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Abstract

The world-wide increasing demand for energy is one of the key challenges of our
century. However, this demand is in conflict to the Kyoto protocols of 1997 and
2001 that contain an international agreement for reducing green house gases. En-
ergy generation concepts involving alternative energy sources and innovative tech-
nologies with high thermodynamical efficiencies are needed in order to address
these issues.
Gas turbines are one of the key energy producing devices of our generation. Im-
proved designs of gas turbine components are necessary in order to address the
increasing demands of high performance and reduced emissions. The design of
gas turbine components is a complex and time-consuming engineering task that
involves meeting of several design objectives and constraints. This task is usually
addressed in an iterative process. Advances in domain knowledge and in areas
such as information technology offer the possibility of accelerating and improving
this design cycle through automated optimization procedures.
This thesis addresses the key issue of automated optimization by presenting opti-
mization algorithms that are implemented in realistic design processes of gas tur-
bine components. The results of this work include algorithmic advances and the
development of new and efficient designs for turbine components. The proposed
optimization algorithms are analyzed and enhanced so that they are applicable to
the design of compressor blades and burners. The thesis addresses a number of
optimization difficulties such as multiple design objectives and constraints, high
sensitivity of the objectives, and noise in the evaluation of the objectives.
Automated optimization requires a blend of efficient algorithms and information
technology tools from in order to find optimal solutions in limited time frames. We
find that it is not sufficient to use existing tools but that extensive, problem spe-
cific modifications of the algorithms are required. In this thesis, several new algo-
rithms for single and multi-objective Pareto optimization are presented. The focus
is on evolutionary algorithms, as they are robust optimization algorithms suitable
for engineering applications where pointwise information is only available. In
the context of Pareto optimization, several well known evolutionary algorithms
are analyzed with regards to their convergence properties and convergence limits.
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Furthermore, the efficiency of certain algorithms is enhanced by defining adap-
tive mutation and recombination operators based on self-organizing maps. The
robustness to noisy objective functions is improved by defining a dominance de-
pendent re-evaluation interval. In the field of single objective optimization, a new
optimization algorithm is proposed that is suitable for engineering problems with
relatively few decision variables but expensive cost function evaluations. The al-
gorithm relies on the construction of an empirical model of the objective function.
The model is then used to predict function values in order to reduce the number of
function evaluations.
For the compressor optimization, an optimization procedure is defined that ad-
dresses the relevant design objectives and constraints. The procedure comprises a
new blade parameterization and tools for the aerodynamical and mechanical anal-
ysis. For the aerodynamical analysis, an inexpensive method for estimating off-
design behavior is presented. Four compressor blades of adjacent mid-stages of a
gas turbine are optimized and the resulting profile shapes are discussed.
The gas turbine burner is optimized in an experimental test-rig. The objectives are
to minimize thermo-acoustic pulsations and NOx emissions. Both objectives are
noisy as they result from measurements with limited time averaging. The Pareto
optimization results in an approximation of the Pareto set, comprising a number of
different trade-off solutions for the two conflicting objectives.
The thesis concludes by identifying a number of open questions and outlines di-
rections for future work.



Zusammenfassung

Der weltweit steigende Bedarf an Energie ist eine der zentralen Herausforderun-
gen unseres Jahrhunderts. Die Bereitstellung der Energie ist schwierig angesichts
des in den Kyoto Protokollen von 1997 und 2001 unterzeichneten internationales
Abkommens zur Reduzierung der Treibhausgase. Deshalb werden zur Energiege-
winnung alternative Energiequellen und innovative Kraftwerke mit hohem ther-
modynamischen Wirkungsgrad benötigt.
Gasturbinen sind eine der zentralen Kraftwerkstechnologien unserer Zeit. Konti-
nuierlich verbesserte Gasturbinenkomponenten werden benötigt um die steigenden
Anforderungen an Wirkungsgrad und Emissionen zu erfüllen. Die Entwicklung
von Gasturbinenkomponenten ist eine komplexe und zeitintensive Ingenieursauf-
gabe, die zahlreiche Zielfunktionen und Zwangsbedingungen enthält. Diese Auf-
gabe wird in der Regel in einem iterativen Prozess gelöst. Fortschritte im Bereich
der Physik von Gasturbinen und in Bereichen wie der Informationstechnologie
ermöglichen den Entwicklungsprozess zu beschleunigen und durch automatische
Optimierungsverfahren zu verbessern.
Die vorliegende Dissertation beschäftigt sich mit diesem zentralen Problem der
automatischen Optimierung und präsentiert Optimierungsverfahren, die in reale
Entwicklungsprozesse von Gasturbinenkomponenten implementiert werden. Die
Ergebnisse dieser Arbeit beinhalten Verbesserungen der Verfahren und die Ent-
wicklung von neuen und effizienten Komponentendesigns. Dabei werden die ent-
wickelten Optimierungsalgorithmen analysiert und verbessert, sodass sie auf die
Entwicklung von Kompressorschaufeln und Brenner angewandt werden können.
Herausforderungen an die Optimierung sind u.A. die Vielzahl der Zwangsbedin-
gungen und Zielfunktionen, die hohe Senitivität und das Rauschen in den Ziel-
funktionen.
Automatische Optimierung benötigt eine Auswahl effizienter Algorithmen und
Werkzeuge der Informationstechnologie, um optimale Lösungen in vorgeschrie-
benen Zeitgrenzen zu erhalten. Wir erachten es als unzureichend existierende Op-
timierungsverfahren zu verwenden, sondern erachten aufwendige und problems-
pezifische Modifikationen als Grundvoraussetzung für eine erfolgreiche Optimie-
rung. In dieser Arbeit werden mehrere neue Optimierungsalgorithmen für die Ein-
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und Mehrkriterienoptimierung vorgestellt. Dabei liegt der Schwerpunkt auf evolu-
tionären Algorithmen, welche sich als robust und effizient in Ingenieursanwendun-
gen erweisen. Im Bereich der Mehrkriterienoptimierung werden Standardalgorith-
men bezüglich ihrer Konvergenzeigenschaften und Konvergenzbeschränkungen
analysiert. Des weiteren wird die Effizienz dieser Algorithmen durch die Entwick-
lung adaptiver Mutations- und Rekombinationsoperatoren auf Basis von selbstor-
ganisierenden Netzwerken verbessert. Die Robustheit der Algorithmen gegenüber
verrauschten Zielgrössen wird durch die Definition von dominanzabhängigen Ree-
valuationsintervallen verbessert. Im Bereich der Einkriterienoptimierung wird ein
neuer Optimierungsalgorithmus vorgeschlagen, welcher empirische Modelle der
Zielfunktion konstruiert. Dieser Algorithmus eignet sich insbesondere für Opti-
mierungsprobleme mit einer geringen Zahl freier Variablen bei gleichzeitig teuren
Funktionsauswertungen. Das Modell wird zur Vorhersage von Funktionswerten
verwendet, um die Zahl der Auswertungen zu reduzieren.
Für die Kompressoroptimierung wird eine Prozedur definiert, welche alle rele-
vanten Zielfunktionen und Zwangskriterien eines realistischen Entwurfsprozesses
beachtet. Die Prozedur beinhaltet eine neue Schaufelparametrisierung und Berech-
nungsprogramme für die Aerodynamik und die Mechanik der Schaufel. Für die
Bewertung der Aerodynamik ausserhalb des Betriebspunktes wird eine kosten-
günstige Methode entwickelt. Insgesamt werden vier Kompressorschaufeln aus
benachbarten Reihen des mittleren Kompressorbereichs optimiert und die Ergeb-
nisse diskutiert.
Der Gasturbinenbrenner wird in einem experimentellen Aufbau optimiert. Ziel der
Optierung ist die Minimierung der thermoakustischen Pulsationen und der NOx

Emissionen. Beide Zielfunktionen werden durch zeitlich gemittelten Messungen
erfasst, welche verrauscht sind. Die Pareto-Optimierung findet eine Approximati-
on der Pareto-Front, welche aus Kompromisslösungen für die beiden widersprüch-
lichen Zielgrössen besteht.
Diese Dissertation schliesst mit einer Identifikation offener Fragen für zukünftige
Forschungsarbeiten.
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Introduction

Finding optimal solutions to real world design applications is usually an iterative
process limited by the available resources. These limits may be the maximal num-
ber of possible computational and experimental design evaluations or the limited
labor time of the design engineers. The development of optimal designs can be
achieved by human designers or by exploiting automated optimization techniques.
Human designers exploit their accumulated domain knowledge while automated
optimization algorithms search by analyzing design evaluations resulting from a
systematic parameter variation. For a large number of problems human design
is the method of choice, however as the decision space becomes large and the
associated processes more complex, the systematic procedures of automated op-
timization become an interesting alternative. In addition, automated optimization
can take full advantage of today’s massively parallel computer architectures and it
may result in alternative designs and eventually lead to new design philosophies.
The increasing interest in automated optimization is also a result of the growing
complexity of the design processes. Design objectives and constraints from mul-
tiple disciplines need to be addressed concurrently in order to reduce the design
time. Often these objectives are conflicting and there exists no best solution but
a set of best trade-off solutions, representing different compromises between the
objectives. The set of best trade-off solutions are referred to as Pareto solutions
[84]. Automated optimization addresses these multi-objective problems by search-
ing several trade-off solutions in parallel. From the resulting set of solutions, the
designer can then select the design that fits best his specific requirements for the
different objectives.
The setup of an automated optimization requires three steps. The first step ad-
dresses the automation of the data flow. The different evaluation tools of a design
process usually require input data in different formats. For an automated data flow,
interfaces are necessary in order to convert formats and to execute the evaluation
tools without user interaction. Then, a large number of designs can be evaluated
with minimal user time, while performing simultaneously sensitivity analysis and
optimization. In the second step, the design objectives and constraints are de-
fined along with the free decision variables that are allowed to be modified in the
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optimization process. The objectives and constraints have to be formulated as a
function of the design evaluation and optimization can then be formulated as the
classical mathematical problem of finding the extreme values of functions. In the
third step, an optimization algorithm has to be selected.
The selection of the optimization algorithm is highly problem dependent. When
the gradient of all objectives and constraints is available, gradient-based methods
are mainly employed. However, in many real-world applications, gradient infor-
mation is not available and approximating this information can be inaccurate as
function evaluation is noisy [76]. In experimental setups, noise in the function
evaluation may result from changing environmental conditions or limited measur-
ing precision. In such cases, non-gradient based methods that use only function
values to guide the search are often applied. Within theses methods, determinis-
tic and stochastic algorithms are distinguished. Deterministic algorithms follow a
fixed search pattern, while stochastic algorithm involve some random processes in
generating new designs.
Evolutionary Algorithms(EAs) [5] are well-known representatives of stochastic
algorithms. EAs imitate the principles of natural evolution to find an optimal solu-
tion to a problem. Natural evolution is mainly driven by the principles of fitness-
based selection and recombination/mutation of genetic information. In nature,
individuals that are well adapted to their environment are more likely to survive
and spawn. In an engineering environment, the natural evolution is translated to
function optimization, where individuals evolve in order to improve the function
value. The term Evolutionary Algorithm summarizes techniques such as Genetic
Algorithms [54, 49], Evolutionary and Genetic Programming [36], and Evolution
Strategies [90, 101].
The widespread use of EAs for the optimization of real-world applications is at-
tributed to their simplicity, transferability and robustness. EAs are inherently par-
allel algorithms that evaluate a population of individuals concurrently, thus taking
full advantage of today’s massively parallel computer architectures. Optimization
problems in general have a wide variety of different properties such as discrete or
continuous parameters, multiple objectives and constraints, noise in the objective
function, or only discrete objective values. Furthermore, the problem might be
combinatorial. Different EAs have been designed to address these properties [6].
In this thesis, we develop automated optimization procedures for gas turbine com-
ponents. In particular, we address the optimization of compressor blades and fuel
injection patterns in combustion chambers. Today, compressor blades are designed
using expensive numerical simulations. Blades are optimized with respect to high
thermodynamic efficiency over a wide operating range, while they must withstand
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mechanical loading and avoid critical excitation. For combustion processes, nu-
merical simulations are still rarely used, since combustion processes are difficult
to handle with today’s computational techniques and computer resources. The un-
derlying chemical reactions are complex and the mixing of fuel and air has to be
sufficiently resolved since mixing is mainly responsible for the flame properties.
Thus, experimental test-rigs are widely used to analyze combustion processes.
For the two gas turbine design problems, this thesis focuses especially on:

• How gas turbine components can be parametrised.

• Which tools (i.e., software, test-rigs) should be selected to evaluate these
components.

• Which design objectives and constraints need to be addressed and how can
they be formulated in mathematical terms.

The design of gas turbine components entails multiple objectives that are conflict-
ing. We may consider two approaches to handle multi-objective problems. First,
all objectives can be aggregated and optimizing this figure of merit leads to a single
trade-off solution between the objectives. Second, the population-based search of
EAs can be used to converge to the set of best trade-off solutions. This approach
is also denoted as Pareto optimization. The choice between the two approaches
depends on the interest of the designers.
For the Pareto optimization, a wide variety of so-called Multi-Objective Evolu-
tionary Algorithms (MOEAs) have been developed and compared [24]. However,
these algorithms are often analyzed on prototypical functions. When applying
them to real design problems their performance may be different or modifications
to the algorithms may be a prerequisite for a successful optimization.
From our experience on the considered design problems, we address the following
questions in this thesis:

• Compared to single objective EAs, are MOEAs efficient optimization algo-
rithms and do they convergence sufficiently towards the Pareto front?

• How can the robustness of MOEAs against noise in the objective functions
be improved?

• Can MOEAs be improved by adaptive mutation and recombination opera-
tors?

• Can empirical models of the objective functions improve the optimization
process?
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This thesis is structured in 3 parts. In PartI, a literature survey on optimization
algorithms is presented. PartII introduces analysis and improvements of existing
optimization algorithms. Finally, PartIII describes the compressor and burner op-
timization.
Chapter1 in PartI provides an overview on automated optimization. The multi-
objective optimization problem is defined in mathematical terms. Various opti-
mization algorithms are classified.
A detailed survey on the current state-of-the-art Evolution Strategies for continu-
ous problems is given in Chapter2. Basic selection, recombination, and mutation
operators are introduced. A common feature of all algorithms is learning, although
the learning concepts differ among the considered algorithms. The main goal of
learning is to reduce the number of function evaluations by adapting the mutation
distribution.
Chapter3 presents state-of-the-art Evolutionary Algorithms for multi-objective
problems. The multi-objective optimization problem is introduced as well as the
concept of dominance. A particular focus is on algorithms that converge to the
Pareto set in a single optimization run.
An alternative method to the learning of mutation distribution in Evolution Strate-
gies is given in Chapter4. In this chapter, an overview on algorithms that learn
empirical models of the objective function is presented. PartII consists of Chapters
5 to 8 and presents advances in the field of optimization algorithms that were ob-
tained within this thesis. Different multi-objective EAs are analyzed in Chapter5
concerning their convergence to the Pareto front. It is proven that the convergence
of some algorithms is limited, i.e., the optimization stagnates at a certain distance
to the Pareto front. Furthermore, the chapter shows how adaptive mutation from
single objective optimization can be transferred to multi-objective optimization.
Chapter6 discusses the problem of noise in the objective functions for multi-
objective optimization. While for single objective EAs noise has been analyzed
in detail[3], there is a lack in analysis for multi-objective optimization. In multi-
objective optimization, state-of-the-art algorithms are shown to be sensitive to
noise and modifications for increased robustness are proposed and validated.
In Chapter7, an adaptive recombination operators for multi-objective optimization
are proposed based that base on a self-organizing map. The self-organizing map
is trained on the best solutions found so far and then used as basis for recombi-
nation and mutation. In spite of the common believe that the selection operator is
the most important operator in multi-objective optimization, the analysis shows a
potential performance gain when using adaptive recombination operators.
A novel approach for integrating empirical models in optimization algorithms is
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introduced in Chapter8. The models are integrated into an iterative optimization
procedure that is denoted as Gaussian Process Optimization Procedure (GPOP).
The procedure proposes concepts for local modeling and search. Furthermore,
the optimization of real-world application with several objectives and constraints
is discussed. The procedure is especially useful for problems with expensive de-
sign evaluations, since the training of the model requires significant computational
time.
In PartIII (Chapters9 to 11) EAs and the GPOP are applied to the design of gas
turbine compressor blades and burners of the combustion chamber. A general in-
troduction to gas turbines is given in Chapter9 showing the main components and
the use of gas turbines.
Chapter10 presents the multi-objective optimization of an experimental combus-
tion test-rig. The test-rig comprises a gas turbine burner under atmospheric con-
ditions. Burners are designed mainly for two objectives, namely the reduction
of emissions and the minimization of thermo-acoustic pressure waves (pulsation).
The two objectives are conflicting and optimization results always in compromise
solutions. Thus, a multi-objective optimization algorithm is applied. Since the
objective values result from time averaged measurements, they are always subject
to noise requiring a robust optimization algorithm.
In Chapter11, compressor blades are optimized concerning all relevant design ob-
jectives and constraints of a realistic design setup. Optimizing compressor blades
is a difficult task, since it represents a highly constraint problem and the objectives
and constraints are very sensitive to small variations of the blade geometry. These
properties make blade optimization an interesting candidate to compare single and
MOEAs as well as the optimization procedure integrating empirical models.
This thesis closes with an outlook and proposals for future work in Chapter13. Fi-
nally, conclusions are given in Chapter12that extend the chapters by more general
considerations.



Part I

Survey on Optimization
Algorithms



Chapter 1

Overview

The automated optimization of a problem requires the definition of the set of deci-
sion variables that should be optimized, a single or a set of functions that measures
the quality of these decision variables, and the selection of an optimization al-
gorithm. This chapter introduces the multi-objective optimization problem and
classifies optimization approaches. Furthermore, an overview over some of the
most widely used optimization algorithms for engineering problems is given.

1.1 Multi-Objective Optimization Problem

1.1.1 Introduction

Optimization can be defined as the search for the best possible solution(s) to a
given problem. Real-world problems often entail the optimization of multiple ob-
jectives. If these objectives are conflicting, then no best solution exists, but a set
of good compromise solutions.
Given a set of solutions to the problem, a partial ordering can be found by the
principle ofdominance: A solution is clearly better than (dominating) another so-
lution, if it is better or equal in all objectives, but at least better in one objective.
Using this principle, the set of best compromise solutions results by removing all
solutions that are dominated by at least one other solution. The remaining solu-
tions are all of equal quality (indifferent). A mutual comparison of always two
solutions shows that each one is always better and worse in at least one objective.
This set of indifferent solutions is referred to as thePareto set, named after the
work of the engineer and economist Vilfredo Pareto [84]. Starting from a Pareto
solution, one objective can only be improved at the expense of at least one other
objective.
Preference information of the decision maker is needed to perform a further selec-
tion. This selection process is also known as Multiple Criteria Decision Making
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(MCDM).

1.1.2 Definitions

A multi-objective optimization problem can be described by a vector of decision
variablesx and the corresponding vector of objectivesf = f(x). Without loss of
generality we restrict ourselves to the minimization of all objectives, since every
maximization of a functionf can be transformed into a minimization problem
with:

max (f(x)) = −min (−f(x)) (1.1)

Definition 1 The multi-objective optimization problem is defined as the search for
the set of solutionsx, that minimizes:

f(x) = (f1(x), f2(x), . . . , fm(x)) ∈ F

with x = (x1, x2, . . . , xn) ∈ X, (1.2)

where X ⊆ Rn is the n-dimensional decision space,F ⊆ Rm is the m-
dimensional objective space. Both decision and objective space are real spaces,
as they correspond to continuous variables and objectives for the proposed appli-
cations.
For solving the optimization problem in Eqn.1.2, a quality measure for comparing
different solutions is needed. A partial ordering among different solutions can be
found by thedominance criterionas illustrated in Fig.1.1.

Definition 2 A solutiona ∈ X is dominating a solutionb ∈ X (a � b) if and
only if it is superior or equal in all objectives and at least superior in one objective.
This can be expressed as:

a � b, if ∀ i ∈ {1, 2, . . . ,m} : fi(a) ≤ fi(b)
∧∃ j ∈ {1, 2, . . . ,m} : fj(a) < fj(b) (1.3)

Definition 3 The solutiona is indifferent to a solutionc, if and only if neither
solution is dominating the other one.

When no a priori preference is defined among the objectives, dominance is the only
way to determine, if one solution performs better than the other [40]. Furthermore,
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Figure 1.1: Illustration of the dominance principle for a two-objective minimization prob-
lem. The solutiona is dominatingb, sincea is superior in both objective values.a is
indifferent toc, since in a mutual comparison, each solution is superior in one objective.

the best solutions to a multi-objective problem are the nondominated subset among
all feasible solutions inF . These solutions are denoted as thePareto set[84]. De-
pending on the relationship between the different objectives, one or several Pareto
solutions may exist.

Definition 4 The relationship between two objectives is defined as correlated, if
the corresponding Pareto set contains only one solution; it is defined as conflicting,
if more than one solution is in the set.

The relationship between objectives is illustrated in Fig.1.2. In this definition,
the relationship depends only on the number of solutions in the Pareto set. For
correlated objectives, there exists only one Pareto solution. Optimizing one objec-
tive concurrently optimizes the other objective. Thus, this optimization problem
is similar to a single objective problem. For conflicting objectives, there exists no
best solution, but a set of Pareto solutions that represent different trade-offs be-
tween the objectives. If the optimization is converged to a Pareto solution, one
objective can only be improved at the expense of at least one other objective. A
more extended discussion about the relationship between objectives is given by
Purshouse and Fleming [87].

1.1.3 Targets

When optimizing problems with conflicting objectives, two different targets are
mainly persuit. The choice between the targets depends on the decision maker and
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Figure 1.2: Illustration of the relationship between the objectives for a two-objective min-
imization problem. The Pareto set for the set of all feasible solutionsF is marked in each
figure buy a bold line. Two objectives are defined as conflicting, if their Pareto front con-
sists of several solutions (left). They are correlated, if the Pareto front consists of a single
solution (middle and right).

his or her knowledge or interest about the problem to optimize:

Search for a compromise solution:The decision maker can specify pref-
erence relations between the objectives by, e.g., weighting or formulating
bounds for the objectives. This information is used to aggregate all objec-
tives into a single figure of merit that will be optimized. The result is a best
matching compromise solution for the given information.

Pareto optimization:If no preference for the objectives is available or the
decision maker is interested in the shape of the Pareto front, then the opti-
mization should search for an approximation of the Pareto set. This opti-
mization is challenging twofold. On one hand, the optimization algorithm
must be able to converge sufficiently fast towards the Pareto front. On the
other hand, the optimization must preserve diversity in order to be converge
to solutions on the whole Pareto front.

The Pareto optimization is usually the more expensive target as several Pareto
solutions are searched, but provides more information to the decision maker.
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1.2 Optimization Algorithms

1.2.1 Classification

Goldberg [49] classifies the optimization algorithms in three main classes as illus-
trated in Fig.1.3: gradient-based, enumerative and guided random algorithms.
Gradient-basedtechniques use gradient or higher order derivative information

Evolutionary
Algorithms

Simulated
Annealing

Genetic
AlgorithmsStrategies

Evolution

SEARCH TECHNIQUES

GRADIENT−BASED ENUMERATIVE GUIDED RANDOM

Full EnumerationDirect Indirect

Figure 1.3: Classification of optimization algorithms

about the function to optimize. Here we distinguish direct and indirect techniques.
Indirect methods compute the position of the minima by differentiating the objec-
tive function and setting the obtained gradient equations to zero:

∂f

∂xi
= 0, i ∈ {1, 2, . . . , n} , (1.4)

while fulfilling the sufficient condition

∂2f

∂xi∂xj
> 0, i, j ∈ {1, 2, . . . , n} . (1.5)

Indirect gradient-based methods require the mathematical equations of the objec-
tive functions. Furthermore, the functional relationship has to be such that it can be
solved by hand or a computer programs supporting symbolic calculations. Thus,
indirect approaches are considered for test functions, but are not considered for
the real-world optimization problems in this thesis, since these problems are given
either by an experimental setup or complex numerical simulations.
Direct gradient-based methods converge iteratively to the optimum. For a given
starting point, the gradient is computed and used as direction for successive search
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points. Here, the mathematical equations of the objective function are not required
as the gradient can be approximated, e.g., by finite differences.
Enumerativemethods evaluate the function to optimize at every point in the search
space. Real-valued search spaces are usually discretized. Full enumeration is the
most expensive technique in terms of number of function evaluations. It is only
applicable to search spaces with a limited number of feasible points. However,
since each point in the search space is evaluated, there is a guaranty to find the
optimum. Another expression for this method is area bombing.
Guided randommethods use random processes to find the optimum. They are also
referred to as semi-stochastic algorithms. Many semi-stochastic methods are in-
spired by nature, since nature operates with random processes (e.g., for mutating
genetic information, within the annealing process of metal, in molecular dynamics,
or in swarm behaviors of birds). Well-known representatives of semi-stochastic
methods are Evolutionary Algorithms [9] and Simulated Annealing [64].

1.2.2 Direct Gradient-Based Methods

Direct gradient-based methods use gradient information of the objective function
for determining the direction of the following search points. Most of these meth-
ods are deterministic.
For a given start pointx0, the objective functionf(x0) and its gradientg(x0) =
∇f(x0) are calculated. The gradient is used to determine the search directions
for the following one-dimensional (1D) search. Often, the search direction is ei-
ther the negative gradients = −g(x0) itself (steepest descent) or results from
an iteratively approximation of second order derivative information (Hessian ma-
trix). The latter is also referred to as quasi-Newton methods and one example is
the Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm (see, e.g., [28]). The
line search minimizes the objective function along the linex0 + αs, α ∈ R+,
determined by the starting point and the search direction. Equivalently, the line
search could be written as findminα∈R+ f(x0 + αs). One line search method is
the golden section method (see, e.g., [101]), that divides the line subsequently by
a golden section around the currently best solution. The best solution from the line
search is the start point for the next gradient calculation.
Gradient-based methods rely on derivative information of all objectives and all
constraints for determining the search direction of the optimization. The simplest
approach for obtaining derivatives is the finite differencing with forward differ-
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ences:

gi =
f(xo + ∆ ei)− f(x0)

∆
, (1.6)

wheregi is the partial derivative off in the space directioni, ∆ is the length of the
finite step andei is a unit vector in space directioni. However, finite differences
are strongly affected by noise in the function evaluation and are very sensitive the
chosen finite difference [14]. Detailed analysis of the effect of different step sizes
are given in Martinset al. [76].
For computer programs, derivatives can also be obtained by the following three
alternatives, which all require access to the source code of the programs:

• In the adjoint formulation (see, e.g., [92]), the underlying equations off
are differentiated and programmed. For complex flow problems as in the
considered compressor optimization in Chapter11, adjoint formulations are
rarely available, since deriving and implementing the adjoint equations is a
difficult and time-consuming task [72].

• For automatic differentiation [12], software libraries are developed that dif-
ferentiate the source code and result in an extended code, that computes the
objective function also its derivative. This method is usually much more re-
source intensive than the adjoint method, but the software for the derivatives
is obtained in an automated fashion.

• The complex-step method [76] bases on a Taylor series expansion of the
objective functionf . Instead of using a real steph for the expansion, a
purely imaginary stepih is added (i =

√
−1). We write the Taylor series

expansion for a single variablex as:

f(x + ih) = f(x) + ihf ′(x)− h2 f ′′(x)
2!

− ih3 f ′′′(x)
3!

+ . . . (1.7)

Taking solely the imaginary part of Eqn.1.7 and solving the equation for
f ′(x) yields:

f ′(x) =
Im(f(x + ih))

h
+ h2 f ′′′(x)

3!
+ . . . (1.8)

By neglecting the third order derivative in Eqn.1.8, the gradientf ′(x) is
of O (h2). The key difference in the complex-step method compared to
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finite-differencing is that the derivative results from a single evaluation of
the objective function and not from a difference of two evaluations thus cir-
cumventing the problem of noise resulting from such differentiation. How-
ever, in the complex step method, all real numbers in the source code must
be replaced by complex numbers and thus computing a single sensitivity is
about twice as expensive as computing the objective function.

Summarizing, the reliable computation of the gradient is most important for the
success of gradient-based methods. The line search is less problematic since ro-
bust methods like the golden section method just compare the objective value of
different solutions and thus are more robust to noise.

1.2.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) [9] are representatives of the class of stochastic
optimization algorithms and do not require gradient information. They are con-
sidered as robust optimization algorithms [7], since they are able to cope a wide
variety of problem features: discrete and continuous decision variables, noise in
the objective function, multimodality, discontinuous objective functions. Most of
these features are difficult for gradient-based methods [101]. However, EAs are
also considered computationally expensive in terms of the number of evaluated
solutions required for convergence.
EAs are inspired by the principles of natural evolution to find an optimal solution
to a problem. Natural evolution is driven by the principles of fitness-based selec-
tion and recombination/mutation of genetic information. In nature, individuals in
a population, which are well adapted to their environment, are likely to survive the
natural selection process. These individuals can become parents and their offspring
are likely to spread in the following generations. The genetic information of the
offspring is either a copy of the genes of a single parent or results from the mating
process of multiple parents (recombination) by copying gene sequences from the
parents. Genetic information of offspring also includes minor modifications due
to reproduction error and some random mutation. In an engineering environment,
the genetic information are the decision variables, which specify the properties of
a solution to the engineering optimization problem. The fitness of the solution is
determined by the objective function.
According to Bäcket al. [7], most EAs are based on three independent but related
roots: Evolution Strategies, Genetic Algorithms and Genetic Programming.
Evolution Strategies(ESs) were initially developed by Rechenberg [90] and
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Schwefel [100, 101] for continuous decision variables. Each individual in the pop-
ulation is represented by a vector of real decision variables. In ESs, mutation is
performed by adding a normally distributed random number with mean zero and a
certain standard deviation to the variables. Mutation is considered the main opera-
tor and the adaptation of the standard deviation is of core importance. Furthermore,
individual standard deviations and correlation information can be included for the
decision variables in the mutation operator (see, e.g., [5, 52]).
Genetic Algorithms(GAs) were proposed by Holland [54]. In the most popular
canonical GA, an individual is represented by a string of bits. For continuous
problems, the decision variables are decoded into the binary string. Mutation and
recombination is performed by flipping bits or exchanging substrings of different
parents, respectively. The probability of mutating a bit is fixed to a low number
(about one bit per individual) and the recombination operator is considered the key
operator [9].
Evolutionary Programming(EP) was introduced by Fogel [36] and represents in-
dividuals similar to EAs in a real-valued vector. EP was initially designed for
predicting output values for a sequence of inputs.
EAs will be discussed in detail for single-objective problems in Section2 and for
multi-objective problems in Section3.

1.2.4 Related Algorithms

Simplex

The simplex method of Nelder and Mead [83] in 1965 is an example of a non-
gradient, deterministic method. The method starts withn + 1 initial points, where
n is the number of decision variables. The start points are arranged equidistant
and are the vertices of a simplex. Forn = 2, the simplex is a triangle, forn = 3,
a tetrahedron and in general a polyhedron. Starting with an initial simplex, the
vertex with the worst objective value is replaced by reflection on the midpoint of
the other vertices. Depending on the resulting objective function, the simplex is
expanded, contracted or shrinked. The algorithm is widely used, however, recently
the algorithm has been shown to be slow for some problems and sometimes fails
even on convex functions [121]. Thus various modifications have been proposed.
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Simulated Annealing

Simulated Annealing (SA) is inspired by the annealing process of steel. Steel is
heated to a temperature above the melting point and cooled in a controlled process.
The cooling process determines the crystal structure and the crystal size, which are
important for the strength of the steel. In the beginning of the annealing process,
atoms are likely to change between different crystal structures and their internal
energy might increase or decrease. At a later stage (lower temperatures) almost no
change occurs, especially no change that would increase the internal energy, thus
always the lowest energies are kept.
In SA, this annealing process is transferred to optimization. The SA algorithm
operates with two solutionsx,x′ ∈ X. The algorithms starts by settingx to a
given point in the decision space or at random. A new solutionx′ is created in
the neighborhood ofx by some random process (e.g., by creating a random vector
taken from a normal distribution withx as mean and a small variation). If the
function value of the new solutionf(x′) is equal or better thanf(x), then set
x = x′. If the function value of the new solutionf(x′) is worse thanf(x), then
with a certain probability setx = x′, otherwise leavex unchanged.
While in the real annealing process atoms may change from lower to higher energy
levels, in SA, the worse of two solutions may be selected. This selection may help
to overcome local minima by adding some randomness to the selection. Similar to
the real annealing, the probability of changing to a higher energy level decreases
over time.

Hybrid Methods

Hybrid methods combine different optimization algorithms in order to exploit their
different. For example, evolutionary algorithms are often combined with direct,
gradient-based methods. Evolutionary Algorithms are used in the beginning of an
optimization to overcome local minima. Then, the direct, gradient-based methods
are used to search the neighborhood of the best solution(s) found, since they are
usually faster on smooth and unimodal problems.
Hybrid methods is a wide field of research and an overview is given in Part D3
of [6]. However, a prerequisite is that the different optimization algorithms are
applicable to the given problem.
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Surrogate Approach

Given that the several solutions to the optimization problem are already evaluated,
a surrogate of the objective functions can be constructed. Then, the evaluation
of the objective function can be replaced by surrogate evaluations. Surrogates
are especially interesting for expensive objective functions, since the necessary
computational effort to build the surrogate should be smaller than the expense of
the objective function evaluation. They have been successfully applied to com-
plex problems such as a helicopter blade optimization [14] and in turbo machinery
design [61]. An overview on how evolutionary algorithms can be coupled with
surrogates will be given in Section4 and a new implementation will be proposed
in Section8.



Chapter 2

Evolution Strategies for Single Objective
Optimization

A set of different evolution strategies is presented. These strategies will be used for
the optimization of the gas turbine design problems. First the common properties
of all considered strategies are presented. Then, each strategy is described in detail.
A focus is on how these strategies learn in order to adapt the mutation distribution.

2.1 Introduction

In Section1.2, Evolution Strategies (ESs) have been introduced as representatives
of stochastic optimization algorithms. ESs imitate the principles of natural evolu-
tion to find an optimal solution to an optimization problem. An ES is determined
by a selection, recombination, and mutation operator. For all considered ESs,
these three operators are successively processed as given by the iterative loop in
Fig. 2.1.
The evolutionary optimization starts by generating an initial population of indi-
viduals at a generationg = 0. An individual i in the population consists of a
vector of decision variablesxi ∈ X whereX ⊆ Rn is then-dimensional de-
cision space. The population consists ofλ individuals and can be described by
P g

λ = {xi}i=1,...,λ. In the evolutionary optimization, the population evolves over
several generationsg. Within each generation, the selection, recombination, and
mutation operators are applied for different aims. The selection operator increases
the fitness in the population by selection on average fitter individuals. Thus, selec-
tion decreases on average the diversity in the population. The recombination oper-
ator exchanges information in the population in order to spread good properties of
solutions. Finally, the mutation operator increases diversity in the population by
adding random variations to the decision variables.
The quality of an evolutionary algorithms depends highly on the interplay of these
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operators, as some combinations of recombination and mutation operators may
even lead to divergence [69]. In ES, the focus is on the mutation operator [9],
which is often such that it adapts while converging towards the optimum. Adap-
tation is necessary for fast convergence as shown by Rechenberg [90]. For simple
objective functions, Rechenberg computed the ideal mutation variance as a func-
tion of the distance of solutions to the optimum.

