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ABSTRACT 

Modern Heuristics in Structural Damage Detection Using Frequency 

Response Functions. (August 2003) 

Tamás Róbert Liszkai, M.S., University of Miskolc 

Chair of Advisory Committee: Dr. Anne M. Raich 

This research addresses the problem of structural damage detection using linear vibration 

information contained in frequency response functions. The structural damage 

identification method is stated as an unconstrained optimization problem, which 

minimizes the error between measured and analytically computed vibration signatures 

using minimal measurement information. Two types of genetic algorithms are 

implemented to solve the structured and unstructured optimization problem of damage 

detection. The proposed algorithms are evaluated on case study simulations for different 

types of structures with increasing complexity. Noisy measurements are included in the 

simulations to investigate their effect on damage detection accuracy. The proposed 

method is compared to existing damage detection algorithms using accuracy measures 

that are based on Euclidean geometry. Case study results show that the proposed damage 

identification method is robust even in noisy measurement environments. 

A methodology for optimizing excitation and sensor layouts used for detecting 

damage in structures is presented by applying multi-objective genetic algorithms. In 

sensor layout optimization, the objectives are to reduce the number of sensors required 

while trying to increase the amount of information contained in the vibration signatures. 

Several case studies were investigated to determine the effect of using the optimum 

sensor layout designs evolved on the performance of the FRF-based damage detection 

method. The results show that the quality of the measurement information increased 

when the optimal sensor locations were used and the ability of the damage detection 

method to uniquely identify damaged elements was enhanced. 
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NOMENCLATURE 

a, aj, b = Proportionality constants for viscous damping 

a = Vector of time independent complex amplitudes of acceleration 
response 

A = Cross-sectional area 

A, A(ω) = Accelerance matrix 

ASAC = Active structural acoustic control 

b = Vector of base two binary coded string 

B = Base multiplier controlling frequency for writing output 

c = Finite element damping matrix 

C = Structural damping matrix in global coordinate system 

COMAC = Coordinate modal assurance criterion 

D = Diagonal inverse receptance matrix in the natural coordinate system 

DLAC = Damage location assurance criterion 

DOF = Degrees of freedom 

dV = Infinitesimal volume 

dS = Infinitesimal surface 

e = Natural logarithmic base number, 2.7182818285 

ene = Euclidean normalized error 

E = Young’s modulus or modulus of elasticity 

f = Objective (error) function for optimization 

f  = Average fitness of individuals in the current population 

fmax = Fitness value of best individual in the current population 

F = Vector of body forces per unit volume 

f0 = Vector of time independent complex amplitudes 

FAAC = Frequency amplitude assurance criterion 

FDAC = Frequency domain assurance criterion 

FRAC = Frequency response assurance criterion 

FRCM = Frequency response curvature method 

FRF = Frequency response function 
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g = Vector of Gray coded string 

Gff(ω) = Force signal auto-spectrum function 

Gfx(ω) = Response signal auto-spectrum function 

Gxx(ω) = Force – response cross-spectrum function 

GA = Genetic algorithm 

GAC = Global amplitude criterion 

GL = Gene locator 

GSC = Global shape criterion 

h = Iteration dependency factor for non-uniform mutation 

H, H(ω) = General FRF matrix 

i = Imaginary unit, i2 = -1, or nonnegative integer indices 

I = Second moment of inertia 

I = Identity matrix 

IRR = Implicit redundant representation 

j, k = Nonnegative integer indices 

k = Finite element stiffness matrix in local coordinate system 

K = Structural stiffness matrix in global coordinate system 

kg = Finite element stiffness matrix in global coordinate system 

k1, k2 = Constants between zero and one, primary and secondary crossover rates

k3 = Exponent controlling output frequency 

ky = Shear correction factor 

lg = Number of bits in an encoded gene instance 

lGL = Number of bits in the gene locator (GL) pattern 

ls = nbits – lGL – 1 

L = Length of a finite element 

LAC = Local amplitude criterion 

LQG = Linear quadratic Gaussian 

m = Finite element mass matrix in local coordinate system 

M = Structural mass matrix in global coordinate system 

mg = Finite element mass matrix in global coordinate system 

MAC = Modal assurance criterion 
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MOGA = Multiobjective genetic algorithm 

