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Abstract

Il ruolo dell’ ottimizzazione multiobiettivo nella progettazione industri-
ale di dispositivi elettromagnetici é sempre piú rilevante. La diponibilitá
di codici FEM potenti e flessibili per l’analisi di campo e la crescente
potenza di calcolo dei calcolatori forniscono al progettista la possibilitá
di costruire modelli parametrici complessi che possono essere utilizzati
per realizzare procedure di ottimizzazione automatiche. Come accade
in gran parte dei problemi di progettazione, gli obiettivi di cui tener
conto quando si progetta un dispositivo elettromagnetico sono molti e
spesso in contrasto fra loro. L’approccio classico, tuttora ampiamente
utilizzato, per affrontare problemi di ottimizzazione multiobiettivo con-
siste nel trasformare il problema multiobiettivo in uno mono-obiettivo
utilizzando informazioni ulteriori sul problema che formalizzino un grado
di preferenza tra gli obiettivi; il problema mono-obiettivo, cosi ottenuto
viene successivamente risolto tramite una delle tecniche classiche di ot-
timizzazione, deterministiche o stocastiche.
In questa ottica il problema multi-obiettivo viene visto come un caso
particolare del problema mono-obiettivo.
Questo approccio ha principalmente tre svantaggi

• La varietá di soluzioni di un problema multiobiettivo viene cosi ri-
dotta a una sola soluzione con una consequente significativa perdita
di informazione.

• La scelta di una soluzione tra le infinite possibili (meglio tra le n
numericamente disponibili) attraverso informazioni aggiuntive viene
fatta a priori, cioé senza una completa informazione su tutte e pos-
sibili soluzioni.

• In alcuni (frequenti) problemi multiobiettivo (problemi non convessi)
l’approccio in oggetto fornisce soluzioni che sarebbe impossibile da un
punto di vista matematico ottenere attraverso un approccio classico.

L’approccio derivato dalla teoria di Pareto non richiede una scelta a priori
del grado di preferenza e inverte il punto di vista considerando il problema
mono-obiettivo come un caso particolare del problema multi-obiettivo. Il
risultato dell’ottimizzazione non é piú uno soltanto ma una varietá, un
campionamento delle infinite soluzioni Pareto-ottime.
La teoria dei problemi multiobiettivo é d’altra parte matura e fornisce utili
teoremi di esistenza e unicitá delle soluzioni, sia quando si considerano
le classiche formulazioni scalarizzate, sia quando il problema é affrontato
attraverso la teoria degli ottimi di Pareto. Una notevole varietá di metodi
evolutivi e non evolutivi specificamente sviluppati per l’ ottimizzazione
multiobiettivo secondo Pareto sono presenti in letteratura e sono tuttora
oggetto di studio nella comunitá scientifica. Allo scopo di confrontare
questa varietá enorme di metodi diversi in maniera univoca, specifici cri-
teri di convergenza e misure dell’errore di approssimiazione sono in corso
di studio, perché l’estensione all’approssimazione del fronte di Pareto dei
suddetti concetti non é per nulla immediata.
D’altra parte l’applicazione dei suddetti algoritmi a problemi di proget-
tazione reali é spesso difficile e poco pratica da un punto di vista del costo
computazionale, a causa dell’elevato numero di chiamate alla funzione
obiettivo (fissato il numero di soluzioni volute). Questo é perticolarmente
vero nel caso dell’ottimzzazione di forma dei dispositivi elettromagnetici
industriali, dove la valutazione delle funzioni obiettivo spesso richiede la
soluzione di un problema FEM (talvolta 3D, non lineare o accoppiato).
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Lo sforzo di questa tesi consiste nel legare la teoria dell’ottimizzazione
multiobiettivo secondo Pareto al progetto ottimo automtico di dispositivi
elettromagetici, allo scopo di realizzare metodologie efficaci che possano
essere utilizzati anche in ambiemte industriale.
I seguenti punti chiave del lavoro sono particolarmente importanti:

• Realizzare strategie a basso costo che richiedano un piccolo numero
di chiamate alla funzione obiettivo ad un certo grado di accuratezza
nell’approssimzione del fronte di Pareto.

• A questo scopo, considerare la varietá dei metodi evolutivi per
l’ottimizzazione multiobiettivo e cercare di modificare le strategie
computazionali al fine di renderli pratici per la progettazione indus-
triale.

• Considerare anche strategie classiche, non evolutive (basate sulla fun-
zione preferenza) in maniera critica e legarle alle precedenti tramite
algoritmi ibridi.

• Cercare di estendere all’approssimazione del fronte di Pareto i metodi
per l’ottimizzazione mono-obiettivo basati sulle superfici di risposta
a reti neurali.

• Legare i codici di ottimizzazione sviluppati a codici commerciali per
l’analisi FEM.

• Applicare le strategie sviluppate a problemi di progettazione multi-
obiettivo industriale in collaborazione con progettisti industriali.

Inoltre, le seguenti affermazioni possono essere dimostrate dalla presente
tesi.

• L’analisi dell’ottimizzazione multiobiettivo secondo Pareto mostra
che l’uso delle funzioni preferenza scalarizzate deve essere considerato
con attenzione e in maniera molto critica.

• La scelta a posteriori della soluzione di compromesso da scegliere
a partire dalle molte Pareto-ottime disponibili é preferibile rispetto
alla scelta a priori di un grado di preferenza.

• Inoltre la disponibilitá di diverse soluzioni Pareto-ottime é utile di
per se stessa al progettista.

• La soluzione di problemi di progettazione ottima multiobiettivo in-
dustriale tramite la teoria di Pareto é praticabile se si considerano
metodi specifici appositamente studiati per fornire soluzioni conver-
genti e diverse tra loro anche quando il numero di soluzioni che pos-
sono essere calcolate é molto piú basso del tipico numero din individui
richiesto per la convergenza in un algoritmo evolutivo multiobiettivo
classico.

I contributi piu originali del progetto sembrano essere i seguenti:

• Applicazione al progetto della forma dei dispositivi eletromagnetici
dell’ottimizzazione multiobiettivo secondo Pareto.

• Sviluppo di algoritmi e strategie speciali con buon comportamento
sia in caso di problemi test analitici sia in caso di problemi di pro-
gettazione industriale.



Introduction and project statement

The role of multiobjective optimization in industrial design of electro-
magnetic devices is remarkable and is more and more increasing. The
availability of powerful and flexible FEM codes for field analysis and the
increasing power of computers gives the designer the chance of build-
ing complex parametric models to be considered for an automatic opti-
mization procedures. As in almost all design problems, objectives in an
electromagnetic devices design are numerous and often in contrast each
other. The classical, and still widely used, approach to such a situation
is to transform the multiobjective problem into a single-objective one us-
ing some extra knowledge, and to solve it with classical techniques for
single-objective optimization.
Under such a perspective the multi-objective problem is considered as a
special case of the single-objective one.
This approach has three main drawbacks:

• the variety of solution of a multiobjective problem is reduced to one
with a significant reduction of information,

• the choice of one solution using some extra knowledge is done a-priori
with no complete information about all possible solutions,

• in some (frequent) multiobjective problems (non-convex problems)
the true multiobjective approach gives solutions that would be math-
ematically impossible to obtain via the classical approach.

On the other hand, when Pareto optima theory is considered, no a-priori
choice of preferences is required and the perspective is inverted, that is
the single-objective problem becomes a special case of the multi-objective

one. The aim of the optimization process is the approximation of the infi-
nite Pareto-optimal solution throughout a convergent and equally spaced
sampling of the Pareto optimal front.
The mathematical theory of multiobjective optimization is mature and
gives useful theorems for existence and uniqueness of solutions both when
classical scalar formulations are considered and when the problem is tack-
led via Pareto optima theory (two reference book are [37], [34] or [10]). A
wide variety of evolutionary and non evolutionary methods being specially
devoted to Pareto multiobjective optimization (Multiobjective Evolution-
ary Algorithms MOEAs) have been developing and are being developed
in the scientific community. In order to do this huge amount of different
strategies univocally a debate is in progress about test functions, specific
convergence criteria and approximation errors because the extension to
Pareto Optimal Front (POF) approximation of such concepts is non at
all straightforward. This is why, for instance, a special section of the
first congress on Evolutionary Multiobjective Optimization (EMO2001,
Zurich, [13]) was devoted to performance measurements.
On the other hand real-life application of MOEAs is often hard and un-
practical due to the complexity of methods [23, 39, 2, 1, 21],[ws1] and the
computational cost deriving from the required huge number of objective
functions calls [7, 46, 2],[ws2]. This is particularly true when shape design
in electromagnetic industrial devices is concerned, where the evaluation
of objective functions often requires FEM computations (sometimes 3D
or non-linear or coupled). A special section of EMO2001 was devoted to
real-life applications.
The effort of this thesis is to link true multiobjective optimization mathe-
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matical theory and algorithms with automated optimal design of electro-
magnetic devices in order to build effective methodologies to be practical
in industrial environment. The following key-point will be tackled:

• Build cost effective strategies requiring a small number of objectives
function calls at a given accuracy of Pareto Optimal Front approxi-
mation.

• In order to do this consider the world of Evolutionary multiobjective
Optimization methods and try to modify strategies in order them to
be practical in electromagnetic shape design.

• Consider classical non-evolutionary strategies (based of preference
function) as well, in a critical way and link them to hybrid stochastic-
deterministic search tools.

• Try to extend neural network based single objective response surface
methods to POF approximation.

• Link developed strategies to commercial FEM field analysis tools.

• Apply developed strategies to industrial design problem in coopera-
tion with industrial designers.
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Chapter 1

Methodology

1.1 Introduction

1.2 Multi-objective optimization problems

Many realistic optimization procedures in electromagnetic industrial de-
sign can be formulated as nonlinear constrained multiobjective optimiza-
tion problems. The following problem will be thus considered throughout
the whole present work:

min
x∈RN

f = {f1(x), ..., fM (x)}
subject to g(x) ≤ 0

h(x) = 0

(1.1)

where x = (x1, x2, ..., xN ) is the design variables vector in R
N and where

M objective functions f1(x), f2(x), ..., fM (x) are considered assuming,
without loss of generality, that all objectives are to be minimized. More-
over g(x) ≤ 0 and h(x) = 0 are inequality and equality constraints
representing the majority of practical and physical constraints arising in
industrial design. From a general point of view, design variables may
also not belong to R

N (e.g. discrete variables design optimization); in
this work we only consider real variables.

Problem 1.1 give rise to the following subspaces known as design domain
search space Ω and objective domain search space ΩO respectively:{

Ω : {x ∈ R
N s.t. g(x) ≤ 0 and h(x) = 0}

ΩO : {f(x) ∈ R
M s.t. x ∈ Ω} (1.2)

Ωo being the image of Ω through function f.
Very often the M objectives have different physical dimensions and are
non commensurable because they refer to different characteristics or per-
formances of the device (e.g. cost of materials, volume, efficiency, power
leakage ). The designer is thus forced to look for compromises among all
desired objectives. In order problem 1.1 to be non-trivial (that is truly
multiobjective) the pair (fi, fj) has to represent conflicting objectives
∀ i, j = 1, ...,M with i 
= j. As a consequence single-objective optimiza-
tion is to be considered as a special case of multiobjective optimization.
The notion of Pareto-optimality is one of the major issues in multiob-
jective decision making and it is useful for the designer because it gives
a precise mathematical definition of the general concepts such as com-
promise solution, better or worse solution and so on that are non trivial
concepts in multiobjective optimization. When multiple solutions of a
given problem are available, it is necessary to rank them according to
a certain rule. This can be done in a straightforward way using Pareto

19
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Situation Consequence
x1 dominates x2 x1 is a better solution than x2

x2 dominates x1 x2 is a better solution than x1

None of the two x1 and x2 are equivalent solutions

Table 1.1: Pareto optima theory terminology.

optima theory, although Pareto optima definition is not the unique defini-
tion of optima in multiobjective problems, (see Nash optimum definition
and its applications). When single-objective optimization is concerned
an order criterion among solution is trivial because the objective domain
search space is mono-dimensional; on the other hand when multiple ob-
jectives are considered the task of an order or partial order criterion in
the objective domain search space is non-trivial and is one of the core
task of MO optimization. Following Pareto theory, the following order
criterion can be stated where minimization of all objective is considered
without any loss of generality.

Def 1.1 For any two points (solutions) x1 and x2 ∈ Ω if the following
conditions hold:{

fi(x1) ≤ fi(x2) for all i ∈ [1, 2, ...M ]
fj(x1) < fj(x2) for at least one j ∈ [1, 2, ...M ]

then x1 is said to dominate x2.

