032322

0.114323 4.377584 3423.333440 0.000000

0.207296 6.897863 5308.999940 0.000000

0.182080 8.817625 5369.400020 0.026403

0.147342 5.377743 4318.466800 0.000000

-> 0.104140 3.094291 2784.166560 0.033954

0.088734 3.260580 2931.366580 0.219310

0.170156 5.188488 5164.299930 0.002616

0.082903 4.921038 3451.866760 0.160350

0.181469 5.884099 5145.233310 0.000185

0.090850 6.785554 4065.299990 0.025620

0.412521 8.239590 6907.766670 0.036905

0.214607 5.182351 5410.500030 0.000056

0.116987 8.260062 4123.633420 0.000157

0.075358 4.370192 2233.299870 0.015322

-> 0.071076 2.878823 1741.766970 0.026678

-> 0.070964 2.672000 1551.266480 0.025725

0.169576 11.516129 6569.800000 0.132481

0.090409 5.050671 3273.033450 0.000130

-> 0.076553 2.987666 2058.833620 0.029812

0.292316 4.012297 5343.999940 0.031262

0.089925 6.825408 3766.866760 0.026685

0.252876 4.650846 4467.000120 0.000361

-> 0.073500 3.037425 2257.433470 0.031019

-> 0.085264 2.967070 2206.433410 0.021368

0.109067 7.319562 4312.566530 0.026447

163