n = Number of degrees of freedom in a finite element model 

nbit = Number of bits used to encode one variable 

nbits = Number of bits in a chromosome 

ne = Number of finite elements 

nmeas = Number of measurements (sensors) 

nout,i = Generation number for which output is written to the postprocessor 
and/or text files 

npop = Population size 

nsens = Number of DOFs where sensors can be placed 

ntour = Tournament selection size 

nu,meas = Maximum number of measurements (sensors) allowed 

NGL = Probable number of gene instances found in the string 

NLP = Nonlinear programming 

NN = Neural networks 

NSGA = Nondominated sorting genetic algorithm 

ODS = Operational deflection shapes 

ope = Orthogonal projection error 

pc = Probability of crossover 

pGL = Probability of occurrence of a specific gene locator (GL) pattern 

pm = Probability of mutation 

pj = External nodal for force at finite element node j 

PI = Performance index 

q = Vector of natural or modal coordinates 

r = Uniform distributed random number between 0 and 1 

R, R(ω) = Receptance matrix 

sl = Sensor location vector 

S = Vector of step sizes for hillclimbing algorithm 

Se = Surface of finite element 

SA = Simulated annealing 

SAT = Satisfiability problem 
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SDIM = Structural damage identification method 

SGA = Simple genetic algorithm 

t = Instantaneous time 

Tr = Rotation matrix from local coordinate system to global coordinate 
system 

e
rT  = Finite element rotation matrix 

tae = Trigonometric angle error 

tpe = True projection error 

TS = Tabu search 

TSP = Traveling salesman problem 

u = Local axial coordinate of a one dimensional finite element 

u, u(t) = Displacement field vector 

ue = Vector of interpolated displacements for a finite element 

U = Vector of nodal displacements for a finite element 

v = Local transverse coordinate of a one dimensional finite element 

v = Vector of time independent complex amplitudes of velocity response 

V, V(ω) = Mobility matrix 

Ve = Volume of a finite element 

x = Global Cartesian coordinate axis 

xs = Vector of damage indicators 

Xk(ω) = General response in the frequency domain at node k 

y = Global Cartesian coordinate axis 

yn = Noise level in measurements 

z = Vector of time independent complex amplitudes of displacement 
response 

   

α = Angle of element orientation 

αj = Arbitrary constant 

β = Probability of occurrence of a specific bit value 

β1, β2 = Step size modification factors for hillclimbing 

γ2(ω) = Coherence function 
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δε = Vector of virtual strains 

∆(t,m) = Non-uniform bit position generating function 

ε = Vector of strains 

ζj = jth modal damping ratio 

λ, λj = Eigenvalue 

Λ = Diagonal matrix of eigenvalues 

ρ = Mass density of material 

σ = Vector of stresses 

ϕ = Local rotational coordinate of a one dimensional finite element 

ϕ = Eigenvector, mode shape, shape vector 

φy = Shear slenderness factor 

Ψ = Vector of prescribed surface tractions on the element surface Se 

ω = Circular frequency of excitation 

ωj = Natural circular frequency of the system 
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1 INTRODUCTION 

1.1 Overview  

Engineering as a profession requires practicing engineers to enhance the wealth, comfort, 

and safety of the general public by providing solutions to challenges that have not yet 

been solved. These challenges of the 21st century require engineers to develop systems 

similar to biological organisms that are conscious about the environment and able to 

adapt accordingly. Technological advances in computer science, miniaturization, material 

science, and measurement theory enable the collection of a vast amount of information 

from the environment surrounding us. In biological systems, this information is processed 

and interpreted by a central processing unit, such as the brain that triggers responses 

according to the changing environment. Keeping these challenges in mind, one of the 

ultimate goals of engineering is to design sophisticated systems that are aware of the 

environment surrounding them, are able to sense changes in this environment and then 

are able to respond appropriately to any changes. 