Selection Operators

In each generationg, a fraction of the population is selected based on their fitness.
The selected set serves as parent populationP g+1

µ for the next generation. In ESs,
the deterministic selection of theµ best individuals is most popular. For mini-
mization problems, “better” refers to lower objective values. A selection operator
that selects solutions from the current populationand their parent population is
denoted as(µ + λ)-strategy. This operator is elitist by preserving always the best
solutions obtained so far and thus avoids a deterioration of the fitness in the parent
population. This ensures a constant improvement of the fitness of the parents.
In contrast, selecting the parent population solely from the current populationP g

λ

is referred to as(µ, λ)-strategy. In this strategy, the fitness of the parent population
increases or decreases between two generations, depending on the fitness of the
current population. While on the first view, a decrease in the parent fitness seems
unfavorable for finding the optimum, the(µ, λ)-strategy ensures a constant change
in the parent population. This is shown to be advantageous for adaptive strategies
[5] and is a necessity for noisy objective functions, in order to avoid stagnation at
noisy solutions [4].
A more general formulation of the selection operator is the(µ, κ, λ)-strategy [7],
which introduces a maximal lifetime1 ≤ κ ≤ ∞. For κ = 1 andκ = ∞, the
(µ, λ) and(µ + λ)-strategy are obtained, respectively.

Recombination Operators

In nature, evolution is a highly parallel process by using large populations of indi-
viduals. Most species recombine their genetic information by mating two parents.
Mating allows to spread genetic information in the population and the offspring
might benefit from combining preferable properties of their parents.
In ES, the decision variables represent the genetic information and mating is de-
noted as recombination. Several different recombination operators exist. Opera-
tors that combineρ parents denoted as(µ/ρ+

′ λ) strategies. For each new solution,
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ρ parents are chosen at random. Special cases areρ = 2 (binary recombination)
andρ = µ (global recombination).
Forglobal recombination, the mean of all parentsxj,j=1,...,µ is computed:

x′i =
1
µ

µ∑
j=1

xj,i. (2.1)

For binary recombination, we will consider two operators from [9] to obtain a re-
combined individualx′ from two parentsx1 andx2. The first approach is discrete
recombination:

x′i =
{

x1,i if p < 0.5, p ∼ U(0, 1)
x2,i otherwise,

(2.2)

whereU(0, 1) is a uniform distribution of random number between 0 and 1. In the
second operator, the parents are linearly recombined by:

x′i = αx1,i + (1− α)x2,i, (2.3)

whereα ∈ U(−0.5, 1.5). This recombination operator inter- and extrapolates
parents.

Mutation Operators

Mutation is a process of adding random changes to the genetic information. This
enables a population to adapt to changing environmental conditions.
In ES, mutation is usually performed by adding a normally distributed random
vectorz [101, 5, 52] to a recombined solutionx′:

x′′ = x′ + z, z ∼ N (0,C), (2.4)

whereN (0,C) is a multivariate normal distribution with expectationE = 0 and
covariance matrixC. In the simplest case, anisotropic mutationdistribution is
chosen:

z ∼ N (0, σ2I) = σN (0, I) (2.5)

whereσ is the standard deviation of the normal distribution andI is the identity
matrix. For isotropic mutation, the mutation of all decision variables is uncorre-
lated and of equal standard deviationσ. The standard deviationσ is also referred



2.2. ONE-FIFTH SUCCESS RULE 16

to asstrategy parameter. The probability density function is given in Fig.2.2.
Lines of equal probability are circles forn = 2 variables and (hyper-)spheres for
n ≥ 3. The previous equation for isotropic mutation can also be written as:

zi ∼ σN (0, 1), i = 1, . . . , n. (2.6)

An extension of the isotropic mutation is obtained by using for each decision vari-
ablexi an individual step sizeσi. The probability distribution of this mutation
is similar to a stretching or compressing of the isotropic distribution parallel to
the coordinate axis of the decision space and is illustrated in Fig.2.2. Lines of
equal probability are (hyper-)ellipses with their principal axis parallel to the coor-
dinate axis. The resulting covariance matrix is now diagonal (C = diag{σ2

i }) and
mutation can also be written as:

zi ∼ σi N (0, 1), i = 1, . . . , n. (2.7)

Arbitrary normally distributed mutation is obtained by non-zero non-diagonal el-
ements in the covariance matrix. The probability distribution is given in Fig.2.2
and results from linear transformation (rotation, scaling) of an isotropic probabil-
ity distribution. The mutation of the decision variables is now correlated and thus
referred to ascorrelated mutation. Due to the symmetry of the covariance ma-
trix, n(n+1)

2 elements of the covariance matrix need to be specified. The elements
are denoted as strategy parameters and consists ofn step sizes (diagonal elements
cii = σ2

i ) andn(n−1)
2 correlation factors (non-diagonal elementscij = cji, i 6= j).

Going from isotropic mutation via individual step sizes to correlated mutation in-
creases the number of free strategy parameters from 1 vian to n(n+1)

2 . These
parameters can be set manually or can be learned as described in Sections2.2 to
2.4. The choice of the mutation distribution is problem dependent and is a compro-
mise between minimizing the learning effort and being able to adapt to mis-scaling
or correlated decision variables. Adaptation of the mutation distribution has been
show to be necessary for efficient optimization algorithms as constant distributions
are far from being optimal [5].

2.2 One-Fifth Success Rule

The two-membered(1 + 1)-strategy was the first evolution strategy developed by
Rechenberg in 1964 [90] and consists of a single parent and offspring. The strat-
egy implements a selection and mutation operator, but no recombination operator,
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Figure 2.1: Illustration of the optimization procedure for an evolution strategy
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Figure 2.2: Lines of equal probability for isotropic (left), scaled (middle) and correlated
(right) mutation

since just one parent exists. The mutation operator varies the parent by isotropic
mutation (Eqn.2.6) with a single step sizeσ. The mutation is successful, if the ob-
jective function value of the offspring is better than the value of the parent. Then,
the parent is replaced by the offspring.
For two simple objective functions, Rechenberg [90] computed theoretically the
ideal success rate and step size for different objective functions. He concluded
that the ratio of successful mutations should be one fifth and formulated the adap-
tation of the step sizeσ as a function of the success (1/5 success rule):

In an optimization, the success rate should be1/5. If, it is greater than
1/5, then increaseσ; if it is less, then decreaseσ.
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Schwefel [101] proposed an implementation of Rechenberg’s rule. He stated that
the ratio of success should be computed always after generatingn offspring, where
n is the number of decision variables. The success rateps should be measured
over the last10n computed offspring. Then, the step size is adapted following
Rechenberg’s rule by:

σ =

 c σ , if ps < 1/5
σ , if ps = 1/5
σ/c , if ps > 1/5,

(2.8)

wherec is a multiplicative factor for increasing and decreasing the step step size.
Schwefel [101] showed that Rechenberg’s theory is valid forc = 0.817 and pro-
posed to set0.817 ≤ c ≤ 1. Forc = 1 the step sizeσ is constant.
Furthermore, the success rateps should be decreased, if the objective function is
noisy (ps = 1/14.8 [90]), constraint [102] or local mimima exist [102]. Rechen-
berg’s success rule was a major progress in the adaptation of a single step size, but
different methods have to be applied for non-isotropic mutation.

2.3 Self-adaptation

The1/5 success rule of Rechenberg introduced a deterministic rule for adapting
the step size of an isotropic mutation distribution. The rule could be regarded as
an external control element and is limited to a single strategy parameter. In order
to avoid external control, Rechenberg [90] proposed that the values of multiple
strategy parameters could result from a “learning population”. Strategy param-
eters such as step sizes and correlation information could be subject to random
mutation, similar to the mutation of the decision variables. Now, each individual
in the population carries a vector of strategy parameters in addition to its vector
of decision variables. This approach assumes that individuals with well-adapted
strategy parameters are more likely to generate offspring that get selected in the
next population and thus these strategy parameter will be dominant. Rechenberg
formulated and tested successfully how to learn individual step sizes. He also men-
tioned the possible learning of correlation factors for the decision variables or of
parameters of the recombination operator. Rechenberg argued that this approach
is more robust than the1/5 success rule, since it can handle discontinuities in the
derivative and nonisotropic mutation distributions can be learned.
Schwefel [101] modified Rechenberg’s approach and extended it to correlated mu-
tation. In addition to the individual step sizes of Rechenberg, rotation angles were
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introduced for adapting arbitrary normal distributions. He denoted his adaptation
principle asself-adaptation. While Schwefel developed self-adaptation for mu-
tation control in evolution strategies, today, self-adaptation is associated with a
variety of different operators , e.g., with the adaptation of the mutation and recom-
bination rates in GA [8, 5] and in differential evolution [1].
In the following we outline the basic principles of self-adaptive, correlated muta-
tion and refer to the terminology of Schwefel and Rudolph [103]. This mutation
is also referred to asrotating angle mutationand abbreviated in the following as
ROT-ES. Correlated mutation requires the adaptation of arbitrary normal distribu-
tion. Samples from arbitrary normal distributions can be obtained by first creating
a random vectorz, which is then rotated by multiplyingz with a rotation matrix
T. For the random vectorz, n individual step sizesσi are required. The rotation
matrixT requiresn(n−1)

2 rotation anglesαk.
Each individual in the population is encoded by a vector of decision variables and
strategy parameters{x, {σi}i=1,...,n, {αk}k=1,...,

n(n−1)
2

}. In self-adaptation, the

mutation of the strategy parameters is performed similarly to the mutation of the
decision variables by:

σ′′i = σ′i exp(τ0z0 + τzi) , with z0, zi ∼ N (0, 1) (2.9)

α′′k = α′k + βzk , with zk ∼ N (0, 1) (2.10)

whereτ0, τ andβ are the learning rates, and recommended values are:

τ0 =
1√
2n

, τ =
1√
2
√

n
, β = 5◦ (2.11)

After mutating the strategy parameters, the decision variables are mutated with:

x′′ = x′ + Tz, , with zi ∼ σi N (0, 1), i = 1, . . . , n (2.12)

T =
n−1∏
i=1

n∏
j=i+1

Tij

The matricesTij are rotation matrices and are identical to the identity matrix,
except that the four elements with the positions{i, i}, {i, j}, {j, i}, {j, j} of the
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matrix are changed:

Tij =



1 0 · · · 0
0 1

...
1

cos(αk) − sin(αk)
1

...
...

...
1

sin(αk) cos(αk)
1

...
1 0

0 · · · 0 1



,

(2.13)

with k = 1/2(2n− i)(i + 1)− 2n + j. In literature, self-adaptive mutation is also
found without correlation (i.e., without the rotation matrixT) or isotropic muta-
tion (i.e., all individual step sizes are replaced by a single one withσi ≡ σ).
Self-adaptive mutation is sensitive to the chosen population size, recombination
operator, and selection operator [69, 52]. Typically, a(µ, λ) strategy is used with
λ/µ = 7 [7] and in particular a(15, 100). However, Hansen and Ostermeier [52]
recommend to set the number of parents proportional to the number of strategy
parameters. Thus, the number of parents is proportional ton for individual step
sizes and approximatelyn2/2 parents are needed for correlated mutation.
No clear statement can be given about the best recombination operator in con-
junction with self-adaptation. Kursawe [69] shows that self-adaptation can fail for
specific recombination operators. Our preferred method is global recombination
of the decision variables and individual step sizes. No recombination is applied to
the rotation angles.
Schwefel’s rotating angle mutation includes two main disadvantages. First, the
performance of the mutation operator is dependent on the orientation of the coor-
dinate system. Second, the rotation matrixT depends on the sequence of rotation
matricesTij . Thus, the rotation angles are not independent.
Bäck [5] overcomes the latter problem. His self-adaptation adapts directly all ele-
ments of the covariance matrix instead of using the rotation matrixT. The covari-
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ance matrix is constructed by then standard deviationsσi and then(n−1)
2 rotation

anglesαk with 1 :

cii = σ2
i (2.14)

cij, i6=j = tanh(2αk)σiσj , with k = 1/2(2n− i)(i + 1)− 2n + j

The decision variables are now mutated with:

x′′ = x′ + z, , with z ∼ N (0,C), (2.15)

Mutation now requires sampling random vectors from the covariance matrix. This
is described in the next section (Section2.4).

2.4 Covariance Matrix Adaptation

The Covariance Matrix Adaptation (CMA) describes a deterministic rule for adapt-
ing the covariance matrixC for correlated mutation. It was developed by Hansen
and Ostermeier and we refer to their publication from 2001 [52]. The mutation
vectorz for the decision variables is computed from a global step sizeσ and a
covariance matrixC:

z ∼ σN (0,C) (2.16)

A sample of the mutation vectorz can be obtained by first computing a vector
from the uncorrelated normal distribution, which is then multiplied by the global
step size and a linear transformation with:

z ∼ σBDN (0, I) with C = (BD) (BD)T
, (2.17)

whereB is an orthonormal matrix of eigenvectors fromC, andD is a diagonal
matrix containing the square root of the eigenvalues ofC.
Assuming the necessary information for adapting the strategy parametersσ and

1 In Eqn.2.14, we differ from Bäck [5], who computes the non-diagonal elements ascij, i6=j =
1
2

tanh(2αk)
“
σ2

i − σ2
j

”
. This equation does not fulfill the mathematical limit for the non-diagonal

elements of a covariance matrix with||cij || ≤ ||σiσj ||. In Bäck’s equation,cij becomes even infinite
for α = 45◦.
Denotingα as a rotating angle is misleading, since it scales the correlation between the individual
step sizesσi. Furthermore, a rotation of the covariance matrix would change the variance ofC in the
coordinate axis direction. In Bäck’s approach, however, the individual step sizes are unchanged for
arbitraryα.
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C is of the same order as the strategy parameters, the scalarσ will be adapted
much faster than the matrixC. Thus, the mutation distribution can react fast to a
changing optimal step size, while the adaptation to the topology of the objective
function is much slower.
For CMA, a (2/2,10) selection operator is often selected as in [52, 80] and the two
parents are recombined by computing the mean for each decision variable. For the
adaptation of the mutation distribution, CMA uses at each generationg only the
information included in the position of the recombined parentx′(g). The motion of
the recombined parent is tracked over previous generations and denoted as evolu-
tion path. In each generation, the evolution path is compared to the path that result
from random selection. Comparing the two paths indicates efficient mutation dis-
tributions. If the evolution path is smaller than the random path, smaller mutations
have been more efficient in the past generations and the variance of the mutation
distribution is reduced. If the evolution path is larger than the random path, the
variance is increased. Furthermore, the orientation of the mutation distribution is
updated by adding the evolution path as a new sample for the construction of the
covariance matrix.
First, we consider the adaptation of the covariance matrix. The evolution pathpc

and the covariance matrixC are updated by:

p(g)
c = (1− c)p(g−1)

c + (2.18)√
c(2− c)

√
µ

σ(g−1)

(
x′(g) − x′(g−1)

)
C(g) = (1− ccov )C(g−1) + ccovp(g)

c (p(g)
c )T , (2.19)

wherec andccov determine the decay of information from previous generations.
The parameterc is recommended asc = 4

n+4 and thus forn � 1 the characteristic
time for updating the evolution path is1/c ≈ n/4. Furthermoreccov is recom-
mended asccov = 2

(n+
√

2)2
and the characteristic time forC is 1/ccov ≈ n2/2.

Similarly, the global step size is adapted by first computing a cumulated pathpσ

while omitting the scaling withD and than comparing the path length with the
expected path length||E(N (0, I))|| =: χ ≈

√
n(1 − 1/(4n) + 1/(21n2) under
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random selection:

p(g)
σ = (1− c)p(g−1)

σ + (2.20)√
c(2− c)

√
µ

σ(g−1)
B(g−1)(D(g−1))−1(B(g−1))−1(x′(g) − x′(g−1))

σ(g) = σ(g−1) exp

(
1
dσ

||p(g)
σ || − χ

χ

)
.

The parameterdσ =
√

n/4 (≈ 1/c) controls the adaptation speed ofσ. At the
beginning of the optimization (g = 0) all the covariance matrix is set unitary
(C(0) = I) and the evolution paths are set to zero (p

(0)
c = p

(0)
σ = 0).



Chapter 3

Multi-objective Evolutionary Algorithms

Evolutionary Algorithms arethe standard tool for multi-objective optimization.
Their parallel search leads to an approximation of the Pareto front in a single op-
timization run. This is a major advantage compared to traditional optimization
algorithms like gradient-based methods that converge to a single Pareto solution.
Furthermore, traditional methods require an aggregation of all objectives to a sin-
gle figure of merit. This is difficult if the shape of the Pareto front is unknown
before optimization.
This chapter starts with the history of multi-objective evolutionary algorithms and
gives an overview on state-of-the-art algorithms. Different test problems are intro-
duced and performance measures for comparing different algorithms are added.

3.1 Introduction

Evolutionary algorithms can exploit the population-based feature and converge in
parallel to the Pareto front. While optimizing, different solutions in the population
converge to different areas of the Pareto front, and thus an approximation of the
Pareto front can be obtained in a single optimization run. The research interest has
increased over the past twenty years on the development and application of evolu-
tionary algorithms for Pareto optimization. Several promising methods have been
proposed and compared by several researchers [125, 116, 20]. An exhaustive list
of references can be found on the web page of Coello [19]. Two books are devoted
to multi-objective optimization [24, 21]. The various multi-objective evolutionary
algorithms are usually distinguished by their fitness assignment operators, while
mutation and recombination operators are usually adopted from standard single-
objective algorithms.
The first evolutionary algorithm that was designed to converge to multiple Pareto
solutions is the Vector Evaluated GA (VEGA) in 1985 [98]. The name of the al-
gorithm results from the optimization of a vector of objectives instead of a scalar
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in single objective optimization. Form objectives, the algorithm divides the cur-
rent population intom fraction, and the selection operator selects solutions in each
fraction according to a different objective. A drawback of this algorithm is that it
focuses on the ends of the Pareto front as in each selection always one objective is
preferred and never compromise solutions.
A more efficient approach was introduced by Goldberg [49] in 1989. He intro-
duced the principle of dominance as selection criterion, but did not implement any
algorithm. He also suggested to use fitness sharing [50] for promoting the diver-
sity among solutions in order to prevent the population from converging to a single
point on the Pareto front. Different implementations of Goldberg’s suggestions
were published between 1993 and 1995, e.g., Multi-Objective GA (MOGA) [37],
Niched Pareto-GA (NPGA) [56] and Nondominated Sorting GA (NSGA) [109].
Between 1995 and 2000, various evolutionary algorithms have been proposed and
compared in literature [38, 55, 125, 20, 117].
In multi-objective optimization, the current set of nondominated solutions contains
a large amount of information about the problem to optimize. This information is
important for determing the fitness of a solution. As a small example, assume only
two solutions are given. In single objective optimization, one solution is better
than the other or both are equal. Thus, it is clear, which solution is preferable. In
multi-objective optimization, it is very likely that the two solutions are indifferent,
i.e., non of the two solutions is dominating the other one. So, which one should
be preferred? To determine the preference between two solutions, the current set
of nondominated solutions can be very helpful by, e.g., specifying the number of
solutions that dominate each of the two solutions. This measure could be chosen
to determine the preference.
Elitism, a technique of preserving always the best solutions obtained so far, pre-
vents the algorithm from losing this information. In multi-objective optimization,
elitism is performed by preserving the nondominated solutions in an archive [116].
The parents of the next generation are selected from the current population and the
archive. The convergence comparison of Zitzleret al. [125] in 1999 showed that
elitism is beneficial for all considered algorithms. Some researchers state elitism
as a necessity for multi-objective optimization [116].
Today, elitist multi-objective algorithms, which base on the dominance criterion
and implement some kind of niching criterion are most popular [117]. Two rep-
resentatives are SPEA2 [123] and NSGA-II [26], which were the most applied al-
gorithms on the Second International Conference on Evolutionary Multi-Criterion
Optimization (EMO2003) [39]. However, there are still alternative approaches
that might be more suited for some applications as show in some empirical com-
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parisons [88].
In this chapter, we focus on multi-objective optimization problems where the de-
cision maker is interested in obtaining an approximation of the Pareto front. The
Pareto front gives valuable information about the trade-off between different ob-
jectives. Then, the decision maker selects usually one or several solutions from the
approximated Pareto front, which will be used, e.g., for building prototypes.

3.2 Selection Operators

We consider multi-objective evolutionary algorithms, performing a population-
based search in order to approximate the Pareto set. This approximation can be
obtained in a single or in several optimization runs. The various multi-objective
evolutionary algorithms mainly employ a selection operator [125, 13]. In the fol-
lowing we classify selection operators in 3 classes as proposed by Horn [55]. Algo-
rithms of the first class approximate the Pareto front by a number of independent
runs, with each run containing a different aggregation of the objectives. Algo-
rithms of the second and third class approximate the Pareto front in a single run
by a cooperative population search. These classes are distinguished by the use of
dominance in the selection operator.
From the Pareto definition, two targets have to be considered when developing a
selection operator for Pareto optimization. On one hand, the resulting algorithm
must be able to converge sufficiently fast towards the Pareto front, while on the
other hand, it must preserve diversity among its population in order to be able to
spread over the whole Pareto front.

3.2.1 Independent Sampling

An approximation of the Pareto front can be obtained by performing several inde-
pendent runs with different aggregation of the objectives by, e.g., a weighted sum
or a constraint approach [88]. This leads to a discrete approximation of the Pareto
front, with each optimization run converging to a different point of the Pareto
front. One implementation of independent sampling is the Constraint Method-
based Evolutionary Algorithm (CMEA) [88], which will be discussed in detail.

Constraint Method-based Evolutionary Algorithm

Ranjithanet al.[88] proposed to use a Constraint Method-based Evolutionary Al-
gorithm (CMEA). One objectivefh is selected for optimization, while all other



3.2. SELECTION OPERATORS 27

objectivesfi,i 6=h are treated as constraints. Thus, the multi-objective optimization
problem is formulated as:

find min fh, while fi < ut
i ∀ i = 1, . . . ,m ; i 6= h, (3.1)

whereut
i, t = 1, . . . , k arek different constraint values for each objectivefi. The

constraint values should be set such that they are within the function values of
the Pareto front. According to Horn [55] bounds of the Pareto front can be found
by optimizing each objectivefi in a separate optimization run without setting any
constraints. The best solution of each of them optimization runs is chosen. The
bounds of the Pareto front are equal to the minimal and maximal objective value of
them solutions for each objectivei and are written asfmin

i andfmax
i , respectively.

Finally, the upper constraintsut
i are set such that they divide the interval between

the bounds of each objectivefi in k intervalst = 1, . . . , k of equal width:

ut
i = fmin

i +
t

k
(fmax

i − fmin
i ). (3.2)

For each possible combination of one constraint value per objective, an optimiza-
tion run is performed and the Pareto front is approximated.
Knowledge of previous runs can be exploited by using the best solution(s) obtained
so far as initial solution(s) for the next run [88].

3.2.2 Cooperative Population Searches with Dominance Criterion

Algorithms from the class of cooperative population searches find an approxima-
tion of the Pareto front in a single optimization run. Here, the principle of domi-
nance is chosen as the selection criterion. In addition, a fitness sharing techniques
or other density estimation techniques are used in order to preserve diversity in the
population. According to Van Veldhuizen and Lamont [117] this class of fitness
assignment is most widely used. Recent performance comparisons [16] [88] show
however that other classes of optimization approaches can also lead to comparable
results. Two of the most prominent representatives are the Nondominated Sorting
Genetic Algorithm (NSGA) of Srinivas and Deb [109] with successors NSGA-II
[26] and NSGA-IIc [27] and the Strength Pareto Evolutionary Algorithm (SPEA)
of Zitzler and Thiele [125] with its successor SPEA2 [124].

Nondominated Sorting Genetic Algorithm I & II

NSGA assigns fitness by a nondominated sorting procedure in conjunction with a
fitness sharing technique as described by Goldberg [49]. The sorting starts by as-
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Figure 3.1: Selection by constraint approach for 2 objectives: Forf1 a hard upper bound
constraint is set atf1 = u [dash-dotted lines]. From all solutions [+ symbols], the solu-
tions that do not violate the constraint are selected and from this subset, theµ best solutions
[bold + symbols] with respect tof2 are selected (hereµ = 2).

signing rank 0 to the nondominated solutions of the population and removing them
from the population. Then, the nondominated solutions of the remaining popula-
tion are assigned (the next higher) rank 1. This is repeated until all solutions are
sorted to a certain rank. An example for a 2-objective problem is given in Fig.3.2
Within all solutions of a certain rank fitness sharing is computed in the objective
space. Fitness sharing promotes solutions in sparse areas.
Selection is performed by a binary tournament. Always two solutions are taken
from the current population. If the rank of the two solutions differs, the one with
the lower rank is chosen. Otherwise the one with the lower sharing value is chosen
in order to promote diversity. The chosen solution is copied into the parent popu-
lation of the next generation.
The studies of Zitzler and Thiele [125] have illustrated that elitism improves the
performance of multi-objective evolutionary algorithms on noise-free test prob-
lems as it avoids the loss of information by storing the nondominated solutions.
Elitism was implemented into the second version of NSGA (NSGA-II) [26]. In
addition the sharing technique was replaced by a crowding distance. The crowd-
ing distance of a solution is equal to the smallest edge of the largest hypercube
that can be constructed around the solution without including any other solution.
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Figure 3.2: Nondominated sorting procedure: The sorting starts by assigning rank 0 to the
nondominated solutions of the population and removing them from the population. Then,
the nondominated solutions of the remaining population are assigned (the next higher) rank
1.

In NSGA-II, the selection process starts by unifying the current population with
its parent population. Then, solutions are selected starting with rank 0. The rank
is increased until the number of selected solutions exceeds the given parent popu-
lation size. Finally, among the solutions with the highest rank, always the solution
with the smallest crowding distance is removed until the target size is reached.

Strength Pareto Evolutionary Algorithm 1 & 2

The Strength Pareto Evolutionary Algorithm (SPEA) of Zitzler and Thiele [125] is
a well-established Pareto-optimization algorithm. The advantages and drawbacks
of the algorithm have been extensively discussed [125, 122]. The algorithm en-
tails a fitness assignment and selection mechanism based on the concept of elitism.
SPEA uses the nondominated solutions for the fitness assignment as illustrated for
a 2-objective problem in Fig.3.3. First, the fitness of each nondominated solution
is computed as the fraction of the population that it dominates. The fitness of a
dominated individual is equal to one plus the fitness of each nondominated solu-
tion by which it is dominated. This fitness assignment guarantees that the fitness
of nondominated solutions is always lower than the fitness of the dominated solu-
tions. In addition, it promotes solutions in sparse areas by assigning smaller fitness
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values.
In SPEA, elitism is performed by storing the nondominated solutions in an

f2

1f

1/7

2/7

9/7
15/7

3/7
3/7

13/7

Figure 3.3: Fitness assignment by SPEA for 2 objectives (low fitness is preferred in the
selection operator): For each nondominated solution, the fitness is equal the fraction of
dominated solutions in the population (here: population size is 7). The fitness of a dom-
inated solution is equal to one plus the fitness of each nondominated solution by which it
is dominated. For each nondominated solution, the dominated area is marked with dashed
lines.

archive. The archive is updated by always adding a copy of the current popula-
tion to the archive and removing the dominated. In order to preserve diversity in
the archive and to keep its size limited, a clustering algorithm is used. Clustering
removes solutions in dense areas as measured in the objective space.
In the selection process, a copy of the current population and the archive is unified
in a pot. Always two individuals are taken from the pot and compete in a binary
tournament such that the individual with the lower fitness wins and is copied into
a new parent population. The next population is generated by applying recombi-
nation and mutation operators to the parent population.
In SPEA2 [124], SPEA was extended by changing the fitness assignment and the
clustering algorithm in order to improve the algorithm especially for correlated
objectives and increase the diversity in the archive, respectively.
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3.2.3 Cooperative Population Searches without Dominance Crite-
rion

This class of optimization approaches generates an approximation of the Pareto
front in a single optimization run, but does not use the dominance criterion within
the selection operator. Moreover, several (local) selections are performed from one
population with different aggregation of the objectives. This might be beneficial
compared to Independent Sampling, since information can be exchanged in the
optimization run by individuals being selected by several different aggregations.
One example is the Subdivision Method (SDM) [16], an optimization approach
with some similarities to the CMEA.

Subdivision Method

In the objective space, the SDM performs several local(µ, κ, λ) selections (see
Section2.1) and then unifies all selected solutions to the parent population. This
is illustrated in Fig.3.4. Similar to the CMEA one objectivefh is selected for
optimization, while all other objectivesfi,i 6=h are treated as constraints. However,
a lower and upper constraint value is set:

min fh, while lti ≤ fi ≤ ut
i, ∀ i = 1, . . . ,m ; i 6= h. (3.3)

The constraints are obtained by first computing the nondominated front, created by
the current population and their parent population. For the nondominated front, the
minimal and maximal function valuesfmin

i andfmax
i , respectively, are computed.

Then, the lower and upper constraintslti andut
i are set such that they divide the

nondominated front along each objective axis offi in k intervalst = 1, . . . , k of
equal width:

lti = fmin
i +

t− 1
k

(fmax
i − fmin

i ) (3.4)

ut
i = fmin

i +
t

k
(fmax

i − fmin
i ).

Thus, the constraints change along the optimization process as the current non-
dominated front changes. For each possible combination of choosing one interval
[lti , u

t
i] for each of the objectivesfi,i6=h, a separate selection is performed with re-

spect tofh. The constraints are hard, i.e., a solution that violates any constraint
is not considered. This process is repeated until each objective is chosen once as
a selection criterion, in order to avoid any preference between the objectives. In
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totalm · km−1 local selections are performed.

l 1

f

f

2

1l 2 u2u1

interval 1 interval 2

Figure 3.4: Selection by SDM for 2 objectives: The objective space is divided alongf1

into two intervals by specifying a hard lower and upper constraint valuel and u for f1,
respectively [dash-dotted lines]. From all solutions [+ symbols] in an interval, always the
µ best solutions [bold+ symbols] with respect tof2 are selected. Then the procedure is
repeated by dividing the space alongf2 and consideringf1 as selection criterion.

3.3 Recombination and Mutation Operators

We apply simple recombination and mutation operators, as those described for the
evolution strategies in Chapter2. These operators will assist as a basis for per-
formance comparisons of multi-objective evolutionary algorithms in the following
chapters. The settings result from various optimization runs.
Each individual in the optimization process is recombined by binary recombina-
tion as described in Section2.1. Each individual is either recombined by uniform
recombination, intermediate recombination, or it is a direct copy of a parent. Each
of these recombination operators is applied with a probability of one third. For the
mutation operator, a simple method with constant normally distributed mutation is
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implemented. Each decision variablex′i is mutated by:

x′′i = x′i +
{

N(0, σ2), , if pi < pM, pi ∈ U(0, 1)
0 , otherwise

, (3.5)

whereN(0, σ2) is a normally distributed random number with zero mean and
standard deviationσ. pM is the probability of mutating a decision variable and is
similar to the mutation probability of bits in the binary string of GA. The mutation
probability is set such that on average one to two variables are mutated (pM ≈
1.5/n). pi is evaluated for every decision variablex′i separately.

3.4 Test Problems

A wide variety of noise-free test problems for multi-objective optimization can be
found in the literature. A number of problems have been summarized in the re-
view articles of van Veldhuizen and Lamont [115] and Deb [23]. From these test
problems, 3 different problems for real-valued decision variables are selected. Fur-
thermore, the objective functions of all test problems are unimodal as multimodal
function would complicate the comparison of different algorithms.

Test Problem DEB

From Deb [23], a two-objective minimization problem for an arbitrary number of
decision variablesx1,...,n is chosen:

f =
[

f1

f2

]
=
[

x1
1
x1

g(x)

]
, g(x) = 1 +

n∑
j=2

x2
j (3.6)

with x1 ∈ [0.5; 2] andx2,...,n ∈ [−2.0; 2]. The Pareto front is given by:

x1 ∈ [0.5; 2] , x2...n = 0 (3.7)

Test Problems ZDT1,2,6

Zitzler et al. propose 6 two-objective test functions with a similar structure to the
test problems proposed by Deb [23]. We choose 3 among the 6 functions, where
the Pareto front of the first function is convex (ZDT1), the front of the second
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function is concave (ZDT2), and density of the Pareto optimal solutions of the
third function is non-uniform (ZDT6):

ZDT1 : f =
[

f1

f2

]
=

[
x1

1−
√

f1
g(x)

]
, g(x) = 1 + 9

n∑
j=2

x2
j (3.8)

ZDT2 : f =
[

f1

f2

]
=

[
x1

1−
(

f1
g(x)

)2

]
, g(x) = 1 + 9

n∑
j=2

x2
j (3.9)

ZDT6 : f =
[

f1

f2

]
=

[
1− exp (−4x1) sin6 (6πx1)

1−
(

f1
g(x)

)2

]
,

g(x) = 1 + 9

 n∑
j=2

x2
j

0.25

, (3.10)

with xi ∈ [0; 1]. The Pareto front is obtained by varying the first decision variable
while setting all other variables to zero:

x1 ∈ [0; 1] , x2...n = 0 (3.11)

Test Problem FF

As a second test function, the 2-objective problem of Fonseca and Fleming[40] is
considered:

f1,2 = 1− exp

− n∑
i=1

(
xi ±

√
1
n

)2
 (3.12)

The Pareto front is given by:

x1...n = t, with −
√

1
n
≤ t ≤

√
1
n

(3.13)

Test Problem SPH-m

For analyzing the scaling of the optimization algorithms over the number of ob-
jectives, a multi-objective generalization of the sphere model [71] is considered,
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which is also referred to asSPH-m [123], wherem denotes the number of objec-
tives:

fi = (1− xi)2 +
n∑

j=1,j 6=i

x2
j , i = 1, . . . ,m, m ≤ n (3.14)

with x1,...,n ∈ [−b; b] , b > 1 andi is the index of the objective.. A major differ-
ence of this test function compared to test functions DEB and FF is that for solu-
tions far from the Pareto front, the objectives are correlated. The analytical Pareto
front of test function SPH-m is convex. Thus, it can be computed by performing
a weighted-sum aggregation of all objectives into one function. The derivation of
this function with respect to all variablesxj leads ton equations. An elimination
of the weighting factors from this set of equations leads to the Pareto front. For
two objectives the Pareto front is given by:

x1 + x2 = 1, x3,...,n = 0 ∧ x{1,2} ≥ 0, (3.15)

and for 3 objectives by:

x1 + x2 + x3 = 1, x4,...,n = 0 ∧ x{1,2,3} ≥ 0. (3.16)

In the decision space, the Pareto front of the 2- and 3-objective problem describes
either a straight line or an equilateral triangle, respectively. For settingb = 1000,
the range of each decision variable is about 1000 times larger than the length of the
Pareto front. Thus, in the beginning of the optimization, the problem is to locate
the Pareto front in the search space.

3.5 Performance Measures

In order to compare different optimization algorithms on the test functions, per-
formance measures are necessary. In multi-objective optimization, the definition
of the quality of an optimization run usually considers two different aspects. The
quality is dependent on theconvergenceof the optimization run as well as thedis-
tribution of the final nondominated set along the Pareto front. The convergence
is defined as the ability of the algorithm to decrease the distance of the current
solutions from the Pareto front. The quality of the distribution depends on the
uniformity of the nondominated solutions along the Pareto front. This is different
from single objective optimization where convergence is sufficient, since there ex-
ists a single global optimum.
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In literature several performance measures are proposed. Van Veldhuizen and La-
mont [117] present an overview with performance measures in the decision and
objective space. Since we will compare different aspects of multi-objective algo-
rithms and also problems that contain noise in their objective functions, several
performance measures are necessary. We define performance measures in the de-
cision and objective space.

