

Time-Predefined and Trajectory-Based Search:

Single and Multiobjective Approaches to Exam

Timetabling

by Yuri Bykov, BSc

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

November 2003

Time-Predefined and Trajectory-Based Search Contents

 2

Contents

List of Figures ... 5
List of Tables... 7
Abstract ... 8
Acknowledgements ... 9
1. Introduction .. 10

1.1 Timetabling Problems ... 10
1.2 University Exam Timetabling and its Automatisation.......................... 12
1.3 Exam Timetabling as Graph Colouring Problem.................................. 14
1.4 Motivation of Presented Research ... 18
1.5 Contribution.. 21

2. Overview of Algorithmic Approaches to Exam Timetabling 22
2.1 Sequential Methods ... 22
2.2 Cluster Methods .. 25
2.3 Metaheuristics ... 26

2.3.1 Local Search Metaheuristics ... 27
2.3.2 Simulated Annealing .. 29
2.3.3 Tabu Search.. 32
2.3.4 Genetic Algorithms .. 36
2.3.5 Constraint Logic Programming... 42
2.3.6 Ant Colony Optimisation.. 44

2.4 Recent Innovative Methodologies for Automated Exam Timetabling .. 45
2.5 Hybridisation of Different Methods... 47
2.6 Summary... 49

3. A Review of Multiobjective Techniques... 51
3.1 Basic Concepts of the Multiobjective Optimisation 51
3.2 A Priori Methods... 55
3.3. A Posteriori Methods.. 58

3.3.1 Multiobjective Versions of Genetic Algorithms 59
3.3.2 Non-Evolutionary Pareto-Based Techniques................................. 66
3.3.3 Hybridisation of Pareto-based Techniques 68

3.4 The Evaluation of Trade-off Surfaces .. 69
3.5 Multiobjective Exam Timetabling ... 72
3.6 Summary... 73

4. Exam Timetabling Specification and Data... 75
4.1 A Formalisation of Exam Timetabling Problems 75

4.1.1 A Specification of the Basic Problem.. 75
4.1.2 A Specification of Additional Constraints..................................... 79

4.2 A Multiobjective Statement of Exam Timetabling Problem 90
4.3 Benchmark Exam Timetabling Datasets .. 92

5. A Time Predefined Approach to Examination Timetabling 95
5.1 The Role of Computational Time in the Process of Solving Timetabling
Problems... 95
5.2 Time-Predefined Algorithms ... 97

5.2.1 The Time-Predefined Simulated Annealing 97
5.2.2 The Great Deluge Algorithm ...100

Time-Predefined and Trajectory-Based Search Contents

 3

5.3 Experiments with Time-Predefined Techniques..................................103
5.3.1 An Initialisation Phase...104
5.3.2 Neighbourhood Structure...105

5.4 Investigating the Properties of the Algorithms105
5.5 Analysis of the Relationship between Time and Cost..........................110
5.6 A Comparison of Time-Predefined Simulated Annealing and the Great
Deluge Algorithm with the Current State-of-the-Art.................................117

5.6.1 A Comparison on Carter’s Benchmarks117
5.6.2 Experiments with More Advanced Problems121

5.7 On the Comparison of the Performance of the Time-Predefined
Algorithms with other Approaches...127

5.7.1 A Comparison with a Threshold Acceptance Method128
5.7.2 A Comparison with Hill-Climbing...130

5.8 Conclusions..131
6. Multiobjective Methods for Exam Timetabling Problems133

6.1 An Aggregation Multiobjective Technique based on Compromise
Programming ...133

6.1.1 Criteria and Preference Spaces...134
6.1.2 An Algorithm for Heuristic Search of the Preference Space137
6.1.3 A Real Timetabling Problem: Results and Discussion..................140

6.2 A Case Study of the Application of Pareto-Based Approach to Exam
Timetabling Problems ..144

6.2.1 Non-Dominated Sorting Genetic Algorithm for Exam Timetabling
...144
6.2.2 Pareto Archived Evolutionary Strategy for Exam Timetabling.....155

6.3 Conclusions..161
7. A Trajectory-Based Multiobjective Search...163

7.1 Driving the Search through a Trajectory...163
7.2 A Reference Solution Strategy..164
7.3 Great Deluge with Variable Weights ..166

7.3.1 Description of the Method ...166
7.3.2 Investigation of Properties of Great Deluge with Variable Weights
...172
7.3.3 Experiments with Reference Points..175
7.3.4 Evaluation of a Manageability of the Reference Point Method.....179

7.4 An Enhanced Trajectory-Based Multiobjective Optimisation Technique
..181

7.4.1 The Description of the Method for the Bi-Objective Case............182
7.4.2 An Expansion into the Multiobjective Case188
7.4.3 Investigation of Dynamics of the Algorithm191

7.5 A Fan Search Strategy..193
7.5.1 A Description of the Strategy...194
7.5.2 Testing the Fan Search Strategy...196
7.5.3 Using a Reference Point Selected from PAES Result201

7.6 Further Possible Strategies for the Application of the Trajectory-Based
Technique ..205

7.6.1 Approximation Strategies ..206
7.6.2 An Interactive Trajectory Assessment..208

Time-Predefined and Trajectory-Based Search Contents

 4

7.7 Conclusions..212
8. Conclusions...214

8.1 Summary of the Presented Approaches...214
8.2 A Comparison of Performance of Different Methods..........................215
8.3 Publications..218
8.4 Applications of the Presented Approaches in Different Areas219

8.4.1 An International Timetabling Competition...................................219
8.4.2 An Investigation of the Protein Folding Problem221

8.5 Future Work...223
References ..225

Time-Predefined and Trajectory-Based Search List of Figures

 5

 List of Figures

Figure 1.1: Exam timetabling as a Graph Colouring problem 15
Figure 3.1: Pareto-optimal solutions comprise the Pareto-front 52
Figure 3.2: Different possible shapes of Pareto-fronts 53
Figure 3.3: True and known Pareto-fronts ... 53
Figure 3.4: Goldberg’s method of ranking the population.............................. 60
Figure 3.5: Ranking in Multiobjective Genetic Algorithm (MOGA).............. 62
Figure 3.6: S-metric for comparison of non-dominated sets........................... 71
Figure 4.1: An example of calculation of the sum in formula (4.1) 79
Figure 4.2: An example of calculation of the number of adjacent conflicts 83
Figure 4.3: An example of calculation of the number of same day conflicts .. 84
Figure 4.4: An example of calculation of the number of adjacent days conflicts

.. 85
Figure 4.5: An example of calculation of the number of overnight conflicts .. 86
Figure 5.1: The extended Great Deluge algorithm ..101
Figure 5.2: Cost progress diagrams for time-predefined Simulated Annealing

on CAR-F-92 dataset..107
Figure 5.3: Cost progress diagrams for the Great Deluge algorithm on CAR-F-

92 dataset ...109
Figure 5.4: Time-cost diagrams for PUR-S-93 problem (120690 enrolments,

43 timeslots, search speed 82000 moves/sec)..111
Figure 5.5: Time-cost diagrams for UTA-S-92 problem (58981 enrolments, 35

timeslots, search speed 87000 moves/sec) ..111
Figure 5.6: Time-cost diagrams for CAR-S-91 problem (56877 enrolments, 35

timeslots, search speed 73000 moves/sec) ..112
Figure 5.7: Time-cost diagrams for CAR-F-92 problem (55552 enrolments, 32

timeslots, search speed 89000 moves/sec) ..112
Figure 5.8: Time-cost diagrams for EAR-F-83 problem (8108 enrolments, 24

timeslots, search speed 99000 moves/sec) ..113
Figure 5.9: Time-cost diagrams for YOR-F-83 problem (6029 enrolments, 21

timeslots, search speed 44000 moves/sec) ..114
Figure 5.10: Time-cost diagrams for STA-F-83 problem (5751 enrolments, 13

timeslots, search speed 82000 moves/sec) ..114
Figure 5.11: Time-cost diagrams for RYE-F-91 problem (45052 enrolments,

23 timeslots, search speed 245000 moves/sec)......................................115
Figure 5.12: Time-cost diagrams for KFU-S-93 problem (25118 enrolments,

20 timeslots, search speed 265000 moves/sec)......................................115
Figure 5.13: Time-cost diagrams for TRE-S-92 problem (14901 enrolments,

23 timeslots, search speed 119000 moves/sec)......................................116
Figure 5.14: Time-cost diagrams for HEC-S-92 problem (10632 enrolments,

18 timeslots, search speed 53000 moves/sec)..116
Figure 5.15: Time-cost diagrams for LSE-F-91 problem (10919 enrolments, 18

timeslots, search speed 245000 moves/sec) ..116
Figure 5.16: Time-cost diagrams for UTE-S-92 problem (11796 enrolments,

10 timeslots, search speed 203000 moves/sec)......................................117

Time-Predefined and Trajectory-Based Search List of Figures

 6

Figure 5.17: Time-cost diagrams for KFU-S-93 problem (search speed 260000
moves/sec) ...122

Figure 5.18: Time-cost diagrams for Nott-94 problem (search speed 174000
moves/sec) ...123

Figure 5.19: Time-cost diagrams for CAR-F-92 problem (search speed 87000
moves/sec) ...123

Figure 5.20: The example of uncertainty in comparison of the time-cost
diagram with the single solution. ..128

Figure 5.21: Comparison of Threshold Acceptance and Great Deluge
algorithms for CAR-F-92 problem ...129

Figure 5.22: Comparison of Hill-Climbing and Great Deluge algorithms for
YOR-F-83 problem ..131

Figure 6.1: Mapping from the criteria space into the preference space..........137
Figure 6.2: A final population produced by NSGA.......................................151
Figure 6.3: A comparison of trade-off surfaces produced by NSGA with and

without elitism. ..154
Figure 6.4: The comparison of trade-off surfaces produced by NSGA and

PAES ...157
Figure 6.5: Trade-off surface produced by PAES for LSE-F-91 problem......158
Figure 6.6: Trade-off surface produced by PAES for RYE-S-93 problem.....159
Figure 6.7: Trade-off surface produced by PAES for YOR-F-83 problem159
Figure 7.1: Search along the defined trajectory...166
Figure 7.2: Borderline in the weighted sum Great Deluge algorithm167
Figure 7.3: The increase of w1 ..169
Figure 7.4: The increase of w2 ..169
Figure 7.5: The selection of increased weight...169
Figure 7.6: The multiobjective Great Deluge algorithm with variable weights

...171
Figure 7.7: The progress diagram for the Nott-94 problem...........................173
Figure 7.8: Time-cost diagram of Great Deluge algorithm with variable

weights...174
Figure 7.9: Relocation of the borderline ...182
Figure 7.10: Rotation of a borderline..185
Figure 7.11: Shift of the borderline ..187
Figure 7.12: The enhanced multiobjective Great Deluge algorithm.190
Figure 7.13: The algorithm follows a trajectory with two branches...............193
Figure 7.14: The Fan Search strategy ...195
Figure 7.15: Trade-off surfaces produced by the Fan Search198
Figure 7.16: Further iterations of the Fan Search..199
Figure 7.17: Trade-off surfaces produced by the Fan Search200
Figure 7.18: Trade-off surfaces produced by PAES and Fan Search.201
Figure 7.19: The approximation of a reference point206
Figure 7.20: Approximation of a secondary trade-off surface208
Figure 7.21: An interactive trajectory assessment (phase 1)..........................209
Figure 7.22: An interactive trajectory assessment (Phase 2)210
Figure 7.23: An interactive trajectory assessment (complete scheme)...........211
Figure 8.1: Comparison graph of the performance of discussed algorithms ..216

Time-Predefined and Trajectory-Based Search List of Tables

 7

 List of Tables

Table 1.1: Conflict matrix, proposed by Cole .. 16
Table 4.1: An example of conflict matrix C... 77
Table 4.2: Allocation of exams to timeslots... 78
Table 4.3: The matrix of proximity coefficients prox(ti,tj) 78
Table 4.4: Number of students in timeslots.. 81
Table 4.5: The matrix of coefficients adjs (ti,tj) ... 83
Table 4.6: The matrix of coefficients sday (ti,tj)... 84
Table 4.7: The matrix of coefficients adjd (ti,tj)... 85
Table 4.8: The matrix of coefficients ovnt (ti,tj) ... 86
Table 4.9: An example of preassignment matrix A .. 88
Table 4.10: An example of before/after matrix G .. 89
Table 4.11: An example of immediately before/after matrix H 90
Table 4.12: A description of objectives ... 91
Table 4.13: The parameters of Carter’s collection of examination datasets 93
Table 4.14: The details of constraints for Nott-94 problem............................ 94
Table 5.1: Published and produced results for proximity cost119
Table 5.2: Additional characteristics of problems...122
Table 5.3: Published and produced results for weighted sum of adjacent and

overnight conflicts..125
Table 5.4: The best results, obtained for Nott-94 problem by Great Deluge

search...126
Table 6.1: The maximum number of conflicts when a student has exams in

adjacent periods ...136
Table 6.2: Solutions when all criteria are of the same importance.................141
Table 6.3: Solutions when X2 is of higher importance than the other criteria.142
Table 6.4: Solutions for different distance measures, W=(1,1,1,1,1,1,1,1,1)..143
Table 6.5: Parameters for Non-Dominated Sorting Genetic Algorithm.........150
Table 6.6: Comparison of results produced by NSGA and A Priori techniques

...152
Table 6.7: Characteristics of results of PAES algorithm160
Table 6.8: Results of A Priori techniques ...161
Table 7.1: Reference and produced solutions for the bi-criteria case.............176
Table 7.2: Reference and produced solutions for nine-criteria case...............178
Table 7.3: Results of a questionnaire..180
Table 7.4: Parameters and processing times of the first series of experiments

...197
Table 7.5: Parameters and processing time of the second series of experiments

...199
Table 7.6: The comparison of S-metrics of primary and secondary sets204

Time-Predefined and Trajectory-Based Search Abstract

 8

 Abstract

The research work presented in this thesis aims to provide effective methods

for solving university exam timetabling problems. The goal is to automatically

produce high quality timetables which are easy and practical to use. Several

ideas are introduced, which could increase the overall performance of

timetabling algorithms. The primary idea is to employ parameters which are

clearly understandable for the user and which therefore make the timetabling

procedure more transparent. The second idea is to consider the expected

processing time as one such parameter, which allows the user to increase the

quality of final solutions by the efficient management of computational

resources. In addition to this, special attention is paid to the development of

multiobjective approaches, which can help the user to manage a high variety of

constraints (which are of different nature) and simultaneously, generate a

solution, which mostly suits his/her preferences. The author also introduces the

idea of a trajectory-based multiobjective approach which enables the search

process to move along defined trajectories. A number of different strategies for

the application of trajectory-based search are proposed, which can enable the

easy expression of user preferences.

In this thesis five new exam timetabling algorithms are presented

(2 single-objective and 3 multiobjective ones) which (in different ways)

incorporate the ideas that are outlined above. A comprehensive series of

experiments demonstrate the effectiveness of the proposed techniques. In most

cases the presented approaches significantly outperform other techniques on

established benchmark exam timetabling problems.

Time-Predefined and Trajectory-Based Search Acknowledgements

 9

Acknowledgements

To my two supervisors: Dr. Sanja Petrovic and Prof. Edmund Burke. I

appreciate their sound advice throughout the course of my PhD study.

To James Newall for his advice and encouragement during the first two years

of my PhD.

To the other members of the ASAP group, past and present, for the atmosphere

of mutual support and friendly co-operation in the group.

Time-Predefined and Trajectory-Based Search Introduction

 10

Chapter 1.

1. Introduction

1.1 Timetabling Problems

Scheduling can be thought of as a decision making process which involves the

allocation of limited resources to tasks over time. The resources may be

machines, people or other objects, while tasks can denote the separate

operations in a process in which the resources are employed [Pin95]. One of

the definitions of scheduling is given by Wren [Wre96], who stated that

“Scheduling is the arrangement of objects into a pattern in time or space in

such a way that some goals are achieved, or nearly achieved”. He also

described and discussed different types of problems: Rostering, Sequencing

and Timetabling. He says that:

• Rostering is the placing of resources into slots in a pattern.

• Sequencing is simply an order in which activities are carried out.

• Timetabling shows WHEN particular events are to take place.

There is no strict borderline between these types as some scheduling

problems conform to more than one of the above definitions. The vast

published literature on scheduling shows that the same or similar approaches

can be successfully used in a wide variety of different scheduling problems.

Thus, although the research work presented in this thesis is focused on

timetabling (and more precisely on university examination timetabling), the

author believes that a similar methodology can be used in solving other related

problems.

Time-Predefined and Trajectory-Based Search Introduction

 11

In addition to the formal definition, the notion of timetabling is

intuitively clear from our everyday life experience. Various timetables

repeatedly regulate people’s actions in transport (bus, railway, air flight

timetables), in work (personnel, conference timetables), at study (school,

university timetables), in healthcare (nurse timetables), in entertainment (sport

timetables, festival timetables) as well as in many other situations. In other

words, timetables aim to help people to be “in the right place at the right time”.

Higher education is one of the fields where the employment of good

timetables has became increasingly important in recent years. In the UK the

introduction of a modular course structure where each student can chose a set

of subjects increased the complexity of timetabling problems. Usually

educational institutions involve special members of staff (timetabling officers)

or whole departments responsible for the construction of timetables of different

types. Educational timetabling is often divided into three categories [Sch99a]

and [Whi00]. The basic problems can be defined as follows:

• School Timetabling: the weekly scheduling of high school classes, avoiding

teachers meeting two classes at the same time and vice versa.

• Course Timetabling: the weekly scheduling of lectures and laboratories of a

number of university programmes, while minimizing the overlap of courses

having common students;

• Examination Timetabling: the scheduling of the exams of a set of university

courses so that no students must sit two or more exams simultaneously

while spreading the exams out for the students as much as possible.

Time-Predefined and Trajectory-Based Search Introduction

 12

It should be noticed that these types of timetables have differences. For

example, the school and course timetables are usually constructed on a weekly

basis, while the period of an examination session is variable for different

institutions.

1.2 University Exam Timetabling and its
Automatisation

At its most basic, the exam timetabling is concerned with distributing a

collection of university exams among a limited number of timeslots (periods).

This is, of course, subject to a set of regulations and limitations (often termed

constraints), which vary widely from institution to institution. There are certain

constraints which must be satisfied under any circumstances such as the

requirement that no student can sit two exams simultaneously (clash-free

requirement), or that exam rooms have a certain physical capacity which must

not be exceeded. Such constraints are known as hard. Solutions, which satisfy

all the hard constraints, are often called feasible solutions.

In addition to the hard constraints there are usually various constraints

that are considered to be desirable but not essential. These are often called soft.

Of course, there is significant difference across institutions as to which

constraints they consider important and which they do not. The situation in

British universities is discussed in more detail in [Burk96] which analyses the

responses of over 50 British universities to a questionnaire on exam

timetabling. Examples of commonly occurring soft constraints can reflect the

situation where students prefer to spread exams evenly throughout the

examination session or at least have some time interval between exams. On the

Time-Predefined and Trajectory-Based Search Introduction

 13

other hand, the institution often wants to schedule large exams earlier (in order

to leave more time for marking). Specific preferences may also be expressed

by particular members of staff concerning, for example, invigilation duties.

The increased number of regulations for exam timetables together with

a demand for their flexibility (due to the modular structure) make the

traditional methods of construction ineffective. Early operational

research/computing scientists noted that the use of computer-based methods

can significantly improve the effectiveness of the timetabling process. A large

number of timetabling algorithms have been proposed in the intervening

decades. However, the real figures about computer use in exam timetabling

(circa 1996) are revealed in [Burk96]. It was reported that 42% of respondents

included in questionnaire still did not use a computer in timetabling at all, 37%

used computer as an assistance tool (for data preparation, storage and

representation including printing reports) and only 21% used the computer for

actual timetabling.

The author believes that the popularity of timetabling software could be

increased by developing systems which more adequately meet the real world

university timetabling infrastructure. Here Carter’s observation that

“timetabling is 10% graph theory, and 90% politics” [Car01] should be taken

as guidance. Carter was referring to lecture timetabling but the comment still

has some relevance for exam timetabling. Although a powerful kernel

algorithm plays a significant role in timetabling software, it should consider a

spectrum of aspects, including interfaces, data formats, compatibility with

Time-Predefined and Trajectory-Based Search Introduction

 14

other software, maintenance and upgrading, providing a user support including

user’s manuals online help, users training, etc.

These tasks require the joint efforts of specialists from different fields

including operations research, artificial intelligence, software development,

programming languages, databases, user interfaces, and university

administration. Indeed all of them have their own impact on the timetabling

problem. Although the author recognises that all aspects of exam timetabling

are important, the presented research is mostly aimed at providing a good

kernel algorithm for exam timetabling software. Therefore, in the remaining

part of this thesis the term “Exam Timetabling Problem” is considered as a

combinatorial optimisation1 problem whose solution is expressed in a

numerical form. In this work, different approaches to timetabling are compared

from a mathematical modelling point of view only, while the representation of

results or any other human factor is not considered.

1.3 Exam Timetabling as Graph Colouring Problem

The construction of a feasible timetable, which satisfies only a clash-free

requirement conforms to the solving of the well-known Graph Colouring

Problem. It was described in 1941 by Brooks [Bro41]. This problem considers

a connected graph comprised N vertices where every vertex is linked by an

edge (edges) to some other vertex (or vertices). The vertices should be

1 The combinatorial optimisation field comprises problems of splitting and/or ordering finite
sets of elements with the aim of achieving a certain goal. Such problems have been known
from antiquity (e.g. Latin squares, etc.). In modern history several classes of such problems
have been introduced starting from Euler’s (Leonard Euler (1707-1783) “problem of
Kennigsberg bridges” which later was expanded into the Travelling Salesman Problem.

Time-Predefined and Trajectory-Based Search Introduction

 15

coloured into a number of colours so, that any two vertices connected by an

edge should have different colours. The following question arises: is it possible

to colour this graph into p colours and if yes, how do we do it? The other task

is to find a minimum possible number of such colours. The modelling of the

timetabling problem as a Graph Colouring Problem is described by Carter in

the following way [Car86]:

• Each course is represented by a vertex;

• An edge connects two vertices if the corresponding courses have at least

one student in common and, hence, cannot be scheduled in the same time

period.

Carter completed this analogy “by associating the p available exam periods

with p colours”. The process of solving of such a problem is illustrated in

Figure 1.1.

Figure 1.1: Exam timetabling as a Graph Colouring problem

6

2

2

8

12

28

3

4

9

19

22

4

6

10

12

P

5

11

21

N

P e r i o d s

1

1

3

7

1

3

2

5

8

10

7

9

4

11

N

Time-Predefined and Trajectory-Based Search Introduction

 16

Another representation of the exam timetabling problem was proposed

by Cole [Col64] as a symmetrical bit matrix NxN (where N is the number of

exams), which contains 1 in cell i,j, (where i,j∈{1,...,N}), if there is a conflict

between exams i and j; and 0 - otherwise. Both representations (graph and

matrix) can be easily transformed into each other, which can be helpful while

developing algorithms for timetabling problems.

Table 1.1: Conflict matrix, proposed by Cole

i
j 1 2 3 4 5 6 . . . N

1 - 1 0 1 0 1 0
2 1 - 1 1 0 0 0

3 0 1 - 0 1 1 1

4 1 1 0 - 1 0 1

5 0 0 1 1 - 0 0

6 1 0 1 0 0 - 1

.

.

.
 -

N 0 0 1 1 0 1 -

The minimum number of colours into which a graph can be completely

coloured defines its chromatic number χ introduced by Welsh and Powell in

[WP67]. It is proved that χ should be greater or equal to the largest clique in

the graph (the clique is a subgraph whose vertices are connected with each

other). However, in general there is no method for exactly calculating this

number as well as for actual colouring. For a more detailed overview of graph

colouring in timetabling problems see [BKW03].

The difficulty of the Graph Colouring Problem is illustrated by its

membership of the class of so-called NP-complete problems, which was

Time-Predefined and Trajectory-Based Search Introduction

 17

defined by Karp [Kar72]. The solution (global optimum) for such a problem

can be obtained by a finite number of steps, but the number of these steps

grows as an exponential function of the size of the problem. For example, the

increment of the problem size by 1 leads to a twofold (or more) increase in the

computing time. Thus, algorithms which completely enumerate can be applied

only to very small size problems (for the larger-size problems the computing

time becomes far too large).

More than 300 classes of NP-complete problems are known which can

be polynomially transformed into each other [Gor89]. However, there is (still)

no exact algorithm for solving any NP-complete problem where the processing

time is a polynomial function of the problem’s size (polynomial algorithm).

Moreover, there is no proof of its existence or non-existence. Usually these

problems are solved by some inexact algorithms (often termed as heuristics),

which aim to produce near-optimal solutions in a reasonable processing time.

The heuristics suitable for graph colouring are discussed in more detail in

Section 2.1 and are overviewed in [BKW03].

An alternative formalisation of exam timetabling was recently proposed

by Yanes and Ramirez in [YR03] as a “Robust Colouring Problem”. Here the

graph should be coloured into a fixed number of colours c (which is greater

than or equal to chromatic number χ), but the goal is to minimise the equal

colouring of nodes connected by so-called “complementary edges”. In such a

way the second-order constraints are taken into account. The authors have

Time-Predefined and Trajectory-Based Search Introduction

 18

proved that this problem is self-contained (not an external generalisation of the

Graph Colouring Problem) and in its turn it is NP-hard.

1.4 Motivation of Presented Research

Satisfying the clash-free requirement is usually considered as a necessary but

not sufficient demand for real-world timetables. The quality of the timetable is

defined by the satisfaction/violation of other constraints (usually soft ones).

These constraints depend on the particular institution. The ones, most widely

used in British Universities were collected by Burke et al. [Burk96] and

described in the following way:

• There should not be more students scheduled to a room than there are seats.

• Exams with questions in common should be scheduled in the same period.

• Some exams should be scheduled only within a particular set of periods.

• Only exams of the same length should be scheduled in the same room.

• Exams with a large number of participants should be scheduled early in the

timetable.

• Some exams should only take place in particular rooms.

• Large exams have a higher importance in scheduling than the smaller ones.

• Exam A should be scheduled before exam B.

• No student should be scheduled to exams in two consecutive periods.

• No student should be scheduled to more than one exam in any particular

day.

• Each student’s exams should be evenly spread through the timetable.

• No student should be scheduled to exams in two consecutive days.

Time-Predefined and Trajectory-Based Search Introduction

 19

• Exams should be scheduled to rooms near to the relevant departments

Of course, in any real world situation it would be extremely rare if it

were possible to satisfy all the soft constraints. Therefore, a useful measure of

the quality of a timetable can be taken to be the number of violations of these

constraints. Minimising these violations is often one of the over-riding

objectives for the development of timetabling software systems. Traditionally

the violated soft constraints are aggregated (usually as a weighted sum) into an

objective function (cost function or “fitness” or “penalty”), which serves as an

index of the solution quality. Thus, the goal of the examination timetabling

process can be taken to be that of producing the feasible timetable of the

highest possible quality (minimum value of the particular cost function under

consideration).

Managing a high variety of different constraints is quite a difficult task.

Every additional constraint can increase the total complexity of the problem

and can make the solution more resource-consuming. Therefore, in the

real-world, there is often a high level of user-intervention and relaxation of

constraints. Often, it becomes clear during the timetabling process that the

particular problem instance in hand is over-constrained. This observation could

motivate an argument that interactive (semi-automatic) systems are preferable

to batch (full-automatic) ones. In this connection, Schaerf wrote in his survey

on automated timetabling: “many authors believe that the timetabling problem

cannot be completely automated” [Sch99a]. He gave two reasons for it: firstly,

it is difficult to express all requirements for “good” timetables and secondly,

Time-Predefined and Trajectory-Based Search Introduction

 20

sometimes a system cannot find the best direction of search without human

interaction.

The rejection of fully-automatic methods in favour of semi-automatic

might be a useful way to improve the quality of timetables. However, the

author believes that the potential of automated methods is not fully explored

yet. The overall motivation for the research work presented in this thesis is to

discover new methods for timetabling algorithms. It is aimed at simplifying the

solution procedure, to make it more transparent for the user and at the same

time to make it more effective.

The conventional weighted sum approach, which is often used as an

objective function in timetabling has some weaknesses. Similar values of the

objective function could well have been obtained in different ways. For

example, one evaluation may be the result of obtaining a “good” satisfaction of

one constraint at the expense of violations for another. A very similar result

might be obtained by summing two mediocre results with respect to both

constraints. It might well be that one of these evaluations is much more

desirable than the other, in the context of the particular problem in hand, even

though these two cost functions have similar results.

This observation motivates the research into multicriteria approaches to

examination timetabling problems. In these approaches the violations of

different constraints are measured by different objective functions. A family of

existing methods are aimed at producing results, where the values of the

objective functions mostly correspond to the preferences expressed by the user

Time-Predefined and Trajectory-Based Search Introduction

 21

(decision maker). In this thesis this family is expanded by developing new

methods for the exam timetabling problem.

1.5 Contribution

This thesis is organised in the following way. The next chapter gives an

overview of the algorithmic approaches that have been applied to exam

timetabling problems over the last few decades. In Chapter 3 the state-of the art

in the multiobjective combinatorial optimisation field is described. The

formalisation of the exam timetabling problem is stated in Chapter 4 together

with a description of the benchmark problems used in conducted experiments.

Chapter 5 is devoted to the investigation of the possibility of increasing the

effectiveness of a local search approach to exam timetabling by developing the

proper management of the computing time. Two time-predefined algorithms

are presented here: the time-predefined Simulated Annealing and the Great

Deluge search. The following chapters describe a number of multiobjective

approaches to exam timetabling. Chapter 6 presents a new multiobjective

method based on the idea of Compromise Programming. In this chapter the

effectiveness of selected existing multiobjective algorithms applied to exam

timetabling problems is also studied. Chapter 7 introduces a new trajectory-

based multiobjective approach. It includes two variants of the algorithm and

several strategies for their application to exam timetabling problems. Chapter 8

summarises this study and discusses the applications of the proposed methods

in other research areas. It also outlines some future research directions.

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 22

Chapter 2.

2. Overview of Algorithmic Approaches to
Exam Timetabling

The research presented in this thesis continues a sequence of studies devoted to

the development and investigation of different optimisation algorithms for

exam timetabling problems, which have been carried out over the last twenty

years or so with varying levels of success. This chapter gives an overview of

the different approaches presented in the scientific literature. It discusses the

major tendencies of these techniques and provides an indication of further

research directions in this area. A special attention is paid to published

experiments with real-world exam timetabling problems. The interested reader

can see a more detailed description of the various approaches that have

appeared over the years in the following timetabling survey/review papers:

[Burk96], [Car86], [CL96], [Burk97], [Sch99a], [BKW03].

2.1 Sequential Methods

Some early approaches to solving the exam timetabling problem which in a

certain sense, underpin the research presented in this thesis were developed in

the 1960’s. These approaches tended to concentrate on the fundamental hard

constraint which says that, “exams in the same period should not have common

students”. The generation of such clash-free timetables is analogous to solving

the classical Graph Colouring Problem where the vertices correspond to

examinations, edges between two vertices indicate the presence of common

students who should attend both exams and every colour conforms to a

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 23

particular time slot. Correspondingly, the methods for solving such timetabling

problems are based upon methods for solving Graph Colouring Poblems.

Appleby, Blake and Newman [ABN60] investigated such approaches and ever

since the family of so-called graph colouring sequencing heuristics has been

widely applicable for timetabling. Indeed, in recent times such approaches have

been hybridised with modern meta-heuristics to produce high quality solutions

(see Section 2.5). In essence, these basic graph colouring based methods fill a

blank timetable with exams, taken in a certain order. The particular methods of

ordering vary according to the different heuristics employed. More details are

presented in survey papers [Car86], [CL96] and [BKW03]. Of course, the

ordering motivation is to place the most “difficult” exams first depending upon

the measure of “difficulty”. As a measure of this “difficulty”, Cole [Col64]

have used the degree of each vertex (the number of conflicting exams).

Different modifications of this “largest degree first” algorithm were done by

Peck and Williams [PW66], Welsh and Powell [WP67], Wood [Woo68].

Broder [Bro64] also proposed to produce several solutions and choose the best

one among them. Moreover, this was the first attempt to take into account soft

constraints (i.e. those which are desirable but not essential to satisfy).

The inverse ordering (“smallest degree last”) was proposed by Matula,

Marble and Isaacson [MMI72]. The algorithm recursively removed exams with

the smallest degree and placed them into the list. Each remove followed by the

recalculation of degree of vertices. After completing the list, the vertices were

assigned to colours correspondingly to their position in the list (in reverse order

so that the last placed vertex was taken first).

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 24

Another example is the sum of degrees of adjacent vertices. Williams

[Wil74] put forward an idea that the most difficult vertex is not that, which has

a most conflicts by itself, but which has the most conflicting neighbours. This

technique is known as “largest modified degree first”.

One of the most successful idea in this respect involves the calculation

of the exam's degree as the number of available slots and its recalculation after

each placement. Such a heuristic (“saturation degree first”) was presented by

Brelaz [Bre79]. This algorithm (originally called DSATUR) outperformed all

previous techniques. In [CLL96] Carter et al. compared different sequential

methods with each other and with the random ordering and showed that the

“saturation degree first” algorithm in most cases produced the best results.

Although in recent years the main attention (in exam timetabling) has

been paid to metaheuristic approaches, graph colouring heuristics are still

under investigation. For example, they play an important role in generating

initial solutions for different search methods [BNW98]. Moreover, they were

extended to take into account some soft constraints.

One of the useful ways of improving the performance of graph

colouring heuristics is to find the largest (maximum) clique in a graph and

colour it first (e.g. [CLL96], [MT96]). The reason behind this is that all

vertices in a clique must have different colours and the colouring of the largest

clique can cause the most difficulties. In [CJ01] Carter and Johnson noted that

real-world exam timetabling problems often contain several maximum cliques

and suggested starting the algorithm from the colouring of all maximum

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 25

cliques rather than a single one. The authors expanded their method to colour

fist all “near maximum” cliques and/or “quasi-cliques”, i.e. the subgraphs with

minor variations from the maximum clique.

Further modifications of sequencing heuristics use backtracking, which

involves rescheduling of certain exams in conflict situations and can consider

soft constraints. A comprehensive investigation of their effectiveness with a

collection of real-world examination timetabling problems is presented in

[CLC94], [CLL96].

As an alternative to the backtracking approach Burke and Newall

[BN03] suggested an adaptive mechanism which can improve or salvage the

initial ordering of exams while running a sequential algorithm during a number

of iterations. This approach also considers soft constraints and performs at the

same level as the backtracking method. In [BN02] the adaptive method was

applied for the initialisation of local search metaheuristics. The authors

investigated the performance of local search started from initial solutions of

different quality. The experiments on real-world exam timetabling problems

showed the direct impact of the quality of initial solutions on the quality of

final results.

2.2 Cluster Methods

Cluster methods split the set of events into groups which are conflict-free and

then assign the groups to time periods to fulfil other constraints imposed on the

timetabling problem [FS83], [BLW92]. A multi-phase exam-scheduling

package described in [AL89] and [LC91] consists of three phases. In the first

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 26

phase, clusters of exams are formed with the aim of minimising the number of

students with simultaneous exams. In the second phase, these clusters are

assigned to exam days while minimising the number of students with two or

more exams per day. Finally the exam days and clusters are arranged to

minimise the number of students with consecutive exams.

2.3 Metaheuristics

As briefly alluded to above, in addition to a straightforward application to

simplified graph colouring analogous timetabling problems, graph colouring

heuristics have been incorporated into more recent metaheuristics techniques.

This tendency was motivated by the increase of the problem’s complexity (by

considering a variety of constraints imposed on timetabling problems).

Moreover, the variety of timetabling models became so high, that it seems

impossible to find suitable heuristics for each particular case.

In contrast to the briefly discussed heuristics (which are specialised on

particular problems), Osman and Laporte [OL96] defined metaheuristics as

powerful techniques which can produce good results for wide range of

different problems. Several metaheuristics have proved to be a valuable tool in

solving exam timetabling problems, such as: Hill Climbing (e.g. [ABN60]),

Simulated Annealing (e.g. [Joh90], [TD96a], [Bul98]), Tabu Search (e.g.

[Her91], [WX01]), Genetic Algorithms (e.g. [CFM93], [Erg96]), Constraint

Logic Programming (e.g. [BDP94], [RO99]) and Ant Colony Optimisation

(e.g. [CH97], [DPT02]). These approaches will be described in more detail.

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 27

2.3.1 Local Search Metaheuristics

Local search can be defined to be a method which represents the gradual

improvement of a current solution (or solutions) starting from initial one(s)

until some stopping condition is satisfied. Every solution is characterised by an

objective function (it is also called cost function or penalty). It is a quantitative

measure of the solution quality and its minimisation (or maximisation) is often

the main goal of metaheuristic algorithms. Usually the value of the objective

function of the new solution highly affects the decision of whether to accept or

to discard it. This decision procedure (acceptance condition) mainly determines

the type of search algorithm.

During a local search every new solution is selected among the set of

candidate solutions (so-called neighbourhood), produced from the current one

by certain modifications. The structure of the neighbourhood depends on the

types of permitted alterations (moves) and highly affects the performance of

local search algorithms. The various types of moves were studied by Costa in

[Cos94] who considered the preferable sets of moves (which led to the best

results) being dependent on the properties of each particular problem. Schaerf

defined an atomic move as a simple replacing of one exam into a new period or

swapping of the pair of exams [Sch99b]. He also introduced double moves,

which comprise two atomic moves in such a way that if the first move creates

any infeasibility then the second one “repairs” it.

Exam timetabling neighbourhoods can be expanded by so-called Kempe

chains (chains of adjacent vertices coloured into two given colours). As all

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 28

vertices adjacent to such a chain have colours different to the chain ones, then

the swapping of the chain colours does not affect the feasibility of a solution.

In [TD96b] Thomson and Dowsland investigated the effectiveness of Kempe

chains on disconnected search spaces (search spaces divided into several

regions without feasible path between them). The use of Kempe chains helped

to overcome the disconnectivity and led to the exploration of wider regions

where the better solutions could be discovered. Later this idea was expanded

into the conception of S-chains – the ordered lists of S coloured vertices

[TD98]. The recolouring of such a chain required the special procedure

suggested by the authors.