Diverse areas in engineering that currently are separate will, in the future, need to 

be intricately linked together to create a complex system that is capable of autonomous 

decision making. In civil engineering, for instance, distinct areas of research in structural 

control, system identification, damage detection, and sensor optimization currently exist. 

All the above-mentioned research areas, however, share some common characteristics. 

These procedures rely on information collected from the structure and in general may 

include any response caused by the changing environment (change in temperature, 

displacement, velocity, acceleration, strains, stresses, curvatures, etc.). Using the 

collected information an inverse problem is formulated for the specific task and by 

solving the inverse problem system parameters are obtained or system input is generated. 

The difficulty in solving inverse problems is that only some incomplete discrete set of 

data is available representing some continuous domain. Solving an inverse problem using 
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limited information leads to uniqueness problems of that solution, i.e. several solutions 

can be found satisfying the inverse problem formulation. Noise in measurement data 

further intensifies the complexity of inverse problems. To tackle these types of problems, 

available data must be extended or curtailed (noise filtering) to convert the ill-posed 

inverse problem into well-structured domain that can be solved with some deterministic 

tools. Alternatively, optimization approaches can be used to avoid the contamination of 

measurements, which results in multiple local optima of the objective and non-uniqueness 

problems. Robust optimization or other pattern recognition algorithms that are able to 

solve inverse problems posed may be found to have algorithms development feature that 

are to the common areas of structural control, system identification, damage detection and 

sensor optimization. 

In the future, smart structures will have the ability to adapt to better fit the 

continuously changing environment by changing system parameters (e.g. healing) based 

on the information collected. Accomplishing this goal requires identifying different tasks 

in a modular fashion, with a central processing unit linking the modules together. The 

modules, however, are typically interconnected, which complicates their design. In a 

smart structure these modules must operate together. For example, if the damage 

detection module signals the occurrence of damage, then the system identification module 

must adjust the overall system parameters, while the control unit adjusts the structural 

response and the sensor optimization unit identifies measurement locations that are more 

beneficial in the changing environment. Feedback must also be provided considering the 

changes made by the individual modules to the system in order to provide continuous 

stimuli flow similar to human neurological systems. 

In particular, structural damage identification methods (SDIM) have several roles 

to play over the life-cycle of a structure. Serving as part of an automated continuous 

monitoring system for structures, SDIMs would enable the early detection of structural 

disintegration, and provide more accurate and efficient scheduling of regular maintenance 

and repair actions. SDIMs can also work to assess damage following the occurrence of 

natural hazards, such as earthquakes, hurricanes, and tornadoes. Using the information 

provided by SDIMs, more accurate assessments can be made concerning property 
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damage losses and the current level of safety and reliability provided by the structure. In 

addition, the necessary actions for rehabilitation, or in certain cases demolition, can be 

made. In recent years, significant research has been focused on developing reliable, yet 

cost effective, SDIMs that allow engineers to accurately assess the condition of 

structures. These SDIMs are beneficial in reducing maintenance, rehabilitation, 

equipment, and professional labor costs. 

1.2 Research Objectives 

This thesis research develops a SDIM that is robust and efficient and that requires only 

minimal measurement information to precisely locate and quantify the severity of damage 

in structures. The SDIM exploits the inherent information contained in frequency 

response functions (FRF) using advanced methods in engineering dynamics and soft 

computing methods. The SDIM methodology developed can be used to identify damage 

that occurs after severe events, such as earthquakes or hurricanes. The performance of 

SDIM is evaluated using simulated case studies that range from beam type structures 

having single and multiple damages to “large” plane frame structures. 