Performance Measure P

We are interested in a performance measure that shows how well each point of
the Pareto front is approximated by the evaluated solutions of the optimization
run. This measure addresses both the convergence of the optimization run and the
distribution of the nondominated front. It should also directly relate to the mean
distance of the approximation to the Pareto front.
Thus, we define the performance measureP as the mean distance of all Pareto
solutions to their closest evaluated solution of the optimization run. The distance
is measured in decision space. Since this measure cannot be computed for real
problems with infinite Pareto solutions,P is approximated by computing the dis-
tance just for 10 uniformly distributed pointsx∗k, k = 1, . . . , 10 along the Pareto
front. Here we define uniform as equidistant in the design space. To each pointx∗k
the closest evaluated solutionxi of the optimization run is searched and the dis-
tance is computed. The mean of the resulting 10 distances is taken as performance
measureP :

P =

√√√√ 1
10

10∑
k=1

min
i=1,...,N

(||xi − xk||2)2, (3.17)

whereN is the number of evaluated solutions. For the considered test functions,
the ten uniformly distributed points are:
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DEB x∗k,1 =
1
2

+
1
6
(k − 1) (3.18)

x∗k,{2,...,n} = 0

FF x∗k,{1,...,n} =
1

9
√

n
(2k − 11) (3.19)

SPH-2 x∗k,1 =
1
9
k (3.20)

x∗k,2 = 1− x∗k,1

x∗k,{3,...,n} = 0

SPH-3 x∗k,{1,2,3} ∈ [0,
1
3
,
2
3
, 1], (3.21)

such thatx∗k,1 + x∗k,2 + x∗k,3 = 1
x∗k,{4,...,n} = 0

The performance measureP is to be minimized and small values ofP are only
obtained if both the optimization converged close to the Pareto front and the solu-
tions are well distributed along the Pareto front. For a single objective problem,P
simplifies to the distance of the closest solution to the minimum.

Performance MeasureDDS and DOS

For decoupling the convergence and distribution, we define an additional perfor-
mance measureD, which measures only the convergence of the optimization run.
The measure simply computes the distance of each solution in the current popula-
tion to its closest point on the Pareto front and then takes the root mean square of
all distances. This performance measure can be measured in decision spaceDDS

and objective spaceDOS.



Chapter 4

Optimization Using Fitness Function Models

We present an overview of evolutionary algorithms that use empirical models of
the fitness function to accelerate convergence. A fitness function model represents
an inexpensive surrogate of the expensive fitness function to optimize.
We distinguish between evolution control and the surrogate approach. In evolution
control, models are used to pre-evaluate solutions of an evolutionary algorithm in
order to indicate promising solutions. In the surrogate approach, the optimum is
searched directly on the model. The resulting optimum is a promising candidate
for evaluation on the fitness function. We conclude this chapter with an overview
on different models.

4.1 Introduction

The cost of optimizing expensive problems is dominated by the number of fitness
function evaluations required to reach an acceptable solution. For evolutionary
algorithms, various approaches exist to reduce this cost by exploiting knowledge
of the history of evaluated points. This knowledge can for instance be used to
adapt the recombination and mutation operators in order to sample offspring in a
promising areas. Thus the Covariance Matrix Adaptation (CMA) algorithm [52,
51] uses the path of successful mutations to build up a covariance matrix; the new
population is then sampled with this covariance.

Knowledge of past evaluations can also be used to build an empirical model that
approximates the fitness function to optimize. The approximation is then used
to predict promising new solutions at a smaller evaluation cost than the original
problem. The prediction quality generally improves with a growing number of
evaluated points in the optimization process. Such models are also referred to as
surrogates [113, 15], response surfaces (especially for polynomial approaches), or
metamodels [34, 74]. A prerequisite for using them is that the expense of model
construction and prediction is lower than evaluating the fitness function; they are
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thus used primarily for expensive optimization problems.

4.2 Models in Evolutionary Algorithms

There are two main ways to integrate models into an evolutionary optimization.
In the first, a fraction of individuals is evaluated on the fitness function itself,
the remainder merely on its model. Jinet al. [61] refer to individuals that are
evaluated on the fitness function ascontrolled, and call this techniqueevolution
control. In the second approach, the optimum of the model is determined, then
evaluated on the fitness function. The new evaluation is used to update the model,
and the process is repeated with the improved model. Thissurrogate approach
evaluates only predicted optima on the fitness function, otherwise using the model
as a surrogate.

4.2.1 Evolution Control

In evolution control [61], a controlledfraction of individuals are evaluated on the
fitness function, the remainder only on the model. Assuming perfect approxima-
tion of the fitness function by the model, and computational cost dominated by
the fitness function evaluation, this produces a relative reduction in cost equal to
the fraction of uncontrolled individuals. Various implementations can be distin-
guished according to their selection of controlled individuals. Jinet al. [61] define
two main classes of control rule: inindividual-basedevolution control a fraction
of each population is controlled, while ingeneration-basedevolution control the
entire population is either controlled or uncontrolled.
In individual-based evolution control it is still an open question which of the in-
dividuals should be controlled, and the fraction of controlled individuals varies
between 10% [34] and 50% [60]. Jin et al. [60] state that when randomly con-
trolling individuals, about 50% of the offspring need to be controlled. When pre-
evaluating all solutions on the model, then evaluating the best individuals on the
fitness function, Giotiset al. [48] and Jinet al. [60] control about 40% of the
population. Emmerichet al. [34] show that for simple problems such as, e.g., a
symmetric quadratic function, controlling the best 10% of pre-evaluated individu-
als is sufficient.
For more complex problems such as multimodal or correlated functions, however,
their algorithm easily gets stuck. They address this problem by using a merit func-
tion as proposed by Torczon and Trosset [113]. Merit functions are a weighted
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sum of the model prediction and a negative density measure. The density measure
promotes unexplored regions, i.e., areas where no points have yet been evaluated.
Thus, merit functions balance the goal of finding promising solutions (exploita-
tion) with improving the model by obtaining information about new regions (ex-
ploration), thus decreasing the risk of premature convergence [113, 81].
Beltagy and Keane [33] employ Gaussian process models [73], which provide an
uncertainty measure (in terms of a standard deviation) along with the predicted
fitness function value. They only control individuals whose predicted standard
deviation exceeds a certain limit, assuming the model prediction to be accurate
otherwise. The limit is decreased linearly over the course of the evolution.
In generation-based evolution control, the entire population is evaluated on either
the model or the fitness function; this allows for better parallelization. Again, var-
ious rules have been developed to determine which generations to control. Ratle
[89] controls the first generation of his GA; subsequent generations are evaluated
only on the model until the model predictions do not improve for a given number
of generations. The next generation is again controlled. Compared to the original
GA, this approach accelerated convergence for uni- and multimodal functions. Jin
et al. [59] control generations until the error between model prediction and fitness
function drops below a certain threshold. The population then remains uncon-
trolled for a given number of generations before control resumes.
For both control methods several questions remain open. First, there is disagree-
ment about which and how many individuals of a population need to be controlled.
Then it is not clear whether all or just a fraction of evaluated points should be used
for model construction, so as to perform a global [33], respectively local (i.e., re-
cent) approximation [34]. The model’s complexity must also be appropriate for
the amount of data used in order to avoid overfitting the data.
Finally, inexact model predictions may mislead the selection operator to propagate
inferior individuals. This may be especially detrimental to optimization algorithms
that are themselves adaptive. We hypothesize:

The more information from the population is exploited by the evolu-
tionary algorithm (e.g., to adapt the mutation distribution), the higher
the fraction of controlled individuals has to be in order to provide suf-
ficient information for the adaptation process.

In other words, evolution control is based on the assumption that the evolutionary
algorithm needs very little information, which can be provided by evaluating (con-
trolling) just a fraction of the population. However, this argumentation holds only
for those inefficient algorithms that indeed use little information — for “smarter”



4.2. MODELS IN EVOLUTIONARY ALGORITHMS 41

algorithms such as CMA [52, 51] that pull much more information out of a popu-
lation, we expect that virtually all individuals must be controlled.
The success of evolution control is thus highly dependent on the fraction of con-
trolled individuals, which is difficult to determine as it depends on both the fitness
function complexity and the optimization algorithm. It is always a compromise
between avoiding the computational cost of fitness function evaluation and the
danger of a poor model misleading the optimization [59].

4.2.2 Surrogate Approach

In the surrogate approach, a fitness function model is constructed for an initial
training set of evaluated points. An optimization algorithm then searches for the
optimum of the model’s fitness prediction. The predicted optimum constitutes an
ideal candidate for an improved solution to the problem, and is therefore evaluated
on the fitness function. The result of the evaluation is added to the model’s training
data, facilitating an improved approximation of the fitness function by the model.
The procedure then iterates by searching for the optimum of the improved model.
This surrogate approach has been discussed by Torczonet al. [113]; similar meth-
ods can be found in [47, 89, 44, 81].
Similar to evolution control, the surrogate approach is in danger of getting stuck
in a local minimum unless points in unexplored regions of the search space are
added to the model’s training set. Thus, merit functions (or similar techniques)
are also in use here [113, 81]. Open issues again include the question of whether
global or local modeling should be preferred. For local models, the search for the
optimum must be limited to the region that is well-approximated by the model.
The potential reduction in computational cost is higher for the surrogate approach
than for the evolution control, especially once enough data is available to allow for
construction of a model that is accurate near the true optimum. Since the surrogate
approach proceeds sequentially from one predicted optimum to the next, however,
it is more difficult to parallelize.

4.2.3 Empirical Models

A wide variety of empirical models are used in the literature as fitness function
models for an optimization procedure. The most prominent among them are poly-
nomial models [108], artificial neural networks [60], radial basis function networks
[45, 81], and Gaussian processes [89, 61, 33, 34].
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Polynomial Models

Polynomial fitness function models — also referred to asresponse surfaces— can
easily be fitted to data with a least squares approach (see, e.g., [108]). The or-
der of the polynomial is important: quadratic or cubic polynomials are mainly
used, with quadratic polynomials best suited for continuous, unimodal problems.
Since higher-order polynomial fits tend to oscillate too much, multimodal shapes
are better approximated by splines, i.e., piecewise polynomial fits with continuity
constraints at the boundaries.

Artificial Neural Networks

Artificial Neural Networks (ANNs) [53] consist of a large number of highly in-
terconnected processing units, each aggregating information from a large number
of connected peers. Given a sufficient number of units, an ANN can approximate
any function. An ANN can be trained by adapting the weights that specify the am-
plification of signals between connected units. Among the most popular training
algorithms for ANNs iserror back-propagation[93].
A major disadvantage of ANNs is that the resulting weights of the trained network
are difficult to interpret. Another problem is the difficulty of finding an appropriate
network topology and size. In order to avoid both underfitting (i.e., bad approxi-
mation of the training data) resulting from too small networks, and overfitting (i.e.,
bad generalization) due to too large networks, often several networks of different
size and/or topology must be trained [10], and their performance compared on a
separate set of test data to estimate their generalization properties.

Radial Basis Functions Networks

The output of a Radial Basis Function Network (RBFN) [53] is a weighted sum
of radial basis functions, each characterized by its centerµ ∈ Rn in the design
space, and a function which declines with increasing distance from the center.
With Gaussian radial basis functions, for instance, the outputŷ of an RBFN is
given by

ŷ(x) =
NR∑
i=1

wi exp

(
−
∥∥µi − x

∥∥2

r2

)
, (4.1)

whereNR is the number of radial basis functions,wi their weights,µi their centers,
andr their rate of decay. Often each given data point is used as the center of a
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radial basis function. The weights are obtained by a least squares fit similar to the
polynomial approach [53, 81]. A major difficulty in RBFNs is to set the decay
parameterr, which has a large impact on the approximation. Only limited theory
and some empirical formulæ exist to address this problem. In [81], the decay
parameter is set as:

r = dmax (n NR)−1/n
, (4.2)

wheredmax is the maximal distance between the data.

Gaussian Processes

Gaussian processes (GPs) [73] specify a probabilistic model over a given set of
data points, constructed such that the likelihood of the function value given the
decision variable values is maximized for all data points. This model can then be
extended to predict the mean and standard deviation of the function value at new
data points. GPs have a small number ofhyperparameterswhich can be set by the
user, or optimized via a maximum likelihood approach.
Like ANNs, GPs can approximate any function. Their main advantage over ANNs
is their simplicity: no network size or topology must be chosen. In contrast to
the weights of an ANN, the hyperparameters of a GP have intrinsic meaning —
specifying, e.g., typical length scales — and can therefore be set using prior knowl-
edge of the problem, such as noise levels, location of discontinuities,etc. One
drawback of GPs is their computational cost: forN data points, it takesO(N3)
steps to construct the GP,O(N) to predict the mean function value at a new point,
andO(N2) to predict the standard deviation.



Part II

Advances in Evolutionary
Algorithms



Chapter 5

Convergence Limits of Multi-objective Selection
Operators

Evolutionary Algorithms are a standard tool for multi-objective optimization that
are able to approximate the Pareto front by a set of nondominated solutions in a
single optimization run. However, the convergence of different algorithms can be
limited. Here we quantify convergence as the decrease in distance in the objective
space of the current nondominated solutions to the Pareto front.
Two necessary prerequisites for convergence are defined. First, the selection op-
erator of the algorithm must be able to operate efficiently in any distance of the
Pareto front. Second, the mutation strength must adapt to the decreasing distance
to the Pareto front in order to result in an efficient algorithm. The mutation strength
is the mean deviation of the offspring from the parents.
We show that the convergence is limited for various selection operators based on
the dominance criterion and we compute an estimate for their convergence limit.
The algorithm uses self-adaptive mutation and different algorithms are analyzed
on a 2- and 3-objective test function.

5.1 Introduction

In Pareto optimization, recent research has focused on multi-objective selection
operators and in particular fitness assignment techniques. Various selection opera-
tors are compared in the literature [125, 88, 124] and according to Van Veldhuizen
and Lamont [117], the dominance criterion in combination with niching techniques
is one of the most efficient techniques for the fitness assignment. This group of al-
gorithms is referred to by Horn [55] as “Cooperative Population Searches with
Dominance Criterion” and two prominent representatives are SPEA [125] and
NSGA-II [26].
While these algorithms perform well in a number of test problems, we observe a
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stagnation in the convergence of these algorithms at a certain distance from the
Pareto front. The distance is only dependent on the selection operator and varies
not so much for different mutation or recombination operators. In this chapter, we
estimate this stagnation distance by deriving an analytical solution for a simplified
Pareto front. The distance can increase nonlinearly with the number of objectives
as analyzed by Khareet al. [63]. This raises the question, which selection op-
erators are able to converge to the Pareto front and in addition, which operators
converge efficiently?
Two alternatives to the dominance criterion are the Constraint Method-based Evo-
lutionary Algorithm (CMEA) [88] and Subdivision Method (SDM) [16]. These
algorithms perform selection by optimizing one objective, while the other objec-
tives are treated as constraints. They are able to converge to the Pareto front for
certain test cases.
In conjunction with the selection operator, the mutation and recombination oper-
ators are important for an efficient convergence and should adapt to the decreas-
ing distance to the Pareto front while converging. In recent years, some efforts
have been made in order to apply self-adaptation in multi-objective optimization.
Kursawe [68] and Laumannset al. [71] developed two implementations of self-
adaptation [101]. Kursawe’s algorithm performs selection based on a randomly
chosen objective. In his work each individual contains a separate vector of design
variables and step sizes for each objective (poliploid individuals). Laumannset al.
assign a single step size to each individual, which yields isotropic mutation dis-
tributions. Sbalzarini et al. [97] use mutative step size adaptation with a constant
adaptation factor.
In the following, different multi-objective algorithms, as proposed by Horn [55],
and described in Section3.2 are analyzed theoretically in terms of their ability to
converge to the Pareto front. Then, the implementation of self-adaptive mutation
is discussed. Finally, the performance of the different algorithms is analyzed on a
2- and 3-objective test function. In the performance comparison, the number of re-
sulting nondominated solutions of the different algorithms is allowed to be small.
This is consistent with algorithms for real-world applications as analyzing these
solutions is often an expensive process. The quality of the resulting solutions is
more important and thus the focus is on the ability of these algorithms to converge
with arbitrary precision to the Pareto front.
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5.2 Analysis of Selection Operators

We analyze different selection operators with respect to their general ability to
converge to the Pareto front. This requires that the selection operator selects effi-
ciently independently of the distance from the Pareto front. As a necessary but not
sufficient criterion for convergence an efficient selection operator must select, on
average, solutions that are closer to the Pareto front than the average solution in
the population. Some of the algorithms do not fulfill this criterion.

5.2.1 Independent Sampling

Independent Sampling generates an approximation of the Pareto front by perform-
ing several independent optimization runs with different aggregation of the objec-
tives. We analyze the Constraint Method-based Evolutionary Algorithm (CMEA)
[88] (see Subsection3.2.1) as a representative of independent sampling. In CMEA,
one objectivefh is selected for optimization, while all other objectivesfi,i 6=h are
treated as constraints. The constraint method allows full ordering among all fea-
sible solutions (if we assume that each objective vectorf occurs only once): In a
mutual comparison of two solutions one is always clearly better. If neither of the
two solution violates any constraint, the solution with the lower objective value for
fh is preferred. If one or both solutions violate at least one constraint, the solution
with the smaller sum of all constraint violations is preferred. The best solution
is a single point located at the intersection of all constraints with the Pareto front.
Thus, independent sampling is able to operate at any distance from the Pareto front
by full ordering of the solutions.

5.2.2 Cooperative Population Searches with Dominance Criterion

Cooperate population searches often use the dominance criterion in conjunction
with a niching technique. While the dominance criterion promotes the conver-
gence towards the Pareto front, the niching technique promotes diversity in the
population and thus a uniform approximation of the Pareto front. A prerequisite
for convergence is that at least one individual dominates another individual in the
population. Otherwise, all individuals are indifferent and it is not clear, which in-
dividual is closer to the Pareto front. For SPEA1/2 or NSGA-I/II the dominating
individual is an archive solution or a nondominated individual in the population,
respectively. We discuss this convergence prerequisite using a 2-objective and 3-
objective example.
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In Fig. 5.1, a simple 2-objective minimization problem is given with the Pareto
front being a straight line betweenf = {1, 0} andf = {0, 1}. SPEA1/2 or NSGA-
I/II operate with a limited number of parentsµ. SPEA1/2 contains in addition an
archive, which is set to the same size as the parent popuation. Without loss of
generality we considerµ to be small and equal toµ = 5. For the ideal case, that
all archive solutions are uniformly distributed along the Pareto front, the nondom-
inated area is at minimum [35]. In the figure, the bounds of the nondominated area
are given by the Pareto front and the dashed lines. This area contains indifferent
solutions, i.e., solutions of the same quality as the considered archive solutions,
although these solutions may have a certain distance to the Pareto front.
For the limited population sizeµ, a selection operator may select a new solution
within this area over one of the archive solutions. The resulting archive is then
clearly worse than the previous one. Here, the selection operator based on domi-
nance fails.
For the considered ideal case in 2D, the maximal distance of a nondominated so-
lution to its closest point on the Pareto front can be calculated as:

D =
1√

2(µ− 1)
. (5.1)

Thus, the minimal number of archive solutionsµmin in order to dominate a solu-
tion in a distanceD from the Pareto front scales with:

µmin ∼
1
D

(5.2)

In Fig.5.2(left), a 3-objective minimization problem is given with the Pareto front
being an equilateral triangle in unit space. First, we consider an archive size of
µ = 3, with each archive solution in one corner of the Pareto front. The resulting
nondominated volume is a tetrahedron with the 3 archive solutions and the point
f = {1, 1, 1} as vertices. The maximal distance of a nondominated solution to its
closest point on the Pareto front is equal to the height of the tetrahedron which is
equal toD = 2

3

√
3. In order to reduce this distance, we use resembling tetrahe-

dra of smaller size. For tetrahedra of half of the size of the initial tetrahedron 6
nondominated solutions are needed and the nondominated volume is given by the
4 tetrahedra as shown in Fig.5.2 (right). The height of each tetrahedron is then
equal toD = 1

3

√
3. For reducing the nondominated tetrahedra by a factor ofk,

µ =
∑k+1

i=1 i = 1
2 (k + 1)(k + 2) solutions are needed. Thus the maximal distance



5.2. ANALYSIS OF SELECTION OPERATORS 49

D can be computed as:

D =
2

√
3
(√

2µ + 1
4 −

3
2

) . (5.3)

The minimal number of archive solutionsµmin, necessary to dominate a solution
in distanceD from the Pareto front, scales for 3 objective with:

µmin ∼
1

D2
(5.4)

For two simple Pareto fronts, we have shown in Eqns.5.1 and5.4 that the con-
vergence of selection operators based on dominance is limited and scales with the
population or archive size. Similar results can be expected for differently shaped
Pareto fronts. For algorithms like SPEA1/2 [124] and NSGA-I/-II [26] the scaling
is experimentally validated in Subsection5.3.2.

f1

2f

10

0

1 D

Figure 5.1: Disadvantage of the dominance as selection criterion: for a limited number of
archive solutions [+ symbols], which may be on the Pareto front [solid line], the objective
space cannot be completely dominated, e.g., the solution [x symbol] is not dominated, even
though it is still far from the Pareto front.

5.2.3 Cooperative Population Searches without Dominance Crite-
rion

This class of optimization approaches converges towards the Pareto front in a sin-
gle optimization run, but does not use the dominance criterion in the selection
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Figure 5.2: Disadvantage of the dominance as selection criterion: for a limited number of
archive solutions [+ symbols], which may be on the Pareto front [solid line], the objective
space cannot be completely dominated. The size of the nondominated tetrahedra [dashed
lines] is dependent on the number of archive solutions.

operator. One representative is the Subdivision Method (SDM) [16], as introduced
in Subsection3.2.3. Similar to the CMEA, SDM performs selection based on a
constraint approach. However, several selections with different constraint values
are done in one population. The best solution for each selection is a single point
located at the intersection of the constraints with the Pareto front. Thus, similar to
CMEA, SDM is also able to operate at any distance from the Pareto front by full
ordering of the solutions.

5.3 Experimental Analysis

We experimentally analyze the performance of the 3 different classes of multi-
objective algorithms and theoretically discussed in the previous section. For sim-
plicity, just one representative of each class is considered in order to focus on the
general convergence properties and not on the convergence speed.
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5.3.1 Combining Self-adaptive Mutation with Multi-objective Se-
lection Operators

In Section5.2, an efficient selection operator was introduced as a prerequisite for
converging towards the Pareto front. A further prerequisite is also an efficient re-
combination and mutation operator. While converging, the mutation strength has
to be adapted in order to take into account the decreasing distance from the Pareto
front.
We discuss the integration of self-adaptive mutation as described in Section2.3
into the various selection operators. The integration is not obvious since self-
adaptive mutation was introduced for single objective optimization [101] with the
goal to converge to a single (global) optimum. For Pareto optimization, the ques-
tion arises how self-adaptation will perform when converging to a Pareto front
instead to a single point.

Independent Sampling

In independent sampling, an approximation of the Pareto front is obtained by per-
forming several optimization runs with aggregating differently all objectives into
a single figure of merit. Independent sampling is an ideal candidate for applying
self-adaptative mutation as the multi-objective problem is transformed to a set of
single objective problems. Thus, self-adaptive mutation of single objective opti-
mization is directly applicable.
Some knowledge of previous runs can be exploited by using the best solution(s)
obtained so far as initial solution(s) for the next optimization run [88]. The CMEA
of Subsection3.2.1is used as representative of independent sampling for the ex-
perimental analysis.

Cooperative Population Searches with Dominance Criterion

Cooperative population searches that base on the dominance criterion converge in a
single run towards the Pareto front. Applying self-adaptation in form of correlated
mutation has been shown to be difficult for this class of selection operators for
various reasons:

• The usually elitistic selection scheme is not beneficial for self-adaptation,
since it might inhibit the adaptation of the strategy parameters by preserv-
ing parents with miss-adapted strategy parameters over several generations.
These parents are unlikely to produce superior offspring.
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• For self-adaptive mutation, recombination of the individual step sizes is con-
sidered beneficial as it levels out the noise in the adaptation. This class of
selection operators, however, promotes a uniform distribution of solutions
along the Pareto front. It is an open question, which of these solutions
should be recombined. The different solutions converge to different parts
of the Pareto front and might have different efficient strategy parameters for
the mutation.

• Adapting the mutation distribution is only necessary, if the initial mutation
distribution does not fit to the function topology or if the distance of the
intial population to the optimum (Pareto front) has to be decreased over
several orders of magnitude. Adaptation for this class of selection operators
is questionable since the convergence is limited as described in the previous
Section5.2.

• In correlated mutation, lines of equal probability of the mutation distribution
are ellipses that can be arbitrarily rotated. The analysis of Sadnik and Glas
[94] show that for CMA-ES, the ellipses orient such that the main principal
axis are in the decision space parallel to the Pareto front, while towards the
Pareto front the mutation strength decays. This promotes generating further
nondominated solutions. However, it does not promote the convergence to
the Pareto front. Thus, using correlated mutation becomes inefficient.

Nevertheless, we combine self-adaptation with this class of selection operators
in order to analyze if any adaptation occurs. The mutation is performed after
intermediately recombining two parents.

Cooperative Population Searches without Dominance Criterion

Self-adaptation can be applied to SDM by the following procedure: The selection
process can be considered as performing several local selections in a “subdivided”
objective space with the constraints being responsible for the subdivision. Each
local selection selects a set of individuals according to the given constraints. Each
selected set may have a different mean distance to the Pareto front, resulting in dif-
ferent efficient strategy parameters. Thus, recombination as described in Section
2.3is always performed within each selected set. Finally, self-adaptive mutation is
applied to the recombined individuals. Similar to Independent Sampling, the SDM
converges towards a fixed set of points on the Pareto front. Thus, self-adaptive mu-
tation is applicable to SDM.
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5.3.2 Experimental Results

The different selection operators are analysed on the test function SPH-m for
m = 2 andm = 3 objectives andn = 10 decision variables. The initial pop-
ulation of each optimization run is sampled from a uniform distribution within
xi = [−10, 10]. The main interest is on the convergence of the optimization pro-
cess to the Pareto front. This is is addressed by plotting the mean distanceDOS

from Section3.5of the parent population (SDM, CMEA) and the archive solutions
(SPEA2) over the number of function evaluations. The distribution of the solutions
is of minor importance and is analyzed by plotting the final parent population and
archive of the optimization run in the objective space. The experimental results are
given separately for the 3 considered optimization approaches. For each approach
and test function,106 function evaluations are performed.

Independent Sampling

The CMEA is analyzed as a representative of Independent Sampling. For 2- and
3-objective test functions, the Pareto front is approximated by performing inde-
pendent optimization runs with a(15, 3, 100) strategy, implementing correlated
mutation. All initial step sizes are set to 1 and17 · 103 solutions are evaluated for
each run, leading in total to about106 evaluated solutions for all six optimization
runs.
First, the 2-objective case is considered. The optimization starts with 2 single
objective optimization runs forf1 andf2 from random initial solutions. Then, 4
constraint optimization runs are performed, wheref2 is optimized andf1 is treated
as constraint. The best solution of the two single objective optimization runs have
f1 values of approximately 0 and 2, respectively. Thus, the constraints onf1 for
the 4 remaining runs are set uniformly between the two values as 0.4, 0.8, 1.2, and
1.6.
For the 3-objective case, 3 single objective optimization runs are started forf1,
f2 and f3. Then 3 constraint optimization runs are started, wheref3 is opti-
mized andf1 and f2 are constrained. The constraints are set to{f1, f2} =
{1, 2}, {2, 1}, {1, 1}, respectively. For the constraint optimization runs, some
knowledge of previous runs is exploited by using the best solutions obtained so
far as initial solutions for the next run [88]. We consider a hard constraint: If so-
lutions violate a constraint, they are not considered for selection, given a sufficient
number of solutions do not violate any constraint. Otherwise, the solutions that do
not violate the constraint are selected first and then solutions are added dependent
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on their constraint violation. This constraint ensures a convergence to a point on
the Pareto front. A soft penalty may converge to a point in the neighborhood of
the Pareto front.
Fig. 5.3shows the performance measure for all 6 optimization runs, which repre-
sents the mean distance of the parent population at each generation to the Pareto
front. The figure shows large differences in the convergence between the different
runs. While the single objective optimizations converge linearly, the convergence
of the constraint optimizations slows down at a distance of aboutDOS = 10−3

to the Pareto front. Fig.5.4 addresses this aspect for the 2-objective problem and
shows the contour lines forf1 andf2 and the Pareto front in the (x1,x2) space.
Each contour line off1 represents a different constraint setting. The optimum for
each constraint optimization is located in the intersection of af1 contour line with
the Pareto front. In the vicinity of the optimum, the topology is badly scaled and
oriented such that it is difficult to optimize with the given self-adaptation scheme
(compare Hansen and Ostermeier [52], Fig. 2).
For the 2-objective problem, Fig.5.9 (left) shows the final parent population of
each optimization run and the Pareto front. While the solutions are equally spaced
in f1 axis, the distribution is nonuniform along thef2 axis, with the highest density
on areas that are nearly parallel to thef1 axis. This results from treatingf1 andf2

differently as constraint and objective, respectively.
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Figure 5.3: Convergence of CMEA with self-adaptive mutation for the 2-objective (left)
and 3-objective (right) sphere problem SPH-m with n = 10 decision variables. The mean
distanceDOS of the current parent population to the Pareto front is shown [solid line] as
well as the mean standard deviationσ of the mutation distribution [dash-dotted line].



5.3. EXPERIMENTAL ANALYSIS 55

0 0.5 1 1.5
0

0.5

1

1.5

x
1

x 2

f
1
=0.4

f
1
=0.8

f
1
=1.2

f
1
=1.6

f
2 =0.25

f
2 =0.5

f
2 =1

f2 =2
f
2
=0 

f
1
=0 

Figure 5.4: Convergence difficulty in the CMEA for optimizingf2 while settingf1 as con-
straint. The optimum for a specific constraint value forf1 is located at the intersection of
the Pareto front [bold solid line], with the contour line off1 [solid line]. In the vicinity of
the optimum, the topology is badly scaled and equals a long narrow valley with the main
expansion parallel to the line given by the equationx1 = x2.

Cooperative Population Searches with Dominance Criterion

For SPEA, different archive sizes ofµ = 10, 30, 100, and 300 are analyzed for the
2- and 3-objective sphere problem SPH-m. The number of parents and offspring
is set equal to the archive size, and in total106 solutions are evaluated. In order
to analyze just the effect of the archive, a normally distributed mutation with zero
mean and constant standard deviation between0.0005 and0.002 is used with a
mutation probability of 15% per variable. Discrete and intermediate recombina-
tion of 2 parents is considered with 33% probability each. These settings are taken
from Section3.3and lead to the best results in terms of the final convergence of the
algorithm to the Pareto front. The actual convergence speed of SPEA is of minor
interest.
Fig. 5.5shows the convergence measureDOS, which represents the mean distance
of the archive solutions to the Pareto front, measured in objective space. It can
clearly be seen that the convergence stagnates at a certain distanceDOS from the
Pareto front. This distance decreases with increasing archive size. Comparing
the 2- and 3-objective optimization results,DOS is significantly larger for the 3-
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objective problem than for the 2-objective problem. In addition, increasing the
archive size leads to a smaller relative decrease inDOS for the 3-objective prob-
lem.
This underlines the previously derived estimated distance in Eqns.5.1 and 5.4:
In order to obtain the same mean distanceDOS from the Pareto front, the neces-
sary number of archive solutions is larger for 3 objectives than for 2 objectives.
From Fig.5.5, the mean ofDOS is computed for the stagnation period between
N = 5·105 andN = 106 and compared to the estimated distance D from Eqns.5.1
and5.4. Since the Pareto front of the test functions is in each objective direction
twice as large in size as the unit Pareto front from the estimation, the estimated
valueD is multiplied by a factor of 2. The result is given in Fig.5.7. The exper-
imental results agree with the two equations. The slope ofD is equal toDOS for
the 2 and 3 objective problem. However, there is a constant offset between the two
curves. This offset may have different reasons. The estimated distance was com-
puted for some ideal assumptions (a straight Pareto front, uniformly distributed
archive solutions, etc.). In addition, the clustering procedure that limits the archive
size of SPEA may have some effect. This effect is analyzed by replacing the clus-
tering procedure by randomly deleting solutions from the archive. The results are
also added to Fig.5.7. While for the 2-objective problem, the resulting curve dif-
fers from the clustering, the difference is minor for the 3-objective problem.
The distribution of the final archive solutions is shown for the 2-objective problem
with an archive size of 300 in Fig.5.9. The archive approximates the Pareto front
uniformly by a large number of nondominated solutions.
Using self-adaptive mutation leads to worse results than for the constant step size.
The results are given in Fig.5.5 and show the mean distanceDOS as well as the
mean step size of the archive population. The step size decreases as the archive
converges towards the Pareto front and stagnates as the distance of the archive
stagnates. For the case of the 2-objective problems with large populations, the
performance is especially worse than for the constant step size. Then, the adapa-
tion process is slower due to the large population size and the consequently lower
number of generations in the optimization run. The results show that self-adpation
reduces the step size, however, at a very moderate speed.

Cooperative Population Searches without Dominance Criterion

The SDM is now analyzed on the multi-objective sphere. For each local selection
a (8, 3, 56) strategy is used. The convergence measureDOS for the SDM is set to
the mean distance of all selected parents to the Pareto front, measured in objective
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Figure 5.5: Convergence of SPEA with an optimized mutation step size for the 2-objective
(left) and 3-objective (right) sphere problem. The mean distanceDOS of the current archive
to the Pareto front is given for archive sizes of 30 [solid line], 100 [dashed line], and 300
[dash-dotted line].

space. For the 2-objective problem, 3 intervals are chosen along each objective
axis, leading in total to 6 local selections and a maximal number of 48 parents and
336 offspring. For the 3-objective problem, each objective axis is divided into 2
intervals, leading to a total number of 12 local selections and a maximal number
of 96 parents and 772 offspring. The bounds of the intervals are obtained from the
current nondominated front of the optimization run and thus no user specification
is needed. Similar to CMEA, a global intermediate recombination of the parents
from each local selection is performed for the variables and step sizes. No recom-
bination is applied to the rotation angles.
In total 106 solutions are evaluated and the convergence measure is plotted in
Fig. 5.8. In addition, the mean step size of the mutation distribution is given.
The convergence speed decreases at a value of about10−3 for the same reason
as for the CMEA: The convergence becomes difficult due to the constraint opti-
mization. Here, the convergence speed for the 3-objective problem is slower than
for the 2-objective problem. This result is mainly due to the double number of
local selections. The parents of the final population are plotted in Fig.5.9and are
uniformly distributed along the Pareto front.
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Figure 5.6: Convergence of SPEA with self-adaptive mutation for the 2-objective (left) and
3-objective (right) sphere problem. The mean distanceDOS of the current archive to the
Pareto front is given (upper two figures) as well as the mean standard deviationσ of the
mutation (lower two figures) for archive sizes of 30 [solid line], 100 [dashed line] and 300
[dash-dotted line].