Three types of neighbourhood (each for a different purpose) were

suggested for the use in exam timetabling by Di Gaspero in [DG02]:

• recolour – the reallocation of an exam into a new timeslot. This move

could improve the cost function while maintaining the feasibility of a

solution.

• shake – the regrouping of timeslots. This could provide a starting point for

a new search phase.

• kick – the sequence of the recolour moves. This could yield an

improvement where the single recolour move is ineffective. This move

could also relocate the solution into the yet unexplored regions of the

search space.

It was suggested to use these neighbourhoods sequentially, which could lead to

the higher quality of final results.

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 29

Several local search metaheuristics are based upon a simple approach

called Hill-Climbing. This approach was proposed for timetabling by Appleby,

Blake and Newman [ABN60]. This algorithm iteratively inspects the

neighbourhood and replaces the current solution by a candidate with better

fitness. Hill-Climbing rapidly achieves the nearest local optimum (this

algorithm is also called “greedy”), however, most real-world problems have a

colossal number of local optima and the obtained solution is usually far from

the best one. It is a very fast algorithm but due to relatively poor performance it

is no longer used, on its own, as a serious approach for solving real world

timetabling problems except as a comparative measure [RC95]. However, the

approach, along with some level of hybridisation, still has a role to play in

modern research as is discussed in Section 2.5.

2.3.2 Simulated Annealing

An idea which is more fruitful than straightforward Hill-Climbing is to allow

the occasional acceptance of solutions, which are worse than the current one.

Of course, this prolongs the search time but can lead to better final results. This

basic mechanism is implemented in Simulated Annealing, which is one of the

most well studied metaheuristics. This stochastic variant of local search was

presented by Kirkpatrick, Gellat and Vecci [KGV83] as a computational model

of the physical process of the increasing of energetic stability of molecular

structure by consecutive heating and cooling of a material. Here, the candidate

solutions with worse objective function values than the current one are

accepted with probability calculated by formula P=e-d/T, which was derived

from the Boltzmann’s distribution (Ludwig Boltzmann 1844-1906), which is

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 30

well-known in thermodynamics. In this formula d is the difference of the

values of the cost function between the current and the candidate solutions and

T is a parameter called the “temperature” (by analogy with the thermodynamics

formula), which usually gradually reduces during the search. The reduction

scheme that is employed is known as the “cooling schedule”. It can be defined

by a simple progression formula (geometric schedule) or by other formulas or

instructions, e.g. the temperature can be decreased after a certain number of

moves or successful moves, etc.

Over the last few years Simulated Annealing has been investigated for

examination timetabling with some level of success. In 1990 Johnson [Joh90]

applied Simulated Annealing for the generation of real world exam timetabling

and revealed a definite advance over the manual approaches. In 1996

Thompson and Dowsland considered, instead of the simple geometric cooling,

an adaptive cooling technique, where the temperature is automatically reduced

or increased depending upon the success of the move [TD96a]. Here the

authors presented the wide investigation of the performance of the Simulated

Annealing algorithm on exam timetabling problems. The overall results

appeared to be varied with particular datasets, neighbourhoods, cost functions

and cooling schedules. However, in respect of producing good results in a

reasonable amount of time the adaptive cooling technique turned out to be

more preferable than the simple geometric cooling approach.

In [TD96b] the same authors investigated the so-called “reachability

problem”, which might arise when the search is conducted only among feasible

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 31

solutions. Here the search space could be disconnected and some solutions,

which might be better than the current ones, could be unreachable. The authors

proposed three methods to overcome this disadvantage:

• Launching the algorithm several times starting from a random seed;

• Increasing the size of the neighbourhood using Kempe chains;

• Temporarily allowing unfeasible solutions.

The experiments were done with real university examination datasets as well as

with a number of modifications: artificially tightened, artificially disconnected

(Kempe chain reachable and unreachable) and reconstructed in order to contain

the global optima. The presented results confirmed the fruitfulness of the idea

of the Kempe chain annealing, which almost in all cases outperformed other

variants. The investigation of Kempe chains together with S-chains on real

examination datasets from different universities was continued in [TD98]. The

authors discovered that this approach gave the preference of moving large

exams, whose proper allocation significantly increased the quality of solutions.

Simulated Annealing applied to the problem, which is divided into

several subproblems according to different types of constraints was

investigated by Bullnheimer in [Bul98]. He showed that the variation of the

problems statement could provide a reasonable compromise between

administrative and student needs. This approach was regarded as being capable

of providing good solutions for real-world exam timetabling problems.

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 32

2.3.3 Tabu Search

Another metaheuristic, which can be considered to be based on Hill-Climbing,

is known as Tabu Search. The basic idea was proposed by Glover [Glo86]. The

overall defining feature of this approach is the keeping of a list of previous

moves or solutions (a “tabu list”) in order to avoid cycling. The Tabu Search

pioneers characterised this approach as an attempt to include “intelligent”

features into local search [LG96]. In [Dow98] Dowsland indicated that Tabu

Search is not restricted by the confines of any real-world analogy and therefore

it is considered as being highly suitable (compared to Simulated Annealing) for

different modifications. Dowsland suggested the following extensions of the

basic Tabu Search method:

• variation of the cost function during the search;

• variation of the length of the tabu list;

• candidate list strategies: restricting the neighbourhood moves to those that

display certain promising features;

• strategic oscillation: forcing the search to oscillate through different areas

of the solution space;

• ejection chains: combining the sequences of moves into chains, so that the

change is measured for the chain as a whole and not for the individual

components.

The main classification of Tabu Search strategies was carried out by

Glover and Laguna in [GL97]. They classified them on the basis whether they

use intensification and/or diversification. Intensification assumes a more

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 33

intensive investigation of the area, which previously yielded good results. In

contrast, diversification directs the search procedure towards unexplored areas.

The Tabu Search algorithm has been successfully applied to university

timetabling by Hertz [Her91]. He did not consider differences between course

and exam timetables and suggested to apply his method to both of them. Here

the solution procedure was divided into two phases. Firstly, objects

(exams/courses), which require particular timeslots, were allocated to timeslots

while satisfying a “preassignment” constraint. Secondly, the students were

grouped in order to minimise the number of conflicts. Tabu Search was used in

both phases while regarding different neighbourhoods: all moves were allowed

in the first phase, while in the second one the moves were limited to swaps

between two objects where at least one of them had to be involved in a conflict.

In both phases the algorithm kept a tabu list of moves (instead of the list of

solutions) with the condition that it permitted the most promising tabu moves

(this allowed the algorithm to be less computationally expensive). Hertz

concluded that this algorithm produced the satisfactory results on real-world

examination and course datasets, and therefore was likely to be better than the

existing techniques. Later Hertz and Robert [RH96] proposed to divide large

problems into several subproblems and to apply Tabu Search to each

component separately (for small size subproblems it could be the

Branch-and-Bound algorithm). Besides this, the authors suggested to determine

the draft timetable initially and then gradually improve it with respect to

different objectives. They considered their approach to be satisfactory in

practice.

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 34

In [BN96] Boufflet and Negre compared the performance of Tabu

Search with two other techniques: the Branch-and-Bound algorithm and the

semi-automatic Computer Aided Design method. They demonstrated that for

artificial datasets the results obtained by Tabu Search and Branch-and-Bound

were almost the same if the optimal solution existed. However, for real-world

exam timetabling problems, where a lot of different criteria should be taken

into account the Tabu Search method was preferable. It could produce high

quality solutions where the Branch-and-Bound algorithm failed.

The benefits of the use of a variable length tabu list in examination

timetabling were investigated by Di Gaspero and Schaerf in [DGS01] where

the authors presented a comparison of their approach with other techniques

proposed by Carter, Laporte and Lee in [CLL96] and Burke and Newall in

[BN99]. Even though most of results proved to be in the same range, on several

datasets the authors achieved better results than their competitors. Di Gaspero

continued this work in [DG02] where he reinforced the diversification strategy

by the variation of the neighbourhood. The presented algorithm (named

“Recolour, Shake and Kick”) cyclically changed the neighbourhood after

convergence on the previous one. They produced results which confirmed the

relative advantages of this algorithm over the plain Tabu Search.

In [WX01] White and Xie demonstrated a frequency-based long-term

memory mechanism, where together with the tabu list of accepted moves

(“recency-based” short-term memory approach) they incorporated a table of

the move’s quantity for each exam (“frequency-based” long term memory

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 35

mechanism). This method restricted the movement of over-active exams and

vice-versa forced the movement of exams with low activity. Usually the less

active exams had a higher number of conflicts, and correspondingly, their

replacement significantly affected the solution. The authors considered that this

technique accelerated the downhill movements and diversified the search

space. For the automatic determination of appropriate algorithmic parameters,

the quantitative analysis method based on the distribution of exam degrees was

proposed. “Tabu relaxation” (emptying the tabu list after a number of idle

moves) was also suggested as a way to move the searched region into one

where better solutions could perhaps be found. This technique was successfully

applied to real large-scale examination datasets and results were presented

which showed an effectiveness of the suggested strategies.

Two strategies of lexicographic optimisation (the ranking of objectives

due to their priorities) within Tabu Search were investigated by Paquete and

Stutzle in [PS02]. One strategy (“lex-seq”) presupposed the sequential

optimisation (the next objective was considered when all previous ones were

satisfied completely). In the other strategy (“lex-tie”) the next objective was

considered in the case of the tie regarding the previous objectives. The authors

compared both strategies on benchmark datasets and found that their

performance was dependent on the size of the problem. The first strategy coped

better with larger-sized problems and the second strategy coped better with

smaller ones. It is probably the case that the overall performance of this

technique can be improved by the proper combining of these two approaches.

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 36

2.3.4 Genetic Algorithms

Probably the most attention in examination timetabling over the last decade has

been paid to exploring evolutionary solving methods. Their idea was borrowed

from biology, namely from the computational model of the evolution of species

described in Darwinian (Charles Darwin 1809-1882) natural selection theory.

Several examples of the computer simulation of natural genetic processes were

known as the predecessors of Genetic Algorithms starting from Fraser [Fra57].

In 1966 Bremermann, Roghson and Salaff [BRS66] presented a comprehensive

study of “evaluation algorithms” (later they were called “genetic”) and

suggested to use them as a general numerical method for optimisation. The

term Genetic Algorithm was introduced by Holland in [Hol75] where he

proved several theorems, which laid the foundation of Genetic Algorithm

theory.

Following the biological association, the characteristics of Genetic

Algorithms are usually described in biological terminology. In these terms,

Genetic Algorithms maintain the population (set) of sub-optimal individuals

(solutions). At each generation (iteration), a number of children (new

solutions) are produced. During the selection step the extended population is

evaluated and individuals with worst fitness (objective function) are removed

from the population. The individuals in Genetic Algorithms are presented by

chromosomes (component vectors), which contain genes (variables). The

characteristics of individuals can be regarded in a phenotypic sense (while

considering their fitness) or in a genotypic sense (paying attention to the

disposition of genes in a chromosome). In order to improve the quality of the

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 37

population from generation to generation, the algorithm should allow desirable

features to be passed from parents to children and should discourage

undesirable ones. For this purpose, two following reproductive strategies are

generally useful:

• Crossover. A group of methods which generate the child chromosomes by

the recombination of genes in (at least two) parental chromosomes.

• Mutation. Various techniques which produce a “new” solution by changing

genes in the “old” chromosome.

In addition to genetic operators, several other strategies have an impact

on the performance of Genetic Algorithms:

• The evaluation strategy comprises the different activities connected with

fitness: from its calculation to investigation of its search space (landscape).

• The selection strategy aims to keep the population size invariable and

prevent it from uncontrolled growth. Here the different techniques of

choosing redundant solutions are useful.

• The representation strategy defines the way of modelling each particular

problem in the “gene-chromosome” scheme. In the direct representation

(basic variant), each chromosome represents the actual timetable. However,

a number of indirect representation schemes were proposed.

• The initialisation strategy provides the seed (initial population) for the

subsequent generations. The Genetic Algorithms often show the best

performance when starting from a seed with good fitness and

simultaneously high genotypic diversity between individuals. Usually,

random constructed solutions have a good diversity but a poor fitness.

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 38

Otherwise, graph colouring heuristics provide a better fitness seed but can

suffer from a low diversity.

Besides this, each application of Genetic Algorithms is very sensitive to

problem-dependent parameters, such as: the population size, the numbers of

mutated individuals, the numbers of produced children and the stopping

condition.

Traditionally, Genetic Algorithms due to their exterior differences have

tended to be separated from other search metaheuristics. However, some

authors have advocated the internal similarity between Genetic Algorithms and

other metaheuristics. Reeves in [Ree94] gave the formalisation of “Genetic

Algorithm neighbourhood” and using a mathematical evidence concluded that

a Genetic Algorithm could be viewed as a form of the neighbourhood search.

Later, Jones and Forrest [JF95] investigated the operational landscapes of

Genetic Algorithms and heuristic search and found a certain amount of

common ground in these approaches.

The first report about an application of a Genetic Algorithm to an exam

timetabling problem was presented in 1993 by Corne, Fang and Melish

[CFM93]. In their study they introduced a number of features, which provided

an improvement (percentages are given in brackets) compared with the classic

Genetic Algorithm:

• square pressure of fitness – reinforcing the difference between good and

bad individuals (at least 25%);

• elitism – keeping the best individuals into later generations (250%);

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 39

• fixed point uniform crossover – producing a child, which inherits the fixed

number of genes from each parent (400%);

The same authors introduced the so-called “delta-evaluation” for fast

calculation of fitness [CRF94]. When applying a genetic operator they

calculated only the change (“delta”) in fitness. This method reduced the

computational expense and the authors suggested its use for both examination

and lecture timetabling (they called this case the “General Examination/Lecture

Timetabling Problem”). Later Corne and Ross introduced “peckish”

initialisation (i.e. partially greedy algorithms being used in the timetabling

process) [CR96]. The peckish initialisation was demonstrated as a significant

aid for solving exam timetabling problems by Genetic Algorithms.

In 1994, Burke, Elliman and Weare presented an exam timetabling

Genetic Algorithm with special crossover and mutation operators [BEW94].

Later they extended the list of such operators including ones based on the

graph colouring heuristics [BEW95]. These operators supported different

actions such as: reducing the length of the timetable, reducing the second order

conflicts, maintaining the proximity of exams. The properly chosen set of

operators could direct the search procedure into the particular region of the

search space (where a good timetable might be most possible).

In 1996, [Erg96] Ergul improved the mutation operator with a certain

mechanism for ranking the chromosomes by their fitness and defined the

probability of the mutation as a linear or quadratic function of the chromosome

rank (“linear mutation” and “quadratic mutation”). He considered these

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 40

operators as less sensitive to problem-dependent input parameters. In addition

to this, he suggested penalising conflicts in order to better satisfy the

preassignment constraints. For this purpose, weights were assigned to exams,

and the conflict penalty was calculated which took the weights of conflicting

exams into account. Ergul also proposed the temporal suspension of highly

conflicting exams. This means that these exams should be placed into

particular slots and held there for a number of generations.

A recent genetic application to exam timetabling was presented by

Sheibani [She02] who proposed a method for maximisation of the interval

between exams by partitioning them into a number of sets and estimating the

so-called “closeness relation” between exams in different sets. The numerical

measures employed in this relation played a role of weights in the fitness

function. The presented technique was applied to real-world timetabling and

the produced results were of satisfactory quality.

Over the years, the performance of Genetic Algorithms on exam

timetabling has been investigated thoroughly by several authors. In 1994

Terashima-Marin [Ter94] presented experiments with the pure Graph

Colouring Problem. He showed that the sequential heuristics (saturation or

even largest degree) easily outperform the Genetic Algorithms. The

performance of Genetic Algorithms in examination timetabling (without

special recombinative operators) was compared with Hill-Climbing and

Simulated Annealing by Ross and Corne [RC95]. Both of these techniques

produced better results than the Genetic Algorithm. The weakness of Genetic

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 41

Algorithms applied to Graph Colouring Problems using direct representation

was confirmed by Ross, Hart and Corne in [RHC98]. The authors investigated

the performance of different algorithms on specially designed random graphs

as well as real-world benchmark timetabling problems. They discovered the

dependence of the performance of algorithms on the edge density of the graphs

(ratio of the actual number of edges in the graph to their maximum possible

number). The authors showed that most algorithms, which can easily solve

both high and low constrained problems, fail when the edge density of the

graph reaches some middle value (the so-called “fallible region”). To avoid

such difficulties a “cataclysmic adaptive mutation” (which prefers to mutate

the exams that cause a higher penalty value) was suggested.

In order to overcome the disadvantage of the “fallible region” an

advanced representation of the problem’s structure was presented by Erben

[Erb01] who suggested employing a Grouping Genetic Algorithm for

examination timetabling. In such a representation each gene corresponds to the

set of edges. The presented results showed that this approach could reduce the

negative effect of a “fallible region”.

Although the use of Genetic Algorithms for the pure Graph Colouring

Problem is questionable they still can be considered as valuable tools for exam

timetabling problems where the most attention is paid to the satisfaction of soft

constraints. Probably the most successful role of genetic approaches is in

forming the basis for hybrid methods, which have been shown to generate

excellent results (e.g. [BN99]).

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 42

2.3.5 Constraint Logic Programming

The investigation of Constraint Logic Programming (CLP) approaches to exam

timetabling has attracted the attention of the timetabling community for many

years. This approach is practical because a variety of universal software tools

exist, which were specially developed for solving constraint satisfaction

problems. Such systems are commercially available from their vendors in the

form of special programming languages or as run-time libraries. Using these

tools, the programmer should express his/her problem statement using some

declarative language (based on classical logic notations) and then launch the

solving subroutine (solver), which actually produces results. Thus, one can

consider the term “Constraint Logic Programming” to comprise both the

algorithms that are laid inside the solvers, and the methods for data preparation

and for the solving procedure control.

Most Constraint Logic Programming solvers assign values to variables

using exhaustive enumeration methods with backtracking and domain

reduction. Therefore, the search space is represented by a tree where variables

(exams) are modelled as nodes and the number of branches of every node is

equal to the number of values (timeslots) in the node’s domain. The

programmer’s goal is to provide the proper strategy for traversing the tree (so-

called labelling), i.e. to set up correctly an order in which the values will be

assigned to the variables. Existing solvers are very sensitive to the labelling

procedure. White [Whi00] discusses an example where a very small change in

the ordering of variables increases the processing time from two seconds to 48

hours.

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 43

The first application, which employed Constraint Logic Programming

for solving exam timetabling problems was developed in 1994 by Boizumault

Delon and Peridy [BDP94]. They investigated the performance of two versions

of the CHIP language (v.3 and v.4) with different labelling strategies. The best

performance was achieved by the latest version of the solver while employing

more advanced labelling strategies.

In 1999 Reis and Olivera presented an exam timetabling system based

on the ECLiPSe language [RO99]. They enhanced the labelling procedure with

the “labelling by variables types” level (in addition to variables and their

domain values). This innovation provided an improvement in the search

performance because the most constrained types of variables could be labelled

first. The authors tested their technique on randomly generated datasets as well

as real-world university examination problems. They assumed their tests to be

successful because they obtained complete timetables without violations of

hard constraints.

An example where an author considered the exam timetabling problem

as a constraint satisfaction problem but did not use commercial software was

provided by David in [Dav98]. The reason was provided by the practical

requirements of the system (e.g. limited processing time). He implemented an

enumeration using two phases (while regarding different sets of constraints):

“preassignment” and “final assignment” phases. Due to the time limitation, he

employed an incomplete algorithm, i.e. in certain situations backtracking was

not used. However, if the second phase failed to produce a solution, then

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 44

several specially designed repair procedures were applied in order to reduce the

number of constraint violations. In the case of further fails, some constraints

were relaxed or extra timeslots were added. This system was successfully

exploited for producing real-world exam timetables.

2.3.6 Ant Colony Optimisation

This approach is based on the principle of “positive feedback” and can be

illustrated by the behaviour of real ants. When choosing a path in unknown

surroundings every ant relies on pheromone trails that are left by other ants and

in its own turn it adds to the pheromone trail. The more ants that have passed

the same path, the higher the probability that this path will be chosen by future

ants. This positive feedback works in such a way as to encourage the ants to

take the shortest path. The idea of employing this principle in a search

metaheuristic belongs to Dorgio et al. [DMC91]. They devised an artificial Ant

Colony, where ants produced solutions. The quality of each solution affected

the probability of further solutions being constructed which followed its

pattern.

The application of the Ant Colony metaheuristic to the Graph

Colouring Problem was presented in 1997 by Costa and Hertz [CH97]. The

authors regarded graph colouring as an illustration and suggested the use of

their algorithm (called ANTCOL) for a wide range of problems (including

exam timetabling in respect of hard constraint satisfaction). Feasible solutions

were constructed by ants, which used sequential heuristics “saturation degree

first” and “recursive largest first” (the second heuristic is a modification of

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 45

“largest degree first” where the degrees of uncoloured vertices are recalculated

dynamically after each step). At each iteration, the population of solutions

provided statistical data about the frequency of colouring each pair of vertices

into the same colour. This affected the construction of solutions in the next

iteration and so on. In their study, the authors tested the proposed algorithm on

random graphs. The performance of the second heuristic was found to be better

than the first one and the overall behaviour of the algorithm was considered as

successful. However, this conclusion was criticised in [VZ00] by Vesel and

Zerovnik. They showed that the ANTCOL’s results were beaten by simple

multistart launch of the same sequential heuristics.

The recent investigation of the advantages of Ant Colony optimisation

in examination timetabling was carried out by Dowsland, Pugh and Thomson

in [DPT02]. They paid special attention to the specific distinctions between

exam timetabling problems and random graphs. For this purpose, the various

modifications of the Ant Colony algorithm were tested. Several aspects were

investigated, such as: the influence of the different measures of solution quality

on the strength of the pheromone trail, the advantage of the use of candidate

lists (of exams to be assigned first) and diversification strategies, etc. The

overall conclusion was that this research could provide a basis for extending

the Ant Colony metaheuristic to incorporate soft constraints.

2.4 Recent Innovative Methodologies for Automated
Exam Timetabling

Together with Constraint Logic Programming and Ant Colony optimisation a

number of other innovative approaches have been suggested for exam

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 46

timetabling in recent years. However, these applications require more

investigations and it is too early to make conclusions about their suitability for

exam timetabling.

An example of the application of a multi-agent approach to exam

timetabling was provided by Lin in [Lin02]. The whole problem was

decomposed into several subproblems and distributed between independent

subroutines (agents). Each agent used a constraint logic approach (ECLiPSe

package) for the partial optimisation of its own subproblem. The partially

optimised subproblems were sent to a special central agent (broker), which

optimised the remaining parts. The final solution was aggregated from the

parts, solved by the agents and the broker. The authors analysed results

obtained on real and randomly generated timetabling problems of different

density. It was shown that on “sparse” problems the multi-agent (decentralised)

algorithm could produce better results than the centralised one.

There is a school of thought within the timetabling research community

which aims to increase the level of generality of timetabling methodologies.

Existing metaheuristic approaches to timetabling tend to be problem specific.

The idea is to develop a system, which chooses an appropriate

heuristic/metaheuristic for solving a given timetabling problem instance. In

2002 Burke et al. presented a Case-Based Reasoning approach to the selection

of heuristics for solving the exam timetabling problem [Burk02]. This

algorithm maintains a case-base of previously solved timetabling problems

including datasets, objectives, applied techniques and obtained results. The

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 47

new problem is compared (using some similarity measure) with the problems

in the case-base and the most similar case is retrieved. Thus, this system

suggests which approach could be employed on the given problem. In the

presented study, three different search techniques were considered: Hill-

Climbing, Simulated Annealing and Tabu Search.

Evolutionary algorithms for selecting the right heuristic are another

modern approach to examination timetabling [TRV99]. Algorithms which

select heuristics/algorithms have been termed hyper-heuristic. Indeed, this is a

major research direction that Burke and Petrovic discuss in [BP02]. More

details about hyper-heuristics can be seen in [Burk03a].

2.5 Hybridisation of Different Methods

One of the most useful ways of improving the performance of combinatorial

optimisation algorithms is by hybridising several techniques. The Memetic

Algorithm (which can be considered to be a hybrid of a Genetic Algorithm and

a local search operator) was discussed in 1992 by Moscato and Norman

[MN92]. This algorithm employed the concept of a meme as a unit of

information. This is held by an individual and can be modified by the holder

before being passed to other individuals. Thus, the authors pointed out that the

memetic approach (in contrast to the genetic approach) emulates cultural

evolution rather than biological evolution.

A Memetic Algorithm for examination timetabling problem was

presented and discussed by Burke, Newall and Weare in [BNW96] who also

proposed an advanced initialisation strategy, which involved the inclusion of a

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 48

random aspect into graph colouring heuristics. This particular Memetic

Algorithm hybridised a “mutation only” Genetic Algorithm with Hill-

Climbing. The effect of heuristic seeding was presented in a detailed

investigation in [BNW98] which explored the use of different diversity

measures.

In 1999, Burke and Newall [BN99] presented an approach to the exam

timetabling problem, which decomposed the larger problem into a series of

smaller subproblems. The subproblems were ordered by “how difficult” each

exam in the subproblem was (to schedule). This difficulty measure was

provided by graph colouring heuristics. In addition a “look ahead” technique

was used where the current subproblem was not fixed in place until the next

one had been dealt with. The motivation here was to try and avoid situations

where scheduling decisions that were taken in an earlier subproblem would

lead to infeasibilities in later subproblems. A Memetic Algorithm was

employed on the subproblems. This approach produced the best published

results on certain benchmark problems at the time.

Caramia, Dell’Ormo and Italiano consequently applied sequencing

heuristics and Hill-Climbing [CDI01]. The sequencing heuristic took into

consideration the priorities of exams, which were equal to largest degree at the

beginning and were dynamically reassigned during the search. When no

improvement was detected, the number of timeslots was automatically

increased. In order to improve the performance of the algorithm the search was

periodically restarted. The authors investigated different restarting schemes

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 49

together with different ways of reassigning the exams priorities. The algorithm

produced good results on real-world exam timetabling problems.

Merlot et al. [Mer02] presented a hybrid algorithm, which contained

three phases. In the first phase they constructed a feasible timetable using

Constraint Logic Programming with the OPL package. In the second phase the

initial solution was improved by Simulated Annealing using the Kempe chains

neighbourhood. The final improvement was made in the third phase by the

modified Hill-Climbing method. This modification iteratively inspected all

exams and all available timeslots in order to find the most fruitful moves. This

procedure guaranteed the best possible solution in the case when Simulated

Annealing left better solutions among the neighbourhood. For the case of the

remaining unscheduled exams the authors proposed a greedy heuristic, which

aimed to minimise clashes when they are unavoidable. The algorithm was

applied to real exam timetabling at the University of Melbourne and produced

solutions which were much better than the timetabling software which was in

use at that time. Besides this, it showed a promising performance on publicly

available benchmark datasets.

2.6 Summary

In this chapter a number of algorithmic approaches, which were applied over

the last decades to exam timetabling problems have been discussed. Obviously,

the complexity of these techniques grew together with the increasing power of

computing hardware. If in the 1960’s the relatively easy sequential graph

colouring heuristics were mostly practical, then in recent years the main

Time-Predefined and Trajectory-Based Search Algorithmic Approaches

 50

attention has been paid to more powerful metaheuristics methods, such as

Hill-Climbing, Simulated Annealing, Tabu Search and Genetic Algorithms.

Their performance on exam timetabling problems is relatively well studied by

different authors. Moreover, a high number of extensions and modifications of

the basic algorithms have been proposed with the aim of producing higher

quality results. Another promising tendency is the hybridisation of different

approaches, which can significantly improve the performance of given

techniques. The author believes that these two conceptions (modification and

hybridisation) still have a high potential for further improvement.

Additionally, several innovative approaches recently applied to exam

timetabling have been outlined, such as: Constraint Logic Programming, Ant

Colony Optimisation, Case-Base Reasoning, Multi-Agent Optimisation and

Hyper-Heuristics. While such approaches play an important role in the

examination timetabling literature, they have little direct impact on the research

work that is presented in this thesis.

Time-Predefined and Trajectory-Based Search Multiobjective Review

 51

Chapter 3.

3. A Review of Multiobjective Techniques

3.1 Basic Concepts of the Multiobjective Optimisation

In real-world problems, the quality of a given solution can rarely be estimated

by only one criterion. Usually, it requires several criteria, which have different

natures and importance and are often in conflict with each other. In other

words, these problems involve the optimisation of a number of criteria

(objective functions) simultaneously and are called multiobjective optimisation

problems.

The general K-objective optimisation problem can be defined (as stated

by Coello Coello [Coe99]) in the following way:

• Find the vector: []T

Kxxxx **
2

*
1

* ,,, �= which optimises the vector objective

function: []T
K xfxfxfxf)(),...,(),()(21= ,

• subject to m inequality constraints: },,2,1{0)(mixgi �∈≥ ,

• p equality constraints: },,2,1{0)(pixhi �∈= ,

• where []T
Kxxxx ,,, 21 �= is the vector of decision variables.

The main difficulty with a multiobjective approach (which

distinguishes it from the single-objective one) lies in the comparison of

solutions. By definition one solution outperforms another one if the values of

all objective functions of the first solution are better than the second. It is also

said that the second solution is dominated by the first one. If no solution can

dominate the given solution then it can be considered to be optimal. But due to

Time-Predefined and Trajectory-Based Search Multiobjective Review

 52

the conflicting nature of criteria it is usually the case that there is no unique

optimal solution. It is maybe possible to improve separately at least one (but

not all) objective function of a given solution, which usually causes the

declining of its remaining objective functions (or at least one of them). Thus,

several different solutions could be thought of as “optimal”, because no one

dominates the other. The concept of non-dominance was firstly formulated by

the French economist Vilfredo Pareto (1848-1923) and therefore such solutions

are called “Pareto-optimal”. All Pareto-optimal solutions compose a certain

boundary between the space which contains dominated solutions and the space

where no solutions exist. This boundary is called the trade-off surface or

Pareto-front. It can be depicted as a surface in the K-dimensional space, where

K is the number of criteria. For bi-criteria space (criteria x1 and x2) the Pareto-

front is presented as a curve. An example is shown in Figure 3.1. In this figure

the Pareto-optimal solutions are presented by grey points while the dominated

ones are represented by white points.

Figure 3.1: Pareto-optimal solutions comprise the Pareto-front

The shape of this surface is highly dependent on the nature of the individual

problem [ZDT00]. For example, it can be shifted or inclined towards some

criteria, it can intersect the axes, or even be non-convex (see Figure 3.2).

x2

x1

Time-Predefined and Trajectory-Based Search Multiobjective Review

 53

Therefore, it is generally impossible (or too difficult) to express the

Pateto-front curve analytically.

Figure 3.2: Different possible shapes of Pareto-fronts

Moreover, for the majority of problems the absolute values of Pareto-

optimal solutions which define the “true” Pareto-front (line PFtrue in Figure

3.3) are unknown. Here an algorithm can achieve some “known” Pareto-front

(line PFknown in Figure 3.3), which comprises the already discovered solutions.

Figure 3.3: True and known Pareto-fronts

x2

With significant offsets

Non-convex

Includes the zero solutions

x2

x1

x1 x2

x1

x2

x1

PFknown

PFtrue

Time-Predefined and Trajectory-Based Search Multiobjective Review

 54

This constitutes the major difference between the two known types of

multicriteria problems: multiobjective optimisation and multi-attribute decision

making. Vincke [Vin92] defines them in the following way:

• Multi-attribute decision making studies the strategies of choosing a

desirable solution among a number of known ones.

• Multiobjective optimisation involves designing/searching for optimal

solutions.

Multiobjective reasoning often assumes a higher cooperation with the

user (decision maker) than single-criteria methods. Some of these methods

called A Priori try to achieve a single, hopefully the desirable, solution

automatically. However, in many situations the decision maker should provide

some additional information about his/her preferences before starting the

search (which is not always easy to specify). Such methods are also known as

“Decide-then-Search” [VVL00]. It is possible to produce a number of Pareto-

optimal solutions, from which the decision maker should manually (or using

some multi-attribute decision making technique) choose the desirable one. This

type of methods is called A Posteriori or “Search-then-Decide” [VVL00].

Two main approaches are distinguished in both groups of methods for

multiobjective optimisation: A Priori and A Posteriori. The first is the

aggregation approach in which objective functions are aggregated using

weighting coefficients for each of them. Therefore a multiobjective

optimisation problem is transformed into a scalar one. Another approach

Time-Predefined and Trajectory-Based Search Multiobjective Review

 55

involves specially designed extensions of widely-used metaheuristics, such as:

Genetic Algorithms, Simulated Annealing, Tabu Search and Hill-Climbing.

3.2 A Priori Methods

A Priori methods require the definition of some parameters, which (in different

ways) reflect the decision maker’s preferences. However the decision maker is

not always able to express his/her preferences. The most useful among A Priori

methods are aggregation techniques. Here the criteria vector is scalarised into

an aggregation function and any of the single-objective methods can be

applied.

The most often used aggregation approach is the weighted sum method.

The aggregation function is calculated as the sum of objectives multiplied by

their weights, which should be assigned by the decision maker. It is the first,

simplest and the most popular method, which was employed in 1951 when

Kuhn and Tucker applied it within non-linear programming [KT51]. This

technique directs the search process approximately towards the Pareto-front.

However, often the produced solutions are far from the desirable ones because

the proper values for the weights are unknown. The weights do not reflect the

importance or scale of the corresponding objective nor do they have any other

physical meaning.

However, in spite of its weaknesses, the weighted sum approach is

widely used by the multiobjective optimisation community because it is easy to

apply. One of the ways of using this algorithm is to run it several times with

different weights in order to produce the set of solutions, which roughly

Time-Predefined and Trajectory-Based Search Multiobjective Review

 56

represent the trade-off surface. An example of such a multistart approach

within a Genetic Algorithm is presented in the work of Syswerda and Palmucci

[SP91] who applied it to a resource scheduling problem.

One of the famous extensions of the weighted sum approach is Goal

Programming. The origin of this technique is connected with the earlier work

of Charnes et al. who expressed this idea in [CCF55] and gave it the present

name in [CC61]. This algorithm aims to minimise the deviations between the

current solution and some target solution, For each objective, the decision

maker defines its goals. This method can achieve the goal solution if it is

defined inside the feasible region. However, such a solution is generally not

optimal and often it makes sense to improve it. Otherwise, if the goal occurs in

an infeasible region, then the method could became inefficient [Coe99]. The

ideal case seems to be when the goal is placed exactly on the Pareto-front. But

this is almost impossible without previous knowledge of the Pareto-front

shape.

Over the years a number of modifications of Goal Programming have

been proposed. Lee and Olson described in [LO99] the following examples:

• Least Absolute Value Regression: The information, obtained in the previous

runs of the algorithm is used for defining the deviations in the next runs.

• MINMAX Goal Programming: Minimizing the deviation which has the

maximum value.

• Preemptive Goal Programming: The decision maker defines a number of

goals of different priorities. After attaining the goal of one priority the

Time-Predefined and Trajectory-Based Search Multiobjective Review

 57

algorithm tries to reach the next priority goal. In such a way the algorithm

stops at the goal of the maximum attainable priority.

• Nonlinear Goal Programming: The family of methods, which use different

non-linear approximations of the objective functions.

One of the contemporary modifications of Goal Programming is the

technique designed at the International Institute for Applied Systems Analysis

[Wie99]. Here the decision maker should define the goals at two levels: the

aspiration level, which is desirable to attain and the reservation level, which is

probably attainable. For these two levels the authors introduced the so-called

“achievement function”. This function is represented by fuzzy sets and

interprets the decision maker’s preferences in order to define the most desirable

goal.

The list of the aggregation methods can be continued by the

Lexicographic approach. As it is explained in [TJR98] this technique considers

the objectives of different priorities. The algorithm firstly attempts to find the

solution with respect to the most prioritised objectives. Such an idea can be

considered to be an alternative to the specification of weights, because the

identification of the priorities can be easier for the decision maker than

weights. Moreover, such an approach can be vital for timetabling problems

where all constraints are usually divided by priorities into hard and soft.

The comprehensive aggregation method, known as Compromise

Programming was introduced by Zeleny in [Zel73] and then refined in [Zel82].

Instead of a goal he suggested the use of the so-called ideal (or “utopian”)

Time-Predefined and Trajectory-Based Search Multiobjective Review

 58

point, whose coordinates represent the optimal value of each objective. The

algorithm mapped the criteria space into the preference space where the quality

of the solution can be evaluated by measuring its distance to the ideal point.

This distance can be expressed as Lp metrics:

pK

i

p
ip dL

1

1

)(

= ∑

=
, (3.1)

where di is the distance between the solution and the ideal point in the

preference space and the parameter p affects the compensation among criteria

i.e. the offsetting of a bad value of one objective by better values of other

objectives. Three values of parameter p are of particular interest: p=1, p=2 and

p=∞. The value p=1 leads to the simple sum of distances or so-called

“Manhattan block”. It enables the absolute compensation. It can be proved that

p=∞ (“Chebyshev norm”) is equivalent to)(max
..1

i
Ki

p dL
=

= . It implies no

compensation among objective values of the solution. The value p=2

(“Euclidian norm”) gives the solution which is geometrically closest to the

ideal point.

3.3. A Posteriori Methods

A Posteriori methods do not depend on the decision maker’s preferences. They

are aimed at finding a set of non-dominated solutions among which the

decision maker can chose the most preferable one (manually or using any

multi-attribute decision making method). This group of methods is mostly

presented by different modifications of Genetic Algorithms. However, a

number of non-evolutionary A Posteriori approaches have also been proposed.

Time-Predefined and Trajectory-Based Search Multiobjective Review

 59

3.3.1 Multiobjective Versions of Genetic Algorithms

The Genetic Algorithm was the first metaheuristic which was adapted for

multiobjective optimisation [VVL00]. This adaptation is significant because

the population-based nature of Genetic Algorithms interacts well with the

multi-solution requirement of the A Posteriori approach. In this section

different variants of multiobjective Genetic Algorithms are discussed.