Although a detailed treatment of Pareto multiobjective optimization is
out of the scope of this work, some basic definitions and concepts will be
introduced and explained with reference to simple examples. This should
be sufficient when Pareto optima theory is to be applied to multiobjective
optimization of electromagnetic devices; a detailed treatment of the full
theory can be found in [34],[10],[7],[47, 15, 16, 14].
As a consequence of definition 1.1 in Pareto optima theory when two
solution are available, three kinds of different situations can happen and
are shown in table 1.1

We can now give a geometric interpretation of definition 1.1. Let us
assume to have a set of solutions for a two-objective optimisation problem;
in this case we can plot in the design space all points corresponding to
the solutions. Looking at figure 1.1 let us now focus on a single point
F ∗ ∈ ΩO being the image through function f of a point x∗ ∈ Ω and draw
two semiaxes parallel to the main axes, originated from the given point
and oriented towards infinity or minus infinity if the related objective has
to be minimised or maximised, respectively. The following definitions can
be stated:

Figure 1.1: Schematic view of dominance region.

Def 1.2 The region bounded by the semiaxes having origin in the solution
F∗ = f(x∗ is said dominance region of x∗.

Def 1.3 All solutions located in the dominance region of x∗ are said dom-
inated solutions.



1.2 Multi-objective optimization problems 21

Def 1.4 If x∗ does not belong to any dominance region of other points
∈ Ω, then x∗ is said non-dominated solution or Pareto-optimal (PO)
solution; more formally.
x∗ ∈ Ω is PO if 
 ∃x ∈ Ω s.t. fi(x) ≤ fi(x∗)∀ i = 1, ...,M and fj(x) <
fj(x∗)
for at least one j ∈ [1, ...,M ]

As a consequence of definitions 1.1 and 1.4 the number of solution for
problem 1.1 is infinite and two subsets for PO solutions can be thus
defined:

Def 1.5 The set of PO solutions in Ω is called Pareto Optimal Set
(POS).

POS = {x∗ ∈ Ω s.t. x̃ is PO} (1.3)

Def 1.6 Given a POS ∈ Ω its image in objective domain through function
f is called Pareto Optimal Front (POF).

POF = {f(x∗) ∈ ΩO s.t.x∗ ∈ POS} (1.4)

Two points in the objective domain, giving some very preliminary infor-
mation about ΩO and known as Utopia and Distopia point respectively,
can be defined:

Def 1.7 We call utopia-point U the array containing all single objective
minima in the search space.

U =
[
min
x∈Ω

fi

]
i = 1 : M (1.5)

As a consequence of the truly multiobjective nature of problem 1.1 the in-
verse image of U does not belong to Ω and U does no belong to ΩO. From
a more formal viewpoint the following condition ensures non-triviality of
the MO problem:


 ∃xU ∈ Ω s.t. fi(xU ) = min
x∈Ω

fi(x) ∀i = 1, ...,M (1.6)

that is no points in Ω minimize at the same time all objectives (no coop-
erative objectives). With duality the following definition can be given:

Def 1.8 We call distopia-point D the array containing all single objective
maxima in the search space.

D =
[
max
x∈Ω

fi

]
i = 1, ...,M (1.7)

Some primary information on the POF may be obtained from the evalu-
ation of the following matrix

[M̃] =

{
Ui i=j,
fj(x̃) when fi(x̃) = Ui otherwise.

(1.8)

When matrix [M̃] is computed the Nadir point R can be computed as
follows:

Def 1.9 We call nadir-point R the array containing all extremal point in
the POF.

The evaluation of the nadir point is simple in a 2D problems but it be-
comes not at all trivial in case of more than two objectives. The following
formula can be for approximating the nadir point.

Ri = max
j=1:M

[M̃i,j ] (1.9)

From a practical point of view we remark that the computation of the
M ×M matrix [M̃] and thus R and U, only requires M single-objective
optimization.
A schematic view of POS and POF in a typical situation is represented
in figure 1.2 As can be seen visualization of POF is straightforward when
the number of objective is two; it becomes difficult for three objectives
problems and impossible for more than three objectives. The same holds
for visualizing POS when the number of design variables is more than
two or three. When dealing with approximation of POS and POF ,
visualization is much more useful than the corresponding single-objective
solution visualization and this is why the problem of visualizing results
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Figure 1.2: Example of search spaces in both domains and utopia point.

is not at all a trivial task and could be an interesting topic for future
research. Utopia U, distopia D and nadir R are shown on a schematic
example in figure 1.3; the computation of all this points is essential for a
preliminary bounding of the POF.
The shape of POF is fundamental in determining the difficulties encoun-
tered by the optimizer in converging towards it and thus the strategies to
overcome these difficulties. We will schematically show the most typical
kinds of POF that are encountered when dealing with realistic optimiza-
tion in electromagnetics: deceptive, discontinuous, convex, non-convex
and multimodal. Such terms are here defined. The POF can be written
as a function of one objective versus all the others in the following way:

fPOFM = POF (f1, ..., fM−1) (1.10)

only for some very simple cases the function 1.10 can be written in a
closed form.

Def 1.10 A multiobjective problem is said convex if and only if all ob-
jective function are convex and non-convex if and only if one or more
objective function are non convex.

Figure 1.3: Example of objective domain search spaces key-points.

For a convex problem function 1.10 is convex and vice-versa.

Def 1.11 A multiobjective problem is said discontinuous if and only
if function 1.10 is discontinuous.

If SΩ is random exhaustive sampling of Ω we consider SΩO
= f(SΩ) as a

sampling of ΩO.

Def 1.12 A multiobjective problem is said deceptive if and only if SΩO

is non uniform when SΩ is uniform.

If the POF is in a non-uniform density region of SΩO
the POF too can

be said deceptive.
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Def 1.13 A multiobjective problem is said multimodal if and only if
more than one local POF exists.

The main difficulties when tackling approximation of discontinuous POF
is the approximation of all the branches of the front. Usually solutions
tend to converge towards an extremal point of the front; a schematic
example of a discontinuous front is shown in 1.4

Figure 1.4: Schematic view of a problem with a discontinuous front.

Another remarkable difficulty for the POF approximation arises when
the density of search space in objective domain is non uniform. This can
be viewed considering an uniform random distribution of sampling points
in the design domain search space; when the image throughout function f
of each point is plotted in the objective space a non-uniform distribution
of point arises. This happens in the whole objective-domain search space.

In figure 1.5 we schematically represent with non-uniform grey the non-
uniformity of the search space and with non-uniformly distributed dots
the consequent non-uniformity of the POF . When approximating de-
ceptive POF solutions tend to converge towards the regions with higher
density (the lower part in figure 1.5).

Figure 1.5: Schematic view of a deceptive problem.

Convexity of POF is a key feature for approximation; this property will
be deeply discussed in the following section; here a schematic view of both
a convex and a non-convex front is shown in figure 1.6 Another interesting
and typical situation happens when the objective domain search space is
characterized by several local POF . Such a situation can be viewed
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Figure 1.6: Schematic view of convex and non-convex multiobjective
problem.

when an uniform sampling points random distribution in design domain
search space is considered and the corresponding points are plotted in the
objective domain; the distribution of points is schematically represented
in figure 1.7. We point out that presence of local front does not depend
on a coarse search space sampling. We will see some optimization tests on
such a problem later on but we can say here that the multimodal problem
is essentially the extension to multiobjective optimization of the concept
of multiple minima in single-objective optimization.

We introduce here the concept of Pareto ranking or Pareto sorting that
will be remarkable when dealing with POF approximation algorithms.
Let us consider a set of points in the objective space as it is shown in
figure 1.8; a first POF can be defined and it is labelled as I in figure
1.8. If we remove points belonging to this first front from the full set of
points we can define the POF for this reduced set of points (labelled II
in figure 1.8). This procedure can go on until all points in the initial set
are considered. We will use the term Pareto Sorting Algorithm PSA or
Non Pareto Sorting Algorithm NPSA when we refer to an algorithm that
uses Pareto sorting or not for fitness assignment; we will go into deeper
details about algorithms in section 2.2.

Figure 1.7: Schematic view of a multimodal multiobjective problem.

1.3 Preference-function Formulations ver-
sus Pareto Formulation

The traditional approach to multiobjective optimization in electromag-
netic design has generally consisted of building up a scalar objective func-
tion expressing a compromise among the various objectives and depending
on either weight coefficients or threshold values; afterward the optimiza-
tion is performed via standard single-objective optimization methods. Al-
though being simple and widely used, scalar formulations presents several
drawbacks; first of all the result of an optimization is only one solution
which is supposed to be optimal. The first criticism is that it is not al-
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Figure 1.8: Example of Pareto ranking.

ways clear where this solution is located with respect to the POF , being
sometimes even a dominated solution. Second and more important as-
pect is that the mathematical solution of a multiobjective optimization
problem is a variety of solution, which are spread on the POF ; knowing
this variety is often very useful for the designer, who has a wide range of
possibilities for an a-posteriori more conscious choice.
In order to obtain many different solutions located on the POF one
could run several single-objective optimizations of different scalar func-
tions without introducing at all the idea of solution ranking in the Pareto
sense; this strategy may work for some formulation on some particular
cases but in many other cases it is conceptually wrong giving rice to dom-
inated solutions, or it leads to difficulties in obtaining a uniform sampling
of the POF . For a more detailed treatment of the topic we now consider
the three most popular scalar formulations which are commonly used in
electromagnetic design and show limits of each of them when applied to

the sampling of a POF ; three task will be addressed for each formulation:

• When performing a single-objective optimization on the preference
function to be considered is the solution a non-dominated one and
in which sense can it be said to be optimal ?

• When performing several runs with different weights or threshold
values can the POF be identified in an exhaustive way ?

• If the answer to the previous question is yes, does a uniform distribu-
tion of solutions on the POF correspond to a uniform a-priori choice
of weights or threshold values ?

1.3.1 Normalised weighted sum

The formulation is the following:
min
x∈Ω

f̃(x) =
M∑
i=1

wifi(x)
Ri − Ui

M∑
i=1

wi = 1
(1.11)

Where Ri and Ui are nadir and utopia points components respectively.
The use of such a normalization value is essential for weights wi to express
desired compromises. As regards the first two questions the following
theorem holds:

Theorem 1.1 Let the POF be convex. If f∗ = f(x∗) ∈ POF then there
exist a weighting vector w (wi >= 0, i = 1, ...,M,

∑
wi = 1) such that x∗

is a solution of the problem: min
x∈Ω

wTF

For the proof see [34]; a simple geometric interpretation of theorem 1.1 in
two dimensions is shown in figure 1.9 where the general equipotential line
of function f̃ is plotted with dashed line in the objective domain; a POF
and the search space of a general multiobjective optimization problem
are also shown. Once the weights w1 and w2 are fixed the minimization
process can be viewed as searching for the point of the dashed lines which
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is externally tangent to the POF and it is external to the search domain.
As is evident from figure 1.9, only in the case of convex POF all point
of the front can be sampled with this scalar function. Moreover it is not
at all easy to know a priori the distribution of weights that give rise to
a uniform distribution of solution on the POF . For instance one may
consider a linear distribution of weights and obtain solution concentrated
in one region of the POF . An example of this is shown in figure 1.10 where
the following two monodimensional objective function are considered

min
(x)∈[0:2]

F1(x) = x(x− 1.5)(x− 3)(x− 4)

min
(x)∈[0:2]

F2(x) = (4 −√
x) (1.12)

The search space in design domain is a curve; the distribution of solutions
corresponding to a uniform distribution of weights is concentrated around
the point corresponding to the minimum of f1 and the approximation of
the other POF regions is poor. A non-uniform distribution of weights
should be considered but it is difficult to know a-priori the distribution
of weights that corresponds to an equispaced distribution of solutions.

Figure 1.9: Visualization of Theorem 1.1 for both convex and non convex
problems.

Figure 1.10: Example of non equispaced solutions corresponding to a
linear distribution of weights.

