
ABSTRACT 

 
 
Title of Dissertation ENTROPY APPROACH TO META-MODELING, 

MULTI-OBJECTIVE GENETIC ALGORITHM, AND 

QUALITY ASSESSMENT OF SOLUTION SETS FOR 

DESIGN OPTIMIZATION 

Ali Farhangmehr, Doctor of Philosophy, 2003 
 

Dissertation directed by: Professor Shapour Azarm 
Department of Mechanical Engineering 

 
 
 
 

A new entropy-based approach to meta-modeling and multi-objective 

optimization of engineering design problems is presented. The approach consists of 

four main components, as follows: 

1. Meta-Modeling: Engineering design optimization problems often 

involve computationally costly simulation models. Multi-objective 

optimization of such models usually involves many function 

evaluations that prohibit a direct application of most available 

techniques. In this dissertation, a new sequential meta-modeling 

technique -- referred to as Sequential MAXimum Entropy Design, or 

SMAXED -- is presented that aims at finding a good meta-model 

with minimum computational burden.  

2. Multi-Objective Genetic Algorithm (MOGA): We introduce a new 

multi-objective genetic algorithm that aims at obtaining the most 
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diverse (i.e., highest entropy) solution set. The new MOGA – referred 

to as Thermodynamical MOGA or T-MOGA -- is based on 

simulating Maxwellian system (of mono-atomic gas molecules in a 

container). 

3. Minimality of Quality Indexes: Once a Pareto solution set to a multi-

objective optimization problem is obtained via a multi-objective 

optimization algorithm, it is usually of great interest to know how 

‘good’ the observed solution set represents the Pareto frontier. This 

can be done either visually, or objectively via quality indexes. In this 

part of research, a new theoretical framework is presented for 

selection of a handful of these indexes such that all desired aspects of 

quality are addressed with minimum or no redundancy. 

4. Entropy Index: Finally, to assure the quality of solution sets in terms 

of diversity, a new quality index is presented. The new index -- 

referred to as entropy index -- is based on the notion of entropy.  

 

In situations where a direct application of most optimization techniques is 

computationally intractable, the proposed SMAXED approach can be employed to 

construct a global approximation to the simulation model, followed by T-MOGA to 

obtain a diverse solution set. Using a carefully selected set of quality indexes assures 

an objective performance assessment and comparison of the proposed methodology.  
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CHAPTER 1 

INTRODUCTION 

This dissertation presents an entropy-based approach to meta-modeling and 

multi-objective optimization of engineering design problems. In particular, a new 

sequential entropy-based approach is presented that adaptively constructs an 

interpolative surrogate model to approximate computationally expensive objective 

and/or constraint functions. Also, a new Multi-Objective Genetic Algorithm (MOGA) 

is developed that aims at obtaining a non-dominated solution set with the ‘best’ 

possible distribution over the Pareto frontier (See Appendix I for terminology and 

definitions, and Appendix II for a brief description of Genetic Algorithms and 

MOGA). The dissertation also includes an entropy-based quality index that quantifies 

the goodness of a Pareto solution set in terms of its distribution quality. Finally, an 

engineering case study and several test cases are presented to demonstrate the merits of 

the proposed approach.  

1.1 BACKGROUND AND MOTIVATION 
 

Engineering design optimization problems often involve single or multiple 

design objectives with variables that are mixed discrete and continuous. Several 

stochastic and heuristic optimization techniques have been applied to these types of 

problems, such as ant colony optimization (Colorni et al. 1992), particle swarm 

optimization (Kennedy and Eberhart, 1995), tabu search (Pham and Karaboga, 2000), 

simulated annealing (Kirkpatric et al. 1983) and genetic algorithms (Goldberg, 1989). 
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However, when there are multiple conflicting objectives, multi-objective evolutionary 

algorithms such as MOGAs have been receiving significant attention. MOGAs have 

proved to be successfully applicable to a wide variety of engineering applications with 

discrete, integer and/or continuous variables (see Van Veldhuizen and Lamont 2000; 

Deb 2001; Coello Coello et al. 2002; for a comprehensive literature survey). The main 

idea behind a MOGA is to simulate biological evolution wherein the principles of 

natural selection and survival of the fittest are the driving force for improvements in a 

population of design alternatives (see Appendix II for further details). 

 Although MOGAs are capable of generating a non-dominated solution set that 

approximates the Pareto frontier in a single run, there are some major drawbacks in 

constructing a widely applicable multi-objective optimization tool based on these 

algorithms. According to Deb (1998), there are two issues that a good multi-objective 

optimization tool should address while obtaining a non-dominated solution set: 1) 

keeping the computational effort as low as possible while generating sufficient number 

of non-dominated solutions using the available resources -- e.g., time, computational 

power; and 2) maintaining diversity among these solutions. In reality, however, the 

solutions obtained via MOGA tend to group into clusters, degrading the quality of the 

solution set in terms of diversity of solutions (Zitzler 1999; Farhang-Mehr et al. 2001). 

Moreover, a MOGA usually requires a large number of function calls that may become 

computationally prohibitive specifically in complex real-world applications. Therefore, 

the overall objective of this dissertation is to develop an approximation-assisted multi-

objective optimization framework for engineering design problems such that the best 
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representation of the optimal design space is obtained with minimum computational 

effort.  

1.2 DISSERTATION’S RESEARCH COMPOENETS  

The dissertation has four main research components. These components include 

the development of: 1) a new sequential meta-modeling technique; 2) a new MOGA 

based on concepts from statistical thermodynamics; 3) a new theoretical framework for 

selection of a minimal set of quality indexes; and 4) a new entropy index. An overall 

framework is developed that can be used to integrate these four research components.  

The motivation and research objectives for each of these components are 

presented next. 

1.2.1 Research Component 1: Meta-Modeling 

One main issue that limits the application of MOGAs to real-world engineering 

design optimization problems is that MOGAs may require many (objective and/or 

constraint) function evaluations during the optimization process. These functions – also 

referred to as responses -- can be computationally expensive. One approach to reduce 

the computational effort or number of function evaluations is to approximate the 

responses by less expensive surrogate models. There are many different surrogate or 

(meta-) modeling techniques in the literature (see Barthelemy and Haftka 1993; 

Simpson et al. 1998a; Koch et al. 1999). Among these techniques, the most common 

approach is to choose a sample of design points via a classical Design Of Experiment 

(DOE) technique (defined later in Chapter 2) and fit a polynomial to the response 

values. These techniques, however, are mostly appropriate for physical models that 

have inherent randomness, and thus, are not capable of providing sufficiently accurate 
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surrogates for deterministic computer simulations. This raises a need for the 

development of more advanced approaches that are capable of dealing with 

deterministic computer simulations with limited computational burden. Research 

Objective 1 addresses this issue. 

 

Research Objective 1: To develop a new sequential entropy-based design of 

experiments approach that aims at obtaining the best possible representation of the 

design space for the purpose of building a good approximation model of the objective 

and/or constraint functions.  

 

This DOE approach -- referred to as Sequential MAXimum Entropy Design 

(SMAXED) -- is designed to retrieve maximum possible information about the 

behavior of the function being approximated while maintaining the computational 

expenses as low as possible (see Chapter 2 for details). 

1.2.2 Research Component 2: Thermodynamical MOGA 

Solution sets obtained from MOGAs usually tend to cluster in certain sub-

regions of the Pareto frontier -- leaving the rest of the Pareto frontier empty or sparsely 

populated (Deb, 1998). The challenge in this part of the research is to develop a 

MOGA that maximizes diversity of solutions as much as possible in order to better 

represent the entire Pareto frontier. Research Objective 2 addresses this issue. 

 

Research Objective 2:  To develop a new MOGA, one that aims at obtaining a 

Pareto solution set with maximum possible diversity along the Pareto frontier.  
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The new MOGA -- referred to as Thermodynamical MOGA (or T-MOGA) -- is 

based on simulating a Maxwellian system (of mono-atomic gas molecules in a 

container). It is shown that such a system always tends to re-distribute itself to achieve 

a steady state of maximum entropy (see Chapter 3 for details). 

1.2.3 Research Component 3: Minimality of Quality Indexes 

Once a Pareto solution set is obtained by a MOGA, it is usually of great interest 

to know how ‘good’ the observed solution set represents the exact Pareto frontier. Note 

that relying on visual assessment of a solution set is no longer sufficient for a 

comparison of different evolutionary multi-objective optimization techniques. Indeed, 

visual and intuitive quality assessment can be very misleading or even impossible 

when the number of design objectives is more than three, yet it is the prevailing 

comparison tool in the literature (Van Veldhuizen and Lamont 1998). Recently, there 

has been a growing attention to the development of ‘quality indexes’ that measure 

different aspects of solution set quality (e.g. Zitzler et al. 2002; Knowles 2002). Many 

of the reported indexes, however, are coupled in the sense that they address common 

aspects of quality. Taking insufficient care in selecting quality indexes for comparing 

MOGAs can introduce redundancy and inconsistency in the comparison conclusions. 

On the other hand, selecting too few of these quality indexes does not guarantee an 

exhaustive comparison with respect to all aspects of quality -- posing a new question to 

explore: which index or collection of indexes must be used for an exhaustive (but not 

redundant) comparison of different MOGAs? Research Objective 3 addresses this 

issue. 
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Research Objective 3: To investigate correlation and redundancy issues among 

quality indexes. To derive theoretical restrictions (necessary conditions) for selecting a 

minimal collection of quality indexes that address all aspects of quality (set forth by a 

decision-maker) exhaustively with minimum redundancy.  

 

Due to the subjective nature of quality indexes, and quality of a set of solutions 

in general, the above-mentioned properties may not be noticeable from the formulation 

of an index. Therefore, a theoretical framework is developed to classify and select a 

minimal set of quality indexes for a given problem based on inputs from a decision-

maker (see Chapter 4 for details). 

1.2.4 Research Component 4: Entropy Index 

There are two major classes of quality indexes (Zitzler 1999; Deb 2001). Some 

indexes determine how close a solution set is to the exact Pareto frontier, which in turn 

indicates the Pareto optimality of the solution set. In contrast, there are other indexes 

that address the distribution quality of the solutions over the Pareto frontier. This latter 

class of indexes is specifically beneficial in comparison studies of different MOGAs 

(as well as other multi-objective optimization techniques) in terms of their ability to 

produce and maintain diversity among the solution points. In the development of some 

of these indexes, however, it is usually assumed that the exact Pareto frontier is known 

a priori, which rarely holds in engineering optimization problems. Moreover, these 

indexes are generally based on the distances of every two solution points in the 

population, and thus have a complexity of O(N2) that may become computationally 
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prohibitive for a large number of solution points (Deb 2001).  Research Objective 4 

addresses this issue. 

 

Research Objective 4: To formulate a new quality index -- referred to as 

entropy index -- to address diversity of solutions based on the concept of entropy.  

 

The proposed entropy index has several advantages over similar indexes 

reported in the literature (see Chapter 5 for details). 

1.2.5 Overall Framework: Approximation-Assisted Optimization 
 

In Chapters 6, the above-mentioned approaches are applied to several 

engineering and numerical test examples. In Chapter 7, an overall approximation-

assisted optimization framework is presented in the context of a case study: 

crashworthiness design of the front-end of a pickup truck. This overall framework 

starts with sequential approximation of computationally expensive objective/constraint 

functions using SMAXED approach. T-MOGA is then used to find a non-dominated 

solution set to the optimization problem.  In the mean time, the entropy quality index is 

used throughout the optimization process to monitor the quality of the obtained 

solutions.  

 

1.3 ORGANIZATION OF DISSERTATION 
 

The organization of the rest of this dissertation is as follows. Chapter 2 presents 

a sequential maximum-entropy design approach (Research Component 1). Chapter 3 is 

devoted to an approach to multi-objective optimization, i.e., T-MOGA (Research 
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Component 2). In Chapter 4, a theoretical framework is developed for selection of a 

minimal set of quality indexes (Research Component 3), while Chapter 5 is focused on 

the development of a quality index, namely entropy index (Research Component 4). 

Chapter 6 applies the proposed methodologies to several engineering and numerical 

test examples. Chapter 7 combines the above mentioned research components into an 

overall framework and demonstrates a case study: crashworthiness design of front-end 

of a pickup truck.  Finally, Chapter 8 gives the conclusions, contributions and 

recommended future research directions for the dissertation.  

Figure 1.1 depicts the flow of information in this dissertation.  
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Chapter 1 
 

Introduction: Motivation and Background; 
Research Problem Statement and Four 
Components of Research;  and Overall 

Framework  

Chapter 2 
Research Component 1 

 
Bayesian Approximation; Maximum 

Entropy Criterion; Sequential Maximum 
Entropy Design (SMAXED) 

Chapter 3 
Research Component 2 

 
Multi-Objective Optimization; 

Thermodynamical Multi-Objective 
Genetic Algorithm (T-MOGA) 

Chapter 4 
Research Component 3 

 
Quality Indexes; Minmality Lemma 

Chapter 5 
Research Component 4 

 
Diversity of Solution Sets; Entropy Index

Chapter 8 
Conclusions 

 
Summary and Conclusions; Contributions; and Recommended Future Research Directions 

Chapters 6 and 7 
Further Test Problems; Crashworthiness Case Study 

 
Numerical and Engineering Test Examples; Overall 

Approximation-Assisted Optimization; Crashworthiness 
Design of Front-end of Pickup Truck 

 
Figure 1.1: Organization of dissertation 
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CHAPTER 2 

SEQUENTIAL MAXIMUM ENTROPY APPROXIMATION  

 

As complex computer simulation models are opening a new frontier in analysis 

and optimization of engineering problems, designers are often faced with situations 

where the expense of running many simulation runs remains, for the most part, an 

unresolved research problem. Multi-objective optimization of such problems, in 

particular, often requires numerous evaluations of objective and/or constraint functions 

that can rapidly become computationally prohibitive. According to Koch et al. (1999) 

there are two issues in a direct-function-evaluation optimization approach that makes it 

almost inapplicable to real-world problems: 1) number of variables; and 2) 

computational expenses. Indeed, comprehensive parametric analyses are becoming 

extremely time-intensive as the number of variables involved in the design process 

increases. In response to this growing problem, many researchers have tried to 

decouple complex systems into several concurrent sub-systems (disciplines) wherein 

each discipline is optimized separately with the least possible inter-disciplinary 

information flow. Despite this reduction in the number of variables within a discipline, 

the function evaluations can still remain computationally expensive or perhaps even 

grow as a whole for the system.  This issue becomes more critical in evolutionary 

algorithms wherein a significant number of function evaluations is needed to 

simultaneously evolve a population of solutions throughout the process -- raising the 
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need for development of more efficient approximation techniques to reduce the 

computational burden.   

In this chapter, we first briefly review different approximation techniques 

reported in the literature, and especially Bayesian meta-modeling and maximum 

entropy design strategy. In Section 2.2, a new sequential approximation approach is 

presented, hereafter referred to as SMAXED, which will be applied to and 

demonstrated with a simple test case in Section 2.3. Finally, the concluding remarks of 

this chapter are given in Section 2.4.  

2.1 BACKGROUND AND PREVIOUS WORK 
 

There are two main steps in approximation of a computationally costly 

response function: 1) Design of Experiments (DOE), where a set of vector of design 

variables (inputs) are selected and the corresponding response values are computed; 2) 

Meta-modeling, where a meta-model (or surrogate) is constructed based on the 

response values.  

In the following, we briefly review some of the most common approximation 

methodologies that are reported in the literature.  

2.1.1 Design of Experiments (DOE) Techniques 
 

No matter which approximation technique is used to construct a meta-model, it 

is always necessary to design a good sample of points that best represents the design 

space prior to creating a meta-model.  

Perhaps, full factorial design is the most trivial and widely used DOE approach.  

In this approach, the allowable range of variables is divided into equally-spaced levels. 

Then a response surface is built by an exhaustive function evaluation at each level. 
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However, the number of function evaluations in this simple approach grows rapidly as 

the number of response variables increases. As such many other techniques have been 

developed that promise lower computational effort. Simpson et al. (2001) classify the 

existing DOE techniques into two major groups.  

1) Classical DOE: This class of techniques accounts for inherent randomness in the 

behavior of the model. Central Composite Design (Myers and Montgomery, 1995) and 

Box-Behnken (Box, 1987) are among the most widely used classical DOE techniques. 

These techniques are primarily aimed at physical experimentations in which -- because 

of the inherent measurement errors -- fixing the input variables and repeating the same 

experiment could result in different outputs (i.e., different response function values). 

One common approach for handling this randomness in the response is to design 

several replicates of the same experiment with the same input values. These classical 

techniques are generally well established and relatively easy to apply. Therefore, as 

computer simulation of physical models became prevalent in virtually every area of 

science and technology, there was a tendency among researchers to adopt the classical 

notion of DOE for this rapidly growing deterministic application. Sacks et al. (1989), 

Simpson et al.(2001) as well as other researchers discuss that while the classical notion 

of DOE is developed to accommodate the existence of random experimental errors, the 

modern simulation codes generally produce deterministic results. Hence, design of 

several replicates for an experiment is no longer relevant and in fact results in 

unnecessary computational effort.  

2) Space Filling DOE: A second class of techniques was developed in which 

experiments were dispersed to ‘fill the design space’. These techniques are especially 
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appropriate for design and analysis of computer experiment in which a limited number 

of experiments are conducted to probe the response of an expensive simulation code 

(e.g., a complex finite element structural model) at certain points in the design space 

and construct a much less expensive yet reasonably accurate approximation model. 

This approximation model can then replace the original expensive simulation for 

applications in which a large number of function calls may be required (e.g., design 

optimization). Examples of this second class of techniques are Random Latin 

Hypercube, Orthogonal Array, Integrated Mean-Squared Error, MaxiMin, MiniMax 

and Maximum Entropy experimental designs. (For a review of experimental design 

and analysis of deterministic computer experiments, see, for instance, Kohler and 

Owen 1996, as well as Simpson et al. 1997, 1998b.)  

2.1.2 Meta-Modeling Techniques 
 
 

Barthelemy and Haftka (1993) group the existing meta-modeling techniques 

into three major categories: local, global, and mid-range techniques. In the following, 

brief descriptions of local and global techniques are given. Mid-range approximation is 

essentially a combination of both local- and long-range approaches.   

 

1) Local Approximation: In this class of approximation techniques, the approximated 

function is only valid in a small neighborhood of interest. This can be particularly of 

great interest in fine-tuning of the optimal design around a previously-known good 

design. Perhaps the most popular approach in this category involves polynomial 

models, typically linear or quadratic functions, usually created by performing a least 

square fit to a set of points (Giunta, 1998). These polynomial models are known as 
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response surface models (see, Myers and Montgomery, 1995, for a detailed 

description). These methods are popular because they are very simple and 

computationally inexpensive to create. Moreover, they provide a compact and explicit 

functional relationship between the response and the independent variables. The main 

shortcoming of these approximations is that they are valid only in a small 

neighborhood.  

2) Global Approximation: This class of approximation techniques is valid in the entire 

design space and thus is favorable in global optimization of complex design problems. 

Since first- and second-order local response surface techniques are not capable of 

global modeling of complex functions with arbitrary shapes, their global 

implementation is mostly limited to continuous, unimodal objective/constraint 

functions, which is unlikely to be the case in many engineering design problems. As 

such, global modeling of the optimization problem generally relies heavily on selecting 

a good sample of design experiments and constructing the best representative global 

model based on these experiments.  

 Among different DOE and meta-modeling techniques, the Bayesian approach 

has received significant attention in the past two decades. Especially for deterministic 

computer experiments, Bayesian techniques provide interpolative meta-models that go 

through all experiment points (as expected from meta-modeling of a deterministic 

response function). In the following section, a brief description of Bayesian meta-

modeling is given and our notation is introduced. This approach and notation is used in 

the rest of this chapter to introduce single-stage entropy design, and eventually 

SMAXED.    
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2.1.3 Interpolative Approximation: A Bayesian Viewpoint 

The main idea behind the Bayesian approach is simple: the prior and posterior 

(before and after conducting experiments) knowledge about the response function is 

modeled by random processes (see for instance, Currin et al. 1993; Chaloner and 

Verdinelli 1995; Koehler and Own 1996; and Pacheco et al. 2001). Bayes rule can then 

be applied to update the prior distributions and obtain posterior distributions. The 

following is a brief description of Bayesian meta-modeling (Koehler and Owen 1996). 

This concept will be also used in Sections 2.1.4-6 to explain maximum entropy design.  

Consider a deterministic response function, y(x), with a vector of p input 

variables, denoted as x. Here we assume that each element of this vector is bounded 

between 0 and 1. (If this is not the case, a linear transformation can be used to map the 

lower and upper bounds of x to 0 and 1, respectively.) So, x . A grid is 

constructed in this space -- each point (or node) of the grid representing one possible 

input vector for the response function. The grid size can be chosen such that it satisfies 

the required accuracy for the input variables. This essentially reduces the design space 

into a finite set of p-tuples in [0,1]

p]1,0[∈

p, denoted by U. Note that such discrete 

representation is always possible for computer simulation codes, since the input 

variables are always discrete (digital), regardless of their representation format. The 

unknown (or actual) response function, y, is fully explored if and only if y(x) is 

evaluated for all x . As mentioned earlier, an exhaustive exploration of the design 

space is impossible for most of the real-world computer simulation codes because of 

the computational cost. Therefore, only a handful of these input vectors must be chosen 

to represent the entire set.  

U∈
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Definition 2.1.3-1: A set of experiments, denoted by D, is defined as a subset of U, at 

each point of which an experiment is run and the corresponding response function (or 

response) is evaluated. Specifically, an n-design, denoted by Dn, is a design of size n 

with the set of responses represented by:  

yD = {(x1,y1), …,(xi, yi), …, (xn, yn)}    (2.1) 

where  

yi = y(xi)     (2.2) 

Equation 2.2 is deterministic and contains no inherent randomness. Put another 

way, for a certain input vector xi, the corresponding response value yi is unique no 

matter how many times the computer simulation is run. Naturally, D  is defined as the 

complement of D in U:  

};{ DUD ∉∈= xx:x      (2.3) 

Since we do not conduct experiments at the points in D , their response values 

remain unknown. Therefore, the main problem is to gain knowledge about responses in 

D  by conducting experiments in D and observing yD. This can be done using a 

Bayesian approach, as discussed below.  

Suppose the prior knowledge about a deterministic function yi, at a point xi, is 

represented by a normal process, namely Yi. (The normality assumption is chosen for 

the formulation simplicity.) This prior distribution has the expected value and variance 

of: 

        E(Yi)=µi   and  Var(Yi)=σii     (2.4) 
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However, Yi and Yj (i.e., two prior distributions at xi and xj, respectively) are 

not statistically independent and their covariance is:  

    Cov(Yi, Yj)=σij      (2.5) 

Therefore, the prior knowledge about the response for a given design, Dn, is 

represented by a multivariate normal process, YD. Put another way, yD (which is 

deterministic) is a realization of the multivariate normal process, YD. YD is a vector 

whose elements are the prior distributions, i.e., Yi, ∀xi∈Dn.  The expected value of this 

vector is: E[YD] = µD = [µi], where µi is defined in Equation 2.4. The elements of YD 

are statistically dependent and the nxn covariance matrix is:  

VDD=Cov[YD, YD] = [σij]nxn ;   nji D∈x,x          (2.6) 

After performing n experiments in Dn and observing yD, the posterior 

distribution of D is represented by D | DY  which is also multivariate normal. The values 

of y at these points are not evaluated directly, so there is still uncertainty in the 

response values in D . The posterior covariance matrix for the posterior process, i.e. 

DDD |V , is then:  

njiDijD D DDDD Dy ∈== xxV ,];[]|Y,Y[Cov || σ      (2.7) 

where  is the covariance of the two posterior distributions at xDij|σ i and xj; nji D∈x,x . 

For Gaussian distributions, the posterior covariance matrix of D  can be obtained from 

prior distributions as follows: 

T
DDDDDDDDDDD VVVVV 1

|
−−=    (2.8) 

17 



where: ]Y,Y[Cov  D DDD =V . The posterior process is especially important in a Bayesian 

prediction of the response function. It is well-known that assuming a quadratic loss 

function, a Bayesian estimate for y in D after observing  is the mean of the posterior 

distribution (which minimizes the loss, see Casella and Berger 1990). In other words: 

Dy

)ˆ 1
| DDDDDDDDDD µµµ −+== − (yVVy    (2.9) 

where yD is the vector of responses, i.e., yD=[y1, …yn]T. DD|µ  is a vector whose 

elements are the mean of the posterior processes of D , and Dŷ  estimates the response 

values for points in D . This equation is the essence of Gaussian interpolation or 

kriging, the purpose of which is to construct an approximation model over U by 

observing yD and assuming Gaussian distributions (Koehler and Owen 1996; Giunta et 

al. 1998). While the focus of this chapter is on design of experiments, nevertheless, we 

use the above relation to create an approximation model every time that a set of 

experiments is designed and evaluated.  

 Although the above interpolative surrogate modeling is formulated in a 

compact form (equation 2.9), it is not of any use in practice without knowing the 

covariance matrix of the prior processes. In the following section, a stationary (non-

informative) condition is assumed to resolve this issue.   

2.1.4 Stationary Assumption 
 

The stationary assumption states that prior processes are stationary in the sense 

that their means and variances are the same everywhere in the design space (non-

informative assumption). Moreover, the covariance of two points is only a function of 
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their distance and does not depend on their position in the design space. This is, in 

some sense, a non-informational and non-discriminatory assumption in that the prior 

process is taken to be identical everywhere in the design space. This assumption is 

stated formally next. 

Stationary Assumption: The covariance matrix is stationary provided that σij = 

σ2R(||xi-xj||), where R(.) is the correlation function which is monotonically decreasing 

with the distance between  two points. Moreover, R(.) satisfies R(0)=1, thus σii=σ2. The 

mean of the prior processes are also assumed to be identical: µi=µ; .  Ui ∈∀x

Based on the stationary assumption, for a correlation function that depends only 

on the Euclidian distance of two points, VDD is invariant to any isometric 

transformation (e.g., translation, rotation) in the position of experiments in U. Indeed, 

the only thing that matters is the relative distance of the points while their absolute 

placement in the domain is ignored, i.e.,  

RDD= 2

1
σ

VDD = [Rij ]nxn; Rij =R(||xi-xj||); xi ,xj∈D   (2.10) 

For the rest of this thesis, we assume a Gaussian correlation function as in the 

following. (See Koehler and Owen 1996, for other forms of the correlation function 

and their merits.) 

R(d) =                 (2.11) 
2de θ−

where d is the Euclidian distance between two points, and θ is a problem dependent 

constant which is not usually known a priori. Indeed all families of correlation 

functions contain control parameters that adjust the range of correlation. Appropriate 
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values for θ, µ and σ are set according to the designer’s experience or knowledge of 

the response function smoothness, or by comparison to similar response functions. A 

less subjective approach to estimate these parameters is to randomly select a small 

training sample of experiments, namely S, of size ns and use maximum likelihood 

estimators, as in the following (see also, Mardia and Marshall 1984; Koehler and Own 

1996)  

)()(ˆ 11 JRJyRJ −−= SS
T

SSS
Tµ                 (2.12) 

and 

        (2.13) )ˆ()ˆ)(/1(ˆ 1 J-yRJ-y µµσ DSS
T

Dsn −=

where J=[1,…, 1]T is a vector of degree ns. To calculate µ̂  and σ̂  from the above 

equations, the value of θ is needed. The quantity θ can also be estimated by a 

maximum likelihood approach (Mardia and Marshall 1984; Koehler and Own 1996). 

In the test example of this chapter (see Section 2.3), we will assume a value of θ = 10, 

which implies a rapidly decaying correlation with distance. 

 The above Bayesian approach is also used to formulate a DOE technique 

known as maximum entropy design (described later in Section 2.1.6).  The following 

section provides a brief description of information entropy as a measure for the 

information provided by an experiment.  

2.1.5 Entropy: Worth of an Experiment 
 

The term entropy was first coined by Boltzmann. Later, Shannon (1948) 

introduced the abstract notion of information entropy that has since found many 
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applications in different fields. Lindley (1956) interpreted this new concept as the 

amount of information obtained by a Bayesian observation of a dependent parameter. 

In the following, we will give a brief discussion that relates information entropy to the 

worth of an experiment (in the context of approximation), following the notation 

introduced in the previous sections.  (Similar discussions can be found in Shewry and 

Wynn, 1987; and Koehler and Owen 1996, among others.)   

As mentioned in Section 2.1.3, the prior and posterior knowledge about the 

response function at points in D  is represented by prior and posterior distribution: D
π  

and DD |
π , respectively. We define the information content of the prior process in the 

following (e.g. see Lindley 1956):  

I0= dyyDyD ))((log)( ππ∫      (2.14) 

or:  

I0= ][log D
D

E π
π      (2.15) 

where 
D

E
π denotes the expected value operator with respect to D

π  (prior process). 

The above definition was first given by Shannon (1948) and is an immediate result of 

“additivity postulate” as described next.  

Suppose that the value of a response at D  is observed in two stages. I0 

represents how much information is missing at the beginning (before any 

experimentation). In the first stage, we determine whether D
y belongs to an arbitrarily 

chosen subspace, say A, with the probability of P. This provides a certain amount of 
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information, say I1. In the second stage, we determine the exact value of D
y  which 

provides a certain amount of information, denoted by either I2 or I3: If D
y was 

determined to belong to A in the first stage the obtained amount of information in the 

second stage will be denoted by I2. Otherwise, it is referred to as I3. This means an 

expected information of PI2+(1-P)I3 in the second stage. The additivity postulate states 

that these information values must be additive, i.e., 

I0=I1+ PI2+(1-P)I3    (2.16) 

 The significance of the Shannon’s work comes from the observation that the 

only function that possesses the above-mentioned additivity property in general -- 

regardless of probability distributions -- is the function of equation 2.15 (multiplied by 

an arbitrary constant). In other words, the only measure of information by an 

experiment that satisfies additivity requirement is: 

I( D
y )= ]|[log

|
DD

DD
E π

π     (2.17) 

Therefore, the worth of an experiment that observes D
y  is I( D

y )-I0. This 

clearly depends on the observed value of D
y , so the average amount of retrieved 

information will be: [I(
D

E
π D

y )-I0].  The quantity [ I(
D

E
π D

y )] is in fact Shannon’s 

posterior entropy H  with a negative sign, as follows:  

H = - [ I(
D

E
π D

y )] = - {
D

E
π

]|[log
|

DD
DD

E π
π }  (2.18) 

or in short: 
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 H = - U
E ][logπ       (2.19) 

where DD ∪=U . Therefore (see also Koehler and Owen 1996; for another approach 

with slightly different assumptions to derive the following result): 

Corollary 2.1.5-1: Informational worth of D can be measured by reduction of entropy 

(from prior process to posterior process), i.e., H( Dπ ) - H( DD |π ).   

 In other words, a design that minimizes the entropy of the posterior 

distributions, i.e., H( DD |π ), or equivalently maximizes the entropy of prior process, 

i.e., H( Dπ ), is the most informative one.  