The first multiobjective extension of the Genetic Algorithm was

developed in 1985 by Schaffer [Sch85], which he called the Vector Evaluated

Genetic Algorithm (VEGA). This algorithm was different from the

conventional Genetic Algorithm strategy only at the selection step. Here the

population was divided into a number of subpopulations equal to the number of

criteria. For each particular subpopulation the selection operator took into

consideration the corresponding criterion. All subpopulations were shuffled

together forming a population to which genetic operators (crossover, mutation)

were applied in the common way.

Later Richardson et al. [Ric89] showed that the average influence of

each objective function on a final solution is proportional to the size of the

corresponding subpopulation. Therefore, the sizes of subpopulations can play a

role as weights in the case when the decision maker considers the different

importance of criteria. The Achilles’ heel of VEGA is the tendency to produce

extremal solutions, which are outstanding in one dimension, instead of

compromise ones. The solutions with uniform distribution of criteria values

Time-Predefined and Trajectory-Based Search Multiobjective Review

 60

have less opportunity of surviving during selection. Yet in many cases such

solutions are exactly the ones which we required.

The weakness of the VEGA algorithm arises because it does not

provide an actual engine, which would move the population towards the true

Pareto front. The idea of a non-dominated ranking was first expressed in 1989

by Goldberg [Gol89]. Initially in this method, he assigned the highest rank to

all non-dominated solutions (see Figure 3.4). Then he took the next level of

non-dominated solutions, excluding already ranked ones and assigned to them

the next rank. In such a way, he ranked the whole population. The assigned

rank was used instead of fitness for the comparison of solutions during

selection.

Figure 3.4: Goldberg’s method of ranking the population

This method was applied to a scheduling problem by Hilliard et al.

[Hil89] who confirmed that the non-dominated ranking algorithm can produce

better results than VEGA. On the other hand, they found this technique to be

more computationally expensive because the methods for checking the

non-dominance of solutions were ineffective.

x2

x1

1-st level of dominance

2-nd level of dominance

n-level of dominance

…..

Time-Predefined and Trajectory-Based Search Multiobjective Review

 61

The non-dominated ranking algorithm belongs to the family of

so-called Pareto-based techniques. These methods assign the fitness to an

individual according to its dominance relations with other solutions in the

population. In each generation, individuals are checked as to whether they are

non-dominated and thus they force their way towards the Pareto-front. The

main advantage of these methods is that they are independent of the shape of

the Pareto-front. The two basic disadvantages are:

• Genetic drift: solutions tend to gather together in one part of the Pareto-

front while leaving other parts empty.

• Premature convergence: algorithm stops to improve the solutions well

before the true Pareto-front.

Goldberg proposed a way to overcome genetic drift which is known as

fitness sharing [Gol89]. If several individuals are gathered in a group (based on

the distance between them in the criteria space), then they “share” their fitness.

The fitness of each individual is divided by the size of the group. Thus, the

group performs as a single individual. This method is common for Pareto-

based techniques. However, it requires the specification of a minimal distance,

which should be considered as the threshold between separate individuals and

the group.

A different way of ranking was proposed in 1993 by Fonseca and

Fleming [FF93] who developed the Multi-Objective Genetic Algorithm

(MOGA). Its ranking procedure is shown in Figure 3.5. Every solution obtains

a rank which corresponds to the number of other solutions by which it is

Time-Predefined and Trajectory-Based Search Multiobjective Review

 62

dominated. In such a way the non-dominated solutions get rank 1. The

solutions, which are dominated by only one other solution get rank 2, and so

on. This approach helps to reduce the genetic drift because individuals grouped

together have less chance of surviving (being dominated by more individuals).

Figure 3.5: Ranking in Multiobjective Genetic Algorithm (MOGA)

In 1996, Fleming together with Shaw presented an initial study of the

application of this technique to production scheduling [SF96a]. The

comparison of the produced results with weighted sum ones indicated the

superiority of MOGA. This algorithm produced more high quality solutions,

including results, which could not be achieved by the weighted sum technique.

Later, the authors (together with their colleagues) successfully applied their

method to several real-world scheduling problems employing both discrete and

continuous objective functions, e.g. [SF96b], [Shaw00]. The performance of

MOGA was compared with other techniques and, in several problems,

outperformed them. The authors underlined the significant role of the proper

definition of the problem, constraints and objective functions for producing

good solutions for large-scale scheduling problems.

x2

x1

rank=3 (2-dominated)

rank=1 (non-dominated)

rank=2 (1-dominated)

Time-Predefined and Trajectory-Based Search Multiobjective Review

 63

At the same time as the development of MOGA, another variant of the

Pareto-based approach called Niched Pareto Genetic Algorithm (NPGA) was

being developed by Horn and Nafpliotis (under the guidance of Goldberg)

[HN93]. They adapted a tournament selection approach to the multiobjective

case and called it “Pareto domination tournament”. The superiority between

two solutions was determined by their dominance over the randomly chosen set

of solutions. If two solutions dominate the same number of solutions from the

chosen set, then the priority was given to the solution, which has a lower

number of “neighbour” (gathered into the same group) individuals. This

mechanism can significantly reduce the computational time for the

identification of the non-dominated solutions. However, for good performance

it requires a considerable larger population size. This algorithm had not been

implemented widely. A more important fact is that this idea provides the basis

for subsequent variants of the Pareto-based algorithms.

Srinivas and Deb returned to the basic Goldberg algorithm and

combined it with the refined fitness sharing technique [SD94]. The authors

suggested evaluating a solution by its so-called dummy penalty, which was

calculated based on the rank of an individual and an average distance to other

solutions. Such a hybrid was called the Nondominated Sorting Genetic

Algorithm (NSGA) and its results usually dominated the ones produced by the

previous methods. Thus, NSGA became the most popular Pareto-based

technique within the multiobjective decision making community.

Time-Predefined and Trajectory-Based Search Multiobjective Review

 64

In 1999 Bagchi [Bag99] proposed the modification of the NSGA in

order to copy the best parental individuals to later generations without

changing them. He called this technique an Elitist Nondominated Sorting

Genetic Algorithm and applied it to the job-shop scheduling problem. Bagchi

thoroughly investigated the performance of this algorithm and compared it with

a non-elitist one. The elitist version was found to be able to produce higher

number of Pareto-optimal solutions in less computational time.

A very promising idea based on elitism has been expanded into a

proposition of the non-generational Genetic Algorithm. Here a selection is

implemented immediately after each recombination operator, and therefore the

notion of generation is discarded. This conception was generally rejected for

the single-objective Genetic Algorithm [Gol89] but later was found to be

fruitful in the problems where solutions are highly correlated with each other.

Valenzuela-Rendon and Uresti-Charre revealed the same behaviour of this

method with multiobjective problems hence, in 1997 they developed the

non-generational Genetic Algorithm for multiobjective optimisation [VU97].

The presented results proved the effectiveness of this method. Even though the

optimal values were at the same level as the NPGA ones, the produced trade-

off surface was much smoother and uniform, the dominated solutions were

almost absent in a final population, and this algorithm was less time-consuming

than the NPGA. While evaluating the individuals, this algorithm took into

account both their dominance and “neighbour density” (the function which

indicates the number of neighbour solutions), hence transforming the problem

into a bi-objective form. The authors suggested solving this bi-objective

Time-Predefined and Trajectory-Based Search Multiobjective Review

 65

problem by using the weighted sum method. This idea was improved in 2000

by Borges and Barbosa [BB00]. To avoid the specification of weights, they

defined a non-linear function of dominance and “neighbour density” measure.

Another idea for improving the performance of multiobjective

evolutionary algorithms consists of the categorisation of parents for

recombination (“mating restriction”). It was expressed by Goldberg [Gol89]

and firstly applied within VEGA by Allenson [All92]. For a bi-objective case,

he used the individuals of two types (“genders”). The member’s gender

(randomly assigned at birth) specified the objective by which the member

should be evaluated. The crossover operated only with the individuals of

different genders. In Allenson’s opinion, such “biodiversity” could help to

produce compromise solutions. He supposed that if such a feature exists in

nature then it is worth investigating it in the algorithm. This approach was

generalised by Lis and Eiben in [LE96]. They proposed to use several genders

(the number of which is equal to the number of objectives) and the special

multi-parent crossover. Their algorithm was tested on non-convex and discrete

problems and showed a good cover of the Pareto-front.

A recent variant of the Pareto-based approach was proposed in 1999 by

Zitzler and Thiele [ZT99]. They accumulated the most promising components

of the previous techniques and called their method the Strength Pareto

Evolutionary Algorithm (SPEA). This algorithm employed elitism by storing

(separately) the subpopulation of non-dominated solutions, and a modified

sharing technique. The ranking in this algorithm was implemented in a way,

Time-Predefined and Trajectory-Based Search Multiobjective Review

 66

which is opposite to the MOGA approach: the rank (strength) of an individual

was determined by the number of members, which the given individual covers

(dominates). The authors presented a detailed comparison of their algorithm

with other multiobjective techniques in [ZT99] and [ZDT00]. The experiments

were carried out on different shapes of Pareto-front: convex, non-convex,

discrete etc. For all instances, the results (trade-off surfaces) produced by the

proposed algorithm were the closest to true Pareto-front and the most

uniformly distributed.

3.3.2 Non-Evolutionary Pareto-Based Techniques

The idea of employing the advantages of the Pareto-based approach within

traditionally non-population techniques belongs to Ulungu et al. [UTF95] who

developed the algorithm known as Multiobjective Simulated Annealing.

During the search this algorithm keeps a list of non-dominated intermediate

solutions, which are later compared with the selected candidates and the

dominated members are replaced by the new ones. The probability of

acceptance of worse solutions is calculated using the weighted sum approach.

However, weights are randomly changed throughout the search in order to

cover the wider region of the criteria space.

In [CJ98] Czyzak and Jaszkiewicz introduced the Pareto Simulated

Annealing algorithm, which operates with a population of current solutions. At

each iteration the algorithm evaluates the set of candidate solutions using a

probability based on a weighted sum. To support the uniformity of the

population distribution the special adaptive algorithm adjusts the weights

Time-Predefined and Trajectory-Based Search Multiobjective Review

 67

involved in the probability function in order to increase the distance between

solutions.

The idea of keeping an archive of non-dominated solutions within Tabu

Search was explored by Gandibleux et al. [GMF97]. In their Multiobjective

Tabu Search algorithm they used a weighted sum method for the identification

of the candidate solutions among neighbours, but the concept of the tabu list

was revised. Instead of storing recent moves, it stored those objectives, which

were mostly improved at recent steps. This feature helped to diversify the

weights in order to distribute non-dominated solutions more uniformly.

Another variant of the Pareto-based Tabu Search was developed by

Hansen [Han97], and was also called Multiobjective Tabu Search. He used a

population of current solutions and every solution had its own tabu list of

recent moves. Besides this, the proposed algorithm included a MOGA-like

ranking and removing of worst-rank solutions in order to prevent a genetic

drift.

A Pareto-based variant of Hill-Climbing algorithm was introduced in

1999 by Knowles and Corne [KC99]. The authors claimed that it was the

simplest and most transparent multiobjective technique. They called this

algorithm the Pareto Archived Evolution Strategy (PAES) because it

maintained an archive of intermediate non-dominated solutions. The quality of

every candidate solution was evaluated by using the relation of dominance to

all archive members. In addition, the algorithm aimed to remove solutions from

the most crowded regions of the criteria space. In [KC00a] the authors

Time-Predefined and Trajectory-Based Search Multiobjective Review

 68

presented a comprehensive comparison of PAES algorithm (including its

extensions) with different versions of NPGA and NSGA on a wide range of

benchmark problems. The figures showed little difference between the quality

of results (the authors indicated the only one case where PAES was clearly

beaten by NSGA). It can be concluded that the Hill-Climbing based algorithm

is far less time-expensive than any based on Genetic Algorithms.

3.3.3 Hybridisation of Pareto-based Techniques

In order to improve the performance of Pareto-based Hill-Climbing Knowles

and Corne combined it with a Genetic Algorithm, which lead to a memetic

multiobjective algorithm [KC00b]. The new method was called

Memetic-PAES. The authors proposed two archives: the global archive for

storing non-dominated solutions from the current population and the local

archive which was used in the same way as in PAES at the local search phase.

The algorithm employed Hill-Climbing for improvement of the quality of

population members while both archives were used for choosing the parents in

the recombination phase. This algorithm was compared with the SPEA on

Zitzler and Thiele’s benchmark problems. Both algorithms (SPEA and

Memetic-PAES) showed approximately the same performance on the small-

sized datasets. However, as the size of the problems increased the difference in

the results (in favour of Memetic-PAES) became more apparent. The authors

noted that it was too early to make any conclusions because of the difference

between these algorithms. Moreover, there was no information about the

computational cost of the Memetic-PAES algorithm, which is expected to be

very high.

Time-Predefined and Trajectory-Based Search Multiobjective Review

 69

3.4 The Evaluation of Trade-off Surfaces

With the number of different Pareto-based multiobjective techniques growing,

the question of measuring and comparing the quality of their results becomes

crucial. It is intuitively apparent that the closer the trade-off surface is to the

true Pareto-front then the better it is. In addition to the closeness, the quality of

solutions is affected by the number of solutions in the set, the uniformity of

their distribution and the wideness of the covered sector in the criteria space.

An ideal quality measure should take into account all these factors. However, it

would be very difficult to determine such a measure. None of the measures

proposed in the literature are comprehensive enough to consider all of the

factors but they each focus on certain aspects of solution quality.

The outperformance relation is defined between two non-dominated

sets. One set outperforms the other when all of its solutions “cover” (dominate

or are equal to) solutions from the other set. Hansen and Jaszkiewicz in [HJ98]

categorised the outperformance relation into the following classifications:

• Weak outperformance occurs when both sets are almost coinciding and the

better set overlaps the worse one only by non-dominated points.

• Strong outperformance includes the properties of the weak one but at least

one point from the better set should dominate the point(s) from the worse

set.

• Complete outperformance arises when all solutions from the worse set are

dominated by solutions from the better set.

Time-Predefined and Trajectory-Based Search Multiobjective Review

 70

In situations where a distinct outperformance cannot be detected the

numerical measures of the quality of solutions (so-called metrics) are used.

Different variants of metrics were examined in [KC02] where the authors

considered that some of them could also provide the quantitative gauge for the

outperformance relation. A number of simple metrics, e.g. “error ratio” - the

proportion of points which do not belong to true Pareto-front, “generational

distance” - average distance to the nearest point in true Pareto-front, etc. were

discussed in [VV99]. All these metrics compare the given set with the true

Pareto-front, and therefore, their application is limited by the problems where

the true Pareto-front is known in advance.

Two other metrics were proposed in [Zit99]: the so-called C-metric and

S-metric. The C-metric defines a degree of dominance of one set by another as

the ratio of the number of covered solutions to the size of the whole set. This

metric is asymmetric. This may cause the so-called “cross-cycling” effect. For

example, if we have three non-dominated sets then it may be the case that the

first set has the better C-metric value than the second one, the second better

than the third, and (surprisingly) the third better than the first.

The S-metric is calculated as a hypervolume of a region enclosed by the

trade-off surface and a chosen reference point. Such a region in

two-dimensional space, where the hypervolume degrades into an area, is

illustrated in Figure 3.6. Two trade-off surfaces are shown: the first contains

grey points and the second contains black ones. The reference point is marked

with R. The first region (S1) is bounded by a dotted line and the second region

Time-Predefined and Trajectory-Based Search Multiobjective Review

 71

(S2) by the solid one. The region, enclosed by the first surface is larger than the

second one (S1>S2), which indicates the higher quality of the set of grey points

over the black ones.

Figure 3.6: S-metric for comparison of non-dominated sets

Even though the S-metric can be computationally expensive in the

high-dimensional spaces, it is free from the drawbacks of the C-metric. Its only

weakness is the requirement for a reference point and it is not clear how to

define it.

Two D-metrics were introduced in [CJ98] – D1 and D2. Both of them

required the definition of a reference set of solutions. They calculated the

distances between each solution in the evaluated set to the nearest solution in

the reference set. The D1-metric calculated the average distance while the

D2-metric estimated the maximum one. The authors also suggested the use of

the ratio D2/D1 as a measure of uniformity of distribution of solutions in the

evaluated set. In their experiments the authors employed the true Pareto-front

S1 x2

x1
0

R

S2

Time-Predefined and Trajectory-Based Search Multiobjective Review

 72

as a reference set. However, there were no recommendations for how to

generate the reference set in the situations where the true Pareto-front is

unknown.

The group of R-metrics was proposed in [HJ98]. This group comprises

probably the most advanced techniques for comparison of non-dominated sets.

They are based on the probability of the satisfaction of the decision maker

preferences by the evaluated set. The decision maker’s preferences are

modelled by so-called “utility functions” and the probability distribution of the

set of such functions is calculated. Some variants of the R-metric use the

reference set in the same way as D-metrics do. However, the definition of the

proper set of utility functions requires certain knowledge about the decision

maker’s preferences.

3.5 Multiobjective Exam Timetabling

Traditionally, exam timetabling problems are solved by A Priori approaches.

The most popular method is the weighted sum. This method was applied within

Simulated Annealing [TD96a], [TD98], Tabu Search [BN96], Genetic

Algorithms [CRF94], Memetic Algorithms [BN99], etc. The Lexicographic

approach has been applied to the examination timetabling by several authors:

[LC91], [TD93], [PS02].

There are very few publications about the performance of A Posteriori

methods with exam timetabling problems. Possibly, the only study of the

application of a mutation-only MOGA-like ranking algorithm to examination

timetabling has been presented by Paquete and Fonseca in [PF01]. Although

Time-Predefined and Trajectory-Based Search Multiobjective Review

 73

the numerical values of the results were not presented, the authors mentioned

that they compared their technique with an aggregation approach on a real

world exam timetabling problem. They concluded that the Pareto-based

method produced a better cover of the trade-off surface while the aggregation

method more effectively minimised the violation of soft constraints.

In addition several authors (e.g. [CP01], [TA00]) have applied A

Posteriori algorithms to the class/teacher timetabling. This is class of problems,

which has some similarities (but also distinct differences) with examination

timetabling. However, these publications do not include a comparison of the

performance of the presented algorithms with other techniques.

3.6 Summary

In this chapter the current state-of-the-art in multiobjective optimisation is

described and discussed. The conventional hardship of multiobjective

optimisation is the estimation of the quality of solutions. Formally, all non-

dominated solutions can be considered to be optimal. However, only one

solution from the non-dominated set can be selected as a final result. To select

it, the decision maker has to express his/her preferences.

Two main approaches were discussed in this chapter: A Priori and

A Posteriori. In A Priori methods the decision maker specifies his/her

preferences regarding the solution before running the algorithm. The most

popular method involves the aggregation of the problem's objectives into a

single (cost) function in order to apply some single-objective metaheuristic.

Usually the cost is calculated as the weighted sum of objectives or the distance

Time-Predefined and Trajectory-Based Search Multiobjective Review

 74

to some specified goal. In the Lexicographic approach, criteria are divided into

groups which take into consideration the importance of objectives and the

search is conducted sequentially starting from the group with the objectives of

highest importance. The Compromise Programming technique operates with

different distance measures which aggregate the objective values.

Methods belonging to the A Posteriori group aim to produce a set of

non-dominated solutions, among which the decision maker can select the

preferable one. This group mainly comprises different extensions of Genetic

Algorithms. However, several examples of the adaptation of non-evolutionary

approaches such as Simulated Annealing, Tabu Search and Hill-Climbing as

well as their hybridisation are known from literature.

Different metrics for the comparison of non-dominated sets were

discussed. The conclusion is that there is no unique metric which will take into

consideration all aspects of the quality of solutions, the number of produced

solutions, the uniformity of their distribution and the coverage of the criteria

space. It appears that the problem of selecting the method for multiobjective

optimisation, which produces solutions of highest quality with respect to

different metrics is a multiobjective problem.

It may be concluded that little research work has been carried out on

multiobjective university timetabling, especially on exam timetabling. These

problems are multiobjective by their nature and this observation has served as

the motivation for the research work that is described in this thesis.

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 75

Chapter 4.

4. Exam Timetabling Specification and Data

This chapter provides a formal mathematical statement of the university

examination timetabling problem. The general problem specification is given

together with additional constraints, which are widely used in real-world exam

timetabling. A number of real-world university examination problems have

been collected and used as benchmark problems within the timetabling

research community. In the presented research they are used for experiments,

therefore their description is included at the end of this chapter.

4.1 A Formalisation of Exam Timetabling Problems

Different types of examination timetabling problem can be specified depending

on the chosen set of constraints. A clash-free requirement (no student can sit

two exams at the same time) is the most common hard constraint for these

problems. The difference in problem statements is caused by a variety of other

constraints, which leads to a corresponding difference in objective functions,

which provide numerical measures of violation of these constraints. Several

variants of exam timetabling problems are studied in the course of this thesis in

order to produce results which are comparable with published ones and

therefore, objective functions are defined as was suggested in different

publications. The formalisation of these problems is given in the next sections.

4.1.1 A Specification of the Basic Problem

• The common input data for examination timetabling is given as:

− N is the number of exams;

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 76

− M is the number of students;

− P is the given number of timeslots;

− The conflict matrix C=(cij)N×N where each element (denoted by cij where

 i , j ∈ {1,…,N}) is the number of students that have to take both exams i

and j. This is a symmetrical matrix of size N, where diagonal elements cii

equal the number of students who have taken exam i.

• The solution of the problem is represented as a vector T=(ti)N , where ti

specifies the assigned timeslot for exam i (i ∈ {1,…,N}). Each timeslot can be

thought of as a non-negative integer (1 ≤ ti ≤ P).

The general variant of the exam timetabling problem can be formulated as

follows:

Minimise
M

ttproxc
N

i

N

ij
jiij∑ ∑

−

= +=
⋅

1

1 1

),(

,

where

 ≤−≤=

−−

otherwise

ttifttprox ji

tt

ji

ji

0

512),(
5

,

(4.1)

such that

0),(
1

1 1

=⋅∑ ∑
−

= +=

N

i

N

ij
jiij ttclashc where

 =

=
otherwise

ttif
ttclash ji

ji 0

1
),(. (4.2)

Equation (4.2) presents the clash-free requirement (no student can sit

two exams at the same time) which is considered as a hard constraint. A

feasible solution is one which completely satisfies all the hard constraints.

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 77

The statement in (4.1) represents proximity between exams, which is

the most conventional soft constraint suggested in [CLL86]. If a student has

two consecutive exams then a penalty value equal to 16 is assigned. Two

exams with one empty period between them will be assigned a penalty value of

8. Two empty periods correspond to a penalty of 4 and so on. In order to have a

relative measure, this sum is divided by the total number of students. The given

soft constraint is taken into account in the single-objective version of the exam

timetabling problem, which was used in the experiments presented in Sections

5.4, 5.5, 5.6.1, 5.7.1 and 5.7.2.

The proposed formalisation of exam timetabling problem can be illustrated by

a small numerical example. Let us consider N=12, M=70 and P=6. An example

of correspondent conflict matrix C is given in Table 4.1.

Table 4.1: An example of conflict matrix C

i \ j 1 2 3 4 5 6 7 8 9 10 11 12

1 18 5 0 6 0 5 11 0 8 4 0 5

2 5 9 8 0 3 0 8 2 0 0 8 0

3 0 8 17 2 0 12 5 0 0 8 1 0

4 6 0 2 12 0 7 1 7 9 11 2 8

5 0 3 0 0 22 0 0 7 0 7 4 15

6 5 0 12 7 0 15 4 1 5 1 0 0

7 11 8 5 1 0 4 14 0 0 3 8 4

8 0 2 0 7 7 1 0 9 2 0 2 0

9 8 0 0 9 0 5 0 2 14 0 6 8

10 4 0 8 11 7 1 3 0 0 12 4 0

11 0 8 1 2 4 0 8 2 6 4 12 0

12 5 0 0 8 15 0 4 0 8 0 0 21

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 78

One of feasible solutions to this example problem could be defined by vector

T=(3,6,1,6,5,4,5,3,2,2,4,1). The illustrative representation of this solution is

given in Table 4.2 where exams are sorted accordingly to assigned timeslots.

Table 4.2: Allocation of exams to timeslots

Timeslot 1 2 3 4 5 6

Exams 3,12 9,10 1,8 6,11 5,7 2,4

The remaining part of this section demonstrates the calculation of the

proximity cost to this solution using formula (4.1). Here each pair of exams

(i,j) gains its own proximity coefficient prox(ti,tj) depending on assigned

timeslots. All these coefficients are collected in a form of a matrix in Table 4.3.

Note that formula (4.1) considers only those pairs of exams where j>i,

therefore the values in the left-bottom triangle of the matrix are not defined.

Table 4.3: The matrix of proximity coefficients prox(ti,tj)

i \ j 1 2 3 4 5 6 7 8 9 10 11 12

1 - 4 8 4 8 16 8 0 16 16 16 8

2 - - 1 0 16 8 16 4 2 2 4 1

3 - - - 1 2 4 2 8 16 16 4 0

4 - - - - 16 8 16 4 2 2 8 1

5 - - - - - 16 0 8 4 4 16 2

6 - - - - - - 16 16 8 8 0 4

7 - - - - - - - 8 4 4 16 2

8 - - - - - - - - 16 16 16 8

9 - - - - - - - - - 0 8 16

10 - - - - - - - - - - 8 16

11 - - - - - - - - - - - 4

12 - - - - - - - - - - - -

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 79

Formula (4.1) contains the sum of multiplications of elements cij by

corresponding coefficients prox(ti,tj) where (i ∈ {1,…,N-1}, j ∈ {i+1,…,N}).

The calculation of this sum for the given example is depicted in Figure 4.1. For

the simplicity of representation, the intermediate sum of each row is shown

separately.

Figure 4.1: An example of calculation of the sum in formula (4.1)

Following to formula (4.1) the resulting sum should be divided by the total

number of students M. Thus, dividing 1750 by 70 one can obtain the overall

penalty equal to 25.

4.1.2 A Specification of Additional Constraints

The cost function given in (4.1) is a general measure of the quality of solutions

of exam timetabling problems. However, in order to take into consideration the

different requirements of the participants in a real-world university

5*4+0*8+6*4+0*8+5*16+11*8+0*0+8*16+4*16+0*16+5*8=444

+8*1+0*0+3*16+0*8+8*16+2*4+0*2+0*2+8*4+0*1=224

+2*1+0*2+12*4+5*2+0*8+0*16+8*16+1*4+0*0=192

+0*16+7*8+1*16+7*4+9*2+11*2+2*8+8*1=164

+0*16+0*0+7*8+0*4+7*4+4*16+15*2=178

+4*16+1*16+5*8+1*8+0*0+0*4=128

+0*8+0*4+3*4+8*16+4*2=148

+2*16+0*16+2*16+0*8=64

+0*0+6*8+8*16=176

+4*8+0*16=32

+0*4=0

Total sum=1750

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 80

examination timetabling process, a number of additional constraints have to be

taken into account instead of (or together with) the described one. In the course

of this thesis nine constraints are considered which are split into three groups

related to room capacities, closeness of exams, and the time and order of

exams. The three groups of constraints are presented below.

• The room capacities constraint penalises the number of students which

exceed the available room capacities. It may, of course, be the case that the

same student contributes to several capacity violations. This constraint assumes

the specification of the number of seats S that are available for every timeslot.

Thus the total number of students in any period which exceeds S is expressed

by formula (4.3).

()∑
=

⋅−
P

p
p pexcSS

1

)(where

 >

=
otherwise

SSif
pexc p

0

1
)(, (4.3)

where Sp is the number of students taking exams in period p (which is of course

a particular timeslot). This can be calculated by the next formula:

∑
=

⋅=
N

i
iiip ptperCS

1

),(where

 =

=
otherwise

ptif
ptper i

i 0

1
),(. (4.4)

Let us consider that in the numerical example described in Section 4.1.1 the

number of seats per timeslot S is equal to 35. Following to the allocation of

exams to timeslots given in Table 4.2, one can calculate the number of students

in each timeslot as illustrated in Table 4.4.

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 81

Table 4.4: Number of students in timeslots

Timeslot 1 2 3 4 5 6

Number of
Students

17+21=38 14+12=26 18+9=27 15+12=27 22+14=36 9+12=21

This table shows that in two timeslots (1 and 5) the number of students is more

than S. Thus, the total penalty for the violation of this constraint is calculated

as: 38-35+36-35 and is equal to 4.

• Closeness of exams constraints penalise the number of conflicts where

exams are not adequately spread out in time so that students do not have

enough free time between two exams. These constraints require the definition

of the vector D=(dm)P. Every element dm (where m ∈ {1,…,P}) specifies the

number (for every timeslot p) which represents the day in an examination

session. In further experiments the examination session is considered to start

from Monday having 3 exams every day, except Saturdays (only one timeslot)

and Sundays (no exams). Thus, the first three timeslots correspond to day “1”

(Monday of the 1st week), the 4th,5th and 6th timeslots correspond to day “2”

(Tuesday of the 1st week), etc. Day “6” appears only in one timeslot (Saturday

of the 1st week), after which the second week starts. This list continues until all

the given timeslots are represented. Thus the distribution of days can be

expressed in the following way:

DP = (1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,8,8,8,9,9,9,10,10,10,11,11,…). (4.5)

Note, that Sundays (for example: day “7”) have a number even though it is not

actually used. This is done in order to aid the calculation of adjacent days and

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 82

overnight conflicts (formulae (4.8) and (4.9)). These constraints are defined by

formulae (4.6)-(4.9):

− the number of conflicts where students have exams in adjacent periods on

the same day can be found by taking

∑ ∑
−

= +=
⋅

1

1 1

),(
N

i

N

ij
jiij ttadjsc ,

where
() ()

 =∧=−=

otherwise

ddttif
ttadjs ji ttji

ji
0

11
),(,

(4.6)

The calculation of this number could be illustrated in the same way as it was

done in Section 4.1.1 for the proximity cost. When assuming that in the given

example the distribution of days is represented by the vector Dp=(1,1,1,2,2,2),

then all pairs of exams gain correspondent coefficients adjs(ti,tj) shown in

Table 4.5.

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

Table 4.5: The matrix of coefficients adjs (ti,tj)

i \ j 1 2 3 4 5 6 7 8 9 10 11 12

1 - 0 0 0 0 0 0 0 1 1 0 0

2 - - 0 0 1 0 1 0 0 0 0 0

3 - - - 0 0 0 0 0 1 1 0 0

4 - - - - 1 0 1 0 0 0 0 0

5 - - - - - 1 0 0 0 0 1 0

6 - - - - - - 1 1 0 0 0 0

7 - - - - - - - 0 0 0 1 0

8 - - - - - - - - 1 1 0 0

9 - - - - - - - - - 0 0 1

10 - - - - - - - - - - 0 1

11 - - - - - - - - - - - 0

12 - - - - - - - - - - - -

In contrast to the proximity coefficients all numbers presented in Table 4.5 are

equal to 1 or 0. This simplifies the calculation of the sum in formula (4.6).

Therefore, Figure 4.2 shows only two lines of this computation (which can be

continued by the interested reader).

Figure 4.2

The final sum
5*0+0*0+6*0+0*0+5*0+11*0+0*0+8*1+4*1+0*0+5*0=12

+8*0+0*0+3*1+0*0+8*1+2*0+0*0+0*0+8*0+0*0=11

+. . .

Total sum=58
83

: An example of calculation of the number of adjacent conflicts

(equal to 58) is the sought number of adjacent conflicts.

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 84

− the number of conflicts where students have two or more exams in the

same day is expressed as follows

∑ ∑
−

= +=
⋅

1

1 1

),(
N

i

N

ij
jiij ttsdayc where

()

 =

=
otherwise

ddif
ttsday ji tt

ji 0

1
),(, (4.7)

The way of calculation of this number is analogous to the described above

calculation of the number of adjacent conflicts. The difference is caused only

by coefficients sday(ti,tj), which have different values than adjs(ti,tj). These

values can be also represented in the form of a matrix, which two lines are

shown in Table 4.6.

Table 4.6: The matrix of coefficients sday (ti,tj)

i \ j 1 2 3 4 5 6 7 8 9 10 11 12

1 - 0 1 0 0 0 0 1 1 1 0 1

2 - - 0 1 1 1 1 0 0 0 1 0

… … … … … … … … … … … … …

The calculation of the sum in formula (4.7) is illustrated in Figure 4.3 in the

same way as in the previous example. Here the number of the same days

conflicts is equal to 80.

Figure 4.3: An example of calculation of the number of same day conflicts

− the number of conflicts where students have exams in adjacent days can be

calculated by

5*0+0*1+6*0+0*0+5*0+11*0+0*1+8*1+4*1+0*0+5*1=17

+8*0+0*1+3*1+0*1+8*1+2*0+0*0+0*0+8*1+0*0=19

+. . .

Total sum=80

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

∑ ∑
−

= +=
⋅

1

1 1

),(
N

i

N

ij
jiij ttadjdc where

()

 =−=

otherwise

ddif
ttadjd ji tt

ji
0

11
),(, (4.8)

The calculation of this number is illustrated in the same way as previous ones.

Two lines of a new matrix of coefficients adjd(ti,tj) for the used here example

problem are given in Table 4.7.

Table 4.7: The matrix of coefficients adjd (ti,tj)

i \ j 1 2 3 4 5 6 7 8 9 10 11 12

1 - 1 0 1 1 1 1 0 0 0 1 0

2 - - 1 0 0 0 0 1 1 1 0 1

… … … … … … … … … … … … …

Using these coefficients one can calculate the number of adjacent days

conflicts as shown in Figure 4.4. Here this value is equal to 127.

Figure 4.4:

− the num

periods (adja

on Monday”

wher
5*1+0*0+6*1+0*1+5*1+11*1+0*0+8*0+4*0+0*1+5*0=27

+8*1+0*0+3*0+0*0+8*0+2*1+0*1+0*1+8*0+0*1=10

+. . .

Total sum=127
85

 An example of calculation of the number of adjacent days conflicts

ber of conflicts where students have exams in overnight adjacent

cent periods at adjacent days except the pair: “Saturday - first slot

) is expressed in

∑ ∑
−

= +=
⋅

1

1 1

),(
N

i

N

ij
jiij ttovntc ,

e
() ()

 =−∧=−=

otherwise

ddttif
ttovnt ji ttji

ji
0

111
),(.

(4.9)

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 86

The way of calculation of this number is similar to other constraints from this

group (described above). The correspondent matrix of coefficients ovnt(ti,tj) is

presented by two lines in Table 4.8 and the example of calculation of the total

sum is shown in Figure 4.5. In the presented example, this sum is equal to 8.

Table 4.8: The matrix of coefficients ovnt (ti,tj)

i \ j 1 2 3 4 5 6 7 8 9 10 11 12

1 - 0 0 0 0 1 0 0 0 0 1 0

2 - - 0 0 0 0 0 0 0 0 0 0

… … … … … … … … … … … … …

Figure 4.5: An example of calculation of the number of overnight conflicts

• Time and order of exams constraints penalise the number of times when

students are affected by inappropriate allocations of (including order of)

exams. As was the case with room capacities above, one particular student may

be affected at several different points in one timetable:

− the number of times that a student has an exam that is not scheduled in a

time period of the proper duration. The specification of this constraint is given

by two vectors. The vector R=(rk)N, whose elements rk indicate the duration of

exam k (k ∈ {1,…,N}) and the vector Q=(qm)P where qm is the duration of

timeslot m (m ∈ {1,…,P}). The duration in both vectors is expressed in hours.

5*0+0*0+6*0+0*0+5*1+11*0+0*0+8*0+4*0+0*1+5*0=5

+8*0+0*0+3*0+0*0+8*0+2*0+0*0+0*0+8*0+0*0=0

+. . .

Total sum=8

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 87

Expression (4.10) shows the number of students, who contribute to the

violation of this constraint

∑
=

⋅
N

k
kk kdurC

1

)(where

 >

=
otherwise

qrif
kdur ktk

0

1
)(. (4.10)

In the case of the Nott-94 problem (see Section 4.3) exams last no longer than

3 hours (1 ≤ rk ≤ 3). On the other hand, the duration of timeslots is distributed

in the following way: the first (AM) timeslot of each day lasts 3 hours, while

the duration of the second and third ones is 2 hours. As the exams of duration

of 1 or 2 hours can be scheduled anywhere, the problem of fitting an exam into

a timeslot of proper duration can be simplified into the one where 3-hour

exams are required to be scheduled into AM timeslots.

For the used example problem, one can define these two vectors as follows:

R=(1,2,2,2,3,3,2,1,3,2,3,1) and Q=(3,2,2,3,2,2). Due to such requirements

exams 5 and 9 are scheduled in wrong periods, which generates a penalty equal

to 36.

− the number of times that a student has an exam that is not scheduled in the

preassigned time period. This constraint is defined by the matrix A = [akp]N×P

where each element (denoted by akp where k ∈ {1,…,N} and p ∈ {1,…,P}) is

given in the following way

=
otherwise,0

 period in time scheduled becannot exam if,1 pk
akp . (4.11)

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 88

Correspondingly, the number of students who sit exams scheduled with a

violation of the “preassignment” constraint can be found by the following

expression

∑
=

⋅
N

k
ktkk k

AC
1

, (4.12)

The definition of preassignment constraint could be illustrated (regarding

the used example) by a matrix presented in Table 4.9.

Table 4.9: An example of preassignment matrix A

p\k 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 0 0 0 0 0 0 0 1 0

2 0 1 0 1 0 0 0 0 0 0 0 0

3 0 1 0 1 1 0 0 0 0 0 1 0

4 0 0 0 0 1 0 0 1 0 0 1 0

5 0 0 0 0 0 0 1 1 0 0 0 0

6 0 0 0 0 0 0 1 1 0 0 0 0

In this example exams 7 and 11 are scheduled with violation of this constraint

(the total penalty is equal to 26).

− the number of times that a student has an exam that is not scheduled

before/after another specified exam. To consider this constraint the number of

requirements U is given where two exams should be scheduled in a given

sequence. The necessary data is presented by the matrix

 G = [gub]U×2 where u ∈ {1,…,U} and b ∈ {1,2} and each pair of elements gu1

and gu2 specifies two exams where the first one has to be scheduled before the

second one. It is considered that improper scheduling of any pair of exams

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 89

affects the students from both given exams. Their total number can be

calculated by the following expression

()∑
=

⋅+
U

k
gggg kbefCC

kkkk
1

)(
2211

 where

 ≥

=
otherwise

ttif
kbef kk gg

0

1
)(21 , (4.13)

While continuing the illustration by the same example problem, let us

define U=3 and the matrix G as given in Table 4.10

Table 4.10: An example of before/after matrix G

b\u 1 2 3

1 9 8 4

2 7 2 6

Here exams 4 and 6 are scheduled in wrong order and therefore penalty = 27.