The important effect of the level of noise in the measurement data on the accuracy 

and robustness of the proposed SDIM is also investigated. The performance of the SDIM 

in a noisy environment is evaluated using the same defined case study simulations, but 

examining different noise levels. To provide a rigorous evaluation of the performance of 

the SDIM, an objective comparison to existing procedures that are based on modal 

information is made. In addition, new accuracy measures are developed, which are based 

on Euclidean geometry, that are more consistent in assessing the accuracy and robustness 

of damage localization and severity estimation provided by different SDIMs. 

To maximize the efficiency and performance of the SDIM developed, a 

multiobjective optimization approach is defined that optimizes the specific excitation and 

sensor locations that are used to collect measurement information. Case study simulations 

are again used to evaluate the effect of optimally placing sensors and excitations. Results 

obtained from the SDIM using the optimal excitation and sensor placements are 

compared with results obtained using randomly selected measurement locations. 
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By accomplishing these objectives, this research will advance the field of damage 

detection by providing a sophisticated heuristic SDIM that is capable of accurately 

predicting the location and severity of damage in structures using a minimal amount of 

measurement information. 

1.3 Scope 

The SDIM developed in this research assumes that damage affects the stiffness of 

structural members. Damage types that may change the stiffness properties of structural 

members include the loss of cross-sectional area due to corrosion or chemical 

degradation, material softening due to cyclic loading, loss of structural members, and 

loosening of bolted structural connections. The SDIM developed also requires that the 

global structural response remains linear after damage has occurred, since the proposed 

SDIM relies on a linear model of the structure. This requirement, however, does not 

imply that localized non-linear actions cannot be present in the structure (e.g. in joints). 

As with any SDIM that uses the inherent information contained in linear vibration data to 

detect damages, the SDIM developed only detects damages that influence the global 

vibration characteristics of the structure. Therefore, undetectable damages may include 

cracks that remain closed while vibration measurements are taken. Such cracks may 

occur in compression members (or in the compression fibers of beams), and even if the 

entire cross-section of the member is cracked, the stiffness in compression is not altered. 

Therefore linear vibration signatures will not be sensitive to these types of damages. 

Another type of damage that may not be detected by the SDIM is changes in support 

conditions because of their nonlinear nature. Overall any type of damages that require 

some non-linear actions (such as openings of cracks) to take place in order to change the 

global vibration characteristics of the structure may not be detected by the proposed 

SDIM. 

FRFs are selected as the vibration signature used in this research since they are 

relatively easy to measure and they provide information over a frequency range instead of 

at single frequencies. The measured FRF data are used directly in the SDIM, and 
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therefore do not require any pre- or postprocessing that may result in the contamination or 

loss of crucial information. 

For the FRF-based SDIM, it is assumed that an analytical model of the intact 

structure is available before the SDIM is applied. A linear finite element model of the 

intact structure is used as the baseline model for the SDIM. To detect damage, the 

stiffness parameters of the intact model are updated until the analytically computed FRFs 

match the corresponding measured FRFs. 

The proposed SDIM defines an optimization procedure to minimize the error 

function between the measured FRFs and the analytically computed FRFs. The solution 

to the optimization problem is a set of damage indicators that uniquely identify both the 

location and severity of member damage. By assuming a proportionally damped linear 

system, the modal decomposition of FRF matrices increases the computational efficiency 

of performing the iterative calculations common to heuristic optimization algorithms. 

Genetic algorithms (GA) are used to solve the optimization problem defined for 

the SDIM, in this research. Two distinct GA representations are considered. The simple 

genetic algorithm (SGA) optimizes a structured problem formulation domain of the 

SDIM. The implicit redundant representation (IRR) GA takes advantage of the true 

unstructured nature of damage detection and optimizes an unstructured problem 

formulation. Reducing the size of the search space without having to use subjective 

assumptions provides significant benefits to the optimization procedure and results in an 

effective and robust approach for relatively large problems. A good set of GA parameters 

is established on the basis of trial case study results. Currently the proposed SDIM is not 

applicable for real-time monitoring applications because of the iterative, and therefore 

time consuming, calculations required. 