2.1.6 Maximum Entropy Design 
 

Corollary 2.1.5-1 can be used directly to derive the most informative design of 

experiments. Under Gaussian assumption, however, it is easy to show that 

maximization of entropy is equivalent to maximization of the determinant of 

covariance matrix. That is, for a normal prior process, the maximum entropy is 

obtained if and only if the determinant, or ‘det’, of the prior covariance matrix is 

maximized. (see Koehler and Owen, 1996 for a proof). This interesting observation 

constitutes an optimal DOE strategy. 

Entropy Lemma: Maximum Entropy n-design is a subset of U that maximizes the 

determinant of the prior covariance matrix: 

 
Maximize det (VDD)       (2.20) 

    Dn 
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After estimation of µ̂  and σ̂ , the maximum entropy design can be determined 

as follows: a subset of U of size n is selected such that the determinant of RDD 

(equations 2.10 and 2.11) is maximum. According to the Entropy Lemma, this subset is 

the maximum entropy Dn and has the highest expected value of information retrieval 

from the unknown response function. All experiments in Dn are run, yD is observed, 

and an approximation model is built accordingly. Figure 2.1 depicts maximum entropy 

designs in a two-dimensional design space, with different number of experiments. Note 

that maximum entropy design slightly emphasizes the boundaries. (The issue of the 

boundary effect will be fully addressed in Chapter 5.) 

   

(a) 5 experiments   (b) 9 experiments 

   

 (c) 13 experiments   (d) 25 experiments 

Figure 2.1: Single-stage maximum entropy design of experiments (2-dimensional) 
 

24 



2.1.7 Computational Complexity, and Multiple Hiker Algorithm 

In order to find the entropy optimal design, as defined by Entropy Lemma, one 

can exhaustively calculate the determinant of all possible subsets of size n in U and 

compare these values -- an optimal Dn is a subset that maximizes determinant of the 

covariance matrix. However, this brute force implementation may become 

computationally infeasible in the sense that the number of possible subsets of U grows 

rapidly with the cardinality of U. Assume U is a grid of N nodes in the design space 

and a design of size n is desired. The number of possible subsets of size n in U is 

therefore 

 . Thus, unless the grid is coarse or the dimension of the input vector is 

low, an exhaustive search becomes very time consuming. Note that there is no need for 

calculating the actual (perhaps computationally expensive) response function values 

during this process, nevertheless, 

  grows so rapidly that renders computing even the 

simplest surrogate models computationally infeasible. Indeed, the determinant of the 

covariance matrix can be calculated in only a few CPU cycles; however, the number of 

subsets grows so fast that the exhaustive search becomes computationally very costly 

or even infeasible. As such, Currin et al. (1991)


 n

N

N

 n

 suggest an algorithm that successively 

augments new experiments to the existing design. In that algorithm, they took 

advantage of the Shewry and Wynn’s result (1987) for a one-point augmentation to an 

existing n-design, as discussed next. 

Shewry and Wynn’s (1987) Augmentation: If one desires to augment one more 

experiment to an existing set of experiments, the new experiment must be conducted at 
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a point, namely xi nD∈ , with the largest variance of the posterior distribution. In other 

words, the best xi to conduct a new experiment is the one at which 
nDii|σ  is maximum.  

In the algorithm suggested by Currin et al. (1991), experiments are augmented 

one-by-one to the current set. A multiple-search is conducted over U to identify xi nD∈  

with maximum 
nDii|σ , as follows: Consider n ascending ‘hikers’ that start from the 

current design, Dn, where the posterior variances are zero and move in the grid, one 

step at a time, in order to maximize the posterior variance. (This is very similar to a 

hill-climbing algorithm with multiple starting points.) Each of these hikers is allowed 

to move in 2p directions in the grid (2 directions along each edge of the grid), where p 

is the dimension of the input vector. In each step, we investigate all these possible 

movement directions for the hikers (at most 2pn evaluations). Each hiker then moves 

to the next node in the grid that has the highest variance. If two hikers meet at a node, 

they merge and continue as a single hiker. The algorithm continues until all hikers are 

at local maxima. Among them, the one with the maximum posterior variance is 

augmented to the current set of experiments. Obviously, this algorithm does not 

guarantee obtaining the global maximum, however, it dramatically reduces the 

computational burden of finding the optimum experiment. Also, it is likely that starting 

from multiple points helps explore the design space better and obtain the global 

optimum.  

Note that although the above-mentioned algorithm is iterative, in the sense that 

experiments are augmented one-by-one to the design set, it does not take advantage of 

the response values (i.e., the response behavior) to update the prior distributions. That 
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is why we referred to this approach as a single-stage maximum entropy design 

approach, i.e., the response values to the entire set of experiments are evaluated once at 

the end of the process. In contrast, our new sequential approach (as will be introduced 

in the next section) evaluates the response function for all previous experiments 

throughout the process and according to this information updates the prior distributions 

for the next stage of design.  

2.2 SEQUENTIAL MAXIMUM ENTROPY DESIGN (SMAXED) 
 

A new sequential approach for DOE is introduced in this section. This approach 

is based on the observation that while the actual response function is not known a 

priori, as more experiments are designed and performed, more information is gained 

about the behavior of the response function. This information is then used to identify 

‘irregular’ regions of the design space. Note that a good approximation model to the 

response function cannot be achieved without iteratively using this information 

towards the design of next set of experiments. Obviously, the stationary assumption is 

no longer applicable since the correlation of two points is not only a function of the 

relative distance but also dependent upon the characteristics of the regions in which the 

experiments are conducted and how well the function behaves in those regions. This 

information should be updated sequentially based on the data gathered from previous 

experiments, as explained in the following subsections.   

2.2.1 Sequential Design of Experiments 
 

As mentioned before, in a single-stage maximum entropy design, responses 

from a set of experiments are not used to enhance the design of next set of 

experiments. In fact, the maximum entropy design does not depend on the response y 
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at all. A maximum entropy design in a given design space will be always the same 

regardless of the behavior of the function which is being approximated. (For example, 

the single-stage design of Figure 2.1 does not depend on the shape of the response 

function.) Figure 2.2, for example, demonstrates a deterministic response function with 

a one-dimensional input in the interval [0,1]. (See the formulation of this response 

function in Section 2.3.) 

 

 

y(x) 

x 

Response function
Approximation model
Experiment 

 
Figure 2.2: A design of 15 experiments for a deterministic response function and the 

resulting approximation model 
 

In Figure 2.2, the daggers on the x-axis represent a maximum-entropy 15-

design. After evaluating yD, which is shown with bullets on the response curve, the 

interpolating surrogate model of Equation 2.9 is constructed (solid line in Figure 2.2). 

As shown in this figure, the experiments of Dn are distributed symmetrically along the 

design interval with an emphasis on the corners. A single-stage maximum entropy 

design is not problem specific and does not depend on the response function itself. 

Therefore, there are exactly 7 experiments in the interval [0,0.5) as well as the interval 

(0.5,1]. However, by looking at the actual response function, one notices that y(x) is 

not behaving the same everywhere in the design space. The left half interval [0,0.5) 

consists of many local optima -- located tightly together (i.e., has an irregular region), 

while a large portion of the domain in the right half of the interval, i.e., (0.5,1], is 
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monotonic. Thus, to approximate the behavior of the response function in the irregular 

region of the domain, more experiments must be conducted in the left half of the 

interval. In contrast, not that many experiments are needed in the less irregular region 

(i.e., the right half) of the domain to obtain a desired accuracy. A single-stage (i.e., not 

sequential) maximization of the entropy completely ignores this fact. As such, the 

approximation model deviates significantly from the actual response function in the 

irregular region of the domain, while there are redundant experiments in the less 

irregular portion.  

In the rest of this section, we present the new sequential (multi-stage) 

maximum entropy design approach that takes advantage of the response values at each 

stage to design the next set of experiments.  

2.2.2 Assumptions 
 

We assume that at the beginning of the experimentation process there is 

essentially no specific information about the unknown response function. Therefore, 

the stationary assumption of Section 2.1.4 holds. We define an m-block, denoted as Bm, 

as a set of m experiments whose elements (i.e., the individual experiments) are 

designed and performed in a single stage. In other words, all of the m experiments in 

the m-block are designed by maximization of entropy at the beginning, but once the 

block is designed, all of its experiments are conducted one after another -- without 

using the response value of one experiment to update the prior information of the next 

experiments. Accordingly, a single-stage maximum entropy design of m experiments is 

basically a single m-block of experiments. As mentioned before, a single block of 

experiments may not be the best design since it does not take advantage of the 
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information gained in the process to place the next experiments in the regions where 

they are more informative. Basically, the geometry of a single block of experiments is 

totally independent of the response function that is being investigated. Given the 

design space, number of experiments and prior distributions, a maximum entropy block 

can be determined regardless of the response function. In this section, however, we 

present an algorithm that sequentially constructs several blocks of experiments for a 

given response function, y, defined on U. After each block is designed, the 

corresponding experiments are run, the values of the response function are assessed 

and used to determine those regions of the design space in which new experiments are 

expected to be more informative.  

From Equation 2.10, the covariance of prior distributions at two points xi and xj 

is a decreasing function of the distance between two points;  

Cov(Yi,Yj) =σij=σ2R(||xi-xj||)    xi ,xj∈D     (2.21) 

and 

Var(Yi) =σii=σ2    (2.22) 

Equation 2.22 can be interpreted as follows: conducting an experiment at xi 

transmits some information about the response at xj. For example, if the expected value 

of the prior distribution at xi turns out to be an underestimation after observing yi, i.e., 

yi>E(Yi), because of the positive correlation it is more likely that E(Yj) is also an 

underestimation for the response function at an adjacent point xj (i.e., based only on the 

information provided by the experiment conducted at xi). This can be thought of as the 

influence of conducting an experiment at xi on its neighboring points. However, this 

influence decreases with the distance from xi due to the decreasing correlation 
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function. Points that are located in the vicinity of xi are highly correlated with Yi, and 

therefore observing yi has a significant impact on the their posterior distributions. On 

the other hand, points that are located far from xi are uncorrelated or loosely correlated 

and thus not influenced by xi. This is because R(d) approaches zero as d approaches 

infinity.  

Now consider two experiments A and B, as shown in Figure 2.3.  

 

 

y(x) 

x

A A' B' B

 
Figure 2.3: The uncertainty grows faster with distance where the response function is 

irregular 
 
 
 

Both of these experiments influence their neighborhoods. If the response 

function is known a priori, one can say that experiment A is located in a neighborhood 

where y(x) is multi-modal (or irregular) with many close local optima. The influence of 

the experiment A on point A' is therefore relatively weak. In other words, conducting 

an experiment at A and observing yA does not say much about yA'. On the other hand, 

experiment B conveys much more information about B', since B is located in a less 

irregular region of the response function. So, the correlation decays slower with 

distance (or equivalently uncertainty grows slower) in this region. By looking at Figure 

2.3, one could intuitively say that more experiments must be conducted in the multi-

modal region to enable a more accurate modeling of the response function. In contrast, 

31 



not that many experiments are needed in the less irregular region. Clearly, irregularity 

should be quantified and formally incorporated into the design criterion, as discussed 

later in our approach. However, we first present a new theorem that is used as a basis 

in the SMAXED approach. 

2.2.3 SMAXED Theorem 
 

Suppose a set of n experiments has already been designed according to Entropy 

Lemma, and Dn is obtained. In the following theorem, we prove that addition of a new 

experiment that has low correlation with previous experiments is in fact very 

informative (i.e., yields greater reduction in posterior entropy). 

SMAXED Theorem: Suppose Dn has already been designed and evaluated. Assuming 

Gaussian priors, conducting a new experiment at xi nD∈  is more informative than 

conducting another one at xj nD∈ , if nkjkik D∈∀< x;σσ  and σii=σjj=σ2. 

Proof: From Equation 2.8, one can easily verify that for Gaussian priors: 

iDDD
T
iDiiDii VVV 1

|
−−= σσ      (2.23) 

and 

jDDD
T
jDjjDjj VVV 1

|
−−= σσ      (2.24) 

where =[σiDV

jk ∀;

i1, σi2,…, σin]T is the covariance vector of xi and Dn. Moreover, 

nkik D∈< xσσ , and σii=σjj=σ2. Since σij’s are all positive numbers, from Equations 

2.23 and 2.24 we obtain: 
nn DjjDii || σσ > . Therefore, using Shewry and Wynn’s 
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augmentation result (recall Section 2.1.7), we conclude that conducting an experiment 

at xi yields a greater reduction in posterior entropy than xj and the theorem follows. □ 

An immediate result from the above theorem is that addition of a new 

experiment that is located far from already existing experiments is very informative 

(i.e., due to small covariance between the new experiment and already existing ones). 

In fact, the maximum entropy criterion tends to maximize the distances among 

experiments and place new experiments in remote regions where the correlation with 

the existing experiments is minimum (and in some sense, the uncertainty is maximum). 

SMAXED Theorem also provides a way to account for irregularities in the 

response function. This is in fact the driving force behind the SMAXED approach. 

According to this theorem, assigning a weaker correlation in the irregular regions of 

the design space increases the informational worth of an experiment conducted in those 

regions. A maximum entropy design is basically a design that maximizes the 

information content of a set of experiments and thus places more experiments in the 

regions where the correlation decays faster. This follows our intuitive observation that 

there must be more experiments conducted in the irregular portion of the domain in 

Figure 2.2, while not that many are needed in the less irregular part. In reality, 

however, we do not know the behavior of the actual response function upfront. Indeed, 

there is no information about the response function at the beginning of the process. 

This is the main motive for introducing the new sequential algorithm.  

The SMAXED approach, to be presented next, recursively designs and 

performs blocks of experiments in such a way that the response values obtained from 

each block are used to update the covariance matrix before the next block is designed. 
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2.2.4 SMAXED Approach 
 

Suppose there are enough time and computational resources to conduct only n 

experiments. In SMAXED, we design and perform a total of n experiments in several 

blocks (for instance in k blocks of size m.) The overall n-design then will be: 

k
m

i
mmn BBBD ∪∪∪∪= ......1 ;       n = km      (2.25) 

where  is the i-th m-block, designed and performed after all previous (i-1) blocks 

are designed and performed.  

i
mB

Suppose that prior to the design of the first m-block, i.e., , no information is 

available about the response function and as reasoned before the stationary assumption 

is applicable for the prior distribution. (µ and σ can be estimated using the maximum 

likelihood estimators, Equations 2.12 and 2.13.) After performing all experiments in 

, an intermediate surrogate model is built based on these responses, . The 

intermediate surrogate model provides a preliminary insight into the behavior of the 

response function.  

1
mB

1
mB 1

my

Now that an initial understanding of the behavior of the unknown response 

function is obtained, one would like to take advantage of this knowledge in the design 

of the next set of experiments. One way to incorporate this knowledge is to use 

SMAXED Theorem (Section 2.2.5) and penalize (i.e., decrease) the correlations in 

those regions of the design space where the function is irregular. In other words, our 

goal is to identify those x’s in U for which the correlation decays faster with distance 

because of the presence of irregularity in the response function. The definition of 

function irregularity and how to update the covariance matrix accordingly is therefore 
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subjective in nature. Note that the correlation function itself is subjectively defined and 

the best choice is generally never known before solving the problem. In the following, 

a strategy is presented that is based on the multi-modality of the initial (or other 

intermediate) surrogate model. There might be other aspects of irregularity as well, 

such as discontinuity, singularity, etc. The proposed approach focuses only on the 

multi-modality of the response function. Note that, as demonstrated in the example of 

Figure 2.2, multi-modality in certain regions of the domain is a very important property 

that prompts for more experiments in those regions. As will become clear later in this 

chapter, if the function contains no local optima in U (excluding the boundaries of the 

domain), the proposed sequential approach results in the same design as a single-stage 

maximum entropy augmentation of experiments.  

In SMAXED, prior to the design of a block of experiments, we obtain all (or as 

many as possible) local optima of the previous intermediate surrogate model (which is 

constructed based on the previous blocks of experiments). The computational 

complexity of obtaining these optima depends on the chosen surrogate model (e.g., 

interpolation, polynomial, etc.). Note that the approximation model is always 

considerably less expensive to compute compared to the original response function, 

and thus the optimization techniques that require many function calls can be 

computationally feasible to apply. The implementation and computational complexity 

issues are discussed in Section 2.2.6. That section also includes an algorithm to find as 

many local optima as possible without considerable computational effort.  

We refer to a node that is not located on the boundary of the grid and its 

approximated response function value is strictly higher/lower than all immediate 
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neighboring nodes as an ‘interior local optimum’. We also define a ‘flat optimum set’, 

denoted by , as a connected set of two or more nodes with the same 

approximated response function value, strictly greater (or less) than all other 

immediate neighbors that are not included in S. (The term ‘connected set’ refers to a 

set, each of whose elements is an immediate neighbor of at least one other element in 

the set.) Clearly, the nodes of a flat optimum set are weakly optimum, because there 

exists at least one immediate neighbor in the flat optimum set, with the same 

approximated response function value. In general, one node is selected randomly from 

a flat optimum set as a representative of that set. Finally, set P is defined as the union 

of all interior local optima, including the representatives from all flat optimum sets.  

US ⊂

In the following, we use P to quantify the irregularity in the neighborhood of a 

point, namely xi∈U . 

Definition 2.2.4-1: We define the Characteristic Certainty Width (CCW) of a point 

xi∈U, denoted by L(xi) or Li, as the length of the diagonal of the smallest hyper-

rectangle in the design space that encloses xi and whose two opposite vertices are any 

two local optima in P.  Moreover, we define L0 as the length of the diagonal of the 

design space, which is a hyper-rectangle itself. It is then assumed that: L(xi)= L0, if no 

such rectangle can be found that encloses xi. 

The intuitive interpretation of this definition is shown in Figure 2.4. The set of 

optima, P, is marked by bullets in a 2-dimensional design space. Clearly, 

L(A)=L(E)=L0; L(B)=L1; L(C)=L2; L(D)=L3. For a one-dimensional design space, 

CCW of a point is basically the distance of the two optima that bracket that point.  
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Figure 2.4 Characteristic certainty width 
 
 

We use L as a measure of regularity in the behavior of the function. A large L 

implies that there is a wide unimodal region. As mentioned earlier, fewer experiments 

are needed for such a region in the design space, as opposed to an irregular region with 

many tightly located local optima. In other words, the correlation tapers off slower 

with distance in a region with a larger L. This corresponds to a larger covariance. 

Therefore, in the SMAXED approach we use  (Li/L0) as a correcting factor that 

incorporates irregularities of the design space and updates the covariance of two points 

accordingly, as follows: (Compare to Equation 2.10.)  
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    ; ji ≠     (2.26) 

where R(.) is obtained from Equation 2.11. Comparing Equations 2.10 and 2.26, one 

notices that the covariance of two points is corrected by a factor of [L(xi)/L0][L(xj)/L0]. 

Correlation of those experiments that are located in irregular regions (i.e., small L) is 

reduced by a factor proportional to their irregularities. This in turn imposes a faster rate 

of uncertainty growth with distance in those regions (i.e., covariance of two points 
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tapers off faster). Hence, according to the SMAXED Theorem, updating the covariance 

matrix using the above equations and maximization of entropy automatically places 

more experiments in the irregular regions as the next block of experiments, because of 

their higher informational worth (greater entropy reduction). In contrast, in less 

irregular regions where the local optima are located far from each other, the covariance 

decays slowly with distance (or uncertainty grows slowly). The quantity L/L0 is larger 

in those regions and thus covariances are not considerably reduced, if reduced at all 

(recall Li=L0 if xi is not bracketed between two optima in P). Note that if we find none 

or only one local optimum inside the design space we have L=L0, and therefore this 

strategy basically results in the same design as obtained from single-stage maximum 

entropy approach (i.e., augmenting new experiments without using intermediate 

approximation models). Indeed, a uni-modal response function with one or no interior 

local optimum is considered regular everywhere in the design space and therefore the 

covariances are not reduced at all; i.e., (L/L0)=1.  

2.2.5 SMAXED: Step-by-Step Description 
 

A step-by-step description of SMAXED follows. 

Step 1 – Since there is no initial information about the response function, the first 

block of experiments, , is designed with the stationary assumption and according to 

Entropy Lemma. The initial mxm covariance matrix is constructed using Equations 

2.21 and 2.22. The standard deviation, σ,  is estimated via the maximum likelihood 

estimator of Equations 2.12 and 2.13.  

1
mB
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Step 2 – In the k-th iteration we have: . All new experiments are 

observed, i.e., . 

k
mmmk BBD ∪∪=× ...1

mky ×

Step 3 – An intermediate approximation model is constructed based on the responses 

 from all previous experiments (using kriging).  mky ×

Step 4 – The approximation model is optimized and all (or as many as possible) local 

optima are obtained to form set P.  

Step 5 – The characteristic certainty width, L(xi), is calculated for all xi mkD ×∈  (i.e., 

complement of  .) mkD ×

Step 6 – A qxq covariance matrix is constructed where q=m(k+1). The first mkxmk 

rows and columns of the matrix correspond to the experiments that were already 

designed and performed in the previous iterations, i.e., . These entries are updated 

according to Equation 2.26 using the new CCW’s. There are m rows and m columns 

remaining in this matrix that have to be determined, as discussed next. 

mkD ×

Step 7 – The remaining mxm rows and columns of the matrix correspond to the next m-

block, . The elements of this block are selected from 1+k
mB mkD ×  such that the 

determinant of the qxq matrix is maximized. Again, these new entries follow Equations 

2.22 and 2.26. The result of this maximization is a set of m new points that marks m 

new experiments, i.e., .  1+k
mB

Step 8 – Go to step 2 and continue until a total of n mk ×=  experiments are designed 

and performed. The final approximation model is constructed based on these n 

experiments. Should one decides to conduct more experiments (i.e., by assigning more 
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computational resources), SMAXED can be run again to design new experiments, 

starting from the existing approximation model.  

2.2.6 Revised Multiple Hiker Algorithm 
 

There are basically two main sources of computational burden in SMAXED 

(i.e., other than the evaluations of the potentially expensive response function): 

(i) Step 1 and Step 7; in which a block of experiments are chosen such that it 

maximizes the determinant of the covariance matrix. In the test example of the next 

section, this is done exhaustively by searching the set of all subsets of size m in U. 

However, as mentioned in Section 2.1.7, exhaustive search is not possible for large 

U’s.  Therefore, the multiple-hiker algorithm of Section 2.1.7 can be used to determine 

the optimum block of experiments in Steps 1 and 7. 

 (ii) Step 4; in which the local optima of the approximation model is obtained. The 

straightforward approach is to exhaustively search the grid of U for those nodes that 

are local minima (and/or maxima). Suppose U is p-dimensional and contains N points, 

thus each point in U has at most 2p neighbors (points on the boundary have fewer 

neighbors). To find all local optima, one should examine all points in U and compare 

the values of the approximation model. Although an approximation model is not costly 

to compute, for high-dimensional design spaces with fine grids, an exhaustive search 

may become very time-consuming or even computationally prohibitive. Therefore, to 

reduce the computational effort, we suggest an algorithm very similar to the one 

suggested by Currin et al. (1991). In our suggested algorithm, we deploy n ascending-

hikers to locate local maxima as well as n descending-hikers to locate local minima 
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(i.e., a total of 2n hikers). The hikers start from the current set of n experiments. For 

instance, an ascending-hiker continuously compares the approximated response 

function values of immediate neighboring nodes with that of the current node and 

moves to a neighboring node that provides the higher elevation. If the current node has 

the highest elevation among all its neighboring nodes the hiker stops and the current 

node is declared as a strict local maximum and is added to P. If one of the neighboring 

nodes has the same elevation and the rest are strictly lower than the current node, there 

is a possibility that the hiker has reached a flat optimum. The hiker marks that node 

and continues the search by going to the next node with the same elevation. The hiker 

stops if no further improvement is possible and a representative from the current flat 

optimum set is added to P. The algorithm stops when all ascending- and descending-

hikers stop. Note that although this algorithm significantly reduces the computational 

cost of the process, it may not necessarily obtain all optima, skipping some elements of 

P. As mentioned before, a full set of optima is not guaranteed in general without an 

exhaustive search of U, which is not usually practical. However, obtaining as many 

local optima as possible provides a better understanding of the irregularities in the 

response. If fewer than two local optima are located, the application of SMAXED 

results in the same design as that of a single-stage maximum entropy approach. As 

more and more local optima are detected, SMAXED identifies the irregular regions 

better, which in turn increases the accuracy of the approximation. Depending on the 

size of the design space, one can randomly add more starting points for the hikers to 

improve the success of the algorithm. (Again, unlike the actual response function, the 
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approximation model is not costly to compute; hence addition of new hikers does not 

significantly increase the overall run time of the algorithm.)  

 A simple numerical test example is used in the next section to demonstrate the 

performance of SMAXED. In Chapters 6 and 7, complicated engineering examples are 

used to demonstrate and compare the accuracy of the surrogate models obtained from 

SMAXED.  

2.3 DEMONSTRATION EXAMPLE 
 

The formulation of the response function of Figure 2.1.1-1 is given below:  

(85x)]1.5sin0.2)x[ln(0.08)-0.14-x60min(0,
0.2e-x)10sin(x6)1()x(

22

0.25)--2000(xx7x2 2

+++

+−= −− eey    (2.27) 

In a single-stage maximum entropy design, a set of n experiments (in U) is 

selected such that the determinant of VDD becomes maximum. Assuming that there is 

just sufficient computational power (or time) to perform 15 response function 

evaluations, we can exhaustively search the design space to identify the maximum 

entropy 15-design, as shown in Figure 2.2. These experiments are dispersed 

symmetrically in the design space regardless of the behavior of the response function 

in different regions. After observation of the response values, an interpolating 

surrogate model is constructed, as shown in Figure 1. 

To demonstrate the application of SMAXED, we sequentially design a total of 

15 experiments as 3 blocks of size 5 experiments. This is described next: 

Step 1 (1st iteration) – Similar to a single-stage design, the first block of 5 experiments 

is chosen exhaustively from all possible subsets of size 5 in U such that the 
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determinant of the covariance matrix is maximum. The small arrows on the x-axis in 

Figure 2.5 illustrate  for this response function. Note that one could alternatively use 

the multiple-hiker algorithm for one-point augmentation of experiments, and obtain an 

optimum 5-design. This latter approach results in a slightly different, yet good enough 

design while it significantly reduces the computational burden.  

1
5B
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Figure 2.5 The initial block of 5 experiments and the resulting intermediate 

approximation model 
 
Steps 2, 3, and 4 (1st iteration) – The surrogate model of the current design is shown in 

Figure 2.5. The intermediate surrogate model has three local optima inside the design 

space: P1={0.17; 0.44; 0.96}. 

Step 5 (1st iteration) – L(x) is computed to be: 








<<=−
<<=−

=
otherwise1

0.96x44.052.044.096.0
0.44x17.027.017.044.0

)x(L            (2.28) 

Step 6 (1st iteration) – A 10x10 covariance matrix is constructed. The first 5 rows and 

columns correspond to the covariance of 5 experiments designed in the first block 

(small arrows in Figure 2.5).  

43 



Step 7 (1st iteration) – The second 5-block of experiments is designed such that the 

determinant of the 10x10 matrix is maximized. Note that the entries of this matrix are 

obtained from Equation 2.26, and using the CCW of Equation 2.28. The optimum 

second block is found by searching the set of subsets of size 5 in 1
5B  exhaustively, and 

comparing their determinants. (As in Step 1, one could alternatively use a one-point 

augmentation approach to reduce the computational burden.) This yields  which is a 

5-block that results in the highest determinant of the 10x10 covariance matrix. (The 

first 5 rows and columns are already known, i.e., .) Figure 2.6 shows the first and 

second 5-block of experiments (a total of 10 experiments).  This figure clearly shows 

that more experiments are designed in the irregular region (between the first two 

optima in P

2
5B

1
5B

1 where L is small).  
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Figure 2.6: The first iteration of SMAXED and the corresponding approximation 

model 
 
 

Step 8 (1st iteration) – There are a total of 10 experiments. So we repeat Steps 2 

through 7 to design 5 more experiments, as in the following.   
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Steps 2 and 3 (2nd iteration) – As before, the new experiments, i.e., , are evaluated 

and an interpolating surrogate model is constructed (Figure 2.6). The new surrogate 

model is more accurate in the irregular region.  

2
5B

Steps 4 and 5 (2nd iteration) – Optimization of this surrogate model yields: P2={0.15; 

0.26; 0.30; 0.41}. Hence, CCW(x) is: 











<<
<<
<<

=

otherwise1
0.41x30.011.0
0.30x26.004.0
0.26x15.011.0

)x(L            (2.29) 

Steps 6 and 7 (2nd iteration) – As before, the new 5-block is determined such that it 

maximizes the determinant of a 15x15 covariance matrix whose first 10 rows and 

columns correspond to the experiments designed in the first iteration. The entries of the 

matrix are evaluated from Equation 2.26 using the CCW of Equation 2.29. Figure 2.7 

demonstrates the new 5-block, i.e., , along with the previous blocks,  and , 

and the new approximation model.  

3
5B 1

5B 2
5B

Step 8 (2nd iteration) – we have obtained a total of 15 experiments. The algorithm 

stops. 

Note that both designs in Figures 2.2 and 2.7 contain 15 experiments. However, the 

approximation model from SMAXED shows a dramatic improvement (see Figure 2.7) 

as compared to that of a single-stage maximum entropy design (see Figure 2.2). This is 

because of the tendency of SMAXED approach to distribute experiments in the design 

space with an emphasis on the irregular regions of the domain. The accuracy of the 

approximation can be improved even further should one decides to continue 

SMAXED. As more experiments are conducted, the approximation model approaches 
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the actual response function, revealing the irregular regions in which because of the 

faster growth of uncertainty more experiments are needed to provide a more accurate 

approximation model. 
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Approximation model
1st iteration Experiments 
2nd iteration Experiments 
3rd iteration Experiments 

  
Figure 2.7: The second iteration of SMAXED and the corresponding approximation 

model (15 experiments total) 
 

2.4 CONCLUDING REMARKS 
 

In this chapter, a new sequential maximum-entropy design strategy is 

introduced. The new approach, referred to as SMAXED, takes advantage of the 

information gained during previous experiments to recursively update prior 

distributions of next sets of experiments. In the numerical example of this chapter, 

SMAXED performed comparatively well, identifying the irregular regions of the 

design space and spreading new experiments accordingly. Indeed, SMAXED placed a 

larger fraction of the available experiments in the irregular region of the design space 

where more experiments are needed to provide a better representation of the actual 

response function. Note that although the SMAXED approach can help reduce the 

number of response function evaluations, it may utilize CPU time for internal 

computations within the algorithm (i.e., optimization of the intermediate 

approximation model in Step 4, as well as maximization of entropy in Steps 1 and 7.) 

46 



Overall, if the response function is very time-consuming to compute, this extra effort to 

optimally place expensive experiments in the design space should provide a dramatic 

improvement in the accuracy of the approximation model. 

Once computationally expensive response functions are replaced with surrogate 

models, MOGAs can be used to find optimal solutions. In the next chapter, Chapter 3, 

a new MOGA is developed that aims at obtaining a Pareto solution set with maximum 

possible diversity along the Pareto frontier. The new MOGA is based on simulating 

Maxwellian systems and is shown to have a tendency to increase diversity of solutions.  
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CHAPTER 3 

MULTI-OBJECTIVE GENETIC ALGORITHM WITH 

CONCEPTS FROM STATISTICAL THERMODYNAMICS 

  
Multi-Objective Optimization (MOO) algorithms are essentially search 

techniques that aim at achieving a certain set of goals (see Haimes et al. 1971; 

Geoffrion et al. 1972; and Steuer 1986, for a comprehensive literature survey of MOO 

techniques). Among different MOO techniques, Multi-Objective Genetic Algorithms 

(MOGAs) have received significant attention recently.  MOGAs are based on the 

principle of natural selection and survival of the fittest. However, because of the very 

nature of MOGAs, the obtained solution sets from such algorithms tend to cluster in 

some regions of the Pareto frontier -- leaving the rest of the Pareto underrepresented. 