− the number of times that a student has an exam that is not scheduled

immediately before/after another specified exam. The description of this

constraint is analogous to the previous one. The number of pairs of exams is

given as V and the matrix H = [hvb]V×2 contains corresponding pairs hv1 and hv2

where the first exam should be scheduled immediately before the second one

 (v ∈ {1,…,V}). The number of improper scheduled pairs is expressed in

()∑
=

⋅+
U

k
hhhh kimbCC

kkkk
1

)(
2211

,

where
() ()

 ≠∨≠−

=
otherwise

ddttif
kimb khkhkk tthh

0

11
)(2112 .

(4.14)

The example of calculation of this constraint is similar to the previous one. It is

assumed that V=2 and matrix H is defined by Table 4.11.

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 90

Table 4.11: An example of immediately before/after matrix H

b\v 1 2

1 1 3

2 5 10

In this example the wrongly ordered exams are 1 and 5 and correspondent

penalty is equal to 30.

4.2 A Multiobjective Statement of Exam Timetabling
Problem

Soft constraints usually have very different importance for different timetable

officers (decision makers). They are generally incompatible and often

conflicting with each other. Generally exam timetabling problems can be

considered to be multiobjective problems. This study investigates both single

and multiobjective versions of exam timetabling problem. In the multiobjective

variant a number of objectives (criteria) can be defined to evaluate the quality

of timetables from different points of view. Each objective expresses a measure

of the violation of the corresponding constraint. The following notation is

introduced:

− K is the number of objectives.

− fk is the value of criterion Xk (objective function), where k∈{1,...,K}.

The multiobjective timetabling problem can be stated analytically in the

following way. Additionally to the common input data presented in

Section 4.1.1 the vector W = (w1,…,wk,…,wK) is specified where wk ,

k∈{1,...,K} denotes the weight of criterion Xk. The task is to determine the

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 91

vector T=(ti)N , which makes all the elements of the vector

 WF = (w1 f1(T),..., wk fk(T),..., wK fK(T)) as small as possible, subject to the hard

constraint expressed in formula (4.2).

In this thesis two versions of the multiobjective exam timetabling

problem are investigated, which are different with respect to the sets of hard

and soft constraints. In Sections 6.1 and 7.3.3 experiments are conducted with

nine objectives {X1, …, X9} which express measures of the violation of

constraints given in Section 4.1.2. The description of the objectives are given

in Table 4.12.

Table 4.12: A description of objectives

Description Objective

The number of students which exceed the available room
capacities

X1

The number of conflicts where students have exams in adjacent
periods on the same day

X2

The number of conflicts where students have two or more exams
in the same day

X3

The number of conflicts where students have exams in adjacent
days

X4

The number of conflicts where students have exams in overnight
adjacent periods

X5

The number of times that a student has an exam that is not
scheduled in a time period of the proper duration

X6

The number of times that a student has an exam that is not
scheduled in the preassigned time period

X7

The number of times that a student has an exam that is not
scheduled before/after another specified exam

X8

The number of times that a student has an exam that is not
scheduled immediately before/after another specified exam

X9

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 92

Sections 5.6.2, 6.2 and 7.3-7.5 are devoted to a bi-objective exam

timetabling problem (formulated in the same way as in [BN99]). Here the

quality of solutions is evaluated by the values of criteria X2 and X5, which

count the number of conflicts where students have exams in adjacent periods

on the same day and the number of conflicts where students have exams in

overnight periods. The “room capacities” constraint is regarded as a hard one.

4.3 Benchmark Exam Timetabling Datasets

The examination timetabling research community has established a publically

available set of examination timetabling data and supplementary instructions

(for example: the way of calculating cost functions, etc.). All experiments

discussed in this thesis were carried out with datasets, taken from the following

open sources:

1. Michael Carter’s collection of examination timetabling data, which can be

downloaded from archive at: ftp://ftp.mie.utoronto.ca/pub/carter/testprob,

comprising of 13 sets of examination data, which took place at different

universities during 1983-1993. Their parameters are presented in Table 4.13.

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 93

Table 4.13: The parameters of Carter’s collection of examination datasets

Data set Institution Exams Students Enrolments

CAR-F-92 Carleton University, Ottava 543 18 419 55 552

CAR-S-91 Carleton University, Ottava 682 16 925 56 877

EAR-F-83 Earl Haig Collegiate Institute,
Toronto

189 1 125 8 108

HEC-S-92 Ecole des Hautes Etudes
Commercials, Montreal

80 2 823 10 632

KFU-S-93 King Fahd University, Dharan 461 5 349 25 118

LSE-F-91 London School of Economics 381 2 726 10 919

PUR-S-93 Purdue University, Indiana 2419 30 032 120 690

RYE-S-93 Ryeson University, Toronto 481 11 483 45 052

STA-F-83 St Andrew’s Junior High
School, Toronto

138 611 5 751

TRE-S-92 Trent University,
Peterborough, Ontario

261 4 360 14 901

UTA-S-92 Faculty of Arts and Sciences,
University of Toronto

638 21 267 58 981

UTE-S-92 Faculty of Engineering,
University of Toronto

184 2 750 11 796

YOR-F-83 York Mills Collegiate
Institute, Toronto

180 941 6 029

2. The disposition of exams and students at Nottingham University in 1994

(Nott-94), which is available from: ftp://ftp.cs.nott.ac.uk/ttp/Data/Nott94-1/.

This dataset includes 800 exams and 7 896 students, which compose 33 997

“student-exam” pairs (enrolments).

The investigation of the 9-objective case was carried on the Nott-94

problem. It is the only available benchmark problem, where time and order

Time-Predefined and Trajectory-Based Search Timetabling Specification and Data

 94

constraints data are given. This data is useful for the calculation of objective

functions f6...f9. The characteristics of the data are given in Table 4.14.

Table 4.14: The details of constraints for Nott-94 problem

Characteristics of the examination data Value

Number of exams which are 3 hours long (require AM timeslot) 46

Number of exams which require certain timeslot(s) 9

Number of pairs of exams which have to be scheduled before/after 2

Number of pairs of exams which have to be scheduled immediately
before/after

1

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 95

Chapter 5.

5. A Time Predefined Approach to
Examination Timetabling

5.1 The Role of Computational Time in the Process of
Solving Timetabling Problems

The “trade-off” between the quality of solution and the search time in

examination timetabling has been discussed in several papers. In [TD96a] the

authors demonstrated that a longer search produced better results. The “tabu

relaxation” method presented in [WX01] is also a certain way of prolonging

the search process in an attempt to improve the quality of the overall solution.

This proposition seems to be logical: the longer search allows the

exploration of a greater part of the search space (using the neighbourhood

defined in Section 5.3.2) and, thus, the probability of reaching a good solution

is increased. The main challenge is to ensure that the approach does not

converge too quickly (which hardly yields a good solution) and that all the

allocated time is used to intelligently explore the search space.

The prolonging of the search process is also motivated by the progress

of hardware facilities. Let us suppose that the real processing time (Tp) is

calculated by the formula: Tp = Tmov*Nmov (where Tmov is the time required for

one move (iteration) and Nmov is the number of moves). The first factor (Tmov)

depends on the size of a particular problem as well as the particular

environment in which the algorithm is run. Factors that could affect time

include computer hardware, the operating system, the compiler and

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 96

programming style. A detailed investigation of these factors exceeds the scope

of this study. However, the increase in the power of computer hardware always

leads to a reduction in Tmov . This is due not only to the processor speed, but

also to an increase in the amount of RAM (avoids relatively slow dynamic

reallocations of memory), to widening the set of Assembler operators for new

processors, etc. Thus, while using more powerful computing facilities, the

increasing of Nmov can be compensated by reducing Tmov and therefore the

prolongation of the search time can be less tangible. Thus managing the search

time promotes the optimal utilisation of computational resources.

In different real situations when computational time and the quality of

the solution are dependent upon each other, a user can attempt to find some

preferable balance between their values. In some cases the user needs an

“average quality” result very quickly, but in other cases the user may want to

spend more time to improve the solution. A certain estimation of the

importance of computing time can be carried out in the context of attendant

processes. For example, let us say that an examination timetable has to be

compiled twice a year and preparation of input data and utilising the results

often requires several days. In such an environment it is obvious that a

computing period of 3 seconds or 3 minutes will make insignificant difference

to the time taken by the timetabling process as a whole. The difference

becomes important when the computing time reaches 3 hours or 3 days say, as

it begins to significantly increase the time taken by the whole process. A

computing time of, say, 3 weeks would mostly be regarded as unacceptable.

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 97

If computing time becomes a significant part of the time taken for the

whole process of developing a timetable it should obviously be taken into

account by the user when planning the complete administrative process. Thus it

is safe to assume that for the purpose of improving the result a reasonable

prolongation of computing time can be acceptable and indeed desirable to a

user who has catered for a significant amount of time in the overall

administrative plan. Of course, if the algorithm requires several hours, it is

fairly painless for the user to run it overnight or over a weekend in order to

obtain the result at the beginning of the next working day.

In [Burk03b] the author together with colleagues presented a

mechanism that allows a user to define a certain period of time in which the

algorithm should run and try to find a high quality solution. This mechanism

should ensure that the algorithm searches in an intelligent manner for the

specified amount of time. We do not want the algorithm to converge on a

solution prematurely. We want the algorithm to use all of its specified time in

trying to improve the solution. The overall motivation behind the techniques

described in this study is that we want to be able to employ as much (or as

little) computing resource as the user may desire to find the level of solution

quality that the user is happy to pay for (in terms of computational time).

5.2 Time-Predefined Algorithms

5.2.1 The Time-Predefined Simulated Annealing

In order to run a Simulated Annealing algorithm for a given number of steps

the user should precisely determine the required parameters. An approximate

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 98

indication of such parameters is not sufficient. Even a small deviation of

parameter values can cause a dramatic deterioration in time spent. Also,

experimental adjustment of parameter values by manual tests is not practical

given the (often) high computational expense of a single run. Although

different parameters have some influence on search time, they may not be

suitable for its direct regulation or calculation. What is required is an additional

time-predefinition mechanism, which guarantees reaching convergence in the

given time.

To make Simulated Annealing run for a definite number of moves, the

basic geometric cooling algorithm [Ree96] is used, which stops when reaching

a certain temperature (which is called Tf). The fact that Tf can be obtained from

the initial temperature T0 by multiplying it by α (where α is a value yet to be

determined) during a desired number of steps Nmov can be expressed by the

following formula.

movN
f TT α⋅= 0 . (5.1)

From this equation the necessary value of α can be expressed as:

mov

f

N

TT

e
0lnln −

=α .
(5.2)

To enable slow cooling it is desirable to have a high value of Nmov, which

drives the exponent in formula (5.2) close to zero. Taking into account that an

exponential function can be expanded in a Maclaurin series:

�++++=
!3!21

1
32 xxx

ex
,

and when x→0 then ex→1+x , formula (5.2) can be transformed into the more

simple expression:

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 99

mov

f

N

TT)ln()ln(
1 0−

+=α . (5.3)

Using either rule (5.2) or (5.3) a value for the parameter α can be now

defined basing on the time interval that we want the Simulated Annealing to

run for. But this algorithm still requires the determination of both temperatures.

Their values are problem-specific and conventionally they are estimated while

using general empiric rules. For T0 Kirkpatrick suggested [Kir84] that its value

should provide some reasonable probability for acceptance of the average-sized

uphill move δav
+ at the beginning of the search. The value of the initial

temperature can be calculated by formula (5.4) which is derived from the main

condition of acceptance of Simulated Annealing algorithm:

)ln(0
0 P

T av
+−

=
δ

. (5.4)

In this formula, P0 denotes the chosen initial probability of acceptance. This

rule seems to be is also suitable for the given time-predefined version, even

though the definition of the best value of P0 requires several runs of the

algorithm.

The situation with the final temperature is less certain. The common

suggestion is to choose the value of Tf to be small enough to guarantee the

convergence of the algorithm. However, this does not normally take into

account a restraint on the processing time. For the time-predefined variant of

Simulated Annealing the determination of the proper value of Tf is more

complex. This is discussed further in Section 5.4.

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 100

5.2.2 The Great Deluge Algorithm

In 1993, Dueck [Due93] introduced a local search procedure called the Great

Deluge Algorithm. It was introduced as an alternative to Simulated Annealing.

This algorithm like Simulated Annealing may accept worse candidate solutions

(than the current one) during its run. The worse solution is accepted if its

fitness is less than or equal to some given upper limit B (in the paper by Dueck

it was called a “level”). Its value does not depend upon the current solution: at

the beginning the initial value of “level” B0 is equal to the initial cost function

and at every iteration it is lowered by the fixed decay rate ∆B whose value is

the only input parameter for this technique.

During the search, a particular value for B makes the corresponding part

of the search space infeasible and forces the current solution to “escape” into

the remaining feasible region. Thus the decreasing of B could be thought of as

a control process, which drives the search towards a desirable solution. If the

controlling process is relatively slow, the current “level” does not exceed the

current solution - it only prohibits the longest backward moves. Thus the

neighbourhood appears to be cut down from one side. The current solution has

the chance to produce several successful moves (in both directions) inside the

remaining neighbourhood and improve its value before the “level” comes too

close. While approaching the end of the search, the number of possible forward

moves in the neighbourhood (and correspondingly the chance of improving the

current solution) decreases. Here a large part of the neighbourhood is cut down

and the percentage of successful moves is thus reduced. This situation

progresses until the “level” eventually passes the current solution.

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

To manage this situation, in [Burk03b] it was proposed to integrate the

acceptance of all better moves into the basic Great Deluge algorithm

(hybridised it with Hill-Climbing). This extension helps the current solution to

jump into the unrestricted region (below the “level”). Also, at the end of the

search this algorithm has a chance to make a certain improvement of the

current solution independently from the current value of B until convergence

(when a further improvement becomes impossible). Thus the stopping

condition of this algorithm can be the same as for Hill-Climbing: no

improvement during a given number of steps. The pseudocode of the final

variant of the proposed extended Great Deluge Exam Timetabling algorithm is

given in Figure 5.1. In this algorithm the decay rate ∆B actually defines the

speed of the “level” reduction.

Set the initial solution s

Calculate initial cost function f(s)

Initial level B=f(s)

Specify input parameter ∆B = ?

While further improvement is impossible

 Define neighbourhood N(s)

 Randomly select the candidate solution s* ∈ N(s)

 Calculate f(s*)

 If f(s*) ≤ f(s)

 Then accept s*

 Else if f(s*) ≤ B

 Then accept s*

 Lower the level B = B –∆B
101

Figure 5.1: The extended Great Deluge algorithm

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 102

Further experiments with this technique (discussed in this thesis in Section 5.4)

revealed two main properties of the Great Deluge algorithm:

• The profile of the process is explicit. The search rigidly follows the

decreasing of the “level”. Fluctuations occur only at the beginning but later all

intermediate solutions lie close to the line fC = B0 - ∆B*Nmov (Nmov is the

desired number of moves, fc is the cost function).

• The point of convergence is quite recognisable. At this point the

improvement of a current solution abruptly stops and the consequent process

runs idle. The sharpness of this transition simplifies its detection and helps to

terminate the search procedure timely.

These properties of the algorithm provide an opportunity to fit the search

procedure into a certain time period. It should be taken into consideration that

during the search the “level” reaches the zero value in the number of moves

equal to B0 /∆B and the cost function of a current solution normally does not

exceed the current value of “level”. Thus, for problems where cost function is

always positive (such as exam timetabling problem) this algorithm guarantees

producing a result in a time, which does not exceed the value of TP calculated

by the following expression:

B

B
TNTT movmovmovP ∆

⋅=⋅= 0 , where Tmov is the time of one move. (5.5)

However, in most problems, the algorithm converges before TP expires. The

point of convergence is uncertain and problem-dependent. Therefore, if some

information about the range of possible results is available, it could be used for

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 103

reducing the number of idle steps. If the user estimates the cost function of a

future result as f(s’) (as the goal value which he/she intends to reach by

prolonging the computing time), then ∆B is calculated by formula (5.6).

movN

sfB
B

)'(0 −=∆ . (5.6)

Such approximation can be done in different ways. For example, if the

final cost function is completely unknown, a user can apply some quick

technique (e.g. Hill-Climbing) for the same problem. Its average-quality result

will give an idea of the range of possible solutions. Thus, in contrast to time-

predefined Simulated Annealing, the Great Deluge algorithm allows only an

approximate predefinition of the search time. However, practice shows that the

possible deviation between the expected solution and the real one is

insignificant (relative to the complete search interval). Therefore, the

inaccuracy in the predefinition of the operational time does not usually exceed

a few percent.

5.3 Experiments with Time-Predefined Techniques

Both of the described techniques were implemented with Microsoft Visual

C++ 6.0 and experiments were undertaken using a PC with an Athlon 750

MHz processor and Windows 98. The overall aims of these experiments were:

• To investigate the properties of the time-predefined techniques by

generating the “cost progress” diagrams (see Section 5.4) for the search

processes. These diagrams track the evolution of the cost function during the

search.

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 104

• To explore the manner in which the prolongation of the search can increase

the quality of solution by plotting the time-cost diagrams. This can be achieved

by several runs of the software with different predefined search times (number

of steps).

• To evaluate the quality of the results produced by the time-predefined

search in an acceptable time by comparison of its range with the outcomes of

other techniques applied to the same datasets and published in the literature.

5.3.1 An Initialisation Phase

This work is not devoted to the investigation of the initialisation phase of the

presented techniques. It could be the topic of a separate study. However, the

initialisation strategy could have a crucial influence on the performance of the

algorithms (as it can for other search methods), especially when the search

space is disconnected, which is typical for examination timetabling problems.

Therefore, the initial solution should be as good as possible in as little time as

possible and appeared independent of the applied heuristic. In further

experiments, for every problem 20 solutions were generated and the one with

the minimum cost function was chosen as the initial one.

These solutions were produced by Brelaz’s “saturation degree” graph

colouring algorithm [Bre79], which is probably the most powerful sequential

heuristic. It chooses the vertex (exam) with the least number of available

colours (timeslots) and assigns the timeslot for it. In order to have different

solutions with different runs, the assigned timeslot was chosen randomly

among the available ones. This stochastic feature allows us to capture different

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 105

areas of the search space. The given algorithm produces feasible solutions in a

few seconds, so we consider the initialisation time negligible and do not

include it in the estimated search time.

5.3.2 Neighbourhood Structure

Besides the initialisation strategies, this study also does not investigate the

possible effect of the utilisation of different neighbourhood structures. In order

to enable comparison of different approaches the same (most common) variant

of neighbourhood is used in all of them. Here all candidate solutions can be

produced from the current one by a simple replacement of one exam into a

different timeslot. An advantage of such a move is a very fast evaluation

procedure, i.e. at each iteration, the used algorithms calculate only the

difference in cost function caused by this move. This allows us to increase a

number of moves produced in the same processing time and hence (in terms of

this research) to improve the performance of algorithm. Otherwise, the

utilisation of more advanced neighbourhood (e.g. Kempe chains) can extend

the search space and produce better results in the same number of moves.

However, these moves can be more computationally expensive, which can

increase the search time of the algorithm. Obviously, a performance of time-

predefined algorithms with different neighbourhoods requires additional

detailed investigation.

5.4 Investigating the Properties of the Algorithms

In the first phase of the experiments the influence of algorithmic parameters

was investigated for both of the described algorithms. The algorithms were run

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 106

on a series of benchmark datasets while employing the cost function presented

by formula (4.1). In the experiments Nmov was determined as 3,000,000. On the

graphs presented in Figures 5.2-5.3 the y axis represents the current cost and

the x axis represents the number of current move together with the processing

time in seconds. When the figure is labelled with “TPSA” it is describing the

time-predefined Simulated Annealing approach and when it is labelled “GD” it

describes the Great Deluge algorithm.

The progress diagrams for two sample runs (with different cooling

schedules) of the time-predefined Simulated Annealing on the CAR-F-92

problem are shown in Figure 5.2. To define the values of initial and final

temperatures the following preliminary manipulations have been carried out.

The initial temperature was the same for both schedules and was

calculated by formula (5.4). The average uphill move δav
+ was defined while

recording 1000 uphill moves at the beginning of the search and calculating

their average value. The initial probability of acceptance of uphill moves P0

was defined experimentally by several runs of the algorithm. The experiments

showed that for the given problems a highly suitable value of P0 is around 0.9.

In this way the initial temperatures were calculated for all given problems. In

particular, for the CAR-F-92 problem, T0 was set up to be 0.06.

In order to calculate the final temperature, the Simulated Annealing

algorithm was run until no improvement was indicated during 10,000 moves

(0.3% of the number of moves of the whole procedure). The algorithm

converged at Tf ≈ 1.2*10-5. Based on this value the cooling rate of the first

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 107

sample run was calculated by formula (5.3). The evolution of the cost function

is shown as curve A in Figure 5.2.

Figure 5.2: Cost progress diagrams for time-predefined Simulated Annealing

on CAR-F-92 dataset

As it was proposed, the process A converges in approximately 3,000,000

moves. However, this diagram has a long “tail” - it spends almost half of its

processing time very close to the point of convergence. To investigate this

behaviour further and to look at its effect on the time-quality trade-off, a

second sample run of the algorithm was carried out (the curve B in Figure 5.2).

The initial temperature and the number of moves were the same as for the

process A, but the final temperature was increased 35 times: Tf = 4*10-4. This

value does not provide the convergence in the given number of moves: the

current solution continues to improve after passing it. Nevertheless, at the point

of 3,000,000 moves the process B has reached a substantially better solution

than the process A.

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 108

However, the attempts to further increase the final temperature led to a

worsening of the quality of solutions at this point. It is clear that the optimal

value of Tf is problem-dependent and quite difficult to determine. For the

experiments presented in this study it was determined empirically by making a

high number of short-time launches. Of course, the problem of choosing the

right parameters usually presents a difficulty when employing Simulated

Annealing.

In terms of setting the initial parameters, the uncertainty of the time-

predefined Simulated Annealing approach is also characterised by the fact that

process B continues to improve after the allocated time is expired. In

circumstances when a time limit is not too strict, the user can decide not to

terminate the algorithm in order to achieve a better quality solution. However,

the extra time for the improvement can be quite long which can mean that even

if the solution is improved, certain users may consider it too high a price to

pay.

The next experiment investigated the behaviour of the Great Deluge

algorithm with the same given number of moves. The decay rate ∆B was

defined by formula (5.6), which utilises the estimated value of a future result

f(s’). Its value was obtained by applying a Hill-Climbing algorithm before the

first experiment. This process lasted only a few seconds and so the time is

considered to be negligible. For the CAR-F-92 problem, the Hill-Climbing

produced a solution with penalty value of 5.5. Of course, it is expected that the

Great Deluge algorithm should achieve higher quality solutions. Therefore for

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 109

assigning f(s’) in formula (5.6) the correspondent fractional decrements of this

value were made. The progress of two sample runs is shown in Figure 5.3. In

the first run (the curve A) the final “level” was determined to be 4.4 (5.5*0.8)

and in the second one (the curve B) it was taken to be 4.95 (5.5*0.9).

Figure 5.3: Cost progress diagrams for the Great Deluge algorithm on

CAR-F-92 dataset

These diagrams display how strictly the search follows the linear movement of

the “level”. The fluctuations are seen only in the first half, but later all

solutions become quite close to the “level” and make very small oscillations.

The moment of convergence is quite recognisable (the process A converged at

2,700,000 moves and process B at 3,400,000 moves). The algorithm should be

definitely terminated at the point of convergence. The presented way of

assessing the final “level” causes an inaccuracy in the time predefinition of

around ±13%. However, this is the only uncertainty presented by setting initial

parameters for the Great Deluge algorithm.

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 110

The same experiments were also conducted on other datasets from

Carter’s collection. The progress diagrams show quite similar properties to the

presented ones, therefore they are not presented here but can be found on the

following web page: http://www.cs.nott.ac.uk/~yxb/tpls. The over-riding

feature is that the behaviour of time-predefined Simulated Annealing is much

more uncertain and parameter-dependent than for the Great Deluge Algorithm.

It requires more preliminary work for the definition of problem-specific

parameters and does not guarantee the best quality of solution in given time.

5.5 Analysis of the Relationship between Time and Cost

A second set of experiments was performed on datasets from Carter’s

collection, and again the cost function presented in (4.1) was employed. For all

datasets, both techniques were run a number of times with different values of

Nmov. Simulated Annealing operated with the same temperatures as in the

previous experiments. In the Great Deluge algorithm f(s’) of each run was

assigned to be equal to the final solution of the previous launch (for the first

one the Hill-Climbing method was applied). The final results of the runs were

collected into 26 tables (13 datasets x 2 methods), where each table comprises

from 40 to 60 results (the number of results is varied for each particular dataset

because of difference in time intervals in which these highly time-expensive

experiments were conducted). All these tables (in the form of diagrams) are

presented and discussed below. In all following diagrams the y axis represents

the final cost and the x axis represents the number of moves and computing

time in seconds taken by the search session. Every point on a diagram

corresponds to the final cost function and processing time of a separate

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 111

solution. The results are discussed in the context of the number of enrolments

for each problem (given in the right-hand column in Table 4.1), which can be

considered as a certain measure of the problem’s size.

Firstly, the four “largest” problems: PUR-S-93, UTA-S-92, CAR-S-91,

CAR-F-92 are considered. The resulting diagrams are shown in Figures 5.4-

5.7. For every dataset the given number of timeslots, enrolments and average

search speed is indicated.

Figure 5.4: Time-cost diagrams for PUR-S-93 problem

 (120690 enrolments, 43 timeslots, search speed 82000 moves/sec)

Figure 5.5: Time-cost diagrams for UTA-S-92 problem

(58981 enrolments, 35 timeslots, search speed 87000 moves/sec)

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 112

Figure 5.6: Time-cost diagrams for CAR-S-91 problem

(56877 enrolments, 35 timeslots, search speed 73000 moves/sec)

Figure 5.7: Time-cost diagrams for CAR-F-92 problem

(55552 enrolments, 32 timeslots, search speed 89000 moves/sec)

The distribution of points in these diagrams demonstrates the trade-off between

the search time and overall solution quality. Even though the results are

relatively scattered, there is a clear general tendency to improve the cost

function as time increases. Moreover this tendency, for both techniques appears

(in almost the same way) for all presented problems. Indeed all four diagrams

presented here are surprisingly similar (although, the scale of both axes is

individual for each problem).

The analysis of the diagrams shows that the slope of the curves is

relatively steep on the left hand side of the diagrams (i.e. a small increase in

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 113

time leads to a high improvement in quality). As the search time gets longer the

improvement of solutions becomes slower. Thus, the time-cost diagram of a

time-predefined algorithm can be approximated as a monotonically lowered

function, which asymptotically approaches some limit. This limit is obviously

better than the local optimum (produced by Hill-Climbing). Possibly it is the

minimum for the explored area (which can be separated in the case of a

disconnected search space).

The particular shape of the time-cost curve depends on the different

problem’s characteristics. To investigate the influence of the problem’s size the

diagrams for the “smallest” problems from Carter’s collection are produced:

EAR-F-83, YOR-F-83, STA-F-83 (Figures 5.8-5.10).

Figure 5.8: Time-cost diagrams for EAR-F-83 problem

(8108 enrolments, 24 timeslots, search speed 99000 moves/sec)

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 114

Figure 5.9: Time-cost diagrams for YOR-F-83 problem

(6029 enrolments, 21 timeslots, search speed 44000 moves/sec)

Figure 5.10: Time-cost diagrams for STA-F-83 problem

(5751 enrolments, 13 timeslots, search speed 82000 moves/sec)

These diagrams appear to be different from the ones obtained for the “largest”

problems. They show a sharp rise in the final quality with relatively short

computational times but further prolongation of the search has very low

influence on the result (i.e. the rest of the diagram remains almost flat).

Thus the trade-off between the search time and the quality of results

holds mostly for the “large” exam timetabling problems while it plays less of a

role for the smaller size problems. This is in accordance with what one would

expect: the larger problems need more work! With the “middle-sized”

problems the presented techniques usually behave in an intermediate way

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 115

(which is also in accordance with what we would expect). Examples of such

datasets (RYE-F-92, KFU-S-93, TRE-S-92, LSE-F-91, HEC-S-92, UTE-S-92)

are presented on Figures 5.11-5.16.

Figure 5.11: Time-cost diagrams for RYE-F-91 problem

(45052 enrolments, 23 timeslots, search speed 245000 moves/sec)

Figure 5.12: Time-cost diagrams for KFU-S-93 problem

(25118 enrolments, 20 timeslots, search speed 265000 moves/sec)

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 116

Figure 5.13: Time-cost diagrams for TRE-S-92 problem

(14901 enrolments, 23 timeslots, search speed 119000 moves/sec)

Figure 5.14: Time-cost diagrams for HEC-S-92 problem

(10632 enrolments, 18 timeslots, search speed 53000 moves/sec)

Figure 5.15: Time-cost diagrams for LSE-F-91 problem

(10919 enrolments, 18 timeslots, search speed 245000 moves/sec)

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 117

Figure 5.16: Time-cost diagrams for UTE-S-92 problem

(11796 enrolments, 10 timeslots, search speed 203000 moves/sec)

5.6 A Comparison of Time-Predefined Simulated
Annealing and the Great Deluge Algorithm with the
Current State-of-the-Art.

5.6.1 A Comparison on Carter’s Benchmarks

To fully evaluate the presented techniques, they are compared against recently

published results on the same benchmark problems. These include the results

produced by Carter, Laporte and Lee [CLL96] (by employing several

sequencing heuristics with backtracking) and some recent results that were

produced by Di Gaspero and Schaerf [DGS01] (using Tabu Search with a

variable tabu list). For every dataset Carter published four results, obtained

with different heuristics. Di Gaspero and Schaerf presented their best and

average values. For comparison purposes there are presented the best and worst

of Carter’s et al. results, the best and average results of Di Gaspero and Schaerf

and the best, worst and average results for both of presented algorithms. Note

that Carter’s et al. results are obtained by using different algorithms whereas Di

Gaspero and Schaerf’s (and methods proposed in this thesis) employ the same

approach.

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 118

The average values of produced results can be estimated while selecting

a proper range of samples. The solutions of “short-time” searches (placed in

the left hand sides of the diagrams in the previous section) are too poor and are

shown mainly for illustration purposes. Therefore, as the search time (at the

end of each diagram) is quite acceptable (i.e. one could consider its right hand

side as within the recommended range). Thus the average values for Time-

Predefined Simulated Annealing and Great Deluge are calculated as an average

cost of the five rightmost points on corresponding diagrams.

All of the results are summarised in Table 5.1. Dashes show that the

corresponding data was not published. The table also includes a computational

time (in seconds) for each best cost. However, this is done only to give a notion

about a range of useful time periods because as the published results were

produced with different hardware and algorithmic solutions, the search times of

the different techniques cannot be sensibly compared.

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 119

T
im

e
fo

r
be

st

(s
ec

)

27
4

32
8

13
4

27
8

72
9

10
30

14
12

75
2

15
7

39
2

58
5

23
6

54
6

av
er

.

4.
3

5.
0

36
.7

11
.5

14
.4

11
.0

4.
9

9.
3

15
9.

4

8.
4

3.
5

26
.2

37
.2

w
or

st

5.
1

6.
1

41
.7

12
.4

15
.6

12
.6

6.
0

10
.3

16
0.

3

9.
6

4.
1

29
.3

40
.7

 G
D

C
os

t

be
st

4.
2

4.
8

35
.4

10
.8

13
.7

10
.4

4.
8

8.
9

15
9.

1

8.
3

3.
4

25
.7

36
.7

T
im

e
fo

r
be

st

(s
ec

)

29
5

25
6

58
9

17
30

58
6

54
1

13
95

95
9

19
0

32
6

90
6

65

82
0

av
er

.

4.
5

5.
3

37
.3

11
.4

14
.9

12
.0

5.
1

9.
6

15
9.

4

8.
9

3.
6

27
.2

37
.5

w
or

st

5.
1

6.
3

41
.1

13
.2

16
.2

14
.0

6.
0

10
.6

16
0.

8

9.
8

4.
2

30
.7

40
.6

 T
P

SA

C
os

t

be
st

4.
4

5.
0

35
.0

10
.6

14
.2

11
.0

5.
0

9.
2

15
9.

0

8.
6

3.
5

25
.7

36
.9

T
im

e
fo

r
be

st

(s
ec

)

86
0.

6

30
.2

4.
6

3.
7

12
.3

20
.3

- - 3.
9

16
.2

50
.7

42
.4

25
.2

av
er

.

5.
6

6.
5

46
.7

12
.6

19
.5

15
.9

- -

16
6.

8

10
.5

4.
5

31
.3

42
.1

w
or

st

- - - - - - - - - - - - -

D
i G

as
pe

ro
 a

nd
 S

ch
ae

rf

C
os

t

be
st

5.
2

6.
2

45
.7

12
.4

18
.0

15
.5

- -

16
0.

8

10
.0

4.
2

29
.0

41
.0

T
im

e
fo

r
be

st

(s
ec

)

47
.0

20
.7

24
.7

7.
4

12
0.

2

48
.0

21
72

9

50
7.

2

5.
7

10
7.

4

66
4.

3

9.
1

27
1.

4

av
er

.

- - - - - - - - - - - - -

w
or

st

7.
6

7.
9

46
.5

15
.9

20
.8

13
.1

5.
0

10
.0

16
5.

7

11
.0

4.
5

38
.3

49
.9

C
ar

te
r

et
 a

l.

C
os

t

be
st

6.
2

7.
1

36
.4

10
.8

14
.0

10
.5

3.
9

7.
3

16
1.

5

9.
6

3.
5

25
.8

41
.7

T
im

e
sl

ot
s

32

35

24

18

20

18

43

23

13

23

35

10

21

ab
le

 5
.1

: P
ub

lis
he

d
an

d
pr

od
uc

ed
 r

es
ul

ts
 fo

r
pr

ox
im

ity
 c

os
t

D
at

a
se

t

C
A

R
-F

-9
2

C
A

R
-S

-9
1

E
A

R
-F

-8
3

H
E

C
-S

-9
2

K
FU

-S
-9

3

L
S

E
-F

-9
1

P
U

R
-S

-9
3

R
Y

E
-S

-9
3

ST
A

-F
-8

3

T
R

E
-S

-9
2

U
T

A
-S

-9
2

U
T

E
-S

-9
2

Y
O

R
-F

-8
3

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 120

Even though detailed statistical tests are not possible because of the

incompleteness of the information about average published results, the figures

in the table demonstrate the power of the two time-predefined approaches.

Their performance is better (by all quality indices) than Di Gaspero and

Schaerf’s Tabu Search on all the benchmark problems. For eleven of the

thirteen problems the two time-predefined algorithms achieved a better cost

function value than any of the currently published ones. For five of these

problems the best published results are worse than even the average outcome of

the presented methods (in a sixth problem they are equal). It is interesting to

note that for two of the problems (the largest one and a medium sized one)

Carter et al. has an approach, which produces better quality solutions than both

of presented techniques although, as mentioned above, Carter’s et al. results do

not represent one single approach (they employ different heuristics).

The computing time for the best produced results shows that the given

solutions were obtained in quite an acceptable time (10-30 min). Even if most

of the published results were produced quicker, the prolongation of time in

presented algorithms is well justified by the quality of the obtained solutions.

When comparing the outcomes of two presented techniques with each

other, it is evident that the Great Deluge Algorithm performs slightly better

than time-predefined Simulated Annealing. In addition, for most of the

problems the time-cost diagrams for the Great Deluge Algorithm are less

scattered. In Table 5.1 it can be seen that the Great Deluge Algorithm

outperforms the time-predefined Simulated Annealing in 9 cases by the best

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 121

values and in 11 cases by the average ones. In contrast, time-predefined

Simulated Annealing is correspondingly better in terms of best values in 3

cases and in terms of average values in just one case. Moreover, it is only with

small-size problems. Note that the two approaches have an equal best value for

UTE-S-92 and an equal average value for STA-F-83. Perhaps the time-

predefined Simulated Annealing approach does not perform as well because of

imperfect values of the initial and final temperatures. However, such a situation

is characteristic of a Simulated Annealing approach and the Great Deluge

approach is free of this uncertainty. This alone leads us towards the conclusion

that the Great Deluge algorithm is superior to the time-predefined Simulated

Annealing approach. When this particular advantage is taken together with its

superior performance (overall) on the benchmark problems then the evidence

of its superiority over time-predefined Simulated Annealing becomes

overwhelming (at least for the given benchmark examination timetabling

problems).

5.6.2 Experiments with More Advanced Problems

A further series of experiments was performed to evaluate the performance of

the presented approach with more complex problems (in terms of more

constraints). These benchmarks were established in [BN99]. Three datasets

were chosen where, in addition to the clash-free requirement (formula (4.2)),

the room capacities constraint (formula (4.3)) is considered as a hard

constraint. The distribution of timeslots among days (formula (4.5)) is also

taken into account. Two soft constraints are considered: the number of students

who have two exams in adjacent periods and in overnight periods. The

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 122

correspondent criteria values (f2 and f5) are calculated by formulae (4.6) and

(4.9). The cost function fc is calculated as their weighted sum (with weights 3

and 1 to represent their relative importance). It can be seen in formula (5.7) and

should be minimized.

523 fff c +⋅= . (5.7)

The characteristics of the problems are presented in Table 5.2.

Table 5.2: Additional characteristics of problems

Data Seats Periods Enrolments

KFU-S-93 1955 21 25,118

Nott-94 1550 23 33,997

CAR-F-92 2000 36 55,552

These experiments were conducted in the same way as that in Section 5.5,

including initialisation, neighbourhood and the methods of assigning initial

parameters. Also, the same type of time-cost diagrams was used for

interpretation of produced results. These diagrams are presented in

Figures 5.17-5.19.