1.3.2 Normalized weighted sum with membership
function

The formulation is the following:


min
x∈Ω

f̃(x) =
M∑
i=1

wiµi(fi(x))
Ri − Ui

nobj∑
i=1

wi = 1
(1.13)

where µi(fi(x)) are membership function of a fuzzy classification of fi(x)
possible values; various shapes can be used such as linear or arctan-like.
For a simple example that easily answers the aforementioned three ques-
tions we consider a two objective problem and we build up linear two
values membership for each objective. So doing one has 3×M degrees of
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Figure 1.11: Membership function for the i-th objective function in the
min-max formulation of 1.13.

w1 w2 fG,1 fB,1 fG,2 fB,2
A 0.25 0.75 0.1 0.3 0.2 0.4
B 0.4 0.6 0.3 0.6 0.4 0.7
C 0.5 0.5 0.4 0.5 0.5 0.6
D 0.75 0.25 0.5 0.7 0.6 0.8

Table 1.2: Weights and threshold values for figures 1.14 and 1.15.

freedom (M weights wi and 2 ×M membership functions threshold val-
ues). The general membership µi is shown in figure 1.11 where threshold
values fG (good value for f) )and fB (bad value for f) are also defined.
Weights and threshold values are shown in table 1.2, we consider four
different weights and four different threshold values for each objective
function.
Figure 1.14 shows the f̃ function as a function of f1 and f2 for two
different situations: variable weights and fixed threshold values or fixed
weights and variable threshold values. This is the scalarised function

that is given to the optimizer. In analogy to what have been done in the
case of normalised weighted sum we plot the contour lines of f̃ together
with a general POF for all different situations (figure 1.15). We can
now try to answer to the aforementioned three questions. First of all for
some combination of weights and thresholds values the solution may be
dominated (see case A-3 or A-4 in figure 1.15) because a remarkable part
of the front lies in a completely flat region and there is no reason why the
optimizer, once reaching that region should converge towards a point on
the POF ; moreover in order to have multiple solution on the POF with
different scalar function one should choose a-priori weights and threshold
values similar to th obes in case A-1 where the formulation behaves as
a normalised weighted sum in the region of the POF and move both
weights and threshold values in order the oblique line region to overlap
the front. This procedure is almost impossible to be done a-priori, that is
when the POF is unknown. This is why we can conclude that the use of
linear membership seems to be highly unsuitable for POF approximation.
For what regards atan-like membership function the risk of dominated so-
lutions is avoided because no flat region for function f̃ are present in ΩO;
this can be easily seen in figure 1.12 and 1.13. Nevertheless the difficulty
in controlling diversity of solutions throughout weights and threshold val-
ues changing still holds.

1.3.3 Normalised weighted Min-Max formulation

The following equation gives the scalarised function for this formultion:
min
x∈Ω

f̃∞(x) = max
i=1:M

wi|fi(x) − f∗i |
Ri − Ui

M∑
i=1

wi = 1
(1.14)

where f∗i are the a priori fixed goals for each objective. The ∞ symbol
as a subscript of formulation 1.14 defines the Lp-norm in ΩO that is used
in 1.14.
As for previous cases the contours of the f̃ function are plotted in figure
1.16 as function of f1 and f2 against a generic POF in objective domain.
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Figure 1.12: Surface of function f̃ versus f1 and f2 with atan-like mem-
bership functions µi

Figure 1.13: Equi-value lines of function f̃ versus f1 and f2 with atan-like
membership functions µi.
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A

B

Figure 1.14: Scalarised Objective function f̃ ; A: variable weights and
fixed threshold values. B: Fixed weights and variable threshold values.

A

B

Figure 1.15: Various example of weights and threshold values for mem-
bership functions: surface of function f̃ and contour lines with a convex
POF (2D Shaffer’s problem).
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Figure 1.16: Various example of weights for min-max formulation: con-
tour lines of fcap function with a general POF .

It should be noted that this approach is able to produce non-dominated
solutions lying on non convex regions of the POF because the corner of
a contour line of f̃ may be tangent to the POF even in non-convex case;
convergence of such a formulation toward the POF is assured by theorems
(see [34]) even in case of non-convex problems. However the difficulty in
the a-priori choice of a weights distribution giving a regular distribution
of solutions on the POF still holds.

1.3.4 Obtaining variety of solutions with variables
goals

The degrees of freedom in formulation 1.14 affecting the location of opti-
mal solution on the POF are weights wi and goals f∗i . From the point of
view of diversity, a possible strategy consist of choosing a suitable distri-
bution of points f∗i in order to have a good equi-spacing of solution on the

POF; the values of weights wi are fixed. In order this preference function
to be effective in converging towards the POF for all possible choices of
f∗i (internal point of the objective domain search space Ωo or external),
the sign in the L∞-distance is to be considered, that is the modulus in
equation 1.14 is to be removed. This can be easily understood looking
at figure 1.18 (schematic case) where two different f∗i locations are con-
sidered. Contour lines of preference function f̃∞ are plotted in the two
upper cases while in the lower two cases preference function f̃∞ with-
out modulus is plotted; as can be seen the L∞ norm preference function
works only when the center f∗i is outside ΩO; if f∗i is internal to ΩO the
search algorithm would converge towards f∗i and not towards the POF.

We thus at the end deal with the following preference function:

f̃ = max
i=1:M

 1
M (fi − f∗i )

Ri − Ui

 (1.15)

where diversity of solution is obtained by means of targets f∗i variation
with fixed weights (defining parallel search directions in objective do-
main). An example of a problem where both internal and external f∗i
are used is shown in figure 1.21. As can be seen approximation quality
does not depend on the position of centers and also a convex POF can
be approximated with equally spaced solutions.

The validity of the strategy is shown in figures 1.21, 1.19, 1.17 and 1.20
where several different problems are considered both with two or three
objectives. As can be seen the quality of solution is satisfactorily both
in terms of convergence and diversity. The choice of goals f∗i may be
driven by different criteria; all examples here shown consider a linear
distribution of goals on the line (or triangular surface in 3D problems)
linking extreme points on the POF. More details on this strategy can be
found in [cjp1].
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Figure 1.17: F3Db+ test case: results in the objective space of a run with
19 centers (�), 13 diverse solution (•) over the analytical POF curve (gray
dots) with linear f∗i ’s choice.

Figure 1.18: Contour lines on objective space of f̃∞ (first two plots) and
f̃ (second two plots) preference function for two different f∗i locations (•)
on a schematic objective domain search space ΩO .
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Figure 1.19: DTZ3 test case: results in the objective space of a run with
21 centers (�), 13 diverse solution (•) over the analytical POF (gray dots)
with linear f∗i ’s choice.

Figure 1.20: F3Db- test case: results in the objective space of a run with
19 centers (�), 19 diverse solution (•) over the analytical POF surface
(gray dots) with linear f∗i ’s choice.
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Figure 1.21: F2D test case: results in the objective space of a run with 11
centers (�), 11 diverse solution (•) over exhaustive sampling (gray dots),
with linear f∗i s choice.

1.3.5 Best Compromise Optimal Solution

The Best Compromise Optimal Solution (BCOS) x̂ may be defined as
follows:

x̂ ∈ POS

f̂ = f(x̂) ∈ POF

min
f∈POF

∑
1<i,j<M, i �=j

(
fi − Ui
Ri − Ui

− fj − Uj
Rj − Uj

) (1.16)

and it may be obtained as solution of formulation 1.14 with wi = 1
M and

and f∗i = Ui;

1.3.6 Search directions in objective domain

Sometimes one may be interested in computing a particular solution lo-
cated on the POF in the intersection point with a line linking utopia
point U and another point B. This is a solution corresponding to a par-
ticular search direction. In order the solution to be effective even in case
of non-convex problem formulation 1.14 is to be used. Nevertheless an
equivalent weighted sum preference function can be considered for com-
puting weights to be used in formulation 1.14 corresponding to desired
search directions.

f̆ =

(
M−1∑
i=1

wifi
Ni

)
+

(
1 −

M−1∑
i=1

wi

)
fM

NM
(1.17)

where N is the normalization array. This formulation is equivalent to
1.14 only in case of a convex problem but it can be used for computing
weights that correspond to desired search directions.
The equation of the hyper-planes normal to desired search direction can
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be computed as follows

fM =
NM f̆

1 −
M−1∑
i=1

wi

−
NM

M−1∑
i=1

wifi
Ni

1 −
M−1∑
i=1

wi

(1.18)

weights corresponding to the U-B direction can be computed in the fol-
lowing way:

BM − UM
Bi − Ui

=
NMwi

Ni

(
1 −

M−1∑
i=1

wi

) i = 1 : M − 1 (1.19)

and the following linear system is to be solved

l = [S]c (1.20)

where

Si,i = (BM −UM )Ni+ (Bi−Ui)NM , Si,j = (BM −UM )Ni (1.21)

and where li = (BM − UM )Ni.
A closed form solution may be easily computed in 2D and 3D cases.
2D case

c =
1

1 +
N2

N1

B1 − U1

B2 − U2

(1.22)

3D case

c1 =
k2(B2 − U2)N1

k3N2(B1 − U1)
, c2 =

k2

k3
(1.23)

where

k1 =
(B2 − U2)N1N3

N2
, k2 = (B3−U3)N1 , k3 = k1+k2+

k1k2

N3(B1 − U1)
(1.24)

1.3.7 Conclusive remarks

As conclusive remarks we point out that scalar formulations with vari-
able weights and threshold values can be used with success as POF sam-
pling techniques only in some cases;the main risk of this approach to
multiobjective optimization is that in some cases solutions may be domi-
nated. This is why Pareto formulation of multiobjective problems where
no scalar function is considered and all conflicting objectives are kept
separate seems to be much more reliable for both a theoretical and a
practical point of view and it will be considered here onwards in this
work. So doing the additional knowledge which is necessary in order to
choose one solution among the infinite solutions of a multiobjective prob-
lem, is used a posteriori (that is after the optimization process) and not
a priori (before the optimization process). A schematic view of such a
logic procedure is shown in figure 1.22.
One of the key-points of Pareto optimality methods [40, 30, 29] is the
a-priori or a-posteriori use of higher-level information when the decision
maker has to choose among compromises. Very often in industrial elec-
tromagnetic design the a-posteriori choice implies more consciousness in
such a decision because it is performed after considering all available POF
sampling solutions. More details on Pareto Multiobjective Optimization
Theory can be found in [17, 19, 6, 4, 5]
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Figure 1.22: Classical and Pareto-based methods from the point of view
of A-posteriori and a-priory choice.
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Chapter 2

Multiobjective Optimization Strategies

2.1 Introduction

From a general point of view a wide variety of strategies for POF ap-
proximation can be considered [22, 28, 20, 43, 26, 44]. We focus our at-
tention on cost effective algorithms that is algorithms where the number
of objective function calls is reduced at a give degree of POF approxi-
mation accuracy (we recall that when MO optimization is concerned, ac-
curacy=diversity+convergence). When building cost effective algorithms
for multiobjective optimisation the simplest idea would be to consider
deterministic search algorithms on different scalarised formulations and
thus consider Non Pareto-sorting Algorithms (NPSA) where individu-
als do not interact among each other during optimization. This is why
stochastic search engine are not strictly necessary for convergence towards
the front as is the case for Pareto sorting algorithms (PSA).

2.2 The algorithms

.
A wide variety of stochastic methods are available in literature for Pareto
multiobjective optimization [27, 18, 3, 31, 32, 45, 12],[ws2,ws3,ws4] and
a comprehensive study of comparison and state of the art is presented
in [47]. All this algorithms have been developed for solving optimization

problems where the cost of objective functions evaluation is moderate. As
a consequence the number of individuals used is usually very high because
the majority of such methods derives from standard GA where the typical
individuals number in the population size is 30-500. When dealing with
design optimization of electromagnetic devices the evaluation of objective
usually requires a FEM field computation that may be coupled and non-
linear; typical duration of such a computation even on powerful computers
makes the use of this methods unpractical.

Let us consider as an example a real life case where one of the objective
requires a FEM torque computation of 5 minutes; if the population size is
50 and 100 iteration are necessary for convergence we have at least 25000
minutes which is an unaffordable time for industrial design timing. This
is why, having discarded deterministic methods for the problem of local
minima the development of stochastic methods for Pareto Optimization
that reduces the number of objective function evaluation is necessary.

Before going into details in the description of the developed algorithms
we give in figure 2.1 a schematic classification of different algorithms that
have been developed and used in this work in order to make clear since
the beginning the used terminology (see table 2.1).

37



38 Multiobjective Optimization Strategies

Figure 2.1: Classification of developed algorithms.

PGBA Pareto Gradient Based Algorithm
NSGA Non-dominated Sorting Genetic Algorithm
NSESA Non-dominated Sorting Evolution Strategy Algorithm
PESTRA Pareto Evolution STRAtegy
MDESTRA Multi Direction Evolution STRAtegy

Table 2.1: Acronyms for the algorithm’s names.

2.2.1 Pareto Gradient Based Algorithms (PGBA)

One possibility is thus to approximate the POF via deterministic search;
a standard gradient based algorithm can be run for several individuals
with one of the scalarised formulation previously presented with different
weights or different threshold values. The logical sequence of operations
of such an algorithm is shown in table 2.2. Though being the simplest
and most immediate strategy the risk of being trapped in local minima is
remarkable. PGBA can hardly be used as a global POF approximation
strategy but it may be used as a second part of an hybrid stochastic-
deterministic and global-local strategy (see section 2.3.5).