Therefore in this chapter, a new MOGA is introduced that is based on formalisms from 

statistical thermodynamics and aims at maximizing H (i.e. Boltzmann’s entropy) in a 

MOGA population.      

This chapter is organized as follows: Section 3.1 provides a brief introduction 

to multi-objective genetic algorithms, current improvement techniques in the literature, 

and the analogy between GAs and statistical model of ideal gas. Section 3.2 presents a 

new algorithm, i.e., Thermodynamical MOGA or T-MOGA, that takes advantage of 

this analogy to improve the quality of solutions. Finally, Section 3.3 presents a simple 
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test case to demonstrate the performance of the proposed approach. A case study and 

more examples can be found in Chapters 6 and 7.  

3.1 BACKGROUND AND PREVIOUS WORK 
 

The concept of GA was first introduced by Holland (1975) and soon received 

significant attention in various domains of search and optimization research (see 

Appendix II for a detailed description). GAs have several advantages over other classic 

optimization techniques. For example, GAs can handle mixed discrete-continuous 

optimization problems in a simple manner. Moreover, the concept of GA can be easily 

extended to address multi-objective optimization problems (MOGAs). Indeed, many 

researchers (e.g. Valenzuela-Rendon and Uresti-Charre 1997) suggest that multi-

objective optimization is a problem area where GAs perform much better than blind-

search techniques. Although this statement is subjective and many conditions may 

have to hold in order to guarantee a fast rate of convergence (Wolpert and Macready 

1997), nevertheless, GAs are becoming quite popular in real-world applications. (For a 

more detailed description of GA and MOGA refer to Appendix II.) 

3.1.1 Multi-Objective Genetic Algorithms (MOGAs) 
 

In general, multi-objective evolutionary algorithms can be categorized into 

three main approaches: weighting approach, population-based non-Pareto approach 

and population-based Pareto approach (Wu, 2001). In the first approach, all objectives 

are combined into one using a set of weights and then a single-objective GA is applied 

to solve the problem. Despite the simplicity of this approach, its applications are 

limited since the appropriate objective-weights are not usually known prior to the 
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optimization process. Moreover, the weighted approach does not necessarily yield the 

entire Pareto-optimal solutions for non-convex problems. In the second approach, a 

population of solutions is evolved simultaneously throughout the process to create a set 

of Pareto optimal solutions. Vector Evaluated GA (VEGA) developed by Schaffer 

(1985) is the most well-known technique within this category. A VEGA disjoints the 

population into a set of sub-populations via objective-proportional selection. The sub-

populations are then shuffled and the GA operators are applied. The main drawback of 

this approach as reported by Srinivas and Deb (1994) is the bias of the solutions to 

some sub-regions of the Pareto frontier. Moreover, since the fitness function in a 

VEGA is a linear combination of the objectives, few Pareto-optimal solutions can be 

obtained in the case of non-convex search spaces (Coello Coello, 1999). Goldberg 

(1989) suggested another approach: assigning a Pareto fitness to the individuals in a 

MOGA according to their dominant number, i.e., the number of other solution points 

that are dominated by a particular solution (see Appendix II). This approach soon 

became widely accepted and many MOGAs were developed based on this idea 

(Fonseca and Fleming 1993, Narayanan and Azarm 1999). In fact, Fonseca and 

Fleming (1993) implemented one of the first MOGAs that utilized Pareto-based fitness 

assignment along with a fitness sharing technique to prevent the tendency of the 

population to cluster in some sub-regions of the Pareto front. Another implementation 

of a MOGA using Pareto-based fitness was presented by Srinivas and Deb (1994) who 

created the Non-dominated Sorting Genetic Algorithm (NSGA). NSGA calculates the 

fitness of the solutions by determining the current non-dominated set, assigning them 

the best fitness, virtually removing them from the solution set and determining the next 
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subset of non-dominated solutions. Srinivas and Deb (1994) also introduced a fitness-

sharing approach, using a pre-defined sharing parameter and penalizing the solutions 

within this sharing parameter. Since then many other successful implementations of 

MOGAs are reported in the literature (Ishibuchi and Murata 1996; Cunha, Oliviera and 

Covas 1997; Valenzuela-rendon and Uresti-Charre 1997; Fonseca and Fleming 1998). 

For a comprehensive literature survey of MOGA methodology and applications see 

Foneseca and Fleming (1995); Tamaki et al. (1996); Horn (1997); Coello Coello 

(1999); Zitzler (1999); Deb (2001) and Van Veldhuizen and Lamont (2000). 

Many researchers have attempted to develop MOGAs that yield better solution 

sets in one way or another. The next section is devoted to a brief review of some of the 

most popular MOGA improvement techniques.     

3.1.2 MOGA Improvement Techniques 
 

Most of the recently proposed MOGAs claim to perform better in one aspect or 

another. For example, Veldhuizen and Lamont (1998) and Rudolph (1998) have 

addressed the issue of fast convergence to the optimal Pareto frontier. In addition, 

some variations of MOGA are developed to increase the diversity of the solutions in 

the population, via niche punishment of clustered individuals (Obayashi et al. 1998). In 

fact, most of the techniques in the literature use the concept of fitness sharing and 

niche punishment to dissolve clusters of solution points. Niche punishment spreads the 

solutions more uniformly over the Pareto frontier, which in turn increases the diversity 

of the solution set. (This is usually very desirable for the decision maker, since a 

diverse solution set provides a wide range of alternatives among which one can be 

selected.) One such algorithm -- introduced by Horn et al. (1994) -- is a Pareto-based 
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approach, referred to as the Niched Pareto Genetic Algorithm (NPGA). As in previous 

algorithms, the fitness sharing of this approach is based on the niche count. However, 

instead of using non-dominated sorting, a Pareto domination tournament strategy is 

introduced. The method basically compares ten (or more) solution points (instead of 

two) simultaneously, and rank orders them and selects individuals accordingly. This 

technique imposes some noise in the solution set during the process, yet this noise 

diminishes as a larger population size is selected.  

In addition to the above mentioned algorithms, there are some other variations 

of MOGA in the literature that use a combination of niche-count and some other 

techniques to maximize the diversity of the solution set as much as possible 

(Narayanan and Azarm, 1999).  

Other than fitness-based approaches, several recent techniques have been 

developed to improve the coverage and uniformity of the solutions via heuristics (e.g., 

Camponogara and Talukdar, 1997; Reynolds, 2000). In particular, these algorithms 

attempt to generate additional solutions to artificially fill in underrepresented areas in a 

Pareto solution set (i.e., along a Pareto frontier). The basic concept in these techniques 

is to randomly select and project some candidate points near the edge of a gap to fill in 

the interior or exterior voids in a solution set. However,  

• Heuristic projection of solution points to artificially fill the gaps does not 

guarantee an improvement in the solution set quality (because for instance it 

may create a gap in another region). 

• Even if a uniform distribution is obtained at a certain time during MOGA, it is 

not guaranteed to last. In other words, this uniformity may be transitional, and 
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if MOGA continues to project solutions and move them in random directions, 

the population may start to cluster again.  

 

As such, in this chapter we present a new MOGA -- referred to as 

Thermodynamical MOGA or T-MOGA. T-MOGA moves solution points according to 

a well-known pattern known as Maxwellian distribution. As discussed in Section 3.1.3 

and 3.1.4, Maxwellian systems are guaranteed to achieve an equilibrium state, that is: 

1) uniform density; and 2) steady state (not transitional). Moreover, Maxwellian 

systems are the only systems that are guaranteed to have this property.  

In the next section, we discuss the analogies between MOGA and Maxwellian 

systems. This analogy will be used later in Section 3.2 to develop T-MOGA. Because 

of the above mentioned-property of Maxwellian systems, T-MOGA (unlike previous 

MOGAs) should evolve to achieve a steady-state and uniform density of solutions 

everywhere in the solution space.   

3.1.3 Analogy of MOGA with Statistical Model of Ideal Gas 
 
 

Maxwell and Boltzmann developed the statistical theory of gases in the 

nineteenth century. The problem of statistical thermodynamics begins with a system 

about which only some macroscopic information is known. For example, consider the 

case of a monoatomic gas inside a container. In classical mechanics, the state of the gas 

is fully understood only if the position and momentum of each molecule is known. In 

statistical mechanics, however, such details are beyond our knowledge, or impossible 

to measure with certainty. Therefore, one only needs to know the general properties of 

the system (and not individual molecules). It can be shown that -- regardless of the 
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position and momentum of each individual molecule -- the overall behavior of a 

Maxwellian system of molecules (described in the next section) can be described as a 

function of only macroscopic properties of the system and time.  

In this chapter, we use several properties and similarities between a Maxwellian 

system and MOGA to produce a greater diversity of solutions in the solution set, as in 

the following:  

• A Maxwellian system of N particles always re-distributes itself such that it 

reaches an equilibrium state, i.e.,  

1. It becomes homogenously distributed in the vessel (local 

fluctuations in the density of molecules exist, but the average is the 

same everywhere in the vessel). The uniformity of solutions is a 

very favorable, and yet hard to reach, quality in MOGAs. 

2. The distribution becomes time-independent (steady-state). This 

corresponds to convergence of population in MOGA to a state of 

maximum diversity and remaining in that state.  

• As discussed in the next section, entropy of a Maxwellian system (that 

quantifies disorder in the system) never decreases whether the system is in 

equilibrium or not. Indeed, it can be proved that Maxwellian system is the 

only system that has this property (See for instance Andrews 1963). In 

terms of MOGA, we always want to increase diversity in the population 

during the optimization process, and a Maxwellian system is the only 

system that is guaranteed to do so. (T-MOGA is only an approximation of a 

Maxwellian system, however, as discussed later and shown by many 
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examples in Chapters 6 and 7, it demonstrates this property with minor 

fluctuations.)  

Note that the term ‘entropy’ in this chapter refers to Boltzmann’s definition of 

entropy, which is very similar to Shannon’s information entropy (see Chapter 2, 

Equation 2.19), but based on totally different assumptions. A formalism recently 

introduced by Prugel-Bennett and Shapiro (1997, 1999) also observed the usefulness of 

Boltzmann’s entropy to analyze the dynamics of GAs. Their study was focused on 

single objective GA and was performed at a genotypic level (i.e., manipulates binary 

bits in a chromosome). The approach in this dissertation however is multi-objective 

and phenotypic in nature (i.e., manipulates the diversity of population in the objective 

space).   

In the next section, we briefly present Maxwellian system of particles (ideal 

monoatomic gas) and its properties. This is used later in Section 3.2 to develop T-

MOGA.   

3.1.4 Maxwellian Systems and Boltzmann’s Entropy 
 

Consider the simplest case of a Maxwellian equilibrium system: a large number 

of particles, say N, enclosed in a vessel of volume V. (A more detailed discussion can 

be found in -- among others -- Andrews 1963, and Fay 1965.)  It is assumed that these 

particles move freely in the vessel unless they hit the walls of the vessel, which will in 

fact reflect them back and keep the gas inside the vessel. The state-space is defined as a 

2n-dimensional domain whose coordinates are x1, ..., xn, and v1, ..., vn, where n is the 

dimension of the space, and v1, ..., vn represent the velocity of particles with respect to 

x1, ..., xn, respectively. Therefore, to know the exact microscopic state of this system 
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we need 2nxN quantities.  If we are interested only in the macroscopic behavior of the 

system, however, we can use statistical methods and neglect microscopic fluctuations 

(fluctuations become totally negligible for large numbers of particles).   The density 

function, f(x,v,t), is defined as the density of points in this state-space. So 

f(x,v,t) dx dv     (3.1) 

is the number of particles in dx the velocity of which lie in the interval dv. Equilibrium 

assumption states that density, f , is (i) statistically constant everywhere in the vessel 

and thus, does not depend on x, (ii) at steady state and therefore is not a function of 

time. 

From these assumptions and using energy as a macroscopic invariant (constant 

of the system), Maxwell showed that the density function has the following distribution 

(known as Maxwellian distribution): 

f(v) = n (λ/π)3/2 exp(-λv2)    (3.2) 

where λ is a positive constant that depends on energy (or equivalently, temperature) of 

the system. Boltzmann’s entropy of a system of particles is defined as follows 

(compare to Equation 2.19): 

H = -k E(log f) = -k ∫ vd.log. ff    (3.3) 

where the integration is performed over state-space and therefore H is a function of 

time only. The above definition is given for all distributions (whether Maxwellian or 

not) and quantifies disorder in the system. Boltzmann proved that H has a very 

important property, known as Boltzmann’s H-Theorem (see for instance Haar, 1964).   
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Boltzmann’s H-Theorem: In a Maxwellian system (with the Maxwellian distribution 

of Equation 3.2), we have 0d ≥tHd . In other words, H never decreases with time. 

 

The definition of H in Equation 3.3 is unique in the sense that it is the only 

macroscopic function of the system (multiplied by a constant) that never decreases 

with time.  If such a system deviates from an equilibrium state, it is guaranteed to 

return to equilibrium with maximum H. The relaxation time (time to go back to 

equilibrium) depends on many parameters, and is very small (of the order of 10-9 for 

standard monoatomic gas) for large systems of particles. More importantly, the 

Boltzmann’s H-Theorem not only is a sufficient condition for attaining a stable 

equilibrium state, but also provides a necessary condition, i.e. the Maxwellian 

distribution is the only distribution that guarantees attaining steady equilibrium state 

(with maximum H; See for instance Haar 1964.) 

The similarity between Boltzmann’s entropy and Shannon’s information 

entropy is strikingly interesting, and it has been the subject of considerable debate and 

confusion in the literature. In this chapter, when we talk about ‘entropy’ it is 

interpreted in the context of statistical mechanics. The ‘entropy’ of Chapters 2, and 5 

however -- as mentioned clearly in those chapters -- is interpreted in the context of 

information theory as explained in Section 2.1.5 (see Brillouin 1962 for differences in 

the interpretation of entropy in thermodynamics and information theory).       

In the rest of this chapter, we take advantage of the above-mentioned property 

of Maxwellian systems to improve the distribution quality of solutions in MOGA. In 

short: The proposed T-MOGA assigns a velocity to each solution point and expands the 
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population accordingly. The resulting system is therefore bound to maximize H, and 

achieve a final equilibrium state, which: 1) has statistically uniform density of 

solutions everywhere in the design space (with the feasibility constraints that will be 

treated as the walls of a vessel); and 2) is time independent, and therefore, becomes 

steady once equilibrium is achieved. Because of the practicality issues of implementing 

T-MOGA, the simulation is only partial (Section 3.2.4), however, it is shown through 

examples (mainly in Chapter 6) that apart from minor fluctuations, T-MOGA still 

tends to closely follow H-Theorem.      

    

3.2 THERMODYNAMICAL MOGA (T-MOGA) 
 

In this section, T-MOGA is developed based on an analogy with equilibrium 

statistical model of ideal gas. The new algorithm aims at obtaining the best possible 

(statistically uniform) description of the Pareto frontier.  

3.2.1 Approach 
 

Consider the operations of a two-objective MOGA, as shown in Figure 3.1(a). 

We designate the set of non-dominated points after t iterations as St. As the population 

evolves from the non-dominated points for the initial population, S0, to the non-

dominated points after t iterations, St, the Pareto solution set or frontier is formed. The 

‘iteration number’ in T-MOGA, t, corresponds to the ‘time’ in statistical 

thermodynamics. Due to evolutionary nature of MOGAs, the Pareto solution set 

usually consists of several clusters of points that may not cover the entire range of 

Pareto frontier (See Figure 3.1(a)). Clustering is a well-known and undesirable 
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phenomenon in MOGAs. According to Deb (1998), an ideal MOGA should spread the 

solution points evenly, as much as possible, along the Pareto frontier.  

 

Si 

St 

clusters

S0
2f

1f
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(a) 
 

Si 

St 
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(b) 

Figure 3.1: An analogy of (a) evolution of individuals in a MOGA, with  (b) expansion 
of molecules of an ideal gas in an enclosure 

 

As shown in Figure 3.1(b), a direct analogy can be observed between the 

operation of a MOGA and an ideal gas undergoing an expansion in an enclosure. 

According to the definition of an ideal gas, there is no interaction between the 

molecules of an ideal gas in an enclosure. That is, the molecules move along random 

directions until they collide with the boundary of the enclosure. As a result of the 

collision with the boundary, the molecules are reflected back into the enclosure again 
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with the same velocity but along a different direction following the mirror’s law. As 

we mentioned before, if the velocity distribution of such a system follows the 

Maxwellian distribution, the set of particles will automatically evolve to maximize the 

entropy and consequently result in the uniformity and the coverage of the molecules in 

the enclosure. To an outside observer, the gas expands gradually until it fills in the 

inside of the enclosure and eventually reaches to a uniform, homogenous and time-

invariant state.  

The objective of this part of research is to modify a MOGA so that it enables an 

expansion of solutions along lateral directions. (A lateral direction is defined later in 

this chapter. In short, it is a random direction normal to the evolution direction shown 

in Figure 3.1(a).) To achieve this objective, we proceed with some modifications to a 

baseline MOGA, as described in the following sections. (The baseline MOGA, 

hereafter called MOGA-NA, was recently developed by Narayanan and Azarm, 1999.) 

3.2.2 Velocity Assignment 
 

A velocity value is assigned to every individual of the population in T-MOGA, 

according to an ideal gas model. At the beginning of the process, each individual is 

assigned with a velocity according to the Maxwellian velocity distribution in Equation 

3.2. This velocity will remain constant during the entire optimization process. This is 

similar to the case of the ideal gas, where the magnitude of velocity of a molecule does 

not change but its direction changes as it collides with the boundary of the enclosure.  

In addition to velocity values, for each solution point a lateral expansion 

direction is assumed normal to the progress vector (i.e. general direction of evolution). 

This is described next.   
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3.2.3 Transverse Expansion Hypersurface 
 

MOGA operations mainly consist of evolving the population via the GA 

operators of crossover and mutation, as it approaches the Pareto frontier. To extend the 

MOGA operations so that it also simulates an expanding ideal gas in an enclosure, at 

the beginning of each iteration the population is expanded transversely, normal to the 

progress vectors. Progress vectors are defined as the vectors along which the 

individuals in the population are expected to evolve. The progress vector is different 

for each point in the population and should be estimated individually.  

To estimate this vector, we propose an algorithm that is based on the relative 

position and fitness of points in the objective space while all operations are performed 

in the variable space.  

Consider the two-objective optimization problem shown in Figure 3.2, wherein 

there are N1 non-dominated solution points in the population at its current stage of 

evolution. We label these points as P1, P2, …, PN1. If we eliminate these points from 

the population, we obtain N2 non-dominated points, denote these as PN1+1, PN1+2, ..., 

PN1+N2. As we repeat this process, we divide the population into several sets of points. 

We assign a ranking of one to the first set (i.e., N1 points, the fittest points in the 

current population), a ranking of 2 to the second set of points, and so on. Each set will 

form a curve or a hyper-surface for the higher dimensions of the objective space, 

hereafter referred to as a transverse-expansion hyper-surface.  
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Figure 3.2: Estimating the progress vector in a two-dimensional objective space 
 

The lateral expansion of the solutions is done in a direction tangent to this 

hyper-surface. As the solutions are evolved, these transverse hyper-surfaces gradually 

converge to the Pareto frontier. This hyper-surface will be (m-1)-dimensional in an m-

dimensional objective space. For example as shown in Figure 3.3, the transverse hyper-

surface of a three-objective problem will be a two-dimensional surface on which the 

population is expanded laterally. 
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Figure 3.3:  Transverse-expansion of individuals in T-MOGA 
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Consider the point Pi on the first non-dominated set (1≤ i ≤N1), see Figure 3.2. 

We denote the vector connecting Pk to Pi as . We define an offset vector AkiΖ i as:  
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wherein Ai is an offset vector, since it is almost tangent to the transverse hyper-surface 

and points to the nearest edge of the non-dominated set. In addition, the magnitude of 

this vector is larger for a point near the edge of the set while in the middle of the set its 

magnitude is small. Similarly, the vector Bi is defined: 
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As can be seen in Figure 2, since the points in N1 are evolved (in terms of all 

objectives) as compared to the points in N2, Bi consists of a normal-progress 

component in addition to the offset vector. If the points in the first and second non-

dominated sets, N1 and N2 points in Figure 3.2, respectively, are distributed in the same 

fashion, then the offset vectors due to both of these first and second non-dominated 

sets are approximately equal. Hence, one can subtract the offset vector, Ai, from Bi to 

obtain a progress vector.  
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where Ci estimates the progress vector of the point Pi (Figure 3.2). So far, we have 

assumed that Pi is in the first non-dominated set, i.e., the N1 points in the population. 

For a point Pi, in general, in the m-th non-dominated set, we have: 
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where: (N1+N2+…+Nm-1+1)≤ i ≤ N1+N2+…+Nm). 

 It is clear that the above mentioned estimates becomes less accurate for very 

inferior or poor ranking points and their corresponding hyper-surfaces since they may 

not consist of enough points to give an acceptable estimation of offset and progress 

vectors. However, as mentioned in the next section, we are mainly interested in the 

good-ranking hyper-surfaces since they provide a better chance of reproduction.  

Now that we have obtained Ci, a lateral movement vector is chosen randomly in 

a direction normal to the progress vector of each individual, as shown in Figure 3.4. 

Each point moves along its lateral movement vector until it attempts to violate a 

constraint  -- just like a molecule in an enclosure that moves along a straight line until 

it collides with a boundary of the enclosure (This will be discussed in Section 3.2.5 ). 

In the next section, expansion operators are introduced in T-MOGA to expand the 

population of solutions in a lateral direction according to the Maxwellian distribution 

of equation 3.2. 
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Figure 3.4: A lateral movement vector chosen randomly and normal to the progress 

vector of each individual 

3.2.4 Expansion Operator 
 

The expansion operator is applied at every iteration. This operator enhances 

each individual (or a certain percentage of the population) as follows. 

a. A new chromosome (child) is generated by moving the chosen individual 

(single-parent) along its assigned lateral-movement vector in the variable-

space. 

b. The magnitude of the movement is proportional to its assigned velocity (as 

described in Section 3.2.2.  

Since this operator is applied every iteration, it simulates the gradual movement 

and expansion of gas molecules with different velocity magnitudes and directions. 

However, there are two parameters that should be set in T-MOGA, the expansion 

percentage and expansion start, as described in the following. 

 

Expansion Percentage: To keep the number of function calls as low as possible, we 

apply the expansion operator only to a certain percentage of the fittest individuals in 
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the population. As these points are expanded to the new regions, they act like seeds for 

the new offspring in those regions. 

Expansion Start: As described in Section 3.2.3, the estimation of the progress vector 

is based on the relative position and fitness of the points. Specifically as the number of 

the first and second ranked non-dominated points (i.e., N1 and N2 points in Figure 3.2) 

increases, the corresponding progress and lateral-movement vectors can be estimated 

more accurately. Therefore, if we let the population evolve for a few iterations before 

we start applying the lateral expansion operator, we will have more points in these sets 

resulting in a more accurate estimation of the progress and lateral-movement vectors. 

In the examples discussed at the end of this chapter, for instance, the expansion starts 

at the fifth generations. Thereafter, the expansion operator is applied to all subsequent 

generations.  

3.2.5 Constraint Handling 
 

When a gas molecule collides with the boundary of an enclosure, it is reflected 

back into the enclosure without a change in its speed but the movement direction will 

be different and follows the mirror’s reflection law (Figure 3.5(a)). Similarly, a 

constraint for T-MOGA is a hyper-surface in the variable space and can be treated as a 

wall or a boundary (Figure 3.5(b)).  
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Figure 3.5:  (a) The direction of movement changes as a molecule hits a constraint, (b) 
the individual is reflected back into the feasible region 

 
Assume that all individuals in the initial population are feasible. Every time that 

the population undergoes an expansion (i.e., an expansion operator is applied), there 

might be several points that attempt to violate one or more constraints to enter the 

infeasible region. We reflect these points back into the feasible region according to the 

mirror’s reflection law and assign to them a new lateral-movement vector.  This 

constraint handling aspect of T-MOGA makes it a “feasible-direction” type method. 
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This is because if all individuals in the initial population satisfy the constraints, all 

subsequent generations will remain within the feasible domain. To ensure that the 

initial population is feasible, T-MOGA checks for infeasible points before the first 

generation undergoes expansion and replaces, via a random number generator, all 

infeasible individuals with feasible ones. This is continued until all individuals in the 

initial population are feasible. A step-by-step description of T-MOGA is given next. 

3.2.6 T-MOGA: Step-by-Step 
 

A detailed flowchart for the proposed T-MOGA is shown in Figure 3.6. Below, 

the algorithm is given step-by-step. 

Step 1: The initial population is generated randomly until all individuals are feasible. 

Step 2: A velocity is assigned to each individual in the population according to the 

Maxwellian probability distribution function. This velocity remains constant 

throughout the process. (See Section 3.2.2) 

Step 3: The individuals in the population is rank-ordered and the hyper-surfaces are 

created (i.e., sets N1, N2, ..., as described in Section 3.2.2) 

Step 4: The progress vectors of the individuals are estimated from 3.7. 

Step 5: A lateral movement vector is assigned to each individual randomly, normal to 

the progress vector obtained in Step 4.  

Step 6: The expansion operator is applied to a pre-specified percentage of the 

population. (See Section 3.2.4) 
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Step 7: After the expansion is applied to the individuals, they are checked for a 

constraint violation.  

Step 8: If an individual violates a constraint, it is reflected back from the corresponding 

constraint boundary and a new movement direction is assigned according to 

the mirror reflection law (Section 3.2.5). Go back to Step 7. 

Step 9: The expanded population is evaluated and a fitness value is assigned to the 

individuals. 

Step 10: A percentage of the individuals are selected for reproduction. The chance of 

being selected is higher for the fitter individuals (Narayanan and Azarm, 

1999). 

Step 11: The selected parents undergo crossover and mutation. The offspring are added 

to the current population. Then the entire population is rank-ordered and the 

worst individuals are discarded. 

Step 12: If the stopping criterion is not met, go to Step 3 and continue. Otherwise, stop.   
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Figure 3.6:  Flowchart of T-MOGA 
 

As stated before for the ideal gas expansion, the population of chromosomes in 

T-MOGA is expected to gradually achieve the maximum-entropy macrostate that 

indicates a statistically uniform and steady-state (independent of time and position) 

density. During the process, as the individuals are expanded, the entropy of the 

population increases gradually.  

In the next section, the performance of T-MOGA is demonstrated with a simple 

example. More test examples and a case study can be found in Chapters 6 and 7, 

respectively.   

3.3 DEMONSTRATION EXAMPLE 
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The performance of T-MOGA is tested using a simple engineering design 

example: optimal design of a two-bar truss. This example was originally formulated as 

a single-objective problem by Kirsch (1981). The problem was reformulated as a two-

objective problem by Narayanan and Azarm (1999) to demonstrate the application of a 

MOGA. In this example, as illustrated in Figure 3.7, the vertical position of point C 

and the cross-sectional areas of links AC and BC are to be selected and thus the design 

variables, which are all continuous, are x1, x2 and y. The objective of this design is to 

minimize the total volume (and consequently the weight) of the structure as well as the 

tensile stress in link AC. The constraints are the maximum allowable stresses in AC 

and BC that should not exceed 100,000 kPa and the total volume of the material used 

in the structure that should be held less than 0.1m3.  

100kN

x1 x2

C

A B

4m 1m

y

 
Figure 3.7:  Two-bar truss 

 
Constraints are imposed on the design objectives (i.e., objective constraints), as 

shown in the formulation of the problem. This is because the Pareto set is asymptotic 

and extends from -∞ to ∞.  As x1 and x2 go to zero, fvolume goes to zero and fstress,AC and 

fstress,BC go to infinity.  As x1 and x2 go to infinity, fvolume goes to infinity and fstress,AC and 

fstress,BC go to zero.  Hence, in order to generate Pareto optimal solutions in a reasonable 

range, objective constraints are imposed. The problem formulation is given below.  
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The problem has been solved with both a baseline MOGA (Narayanan and 

Azarm, 1999) and the T-MOGA. The GA’s parametric values used to solve this 

problem are listed in Table 3.1.  

 

 MOGA T-MOGA 
Population size 50 50 
Replacement per 
generation 

10 10 

Function calls 550 550 
Crossover type 2-point 2-point 
Crossover probability 0.8 0.8 
Mutation probability  0.05 0.05 
Bits per variable 10 10 
Selection type Stochastic universal 

selection (Levine, 1996) 
Stochastic universal  
selection (Levine, 1996) 

Expansion percentage NA 10% 
Expansion start NA 5th 
Expansion finish NA 45th 

 

Table 3.1: MOGA parameters  
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The results from both techniques are shown in Figures 3.8(a) and (b). As shown 

in these figures, a significant improvement is observed in the results obtained by T-

MOGA when compared with those by the baseline MOGA. In Figure 3.8(a), the 

majority of solution points are clustered in two regions and the rest of the Pareto 

frontier is left empty or very sparingly populated. In contrast, T-MOGA results show a 

more evenly distributed set of solution points along the Pareto frontier without any 

noticeable clustering of the points. Moreover, comparing the range of the optimal 

solution set obtained from each technique, one can notice that T-MOGA covers a 

larger portion of the Pareto frontier. Based on this example, it can be concluded that 

the optimal set generated by the T-MOGA is much better than that generated by the 

baseline MOGA in terms of uniformity and coverage of the Pareto frontier (For a case 

study and more examples see Chapters 6 and 7.) 

73 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
           (a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         (b) 

  

0
10000

20000
30000
40000
50000

60000
70000
80000

90000
100000

0 0.02 0.04 0.06 0.08 0.1 
Volume (m3)

St
re

ss
 (k

Pa
) 

  

0
10000

20000
30000

40000
50000

60000
70000

80000
90000

100000

0 0.02 0.04 0.06 0.08 0.1 
Volume (m3)

St
re

ss
 (k

Pa
) 

 
Figure 3.8:  Pareto solution set for the two-bar truss example obtained by 

(a) baseline MOGA, and (b) T-MOGA 

3.4 CONCLUDING REMARKS 
 

In this chapter, we presented a new multi-objective genetic algorithm -- 

Thermodynamical MOGA (T-MOGA) -- based on an analogy with the thermodynamic 

behavior of ideal gas undergoing expansion in an enclosure. T-MOGA expands a 

sample of population while evolving to reach the Pareto frontier, and therefore 
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achieves better uniformity and coverage of the solutions. The constraint handling 

technique developed in T-MOGA is in fact a feasible direction approach, that is, if 

individuals in the initial population satisfy the constraints, all of their subsequent 

generations will remain feasible.  