5.4 Conclusions

Evolutionary Algorithms for multi-objective optimization should implement effi-
cient techniques in order to improve convergence towards the Pareto front, while
approximating it uniformly. We studied three different classes of multi-objective
algorithms by comparing one representative of each class. The question was
which of these algorithms is able to converge to the Pareto front with an arbitrary
precision.
We found that cooperative population searches like SPEA that use the dominance
criterion in the fitness assignment cannot approximate the Pareto front with
arbitrary precision. For a 2-objective optimization problem, the necessary number
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Figure 5.7: Comparison between theoretical and experimental results for SPEA on the
2-objective (left) and 3-objective (right) sphere problem SPH-m with n = 10 decision
variables. For archive sizes ofµ = 30, 100, and 300 the mean value ofDOS is plotted for
limiting the archive size as described in SPEA2 [o] or by randomly deleting solutions [x].
Furthermore, the theoretical estimateD [no symbol] from Eqns.5.1and5.4 is added.

of archive scales inversely with the final distance of solutions to the Pareto front.
For 3 objectives, convergence becomes even more difficult, since the necessary
number of archive solutions scales inversely with the distance squared. This result
holds for other algorithms using the dominance criterion and a limited population
(e.g., NSGA-II, SPEA2).
The algorithms CMEA and SDM do not use dominance. In these algorithms, one
objective is selected for optimization, while the other objectives are treated as
constraints. Both algorithms converge to a fixed number of discrete points on the
Pareto front and can reach theoretically arbitrary precision. In the experimental
comparison, the convergence velocity decreased over the optimization run,
since the imposed constraints modify the optimization problem such that the
problem becomes similar to a correlated and misscaled function. CMEA finds
one optimal point in each optimization run and thus needs to be run for several
times in order to find an approximation of the Pareto front. In contrast, SDM
finds an approximate Pareto front in a single optimization run. It was shown that
self-adaptation can easily be applied to CMEA and SDM and that both algorithms
converge successfully to the Pareto front. As an additional result of this study, the
comparison shows that they clearly outperform SPEA in terms of the final distance
to the Pareto front as show in Table5.1. Comparing CMEA and SDM in terms of
convergence speed, CMEA is faster on the considered test function, although it is
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Figure 5.8: Convergence of SDM with self-adaptive mutation for the 2-objective (left) and
3-objective (right) sphere problem SPH-m with n = 10 decision variables. The mean
distanceDOS of the current parent population to the Pareto front is given [solid line] as
well as the mean standard deviationσ of the mutation [dash-dotted line].
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Figure 5.9: Location of the best solution from each independent run of CMEA (left), the final
archive of SPEA (middle) and final parent population of SDM (right) is given [x] together
with the Pareto front [bold line].

not known if this generalizes to other functions and to other adaptation schemes.
For CMEA, one has to decide before optimization, which objective is optimized
subject to the other objectives, which are then treated as constraints. This is in
contrast to SDM that gives no a-priori preference to any of the objectives.
For the considered test functions, SPEA results in a larger number of nondomi-
nated solutions than CMEA and SDM. However, a small number of converged
solutions is often sufficient, especially since in real-world applications the analysis
of these solutions is often expensive. Thus, algorithms like CMEA and SDM are
interesting alternatives to the well established algorithms based on the dominance
criterion.



5.4. CONCLUSIONS 61

Table 5.1: Comparision of the final mean distanceDOS of CMEA, SPEA, and SDM to the
Pareto front after106 evaluated solutions.

Algorithm DOS

2 obj. 3 obj.

CMEA 8.01e-06 1.55e-05
SDM 3.25e-05 1.81e-04
SPEA-2, archive limited by k-nearest neighbor cluster algorithm
µ = 10 1.60e-02 1.02e-01
µ = 30 4.16e-03 5.24e-02
µ = 100 8.80e-04 2.53e-02
µ = 300 3.25e-04 1.20e-02
SPEA-2, archive limited by random deletion
µ = 10 3.06e-02 1.13e-01
µ = 30 8.82e-03 5.47e-02
µ = 100 4.13e-03 1.97e-02
µ = 300 1.27e-03 1.45e-02

Some difficulty in converging has been found for CMEA and SDM. CMEA and
SDM transfer the multi-objective sphere problem into a constraint optimiza-
tion problem that may impose additional optimization difficulties. While the
optimization run of a single objective of the sphere problem converges linearly
(see Fig.5.3a, solid lines), the convergence speed of the constraint optimization
problem decreases over the number of function evaluations (see Fig.5.3a,
dash-dotted lines). In general the question arises if objectives could be aggregated
by a different method, leading to a linear convergence also in the constraint case.
In addition, Hansen and Ostermeier [52] stated that self-adaptation does not
efficiently adapt to arbitrary correlation distributions and thus methods like the
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) [52] might
perform better on the constraint problem.



Chapter 6

Multi-objective Evolutionary Algorithm for Noisy
Objective Functions

This chapter introduces a multi-objective evolutionary algorithm capable of han-
dling noisy problems with a particular emphasis on robustness against unexpected
measurements (outliers). The algorithm extends the Strength Pareto Evolutionary
Algorithm (SPEA) of Zitzler and Thiele [125] by re-evaluating archive solutions
and extending the update of the archive. Furthermore, the new concept of a domi-
nation dependent re-evaluation interval is presented. Several tests on prototypical
functions underline the improvements in convergence speed and robustness of the
extended algorithm for noisy objective functions and outliers in the evaluated pop-
ulation.

6.1 Introduction

Although the number of applications in the field of multi-objective (Pareto) op-
timization is increasing, problems with noisy objective functions are rarely con-
sidered, even though noise is present in almost every real-world application. As
evolutionary algorithms do not require gradient information, they are already in-
herently robust against small amounts of noise, a feature which is sufficient for
many problems. In several experiments, however, large-amplitude noise is induced
from various sources, such as unsteady operating conditions, limited measurement
precision, and time averaging in restricted sampling time. In addition, measure-
ments may fail, leading to erroneous outliers, characterized by nonphysical objec-
tive values. Standard multi-objective evolutionary algorithms cannot handle these
difficulties, and there is a need to extend their basic components to overcome these
difficulties.
While for single objective optimization, several studies of noisy objective func-
tions have already been performed [90, 79, 4], for multi-objective optimization,
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limited results are available in literature. Averaging the parent population, a rem-
edy for noisy single objective problems, is not useful in this case since a diverse
population is desired to converge toward the Pareto front. Two recent publica-
tions [112, 57] adapt the Pareto ranking scheme [49] to noisy solutions by defining
probabilities of dominance between them. Both methods assume either a uniform
or normal distribution of the noise and can benefit from a priori knowledge of its
magnitude.
Arnold and Beyer [3] analyzed elitist optimization algorithms like the simplex
method or(µ + λ) evolution strategies on noisy functions. In elitist algorithms,
solutions may survive an infinite time. They showed that these algorithms can eas-
ily be trapped in noisy solutions, if the noise level is significantly large. Further-
more, they demonstrated that the robustness against noise can be improved by re-
evaluating solutions in certain intervals. We transfer this concept to multi-objective
optimization and apply it in particular to SPEA, an elitist optimization algorithm.
We extend the concept by assigning to each solution a dominance-dependent re-
evaluation interval. The interval is inversely proportional to the number of solu-
tions that it dominates. Thus, solutions that are very dominant are assigned the
shortest interval and are re-evaluated first in order to limit their impact on the
overall population. In addition, an extended update mechanism for the archive is
defined. These principles are applied to SPEA and denoted as the noise-tolerant
SPEA (NT-SPEA).
In this chapter, a survey on modifications for SPEA with respect to robustness
against noise is presented. All algorithms are analyzed on noisy and noise-free
test functions. The analyzed noise reflects the characteristics of the intended ap-
plication in Chapter10.

6.2 Noise and Noise-tolerant Multi-Objective Evolutionary Al-
gorithms

This section describes two different types of noise, which can be present in real-
world applications. Furthermore, different modifications for SPEA are presented
in order to make the algorithm more robust against noise.

6.2.1 Definition of Noise in Applications

In experiments and industrial configurations, we can always detect different re-
sults for repeated measurements of the same operating point. The differences are
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attributed to noise and unobserved factors in the setup.
Noise may occur in various areas in the experiment: The setting of the operating
conditions is within a limited precision. In the realization, the operating condition
may vary over time and finally measurement errors occur. It is up to the careful
setup by the experimenter to keep the noise within a limited range. We define this
noise, which is present in all measured experiments, asexperimental noise. It is of-
ten modeled by a normal distribution specified by mean and standard deviation. In
addition, during an automated optimization cycle, an experimental measurement
may fail completely, producingoutliers, i.e., arbitrary nonphysical results. This
occurs very rarely, but may have large impact on the automated process optimiza-
tion if not recognized and captured by some penalty function. Outliers cannot be
described by a statistical model with given mean and deviation, but are best mod-
eled by a probability of occurrence.
Noise and outliers influence the multi-objective optimization process by mislead-
ing the selection operation. Hence unrealistic inferior solutions may dominate
superior ones, thus delaying or completely misleading the convergence to an unre-
alistic Pareto front.

6.2.2 Non-Elitist Strength Pareto Evolutionary Algorithm

The presence of noise affects the fitness assigned to an individual. This may cause
inferior solutions to occasionally win in the selection process. Multi-objective evo-
lutionary algorithms, which implement elitism, would then select these solutions
into the archive, thus misleading the entire optimization run by participating in
the selection process. More importantly, these solutions may dominate other so-
lutions in the archive, and in the worst case all other solutions in the archive are
then removed. In order to avoid this, a first and simple modification oforiginal
SPEAof Zitzler and Thiele [125] is proposed. We define anon-elitistSPEA algo-
rithm. In each generation, the archive is filled with the nondominated solutions of
the current population. Nondominated solutions from previous generations are not
considered.

6.2.3 Statistical Strength Pareto Evolutionary Algorithm

Re-evaluating a solution several times and taking the mean as a statistical estimate
can decrease the level of noise in an objective function. Implementing this ap-
proach into SPEA is simple and is in the following referred to asstatistical SPEA.
The disadvantage of this concept is the increased evaluation cost per solution. For
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the performance comparison in the next section, 7 evaluations are averaged per
solution.

6.2.4 Estimate Strength Pareto Evolutionary Algorithm

The Estimate Strength Pareto Evolutionary Algorithm (ESPEA) of Teich [112]
modifies the SPEA algorithm by introducing aprobability of dominance. It is as-
sumed that each objective valuef cannot be computed exactly, but can be bounded
within a property interval[fL, fU], wherefL and fU are the lower and upper
bound of the interval, respectively. Teich assumes that the probability of the func-
tion value is uniform in the interval. These assumptions lead to the new definition
of a probability of dominance. If two solutions with overlapping property intervals
are compared, the dominance has to be assigned by a probability. Teich computed
the probability for minimizing an arbitrary number ofm objectives. If two so-
lutions a andb with the property intervals[aL

i , aU
i ] and [bL

i , bU
i ], i = 1, . . . ,m,

respectively, are compared, the probability thata dominatesb is given by

p(a � b) =
m∏

i=1


0 , if aL

i > bU
i ,

1 , if aU
i < bL

i ,
1

aU
i −aL

i

∫ bLi
y=min{aL

i ,bLi }
dy

+
∫min{aU

i ,bUi }
y=max{aL

i ,bLi }
bUi −y

bUI −bLi
dy , otherwise.

(6.1)

Three different dominance relations are distinguished in the equation. First, so-
lution a does not dominateb (p(a � b) = 0) if at least one lower bound of the
property intervalsaL

i is larger than the corresponding the upper boundbU
i . Second,

the solutiona dominatesb (p(a � b) = 1), if the upper bound of all the property
interval aU

i are smaller than the lower boundsbL
i for all objectives. In the third

case,a dominatesb with a certain probabilityp(a � b) ∈]0, 1[, if for all objectives
i the lower boundaL

i is smaller thanbU
i and at least one boundaU

i is larger than
bL
i .

Assuming that the values fora andb, obtained by test functions or real applica-
tions, are in the middle of the property intervals and both intervals are of size2δ,
the interval bounds can be computed asaL

i = ai − δ, aU
i = ai + δ, bL

i = bi − δ
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andbU
i = bi + δ and Eqn.6.1can be rewritten as

p(a � b) =
m∏

i=1


0 , if ai > (bi + 2δ),
1 , if ai < (bi − 2δ),
1
2δ (bi − ai + δ)
+ 1

8δ2 sgn(ai − bi) (ai − bi)
2 , otherwise,

(6.2)

where sgn is the signum function. Since for the principle of a probability of dom-
inance, the distinction between nondominated and dominated solutions is fuzzy,
the archive update needs to be modified. Here, we differ slightly from Teich’s
update of the archive. First, the current populationPλ is added to the archiveA
generating an extended archiveA′. For each solutiona in A′, the mean probability
R of being dominated by a solutionb in A′ is computed by:

R(a) =
1

N − 1

∑
b∈{A′}:b 6=a

p(b � a), (6.3)

whereN is the number of solutions inA′.
Then, all solutions withR(a) > α are removed from the archive. The parameter
α scales the fuzziness of the archive. For increasingα, more solutions remain in
the archive and the archive changes to a more fuzzy nondominated front.
This approach corresponds with the results of Arnold and Beyer [4]. They com-
puted the progress rates of the (µ, λ) evolution strategy for noisy single objective
problems and found that selecting a set ofµ parents out ofλ individuals leads to a
higher convergence speed than just selecting the best individual. This observation
is in contrast to the noise-free case, where selecting the best solution leads to the
highest convergence speed [90]. The (µ, λ) strategy harmonizes with the fuzzy
nondominated front.
For better comparison, we use the standard clustering algorithm of SPEA to keep
the archive size limited. This is valid, since the core aspect of the ESPEA is the
concept of a dominance probability and not the clustering. The fitness is assigned
in two steps. First, the fitnessS of each archive solutiona is computed as:

S(a) =
1

N + 1

∑
b∈{P∪A}

p(b � a), (6.4)

whereN is the number of solutions in the unified set of archiveA and population
Pλ. The fitness of a solution in the population is equal to one plus the fitness
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of the archive solutions, by which it is dominated with a probability larger than
a thresholdα. ESPEA contains two additional strategy parameters, which are
the thresholdα and the size of the property intervalsδ. A drawback is that one
needs to set the interval size before optimizing, such that the interval reflects the
size of the noise in the objective function. In addition, if the noise varies for
the different objectives, separate property interval sizes have to be chosen for the
different objectives.

6.2.5 Noise-tolerant Strength Pareto Evolutionary Algorithm

We propose two modifications for SPEA and denote the resulting algorithm as the
Noise-tolerant Strength Pareto Evolutionary Algorithm (NT-SPEA). Arnold and
Beyer [3] showed that elitist algorithms can easily be trapped in noisy solutions,
if the noise level is significantly large. To overcome this problem, we described
in Subsection6.2.2a non-elitist SPEA that selects individuals by a(µ, λ) scheme.
One disadvantage of this algorithm is that noise reduces the selection pressure [79],
suggesting that elitism, which increases the selection pressure by conserving elite
solutions, should be used to compensate. To successfully use elitism in a noisy
environment, further modifications are needed to ensure fast convergence while
maintaining robustness to noise.
Arnold and Beyer [3] proposed to keep the elitist algorithm, but re-evaluate so-
lutions in certain intervals and assign always the re-evaluated objectives to the
solutions. We transfer this proposal to multi-objective optimization and extend it
by the following modifications applicable to SPEA:

1. Re-evaluation of archive solutions with dominance-dependent intervals:
Following the idea of Arnold and Beyer [2, 3], we re-evaluate solutions in
the archive of SPEA in certain intervals. Re-evaluation allows solutions to
stay in the archive for an infinite time, although, their function values will
change due to the noise in the evaluation. We extend this idea by assigning
a dominance-dependent re-evaluation intervalκ to each individual instead
of a fixed interval. The interval is variable and related to the dominance
of a solution. It is shortened, if the solution dominates a major part of the
archive. This limits the impact of a solution and safeguards against outliers.

2. Extended update of the archive:SPEA updates the archive in every gener-
ation by adding the current population to the archive and then removing all
dominated solutions. We extend the update toall solutions with non-expired
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re-evaluation intervals. This hinders loss of information, since solutions that
were removed by clustering or domination may reenter the archive.

With these modifications, NT-SPEA uses the advantage of an archive as conver-
gence accelerator, but it reduces the risk induced by outliers.
The dominance-dependent re-evaluation interval of an individual is assigned ac-
cording to Fig.6.1. The interval is measured in generations. For dominating less
than a fractionc1 of the archiveA, the maximal interval lengthκ = κmax is as-
signed to the individual. For dominating more than a fractionc2 of A, the minimal
interval length ofκ = 1 is assigned. In between these two fractions, the interval
length is interpolated in discrete steps of one generation. In mathematical form,
the interval length is computed as:

κ(c) =


κmax , if c < c1,
1 , if c > c2,

rnd
(
κmax − c−c1

c2−c1
(κmax − 1)

)
, otherwise,

(6.5)

wherec is the fraction of the archive that is dominated by a solution in the pop-
ulation and rnd rounds the result to the next integer. The dominance-dependent
re-evaluation intervalκ reduces the impact of a solution. An individual that dom-
inates a large fraction of the archive has a high chance of being selected in the
selection process, but is assigned the shortest interval length.
The re-evaluation allows nondominated solutions to stay in the selection process
as long as the re-evaluation leads to a nondominated solution. In the case of an
outlier, it is not likely, that the re-evaluated solution is again an outlier with good
objective values and hence it would be deleted from the archive. On the other
hand, solutions with good design variable settings are likely to be nondominated
again, assuming that the effect of noise is limited.
The extended update considers the nondominated solutions among all solutions
with non-expired re-evaluation intervals for the update of the archive. Since the
assigned intervals differs between the solutions, the set of nondominated solutions
changes. Dominated solutions become nondominated ones dependent on the re-
evaluation result of their dominator. This is especially important if a noisy solution
or an outlier dominates a large fraction of the archive. The dominated solutions are
then removed from the archive. The noisy solution or outlier is assigned a short re-
evaluation interval. After the re-evaluation, the removed nondominated ones may
be re-selected to the archive. With the original update of SPEA, their information
is lost. After the update of the archive, the clustering algorithm of SPEA is used in
order to get a limited number of uniformly distributed archive solutions. In SPEA,
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solutions of the population and archive participate in the selection process.
With these two modifications, the noise-tolerant SPEA is given by:

Algorithm NT-SPEA

1. begin
2. Generate an initial populationPλ of random individuals and an

empty archiveA.
3. Evaluate the individuals inPλ.
4. while termination criterion is not fulfilleddo
5. Assign interval length: Compute for each individual inPλ the

fraction of the archiveA that it dominates. The interval lengthκ
of an individual is inverse proportional to the fraction (see Fig.6.1).

6. UpdateA: Remove all solutions fromA and refill it with all
solutions, whose re-evaluation interval is not expired. Then remove
all dominated solutions. Limit the size ofA by clustering.

7. Fitness assignment: Assign fitness to the individuals inPλ andA.
8. Selection: Use tournament selection for selecting the parent

populationPµ from Pλ ∪A.
9. New population: Generate a new populationPλ by recombining

and mutating individuals fromPµ.
10. Evaluate the individuals inPλ.
11. Re-evaluation: re-evaluate the solutions fromA depending on their

re-evaluation interval.
12. end while
13. end

6.3 Performance Comparison

6.3.1 Generation of Noisy Test Functions

From Section3.4, the two-objective test function DEB and the three-objective test
function SPH-3 are chosen as noise-free functions for the performance compari-
son. These two functions will be used as a basis to generate noisy test functions
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Figure 6.1: Dependence of the re-evaluation intervalκ of an individual on the fractionc
of the archive that it dominates.κ decreases from a maximal valueκmax, if the individual
dominates more than the fractionc1 until it reaches a minimal value ofκ = 1 at c2 .

and for comparing the performance of the algorithms to the noise free case.
For theexperimental noise, we assume that the noise can be modeled by a normal
distribution with zero mean and standard deviationσN and a noisy test function is
generated by adding noise to each objective functionfi with:

fi = fi + zi, zi ∼ N (0, σ2
N ), (6.6)

wherezi is a random number, taken from a normally distributionN (0, σ2
N ) with

zero mean and standard deviationσN . The standard deviation is set toσN = 0.8,
which is about half the maximal difference in the objective function values for the
Pareto solutions. The random number is computed separately for each objective
and individual in the evolution.
The second type of noise that was introduced in Subsection6.2.1 refers to the
random occurrence ofoutliers. For the modeling in a test function, we define a
probabilitypo for the occurrence of an outlier. Since we consider the minimization,
reducing an objective value has a stronger influence on the optimization process
than increasing the value by giving a solution with reduced values a higher chance
to survive. Therefore, we reduce the objective value by dividing it by a factor of
10, if an outlier occurs. The large factor is chosen in order to produce a significant
change in the objective value. We write test functions with outliers by:

fi =
{

1
10fi , if p < po, p ∼ U(0, 1)
fi , otherwise

, (6.7)
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whereU(0, 1) is a uniform distribution of random numbers in the interval[0, 1].
The probability of an outlier is small and set topo = 0.01.
Using the two test functions DEB and SPH-3 with no noise, normally distributed
noise, and outliers results in a total number of 6 test functions.

6.3.2 Experimental Results

In the following, the performance of the algorithms introduced in Section6.2 are
numerically analyzed on the 6 test functions. For all optimization algorithms, a
parent and child population ofµ = λ = 60 is used, with an archive size of 20
for the two-objective test functions and a size of 50 for the three-objective test
functions. The recombination and mutation operators of Section3.3are used. The
number of design variablesn is set ton = 7. This number is equal to the num-
ber of design variables of the burner optimization problem, which is addressed in
Chapter10. For the mutation operator, the standard deviationσ is set to 10% of
the interval size in which the variable is defined, and a mutation probabilitypM of
20%. The result of 100 optimization runs is averaged for each test function.
The quality of a multi-objective optimization algorithm depends on the conver-
gence speed of the algorithm as well as on the uniformity of the approximation of
the Pareto front. To compare the performance of the different algorithms, the per-
formance measureP of Section3.5is chosen.P is defined as an approximation of
the mean distance in decision space of the Pareto front solutions to the respective
closest evaluated solution of the optimization run.
Some of the analyzed algorithms contain heuristic parameters. No heuris-
tic parameters have to be set for SPEA, the non-elitist SPEA and the statis-
tical SPEA. For ESPEA, no parameter settings are given by the author [112].
Thus, a performance analysis is made for all combinations of a thresholdα ∈
[0.008, 0.01, 0.015, 0.02, 0.04, 0.07, 0.1, 0.2, 0.5] and a property interval size of
(aU

i − aL
i ) = 2δ ∈ [0, 0.2, 0.4, 1.0, 2.0, 3.0, 4.0]. On average, the best results

of ESPEA on all test problems is obtained withα = 0.04 andδ = 0.2. Since the
parameters of ESPEA were optimized for the considered test functions, the gen-
eral performance of the algorithm might be worse. For NT-SPEA, the fractionsc1

andc2 are set to 0.1 and 0.3, respectively and a maximal interval sizeκmax = 4 is
used. A discussion of these settings is introduced in the next section.
The results for all test functions are given in Fig.6.2. The performance measure
P is plotted in a logarithmic scale over the number of evaluated solutionsN . The
measureP reflects the mean distance in decision space of each Pareto solution to
its closest approximation by the set of evaluated solutions.
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First, the two-objective and noise-free test function DEB is considered. At the be-
ginning of the optimization run,P drops rapidly and levels off at the end of the
run. The optimization levels off, since a limited population and archive size can-
not exactly approximate the Pareto front and the convergence speed decreases at a
certain level as shown in Chapter5.
The performance of the different algorithms varies significantly. The slowest con-
vergence is observed for the statistical SPEA. The statistical SPEA computes for
each solution the mean of 7 evaluations. For a certain number of evaluated solu-
tions, the statistical SPEA proceeds compared to SPEA just by1/7 of the number
of generations.
The second slowest is the non-elitist SPEA, due to the lack of an archive for storing
the nondominated solutions. ESPEA shows better performance since the algorithm
contains an archive. In contrast to the original SPEA, the archive of ESPEA can
contain dominated solutions. Increasingα or the property interval size raises this
fraction of dominated solutions and decreases the selection pressure. The best
performance can be found for NT-SPEA and the original SPEA. In contrast to the
ESPEA, the archive of both NT-SPEA and the original SPEA contain just nondom-
inated solutions and thus the selection pressure is higher. NT-SPEA re-evaluates
solutions, although this is not necessary for a noise-free test function. However,
since the fraction of re-evaluated solutions is small, this disadvantage is small and
the algorithm performs well even on noise-free test problem.
As second test function, normally distributed noise is added to the test function
DEB. The standard deviation of the noise is set toσN = 0.8 and is about the same
magnitude as the difference in objective values of points on the Pareto front. The
convergence behavior of the different algorithms is also illustrated in Fig.6.2. The
convergence speed for the noisy test function is drastically reduced compared to
the noise-free test function 1 and the convergence levels off at a higher value of
P . Excluding the statistical SPEA, the difference in performance between the al-
gorithms is smaller compared to the noise free case. Here, elitism in the form of
the original SPEA is a disadvantage. The non-elitist SPEA performs superior to
the original SPEA. ESPEA converges about equally fast as the non-elitist SPEA.
NT-SPEA converges best, due to the compromise between using an archive and
limiting the risk of getting stuck in noisy solutions by a limited and dominance-
dependent re-evaluation interval of solutions.
For analyzing the effect of outliers, an error probability ofpo = 1% per objective
is defined for test function DEB. Since the test function has two objectives, the
probability that at least one objective contains an error is therefore about2%. In
other words, about one individual in the population of 60 individuals contains an
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error and is thus an outlier.
The results of the numerical analysis are given in Fig.6.2. Again, NT-SPEA per-
forms best and the non-elitist SPEA performs better than the original SPEA. Anal-
ysis of the convergence of the original SPEA shows that the algorithm gets stuck
in the outliers. Outliers occur with a small probability and it is unlikely that they
are removed from the archive. This explains why the non-elitist SPEA performs
significantly better than the original one. ESPEA shows no advantage for this test
function, compared to the original SPEA.
The performance of the NT-SPEA is superior to all other algorithms. It avoids
getting stuck in outliers. The shortest re-evaluation interval is assigned to outliers
that dominate a large part of the Pareto front. Since they are re-evaluated first and
the probability that an error occurs again is low, they will be removed from the
archive. This allows solutions with larger re-evaluation interval than the outliers
to reenter the archive after the outlier is removed.
Now the three-objective test function SPH-3 is analyzed. Compared to the two-
objective test function DEB, obtaining a solution of the same quality in terms of
the performance measureP requires noticeably more evaluations. However, The
relative performance between algorithms is consistent with the two-objective test
function DEB. The best agreement is found for the noise free case. SPEA and
NT-SPEA perform clearly best on this function.
NT-SPEA, ESPEA, and the non-elitist SPEA show about equal convergence on
SPH-3 with normally distributed noise. The differences are within the sam-
pling tolerance. Slightly inferior convergence is obtained with the original SPEA,
demonstrating again the disadvantage of elitism in form of an archive of nondom-
inated solutions, which may be kept an infinite time.
In the last performance comparison, outliers are added to the test function SPH-3
with an error probability of 1% per objective. For this three-objective problem, the
probability that an individual contains an error in at least one objective is about
3%, thus about 2 of the 60 individuals in a population are outliers. Similar to the
test function DEB with outliers, NT-SPEA performs best, but here the original
SPEA performs slightly superior than the non-elitist SPEA.
Summarizing the results from the 6 test functions, we found that elitism, imple-
mented by the archive of the original SPEA, is a convergence accelerator for noise-
free problems. For noisy problems it is a disadvantage and the non-elitist SPEA
performs better on average.
The relative behavior of the different algorithms shows similar tendencies for 2
and 3 objectives. For 3 objectives, however, the differences are smaller.
The statistical SPEA has the drawback of multiple function evaluations per solu-
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tion and converges, except for the test functions with outliers, slower than all other
algorithms. Again, the differences are smaller for 3 objectives.
Setting the parametersα andδ of ESPEA is very problem dependent and leads
to large performance differences. The best convergence for the noise-free test
function DEB is obtained forα = 0.008 andδ = 0, a setting which leads to an
algorithm and convergence similar to the original SPEA. For test function DEB
with noise, increasingα to 0.04, but keeping a property intervalδ = 0 leads to the
best result. Increasingα introduces dominated solutions to the archive. A positive
effect of a property intervalδ > 0 could not be found for the noisy functions. For
test function DEB with outliers, the ideal settings areα = 0.2 andδ = 1.5. These
settings differ tremendously from the previous two settings, especially in the prop-
erty interval, but the performance on this test function is still poor. In addition,
compared to the other algorithms, ESPEA performs better for 2 objectives than for
3 objectives.
For NT-SPEA, a marginal problem dependence is found for the parametersc1, c2

andκmax. This will be analyzed in more detail in the next section.
Comparing the mean behavior of the algorithms over all test functions, NT-SPEA
performs clearly best. One possibility for a mean performance analysis for all 6
test functions is obtained by summing the minimal value ofP over all test function.
NT-SPEA clearly results in the smallest value with

∑6
i=1 min(Pi) = 1.75. NT-

SPEA is followed by the original SPEA (1.97), ESPEA (2.02) and the non-elitist
SPEA (2.17) and finally the statistical SPEA (3.21).

6.3.3 Discussion of the Heuristic Parametersc1, c2 andκmax in NT-
SPEA

The NT-SPEA algorithm, as described in Subsection6.2.5, includes the heuristic
parametersc1, c2 andκmax. Such parameters are often set by experimental anal-
ysis on different test functions. We proposed to set the parameters asc1 = 0.1,
c2 = 0.3 andκmax = 4. The guiding concepts behind the settings are the fol-
lowing: The value for the maximal interval lengthκmax is a trade-off between
noise-free and noisy test functions. For noise-free functions, re-evaluating does
not lead to new information, since the re-evaluated solution equals the original
one. Thus, a larger maximal interval length (and also increased values forc1 and
c2) is preferable for avoiding the re-evaluation of solutions.
In contrast, for noisy problems, it is reasonable to limit the interval for re-
evaluating a solution in the archive, in order to avoid that the entire optimization
process is misled by noisy archive solutions. Here, we store a solution in the
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archive for at most 4 generations. The time has to be short enough to avoid that
the optimization is misled by very noisy archive solutions (outliers). In addition,
the time has to be larger than one generation, since dominated solutions should be
able to re-enter the archive after their dominator (an outlier), is removed due to its
re-evaluation. We assume that a solution, which dominates less than 10% of the
archive (= c1), should be assigned the maximal interval lengthκ = κmax, while
a solution, which dominates more than 30% (= c2) should be re-evaluated already
in the next generation.
The following parameter analysis underlines that the parameter settings are robust
and their influence on the algorithm performance is minor over a large parameter
range. The performance analysis of Subsection6.3.2is repeated with all possible
combinations ofc1, c2 ∈ [0.05, 0.1, 0.15, 0.2, 0.3, 0.5] andκmax ∈ [2, 4, 8], such
that the constraintc1 < c2 is fulfilled. For all combinations and all test functions,
the performance measureP was computed as the mean of 100 independent runs.
Table6.1 contains the obtained performance measures min(P ) and max(P ) for
the best and worst parameter combination, respectively and the referring heuristic
parameters for all test functions.
For the noise-free test functions DEB and SPH-3, all settings performed almost
identically and also better than the non-elitist SPEA, the statistical SPEA and ES-
PEA. Re-evaluation is not necessary, since the original and re-evaluated solutions
are identical. Thus, re-evaluating many solutions will decrease the performance.
Besides influencing the number of re-evaluated solutions, the maximal interval
lengthκmax has a second effect. Since the archive is updated with all solutions
with non-expired interval, solutions may re-enter the archive after they were re-
moved by clustering. This appears to have a negative effect on the noise-free
function, since one setup withκmax = 8 performed worst.
Differences in the performance are also small for the test functions DEB and SPH-
3 with experimental (normally distributed) noise. However, the best results are
obtained forκmax = 4, and settingκmax = 2 appears too short. In general, on
these two test functions the differences between the analyzed SPEA implementa-
tions were also the smallest.
Adding a small percentage of outliers to the test functions seems to have a ma-
jor effect on the performance of the different algorithms. Since SPEA performs
poorly for test function DEB with outliers, the setting of the NT-SPEA algorithm,
which is closest to SPEA, performs also worst. Due to the large maximal interval
lengthκmax = 8 together with the large valuesc1 = 0.2, c2 = 0.5, the algorithm
is in danger of getting stuck in outliers with a long maximal interval length, thus
misleading the optimization. Similarly for test function SPH-3 with outliers, the
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test result Heuristic Parameters
function c1 c2 κmax

DEB min(P )=0.099 0.10 0.20 2
max(P )=0.113 0.15 0.30 8

DEB with min(P )=0.804 0.10 0.20 4
exp. noise max(P )=0.835 0.05 0.10 2
DEB with min(P )=0.346 0.10 0.20 4
outliers max(P )=0.661 0.20 0.50 8
SPH-3 min(P )=0.174 0.05 0.15 4

max(P )=0.218 0.10 0.20 2
SPH-3 with min(P )=0.345 0.10 0.20 4
exp. noise max(P )=0.449 0.10 0.15 2

SPH-3 with min(P )=0.583 0.10 0.30 8
outliers max(P )=0.669 0.10 0.15 2

Table 6.1: Sensitivity analysis of NT-SPEA on the heuristic parametersc1, c2 and κmax.
NT-SPEA shows small performance variation over a wide range of parameter settings.

setting that is very close to the non-elitist SPEA (i.e.,κmax = 2, c1, andc2 are
small) performed worst.
Summarizing the results of for all test functions, the heuristic parametersc1, c2

andκmax can be set general enough in order to perform well on noise-free and
noisy problems, as well as problems with a rare occurrence of outliers. Varying
the settings over a large range has a minor effect on the performance. Besides
the better performance, this is a major advantage to ESPEA, since ESPEA is very
sensitive the heuristic parameters.

6.4 Conclusions

A novel noise-tolerant multi-objective evolutionary algorithm (NT-SPEA) was
introduced with increased robustness for applications prone to noise and out-
liers. The algorithm transfers the concepts of re-evaluating solutions [3] to
multi-objective optimization and extends the concept by introducing a dominance-
dependent re-evaluation interval. In addition, an extended update mechanism is
defined for the archive. These concepts have been applied to SPEA and can also
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be transferred to other elitist multi-objective algorithms.
A convergence comparison for various implementations of SPEA has been per-
formed on noisy and noise-free test functions. In general, a decrease in conver-
gence is observed when noise is introduced. The concept of elitism is analyzed in
the presence of noise. In the absence of noise, elitism can be used as a convergence
accelerator. However, for different types of noise, elitism can imply a significant
disadvantage, since the optimization can get misled by outliers.
The NT-SPEA overcomes the problem by re-evaluating archive solutions in
dominance-dependent intervals and extending the update of the archive. For the
noise-free test problems, NT-SPEA shows similar convergence to the original
SPEA, which converges best. This is a major advantage compared to a non-elitist
and a statistical implementation of SPEA and the ESPEA.
While NT-SPEA performs equal or superior to the best of the other implemen-
tations for problems with normally distributed noise, it clearly outperforms all
algorithms for problems with outliers. The discussion of the heuristic parame-
ters in NT-SPEA shows that they have minor influence on the performance for a
wide parameter range. A further advantage, which is not discussed in the paper,
is that NT-SPEA can handle moving optima over time or changing environmental
conditions. The algorithm re-evaluates solutions in certain intervals and thus, the
objective values change as the environmental conditions vary.
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Figure 6.2: Convergence of the NT-SPEA [circular symbol] on test functions DEB and SPH-
3 with 2 and 3 objectives, respectively. NT-SPEA is compared with the original SPEA [cross
symbol], the non-elitist SPEA [plus symbol], the statistical SPEA [diamond] and ESPEA
[triangle]. In addition to the noise-free original test functions, normally distributed noise
and outliers are considered.