2.2.2 Non-dominated Sorting Evolution Strategy Al-
gorithm (NSESA)

The algorithm is derived from Shrinivas and Deb’s NSGA [42, 8, 9, 11, 25]
from the point of view of the general structure. The differences are mainly

Start
1-Build a random starting population of npop individuals
2-Compute all npop times M starting objectives values
3-Build a uniform distribution of npop times M weights
4-Build scalarised functions with different weights
5-Run npop deterministic search with different scalarised functions
end

Table 2.2: PGBA sequence of operations.

in the fitness assignment strategy and in the evolutionary operators which
are generation, mutation and annealing of a (1+1)ES algo [1]. Often the
use of GA-based strategies is computationally unaffordable or highly un-
practical from an industrial point of view. Therefore we have decided to
adopt a (1+1)ES algorithm as the optimization engine of the multiob-
jective strategy because, in our experience, it is robust and gives good
convergence even when few individuals are considered. It should be noted
that generation, mutation and annealing steps are implemented in par-
allel; this is possible because in our implementation individuals do not
interact each other during the whole process, apart from the steps of
Pareto ranking and fitness evaluation.
As it can be seen from the flow-chart in the first step of the algorithm
we generate, in a random way, an initial population of individuals in the
design domain search space. In the second step we classify individuals
into Pareto sets. This means that we first apply the dominance region
criterion to the whole population and we thus collect all non-dominated
individuals in the first front, then we remove these individuals from the
population and we apply the same criterion in order to obtain the second
front and so on. The third step consists of assigning a fitness value to
each individual; two criteria must be followed in this step:

1. forcing convergence to the Pareto optimal set

2. forcing diversity among solutions

In order to do this the fitness value for each individual has to depend on
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the Pareto set which the individual belongs to and a sharing procedure
is to be implemented in order to favor isolated solution and to thus avoid
clustering of solutions. The schematic effect of sharing procedures may
be viewed in a schematic way in figure 2.2.
When implementing a fitness sharing procedure, diversity of individuals
in either design space or objective space can be considered. Moreover
solutions with strong diversity in shape can be characterised by weak di-
versity in objective value (the opposite as well). Both procedures can lead
to results useful for industrial designer who is interested in both shape
and performance diversity of optimal solutions. This is why a sharing
procedure in only one of the two spaces cannot guarantee a satisfactory
approximation of the Pareto optimal front in the other space (see [cjp6]).
Once the current population has been divided into Pareto sets, all rela-
tive distances among individuals in each front can are evaluated in both
spaces. A bigger fitness value is assigned to isolated individuals either in
design or in objective space, while a smaller fitness value is assigned to
close individuals reducing their survival probability. More into details,
we at first consider the first front and we assign a dummy fitness dfit1 to
the individuals as follows:

dfit1 = ‖U − cw1‖−1
2 (2.1)

where cw1 is the center of weight of the first front. As previously men-
tioned, in order to build the sharing procedure we then evaluate the
normalized average distances di,j among elements in both design and
objectives domain as follows, (dxi,j or dfi,j when shape or performance
diversity has to be enhanced respectively):

dxkij =

√√√√ N∑
p=1

(xki,p − xkj,p)
2

(xmaxkp − xminkp)2
i, j = 1 : nsetk (2.2)

dfkij =

√√√√ M∑
q=1

(fki,q − fkj,q)
2

(fmaxkq − fminkq )2
i, j = 1 : nsetk (2.3)

where k stands for the k-th front nset is the number of individuals in the
set, [x]k the set of individual values (a nset×N matrix), [f ]k the set of

Figure 2.2: Schematic view of the effect of sharing procedures on solutions
diversity.
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objective values (a nset×M matrix). Moreover xmaxkp and xminkp are
maximum and minimum values of the p-th columns of the [x]k matrix
respectively, while fmaxkp and fminkp are maximum and minimum val-
ues of the p-th columns of the [f ]k matrix respectively. Afterwards we
evaluate for each individual couple in the front the following value:

shki,j =

1 − (
dki,j
σk

)2 if dki,j < σk

0 else
i, j = 1 : nset (2.4)

where dki,j can assume one of the previous values (dxki,j or dfki,j), and where
σk can assume one of the following values when shape or performances
diversity has to be enhanced respectively.

σkx =
1

nsetk − 1

√√√√ N∑
p=1

(xmaxkp − xminkp)2 (2.5)

σkf =
1

nsetk − 1

√√√√ M∑
q=1

(fmaxkp − fminkp)2 (2.6)

σk is the threshold value defining numerically if points are near or far away
from each other (in one of the two domains). After this, the following
parameter mki measuring how the fitness of the i-th individual has to be
reduced with respect to the dummy fitness dfitk, is evaluated

mki =
nsetk∑
j=1

shki,j (2.7)

Finally the fitness value for the i-th individual is evaluated:

fitki =
dfitki
mi

k

i = 1 : nsetk (2.8)

Before moving to the k+1-th front a new dummy fitness dfitk+1 has to
be evaluated:

dfitk+1 = min
i=1:nsetk

fitki − ‖cwk+1 − cwk‖−1
2 (2.9)

where cwk, cwk+1 are the center of weights of current and next front
respectively. The procedure is repeated for all successive fronts. We
point out that convergence towards the front is always performed in the
objective space while sharing procedures can be performed either in the
design space or in the objective one.

Figure 2.3: General flowchart of an NSESA algorithm: a zoom on fitness
assignment is shown in figure 2.4.

2.2.3 Pareto Evolution Strategy Algorithm (PES-
TRA)

PESTRA is a very simple algorithm where a (1+1) ES is adopted in
which a new design vector is accepted if it dominates in the Pareto sense
the parent. Starting from an initial population of individuals that span
the feasible region in a random way, the aforementioned criterion of op-
timization is applied to each individual; the results is a final population
that gives a first approximation of the Pareto optimal front. The main
advantage of the method is the reduced computational cost not in term of
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Figure 2.4: Flowchart of an NSESA fitness assignment.

number of objective function evaluation but in terms of algorithm com-
plexity, since there is no need to sort the current population into Pareto
sets at each iteration and then to assign a suitable fitness to the individ-
uals of each set . On the other hand, individuals do not interact during
evolution and therefore a clustering effect of solution could occur.

In figure 2.5 the simplified flow-chart of the algorithm is reported; it
can be noted that each step of the procedure has been implemented in
parallel. The major drawback of the algorithm is the lack of an algorithm
forcing the spread of non-inferior solutions; as a consequence, they may
cluster around a small subregion of the Pareto optimal front. To prevent
this occurrence, a large number of individuals in the initial population is
in order.

Start
1-Build a starting population of npop individuals
2-Build an uniform weight distribution of the unitary M-cube with npop values
3-Build npop scalar formulations using previously defined weight vectors
4-Run npop independent evolution strategy searches
Stop

Table 2.3: MDESTRA scheme.

2.2.4 Multi Directional Evolution Strategy Algo-
rithm (MDESTRA)

Another very simple strategy is outlined in table 2.3. This algorithm is
equal to PGBA in terms of multiple search direction building but deter-
ministic search is substituted by stochastic one. This similarity will be
fully exploited in order to compare deterministic search with stochastic
one when the same scalarised formulations are considered. Moreover we
have considered normalised weighted sum as an example but any scalar
formulation with different weights or different threshold values may be
considered taking into account what has been shown about limits and
drawbacks of scalar formulations.

2.3 Performances measurements on analyt-
ical test cases: convergence and errors

Validation and performance measurement for evolutionary multiobjective
optimisation algorithms is much more complex than the single-objective
counterpart mainly because convergence is not anymore towards a point
but towards the POF witch is a curve for 2 objective problems, a sur-
face for three objective problems and an M-1 hyper-surface in an m-
dimensional space for M objective problems; moreover even if the equa-
tion of all single objective is known ad simple it is not always easy to
analytically compute the POF equation. This is why especially devoted
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convergence indexes and error evaluation formulas are necessary . Here
some solution to this problem are proposed and applied to validate al-
gorithms. In order to do this several analytical test cases are available
in literature presenting one or more of those pathological behaviour that
have been presented; some more test cases have been developed, being
especially devoted to test algorithms for multiobjective optimisation of
electromagnetic devices.

2.3.1 Convergence

When convergence towards POF has to be represented, the following two
convergence indexes can be evaluated for each iteration of the optimiza-
tion process

Cx(iter) = 1
npop

npop∑
i=1

√
N∑
j=1

(xiterij − xiter−1
ij )2

Cf (iter) = 1
npop

npop∑
i=1

√
M∑
l=1

(f iteril − f iter−1
il )2

(2.10)

where xiterij is the j− th component of the i− th individual of population
at iteration iter while f iteril is the l − th objective value for the i − th
individual at iteration iter; the first index represent convergence in the
design space while the second one in the objective space. The first of the
two monitors convergence towards POS while the second one monitors
convergence towards POF .
Because of the relationship between POF and POS is complex and prob-
lem dependent, the relationship between the two convergence indexes is
highly problem dependent and this is why both indexes have to be con-
sidered. Moreover from a designer practical point of view both design
space and objective space convergence can give useful information on the
solution quality. We point out that definitions 2.10 make sense only when
individuals do not interact during evolution (with the exception of fitness
value assignment); it is thus possible to identify each individual all along
its evolution. Moreover the number of individuals must be constant dur-
ing evolution. This is the case of all the strategies shown on the previous

paragraph but not the case of several GA-based strategies where indi-
viduals interact each others and the number of individuals varies during
evolution (NSGA as an example).

2.3.2 Approximation errors

The exact definition of approximation error in both design and objective
spaces is possible only when the POF and POS equation are known and
it is thus problem dependent; generally speaking, if the POF and POS
equation can be put in the form:{

G(f1, ..., fM ) = 0
H(x1, ..., xN ) = 0

(2.11)

At each iteration iter of the optimiser the following errors both converging
to zero when iter increases can be computed:

errorPOF =
npop∑
i−1

G(fk1i, ..., f
k
mi

)

errorPOS =
npop∑
i−1

H(xk1i, ..., x
k
ni

)
(2.12)

where fkji is the value of the j-th objective for i-th individual of population
at iteration k and where xki,j is the value of the j-th component for the i-th
individual. If POS and POF equations in this form are not available, an
alternative error measurement have to e computed for each single case.

2.3.3 Cost versus random search

When dealing with non-deterministic strategies as all methodologies we
are dealing with are, it is extremely important to check performances with
respect to random search. In order to do this the following performance
measurement has been developed. When the POF analytical equation
is known, a strip of variable width ε can be considered around the POF
see figure 2.13; ε can be considered a precision tolerance on the POF
approximation. The number NOFC of objective function calls (the cost
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of the optimization process) can be plotted versus ε when all individuals
are inside the ε-width strip that is when the following holds:

di ≤ ε i = 1 : npop (2.13)

where di is the minimum Euclidean distance between the point char-
acterising the i-th individual in objective space and POF ; npop is the
number of individuals. NOFC(ε) can be compared to random search in
an easy way because random search can be stopped when 2.13 holds and
the total number of random trials can be compared to NOFC; this will
be shown on an example. A schematic view of tolerance ε evaluation in
POF approximation is shown in figure 2.6

2.3.4 Test cases

Several test cases have been recently collected and proposed in [10]. Some
of them have been considered for testing algorithms and some more have
been developed. Four test cases are presented here representing different
difficulties for the multiobjective evolutionary optimiser.

Test Case 1

As a first example we present the following classical two variables - two
objectives problem (Shaffer’s 2D function) :


min

(x,y)∈�2
F1(x1, x2) = x2

1 + x2
2

min
(x,y)∈�2

F2(x1, x2) = (x1 −
√

2
2 )2 + (x2 −

√
2

2 )2
(2.14)

The Pareto optimal front equations for this two-objective analytical prob-
lem are:

{
F1(x1, x2) + 1 − 2

√
F1(x1, x2) − F2(x1, x2) = 0

x1 = x2 (x1, x2) ∈ [0,
√

2
2 ] × [0,

√
2

2 ]
(2.15)

In order to compute the error between current population and Pareto
optimal front in both design and objective spaces, the following two dis-
tances df and dx has been defined in the objective space and in the design
space respectively.

df(iter) =
1

npop

npop∑
1

|1 + f iter1i − 2
√
f iter1i − f iter2i | (2.16)

dx(iter) =
npop∑
i=1

|xiter1i − xiter2i | (2.17)

where (x1i, x2i)iter and (f1i, f2i)iter are the current population i-th indi-
vidual and its objective values at iteration iter respectively.