For demonstration, both T-MOGA and baseline MOGA were applied to a two-

bar truss design problem. The results showed a significant improvement in the 

solutions obtained by T-MOGA in terms of uniformity and coverage of solutions over 

those obtained from the baseline MOGA. In particular, the Pareto solutions obtained 

from the baseline MOGA contained obvious gaps and clusters while those from the T-

MOGA were almost free of them. In addition, the solutions obtained from the T-

MOGA covered a significantly wider range of the Pareto frontier compared to the 

baseline MOGA. 

 In the test example of this chapter, we used a visual demonstration of solution 

sets obtained from two MOGAs to compare their performance (Figure 3.3-2). Visual 

comparison, however, is not practical for problems with 3 or more objectives. 

Therefore, researchers have developed quantitative measures for quality of non-

dominated solution sets, referred to as quality indexes in this thesis. The next chapter 

discussed such indexes and their properties. More importantly, we develop a 

theoretical platform for selection of a comprehensive yet non-overlapping set of such 

indexes to compare the quality of MOGAs.  
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CHAPTER 4 

MINIMALITY OF QUALITY INDEXES 

Once a Pareto solution set to a multi-objective optimization problem is 

obtained, it is usually of great interest to know how ‘good’ the observed solution set 

represents the Pareto frontier. This can be done visually, by relying on the designer’s 

intuitive judgment, or quantitatively, via quality-capturing indexes. However, visual 

quality assessment of solution sets is not always reliable in comparison study of 

different evolutionary multi-objective optimization techniques, raising the need for 

quantitative quality indexes.  

In this chapter, we propose a conceptual framework for selection of a handful 

of these indexes such that all desired aspects of quality are addressed with minimum or 

no redundancy. Indeed, we prove that such sets of indexes -- referred to as ‘minimal 

sets’ -- must be constructed based on a one-to-one correspondence with quality aspects 

that are set forth by a decision-maker.  

This chapter is organized as follows: Section 4.1 provides a brief background 

on quality indexes, and their properties. Section 4.2 presents a theoretical platform for 

selection of quality indexes based on inputs from a decision-maker. More importantly, 

set minimality of quality indexes is formally defined, and Minimality Theorem is 

proved. Finally, Section 4.3 presents a simple test case to investigate the applicability 

of the proposed framework.  
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4.1 BACKGROUND AND PREVIOUS WORK 
 

The following subsections provide a brief literature review of the quality 

indexes and their properties and shortcomings.  

4.1.1 Quality Indexes 
 

 Researchers have developed a myriad of techniques over the last few years to 

improve the quality of solution sets in one way or another. Naturally, performance 

assessment and comparison study of multi-objective genetic algorithms have also 

gained much attention. One obvious way to compare MOGAs is to simply visualize the 

final sets of solutions and rely on intuitive and visual judgments to decide the 

superiority of one technique to another.   However, as discussed by Van Valdhuizen 

and Lamont (2000), visual assessment is not a reliable tool for comparison of different 

multi-objective optimization techniques. Especially, for problems with more than 

three-dimensions, visual judgment is either impossible or quite misleading, yet it is the 

prevailing approach used by many researchers.  

 More recently, there has been an emerging theme in the literature to 

quantitatively assess and compare the quality of non-dominated solution sets (NDS; 

refer to Appendix-I, for definition) via quality  indexes. These quality indexes 

generally assign an absolute or relative value to an NDS to determine whether it is a 

‘good’ representation of the Pareto frontier. For instance, Zitzler and Thiele (1998) 

performed a comparative study of several multi-objective optimization methods using 

two indexes: “size of the dominated space” and “fraction of solutions dominated by the 

other set”. Van Veldhuizen (1999) introduced several quality indexes, such as: ‘error 

ratio’, ‘generational distance’, ‘maximum Pareto frontier error’ and ‘overall non-
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dominated vector generation ratio’ to assess different aspects of a solution set quality. 

Sayin (2000) also defined indexes for coverage, uniformity and cardinality to 

determine how ‘good’ a set of discrete solution points represents the Pareto frontier. 

However, application of most of these indexes to real world problems may encounter 

difficulties because these indexes usually need some knowledge of the Pareto set or at 

least a reference set (i.e., an approximation of the Pareto frontier) which is not always 

available. Moreover, these indexes may be conflicting in the sense that while a MOGA 

may outperform with respect to another MOGA in terms of one index, at the same 

time, it may perform poorly with respect to (w.r.t.) another index. To resolve the 

former issue, Wu and Azarm (2001) suggested a new set of quality indexes (a few of 

which were adapted and modified from the literature). These indexes address the 

quality of a solution set without any a priori knowledge of the Pareto frontier. 

However, similar to the Van Veldhuizen’s indexes, Wu and Azarm’s indexes could be 

conflicting, introducing tradeoffs among different aspects of quality. (For a recent 

review of the quality indexes and their shortcomings, see Knowles 2002). In fact, as 

discussed in the following section, one must select a set of quality indexes such that all 

aspects of quality are addressed without unnecessary correlations among them.  

4.1.2 Minimality: Encapsulation vs. Exhaustiveness 
 

According to Deb (1998) there are two main tasks that MOGAs should address: 

1) fast convergence to the Pareto frontier, and 2) maintaining diversity. Bosman and 

Thierens (2003) state that there is a tradeoff between these two goals in most cases, 

although MOGAs that perform better with respect to both are feasible. The common 

trend in the literature is to ‘decompose’ each of the above two tasks into several 
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subtasks and develop numerous quality indexes accordingly. For example, there are 

several indexes in the literature that are claimed to assess ‘diversity of solutions’ in one 

way or another, including: ‘spacing index’ (Schott, 1995); ‘overall non-dominated 

vector generation’, ‘overall non-dominated vector generation ratio’ (Van Veldhuizen 

1999); ‘coverage’, ‘uniformity’, ‘cardinality’ (Sayin 2000); ‘number of distinct 

choices’, ‘Pareto spread’, and ‘cluster’ (Wu and Azarm 2001). In a similar fashion, 

researchers developed numerous indexes to assess the closeness of solution sets to the 

Pareto frontier (see Knowles 2002, for examples of these indexes).  

Obviously, many of indexes that address a common aspect of quality are 

correlated in one way or another, introducing redundancy in a comparison study of 

MOGAs. Therefore, selecting too many of these indexes is not only confusing but also 

transforms the quality assessment of MOGAs into unnecessary and complex tradeoffs 

among different indexes. In fact, it is virtually impossible to find a situation in which a 

multiobjective optimization algorithm outperforms other algorithms in terms of all 

existing quality indexes. That is, one algorithm for example may produce more distinct 

solutions while the other distributes them more uniformly and a third one performs 

better in terms of having no gaps among its solution points.  

Having the correlation among different quality indexes in mind, one may 

decide to ‘encapsulate’ (rather than decompose) different aspects of quality into one or 

a few scalar indexes.  For instance, one might consider only two scalar indexes that 

encapsulate all of the aforementioned indexes: one representing the convergence to the 

Pareto frontier, and the other representing the diversity of solution points. However, as 

shown later in this chapter, selecting too few quality indexes does not guarantee an 
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‘exhaustive’ comparison with respect to all aspects of quality. This in turn poses a new 

question to researchers: which index or collection of indexes must be used for an 

exhaustive (but not redundant) comparison study of different MOGAs?  

Later in this chapter, it is shown that a desirable collection of quality indexes 

must be minimal in the sense that: 1) There exists at least one index for every aspect of 

the solution set quality to guarantee an exhaustive performance assessment; 2) There 

exists minimum (or no) correlation among quality indexes to avoid redundancies (see 

Section 4.2.5 for a formal definition). Due to the subjective nature of the concept of 

‘quality’, it is shown that minimality can be defined only based on a decision-maker’s 

understanding of a ‘good’ solution set. In fact, the Minimality Theorem of Section 

4.2.5 proposes a guideline for building a minimal set of quality indexes based on the 

input from a decision-maker.    

 

4.1.3 Binary / Unary Quality Indexes and Outperformance Relations 
 

 By definition, a unary quality index yields an absolute value to quantify the 

goodness of a given solution set. On the other hand, a binary index only compares the 

quality of two solution sets and return a relative value. For reasons that will be 

discussed at the end of this section, the focus of this research is only on binary indexes. 

Definition 4.1.3-1: If A and B are two NDS’s, then the binary index Q(A,B) returns a 

scalar that  reflects how much better set A is when compared to set B. (The discussion 

in this chapter also applies to other indexes that can be transformed into the binary 

format.) 
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Moreover, the binary index Q is said to be symmetric and homogeneous iff 

. Note that the general definition for a symmetric index is: 

. However, without loss of generality, this latter format can be 

easily transformed into a homogenous symmetric index by assuming: 

. Also, without loss of generality, it is assumed that Q(A,B) 

> 0 iff A is strictly better than B. If we define the set of all possible NDSs by U, A 

binary quality index as defined above constructs a total order in U and compares any 

two NDS’s on a quantitative basis.   

),(),( BAQABQ −=

,('),(' AQCABQ −=
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Other than quality indexes that compare the quality of all NDS’s, Hansen and 

Jaszkiewicz (1998) defined the outperformance relations to establish a strict partial 

order among NDS’s, where some pairs of solution sets are objectively comparable in 

terms of Pareto optimality (or dominance), as in the following:  

Definition 4.1.3-2: A non-dominated set A strongly outperforms a non-dominated set 

B, denoted by AROB, iff A B and (in the objective space) for each y∈B, there exists 

x∈A such that x

≠

f y. (In addition to the strong relation, Hansen and Jaszkiewicz  (1998) 

also defined weak and complete outperformance relations.) 

The notation ‘f ’ in xf y indicates that point x is either equal to or dominates 

point y with respect to all objectives. Figure 4.1 demonstrates two non-dominated 

solution sets generated for a 2-objective maximization problem. According to 

Definition 4.1.3-2, we observe that:  AROB.  
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Figure 4.1: AROB: set A strongly outperforms set B 
 
 

Clearly, not every two NDS’s are comparable by outperformance relations. 

Then the above relation constructs a strict partial order in U. Here we define the 

partially ordered domain of this comparison in UxU -- denoted by ΛRo -- as the set of 

all 2-tuples of NDS’s that are comparable via RO, i.e.,  

ΛRo = {(A,B)∈UxU | either AROB or BROA}    (4.1) 

Outperformance relation accounts for pairs of NDS’s where one solution set is 

objectively better (based only on the notion of dominance) than the other set and thus, 

they establish strict partial orders among NDS’s. Put another way, not all solution sets 

are comparable in this way, but at least one can verify the validity of a quality index by 

examining its compatibility with these relations. Based on this idea, Zitzler et al. 

(2002) investigated compatibility and completeness of different comparison methods 

and derived a set of theoretical restrictions for the existence of compatible and 

complete unary quality indexes. In fact, they prove that a finite combination of unary 

indexes that is compatible and complete at the same time does not exist in general. 

They also mention that this limitation does not apply to binary quality indexes, and 
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therefore, one can construct compatible and complete indexes with respect to any 

dominance relations.  

As such, the focus of this chapter is on minimality and compatibility of binary 

quality indexes and their correspondence with partial order relations (referred to as 

excellence relations in the following section.) Although there are relatively fewer 

binary quality indexes in the literature as compared to unary indexes (Zitzler et al. 

2003), the above property makes them very attractive for a comparison study of 

multiobjective optimization algorithms, mainly because one could select a minimal set 

of binary indexes to address all desired aspects of quality exhaustively and distinctly. 

(This is not possible in general with unary indexes.) 

 

4.2 SET MINIMALITY OF BINARY QUALITY INDEXES 
 

In this section, we will derive a theoretical framework for selection of a 

minimal set of symmetric and homogeneous binary indexes.  

4.2.1 Excellence Relations  
 

Outperformance relation by itself does not provide a tool to compare any given 

pair of NDS’s. This relation is based only on the concept of dominance (or closeness to 

the Pareto frontier), and therefore, if a quality index aims at comparing NDS’s in terms 

of dominance, it must be compatible with this relation in the first place. (The formal 

definition of compatibility is given in Section 4.2.2.)  

However, there are other aspects of quality that are especially important in the 

assessment of solution sets obtained from MOGAs, e.g., diversity of solution sets, or 

extent of the Pareto frontier that is covered by the solutions. Very similar to the 
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outperformance relation, one can collect all 2-tuples of NDS’s that are objectively 

comparable with respect to any aspect of quality and construct a strict partial order 

accordingly. This prompts for the definition of a more general concept, hereafter 

referred to as excellence relations (given next).  

Definition 4.2.1-1: An excellence relation, denoted by R, is defined as a strict partial 

order in U that relates all non-dominated sets that are objectively comparable with 

respect to a common aspect of quality. The partially ordered domain of R in UxU --

denoted by ΛR -- is defined as: ΛR = {(A,B)∈UxU | either ARB or BRA}.  

For example, an outperformance relation is an excellence relation with respect 

to dominance. As another example, in the following, we define a new excellence 

relation (i.e., coverage relation) to address a different aspect of quality: coverage (i.e., 

the span of a solution set over the Pareto frontier).  In this example, it is assumed that 

all objective functions are positive. 

Definition 4.2.1-2: A non-dominated set, B, is strictly superior to another non-

dominated set, A, in terms of coverage, denoted by BRCA, iff all solution points of Set 

A are contained in a convex cone generated by Set B, while there exists at least one 

solution point in Set B that is not contained in a convex cone generated by Set A.  

Here the convex cone generated by a solution set A={a1, a2, …} is defined as 

all nonnegative linear combinations of ai’s, i.e., { }0;| ≥Σ= iii ww avv . The shaded 

area in Figure 4.2(b) demonstrates the convex cone generated by Set B. This cone 

clearly contains all solution points of Set A. In contrast, the convex cone of Set A 

(Figure 4.2(a)) does not include all solution points of Set B. Thus, according to 
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Definition 4.2.1-2, we have: BRCA. Finally, note that in this definition it is assumed 

that all objectives are to be maximized. Also, the nadir point is assumed to be located 

at the origin of the Cartesian objective space. If these assumptions do not hold for a 

given problem, one could always transform the objectives to meet these assumptions.  

(a) 

Convex cone 
generated by 

set A 
α 

Convex cone 
generated by 

set B 

Pareto Frontier 

(b)

β 

 

Figure 4.2: Convex cones generated by: (a) NDS A; and (b) NDS B. 
According to Definition 3:  BRCA. 

 

As expected, the excellence relation for this example establishes a strict partial 

order in U, i.e., objectively compares some pairs of NDS’s in terms of coverage.  

Note that the first step in a comparison study of NDS’s is to determine different 

aspects of quality that are of interest to the decision-maker (e.g., Pareto optimality, 

coverage, diversity, and so on). Then, we collect all pairs of NDS’s that are objectively 

comparable with respect to any of these quality aspects. These collections establish 

strict partial orders in U that we refer to as excellence relations. However, not all 

solution sets are comparable using these relations, and one must formulate quality 

indexes that enable an exhaustive comparison of all non-dominated solution sets. Each 

85 



binary quality index constructs a total order that quantitatively compares all NDS’s 

pairs in U.  

The correspondence of these quality indexes (i.e., total order) with excellence 

relations (i.e., partial orders) is the subject of the next section. We prove two key 

lemmas that will be used later in Section 4 to investigate the properties of a minimal 

set of quality indexes.  

4.2.2 Compatibility and Concordance 
 

Suppose Q is a symmetric and homogeneous binary quality index that 

compares any two NDS’s in terms of a certain aspect of quality. If R is an excellence 

relation that addresses the same aspect of quality, it is natural to expect Q to be 

compatible with R, as defined formally in the following. (This is very similar to the 

definition of compatibility with outperformance relation given by Hansen and 

Jaszkiewicz (1998); tailored for symmetric indexes, and generalized for excellence 

relations.)  

Definition 4.2.2-1: A symmetric homogeneous binary index, Q, is compatible with an 

excellence relation, R, iff: for any pair of non-dominated sets A and B such that ARB, 

we also have Q(A,B) > 0, which implies set A has a better quality than set B. (The 

compatibility of index Q with relation R is denoted as Q ~R.) 

Knowles (2002) studied the compatibility of several unary and binary quality 

indexes with respect to an outperformance relation. The same study can be carried out 

to determine the compatibility of those indexes with respect to any other excellence 
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relations, such as the coverage relation, RC. Obviously, if an index is not intended to 

compare two NDS’s in terms of a certain aspect of quality (e.g., a diversity assessment 

index is not intended to account for closeness to the Pareto frontier) it does not need to 

be compatible with that excellence relation. In fact, we will prove that each quality 

index in a minimal set must be compatible with one and only one excellence relation. 

Nevertheless, this compatibility is dependant on the definition of the excellence 

relation itself.  

Before formally defining minimal sets of quality indexes and their 

correspondence with excellence relations, in the following we introduce the notion of 

concordance among excellence relations. 

 

Definition 4.2.2-2: Two excellence relations R and R' are concordant iff for each 

 such that ARB, we also have AR'B.   RRBA ′Λ∩Λ∈),(

Concordance basically implies that the two excellence relations cannot work 

against each other. Put another way, R and R' are concordant iff there do not exist two 

non-dominated sets A and B such that: ARB and BR'A. If two excellence relations are 

referring to different aspects of quality (e.g., diversity and Pareto optimality), there are 

always examples of NDS’s that are better with respect to one aspect of quality and 

worse with respect to another, and therefore, those relations are not concordant (or are 

non-concordant). In contrast, if being better in terms of one relation always implies 

better with respect to another, then it implies that the two relations have essentially the 

same nature (i.e., refer to the same aspect or notion of quality) and thus are concordant. 

The two excellence relations of Definitions 4.1.3-2 and 4.2.1-2, i.e., RC and RO, are 
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non-concordant because set A in Figures 4.1 and 4.2 is better than set B in terms of the 

outperformance relation (AROB), but worse in terms of coverage (BRCA). Moreover, 

from the above definition two relations R and R', such that , are always 

concordant. Therefore, the family of outperformance relations defined by Hansen and 

Jaszkiewicz (1998) are concordant because: complete outperfromance is a subset of 

strong outperformance, which in turn is a subset of weak outperformance. Therefore, 

although these relations are different, they are concordant according to Definition 

4.2.2-2.  

RR ′⊂

Concordance is a very strong assumption in the sense that if (A,B)∈UxU is 

comparable via two given concordant excellence relations, the outcome of the 

comparison from the first relation is always the same as that of the second one. On the 

other hand, non-concordance is a weak assumption in the sense that: two excellence 

relations are non-concordant even if there exists only one pair of non-dominated 

solution sets, (A,B), such that A is better than B with respect to one relation and worse 

with respect to another.  

4.2.3 Compatibility Lemma 
 

In the following, we prove an important lemma for non-concordant relations 

that will be used later in this chapter as a basis for the Minimality Theorem.  

Lemma 4.2.3: There does not exist a symmetric and homogeneous quality index that is 

compatible with two (or more) non-concordant excellence relations.  
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Proof. For the sake of contradiction, suppose there exists a quality index, Q, which is 

compatible with two non-concordant excellence relations, namely R and R'. Since R 

and R' are non-concordant, there exists a pair of non-dominated sets, namely A,B∈U, 

(A B), such that ARB and BR'A. But since Q is compatible with R, from ARB we 

conclude . Similarly, Q is compatible with R' and from BR'A we have 

, which is a contradiction because 

≠

(B

0),( >BAQ

0>), AQ ),(),( ABQBAQ −= . � 

In fact, this lemma is somewhat intuitive from the definition of concordance 

and compatibility: an index cannot simultaneously be compatible with two excellence 

relations that work against each other. For example a symmetric and homogeneous 

coverage index, which is compatible with RC, is necessarily incompatible with RO (i.e., 

recall that RO and RC are non-concordant according to Definition 4.2.2-2 and Figures 

4.1 and 4.2). The above lemma indicates that there must be at least one separate index 

in a minimal set to individually address each aspect of quality, e.g., at least one index 

compatible with diversity, another one compatible with Pareto optimality, and so on.  

Next, we show that any two given indexes that address the same aspect of 

quality are necessarily correlated.  

4.2.4 Correlation Lemma 
 

In this section, we prove another important lemma for non-correlated binary 

indexes that will be used in Section 4.2.5 as a basis for Minimality Theorem.  

Lemma 4.2.4: If two symmetric homogeneous indexes are both compatible with an 

excellence relation, R, they are positively correlated within ΛR.   
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Proof. Assume two symmetric and homogeneous indexes, Q and Q', are both 

compatible with R. Then the covariance of Q and Q' within ΛR can be written as: 

Cov [Q(A,B), Q'(A,B)]= <Q(A,B)Q'(A,B)> − <Q(A,B)> <Q'(A,B)>   ;  RBA Λ∈),(

where the expected value of Q within ΛR, i.e., <Q(A,B)>, is zero, because Q is 

symmetric, and therefore, for each RBA Λ∈),(

RB

, we also have , and Q(A,B)= -

Q(B,A). Similarly: <Q'(A,B)> = 0. On the other hand, Q and Q' are both compatible 

with R, and therefore, for each 

RAB Λ∈),(

A Λ∈),( , Q(A,B) and Q'(A,B) have the same sign 

(both negative or both positive). Thus, <Q(A,B)Q'(A,B)> is strictly positive, and the 

Lemma follows. � 

Note that being ‘positively correlated’ is a necessary and not sufficient 

condition for ‘compatibility with the same relation’, i.e., two indexes that are not 

compatible with the same relation are not guaranteed to be uncorrelated. Here we 

denote the standard deviation of two indexes, Q and Q', by σ and σ' respectively. Then 

the correlation of two indexes are defined by: 

ρ = Corr(Q,Q')=Cov(Q,Q')/(σσ')    (4.2) 

where 11 ≤≤− ρ . Note that 1±=ρ  implies that the two indexes are strictly 

correlated, i.e., one index is a linear function of the other. In that case, using both 

indexes to assess the quality of a solution set is redundant. On the other hand, a 

correlation of 0=ρ  shows that the two indexes are absolutely uncorrelated, which is a 
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very desired property. As mentioned before, we expect the indexes in a minimal set to 

be uncorrelated.  

In the following section, we take advantage of the above Lemmas to investigate 

the properties of minimal sets of quality indexes.  

4.2.5 Minimality Theorem 
 

In this section, we formally state the minimality conditions for a set of binary 

quality indexes.  

Definition 4.2.5-1: A set of quality indexes, namely Γ, is said to be minimal with 

respect to a given set of non-concordant excellence relations, Φ, iff:  

1- Each quality index, Q∈Γ, is compatible with at least one excellence relation in 

Φ. Formally, ΦΓ ∈∃∈Q :∀  such that Q~R.  R

2- For each excellence relation in Φ, there is at least one compatible quality index 

in Γ. Formally, ΓΦ ∈∃∈∀ QR :  such that Q~R. 

3- There is minimum (or no) correlation among quality indexes of Γ within the 

partially ordered domain of excellence relations.   

The first property rejects unnecessary indexes that are not compatible with any 

of the excellence relations. The second property guarantees that Γ is exhaustive, in the 

sense that it addresses all aspects of quality that are of any interest to the decision-

maker (i.e., expressed via excellence relations in Φ). The last property eliminates or 
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minimizes the redundancy within the set, i.e., the selected quality indexes should have 

minimum or no correlation. From this definition and Lemmas 4.2.3 and 4.2.4 we 

observe the following.  

Minimality Theorem: Given a set of n non-concordant excellence relations, Φ, a 

corresponding minimal set of symmetric and homogeneous indexes, Γ, contains n and 

only n quality indexes. (Also, there is a one-to-one correspondence between Γ and Φ.) 

Proof. From Lemma 4.2.3, an index in Γ cannot be compatible with more than one 

excellence relation in Φ (because the excellence relations in Φ are non-concordant). 

Therefore, following the first property of Definition 4.2.5-1, each index is compatible 

with exactly one excellence relation. Also, Lemma 4.2.4 indicates that two 

uncorrelated indexes cannot be compatible with the same excellence relation (because 

otherwise they would be positively correlated according to this lemma). Therefore, 

following the second property in Definition 4.2.5-1, there is a one-to-one 

correspondence between Γ and Φ. �  

Minimality Theorem suggests a recipe with a set of steps to be followed for the 

selection of a minimal set of quality indexes, as given next.  

Step 1. The general aspects of quality (or goodness) of solution set that are of interest 

to the decision-maker are determined (e.g., closeness to the Pareto frontier, coverage, 

diversity, etc.)   

Step 2. An excellence relation is considered that accounts for all pairs of NDS’s that 

are objectively comparable with respect to the given aspect of quality.  
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Step 3. Suppose Φ consists of n excellence relations. To construct a minimal set,  

select one and only one quality index, compatible with each excellence relation in 

Φ (recall Minimality Theorem).  

For instance, outperformance relation addresses the closeness to the Pareto 

frontier; coverage relation of Definition 4.2.1-2 addresses coverage of the set, and so 

on. If the aspects of quality are defined properly in Step 1, these excellence relations 

are non-concordant (because if they are referring to different aspects of quality, there 

exists a non-dominated sets that is better than another set with respect to one 

excellence relation while worse with respect to another). These non-concordant 

excellence relations constitute Φ. The minimal set therefore, contains exactly 2 quality 

indexes, each compatible with one excellence relation. Note that since Lemma 4.2.4 

provides only a necessary condition for being uncorrelated, establishing a one-to-one 

compatibility correspondence does not guarantee a minimal set. However, it rules out 

many of non-minimal collections of indexes and significantly narrows the search for 

minimum correlations. The result is a set of size n of performance assessment indexes, 

i.e., Γ.  

4.2.6 Discussion 

 
Γ constructs exactly n total orders in U, and can be used to compare any two 

given NDS’s in terms of the quality aspects expressed in Step 1, and formulated as 

excellence relations (i.e., strict partial orders) in Step 2. It exhaustively and distinctly 

covers all desired aspects of quality, without unnecessary correlation among indexes. 

According to the Minimality Theorem, collections of more than n indexes are 
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necessarily correlated, while less than n indexes cannot distinctly address all desired 

aspects of quality. Note that the suggested guideline is only an abstraction of the notion 

of quality indexes and their desired properties, and therefore, it does not define or 

formulate new indexes by itself. 

Finally, although the theoretical framework of this chapter provides an 

approach for an objective selection of minimal sets of binary quality indexes, its real-

world application may be hindered by several factors:  

• A decision-maker may not be able to state his/her idea of ‘quality of a solution 

set’ explicitly in the form of excellence relations.  

• Even if the decision-maker is able to state a set of excellence relations, Φ, as a 

basis for quality assessment, it is not always possible to find a corresponding 

set of minimal binary and symmetric quality indexes, Γ, such that each index 

in Γ is compatible with an excellence relation in Φ.  

In the example of the next section, we further discuss the difficulties involved 

with finding a minimal set, and suggest ways to address them.   

4.3 EXAMPLE 
 

In the following example, we investigate the practical issues involved with 

finding a minimal set of quality indexes.  

4.3.1 Two-Relation Example 
 

Suppose the decision-maker desires only two aspects of quality: 1) Pareto 

optimality, and 2) Coverage. Therefore, Φ consists of exactly two relations: Φ = {RO, 
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RC} (recall that these two relations are non-concordant). A minimal set of size two of 

quality indexes, Γ={Q1, Q2}, should then be selected from the pool of existing indexes 

such that Q1~RO, and Q2~RC. No other combination can address both of these quality 

aspects without redundancy. According to the Minimality Theorem, the same argument 

holds for any number of non-concordant excellence relations in Φ. However, as 

discussed in the following, finding Γ={Q1, Q2} such that the Minimality Theorem 

holds is not always a trivial task. For example consider a case where Φ consists of the 

two non-concordant excellence relations of outperformance and coverage of Section 

4.2.1, i.e., Φ = {RO, RC}. Table 4.1 shows the compatibility of several quality indexes 

in the literature with these relations.  

 

 Strong Outperformance 
Relation (RO) 

(Definition 4.1.3-2) 

Coverage Relation 
(RC) 

(Definition 4.2.1-2) 
C  index  C I 

Inferiority Index (InfI) (Farhang-Mehr et 
al. 2001) 

C I 

k-th Objective Pareto Spread (OSk) (Wu 
and Azarm, 2001) 

I I 

Entropy Index [Chapter 5] I I 

 

Table 4.1: Compatibility of quality indexes with Φ = {RO, RC}  
(‘C’ and ‘I’ indicate compatible and incompatible, respectively.) 

Note that Wu and Azarm’s k-th Objective Pareto Spread (OSk) is a unary index. 

So, here we revised this index, i.e., computed the difference in the value of OSk 

between two given NDS’s to create a binary index: OSk(A,B)=OSk(A)-OSk(B), which 

constructs a cardinal total order in U. Table 4.1 shows that only a  portion of the 

examined indexes are compatible with RO, while we were not able to find any quality 

index in the literature to be compatible with Rc. Indeed, as shown by Knowles and 
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Corne (2002), a relatively small portion of the existing quality indexes is compatible 

with one of the outperformance relations introduced by Hansen and Jaszkiewicz 

(1998). In fact, obtaining a set of indexes to address all aspects of quality may become 

very difficult in practice because such indexes may not actually exist in the literature. 

Therefore, one may seek alternative excellence relations, or modify existing indexes to 

satisfy the Minimality Theorem -- as discussed in the following two sections.  

4.3.2 Modifying Quality Indexes  (Γ) 
 

As mentioned in Section 4.3.1, constructing a one-to-one correspondence 

between excellence relations and quality indexes is not always a trivial task. In a 

situation like this, one may try to modify previous indexes or create new ones to match 

the compatibility criterion with a given excellence relation. In the following, for 

example, we propose a new binary quality index to quantify the difference between the 

spans of two non-dominated sets as a measure of extent of coverage. Later we show 

that this index is compatible with Rc.  

 

Definition 4.3.2-1: Binary coverage index, denoted by Qc(A,B), is defined as:  

Qc(A,B)= inf {(bi.bj)/(||bi|| ||bj||) s.t. bi,bj∈B}- inf {(ak.al)/(||ak|| ||al||) s.t. ak,al∈A}  

where A and B are the convex cones generated by solution sets: A={a1, a2, …}  and 

B={b1, b2, …}. The term: inf {(ak.al)/(||ak|| ||al||) s.t. ak,al∈A} measures the cosine of 

the largest possible angle between two vectors in the convex cone generated by the 

solution set A. This for example corresponds to cos(α) in Figure 4.2, and Qc(A,B)= 

cos(β) - cos(α) < 0. We use this as a measure of maximum span of the solution sets on 
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the Pareto frontier. Qc is compatible with Rc because: if BRcA, we have A ⊂ B, and 

therefore, the second term in the above equation is greater than the first term. 

Therefore, Qc(A,B)<0. Similarly, if ARcB we obtain Qc(A,B)>0, and compatibility 

follows.  

 

From Table 4.1, Definition 4.3.2-1, and Minimality Theorem we observe that 

Γ = {InfI; Qc} is a candidate minimal set of binary quality indexes with respect to  

Φ = {RO, RC}.  

4.3.3 Modifying Excellence Relations (Φ) 
 

Alternatively, one may go back to the initial set of the excellence relations, Φ, 

and try to modify these relations such that a corresponding minimal set of quality 

indexes can be found. For example, if the decision-maker modifies the definition of the 

coverage excellence relation (Definition 4.2.1-2), Γ may or may not remain minimal. 

In the following, for example, we introduce a modified definition for coverage 

excellence relation that makes Wu and Azarm’s OSk index compatible with it.  