Figure 5.17: Time-cost diagrams for KFU-S-93 problem

(search speed 260000 moves/sec)

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 123

Figure 5.18: Time-cost diagrams for Nott-94 problem

 (search speed 174000 moves/sec)

Figure 5.19: Time-cost diagrams for CAR-F-92 problem

(search speed 87000 moves/sec)

The results obtained by both described algorithms are compared with

the published results obtained by the Multi-Stage Memetic Algorithm of

[BN99]. There is a series of comparisons in [BN99] which establish that the

Multi-Stage Memetic Algorithm had the best published results on these

problems up until the development of the algorithms presented in this

dissertation. In addition, to give a more complete evaluation, the Tabu Search

results obtained by Di Gaspero and Schaerf [DGS01] on these 3 problems are

also presented. In [BN99] and [DGS01] there is a fourth benchmark problem

(PUR-S-93) that is evaluated and discussed. However, the number of timeslots

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 124

was taken to be 30, which the author strongly believes is insufficient for

producing a feasible timetable. Both of the approaches in those papers publish

results which are infeasible i.e. they generate high values of the cost function

because a very high additional value is included when a hard constraint is

broken. The problem was intentionally excluded from this comparison because

two presented approaches consider only feasible solutions. If one cannot find a

solution which satisfies the hard constraints then they cannot cope. However

the definition of hard constraints is, of course, that they must be satisfied in all

cases. The final figures are presented in Table 5.3.

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 125

T
im

e
fo

r
be

st

(s
ec

)

34
5

61
2

12
68

av
er

.

14
70

43
3

16
10

w
or

st

21
61

86
2

35
36

 G
D

C
os

t

be
st

13
21

38
4

15
06

T
im

e
fo

r
be

st

(s
ec

)

40
7

24
9

12
20

av
er

.

18
25

63
5

22
50

w
or

st

24
48

10
15

36
22

 T
P

SA

C
os

t

be
st

15
73

52
2

19
51

T
im

e
fo

r
be

st

(s
ec

)

- - -

av
er

.

18
45

81
0

33
77

w
or

st

- - -

D
i G

as
pe

ro
 a

nd
 S

ch
ae

rf

C
os

t

be
st

17
33

75
1

30
48

T
im

e
fo

r
be

st

(s
ec

)

10
5

46
7

18
6

av
er

.

16
26

55
2

17
65

w
or

st

26
62

10
22

48
06

M
SM

A

C
os

t

be
st

13
88

49
0

16
65

T
im

e
sl

ot
s

21

23

36

ab
le

 5
.3

: P
ub

lis
he

d
an

d
pr

od
uc

ed
 r

es
ul

ts
 f

or
 w

ei
gh

te
d

su
m

 o
f

ad
ja

ce
nt

 a
nd

 o
ve

rn
ig

ht
 c

on
fli

ct
s

D
at

a
se

t

K
FU

-S
-9

3

N
ot

t-
94

C
A

R
-F

-9
2

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 126

This comparison once more justifies the power of the two time-

predefined approaches. Indeed, it is clear here that the Great Deluge algorithm

is far superior to time-predefined Simulated Annealing. In fact it is far superior

(in terms of the quality of its results) to all previously published approaches on

these problems although it is more time-consuming. However, Burke and

Newall [BN99] indicated that increasing the computational time in the

Multi-Stage Memetic Algorithm does not yield any improvement of the quality

of final solutions. Moreover, the presented time-cost diagrams show the

potential for further improvement of results (i.e. there is a clear slope in the

right hand side of the diagrams). The experiments, which went beyond the right

hand side of the diagrams were not continued for all 3 problems because of the

extreme computational expense. However, the Great Deluge algorithm was run

on the Nott-94 problem for extremely long periods to give some indication of

what it could produce with enough computational time (Table 5.4).

Table 5.4: The best results, obtained for Nott-94 problem by Great Deluge

search

Time (hours) Cost
Relative improvement of the cost
(comparing to the best result of

Multi-Stage Memetic Algorithm)

2.5 256 1.91

67 225 2.18

As it was expected from examining the diagrams, an extremely long

search can produce extremely good results. Note that although the solution

with a cost of 225 took over 67 hours, it was run over a weekend (when the

computer would otherwise have been idle) and produced a result which is more

than twice as good as the previous best published solution. It is clear that while

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 127

this ability may not be appreciated by all users, there is a definite potential for

incorporating this approach into real world examination timetabling systems

(and indeed other scheduling systems).

5.7 On the Comparison of the Performance of the Time-
Predefined Algorithms with other Approaches

The comparison of the presented results with previously published ones, given

in Tables 5.1, 5.3 and 5.4 is done in a conventional way (as it is usually

conducted with non time-predefined algorithms). It only expresses a rough idea

about the range of the presented values of the cost function. However, a formal

comparison (which takes into account both cost and time) of the proposed

approach with non time-predefined techniques requires a more detailed study.

In this section the main aspects of this investigation are sketched.

When embedding time predefinition into search algorithms it is

possible to express their performance as a function: one can get any solution

(within some range) as long as one pays the necessary cost in time. From this

point of view the processing time can be thought of as an additional objective,

which should be minimised together with the cost function. Thus, the problem

becomes bi-objective where the time-cost goal comprises the typical trade-off

surface. It can be investigated using several metrics as suggested in [KC02].

The formal comparison of the performance of a time-predefined and a

conventional technique (which can be thought as having a single time-cost

point) is quite uncertain and can be carried only within some limits. The issues

are illustrated in Figure 5.20. The dotted line represents the time-cost trade-off

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 128

curve of a time-predefined algorithm “A”. A solution, produced by a traditional

algorithm “B” (point B) has worse time and cost than “A”. Thus a complete

outperformance of the algorithm “A” over “B” is evident. However, while

evaluating the point C (the solution, produced by another non time-predefined

algorithm “C”) one cannot make any general conclusion about the preference

of either algorithm. Algorithm “C” partially outperforms “A”. The preference

is clear between points x and y but unclear outside these points.

Figure 5.20: The example of uncertainty in comparison of the time-cost

diagram with the single solution.

5.7.1 A Comparison with a Threshold Acceptance Method

Further comparisons of the performance of the Great Deluge algorithm with

other methods are presented in [Burk03c]. This section discusses the

comparison of performance of the Great Deluge algorithm with a Threshold

Acceptance method. It is a deterministic variant of the Simulated Annealing

approach, introduced by Dueck and Scheuer in [DS90] which accepts worse

candidate solution in the case when the difference in the cost function between

the current and the candidate solution does not exceed some threshold. The

x

y

B

A C

Time

Cost

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 129

threshold should be decreased during the search. However, there are no explicit

recommendations concerning its initial value and the rate of decrease.

As the performance of the Great Deluge algorithm can be estimated

only in respect of a time-cost diagram, it is worth making a time-cost diagram

available also for the second competitor. However, the Threshold Acceptance

method does not allow the direct definition of the processing time. Therefore in

the following experiments the author tried to distribute its outcome evenly in

the given time period by varying its parameters.

The objective function in the following experiments was defined by

formula (4.1). The time-cost diagrams, obtained for CAR-F-92 dataset are

shown in Figure 5.21. The Threshold Acceptance algorithm was launched

several times with variations of the initial threshold in the interval: 5*10-5 - 2.5

(the results confirmed that the best value is located inside this interval). In

order to get approximately the same launch time in both algorithms, rate of

threshold decreasing was varied from 10-12 to 2*10-5 .

Figure 5.21: Comparison of Threshold Acceptance and Great Deluge

algorithms for CAR-F-92 problem

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 130

The Threshold Acceptance diagram shows a substantially higher “scatter” of

results than the Great Deluge one. A greater number of poor quality solutions

are generated though the use of inappropriate parameter values. Although both

methods have approximately the same values of the cost function for the best

results (in the given launch time), Threshold Acceptance method can reach it

only with properly defined parameters, while Great Deluge does it always.

Another advantage of the Great Deluge algorithm is the effectiveness of

the search. The deriving of the best parameters requires several runs of the

Threshold Acceptance method. This time should be taken into account when

the total time of the solution process is calculated. Therefore its total

processing time (from input to output) is several times longer than the

processing time of a single run. It should be pointed out that the Great Deluge

algorithm is almost free of such parameters and spends almost all of its time

only in the search procedure. Hence, with respect to the total processing time,

the Great Deluge is far more advantageous.

5.7.2 A Comparison with Hill-Climbing

Another comparison was undertaken with the Hill-Climbing method. In this

experiment the time-cost diagrams were produced with a very short search

time. The search time of Hill-Climbing depends on the stopping condition. The

algorithm used as the stopping condition the given number of idle steps and it

was varied in the range of 1-10000. The results for YOR-F-83 problem are

presented in Figure 5.22.

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 131

Figure 5.22: Comparison of Hill-Climbing and Great Deluge algorithms

for YOR-F-83 problem

Visual inspection of these diagrams indicates that they have a broadly similar

distribution of points at the beginning. This means that if the stopping

condition of Hill-Climbing is chosen correctly then both algorithms have the

same performance. However the behaviour of these techniques in the right

hand sides of diagrams is quite different. If the chosen number of idle steps is

too high - Hill-Climbing wastes this additional time, but Great Deluge uses it

for improving the solution.

5.8 Conclusions

This chapter investigated a number of aspects in exploring the time-cost trade-

off for improving the quality of exam timetables. In many higher educational

institutions, it is quite acceptable to have examination timetable processing

times of up to several hours. However, this prolongation is justified only if an

algorithm uses the specified amount of time in an intelligent manner in order to

produce a solution of a suitably high quality in this period. This can be

achieved while embedding time-predefinition mechanisms into local search

Time-Predefined and Trajectory-Based Search A Time-Predefined Approach

 132

methods. However, such mechanisms function differently for different

techniques.

Two time-predefined algorithms are discussed and their properties are

investigated. It could be considered that the time-cost trade-off is mostly

revealed in large-scale problems. The time-predefined algorithms between

them produced the best published results on all but two benchmark problems.

The Great Deluge algorithm is preferred because it produces most of the best

results on these problems (and all of the best results on a further three, more

complicated, benchmark problems) in addition to having less uncertainty in

algorithmic parameters. This chapter presents two examples of comparison of

the performance of the Great Deluge algorithm with conventional methods.

Both of them confirmed the superiority of the presented time-predefined

approach.

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 133

Chapter 6.

6. Multiobjective Methods for Exam
Timetabling Problems

In this chapter the multiobjective nature of exam timetabling problems is

discussed. Due to the distinct characteristics of these problems (large scale,

complexity, etc.), the performance of different multiobjective techniques

applied to them is expected not to be similar. Considerable work needs to be

carried out in order to identify the most suitable approach for multiobjective

exam timetabling. As a possible tool for the real-world exam timetabling, it is

presented and discussed here a new multiobjective A Priori method based on

the idea of compromise programming. Besides this, a case study of an

application of existing pareto-based techniques to exam timetabling problems

is also included.

6.1 An Aggregation Multiobjective Technique based on
Compromise Programming

Usually in A Priori multiobjective approaches an objective function is defined,

which aggregates all given criteria taking into consideration decision maker’s

preferences. However, it is very clear that the criteria are of a very different

nature. They are incommensurable due to their different units of measure with

different scales. In addition, they are partially or totally conflicting. For

example, in nine-criteria problem stated in Section 4.2 two exams which

should be scheduled immediately before/after each other may have common

students and consequently in the timetable construction, improvements of the

value of criterion X9 will lead to the degradation of the value of criterion X2 (X9

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 134

represents the number of students affected by the violations of “immediately

before/after” constraint, while X2 summarises the number of occurrences when

a student has two exams in consecutive timeslots).

Universities will assign different priorities to the constraints imposed

on their timetabling problems. The aggregation approach to timetabling enables

timetabling officers to assign different relative importances (weights) to each

of the criteria to reflect different institutional regulations and requirements. The

weights are not related to how easy it is to satisfy the constraints. Also, the

criteria which correspond to constraints that are rigidly enforced by the

university (i.e. additional hard constraints that the university may set) will be

assigned relatively much higher weights than those assigned to criteria that are

related to the soft constraints. For example, the constraint that the resources

used at any time must not exceed the resources available (represented by

criterion X1) is often considered to be hard. So one would assign it a (much)

higher weight than other criteria.

6.1.1 Criteria and Preference Spaces

In [BBP01] a mathematical apparatus have been introduced, which enables

different criteria to be taken into consideration simultaneously in the

construction of a timetable. A criteria space is defined whose dimension is

equal to the number of criteria. Each timetable is represented as a point in the

criteria space. An ideal point, which optimises all criteria simultaneously, is

defined in the criteria space as the vector I=(f1
*,..., fk

*
 ,..., fK

*) where fk
* (for

k∈{1,...,K}) denotes the best value of the criteria Xk. It is generally the case

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 135

that the solution that corresponds to the ideal point is not feasible. The notion

of an anti-ideal point is used to define the vector A=(f1*,..., fk* ,..., fK*), where fk*

(for k∈{1,...,K}) is the worst value of criteria Xk.

The difficulties caused by different units of measure for the criteria and

their different scales are overcome by the use of a preference space and the

mapping of the criteria space into the preference space introduced in [PP95].

For each criterion Xk, (where k∈{1,...,K}), a linear preference function is

defined which maps the values of the criterion to the real interval [0,wk]. The

linear preference function, sk , for the criterion Xk is defined below.

*
*

*

kk

kk
kk

ff

ff
ws

−

−
= , (6.1)

where fk and sk denote the values of the criterion Xk in the criteria space and the

preference space, respectively. Note that the worst value of the criterion fk* is

mapped on to the value 0 and the best value of the criterion fk
* is mapped onto

wk.

The best value of the criterion is achieved when there are no violations

of the corresponding constraint in the timetable (i.e. when fk
*=0 for

k∈{1,...,K}). Of course, the values of fk*, for k∈{1,...,K} have to be calculated.

An example of such a calculation could be given with f2* which

expresses the maximum number of conflicts when students have exams in

adjacent periods. First, the maximum number of conflicts is calculated for each

student. The worst possible situation for the student is taken into consideration

when all of the student’s exams are scheduled in adjacent periods. Table 6.1

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 136

shows the maximum number of conflicts for a student as a function of the

number of student's exams when there are three time periods per day.

Table 6.1: The maximum number of conflicts when a student has exams in

adjacent periods

Day 1 Day 2 Number
of exams

Es
Period

1
Period

2
Period

3
Period

4
Period

5
Period

6

Number of
conflicts

 adjs
*

1 0

2 1

3 2

4 2

5 3

... ...

The value adjs can be calculated using the following formula:

=−+
=−
=

=
23mod12*)3div)1((

13mod2*)3div)1((

03mod2*)3div(
*

ss

ss

ss

s

EifE

EifE

EifE

adj , (6.2)

where Es is the number of the exams, taken by student s (where s∈{1,..., M}).

The operators div and mod denote the quotient and remainder of two integer

values, respectively.

Now f2
* is calculated as follows:

∑
=

=
M

s
sadjf

1

**
2 , (6.3)

where M is the total number of students.

A mapping from the criteria space into the preference space is based on

the linear preference functions for all criteria. As an illustration, Figure 6.1

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 137

depicts the mapping of the ideal point I=(0,0) from the criteria space on the

point W =(w1,w2) in the preference space, when K=2.

Figure 6.1: Mapping from the criteria space into the preference space

6.1.2 An Algorithm for Heuristic Search of the Preference
Space

A new algorithm for heuristic search of the preference space has been

developed. It is based, principally, on the idea of compromise programming - a

multicriteria decision making method that attempts to determine so-called

compromise solutions which are closest to the ideal point [Zel73], [Zel74]. A

family of Lp metrics is used to measure the distance between the solutions and

the ideal point W in the preference space. Lp metrics are defined by the

following formula:

[] ∞≤≤

−= ∑
=

pwsWSL

pK

k

p
kkp 1),(

/1

1

, (6.4)

where Lp(S,W) is the distance between the solution S with co-ordinates sk in the

preference space and the ideal point W with the co-ordinates wk. Three values

of p are usually given a special interest in Lp : p=1, p=2, and p=∞. It can be

shown that:

I

Criteria space

0

w2

Preference space

w1 x1

x2

W

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 138

[]kk
k

swWSL −=∞ max),(. (6.5)

L2 is a well-known Euclidean norm which gives the compromise solution

geometrically closest to W. Smaller values of p imply compensations of criteria

values (i.e. a weak value of one criterion can be offset by the strong value of

another criterion). The higher values of p lead to solutions where each criterion

stands on its own and there are no tradeoffs between the criteria.

The algorithm consists of two phases. The goal of the first phase is to

find a set of high quality initial timetables that are good with respect of each

criterion separately. These timetables will be used as the starting points in the

search of the preference space in the second phase of the algorithm.

The initial timetables are constructed using the “saturation degree”

sequential heuristic (described in Section 5.3.1). In each step of the timetable

construction, the heuristic selects the exam which has the smallest number of

remaining valid periods in the timetable constructed so far. The chosen exam is

scheduled in the time period which causes the lowest increase of the criterion

value. Ties are broken in the following way: for each exam and for each of its

valid periods the increase of the criterion value is calculated and the exam with

the highest average increase is selected and scheduled in the best valid period

in terms of the criterion value. The motivation is that such an exam should be

scheduled early because it contributes more significantly to the criterion value.

These timetables, which are good with respect to each criterion

separately, are used as the initial points in the search of the preference space.

The algorithm iteratively searches the neighbourhood of each of these

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 139

timetables trying to improve the other criteria values with the aim of getting

close to the ideal point. Two operators are used to explore the neighbourhood

of the timetables. They are based on Hill-Climbing and the heavy mutation

operators employed in the Memetic Algorithm described in [BNW96], [BN99].

These operators are modified to take into account the distance of the timetables

from the ideal point.

The Hill-Climbing operator randomly chooses an exam from the

timetable and reschedules it in the valid time period which yields a maximum

decrease in the distance from the ideal point. The purpose of the Hill-Climbing

operator is to direct the search toward the local optima. The Hill-Climbing

operator is applied until its application does not decrease the distance of the

solution from the ideal point for a predefined number of times.

The Mutation operator reschedules the exams from a timeslot, which

contributes the most to the distance from the ideal point. The exams from these

time periods are rescheduled with respect to the distance from the ideal point.

The purpose of the mutation operator is to direct the search away from local

optima and to explore new areas of the preference space.

In each step of the preference space search, multiple applications of the

Hill-Climbing operator are followed by an application of the mutation operator

until the distance between the solution and the ideal point has not decreased for

a predefined number of steps.

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 140

The search of the neighbourhood of each of the initial solutions yields

one timetable. The final solution is the timetable chosen from the set of

obtained timetables which has the minimum distance from the ideal point.

6.1.3 A Real Timetabling Problem: Results and Discussion

A series of experiments were carried out in order to test the presented

algorithm on a real-world exam timetabling environment which has more than

two criteria. A detailed specification of nine criteria is provided for Nott-94

dataset (see Section 4.3) therefore this problem instance was chosen for these

experiments. The algorithm was run several times with different values for wk

and p. The processing time of each run was around 5 minutes.

The results obtained in these experiments are discussed here. The

timetable officer may express his/her preference in two ways:

by assigning different weights to constraints and consequently to

corresponding criteria;

by favouring solutions which permit or do not permit compensation for weak

criteria values.

Two parameters are changed: wk, for k∈{1,...,K} and p in Lp metrics. It is

considered 4 different cases with respect to the total number of time periods

(i.e. 23 periods, 26 periods, 29 periods and 32 periods).

The results obtained for the case when all criteria are of the same

importance and for L2 are given in Table 6.2. This table presents the values of

criteria and the distance of the solutions from the ideal point. Of course, when

more time periods are available higher quality solutions can be obtained (i.e.

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 141

ones which are closer to the ideal point). The values given in the parenthesis

are the percentages of the anti-ideal values of the criteria that are achieved in

the solution. For example, in the solution with 23 time periods there is 5.02%

of the total number of estimated possible conflicts where students have two

exams in adjacent periods. In most of the cases the final solution usually

significantly improves the values of the other criteria (which are not taken into

consideration in the initial solution). However, this is, of course, at the expense

of the light depreciation of the criterion value from the initial solution.

Table 6.2: Solutions when all criteria are of the same importance

 23 periods 26 periods 29 periods 32 periods
X1 (rooms) 1038 (4.29%) 137 (0.57%) 139 (0.58%) 25 (0.10%)

X2 (adj. per.) 1111 (5.02%) 655 (2.96%) 513 (2.32%) 314 (1.42%)

X3 (same day) 3518 (8.49%) 2814 (6.79%) 2239 (5.40%) 1546 (3.73%)

X4 (adj. days) 4804 (12.16%) 2759 (6.98%) 2172 (5.50%) 1646 (4.17%)

X5 (overnight) 405 (2.70%) 265 1.77%) 231 (1.54%) 174 (1.16%)

X6 (duration) 4 (0.28%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X7 (time per) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X8 (before/after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X9 (im.bef./after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

L2 0.164559 0.103448 0.082128 0.058842

Let us now suppose that the timetable officer prefers timetables in

which the number of conflicts where students have exams in adjacent periods is

as small as possible. Therefore, the criterion X2 is assigned a higher importance

then the other criteria. In fact three cases were investigated where w2= 2, 5, and

10 (while all the other weights were assigned value 1). This leads to solutions

with a lower number of violations of the corresponding constraint (see

Table 6.3). The timetable officer may choose the timetable which best satisfies

his/her preferences concerning the other constraints.

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 142

Table 6.3: Solutions when X2 is of higher importance than the other criteria

W=(1,2,1,1,1,1,1,1,1)
 23 periods 26 periods 29 periods 32 periods

X1 (rooms) 982 (4.06%) 301 (1.25%) 187 (0.77%) 85 (0.35%)

X2 (adj. per.) 713 (3.22%) 378 (1.71%) 330 (1.49%) 230 (1.04%)

X3 (same day) 3511 (8.47%) 2922 (7.05%) 2083 (5.02%) 1562 (3.77%)

X4 (adj. days) 5216 (13.20%) 3291 (8.33%) 2358 (5.97%) 1740 (4.40%)

X5 (overnight) 486 (3.24%) 351 (2.34%) 221 (1.47%) 171 (1.14%)

X6 (duration) 39 (2.70%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X7 (time per) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X8 (before/after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X9 (im.bef./after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

L2 0.179373 0.117357 0.085153 0.062710

W=(1,5,1,1,1,1,1,1,1)
 23 periods 26 periods 29 periods 32 periods

X1 (rooms) 1358 (5.62%) 418 (1.73%) 274 (1.13%) 78 (0.32%)

X2 (adj. per.) 435 (1.97%) 220 (0.99%) 149 (0.67%) 131 (0.59%)

X3 (same day) 3262 (7.87%) 2925 (7.05%) 2068 (4.99%) 1564 (3.77%)

X4 (adj. days) 5701 (14.43%) 3768 (9.53%) 3219 (8.15%) 1982 (5.02%)

X5 (overnight) 565 (3.77%) 463 (3.09%) 347 (2.32%) 221 (1.47%)

X6 (duration) 4 (0.28%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X7 (time per) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X8 (before/after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X9 (im.bef./after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

L2 0.203092 0.133388 0.104502 0.071009

W=(1,10,1,1,1,1,1,1,1)
 23 periods 26 periods 29 periods 32 periods

X1 (rooms) 1275 (5.28%) 321 (1.33%) 192 (0.79%) 96 (0.40%)

X2 (adj. per.) 212 (0.96%) 106 (0.48%) 90 (0.41%) 44 (0.20%)

X3 (same day) 3525 (8.50%) 2810 (6.78%) 2240 (5.40%) 1660 (4.00%)

X4 (adj. days) 6584 (16.66%) 4564 (11.55%) 3306 (8.37%) 2382 (6.03%)

X5 (overnight) 855 (5.71%) 574 (3.83%) 420 (2.80%) 321 (2.14%)

X6 (duration) 100 (6.92%) 49 (3.39%) 0 (0.00%) 0 (0.00%)

X7 (time per) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X8 (before/after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X9 (im.bef./after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

L2 0.234499 0.151720 0.111444 0.078141

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 143

The values of the parameter p significantly influence the solutions. The

solutions presented in Table 6.4 are obtained when all criteria have the same

weights. For p=1, and p=2, the eventual weak value of one criterion is

compensated by the stronger values of all the other criteria. On the other hand

for p=∞ all the criteria values are reasonably strong, although in some cases not

as strong as in the solutions for p=1 and p=2.

Table 6.4: Solutions for different distance measures, W=(1,1,1,1,1,1,1,1,1)

 23 periods 26 periods 29 periods 32 periods
X1 (rooms) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X2 (adj. per.) 879 (3.97%) 604 (2.73%) 393 (1.78%) 316 (1.43%)

X3 (same day) 3623 (8.74%) 2544 (6.14%) 1957 (4.72%) 1332 (3.21%)

X4 (adj. days) 6381 (16.15%) 4571 (11.57%) 3438 (8.70%) 2482 (6.28%)

X5 (overnight) 264 (1.76%) 164 (1.09%) 151 (1.01%) 53 (0.35%)

X6 (duration) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X7 (time per) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X8 (before/after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X9 (im.bef./after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

L1 0.306187 0.215262 0.162033 0.112748

X1 (rooms) 2848 (11.78%) 2044 (8.46%) 1559 (6.45%) 1243 (5.14%)

X2 (adj. per.) 2608 (11.78%) 1872 (8.46%) 1435 (6.48%) 1138 (5.14%)

X3 (same day) 4886 (11.78%) 3507 (8.46%) 2688 (6.48%) 2132 (5.14%)

X4 (adj. days) 4658 (11.79%) 3343 (8.46%) 2563 (6.49%) 2033 (5.14%)

X5 (overnight) 807 (5.39%) 475 (3.17%) 441 (2.94%) 334 (2.23%)

X6 (duration) 170 (11.76%) 119 (8.24%) 89 (6.16%) 74 (5.12%)

X7 (time per) 40 (9.90%) 24 (5.94%) 24 (5.94%) 18 (4.46%)

X8 (before/after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

X9 (im.bef/after) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

L∞ 0.117867 0.084592 0.064855 0.051444

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 144

6.2 A Case Study of the Application of Pareto-Based
Approach to Exam Timetabling Problems

One of the attractions of Pareto-based methods is the simplicity of the

expression of a decision maker’s preferences. This advantage is very useful for

a timetabling officer, who could obtain a set of different timetables and then

chose among them for the one, which mostly conforms to the particular

requirements of that university. However, very little research has been carried

out concerning A Posteriori algorithms for real-world exam timetabling

problems. Usually these methods have tested on small-sized optimisation

problems including continuous ones where the true Pareto-front can be found

analytically, and their performance in large-scale problems is not well studied.

Two selected Pareto-based techniques (Non-Dominated Sorting Genetic

Algorithm and Pareto Archived Evolution Strategy) are applied to benchmark

exam timetabling datasets. The motivation was that the obtained results could

give some notion about the possibility of the use of these methods in real

examination timetabling and should provide benchmarks for further

experiments with multiobjective exam timetabling problems.

6.2.1 Non-Dominated Sorting Genetic Algorithm for Exam
Timetabling

Firstly, the performance of the Non-dominated Sorting Genetic Algorithm

(NSGA) introduced by Srinivas and Deb in [SD94] was investigated. This is a

multiobjective modification of the general single-objective Genetic Algorithm,

which employs an advanced method for of the calculation of fitness. The

algorithm operates with a population of individuals, whose size is set up as an

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 145

input parameter. Generally, the population size affects the quality of produced

results and is limited by the used computational resources.

The NSGA algorithm operates for a given number of generations while

at each generation it applies the following set of subroutines:

• mutation (SO),

• crossover (SO),

• ranking (MO),

• calculation of dummy penalty (MO),

• selection (SO).

The operations, which are the same as in the single-objective variant are

marked as (SO), and specific multiobjective procedures are marked as (MO).

The mutation operator performs a sequence of atomic moves (of the same

nature as in local search algorithms). Each move produces a small random

perturbation of a mutated individual. In particular, the algorithm implemented

for exam timetabling in this research randomly picks out an exam and replaces

it into a different (also randomly chosen) timeslot. Only those moves, which

generate feasible mutants are accepted. The number of undertaken successful

moves affects the degree of the transformation of an individual during mutation

and it can be seen as a second parameter of the algorithm. At each generation

the mutation operator is applied to the given number of randomly chosen

individuals. This number is specified by a third algorithmic parameter, which is

called a mutation rate and is expressed in percents of mutated individuals in

the whole population. Both described mutation parameters highly influence the

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 146

performance of the algorithm. They should have enough high values to provide

a sufficient diversity of the population. However, too high values decrease the

quality of final results.

Crossover. This procedure operates after mutation and generates a set of new

solutions (“children”), whose number is specified by a fourth parameter of the

algorithm. Every child solution is produced from two randomly chosen parents

while applying the so-called “single-point crossover”. Here the exam (point) Z

is randomly chosen (Z∈{2 ,..., N} where N is the number of exams). In a new

generated child all exams whose ordinals are less than Z are assigned to the

same timeslots as in the first parent, and then starting from Z the assignment is

conducted using a second parent as the pattern. The operation is accepted if it

satisfies the following requirements:

a) Parents should be different from each other. This requirement is checked

before the generation of a child.

b) A generated child should be different from both parents. This is checked in

addition to requirement (a) because even different parents, which contain

the same parts before or after the point Z can produce a child which is

identical to one of the parents.

c) The child should be feasible. Requirements (b) and (c) are checked after the

generation of the child.

If any of these three requirements are not satisfied then the generated child is

discarded and the operation is repeated (a new pair of parents is selected, etc.).

The success of the procedure depends on the diversity of the population. If

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 147

improper mutation parameters cause a low diversity, then the generation of

new children becomes difficult or even the algorithm can “freeze” (no new

children can be generated).

The crossover procedure is repeated until the specified number of

children is produced. This parameter determines the so-called “selection

pressure”, i.e. its higher value forces quicker improvement of the population,

but the algorithm tends to converge with lower quality results and vice versa.

Besides this, the offspring can be seen as an additional population, which

together with the main population occupies certain computational resources.

Thus, tuning of the sizes of both these populations should provide a reasonable

balance between the processing time and the quality of the result.

A ranking procedure sorts solutions in the population and does not require the

setting up of any parameters. Every individual obtains its own rank, which

represents the level of its dominance. The best rank (equal to 1) is assigned to

the non-dominated solutions while the dominated solutions get worse ranks

(more than 1). The algorithm operates in the following way: at the beginning

all individuals have the rank=1. Then the algorithm compares all individuals in

pairs and assigns the rank=2 to all dominated ones. At the next iteration only

individuals with the rank=2 are compared between each other and again all

dominated ones get the rank=3. These iterations are repeated until no

dominated solutions remain among the ones with the worst rank.

Dummy penalty is a multiobjective analogue of a fitness function, which aims

to provide the uniform distribution of the final population along a trade-off

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 148

surface. Initially the dummy penalty (Fd
0) of an individual is equal to the

population size divided by the rank of the individual. Then the penalty is

corrected by the so-called “sharing” operator. Here distances from the given

individual to all the others are calculated. The algorithm takes into account

only those distances di, which are less than some value σshare. Let Nd be a

number of such distances and i∈{1 ,..., Nd}. The value of σshare is given as a

fifth algorithmic parameter. The final dummy penalty (Fd) is calculated as

follows:

∑
=

−

=
dN

i share

i

d
d

d

F
F

1

2

0

1
σ

.
(6.6)

Formally speaking, the calculation of distances should include a proper

normalisation of the criteria values in order to take into account the scales of

criteria. However, experiments showed that even with the non-normalised

values the algorithm works adequately with the given problem instances and

provides a quite uniform distribution of the final population.

The “sharing” technique is highly dependent on the particular value of

σshare. The further experiments showed that if its value is too low, then the

population tends to crowd in a small region. Otherwise, if it is too high, then

the algorithm lets non-useful solutions (which have a very poor quality but

which are far away from other individuals in the population) to survive for

future generations.

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 149

Selection. This procedure is the same as for the single-objective Genetic

Algorithms. Here the individuals with the worst dummy penalty are removed

from the population. The number of removed solutions is equal to the number

of children, produced by crossover. This procedure does not operate with any

parameters.

The described algorithm was applied to the Nott-94 exam timetabling

problem. It was considered the bi-criteria case (defined in Section 4.2) where

the criterion X1 represents the number of occurrences where a student has two

exams in adjacent periods while X2 represents the corresponding number for

overnight exams. The initial population was generated as specified in

Section 5.3.1.

A practical utilisation of the described algorithm included an important

preliminary procedure regarding the tuning of its five problem-dependent (and

probably correlated between each other) parameters. Their combination, which

provides the best performance of the algorithm on the particular problem could

be found by the complete enumeration of all five-dimensional “parameter

vectors” and running the algorithm with each of them. However, it requires the

high number of experiments and practically unrealistic. Therefore, the search

for good parameter vectors was simplified by exploring the “parameter space”

in two phases. Firstly, for each parameter a wide interval of values was defined

and a number of test runs were launched while trying 10-20 values, uniformly

distributed inside each defined interval. The parameter values, which caused

the highest performance of the algorithm were selected for the second phase.

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 150

The second phase comprised the fine tuning of parameters by the slight

increasing/reducing of values chosen in the first phase. The final values of

parameters together with tested intervals are presented in Table 6.5 (a mutation

rate is shown in percents to the population size). The author cannot guarantee

that these parameters are the best ones, however they caused the best

performance of the algorithm among all test launches.

Table 6.5: Parameters for Non-Dominated Sorting Genetic Algorithm

Parameter Tested interval Selected value

Population size 20-630 256

Number of mutation moves 1-500 15

Mutation rate (%) 10-100% 30%

Number of children 10-620 384

σshare. 1-300 50

The selected values from this table were used in several final launches of the

algorithm. The number of generations was set up to be 10000. This quantity is

significantly higher than required because already after 5000 generations there

was no visual movement of a trade-off surface. The average time of one run of

the algorithm was around 5 hours. Although the algorithm with different runs

produced different final populations, the distributions of their solutions in the

criteria space look quite similar. A typical example of the shape of such a

distribution is shown in Figure 6.2.

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 151

Figure 6.2: A final population produced by NSGA

In this diagram the population contains a distinct trade-off surface, which

comprises 43 non-dominated solutions. Its visual examination reveals that it

covers a significant sector of the criteria space, has a quite regular shape and is

relatively uniformly distributed. To estimate the quality of these solutions their

criteria values were compared with the results produced by A Priori techniques

discussed in Section 5.6.2. For comparison, there were selected 7 samples from

the set of 43 non-dominated points presented in Figure 6.2 so that they are

uniformly distributed through the trade-off surface. Hence, one can consider

this sample subset as an adequate representation of the complete set. The

sample solutions, sorted in the ascending order of the first criterion value and

marked as “NSGA” are shown in Table 6.6.

For the comparison the Table 6.6 includes three non-dominated

solutions of the same problem produced by Burke and Newall in [BN99] by the

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 152

weighted sum aggregation technique within a Multi-Stage Memetic Algorithm

(marked in Table 6.6 as “MSMA”). The authors varied several internal

algorithmic parameters but used the same aggregation function expressed by

formula (5.7), which gave a higher priority to the first criterion (in contrast, all

solutions in the NSGA trade-off surface have X2 less than X1). Despite this, the

MSMA results dominated 5 out of 7 of the NSGA sample solutions. We can

see a substantial gap between their criteria values. For example, point No 3

from the MSMA set has slightly better value of X2 than solution No 29 from the

NSGA set, but 9.5 times better X1. Although two NSGA sample points are not

dominated by the MSMA ones, their minor superiority in the second criteria

(1.3-1.4 times) scarcely could compensate the huge inferiority in the first one

(11-17 times).

Table 6.6: Comparison of results produced by NSGA and A Priori techniques

Algorithm Point X1 X2 Time (sec)

1 610 605

8 631 511

15 660 413

22 748 323

29 957 272

36 1109 198

NSGA

43 1779 183

≈18000

1 65 324 156

2 76 282 340 MSMA

3 100 255 607

GD 1 117 167 383

Table 6.6 also includes one point from the middle of the time-cost diagram

produced by the Great Deluge algorithm in Section 5.6.2 and shown in

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 153

Figure 5.18. This solution (marked as “GD”) was achieved in 383 seconds

using the same aggregation function as MSMA. This single point completely

outperforms (see Section 3.4) the whole trade-off surface produced by NSGA.

It has 5.2-15.2 times better value of X1 and 1.1-3.6 times better value of X2.

In assessing the performance of NSGA, it should be noticed that its

processing time (the last column in Table 6.6) is 30-115 times longer than the

corresponding search time of A Priori methods (the time of the Great Deluge

result was taken within a conventionally acceptable interval). Besides this, the

necessity of the definition of 5 problem-dependent algorithmic parameters is

considered as a serious difficulty with respect to practical use. Their tuning

requires an exhaustive search in a 5-dimensional parameter space. Thus, in

spite of the quite high popularity of NSGA, its described basic variant cannot

be considered as a realistic tool for multiobjective exam timetabling.

Elitism. One of the suggested ways of improving the performance of NSGA is

the employment of so-called “elitism” [Bag99]. This technique keeps the best

members of the population for future generations. Such an idea is plausible

because the mutation of relatively good individuals often leads to a worsening

of their quality.

A variant of NSGA for exam timetabling, which employs elitism has

also been developed in the course of this thesis. Here the mutation operator

avoids the mutation of the non-dominated individuals (it begins from the

solutions with rank>1). A required number of non-dominated solutions is

mutated if all dominated solutions have already been mutated, but the mutation

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 154

rate is still not achieved. This can happen when the number of non-dominated

solutions (which varies from generation to generation) becomes too high,

which makes impossible to achieve the mutation rate with dominated solutions.

However, with the mutation rate set to be 30% (see Table 6.5) this situation

occurs quite rarely.

The “elitist” variant of NSGA was also tested on the same problem.

The random seed, the number of generations and all algorithmic parameters

were the same as in the experiments without elitism. The behaviours of both

variants of NSGA were quite similar to each other, as well, as the distribution

of a final population in the criteria space. The comparison of trade-off surfaces

produced by both algorithms is presented in Figure 6.3

Figure 6.3: A comparison of trade-off surfaces produced by NSGA with and

without elitism.

This figure shows a slight improvement of the quality of the trade-off surface

produced by the “elitist” variant of NSGA relative to the “non-elitist” one.