Test Case 2

A second test case with three objectives and two design variables can be
easily built from the previous one and it seems to be particularly suited
for an investigation on concepts like scale effect in computational cost
when the number of objective increases; it is defined as follows:


min

(x,y)∈�2
F1(x1, x2) = x2

1 + x2
2

min
(x,y)∈�2

F2(x1, x2) = (x1 −
√

2
2 )2 + (x2 −

√
2

2 )2

min
(x,y)∈�2

F3(x1, x2) = (x1)2 + (x2 −
√

2
2 )2

(2.18)

The equations of the POF in search space are the following:

0 < x1 <

√
2

2
, x1 < x2 <

√
2

2
(2.19)
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Test Case 3

A very useful test problem set with different difficulties in introduced in
[10, 25, 8] and has been considered for testing the developed strategies;
here results for one of them are shown, namely the Deb’s DTZ3 problem;
the problem,giving rise to a non-connected Pareto front, can be defined
as follows:


min

(x1,x2)∈[0,1]×[0,1]
(f1, f2)

f1(x1) = x1

f2(x1, x2) = 1 + 9x2 −
√
x1(1 + 9x2) − x1 sin(10πx1)

(2.20)

The analytical POF can be determined as the nondominated part of the
curve defined by the following equation:

f2 − 1 +
√
f1 + f1 sin(10πf1) = 0 (2.21)

In order to quantify the POF approximation error all along the evolution,
given the i-th individual at niter-th iteration, the following two expres-
sions have been used in design space and in objective space, respectively,:

{
errorxiteri = xiter2i

errorf iteri = f iter2i − 1 +
√
f iter1i + f iter1i sin(10πf iter1i ) = 0

(2.22)

Test Case 4

This last case is particularly interesting because the POF is non contin-
uous and multimodal but the two single objective function seems to be
innocuous as can be seen from 2.7; the problem is the following:


min

(x1,x2)∈[−6,6]×[−6,6]
(f1, f2)

f1(x1, x2) = k1

∑2
i=1(xi + 0.5)4 − 30x2

i − 20xi
f2(x1, x2) = k2(10 − x3

1 − x2
2)

(2.23)

despite the simplicity of polynomial objective functions the POF and
POS analytical equation are not available and no approximation errors
can be evaluated.
The assignment of very different magnitude order values to k1 and k2 may
be used to simulate incommensurability of objectives in real-life cases.

2.3.5 Deterministic search (PGBA) versus stochastic
search (MDESTRA) and hybrid strategies

As example let us consider a comparison of results obtained with PGBA
and those obtained with a MDESTRA on two different test cases, a non-
multimodal (no local fronts) one (test problem 1) and a multimodal (with
local fronts) one (test problem 4). When considering results on test prob-
lem 1, the quality of approximation is bigger and the speed of convergence
is higher than the case of stochastic search (see column 1 in table 2.4).
The behaviour of PGBA is similar to single-objective optimization prob-
lems where deterministic methods overcome stochastic ones when no local
minima are present. But when a multimodal problem is tackled the deter-
ministic method is trapped in local POF and the behaviour is similar to
local minima traps in single-objective optimization. Let us now consider
a comparison between hybrid search and full stochastic search. In order
to compare comparable results the same number of starting points have
been considered (20). The number of objective function calls is much
higher in the case of stochastic search and one may conclude that the
use of deterministic search for POF sampling has a similar behaviour to
the use of deterministic search for single objective optimization from the
local front traps point of view. In analogy to hybrid methods in single-
objective optimization, stochastic search can be used as local search in
an hybrid strategy where a deterministic algorithm is used at the end in
order to improve quality of solution. An example of such a strategy can
be viewed in figure 2.8; the cost in terms of objective function calls is
much reduced (see second column in table 2.4) and the quality of solu-
tion is much better in terms of both diversity of solutions and convergence
towards the POF.
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Test problem 1 Test problem 4
Deterministic 197 237

Stochastic 2840 7680
Hybrid - 2243

Table 2.4: Comparison of Cost in terms of objective function calls number
for three different strategies on two test problems.

2.3.6 Tests on PESTRA

An example of the story of a PESTRA optimisation run on test problem
1 is shown in figure 2.9 in design space and in figure 2.10 for objective
space. For comparison the analitycal front in the two domains is also
shown. This kind of visualisation gives quite a good and immediate un-
derstanding of the optimization process but it is not at all quantitative.
As can be seen the optimiser is able to reach the POF and POS regions
with few big jumps according to the typical behavior of evolution strategy
algorithms. The main drawback of PESTRA is the non uniform distri-
bution of solutions on the POF ; this is because no interaction among
individuals happens during optimisation and each evolution is indepen-
dent from all the others.
Some much more quantitative information on optimization run can be
seen in figure 2.11 where convergence index Cx and Cf are plotted against
progressive number of iteration. As can be seen both convergence indexes
decrease towards zero with typical stochastic strategies behaviour and a
quick drop of both Cf and Cx happens in the first iterations, moreover
after the 200-th iteration Cf is stable below 10−6 while stabilisation of Cx
is slower. When considering the approximation errors dx and df (figure
2.12) the typical behaviour of stochastic methods is evident in the stairs-
like plot decreasing of both errors, moreover after the 400-th iteration df
reduces below 10−5 and dx states below 10−3.
As previously mentioned the most important performance test when deal-
ing with stochastic optimization is the comparison to random search. An
example of such a comparison is shown in figure 2.13 for PESTRA method
where ε has been normalised with respect to the maximum distance be-

tween two points in the objective domain search space. As can be seen
the optimization strategy overcomes random sampling when ε takes sig-
nificant values for practical application (10−2,10−3) of more than one
magnitude order in the number of objective function calls. This is quite
an interesting results because it involves the concept of tolerance that is
typical of a design environment. Let us now consider a PESTRA twenty
individuals solution of test problem 3; individuals are distributed along
three of the five branches the POF is composed of. As previously men-
tioned when introducing discontinuous POF individuals tend to converge
towards one of the branch of the front; as for all optimization on test prob-
lems the starting population was chosen in a random way in the design
space. As previously explained quantitative information on quality of ap-
proximation is given in figure 2.15 where both convergence indexes and
approximation errors are plotted in logarithmic scale. The decrease of
both performance parameters is remarkable.

2.3.7 Tests on NSESA: comparison to PESTRA and
scaling effect

In order to compare NSESA with PESTRA the latter is tested at first
on test problem 1. A qualitative representation of solution is given in
figure 2.16 while quantitative information on both convergence and ap-
proximation errors are given in figures 2.18 and 2.19. As can be seen the
first important difference is that NSESA is able to control POF sampling
points distribution; a second important difference is the behavior of con-
vergence errors. Due to the working principle of NSESA both errors plots
are highly oscillatory around a fast decreasing mean value. Another inter-
esting consequences of the increased complexity of NSESA with respect
to PESTRA is that objective space convergence indexes behavior is dif-
ferent from design space one; the latter one present a fast decrease in the
first iterations while the latter is highly oscillating at the beginning, be-
ing apparently increasing. A typical problem in stochastic optimisation
is the increasing cost and difficulty in solving an optimisation problem
as the number of design variables or design objective increases (scaling
effect); test problem 2 is particularly suited to the aim of evaluating the
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scaling effect with respect to the number of objective functions. The in-
creased dimensionality of both POF and POS implies a bigger number
of individuals in view of a satisfactory sampling. An example of this can
be seen in figure 2.20. and where a 50 individual solution of test problem
2 is shown. The POF is a surface whose boundaries are dotted in figure
2.20. In order both test problem 1 and test problem 2 to have the same
sampling distance between solutions, it is evident that the number of
individuals for test problem 1 should be bigger than the number of indi-
viduals for test problem 2. The behavior of convergence index for NSESA
algorithm is different from the Pareto ESTRA one shown for the previous
test case. Due to the different working principle the current population
convergence for NSESA oscillated around a deeply decreasing mean value
as can be seen in figure 2.17 where the log of Cf is plotted for a solution
of test problem 2. If the optimisation cost is thus highly affected by the
scaling effect due to increased objectives number, this is not for conver-
gence index; figure 2.17 shows that the number of iteration required for
convergence does not increase significantly. A slower convergence speed
would appear in case of a design variable number increase but this would
be analogous to the scaling effect for single-objective optimisation and we
then refer to literature for this.

Figure 2.5: General flowchart of PESTRA algorithm.
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Figure 2.6: Schematic view of ε definition and distance from the POF
measurement.

Figure 2.7: Objective functions surfaces for test problem 4.
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Figure 2.8: 20 individuals solutions comparison: stochastic search up to
full convergence, first part of hybrid strategy and full hybrid strategy on
two test problems.

Figure 2.9: Example of a Pareto ESTRA optimization story on test prob-
lem 1 in design space (top: global view, bottom: zoom).
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Figure 2.10: Example of a Pareto ESTRA optimization story on test
problem 1 in objective space (top: global view, bottom: zoom).

Figure 2.11: Pareto ESTRA convergence indexes for test problem 1 (de-
sign and objective domains respectively).
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Figure 2.12: Pareto ESTRA approximation errors for test problem 1
(design and objective domains respectively).

Figure 2.13: Pareto ESTRA vs random sampling for test problem 1:
NOFC(ε).
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Figure 2.14: Pareto ESTRA solution for test problem 3.

Figure 2.15: Pareto ESTRA solution for test problem 3: convergence
indexes and approximation errors in design and objective domain.
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Figure 2.16: 5 individuals solution on Shaffer’s problem with NSESA.

Figure 2.17: Design space convergence index for test in figure 2.20.
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Figure 2.18: Design and objective domain errors for the NSESA 5 indi-
vidual solution.

Figure 2.19: Design and objectives domain convergence indexes for the
NSESA 5 individual solution
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Figure 2.20: A 50 individuals NSESA solution of test problem 2 in design
space and objective space.
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Chapter 3

Semi-analytical electromagnetic test cases

3.1 Introduction

As a link between analytical test cases that have been presented and
discussed in the previous chapter and real-life numerical test cases that
will be shown in next chapter, this chapter is devoted to the discussion of
two semi-numerical cases, that is simple electromagnetic problems with
a closed form expression available for objective functions [cjp2].

Tackling such problems with the strategies shown in the previous chapter
is a very useful exercise because the objective computation time is very
low and several test can be computed for the tuning and comparison of
strategies. Although very simple the two multiobjective shape optimiza-
tion problems presented in this chapter share with real-life problems some
common features and difficulties such as incommensurability of objectives
and non-trivial POF shapes.

At first a multiobjective problem is considered on Brook’s solenoid, which
is maybe the simplest electromagnetic device but which gives rice to
non-trivial POF shape. After that an electrostatic micromotor is con-
sidered where a multiobjective design problem gives a fully non-convex
POF [cjp10],[cjp12].

Figure 3.1: Cross section of the solenoid and design variables.

3.2 Shape design of an air-cored solenoid

Brook’s solenoid is a classical benchmark in electromagnetic single-
objective optimization, due to its simplicity and due to the availability
of closed formulas for computing objective. A multiobjective shape opti-
mization problem of a coreless solenoid of rectangular cross-section b ×
c and mean radius a is tackled (see figure 3.1)[cjp11].

3.2.1 The model and Optimization Problem

If current is supposed to be uniformly distributed over the cross-section,
given the geometry of the solenoid and the number N of turns, the induc-

57
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tance L [mH] can be approximated by the following formula :

L =
31.49 × a2N2

b

9 + 6
a

b
+ 10

c

b

(3.1)

The multiobjective design problem can be cast in these terms: maximize
inductance L(a,b,c) and minimize volume V(a,b,c) for given length k1=10
m and cross section k2 = 10−6m2 of the current carrying wire. Due to
constraints, two variables only, e.g. a and b, can be considered; finally
functions L and V become

F1 =
31.49

k2
1

4 ∗ π2b

9 + 6a
b

+ 5 k1k2

πab2

F2 =
πa2b

4
+

k2
1k

2
2

4πa2b
+
k1k2

2

(3.2)

respectively. Now the problem reads: maximise F1(a, b) and minimise
F2(a, b), subject to:

a >

√
k1k2

4πb
(3.3)

and a set of bilateral bounds ensuring the geometrical congruency of the
model. Despite the simplicity of formulas for both objective functions, the
multiobjective optimization problem is not trivial and cannot be tackled
analitically. The two objective functions are shown in figure 3.2.

3.2.2 Discussion and results

Although the maximum region for F1 and the minimum region for F2

seems to be coincident, the addition of constraint makes the problem truly

multiobjective. Nevertheless from a physical point of view the problem
is weakly multiobjective because the Pareto optimal front lies in a thin
region poorly sensitive with respect to volume variations (see figure 3.2).
For the same reason the Pareto optimal front exhibits an attraction point
for solutions located in the lower right corner of design domain space.
This gives rise to numerical difficulties in the Pareto front approximation,
which is why the problem has been chosen as case study. This can be seen
in a clear and immediate way from the search space sampling in figure
3.3. In particular the Pareto optimal front lies in a thin region in the
design domain search space. Two different 5-individual solutions obtained
with NSESA are shown with enhanced diversity in design domain and in
objective domain (figure 3.4). The starting population is always randomly
generated and the number of individuals has been set to five in order
to simulate the case of an expensive FEM objective function evaluation
where a big population is computationally unaffordable. In both cases
the solutions lie on the optimal Pareto front and distribute themselves in
the front. The effectiveness of either one or the other sharing strategy is
problem dependent. This is why in the considered problem both strategies
seem to be equivalent as concern solutions diversity.
The history of both convergence indexes cx and cf are plotted in figures
3.5 for the firs of the two runs shown in figure 3.4 . After the 300th
iteration both values are stable below 10−3, clearly showing the method’s
stability. The design domain index decrease is quicker although both
values oscillate around a decreasing mean value. The behavior is similar
to the analytical test cases.