 

Definition 4.3.3-1: (Modified Coverage Relation; Compare to Definition 4.2.1-2). 

In a normalized multi-objective maximization, a non-dominated set B={b1, b2, …}  is 

strictly superior to another non-dominated set A={a1, a2, …}  in terms of a modified 

coverage, denoted by , iff:  max  is strictly greater than  for 

all k’s (where b  refers to the k-th objective value of the i-th solution in B).  

ARB C′ )(,
k
j

k
iji bb − )(max ,

k
j

k
iji aa −

k
i
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OSk is compatible with RC′ , and therefore, a combination of this quality index 

and Inferiority Index (InfI) -- i.e. Γ' = {InfI, OSk} -- is a candidate minimal set with 

respect to Φ' = {RO, }. In contrast, Γ = {InfI, QCR′ c} which is minimal with respect to 

Φ = {RO, RC}, is not minimal with respect to Φ', because Qc is not compatible with CR′  

(See Definition 4.3.2-1 for QC). Note that the process of defining and redefining 

Φ becomes increasingly difficult as more excellence relations are included. 

Nonetheless, it provides a formal platform and an objective starting point for selection 

of binary quality indexes.  

4.3.4 Checking Minimum-Correlation Condition 
 

Table 4.2 summarizes the compatibility of the above-mentioned indexes with 

RO, RC, and .  CR′

 
 Strong Outperformance 

Relation (RO) 
(Definition 4.1.3-2) 

Coverage Relation 
(RC) 

(Definition 4.2.1-2) 

Modified Coverage 
Relation ( RC′ ) 

(Definition 4.3.3-1) 
C  index  C I I 

Inferiority Index (InfI) (Farhang-Mehr et 
al. 2001) 

C I I 

k-th Objective Pareto Spread (OSk) (Wu 
and Azarm, 2001) 

I I C 

Binary Coverage Index  
(Definition 4.3.2-1) 

I C I 

 
Table 4.2: Compatibility of quality indexes with RO, RC, and R   C′

(‘C’ and ‘I’ indicate compatible and incompatible, respectively.) 
   
 From the Compatibility Lemma (Lemma 4.2.3), each quality index can be 

compatible with at most one relation (since RO, RC, and CR′ are non-concordant 

relations). This can be easily observed from this table, and is true in general for all 

quality indexes. Furthermore, from Minimality Theorem, there are four different 
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combination of quality indexes that are minimal with respect to either Φ = {RO, RC} or 

Φ = {RO, }, as shown in Table 4.3.  CR′

 

Index 1 Index 2 Correlation 
(ρ) 

C  index  k-th Objective Pareto 
Spread (OSk) 

0.03 

C  index Binary Coverage Index  
(Definition 4.3.2-1) 

- 0.08 

Inferiority Index (InfI)  k-th Objective Pareto 
Spread (OSk)  

-0.02 

Inferiority Index (InfI)  Binary Coverage Index  
(Definition 4.3.2-1) 

0.09 

 
Table 4.3: Minimal sets and the corresponding correlation 

 
 

Recall that Minimality Theorem provides only a necessary condition for 

uncorrelated sets, thus one must also check the correlation of each combination. In 

Table 4.3 therefore, we also estimated the correlation of different combinations of 

indexes from the following experiment: For each combination of indexes, namely Q 

and Q', we randomly selected 1000 pairs of non-dominated sets of size 5 such that they 

are comparable with respect to Φ (i.e., we generated pairs of non-dominated sets and 

checked whether they are comparable with respect to both relations in Φ. If yes, we 

kept the pair, otherwise we replaced it with another randomly generated pair.) For this 

example, we selected a 2-dimensional solution space and the solution points are 

constrained in a rectangle between (0,0) and (1,1). The correlation of any given pair of 

indexes can be easily obtained from the following: 

 
 

Cov [Q(A,B), Q'(A,B)]= <Q(A,B)Q'(A,B)> − <Q(A,B)> <Q'(A,B)>      (4.3) 
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where <Q(A,B)> and <Q'(A,B)> are approximately zero (because of symmetry). So the 

correlation can be estimated as: 

  
ρ = Corr(Q,Q')= <Q(A,B)Q'(A,B)> /(σσ')   (4.4) 

For example, the following is the correlation between C index and Inferiority Index:  

Corr (C index, Inferiority Index) = 0.86 

Clearly, these two indexes are highly correlated. This is consistent with 

Compatibility Lemma, i.e., these indexes are both compatible with outperformance 

relation and therefore are expected to be positively correlated. Table 4.3 lists the 

correlations of combinations of quality indexes that follow the Minimality Theorem. 

Although Minimality Theorem provides only a necessary condition for zero-

correlation, these pairs of indexes have relatively negligible correlation values.  

4.4 CONCLUDING REMARKS 
 

In this chapter, we presented a theoretical framework for selection of a minimal 

set of quality indexes based on inputs provided by a decision maker.  These indexes 

can account for all desired aspects of quality in non-dominated solution sets 

exhaustively and without redundancy. In this framework, once the decision-maker’s 

desired aspects of performance are determined, it is necessary to find all pairs of non-

dominated sets that are objectively comparable. This in turn constructs partial orders in 

the set of all possible non-dominated sets, referred to as excellence relations in this 

dissertation. We proved that there is a one-to-one compatibility correspondence 

between these excellence relations (partial orders) and a minimal set of quality indexes 
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(total orders), i.e., for each excellence relation there is one and only one compatible 

quality index in a minimal set. This important result (referred to as the Minimality 

Theorem) helps the decision-maker select a minimal set among the existing quality 

indexes in the literature, and thus, enables a quantitative and objective comparison of 

the solution sets obtained from different MOGAs.  

The next chapter is devoted to developing a new quality index -- referred to as 

entropy index. This new quality index is based on the concept of information-theoretic 

entropy (Section 2.1.5,) and provides a measure for diversity of NDS’s.   
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CHAPTER 5 

ENTROPY INDEX 

This chapter presents a new quality index that can be used to measure the 

diversity of solution points. The new index -- hereafter referred to as the entropy of a 

solution set -- is based on the notion of information-theoretic entropy and encapsulates 

different aspects of the distribution quality such as uniformity of distribution, coverage 

(i.e., portion of the Pareto frontier covered by the observed solution set), number of 

solution points and clustering. This entropy scalar essentially reflects whether a set of 

solutions provides a full representation of the Pareto frontier. This is of paramount 

interest in comparison of different MOGAs where final solution sets are likely to 

cluster, leaving the rest of the Pareto frontier empty or sparsely populated. The 

proposed entropy index has a linear computational complexity and thus can be easily 

computed throughout the evolution process to monitor and compare the diversity of 

solution sets. 

This chapter is organized as follows: Section 5.1 provides a background on 

intuitive interpretation and visualization of diversity in a solution set. The notions of 

influence and density functions are also defined. Section 5.2 takes advantage of formal 

similarities between information-theoretic entropy of Section 2.1 and flatness of 

density function; and entropy index is formulated accordingly. Finally, Section 5.3 

presents a simple test case to investigate the behavior of entropy index during 

optimization of a problem using MOGA.  
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5.1 BACKGROUND AND PREVIOUS WORK 

The following subsections discuss uniformity of solution sets, and define a few 

terms that are used in this chapter.  

5.1.1 Visualization of Diversity in a Solution Set  
 

Figure 5.1 shows the distribution of two sets of the same number of feasible 

solution points in a rectangular region that represents the best estimate of a feasible 

design space. Each of these solution points corresponds to a feasible design alternative 

and the rectangular region is chosen such that it encloses the entire feasible design 

space. Clearly, no feasible design alternative is allowed to be outside this rectangular 

domain, yet there might be points inside the rectangle that are infeasible. For now, 

assume that none of the objectives are being optimized and therefore all of these 

feasible solution points are equally desirable. Our goal is to determine how good each 

of these sets of alternatives, i.e., the feasible solution set shown in Figure 5.1(a) or the 

set in Figure 5.1(b) represents the design space. In other words, which one of these sets 

gives a wider variety of options to the decision maker.  

 

 

(a)                          (b) 

Figure 5.1: Two different feasible solution sets 
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 Intuitively, one may argue that the solutions in Figure 1(a) are grouped into two 

clusters, as shown in Figure 5.2(a). There are several design alternatives (or solution 

points) in each cluster that are not significantly different from one another, while there 

are areas in the domain where there are few or no solution points. In contrast, the 

solution points in Figure 5.2(b) are spread uniformly and cover almost the entire 

domain. It is clear that such a uniform distribution provides the decision maker with a 

larger variety of design alternatives, and consequently, it is preferred over the first set.  

 

 

cluster 

cluster

Underrepresented 
area 

Underrepresented 
area 

 

Points are evenly spread 

 
(a)     (b) 

Figure 5.2:Visual assessment of solution sets 
 

However, as the number of alternatives increases, making visual judgment 

becomes increasingly difficult. For problems with higher dimensions, relying upon the 

decision maker’s intuition is either impossible or quite misleading.  

5.1.2 Influence and Density Functions 

The basic idea behind our proposed entropy index is that each solution point 

provides some information about its neighborhood in the feasible space that can be 

modeled as a function, called an influence function. The notion of influence function 
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has been used extensively in data-mining to identify data clusters in huge databases 

(e.g., Fukunaga and Hostler, 1975; Hinneburg and Keim, 1998).  

Before introducing the entropy index, a formal definition of influence and 

density functions is given next. 

Influence Function: We denote the m-dimensional feasible domain in the objective 

space of a multiobjective optimization problem by . The influence function 

of the i-th solution point in this space is then defined as a function (or mapping), 

: , such that  is a decreasing function of the distance to the i-th solution 

point. Different function forms, e.g., parabolic, square wave or Gaussian, can be used 

for an influence function. The influence function of the i-th solution point is maximum 

at that point and decreases gradually with the distance from that point. In this chapter, a 

Gaussian influence function is assumed.  

mm RF ⊆

iΩ RF m → iΩ

Density Function: The density function at each point of the feasible objective space is 

defined as the aggregation of the influence functions from all solution points. 

Assuming that the solution set contains N solution points (N > 0), the density function 

at an arbitrary point, y, in the feasible objective space can be obtained as follows: mF

       (5.1) ( ) (∑
=

→Ω=
N

i
yii ryD

1
)

where  is a scalar that represents the Euclidean distance of the point y and the i-th 

solution point, and Ω

yir →

i(.) is the influence function of the i-th solution point. Figure 5.3 

illustrates the influence function of a few points in a one-dimensional feasible domain 

(or line segment). The resulting density function is obtained and graphed by simply 
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aggregating the influence functions of all solution points along the feasible line 

segment.  

 

 
 Density function

Feasible line segment 

Influence function 

 

Figure 5.3: A set of solution points in a one-dimensional feasible space with the 
corresponding influence and density functions 

 

Assuming that the chosen influence function is continuous and differentiable, 

the corresponding density function, as defined above, is also continuous and 

differentiable at any point in the feasible space. This smooth curve (or hyper-surface in 

more than two dimensions), hereafter referred to as density hyper-surface, consists of 

peaks and valleys that can be easily identified. As shown in Figure 5.3, the peaks 

correspond to dense areas with lots of points nearby and the valleys correspond to 

sparse areas with a few adjacent points.  

 

5.2 Entropy Index 
 

In the following, entropy index is defined and related to the distribution quality 

of a solution set.   

5.2.1 Flatness of Density Hypersurface 
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Figures 5.4(a) and (b) illustrate the density surface of the two solution sets of 

Figures 5.1(a) and (b), respectively. There are relatively sharp peaks and deep valleys 

in Figure 5.4(a) while there is no significant peak or valley in Figure 5.4(b). This 

confirms our previous observation that the second solution set is spread more evenly 

over the feasible region as compared to the first set. A good distribution of solutions 

yields a relatively even surface without significant peaks and valleys. In contrast, if the 

solution points are grouped into one or more clusters and the rest of the feasible region 

is populated sparsely they do not fully represent the entire domain. The density surface 

of such solution set contains sharp peaks and deep valleys.  

 

Feasible Region  
Feasible Region

 
(a)                (b) 

Figure 5.4 (a) Density hyper-surface of the solution set in Figure 1(a),  
(b) Density hyper-surface of the solution set in Figure 1(b) 

 

So far, we have established a relationship between the goodness of a 

distribution of a solution set and the flatness of its corresponding density surface. In the 

following section, an entropy index is defined to measure this flatness. 
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5.2.2 Entropy of Density Hypersurface 

In Section 2.1.5, Shannon entropy of a given probability distribution, π, was 

defined as:  

H = - U
E ][logπ       (5.2) 

 Now, assume a discrete stochastic process with n possible outcomes where the 

probability of the i-th outcome is pi. 

                              P = [p1,…, pi,…, pn] ;  ;     (5.3) ∑
=

=
n

i
ip

1
1 0≥ip

The entropy of this process can be written as: 

( ) ( )∑
=

−=
n

i
ii plnpH

1
P                                                            (5.4) 

where piln(pi) is assumed zero for pi = 0 (because ( )ii plnp 0 when pi 0). This 

function is at its maximum, Hmax= ln(n), when all probabilities have the same value, 

and at its minimum of zero when one component of P is 1 and the rest of entries are 

zero. In fact, the Shannon’s entropy measures the flatness of P, i.e., if the values of the 

entries in the vector are approximately the same then the entropy is high, but if the 

values are very different (uneven probability distribution), the corresponding entropy is 

low. In the previous section, we mentioned that a desirable solution set must have a 

‘flat’ density surface within the feasible domain. To quantify this flatness, one may 

take advantage of the formal similarities between this problem and the Shannon’s 

entropy, which also measures the flatness of a distribution.  

Consider the 2-dimensional objective space of Figure 5.5. In order to apply 

Equation 5.4, a grid of size a1 x a2 is constructed in the feasible domain. The density 
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function at each cell, Dij, can be obtained from Equation 5.1 assuming that the point yij 

is located at the center of the cell, i.e., Dij=D(yij). The quantities a1 and a2 are 

determined such that the size of each cell becomes less than or equal to an indifference 

region. (Indifference region is defined as the size of a cell in which any two solution 

points are considered to be the same, or that the decision maker is indifferent to such 

solutions.) These a1 and a2 quantities can be determined subjectively based on the 

decision-maker’s experience or knowledge of similar problems, or objectively based 

on the available computational power and desired accuracy. Assuming a very small 

grid size helps improve the accuracy but it also increases the computational burden of 

calculating the entropy, which in turn might make the quality assessment process very 

slow or even computationally infeasible. Clearly the appropriate grid size is problem-

dependent and differs from one situation to another.  

 

Dij 

a1 

a2 

Indifference band 

yij 

 

Figure 5.5: The feasible region is divided into a grid of cells 
 

However, since the sum of the entries (i.e., probabilities) in the Shannon’s 

definition of entropy is one, we define a normalized density, ρij, as: 

∑∑
= =

=
1

1

2

2

21
1 1

a

k

a

k
kk

ij
ij

D

D
ρ      (5.5) 

109 



Note that if there is no solution point (i.e., N = 0 in Equation 5.1) the 

denominator in Equation 5.5 becomes zero. Indeed, the above definition of the 

normalized density is not well defined for an empty solution set, which is why the 

solution set is assumed to be non-empty in the definition of the density function. We 

will assign a value of zero to the entropy of empty solution sets to indicate the worst 

case, i.e., zero diversity. Now we have: 
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The entropy of such a distribution can then be defined as:  
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In general, for an m-dimensional objective space, the feasible region in 

objective space is divided into a1xa2x…xam cells and the entropy is defined as:  
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The entropy of the sets in Figure 5.4(a) and (b) can be calculated by 

constructing a grid of cells and applying Equation 5.8. The entropy of the second set 

(Figure 5.4(b)) turns out to be larger than that of the first set (Figure 5.4(a)). This 

indicates a more evenly spread of solution points in the second set as compared to the 

first one, which confirms our preliminary intuitive judgment and leads to the following 

conclusion: a solution set with a higher entropy is spread more evenly throughout the 

feasible region in objective space and  provides a better coverage of the space. Note 

that, if the grid consists of NG cells, the calculation of entropy from Equation 5.8 has a 

computational complexity of O(NG).  
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The formulation of entropy, has found many applications in numerous fields 

and can be derived based on a variety of assumptions. In this chapter, however, entropy 

is used to measure the flatness of the density distribution provided by a set of solution 

points, and hence it is desirable to be maximized (i.e., it corresponds to a uniform 

distribution of solution points over the feasible domain). Yet, confusion may arise if 

entropy is considered as a measure of uncertainty in a stochastic event with a given 

probability distribution of the outcome (for example, the application of entropy in 

Chapter 2). In that case, the entropy corresponds to the ignorance (of information 

content) of the distribution, in the sense that a flat probability distribution provides no 

information about the probable outcome of the event, whereas a sharp peak in the 

probability distribution function can help capture the outcome with a certain 

confidence level and thus, is very informative. The entropy of such problems is 

desirable to be minimized towards zero that corresponds to a well-informed, ideal state 

for the problem. For example in Chapter 2, by maximizing the ‘reduction of entropy’ 

we indeed minimized the posterior entropy. Clearly, this is in contrast to the problem 

of assessing the distribution quality of a solution set over a given domain where there 

is no preference toward any particular sub-region and the solutions are desired to be 

‘spread’ as uniformly as possible to provide a diverse set of options to the decision 

maker. Indeed, Peters (1975) proposed that different names should be given to the 

entropy H depending on the underlying idea and the nature of the problem. (For 

different interpretations of the notion of entropy and their implications, see, Jaynes, 

1957; and Jessop, 1995.)  
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Now that an index for the goodness of the spread of points in an m-dimensional 

objective space is formulated, the next issue is whether this index can be applied to 

capture the spread of a population in an evolutionary multiobjective optimization 

process.  The next section is devoted to this issue.  

5.2.3 Projection 
Consider a minimization problem with respect to all objectives. Figure 5.6(a) 

shows a population of design points in a three-dimensional multi-objective 

evolutionary optimization process. The observed Pareto set is shown separately in 

Figure 5.6(b) along with the corresponding good and bad points. A surface that passes 

through all non-dominated solutions is called a ‘non-dominated hypersurface’. This 

hypersurface, which represents the current estimate of the Pareto frontier, approaches 

the true Pareto frontier as the multiobjective evolutionary algorithm converges. As 

shown in this figure, a visual detection of clusters on this hypersurface can be fairly 

difficult even in three dimensions, and virtually impossible for higher dimensions.  
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(a)         (b) 

Figure 5.6: (a) A population of solution points  (b)  A non-dominated hypersurface 
with good and bad points 
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To avoid aggregation and comparison of different non-commensurable 

objectives, the coordinates in the objective space need to be normalized with respect to 

the good and bad points (see Figure 5.7). In an m-dimensional objective space whose 

coordinates are denoted by f1,…, fi,…, fm,  the normalized set of objectives can be 

obtained as, 

( )
( )ii

ii
i gb

gf
f

−
−

=′  ;    i = 1,…, m    (5.9) 

where G0 = (g1,…, gi,…, gm) and B0 = (b1,…, bi,…, bm)  are the original (not 

normalized) good and bad points respectively.  
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Figure 5.7: The origin of the Cartesian coordinate system is transferred to the good 
point 

 

 In the normalized coordinate system, as shown in Figure 5.8(a), the good and 

points are G=(0,…, 0) and B=(1,…,1), respectively. The normalized design space is 

then a hyper-cube, whose two opposite vertices are the points G and B, and whose 
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edges have unit lengths. In Figure 5.8(a), u1, u2 and u3 are the cartesian unit vectors 

along , and , respectively. We define:  1f ′ 2f ′ 3f ′

 

Definition: The projection direction, denoted by v1, is defined as a unit vector in the 

objective space along the GB direction. We also refer to the (m-1)-dimensional hyper-

plane that passes through the origin (G) of the normalized objective space (which is m-

dimensional) and is normal to v1 as the projection hyper-plane. 

The projection direction and the corresponding projection plane are shown for 

the three-dimensional example of Figure 5.8(a). All solution points are projected on 

this hyper-plane to enable a calculation of entropy. To perform this projection, first we 

need to construct a rotated coordinate system, one of whose axes is along the 

projection direction and the rest lie on the projection hyper-plane. This can be done 

using a procedure known as Gram-Schmidt orthogonalization (Noble and Daniel, 

1988) that creates a new set of m perpendicular unit vectors in the m-dimensional 

objective space, starting with v1. The following is a step by step implementation of this 

procedure for the three-dimensional example of Figure 5.8. After obtaining v1 (from its 

definition above), the second unit vector, i.e., v2, can be constructed from u2 by 

subtracting the component of u2 that lies along v1 and normalizing the residue: 
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−

=2       (5.10) 

 

114 



It can be shown that v2 as obtained in Equation 5.10 is a unit vector normal to 

v1. In a similar fashion, v3 is constructed from u3 by subtracting the components of u3 

along v1 and v2 and normalizing the residue:  

( ) ( )[ ]
( ) ( ) 2231133

2231133
3 v.vuv.vuu

v.vuv.vuu
v

−−
−−

=          (5.11) 

 

v3 as obtained from Equation 5.11 is a unit vector normal to v1 and v2 and thus 

the new set, {v1, v2, v3}, forms an orthonormal basis that describes a rotated cartesian 

coordinate system. The first axis, v1, is the projection vector and points from origin to 

the bad point while the other two axes lie on the projection plane. If a solution point is 

represented as a vector in a three dimensional objective space:  

 

( )321 f,f,f ′′′=′f       (5.12) 

 

then the projection is defined as a mapping from R3 to R2, such that:  

 

(X, Y) = (( f ′ . v2) , ( f ′ . v3))      (5.13) 

 

(X,Y) represents a two-dimensional cartesian coordinate system whose 

coordinates are along v2 and v3 and thus lies on the projection plane.   
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Figure 5.8: The projection mapping of solution points 
 

Figure 5.8(b) illustrates the projection of solution points on the X-Y coordinate 

system. (Note that v2 and v3 lie along X and Y axes, respectively.) The same 

procedure, as described above, can be applied to a multi-objective optimization 

problem with any number of objectives to project the observed Pareto set on the 

projection hyper-plane. The feasible area can be determined by projecting the 

constraints on the projection plane. However, this can be difficult and computationally 

prohibitive for complicated constraints. In Figure 5.8(b), the feasible region is 

estimated by a rectangle, using the maximum and minimum values of X and Y, so that 

it contains all the projected points. It can also be estimated by projecting the cube 

between the good and bad points on the X-Y plane. Note that the estimated feasible 

area must contain all the solution points and remain the same during the comparison 

study of different solution sets.  
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5.2.4 Entropy Index of Projected Solution Set 

Now, the density surface of the projected set of solution points can be 

constructed using a Gaussian influence function. But first we need to estimate the 

standard deviation, σ, of this distribution. Assuming a very small σ causes the 

influence functions to decay very rapidly (i.e., sharp influence distributions). As a 

result, even two neighboring points do not significantly influence each other. The 

density surface is basically a set of Ns sharp peaks (corresponding to Ns solution points) 

scattered on a flat function with zero elevation.  The entropy of such a density surface 

is not very sensitive to the distribution of the solution points. In contrast, a very large σ 

implies a flat influence function. The density surface of such a set of solutions is 

therefore flat no matter where in the design space the solution points are located. 

Again, the entropy is insensitive to the distribution of solution points. Therefore, the 

value of σ should be set appropriately. Here we suggest a simple assumption for σ  that 

is proved to be very effective for the example of this chapter. A Gaussian influence 

function has the general form of: 

 

( )
22 2

2
1 σ

πσ
rer −=Ω    (5.14) 

The standard deviation, σ, of Equation 5.14 is set such that for a solution point 

that is located at the center of the normalized design space, the 3σ-tail of the Gaussian 

distribution coincides with the edges of the design space. As mentioned earlier, the 

normalized design space is basically a hyper-cube between the normalized good and 

bad points whose edges have unit lengths. Therefore, for a solution point located at the 
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center of this normalized hyper-cube, we have: 6σ =1 or σ =1/6. The influence of a 

central solution point spreads in every direction and almost vanishes at the boundaries. 

Note that this estimation for the standard deviation is valid only in the normalized 

coordinate system. Finally, having this estimation of σ, a density hyper-surface can be 

constructed for the projected solution points on the projection hyper-plane. Now, the 

entropy index as defined in Equation 5.8 can be used on the projection hyper-plane to 

measure the flatness of the density hyper-surface. The result will be a scalar that 

reflects the distribution quality of the solution points. This quality index can be used to 

observe the evolution of a population during an optimization process or simply to 

compare the performance of two (or more) different multi-objective optimization 

algorithms.  

5.2.5 Computational Complexity 
 

Clearly, the density function of a solution set can be constructed and updated 

incrementally by choosing any new feasible solution point and aggregating its 

influence function with the previous density function. In the real-world design 

problems in particular, this is extremely helpful, because there are usually new design 

alternatives generated during or even after the design-generation phase of MOGA. To 

add these new solution points to the previous set, one can simply update the density 

surface by aggregating the influence functions of the new solution points and the 

previous density surface without recalculating the influence of the entire solution set 

that may need considerable amount of computational effort. 
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Assume that there are Ns solution points. The influence of a solution point on 

its neighboring cells is calculated once at the beginning of the process and stored. 

Since the influence function decays rapidly with the distance, we need to calculate the 

influence of that solution point only on a limited number of its neighboring cells, NI 

cells, for which the influence is significant. The stored influence values for NI 

neighboring cells can be used for all other solution points without recalculation (since 

the same influence function is assumed for the entire solution set). Now the overall 

density surface can be constructed iteratively: solution points are considered one-by-

one and their influence function values on the neighboring cells are added up to the 

previous density values of those cells (refer to Equation 3). Therefore, the construction 

of a density surface has a computational complexity of O(Ns NI). The computational 

effort increases linearly with the number of solution points in the set. This is a very 

important advantage, especially when the designer is dealing with a huge database of 

design alternatives. 

5.2.6 Boundary Effect 

A closer look at Figures 5.1(b) and 5.4(b) reveals that although the solution set 

is spread rather uniformly over the feasible region, the density surface has a lower 

elevation near the boundaries. This is because the density function at point A in Figure 

5.9 for example, is the aggregation of influence functions of all solution points in the 

vicinity located along different directions around that point. In contrast, point B which 

is located very close to the boundary is influenced only by the solution points in the 

feasible half-space (located on the right-hand side of the boundary) while there are no 

feasible solutions in the infeasible half-space. So even for a very evenly distributed 
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solution set, a point near the boundary is expected to have a lower density function as 

compared to the one in the middle. It is clear that the boundary effect gradually 

vanishes as we move farther from the boundary to the middle of the feasible region. 

 solutions that  
influence B 

B

solutions that  
influence A 

A

 

Figure 5.9: The density function values at points A and B are mainly the aggregation of 
the influence functions of the solutions in the vicinity 

  

 Figure 5.10 suggests a modification to the construction of the density surface 

that compensates for the above mentioned boundary effect. The solution points in the 

feasible area are mirrored by the boundary to create a set of virtual solution points in 

the infeasible area. Then the density function at point B is defined to be the 

aggregation of the influence functions of all real and virtual solution points. This 

compensates the absence of the solution points in the infeasible half-space by 

duplicating the solution points in the feasible half-space. Clearly, by moving farther 

from the boundary, the influence of these virtual solution points decreases (i.e., as the 

boundary effect diminishes). The same virtual solution points should be constructed for 

all of the boundaries of the feasible region to compensate for the boundary effect. Note 

that it is not necessary to mirror all the solution points into the infeasible area and only 

the solution points near the boundary lines are of interest, since the corresponding 
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mirrored points heavily influence the density surface near those boundaries. (In Figure 

5.10 all of the solution points are mirrored for the purpose of demonstration.)  
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Figure 5.10: Compensation of a boundary effect 

 

Figure 5.11 shows the density surface of Figure 5.4(b) after compensation. As 

expected from the uniform distribution of this solution set, the constructed density 

surface has about the same elevation everywhere within the feasible region.   

 

Feasible region  
 

Figure 5.11: The density surface of Figure 5.4(b) after the boundary effect correction 
 

 The boundary effect, as explained above has also been observed in the 

‘maximum-entropy design of experiments’ (Chapter 2), where the experiments on the 

edges of the design space are favored because of a degraded correlation with the 
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interior solution points. In fact, a local degradation in the density surface near the 

boundaries is an inevitable result of asymmetry at the boundaries (where half of the 

neighborhood is feasible and the other half is not) and assuming a decreasing influence 

function. The above suggested correction should compensate the boundary effect of 

rectangular feasible domains, but it may become computationally very complex for 

non-rectangular and complicated shapes. Note that, as mentioned before, we use a 

rectangular estimation of the feasible region, based on the maximum and minimum 

values of the projected objective values in the rotated coordinate system (on the 

projection plane.) However, if an irregular feasible region is assumed, the problem of 

finding the virtual solution points is very similar to that of finding the virtual images of 

an object surrounded by several mirrors with irregular shapes, which is 

computationally very complex. Therefore, here we suggest an alternative strategy, 

which is much simpler to implement:  

 

1) Only those solution points that are located close to the boundaries are 

considered for compensation. The boundary effect is significant only in the 

proximity of the boundaries.  

2) For a solution point, namely P, which is located close to a boundary, we find 

the smallest circle tangent to that boundary, with P as the center (see Figure 

5.12). This can be done by gradually increasing the radius of the circle and 

checking the feasibility of points on the perimeter until a point on the perimeter 

becomes infeasible. The virtual image of this point then lies on the extension of 
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the radius connecting P to the point of tangency (the first infeasible point on the 

perimeter).  