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 155

However, this improvement is negligible in relation to the huge gap between

the performance of NSGA and A Priori techniques. It is unlikely that with

further modifications or when applied to different exam timetabling datasets

the performance of NSGA might be improved so that it can be seriously

compared with other approaches. The author considers the produced results to

be so poor that there is no reason to use them as a benchmark for the estimation

of the performance of other techniques. Therefore, further investigation did not

carry out with this algorithm in order to pay attention to more powerful

techniques. This decision was also reinforced by the unsuitability of NSGA for

the practical use. This algorithm is enormously time-consuming and requires

significant preliminary work comparing to other useful approaches.

6.2.2 Pareto Archived Evolutionary Strategy for Exam
Timetabling

Apart from NSGA another well-known A Posteriori multiobjective technique

called Pareto Archived Evolution Strategy (PAES) can also be applied to exam

timetabling problems. It is a greedy local search, which archives

non-dominated current solutions. This method was proposed in [KC99] as an

alternative to Genetic Algorithms. Furthermore, the authors suggested it as a

good benchmark technique for testing the performance of other methods.

The basic variant of the algorithm known as “(1+1)-PAES” is a

multiobjective extension of the Hill-Climbing method. It inherits all its features

and additionally keeps the archive of intermediate non-dominated solutions.

One of these solutions is maintained as the current one. At each iteration a

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 156

feasible candidate solution is chosen among neighbourhood solutions and

evaluated in the following way:

• If the current solution is dominated by the candidate one or has the same

values of criteria, then the candidate solution replaces the current one.

• If the candidate solution is dominated by the current one or by any other

member of the archive, then it is discarded.

• If the dominance cannot be determined, the candidate solution is added to

the archive. Here this solution can also become the current one (while the

previous current solution remains as an ordinary archive member).

The choice of the current solution is made so that it should be placed in the less

crowded region of the criteria space. The evaluation of the solution’s region is

started from calculating the lowest and the highest values of each criterion

among all archive members. After that, for every criterion an interval between

the calculated lowest and highest values is divided into two equal parts, then

both remaining parts are divided once more and so on. The number of these

divisions l (depth of the binary division) is set up as an input parameter of this

algorithm. This procedure divides the criteria space into a number of

hypercubes (in bi-criteria case a hypercube is represented by a rectangle). The

so-called “grid location” of a solution is calculated as the number of the

archive members in the same hypercube and shows how crowded the region is.

The algorithm starts with the empty archive and continues to add

non-dominated solutions into it until the archive becomes filled in. When this

happens, the grid locations are calculated for all archived solutions and a

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 157

solution with the highest grid location is removed from the archive (if the

highest grid location belongs to the candidate, then it is discarded). The archive

size is set up as the second parameter of the algorithm.

The described algorithm has been evaluated on the same problem as in

the previous section. The archive size was set up to be 150 and depth of binary

division l =5. A number of runs of the algorithm were done starting from

different random solutions. PAES is a quite fast algorithm and the processing

time of each run was in an interval of 3-5 minutes. However, the algorithm has

no parameters, which can influence the processing time and correspondingly

the quality of results. The typical resulting trade-off surface is depicted in

Figure 6.4 (the result of NSGA from the previous section is also shown to

enable a comparison of these two techniques).

Figure 6.4: The comparison of trade-off surfaces produced by NSGA and

PAES

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 158

The figure shows that the trade-off surface produced by PAES completely

outperforms the NSGA one, i.e. each NSGA solution is dominated by at least

one PAES result. One can consider the PAES results to be much higher quality

than the NSGA ones, so that they can be taken as benchmarks for the further

further experiments, presented in Section 7.5.3. With this aim, PAES was

applied to all datasets from the University of Toronto archive. The defined

values of the parameters (and resulting search time) were the same as in the

previous experiment. For each dataset the number of trade-off surfaces were

produced. Three typical examples (for LSE-F-91, RYE-S-93 and YOR-F-83

problems) are given in Figures 6.5-6.7.

Figure 6.5: Trade-off surface produced by PAES for LSE-F-91 problem

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 159

Figure 6.6: Trade-off surface produced by PAES for RYE-S-93 problem

Figure 6.7: Trade-off surface produced by PAES for YOR-F-83 problem

The depicted trade-off surfaces have fairly regular shapes and uniform

distributions of points among them. The common characteristics of the best

produced results are given in Table 6.7: the number of solutions in the final

sets and their minimum and maximum values of both criteria (which could

provide an idea about the covered sectors of the criteria space).

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 160

Table 6.7: Characteristics of results of PAES algorithm

Data set Set size X1 min X1 max X2 min X2 max

CAR-F-92 30 2129 2602 738 925

CAR-S-91 117 2056 2469 565 857

EAR-F-83 59 715 1039 248 434

HEC-S-92 34 478 654 202 302

KFU-S-93 44 1539 1836 841 1233

LSE-F-91 57 489 797 240 435

PUR-S-93 99 2124 2463 829 1147

RYE-S-93 79 1725 2499 479 998

STA-F-83 73 2156 2422 1065 1331

TRE-S-92 43 802 982 419 562

UTA-S-92 53 1609 1984 501 730

UTE-S-92 50 745 1141 420 747

YOR-F-83 44 645 990 250 440

However, these results are still dominated by the ones obtained with A Priori

techniques. For comparison Table 6.8 shows the criteria values of selected

results produced for the CAR-F-92 and KFU-S-93 datasets by the Multi-Stage

Memetic Algorithm in [BN99] and the Great Deluge search in Section 5.6.2

marked in the same way as in Table 6.6 (the reason of exclusion of the third

PUR-S-93 problem is described in Section 5.6.2). While comparing figures

given in these tables, one can concluded that the PAES method is also scarcely

useful in real-world exam timetabling.

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 161

Table 6.8: Results of A Priori techniques

MSMA GD
Data set

X1 X2
Time
(sec) X1 X2

Time
(sec)

CAR-F-92 363 576 186 335 590 547

KFU-S-93 222 838 73 401 477 34

6.3 Conclusions

This chapter presents an application of three multiobjective algorithms to exam

timetabling: a new A Priori aggregation technique based on the idea of

Compromise Programming and two existing A Posteriori Pareto-based

methods: Non-dominated Sorting Genetic Algorithm and Pareto Archived

Evolution Strategy.

The presented aggregation method employs the concept of an ideal

point that corresponds to the solution, which does not violate any of the stated

constraints. Such a solution does not usually exist in real-world timetabling

problems but the aim is to try to approach it. The method evaluates timetables

according to their distances from the ideal point (taking the relative importance

of the constraints into account). The timetable officer may express his/her

preference by altering the weights of the criteria (which correspond to the

relative importance of the constraints) and by choosing a distance measure.

The initial results have confirmed that such an approach can provide a

flexibility in the handling of different types of constraints which is not possible

using a single objective function. It enables constraints of a fundamentally

different nature to be handled together and makes an appropriate compromise

Time-Predefined and Trajectory-Based Search Multiobjective Methods

 162

between them according to the regulations and requirements of particular

universities.

Both investigated A Posteriori techniques produce sets of

non-dominated solutions (trade-off surfaces) among which the user can select

preferable ones. The trade-off surface, produced by NSGA is relatively

uniformly distributed, covers a large sector of the criteria space and has a

regular shape. The quality of these results can be slightly improved by

employing elitism in the basic variant of NSGA. However, all these results are

much worse than the ones produced by A Priori approaches.

In the benchmark problem instances the trade-off surface produced by

PAES evidently outperforms both (non-elitist and elitist) NSGA ones.

Moreover, the author have found PAES to be more easy in use. It works

substantially faster than NSGA and requires less effort in tuning two

parameters, than NSGA, which involves a higher number of parameters,

namely five of them. Although the results of PAES are still worse than A Priori

ones, they are considered to be benchmarks for testing the new multiobjective

algorithms which are presented in the next chapter.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 163

Chapter 7.

7. A Trajectory-Based Multiobjective Search

7.1 Driving the Search through a Trajectory

This chapter introduces a new A Priori approach for multiobjective

optimisation which is based on the idea of driving current solutions through a

predefined trajectory. One could consider that during the search an initial

solution and all the following current solutions conform to points in the criteria

space whose number of dimensions is equal to the number of criteria. The

trajectory can be thought of as a set of points, corresponding to all current

solutions during the search. The real search trajectory is a quite complex curve.

However, the decision maker can set a line (predefined trajectory), which

sketches the region in the criteria space where the search should be carried out.

At each iteration the algorithm should provide a gradual improvement of the

current solution while keeping it close to the defined line. Assuming, that all

points on the trajectory correspond to solutions of different quality, our aim is

to reach the trajectory point (or its vicinity) of maximum possible quality.

The trajectory-based approach is principally different to other well-

known A Priori techniques:

• The aggregation approach aims to improve an aggregation function

without considering the particular values of each criteria. On the other

hand, the trajectory-based approach aims to improve each criterion

separately while observing its effect on the other criteria values.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 164

• Goal Programming. The trajectory-based approach does not aim to achieve

a given point in the criteria space but to find the best possible solution

within the confines of the given trajectory.

• Lexicographic ordering can be viewed as a special case of the trajectory

specification where the trajectory consists of branches drawn parallel to the

axes. While the Lexicographic ordering operates with criteria sequentially,

the proposed approach operates with all of them simultaneously and takes

into consideration their interaction.

In this chapter the trajectory-based search will be explained in more

detail. Two variants of a trajectory-based algorithm will be discussed, basic

and enhanced ones, which can be used in multiobjective optimisation.

Moreover, several strategies, which might help the decision maker to express

his/her preferences throughout the search of the criteria space will be

suggested.

7.2 A Reference Solution Strategy

In [PB03] it was introduced a variant of an application of the trajectory-based

approach while expanding the idea of the reference timetable expressed by

Paechter et al. in [Pae98]. As the reference they considered a timetable

produced either manually or automatically using a different dataset. The

authors suggested an evolutionary algorithm, which obtains a solution

genotypically similar to the reference one while penalising the differences

between the reference and new timetables. They also pointed out that the

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 165

reference solution may already be located in a local optimum, and therefore it

is worth starting the search for the new solution from scratch.

For the purpose of multiobjective optimisation the reference solution

can be considered in a phenotypic sense (i.e. in the sense of criteria values).

Thus, the decision maker should specify the criteria values of some attainable

solution which to a certain degree meet his/her preferences. This solution can

be produced manually or selected from the set of solutions generated by some

automated method. It is assumed that the decision maker is not satisfied

completely with this solution, but this choice gives information that is helpful

for a further search for a better solution.

Having a more or less preferable reference solution, one can consider

that all further solutions which dominate the reference one (where all reference

criteria are outperformed by the new ones) will be even more preferable. In

order to find these solutions, the following method could be suggested. The

reference solution is represented as a point in the criteria space and a trajectory

is drawn through this point and the origin. In such an approach the reference

solution is used only for drawing the appropriate trajectory (as a benchmark for

assessing the final solution), but does not affect the further search process. If

the reference solution was produced by some search method, then it is likely

that such a result already lies in a local optimum and cannot be used for the

initialisation purpose. Generally, local search techniques show the best

performance when they start from a random solution. Therefore, it can be

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 166

suggested keeping this practice also for the presented approach. For the bi-

criteria case (criteria x1 and x2) the method is illustrated in Figure 7.1.

Figure 7.1: Search along the defined trajectory

In this figure the trajectory is depicted as a dash-dotted line. The search starts

from a randomly generated initial solution (point I) and at first approaches the

trajectory (generally, the initial solution does not lie on the trajectory). The

search then follows the trajectory until it reaches the vicinity of the reference

solution (point R). Passing the reference point the search continues along the

trajectory and stops when there is no improvement of any criterion value for a

predefined number of iterations. The point of convergence will be obviously

superior to the reference point.

7.3 Great Deluge with Variable Weights

7.3.1 Description of the Method

This section presents a technique which enables driving the search through a

predefined trajectory drawn through the origin. It operates with a weighted sum

cost function, but the weights are varied dynamically during the search. A

R

x2

x1
0

I

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 167

special procedure for weights variation has been developed in order to regulate

the direction of the search.

The explanation of the proposed method is illustrated with a bi-criteria

case (the goal is to minimise criteria x1 and x2). Let us consider a weighted sum

aggregation function with weights w1 and w2 within the Great Deluge

algorithm. The condition of acceptance of a candidate solution S=(s1, s2) in

each iteration can be expressed by the following inequality:

Bwsws ≤+ 2211 . (7.1)

This formula states that the algorithm accepts any solution in the space

bounded by axes x1 and x2 (as the criteria values are always positive) and the

line

Bwxwx =+ 2211 . (7.2)

In Figure 7.2 this borderline is marked as G1G2. The points where it intersects

the axes can be calculated as: G1=B/w1; G2=B/w2. The space of acceptance is

denoted by the shadowed triangle.

Figure 7.2: Borderline in the weighted sum Great Deluge algorithm

x2

x1
0

G1

G2

G2
*

G1
*

S*
S

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 168

The lowering of the level value B at each step corresponds to a shift of the

borderline towards the origin. The new borderline G1
*G2

* is expressed by

BBwxwx ∆−=+ 2211 . (7.3)

The new intersection points are calculated as G1
*=(B-∆B)/w1 and G2

*=(B-

∆B)/w2. The shifting of the borderline means that the new current solution (S*)

will be closer to the origin.

Let us define ∆w = ∆B ⁄ (B-∆B). Consequently, the equation (7.3) can

be transformed into the following form:

Bwwxwwx =∆++∆+)1()1(2211 . (7.4)

Due to this formula the decrease of B in each iteration can be replaced with the

appropriate increase of both weights as it causes the same effect (shifting of the

borderline).

Hence, finally, each increase of a single weight induces a rotation of the

borderline such that the new solution improves the corresponding criterion

more than the other one. Thus, equation (7.5) corresponds to the line G1
*G2 in

Figure 7.3 and equation (7.6) corresponds to the line G1G2
* in Figure 7.4.

Bwxwwx =+∆+ 2211)1(, (7.5)

Bwwxwx =∆++)1(2211 . (7.6)

Increasing the weight w1 causes the current solution S to move into a new

position S* so that the value of criterion X1 is improved more than the value of

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 169

X2 . This is illustrated in Figure 7.3. The increase of w2 causes the opposite

effect (Figure 7.4).

Thus, instead of reducing a level B at each step, the proposed algorithm

increases a single weight. Although the value of B is invariable during the

search, this technique is considered as a multiobjective extension of the Great

Deluge algorithm because it incorporates the same principles.

In order to force the current solutions to follow the given trajectory the

rules were developed for selecting the weight to be increased. The rules are

illustrated for the bi-criteria case in Figure 7.5.

Figure 7.5: The selection of increased weight

Figure 7.3: The increase of w1 Figure 7.4: The increase of w2

G1 G1
*

 x2

0

G2

S* S

x1 x1

 x2

0
G1

 G2

G2
*

S*

S

t1/r1> t2/r2

x2

x1

0

R (r1,r2)

S’(s1’,s2’)

t1/r1= t2/r2

S”(s1”,s2”)

t1/r1< t2/r2

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 170

Every point (t1, t2) on the trajectory which is drawn through the

reference point R=(r1, r2) and the origin (presented by a dash-dotted line in

Figure 7.5) satisfies the following equation

2

2

1

1

r

t

r

t = . (7.7)

Thus, the trajectory divides the criteria space into two halves: one where

 t1 ⁄ r1 < t2 ⁄ r2 and another where t1 ⁄ r1 > t2 ⁄ r2. Obviously, if the point S’ (the

current solution) is placed in the first half (above the trajectory), the search will

be directed towards the trajectory by decreasing s2’ (it implies increasing w2).

Similarly, if the point S” is placed in another half (below the trajectory) we

have to decrease s1” (increase w1) to direct the search towards the trajectory.

The proposed rule can be expanded into a K-criteria space as well.

Here, we define the vector (s1 ⁄ r1, s2 ⁄ r2, … , sn ⁄ rn) and find its maximum

element sm ⁄ rm (m∈{1,...,K}). It determines the criterion whose value will be

decreased (its weight will be increased). The pseudocode for the algorithm is

given in Figure 7.6.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 171

Figure 7.6: The multiobjective Great Deluge algorithm with variable weights

In this algorithm the value of the input parameter ∆w affects the computing

time in the sense that greater values of ∆w cause the faster search. However, in

contrast to the basic single-objective variant of the Great Deluge algorithm, the

search speed is not steady and therefore, convergence in the given number of

iterations cannot be guaranteed.

Apart from ∆w, this algorithm requires the specification of initial

weights (w1
0,w2

0,…,wK
0). They determine the angle of an initial borderline,

which passes through the initial solution. During experimental tests of different

methods of weight initialisation it was found that they affect the duration of the

first phase of the search: proper definition of initial weights allows the current

solution to reach the trajectory more expeditiously. The best values of initial

weights are probably problem-dependent. However, in the following

experiments a fairly good performance was achieved when setting wi
0 equal to

Set the reference solution R = (r1,r2,..,rK)

Set the randomly constructed initial solution S0 = (s1
0

 ,s2
0

 ,..,s K
 0

)

Specify the initial weights (w1
0

 ,w2
0,..,w K

 0
) = ?

Calculate initial cost function f(S)= s1
0

 w1
0

 + s2
0

 w2
0

 +…+ w K
 0

 s K
 0

Level B=f(S)

Specify the input parameter ∆w = ?

While not stopping condition do

 Define neighbourhood N(S)

 Randomly select the candidate solution S* ∈ N(S)

 If (f(S*) ≤ f(S)) or (f(S*) ≤ B)

 Then accept candidate S = S*

 Find m correspondent to: maxi=1…K (si ⁄ ri)

 Increase the weight wm = wm (1 + ∆w)

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 172

si
0/ri , i=(1…K). If the value of some reference criterion ri is equal to 0 (the

correspondent constraint in the reference solution is satisfied), then the

algorithm operates, instead of ri, with some small value which is less than half

of the measurement unit of the criterion. For example, when a criterion has an

integer value, it is enough to set ri to be less than 0.5.

7.3.2 Investigation of Properties of Great Deluge with Variable
Weights

This section discusses the properties of the variable weights Great Deluge

algorithm. In the first series of experiments this algorithm was tested on the

bi-criteria case of the Nott-94 exam timetabling problem. The problem

formulation was the same as the one given in Section 6.2: the first objective

represents the number of conflicts where students have to sit two exams in

adjacent periods, and the second objective represents the number of conflicts

where students have exams in overnight adjacent periods.

The aim of the first experiment was to investigate the ability of the

algorithm to follow the defined trajectory. Both reference criteria values were

specified to be equal to 300. This means that the trajectory is a 450 angled line

(dash-dotted line in Figure 7.7). In addition ∆w was set to be 10-6 (which led to

a processing time of around 3 minutes). In order to follow the progress of the

search process, after each 50 000 steps the current solution was plotted as a dot

in the criteria space, and after each 500 000 steps the current borderline is

drawn as a dotted line. The complete diagram is presented in Figure 7.7.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 173

Figure 7.7: The progress diagram for the Nott-94 problem

Starting from a random solution the search is first directed towards the

trajectory and then follows it producing solutions, which are very close to it.

The “scatter” is relatively high at the beginning of the search and then becomes

very low. Looking at the dynamics of the borderline it should be noticed that

the interval between borderlines becomes shorter to the end of the search. This

means that the improvement of the current solutions is unsteady and the search

time cannot be predefined in advance.

The purpose of the next experiment is to show that this algorithm

inherits the main property of its basic single-objective variant, i.e. that the

longer search yields higher quality results. This algorithm does not allow

setting up of the search time in advance but it can be varied it by specifying

different values of ∆w (even if their relationship is not well-defined). In this

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 174

experiment, the algorithm was launched a number of times through the same

trajectory as in the previous experiment while varying ∆w within interval

[10-4,…,10-7]. Formally speaking the results of such an experiment should be

represented in the form of a 3-D diagram. The representation can be simplified

(while converting the diagram into the 2-D form) by using the fact that all

solutions, which belong to such a trajectory (which lies under the angle of 450

to the criteria axes) have approximately the same values of both criteria. Thus,

these values can be displayed on the same axis of a time-cost diagram. This

diagram is shown in Figure 7.8 where the values of both criteria are displayed

on the vertical axis and the search time (number of moves) on the horizontal

axis. Each point in this diagram represents the result of the separate launch of

the algorithm.

Figure 7.8: Time-cost diagram of Great Deluge algorithm with variable

weights

The distribution of points in this diagram has the same shape as for the single-

objective Great Deluge algorithm (see Section 5.5). The quality of the final

results is relatively poor for the short runs and becomes better with the

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 175

prolongation of the processing time. This can be considered as a strong reason

to incorporate the time-predefinition feature into this algorithm (this will be

described in Section 7.4) in order to enable the decision maker to choose a

longer search if the quality of solution is crucial or a shorter search, if a result

of an average quality has to be produced quickly. Moreover, the processing

time can be thought of as an additional criterion, which could also be taken into

consideration by the decision maker.

This diagram can also clarify the question about the limitations of the

presented algorithm, i.e. whether the search converges before or after reaching

the reference solution. The obvious answer is that the time-cost curve

represents the minimum criteria values of the reference solution reachable in

the given time. For example, the reference point used in the first experiment

(300,300) was reached and improved by any run presented in this diagram.

However, in order to reach and improve the solution (150,150) the search

should last longer than 300 seconds.

7.3.3 Experiments with Reference Points

The next series of experiments were carried out using, as reference points, a

number of high quality solutions produced by other either single or

multiobjective methods. Firstly, it was done with the results produced by the

Multi-Stage Memetic Algorithm presented in [BN99], where the cost function

is the weighted sum expressed by formula (5.7). Three datasets were used in

the experiments: CAR-F-92, KFU-S-93 and Nott-94. Among the best

published results for each dataset three non-dominated solutions were selected

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 176

(which were produced using different parameters values) to be the reference

ones (9 reference points in total). For all reference points, the corresponding

trajectories were drawn and the proposed algorithm was launched through

every trajectory starting from random solutions. The results are shown in Table

7.1 where X1 and X2 present criteria values of solutions obtained by Multi-

Stage Memetic Algorithm (MSMA) and the trajectory-based approach (TBA).

Table 7.1: Reference and produced solutions for the bi-criteria case

CAR-F-92
(36 periods)

KFU-S-93
 (21 periods)

Nott-94
 (23 periods)

MSMA TBA MSMA TBA MSMA TBA

X1 302 282 222 204 65 53 1st
point

X2 804 799 838 743 324 271

X1 313 286 228 218 76 57 2nd
point

X2 766 706 704 608 282 187

X1 363 327 307 258 100 59 3rd
point

X2 576 541 589 562 255 149

All produced final results dominate the reference points. This confirms the

ability of the proposed algorithm to drive the search through different

trajectories, and to produce high quality solutions, which are better than the

reference ones.

Each run of the trajectory-based algorithm lasted around 30-40 minutes,

and the major part of this time was spent on approaching the reference point

(approximately 95% of the total time). This happened because for the given

problem instances the distances between initial solutions and reference points

were much longer (more than 10 times) than the distances between the

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 177

reference points and the origin (see for example in Figure 7.7). Although, only

a minor part of the search was spent on the actual improvement of the reference

criteria values, it was of crucial importance for the algorithm to traverse the

part of the trajectory between initial and reference solution slowly. Only in this

case could the algorithm provide good final solutions (which dominate the

reference points) and therefore the time spent on approaching the reference

point is justified.

The series of experiments were carried out in order to investigate the

effectiveness of the proposed technique when the number of criteria is greater

than two. The Nott-94 dataset was considered with 9 objectives which are

defined in Section 6.1. Again, the solutions presented in that section are used as

reference points. The Great Deluge algorithm with variable weights was

launched for each of these reference points. All the launches lasted

approximately 20-25 minutes. The results are compiled in Table 7.2.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 178

Table 7.2: Reference and produced solutions for nine-criteria case

23 periods 26 periods 29 periods 32 periods

CPA TBA CPA TBA CPA TBA CPA TBA

X1 1038 795 137 0 139 0 25 0

X2 1111 651 655 476 513 360 314 184

X3 3518 3360 2814 2795 2239 2059 1546 1353

X4 4804 4185 2759 2494 2172 1687 1646 1390

X5 405 54 265 45 231 43 174 104

X6 4 0 0 0 0 0 0 0

X7 0 0 0 0 0 0 0 0

X8 0 0 0 0 0 0 0 0

1st
 p

oi
nt

X9 0 0 0 0 0 0 0 0

X1 0 0 0 0 0 0 0 0

X2 879 778 604 353 393 292 316 190

X3 3623 3524 2544 2174 1957 1482 1332 1104

X4 6381 6221 4571 3661 3438 2518 2482 2028

X5 264 152 164 38 151 48 53 2

X6 0 0 0 0 0 0 0 0

X7 0 0 0 0 0 0 0 0

X8 0 0 0 0 0 0 0 0

2nd
 p

oi
nt

X9 0 0 0 0 0 0 0 0

X1 2848 1734 2044 889 1559 670 1243 1

X2 2608 1367 1872 802 1435 703 1138 488

X3 4886 3760 3507 2127 2688 1481 2132 1210

X4 4658 2289 3343 1922 2563 1201 2033 1073

X5 807 332 475 190 441 128 334 155

X6 170 0 119 0 89 0 74 0

X7 40 0 24 0 24 0 18 0

X8 0 0 0 0 0 0 0 0

3rd
 p

oi
nt

X9 0 0 0 0 0 0 0 0

As in the previous experiments the presented algorithm (TBA) has produced

the solutions, which dominate the reference ones (CPA) by all criteria.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 179

7.3.4 Evaluation of a Manageability of the Reference Point
Method

The evaluation of properties of the reference point approach was extended with

a small pilot test regarding a manageability of the proposed technique. In the

course of this thesis the properties of two A Priori multiobjective techniques

were compared, namely:

• the Great Deluge algorithm with conventional weighted sum aggregation

function;

• the reference point approach introduced in this chapter.

The test was conducted on Nott-94 benchmark problem with bi-criteria case

(the specification of criteria was the same as in the previous section).

The test was organised in the following way: eight researchers and

PhD students, who were familiar with multiobjective optimisation or/and

timetabling were asked to imagine themselves in the role of the timetabling

officers, who have to produce an exam timetable. They were asked to use

specially developed software which allowed the application of either of the

compared techniques starting from the same initial solution and being launched

for approximately the same time interval. The participants were able to make

any number of runs (while varying input parameters) of compared techniques

in order to formulate an opinion of how comfortable the techniques were to

use.

Opinions were collected in the form of questionnaire comprising two

questions, the answers of which were represented by marks (in the range from

1 to 5). The questions and possible answers were the following:

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 180

Question 1. How difficult it was to express the preferences in a numerical form

(as weights or reference points)? The marks represented the following answers:

1. Definitely difficult;

2. It seems to be difficult;

3. Between difficult and easy;

4. It seems to be easy;

5. Definitely easy.

Question 2. How well the produced results conformed to the expectations about

future solutions? The assigned marks corresponded to the following:

1. Definitely contradicted;

2. It seems that contradicted;

3. Between conformed and contradicted;

4. It seems that conformed;

5. Definitely conformed.

Eight responses were collected, which marks are shown in Table 7.3. The

marks, labelled as “WS” correspond to the weighted sum technique, and ones,

labelled as “RP” – to the reference point method.

Table 7.3: Results of a questionnaire

Question Method Marks
Average

mark

WS 3 2 5 2 5 4 3 4 3.5
1

RP 4 5 5 4 5 4 3 4 4.3

WS 3 3 4 3 4 3 2 3 3.1
2

RP 5 4.5 5 4 3 5 4 5 4.4

The collected data is not sufficient to carry out a detailed statistical analysis

and make definitive conclusions. For illustration purposes, the average values

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 181

of marks are shown in the last column of Table 7.3. However, from this

preliminary evaluation, it would appear that the proposed technique is worthy

of attention as a realistic multiobjective optimisation tool.

7.4 An Enhanced Trajectory-Based Multiobjective
Optimisation Technique

The aim of the algorithm presented in the previous section was to produce a

solution, which improves (more or less) proportionally all the criteria values of

the reference point. The presented algorithm has two weaknesses. It does not

allow a higher improvement of a selected criterion (or criteria) than the other

one(s). Besides this, it does not allow for prediction of the search time.

The decision maker can improve some of the reference criteria values

more than the others when orienting the trajectory into directions which are

different from the origin. Formally speaking, the definition of a line in

K-dimensional space can be done in different ways (e.g. by specifying the

angle or deriving the system of linear equations) and all of them are potentially

useful in the trajectory-based approach. However, the author believes that the

most transparent variant of such a definition is the specification of two points

through which the necessary trajectory should be drawn. As a second point to

be used in addition to the reference one, it can be suggested the current solution

(at the start of the search it is equivalent to the initial one). Here the purpose of

the reference solution can be quite flexible. It can be used in the same way as

in previously described strategy (where the goal is to reach it and to continue

the improvement of criteria values following the same trajectory). In addition it

can be the target solution (which should be just achieved) or serve as the ideal

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 182

point (in order to approach it as much as possible while keeping the given

trajectory). The different strategies, which help to express the decision maker’s

preferences in terms of reference points are discussed in Sections 7.5 and 7.6.

In this section an enhanced trajectory-based multiobjective Great

Deluge algorithm is presented. Here the trajectory can be drawn from a current

(initial) point into some reference point placed in the sector of dominance

(sector where all points dominate the given one). The movements of the current

solutions through the trajectory are steady, which allows the algorithm to

traverse the segment between two points in a specified number of moves.

7.4.1 The Description of the Method for the Bi-Objective Case

The enhanced trajectory-based algorithm is illustrated using a bi-objective

problem. Its geometric interpretation is given in Figure 7.9. Let S0R be a

defined trajectory determined by an initial solution S0 and a reference solution

R. It is represented by a dash-dotted line in Figure 7.9. At each iteration the

current solution S with the criteria values (coordinates) s1 and s2 should be

moved into a new position S*(s1
*,s2

*), which dominates the solution S and at the

same time is closer to the trajectory.

Figure 7.9: Relocation of the borderline
G1

x2

x1
0

G2

G2
*

G1
*

S

S0

R S*

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 183

In contrast to the technique described in Section 7.3.1 in this algorithm the

relocation of the borderline G1G2 into the new position G1
*G2

* cannot be

defined by increasing a weight of a single criterion. The equation of the new

borderline contains new weights for both criteria and a new acceptance level

for the weighted sum of criteria values. Namely, the new solution has to satisfy

the following condition

**
2

*
2

*
1

*
1 Bwsws ≤+ . (7.8)

The task is to calculate values for w1
*, w2

* and B* which will lead to the new

borderline G1
*G2

*. In order to achieve this, two atomic transformations are

carried out on the initial borderline G1G2.

• Rotation, which changes the slope of the initial borderline producing a new

line G1
’G2

’ (see Figure 7.10). It determines the values of w1
* and w2

*.

• Parallel shift of the line G1
’G2

’ which moves it into position G1
*G2

*

(depicted in Figure 7.11). It determines the value of B*.

These two atomic transformations are explained in more detail below.

The first decision to make is to choose the direction of the rotation of

the initial borderline G1G2. In the example in Figure 7.9 the current solution is

placed below the trajectory. Therefore the borderline should be rotated

clockwise so that the new solution S* is closer to the trajectory. This means that

the value of x1 will be decreased more than the value of x2. If the current

solution is placed above the trajectory, the rotation should be directed

anti-clockwise.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 184

All points, which belong to the trajectory S0R satisfy the following

equation

2
0
2

22

1
0
1

11

rs

rx

rs

rx

−
−=

−
−

. (7.9)

Consequently the points below the trajectory satisfy the condition given by

inequality

2
0
2

22

1
0
1

11

rs

rx

rs

rx

−
−>

−
−

. (7.10)

If condition (7.10) is satisfied, then a clockwise rotation of the borderline is

performed. If the opposite inequality holds, then the anti-clockwise rotation

takes place. If the current solution is placed exactly on the trajectory, no

rotation will be performed. However, this is unlikely to happen when dealing

with problems with integer values of objectives, because trajectories generally

consist of points which have a real number for at least one coordinate.

Formula (7.10) is correct when both right and left denominators have

positive values. This is guaranteed when the point R dominates the point S0 (the

trajectory is drawn in the sector of dominance). Note that the trajectories must

not be drawn perpendicular to the axes. This case presupposes no improvement

of the corresponding objective and turns the problem into the single-objective

form. Therefore, the denominators in (7.10) cannot have zero values.

Once the direction of the rotation is determined, the new values of

weights w1
* and w2

* have to be calculated. The procedure for the clockwise

rotation is illustrated in Figure 7.10. It is considered the rotation around the

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 185

point of intersection of the borderline and the trajectory. The point is denoted

by T=(t1,t2). The line G1G2 is rotated and a new line G1
’G2

’ is produced.

Figure 7.10: Rotation of a borderline

The angle of rotation can be defined in different ways. However, the

angle has a significant impact on the performance of the algorithm. For

example, the use of the constant angle makes the algorithm dependent on the

criteria scale. The author have found that a fairly good performance is provided

by the rotation of the borderline in such a way that the ratio of weights is

decreased by the constant rotation rate λ :

)1(
1

2
*
1

*
2 λ−=

w

w

w

w
. (7.11)

The rotation rate λ should take as values some small numbers (in

further experiments λ ∈[10-6...10-4]). It could be noticed that too small values

of λ cause imprecise following of the trajectory while too large values make

the algorithm unstable. However, its influence on the behaviour of the

algorithm needs further investigation.

G1

x2

x1
0

G2

G2
’

G1
’

T

t1

t2

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 186

The formulae for new values of weights (w1
* and w2

*) are denoted

below. Triangles given in Figure 7.10 lead to following relations:

2

11

2

1

t

tG

G

G −= ,

2

1
'
1

'
2

'
1

t

tG

G

G −
= .

(7.12)

Taking into account that intersection points are defined as: Gi=B/wi and

Gi
’=B/wi

*. (for i=1,2) we can substitute the weights in (7.11) and transform it

into the following expression

)1(
2

1
'
2

'
1 λ−=

G

G

G

G
. (7.13)

Formulae (7.13) and (7.12) give the following formula

)1()(111
'
1 λ−⋅−=− tGtG . (7.14)

In order to find the value of w1
* using the given above expressions for G1 and

G1
’ equation (7.14) can be transformed into

1
1

*
1

)1(t
w

B
B

w
λλ +−

= .
(7.15)

Weight w2
* is calculated from expression (7.11) as:

()λ−= 1
1

*
1

2
*
2 w

w
ww . (7.16)

Correspondingly, the rotating of the borderline anti-clockwise yields the

expressions

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 187

2
2

*
2

)1(t
w

B
B

w
λλ +−

= ,

)1(
2

*
2

1
*
1 λ−=

w

w
ww .

(7.17)

After rotation, the obtained borderline G1
’G2

’ is shifted parallel into new

position G1
*G2

*. The shifting is illustrated in Figure 7.11.

Figure 7.11: Shift of the borderline

In order to calculate the value for B* we use equation (7.2). If we consider that

the new borderline intersects the trajectory in the point T*=(t1
*,t2

*), the value of

B* can be found by

*
2

*
2

*
1

*
1

* wtwtB += . (7.18)

The intersection point T* can be determined using the following

reasoning. During the search at each iteration the intersection point between the

borderline and the trajectory is moved from T into T*. The initial intersection

point, in the first iteration, is the initial solution S0=(s1
0,s2

0) while the last

intersection point is the reference solution R=(r1,r2). Following the idea of

time-predefined Great Deluge algorithm we can organise the search in order to

S0

R

G1
’

x2

x1
0

G2
’

G2*

G1
*

T=(t1,t2)
T*=(t1

*, t2
*)

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 188

have the constant shift of the borderline |T T*| = ∆T and guarantee to traverse

the segment |S0R| in defined number of moves Nmov. Here ∆T is analogous to

the decay rate in the single-objective Great Deluge algorithm and can be

expressed as follows

() ()
movmov N

rsrs

N

RS
T

2

2
0
2

2

1
0
1

0 −+−
==∆ . (7.19)

The coordinates of the point T* at each iteration can be calculated based on the

given value ∆T by expressions

RS

rs
Ttt

0

1
0
1

1
*
1

)(−
∆−= ,

RS

rs
Ttt

0

2
0
2

2
*
2

)(−
∆−= ,

(7.20)

or basing on the predefined number of moves by formulae

movN

rs
tt

)(1
0
1

1
*
1

−−= ,

movN

rs
tt

)(2
0
2

2
*
2

−−= .

(7.21)

The iterative use of formulae (7.20) or (7.21) requires the definition of the

initial values of t1 and t2, which are equivalent to the coordinates of the initial

solution S0.

7.4.2 An Expansion into the Multiobjective Case

The described algorithm can be generalised to handle K-objective problems

where K>2. Here instead of inequality (7.10) the position of the current

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 189

solution relative to the given trajectory can be evaluated by the following

vector

−
−

−
−

−
−

KK

KK

rs

rs

rs

rs

rs

rs
0

2
0
2

22

1
0
1

11 ,,, � . (7.22)

The elements of this vector are the projections of the current solution’s criteria

values (s1,s2,…,sK) on the trajectory. They can be considered as measures of the

“distance” between the current criteria values and the trajectory. In order to

approach the trajectory, the author suggests that the largest distance is

decreased. Thus we find the maximum element of the vector (7.22), denote its

index by m and update wm by formula (7.23), which corresponds to (7.15).

m
m

m

t
w

B
B

w
λλ +−

=
)1(

* .
(7.23)

The remaining weights can be updated in different ways. In the given

approach weight wn of the criterion n, which corresponds to the minimum

element of vector (7.22) is updated. The value of wn is calculated by (7.24),

which corresponds to (7.16).

()λ−= 1
*

*

m

m
nn w

w
ww . (7.24)

All the other weights remain the same (wi
*=wi , i≠m, i≠n).

Finally, the new elements of the vector T* and the value of B* are

calculated by formulae

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 190

mov

ii
ii

N

rs
tt

)(0
* −

−= , (7.25)

∑
=

=
n

i
ii wtB

1

*** . (7.26)

The pseudocode for the algorithm for K-criteria case is given in Figure

7.12.

Figure 7.12: The enhanced multiobjective Great Deluge algorithm.

This algorithm requires the specification of three input parameters:

Specify the number of moves Nmov = ?