3.3 Shape design of an electrostatic micro-
motor

The design of micro-electromechanical devices is a remarkable chapter of
electromagnetic devices design because special computational tools are
to be developed, being specifically devoted to micro-scale effects. We do
not go into deeper detail here and we only consider a simple model of an
electrostatic micromotor.
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Figure 3.2: Objective function surfaces for the solenoid test case: Induc-
tance L [mH] and volume [m3].

Figure 3.3: Exhaustive sampling of search spaces in design and objective
domain for the solenoid problem.
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Figure 3.4: 5 individual solutions with enhanced diversity in objective
space od resign space. Starting (◦), final (∗) population and exhaustive
sampling (·).

Figure 3.5: Convergence indexes in design domain and objective domain
for run in figure 3.4, left.
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Figure 3.6: Cross section of the micromotor.

When dealing with design of such a device, several models can be taken
into account with different degree of accuracy, starting from a simple
circuital model to a full electostatic field computation via FEM. We con-
sider here a non-trivial circuital model that gives close form expressions
for equivalent capacitances and torque. A detailed analysis of electro-
static micromotors is out of the scopes of this thesis .

3.3.1 The model and Optimization Problem

A variable-capacitance rotating microactuator with radial field is consid-
ered. A simplified scheme of the geometry of the device is shown in figure
3.6. The device, etched on a polySilicon structure, is characterized by 24
or 30 stator electrodes (NS) and 16 or 10 rotor teeth (NR), respectively
(3/2 geometry or 3/1 geometry). For a prototype configuration, the ra-
dial dimensions [µm] of the device are: R2=22, R3=40, R4=60, R5=63.
Referring to figure 3.6, denoting x1 = α and x2 = β, we switch on one
phase of the 3-phase system of square voltages of amplitude equal to V =
100 V and consider the equivalent capacitance Ceq(ϕ, x1, x2) where ϕ is
the rotor angle. In order to build objective function expressions different
capacitances and torque formulas are to be computed in the following
way.

The basic formula for computing both no-load commutation torque Γ0

and static torque Γs is

Γ(ϕ, x1, x2) =
1
2
V 2 ∂Ceq(ϕ, x1, x2)

∂ϕ
(3.4)

When Γs has to be computed, equation 3.4 becomes:

Γs(ϕ, x1, x2) =
1
4
V 2NR(Cmax(x1, x2)−Cmin(x1, x2)) sin(NRϕ) (3.5)

where Cmax(x1, x2) and Cmin(x1, x2) are the maximum and minimum
capacity with respect to the rotor angle ϕ; NR is the number of rotor
teeth. When Cmax(x1, x2) is to be computed two different cases have to
be considered (case A1 and case B1 in figure 3.7)
Case A1: x1 < x2

Cmax = ε0εrα
(2rp+ rr)h

2rr where
α = 2 arcsin(S cos(x1

2 ) − c sin(x1
2 ))

S = r3
rr sin(x2

2 − x1
2 )

C = −√
1 − S2

rp =
r2 sin(

x1

2
)

S cos(
x1
2 )−C sin(

x1
2 )

rr =
√
r22 + r23 − 2r2r3 cos(x2

2 − x1
2 )

(3.6)

where h is the micromotor’s depth and the angle α is shown in figure 3.7
Case B1: x1 > x2

Cmax = ε0εrh

x2
r2 + r3

2(r3 − r2)
+ det(At)

(r3 − r2)2
(3.7)
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where

At =

 1 r2 sin(x1
2 ) r2 cos(x1

2 )
1 r2 sin(x2

2 ) r2 cos(x2
2 )

1 r3 sin(x2
2 ) r3 cos(x2

2 )

 . (3.8)

The first term in the brackets corresponds to the capacitance of the cir-
cular sector while the second one is an approximation of the capacitance
of the two side ”triangles” (see figure 3.7); an alternative approximated
formula can be the following one where an equivalent circular sector of

angular size (x1 + x2)
2 :

Cmax = ε0εrh
(x1 + x2)(r2 + r3)

4(r3 − r2)
(3.9)

On the other hand, when Cmin is to be computed the following two
different cases have to be considered (case A2 and case B2 in figure 3.8)
Case A2: x2 <

2π
NR

− x1

Cmax = ε0εrh

x2
r1 + r3

2(r3 − r1)
+ det(At)

(r3 − r1)2
(3.10)

where

At =

 1 r1 sin( πNR
− x1

2 ) r1 cos( π
NR

− x1
2 )

1 r1 sin(x2
2 ) r1 cos(x2

2 )
1 r3 sin(x2

2 ) r3 cos(x2
2 )

 . (3.11)

or, as an alternative,

Cmax = ε0εrh

π
NR

(x1 + x2)(r1 + r3)

4(r3 − r1)
(3.12)

Case B2: x2 >
2π
NR

− x1



αA = 2π
NR

− x1

αB = x2 − αA

CAmin = ε0εrhαA
r1 + r3

2(r3 − r1)
CBmin = ε0εrhαB

r2 + r3
2(r3 − r2)

Cmin = CAmin + CBmin

(3.13)

where two parallel connected capacitance are considered corresponding
to the A and B circular sector in figure 3.8.
When Γ0 has to be computed, equation 3.4 becomes:

Γ0(x1, x2) =
1
2
V 2NS

CAeq(x1, x2) − CBeq(x1, x2)
2π

(3.14)

where CAeq(x1, x2) is the capacitance of the maximum coenergy configu-
ration in which the axis of the supplied electrode is coincident with the
axis of the rotor tooth; CBeq(x1, x2) is the equivalent capacitance when the
rotor position is the same, but the supply has been switched to the next
phase and NS is the number of stator electrodes. The following formula
holds:

CAeq = Cmax (3.15)

and thus

Γ0 = NSV2

Cmax − CBeq
4π

(3.16)

When CBeq(x1, x2) is to be evaluated the following three cases have to be
considered (see figures 3.9 and 3.10 :
Case A3 2π

NR
− 2π
NS

+ x2 < x1 <
2π
NR

CB = ε0εrh(x2
r2 + r3

2(r3 − r2)
+

det(At)
(r3 − r2)2

) (3.17)
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where

At =

 1 r2 sin( πNS
− π
NR

+ x1) r2 cos( π
NS

− π
NR

+ x1)

1 r2 sin(x2
2 ) r2 cos(x2

2 )
1 r3 sin(x2

2 ) r3 cos(x2
2 )

 . (3.18)

or, as an alternative:

CB = ε0εrh
x1 − π

NR
+ π
NS

+ x2)(r2 + r3)

4(r3 − r2)
(3.19)

Case B3 2π
NR

− 2π
NS

− x2 < x1 <
2π
NR

− 2π
NS

+ x2



αA = 2π
NR

− x1 − 2π
NS

+ x2

αB = x2 − αA

CAB = ε0εrhαA
r1 + r3

2(r3 − r1)
CBB = ε0εrhαB

r2 + r3
2(r3 − r2)

CB = CAB + CBB

(3.20)

Case C3 0 < x1 <
2π
NR

− 2π
NS

− x2

At =

 1 r1 sin( πNS
+ π
NR

− x1
2 ) r1r1 cos( πNS

+ π
NR

− x1
2 )

1 r1 sin(x2
2 ) r1 cos(x2

2 )
1 r3 sin(x2

2 ) r3 cos(x2
2 )

 . (3.21)

CB = ε0εrh(x2
r1 + r3

2(r3 − r1)
+

det(At)
(r3 − r1)2

) (3.22)

or, as an alternative,

CB = ε0εrh
x1 − π

NR
+ π
NS

+ x2)(r1 + r3)

4(r3 − r1)
(3.23)

We are now able to set up two objective functions we will deal with,
plotted in figure 3.11, i.e maximum static torque F1 to be maximized and
torque ripple F2 to be minimized .{

maxF1(x1, x2) = 1
4V

2NR(Cmax(x1, x2) − Cmin(x1, x2)) ,

minF2(x1, x2) = F1 − Γ0
F1

.
(3.24)

Several definition of the ripple are possible, the simplest is the previous
one and a little bit more precise one is the following:

F2(x1, x2) =
F1 − sin(a)

sin(2a)Γ0

F1(cos(NRa) − cos(NRb))
(3.25)

where

a = π(
1

2NR
− 1
NS

) b = a+
π

NS
(3.26)

When the friction Γf (x1, x2) is considered the following simple equation
can be considered:

Γf (x1, x2) =
1
3
V 2 εhδr(x1 + x2)

d2
(3.27)

where Cmax, Cmin, CAeq and CBeq are suitable expressions of capacitance
at various relative positions ϕ between stator and rotor under different
operating conditions, d is the friction radius, f is the static friction coef-
ficient, h is the rotor thickness, r is the outer rotor radius and d is the
air gap width.

3.3.2 Discussion and results

First of all we point out that because of the POF is fully non-convex (see
exhaustive sampling in figure 3.12), an equivalent scalar weighted sum
formulation would give as solution one of the two extreme points on the
POF whatever the values of weights is chosen. Apart from the concavity
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A1

B1

Figure 3.7: Different cases for Cmax computation

A2

B2

Figure 3.8: Different cases for Cmin computation.
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B3

C3

Figure 3.9: Different cases for CB computation: first two cases

A3

Figure 3.10: Different cases for CB computation: third case
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Figure 3.11: Objective function surfaces for the micromotor problem
without friction.

Figure 3.12: Micromotor test case: exhaustive sampling of objective do-
main search space.
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of the POF the problem is not a difficult one and the optimization pro-
cedure is straightforward. An example of a 50 individuals solution with
obtained NSESA is shown in figure 3.13. As can be seen all individuals
are located on the POF and POS respectively.
The evolution of the population during optimization can be seen in figure
3.14 where correspondent iteration numbers are also shown. As can be
seen all individuals gradually moves towards the POF under the pressure
of fitness assignment and selection. The last result of this chapter is
a comparison in both design domain and objective domain of different
solutions obtained with or without the addition of the friction and of a
third design variable, being the air gap width d. As can be seen in figure
?? the POF essentially translates while the POS does not show significant
changing.

Figure 3.13: Micro-motor test case: 50 individual solution with NSESA
in design domain and in objective domain.



68 Semi-analytical electromagnetic test cases

Figure 3.14: Story of population evolution for a run with NSESA on
micromotr test case.

Figure 3.15: Different POF and POS with or without friction and with
two or three design variables.



Chapter 4

Real-life electromagnetic test cases

4.1 Introduction

This chapter is devoted to multiobjective optimization of electromagnetic
devices for real-life application [35, 38, 36, 33, 39]. The design of an indus-
trial device usually has to fulfill many requirements that can be viewed
as objectives. One may divide them into two categories; for the first
one a formal mathematical expression is possible (numerical, FEM) such
that the objective may be written as a function of design variables (to be
computed numerically). For the second category no numerical relations
are available linking design variables and objectives. The multiobjective
optimization problem can be solved tacking into account all objectives
belonging to the first category and the solution is a sampling of the POF.
Because of the existence of this second category the approximation of the
POF seems to be useful to the designer that will choose a-posteriori one of
the available Pareto-Optimal solution tacking into account all objectives
belonging to the second category.
When a FEM field computation is to be performed for the evaluation of
one or more of the objective the MatLab coded optimizer is to be linked
to a commercial Electromagnetic FEM package. Such a procedure may
be sometimes non-trivial and a bit of interaction with the FEM package
technical assistance is to be taken into account. Two different devices
will be considered in this chapter: a single-phase series reactor for power

applications and an inductor for transverse-flux-heating of a non-ferrous
strip.
The multiobjective optimization of the second device requires a coupled
magneto-thermal analysis for the computation of objective values. The
MatLab code for such analysis was developed by the Electrothermal heat-
ing lab, department of Electrical Engineering, University of Padova, Italy,
and it was linked to the optimizers in the frame of a scientific cooperation
[cjp8],[ccp1].

4.2 Shape design of a single-phase series re-
actor for power applications

The reactor is employed to reduce the peak value of the short-circuit
current and so mitigate its electrodynamics effects. The design opera-
tions, prototyping and final development will be performed by Tamini
Transformers S.r.l, Melegnano, Italy.