Chapter 7

Growing Self-Organizing Maps for Multi-Objective
Optimization

It is well known that selection operators from multi-objective optimization algo-
rithms differ from single objective ones. However, it is far from clear if and how
variation operators such as mutation and recombination operators should differ.
While the goal in single objective optimization is to converge to the (global) opti-
mum, the goals of multi-objective optimization are to converge to the Pareto front
and to spread the individuals along the front. Using density estimators in the fitness
assignment of the selection operator promotes the spreading, but should spreading
be also promoted by the variation operators?
We analyze standard recombination operators from single objective optimization
for Pareto optimization by providing theoretical reasoning and test problem results.
Furthermore, we introduce a recombination operator based on Self-Organizing
Maps (SOMs) as an operator designed for multi-objective evolutionary algorithms.
SOMs are a subclass of neural networks that allow a mapping of a high dimen-
sional input space to a regular lattice of neurons. In the context of multi-objective
evolutionary algorithms, the parent population is mapped onto a lattice of neurons,
and recombination is performed within the lattice.
In the beginning of the optimization process, the number of nondominated solu-
tions in the parent population is usually small and increases as soon as the Pareto
front is located and solutions start to spread along the Pareto front. Simultane-
ously, solutions in the parent population start to differ as they converge to various
areas of the Pareto front. The SOM accounts for this effect by growing the lattice
size proportionally to the number of nondominated solutions thereby enabling the
network to learn the locally varying properties of parent solutions at the time they
occur in the optimization. The resulting algorithm leads to a fast and uniform ap-
proximation of the Pareto front. Advantages and disadvantages of the proposed
algorithm are discussed.
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7.1 Introduction

In Pareto optimization, recent research has focused on the development of multi-
objective selection operators and in particular on fitness assignment techniques
[125, 13]. Standard selection operators for multi-objective algorithms such as
SPEA2 [124] and NSGA-II [26] do not describe variation operators such as muta-
tion or recombination operators. The variation operators are often directly applied
from single-objective algorithms [71]. To compare the performance on continuous
problems, polynomial distributed mutation and simulated binary crossover (SBX)
[25] are often used [26, 125]. Both variation operators do not adapt their param-
eters in the evolutionary search, thus they do not exploit any knowledge from the
evolution.
However, in single objective optimization, the key components are the variation
operators with a focus either on the mutation operator (Evolution Strategies) or the
recombination operator (Genetic Algorithms) [9]. In Evolution Strategies (ES),
the mutation operator is adaptive and exploits knowledge obtained during opti-
mization to adapt the mutation distribution. This is especially important if large
search spaces are considered and a close approximation of the optimum is desired.
Limited effort has been made in the recent years in order to apply adaptation in
multi-objective optimization. Most of these methods are inspired by single ob-
jective algorithms. Abbass [1] implemented a Pareto optimization algorithm with
recombination and mutation based on the differential evolution [110]. He used
self-adaptation in order to find the appropriate crossover and mutation rates (prob-
abilities). Sbalzariniet al. [97] use a simple self-adaptation scheme for mutating
step sizes. Each individual in the population is assigned an individual step size
for each decision variable. From one generation to the next, these step sizes are
mutated by either increasing or decreasing them by 50% or keeping them constant,
each with a probability of1/3. Kursawe [68] and Laumanns [71] developed two
further implementations of self-adaptation, closer to Schwefel’s original imple-
mentation [101]. Kursawe performs selection based on a randomly chosen objec-
tive. Each individual contains a separate vector of decision variables and step sizes
for each objective (poliploid individuals). Laumannset al.assign a single step size
to each individual, which yields an isotropic mutation distribution.
In Pareto optimization, recombination operators are also an open issue. Recombi-
nation properties such as mating restrictions are debatable [116]. In the beginning
of the optimization, mating between all solutions seems promising in order to en-
force the exchange of information within the population. However, at the final
convergence of the population to the Pareto front, mating restrictions seem reason-
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able, since solutions are well adapted to the local topology and thus are too dif-
ferent to recombine. Furthermore, recombination in multi-objective optimization
differs from single objective optimization. In single objective Evolution Strate-
gies, recombination is often performed by averaging several parents as , e.g., in
[51]. This usually increases the convergence speed to the single optimum [52].
Such a recombination seems not suitable for multi-objective optimization, as it
would destroy diversity. A diverse parent population is required in order to spread
individuals along the Pareto front.
Recombination is a fundamental operator in any parallel search process, as recom-
bination spreads information (like decision variable values and strategy parame-
ters) among offspring might benefit from combining preferable properties of their
parents. In single objective optimization, this leads to convergence acceleration.
Costa and Olivaira [22] show that the performance of a multi-objective evolu-
tionary algorithm improves when adding discrete or intermediate recombination.
However, it is still an open question if standard recombination operators are effi-
cient in multi-objective optimization or if special operators need to be developed.
This Chapteraddresses this question by analyzing standard recombination oper-
ators and by proposing a new operator based on Self-Organizing Maps (SOMs)
[120, 65]. A SOM is a neural net consisting of a set of neurons and a lattice
structure that allows approximating and interpolating a probability distribution or
a discrete set of points. Recently, Milanoet al. [78] introduced SOMS as an adap-
tation method for single objective evolutionary algorithms. SOMs are trained to
approximate the area around the currently best solution. The map is used to sam-
ple new solutions with a higher sampling probability in this area.
In this Chapter, we provide an extension to multi-objective evolutionary algo-
rithms. SOMs are formulated as an adaptive recombination operator. The SOM is
trained on the current parent population of the evolution. Since the SOM provides
a (lower dimensional) interpolation of the parent population, choosing a random
point within the volume covered by the SOM represents an intermediate recombi-
nation of the parent population. Extrapolation is possible by using multiplicative
factors to increase the lattice size. Furthermore the operator is improved by a grow-
ing lattice structures [43]. Growing lattices avoid the problem of defining appro-
priate lattice structures before the optimization run. Instead, the structure evolves
while training the network on the current data. This increases also the quality of
the mapping and reduces the risk of topological defects [43]. In addition, the size
of the network can be adapted to the usually growing number of nondominated so-
lutions. The focus is on recombination, thus we implement self-adaptive mutation
[101] as a standard mutation operator.
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First, definitions and objectives in multi-objective optimization are briefly out-
lined. Then, different recombination operators are introduced. In a first step, these
operators are theoretically compared. In a second step, analyses on test problems
are performed.

7.2 Multi-Objective Optimization as Two Step Process

In multi-objective optimization, conflicting objectives are usually considered such
that optimization run results in an approximation of the Pareto front by a set of
nondominated solutions. Zitzleret al. [124] discussed the convergence on the
multi-objective sphere function (denoted as SPH-m) as a two step process. The
first step (i.e., the beginning of the optimization) is similar to a single objective
optimization. Compared to the search space, the Pareto front is small and thus
converging towards the Pareto front is similar to converging to a single optimum.
This step is described as the problem of locating "the region of the Pareto optimal
set". The second step begins when the optimization converged already into the
region of the Pareto optimal set and now, in addition to converging, the aim is
also to spread the population along the Pareto optimal set such that a uniform
approximation is obtained.

7.3 Recombination Operators

In nature, evolution is a highly parallel process using large populations. Most
species recombine their genetic information by mating two parents. Mating allows
spreading genetic information in the population and the offspring might benefit
from combining preferable properties of their parents.
In Evolutionary Algorithms, the decision variables and strategy parameters rep-
resent the genetic information and mating is also denoted as recombination or
cross-over. Recombination is necessary especially if mutation schemes like self-
adaptation [90, 101] are considered. In these schemes, the adaptation of the strat-
egy parameters is imperfect. Recombination is considered a correction mechanism
and performed by averaging the strategy parameters [7]. However, it is not advis-
able to average all parents, as the collective performance of a diverse population
can be superior to aggregating all information into a "super-individual"[7].
In the following, we consider a parent populationxj,j=1,...,µ of sizeµ. We denote
a recombined child of the parents asx′. Several recombination operators exist in
literature and differ mainly in the recombination method and the number of parents
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ρ recombined. For each child theρ parents are randomly chosen. Special cases are
ρ = 2 (binary recombination) andρ = µ (global recombination).

7.3.1 Standard Recombination Operators from Single Objective
Evolutionary Algorithms

We briefly outline 4 different recombination operators for recombining the de-
cision variables. For the strategy parameters, we follow the proposal of Bäck
et al. [7] and compute the mean of allρ parents of the child. Denoting a strat-
egy parameter asσ, recombination is performed by:

σ′ =
1
ρ

ρ∑
j=1

σj . (7.1)

The first 3 recombination operators are a global and two binary recombination
operators as given in [9]. For global intermediate recombination, the mean of all
parents in the parent population is computed:

x′i =
1
µ

µ∑
j=1

xj,i. (7.2)

For binary recombination, a childx′ is created from two parentsxa andxb. The
first approach isdiscrete recombinationand each decision variable of the child is
randomly chosen from one the two parents with:

x′i =
{

xa,i if pi < 0.5, pi ∼ U(0, 1)
xb,i otherwise,

(7.3)

whereU(0, 1) is a uniform distribution of random number between 0 and 1. For
intermediate recombination, the decision variables of the child are a linearly inter-
polated from the two parents by:

x′i = αxa,i + (1− α)xb,i, (7.4)

whereα ∼ U(0, 1). Deb and Agrawal [25] propose a recombination operator
that is similar to single point crossover of binary strings. The operator is denoted
assimulated binary crossover(SBX) and is used frequently in the performance
analysis of multi-objective selection operators as in Zitzleret al. [124] or Deb
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et al. [26]. Here always two parentsxa andxb are selected at random and two
childrenx′a andx′b are generated by:

x′a,i = βxa,i + (1− βi)xb,i (7.5)

x′b,i = βxb,i + (1− βi)xa,i, (7.6)

where eachβi is taken from a probability distribution: With equal probability the
value ofβ is set to one, or is taken from a polynomial probability distribution with
the highest probability density at a value of one. We use the typical parameter
value ofηc = 20 that controls the probability distribution.

7.3.2 Recombination Operator based on Self-Organizing Maps

Growing Self-Organizing Maps

Self-Organizing Maps (SOM), as proposed by Willshaw and von der Malsburg
[120] and Kohonen [65], define a mapping of a set of data pointsxj, j=1,...,ND

from a highly dimensional input spacexj ∈ Rn onto a regular lattice of neurons
of usually lower dimensionnSOM. The mapping preserves neighborhood informa-
tion of the input data by mapping neighboring input data onto the same or onto
neighboring neurons. It also preserves relative density differences in the input data
by assigning larger fractions of the network to areas of higher density. However,
it is important to mention that the relative density differences for the neurons are
lower than for the data. SOMs have been extensively applied in the field of com-
plex data analysis and processing, e.g., to data compression [104] or to discrete
approximation of continuous probability distributions [41].
The SOM consists of annSOM-dimensional quadrilateral lattice ofNSOM neurons.
We define neighboring neurons as those that are directly connected in the lattice.
The distance between neighboring neurons in the lattice space is of unit length.
Fig. 7.1a illustrates a SOM withNSOM = 25 neurons and a two-dimensional lat-
tice (nSOM = 2) in the lattice space. A reference vectorwi ∈ Rn in the input
space is associated with each neuroni. For the considered SOM, Fig.7.1b shows
a possible configuration of the reference vectors together with the corresponding
lattice in the input space. The response of the network to an inputxj ∈ Rn is
defined as the best matching neuronc, measured in the input space:

c(xj) = arg min
i
{||xj −wi||2} (7.7)

The SOM is trained on the set of input data{xj}ND

j=1 by unsupervised learning.
To each pointxj the responsec is computed and the reference vectorwi of each
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neuron is updated so as to become closer to the inputxj by the update rule [65]:

wnew
i = wold

i + h(c, i) · (xj −wold
i ), i = 1, . . . , NSOM, (7.8)

whereh(c, i) is the so-calledneighborhood kernel, defined such thath(c, c) = 1,
h(c, i) ≥ 0, i = 1, . . . , NSOM and given by:

h(c, i) = α exp
(
−r(c, i)2

2σ2
SOM

)
(7.9)

whereα is the learning rate,r(c, i) is the Euclidean distance between nodec and
nodei in the lattice space andσSOM defines the decay of the learning rate over the
lattice distance. Note that the distance between two neighboring neurons in the
lattice space is always of unit length. Choosing each of theND data points once
for training is referred to as onetraining epoche.
The quality of the mapping of the SOM depends on the structure of the lattice,
which could be defined before training. This is a critical issue, given unknown
data sets. One possibility to overcome this problem is proposed by Fritzke [43],
who introduced agrowing gridstructure. The grid is initialized as a small network
equal to a hypercube with one neuron in each vertice of the cube and the edges are
the connections between neighboring neurons. For example, the initial network
for a one, two and three-dimensional lattice is a line with two neurons, a square
with 4 neurons or a cube with 8 neurons, respectively. In the learning process, the
grid grows by adding neurons until a certain quality of the mapping is reached.
To each neuroni in the network, a resource variableτi is assigned and initially set
to zero. In the training the network,τi is increased by one, if neuroni is the best
matching neuron for an input. In certain intervals, the network size is increased.
The neuron with the largest resource variableτi is selected. Then, from its direct
neighbors, the neuron with the largestτ value is selected. Connecting the two
selected neurons specifies a lattice directionl ∈ [1, . . . , nSOM]. In this direction,
the number of neurons is increased by one. The resulting additional neurons are
obtained by inserting a layer of neurons between the two selected neurons by an
intermediate interpolation as illustrated in Fig.7.2for a two-dimensional network.
Then, allτi values are reset to zero and the training is continued. When training
a SOM, there is always a certain probability that topological defects arise. One
possible defect is a partial folding of the SOM in the input space. The quality of
the network can be measured by theaverage distortion measureMd [66]:

Md =
1

ND

ND∑
j=1

NSOM∑
i=1

h(c(xj), i) · ‖xj −wi‖2 (7.10)
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Figure 7.1: (a) SOM withNSOM = 25 neurons [circles] andnSOM = 2 dimensional quadri-
lateral lattice [thin lines]. (b) Reference vectors of the SOM plotted in ann = 2 dimen-
sional input space.
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Figure 7.2: Growing SOM for annSOM = 2 dimensional lattice and ann = 2 dimensional
input space. (a) Among all neurons [filled circles], the neuron with the highest resource
valueτ [empty circle] and its neighbor with the highestτ among all neighbors [empty cir-
cle] are searched. (b) These two neurons specify a lattice direction, in which an additional
layer of neurons [empty squares] is inserted.

Using a growing grid already reduces the risk of these defects. A further reduction
can be obtained by training several networks and choosing the network with the
lowest distortion measureMd.
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Using the Self-organizing Map Interpolation as Recombination Operator

We describe a recombination operator that uses a SOM to interpolate the parent
population. In each generation of the evolution the SOM is trained on the parent
population. The input space of the SOM is equal to then design variables of the
optimization problem plus, if existing, additional strategy parameters such as mu-
tation step sizes. The SOM renders itself easily as a recombination operator, as
it defines a lower dimensional interpolation of the parent population. The SOM,
when viewed as a recombination operator, chooses randomly a simplex of neigh-
boring neurons in the lattice. A simplex is a geometrical body in anm dimensional
lattice space, defined bym+1 vertices. The verticesvk,k=1,...,m+1 of the simplex
are the reference vectors of the chosen neurons. Within the simplex a uniformly
distributed random pointx′ is generated by computing random numbers until the
following equation is fulfilled:

x′ = vj + γ
m+1∑

k=1,k 6=j

rk (vk − vj) ,

with rk ∼ U(0,1) such that
m+1∑

k=1,k 6=j

rk ≤ 1 (7.11)

wherevj is a randomly chosen vertex of the simplex, U(0, 1) is a uniform distri-
bution of random numbers within the interval[0, 1]. Forγ = 1, Eq.7.11generates
points uniformly inside the simplex;γ > 1 extends the uniform distribution to
areas outside the simplex. Fig.7.3 illustrates the recombination process. The di-
mension of the latticem can be chosen according to the dimension of the Pareto
front. For a 2-objective problem, the Pareto front consists of a continuous or dis-
rupted line, thus the dimension of the SOM is set to one. Similarly for a 3-objective
problem, the Pareto front is a surface and the dimension of the SOM is set to 2.
When training a SOM, there is always the risk of having topological defects as
described in Section7.3.2, which are hard to remove from a trained network. This
risk can be significantly reduced by training a second SOM in certain intervals
and the one with the lower distortion measureMd is chosen. Tests showed that an
interval of 4 generations is sufficient.
All settings of the SOM-recombination operator are given in Table7.1.
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Figure 7.3: Recombination in a SOM for a 2 dimensional lattice and a 2 dimensional input
space. A random simplex of neighboring neurons is created [bold line]. Within the simplex
a uniformly distributed random point [plus symbol] is generated.

Adapting the Number of Neurons in the Self-Organizing Map

The recombination operator based on SOM implements a mechanism that adapts
the number of neurons in the SOM as the optimization converges closer to the
Pareto optimal set. The SOM is initialized with a small number of neurons (typi-
cally 2 nodes per lattice dimension). In the optimization, the number of neurons is
set proportional to the number of nondominated solutions in the parent population,
which usually grows as the parent population gets close to the Pareto front and the
parents start to spread along the Pareto optimal set. Growing the SOM is required
as a response of the map to the growing amount of information in the spreading
parent population.
In each generation, the SOM is trained on the parent population with a certain
number of epochse. If the number of neuronsNSOM is smaller than a predefined
fractionβ of the nondominated set in the parent populationµnondom, the network
grows as described in Section7.3.2. After each growing step, the training is re-
peated untilNSOM ≥ β · µnondom.

7.4 Theoretical Comparison of the Recombination Operators

The introduced recombination operators are now compared theoretically concern-
ing the following items:
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Table 7.1: Parameter setting for the SOM recombination operator. Parameters marked with
(∗) are taken from Fritzke (1995).

Parameter Symbol Value

learning rate∗ α 0.1
no. of training epochs∗ e 30

initial number of neurons per lattice direction∗ NSOM 0 2
bell width σB 0.6

number of neurons per parent β 0.3
scaling factor for recombination γ 3

• mating restrictions: Mating restrictions promote the recombination of par-
ents with a small distance to each other. The distance can either be mea-
sured in objective space or decision space. On one hand mating restriction
may hinder the transfer of information from in the population, as too dif-
ferent parents are not recombined. One the other hand, parents may adapt
to the local properties of the Pareto optimal set and mating these parents
may generate a large fraction of low quality children [40] such that mating
restrictions are advisable.

• independence on the coordinate system: Independence is given, if the loca-
tion of the recombined children is independent to coordinate system rotation.

• Location of the recombined child: A recombination operator may generate
the children in certain points, lines or within a volume with the position
described by a probability distribution.

• diversity of the offspring compared to the parents: The recombination op-
erator may create children with an increased or decreased diversity when
compared to their parents. As a measure, the difference in size between the
smallest hypercube around the children and parents can be compared.

7.4.1 Global Recombination

In global recombination, the recombined child is computed as the mean of all
parents. Thus, no mating restriction exists. This type of recombination has been
shown to be advantageous for some single objective optimization algorithms [52]
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as averaging reduces the magnitude of random variation and thus improves track-
ing the population movement for the adaptation of the mutation distribution. How-
ever, global recombination is disadvantageous for multi-objective optimization.
Global recombination removes all variation in the recombined population and hin-
ders the population from spreading along the Pareto front as illustrated in Fig.7.4.
The position of the recombined child is independent to rotation of the coordinate
system and as all children are in one point, no preferred recombination direction
exists.

Figure 7.4: Position of the child [circle] generated by global intermediate recombination
for parents [plus symbol] far (left) and close (right) to the Pareto front [solid line].

7.4.2 Discrete Recombination

In discrete recombination, always two parents are selected. A child is generated by
selecting each decision variable randomly from the first or the second parent. This
recombination operator contains no mating restrictions. In case of two decision
variables as illustrated in Fig.7.5, the children of two parents are located in one
of four possible positions. If the coordinate system is rotated, the location of the
children is different.
In Fig. 7.5, a simple Pareto front with the shape of a straight line is given. Two
different parent sets are given. Consider the two parents with the number 3 and 4.
The distance of these parents to the Pareto front is much smaller than the distance
between the parents. When recombining these parents, it is likely that the children
are much farer from the Pareto front then their parents, as the two of the four possi-
ble positions for the child are far from the Pareto front. For higher dimensions this
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probability increases. Thus, it might be beneficial to introduce mating restrictions,
which only recombines neighboring parents.
The children are always generated within the smallest hypercube that comprises
all parents as the minimal and maximal decision variable value of the children is
within the bounds of the parent values.

Figure 7.5: All possible positions of a child [circle] generated by uniform recombination of
two pairs of parents [plus symbol] far (left) and close (right) to the Pareto front [solid line].

7.4.3 Intermediate Recombination

Intermediate recombination always selects two parents and generates a child by
linearly interpolating the parents. As a consequence the decision variable values
of the child are always within the bounds of the parent values and thus this inter-
polation does not promote spreading individuals along the Pareto front. The linear
interpolation is invariant to coordinate system transformation.
Interpolating two parents that are close to the Pareto front (see Fig.7.6, right) is
likely to generate a child close to the Pareto optimal set, if the shape of the set is
close to linear between the parents. If the Pareto front is curved, the children might
be generated in a position far from the Pareto front and mating restrictions might
be advantageous.

7.4.4 Simulated Binary Recombination

Simulated binary recombination selects two parents and generates children from a
polynomial shaped probability distribution. The highest probability is at the parent
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Figure 7.6: All possible positions of a child [dashed line] generated by intermediate recom-
bination of two pairs of parents [plus symbol] far (left) and close (right) to the Pareto front
[solid line].

position and decays with increasing distance to the parent as shown in Fig.7.7.
When setting the control parameterηc for the probability distribution to the typical
value ofηc = 20 [26], the probability decays fast with increasing distance from the
parent. In the figure, probability of generating an offspring decays between two
contour lines by a factor of 10. The distance between the children can be smaller or
larger than the distance between their parents. Thus, the operator allows to spread
the population as well as to generate children that interpolate their parents. The
operator is constructed such that on average, the distance between the children is
equal to the distance of their parents. The probability distribution changes when
rotating the coordinate system.

7.4.5 SOM Recombination Operator

The SOM recombination operator trains a SOM on the parent population as shown
in Fig. 7.8. The SOM is then used to generate children by constructing simplexes
of neighboring neurons in the SOM lattice. A child is obtained by generating a
random point within the simplex. The simplex is scaled by a factor larger than 1 in
order to generate also points outside the volume covered by the SOM as the SOM
always interpolates the parents and never extrapolates them.
In the figure, the lattice of the SOM is one-dimensional and thus a simplex is a
line. Children are located within the volume of the decision space covered by all
possible simplexes. For the one-dimensional lattice, the volume is equal to a set
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Figure 7.7: Lines of equal probability [thin line] for generating a child by simulated binary
recombination of two pairs of parents [plus symbol] far (left) and close (right) to the Pareto
front [solid line]. The highest probability is at the parent position and each line shows a
decay of the probability by a factor of 10.

of lines; for a two-dimensional lattice, the volume is a set of surfaces. The spread
of the children can be larger or smaller than the spread of the parent population.
As the training of the SOM is invariant to coordinate system rotation, the SOM
recombination operator is invariant, too.
The number of neurons in the SOM is set proportional to the number of nondom-
inated solutions in the parent population. This proportionality is motivated by the
two step definition of the Pareto optimization in Section7.2and leads from a un-
restricted to a restricted mating process.

In Fig. 7.8, the recombination process is illustrated. The left half of the figure
illustrates a parent population far from the Pareto front (first step). As the number
of nondominated is assumed to be small, the number of neurons is small, too. The
distance between neighboring neurons is in the same order of magnitude as the
spread of the parent population. Thus, recombining can be considered as unre-
stricted.
In the right half of Fig.7.8, the parent population is close to the Pareto front. The
value of the decision variables and efficient strategy parameters is assumed to vary
along the Pareto optimal set. Compared to the first step, the number of neurons
in the SOM lattice grew as the number of nondominated solutions increased. This
increase in neurons allows modeling the local variation between the parents and
recombination is now restricted.
The neurons of the SOM can be considered as the mean of the surrounding fraction
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of parents. A simplex created by neighboring neurons allows sharing information
between these neurons. All possible simplexes and thus the possible location of
all children are illustrated by the dotted lines. If the parent population is spread
around the Pareto optimal set, the dotted lines are quite parallel to the Pareto front.
If the Pareto optimal set is locally linear, children are likely to be generated close
to the current approximation of the Pareto front.
The major differences of the SOM recombination operator compared to the stan-
dard operators are:

• while converging to the Pareto front, the operator adapts from unrestricted
mating to restricted mating without specifying mating restrictions such as
niche radii explicitly.

• While most recombination operators recombine two parents, the neurons
of the SOM interpolate a local subset of parents. Creating a simplex of
neighboring neurons supports the transfer of information.

• The SOM interpolation can adapt to straight or curved Pareto optimal sets.

• The scaling parameterγ allows to control the trade-off between a more inter-
or extrapolating recombination.

Figure 7.8: All possible positions of a child [dashed lines] generated by SOM recombina-
tion for parents [plus symbol] far (left) and close (right) to the Pareto front [solid line]. The
neurons of the SOM [circles] and the lattice [solid line] are also given.
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7.5 Performance Comparison on Test Problems

Comparing the performance of the different recombination operators requires a set
of test problems and performance measures. We consider all 6 test problems, in-
troduced in Section3.4.
Performing a multi-objective optimization implies usually two goals [24]. The first
goal is to obtain solutions of high quality or equivalent solutions that are close to
the Pareto front. The second goal is to obtain an approximation of the entire Pareto
front for illustrating the possible trade-offs between the objectives.
Here, two performance measures will be considered, which are presented in Sec-
tion 3.5. The first measure is theGenerational Distance(DDS) [115], which mea-
sures the mean distance of the current parent population to the Pareto front. For
each individual in the parent population, the distance to its closest Pareto solution
is computed in decision space. This measure is computed at all generations of the
evolutionary search and illustrates the progress of the algorithm in increasing the
quality of the solutions. No information about the diversity of the individuals is
provided. The second measure is theGenerational Approximation(P) that directly
relates to both the quality of the currently evaluated solutions as well as the spread
of these solutions along the Pareto optimal set. To a set of uniformly distributed
Pareto points the closest of all currently evaluated solutions of the optimization run
is identified and the distance is computed. The root mean square of the resulting
distances is taken as performance measure P.
Furthermore a mutation and selection operator has to be added. As mutation op-
erator, isotropic, self-adaptive mutation [90, 101] is used. NSGA-II [26] is chosen
as selection operator, however, it is extended by the concept of a growing parent
population is introduced.
Setting a fixed parent population size is difficult, if we consider the convergence
as the two step process, defined in Section7.2. In the first step, the optimization
is similar to a single objective optimization. For single-objective problems with
self-adaptive mutation, parent populations ofµ = 15 are recommended [7]. In
contrast, for approximating the Pareto front in the second step, population sizes of
µ = 60 µ = 300 are often used.
In order to solve this conflict, we implement a growing parent population. We
set a minimal parent population size ofµ = 15 and an upper limit ofµ = 100.
Inbetween these limits, the number of parents is set equal to to the number of
nondominated solutions in the unified set of parents from the previous generation
and the current population. This proportionality is chosen as typically the num-
ber of nondominated solutions starts to increase when the population is starting to
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spread along the Pareto front. Dynamic population sizes have also been analyzed
by [111], where the population size was set such that a certain density of solutions
along the nondominated front is obtained.
As recombination operator, we consider:

1. no recombination (NOX)
2. global intermediate recombination (GIX)
3. binary intermediate recombination (BIX)
4. uniform recombination (UNX)
5. simulated binary recombination (SBX)
6. mixed recombination (MIX), which recombines each child randomly by ei-

ther binary intermediate, uniform and no recombination.
7. SOM recombination (SOMX)

Test Problem SPH-1

The SPH-1 problem is the single objective sphere function and is used as repre-
sentative for problems with fully correlated objectives. For these problems all
objectives can be combined into a single figure of merit and the global optimum
is the only existing Pareto solution. The problem is also similar to locating a
small Pareto front in a large search space and is used to analyze the capability
of the self-adaptive mutation in combination with the recombination operators
to converge towards the Pareto front over several orders of magnitude. The
multi-objective problem difficulty of spreading along the Pareto front is not
contained in this problem. The optimization results are given in Fig.7.1.
Although NSGA-II is designed for multiple objectives, it is also capable of
assigning fitness for single objective problems. Then, the algorithm equals the
(µ + λ)-selection by selectingµ best solutions in an elitist fashion. In the single
objective case, the performance measuresDDS and P simplify to the distance in
decision space of the currently best solution to the optimum.
For all considered recombination operators the logarithmic distanceDDS to the
optimum decreases linearly over the number of evaluationsN . The plot shows
a clear difference in convergence speed between the different algorithms. The
slowest convergence can be found for NOX and SBX. BIX, UNX, and MIX
perform about equally and better than the previous two operators.
The SOMX is implemented with a 1, 2-, and 3-imensional lattice. All 3 lattice
dimensions significantly outperform all implementations except GIX. The results
show that the lattice dimension of the SOMX is of minor importance for the
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sphere function, however it seems that a 3-dimensional lattice is preferable.

Test Problem SPH-2 and SPH-3

The convergence of the different recombination operators on SPH-2 and SPH-3
is similar to the two step process as defined in Section7.2. The beginning of the
optimization (performance measureDDS, P� 1) is characterized by the problem
of locating the Pareto front and the convergence is similar to SPH-1.
However, in the vicinity of the Pareto front (DDS, P≈ 1), the convergence speed
decreases as the population starts spreading along the Pareto optimal set. Two rea-
sons can be found for the decrease. First, the convergence problem becomes more
costly, as different fractions of the population converge to different areas along the
Pareto optimal set. Second and this is the dominant effect, since the parent popu-
lation is limited, the convergence of NSGA-II is limited as shown in [17]. The P
performance measure reflects how uniform the population spreads along the Pareto
front.
For these 2- and 3-objective problems, the lattice dimension of the SOM is set to
one and two, respectively. For SPH-2, Fig.7.9a shows the initial SOM and parent
population in the(x1, x2) space and objective space. The number of neurons in-
creases as soon as the number the number of nondominated solutions in the parent
population rises. Fig.7.9b contains the final generation. The figure shows that
the SOM aligns along the entire Pareto front, and the final parent population is
uniformly distributed along the Pareto front in decision space as well as objective
space. Since recombination is performed by neighboring neurons in the lattice,
recombination becomes more and more local as the lattice grows.
For SPH-3, all parameters of the SOMX are equal to SPH-2, except that the lattice

dimension of the SOM is nownSOM = 2. The initial and final population for the
SOMX on SPH-3 is given in Fig.7.10. The figure shows that the SOM approxi-
mates the Pareto front well and even though the SOM lattice is quadrilateral and
has to fit into the triangular Pareto optimal set in the decision space.
The relative performance of the different recombination operators on SOM-2 and

SOM-3 is measured inDDS very similar to SPH-1. However, GIX, which per-
formed best on SPH-1, shows now a worse performance and SOMX converges
faster than all other implementations. WhileDDS measures the mean distance of
the population to the Pareto optimal set and thus the convergence, DX measures
the spread of the solutions along the Pareto optimal set. For SPH-2, GIX, SBX
or NOX clearly performs worse than the other operators. For SPH-3, the different
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Figure 7.9: Initial (top) and final (bottom) generation of SOMX for the 2-objective sphere
problem (SPH-2) with 10 decision variables. The figures contain the SOM [connected cir-
cles], the Pareto front [dash-dotted line] and the parent population [dots] in a 2-dim sub-
space of the decision space and in the objective space. In the initial generation, the neurons
of the SOM are randomly placed and in the final generation, the SOM aligns in the decision
space with the Pareto front.

recombination operators perform about similar, however, it seems that uniform re-
combination is preferable, which is used in UNX and MIX. In general the values
for DDS and P are higher for SPH-3 than for SPH-2, indicating that approximating
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Figure 7.10: Initial (top) and final (bottom) generation of SOMX for the 3-objective sphere
problem (SPH-3) with 10 decision variables. The figures contain the SOM [connected cir-
cles], the Pareto front [dash-dotted line] and the parent population [dots] in a 3-dim sub-
space of the decision space and in the objective space. In the initial generation, the neurons
of the SOM are randomly placed and in the final generation, the SOM covers the entire
Pareto front in the decision space.

the 3-objective Pareto front is more difficult than the 2-objective one. Since the
Pareto front of SPH-3 is a surface, the number of nondominated solutions is larger
than for the SPH-2 problem.
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Test Problem DEB, ZDT1, ZDT2, and ZDT3

For test problems DEB, ZDT1, ZDT2, and ZDT3, the Pareto optimal set is ob-
tained by varyingx1, while setting all other variables to zero. The main difference
among the 4 test problems is the shape of the Pareto front, which is convex (DEB,
ZDT1), concave (ZDT2), or the density of the Pareto optimal solution is non-
uniform (ZDT6).
Figure 7.12 and 7.13 summarize the results on the test problems. On average,
UNX and MIX converge closest to the Pareto front as these operators reach on
average the smallest value ofDDS. Here GIX is not beneficial and converges even
worse than applying no recombination (NOX).
The distribution of the solutions along the Pareto optimal set is measured by P.
Here, a clearly best operator cannot be found. On average, the SOMX, BIX,
and MIX show the best distribution. However, on average NOX, GIX and SBX
perform worst. Analysis of the resulting nondominated fronts show problems of
UNX. In UNX, the values of the decision variables are just randomly chosen from
the parents and thus their value is equal to the values of their parents. This recom-
bination tends to cluster individuals at certain positions along the Pareto optimal
set, leading to a very non-uniform approximation. As BIX interpolates the parent
decision variables, it avoids this clustering and performs on average better.

Test Problem FF

The optimization difficulty of FF is to approximate the entire Pareto front. The
convergence measure P that indicates the spread of the population is more differ-
ent to minimize thanDDS, which indicates the distance of the population to the
Pareto optimal set. Furthermore, the difference between the different operators is
higher in P than inDDS.
The convergence of all algorithms is plotted in Fig.7.13. Noticeable are the poor
spread of the UNX and the good performance of BIX. This issue has been dis-
cussed in Section7.4. In contrast to all previous test problems, the Pareto optimal
set of this test problem is a diagonal line. Walking along this line requires a mod-
ification of all decision variables. Here, an intermediate recombination (BIX) of
two Pareto optimal solutions results again in a Pareto optimal solution, while the
uniform recombination (UNX) is very likely to generate a solution far from the
Pareto front. Good convergence can also be found for SOMX and MIX.



7.6. CONCLUSIONS 101

7.6 Conclusions

Multi-objective optimization algorithms were constructed using self-adaptive mu-
tation, the NSGA-II selection operator and seven different recombination opera-
tors. The aim was to analyze the effect of the different recombination operators
on the quality and the spread of the resulting set of nondominated solutions. This
analysis was performed theoretically and on test problems.
From single objective optimization, four standard recombination operators were
analyzed in particular one global (global intermediate recombination) and three bi-
nary (simulated binary, uniform, and intermediate recombination) recombination
operators. In order to analyze the effect of combining different recombination op-
erators, an operator was constructed that randomly assigns uniform, intermediate
or no recombination. Furthermore, the SOM recombination operator that that was
especially developed for multi-objective optimization was introduced. All these
operators were compared to the case of using no recombination.
Two clear statements about designing of multi-objective recombination operators
can be made. First, recombination in general is beneficial as it improved on aver-
age the quality and the spread of the resulting nondominated solutions on the test
problems. Recombination spreads information (like decision variable values and
strategy parameters) among the offspring and thus improves the algorithm. Sec-
ond, recombination must maintain or even promote diversity in the population as
global intermediate recombination, which destroys all diversity, lead to the poorest
results.
Among the tree binary recombination operators, simulated binary recombination
(SBX) performed clearly worst. Uniform (UNX) and binary intermediate recom-
bination (BIX) performed differently on the test problems. For test problem FF,
BIX is preferable as UNX is problematic, if the Pareto optimal set is located on a
diagonal line in the decision space as discussed in the theoretical analysis. On test
problems DEB, ZDT1, ZDT2, and ZDT6, the nondominated front of UNX was
closer to the Pareto front than for BIX. However, the nondominated solutions of
BIX showed a wider spread when compared to UNX. We introduced an additional
recombination operator (MIX) that selects for each offspring randomly either BIX,
UNX and no recombination. This mixed operator seems preferable to using a sin-
gle operator as it showed less test problem dependence and performed always at
least better than BIX or UNX.
Growing Self-Organizing Maps (SOMs) were developed as a recombination op-
erator designed for Pareto optimization. In each generation of the evolutionary
optimization, the SOM is trained such as to map the parent population on a lower
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dimensional lattice of neurons. The lattice provides an interpolation of the parent
population that can be used as recombination operator.
The SOM recombination operator (SOMX) is a first step in designing recombi-
nation operators for multi-objective optimization. The key differences to the all
other considered operators have been shown: First, the SOM recombination bases
on an interpolation of more than two parents. This increases the possible amount of
information to recombine. Second, the recombination adapts automatically from
unrestricted to restricted mating. Third, the lattice orients along the Pareto optimal
set and interpolating neighboring neurons shares information along the Pareto op-
timal set.
The convergence of an evolutionary algorithm on a multi-objective problem was
considered as a two step problem. In the first step, the Pareto front has to be lo-
cated. Here, unrestricted mating is preferable in order to spread information in the
population. In the second step, the algorithm starts to approximate the Pareto front
by spreading the population along the Pareto front. The number of nondominated
solutions is rising. The number of neurons in the lattice is set proportional to the
number of nondominated solutions, in order to store the increasing amount of in-
formation in the network. This enables the lattice to adapt to the local properties
of parent solutions, as each solution converges to different areas along the Pareto
front. Recombination is performed between neighboring neurons in the lattice and
for the large network size, recombination can now be considered restricted.
This adaptive strategy shows good performance especially for the SPH-m, DEB,
ZDT6, and FF test problems in both spread and quality of the resulting nondom-
inated solutions. When comparing the mean performance over all test problems
SOMX, BIX and MIX show the best quality and spread of the resulting nondomi-
nated solutions among all 7 considered recombination operators.
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Figure 7.11: Plot of the convergence measureDDS and P over the number of evaluated
solutionsN for test problem SPH-m with m = 1 (top), m = 2 (middle) andm = 3
(bottom). The different recombination operators are NOX [no symbol], GIX [+], BIX [∆],
UNX [.], MIX [ ♦], SBX [×], and SOMX [o]. To analyze the effect of the SOM lattice
dimension, SOMX with a 1- [circle, solid line], 2- [circle, dash-dotted], and 3-dimensional
lattice [circle, dashed line] are added.