 

Finally even this simplified approach is difficult to implement in general, 

especially if the constraints are very expensive to compute. One may prefer not to 

account for the boundary effect at all in such situations to avoid excessive 

computational effort. After all, the boundary effect is only a local degradation in the 

density surface and thus its impact on the entropy is usually small and negligible. 
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Figure 5.12: Virtual image of a solution point, located close to a boundary 
 

In the next section, the entropy index is applied to an engineering optimization 

problem to demonstrate its ability to assess the distribution quality of an observed 

Pareto set. The entropy index, as introduced in this chapter, is applicable not only to a 

MOGA but to any population-based multi-objective optimization technique that 

approximates the true Pareto frontier by observing a set of solution points (i.e., 

observed Pareto set).   
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5.3 DEMONSTRATION EXAMPLE 

In this section, entropy index is used to monitor and compare the performance 

of two MOGAs in terms of their ability to manipulate diversity of solutions: T-MOGA 

(Chapter 3) and MOGA-NA. Both algorithms claim to improve the uniformity of the 

solution set over the Pareto frontier. Thus, to fairly assess this aspect of their 

performance, a three-objective test example is constructed with an artificial bias toward 

a sub-region on the Pareto frontier. As a result, solution points tend to cluster in one 

particular portion of the Pareto optimal frontier, leaving the rest of the optimal region 

empty or sparsely populated. As a result of this non-uniformity, MOGAs will face 

difficulty in maintaining diversity among solutions. The entropy index can then be 

calculated for the solution sets generated by each algorithm and the results are 

compared. Consider a three-objective minimization problem of the following form: 

 
(5.15) 

Minimize ( ) ( )111 xff =x          
Minimize ( ) ( ) ( ) ( )( )21122 xg,xfhxgf =x              
Minimize ( ) ( ) ( ) ( )( )31133 xg,xfhxgf ′′′=x       

 

In order to ensure the continuity of the Pareto frontier, following Deb’s 

guideline (Deb, 1998), h and h′  are chosen to be monotonically decreasing functions of 

f1. Moreover, we choose unimodal, single-variable and linear functions for g’s: 

, , to create no bias in the search space toward or from the 

Pareto front. However, a lateral bias against finding some sub-regions on the Pareto 

frontier is introduced by choosing a non-linear function for f

( ) 122 += xxg ( ) 133 +=′ xxg
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non-linearity in f1 will result in a non-uniformity in the distribution of the solutions 

points over the Pareto front, testing the MOGAs’ ability to maintain diversity in the 

solution set. Since we want to test only this aspect of the MOGAs’ performances, the 

rest of the problem features are designed to be at the lowest complexity level. Thus, h 

and  are chosen to be:  h′

( )
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for a convex Pareto frontier with no local Pareto-optimal front (because of uni-

modality of g functions).  The optimization problem can then be formulated as:  
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s.t.:  10 ≤≤ ix ;  i = 1,2,3       

       
A number of solutions are generated randomly and depicted in Figure 5.13. As 

expected, due to the lateral bias imposed on the problem, there is a tendency among the 

solutions to concentrate in a sub-region of the Pareto frontier.  
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Figure 5.13: Bias of the optimization problem 
 

 
Both T-MOGA and MOGA-NA are executed for this optimization problem for 

40 generations and the solution sets are stored. The entropy of each non-dominated 

solution set is also computed during optimization. To demonstrate the procedure, the 

entropy calculation of the 4th generation of E-MOGA is presented here in detail. This 

generation of chromosomes contains only 9 non-dominated solutions, listed in Table 

5.1. The good and bad points of this problem are G = (0,0,0) and B = (1,1,1) 

respectively, so:  
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From equations 5.10 and 5.11 we obtain, 
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where , , ( )1,0,01 =u ( )0,1,02 =u ( )0,0,13 =u  are the unit vectors along f1, f2 and f3 axes. All 

the solution points in Table 5.1 are projected to the X-Y plane, using equation 5.13: 

X = f . v1; Y = f . v3; where    f = (f1, f2, f3)         (5.21) 

The X-Y values of the points are listed in Table 5.1.  

 f1 f2 f3 X Y 
Point 1 0.9087 0.0414 0.0101 -0.3412 0.6354 
Point 2 0.8986 0.0393 0.0140 -0.3404 0.6255 
Point 3 0.9154 0.0388 0.0101 -0.3461 0.6401 
Point 4 0.9527 0.0256 0.0044 -0.3698 0.6705 
Point 5 0.9648 0.0279 0.0031 -0.3723 0.6800 
Point 6 0.9680 0.0236 0.0033 -0.3772 0.6821 
Point 7 0.5221 0.1839 0.0834 -0.0970 0.3102 
Point 8 0.5083 0.1647 0.1192 -0.1216 0.2751 
Point 9 0.2178 0.3141 0.0993 0.1270 0.0837 

 
Table 5.1: Non-Dominated Set (4th generation of T-MOGA) 

 
A normal distribution is chosen for the influence function: ( )

22 2

2
1 σ

πσ
rer −=Ω . 

The standard deviation of this function is chosen according to the guideline of Section 

5.2.4: 503 .=σ . Now, the domain is divided into a 20 × 20 grid of cells, The density 

function at the center of each cell can be calculated by aggregating the influences of all 

other solution points, i.e. equation 5.1. The normalized density, ρij, at each cell can 

then be obtained from equation 5.5. The entropy equation 5.7 yields: 
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ρlnρH ) = 3.321         (5.22) 

In a similar fashion, entropy is computed for every generation of T-MOGA and 

MOGA-NA and plotted in Figure 6.      
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Figure 5.14: Entropy behavior of T-MOGA and MOGA-NA 

 
 

The optimization processes of both MOGA-NA and T-MOGA start from the 

same initial population. As the populations evolve, more non-dominated solutions are 

generated and distributed over the Pareto frontier resulting in entropy to grow rapidly. 

However, since T-MOGA is specifically designed to maintain diversity in the solution 

set, the clusters in its population are rapidly dissolved and the solutions are spread 

more uniformly over the non-dominated hyper-surface. As a result, the entropy of this 

algorithm grows and saturates faster than MOGA-NA. (A saturation of entropy occurs 

as soon as the population fully matures and no further improvement in the distribution 

of the solution points over the Pareto frontier is observed, see Figure 5.14.) Moreover, 

the final distribution quality (i.e., entropy) of T-MOGA is somewhat better than that of 

the MOGA-NA.  

5.4 CONCLUDING REMARKS  
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In this chapter, we defined and formulated entropy as an index that could 

quantitatively assess the distribution quality of an observed Pareto set. The new index 

can be used to capture and compare the capability of different population-based multi-

objective optimization algorithms in generating well-distributed solution sets. This is 

especially beneficial in comparison study of different MOGAs. In an ideal MOGA, as 

the population evolves towards maturity, the diversity of observed Pareto set improves, 

which in turn increases the entropy. This improvement continues until a saturation 

point wherein the population becomes almost all feasible and non-dominated, spreads 

as uniformly as possible along the Pareto frontier. At that point, the population has 

reached its maturity in terms of the distribution quality of solution points and the 

entropy remains almost constant subsequently.  

To demonstrate the applicability and merits of the proposed index, in the 

example, the entropy of each generation of observed Pareto solutions was computed 

and graphed throughout the optimization process. The results clearly indicate that as 

the distribution quality of the solution set improves (i.e., the density surface flattens), 

the entropy index increases accordingly.  Since the evaluation of this index is 

computationally easy, one can continuously compute and monitor the entropy as a 

measure of population diversity.  

In the next chapter, the proposed approach of this research will be applied 

several test examples. Some of these examples are real-world design problems, while 

others are designed specifically to test different performance aspects of the proposed 

approach.  
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CHAPTER 6 

FURTHER NUMERICAL AND ENGINEERING TEST 

EXAMPLES 

 
In order to further investigate the performance of the proposed methodologies 

introduced in the previous chapters, several test examples are presented in this chapter. 

These test examples are either: 1) numerical test examples that can be tailored to 

address one particular aspect of performance; or 2) engineering test examples that aim 

at demonstrating the application of the proposed methodologies. In Section 6.1, a real-

world design problem is introduced -- high speed civil transport aircraft. This problem 

has many design variable and is computationally expensive. Therefore, SMAXED is 

used to approximate this high-dimensional simulation model and the resulting 

surrogate model is compared against other conventional techniques. RMSE (root-mean 

square), max deviation and average error are computed for each surrogate model and 

the results are discussed. In Section 6.2, several optimization problems are presented to 

test different aspects of T-MOGA. In particular, Sections 6.2.1 and 6.2.2 present 

several numerical and unconstrained optimization problems crafted specifically to 

hinder the performance of MOGAs in one way or another. It is discussed that test 

problems with difficult optimization features are particularly helpful in comparison 

study of different MOGAs. A constrained design problem  (i.e. design of a vibrating 

platform) is presented in Section 6.2.3 along with two other numerical test problems to 

test the performance of T-MOGA in the presence of constraints. In Section 6.3 another 

130 



engineering problem is introduced: speed reducer gearbox. In this case, entropy index 

is used to monitor and compare the performance of T-MOGA versus another MOGA 

and the results are discussed. Finally, concluding remarks are given in Section 6.4. 

6.1 APPROXIMATION 
 

A response function with one design variable was used in Chapter 2 to 

demonstrate and compare the performance of the SMAXED approach. A more 

complicated real-world application of SMAXED will be discussed in Chapter 7 as part 

of a case study. In the following section, another test example is introduced: High 

Speed Civil Transport (Balabanov et al. 1996) that has 26 design variables.   

6.1.1 High Speed Civil Transport (HSCT Commercial Aircraft) 
 

Aircraft designers have given considerable attention to metamodeling of 

Navier-Stokes fluid flow analyses and finite element structural simulations as they 

attempt to improve the time-to-market and performance of their products. These 

simulations are usually very time consuming and a direct application of optimization 

techniques (without approximating first) is not feasible with time constraints and 

today’s computational capabilities. Therefore, current approaches reported in the 

literature first employ statistical DOE techniques and perform a limited number of 

computational experiments. With the resulting data, the designer creates mathematical 

models using some sort of meta-modeling technique, which is then used in an 

optimization process.  

Among current aircraft design challenges, optimization of the geometry and 

specifications of a High Speed Civil Transport (HSCT) has been addressed by many 

131 



researchers in the past few years (see for instance Srivastava et al. 1999). HSCT is a 

supersonic aircraft with a cruise speed of 2 to 3 Mach and capacity of more than 200 

passengers (see Figure 6.1). This is an ideal test problem for meta-modeling techniques 

because economic and technical feasibility of such an aircraft mainly lies on the 

boundaries of the aircraft technology. Typically, this design problem has many design 

variables and shows to be a noisy (with many local optima) and non-trivial response 

function.  

 

Figure 6.1: Schematic view of HSCT aircraft 
 (reproduced from Guinta 1997) 

 

A finite-element model for HSCT was first developed at the Multidisciplinary 

Analysis and Design Center for Advance Vehicles at Virginia Tech (see Giunta et al. 

1995; and Balabanov et al. 1996). The version of this model used in this thesis has 25 

design variables that determine geometry of the aircraft (listed in Table 6.1).  

 

TE=Trailing Edge, LE=Leading Edge, t/c=thickness/chord ratio 

No. Description Value Units 
1 Wing root chord 181.48 ft 
2 LE break point, x 155.9 ft 
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3 LE break point, y 49.2 ft 
4 TE break point, x 181.6 ft 
5 TE break point, y 64.2 ft 
6 LE wing tip, x 169.5 ft 
7 Wing tip chord 7.00 ft 
8 Wing semi-span 75.9 ft 
9 Max t/c location 40 % chord 
10 Airfoil t/c at root 2.58 % 
11 Airfoil t/c at LE break 2.16 % 
12 Airfoil t/c at tip 1.80 % 
13 Fuselage restraint 1,x 2.20 ft 
14 Fuselage restraint 1,r 1.06 ft 
15 Fuselage restraint 2,x 12.20 ft 
16 Fuselage restraint 2,r 3.50 ft 
17 Fuselage restraint 3,x 132.46 ft 
18 Fuselage restraint 3,r 5.34 ft 
19 Fuselage restraint 4,x 248.67 ft 
20 Fuselage restraint 4,r 4.67 ft 
21 Nacelle 1, y 26.23 ft 
22 Nacelle 2, y 33.09 ft 
23 Mission fuel 322,617 lbs 
24 Vertical tail area 697.9 sq-ft 
25 Horizontal tail area 713.0 sq-ft 

 

Table 6.1: Break down of 25 geometric design variables used in HSCT aircraft design 
(from NASA MDOB library1) 

 

The geometric variables can be grouped into five categories: wing platform, 

airfoil shape, tail areas, nacelle placement, and fuselage shape. Total of eight variables 

describe the wing platform (variables x1-x8 in Figure 6.2), eight variables define the 

fuselage shape, five variables define the wing leading edge and airfoil section 

properties (variables x9-x13 in Figure 6.2), two variable define the engine nacelle 

locations (variables x22 and x23 in Figure 6.2), and two variables define the horizontal 

and vertical tail areas. For this HSCT design problem the fuselage has a fixed length of 

                                                           
1 Online access URL: http://mdob.larc.nasa.gov/mdo.test/index.html 
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300 ft and an internal volume of 23720 ft3 (See Guinta et al. 1995 and also Balabanov 

et al. 1996).  

 

Figure 6.2: Wing design variable for HSCT aircraft 
(reproduced from Guinta et al. 1995) 

 

The response function is the take-off gross weight for a range of 5500 nautical 

miles and cruise speed of 2.4 Mach with a capacity of 251 passengers. This response 

function represents an overall measure for merits of the aircraft. For instance, if takeoff 

gross weight is broken down into the sum of dry weight (weight with cargo and 

134 



passengers without fuel) and the fuel weight, the dry weight can be used to estimate the 

cost of the aircraft (using historical data) fuel weight can be related to the yearly costs 

of maintaining and operating the aircraft. So roughly speaking, minimum weight 

aircraft corresponds to minimum cost and low-maintenance aircraft (Balabanov et al. 

1996). This response function should be minimized, however, due to the computational 

expenses of conducting experiments (hours on super computers for one evaluation), 

direct application of optimization techniques to this problem is computationally 

prohibitive. Moreover, the large number of design variables (25) makes meta-modeling 

of this response function a challenging undertaking.  

The input variables and response data for 2490 experiments are available (at the 

time of writing this dissertation) on NASA MDOB test suite library2. Therefore, new 

experiments are not necessary. Instead, a handful of the experiments are chosen among 

these available data points using SMAXED approach. The rest of the available 

experiment data are used to compute the RMSE (refer to equation 7.5) of the obtained 

meta-models.  The accuracy of several approximation techniques is then compared 

against SMAXED. To assume a realistic situation (where the data is not already 

available), it is assumed that each experiment takes about 30 minutes to run, and about 

3 days of computational resources are available for this purpose. Therefore, one could 

conduct only a total of about 60 experiments.   

For the first part of this example, a total of 60 experiments are conducted using 

different techniques (all techniques are implemented by the author). Table 6.2 shows 

                                                           
2 Online access URL: http://mdob.larc.nasa.gov/mdo.test/index.html 
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RMSE (equation 7.5), Max Error3, and Average Error4 percentages (See Appendix I 

for definitions) obtained from different techniques, for 60 experiments. For Orthogonal 

Array design, since the designed experiments may not be actually among the available 

2490 experiments, we select the nearest neighbor among the existing data points. For 

all other design techniques, experiments are selected directly from the existing pool of 

experiments. The percentage errors are determined based on the deviation of the meta-

models from the remaining data points, i.e. 2490-60 = 2430 points.   

 

DOE/Meta-modeling technique RMSE 
(%) 

Average Error 
(%) 

Max Error 
(%) 

Random Sampling/Kriging 75 51 642 
Latin Hypercube/Kriging 
(McKay et al. 1979) 

37 22 315 

Orthogonal Array/Kriging 
(Owen 1992) 

52 46 389 

Orthogonal Array/Response 
Surface Analysis (Quadratic) 

311 270 1343 

Maximum Entropy/Kriging 
(Koehler and Owen 1996) 

32 19 298 

SMAXED 
(6 blocks of 10 experiments) 

13 9 218 

SMAXED 
(12 blocks of 5 experiments) 

15 11 193 

  

Table 6.2: Approximation using 60 experiments 
 

 

                                                           
3 Similar to RMSE (equation 7.5), Maximum Error is used to determine the accuracy of a meta-model. 
This is defined as maximum deviation of a meta-model from its original response function, i.e. 
maximum of | , where x is a design vector in the design space,  is the corresponding 
predicted value by the meta-model, and  is the value of the original response function.   

|)()(ˆ xx yy − )(ˆ xy
)(xy

 
4 This is defined as the average deviation of meta-model from the original response function, i.e. average 
of | , where x is a design vector in the design space. |)()(ˆ xx yy −
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Table 6.2 shows that Latin Hypercube Sampling, Maximum Entropy and 

SMAXED all yield relatively lower Max Errors. However, on average SMAXED 

performs much better, i.e., it has a much lower RMSE and Average Error.  

For the second part of this example, 180 experiments are used. The results are 

listed in Table 6.3.  

 

DOE/Meta-modeling technique RMSE 
(%) 

Average Error 
(%) 

Max Error 
(%) 

Random Sampling/Kriging 7.4 3.4 56 
Latin Hypercube/Kriging 
(McKay et al. 1979) 

3.9 2.4 23 

Orthogonal Array/Kriging 
(Owen 1992) 

5.3 4.9 45 

Orthogonal Array/Response 
Surface Analysis (Quadratic) 

6.9 3.1 10.2 

Maximum Entropy/Kriging 
(Koehler and Owen 1996) 

3.8 2.5 21 

SMAXED 
(18 blocks of 10 experiments) 

2.1 1.8 22 

SMAXED 
(36 blocks of 5 experiments) 

2.3 1.8 18 

 

Table 6.3: Approximation using 180 experiments 
 

Again, SMAXED performs better on average (i.e. lower RMSE and Average 

Error). However, Maximum Error is lower with Orthogonal Array/Response Surface 

Analysis. Note that Response Surface Analysis is a non-interpolative approach, 

however, it yields a lower maximum error (overshoot) than interpolative approaches 

for higher number of experiments (a similar observation for response function meta-

models versus kriging is reported in Srivastava et al. 1999).  
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In the next section, several optimization problems are presented to test the 

performance of T-MOGA (recall Chapter 3).  

6.2 TEST CASES FOR T-MOGA 
 
 

Choosing appropriate test problems is perhaps the most important step in 

evaluating the merits of a new optimization algorithm. Deb (2001) states that ‘difficult’ 

problems must be used to assess the performance of a new algorithm. Easy problems 

can be solved by almost any algorithm, however, problems with difficult features (e.g. 

bias, discontinuity, etc.) discriminate among different algorithms. As such, Deb (2001) 

identified a set of difficult features and defined a set of test problems accordingly.  

In the next section, we briefly introduce these test problems and assess the 

performance of T-MOGA. In Section 6.2.2, another class of problems -- by Zitzler et 

al. 2000 -- is also introduced to further test T-MOGA.  

6.2.1 Deb’s Test Problems with Difficult Features (Unconstrained, 2 
Variables) 
 
According to Deb (2001) there are two major tasks that a MOGA should 

address to obtain a good Pareto solution set:  

1) Convergence to the Pareto-optimal frontier 

2) Maintaining population diversity 

Numerical test examples can be set up with several problem features such as 

multi-modality, deceptive functions and isolated optima that are recognized to hinder 

the convergence of the population in a MOGA. Similarly, features such as non-

convexity, discontinuity of the Pareto frontier and non-uniformity (or bias) in the 

distribution of the solutions may cause difficulties for MOGAs in maintaining solution 
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set diversity (Deb 2001). In order to fairly and consistently compare the performance 

of different MOGAs in one particular aspect, appropriate numerical test examples must 

be formulated. Deb (2001) formulated a generic (unconstrained) 2-objective 

optimization problem that can be tuned to address different sources of optimization 

difficulty: 

 

  Minimize        ),...,( 111 mxxff =            (6.1) 

Minimize    ),(),...,( 112 gfhxxgf Nm+=       

By defining different functional forms for f1, g, and h, Deb created test 

problems that are difficult in terms of either convergence or diversity, as listed below. 

In the first three problems, MOGA will face difficulty in maintaining diversity. In 

problems 4 and 5, however, the difficulty is in converging to the Pareto frontier  (For a 

detailed description of these difficult features and how to manipulate them in test 

problems see Deb 2001.) Unlike the first 5 problems, the 6th problem has no difficult 

feature and thus, is very easy to converge and maintain diversity. Later in this section, 

it is shown that all examined MOGAs perform equally well for this easy problem and 

therefore, they cannot be distinguished based on the results from this problem. This 

further emphasizes the need for using problems with difficult features (such as 

Problems 1-5) to compare the performance of MOGAs.  

 

Problem 1 (difficult to maintain diversity, Deb 2001): The following test problem 

has a non-convex local Pareto front and a convex global Pareto front (See Figure 6.3). 

This poses a great deal of difficulty to MOGAs in obtaining a well-distributed set of 
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solutions. Especially, those algorithms that exploit the shape of the Pareto frontier to 

manipulate uniformity of the solution set have to adopt themselves from a non-convex 

shape to a convex shape as the population evolves from local front to global front.  
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Figure 6.3: Test Problem 1 (Deb, 2001) 
 

Problem 2 (difficult to maintain diversity): The following test problem has a 

discontinuous Pareto front (See Figure 6.4). Discontinuous Pareto frontier causes 

difficulty for MOGAs in obtaining a diverse solution set. 
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Figure 6.4: Test Problem 2 (Deb, 2001) 
 

Problem 3 (difficult to maintain diversity): The following test problem has a 

solution space that is laterally biased, i.e., the density of solutions in the right half 

space of the Pareto frontier (Figure 6.5) is higher than that of the left half. Therefore, 

MOGA tends to find more solutions in the dense part, leaving the rest of the Pareto 

frontier empty or sparsely populated.  
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Figure 6.5: Problem 3  (Deb, 2001) 
 

Problem 4 (difficult to converge): The following test problem has local Pareto 

frontiers with significantly dense solutions, but the global Pareto is very sparsely 

populated (See Figure 6.6). A MOGA will face difficulty in converging to the global 

Pareto.    
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Figure 6.6: Problem 4  (Deb, 2001) 
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Problem 5 (difficult to converge): The solution space of this problem has a strong 

bias against the non-convex Pareto frontier. In Figure 6.7, the density of solutions 

significantly decrease as a MOGA attempts to converge to the Pareto frontier.   
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Figure 6.7: Test Problem 5  (Deb, 2001) 
 

Unlike above test problems, the following problem has no difficult features.  

Problem 6 (easy to converge and maintain diversity): The Pareto frontier of the 

following problem is convex, continuous, and unbiased.  
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To assess the relative performance of T-MOGA, three other well-known 

MOGAs are selected: 
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• NSGA (Nondominated Sorting Genetic Algorithm): Srinavas and Deb, 

1994 

• MOGA-NA: Naryanan and Azarm 1999 

• VEGA (Vector Evaluated Genetic Algorithm): Schaffer 1985. 

Two quality indexes are selected to compare the results: 1) Entropy Index (H) 

to measure diversity (from Chapter 5); 2) Hypercubic Size of the Non-dominated Space 

denoted by S (Fonseca and Fleming 1996, See Appendix I for definition) to measure 

closeness to the Pareto frontier. The MOGA properties are listed in Table 6.4.  

 

Parameter Value 
Population size 100 
Replacement per 
generation 

10 

Function calls 550 
Crossover type 2-point 
Crossover probability 0.8 
Mutation probability  0.05 
Bits per variable 10 
Selection type Stochastic universal 

selection (Levine, 1996) 
 

Table 6.4: MOGA Parameters 

 
 

We performed each of the above MOGAs 10 times for each of the above-

mentioned problems. Table 6.5 provides the following information (for a sample of 10 

runs): 

• Best (highest) obtained entropy index value: Hg 

• Worst (lowest) obtained entropy index value: Hb 

• Sample mean of obtained entropy index values: Hm 
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• Best (lowest) obtained S index value: Sg 

• Worst (highest) obtained S index value: Sb 

• Sample mean of obtained S index values: Sm 

 

 Feature NSGA MOGA-NA VEGA T-MOGA 
PROBLEM 1 Non-Convex Local and 

Convex Global Front 
(Difficult to maintain 
diversity) 

Hg= 6.4 
Hb= 5.8 
Hm= 6.0 
Sg = 0.62 
Sb = 0.71  
Sm = 0.64 

Hg= 5.3 
Hb= 4.9 
Hm= 5.2 
Sg =0.68 
Sb = 0.82 
Sm = 0.71 

Hg= 4.2 
Hb= 4.1 
Hm= 4.1 
Sg = 0.71 
Sb = 0.75 
Sm = 0.72 

Hg= 6.8 
Hb= 6.4 
Hm= 6.6 
Sg = 0.49 
Sb = 0.69 
Sm = 0.63 

PROBLEM 2 Disconnected Pareto 
(Difficult to maintain 
diversity) 

Hg= 5.1 
Hb= 4.0 
Hm= 4.2 
Sg = 0.27 
Sb = 0.31 
Sm = 0.29 

Hg= 4.4 
Hb= 4.0 
Hm= 4.4 
Sg =0.28 
Sb = 0.33 
Sm = 0.30 

Hg= 3.8 
Hb= 3.8 
Hm= 3.8 
Sg = 0.73 
Sb = 0.89 
Sm = 0.77 

Hg= 5.7 
Hb= 4.8 
Hm= 5.5 
Sg = 0.25 
Sb = 0.30 
Sm = 0.27 

PROBLEM 3 Lateral Bias 
(Difficult to maintain 
diversity) 

Hg= 5.9 
Hb= 5.7 
Hm= 5.8 
Sg = 0.44 
Sb = 0.49 
Sm = 0.45 

Hg= 5.1 
Hb= 5.0 
Hm= 5.1 
Sg = 0.55 
Sb = 0.68 
Sm = 0.61 

Hg= 5.2 
Hb= 5.0 
Hm= 5.1 
Sg = 0.67 
Sb = 0.68 
Sm =0.67 

Hg= 7.6 
Hb= 7.0 
Hm=7.1 
Sg = 0.36 
Sb = 0.38 
Sm = 0.38 

PROBLEM 4 Isolated Global Pareto 
(Difficult to converge) 
 

Hg= 5.9 
Hb= 5.8 
Hm=5.8 
Sg = 0.37 
Sb = 0.39 
Sm= 0.37 

Hg= 6.0 
Hb= 5.6 
Hm= 5.8 
Sg = 0.38 
Sb = 0.39 
Sm =0.39 

Hg= 5.0 
Hb= 4.3 
Hm= 4.9 
Sg = 0.53 
Sb = 0.61 
Sm =0.55 

Hg= 6.1 
Hb= 5.8 
Hm= 5.9 
Sg = 0.37 
Sb = 0.40 
Sm = 0.39 

PROBLEM 5 Bias against Pareto 
(Difficult to converge) 
 

Hg= 6.8 
Hb= 6.6 
Hm=6.7 
Sg = 0.23 
Sb = 0.29 
Sm = 0.25 

Hg= 6.1 
Hb= 6.0  
Hm=6.1 
Sg = 0.24 
Sb = 0.32 
Sm = 0.29 

Hg=5.9 
Hb= 5.2 
Hm= 5.7 
Sg = 0.62 
Sb = 0.70 
Sm = 0.64 

Hg= 7.8 
Hb= 7.1 
Hm=7.3 
Sg = 0.26 
Sb = 0.30 
Sm = 0.27 

PROBLEM 6 Easy  Hg=6.2 
Hb=6.1  
Hm=6.2 
Sg = 0.19 
Sb = 0.19 
Sm = 0.19 

Hg= 6.3 
Hb= 6.2 
Hm=6.2 
Sg = 0.16 
Sb = 0.17 
Sm = 0.17 

Hg= 6.4 
Hb= 6.4 
Hm=6.4 
Sg = 0.15 
Sb = 0.15 
Sm = 0.15 

Hg= 6.4 
Hb= 6.3 
Hm=6.3 
Sg = 0.15 
Sb = 0.15 
Sm = 0.15 

 

Table 6.5: Quality of solutions obtained from 4 MOGAs. The first 3 problems (with 
gray shadow) pose difficulties in achieving a diverse solution set. In Problems 4 and 5, 

MOGAs face difficulty to converge to the Pareto frontier. Problem 6 is easy to 
converge and maintain diversity. Note that the data in this table is based on 10 runs.  
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From the above table it can be observed that: 

• In terms of diversity: In problems with diversity difficulties (Problems 1-3) 

and Problem 5, T-MOGA performed better (higher entropy) than MOGA-NA, 

NSGA, and VEGA. In problem 4, all MOGAs except VEGA performed 

relatively well in terms of obtaining diverse solutions, however, T-MOGA 

yielded slightly higher entropy values. In problem 6, entropies are almost the 

same (all algorithms performed well). This easy problem does not discriminate 

among these MOGAs, and therefore, is not helpful in our comparison study 

(This easy example was included only to demonstrate the need for using test 

problems with difficult features.) 

•  In terms of convergence: In problems 4 and 5 (difficult to converge), NSGA 

showed a slightly better performance than MOGA-NA and T-MOGA in terms 

of S index (Note that the lower the value of S, the better). VEGA showed a 

relatively weak performance. For problems 1, 2, 3 and 6, however, T-MOGA 

performed as well as or better than other algorithms in terms of S. 

 

To summarize: T-MOGA performed much better than others in terms of 

obtaining diverse solutions, and almost as good as MOGA-NA and NSGA (and better 

than VEGA) in terms of converging to the Pareto frontier.  

 Test problems 1, 2, 3, 4, and 5 had difficult features to magnify the differences 

among MOGAs, however, they had only 2 design variables. In the next section, we 

present another class of test problems that is based on equation 6.2.1 and has many 

variables. These test problems were first introduced by Zitzler et al. (2000).  
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6.2.2 ZTD Test Problems (Unconstrained, Many Variables) 
 

Zitzler et al. (2000) formulated six test problems with many variables. In the 

following, 4 of these problems are listed with their properties. The other 2 functions 

are Boolean functions defined over bit-strings. Since T-MOGA is a phenotype 

alteration in MOGA (i.e. expansion operator manipulates the population in the 

objective space not in the chromosome level) and there is no reason to believe that T-

MOGA is any different than other baseline MOGAs in terms of bit-strings, these two 

Boolean test functions are omitted in the following. The numbering of these problems 

is also modified from the original work. 

 

ZTD 1 (difficult to maintain diversity): non-convex with local Pareto frontier with 

30 variables 
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ZTD 2 (difficult to maintain diversity): disconnected with 30 variables.  
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ZTD 3 (difficult to converge): biased against Pareto frontier with 10 variables. 
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ZTD 4 (easy to converge and maintain diversity): convex and unbiased with 30 

variables 
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In a similar fashion to the previous section, the results are listed in Table 6.6.   

 Feature NSGA MOGA-NA VEGA T-MOGA 
ZTD 1 Non-Convex Local and 

Convex Global Pareto 
Hg = 3.1 
Hb= 2.7 
Hm= 3.0 
Sg = 0.30 
Sb = 0.49 
Sm = 0.32 

Hg = 3.3 
Hb= 3.1 
Hm=3.3 
Sg = 0.29 
Sb = 0.38 
Sm = 0.30 

Hg = 3.8 
Hb= 3.7 
Hm=3.7 
Sg = 0.83 
Sb = 0.88 
Sm =0.84 

Hg = 4.3 
Hb= 3.9 
Hm= 4.1 
Sg = 0.23 
Sb = 0.40 
Sm =0.26 

ZTD 2 Disconnected Pareto Hg = 3.9 
Hb= 3.0 
Hm= 3.7 
Sg = 0.36 
Sb = 0.40 
Sm = 0.39 

Hg = 4.6 
Hb= 3.5 
Hm= 4.1 
Sg = 0.51 
Sb = 0.55 
Sm =0.51 

Hg = 4.4 
Hb= 2.8 
Hm=3.1 
Sg = 0.62 
Sb = 0.82 
Sm = 0.69 

Hg = 5.4 
Hb= 4.9 
Hm= 5.3 
Sg = 0.21 
Sb = 0.39 
Sm =0.30 

ZTD 3 Biased against Pareto Hg = 3.9 
Hb= 3.6 
Hm=3.8 
Sg = 0.41 
Sb = 0.46 
Sm = 0.44 

Hg = 3.4 
Hb= 3.0 
Hm= 3.3 
Sg = 0.49 
Sb = 0.58 
Sm = 0.53 

Hg = 2.3 
Hb= 2.0 
Hm= 2.2 
Sg = 0.88 
Sb = 0.93  
Sm = 0.90 

Hg = 3.7 
Hb= 3.6 
Hm=3.7 
Sg = 0.43 
Sb = 0.48 
Sm = 0.46 

ZTD 4 Easy Hg = 5.1 
Hb= 4.8 
Hm= 5.0 
Sg = 0.48 
Sb = 0.51 
Sm =0.49 

Hg = 4.9 
Hb= 4.8 
Hm= 4.8 
Sg =0.41 
Sb = 0.55 
Sm =0.47 

Hg =3.6  
Hb= 3.3 
Hm= 3.5 
Sg = 0.81 
Sb = 0.88 
Sm =0.84 

Hg = 5.4 
Hb= 4.9 
Hm= 5.1 
Sg =0.45 
Sb = 0.51 
Sm =0.50 

 

Table 6.6: Quality of solutions obtained from 4 MOGAs. The first 2 problems (with 
gray shadow) pose difficulties in achieving a diverse solution set. In Problem ZTD 3, 
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MOGAs face difficulty to converge to the Pareto frontier. ZTD 4 is easy to converge 
and maintain diversity. Note that the data in this table is based on the best result out of 

10 runs.  
 