Several case studies are designed to evaluate the performance of the SDIM 

developed. Simulated measurement data are obtained for each case study by modifying 

the stiffness properties of members in the analytical model. The cases investigated 

become more complex as the number of elements in the finite element model increases 

and the number of damaged elements increases. The first set of case studies defines a 

simple cantilever beam with single damage cases and varying excitation and sensor 

 



 6

locations. The second set of case studies defines a two-span continuous beam with 

multiple damages at various locations. To further verify robustness of the SDIM 

developed, a two-story, three-bay braced frame and a three-story, three-bay unbraced 

plane-frame structure are also investigated. For the frame structure case studies, several 

single and multiple damage cases are investigated.  

In order to study the effect of noise on performance, noise is introduced to the 

measurement data in a commonly accepted way using a Gaussian random noise 

generator. For all case studies, a series of measurement noise levels are introduced. All 

results are compared with noise-free results obtained for the same case studies. Objective 

comparison of the proposed SDIM results is performed using the same plate girder model 

used by Kim and Stubbs (2002) to test their modal-based damage index SDIMs. Error 

measures based on Euclidean geometry are introduced to assist in quantifying the 

accuracy of SDIMs. The measures defined account for both the location and severity 

accuracy of the predicted damage. 

A multiobjective optimization methodology is developed to evolve a Pareto-

optimal set of excitation and sensor layouts specifically to improve the performance of 

the proposed SDIM. The information measure defined for measurements is based on the 

FRF sensitivity with respect to the damage indicators that are the independent variables 

of optimization in the SDIM. The Pareto-front set of solutions enables the selection of 

layout alternatives based on the judgment of the designer. A multiobjective GA (MOGA) 

is defined that generates Pareto-optimal fronts for each of the case studies defined. Both 

SGA and IRR representations are evaluated to determine the effect on the performance of 

the MOGA. The optimal sensor configurations can then be used to collect measurement 

data for each case study investigated in order to evaluate the benefit that using optimal 

excitation and sensor placements has on the performance of the SDIM in detecting both 

single and multiple damages. 

 



 7

1.4 Background and Literature Review 

1.4.1 Relevant and On-going Research in Damage Detection 

1.4.1.1 General Concepts 

Overloading, corrosion, material aging, or other unexpected events, are inevitable over 

the life-cycle of most structures. Unfortunately these acts result in the deterioration of 

structures with time. The goal of SDIMs performing in this environment is to assess 

accurately the current condition of a structure, which facilitates decision-making related 

to rehabilitation and maintenance of the structure. Accurate damage assessment can 

significantly reduce life-cycle cost, while increasing performance and possibly 

lengthening the service-life. 

Rytter (1993) classified SDIMs into four levels. 

Level 1. (DETECTION) The method gives qualitative information about the 

existence of damage in the structure. 

Level 2. (LOCALIZATION) The method gives information about the probable 

damage locations. 

Level 3. (ASSESSMENT) The method gives an estimate of the severity of 

damages. 

Level 4. (PREDICTION) The method gives information about the impact of 

damage on the structure, e.g. estimates the remaining life. 

Pioneering research in the field of damage detection started in the 1970s with the 

realization that mere visual inspection of fatigue prone structures was not sufficient to 

maintain the reliability of aircraft structures and steel bridges (Liu and Yao 1978). In 

early research, damage was found to change the dynamic stiffness of structures and 

natural frequency measurements could be used to detect damage using a finite element 

model of structures, (Cawley and Adams 1979). A review of early system identification 

methods using natural frequencies and modal information is given by Hart and Yao 

(1977). Chondros and Dimarogonas (1980) investigated the influence of crack depth on 