7.6. CONCLUSIONS 104

2000 4000 6000 8000 10000

10−1

100

N

D
D

S

2000 4000 6000 8000 10000

10−1

100

N

P

2000 4000 6000 8000 10000

10−3

10−2

10−1

100

N

D
D

S

2000 4000 6000 8000 10000

10−2

10−1

100

N

P

2000 4000 6000 8000 10000

10−4

10−2

100

N

D
D

S

2000 4000 6000 8000 10000

100

N

P

Figure 7.12: Plot of the convergence measureDDS and P over the number of evaluated
solutionsN for test problem DEB (first row) and ZDT1 (second row), and ZDT2 (third
row). The different recombination operators are NOX [no symbol], GIX [+], BIX [∆],
UNX [.], MIX [ ♦], SBX [×], and SOMX [o].
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Figure 7.13: Plot of the convergence measureDDS and P over the number of evaluated
solutionsN for test problem ZDT2 (first row), FF (second row). The different recombination
operators are NOX [no symbol], GIX [+], BIX [∆], UNX [.], MIX [ ♦], SBX [×], and
SOMX [o].



Chapter 8

Accelerating Evolutionary Algorithms Using Fitness
Function Models

A new optimization procedure using empirical models of expensive fitness func-
tion is proposed. The procedure bases on the surrogate approach as introduced in
Subsection4.2.2and uses a Gaussian process as fitness function model. It is de-
noted as the Gaussian Process Optimization Procedure (GPOP). Implementation
issues such as efficient and numerically stable model computation, explorationvs.
exploitation, local modeling, multiple objectives and constraints, and failed eval-
uations are addressed. GPOP is compared with CMA-ES on three unimodal and
one multimodal test function.

8.1 Selected Approach

In Chapter4 several optimization procedures with fitness function models are dis-
cussed and distinguished into evolution control (Subsection4.2.1) and surrogate
approach (Subsection4.2.2). In all of these approaches, the goal is to reduce the
number of fitness function evaluations of an evolutionary optimization.
In evolution control, the number of fitness function evaluations is reduced by eval-
uating either a fraction of the population or some generations of the evolutionary
algorithm on the model. The fraction of controlled individuals, i.e., individuals
that are evaluated on the fitness function is highly dependent on the optimization
problem and the efficiency of the optimization algorithm.
We hypothesize:

The more information from the population is exploited by the evolu-
tionary algorithm (e.g., to adapt the mutation distribution), the higher
the fraction of controlled individuals has to be in order to provide suf-
ficient information for the adaptation process.
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In other words, evolution control is based on the assumption that the evolutionary
algorithm needs very little information, which can be provided by evaluating (con-
trolling) just a fraction of the population. However, this argumentation holds only
for those inefficient algorithms that indeed use little information — for “smarter”
algorithms such as CMA [52, 51] that pull much more information out of a popu-
lation, we expect that virtually all individuals must be controlled.
The success of evolution control is thus highly dependent on the fraction of con-
trolled individuals, which is difficult to determine as it depends on both the fitness
function complexity and the optimization algorithm. It is always a compromise
between avoiding the computational cost of fitness function evaluation and the
danger of a poor model misleading the selection operator of the evolutionary algo-
rithm and thus the optimization [59].
In the surrogate approach, a fitness function model is constructed for an initial
training set of evaluated points. An optimization algorithm then searches for the
optimum of the model’s fitness prediction. The predicted optimum constitutes an
ideal candidate for an improved point to the problem, and is therefore evaluated on
the fitness function. The result of the evaluation is added to the model’s training
data, facilitating an improved approximation of the fitness function by the model.
The procedure then iterates by searching for the optimum of the improved model.

The potential reduction in computational cost is higher for the surrogate ap-
proach than for the evolution control, especially once enough data is available to
allow for construction of a model that is accurate near the true optimum.
Among the empirical models introduced in Section4.2.3, Gaussian processes
(GPs) appear the most promising to us for fitness function modeling, as they are
the only approach to combine the following properties: a GP

• does not require a predefined structure,
• can approximate arbitrary function landscapes including discontinuities and

multimodality,
• has meaningful hyperparameters, and includes a theoretical framework for

optimizing these hyperparameters,
• provides an uncertainty measure in the form of a standard deviation for the

predicted function values.

8.2 Gaussian Process Model

We define a GP using the notation of MacKay [73]: let f(x) be an unknown
scalar function andx ∈ Rn a point in ann-dimensional decision space. Eval-
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uating f at N data pointsXN = {x1,x2, . . . ,xN} yields the function values
tN = {t1, t2, . . . , tN}, where(∀i) ti = f(xi). Note that subscripts are used here
to indicate vector and matrix sizes (fortN andXN ) as well as to index elements
of those vectors and matrices (e.g.,ti, xi). The modeling task is to predict the
function valuetN+1 at a new pointxN+1. In the following we present the main
equations for GPs; for additional details refer to MacKay [73].
The GP imposes a probabilistic model on the given data, namely that the vec-
tor of known function valuestN is one sample of a multivariate Gaussian
distribution with joint probability densityp(tN |XN ). Similarly, when adding
a new pointxN+1, the resulting vector of function valuestN+1 is assumed
to be a sample of the Gaussian joint probability densityp(tN+1|XN+1) ≡
p(tN , tN+1|XN ,xN+1). Note that the dimensionality of each probability density
here equals the number of data points, and is independent of the dimensionality of
the decision spacen.
Using the rule of conditional probabilities,p(A|B) = p(A,B)/p(B), we can write
the probability density fortN+1 given the known data points as

p(tN+1|XN+1, tN ) =
p(tN+1|XN+1)

p(tN |XN )
(8.1)

This gives the probability density for the function valuetN+1 at a new data point
xN+1 as a univariate Gaussian, given theN known data points, their associated
function values, and the location of the new data point. In the following we trans-
form Eqn.8.1so as to express the distribution oftN+1 in terms of its mean̂tN+1

and standard deviationσtN+1 . The multivariate Gaussian in the denominator on
the right-hand side of Eqn.8.1 is

p(tN |XN ) =
exp

(
− 1

2t
T
NC−1

N tN

)√
(2π)N det(CN )

(8.2)

whereCN is the covariance matrix of the Gaussian distribution, and its mean has
been set to zero. Similarly we obtain forN + 1 data points

p(tN+1|XN+1) =
exp

(
− 1

2t
T
N+1C

−1
N+1tN+1

)√
(2π)N+1 det(CN+1)

(8.3)

The covariance matrix for theN + 1 points can be written as

CN+1 =
(

CN k
kT κ

)
, (8.4)
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wherek is a vector containing the covariances between theN known points and
the new point, andκ is the variance of the new point. We will determinek andκ
later. AlsoC−1

N+1 can be expressed in terms ofC−1
N [11]:

C−1
N+1 =

(
M m
mT µ

)
, (8.5)

where M = C−1
N + µ−1mmT ,

m = −µC−1
N k , and

µ =
(
κ− kT C−1

N k
)−1

.

Inserting Eqns.8.2and8.3 into Eqn.8.1gives

p(tN+1|XN+1, tN ) ∝

exp
(

1
2
(
tT
NC−1

N tN − tT
N+1C

−1
N+1tN+1

))
, (8.6)

which by the use of Eqn.8.5simplifies to

p(tN+1|XN+1, tN ) ∝ exp

(
−1

2
(tN+1 − t̂N+1)2

σ2
tN+1

)
, (8.7)

a univariate Gaussian with mean and variance given by

t̂N+1 = kT C−1
N tN , (8.8)

σ2
tN+1

= κ− kT C−1
N k . (8.9)

The covariance matricesCN andCN+1 are defined by way of a covariance func-
tion C which embodies our prior assumptions about the function to be modeled.
Specifically, we define the covariance between function values at two data points
xp andxq to be given by the smooth covariance function [73]

C(xp,xq) =

θ1 exp

(
−1

2

n∑
i=1

(xp,i − xq,i)2

r2
i

)
+ θ2 + δpqθ3 . (8.10)

Here, the first term reflects a distance-dependent correlation between two data
points: if their distance is small compared to the length scalesri, the exponen-
tial term is close to one; with increasing distance it exponentially decays to zero.
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The hyperparameterθ1 scales this correlation. In the second term,θ2 specifies a
certain offset of the function values from zero. Finally, the third term adds white
noise to the model, scaled byθ3 and applied only to the diagonal elements of the
covariance matrix. The covariance vectork and varianceκ from Eqn.8.4 can be
expressed in terms of the covariance function as

ki = C(xi,xN+1), i = 1, . . . , N, (8.11)

κ = C(xN+1,xN+1) = θ1 + θ2 + θ3 . (8.12)

8.2.1 Optimizing the Hyperparameters

The GP employs a set of hyperparametersθ = {θ1, θ2, θ3, r1, r2, . . . rn} which
can be set by the user or optimized such that the log-likelihood of the given func-
tion valuestN under the multivariate Gaussian with zero mean and covariance
CN = C(XN , θ) is maximal. This log-likelihood and its derivative with respect
to θ can be expressed as

L = log (p(tN |XN , θ)) (8.13)

= −1
2
(
log detCN + tT

NC−1
N tN + N log 2π

)
∂L
∂θ

=
1
2
(
tT
N ΓN C−1

N tN − trace(ΓN )
)
, (8.14)

where ΓN ≡ C−1
N

∂CN

∂θ

Gradient-based or evolutionary algorithms can be used to optimize the hyperpa-
rameters, each with their own advantages. Gradient methods are fast local opti-
mizers of smooth functions for which the analytic gradient is available, as is the
case here. However, MacKay [73] shows that the hyperparameter optimization
landscape is multimodal. This suggests that a slower but more robust global opti-
mizer, such as an evolutionary algorithm, may yield better results.
We therefore use both an evolutionary algorithm (CMA [52]) and a quasi-Newton
gradient method (BFGS [28]) as introduced in Section2.4 and Subsection1.2.2,
respectively, in combination. CMA is always used for the first optimization of the
likelihood in order to identify the global minimum. In our experience it suffices
to limit CMA to 3 000 likelihood evaluations. To track adjustments to the optimal
hyperparameters, e.g., after additional data points have been added, we employ
BFGS as a fast optimizer, coupled with a line search by golden section (see, e.g.,
[101]). The initial step size for each line search is set to 10% of the search space
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in order to escape local minima. For BFGS, we found that computing 20 gradients
and evaluating 20 points in the line search is sufficient. After optimizing the like-
lihood 10 times with BFGS, CMA is used again to avoid getting trapped in a local
minimum.
To simplify the setting, we normalize the training data such that function values lie
within [0, 1] and decision variables within[−1, 1]. We then enforce the following
bounds on the hyperparameters:

θ1 ∈ [10−3, 1]
θ2 ∈ [10−3, 1]

θ3 ∈ [10−9, 10−2]
ri ∈ [10−2, 10], i = 1, . . . , n

Since the ratios of upper to lower bounds are very large, we operate with the log of
the hyperparameter values, as proposed by Williams [118]. If the computation of
the inverse ofCN fails too often during optimization, we can increase numerical
stability by raising the lower bound onθ3.

8.2.2 Computational Cost

The key equations of the GP are Eqns.8.8 and8.9 for predicting the mean and
standard deviation of a new data point, and Eqns.8.13 and8.14 for optimizing
the hyperparameters. Although all four equations contain the inverse of the co-
variance matrixC−1

N , the explicit inverse is only needed to compute the gradient
of the log-likelihood in Eqn.8.14, required only for gradient-based optimization
algorithms. The other equations contain the product of the inverse with a vector,
which amounts to solving a linear system of equations. We can avoid computing
the explicit inverse by performing an LU decomposition ofCN :

CN = LU, (8.15)

whereL andU are a lower and upper triangular matrix, respectively. The LU
decomposition can be computed in orderO(N3), and is numerically more robust
than operating with the explicit inverse. Then, after calculatingC−1

N tN via the
LU decomposition inO(N2), predicting mean and standard deviation for a new
pointxN+1 are of orderO(N) andO(N2), respectively. The log-likelihood for a
given LU decomposition andC−1

N tN can also be obtained inO(N), provided the
determinant is computed as proposed in Eqn.8.16below.
The gradient of the log-likelihood requires explicit computation ofC−1

N , which
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is about 3 times as expensive as the LU decomposition. Evolutionary algorithms
typically require more evaluations but do not need gradient information, so each
evaluation is cheaper. For largeN several methods for computing sparse covari-
ance matrices have been proposed (e.g., [105]) which we do not pursue here.

8.2.3 Numerical Difficulties

We encountered numerical problems in computing the log-likelihood according to
Eqn.8.13. Specifically, forN > 30 the determinant of the covariance matrix can
underflow IEEE 754 double precision floating-point arithmetic, especially if the
covariance matrix is ill-conditioned.
Gibbs and MacKay [46] avoid computing the log-likelihood by using only gra-
dient information in their conjugate gradient implementation, including their line
search. By contrast, we prefer the likelihood over its gradient since it is computa-
tionally cheaper, and allows us to use direct search methods such as evolutionary
algorithms. We rewrite the computation of the determinant in the following nu-
merically more stable form:

log detCN =
N∑

i=1

( log Lii + log Uii) (8.16)

In words, we compute the log-determinant as a sum of logs of the elements in the
trace of theL andU matrices. All quantities in this computation remain within
machine precision even where the determinant itself would underflow.

8.3 Gaussian Process Optimization Procedure

We propose an optimization procedure based on the surrogate approach (see Sub-
section4.2.2) that uses a Gaussian process as an inexpensive model of the objective
function. This Gaussian Process Optimization Procedure (GPOP) starts from an
initial set of points, obtained, e.g., from previous optimization runs, by random
sampling, or a short run of a conventional optimization algorithm. Our optimiza-
tion loop then proceeds as follows:
A GP is constructed for the given data set, and the hyperparameters are optimized.
An Evolutionary Algorithm (EA) is then used to search for minima of the GP pre-
diction, using severalmerit functionsas fitness functions for the EA. Finally, the
resulting minima are evaluated on the objective function and added to the data set.
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These three steps constitute one iteration of GPOP, and are repeated until a termi-
nation criterion is reached.
In the following, we discuss merit functions, describe techniques to limit the train-
ing effort of a GP to the local neighborhood of the best solution found so far, and
show how real world problems with more than one objective and constraints can
be handled.

8.3.1 Merit Functions

Searching the GP for the minimal predicted valuet̂ exploitsthe knowledge of the
GP to find the most promising candidate for reducing the objective function value.
However, this carries the risk of premature convergence to non-optimal solutions
[113, 34]. To improve the prediction quality of the GP and promote a more thor-
ough global search, there is also a need toexplorenew regions of decision space.
To balance exploration with exploitation, Torczon and Trosset [113] propose a
merit functionfM which adds a density measure to the predicted function valuet̂
so as to promote unexplored regions of the decision space. One possible density
measure is the maximin distance [62], i.e., the distance to the closest evaluated
point. Another possibility is the predicted standard deviationσt of the GP, as pro-
posed in [47]. Both measures are minimal at known data points and increase with
distance to evaluated solutions. In contrast to the standard deviation, however, the
maximin distance is not bounded for unbounded search spaces, and its derivative
is discontinuous at all positions equidistant from the two closest evaluated points.
We therefore prefer the standard deviation, and define the merit functionfM as

fM(x) = t̂(x) − α σt(x), (8.17)

whereα ≥ 0 balances the two terms by scaling the density measure. (For maxi-
mization problemsα must be negative.)

We optimize 4 merit functions, usingα = 0, 1, 2, 4, respectively. Settingα = 0
exploits the information of the model by searching for the predicted minimum. By
contrast,α = 4 strongly pushes the optimization into unexplored regions. The
resulting minima can be evaluated in parallel, and updating the GP with several
evaluations at a time also serves to reduce the number of GPOP iterations. In our
experience, using more than 4 merit functions is not beneficial for the convergence
of the optimization.
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8.3.2 Local Modeling and Local Search

Both global and local fitness function models are considered in the literature.
While global models use all evaluated points, local models only take into account
points from a certain region of decision space. Although they thus throw away in-
formation, local models have a number of advantages: the precision of any model
is limited, and is mainly determined by the difference in the objective function
values among the points being modeled. For complicated (e.g., multimodal, dis-
continuous) function landscapes it may not be feasible to build an accurate global
model at all. Finally, since they use less training data, local models typically carry
a far smaller computational cost.
Since we want to converge towards the optimum with arbitrary precision, we re-
strict our model to the local neighborhood of the current best solutionxbest. We
use as training data for the GP the union of theNC points closest toxbest in the de-
cision space, and theNR most recently evaluated points. The closest points serve
to model the neighborhood ofxbest, while the most recent points are included to
allow the data set (and hence the model) to evolve even when theNC closest points
remain the same.
To avoid searching areas that may be poorly modeled, we also restrict the search
to a hypercube around the current best solution:

xbest − d/2 ≤ x ≤ xbest + d/2 , (8.18)

with the hypercube’s diagonald set to reflect the spread of theNC closest points:

di = max
c

(xc,i) − min
c

(xc,i), (8.19)

wherei indexes the dimensions of the search space, andc theNC closest points.
Thus the search space moves around with the current best solution.

8.3.3 Enhancements for Real-World Applications

GPOP was designed to model a single fitness function. For real-world applica-
tions this fitness function will typically be composed of several objectives as well
as penalties for constraint violations. To model such a complex aggregate of func-
tions with a single GP may prove difficult. We therefore model each objective and
penalty by its individual GP, and construct the overall fitness function model as an
aggregate of all GPs. While this is computationally somewhat more expensive, it
leads to a more accurate model of composite fitness functions.
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In real-world applications, the objective or constraint evaluation might fail for
some points, due to an infeasible design or inadequacies of the evaluation code.
Such failed evaluations should not be used for training the GP [15]. We initially
requireNC/2 points for training the GP, which we generate with CMA. If some of
the evaluations fail, CMA is used to produce an additionalNC/2 points at a time,
until at leastNC/2 points have been evaluated successfully. After this initializa-
tion, the iterative optimization procedure is started. In each iteration, the local GP
models are constructed for the current data set. Then the minimum for each merit
function is located, evaluated on the expensive fitness function, and added to the
training data.
If in one iteration the evaluation of all points fails, the GP models remain un-
changed. To avoid stagnation in this situation, we add a small Gaussian perturba-
tion xR of the current best solutionxbest to the training data:

xR
i = xbest

i + zi di/100 , zi ∼ N (0, 1) (8.20)

With these enhancements, our GPOP can be summarized as:

1. begin
2. while less thanNC/2 points evaluated successfullydo
3. use (2,10)-CMA to generateNC/2 points
4. evaluate them on expensive fitness function
5. end while
6. while termination criterion not reacheddo
7. find xbest, the best of all points evaluated so far
8. training set =NC points closest toxbest

9. + NR most recent successful evaluations
10. for each objective and constraint:
11. optimize GP hyperparameters (Eqns.8.13–8.16)
12. for each merit function (Eqn.8.17):
13. find predicted optimum (Eqns.8.8–8.12)
14. remove optima that have already been evaluated
15. evaluate new optima on expensive fitness function
16. while no evaluation successfuldo
17. generate and evaluate perturbation
18. end while
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19. end while
20. end

(Eqn.8.20)

8.4 Performance Analysis

We analyze the performance of GPOP on three unimodal test functions [52] with
different properties (a simple quadratic function, Schwefel’s function, and Rosen-
brock’s function) and on a multimodal function (Rastrigin’s function):

fsphere(x) =
n∑

i=1

x2
i , (8.21)

fSchwefel(x) =
n∑

i=1

 i∑
j=1

xj

2

, (8.22)

fRosen(x) =
n−1∑
i=1

(
100(xi+1−x2

i )
2 + (1−xi)2

)
(8.23)

fRastrigin(x) = 10n +
n∑

i=1

(
x2

i − 10 cos (2πxi)
)

(8.24)

For all functions, the minimal function value isf = 0 and the search space is
restricted toxi ∈ [−10, 10]. For the three unimodal functions, we measure the
number of function evaluations required to reach a function value smaller thanf =
10−10. For the multimodal function, we analyze the capability of the algorithm
to converge to the global optimum. Thus, we measure the final function value
as soon as the algorithm is caught in a local minima. GPOP is assumed to be
caught, if the size of the local search area is smaller thanf = 10−6. Four different
training set sizes with:NR = NC = 15, 30, 60, 120 are analyzed. The results are
compared to CMA, an evolutionary algorithm known to perform well on all three
unimodal functions [52]. The results represent always the mean of 5 independent
optimization runs. Different problem dimensions were analyzed. If for a certain
dimension and training set size, no result is given, then this is due to a too poor
convergence compared to CMA.
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Figure 8.1: Contour plots of the sphere function (upper left), Schwefel’s function (upper
right), Rosenbrock’s function (lower left), and Rastrigin’s function (lower right); all in two
dimensions.

8.4.1 Sphere function

The minimum of the sphere function is atx = 0. Its contours (Fig.8.1, left) are
hyperspheres in decision space, making this function trivial to optimize. Results
for GPOP and CMA are shown in Fig.8.2, plotted against the problem dimension-
ality n on a log-log scale.
The numberN of function evaluations required increases withn for both algo-
rithms. The increase gets steeper for GPOP past a certain threshold dimensional-
ity, beyond which the training data no longer suffices to model the function well,
and the algorithm gets inefficient. As a rule of thumb, this threshold is located at
aboutn = NC/2. In other words, for a sphere function inn dimensions we should
have a training set ofNC ≥ 2n points, withNR = NC. As long as this rule is
obeyed, GPOP requires about 4 to 5 times fewer function evaluations than CMA.
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8.4.2 Schwefel’s function

The minimum of Schwefel’s function is also atx = 0; its contours are hyperel-
lipsoids (Fig.8.1, center). Note that the principal axes are not parallel but rotated
relative to the coordinate axes of the decision space: Schwefel’s function is non-
separable, i.e., the decision variables are highly correlated. In contrast to CMA,
which was designed to be invariant to such rotations [52], our GP scales the co-
variance function by a separate hyperparameter along each dimension, and is thus
sensitive to them.
Nevertheless, our results for Schwefel’s function (Fig.8.3) indicate that our GP is
able to model non-separable functions, and GPOP can optimize them efficiently.
The numberN of function evaluations required to converge is about the same as
for the sphere function, again outperforming CMA by a large factor. For efficient
optimization, however, more training data should be used, due to the more com-
plex function topology and the correlation of the decision variables. While the
precise threshold for the training set size is less clear here, as a rule of thumb we
might requireNC ≥ 8n points, withNR = NC.

8.4.3 Rosenbrock’s function

Rosenbrock’s function is also non-separable, with highly correlated decision vari-
ables. As an added difficulty the minimum is located (atx = 1) in a long,
flat-bottomed, curved, and narrow valley (Fig.8.1, right). Both algorithms con-
sequently require more function evaluations, as shown in Fig.8.4. The perfor-
mance gap between GPOP and CMA has narrowed but is still evident, provided
that GPOP is givenNC ≥ 5n training data points, withNR = NC.

8.4.4 Rastrigin’s function

Rastrigin’s function is a superposition of the sphere function and a cosine function
with a high oscillation frequency and amplitude. The global minimum is located at
(atx = 0). In Fig.8.5and8.6, CMA is compared with GPOP. For Rastrigin’s func-
tion, we are interested in the global convergence and not the convergence speed.
Thus, each optimization runs until the algorithm converged to a local or the global
minimum. An algorithm is considered converged as soon as the step size (CMA)
or the local search area (GPOP) is10−4 times smaller than the size of the sur-
rounding valley, which is≈ 1. In the figures, the final function valueff of the
optimization is plotted. The square root offf is equal to the distance of the final
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point to the optimum.
In Fig. 8.5, the same settings for GPOP are used as for the three unimodal func-
tions. The figure shows that GPOP and CMA are not able to determine the global
minima forn > 2. This is due to the large number of local minima and the high
oscillation amplitude of the function between the minima. For the standard set-
tings, CMA performs better then GPOP. However, with increasing training set for
GPOP and problem dimension the difference between CMA and GPOP decreases.
There are several possibilities to improve the performance of GPOP on multimodal
functions:

• larger values ofα in the merit function would promote better exploration of
the search space.

• multiple local search spaces (e.g., around the bestNbest solutions) would
facilitate recovering multiple minima.

• increasing the noise levelθ3 of the GP model leads to a smoother approxi-
mation of the fitness function; this may remove the local minima from the
GP model.

In Fig. 8.6, the third possibility was chosen and the noise level was fixed atθ3 =
0.01. With this setting and training set size of 60 to 120, GPOP performs similar
to CMA.

2 4 8 16 32 64
10

1

10
2

10
3

10
4

10
5

n

N

Figure 8.2: Mean numberN of function evaluations against problem dimensionalityn to
reachfsphere = 10−10 for GPOP with training set sizeNR = NC = 15 (o), 30 (x), 60 (+),
and 120 (∆), compared to CMA (unmarked).
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Figure 8.3: Mean numberN of function evaluations against problem dimensionalityn to
reachfSchwefel = 10−10 for GPOP with training set sizeNR = NC = 15 (o), 30 (x), 60
(+), and 120 (∆), compared to CMA (unmarked).

8.4.5 Summary of the Performance Analysis

GPOP has been shown to be capable of optimizing difficult test problems. Further-
more GPOP has proven to be an efficient optimization procedure as it requires less
function evaluations than CMA to find the minimum of three unimodal functions
within given precision.
The performance of GPOP is dependent on the training set size as sufficient train-
ing data is required for adequately modeling the fitness function. For all considered
test problems, a rule of thumb for setting the training set size is given as a func-
tion of the problem dimensionality. Following this rule, GPOP requires on average
about 3 to 6 times less function evaluations than CMA.
Compared to CMA, the main drawback of GPOP is the higher computational cost
of the optimization procedure. The cost scalesO(N3) with the training set size
and is onlyO(N) with the problem dimension. Thus, GPOP should mainly be
applied to expensive optimization problems, requiring at least several seconds of
CPU time per function evaluation. The computational expense is also the reason
why the training set size was limited to 120. With this training set size GPOP is
more efficient then CMA on problems with a problem dimension of up to 16-64
decision variables.
For the multimodal Rastrigin’s function, CMA performs better than GPOP when
comparing the final function values. However, several ways to improve the perfor-
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Figure 8.4: Mean numberN of function evaluations against problem dimensionalityn to
reachfRosen = 10−10 for GPOP with training set sizeNR = NC = 15 (o), 30 (x), 60 (+),
and 120 (∆), compared to CMA (unmarked).

mance of GPOP exist, and by adding white noise with varianceθ3 = 0.01 to the
GP model we have obtained performance similar to that of CMA.

8.5 Conclusions

When optimizing expensive fitness functions, it is important to reduce the number
of function evaluations required as much as possible. This can be achieved by ex-
ploiting knowledge of past evaluated points to train an empirical model that can be
used as an inexpensive surrogate of the fitness function.
We have shown how Gaussian processes (GPs) can be used as fitness function
surrogates. The resulting Gaussian Process Optimization Procedure (GPOP) is ca-
pable of efficiently optimizing even very ill-conditioned problems such as Rosen-
brock’s function. Here GPOP clearly outperformed CMA, an algorithm known to
be efficient in such functions [52].
A scaling analysis over the number of decision variables showed that sufficient
training data points must be supplied for GPOP to converge efficiently. The
computational expense of the optimization algorithm itself is consequently much
higher for GPOP than for CMA. While CMA can be efficiently applied to prob-
lems with more than 300 decision variables [52], we encountered computational
limits for our test functions as early as 16 to 64 variables. These could be ad-
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Figure 8.5: Final function valueff of the converged optimization run onfRastrigin against
problem dimensionalityn for GPOP with training set sizeNR = NC = 15 (o), 30 (x), 60
(+), and 120 (∆), compared to CMA (unmarked).

dressed by a sparse GP implementation [105].
GPOP also showed global search capabilities: adding some white noise to the GP
model allowed GPOP to perform similar to CMA. GPOP’s 4 merit functions con-
stitute different compromises between exploration and exploitation, thus balancing
the inherent conflict between converging to and escaping from local minima.
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Figure 8.6: Final function valueff of the converged optimization run onfRastrigin against
problem dimensionalityn for GPOP with training set sizeNR = NC = 15 (o), 30 (x),
60 (+), and 120 (∆), and a fixed hyperparameter valueθ3 = 0.01 , compared to CMA
(unmarked).



Part III

Turbomachinery Design
Optimization



Chapter 9

Gas Turbines for Energy Generation

Gas turbines are successfully implemented for power generation and for vehicle
propulsion. In aircraft propulsion or drives for vehicles, gas turbines are chosen
due to their large power-to-weight and power-to-volume ratio. Furthermore, for
certain operating conditions the cycle efficiency of gas turbines is high compared
to piston engines.
In the field of energy generation, gas turbines have often been chosen in the past
when fast start and shut down on demand is required. This is especially needed for
compensating peak loads over the daytime. In contrast, steam cycles as used for
coal and oil firing or nuclear power are base-load machines since the start and shut
down is tremendously longer due to the large heat capacity in the cycle.
In recent years the share of gas turbines among new power plants has significantly
increased due to a number of market changes. Since the price of natural gas has
dropped compared to oil and the efficiency of gas turbines increased, gas turbines
are used for base load as well. In a combined cycle, the exhaust gas of gas turbines
can be used in recovery boilers to raise steam for a steam turbine, increasing the
overall efficiency. The efficiency of today’s base load gas turbines ranges between
34% to 38%. Integrating the machines into a combined cycle increases the effi-
ciency to about 49% to 58%. In addition, moderate installation cost and spatial
dimensions of gas turbines compared to steam cycles reduces the overall energy
production costs.
Figure9.1 shows a state-of-the-art mid-size gas turbine. Supporting systems like
the secondary air systems are not show. In the figure, the gas flow through the
machine is from left to right. Ambient air enters the compressor first. Then the
compressed air is burned in the combustion chamber and finally expanded in the
turbine. The difference in power between the turbine output and the compressor
input is the net power to generate electricity.
In today’s machines, axial compressors generate pressure ratios between 1:15 and
1:30 and consist of about 20 to 30 stages. Each stage comprises a stator and rotor
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Figure 9.1: Cut-away view of a gas turbine (the picture was downloaded in 2000 from the
picture gallery on the homepage of ABB-Alstom Power).

row. For the gas turbine in Fig.9.1, the combustion chamber is annular around the
turbine axis with a set of burners aligned in the annulus. The combustion prod-
ucts leave the combustor at temperatures of about1200− 1400◦ C. The design of
the turbine differs from the compressor. Since gaseous flow can be more easily
expanded than compressed, only about 4 turbine stages are needed to expand the
hot gas. Due to the high temperatures of the gas, the combustion chamber and the
turbine rows need to be cooled. Most turbines are air-cooled, where the cooling
air is bleed air taken at different positions of the compressor. The cooling design
is of core importance for the turbine, since for highly efficient engines, the amount
of cooling air needs to be reduced at minimum.



Chapter 10

Multi-objective Optimization of Noisy Combustion
Processes

We consider the multi-objective optimization of the combustion processes for a
single burner of a stationary gas turbine. The burner combusts fuel by a vortex-
stabilized lean premixed flame. The burner is analyzed by an atmospheric test-rig.
In the test-rig, the combustion can be passively controlled by a set of valves that
control the fuel flow rates though different fuel injection holes along the burner
axis. Two different setups are considered using either 8 proportional valves to ad-
just the fuel flow at each injection hole or 16 digital valves which just open or close
certain injection holes.
NT-SPEA of Subsection6.2.5 is applied to the Pareto optimization of the com-
bustion process. The optimization results in an approximation of the Pareto front
for minimizing NOx emissions and reducing the pressure fluctuations (pulsation)
of the flame. Both objectives are conflicting and affect the environment and the
lifetime of the gas turbine, respectively. The physical implications of different
solutions are discussed.

10.1 Introduction

A central component in the design of a gas turbine is the design of the burners in
the combustion chamber as the burners are mainly responsible for the emissions
of the machine and have a major impact on the thermodynamic inlet conditions of
the turbine. The burners mix air and fuel and combust them continuously. This is
different to piston engines, which combust in a cyclic manner.
The design of a burner follows various objectives. The burner determines the po-
sition of the flame in the combustion chamber. The flame position should be well
controlled, avoiding direct contact and thus damage on walls of the combustion
chamber. Also, a uniform mixing of air and fuel is desired. Mixing is respon-
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sible for the emissions and the pressure pulsations of the combustion flame. For
example, the presence of areas of rich combustion results in locally increased tem-
peratures and NOx emissions. Local temperature peaks in the exhaust gas of the
burner may damage the proximate turbine blades. Furthermore, the burner should
produce a stable combustion flame, avoiding undesired pressure pulsations. Pulsa-
tions are thermo-acoustic waves, which occur in particular for very lean combus-
tion when operating under part load condition. They can reduce the lifetime of the
turbine, e.g., by fatigue and by local overheating the blades surface.
Reinkeet al. [91] distinguish the currently available combustion types into swirl-
stabilized burners, diffusion burners, lean premixed burners, and catalytic burners.
The considered burner is the Alstom EV burner [96]. The burner mixes air and fuel
by swirl and stabilizes the flame position by a vortex breakdown. For part load, a
diffusion pilot flame can be used to stabilize the combustion.
Various investigations have been made in order to reduce pulsations and emissions
of the burner by active and passive control mechanisms. For example, Paschereit
et al. [85] reduced the pulsations in their experimental test-rig by an acoustic ac-
tuation in a closed control loop. More often, passive control mechanisms are used
since the implementation of a feedback loop for active control is a complex and
expensive modification.
For complex problems such as combustion processes, numerical simulations are
not widely used as a predictive tool due to the complexity of the physical phenom-
ena under investigation. Although intensive research efforts are underway on this
front, experimental setups are widely used for the study and optimization of com-
bustion processes. Optimization of combustion processes is especially resource
intensive since a large number of different designs has to be evaluated. At the cur-
rent state, evaluating the designs in an experimental setup is still less time intensive
than performing three dimensional numerical simulations.
In this chapter, we optimize the combustion processes of a single burner in an at-
mospheric test-rig. We optimize a passive control mechanism, choosing the fuel
flow rates through the injection holes of the burner as decision variables of the
setup. The objectives are to reduce the NOx emissions and pressure pulsation of
the burner. Since the two objectives are conflicting, the optimization results in a
Pareto front corresponding to reduced emissions and pulsation of the burner. Ex-
perimental setups present a number of challenges to any optimization technique
including: availability of point wise information only, experimental noise in the
measurements, uncontrolled changing of environmental conditions and measure-
ment failure. The various challenges require a robust multi-objective optimization
technique, thus NT-SPEA (Subsection6.2.5) is chosen. In Chapter6, the algorithm
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was tested on problems with similar noise levels as occur in the experimental test-
rig and showed the best convergence of all considered algorithms.