4.2.1 The model and Optimization Problem

The reactor, the cross-section of which is shown in figure 4.1, is charac-
terized by a coreless winding with cylindrical shape (foil winding); it is
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Figure 4.1: Cross-section of the reactor (one quarter) and design vari-
ables.

h[mm] dm[mm] a[mm] d[mm] t[mm] N ks
500 590 210 80 40 212 0.504

Table 4.1: Prototype values

boxed in a laminated magnetic screen with parallelepiped shape in order
to shield the surrounding environment from the strong stray field. The
latter, in turn, gives rise to power losses in the winding that limit the
operation of the device; on the other hand the realization of a higher
winding and screen, though reducing the effect of leakage, causes an in-
crease of volume and cost of the reactor so that a conflict of design criteria
is originated. For a prototype reactor rating a power of 5.9 [MVA] the
values shown in Table 4.1 hold:
The distribution of magnetostatic field in the reactor, for which the Carte-
sian symmetry is assumed to be valid, is governed by the Poisson’s equa-
tion of vector potential A = (0, 0, A):


−∇ · ( 1

µ∇A) = J

A = 0 along x = 0
∂A
∂n

= 0 elsewhere

(4.1)

where J = 3.57[ A
mm2 ] is the current density in the winding while µr = 1

and µr = 104 are the values of relative permeability of non-magnetic
materials and iron, respectively. To solve 4.1 numerically, the two-
dimensional field region shown in figure 4.1, including an external layer
of air, has been discretized by means of a regular grid of finite elements,
namely triangles with quadratic variation of potentials ; the total number
of elements is Ne = 950 approximately. The evolutionary optimizer calls
the a commercial FEM code for performing the field analysis and then
updates the finite element grid at each iteration when geometry changes
due to design variable changing. In general, up to seven design variables
defining the shape of the device can be considered: geometric height h,
mean diameter dm, thickness a of the winding, number of turns N, axial
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distance d between winding and magnetic shield, thickness s of the shield,
radial distance t between winding and shield.
Two conflicting criteria can be defined:

• the material cost f1 of the reactor, namely the weighted sum of
copper and iron weights, to be minimized:

F1 = 4kiwi[s(
dm + a

2
+ t)l + s(

h

2
+ d+ s)l] + kcwckslah (4.2)

with ki = 1, kc = 3 while wi = 7860[kgm−3] and wc = 8930[kgm−3]
are specific weights of iron and copper, respectively;

• the fringing field f2 inside the winding, i.e. the mean radial com-
ponent of magnetic induction in the cross-section of the winding, to
be minimized as well:

F2 =
1

NW

NW∑
i=1

|Bx(i)| (4.3)

where NW = 64 is the number of points of a grid sampling the radial
induction in the winding.

The following constraints have been prescribed:

• the rated value of inductance L = 23.57[mH];

• the induction in the core, not exceeding 0.8 T, when the current per
turn is equal to with In=893 A;

• the insulation gap between winding and core.

Three independent design variables have been selected, i.e.

• height h

• mean diameter dm

• number of turns N of the winding

Finally, a set of bounds preserves the geometrical congruency of the
model, namely:

0.5 ≤ h ≤ 1.5 [m]
0.1 + 2a ≤ dm ≤ 1.8[m]

162 ≤ N ≤ 262
(4.4)

The objective functions surfaces of both F1 and F2 against (h, dm) for a
given number of turns N=200 are reported in figure 4.2.

4.2.2 Discussion and results

The clash between the two objectives is evident from the comparison of
both surfaces. For the sake of comparison, two popular scalar formu-
lations of the multiobjective problem have been considered too, namely
the objective weighting and the far-from-worst programming for which
the following preference functions have been defined, respectively:

f̃ = c1f1 + c2f2 (4.5)

to be minimised, where c1 = 10−4 and c2 = 25 are dimensional coefficients
ensuring in and heuristic way (see chapter 1 for discussion about weights
choice) equal preference to each objective and

f̃ = (1 − c1f1)(1 − c2f2) (4.6)

to be maximized, subject to the prescribed constraints.
Prior to tackle the procedure of optimization, a preliminary identification
of the Pareto optimal front has been achieved by sampling, in a random
way, the feasible region in both design and objective spaces.
In figure 4.3 the corresponding distribution of samples in the objective
space is represented; it can be noted that the design criteria defined
transform a quasi-uniform distribution in the design space into a non-
uniform one in the objective space. In particular, the Pareto optimal
front is approximated by the lower boundary of the latter distribution and
is characterized by two branches. The first one corresponds to devices
exhibiting a nearly constant cost, while the second branch is characterized
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Figure 4.2: Normalized cost of the reactor as a function of mean diameter
dm and height h of the winding. Average Bx field in the winding as a
function of mean diameter dm and height h of the winding itself.

Figure 4.3: Sampling (1000 points) of the feasible region in the design
space (geometric dimensions in m) and in the objective space is shown;
constraints and bounds are taken into account.
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by a remarkable variability and corresponds to devices for which both
stray field and cost are actually in mutual conflict. Therefore the Pareto
optimal front links two incommensurable objectives and appears to be
convex and connected. Moreover it can be noted that, though starting
from a quasi-uniform sampling of design space, the approximation of the
Pareto optimal front is poorer in the branch of mutual conflict than in
the branch of constant cost; this fact confirms the physical expectation
that building a low-stray winding is a non-trivial task. As a consequence
the approximation of the branch of mutual conflict is a moderately stiff
problem from the numerical viewpoint.
PESTRA has been run in two cases, considering 10 and 20 individuals,
respectively. After overlapping, in the objective space, the results ob-
tained in the two cases, a few solutions appeared to be weakly dominated
and therefore it has been decided to filter them out.
As a result, 24 non-dominated solutions distributed along the Pareto
optimal front have been finally obtained; they are shown in figure 4.4. It
can be noted that the solutions found represent a subset of Pareto optimal
front, characterized by a stray variation of 62.5 % and a corresponding
cost variation of 46.7 % approximately. The objective values for the
prototype are also shown. As can be seen some solution in the front
dominates the prototype and some other solutions are equivalent in the
Pareto sense.
In figure 4.5 the shapes of the 24 non-dominated solutions are shown;
they are ranked starting from the minimum stray (upper left) device to
the to minimum cost (lower right) device; the variability of geometry is
evident.
In figure. 4.6 the distribution of magnetic induction in the reactor is
shown for the two extremal solutions belonging to the set of 24 non-
dominated solutions.
For the sake of comparison, two scalar optimizations have been run con-
sidering preference functions p1 and p2, respectively; the standard (1+1)-
evolution strategy has been applied. The corresponding optima are re-
ported in figure 4.7; it can be noted that the two scalar solutions are
practically coincident and represent a non-dominated point located near
the center of gravity of Pareto optimal front. The computational cost of

Figure 4.4: Approximation of the Pareto optimal front by means of 24
individuals after filtering 10+20 solutions.
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Figure 4.5: Non-dominated solutions: final shapes of the reactor (24
individuals, sizes in m). Shapes are ranked from the minimum stray
(upper left) to minimum cost (lower right).

Figure 4.6: Contour plot of magnetic induction for minimum stray field
(A) and minimum cost (C) non-dominated solution.

Figure 4.7: Final results: comparison of scalar and vector optimization.
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the optimization procedure can be evaluated as follows:

c = npop ×M × niter (4.7)

where npop is the number of individuals, M the number of objective func-
tions and niter the total iteration number. In the case study considered
M=2 and npop=10; when a grid of about 950 triangles of second order
is considered, typical figures are c=40 s on a Pentium II 433 MHz pro-
cessor and niter=400. The overall procedure has proved to be fast for a
twofold reason: on one hand, the algorithm is convergent for any value
of npop, whereas a GA-based strategy would require a high number of
individuals, typically some hundreds; on the other hand, there is no need
either for classifying individuals into Pareto set during the evolution or
for attributing a fitness to each individual, both being time-consuming
operations.
A conclusive remark of this first real-life test case can be the following.
The optimal shape design of a shielded reactor has been achieved by
means of a multiobjective evolutionary optimisation based on the concept
of non-dominated solutions. A wide number of configurations belonging
to the Pareto optimal front have been identified, so offering the designer
an effective choice among devices that rank from the best performing
one to the less costly one. The computational cost of the methodology
developed is light and compatible with resources of PC based platforms.
More generally, the following remarks can be drawn.

• A wide choice among optimal solutions implies a better compati-
bility of the design with industrial normalization and technological
constraints.

• Multi-objective optimisation enhances the diversity of performances
of optimal designs and therefore could highlight non-trivial solutions
that are a priori unpredictable.

• Having a set of optimal solutions makes it easy to fulfil a posteri-
ori time-varying constraints that are typical of real-life engineering
(like the ones imposed by suppliers of materials), whereas in scalar
optimization they have to be carefully prescribed in order the only
solution be feasible.

4.3 Shape Design of an Inductor for
Transverse-flux-heating of a Non-
ferrous Strip

Transverse flux induction heating (TFH) has been well known for many
years and it is well suited for heating flat metal products. In this case,
unlike longitudinal flux heating, TFH allows to obtain a high electrical
efficiency by using low frequency values. This advantage becomes more
pronounced with the reduction of the strip thickness and increase of the
electrical conductivity of the material to be heated. Unlike longitudinal
flux heating, the design of TFH devices is characterised by a large number
of parameters, closely correlated each other. Besides, the distribution of
heat sources and output temperature field in the workpiece is normally
non-homogeneous. In turn, the non-homogeneity of temperature fields
can provoke thermal deformations in the workpiece which have to be
taken into consideration in the complete design of the device. Moreover,
all of the problems typically should be solved for variable strip geometry
and material properties [ccp3].
Different numerical packages are available for the solution of electromag-
netic and thermal problems related to the analysis of TFH systems. These
packages are able to solve both two and three dimensional problems.
Their main drawbacks are the high runtime and the heavy procedure
describing the geometry of the device. For this reason, an analytical-
numerical tool has been developed by the Electrothermal heating Lab-
oratory at University of Padova, Department of Electrical Engineering
which is able to perform a parametrical analysis and to give very quickly
a preliminary calculation of the main parameters of the device and the
thermal transient behavior. The analysis tool has been linked to the
developed multiobjective optimization procedures.

4.3.1 The model and Optimization Problem

A typical inductor for TFH (Transverse Flux induction Heating) sys-
tem, is composed of two parts, each facing one side of the workpiece
(metal strip), and is characterized by any number of poles, with different
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Figure 4.8: General view of a TFH device.

dimensions and supply [cjp8] (see an example in figure 4.8). The design
variables (see cross section of coil in figure 4.9) are the half-internal width
of the coil in the longitudinal direction a, the half-internal height in the
transversal direction b, the width of the coil conductor d, and the work-
ing frequency f . The number of coils has been chosen equal to 4 i.e. two
butterflies (a butterfly being a couple of inductor sections). The inductor
is supplied by a current equal to 700 A, the velocity of the strip is v =
0.4 cm s-1. The material of the strip is silver; its width of the strip to be
heated is fixed and equal to 100 mm.
The following two objective functions are defined:

• the electrical efficiency F1 (to be maximised) of the inductor de-
fined as the ratio between power transferred to the workpiece and
power supplied to the inductor.

• the maximum temperature gap F2 (to be minimised) in the y di-
rection in the same instant. Congruency bounds have been imposed
to design variables.

The analytical solution of the Helmholtz’s equation in three dimensions
gives the expressions of the electric field in the strip and in the air; the

Figure 4.9: Top view and cross section of a TFH device.
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power density distribution and all integral parameters of the system can
be thus calculated. The analysis of the thermal transient is based on
finite difference method starting from the solution of the electromagnetic
problem described above.
The following constraint is imposed together with some box-constraints:

b+ d < 50mm (4.8)

Before tackling optimisation, several objective fiuction surfaces analyses
have been performed, one for each pair of design variables. In figure 4.10
an example of conflict between the objective functions is reported; the
values of a and b have been varied on a 100-point grid.