Specify the initial weights (w1
0

 ,w2
0,..,wK

0
) = ?

Specify the rotation rate λ = ?

Set the initial solution S0 = (s1
0

 ,s2
0

 ,..,s K
 0

)

Set the reference solution R = (r1,r2,..,rK)

Calculate initial cost function f(S0)= s1
0

 w1
0

 + s2
0

 w2
0

 +…+ wK
 0

 sK
 0

T=S0

B=f(S0)

S= S0

While not stopping condition do

 Define neighbourhood N(S)

 Randomly select the candidate solution S* ∈ N(S)

 If (f(S*) ≤ f(S)) or (f(S*) ≤ B)

 Then accept candidate S = S*

 Find index m correspondent to: maxi=1…K (si-ri ⁄ s0- ri)

 Find index n correspondent to: mini=1…K (si-ri ⁄ s0- ri)

 Calculate wm by formula (7.23)

 Calculate wn by formula (7.24)

 Calculate vector T by formula (7.25)

 Calculate B by formula (7.26)

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 191

The number of moves Nmov. This parameter indicates that the presented

algorithm is time-predefined. It can be set up taking into account available

computational resources and expected processing time.

The vector of initial weights (w1
0,w2

0, .., wn
0). Contrary to the basic Great

Deluge algorithm with variable weights, the initial values of the weights do not

significantly affect the performance of this technique. It was found that in the

beginning of the search they become tuned relatively quickly. In further

experiments all initial weights were set to be equal to 1. Also, the changing of

the trajectory does not require any additional update of the weights. A search in

a new direction should be started with previous weights.

The rotation rate λ. The issue of tuning of this parameter requires further

investigation. In further experiments its value was adjusted manually.

However, a certain dependence exits (and should be studied in future) between

λ and Nmov; namely larger Nmov requires smaller λ.

The presented algorithm also requires a specification of the initial and the

reference solutions. They will be discussed in Section 7.5. The stopping

condition can be defined in different ways, which are often used in local search

techniques (for example, “no improvement during a given number of moves”).

7.4.3 Investigation of Dynamics of the Algorithm

The behavior of the enhanced variant of the trajectory-based technique was

tested on the same benchmark problem as the basic variable weights Great

Deluge algorithm (bi-objective variant of Nott-94 problem), whose problem

statement was given in Section 7.3.2.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 192

The experiment aimed to demonstrate the ability of the proposed

technique to follow the defined trajectories. In addition, the author wants to

show the flexibility of the given method, which enables decision maker to

define different trajectories and to change the trajectory during the search. As

an example, it was taken a trajectory, which consists of two branches

(segments). The first branch was laid from initial solution into the point

(700,1200). At this point the direction of the trajectory was changed and the

second segment was directed into the point (300,0). The initial values of all

weights were set up to be equal to 1 and the rotation rate λ = 10-5 (its value was

defined empirically by several launches of the algorithm). The shift of the

borderline in the first segment was defined by (7.21) where the number of

moves was set up to be 1.5*106. Using this number, the value of ∆T was

calculated by (7.19) and used to define the shift of the borderline in the second

branch by formulae (7.20). In such a way the ∆T was kept constant during the

whole search process. The algorithm started from a random solution and

traversed the first segment of the trajectory in 23 seconds. After reaching the

first reference point the search was redirected along the second branch. The

second segment was not traversed completely because the search converged

before reaching the second reference point. Each 10*103 iterations a position of

the current solution was plotted and each 100*103 iterations the current

borderline was drawn. The complete progress diagram of this search is shown

in Figure 7.13 where the trajectories are drawn by dash-dotted lines.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 193

Figure 7.13: The algorithm follows a trajectory with two branches

In this diagram one can observe that the current solutions follow the trajectory

in the same manner as was the case with the basic Great Deluge algorithm with

variable weights. At the beginning it shows a relatively high “scatter”, but

towards the end of the search all current solutions are placed very close to the

trajectory. It can be noticed that the rotations of the borderline depend on the

current circumstances. However, in contrast to the first trajectory-based

algorithm the points of intersection between the borderlines and the trajectory

(defined as T in previous section) are placed on constant intervals on the

trajectory (equal to ∆TÂ��5). This means that the search through the trajectory is

conducted with constant speed.

7.5 A Fan Search Strategy

The enhanced multiobjective trajectory-based Great Deluge algorithm can be

applied for the same purpose as the basic variant (reference point strategy).

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 194

However, its flexibility in the definition of the trajectory allows for the

development of a wide range of more advanced strategies. The author presents

here a strategy, which he named a “Fan Search” due to the shape of branches of

its trajectories. It keeps the advantages of A Priori approaches and

simultaneously allows the decision maker to express his/her preferences in

such an easy way (as provided by A Posteriori methods).

7.5.1 A Description of the Strategy

The aim of this strategy is to improve the results produced by any Pareto-based

technique. Initially a Pareto-based algorithm is applied to obtain a primary

surface of non-dominated solutions. The decision maker chooses the most

preferable (reference) solution from the obtained set. In this way, the decision

maker implicitly expresses his/her preferences. Our aim is to improve the

reference solution but in contrast to the previous strategy (described in

Section 7.2) the improvement here is carried out in different directions in the

criteria space having the form of a fan shape. In other words, the algorithm

produces a secondary set of solutions, all of which dominate the chosen one.

Again, as in previously described strategy, it is not suggested the reference

solution to be taken as a starting point for further improvement, because it is

assumed that it already lies in a local minimum.

The graphical representation of the Fan Search strategy is shown in

Figure 7.14. The gray points indicate a primary trade-off surface where the

chosen reference point is marked with R. The proposed technique consists of

two phases. In the first phase the initial trajectory is determined by a randomly

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 195

generated initial solution I and the reference solution R. The search is carried

out until the borderline reaches the point R. If the search is slow enough, then

at this moment the current solution is situated in the vicinity of the reference

one. This current solution is memorized in order to be used as a starting point

for the second phase.

In the second phase several trajectories are drawn from the memorised

point into different directions with the aim of producing solutions which

dominate the memorised one. These trajectories are branched in such a way as

to form a fan shape, dividing the sector of dominance into equal parts. The

decision maker decides on the number of branches and angles between them

(the angles between the branches are the same to have equal parts in the sector

of dominance). The secondary set of solutions marked with) comprises the

convergence points of each of the searches along the branches (coloured black

in Figure 7.14). All these points dominate the reference one, and the decision

maker can choose the most preferable one as a final solution.

Figure 7.14: The Fan Search strategy

)

R

x2

x1
0

I

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 196

Taking into account that the search is conducted with constant ∆T, the

processing time is proportional to the length of the trajectory. The relative

lengths of the first part of the trajectory and the consequent branches are

dependent on the positions of the initial and the reference points. However, in

the discussion about experiments on real-world exam timetabling problems

presented in Section 7.3.3 it was mentioned that the search spent the vast

majority of time (95%) on approaching the reference point. Thus (in real-world

situations) the fan branches are relatively short and launching the search

through a number of branches does not increase the total processing time

significantly.

The author considers the described property as one of the major

advantages of this algorithm. While most of the population-based techniques

can produce a set of solutions in the time equal to the time spent on one

solution multiplied by the population size, the Fan Search does it substantially

faster.

7.5.2 Testing the Fan Search Strategy

This series of experiments aims to test the ability of the Fan Search strategy to

produce the secondary trade-off surfaces. In addition, the dependence of the

quality of the final solutions on the search speed was investigated. The problem

instance that was used in experiments was the one given in Section 7.4.3.

Firstly three experiments were carried out which used the same reference point

R=(500,500) but comprised a different number of moves defined for the first

branch and different values of rotation rate. The values of these parameters are

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 197

shown in Table 7.3. These three different search environments produced three

trade-off surfaces depicted in Figure 7.15. The total processing time of each

run is also shown in Table 7.4.

Table 7.4: Parameters and processing times of the first series of experiments

Trade-off surface 1st 2nd 3rd

Reference point r1=500; r2=500 r1=500; r2=500 r1=500; r2=500

Nmoves of a first part 2*106 20*106 200*106

Rotation rate λ 5*10-5 10-5 2*10-6

Processing time (sec) 96 1048 12490

At each experiment the search was conducted from the same random

initial solution S0 = (3719,1928) toward the same reference point (marked with

R in Figure 7.15). When the borderline reached the reference point, the current

solution was memorized in order to keep the starting solution for the

consequent branches. In total 19 branches were defined in the following way:

one branch was drawn toward the point (0,0); 9 branches toward the points

 ((r1 ⁄ 10)· i , 0), where i ∈ {1…9} and 9 branches toward the points

 (0 , (r2 ⁄ 10)· i), where i ∈{1…9}. In this way, the sector of dominance is

divided into almost equal parts. The shift of the borderline in the branches was

calculated in order to keep ∆T constant during the whole search process in the

same way as in Section 7.4.3. Starting from the same memorised solution the

search was launched through all these trajectories, which yielded 19 secondary

solutions.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 198

Figure 7.15: Trade-off surfaces produced by the Fan Search

This diagram shows three explicit trade-off surfaces. The slower searches

produce the surfaces, which lie close to the origin. Every solution on the

surface produced in shorter time is dominated by at least one solution on the

higher time surface. Thus, if the decision maker is not satisfied by any of the

solutions produced by the relatively fast Fan Search, then one of the secondary

solutions can be used once more as a new reference point (R’). The next set of

solutions can be produced by slower search, and so on, until no sensible

improvement is obtained (Fig. 7.16).

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 199

Figure 7.16: Further iterations of the Fan Search

This proposition was tested in the second series of experiments. The

parameters and processing times are summarised in Table 7.5 and the resulting

trade-off surfaces are depicted in Figure 7.17. All parameters of the algorithm

were the same as in the previous experiments except reference points, which

are marked in Figure 7.17 with R, R’ and R”. The first trade-off surface

(produced from the reference point R=(500,500) in 2*106 moves) was taken

from the previous series of experiments. One point R’=(335,283) was chosen

from this set to be a reference one for the search performed in 20*106 moves.

When the second trade-off surface was produced, one of its points

R”=(220,184) was once more selected and the algorithm was launched for

200*106 moves using the selected point as a reference one.

Table 7.5: Parameters and processing time of the second series of experiments

Trade-off surface 1st 2nd 3rd

Reference point r1=500; r2=500 r1’=335; r2’=283 r1”=220; r2”=184

Nmoves of a first part 2*106 20*106 200*106

Rotation rate λ 5*10-5 10-5 2*10-6

Processing time (sec) 96 732 5772

R’

R

x2

x1
0

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 200

Figure 7.17: Trade-off surfaces produced by the Fan Search

In this diagram the second and third trade-off surfaces occupy a more narrow

(than in Figure 7.15) sector of the criteria space because the corresponding

reference points are placed close to the origin (this causes more a narrow sector

of dominance). This also leads to a total time which is approximately twice as

short as that of the total time from the previous experiments. However, one can

see that the position of the reference point does not influence the quality of the

achieved results. Both trade-off surfaces produced in the second series of

experiments can be considered as just short segments of the ones produced in

the first series of experiments.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 201

7.5.3 Using a Reference Point Selected from PAES Result

The experiments are continued while using the Fan Search strategy for

improving trade-off surfaces produced by PAES method applied to exam

timetabling and described in Section 6.2.2. Both primary and secondary sets of

solutions for Nott-94 problem are shown in Figure 7.18. Among the primary

set (marked as “PAES”) one point R= (336,397) is chosen to be the reference

one and the algorithm is launched from a random initial solution. The number

of moves for the first branch Nmov=10*106 and rotation rate λ=2*10-5. The

location of fan branches and their ∆T were defined in the same way as in the

previous experiments. The produced set of secondary solutions is marked with

“FSS” in Figure 7.18.

Figure 7.18: Trade-off surfaces produced by PAES and Fan Search.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 202

Even though some of the secondary solutions dominate each other, they are

distributed quite uniformly and almost completely cover the sector of

dominance. Some solutions in the secondary set have both criteria values

which are twice as good as the reference one. Other secondary solutions have

approximately the same (as in reference solution) values of one criterion while

2-3 times better values of another one. One can see that every point of the first

set is dominated by at least one point from the secondary set. Moreover, some

of these solutions dominate all of the solutions produced by the PAES

algorithm. Although the algorithm aimed to outperform only the reference

point, it showed a complete outperformance over the whole set of solutions.

It should be also noticed that the first secondary solution was achieved

in 325 sec, while the algorithm was completed in 772 sec. Thus, the processing

time necessary to produce the set of 19 solutions (which cover the whole sector

of dominance) was only 2.4 times longer than the time in which the algorithm

can produce a single solution.

Additional experiments were performed on 13 timetabling problems

from the University of Toronto archive. The definition of criteria and the

algorithm’s parameters were the same as in the previous experiments. As

primary sets the results produced by PAES (in Section 6.2.2) were used among

which the reference points were randomly chosen. The secondary sets were

obtained using the Fan Search strategy. For all theser experiments the

presented approach achieved a complete outperformance of the secondary sets

over the primary ones.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 203

The formal comparison of the quality of the primary and the secondary

sets can be made using metric measures, discussed in Section 3.4. The

properties of several metrics were examined and the S-metric was chosen for

the comparison because it is independent of the true Pareto-front and the

decision maker’s preferences and provides a quantitative measure for the

outperformance relation. In the bi-objective case it is computationally

inexpensive and only requires the definition of one reference point (here the

term “reference point” has different meaning from the one assumed in this

chapter). In these calculations the coordinates of the S-metric reference point

were considered to be equal to the maximum values of the correspondent

criteria among the both compared sets. The resulting values of the S-metric are

presented in Table 7.6. Here SPAES denotes the S-metric of the trade-off surface,

produced PAES algorithm; SFSS is the S-metric of the produced secondary set.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 204

Table 7.6: The comparison of S-metrics of primary and secondary sets

Data set SPAES SFSS
PAES

FSS
S

S

CAR-F-92 55485 740581 13.3

CAR-S-91 101609 749320 7.4

EAR-F-83 104891 275234 2.6

HEC-S-92 105555 172594 1.6

KFU-S-93 69355 585263 8.4

LSE-F-91 42411 148976 3.5

PUR-S-93 72741 619391 8.5

RYE-S-93 325646 990056 3.0

STA-F-83 78995 97323 1.2

TRE-S-92 51793 301503 5.8

UTA-S-92 62254 410718 6.6

UTE-S-92 70584 398837 5.7

YOR-F-83 50676 188546 3.7

This table shows that the Fan Search results outperform the PAES ones

substantially on all datasets. The last column in the table shows the ratio of the

obtained values of S-metric. It can be noticed that the least outperformance was

achieved for the relatively small sized problems (e.g. STA-F-83 and

HEC-S-92). On the other hand the highest outperformance was obtained for the

largest problems (such as CAR-F-92 and PUR-S-93). This may indicate that

the presented technique is especially useful for large-scale exam timetabling

problems.

The computational time of the presented experiments was around 10-20

minutes. This time limitation was set because it is quite acceptable for

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 205

university exam timetabling. However, giving a longer acceptable time the

time-predefined multiobjective algorithm could produce results of even higher

quality. As an additional advantage of the presented technique, it should be

noticed its simplicity in use. Only one parameter (λ) is not very straightforward

(where PAES has two such parameters). All other input data of the proposed

algorithm is quite transparent and does not require any efforts for tuning.

7.6 Further Possible Strategies for the Application of
the Trajectory-Based Technique

The trajectory-based approach provides different opportunities for the decision

maker to express his/her preferences while solving an optimisation problem.

Two basic strategies were discussed and investigated in the previous sections

of this chapter. In this section the author outlines some of further possible

strategies of the application of the trajectory-based multiobjective approach.

The aim is not to present a detailed study but to lay the ground for possible

future research.

Following the principles of two described strategies the aim of further

ones is to simplify the expression of the decision maker’s preferences and

simultaneously reduce the time expense required for reaching high quality

preferable solutions. Here the useful information can be obtained by any other

approach or by the short-time launches of the presented algorithm. Taking into

account that the search time can be varied from several seconds to several

hours, the main attention should be paid to the proper specification of the

trajectories for the most time-expensive launches.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 206

7.6.1 Approximation Strategies

The previously described strategies assume that a reference point corresponds

to some known solution. However, if there is an insufficient number of known

solutions or if they are not distributed uniformly then the decision maker can

suppose that a number of unidentified solutions, which are placed between the

known ones, could be (potentially) obtained and each of these solutions could

be considered as an approximated reference point. An example of such an

approximation for the two-criteria case is shown in Figure 7.19 where the

trade-off surface comprises N solutions (black points) and has an unusually

long interval between points i and i+1. If the decision maker considers that the

solutions (1…i) have too high a value of the second criterion and the solutions

(i+1…N) have too high a value of the first one then he/she might prefer some

solution placed in the region between points i and i+1. In this situation these

points can be connected with a line, any point of this line can be considered as

a reference one (point R) and any trajectory can be drawn through it (dash-

dotted lines).

Figure 7.19: The approximation of a reference point

1

R

x2

x1
0

i
i+1

N

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 207

The approximation of another type can be made under an assumption

that a secondary trade-off surface follows the shape of a primary one by a

certain scale. At least for the used problem instance such an assumption is

justified by the shapes of the surfaces in Figures 7.15 and 7.17. Thus, the

expected secondary trade-off surface could be drawn as the dilation of the

primary one and the approximated reference point could be chosen on this

curve. This strategy can be used instead of the Fan Search in situations when

the scale of possible dilation is known (for example, when the decision maker

already acquired a single (or several) secondary solution(s) but prefers to

obtain another one).

The idea of this method is explained by Figure 7.20 where the primary

trade-off surface is depicted by black points. Let us assume that the decision

maker also knows one solution (point S) and supposes that it belongs to the

expected secondary trade-off surface (for example, this solution was produced

by a relatively long search). The point S* can be defined to be the projection of

the point S onto the primary surface, while using the origin as a focal point.

The scale is calculated as a ratio of distances: | 0 S | ⁄ | 0 S* |. The criteria values

of the primary points are multiplied by this scale to get an expected surface

(grey curve). The decision maker can choose two reference points: R’ from the

primary set and R” from the expected secondary set and launch (from initial

solution I) the same procedure as the Fan Search but comprising only one

secondary branch (R’R”). Obviously, in order to reach the expected secondary

trade-off surface the speed of this launch should be the same as one which

yielded solution S.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 208

Figure 7.20: Approximation of a secondary trade-off surface

7.6.2 An Interactive Trajectory Assessment

The trajectory-based algorithms have a high potential for use in the interactive

multiobjective approach. This approach allows the decision maker to achieve

the solution, which precisely matches his/her preferences. It is also useful in

the case when the decision maker would like to correct the previously

expressed preferences after the search started (based on the analysis of the

current information). One of the possible ideas of such an application is

presented in this section. Like the Fan Search, this procedure also involves the

restarting of the search from memorised solutions but enables the decision

maker to control the direction of further branches.

The interactive trajectory assessment is based on the following idea.

When the decision maker obtains a solution, he/she indicates a criterion, which

should be reduced or increased. At the same time, the decision maker defines

the expected amount of this reduction/increase. Using this information the

algorithm calculates a new branch of the trajectory. To reserve starting points

for the next branches the algorithm memorises intermediate solutions every

S

R” S*

I
x2

x1
0

R’

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 209

given number of iterations. The explanation of this procedure is given by one

example, whose first phase is shown in Figure 7.21.

Figure 7.21: An interactive trajectory assessment (phase 1)

In the first phase an initial trajectory can be drawn into any specified

point (in the given example it is the origin). During the search a number of

intermediate solutions are memorised (black points). Let us assume that when

the search converges to the point F1, the decision maker is not satisfied by the

acquired solution and prefers to increase x1 up to the value L1, which is

acceptable for him/her (in order to improve x2). The algorithm draws a new

branch of the trajectory through the point R1. The new starting point is selected

among the memorised ones. This selection should meet two conditions:

• the starting point should be dominated by R1 ;

• the new branch of the trajectory should be the shortest.

In Figure 7.20 this point is M1. After the selection the consequent search is

launched through the trajectory M1R1.

M1

R1
F1

x2

x1
0

L1

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 210

Thus, every phase of the interactive trajectory assessing comprises the

following steps:

• obtaining the final solution of the previous branch (Fi);

• specifying the increase/decrease of a criterion (Li);

• calculating the reference point (Ri);

• selecting the starting point (Mi);

• launching the algorithm through the new branch;

An example of the second phase of the search is given in Figure 7.22 (the black

points represent available memorised solutions).

Figure 7.22: An interactive trajectory assessment (Phase 2)

The decision maker continues controlling the increase/decrease of

criteria values of produced solutions until he/she is satisfied with them. The

complete scheme of the process is represented by a tree, shown in Figure 7.23.

R2

M2

F2

x2

x1
0

L2

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 211

Figure 7.23: An interactive trajectory assessment (complete scheme)

In this scheme the length of each later branch is usually shorter than the

previous ones. Therefore, the total length of the secondary branches (and

correspondingly, a time expense) is relatively low.

The proposed approach provides to the decision maker a set of tools for

real-time steering the search process. He/she can:

• Adjust the search speed.

• Regulate the search direction.

• Divide the search into several branches.

At any point the decision maker can temporarily suspend the search

process, analyse the information about the overtaken path and choose new

search parameters (the direction and the speed). He/she can also indicate the

memorised points and later use them as initial points for a search in different

directions.

The described strategies enable the decision maker to effectively

explore the criteria space. For example, while suspending the search at some

 L3

M2

M4
M3

M1

F2 F5 F4
F3

F1

x2

x1
0

L1 L2 L4

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 212

point the decision maker can launch a high-speed fan search from the current

solution in order to explore the forthcoming trade-off surface. Of course, such

exploration requires a certain experience, but it may lead to the better

satisfaction of the decision maker’s preferences.

7.7 Conclusions

In this chapter the idea of trajectory-based multiobjective approach is

presented. Here a local search algorithm drives the search of the criteria space

following the trajectory assigned by the decision maker. This approach is

principally different from other well-known multiobjective techniques.

There are presented two variants of the multiobjective extension of the

Great Deluge algorithm. These algorithms use the weighted sum aggregation of

criteria as an objective function and modify the aggregation function

dynamically in order to drive a search through the given trajectory.

It was described the simple mechanism of a weights variation, which is

able to drive the search through the straight line drawn from the origin to some

reference point. In addition an enhanced algorithm was suggested, which

conducts the search from the current point into any direction in the sector of

dominance. This technique allows the reassigning of a trajectory during the

search that provides an opportunity for different strategies of the application of

the method.

Two strategies of the application of the trajectory-based approach were

discussed. The first strategy requires the specification of a reference solution.

Time-Predefined and Trajectory-Based Search Trajectory-Based Search

 213

The author believes that such a specification may be quite transparent for the

decision maker. The second strategy (the Fan Search) is suitable for improving

the results from Pareto-based techniques. It provides the same flexibility for the

decision maker as A Posteriori approaches.

Using these strategies, the comparison of both proposed algorithms

with several existing multiobjective techniques was presented while solving

university exam timetabling problems. It was shown that the proposed

algorithms can produce results of higher quality (dominating by all criteria)

than other approaches. It can be considered that the trajectory-based approach

combines the power of aggregation methods and the transparency of Pareto-

based ones.

Besides this, the presented experiments showed that the multiobjective

extension of the Great Deluge algorithm inherits its main property and that a

longer search yields better results. The enhanced trajectory-based algorithm

allows the specification of the number of moves during the search and

therefore employs the advantages of the idea of the time-predefinition.

A number of further strategies for navigation through the search space

along the defined trajectories were also outlined. They provide a wide range of

opportunities for the decision maker for obtaining the most preferable

solutions. Of course, the list of possible strategies can be extended.

Time-Predefined and Trajectory-Based Search Conclusions

 214

Chapter 8.

8. Conclusions

8.1 Summary of the Presented Approaches

The University Examination Timetabling Problem has attracted significant

research interest over the years. Its various instances usually appear as large-

scale, highly constrained and difficult to solve NP-hard problems. These

problems are often varied in their structure, which can contribute to making

them a difficult class of problems, offering some serious research challenges.

From a practical point of view they are also very important problems. The

quality of solutions to these problems often has a significant impact on the

institutions concerned.

This thesis introduces new examination timetabling algorithms which

consider computational expense as a major input parameter. In particular, it

introduces an adapted version of the Great Deluge Algorithm for exam

timetabling. This algorithm requires just two input parameters: computational

time (that the user is willing to spend) and an approximation of the objective

function value that would be desirable. This employment of just two input

parameters represents a significant achievement in itself, particularly as the

parameters are measures that real world users can readily understand (time and

desired solution quality) rather than abstract concepts (such as number of

generations in a Genetic Algorithm, or cooling rate for Simulated Annealing

etc.).

Time-Predefined and Trajectory-Based Search Conclusions

 215

The second contribution of this research is that an exhaustive

investigation into the multiobjective nature of exam timetabling problems was

carried out. It was presented and discussed a new multiobjective algorithm

based on the idea of Compromise Programming and studied the performance of

existing Pareto-based methods on exam timetabling problems.

In addition to this, the trajectory-based approach was introduced as an

alternative to conventional multiobjective methods. The author’s contribution

in this area comprises two versions of trajectory-based local search algorithm

based on the Great Deluge method and several strategies of their application in

practice. The presented approach adheres to practice of employing

straightforward parameters.

8.2 A Comparison of Performance of Different Methods

The results of the presented experiments on real-world exam timetabling

problems demonstrate that the performance of a local search algorithm can be

significantly improved by incorporating a controlled management of the

processing time into the approach. Moreover, this behaviour is also

characteristic to the proposed multiobjective techniques. This is evidenced by a

series of presented comparisons of the performance of these algorithms on a

range of well-known exam timetabling benchmark problems.

In this study the author developed 5 different algorithms and, in

addition, applied 5 well-known algorithms to benchmark exam timetabling

problems while considering single and multi-objective cases. A number of

selective comparisons were made between the results produced in this research

Time-Predefined and Trajectory-Based Search Conclusions

 216

and the ones published in the literature. All presented comparisons are shown

in Figure 8.1, where the nodes contain the algorithms. The compared pairs of

algorithms are connected by edges, where arrows indicate the superiority of

results. Each arrow points to the algorithm, whose performance was found to

be evidently better than another one. The arrow is not drawn for the pairs

where the superiority is not evident (the performance is different for different

problems). The algorithms whose results were taken from the literature are

shown in the left part of the graph and are separated from the ones obtained in

the course of this research.

Figure 8.1: Comparison graph of the performance of discussed algorithms

From this graph, the performance of the discussed algorithms can be

summarised in the following way:

RP

CP

SH

TS

TPSA

GD FSS

MSMA HC TA

PAES

NSGA(e)

NSGA

Algorithms implemented in this research Published
algorithms

Time-Predefined and Trajectory-Based Search Conclusions

 217

• The Great Deluge algorithm (GD) was compared with the sequential

heuristics (SH) of Carter’s et al. [CLL96] in single-objective case where

produced results were better than the published ones in 10 cases and worse in 2

cases. Besides this the Great Deluge algorithm was compared to and evidently

outperformed: Hill-Climbing (HC) and the Threshold Acceptance method (TA)

in the single-objective case. It also outperformed: the Non-Domianted Sorting

Genetic Algorithm (NSGA) and the Pareto-Archived Evolution Strategy

(PAES) in the bi-objective case. In both the single and bi-objective cases it

outperformed: Multi-Stage Memetic Algorithm (MSMA) published in [BN99]

and Tabu Search (TS) published in [DGS01].

• The Time-Predefined Simulated Annealing (TPSA) produced 8 results

better and 4 worse than SH in a single objective case, but all the results were

worse than MSMA in the bi-objective case. In both cases (single and

bi-objective), TPSA produced better results than TS.

• The multiobjective Great Deluge algorithm with variable weights applied

with the reference point strategy (RP) produced better results than MSMA in

the bi-objective case and Compromise Programming approach (CP) in the

nine-objective case.

• The enhanced variant of the multiobjective Great Deluge search used with

the Fan Search strategy (FSS) outperformed the PAES method. In its own turn,

PAES outperformed Non-dominated Sorting Genetic Algorithm with elitism

(NSGA(e)), which outperformed plain NSGA. However, both PAES and

Time-Predefined and Trajectory-Based Search Conclusions

 218

NSGA were outperformed by MSMA. This chain of comparisons was carried

out for the bi-objective case.

In order to reflect the relative performance of the different approaches,

the nodes of the graph are depicted while trying to orient the arrows in an

upper direction (the inferior algorithms are placed below the superior ones).

The upper level contains the presented variants of the Great Deluge algorithm

because in most cases they produced results of higher quality than other

techniques.

8.3 Publications

During the research work presented in this thesis the following papers were

published:

Journal papers:

• E. K. Burke, Y. Bykov, J. P. Newall, S. Petrovic. “A Time-Predefined

Local Search Approach to Exam Timetabling Problems”. Accepted for

publication in IIE transactions on Operations Engineereing.

• E. K. Burke, Y. Bykov, J. P. Newall, S. Petrovic. “A New Local Search

Approach with Execution Time as an Input Parameter”. Accepted for

publication in YUJOR - Yugoslav Journal of Operational Research. Selected as

one of 5 best papers from the 6th Balkan Conference on Operations Research,

Thessaloniki, Greece, 20-24 May 2002.

Volumes with selected refereed conference papers:

Time-Predefined and Trajectory-Based Search Conclusions

 219

• E. K. Burke, Y. Bykov, S. Petrovic. “A Multicriteria Approach to

Examination Timetabling”. E. Burke, W. Erben (eds.), The Practice and

Theory of Automated Timetabling III: Selected Papers (PATAT 2000). Lecture

Notes in Computer Science 2079 Springer-Verlag, Berlin, Heidelberg, New

York, 2001, 118-131.

• S. Petrovic, Y. Bykov. “A Multiobjective Optimisation Technique for

Exam Timetabling Based on Trajectories”. Accepted for publication in E.

Burke, P. De Causmaecker (eds.), The Practice and Theory of Automated

Timetabling IV: Selected Papers (PATAT 2002). Lecture Notes in Computer

Science, Springer-Verlag, Berlin, Heidelberg, New York, 2003, 179-192.

Journal papers in preparation for submission:

• Y. Bykov, S. Petrovic. “Trajectory-Based Search of the Criteria Space”.

8.4 Applications of the Presented Approaches in
Different Areas

The presented approaches concentrate upon the exam timetabling problem but

there is significant scope to investigate these approaches for other optimisation

problems. The brief description of the application of the proposed approaches

to two different domains, namely course timetabling and bio-informatics is

given in the next sections.

8.4.1 An International Timetabling Competition

The described Great Deluge algorithm was applied to the university course

timetabling problem while participating in the International Timetabling

Time-Predefined and Trajectory-Based Search Conclusions

 220

Competition organized by Metaheuristics Network and sponsored by the

Practice and Theory of Automated Timetabling IV (PATAT IV) conference in

2003. The algorithm obtained third place among 21 participants (even though it

was initially designed for exam timetabling rather than course timetabling).

Each participant of the competition had to present solutions to 20

problem instances. Every problem comprised the assignment of the given

number of courses to timeslots and rooms. Two hard constraints were

considered:

• courses with common students had to be scheduled in different timeslots (a

clash-free requirement),

• rooms had to be suitable for assigned courses (facilities required for

corresponding courses had to be available).

Three soft constraints generated a penalty. These constraints are:

• a student had only one lecture in a day,

• a student had more than three consecutive lectures in a day,

• a student had lecture in last timeslot of a day.

The objective function was calculated as a sum of the violations of these

constraints.

All solutions had to be obtained in a limited time interval. In order to

synchronise the time intervals on different hardware, the special test program

was provided by the organising committee. In particular, on a PC Athlon

750MHz the processing time was limited to 15 minutes.

Time-Predefined and Trajectory-Based Search Conclusions

 221

Although the processing time was relatively short, which was not

suitable for the Great Deluge algorithm where longer available time leads to

better results, the author’s results were the best among all participants in 7 from

20 cases. Moreover, among all the registered participants, only the Great

Deluge algorithm has provided a solution with a zero value of the objective

function and hence has reached the global optimum of the problem. It should

be noticed that the first and second place participants also used local search

algorithms (Simulated Annealing and Tabu Search). However, they paid more

attention to neighbourhood structures. Indeed, this is one of the most promising

ways of improving the performance of timetabling algorithms and can be

considered as an important direction of the future research.

8.4.2 An Investigation of the Protein Folding Problem

At the time of writing this thesis the trajectory-based Great Deluge algorithm

was successfully applied in the bio-informatics area. It showed a very

promising performance when used for the investigation of Protein Folding

problem.

The Protein Folding problem considers a chain of residues of different

types (aminoacids), which fold in a 3-dimentional conformation. Given the

energy of interactions between each pair of aminoacids as a function of the

distance between them, the goal is to find the conformation, which imposes the

minimum sum energy for the whole chain. Thus, the solution of this problem

can be represented with coordinates of all residues, subject to the hard

constraint:

Time-Predefined and Trajectory-Based Search Conclusions

 222

• The distance between every pair of consequent residues must be equal to a

given constant.

The objective function is the total energy of conformation and should be

minimised.

However, the difficulties in solving this problem arise because the

particular interactions between different aminoacids are not well-defined. Thus,

the major research challenge involves the validation of the model rather than

the actual solving of the problem. The tuning of the model parameters can be

done while running the algorithm a number of times using existing real

proteins (with known conformations) as problem instances.

The motivation for the use of trajectory-based approaches can be

confirmed as follows. This problem has a highly disconnected search space,

which obstructs the conducting of local search among feasible solutions. Much

better results can be obtained while temporarily relaxing the hard constraint.

Conventionally this is done using an objective function, which is the weighted

sum of violations of the hard and soft constraints and by assigning a very high

weight to the hard constraint. However, when applied to the Protein Folding

problem this method requires a very precise specification of the weights, which

is practically impossible. Too high a weight assigned to the hard constraint

results in a poor quality of final solution, while too low a weight leads to an

infeasible one.

The trajectory-based method was found to be very advantageous in

such a situation. Here the coordinates of the reference point are known (value

Time-Predefined and Trajectory-Based Search Conclusions

 223

zero for the hard constraint violations and a real-world value for the objective

function) and a necessary trajectory can be easily drawn. The search is

conducted through the trajectory exactly into the given point while avoiding

the drawbacks of the weighted sum approach.

The further validation of the model demands taking into consideration

other constraints. The third objective (which considers the angle between

consequent residues) was included into the model and the trajectory-based

algorithm successfully managed the three-objective Protein Folding problem.

8.5 Future Work

The author intends to expand the practical benefits of the presented approaches.

It would be worth more accurately investigating their properties, such as the

dependence on a problem's size (and on other characteristics of a problem).

Another direction would be to investigate the influence of an initial solution on

the overall result while exploring different initialisation methods. Also this

research did not touch on the question about neighbourhood variation, which

probably influences the result as well as questions about disconnected search

spaces, relaxation of a problem, Kempe or S-chains, etc. The described Great

Deluge algorithm employs a linear reduction of the level of acceptance of

worse solutions as the simplest variant. It seems reasonable to investigate other

possible reductions.

In the future research work the proposed multiobjective algorithms will

be evaluated in other domains with a different number of objectives and on

different shapes of trade-off surfaces. Additional issues will be investigated:

Time-Predefined and Trajectory-Based Search Conclusions

 224

how to initialise the weights in Great Deluge with variable weights and how to

choose a “good” rotation rate in the enhanced multiobjective Great Deluge

algorithm. A detailed comparison of the presented approach with other

multiobjective approaches (e.g. Goal Programming and Lexicographic

ordering) will be carried out together with an investigation of the proposed

trajectory-based strategies, especially – interactive ones.

In addition to this, the idea of time-predefined algorithms requires more

attentive study. Possibly, the multiobjective approach can be expanded while

considering the quality of solution and computational time as two user

objectives. Additionally, some methods suitable for the formal comparison of

the time-cost indices of different algorithms could be defined and investigated.

Also, it is certainly the case that the proposed methods are open to

different extensions and hybridisations. In particular, the family of time-

predefined techniques is not limited to the suggested methods. The author

believes that the predefinition of time can indeed be embedded into other

techniques. In the multiobjective case, more advanced mechanisms of the

search directing in the criteria space together with new strategies of the

assigning proper trajectories will be developed.

Time-Predefined and Trajectory-Based Search References

 225

References

[ABN60] J. S. Appleby, D. V. Blake, E. A. Newman. “Techniques for

Producing School Timetables on a Computer and their Application

to other Scheduling Problems”. The Computer Journal 3, 1960/61,

237-245.

[AL89] T. Arani, V. Lotfi. “A Three Phased Approach to Final Exam

Scheduling”. IIE Transactions 21, 1989, 86-96.

[All92] R. Allenson. “Genetic Algorithms with Gender for Multi-Function

Optimisation”. Technical Report EPCC-SS92-01, Edinburgh

Parallel Computing Centre, Edinburgh, Scotland, 1992.

[Bag99] T. P. Bagchi. “Multiobjective Scheduling by Genetic Algorithms”.

Kluwer Academic Publishers, Boston, Dordrecht, London, 1999.

[BB00] C. C. H. Borges, H. J. C. Barbosa. “A Non-Generational Genetic

Algorithm for Multiobjective Optimization”. In Proceedings of

2000 Congress on Evolutionary Computation, San Diego,

California vol.1, 2000, 172-179.

[BBP01] E. K. Burke, Y. Bykov, S. Petrovic. “A Multicriteria Approach to

Examination Timetabling”. E. Burke, W. Erben (eds.), The

Practice and Theory of Automated Timetabling III: Selected

Papers (PATAT 2000). Lecture Notes in Computer Science 2079,

Springer-Verlag, Berlin, Heidelberg, New York, 2001, 118-131.

Time-Predefined and Trajectory-Based Search References

 226

[BDP94] P. Boizumault, Y. Delon, L. Peridy. “Planning exams using CLP”.

In Proceedings of 2nd ICPAP’94, London, 1994.

[BEW94] E. K. Burke, D. G. Elliman, and R. F. Weare. “A Genetic

Algorithm for University Timetabling”. T. C. Fogarty (editor),

Evolutionary Computing: AISB Workshop, Leeds, UK, April 1994;

Selected Papers. Lecture Notes in Computer Science 865,

Springer-Verlag, Berlin, Heidelberg, New York, 1994.