10.2 Atmospheric Test-rig for Gas Turbine Burners

The test-rig for a single burner under atmospheric pressure condition is illustrated
in Fig. 10.1. Preheated air enters the test-rig from a plenum chamber. The air
flows into the conical burner through two inlets as illustrated in Fig.10.2. Along
the inlets, fuel is injected and mixes with the air due to the difference in velocity.
The mixing is enhanced by the swirl in the burner that occurs due to its conical
shape. A controlled vortex breakdown is caused by the difference in the cross-
section between burner and combustion chamber. The flow recirculates around the
combustion zone. Recirculation stabilizes the combustion flame in a predefined
combustion area. The fuel is natural gas or oil and is injected through injection
holes, which are uniformly distributed along the burner. A more detailed descrip-
tion is given by Sattelmayeret al. [96].
Gas analysis equipment and a microphone are used to measure all emissions and
the pressure pulsations of the burner. Constant operating conditions are obtained
by monitoring the airflow from the plenum chamber, the total fuel flow and the
exhaust gas of the burner. The NOx emissions and the pulsation of the burner
are the two objectives to be minimized in a Pareto optimization setup. Pulsations
are thermo-acoustic combustion instabilities, involving feedback cycles between
pressure, velocity, and heat release fluctuations. The microphone measurements
of the pulsation need to be time-averaged over several seconds. NOx emissions
are exponentially dependent on the combustion temperature and occur especially
in centers of rich combustion resulting from inhomogeneous mixing of fuel and
air.
Figs.10.1and10.2show the valves that allow to control the fuel flow distribution
along the burner axis. The fuel injection is controlled with two different setups by
either 8 proportional valves to individually adjust the fuel flow for the different fuel
injectors or by 16 digital valves, which include or exclude fuel injectors along the
distribution holes. Measuring one valve setting with either digital or proportional
valves requires about 1 minute. This includes the time required for changing the
valves, for the combustion process to adjust to the changed settings, and for the
measuring.
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Figure 10.1: Sketch of the atmospheric combustion test-rig with a low-emission swirl sta-
bilized burner. The fuel flows through the injection holes are to be controlled. The NOx

emissions and the pulsation of the burner are the objectives to be minimized.
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Figure 10.2: Sketch of the EV burner. The burner consists of two half-cones with a certain
offset, such that between the two half-cones two intakes emerge. Air enters the burner
through the 2 intakes and gets swirled by the shape of the cone. The fuel is injected along
the two slots and mixed with the air by the difference in velocity and swirl. The fuel flow
rate through the injection holes are to be controlled.
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10.3 Burner Optimization with Proportional Valves

10.3.1 Valve Encoding and Optimization Algorithm

Eight proportional valvesVi,i=1,...,8 are used to control the fuel flow rates. Each
valveVi controls the mass floẇmi through a set of adjacent injection holes along
the burner axis.
In order to keep the operating conditions constant, the total fuel mass flow
ṁt =

∑8
i=1 ṁi is fixed, reducing the number of free decision variables for the

optimization from 8 to 7. Fig.10.3 shows the implemented encoding for the 8
valvesVi by 7 virtual valvesV ′

j, j=1,...,7. The total mass flow is split by a first
virtual valveV ′

1 into two flows, with each of the flows feeding either the first or
second half of the real valves. The next layer consists of two virtual valvesV ′

2 and
V ′

3 and splits the two flows into four. Finally, the virtual valvesV ′
4 , V ′

5 , V ′
6 , andV ′

7

feed the real valvesVi and determine the fuel flowṡmi. While the evolutionary
algorithm operates with the seven virtual valves, the real valves are used in the
test-rig. A detailed description about the experimental setup and the fuel control
can be found in [30].
The optimization algorithm is NT-SPEA with a population and archive size of 15.
The standard recombination and mutation operators of Section3.3are used, which
were also applied to the test problems in Chapter6. For the mutation operator,
the standard deviationσ is set to of 10% of the interval size in which the variable
is defined, and a mutation probabilitypM of 20%. The standard deviation is set
relatively large compared to the interval size, since smaller mutations might not be
observable in the presence of the experimental noise. In the following, we refer to
the real valvesVi and the real fuel flowṡmi.

10.3.2 Optimization Results

An optimization run is started evaluating a total of 326 different burner settings
within one working day. All solutions are plotted in Fig.10.4in order to show the
possible decrease in NOx emissions and pulsations by the optimization compared
to the given standard burner configuration and between the best and worst designs.
The given standard burner configuration is marked in the figure and represents
a setting with equal mass flow through all valves. Some solutions found by the
optimization process dominate the standard configuration, i.e., are superior in both
objectives. Thus the optimization run is successful, delivering improved solutions
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for both objectives. The occurrence of a wide nondominated front underlines the
conflict in minimizing both objectives and just (Pareto) compromise solutions can
be found.
In the figure, the objectives are noisy. Thus, drawing just the nondominated front
and picking one solution from the front is risky from the point of view, that an
inferior solution is picked, which is nondominated due to the noise in its objective
values. Picking an area close to the nondominated front increases the confidence
in the front, especially if the valve settings are quite similar for the solutions in
the area. A second reason for not drawing just the nondominated front is the
possible shift of the front towards smaller objective values. The objectives contain
noise and the selected nondominated solutions may improve due to noise leading
to smaller objective values. In addition we are more interested in the valve settings
than in the exact objective values, since the valve settings indicate the physics of
the problem.
Five areas along the nondominated front are picked and marked by boxes. For the
solutions within the boxes, the valve settings are printed in Fig.10.5. Fig. 10.1
shows the arrangement of the valves in the combustor. For better illustration, the
settings are connected with a line and the dash-dotted line shows the standard
burner configuration with equal mass flow through all valves. Within each box,
the settings of the different solutions are indeed quite similar.
Boxes 1 and 5 are at the extreme ends of the Pareto front. Box 1 represents Pareto
solutions with high NOx emissions, but low pulsation. The corresponding valve
settings show an increased fuel mass flow at valves 1, 2 and 4, while the flow at
valves 5 and 6 is reduced. The fundamental mechanism corresponding to these
settings is the fact that the increased mass flow through valves 1 and 2 leads to rich
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Figure 10.4: Proportional valves: All measured solutions of the burner optimization run
[plus symbol] and given standard burner configuration [circular symbol]. 5 boxes mark
different areas along the nondominated front.

combustion in the center of the burner. The rich combustion zone stabilizes the
combustion like a pilot flame, but increases the NOx emissions. The lean zones
are close to the middle of the burner at valves 5 and 6.
Box 5 contains solutions with minimal NOx emissions, but high pulsation. The
mass flow through each valve is about equal, generating no rich combustion zones.
Compared to the standard burner configuration, the small mass flow increases at
valves 5 and 8 and decreases at 3 and 4 leads to lower NOx emissions, while the
pulsation is unchanged.

10.3.3 Statistical Analysis

One of the interesting features of the resulting nondominated front is the almost
linear change in valve settings along the front. At Box 1, five valves have either
strongly increased or decreased mass flow and their amplitude is constantly de-
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creasing from Box 1 to 5 until it reaches an almost equal mass flow for all valves
in Box 5. This indicates simple dependencies of the valves with the objective func-
tions. Fig.10.6contains a scatterplot for the valve settings and objective functions
of all measured solutions. A scatterplot contains all possible 2D subspace plots for
all decision variables and objectives. The plot in column 9 and row 10 contains
the objective space with the nondominated front. Most interesting are the two last
rows, containing the correlation of the valves with the objective functions. For
example, the horizontal and vertical axis of the plot in row 9, column 1 represent
valve 1 and the NOx emission, respectively. Strong correlation is expressed by
narrow stripes under±45◦ to the axis. An axially symmetrical area of solutions
implies no correlation. Strong correlation can be observed between valves 1, 2, 5,
6 and the two-objective functions.
The correlation coefficientsrVi, NOx

andrVi, pulsation for the decision variables
and objectives are given in Fig.10.7. They complement the results from the scat-
terplot. For all valves, the correlation coefficients have opposite signs for the two
objectives. Therefore, changing the fuel injection in any of the valves improves
one objective while the other is worsened. Large coefficients indicate a strong cor-
relation and occur between valves 1, 2, 5, 6 and the two objective functions. For
increasing the mass flow through valves 1 and 2, the emissions increase while the
pulsation decreases. For valves 5 and 6, this is vice versa.
It has to be considered that these observations hold for the solutions obtained
through an optimization process. The distribution of the solutions in the scatter-
plot in Fig.10.6illustrates that they do not cover the whole decision space as some
areas are not covered with solutions. Hence, these solutions are not uniformly
distributed in the decision space and may not be representative.

10.3.4 Noise Analysis

The NT-SPEA algorithm that is used for the burner optimization contains the spe-
cial feature of re-evaluating solutions after their lifetime expires. Among the 326
evaluated solutions, 40 were re-evaluated at least once by the optimizer. Compar-
ing the difference in NOx between a solution and the re-evaluated one, the maxi-
mal difference is about 8% of the objective range and the mean difference is 2%.
For the pulsation, the maximal and mean difference is 13% and 4%, respectively.
Thus, the noise in the pulsation is more critical to the optimization. The large ratio
between the maximal and mean difference indicate the rare occurrence of outliers
and the presence of noise in the objective measurement of all solutions.
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the valvesVi,i=1,...,8 and the objectives NOx and pulsation.
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10.4 Burner Optimization with Digital Valves

10.4.1 Valve Encoding and Optimization Algorithm

In the second case, 16 digital valves are used. Digital valves are binary switches,
allowing only the two discrete states closed and open. These switches are less ex-
pensive to implement into a real machine and can be achieved by either closing an
injection hole by welding or reopening it by drilling. As an operating constraint,
at most 3 of the 16 valves are allowed to be closed, since for a constant total fuel
flow, the open valves have to take over the additional flow.
The encoding of the digital valves in the evolutionary algorithm can be done with
different approaches. We use 3 discrete variables with integer values between 1
and 16 to encode the position of the closed valves. This allows encoding all so-
lutions that fulfill the constraint. All settings with 1, 2, or 3 closed valves can
be obtained if all three, two or none of the variables are of equal value, respec-
tively. The setting with all valves open is the standard machine design, which was
evaluated for reference. Since permutating the variables does not lead to differ-
ent solutions (e.g., setting the variables to{1, 4, 7} is equivalent to{7, 4, 1}), the
variables are always sorted in ascending order. Detecting permutations is impor-
tant since permutations of the same solution do not contain new information and
recombining different permutations should be avoided. The same recombination
and mutation operators as for the proportional valves are chosen, except that here
we have only 3 variables and the obtained values have to be rounded to integer val-
ues. Here, the small mutation strength changes to the solutions slightly by shifting
mostly the closest valves to the adjacent positions. The optimization algorithm is
NT-SPEA with a population and archive size of 15.

10.4.2 Optimization Results

One optimization run is conducted with NT-SPEA, evaluating in total 165 differ-
ent valve settings. The results of the optimization run are given in Fig.10.8and
show the possible reduction in NOx and pressure pulsations, when compared to
the given standard burner configuration. The given standard burner configuration
is marked in the figure and represents a setting with equal mass flow through all
valves. Some solutions of the optimization process dominate the standard configu-
ration, i.e., are superior in both objectives. Thus, the optimization run is successful,
delivering improved solutions for both objectives.
The valve settings corresponding to the different nondominated solutions of the
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Figure 10.8: Digital valves: All measured solutions of the burner optimization run [plus
symbol] and given standard burner configuration [circular symbol]. 9 boxes mark different
solutions along the nondominated front.

optimization run are displayed in Fig.10.9. Similar to the optimization with the
proportional valves, the results indicate that for low NOx, the center of the burner
has to be leaner (closing valves 1 and 2 has the most significant effect). For low
pulsations the center and the middle of the burner has to be enriched (more valves
are closed in the area of the largest diameter of the conical burner). This is also
underlined by the computed correlation coefficients in Fig.10.10.
Consider that the objectives are normalized such that all measured solutions are
within unit space. Thus, comparing relative and absolute values with the optimiza-
tion run for proportional valves is not possible. However, the comparison of the
resulting nondominated front against the given standard design shows similar im-
provements. In numbers, a design with a 20% improvement in NOx emissions and
concurrently 30% reduced pulsation was found.
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Figure 10.10: Digital valves: Negative correlation coefficientr between the mass flow
through the valvesVi,i=1,...,8 and the objectives NOx and pulsation. Negative coefficients
are given, in order to plot the effect forclosinga valve. Now, a positive value shows that
the objective function increases, if the valve is closed.
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10.5 Conclusions

The evolutionary algorithm NT-SPEA is successfully applied to an automated op-
timization of a gas turbine burner. The optimization leads in an automated fashion
to an experimental nondominated front for minimizing pulsation and emissions of
the burner. Automated optimization can be considered a supporting tool in the
design process, complementing physical understanding as well as trial-and-error
design.
While the tests with the proportional valves are more valuable for the understand-
ing of the physical problem by showing the correlation between valves and objec-
tive functions, the digital valves allow an easier practical use of the results. In an
existing machine, the results for the digital values are easily realized by closing or
reopening some of the fuel injection holes. This does not need any additional parts
in the machine, but can change the characteristic of the burner significantly. These
modifications might be necessary to adjust machines to different environmental
conditions at different locations including ambient temperature and pressure or to
different fuel.



Chapter 11

Optimization of Compressor Profiles and Blades

An automated optimization procedure for subsonic gas turbine compressor blades
is presented. All relevant objectives and constraints of a realistic compressor de-
sign process are addressed. The procedure bases on the design of blade sections
(profiles) by Q3D CFD. The common problem of stacking the profiles to a blade
that fulfills smoothness and mechanical integrity aspects is avoided by encoding
the profiles in a 3D parameterization and optimizing all profiles concurrently in
one optimization procedure. Furthermore, we propose an inexpensive method to
integrate the off-design behavior into the optimization procedure.
As a first step, the procedure is applied to the optimization of single profiles. Var-
ious optimization algorithms are compared and the resulting profile shapes are
discussed.
In a second step, the procedure is applied to blade optimization. Four adjacent mid-
stages of a compressor are optimized, starting from randomly initialized blades.
All optimized blades show similar profile shapes and loading distributions. One
blade is analyzed by 3D RANS simulations to validate the optimization results.

11.1 Compressor Design

The design process of multi-stage axial compressors consists of a sequence of
design steps with models of increasing complexity. The first step is usually a ther-
modynamic model with loss correlations for the whole compressor. For each blade
row, the model computes the pressure rise and the main geometrical dimensions
based on the geometry of the mid-span section of the compressor blades. In the
second step, a meridional through-flow code (e.g., a streamline curvature method)
is used to compute a radial variation of the main aerodynamic properties like turn-
ing angles and Mach numbers. The meridional plane is denoted as the S2 plane
and is illustrated in Fig.11.1. These properties are computed on a number of dis-
tinct streamlines. Fig.11.1 shows streamline 1, 5, and 9 for a compressor row.
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The position of the streamlines results from an iterative procedure until the radial
equilibrium equation is fulfilled.
The first steps depend mainly on the experience of the design engineers and the
loss and derivation correlations in the models. Most dimensions and properties of
the compressor are specified in these steps. Especially the aero- and thermody-
namic boundary conditions of adjacent blade rows are defined. However, only a
rough model of the blade shape exists, i.e., metal angles, stagger angles, and blade
thickness are estimated.
The actual blade design is performed on the basis of two-dimensional (2D) cuts
(profiles), which are stacked to a three-dimensional (3D) blade. These profiles
are designed and analyzed on the streamlines from the preceding S2 calculation.
For redesigning an existing compressor, streamlines can also be obtained by 3D
Computational Fluid Dynamics (CFD) simulation of the given design [18]. In
the considered design approach, the streamline shape is simplified to conical S1
surfaces (Fig.11.1) that are symmetric to the compressor axis. The aerodynamic
properties of a profile are analyzed by CFD on a 2D grid, which takes into account
the streamline thickness and radius variation along the compressor axis. This anal-
ysis is referred to as quasi-3D or Q3D.
The objective of the profile design is to find shapes that fulfill all aerodynamic
boundary conditions of the S2 calculation, especially in terms of the flow turning.
In addition, low aerodynamic losses at the design point and at off-design condi-
tions are desired. In the final step, the set of profiles for the different streamlines is
stacked to a 3D blade. The blade must sustain aerodynamic and centrifugal forces,
avoid critical resonance frequencies, and respect manufactural constraints such as
smoothness. Thus, the profile design for the different streamlines is a coupled pro-
cess and must be addressed simultaneously.
Q3D flow analyses do not capture 3D flow effects like secondary air flows and
tip gap flows. 3D effects are often analyzed after the design process by 3D CFD
simulations, since they are, even on today’s computer clusters, computationally
expensive [18]. In addition, the large number of rows in a compressor multiplies
the overall design costs. This is a major difference to the design of aircraft wings.
Wings are more often optimized by 3D CFD tools as, e.g., described in [75].
Q3D design is limited to subsonic flow due to the three-dimensional nature of
shocks, especially since the compressor axis and the casing affect the shocks. A
common difficulty of optimizing transonic flow for certain operating points is that
the optimization may easily just improve the shock losses for considered operating
conditions while worsening the performance elsewhere [58].
Concluding the described design process, a major part of the compressor design
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Figure 11.1: (left figure) The S1 plane is defined as a conical cut symmetric to the compres-
sor axis (r = f(x)). The S2 plane is a cut at a certain meridional position (θ = const.).
(right figure) Between hub and casing [dashed lines], the compressor blade is constructed
by stacking a set of profiles [bold lines and filled areas]. The profiles are positioned on
different streamlines (SL1, SL5, and SL9), which are S1 planes.

is concerned with the design of 2D profile sections and the stacking to mechan-
ically admissible 3D blades. This task comprises several (partly conflicting) ob-
jectives and constraints and is solved in a time-consuming iterative process. Here,
an automated optimization procedure would lead to the most significant labor time
reduction for the designers.

11.2 Survey on Automated Compressor Optimization

Automatic optimization of compressor profiles is mainly distinguished between
inverse and direct design. In inverse design, a pressure distribution is predefined
and the according profile shape is searched for by an iterative modification of the
profile shape. Depending on the considered approach, the computational cost can
be proportional to a single flow analysis and thus comparably cheap [92, 82].
However, the pressure distribution is usually iterated, since it may lead to an
unacceptable profile shape. This approach relies significantly on the experience
of the designer, who needs to specify a pressure distribution that meets various
aerodynamic design aspects in terms of flow turning, boundary layer properties
and losses, and which performs also well for off-design condition. According to
Reutheret al. [92], varying the pressure distribution cannot guarantee to improve
a design. For some pressure distribution, no profile shape exists. This occurs
especially when prescribing 3D pressure distributions. A shortcoming of inverse
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design is also the open question of how to integrate geometrical and mechanical
constraints [106].
Direct design optimization considers the shape optimization for secondary aero-
dynamic properties like aerodynamic losses. The optimization costs are a multiple
of a single flow calculation, since a large set of different designs needs to be eval-
uated. About 20 years ago, Sanger (1983) presented first optimization results
for compressor profiles using numerical flow solvers. His optimization of high-
subsonic compressor profiles contained already a 2D potential flow solver with
an integral formulation of a compressible boundary layer in conjunction with a
gradient-based constraint optimization approach (CONMIN).
In direct design, off-design conditions can be included by performing CFD calcu-
lations for various operation conditions [32, 67, 58]. Typically, off-design condi-
tions are obtained by varying the inlet flow angle or the Mach number. Geometrical
constraints can be included in the parameterization of the blade and mechanical as-
pects can be considered by adding penalties if certain limits are violated. Blades
are usually designed by stacking a set of profiles such that the centers of gravity
of the profiles are in a line. This reduces bending moments by centrifugal forces.
While for classical NACA profile families, the center of gravity is designed at a
similar chord position, optimized blades may have different positions such that the
stacking results in a warped shape [107]. Solving this problem may require a si-
multaneous optimization of all profiles while considering stacking constraints.
Optimization algorithms for direct design are mainly gradient-based [18, 32, 72,
92] methods and stochastic algorithms [82, 114, 119]. Also hybrid approaches
combining gradient-based methods and stochastic algorithms are employed [67].
Gradient-based methods rely on derivative information of all objectives and all
constraints for determining the search direction of the optimization as discussed in
Subsection1.2.2. Since not all computer programs of the considered optimization
loop are given in source code, the application of adjoint formulations[92], auto-
matic differentiation [12], and complex-step method [76] is not possible and the
only way to obtain derivatives is finite-differencing. Finite-differencing results in
inexact gradients [76] and thus gradient-based methods will not be considered.

11.3 Optimization Approach

We consider a direct optimization procedure for compressor blades. The approach
comprises an optimization algorithm, a parameterization for 2D profiles and 3D
blades, and numerical tools for aerodynamic and mechanical integrity analysis.
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The aerodynamic performance is analyzed by the quasi-3D CFD code MISES [31]
on several radial blade sections. The mechanical integrity is analyzed concerning
maximal stresses and eigenfrequencies of the 3D blade by a finite element beam
model.
The focus of this optimization procedure is on obtaining realistic compressor
blades. Thus, the optimization procedure has to take into account all relevant
design objectives and constraints and should result in similar or improved blade
shapes compared to the manual design process. In most optimization approaches,
the compressor blade is stacked out of a set of profiles, which are optimized in-
dependently. Stacking these profiles is difficult as the various eigenmodes of the
resulting blade (e.g., modes for bending, torsion, and mixed modes) are difficult to
predict given only the profile shapes and may conflict with critical eigenfrequen-
cies. Furthermore, the resulting blade might have a warped shape [107]. We avoid
this stacking problem by optimizing the different profiles concurrently while ad-
dressing smoothness and mechanical integrity aspects. Smoothness constraints are
obeyed by encoding the profiles by a 3D blade parameterization, which is restricted
to smooth designs. The mechanical integrity properties are directly computed from
the 3D blade and are transferred into constraints. A minor focus of the procedure
is on generating new blade shapes or design philosophies. Design philosophies
can be included in the optimization by restricting the engineering parameters as,
e.g., the curvature or the wedge angle at the leading edge.
This optimization procedure provides answer to the following three questions:

• 3D parameterization:How can a profile parameterization be extended to a
3D blade parameterization for smooth blades?

• Fitness function:Which objectives and constraints are relevant in the com-
pressor design and how can they be formulated in mathematical terms? How
can off-design performance be included into the fitness function?

• Optimization algorithms:What are efficient optimization algorithms that
require a small number of design evaluations?

In the following, we will describe a 3D parameterization and define a fitness func-
tion. Efficient optimization algorithms result from a performance comparison. The
comparison is performed for a single profile reducing the overall computational
cost. This allows performing more optimization runs given the limited computing
resources.
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Figure 11.2: Some engineering parameters of a compressor profile.

11.3.1 Parameterization of Compressor Profiles

The compressor profile is parameterized by four Bezier-spline segments (suction
surface, leading edge, pressure surface, and trailing edge). Each segment is de-
fined by 6 control points with two coordinates, leading to 48 parameters in total.
16 parameters are determined by enforcingC2-continuity between the segments.
Introducing simplifications for the trailing edge (circular) and leading edge (el-
liptical), the remaining parameters are translated into 19 engineering parameters,
such as metal angles, wedge angles, profile length, etc., as shown in Fig.11.2.
Compared to the control points, engineering parameters simplify the comparison
and illustration of different profile parameter sets.
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Figure 11.3: Exemplary construction of radial shape functions by superimposing a linear
part (upper left) and a B-spline (upper right) for two engineering parametersL andd.

11.3.2 Parameterization of Compressor Blades

Compressor blades are usually stacked from a set of compressor profiles with each
profile being described by a set of engineering parameters as introduced in Sub-
section11.3.1. Each profile section is located on a different streamline of the S2
calculation. The radial variation of the engineering parameters and some derived
quantities such as the relative profile thickness are subject to design rules. A blade
is considered acceptable if these quantities are continuous along the blade span
without turning points.
These rules can be obeyed by using radial shape functions for the variation of the
engineering parameters between the hub and the casing streamlines. These param-
eters of the shape functions are then used for the blade optimization. The radial
shape function consists of two parts, namely a linear variation and an additional
B-spline curve that allows for nonlinear variations as illustrated in Fig.11.3. The
linear part implies two free decision variables, i.e., the value of the profile param-
eter (e.g., profile lengthL) at hub and casing,LHUB andLCASE , respectively.
As shown in Fig.11.4, the shape of the B-spline curve is defined by 5 parame-
tersLSF0 to LSF4. These parameters define the location of three B-spline points,
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which form the control polygon together with a start and end point. The convex
hull property of B-splines implies that a convex control polygon leads to a con-
vex curve. In order to avoid turning points in the curve, it is therefore necessary
to ensure a convex polygon. This is achieved by a triangular coordinate system.
The admissible range ofLSF0-LSF4 is between 0 and 1. An additional param-
eterLSCALE determines, how strongly the radial shape function deviates from a
straight line. Note thatLSCALE = 0.0 leads to a linear variation along the span.

11.3.3 Mechanical Integrity Analysis

For the compressor blades, the mechanical integrity (MI) analysis is solved by a
finite element beam model that checks, whether a given blade shape can sustain the
aerodynamic and centrifugal forces and if the eigenfrequencies differ from critical
excitation frequencies. The results are translated into a number of safety factors.
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The factors are positive or zero, if the constraint is violated or not, respectively.
The sum of all non-zero factors (violated MI criteria) is called MI indicator.
For a profile design, we simplify the MI analysis by defining a lower limit for the
blade thickness.

11.3.4 Q3D Flow Analysis

The aerodynamic properties of compressor profiles and blades are analyzed with
the Q3D solver MISES [31]. MISES solves an Euler equation for a single blade
row and a single flow path, assuming periodic boundary conditions between two
adjacent blades in a row. Viscous effects are modeled by a fully coupled integral
boundary layer formulation. The stream tube contraction as well as radius varia-
tions along the compressor axis are considered (Q3D).
A performance of a profile or blade is assessed by performing several analysis
for different inlet flow angles, while keeping the inlet Mach number constant.
Fig.11.5shows the aerodynamic losses as a function of the inlet angle. The typical
loss polar has a flat region around the design inlet angle and a sharp increase of
losses for larger deviations from this design point. The operating range is defined
by the range of incidence angles with losses less than twice the losses at design
incidence. Usually the operating range decreases with increasing inlet Mach num-
ber. For a blade optimization, the aerodynamic properties are analyzed for each
profile section separately.

11.3.5 Objectives and Constraints

For the optimization of compressor profiles or blades, two objectives are formu-
lated as well as a set of constraints. The first objective is to minimize the sum of
the aerodynamic lossesl for the design inlet flow angleαD and off-design condi-
tions. Low losseslαD at design condition are important for a high efficiency of the
gas turbine when operating as a base load machine under full load. Low losses at
off-design conditions are required when operating also under part load or modified
environmental conditions. Since computing the complete loss polar of a compres-
sor profile or blade is very time-consuming, a simplified approach is proposed. As
an indicator for the robustness to off-design condition, the flow is calculated at two
additional inlet flow anglesαD ± ∆α. The resulting losseslαD−∆α andlαD+∆α

are added to the loss at the design incidence.
The losses at the off-design incidences are dependent on the blade shape and on
the incidence variation∆α. With increasing incidence variation∆α, the losses
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Figure 11.5: Definition of the operating range by loss limits.

increase until the blade stalls. Thus, the inlet angle variation∆α has to be set
carefully. On one hand, if∆α is set too small, the off-design conditions are not
very well captured. On the other hand, if∆α is set too large, the flow computation
may fail due to strong flow separation or stall.
We propose to define the inlet variation∆α as the second objective, which is to
be maximized. Furthermore, we propose to define the inlet angle variation∆α
as an additional decision variable, i.e., the inlet angle variation is modified by the
optimization algorithm. Then, in the optimization, solutions with large values for
∆α are preferred.
Aerodynamical constraints are set for the flow properties at design inlet flow an-
gle. The first constraint is set on the deviation of the turning angle∆β from the
target value. Furthermore, Mach number Ma and the non-dimensional shape fac-
tor H12 at the suction side trailing edge are limited by an upper bound constraint.
The latter two quantities are limited in order to avoid transonic effects and flow
separation, respectively. For every flow calculation that fails, an additional penalty
is added. The value of this penalty is set such that it is higher than the largest pos-
sible aerodynamic loss. Mechanical constraints are integrated in theMI indicator,
which sums all violated mechanical constraints.
All objectives and constraints are summarized in Table11.1. For the blade opti-
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Table 11.1: Objectives and constraints for the profile and blade optimization
symbol description goal

objectives

lαD aerodynamical loss at design and off-designminimize
lαD−∆α, incidences
lαD+∆α

∆α inlet angle variation maximize

constraints

|∆β| absolute deviation from the design turning < −0.1◦

angle
H12 non-dimensional shape factor of the

boundary layer < H limit
12

Mamax maximal Mach number <Malimit
max

MI mechanical integrity indicator < 0
(considers eigenfrequencies and stresses for
the blade optimization and solely the
profile thickness for profile optimization)

mization, the aerodynamical objectives and constraints are computed at 3 stream-
lines.

11.4 Profile Optimization

We consider the optimization of a mid-span compressor profile as a performance
comparison problem for evolutionary algorithms. As decision variables of the op-
timization, all 19 engineering parameters described in Subsection11.3.1and the
incidence variation∆α from Subsection11.3.5. The objectives and constraints are
taken from Subsection11.3.5.
We consider two different approaches. In the first approach, the two objectives
and constraints are aggregated into one fitness function. The performance of all
evolution strategies introduced in Chapter2 is compared with the Gaussian Pro-
cess Optimization Procedure (GPOP) of Chapter8. In the second approach, the
two objectives are optimized as a Pareto optimization problem. As these two ob-
jectives are conflicting, the optimization results in an wide front of nondominated
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solutions. Here, the SOMX-NSGA-II (Chapter7) and SPEA (Chapter3) are com-
pared with the single-objective algorithms.
After comparing the different algorithms, the properties of two different nondom-
inated solutions are discussed. The two different designs are chosen in order to
illustrate the trade-off between the two objectives.

11.4.1 Objective functions

The objectives and constraints from Subsection11.3.5can be written as two ob-
jectivesf1 andf2 and a penalty functionp that includes all constraints with:

f1 = lαD + lαD−∆α + lαD+∆α

f2 = ∆α

p = a1 max(0, |∆β| − 0.1◦) (11.1)

+a2 max(0,H12 −H limit
12 )

+a3 max(0, Mamax −Malimit
max )

+a4 max(0, dlimit − d),

wherea{1,2,3,4} > 0 are user-defined weights for the different penalties. Objective
f1 sums the losses at the 3 incidences and is to be minimized. Objectivef2 contains
the incidence multiplier∆α and is to be maximized for maximizing the operating
range of the profile.
These two objectives can be either aggregated into a single fitness function or
optimized by a Pareto optimization technique, resulting in an approximation of
the Pareto front for the two objectives. The penalty function is constructed from
four constraints, which are set on the exit flow angle deviation∆β from the design
angle, shape of the boundary layerH12, and Mach number Ma and on a simple
mechanical constraint specifying the minimal blade thickness.

11.4.2 Single Objective Optimization

For optimization algorithms that require a single objective function, all objectives
and constraints have to be aggregated. We formulate this aggregation for mini-
mization with:

f = f1 − a0f2 + p, (11.2)

wherea0 > 0 weights the two objectives.
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Optimization Algorithms

As representatives for evolution strategies, we choose Rechenberg’s Success Rule,
the Evolution Strategy with Rotating Angle Mutation (ROT-ES) and the Evolu-
tion Strategy with Covariance Matrix Adaptation (CMA-ES) and compare these
algorithms with the GPOP algorithm proposed in Chapter8. The Success Rule is
defined for a(1 + 1) evolution strategy and includes the two parametersc andps,
which specify a multiplicative factor for adapting the step size and the success rate,
respectively. We setc = 0.817 as proposed by Schwefel [101]. The success rate
is usually set tops = 1/5, however we follow the recommendation of Rechenberg
[90]) and Schwefel [102] to use smaller success rate for noisy and constrained
problems. Thus, settingps = 1/10 andps = 1/20 is also analyzed.
For ROT, we use the standard settings (Section2.3) with a (15, 100) selection
scheme. A(2, 10) and(3, 12) selection scheme is chosen for CMA-ES.
For GPOP, we choose the first approach in Subsection8.3.3and model the losses
at the 3 incidences and constraints with a separate Gaussian process (GP). In total,
7 GPs have to be trained. The objective function is then constructed from the GP
predictions as given in the equation for the fitness function in Eqn.11.1.
The GPOP algorithm operates differently than the evolution strategies. From the
set of evaluated profiles, GPOP constructs a model of the objective function and
then searches the minimum of the model prediction for different merit functions.
The resulting minima are then evaluated and finally added to the data set to im-
prove the model.
As training data for the GPs, only converged MISES calculations are chosen. The
training data for the GPs results from three MISES computations at different in-
cidences. Since each incidence computation might fail for different solutions, the
number of training data for the GPs differs depending on the objective or constraint
that the GP models. The GPOP algorithm requires also an uncertainty measure for
the predicted value objective function to construct the merit functions. This stan-
dard deviation is taken solely from the predicted standard deviations for the losses
at the 3 incidences. As training data for the GPOP algorithm, theNC closest so-
lutions to the currently best solution andNR most recent evaluated solutions are
chosen withNC = NR = 15, 30, 60, or 120, respectively.
For all optimization runs, decision variables are bounded. These bounds are set
using knowledge of design engineers and from previous optimization runs, such
that the bounds limit the search space to mainly physical designs. For example,
generating profiles with zero or negative thickness is avoided. For the optimiza-
tion, these bounds are scaled such that optimization algorithms operate on a unit
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space within[0, 1]. Scaling is necessary since the decision variables have different
orders of magnitude and units. The initial step size for all evolution strategies is
set to0.1.

Optimization Results

The convergence of the evolution strategies is given in Fig.11.6and of the GPOPs
in Fig. 11.8. In the beginning of the optimization till aboutN = 200 evaluated
solutions, the convergence of all evolution strategies is about similar. This may
result from the equal initial step size, which is only minor changed by the differ-
ent adaptation schemes. However, the population size and other properties differ
between the evolution strategies leading to a small difference in convergence.
The convergence of the Success Rule is dependent on the setting of the success
rateps, which is set tops =1/10, and 1/20. A success rate of 1/20 leads to better
performance and results in a smaller final objective function value. The step size
is plotted in Fig.11.7. For settingps to 1/10, the step size is constantly reduced.
In other words, the fraction of successful mutations is always lower than 1/10
and thus, the step size is never increased and becomes inefficiently small. After
N = 700 evaluations the step size is already smaller than10−3 and convergence
stagnates. For settingps = 1/20, the step size is both reduced and increased dur-
ing the optimization, but after aboutN = 1250 evaluations, the step size becomes
also inefficiently small. These observations for the success rate agree with Schwe-
fel and Rechenberg’s recommendation that for constraint problems, the success
rate should be reduced.