Similar to our observation in the previous section, T-MOGA performed much 

better in terms of maintaining diversity in the first two problems (with features that 

work against achieving diversity). Except for VEGA, all MOGAs yielded similarly 

high entropies for ZTD 3 and 4. In terms of convergence to the Pareto frontier, T-

MOGA, NSGA and MOGA-NA all performed almost in the same way, while VEGA 

shows a slower convergence.  

The test examples in the past two sections were all unconstrained. In the next 

section, we investigate the effect of constraints on the performance of T-MOGA.  

6.2.3 Constrained Test Cases 
 

In this section three constrained problems are chosen. The first problem 

(problem C1) is an engineering optimization problem: Design of a Vibrating Platform. 

Problems C2 and C3 are two numerical optimization problems with constraints.    

 

Problem C1- Design of a Vibrating Platform (Messac 1996) 

The design problem is taken from Messac (1996) and consists of a pinned-

pinned sandwich beam with a vibrating motor on its top. As shown in Figure 6.8, the 

beam has five layers of three different materials. There is a middle layer and two 

sandwiched layers. The distance from the center of the beam to the outer edge of each 

layer comprises three of the sizing design variables, d1, d2, and d3. The width of the 

beam, b, and the length of the beam, L, are the other two sizing design variables. There 
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are also three combinatorial variables for the material type Mi, where i=1,2,3, for the 

different materials that can be used for each layer. Hence, there are 8 design variables, 

3 combinatorial variables for the material type of the 3 layers, and 5 sizing variables.  

d1 d2
d3L

   b

Vibrating
   Motor

 

Figure 6.8: Vibrating platform design problem 
 
 

The problem has two design objectives: 1) Maximize the fundamental 

frequency of the beam, and 2) Minimize the material cost. The maximization of the 

first objective is converted to a minimization form by assuming a negative sign. 

Therefore, the problem can be formulated as follows: 

Minimize  f1(d1,d2,d3,b,L,Mi) = - (π/2L2)(EI/µ)0.5  

Minimize  f2(d1,d2,d3,b, Mi) = 2b[c1 d1 + c2(d2 – d1) + c3(d3 – d2)] 
 

Subject to:         (6.12) 
   µL – 2800 ≤ 0  

     d2 – d1 – 0.15 ≤ 0 
     d3 – d2 – 0.01 ≤ 0 
   0.05 ≤ d1 ≤ 0.5 
   0.2 ≤ d2 ≤ 0.5 
   0.2 ≤ d3 ≤ 0.6 
   0.35 ≤ b ≤ 0.5 

3 ≤ L ≤ 6                      
where,                           

(EI) = (2b/3)[E1d1
3 + E2(d2

3-d1
3)+E3(d3

3-d2
3)]  

        (µ) = 2b[ρ1d1 + ρ2(d2 – d1) + ρ3(d3 – d2)]  
 

Ei is the modulus of elasticity of material Mi, while ρi is the density, and ci is the 

cost. According to the material type variable Mi, the value of the parameters Ei, ρi, and 
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ci is different for different layer material, as given in Table 6.7. It is assumed that the 

material types for the three layers are mutually exclusive. In other words, the same 

material cannot be used for more than one layer.  However, the layers are allowed to 

have zero thickness.  The first three constraints refer to upper bounds on the mass of 

the beam, thickness of layer 2, and thickness of layer 3, respectively.  The last 5 

constraints are the set constraints on the sizing variables. 

Material Mi ρi (Kg/m3) Ei (N/m2) Ci ($/volume) 
1 100 1.6 × 109 500 
2 2,770 70 × 109 1,500 
3 7,780 200 × 109 800 

 
Table 6.7: Material properties of the vibrating platform design problem 

 
 
 The next two constrained problems (Problems C2 and C3) are two numerical 

examples with simple objective functions. The only challenge in solving these two 

problems is the fact that they are constrained and thus, they are appropriate for 

comparing the performance of MOGAs only in terms of their ability to handle 

constraints.    

Problem C2 (Binh and Korn 1997) 

 The formulation of this two-objective optimization problem is given below. 
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For this test problem (Binh and Korn 1997), the constraint handling technique 

of Section 3.2.5 is used. The constraints have simple mathematical forms (circles in 

this example) and therefore, the proposed technique of reflection can be employed 

analytically (similar to reflection of gas molecules from walls of a container). 

 

Problem C3 (Deb 2001) 

 The formulation of this test problem is given below.  
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ππ
πππ (6.14) 

This constraint makes parts of the unconstrained Pareto frontier infeasible. 

Moreover, the periodic nature of this constraint creates alternating feasible-infeasible 

regions that pose hardship on convergence and diversity of MOGAs. For this test 

problem, reflection technique of Chapter 3 is not easy to perform analytically. 

Computational methods (similar to Section 5.2.6) could also become computationally 

expensive. Therefore, for this problem an alternative approach is used: points that 

would become infeasible by expansion operator are frozen (not expanded anymore). 

This is not consistent with Maxwellian assumption; however, T-MOGA still shows a 

tendency to yield a high entropy.  
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10 MOGA runs are performed for the above three problems (and for each 

MOGA). The results are listed below.   

 

 Feature NSGA MOGA-NA VEGA T-MOGA 
C1 Multiple constraints (engineering 

design limitations) 
H = 5.7 
S = 0.32 

H =6.4  
S = 0.22 

H =6.1 
S = 0.34 

H = 7.5 
S = 0.23 

C2 Constraints with easy Objectives H = 6.0 
S = 0.33 

H = 5.1 
S = 0.28 

H =5.9 
S = 0.32 

H = 7.9 
S = 0.31 

C3 Difficult constraint with easy 
Objectives (Periodic nature of 
constraint function creates 
alternating feasible-infeasible 
bands) 

H = 6.9 
S = 0.30 

H = 7.3 
S =0.38 

H = 5.9 
S = 0.37 

H = 7.3 
S = 0.31 

 

Table 6.8: Quality of solutions obtained from 4 MOGAs.  
 

Each MOGAs is run 10 times for 200 function calls. The best values of quality 

indexes are listed in Table 6.8. In terms of entropy, T-MOGA performs equally well or 

better than all other algorithms in all cases. In Problems C1 and C2 in particular, T-

MOGA yields much higher entropy.  

6.3 ENGINEERING TEST CASE FOR ENTROPY INDEX 
 

In Chapters 4 and 5 we introduced quality indexes for comparison study of 

different MOGAs. In Chapter 5 in particular, we compared the performance of two 

MOGAs by monitoring the entropy index during optimization of a numerical test 

example. In this section, an engineering design problem is introduced and optimized 

using T-MOGA (Chapter 3) as well as another MOGA (MOGA-NA). The entropy 

index of both MOGAs are calculated and plotted throughout the process.  
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6.3.1 Speed Reducer Gearbox for Light Aircrafts 
 

This example was originally formulated by Golinski (1970) as a single-

objective optimization problem.  The problem has been converted into a two-objective 

optimization problem. A simple gear-box is shown in Figure 6.9 that can be used in 

light airplanes between engine and propeller. There are seven design variables in the 

formulation: gear face width (x1), teeth module (x2), number of teeth of pinion (x3 – 

integer variable), distance between bearings 1 (x4), distance between bearings 2 (x5), 

diameter of shaft 1 (x6), and diameter of shaft 2 (x7).  The first design objective, f1, is to 

minimize the volume.  The second objective, f2, is to minimize the stress in one of the 

two gear shafts.  

 

x7 x5 

x6 

x4 

bearings 1

shaft 1 
shaft 2 

bearings 2 

 

Figure 6.9:  Speed reducer 
 
 

The design is subject to a number of constraints imposed by gear and shaft 

design practices.  An upper and lower limit is imposed on each of the seven design 

variables.  There are 11 other inequality constraints (of which one is a constraint 

imposed on the first objective), as follows: g1  is an upper bound of the bending stress 

of the gear tooth; g2 : upper bound of the contact stress of the gear tooth; g3, g4 are 

upper bounds of the transverse deflection of the shafts;g5-g7 are dimensional 
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restrictions based on space and/or experience; g8, g9 are design requirements on the 

shaft based on experience; and g10 , g11 are constraints on stress in the gear shafts.  The 

optimization formulation is: 
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The Pareto solutions obtained using T-MOGA and MOGA-NA are shown in 

Figure 6.10 and the parameters are listed in Table 6.9.  From the results shown in 

Figure 6.10 , one can see that T-MOGA has outperformed MOGA-NA  in terms of 

both the coverage of the Pareto frontier and the uniformity of spread, i.e., the range of 

Pareto frontier covered by solutions from T-MOGA is significantly larger than that of 

MOGA-NA. Also, the solution points are spread uniformly in the T-MOGA while the 

solution points are mostly clustered in MOGA-NA.   

 

 MOGA T-MOGA 
Population size 50 50 
Replacement per 
generation 

10 10 

Function calls 550 550 
Crossover type 2-point 2-point 
Crossover probability 0.8 0.8 
Mutation probability  0.05 0.05 
Bits per variable 10 10 
Selection type Stochastic universal 

selection (Levine, 1996) 
Stochastic universal  
selection (Levine, 1996) 

Expansion percentage NA 10% 
Expansion start NA 5th 
Expansion finish NA 45th 

 

Table 6.9: MOGA parameters in the speed-reducer example 
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Figure 6.10:  Pareto solution sets for speed-reducer example: (a) MOGA-NA; 150 
function calls, (b) T-MOGA; 150 function calls, (c) MOGA-NA; 250 function calls, 
(d) T-MOGA; 250 function calls, (e) MOGA-NA; 550 function calls, (f) T-MOGA; 

550 function calls 
 
 
As mentioned in Chapter 4, the above visual assessment is not possible in 

general (especially in problems with 3 or more objectives). Therefore, here we use 

entropy index (Chapter 5) to monitor the diversity of solution sets on a quantitative 

basis during optimization of the speed reducer problem. The good and bad points (see 

Appendix I for definition) are determined subjectively, based on the upper bounds of 

stress in the two shafts (constraints C10 and C11), and a sample of points obtained from 

a single run of MOGA. We arbitrarily overestimate the good and bad points to be: 
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G0=(2500, 600) and B0=(7000, 1300).  After normalization, the normalized good and 

bad points become G = (0,0) and B = (1,1), respectively. So the projection direction 

can be obtained:  
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Following Gram-Schmidt procedure, Equation 5.10, we obtain: 
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where u , and (1,01 = ) ( )0,12 =u  unit vectors along , and  axes. All of the 

solution points are projected on the projection plane, using Equation 5.12: 

1f 2f

 

X = f . v1     ;    Y = f . v2               where:    f = (f1, f2)   (6.18) 

 

Now, to construct a density surface on the projection hyper-plane, we assume a 

Gaussian influence function, i.e., ( )
22 2

2
1 σ

πσ
rer −=Ω . The standard deviation, σ, is 

set according to the guideline of Section 5.2.4, i.e., 6σ =1 or σ =1/6. The projection of 

the feasible domain on the projection plane is estimated by a rectangle as explained in 

Section 5.2.4. A 20 × 20 grid of cells is constructed on the estimated feasible domain. 

The density function at the center of each cell can be calculated by aggregating the 
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influence of all solution points on that cell (recall Equation 5.1). T-MOGA and 

MOGA-NA are executed for 150 generations and the solution sets are stored. A 

density surface can then be constructed for every generation of the observed Pareto set 

as the population evolves (Figure 6.11.)  

 

  
              (a) 15th generation                 (b) 20th generation 

  
               (c) 30th generation     (d) 40th generation  

  
    (e) 60th generation         (f) 150th generation 

 

Figure 6.11: The density surface of non-dominated solution sets in T-MOGA 
 

It is clear from this figure that as the population matures (i.e., the observed 

Pareto solutions converge), the density surface gradually flattens. For instance, the 

density surface of the 15th generation consists of two sharp peaks and the rest of the 

domain has a low density-function value. In contrast, the 150th generation forms a 
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nearly flat density surface. This is because of continuous improvement in the 

population diversity during the evolution of T-MOGA. In order to observe the 

distribution quality of the generations during T-MOGA and MOGA-NA, the entropy 

of each generation is calculated from Equation 5.7 and graphed in Figure 6.12.  
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Figure 6.12: Entropy history. 
 
 
 
 Clearly, the entropy of T-MOGA grows faster and saturates before MOGA-NA 

(maximum achieved diversity). Moreover, the steady state entropy of T-MOGA is 

higher than that of MOGA-NA, which means that T-MOGA managed to obtain a more 

diverse solution set. In the first two generations of T-MOGA, there are no feasible 

solutions and thus the entropy is zero. The 3rd to 7th generations contain only one 

feasible solution, so their entropy remains relatively low. As the population evolves, 

more feasible non-dominated solutions are generated and thus, the corresponding 

entropy grows rapidly as the non-dominated hyper-surface is covered with more and 

more solutions. However, after the 30th generation, a large portion of the population is 
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feasible and therefore, there is no improvement in terms of number of feasible 

solutions. However, the entropy still increases due to expansion operators -- clusters in 

the population are gradually dissolved and the solutions are spread more uniformly 

over the non-dominated hyper-surface covering a larger portion of the feasible domain. 

The population reaches maturity around the 80th generation and the entropy remains 

almost constant until T-MOGA stops after a total of 150 generations. During this 

saturation period, from the 80th generation to the 150th generation, no significant 

improvement is observed in the distribution of the solutions over the Pareto frontier. 

Recall that this is equivalent to equilibrium state in Maxwellian systems where the 

system tends to achieve a steady-state (time independent) state with maximum entropy.   

6.4 CONCLUDING REMARKS 
 

In addition to the test examples of Chapters 2, 3, 4, and 5, we presented several 

additional test cases in this chapter to further investigate the performance of the 

methodologies of this thesis. In particular: 

• SMAXED created a more accurate surrogate model for the large-scale 

response function of high-speed civil transport example (26 variables) 

in Section 6.1.  

• A collection of numerical test examples in Section 6.2 demonstrated 

more diverse (higher entropy) solution sets from T-MOGA as compared 

to other methods. 

• In the speed reducer gearbox example, entropy index was successfully 

used to monitor and compare the performance of T-MOGA.  
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The next chapter presents a detailed case study: Crashworthiness Design of 

Front-End of a Pickup Truck. This case study takes advantage of SMAXED, T-

MOGA, and Entropy Index in the context of an overall approximation-assisted 

optimization approach.  
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CHAPTER 7 

CASE STUDY: CRASHWORTHINESS DESIGN OF FRONT-

END OF A PICKUP TRUCK 

This chapter presents an overall framework for approximation-assisted multi-

objective crashworthiness optimization of front-end of a pick-up truck5. The finite 

element simulation of physical phenomena that occur during a crash event is highly 

nonlinear, with variables and response functions interacting in a complicated fashion. It 

is shown that while a direct application of evolutionary multi-objective optimization 

techniques to such a problem is computationally intractable, we first employ 

SMAXED (our approach from Chapter 2) to create a meta-model for the finite-element 

simulation. Then, the meta-model is optimized using T-MOGA (recall Chapter 3). 

Entropy index (recall Chapter 5) is used to monitor the quality of solutions obtained by 

optimization process to ensure a diverse representation of the approximated Pareto-

frontier.     

This chapter is organized as follows: Section 7.1 describes an approximation-

assisted optimization framework. The case study of this chapter is introduced in 

Section 7.2 as a demonstration for the proposed framework. The concluding remarks of 

this chapter are given in Section 7.3.  

                                                           
5 This case study was done as part of a collaboration with Professor A. Diaz and his student Mr. A. 
Ravisekar from Michigan State University; see Farhang-Mehr et al. (2003) 
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7.1 OVERALL FRAMEWORK: APPROXIMATION-ASSISTED 
OPTIMIZATION  

 
Figure 7.1 illustrates the overall framework of this research -- approximation-

assisted multi-objective optimization and quality assessment. As shown in Figure 7.1, 

the overall approach starts with choosing those objectives and constraints that are 

computationally expensive and need to be approximated. The computationally 

expensive responses are approximated sequentially using SMAXED approach 

described in Chapter 2, while simpler functions are used directly by the optimization 

engine. Next, T-MOGA is performed (as described in Chapter 3) and a set of Pareto-

optimal design solutions are generated and evolved to fully represent the optimal 

design space (or achieve the best possible representation). The distribution quality of 

the solution set is monitored during the optimization process to determine whether or 

not the desired level of solution diversity is observed along the Pareto frontier. The 

result will be a set of non-dominate solutions, distributed such that the best possible 

description of the entire optimal feasible space can be given. Note that based on the 

required accuracy and resource availability, the results can be refined by confining the 

approximation and search region within a neighborhood of interest around the selected 

design, updating the approximation models and obtaining a more accurate optimal 

solution set to fully represent the region of interest. 
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Multi-Objective Optimization 
Problem (MOO) 

Design variables: x1, x2, …, xn 
Objectives: f1,f2, …, fm 
Constraints: g1,g2, …, gr 

Function Complexity Evaluation
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Figure 7.1: Proposed approximation and optimization framework 
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7.2 CRASHWORTHINESS DESIGN OF FRONT-END OF A PICKUP 
TRUCK 
 

By most measures simulation of a crash event involving a typical vehicle is a 

computationally intensive task.  A complete detailed computer model of a passenger 

vehicle typically involves 105 – 106 degrees of freedom and one performance 

evaluation may require many hours or days of computer time. The complexity of the 

problem makes design optimization of even a small component of the vehicle a 

challenging undertaking. The physical phenomena involved are highly non-linear and 

the simulated responses tend to be quite ill-behaved which in turn makes a direct 

application of most optimization techniques very time-consuming or even impossible.  

 

7.2.1 Crashworthiness Problem Definition 
 

A detailed multi-purpose finite element model of a 1994 Chevrolet C-2500 

pick-up truck was developed at the National Crash Analysis Center at George 

Washington University (Bedewi et al. 1996). This model is the first of its kind 

developed specifically to address vehicle safety issues, including front and side 

performance. As shown in Figure 7.2, the bumper-rail assembly from this model is 

used in this analysis. 
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Figure 7.2:  The bumper-rail assembly 
 

The assembly consists of the bumper, the left and right rails, and the cross rail 

connector.  The rail mountings, which connect the bumper and the rails, were replaced 

with connectors modeled by beam elements whose purpose is simply to 

engage/disengage the rail and the bumper. Lumped masses are attached at the rear end 

of the rails, at section B-B’ (see Appendix-III for additional details).  The assembly is 

moving forward at a 20 mph when it hits a rigid wall. The analysis was performed at 

Michigan State University using a standard finite element package for large 

deformation and impact analysis (LSDyna). Each analysis run cost about 15 minutes 

on a Sun Ultra 80 workstation. The meta-modeling and optimization part of this 

research was performed at The University of Maryland.   

In design for enhanced crashworthiness, the objective is to improve the 

protection of the passenger, e.g., by controlling the accelerations experienced by the 

passenger and the deformation of the structure in the immediate vicinity of the 

passenger.  In our case this is accomplished indirectly by  (1) minimizing the 
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maximum force, F, transmitted through the rail (measured at section A-A’); and (2) 

minimizing the (X-) displacement D of the section at B-B’.  Sample signals for F and 

D are shown in Figures 7.3 (a) and (b), respectively, as a function of time (t=0 at the 

moment of impact).  Therefore, the objective functions are: 

 

1 0
max | ( ) |

t
f F

>
t=      (7.1) 

and   

2 0
max | ( ) |

t
f D

>
t=      (7.2) 
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Figure 7.3:  Typical performance functions in rail assembly problem 
 

There are two design variables in this problem: 

x1 = collapse strength of connector material  (MPa) 

x2 = sheet metal  thickness of rail forward of section A-A’ (mm)       

The first variable acts as a “switch” that controls the timing of the failure of the 

mountings that connect the bumper and the rail.  The second variable has a strong 

effect on both the amount of deformation and the accelerations transmitted to the rear 

of the vehicle.  The overall problem can be formulated as a two-objective minimization 

problem: 

       Minimize (f1, f2)                       (7.3) 

subject to:         

1  x≤ 1 ≤ 70         

2  x≤ 2 ≤ 5         

Given the computational cost of evaluating f1 and f2 (i.e., 15 minutes for a 

single function call), a direct application of a multi-objective optimization technique 

could be very time consuming. For instance, a typical multi-objective genetic 

algorithm requires about 1000 function evaluations to obtain a good approximation of 

the Pareto-frontier, i.e., about 11 days of computation for this problem!  The situation 

becomes even worse if we select more design variables and choose additional objective 

and/or constraint functions.   

As mentioned before, the computational complexity of calculating the objective 

functions in Equation 7.3 prohibits a direct application of multi-objective optimization 

techniques. Therefore, we use SMAXED to construct a global approximation for the 
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two objectives: f1 and f2, which will be used later to find an approximation for the 

Pareto-optimal frontier. 

 The upper and lower bounds for the two variables of the problem, x1 (collapse 

strength) and x2 (sheet metal thickness), are given in equation 7.4. The following is a 

linear mapping of these variables onto [0,1]2: 

z1 = (x1–1)/69    ; z2 = (x2–2)/3  (7.4)

A 50x50 grid is constructed in the design space (a total of 2500 nodes). We also 

limit our experimentation for each objective to 39 experiments, as 3 blocks of 13 

experiments each. Recall that the response evaluation for each experiment takes about 

15 minutes on a Sun Ultra 80, so, 39 experiments for each objective function is 

estimated to take about 10 hours of computation. The step-by-step approximation of 

the two objective functions using SMAXED is demonstrated in the following sections.  

7.2.2 f1: Maximum Force (over time) 
 

At the beginning of the approximation process the non-informative (stationary 

assumption) holds.  

STEP 1 (1st block of 13 experiments) – The goal is to find a set of 13 nodes such that 

the determinant of the covariance matrix is maximized. To estimate  (where 

τ is the standard deviation of the correlation function), we assume that for a node 

located exactly in the middle of the design space (i.e. point (0.5,0.5) in [0,1]

)2/(1 2
0 τθ =

2), the 6τ 

boundaries of the normal correlation function coincides with the boundaries of the 

design space:   6τ =1, and thus θ0 =18. To analyze the sensitivity of the outcome with 

respect to θ0, we also examined other values for θ0: θ0=1, 10, 36; and observed that the 
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first iteration of the SMAXED process remains unchanged for these values of θ0, while 

the second and third iterations change only slightly. Figure 7.4 shows the first block of 

13 points that maximizes the covariance matrix. The symmetry of this design is due to 

the fact that there is no prior information about the behavior of the response function at 

this stage (i.e., no response function evaluations have been performed yet). Compare 

this to Figure 2.1 (c).  

 

2

x1z1

z2

 

Figure 7.4: The first block of 13 experiments for f1 
 
 
 
STEPS 2 and 3 (1st block) – The response values for the above 13 experiments are 

computed and listed in Appendix-III. An initial approximation model is constructed 

accordingly as shown in Figures 7.5 (a) and (b). Note that the mean of the response 

values from the first block of experiments is used as an estimate for µ (µ=31,745 N, for 

the response values listed in Appendix-III). 
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(a) 

 

z2

z1  

(b) 

Figure 7.5: (a) Intermediate approximation model based on 13 experiments; (b) The 
contour plot of this approximation model and its optima in the design domain (denoted 

by ‘*’). Small circles denote the first block of 13 experiments 
 
 
 
STEP 4 (1st block) – The optima of the above approximation model are found (Figure 

7.5(b)). Since the approximation model is very fast to compute, the optimum nodes are 

obtained by simply comparing the values of the approximation model at each node 

with its immediate neighbors. (This requires little computational burden. The Li’s are 

computed from Definition 1 for each node in the design space.  

STEPS 5, 6 and 7 (2nd block) – A 26x26 covariance matrix is constructed such that the 

first 13 rows and columns correspond to the 1st block of experiments. 13 new nodes are 
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selected in the design space such that the covariance of the matrix is maximized. 

Figure 7.6 shows the first and second blocks of experiments, a total of 26 experiments.   

z1

z2

 

Figure 7.6: Solid circles mark the first block of 13 experiments (already performed) 
while hollow circles are new experiments (to be performed) 

 

Since 13 more experiments need to be designed to obtain a total of 39 experiments, 

we return to STEP 2 and repeat the process. (The response values are listed in 

Appendix-III.) Figure 7.7 shows the second intermediate approximation model (based 

on the 26 experiments). 

z2 z1  

Figure 7.7: The second block of experiments are evaluated and a new approximation 
model is obtained based on these 26 experiments. 
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Again, we find the optima of the above intermediate approximation function, and 

by maximization of the covariance matrix, the 3rd block of experiments is designed and 

shown in Figure 7.8.  

z2

z1  

Figure 7.8: Hollow circles mark the 3rd block of 13 experiments (to be performed) 
 

The response values for these new experiments are evaluated and a final 

approximation model is obtained based on all 39 experiments (See Figure 7.9). 

 
z2 z1  

Figure 7.9: Approximation model for the maximum force objective function (f1) based 
on 39 experiments. 

 
 

7.2.3 f2: Maximum Displacement (over time) 
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In a similar fashion for the maximum displacement response function (f2), we 

design a total of 39 experiments as 3 blocks of 13 experiments each. Figure 7.10 (a) 

and (b) show the final design and the resulting approximation model. (See Appendix-

III for numerical data.)  

 

z2

z1  

(a) 

z2

z1

 

(b) 

Figure 7.10: (a) Empty circles, asterix, and plus signs, mark the 1st , 2nd, and 3rd blocks 
of experiments respectively. (b) Approximation model for the Maximum Displacement 

objective function (f2) based on 39 experiments. 
 

7.2.4 Discussions and Verification 
 

Figures 7.11 (a) and (b) show the contour plots of the final approximation 

models for f1 and f2, respectively. The adaptive nature of SMAXED can be easily 

175 



observed in these figures: The concentration of experiments is slightly higher in the 

irregular regions of the design space where uncertainty is higher (larger variance) due 

to the fluctuations in the response function.  This is a key feature of SMAXED that 

helps obtain a more accurate approximation model with fewer experiments.  

z2

z1  

(a) Maximum Force (f1) 

 

z2

z1  

(b) Maximum Displacement (f2) 

Figure 7.11: There is a higher concentration of experiments in the irregular regions of 
the design space where uncertainty is higher. For example in (a), compare the number 

of experiments in the upper-left and lower-right triangles. 
 
 

To verify the accuracy of the above approximation models, one can select a 

random sample of points in the design space and compute the deviation between the 

actual response function and the approximation model. The Root-Mean-Square-Error 

(RMSE) of the approximation model can then be estimated:  
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RMSE = { } 2/12 /)]()(ˆ[∑ − nyy ii zz                                      (7.5) 

where n is the size of the random sample. We selected a random sample of 40 points in 

[0,1]2, and estimated the  normalized RMSE (RMSE divided by sample mean) of both 

approximation model: 

%5~)(/)( 11 fMeanfRMSE                                         (7.6) 

%6~)(/)( 22 fMeanfRMSE                                                

 This indicates that the error is well within the acceptable range. In fact, the 

finite element model itself is expected to deviate from the actual physical phenomenon 

by at least that much. Note that the above verification process by itself is 

computationally very expensive (40 random experiment to obtain the above RMSE 

takes about 10 hours to compute). One could either skip the computational burden of 

the verification process altogether, or take advantage of these additional random 

experiments, and incorporate them into the approximation model to improve accuracy. 

In this paper, however, the approximation models are based only on 39 experiments (3 

blocks of 13 experiments each, obtained from SMAXED).  

 

7.2.5 Approximation-Assisted Multi-Objective Optimization 
 

Going back to the original optimization problem of equation 7.3,  we can now 

replace the computaionally expensive objective functions with the corresponding 

surrogate models, i.e., 

         Minimize ( , )
1

ˆ fy
2

ˆ fy     

subject to:                       (7.7) 
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0 ≤  z1 ≤ 1     

0 ≤  z2 ≤ 1     

Solving equation 7.7 using T-MOGA provides an approximation for the Pareto-

optimal frontier of the original problem. As mentioned before, the meta-models are 

very fast to compute, and therefore, application of T-MOGA with a total of 1000 

function calls is computationally feasible. Had we decided to use the original response 

functions directly, 1000 function evaluations could have taken about 11 days of 

computational time on a Sun Ultra 80; while with the approximated models of Section 

4, the optimization process ended in less than 5 minutes on a  Pentium-4, 2.26GHz, 

256 MB RAM (plus 10 hours for running 39 experiments per objective function (for a 

total of 20 hours) on a Sun Ultra 80).  The resulting Pareto optimal solution set is 

shown in Figure 7.12.  

 

f2 

f1
 

Figure 7.12:  Approximated Pareto-optimal solution set based on 39 experiments for 
each objective 

 
 

Figure 7.12 demonstrates the tradeoff between the two objectives, maximum 

force and maximum displacement. In Figure 7.13, the entropy index (Chapter 5) is 
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plotted with number of function evalutions. T-MOGA increases the diversity of 

solutions as the population evolves, until it saturates i.e. entropy does not improve 

anymore. The non-dominated solution set of Figure 7.12 corresponds to the last 

generation of solutions in Figure 7.13 (function evaluations=1000). 
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Figure 7.13: Entropy history of T-MOGA 

 

7.3 CONCLUDING REMARKS 
 

A finite-element model is developed for simulation of a crash event involving 

the front-end assembly of a 1994 Chevrolet C-2500 pickup truck. The simulation 

model is computationally expensive, taking about 15 minutes of computational time 

for a single evaluation. For such a problem, a direct application of multi-objective 

optimization techniques that require numerous function evaluations (e.g., T-MOGA) 

becomes computationally intractable. Therefore, SMAXED is used to construct a 

meta-model for the finite-element model, with T-MOGA to find an estimate to the 

Pareto optimal solutions. Using this approach, it is shown that the accuracy of the 

meta-models is within an acceptable range while the computational costs are reduced 

dramatically.  
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The next chapter is devoted to a brief summary and contributions of this 

research. It also includes suggestions for future research.  
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CHAPTER 8 

CONCLUSIONS 

This dissertation has four research thrusts in the context of multi-objective 

optimization for engineering design problems: 1) Meta-Modeling Research Thrust: 

Produced a meta-modeling approach for expensive engineering simulations; 2) Multi-

Objective Genetic Algorithm Research Thrust: Produced a multi-objective 

evolutionary optimization technique with expansion operators to preserve diversity of 

solutions; 3) Minimality of Quality Indexes Research Thrust: Produced a framework 

for selection of a minimal set of quality indexes to assess the obtained solution sets; 

and 4) Entropy Index Research Thrust: Produced an entropy quality index to measure 

the distribution quality of a solution set.  