[BEW95] E. K. Burke, D. Elliman, R. Weare. “Specialise Recombinative

Operators for Timetabling Problem”. In Proceedings of the AISB

Workshop on Evolutionary Computing, University of Sheffield,

UK, 1995, 75-85.

[BKW03] E. K. Burke, J. Kingston and D. De Werra. “Applications to

Timetabling”. To appear in J. Gross, J. Yellen (eds.), Handbook of

Graph Theory, to be published by Chapman Hall/CRC Press,

2003.

[BLW92] N. Balakrishnan, A. Lucena, R. T. Wong. “Scheduling

Examinations to Reduce Second-Order Conflicts”. Computers and

Operations Research 19, 1992, 353-361.

Time-Predefined and Trajectory-Based Search References

 227

[BN96] J. P. Boufflet, S. Negre. “Three Methods Used to Solve an

Examination Timetabling Problem”. E. Burke, P. Ross (eds.), The

Practice and Theory of Automated Timetabling: Selected Papers

(ICPTAT '95). Lecture Notes in Computer Science 1153. Springer-

Verlag, Berlin, Heidelberg, New York, 1996, 327-344.

[BN99] E. K. Burke, J. P. Newall. “A Multi-Stage Evolutionary Algorithm

for the Timetable Problem”. The IEEE Transactions on

Evolutionary Computation 3(1), 1999, 63-74.

[BN02] E. K. Burke, J. P. Newall. “Enhancing Timetable Solutions with

Local Search Methods”. In Proceedings of the 4th International

Conference on the Practice and Theory of Automated Timetabling

(PATAT2002), 2002, 336-347.

[BN03] E. K. Burke, J. P. Newall. “Solving Examination Timetabling

Problems through Adaptation of Heuristic Orderings”. Accepted

for publication in Annals of Operations Research, 2003.

[BNW96] E. K. Burke, J. P. Newall, R. F. Weare. “A Memetic Algorithm for

University Exam Timetabling”. E. Burke, P. Ross (eds.), The

Practice and Theory of Automated Timetabling: Selected Papers

(ICPTAT '95). Lecture Notes in Computer Science 1153. Springer-

Verlag, Berlin, Heidelberg, New York, 1996, 241-250.

Time-Predefined and Trajectory-Based Search References

 228

[BNW98] E. K. Burke, J. P. Newal, R. F. Weare. “Initialization Strategies

and Diversity in Evolutionary Timetabling”. Evolutionary

Computation 6(1), 1998, 81-103.

[BP02] E. K. Burke, S. Petrovic. “Recent Research Directions in

Automated Timetabling”. European Journal of Operational

Research - EJOR 140(2), 2002, 266-280.

[Bre79] D. Brelaz. “New Methods to Colour the Vertices of a Graph”.

Communication of the ACM 22(4), 1979, 251-256.

[Bro41] R. L. Brooks. “On Colouring the Nodes of a Network”.

Proceedings of Cambridge Philosophical Society, 1941, 194-197.

[Bro64] S. Broder. “Final Examination Scheduling”. Communications of

the ACM 7, 1964, 494-498.

[BRS66] H. J. Bremermann, J. Roghson, S. Salaff. “Global Properties of

Evolution Processes”. H. H. Pattee, E. A. Edelsack, L. Fein, A. B.

Calahan (eds.), Natural Automata and Useful Simulations,

Macmillan, 1966, 3-42.

[Bul98] B. Bullnheimer. “An Examination Scheduling Model to Maximize

Students' Study Time”. E. Burke, M. Carter (eds.), The Practice

and Theory of Automated Timetabling: Selected Papers

(PATAT '97). Lecture Notes in Computer Science 1408. Springer-

Verlag, Berlin, Heidelberg, New York, 1998, 78-91.

Time-Predefined and Trajectory-Based Search References

 229

[Burk96] E. K. Burke, D. Elliman, P. Ford, R. Weare. “Examination

Timetabling in British Universities: a Survey”. E. Burke, P. Ross

(eds.), The Practice and Theory of Automated Timetabling:

Selected Papers (ICPTAT '95). Lecture Notes in Computer

Science 1153. Springer-Verlag, Berlin, Heidelberg, New York,

1996, 76-90.

[Burk97] E. K. Burke, K. S. Jackson, J. H. Kingston and R. F. Weare.

“Automated Timetabling: The State of the Art”. The Computer

Journal 40(9), 1997, 565-571.

[Burk02] E. K. Burke, A. J. Eckersley, B. McCollum, S. Petrovic, R. Qu. “A

Case Based Heuristic Selection Investigation of Hill Climbing,

Simulated Annealing and Tabu Search for Exam Timetabling

Problems” (abstract). In Proceedings of the 4th International

Conference on the Practice and Theory of Automated Timetabling

(PATAT2002), 2002, 408-410.

[Burk03a] E. K. Burke, E. Hart, G. Kendall, J. P. Newall, P. Ross,

S. Schulenburg. “Hyper-Heuristics: An Emerging Direction in

Modern Search Technology”. Chapter 16 in F. W. Glover, G. A.

Kochenberger (eds.), Handbook of Metaheuristics . International

Series in Operations Research and Management Science 57,

Kluwer Academic Publishers, Boston, Dordrecht, London, 2003,

457-474.

Time-Predefined and Trajectory-Based Search References

 230

[Burk03b] E. K. Burke, Y. Bykov, J. P. Newall, S. Petrovic. “A Time-

Predefined Local Search Approach to Exam Timetabling

Problems”. Accepted for publication in IIE transactions on

Operations Engineereing, 2003.

[Burk03c] E. K. Burke, Y. Bykov, J. P. Newall, S. Petrovic. “A New Local

Search Approach with Execution Time as an Input Parameter”.

Accepted for publication in YUJOR - Yugoslav Journal of

Operational Research, 2003.

[Car86] M. W. Carter. “A Survey of Practical Applications of Examination

Timetabling Algorithms”. Operations Research 34(2), 1986,

193-201.

[Car01] M. W. Carter. “A Comprehensive Course Timetabling and Student

Scheduling System at the University of Waterloo”. E. Burke, W.

Erben (eds.), The Practice and Theory of Automated Timetabling

III: Selected Papers (PATAT 2000). Lecture Notes in Computer

Science 2079. Springer-Verlag, Berlin, Heidelberg, New York,

2001, 64-82.

[CC61] A. Charnes, W. W. Cooper. “Management Models and Industrial

Applications of Linear Programming”. Wiley, New York, 1961.

[CCF55] A. Charnes, W. W. Cooper, R. Ferguson. “Optimal Estimation of

Executive Compensation by Linear Programming”. Management

Science 1, 1955, 138-151.

Time-Predefined and Trajectory-Based Search References

 231

[CDI01] M. Caramia, P. Dell’Olmo, G. F. Italiano. “New Algorithms for

Examination Timetabling”. S. Nher, D. Wagner (eds.), Algorithm

Engineering 4th International Workshop, WAE 2000, Saarbrucken,

Germany, September 2000. Proceedings. Lecture Notes in

Computer Science 1982, Springer-Verlag, Berlin, Heidelberg,

New York, 2001, 230-241.

[CFM93] D. Corne, H. L. Fang, C. Mellish. “Solving the Module Exam

Scheduling Problem with Genetic Algorithms”. P. W./H. Chung,

G. Lovergrove, M. Ali (eds.), Proceedings of the Sixth

International Conference in Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems. Gordon

and Breach Science Publishers, 1993, 370-373.

[CH97] D. Costa, A. Hertz. “Ants can Colour Graphs”. Journal of

Operational Research Society 48, 1997, 295-305.

[CJ98] P. Czyzak, A. Jaszkiewicz. “Pareto Simulated Annealing – a

Metaheuristic Technique for Multiple-Objective Combinatorial

Optimization”. Journal of Multi-Criteria Decision Analysis 7,

1998, 34-47.

[CJ01] M. W. Carter, D. G. Johnson. “Extended Clique Initialisation in

Examination Timetabling”. Journal of the Operational Research

Society 52, 2001, 538-544.

Time-Predefined and Trajectory-Based Search References

 232

[CL96] M. W. Carter, G. Laporte. “Recent Developments in Practical

Examination Timetabling”. E. Burke, P. Ross (eds.), The Practice

and Theory of Automated Timetabling: Selected Papers

(ICPTAT '95). Lecture Notes in Computer Science 1153. Springer-

Verlag, Berlin, Heidelberg, New York, 1996, 3-21.

[CLC94] M. W. Carter, G. Laporte, J. W. Chinneck. “A General

Examination Scheduling System”. Interfaces 24, 1994, 109-120.

[CLL96] M. W. Carter, G. Laporte, S. Y. Lee. “Examination Timetabling:

Algorithmic Strategies and Applications”. Journal of Operational

Research Society 47(3), 1996, 373-383.

[Coe99] C. A. Coelo Coelo. “A Comprehensive Survey of Evolutionary-

Based Multiobjective Optimization Techniques”. Knowledge and

Information Systems. An International Journal 1(3), 1999,

269-308.

[Col64] A. J. Cole. “The Preparation of Examination Timetables Using a

Small-Store Computer”. The Computer Journal 7, 1964, 117-121.

[Cos94] D. Costa. “A Tabu Search Algorithm for Computing an

Operational Timetable”. European Journal of Operational

Research 76, 1994, 98-110.

Time-Predefined and Trajectory-Based Search References

 233

[CP01] M. P. Carrasco, M. V. Pato. “A Multiobjective Genetic Algorithm

for the Class/Teacher Timetabling Problem”. E. Burke, W. Erben

(eds.), The Practice and Theory of Automated Timetabling III:

Selected Papers (PATAT 2000). Lecture Notes in Computer

Science 2079. Springer-Verlag, Berlin, Heidelberg, New York,

2001, 3-17.

[CR96] D. Corne, P. Ross. “Peckish Initialisation Strategies for

Evolutionary Timetabling”. E. Burke, P. Ross (eds.), The Practice

and Theory of Automated Timetabling: Selected Papers

(ICPTAT '95). Lecture Notes in Computer Science 1153. Springer-

Verlag, Berlin, Heidelberg, New York, 1996, 227-240.

[CRF94] D. Corne, P. Ross, H. L. Fang. “Fast Practical Evolutionary

Timetabling”. T. C. Fogarty (editor), Evolutionary Computing:

AISB Workshop, Leeds, UK, April 1994; Selected Papers. Lecture

Notes in Computer Science 865, Springer-Verlag, Berlin,

Heidelberg, New York, 1994, 250-263.

[Dav98] P. David. “A Constraint-Based Approach for Examination

Timetabling Using Local Repair Techniques”. E. Burke, M. Carter

(eds.), The Practice and Theory of Automated Timetabling:

Selected Papers (PATAT '97). Lecture Notes in Computer Science

1408. Springer-Verlag, Berlin, Heidelberg, New York, 1998,

169-186.

Time-Predefined and Trajectory-Based Search References

 234

[DG02] L. Di Gaspero. “Recolour, Shake and Kick: a recipe for the

Examination Timetabling Problem” (abstract). In Proceedings of

the 4th International Conference on the Practice and Theory of

Automated Timetabling (PATAT2002), 2002, 404-407.

[DGS01] L. Di Gaspero, A. Schaerf. “Tabu Search Techniques for

Examination Timetabling”. E. Burke, W. Erben (eds.), The

Practice and Theory of Automated Timetabling III: Selected

Papers (PATAT 2000). Lecture Notes in Computer Science 2079.

Springer-Verlag, Berlin, Heidelberg, New York, 2001, 104-117.

[DMC91] M. Dorigo, V. Maniezzo, A. Colorni. “Positive Feedback as a

Search Strategy”. Technical Report 91-016, Politecnico di Milano,

Italy, 1991.

[Dow98] K. Dowsland. “Off-the-Peg or Made-to-Measure? Timetabling and

Scheduling with SA and TS”. E. Burke, M. Carter (eds.), The

Practice and Theory of Automated Timetabling: Selected Papers

(PATAT '97). Lecture Notes in Computer Science 1408. Springer-

Verlag, Berlin, Heidelberg, New York, 1998, 37-52.

[DPT02] K. A. Dowsland, N. Pugh, J. Thompson. “Examination

Timetabling with Ants” (abstract). In Proceedings of the 4th

International Conference on the Practice and Theory of

Automated Timetabling (PATAT2002), 2002, 397-399.

Time-Predefined and Trajectory-Based Search References

 235

[DS90] G. Dueck, T. Scheuer. “Threshold Accepting: a General Purpose

Optimization Algorithm Appearing Superior to Simulated

Annealing”. Journal of Computational Physics 90, 1990, 161-175.

[Due93] G. Dueck. “New Optimization Heuristics. The Great Deluge

Algorithm and the Record-to-Record Travel”. Journal of

Computational Physics 104, 1993, 86-92.

[Erb01] W. Erben. “A Grouping Genetic Algorithm for Graph Colouring

and Exam Timetabling”. E. Burke, W. Erben (eds.), The Practice

and Theory of Automated Timetabling III: Selected Papers

(PATAT 2000). Lecture Notes in Computer Science 2079.

Springer-Verlag, Berlin, Heidelberg, New York, 2001, 132-156.

[Erg96] A. Ergul. “GA-Based Examination Scheduling Experience at

Middle East Technical University”. E. Burke, P. Ross (eds.), The

Practice and Theory of Automated Timetabling: Selected Papers

(ICPTAT '95). Lecture Notes in Computer Science 1153. Springer-

Verlag, Berlin, Heidelberg, New York, 1996, 212-226.

[FF93] C. M. Fonseca, P. J. Fleming. “Genetic Algorithms for

Multiobjective Optimisation: Formulation, Discussion and

Generalization”. In Proceedings of the Fifth International

Conference on Genetic Algorithms, San Mateo, California, 1993,

416-423.

Time-Predefined and Trajectory-Based Search References

 236

[Fra57] A. S. Fraser. “Simulation of Genetic Systems by Automatic

Digital Computers”. Australian Journal of Biological Sciences,

1957.

[FS83] J. G. Fisher, D. R. Shier. “A Heuristic Procedure for Large-Scale

Examination Scheduling Problems”. Technical Report 417,

Department of Mathematical Sciences, Clemson University, 1983.

[GL97] F. Glover, M. Laguna. “Tabu Search”. Kluwer Academic

Publishers, Boston, Dordrecht, London, 1997.

[Glo86] F. Glover. “Future Paths for Integer Programming and Links to

Artificial Intelligence”. Computers and Operational Research 5,

1986, 533-549.

[GMF97] X. Gandibleux, N. Mezdaoui, A. Freville. “A Tabu Search

Procedure to Solve Multiobjective Combinatorial Optimization

Problems”. Advances in Multiple Objective and Goal

Programming. Lecture Notes in Economics and Mathematical

Systems 455, Springer-Verlag, Berlin, Heidelberg, New York,

1997, 291-300.

[Gol89] D. E. Goldberg. “Genetic Algorithms in Search, Optimisation and

Machine Learning”. Addison-Wesley Publishing Company,

Reading, Massachusetts, 1989.

Time-Predefined and Trajectory-Based Search References

 237

[Gor89] E. Gordeev. “Decision Problems and their Solutions”.

Cybernetics - Unlimited Possibilities and Possible Limits, USSR

Academy of Science, 1989, 5-48 (in Russian).

[Han97] M. P. Hansen. “Tabu Search for Multiobjective Optimization:

MOTS”. In Proceedings of MCDM’97, Cape Town, South Africa,

1997.

[Her91] A. Hertz. “Tabu Search for Large Scale Timetabling Problems”.

European Journal of Operational Research 54, 1991, 39-47.

[Hil89] M. R. Hillard, G. E. Lliepins, M. Palmer, G. Rangarajen. “The

Computer as a Partner in Algorithmic Design: Automated

Discovery of Parameters for a Multiobjective Scheduling

Heuristic”. Impacts of Recent Computer Advances on Operations

Research, North-Holland Publishing Company, New York, 1989.

[HJ98] M. P. Hansen, A. Jaszkiewicz. “Evaluating the Quality of

Approximations to the Non-Dominated Set”. Technical Report

IMM-REP-1998-7, Technical University of Denmark, 1998.

[HN93] J. Horn, N. Nafpliotis. “Multiobjective Optimization Using the

Niched Pareto Genetic Algorithm”. Thechnical Report IlliGAl

93005, University of Illinois at Urbana-Champaign, Urbana,

Illinois, USA, 1993.

Time-Predefined and Trajectory-Based Search References

 238

[Hol75] J. H. Holland. “Adaptation in Natural and Artificial Systems”.

University of Michigan Press, 1975.

[JF95] T. Jones, S. Forrest. “Genetic Algorithms and Heuristic Search”.

In Proceedings of International Joint Conference on Artificial

Intelligence, 1995.

[Joh90] D. G. Johnson. “Timetabling University Examinations”. Journal

of the Operational Research Society 40, 1990, 39-47.

[Kar72] R. M. Karp. “Reducibility among Combinatorial Problems”.

Complexity of Computer Computations, Plenum press, New York,

1972, 85-104.

[KC99] J. D. Knowles, D. W. Corne. “The Pareto-Archived Evolution

Strategy: A New Baseline Algorithm for Multiobjective

Optimisation”. In Proceedings of the 1999 Congress on

Evolutionary Computation, Washington, DC, 1999, 98-105.

[KC00a] J. D. Knowles, D. W. Corne. “Approximating the Nondominated

Front Using the Pareto Archived Evolution Strategy”.

Evolutionary Computation, 8(2), 2000, 149-172.

[KC00b] J. D. Knowles, D. W. Corne. “M-PAES: A Memetic Algorithm for

Multiobjective Optimization”. In Proceedings of the 2000

Congress on Evolutionary Computation, Piscataway, New Jersey,

vol.1, 2000, 325-332.

Time-Predefined and Trajectory-Based Search References

 239

[KC02] J. D. Knowles, D. W. Corne. “On Metrics for Comparing

Non-Dominated Sets”. In Proceedings of the 2002 Congress on

Evolutionary Computation Conference (CEC02), IEEE Press,

2002, 711-716.

[KGV83] S. Kirkpatrick, J. C. D. Gellat, M. P. Vecci. “Optimization by

Simulated Annealing”. Science 220, 1983, 671-680.

[Kir84] S. Kirkpatrick. “Optimization by Simulated Annealing –

Quantitative Studies”. Journal of Statistical Physics 34, 1984,

975-986.

[KT51] H. W. Kuhn, A. W. Tucker. “Nonlinear Programming”. In

Proceedings of the Second Berkley Symposium on Mathematical

Statistics and Probability, Berkley, California, 1951, 481-492.

[LC91] V. Lotfi, R. Cerveny. “A Final Exam-Scheduling Package”.

Journal of Operational Research Society 42, 1991, 205-216.

[LE96] J. Lis, A. E. Eiben. “A Multi-Sexual Genetic Algorithm for

Multiobjective Optimization”. In Proceedings of the 1996

International Conference on Evolutionary Computation, Nagoya,

Japan, 1996, 59-64.

[LG96] M. Laguna, F. Glover. “What is Tabu Search?”. Colorado

Business Review LXI(5), 1996.

Time-Predefined and Trajectory-Based Search References

 240

[Lin02] S. L. M. Lin. “A Broker Algorithm for Timetabling Problem”. In

Proceedings of the 4th International Conference on the Practice

and Theory of Automated Timetabling (PATAT2002), 2002,

372-386.

[LO99] S. M. Lee, D. L. Olson. “Goal Programming”. Multicriteria

Decision Making: Advances in MCDM Models, Algorithms,

Theory and Applications, Kulwer Academic Publishers, Boston,

Dordrecht, London, 1999, 8.1-8.33.

[Mer02] L. T. G. Merlot, N. Boland, B. D. Hughes, P. J. Stuckey. “A

Hybrid Algorithm for the Examination Timetabling Problem”. In

Proceedings of the 4th International Conference on the Practice

and Theory of Automated Timetabling (PATAT2002), 2002,

348-371.

[MMI72] D. W. Matula, G. Marble, I. D. Isaacson. “Graph Colouring

Algorithms”. Graph Theory and Computing, Academic Press,

New York, 1972.

[MN92] P. Moscato, M. G. Norman. “A “Memetic” Approach for the

Travelling Salesman Problem - Implementation of a

Computational Ecology for Combinatorial Optimisation on

Message-Passing System”. In Proceedings of the International

Conference on Parallel Computing and Transputer Applications.

IOS Press, Amsterdam, 1992.

Time-Predefined and Trajectory-Based Search References

 241

[MT96] A. Mehrotra, M. A. Trick. “A Clique Generation Approach to

Graph Coloring”. INFORMS Journal on Computing 8, 1996, 344-

354.

[OL96] I. Osman, G. Laporte. “Metaheuristics: A Bibliography”. Annals

of Operations Research 63, 1996, 513-623.

[Pae98] B. Paechter, R. C. Rankin, A. Cumming, T. C. Fogarty.

“Timetabling the Classes of an Entire University with an

Evolutionary Algorithm”. T. Beck, M. Schoenauer (eds.), Parallel

Problem Solving from Nature - PPSN V. Springer-Verlag, Berlin,

Heidelberg, New York, 1998.

[PB03] S. Petrovic, Y. Bykov. “A Multiobjective Optimisation Technique

for Exam Timetabling Based on Trajectories”. Accepted for

publication in E. Burke, P. De Causmaecker (eds.), The Practice

and Theory of Automated Timetabling IV: Selected Papers

(PATAT 2002). Lecture Notes in Computer Science, Springer-

Verlag, Berlin, Heidelberg, New York, 2003, 179-192.

[PF01] L. F. Paquete, C. M. Fonseca. “A Study of Examination

Timetabling with Multiobjective Evolutionary Algorithms”. In

Proceedings of 4th Metaheuristics International Conference (MIC

2001), Porto, 2001, 149-154.

Time-Predefined and Trajectory-Based Search References

 242

[Pin95] M. Pinedo. “Scheduling Theory, Algorithms, and Systems”.

Prentice-Hall, Inc. A Simon & Schuster Company, New Jersey,

USA, 1995.

[PP95] S. Petrovic, R. Petrovic. “Eco-Ecodispatch: DSS for Multicriteria

Loading of Thermal Power Generators”. Journal of Decision

Systems 4, 1995, 279-295.

[PS02] L. Paquete, T. Stutzle. “Empirical Analysis of Tabu Search for the

Lexicographic Optimisation of the Examination Timetabling

Problem” (abstract). In Proceedings of the 4th International

Conference on the Practice and Theory of Automated Timetabling

(PATAT2002), 2002, 413-420.

[PW66] J. E. L. Peck, M. R. Williams. “Algorithm 286 - Examination

Scheduling”. Communication of the ACM 9, 1966, 433-434.

[RC95] P. Ross, D. Corne. “Comparing Genetic Algorithms, Simulated

Annealing, and Stochastic Hillclimbing on Timetable Problems”.

In Proceedings of the AISB Workshop in Evolutionary Computing,

Lecture Notes in Computer Science 993, Springer-Verlag, Berlin,

Heidelberg, New York, 1995.

Time-Predefined and Trajectory-Based Search References

 243

[Ree94] C. R. Reeves. “Genetic Algorithms and Neighbourhood Search”.

T. C. Fogarty (editor), Evolutionary Computing: AISB Workshop,

Leeds, UK, April 1994; Selected Papers. Lecture Notes in

Computer Science 865, Springer-Verlag, Berlin, Heidelberg, New

York, 1994, 115-129.

[Ree96] C. R. Reeves. “Modern Heuristic Techniques”. Modern Heuristic

Search Methods, John Willey & Sons Ltd., 1996.

[RH96] V. Robert, A. Hertz. “How to Decompose Constrained Course

Scheduling Problems Into Easier Assignment Type Subproblems”.

E. Burke, P. Ross (eds.), The Practice and Theory of Automated

Timetabling: Selected Papers (ICPTAT '95). Lecture Notes in

Computer Science 1153. Springer-Verlag, Berlin, Heidelberg,

New York, 1996, 364-373.

[RHC98] P. Ross, E. Hart, D. Corne. “Some Observations about GA-Based

Exam Timetabling”. E. Burke, M. Carter (eds.), The Practice and

Theory of Automated Timetabling: Selected Papers (PATAT '97).

Lecture Notes in Computer Science 1408. Springer-Verlag, Berlin,

Heidelberg, New York, 1998, 115-129.

[Ric89] J. T. Richardson, M. R. Palmer, G. Liepins, M. Hillard. “Some

Guidelines for Genetic Algorithms with Penalty Functions”. In

Proceedings of the Third International Conference on Genetic

Algorithms, George Mason University, 1989, 191-197.

Time-Predefined and Trajectory-Based Search References

 244

[RO99] L. P. Reis, E. Oliveira. “Constraint Logic Programming Using Set

Variables for Solving Timetabling Problems”. In Proceedings of

INAP’99 – 12th International Conference on Applications of

Prolog, Tokyo, Japan, 1999.

[Sch85] J. D. Schaffer. “Multiple Objective Optimization with Vector

Evaluated Genetic Algorithms”. In Proceedings of the First

International Conference on Genetic Algorithms, 1985, 93-100.

[Sch96] A. Schaerf. “Tabu Search Techniques for Large High-School

Timetabling Problems”. Technical Report CWI, Amsterdam,

1996.

[Sch99a] A. Schaerf. “A Survey of Automated Timetabling”. Artificial

Intelligent Review, 13, 1999, 87-127.

[Sch99b] A. Schaerf. “Local Search Techniques for Large High School

Timetabling Problems”. IEEE Transactions on Systems Man and

Cybernetics 29(4) part A, 1999, 368-377.

[SD94] N. Srinivas, K. Deb. “Multiobjective Optimization using

Non-Dominated Sorting Genetic Algorithms”. Evolutionary

Computation 2(3), 1994, 221-248.

Time-Predefined and Trajectory-Based Search References

 245

[SF96a] K. J. Shaw, P. J. Fleming. “An Initial Study of Practical

Multiobjective Production Scheduling, Using Genetic

Algorithms”. In Proceedings of the International Conference on

Control’96, University of Exter, UK, 1996.

[SF96b] K. J. Shaw, P. J. Fleming. “Initial Study of Multi-Objective

Genetic Algorithms for Scheduling the Production of Chilled

Ready Meals”. In Proceedings of the Second International Mendel

Conference on Genetic Algorithms, Brno, Czech Republic, 1996.

[Sha00] K. J. Shaw, P. L. Lee, H. P. Nott, M. Thompson. “Genetic

Algorithms for Multiobjective Scheduling of Combined

Batch/Continuous Process Plants”. In Proceedings of the 2000

Congress on Evolutionary Computation, Piscataway, New Jersey,

2000, 293-300.

[She02] K. Sheibani. “An Evolutionary Approach for the Examination

Timetabling Problems” (abstract). In Proceedings of the 4th

International Conference on the Practice and Theory of

Automated Timetabling (PATAT2002), 2002, 387-396.

[SP91] G. Syswerda, J. Palmucci. “The Application of Genetic

Algorithms to Resource Scheduling”. In Proceedings of the

Fourth International Conference on Genetic Algorithms, San

Mateo, California, 1991, 502-508.

Time-Predefined and Trajectory-Based Search References

 246

[TA00] M. Tanaka, S. Adachi. “Request-Based Timetabling by Genetic

Algorithm with Tabu Search”. In Proceedings of the Third

International Workshop on Frontiers in Evolutionary Algorithms,

2000, 999-1002.

[TD93] J. M. Thompson, K. A. Dowsland. “Multi-Objective University

Examination Scheduling”. Technical report EBMS/1993/12,

European Business Management School, Swansea University, UK,

1993.

[TD96a] J. M. Thompson, K. A. Dowsland. “General Cooling Schedules

for a Simulated Annealing Based Timetabling System”. E. Burke,

P. Ross (eds.), The Practice and Theory of Automated

Timetabling: Selected Papers (ICPTAT '95). Lecture Notes in

Computer Science 1153. Springer-Verlag, Berlin, Heidelberg,

New York, 1996, 345-363.

[TD96b] J. M. Thompson, K. A. Dowsland. “Variants of Simulated

Annealing for the Examination Timetabling Problem”. Annals of

Operations Research 63, 1996, 105-128.

[TD98] J. M. Thompson, K. A. Dowsland. “A Robust Simulated

Annealing Based Examination Timetabling System”. Computers

and Operational Research 25(7/8), 1998, 637-648.

Time-Predefined and Trajectory-Based Search References

 247

[Ter94] H. Terashima-Marin. “A Comparison of GA-Based Methods and

Graph-Colouring Methods for Solving the Timetabling Problem”.

Master’s thesis, Department of AI, University of Edinburgh, 1994.

[TJR98] M. Tamiz, D. Jones, C. Romero. “Goal Programming for Decision

Making: An Overview of the Current State-of-the-Art”. European

Journal of Operational Research 111, 1998, 569-581.

[TRV99] H. Terashima-Marin, P. M. Ross, M. Valenzuela-Rendon.

“Evolution of Constraint Satisfaction Strategies in Examination

Timetabling”. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-99). Morgan Kaufmann, 1999,

635-642.

[UTF95] E. L. Ulungu, J. Teghem, P. Fortemps. “Heuristics for

Multi-Objective Combinatorial Optimisation Problem by

Simulated Annealing”. In Proceedings of the 6th International

Conference on MCDM, Beijing, China, 1995, 228-238.

[Vin92] P. Vincke. “Multicriteria Decision-Aid”. John Wiley & Sons,

Chichester, New York, Brisbane, Toronto, Singapore, 1992.

[VU97] M. Valenzuela-Rendon, E. Uresti-Charre. “A Non-Generational

Genetic Algorithm for Multiobjective Optimization”. In

Proceedings of the Seventh International Conference on Genetic

Algorithms, San Mateo, California, 1997, 658-665.

Time-Predefined and Trajectory-Based Search References

 248

[VV99] D. A. Van Veldhuizen. “Multiobjective Evolutionary Algorithms:

Classifications, Analyses, and New Innovations”. PhD Thesis,

Department of Electrical and Computer Engineering, Graduate

School of Engineering, Air Force Institute of Technology, Wright-

Patterson AFB, Ohio, 1999.

[VVL00] D. A. Van Veldhuizen, G. B. Lamont. “Multiobjective

Evolutionary Algorithms: Analyzing the State-of-the-Art”.

Evolutionary Computation 8(2), 2000, 125-147.

[VZ00] A. Vesel, J. Zerovnik. “How Good Can Ants Color Graphs?”.

Journal of Computing and Information Technology 8(2), 2000,

131-136.

[Whi00] G. M. White. “Constraint satisfaction, Not So Constrained

Satisfaction and the Timetabling Problem”. In Proceedings of the

Third International Conference on the Practice and Theory of

Automated Timetabling (PATAT2000), 2000, 32-47.

[Wie99] A. P. Wierzbicki. “Reference Point Approach”. Multicriteria

Decision Making: Advances in MCDM Models, Algorithms,

Theory and Applications, Kulwer Academic Publishers, Boston,

Dordrecht, London, 1999, 9.1-9.39.

[Wil74] M. R. Williams. “Heuristic Procedures - if they Work, Leave

Them Alone”. Software Practice and Experience 4, 1974,

237-240.

Time-Predefined and Trajectory-Based Search References

 249

[Woo68] D. C. Wood. “A System for Computing University Examination

Timetables”. The Computer Journal 11, 1968, 41-47.

[WP67] D. J. Welsh, M. B. Powell. “An Upper Bound for the Chromatic

Number of a Graph and its Application to Timetabling Problem”.

The Computer Journal 10, 1967, 85-86.

[Wre96] A. Wren. “Scheduling, Timetabling and Rostering - a Special

Relationship?”. E. Burke, P. Ross (eds.), The Practice and Theory

of Automated Timetabling: Selected Papers (ICPTAT '95). Lecture

Notes in Computer Science 1153. Springer-Verlag, Berlin,

Heidelberg, New York, 1996, 46-75.

[WX01] G. M. White, B. S. Xie. “Examination Timetables and Tabu

Search With Longer Term Memory”. E. Burke, W. Erben (eds.),

The Practice and Theory of Automated Timetabling III: Selected

Papers (PATAT 2000). Lecture Notes in Computer Science 2079.

Springer-Verlag, Berlin, Heidelberg, New York, 2001, 85-103.

[YR03] J. Yanez, J. Ramirez. “The Robust Coloring Problem”. European

Journal of Operational Research 148, 2003, 546-558.

[ZDT00] E. Zitzler, K. Deb, L. Thiele. “Comparison of Multiobjective

Evolutionary Algorithms: Empirical Results”. Evolutionary

Computation 8(2), 2000, 173-195.

Time-Predefined and Trajectory-Based Search References

 250

[Zel73] M. Zeleny. “Compromise programming”. J. L. Cochrane, M.

Zeleny (eds.), Multiple Criteria Decision Making, University of

South Carolina Press, Columbia, 1973, 262-301.

[Zel74] M. Zeleny. “A Concept of Compromise Solutions and the Method

of Displaced Ideal”. Computers and Operational Research 1,

1974, 479-496.

[Zel82] M. Zeleny. “Multiple Criteria Decision Making”. McGrow-Hill

Book Company, 1982.

[Zit99] E. Zitzler. “Evolutionary Algorithms for Multiobjective

Optimisation: Methods and Applications”. PhD thesis, Swiss

Federal Institute of Technology (ETH), Zurich, Switzerland, 1999.

[ZT99] E. Zitzler, L. Thiele. “Multiobjective Evolutionary Algorithms: A

Comparative Case Study and the Strength Pareto Approach”.

IEEE Transactions on Evolutionary Computation 3(4), 1999, 257-

271.

Time-Predefined and Trajectory-Based Search References

 251

	List of Figures
	List of Tables
	Abstract
	Acknowledgements
	1. Introduction
	1.1 Timetabling Problems
	1.2 University Exam Timetabling and its Automatisation
	1.3 Exam Timetabling as Graph Colouring Problem
	1.4 Motivation of Presented Research
	1.5 Contribution

	2. Overview of Algorithmic Approaches to Exam Timetabling
	2.1 Sequential Methods
	2.2 Cluster Methods
	2.3 Metaheuristics
	2.3.1 Local Search Metaheuristics
	2.3.2 Simulated Annealing
	2.3.3 Tabu Search
	2.3.4 Genetic Algorithms
	2.3.5 Constraint Logic Programming
	2.3.6 Ant Colony Optimisation

	2.4 Recent Innovative Methodologies for Automated Exam Timetabling
	2.5 Hybridisation of Different Methods
	2.6 Summary

	3. A Review of Multiobjective Techniques
	3.1 Basic Concepts of the Multiobjective Optimisation
	3.2 A Priori Methods
	3.3. A Posteriori Methods
	3.3.1 Multiobjective Versions of Genetic Algorithms
	3.3.2 Non-Evolutionary Pareto-Based Techniques
	3.3.3 Hybridisation of Pareto-based Techniques

	3.4 The Evaluation of Trade-off Surfaces
	3.5 Multiobjective Exam Timetabling
	3.6 Summary

	4. Exam Timetabling Specification and Data
	4.1 A Formalisation of Exam Timetabling Problems
	4.1.1 A Specification of the Basic Problem
	4.1.2 A Specification of Additional Constraints

	4.2 A Multiobjective Statement of Exam Timetabling Problem
	4.3 Benchmark Exam Timetabling Datasets
	
	Data set

	5. A Time Predefined Approach to Examination Timetabling
	5.1 The Role of Computational Time in the Process of Solving Timetabling Problems
	5.2 Time-Predefined Algorithms
	5.2.1 The Time-Predefined Simulated Annealing
	5.2.2 The Great Deluge Algorithm

	5.3 Experiments with Time-Predefined Techniques
	5.3.1 An Initialisation Phase
	5.3.2 Neighbourhood Structure

	5.4 Investigating the Properties of the Algorithms
	5.5 Analysis of the Relationship between Time and Cost
	5.6 A Comparison of Time-Predefined Simulated Annealing and the Great Deluge Algorithm with the Current State-of-the-Art.
	5.6.1 A Comparison on Carter’s Benchmarks
	5.6.2 Experiments with More Advanced Problems

	5.7 On the Comparison of the Performance of the Time-Predefined Algorithms with other Approaches
	5.7.1 A Comparison with a Threshold Acceptance Method
	5.7.2 A Comparison with Hill-Climbing

	5.8 Conclusions

	6. Multiobjective Methods for Exam Timetabling Problems
	6.1 An Aggregation Multiobjective Technique based on Compromise Programming
	6.1.1 Criteria and Preference Spaces
	6.1.2 An Algorithm for Heuristic Search of the Preference Space
	6.1.3 A Real Timetabling Problem: Results and Discussion

	6.2 A Case Study of the Application of Pareto-Based Approach to Exam Timetabling Problems
	6.2.1 Non-Dominated Sorting Genetic Algorithm for Exam Timetabling
	6.2.2 Pareto Archived Evolutionary Strategy for Exam Timetabling

	6.3 Conclusions

	7. A Trajectory-Based Multiobjective Search
	7.1 Driving the Search through a Trajectory
	7.2 A Reference Solution Strategy
	7.3 Great Deluge with Variable Weights
	7.3.1 Description of the Method
	7.3.2 Investigation of Properties of Great Deluge with Variable Weights
	7.3.3 Experiments with Reference Points
	7.3.4 Evaluation of a Manageability of the Reference Point Method

	7.4 An Enhanced Trajectory-Based Multiobjective Optimisation Technique
	7.4.1 The Description of the Method for the Bi-Objective Case
	7.4.2 An Expansion into the Multiobjective Case
	7.4.3 Investigation of Dynamics of the Algorithm

	7.5 A Fan Search Strategy
	7.5.1 A Description of the Strategy
	7.5.2 Testing the Fan Search Strategy
	7.5.3 Using a Reference Point Selected from PAES Result

	7.6 Further Possible Strategies for the Application of the Trajectory-Based Technique
	7.6.1 Approximation Strategies
	7.6.2 An Interactive Trajectory Assessment

	7.7 Conclusions

	8. Conclusions
	8.1 Summary of the Presented Approaches
	8.2 A Comparison of Performance of Different Methods
	8.3 Publications
	8.4 Applications of the Presented Approaches in Different Areas
	8.4.1 An International Timetabling Competition
	8.4.2 An Investigation of the Protein Folding Problem

	8.5 Future Work

	References