the natural frequency ratios obtained for welded beam structures using a one-dimensional 
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frequency equation for transverse vibrations. Other researches have investigated 

minimizing a Bayesian inference function using a modified Newton-Raphson algorithm 

to obtain a better correlation between the measured and analytical natural frequencies and 

mode shapes (Béliveau and Chater 1982). In addition to using modal data, Kabe (1985) 

used structural connectivity information to optimally adjust the stiffness matrices of 

structures. The optimization problem was developed using Lagrange multiplier 

constrained minimization theory. Frequency response functions (FRF) were used by 

Springer et al. (1988) to determine the natural frequencies of a longitudinally vibrating 

beam. The beam model consisted of two undamaged elements connected by a short 

element representing the damage. Hajela and Soeiro (1990) proposed a SDIM based on 

system identification, in which an error function is minimized between measured and 

predicted responses, including static deflections and vibration modes. A comprehensive 

literature review of existing model parameter updating methods is provided by Natke 

(1988), and Mottershead and Friswell (1993), in which the use of FRF data in parameter 

updating, as well as other procedures, is investigated. 

1.4.1.2 Modal Methods 

In the last decade, the majority of research has focused on SDIMs that use modal 

information. Pandey and Biswas (1994) used several lower frequency modes of vibration 

to estimate the flexibility matrix of structures. The changes in the flexibility matrices 

were used to locate damage. A two-stage SDIM was developed by Hamamoto and Kondo 

(1994). The damage detection problem is divided into global damage detection at the 

system level and local damage detection at the element level. Another two-stage SDIM 

that used modal information was developed by Kim and Bartkowicz (2001) to investigate 

a hexagonal experimental truss. On the global level, the modal properties of the structure 

are identified. If the global damage is determined to be significant, then the damage 

detection of structural elements is carried out to localize and quantify damage. Inverse 

sensitivity equations were used by Fritzen et al. (1998) for damage detection. These 

equations can be based on any vibration data, including modal information, FRFs, time 

series, or a combination of these. Using measured natural frequencies and mode shapes, 
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Abdalla et al. (1998) formulated the damage detection problem as a feasibility problem in 

order to find the damaged stiffness matrix of the structure. The feasibility problem was 

solved using an alternating projection method to best satisfy the problem constraints. 

Doebling et al. (1997) investigated the selection of mode shapes that maximize the 

accuracy of damage detection. They found that mode shapes storing the highest strain 

energy in the damaged structural configuration provided the most information for damage 

detection. These mode shapes can be selected based on modal assurance criterion (MAC). 

Capecchi and Vestroni (1999) proposed an algorithm that only uses the natural 

frequencies. Their approach also accounts for the unstructured nature of damage detection 

in the definition of objective function for optimization. The use of natural frequency 

information only, however, poses a limitation to the applicability of this method. An 

approach for using noisy and incomplete modal data was proposed by Law et al. (1998). 

Other approaches include reducing the analytical model by introducing super-elements 

representing a portion of a large structure (Law et al. 2001). The sub-elements can be 

evaluated for damage using modal information. Waldron et al. (2002) used operational 

deflection shapes (ODS), which are the actual vibration displacement or velocity patterns 

of the vibrating structure. Discontinuities of the ODSs or their derivates indicated the 

existence of damage, but the quantification of damage severity could not be inferred. 

Alvin and Park (1999) used modal information to extract substructural flexibility 

information from global measurements. Jones and Turcotte (2002) found that including 

the information contained in antiresonant frequencies, in addition to the natural 

frequencies, enhanced the accuracy of model updating. Palacz and Krawczuk (2002) 

investigated the sensitivity of different damage indicators for changes in vibration 

signatures caused by damage. The measures investigated were the Cawley-Adams 

criterion, damage location assurance criterion (DLAC), modal assurance criterion 

(MAC), coordinate modal assurance criterion (COMAC), and frequency response 

curvature method (FRCM). A family of SDIMs using modal information became known 

as the damage index methods. These methods were developed by Kim and Stubbs (1995), 