4.3.2 Discussion and results

Due to the high computational cost of each objective function evalua-
tion (approximately 5 minutes on a PIV desktop) due to the precision
required in approximating the POF, the optimization has been tackled
via an hybrid stochastic-deterministic and local-global strategy. NSESA
has been used as global search and PGBA as local search. The strategy
is outlined in table 4.11 and compared with a full stochastic strategy.
Two are the key-points of such a strategy; the first one is the switch-
ing criterion to be used for stopping the evolutionary search and moving
to local search, i.e. set up the value of K2, εSTOP being the maximum
normalised distance between individuals for successive iterations. The
second one is the metrics to be used in order to assign npop search di-
rections to individuals when moving to local search. When convergence
towards POF has to be represented, convergence indexes Cx and Cf can
be profitably used. The two indexes monitor the convergence toward POS
(in the design variable space) and toward POF (in the objective function
space) respectively. More details on switching criteria can be found in
[ccp3]. The global search is based on Pareto-ranking and thus does not
require preference functions.
Three different solution are shown in figure 4.12 corresponding to columns
in table 4.2. As can be seen when a fully stochastic strategy is run with

Figure 4.10: Objective function surfaces for the TFH problem versus two
design variable.
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Begin

� Build a random starting population (npop indiv.)
� Run NSESA up to partial conv. (εSTOP = K2 � K1)
� Build npop scalar preference functions
� Run npop CGA or NMA up to full conv.(εSTOP = K1)
End

Begin

� Build a random starting population (npop indiv.)
� Run NSESA up to full conv. (εSTOP = K1)
End

Figure 4.11: Combined global-local and conventional strategy (Fully
global).

the same cost of the hybrid one, the solution is highly unsatisfactorily
demonstrating the validity of the hybrid strategy. On the other hand the
hybrid strategy with the simplex method as local search is able to give
a bigger diversity in solution but, from an industrial point of view some
solutions are to be discarded because of the too low efficiency value

figure A B C
Strategy NSESA+PSA NSESA+PCGA NSESA
global s. 128 150 206
local s. 422 56 -

Total cost 550 206 206
cpu-time [h] 17 7 7

Table 4.2: Number of objective function calls and cpu-time for TFH
inductor optimization.

Figure 4.12: Optimization results for the TFH device (C,A,B cases de-
scribed in table 4.2).
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Figure 4.13: Cross section of Pareto optimal solutions ranked in F1 in-
creasing orded.
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Chapter 5

Evolutionary Multiobjective Optimization and
interpolation techniques: Towards GRS-MOEAs

5.1 Introduction: GRS Methods

The chapter is devoted to the effort, which is still in progress, in linking
General Response Surface Methods (GRSM) and MultiObjective Evolu-
tionary Algorithms (MOEAs).
On one hand we have GRS methods [cjp3,cjp4]that are a well established
technique for single-objective optimization in case of time consuming ob-
jective function evaluation . The essential idea is to consider throughout
the optimization two different objective functions; the first one is the true
function which is to be evaluated in as few cases as possible due to its
computational cost, the second one is the interpolation of the true objec-
tive function via some interpolation technique (polinomial, multiquadrics
[24] or Neural Network [41] )and it can be evaluated as many time as it is
needed. A powerful stochastic global search algorithm (GA, ES, SA, DE)
can be run on the interpolated function up to full convergence in order
to be sure of escaping local minima, with no limits in objective function
evaluation number. Moreover an iterative strategy alternating search of
a new optimum and updating of the interpolation quality in the current
optimum region is performed in order to increase convergence speed on
one hand and to improve interpolation quality only in the area of current

optimum with a dramatic reduction in the interpolation training set size.
On the other hand we consider Evolutionary Multiobjective Optimiza-
tion (EMO) as a well established computational research area [13] where
several powerful methods are available for a fully convergent POF ap-
proximation (NSGAII [42], SPEA2 [46]).As already mentioned the com-
putational cost of MOEAs is relevant and it may be unpractical when
industrial design is concerned and the task of reducing objectives func-
tion calls is often mandatory. To this aim the link between GRSM and
MOEAs seems to be an appealing alternative. Though very appealing
such linking is not straightforward due to the fact that when dealing
with MO problems the equivalent of the current optimum region of SO
problems (an n-dimensional hypersphere centered on the current opti-
mum) is a very complex and often non connected area of design domain
search space; the iterative update-search strategy is thus non-trivial in
this case.

5.1.1 Neural network for function approximation

A number of NN architectures are available for approximating functions
by building response surfaces; amongst them, radial basis architectures
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are extensively used for being particularly suitable to interpolation [41].
Such networks are two-layered. The first layer of neurons is characterized
by radial basis transfer functions, often of the Gaussian type. The second
layer is made of just one linear neuron, performing weighted sum of the
first layer’s output. Several methods are used for training such networks;
in this work, they were chosen to be arranged as General Regression
Neural Networks (GRNNs) [7]. This way, a smooth approximation of the
surface is attainable, potentially better suited for an optimization proce-
dure. Each objective function was approximated by means of a sequence
of networks of increasing cost, where the cost of a network is meant as
the number of elements in the training set (input/target couples) i.e. the
number of true objective functions to be evaluated. Optimization was
then performed, interfacing the NSESA to the NN-interpolated objective
functions, so to extract the approximated POF. It is worth pointing out
that, once a net is trained, it does not require any other function eval-
uation, unless an iterative strategy is built (see section 5.3); thus, the
optimization can be considered to be inexpensive hereinafter, regardless
of the number of individuals employed in the optimization run.

5.2 Non-iterative strategy

The first step of the strategy (see [cjp5]) consists of building NN response
surfaces starting from a grid of values for each objective function. The
accuracy in terms of both RMS and maximum errors is plotted in fig-
ure 5.1 A, for the first test problem; in figure 5.2 A the related results
by NN approximation are shown in the objective space. The approx-
imated POFs represented have been obtained from NN with different
costs, whose approximation errors have been shown in 5.1 A; the exact
front is also represented. The two lowest cost networks lead to degenerate
fronts, each made up of just one point; the point corresponding to cost 25
is the farthest one from the utopia point. This means that for too poor
interpolation of the objective functions, the character of the functions
themselves is lost to such an extent that the problem is no longer multi-
objective. For higher costs (from 225 on, in our simulation) the obtained
fronts begin to resemble the exact one more closely.

Figure 5.1: Shaffer’s problem: objectives approximation errors for NN-
interpolated function (top) and comparison on POF approximation error
of the true objective function optimization with 10 or 100 individuals and
the NN-interpolated objective function optimization (bottom).
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As a further example we show in figure 5.3 several POFs for problem
DTZ3 with two variables (see [10] for equations) corresponding to differ-
ent NN training cost. The training set is always a 2D regular grid in the
search space.
When the micromotor test problem is considered, an example of some
approximated fronts obtained from NN-interpolated functions is shown
in figure 5.4 A, where the POF resulting from a 105 point sampling of
the design space is considered as the exact POF. The low cost NN gives
an unacceptable POF and a cost of at least 1000 must be spent for an
acceptable approximation.
In order to give some quantitative expression the approximation error
of solutions obtained via NSGA (see [42]) on different NN interpolated
functions can be computed in the following way:

e =
1
m

m∑
j=1

min
i=1:n

‖pofi − fNNj ‖2 (5.1)

where pof is the true POF, fNN is the NSGA m individuals solution on
NN-interpolated functions. So doing, precision versus cost curve can be
obtained and is shown in figure 5.3; Indeed, from this curve some a-priori
information on the NN training cost for a satisfactory POF approximation
may be derived.
As a final result on the micromotor, in figure 5.5 A and B we show a com-
parison between two different solutions, both obtained by means of NS-
ESA: the first one is based on true objectives and involve ten individuals,
the cost being equal to 5500; the second one is based of NN-interpolated
objectives and involve 100 individuals, the training cost of the nets be-
ing equal to 5500. The 10-individual conventional simulation is definitely
preferable with respect to accuracy (in 5.5 B squares dominate dots) but
the sampling of both POF and POS is poor (only 10 solutions can be
afforded at a cost of 5500). The 100-individual optimization based on
NN-interpolated networks, on the contrary, is less accurate but gives a
more uniform sampling of the front. The key point is that NN optimiza-
tion cost is not dependent at all on the number of individuals, as the
net is trained before the optimization starts, and no other true function

Figure 5.2: Micromotor optimization: approximated fronts for different
NNs (A) and approximation error of the POF from NN-interpolated net-
works vs network training cost.
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call is required during the evolutionary algorithm run. Consequently, the
true function NSESA, run with few individuals, is preferable to neural
networks when the main goal is accuracy, whilst, when a well-sampled
front is sought, NN-NSESA proves to be more cost-effective, compared
to the conventional NSESA with numerous individuals.
Although response-surface techniques with iterative improvement of ap-
proximation quality in the current optimum region are unpractical when
considering approximation of POF, the use of interpolated function as
objectives in a non-dominated sorting algorithm seems to be an efficient
strategy when dealing with expensive evaluation of true objective eval-
uation. From a detailed study of POF approximation quality in terms
of both approximation error and sampling frequency vs NN training cost
the following remarks hold:

• if few yet very precise solutions are sought for, the true objectives
non-dominated sorting algorithm is to be recommended,

• on the contrary, if many solutions with a satisfactory precision are
expected, the NN-interpolated function can be used with a huge
reduction of cost in terms of objective function evaluations,

• before building an iterative strategy the dependance of POF approx-
imation error from NN interpolation accuracy is to be considered.
This is an essential point that can give several guidelines for the
iterative updating of NN training set in the full iterative strategy
[cjp5]

5.3 Iterative strategy

The structure of a GRSM method for multiobjective optimization is es-
sentially similar to the single-objective counterpart (see introductory part
of the chapter) and is shown in figure 5.7. Three different objective func-
tion are considered: the true one, the interpolated one and an auxiliary
one which is used for the addition of a point in the most unexplored area
of the search space. More detail on this can be found in [cjp3] or [cjp4];

Figure 5.3: POF approximation error versus NN training cost (A) and
fronts for DTZ3 problem with different NN training cost (B).
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Figure 5.4: Micromotor test case: different POFs with different NN train-
ing cost.

Figure 5.5: Micromotor optimization: comparison of true functions op-
timization (10 individuals) and NN-interpolated functions optimization
(100 individuals) at the same cost (5500); design domain (B) and objec-
tive domain (A).
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we outline here only those specificities that depends on tackling a multi-
objective problem describing in detail the main steps of the algorithm.
As will be shown, both problems - conflicting by their nature - of solution
accuracy (in terms of both convergence and diversity) and of avoiding
local fronts traps, are fully considered.

• Step 1 Build an n-dimensional regular pn points grid and evaluate
the true objective functions for all points on the grid, where p is
the number of points in each edge of the n-dimensional rectangular
search space.

• Step 2 Build the first NN interpolation using all points recorded in
step 1 as training nodes and values.

• Step 3 Start an iterative procedure, iter being the iteration counter.
If 〈iter, 2〉=1 add a node in the interpolation nodes set in the most
unexplored area of the whole search space, compute the true objec-
tives values update NN-interpolation. The addition of information
points increases the probability of jumping out of a local fronts. If
〈iter, 2〉=0 run a MOEA on current NN-interpolated functions and
obtain a current POF; extract non-dominated solutions, compute
true objective functions on this nodes and update training set and
training nodes.

• Step 4 If the termination criterion is satisfied stop the search, oth-
erwise go to the next iteration.

The choice of a point in the most unexplored area of an n-dimensional
rectangular search space to be added to interpolation set requires an
optimisation procedure itself. Given a certain set of NNN interpolation
nodes the following objective function based on distances can be built:

Fadd(X) =

√
N∑
i=1

(dav − di)2 − min
i=1:N

di

dav
; (5.2)

Figure 5.6: Example of addition of an information point throughout an
auxiliary objective function minimization.
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Figure 5.7: Principle flowchart of a GRS-MOEA.

where di is the Euclidean distance between X and the i-th interpolation
node and dav is the average distance. An example of a particularly sym-
metrical case is shown in figure 5.6 where the set of current actual nodes
(∗), the new node to be added (◦) and the contour plot of Fadd have been
plotted. As can be seen the node is added where the Fadd function has
its minimum and the position indeed corresponds to the most unexplored
area. Due to the possible presence of local minima for function Fadd
when the number of nodes increases this optimisation problem can be
solved with a stochastic algorithm (DE). The flowchart of the described
methodology is shown in figure 5.6.
Some preliminary results on function DTZ3 are shown in figure 5.8. A
relevant reduction of true objective function evaluation is obtained (245
for test run in figure 5.8 versus approximately 2000 for an NSGA) at a
given number of solutions on the POF (25). The application of such a
strategy to industrial design problem is in progress.

Figure 5.8: Test case for a GRSMOEA: story of current POF for problem
dtz3
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Conclusion

In the candidate’s opinion, the following statement has been proven by
the project:

• The analysis of Pareto Multiobjective Optimization theory shows
that the use of scalar preference function is to be considered carefully
and in a critical way.

• A posteriori choice of trade off among objectives from several avail-
able Pareto-optimal trade off solutions is to be preferable to a priori
choice.

• Moreover the availability of several Pareto-optimal solutions is itself
useful for the designer.

• Solving multiobjective industrial electromagnetic design problems
with multiobjective Pareto optimization is practical if special meth-
ods are considered giving convergent and diverse solutions even when
the number of affordable solutions is very small with respect to the
typical number of individuals in an evolutionary strategy.

The most original contribution of the project seems to be the following:

• Application of Pareto MO optimization to electromagnetic shape
design .

• Development of special computational strategies with good perfor-
mances both on analytical test cases and practical industrial design.
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