The ROT-ES shows a much slower convergence than the Success Rule with
ps = 1/20 success rate and also the final fitness function value is worse. Fig.11.7
shows that the step sizes do are in average about constant over theN = 3.000
evaluations. The optimization is not yet converged and the fitness function value
might still improve.
The CMA-ES shows the fastest convergence and also results in the best fitness
function value. After 3000 evaluations, the algorithm is converged and the muta-
tion is small.
The number of evaluations and the best function value obtained by the different
algorithms is summarized in Table11.2.

The convergence observations for the different optimization algorithms allow
some conclusions about the optimization problems. The Success Rule operates
with an isotropic mutation distribution that converges efficiently for functions that
are well scaled [9]. In other words, plotting contour lines of the functions are
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Figure 11.6: Convergence of the Success Rule with 1/10th [solid line witho] and 1/20th
[dash-dotted line witho] success, ROT-ES [solid line withx] and (2,10)-CMA-ES [solid
line with+] and (3,12)-CMA-ES [dashed line with+].

Figure 11.7: Plot of the step size of the Success Rule with 1/10th [solid line witho] and
1/20th [dash-dotted line witho] success over the number of evaluation. For ROT-ES [solid
line with x] and (2,10)-CMA-ES [solid line with+] the minimal and maximal eigenvalues
of the covariance matrix is plotted.
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nearly circular. For badly scaled functions (e.g., the contour lines are ellipses with
large aspect ratios), the algorithm converges poorly due to the isotropic mutation.
Since Success Rule works well on the profile design problem, it can be assumed
that the decision variables are nicely scaled. The plot of the eigenvalues of the co-
variance matrix also for CMA-ES also supports this thesis. The difference between
the maximal and minimal is at most 3.5 and thus only slightly scaled. However,
one can observe that CMA-ES, which can adapt to scaled and correlated decision
variables, requires less function evaluations and results in a better objective value.
It seems that the correlated mutation of CMA-ES is beneficial. ROT-ES adapts
also correlated mutation. However, the adaptation scheme is less efficient [52] and
is problematic for constraint optimization problems [52] as shown in Subsection
5.3.2.
For GPOP, different training set sizes are analyzed withNC = NR = 15, 30, 60,
or 120. The convergence of the GPOP algorithm is shown in Fig.11.8. For all
training set sizes, the algorithm converges to similar final objective function val-
ues. Compared to all evolution strategies, the final value for each training set size
is superior and is reached within only about 1/7 of the number of evaluations (see
Table11.2).
The good convergence of GPOP for the small training set sizeNC = NR = 15
allows similar conclusions about the optimization problem as found for the evo-
lution strategies. We found in the analysis of GPOP in Section8.4 that for such
small training set sizes, GPOP is only able to optimize problems with 20 decision
variables, as in the profile optimization, if the problem is well scaled.

11.4.3 Multi-Objective Optimization

In the multi-objective setup, we consider minimizing the two objectives off1 and
f2 of Subsection11.4.1in a Pareto setup:

minimize f ′1 = f1 + p

maximize f ′2 = f2 − p

(11.3)

The first objective functionf ′1 comprises the losses at the 3 incidences and the
penalty termp (see Eqn.11.1and is to be minimized. The second fitness function
f ′2 contains the incidence variation∆α and the penalty and is to be maximized for
increasing the operating range of the profile. The penalty term is subtracted from
f2 in order to degrade solutions with violated constraints.
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Figure 11.8: Convergence of the GPOP algorithm with a training size ofNR = NC = 15
[x], 30 [+], 60 [o], and 120 [∆].

Table 11.2: Comparison of different optimization algorithms for the profile optimization
based on the best function value and the number of design evaluations

Optimization algorithm min(f) N

Evolution Strategy
1/5th success rule -1.15 3000
1/10th success rule -1.15 3000
1/20th success rule -1.63 3000
(15, 100)-ROT-ES -1.59 3000
(2, 10)-CMA-ES -1.73 3000
(3, 13)-CMA-ES -1.74 3000
Gaussian Process Optimization Procedure (GPOP)
with different training data sizes
NC = NR = 15 -1.78 400
NC = NR = 30 -1.76 400
NC = NR = 60 -1.82 400
NC = NR = 120 -1.77 400
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The Pareto front of the two objective functions consists of solutions, that show
minimal losses at the 3 incidences for a certain incidence variation∆α. While
Pareto solutions with small values∆α are optimized for low losses near design
condition, Pareto solutions with large values of∆α are optimized for low losses at
off-design conditions.
The incidence multiplier inf2 is also defined as an additional decision variable. Its
value is limited to∆α ∈ [4◦, 7◦]. While the lower bound on∆α leads to profiles
that have a minimal off-design performance, the upper bound is set for limiting
the optimization to incidence values that MISES can handle without failing too
often. The values are set for the considered mid-span compressor blade and are
dependent on boundary conditions like Mach numbers and profile loading.

Optimization Algorithms

We consider two Pareto optimization algorithms that lead to an approximation of
the Pareto front in a single optimization run. We compare the Strength Pareto Evo-
lutionary Algorithm (SPEA) introduced in Chapter3 with the SOMX-NSGA-II
proposed in Chapter7. For SPEA, the mutation and recombination operator are
taken from Section3.3. The recombination operator always selects two parents
applies either intermediate recombination, discrete recombination or randomly se-
lects one parent with a probability of1/3 each. The mutation is normally dis-
tributed with a constant step size ofσ = 0.01, relative to the intervals of the
decision variables. For SOMX-NSGA-II, all settings of Chapter7 are used.

Optimization Results

Figure 11.9 shows the resulting nondominated front for SOMX-NSGA-II and
SPEA after 10.000 evaluations. The nondominated front is constructed only from
solutions that do not violate any constraint. The two objectives of the optimization
are to minimize the sum of losses at 3 incidences and to maximize the incidence
multiplier. The non-dominated front shows that the two objectives are conflicting.
For increasing the incidence multiplier, the sum of losses increases.
In order to estimate the convergence of the two Pareto optimization algorithms, the
results from the previous single-objective optimization runs are added to the fig-
ure. For the single objective optimization the incidence variation∆α was bounded
either to∆α = 4, ∆α = [4, 5.5], or ∆α = [4, 7], in order to obtain different com-
promise solutions. All single objective runs result in solutions that are nondomi-
nated by the two Pareto optimization runs. In other words these runs dominate a
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Figure 11.9: Resulting nondominated front for optimizing the two fitness functions with
SOMX-NSGA-II [dashed line] and SPEA [solid line]. For comparison, the single objective
optimization runs with the 1/20 Success Rule [o], ROT-ES [x], CMA-ES [+] and GPOP[∆]
are added.

fraction of the Pareto optimization results.
Since this is the case for all single objective runs, it can be concluded that the sin-
gle objective runs lead to better results. While the 1/20 Success Rule and ROT-ES
show just minor improvements to the Pareto optimization algorithms, the results
of CMA-ES and GPOP are clearly superior. The differences between the Pareto
optimization and single objective optimization increase with rising∆α, since de-
signing profiles for strong off-design is more difficult that designing for the design
condition.
Comparing the computational cost, the Pareto optimizations evaluated 10.000 so-
lutions, while the 1/20 Success rule, ROT-ES and CMA-ES evaluated 3.000 so-
lutions and GPOP only 400 solutions. Here, the single objective optimization
algorithms are advantageous, if only a small number of nondominated solutions
is required. Concluding the performance comparison for the profile optimization,
single-objective algorithms are preferable to the Pareto optimization algorithm for
both the quality of the resulting designs as well as the lower number of design
evaluations, if only a few compromise solutions are required.
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11.4.4 Discussion of the Optimized Compressor Profiles

In the following the aerodynamical properties of the optimized profiles as well
as the conflict of the two objectives are discussed. We consider the result of the
two optimization runs with the GPOP algorithm as shown in Fig.11.9, denoted
as profileA andB, respectively. While profileA is designed for a small inci-
dence multiplier∆α = 4◦, designB is optimized for a large incidence multiplier
∆α = 7◦. Thus, designA should be optimized for small incidence variations from
the design condition and designB for off-design condition.
Comparing the profile shapes in Fig.11.10, the profiles are quite similar, especially
on the first 30% of the chord for the suction side, where profileA shows a slightly
higher curvature. A major difference can be found on the pressure side; the profile
A is almost straight over the chord length and profileB shows a double bended
shape. The bended shape shifts the maximal profile thickness towards the leading
edge to about 30% chord.
The loss polar for the two profiles are given on the right of Fig.11.10. We defined
the operating range as the range of incidence angle variation with losses below
twice the losses at design incidence. ProfileB shows with15.6◦ a larger operating
range than profileA with 14.0◦. The wider operating range is gained at the expense
of the losses at design condition, which are for profileB about 2.5% higher than
for profile A. In addition, profileA shows lower losses than profileB within an
incidence variation of−4◦ to 6.5◦ from the design incidence. This coincides with
the goal of optimizing the blade at±4◦ incidence variation. The main increase
in operating range of profileB compared toA is for negative incidence variations
below−4◦, while the improvement at positive incidences is just minor and mainly
at7◦. This angle equals the incidence multiplier.
The Mach number distributions of the two profiles are plotted in Fig.11.11. Both
profiles show a strong acceleration of the flow on the suction side with the Mach
peek before 10% chord. After the Mach peek, the blades show a strong diffusion,
leading to a front-loaded characteristic. On the pressure side, profileA shows an
about constant Mach number similar to a controlled-diffusion airfoil (CDA). For
profile B, the demand of increased operating range resulted in a strongly bended
pressure side geometry with a larger wedge angle and radius at the leading edge.
MISES predicts an early transition onset at about 3% chord for both profiles and
both suction and pressure side.
The Mach number distribution on the suction side and the transition onset are in
contrast to conventional CDAs. CDAs base on the assumption that the flow in the
compressor is laminar at least in the area of favorable pressure gradients, i.e., as
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long as the flow is accelerated. Since laminar boundary layers show lower losses
than turbulent boundary layers, the Mach peek of CDAs is designed as far as pos-
sible from the leading edge, typically at 15 to 30% chord. After the peek, the flow
is strongly decelerated and transition occurs. For CDAs, the strength of the decel-
eration decreases monotonously towards the trailing edge.
Schreiberet al. [99] analyzed CDAs in an experimental compressor cascade. For
moderate Reynolds numbers (Re < 0.8 · 106) and turbulence levels (Tu < 3%),
their results show a laminar boundary layer on the suction side with a laminar sep-
aration and turbulent re-attachment shortly after the Mach peek. However, they
show also that for the high Reynolds numbers (Re ≈ 2 − 6 · 106) and turbulence
levels (Tu ≈ 4%) as they exist in the considered blade rows, the transition occurs
upstream of the Mach peek, shortly after the leading edge. Here, bypass transition
is important, caused by impinging wakes from upstream compressor blades on the
boundary layer, turbulent spots in the flow or surface roughness [99]. Based on
their experimental analysis, Schreiberet al. [99] suggested front loaded designs
with an early Mach peak on the suction side.
The optimized blades agree with these analysis twofold. First, MISES predicts
an early transition for the optimized blades. Second, the turbulent flow is then
strongly accelerated with an early Mach peek, leading to a front-loaded design.
As transition occurs close to the leading edge, there is no advantage of a moderate
acceleration. The thin and turbulent boundary is robust and can be strongly ac-
celerated and decelerated. The benefit of the front loaded design is the resulting
moderate deceleration for the less stable and thicker boundary layer at mid-chord
and trailing edge.
Köller et al. [67] and Sieverdinget al. [107] performed automated optimizations
for single profiles at comparable Mach numbers and turbulence levels. Their op-
timizations show similar front loaded designs. Front loaded designs have been
experimentally investigated on cascades by Küsteret al. [70] and show an im-
proved operating range and reduced losses compared to CDAs. Furthermore, the
investigations showed that MISES predictions for the transition onset agree with
the experimental data. However, experimental analysis in a compressor test-rig
[107] showed no efficiency improvement. While there is strong evidence that the
front loaded designs operate well for mid-span profiles, it is from our point of view
still an open question how these designs operate at the blade tip and hub, where
secondary airflows and the tip gap strongly influence the flow. The RANS sim-
ulation for the blade optimization in the next subsection addresses this question.
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Figure 11.10: Comparison of the profile shape (left) and loss polar (right) for two profiles,
which are optimized for an incidence variation of∆α = 4◦ [dashed line] and∆α = 7◦

[solid line], respectively.

Figure 11.11: Comparison of the Mach number distributions at design condition for two
profiles, which are optimized for an incidence variation of∆α = 4◦ (left) and∆α = 7◦

(right), respectively.
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11.5 Blade Optimization

11.5.1 Blade Parameterization

For the blade optimizations, the decision variables are the parameters for the radial
shape functions as introduced in Subsection11.3.2. To limit the computational ef-
fort in optimizing compressor blades, the number of computed streamlines is often
reduced to 3 [107], with one streamline close to the hub, at mid-span, and close
to the blade tip. Describing each radial shape functions with 3 parameters is thus
sufficient. From the set of parameters∗HUB , ∗CASE , ∗SCALE are chosen and the
five shape factors∗SF0-∗SF4 that describe the B-spline part of the radial shape
function are set to 0.5 With these parameters, the B-spline curve reduces then to a
symmetric bump, similar to a parabola.
The compressor profile is defined by 19 engineering parameters. Ten parameters
are fixed based on the experience from previous design optimizations. The result-
ing 9 engineering parameters are encoded by the radial shape functions leading
to a total number of 27 decision variables. Three decision variables are added
describing the inlet angle variation∆α for each profile. Recall, that the flow is
computed at the design inlet angleαD and atαD ± ∆α. Once the radial shape
functions are defined by the set of decision variables, the engineering parameters
for each profile are obtained by computing the value of the radial shape functions
at the radius corresponding to the streamline of interest. For the profile length L
and the leading edge thicknessd, this procedure is outlined in Fig.11.12. The
streamlines are labeled SL1 to SL9 from hub to casing.
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11.5.2 Objective Function

The objective function for the blade optimization differs from the profile optimiza-
tion in two aspects. First, the aerodynamical objectives and constraints have to be
summed over the 3 streamlines and second, the MI indication replaces the simple
constraint on the profile thickness. In mathematical terms:

f =
3∑

i=1

{
(lαD + lαD−∆α + lαD+∆α) (11.4)

−a0∆α

+a1 max(0, |∆β| − 0.1◦)
+a2 max(0,H12 −H limit

12 )

+a3 max(0, Mamax −Malimit
max )

}profilei

+a4MI,

wherea{0,1,2,3,4} are user-defined weights for the different addends of the fitness
function.

11.5.3 Optimization Loop

The optimization loop comprises an optimization algorithm and the sequence of
design tools as shown in Fig.11.13. For each design, the section parameters are
computed from the decision variables, using the radial shape functions. Then, the
profile generator computes profile sections for all streamlines. In the next step,
the MI indicator is computed. If the latter is below a user-defined limit, the Q3D
flow analysis is performed, otherwise the flow analysis is skipped and a fitness
function is computed as a sum of the MI indicator plus a penalty, which is higher
than the largest possible flow analysis result. The Q3D flow is computed on the
hub, blade mid-span, and tip streamline. The flow analysis is the computationally
most expensive part, especially since three incidence angles have to be calculated
for each streamline. Finally all objectives and penalties are aggregated into the
objective function.

11.5.4 Optimization Results

The automated optimization procedure was employed in the design of four ro-
tor blades of a gas turbine compressor, which will be denoted as Cases A to D.
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Figure 11.13: Optimization loop for compressor blade optimization

The rotor blades originate from adjacent stages of the subsonic mid-part of the
compressor. A typical optimization run requires approximately 4.000 design eval-
uations. This corresponds to half a day on a four-processor Linux cluster. The
resulting Mach number distributions for the hub, mid-span, and tip profile sections
are displayed in Figs.11.14and11.15. Compared to the conventional controlled-
diffusion airfoils (CDA), the optimized profiles are more front-loaded (see Subsec-
tion 11.4.4). It is interesting to note that the general trends for the Mach number
distributions are similar for the different rows. This indicates that the optimiza-
tion procedure does not converge towards completely different optima. Fig.11.16
compares the loss polar for an existing manually designed mid-span profile and
the optimized profile for Case A. The operating range is indeed increased by 15%
on both sides of the polar with the loss at design point being about equal. The op-
timized blades show similar pronounced front loading as the optimized profiles in
Subsection11.4.4. Compared to the profile optimization, the blade optimization
considers extended mechanical integrity constraints. Since the resulting profile
shapes of both profile and blade optimization are similar, it can be assumed that
the mechanical integrity has no significant influence on the profile loading distri-
bution.
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Figure 11.14: Profile shapes and Mach number distributions for the tip (top), mid-span
(middle) and hub (bottom) streamline of two rotors from adjacent compressor blades de-
noted as Case A (left) and Case B (right).
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Figure 11.15: Profile shapes and Mach number distributions for the tip (top), mid-span
(middle) and hub (bottom) streamline of two rotors from adjacent compressor blades de-
noted as Case C (left) and Case D (right).
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Figure 11.16: Loss polar of the manually designed [dash-dotted line] and the optimized
[solid line] mid-span profile (Case A).

11.5.5 Validation of the Blade Optimization by 3D RANS Simula-
tion

The considered optimization approach computes the aerodynamic flow by a quasi-
3D simulation on three conical surfaces. Compared to 3D CFD simulations, this
simplification of the flow includes two major assumptions: First, the conical sur-
faces that result from the meridional (S2) through-flow code are assumed to be
similar to the streamlines of the real flow in the machine. Second, the impact of
3D flow effects like 3D vortex structures or secondary airflows is assumed to be
negligible for the optimization. In order to prove that these assumptions are jus-
tified, 3D Reynolds-averaged Navier-Stokes (RANS) simulations are performed
and the resulting flow field is compared with the Q3D solution.
The RANS solver is Stage3D, an in-house CFD code of Alstom Power. Stage3D
solves the steady-state flow problem on a structured, finite-volume discretization.
The turbulence model is the 2-equation k-ω model. An explicit time integration
method is used to solve the flow field on a structured grid with a multi-grid formu-
lation. The solver is capable of computing several compressor rows with hub/tip
clearances, shrouds and rotating or fixed hubs and casings, if needed. The inlet
boundary conditions are the total temperature, total pressure, and inlet flow angle.
At the outlet, static pressure is fixed at the casing assuming radial equilibrium. For
real compressors, the flow at the interface of two adjacent blade rows are unsteady
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Figure 11.17: Computational grid for the 3D RANS simulation

in circumferential direction due to effects like the rotating wakes. For steady-state
simulation, flow conditions are averaged at the interface by the so-called ’mixing-
plane’. The mixing-plane transfers circumferentially averaged flow properties to
the adjacent blade row. Thus inhomogeneous structures are lost and total energy
is not conserved.
The RANS simulations are performed for the optimized rotor blade of case A.
Fig. 11.17shows the blade and the computational domain. In order to be less de-
pendent on exact boundary conditions for the rotor, the upstream and downstream
stator are added to the computational domain and linked by mixing-planes. Thus,
inserting stator rows damps the effect of the boundary conditions on the rotor.
In Fig.11.18(left), the Mach number distribution is plotted for the same three con-

ical streamlines as for the Q3D simulations. The Mach number distributions show
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a very good agreement with the Q3D simulations for case A given in Fig.11.14.
Especially the coincident Mach number distribution at the leading edge indicate
that the incidence angle is similar and since no Mach peaks occur on either suction
or pressure side, the incidence agrees with the design incidence. Furthermore, for
Q3D and RANS the peak of the Mach number distribution is of similar value and
position. Only for tip streamline, the Mach peak of the RANS is slightly shifted
downstream towards the middle of the profile. From our experience, the secondary
flow through the tip gap is mainly responsible for this shift.
In the right half of Fig.11.18, contour plots of the axial velocity are given in order
to illustrate the wake of the profiles. The flow field shows no visible recirculation
zones. The contour lines indicate also the boundary layer thickness at the aft of
the profile. For the Q3D simulation, the thin lines along the profiles in Fig.11.14
show the displacement thickness. The displacement thickness is always signif-
icantly thinner than the visible boundary layer of the real flow. Nevertheless it
seems that the RANS shows larger boundary layers.

11.6 Conclusions

This chapter presents the automated optimization procedure of subsonic compres-
sor profiles and blades. Profiles and blades are analyzed by Q3D CFD for design
and off-design conditions. The off-design conditions are realized by an incidence
variation of±∆α from the design incidence. The two objectives of the optimiza-
tion are the minimization of losses at all 3 incidences and the maximization of the
incidence multiplier.
For the profile optimization, the problem was formulated as a single objective
problem by weighting the objectives and as a Pareto optimization problem. Dif-
ferent evolution strategies and GPOP are analyzed and compared to Pareto op-
timization algorithms. The single objective algorithms show clearly better per-
formance than the Pareto optimization algorithms. Non of the single objective
results was dominated by a Pareto optimization result. Furthermore, among the
single objective algorithms, GPOP converged significantly faster than the consid-
ered evolution strategies and also led to better results. The optimized profile show
a pronounced front loading compared to conventional controlled diffusion airfoils.
The front loading is a consequence of the early transition that occurs due to the
high Reynolds number and turbulence level in stationary gas turbines.
For the blade optimization, a 3D parameterization is proposed. CFD analyses are
performed at three different streamlines. The mechanical integrity is analyzed by
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Figure 11.18: Mach number distributions resulting from the Mises (left) and 3D RANS
simulation (middle); Contour plot for the axial velocity (right) from 3D RANS simulation of
Case A for the tip (top) mid-span (middle) and hub (bottom) streamline.
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a beam model for eigenfrequencies and stresses. Rotor blades from four adjacent
compressor stages are optimized. The resulting blades show low aerodynamic
losses, sustain aerodynamic and centrifugal forces, and avoid critical eigenfre-
quencies. In addition they show an increased operating range compared to the
manual design, while maintaining about equal aerodynamical losses at the design
operating point. All optimization runs are started from randomly initialized blades
and resulted in similar loading distributions (i.e., profile shapes). Thus, the opti-
mization algorithm converges robustly to similar optima.
Although the flow in a real compressor is three-dimensional, the Q3D simulation
is still eligible for the compressor optimization: the Q3D simulations show similar
Mach number distributions when compared to 3D RANS simulations. The key
advantage of Q3D compared to RANS is the tremendous cost reduction in CPU
time, which is especially important since in compressor design a large number of
rows needs to be optimized.
In this optimization approach, no gradient information is necessary and the expen-
sive task of formulating an adjoint approach is not necessary. An optimization of
a compressor blade requires about 4.000 design evaluation. This corresponds to
roughly half a day on a four-processor Linux cluster. The goal of this optimiza-
tion procedure was to find blade shapes that fulfill all constraints of the real design
process and matches with a certain design philosophy. The design philosophy can
be obtained by setting constraints to the major flow quantities like, e.g., the peak
Mach number or by stressing off-design performance. This goal was reached.
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Conclusions and Outlook
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Conclusions

Optimization of engineering problems in an automated setup requires blending
of domain knowledge with expertise in optimization techniques. Analysis of the
problem specific requirements is always the first step in setting up an automated
optimization. Then, an optimization algorithm is chosen with respect to the prob-
lem requirements. The characteristics and capabilities of efficient optimization
algorithms can be identified by comparing different algorithms on test functions.
The test functions should be selected such that they reflect the assumed problem
features. Improvements of existing algorithms are often necessary, when the per-
formance of the different algorithms is not satisfying for these functions.
Motivated by the need for automated optimization in designing gas turbine compo-
nents, we proposed a number of algorithmic developments to address these issues.
We believe that the proposed methods are also highly suitable for other problems
sharing key features with the design of gas turbine components such as noisy and
conflicting objectives, expensive function evaluations and only pointwise informa-
tion about the objective functions. Experimental test-rigs for gas turbine burners
represent a noisy multi-objective problem. The goal is to obtain an approxima-
tion of the Pareto front for minimizing NOx emissions and for reducing thermo-
acoustic pressure waves (pulsations). Both objectives are time averaged measure-
ments and thus noisy. Furthermore, the optimization is expensive, as only about
300 different solutions can be evaluated within a day. A first optimization run with
SPEA showed that the optimization is easily trapped in noisy solutions and out-
liers. As most well established multi-objective evolutionary algorithms, SPEA is
elitist, keeping solutions for infinite time, if no superior solution is found. This is
detrimental for noisy problems and lead to the idea of re-evaluating solutions in
certain intervals in order to limit the impact of a solution.
The compressor optimization problem has many differences when compared to
the burner optimization problem. While the noise level is high for the burner
optimization, the considered CFD solver for the compressor blades results in a
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low level noise. Furthermore, while in the burner optimization, large mutation
steps are needed for a noticeable change in the objective functions, the blade de-
sign is very sensitive to small modifications on the blade shape as the problem
is highly constraint and the aerodynamics are mainly dependent on the curvature
of the blade. The profile optimization problem was formulated both as a single
and multi-objective problem. For single objective formulation, there exist various
evolution strategies in literature with adaptive mutation distribution, which show
efficient optimization. The success rule of Rechenberg and the Evolution Strategy
with Covariance Matrix Adaptation (CMA-ES) showed good performance. Most
popular in multi-objective optimization is the concept of dominance for the fit-
ness assignment, used in powerful algorithms such as SPEA or NSGA-II. This
concept was analyzed theoretically and experimentally. A estimate of the conver-
gence limits was derived as a function of the population size. As a consequence,
a sufficiently large population is required for converging close (in objective space)
to the Pareto front.
Motivated by the successful step size adaptation techniques in single objective
optimization, an adaptive mutation and recombination operator was introduced
for multi-objective optimization based on a self-organizing map. These two op-
erators were compared to various non-adaptive operators and showed improved
performance on test functions. However, for the profile design problem, all con-
sidered multi-objective algorithms showed worse results than the single-objective
algorithms. This leads to the conclusions that for problems which require highly
converged solutions, the step size adaptation mechanisms of single objective algo-
rithms still outperform multi-objective techniques.
Reducing the number of evaluated solutions in an optimization run is essential, es-
pecially if the evaluation is expensive. This thesis showed that evolution strategies
are very efficient optimization algorithms. However, the number of evaluation can
be further reduced for the considered problems by training empirical models on
the set of evaluated solutions as in the proposed algorithm GPOP. While the evo-
lution strategies use only the information of selected solutions for their adaptation
process, GPOP uses all evaluated solutions to train the model. This might be one
reason for the better performance of GPOP compared to the evolution strategies
on the considered test functions and for the profile optimization.
Developing efficient optimization algorithms is one possibility to reduce the num-
ber of evaluated solutions in an optimization. Exploiting problem knowledge can
also reduce the number of evaluated solutions. For example, bounding the search
space to only feasible blades shapes significantly accelerates the compressor blade
optimization. Furthermore, setting the penalties for constraint violation to reason-
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able (small) values improves the convergence, as too high values may increase the
problem difficulty by adding high bumps to the fitness landscape.
This thesis illustrates that automated optimization can find excellent solutions to
complex engineering problems. However, a prerequisite is the careful setup of the
optimization process with expertise in both optimization algorithms and the prob-
lem to optimize. This thesis proposed also some improvements for optimization
algorithms and showed that there is still potential for improving these algorithms.
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Outlook and Future Work

This chapter shows possible extension of this thesis for future research.

Convergence Limits of Multi-objective Evolutionary Algorithms

Chapter5 analyzed the convergence of multi-objective evolutionary algorithms
that use the dominance criterion in conjunction with some density measure for
the fitness assignment. It was shown that the convergence of these algorithms is
limited and depends on the size of the population that stores the nondominated
solutions of the optimization. While NSGA-II stores these solutions in the parent
population, SPEA and SPEA2 store them in a separate archive.
The theoretical convergence analysis showed that these optimization algorithms
stagnate at a certain distance from the Pareto front. For cutting the distance in
half, the population size must be increased by a factor of two for a two-objective
problem and by a factor of 4 for a 3-objective problem.
An open question is how the population size scales with more than three objec-
tives. Assuming that the population scales with2m−1, wherem is the number of
objectives, the population needs to be increased by a factor of23 = 8 for four
objectives. Thus, increasing the number of objectives may lead to an exponential
increase in the required population size.
The stagnation occurs, since the selection pressure drops rapidly when converging
to the Pareto front. Selection pressure exists only if at least one solution dominates
another solution. Since a limited population cannot dominate the entire objective
space, the selection pressure decays as soon as the population converges within a
distance to the Pareto front.
As a further research topic, it would be interesting to analyze growing population
sizes for the fitness assignment. Increasing populations would constantly reduce
the nondominated objective space. However, a limited parent population would be
preferred for generating offspring, since the parent population should be uniformly
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distributed along the current nondominated front, in order to avoid preference of
a certain region on the front. The limited parent population could be obtained by
using the density measure to select parents.

Multi-objective Evolutionary Algorithms for Noisy Objective Functions

Chapter6 introduced modifications to the typically elitist multi-objective opti-
mization algorithms for increased robustness to noisy problems. They key concept
is to re-evaluate solutions in certain intervals. The fitness of a solution may im-
prove due to the noise in the evaluation. However, in the re-evaluation, the noise
may have an opposite effect. This re-evaluation promotes on average solutions of
higher fitness and removes noisy solutions or outliers. In this thesis, the concept of
re-evaluation was extended by assigning dominance dependent re-evaluation inter-
val. The interval is inversely proportional to the number of solutions that a solution
dominates. Thus, solutions that are very dominant are assigned the shortest inter-
val and are re-evaluated first in order to limit their impact on the optimization.
While the performance analysis in Chapter6 compared these modifications with
different approaches from literature for SPEA, it would be interesting to analyze
how different selection schemes like NSGA2 compare to SPEA.

Growing Self-Organizing Maps for Multi-Objective Optimization

Chapter7 proposes Self-Organizing Maps (SOMs) as an adaptive recombination
operator for multi-objective evolutionary algorithms. SOMs are a subclass of neu-
ral networks that allow a mapping of a high dimensional input space to a regular
lattice of neurons. In the context of multi-objective evolutionary algorithms, the
parent population is mapped onto the lattice of neurons. The mapping is performed
in decision space since recombination operates in the decision space.
Two extensions of the SOM recombination operator could be addressed. The first
extension addresses the lattice structure. In the proposed SOM operators, the lat-
tice dimension is set equal to the dimension of the Pareto front. For example, for a
two- and three-dimensional objective space, the dimension of the lattice is one and
two, respectively. In general, mapping data onto a lattice leads to the best results,
if the data is located in a subspace, which is of equal dimension as the SOM. This
assumption is surely not valid for all parent populations. Thus, the influence of
different lattice dimensions should be analyzed.
As a second extension, the SOM could be replaced by a more flexible structure
like, e.g., a growing neural gas [42]. Two advantages can be found for the growing
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gas. First, no lattice dimension has to be defined for the growing neural gas, as the
connectivity between the gas neurons are evolved. Second, the neural gas allows
mapping of also discontinuous data. In the thesis of Michele Milano [77], neural
gases have already been applied to single objective optimization.

Accelerating Evolutionary Algorithms Using Fitness Function Models

Knowledge from the history of evaluated solutions can be exploited by various
approaches. Evolution strategies exploit this information by adapting the muta-
tion distribution based on successful mutations. In Chapter8 a different approach
was presented, where the information was used to train an empirical model, in
particular a Gaussian process. Then, evolutionary algorithms are used to search
the minimum of the model prediction for four different merit functions. The merit
functions balance the two conflicting objectives of finding better solutions and im-
proving the model by exploring the search space. The resulting minima for the
different merit functions are promising new solutions and evaluated on the expen-
sive problem.
The optimization procedure introduces local modeling and local (bounded) search
around the currently best solution as new properties. For local modeling, the num-
ber of training data was fixed in order to limit the computational effort of training
the model as the computational cost scales withO(N3), whereN is the num-
ber of training data. The experimental analysis shows that the required number of
training data is problem dependent and also increases with the problem dimension.
Setting the size of the training data is thus problematic.
Future research may address the automatic setting of the number of training data.
For the analyzed test problems, the likelihood function of the Gaussian process
showed a high positive value for converging optimization runs, while a negative
value indicated insufficient training data and a low convergence. This observation
could be analyzed on a more general set of test functions and/or could be theoret-
ically analyzed in order to find an automatic procedure for setting the size of the
training set.

Multi-objective Optimization of Noisy Combustion Processes

Chapter10 presents an automated optimization of a gas turbine burners for mini-
mizing pulsation and emissions of the burner. The burner is evaluated in an atmo-
spheric test-rig. The optimization is performed by controlling the fuel mass flow
with either continuous or digital valves. Both cases lead to an approximation of
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the Pareto front for the two objectives.
Compared to the real gas turbine, the test-rig implies two simplifications. First, the
test-rig combusts under atmospheric conditions, while the gas turbine operates at
elevated pressures. Second, the test-rig comprises a single burner, while in the gas
turbine, several burners are aligned in an annular combustion chamber.
Thus, the optimization results have to be validated. The first simplification was ad-
dressed by Paschereitet al. [86], who analyzed the initial solution as well as two
optimized solutions in an elevated pressure test-rig. These analyses confirmed the
improvement of the optimized solution compared to the initial solution. Validation
in the real gas turbine are still missing.
The optimization results for the burner showed that evolutionary algorithms are
able to optimize experimental setups and can lead to a valuable increase in per-
formance. As a future research project, applying evolutionary algorithms to a gas
turbine would be an interesting topic. The gas turbine offers more degrees of
freedom for the optimization. For example, instead of controlling the mass flow
through the different nozzles of a single burner, the mass flow ratio of the different
burners in the gas turbines could be varied. Clearly, optimizing real gas turbines
is much more expensive than the considered burner test-rig. However, the impact
on the gas turbine performance might be significant and the results do not imply
uncertainties due to model simplifications. Furthermore, since the pulsations and
emissions differ usually between the gas turbines in the field, optimizing a gas
turbine for the specific environmental conditions could also be considered.

Automated Design Optimization of Compressor Profiles and Blades

In Chapter11, an automated optimization procedure for subsonic gas turbine com-
pressor blades is presented. Rotor blades of four adjacent stages of the mid-part
of a compressor are optimized for minimizing the aerodynamical losses while sev-
eral constraints are set on the main aerodynamical properties and the mechanical
integrity.
The procedure bases on the design of blade sections (profiles) by Q3D CFD. Com-
pared to 3D RANS simulations, Q3D is very inexpensive allowing blade opti-
mization over night. Furthermore, the procedure has been verified by comparing
the results with 3D RANS simulations. However, the procedure also implies sev-
eral limitations. The procedure is only applicable for the mid-stages of the com-
pressor since the flow analysis bases on a Q3D CFD tool that cannot resolve 3D
flow effects. The transonic front stages are difficult to optimize due to the three-
dimensional nature of shocks. Hub and casing influence the shock position. In the
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rear part of the compressor, the compressor blades have a low aspect ratio (i.e.,
ratio of height to chord). The ratio of the tip gap to the blade span is larger than for
the front and mid-part of the compressor and tip gap leakage influences the flow.
Furthermore, the boundary layers at hub and casing increase over the compressor
length and complicate the flow in the rear stages.
Future research may address the optimization of front and rear stages by resolving
3D effects with 3D RANS simulations. Setting up an optimization loop with 3D
RANS simulation may be simple as only the Q3D solver needs to be replaced by
the RANS simulation, while all remaining tools (optimization algorithm, blade pa-
rameterization, mechanical integrity analysis) can be kept unchanged. However,
3D RANS optimization may require a further analysis of possible design objec-
tives. While for the Q3D simulations in this thesis, the profile losses were mini-
mized for design and off-design conditions, a blade design with RANS simulations
may consider a constant total pressure in radial direction, the choked condition or
the shock position as design objectives. In addition, 3D RANS simulations resolve
the effect of 3D blading. While in the Q3D approach, all blades are designed by
a straight stacking of the profiles, 3D blading may improve the performance by
leaning, bowing, or sweeping the blades as described by Denton and Xu [29].
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