An overview of these four research thrusts are given in the following: 

• Meta-Modeling Research Thrust: Sequential Maximum Entropy Design 

(SMAXED) was developed as a new approximation technique. The main idea 

behind SMAXED is to sequentially use the information from all performed 

computer experiments (i.e., setting the input design variables and evaluating the 

outputs) to identify ‘irregularities’ in the response function behavior, and 

design new experiments such that the most accurate global meta-model can be 

obtained with fewer experiments (which means less computational effort). 
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• Multi-Objective Genetic Algorithm Research Thrust: Thermodynamical MOGA 

(T-MOGA) was developed. T-MOGA manipulates the diversity of a population 

of solutions according to Maxwellian model in order to achieve a uniform and 

thorough representation of the Pareto frontier.  

• Minimality of Quality Indexes Research Thrust: A theoretical framework for 

selection of a minimal set of quality indexes is developed that exhaustively 

addresses all desired aspects of quality without redundancy. Two key lemmas -- 

Concordance and Compatibility Lemmas -- were proved to derive a key 

Theorem: Minimality Theorem. This theorem asserts that in order to construct a 

minimal set of quality indexes that exhaustively and distinctively address all 

aspects of quality (as put forward by a decision-maker), one must provide a 

one-to-one correspondence between quality indexes and quality aspects 

(expressed in the form of excellence relations).  

• Entropy Quality Index Research Thrust: It measures the distribution quality of a 

solution set over the Pareto frontier. This new quality index is very easy to 

compute, and provides a scalar that can be used to compare different MOGAs 

in terms of their ability to produce diverse solution sets. 

In Chapters 6 and 7, a set of engineering and numerical test examples were 

solved to further demonstrate the applicability and performance of the proposed 

methodology. Chapter 7 also suggested a general framework: approximation-assisted 

multi-objective optimization of expensive engineering simulations. The proposed 
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framework was demonstrated in the context of an engineering design problem: 

Crashworthiness design of front-end of a pickup truck.  

 

8.1 CONCLUDING REMARKS 
 

In the following subsections, concluding remarks are given for each research 

thrust.   

8.1.1 Meta-Modeling Research Thrust 
 

The SMAXED approach of this thesis was applied to several engineering and 

numerical test problems. In Section 6.1.1 for instance, the HSCT aircraft design was 

used as a test bed to compare the performance of SMAXED with other meta-modeling 

techniques. In this large-scale problem (with 25 design variables) SMAXED showed a 

significant improvement over other techniques. Therefore,  

• The SMAXED approach is applicable to small- and large-scale 

problems alike (in terms of number of design variables). 

In the HSCT problem, SMAXED showed a better (lower) RMSE and Average 

Error for both small and large number of experiments (60 and 180 experiments 

respectively). However, polynomial response surface meta-model showed a lower 

Maximum Error than other interpolating techniques for larger number of experiments 

(smaller overshoot). The same observation was reported by other researchers for 

response surface analysis technique as compared to interpolative approaches (such as 

SMAXED and kriging). This does not mean that response surface analysis is a better 

approach than interpolative techniques because on average all interpolative techniques 
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that were used in the HSCT aircraft design example (Section 6.2.1) performed better 

than response surface analysis for both small and large number of experiments.  

• On average, SMAXED performed better than all other techniques 

(including response surface analysis) for both large and small number of 

experiments.  

One shortcoming, however, that requires further research emerged during 

application of SMAXED to the crashworthiness case study of Chapter 7. The two 

response functions of this design problem, i.e. maximum force and maximum 

displacement were treated as two separate ‘models’, and were approximated separately. 

In practice, however, these two response functions were obtained from one code base. 

So anytime an experiment was performed to calculate the maximum force, the code 

base also evaluated maximum displacement with no additional computational cost. In 

Chapter 7, however, this additional (and perhaps very valuable) information was 

simply disregarded in creating the meta-models.  

• In Section 7.2.4 we suggested to simply incorporate the additional 

information obtained from running simulations with multiple response 

outputs into the kriging model (equation 2.9) to improve accuracy. 

While in some cases this ad-hoc approach could improve the accuracy, 

it is not necessarily an optimal approach. 

8.1.2 Multi-Objective Genetic Algorithm Research Thrust 
 
 

In Section 6.2.2, T-MOGA is applied to a set of test problems. These test 

problems were specifically designed to introduce difficulty in a certain aspect of 

MOGA performance (e.g., convergence of MOGAs). Through these examples it was 
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shown that T-MOGA creates more diverse solution sets while it converges to the 

Pareto frontier almost as fast as other prominent techniques in the literature 

(convergence was measured using the S quality index).  

• The expansion operators in T-MOGA manipulate a higher diversity of 

solutions without decreasing the convergence rate of MOGA  

One shortcoming of T-MOGA lies in its computationally expensive constraint 

handling technique. For the first two constrained test problems in Section 6.2.3, the 

constraints had analytical forms that could be easily used to find the reflection of 

solution points. This, however, is not possible in general for problems with more 

complex constraints. Computational methods, such as the one suggested in Section 

5.2.6, may become computationally expensive because of many functions calls. For 

constrained problem C3 in Section 6.2.3 we used an alternative approach that was 

based on freezing (not expanding) solutions that otherwise would become infeasible 

with expansion. Although this ad-hoc approach still yielded an increasing entropy, it 

makes the analogy between T-MOGA and Maxwellian System -- that is guaranteed to 

achieve maximum H -- incomplete. One other approach (similar to the suggested 

approach of Section 5.2.3) is to estimate the feasible domain by a box-like region. The 

solution points can be reflected easily from the walls of this box-like region (Each wall 

is perpendicular to one axis). This latter approach is easy to implement and maintains 

the good properties of Maxwellian systems, however, it may render parts of the 

population infeasible because of those portions of the box-like region that are indeed 

infeasible.  

8.1.3 Minimality of Quality Indexes Research Thrust 
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In the two-relation example of Section 4.3, Minimality Theorem (Chapter 4) 

was used to find a minimal set of quality indexes that address both aspects of quality in 

that example (i.e. closeness and span of solutions over the Pareto frontier). Indeed, 

Minimality Theorem provides a recipe for selection a comprehensive yet non-

redundant set of quality indexes, that is 

• One can form many combinations of quality indexes to assess the 

performance of population-based optimization techniques. Minimality 

Theorem, however, can significantly narrow the search by eliminating 

all combinations that do not satisfy the stated conditions and thus, are 

guaranteed to be either correlated or non-comprehensive. 

In that example (Section 4.3), however, we encountered some difficulties in 

finding a minimal set of indexes. In short, 

• In short, a decision-maker is not always able to express his/her 

preferences mathematically and accurately in terms of excellence 

relations. 

• Even if excellence relations are formed, it is not always easily possible 

to find a quality index that is compatible with that excellence relation. 

For the example of Section 4.3, we suggested ways to deal with these issues. 

One possible approach could be to modify the excellence relations such that a 

corresponding compatible quality index can be found. This was shown for the example 

of the coverage excellence relation where this relation was modified such that a 

corresponding compatible index was found. This is, however, not an easy or well-

defined task in general. Especially, for more complicated cases where decision-maker 
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expresses many excellence relations, modifying excellence relations and quality 

indexes such that a one-to-one correspondence can be built becomes increasingly 

difficult.  

8.1.4 Entropy Quality Index Research Thrust 
 

The Entropy Index of Chapter 5 was used in the gearbox design problem of 

Section 6.3.1 to monitor the entropy of population during MOGA process. The entropy 

index has two properties that make it very desirable for monitoring the quality during 

optimization (not only after optimization is done and the results are obtained): 

• Linear computational complexity 

• Linearly additivity, i.e., if a solution point is added or removed from a 

population, entropy can be update easily without repeating the 

computation for the entire population. 

Entropy index, however, has an overhead computation (once at the beginning 

of the process) to compute and store the influence function. Also, assigning the value 

of entropy for a certain solution set does not carry an absolute meaning and can only be 

used relatively in comparison with other solution sets.  

8.2 MAIN CONTRIBUTIONS OF THE THESIS 
 

The main challenge in approximation of computationally-expensive 

(deterministic) computer simulations is to create surrogate models that are as accurate 

as possible using minimum number of experiments. Bayesian approximation is 

particularly appropriate for this class of problems because it generates interpolative and 
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global surrogate models. SMAXED was developed in this dissertation as an extension 

to Bayesian maximum entropy approximation:   

• SMAXED is the first sequentially-adaptive Bayesian meta-modeling technique 

in the sense that it sequentially takes into account response function behavior 

and adjusts a priori parameters for the next iteration of experiments. 

This new technique is applied to several small- to large-scale problems 

(Chapters 2, 6, and 7). The results showed a significant improvement in the accuracy of 

the obtained surrogate models (recall Section 6.1.1).  

In the Multi-Objective Genetic Algorithm research thrust, there are two major 

challenges: 1) Obtaining a diverse set of solutions that represent the entire Pareto 

frontier; and 2) Fast convergence to the Pareto frontier. A novel approach to 

manipulating diversity in MOGAs was introduced in this thesis and a new algorithm 

(T-MOGA) was developed accordingly. It is shown through many examples that while 

T-MOGA performs much better than other algorithms in terms of achieving a better 

diversity of solutions (first challenge), it converges to the Pareto frontier at least as fast 

as other approaches.  

• The major contribution of this part of research is to introduce expansion 

operators in T-MOGA that expands the population according to Maxwellian 

model. Therefore (according to Boltzmann’s maximum H theorem), T-MOGA 

guarantees to achieve the highest-entropy equilibrium state, i.e., steady state 

(time-invariant) with uniform density.  
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In quality indexes, the major challenge is to select a handful of indexes such 

that: 1) they are not redundant (too many indexes); and 2) they are comprehensive (too 

few indexes).  

• The main contribution of this part of research is to give a formal definition for 

minimal sets of quality indexes. It is argued that an appropriate set of quality 

indexes must be minimal with respect to a set of given excellence relations. 

More importantly, The Minimality Theorem is proved as a necessary condition 

for minimal sets. This condition will significantly narrow the search for a 

minimal set among a myriad of quality indexes in the literature.  

  Finally, the major challenge in evaluating the diversity of a solution set is to 

develop a quality index that is: 1) computationally easy to compute so that it can be 

constantly evaluated throughout the optimization process; and 2) it encapsulates all 

aspects of diversity such as uniformity and coverage into one scalar.  

• In this thesis, a new diversity assessment quality index is developed -- referred 

to as the entropy index. The entropy index takes advantage of a formal 

similarity between Shannon entropy function and distribution quality of 

solution points. Because of its low computational complexity entropy index can 

be evaluated throughout MOGA process.  

Through many examples, it is shown that entropy index can play a major role in 

comparison study of different MOGAs.  

8.3 DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS 
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In this section, several suggestions are given for future research. Some of these 

suggestions are based on currently known shortcomings of the proposed approach 

(found during application to various examples and summarized in Section 8.3). Other 

suggestions are made based on extended research and recommendations by other 

researchers.  

SMAXED: In Section 8.2.1, it was mentioned that the SMAXED approach of Chapter 

2 does not account for simulation models that create several response values with one 

run. That is,  

• Approximation of simulation models that simultaneously compute two or more 

response values are left mainly untreated in this thesis. This is an area of 

research that could significantly improve the accuracy of meta-models in real-

world application where one code base (e.g. the finite element crash model of 

Chapter 7) computes several response values simultaneously with no additional 

computational cost.  

Another area of further research for SMAXED lies in estimating fixed 

parameters for the kriging model: 

• While maximum likelihood estimation can become computationally 

burdensome, the ad-hoc alternative 6σ approach of Chapter 2 can become a 

source of error. The accuracy of the meta-model depends on a priori selection 

of appropriate values for parameters such as prior mean, standard deviation, 

and correlation (although it was shown through examples that the design is not 

that sensitive to this value).  
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T-MOGA:  In a study by Deb, Mohan and Mishra (2003), a sparsity measure is 

introduced (again based on the entropy idea of this research) and a new MOGA is 

developed that increases this measure. Their comparisons show that their new MOGA 

performs relatively well and achieves a good convergence and diversity. This triggers a 

possible direction for future research: 

• In Chapter 2, it is shown that for a phenotypic MOGA with expansion 

operators (that move solution points in the objective space) a Maxwellian 

system such as T-MOGA is the only expansion pattern that guarantees 

uniformity and time-invariance (maximum entropy). However, it is not known 

to us whether a genotypic entropy-based approach that manipulates variables in 

the bit level or in the fitness assignment stage can perform better than T-

MOGA. This issue deserves a deeper investigation.   

 

Minimality of Quality Indexes: In chapter 4, we provided a platform to classify and 

select quality indexes based on their compatibility with the excellence relations. In 

practice, however, a certain set of excellence relations (and the corresponding set of 

minimal quality indexes) can be used in different occasions. In other words, one can 

create a library of possible excellence relations and profile quality indexes based on 

their compatibility with the excellence relations in this library.  

• A library of possible excellence relations and the corresponding compatible 

quality indexes could make the job of a decision-maker much easier. For each 

particular instance of comparison study, a decision-maker goes through this 

library (catalog of excellence relations) and selects a handful of them. For each 
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excellence relation, one quality index is chosen. Correlation among these 

quality indexes is checked, if there is minimum or no correlation one can 

proceed with performance assessment. Otherwise, one can choose a different 

set of quality indexes (compatible with the same excellence relations) and 

repeat the process.    

 

Entropy Index: In a recent study, Deb and Jain (2002) investigated the merits and 

setbacks of the entropy index (first published in Farhang-Mehr and Azarm 2002). 

While they found our proposed approach of projection on a hyper-plane and applying 

entropy function to be ‘a good approach’, they also identified several shortcomings, as 

in the following:   

• Deb and Jain (2002) state that entropy index (as developed in Farhang-Mehr 

and Azarm 2002) largely depends on the chosen value of σ, i.e. if σ is chosen 

too large, the density hypersurface is always flat and the entropy is always high. 

On the other hand, if σ is chosen to be too small, the density surface is always 

peaky and entropy index does not change significantly from one set to another.  

• Deb and Jain (2002) also maintain that entropy index may be low (that 

indicates bad distribution) for a degenerate6 but perfectly distributed Pareto-

optimal solution set, as compared to a non-optimal solution set with the same 

dimension as that of the objective space. 

 

                                                           
6 Degenerate Pareto is defined as a Pareto frontier that has a dimension lower than that of the objective 
space. 
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Based on the above-mentioned shortcomings, Deb and Jain (2002) proceeded to 

suggest an extension to the entropy index of this thesis by modifying the definition of 

H and defining a value function for quality of distribution, denoted by m(x). Although 

this modified approach seems to have none of the above-mentioned shortcomings, 

however, it faces a new challenge: The value function, m(x) must be chosen intuitively 

for every problem. This creates difficulties in high-dimensional problems where 

intuitive approaches tend to be misleading, if not impossible. Therefore, one potential 

future research direction can be identified as follows: 

• Both estimation guideline of Section 5.2.4 and value function approach are 

subjective, and may become a source of error in higher dimensional problems.  

An entirely objective approach (with no arbitrary parameters or functions) is 

therefore very desirable and deserves a much deeper study. 
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APPENDIX-I 

TERMINOLOGY AND DEFINITIONS 

 

A multi-objective optimization problem with m objective functions (m > 1) can 

be shown in the following minimization form. 

},...,1,0)(;,...,1,0)(:{
s.t.

)}(),...,(,...),(1{)(Minimize
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mfiff

===≤=
∈
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xxx
x
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   (A.I-1) 

where x is an n-dimensional design variable vector, and D is the set of all such vectors 

that satisfy the constraints.   and  are the inequality and equality constraints, 

respectively. Below, the definitions of some terms used in this dissertation are given.  

s'jg s'kh

Variable space: An n-dimensional space whose coordinates are the design variables.  

Objective space: An m-dimensional space whose coordinates are the objectives.  

Feasible Design Space: The set of all feasible points to an optimization problem is 

called feasible design space, denoted by D. 

Dominance: Let x1, x2∈ D  be two design points. Then, x1 dominates x2 iff fi(x1) ≤  

fi(x2) for all i=1,…, m, with strict inequality for at least one i (Steuer, 1986).  

Pareto-Optimal Solution (or Pareto Solution): A feasible solution point, namely 

x*∈ , is Pareto optimal iff there does not exist another solution point, x∈ , such 

that f

D D

i(x) ≤  fi(x*) for all i=1,…, m, with strict inequality for at least one i (Steuer, 1986; 

Miettinen, 1999).  
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Pareto Frontier: The set of all Pareto optimal solutions to the multi-objective 

optimization problem of Equation A.I-1 is referred to as Pareto frontier.  

Normalization of Objectives: The objective functions of a generic multi-objective 

optimization problem are usually incommensurable in the sense that they have 

different units and therefore any comparison or aggregation among them is 

meaningless. To address this issue, in Chapters 3 and 5, the objectives are normalized 

with respect to two reference points: The ideal and nadir points.  

Ideal/good points: The ideal point is defined as a point in the objective space, whose 

components are obtained by constrained minimization of each of the objective 

functions individually, that is (Miettinen, 1999): 

Minimize  subject to:  )(xif D∈x ; for i=1,…, m.  (A.I-2) 

In practice, however, performing several optimization routines to obtain the 

ideal point is often time-consuming. In most cases, an experienced designer is able to 

estimate this ideal point even without optimizing the objectives. In this paper we refer 

to the ideal point or its best estimation as a good point. The good point is basically a 

lower bound for all objectives and should be selected such that it dominates all solution 

points.  

Nadir/bad points: The nadir point is the opposite of the ideal point, i.e., the upper 

bounds of the Pareto frontier (Miettinen, 1999). Finding the nadir point is still an open 

research problem in general. There are a few attempts in the literature to further 

improve the estimation of the nadir point, but most of them require several 

optimization routines (see, for instance, Lewandowski and Wierzbicki, 1989; 

Korhonen and Steuer, 1997). Instead, in this thesis, we arbitrarily overestimate the 
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ranges of objectives such that no design point is encountered that violates the estimated 

upper bounds. These estimated upper bounds for the objective functions constitute a 

point in the objective space that is referred to as the bad point. All solution points are 

normalized in the objective space with respect to these two reference points: good and 

bad points. 

Non-Dominated Set (NDS): Population-based multi-objective techniques usually 

generate a finite set of design points to the optimization problem of Equation A.I-1. If 

we denote the population of all feasible design points by S, then an NDS (or Observed 

Pareto Set) is defined as the set of all S∈x , such that there does not exist another 

design point in S that dominates x. Note that a design solution point in an NDS is not 

necessarily Pareto optimal. However, a good optimization algorithm will provide an 

NDS that approximates the Pareto frontier as closely as possible.  

Inferiority Index (InfI): Assume two NDSs A and B. We denote the number of 

solutions in set A that are not dominated by any solution in Set B by nA
nd. Similarly the 

number of solutions in Set B that are not dominated by any solution in Set A is denoted 

by nB
nd. The inferiority index of set A as compared to B (denoted by InfI(A,B)) is the 

ratio of nA
nd over the sum of nA

nd  and nB
nd , i.e. InfI (A,B)= nA

nd/( nA
nd + nB

nd ). 

Similarly: InfI (B,A)= nB
nd/( nA

nd + nB
nd ). Clearly this is a symmetric metric because: 

InfI(A,B)+InfI(B,A)=1. In order to rewrite the above metric in a homogeneous format 

according to the guideline of Chapter 4, the following mapping is necessary: 

QInfI(A,B)=1/2-InfI(A,B) which is homogeneous and symmetric. 

Size of Dominated Space (S): (Fonseca and Fleming 1996, also Zizler 1999) Consider 

a non-dominated solution set A={a1, …,ai, …} in an objective space that is normalized 

196 



with respect to good and bad points. The size of dominated space by set A, denoted by 

VA, is defined as the volume of the union of hypercubes {C1, …,Ci, …}, where Ci is a 

hypercube whose two opposite vertices are ai and good (ideal) point. To form a 

symmetric and homogenous quality index (as required in Chapter 4), we write: 

S(A,B)=VB-VA. Therefore, S(A,B)>0 indicates that set A is closer to the Pareto frontier, 

i.e. there is a smaller dominated volume between solution set A and good point, as 

compared to solution set B.   
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APPENDIX-II 

OVERVIEW OF SINGLE- AND MULTI-OBJECTIVE 

GENETIC ALGORITHMS  

 
 

Among different evolutionary algorithms, Genetic Algorithms (GAs) -- 

originally introduced by Holland (1975) -- have been receiving significant attention 

because of their wide range of applicability to mixed discrete-continuous optimization 

problems. The main idea behind Genetic Algorithms is described next (For more 

information on GA and MOGA, refer to Holland 1975; Goldberg 1989; Fonseca and 

Fleming 1995; Van Veldhuizen and Lamont 2000; and Deb 2001). 

 

GENTIC ALGORITHMS 

GAs are based upon the process of natural evolution and selection. GA starts 

with an initial set of randomly selected binary strings -- referred to as initial 

population. Each individual in this population is a binary representation of a possible 

design. Binary strings are partitioned into several groups of bits, encoding values for 

design variables. Similar to natural evolution, bits are referred to as genes and solution 

strings made of genes are called chromosomes. GAs are iterative processes, i.e., during 

each iteration the individuals of the population are evaluated on the basis of certain 

fitness criterion to determine their goodness (or fitness) for survival and reproduction. 

There are several different fitness assignment criteria and selection methods. For 
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instance in roulette wheel selection, two individuals among the population are selected 

as parents with probabilities proportional to their fitness. In other words, the better 

fitness an individual has, the higher probability that it will be chosen. The operators are 

called crossover and mutation and inversion, which are analogous to their counterparts 

in the natural evolution process. These genetics operations are applied to the parents to 

combine their genes and produce new individual(s) -- referred to as offspring.  The 

offspring are then evaluated and a new generation is formed by including some of the 

parents and the offspring on the basis of their fitness values such that the size of the 

population remains the same throughout the procedure. 

 As the tendency is to select high fitness individuals to generate offspring and 

the likelihood of survival of the better individuals is higher (i.e. the weak individuals 

are more likely to be discarded from the next population), therefore the next generation 

is likely to have the individuals with higher fitness values. Hence, the fitness of the 

entire population improves over the generations. That means the overall solution 

quality improves. We need to keep in mind that at the same time some bad genes are 

also inherited from the previous generation even though the probability of that event is 

quite low. In this way, the algorithm does not get stuck in a local optimum. This is a 

very important mechanism in GAs that usually results in globally optimum solutions. 

The framework of the described procedure is shown in the Figure AII-1.  
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Final Solution Set 

Yes

Done? 

  

Figure AII-1: Basic operations of a GA 

The three genetic operators that are used to produce offspring are discussed in 

the following: 

1. Crossover: Crossover generates offspring by combining chromosomes of 

two individuals at a time. This could be achieved by choosing a random cut 

point and generating the offspring by combining the left segment of one 

parent with right segment of the other. However, after doing so, some 

blocks may be repeated while some other blocks may get deleted. This 

problem has been dealt with in many different ways. The amount of 

crossover is controlled by the crossover rate (or crossover probability) 

which is defined as the ratio of the number of offspring produced in each 

generation to the population size. The crossover rate determines the ratio of 

the number of searches in the region of high average fitness to the number 

of searches in the other region. The schematic view of the crossover 

operation is shown in Figure AII-2. 
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0 0 1 0 1 0 1 1 0 0 

1 1 1 0 0 0 0 1 1 1 

0 0 1 0 1 0 0 1 1 1 

1 1 1 0 0 0 1 1 0 0 

 

Figure AII-2: Crossover operator 

 

2. Mutation: This operator is not directly responsible for producing new 

offspring, but it causes incremental random changes in the offspring 

produced by crossover operator. The most commonly used mutation is pair-

wise interchange. This is the process by which new genes, which did not 

exist in the original generation, can be generated. The mutation rate (or 

mutation probability) is defined as the percentage of the total number of 

genes in the population, which are mutated in each generation. Lets keep in 

mind that it should be carefully chosen so that it can introduce more useful 

genes, and at the same time do not destroy the resemblance of offspring to 

their parents. The schematic view of the mutation operation is shown in 

Figure AII-3. 

 
0 0 1 0 1 0 1 1 0 0  0 0 1 0 1 0 0 1 0 0 

 

Figure AII-3: Mutation Operator 

 

3. Selection: After generating offspring, a portion of individuals is chosen 

based on fitness criteria to survive for the next generation. There are many 
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such selection functions used by various researchers. In competitive 

selection, all the parents and offspring compete with each other and the 

fittest individuals are selected so that the population remains constant. In 

random selection, the individuals for the next generation are randomly 

selected so that the population remains constant. This could be 

advantageous considering the fact that by selecting the fittest individuals 

the population converges to individuals that share the same genes and the 

search might not converge to the global optimum. However, if the 

individuals are chosen randomly, there is no way to gain improvement from 

older generation to new generation. By compromising two methods 

stochastic selection make selections with probabilities based on fitness of 

each individual (This latter technique is used in the MOGAs of this paper; 

See Table 3.1.) 

 

MULTI-OBJECTIVE GENETIC ALGORITHMS 

Since GAs are population-based approaches, they have a tremendous advantage 

over classical search techniques for handling multi-objective optimization problems 

(Deb, 2001). In fact, GAs can be easily modified to find many Pareto solution points in 

one single run. Unlike classical techniques that require weighting, e-constraint or other 

methods to transform multiple objectives into a single scalar, MOGAs are capable of 

handling multiple objectives only by redefining fitness criteria.  In Sections 3.1.1 and 

3.1.2 we briefly mentioned several existing MOGAs and their characteristics. Here, a 

baseline approach to MOGA is presented that was used as the basis for many recent 
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MOGAs including Fonseca and Fleming’s MOGA (FFMGA); MOGA-NA; and T-

MOGA (See Fonseca and Fleming 1993).  

The fitness assignment criterion is based on dominance number, as defined in 

the following.  

Dominance Number: Consider a finite feasible set for a multi-objective optimization 

problem, . The dominant number of an element, , in this set is defined as 

the number of points, 

{ ,..., 21 PP }

)

iP

( ijj ≠P , such that . Clearly, the dominance number of 

non-dominated solution is zero.  

ij PP f

A rank number of (1+dominance number) is assigned to each solution. 

Therefore, all non-dominates solutions are assigned a rank of 1. Then a fitness is 

assigned to each solution based on this ranking, as described below: 

• All solutions are sorted in ascending order of their ranking.  

• A raw fitness is assigned to each individual based on a mapping 

function  (usually linear) that maps the best ranking solution to N and 

the worst ranking solution to 1.  

• The raw fitness of solutions that have similar ranks (but now have 

different raw fitness values) is averages. This average is assigned as 

fitness value to each individual with that ranking. 

The rest of MOGA process (including Stochastic Universal Selection, Mutation 

and Crossover) is similar to that of single-objective GA. In this MOGA, non-

dominated solutions are emphasized (are assigned higher fitness values). Therefore, the 

population tends to evolve towards Pareto frontier. There are many variations of this 

same concept that also incorporate niche punishment or fitness sharing approaches to 
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also increase diversity in the population. Some researchers also suggested specific 

techniques to handle constraints (other than classical techniques such as penalty 

function) .For a thorough review of these approaches and their merits refer to Deb 

(2001). 
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APPENDIX-III 

ADDITIONAL INFORMATION FOR CRASHWORTHINESS 

DESIGN PROBLEM 

All components except the connectors are modeled in LSDyna using shell 

elements. The material is elastic-perfectly plastic with elastic modulus of 210 GPa, 

Poisson's ratio of 0.3, yield strength of 100 MPa, and density of 7890 kg/m3. Sheet-

metal thicknesses are:  

Rail (rear of  A-A’): 3.14 mm 

Bumper: 2.7 mm 

Cross rail connector: 3.61 mm 

Beams (in bumper/rail connector) have a solid  square cross section, 20 mm per side. 

Lumped masses totaling 100 Kg are attached at the rear of the rails, at section B-B’.  

 

RESPONSE VALUES FROM MAXIMUM FORCE SIMULATION 

 

 Experiment x1(MPa) x2(mm) f1(N)  

1st  Block 1 68.62 4.94 33319 
 2 2.38 2 15903 
 3 1 4.94 68141 
 4 68.62 2 18017 
 5 35.5 3.5 29288 
 6 1 3.44 45929 
 7 68.62 3.44 29302 
 8 34.12 4.94 38500 
 9 35.5 2 18226 
 10 17.56 4.16 32282 

205 



 11 18.94 2.78 26765 
 12 52.06 4.22 31485 
 13 52.06 2.72 25528 
2nd Block 14 35.5 2.84 26246 
 15 28.6 3.86 34670 
 16 50.68 4.94 33042 
 17 1 2.72 33951 
 18 68.62 4.16 31531 
 19 27.22 3.26 29739 
 20 1 4.22 58604 
 21 18.94 2 18670 
 22 17.56 4.94 32391 
 23 68.62 2.72 25501 
 24 52.06 2 18002 
 25 50.68 3.44 29057 
 26 28.6 2.42 22812 
3rd Block 27 25.84 4.58 36573 
 28 36.88 4.58 35695 
 29 25.84 4.88 36409 
 30 31.36 4.58 37952 
 31 13.42 3.5 28744 
 32 21.7 4.64 34567 
 33 41.02 4.1 31908 
 34 10.66 2.36 21983 
 35 43.78 2.36 21796 
 36 61.72 4.58 32492 
 37 60.34 2.36 21785 
 38 60.34 3.8 30422 
 39 9.28 4.58 38809 

 

 

 

RESPONSE VALUES FROM MAXIMUM DISPLACEMENT SIMULATION 

 Experiment x1(MPa) x2(mm) f2(mm)  

1st  Block 1 68.62 4.94 180.48 
 2 2.38 2 401.77 
 3 1 4.94 281.98 
 4 68.62 2 400.54 
 5 35.5 3.5 215.99 
 6 1 3.44 295.98 
 7 68.62 3.44 213.93 
 8 34.12 4.94 175.32 
 9 35.5 2 400.25 
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 10 17.56 4.16 197.66 
 11 18.94 2.78 262.68 
 12 52.06 4.22 192.1 
 13 52.06 2.72 259.58 
2nd Block 14 50.68 4.82 183.64 
 15 17.56 4.94 184.59 
 16 68.62 2.72 258.89 
 17 52.06 2.36 298.53 
 18 34.12 4.22 193.18 
 19 35.5 2.72 262.16 
 20 52.06 3.5 213.16 
 21 17.56 3.44 227.7 
 22 42.4 4.76 184.79 
 23 10.66 2.36 301.01 
 24 65.86 4.76 95.9 
 25 23.08 4.58 180.1 
 26 60.34 3.08 232.42 
3rd Block 27 64.48 4.04 194.72 
 28 1 4.22 282.11 
 29 42.4 3.98 198.86 
 30 1 2.78 331.57 
 31 21.7 2 387.28 
 32 57.58 3.92 198.26 
 33 32.74 3.92 200.76 
 34 58.96 4.34 189.32 
 35 43.78 4.28 192.54 
 36 56.2 2 398.35 
 37 9.28 4.58 245.8 
 38 49.3 3.92 199.16 
 39 50.68 4.52 187.67 
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