Stubbs and Kim (1996), and Kim and Stubbs (2002). Damage index methods are 

reviewed in greater detail in Section 1.5. 
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1.4.1.3 FRF Methods 

In this research, a FRF-based SDIM is developed. The advantages of using FRF data 

instead of modal parameter data are that FRF data can be measured directly on structures 

without any intermediate steps and that FRF data provide information over a frequency 

range instead of only at specific frequencies. Several researchers have used FRF 

information for system identification and damage detection. A method for identifying 

joint properties of structures from measured FRF data was proposed by Ran and Beards 

(1995). A set of over-determined equations for the dynamic stiffness matrices of joints 

between substructures were solved in a least square sense to obtain the joint parameters. 

Wang et al. (1997) used measured FRF data obtained before and after damage to develop 

an algorithm based on nonlinear perturbation equations. To reduce the influence of errors, 

the perturbation equations were weighted at selected locations and frequencies. An 

iterative modification of the procedure was proposed to overcome difficulties associated 

with incomplete measurement data. An FRF-based SDIM for beam structures was 

introduced by Lee and Shin (2002) using the dynamic equation motion for the intact and 

damaged beams in the continuous domain. The damages throughout the beam were 

described by a damage distribution function, which was assumed to be a piecewise 

uniform function with non-zero values at the damage locations. A reduced domain 

strategy was also developed which eliminated regions of possibly undamaged areas from 

the solution domain using an iterative technique. Thyagarajan et al. (1998) investigated 

the possibility of optimization based on FRF measurements to localize damages in a finite 

element model of a structure. The proposed optimization problem was solved using a 

gradient-based optimization subroutine contained in MATLAB (1999a) optimization 

toolbox. This study stated that a more robust optimization algorithm is desired for noisy 

measurements and a technique that is able to reduce the optimization domain by 

eliminating possibly undamaged elements would be beneficial for larger problems. 

Marwala and Heyns (1998) used a combination of objective functions that used FRF and 

modal information to minimize an error function using the MATLAB (1999a) 

optimization toolbox. 

 



 11

1.4.1.4 Other Methods 

Changes in substructural flexibilities were used in procedures proposed by Park et al. 

(1997) and Park and Reich (1999). Reich and Park (2000) investigated the impact of 

damage on the substructural transmission zeros characterizing substructural FRFs. The 

invariance property of transmission zeros can be used to identify damage when the 

system response characteristics are changed without a corresponding change in the 

transmission zeros. Strain and displacement measurements were used by Reich and Park 

(2001) for system identification of translational and rotational degrees of freedoms. 

Worden et al. (2000) applied statistical outlier analysis, which relies on the concept of 

discordancy so that the method signals deviations from normal condition. Several 

researchers have developed system identification techniques using different measurement 

information (Hoshiya and Saito 1984 used an extended Kalman filter, Ghanem and 

Shinozuka 1995 and Shinozuka and Ghanem 1995 used earthquake acceleration records, 

Kobayashi et al. 1997 used forced vibration information, Quek et al. 1999 used ambient 

vibrations, Takewaki and Nakamura 2000 used limited earthquake records). 

In recent years, artificial intelligence and machine learning techniques have been 

applied to damage detection. Neural networks (NN) are learning algorithms that are 

capable of recognizing patterns between input and output after suitable training 

operations (Haykin 1999). NNs have been successfully used for damage detection in 

several studies. Yun and Bahng (2000) used a back-propagation NN approach to localize 

damages by using natural frequencies and mode shapes as input to the NN. Damage 

identification was carried out on a substructure to reduce the number of unknowns. In 

another study, Yun et al. (2001) used the same back-propagation NN and substructuring 

technique to identify damage of connections modeled as rotational springs. A committee 

of NNs was employed by Marwala (2000) to detect damages in a steel, seam-welded 

cylindrical shell. The committee of NNs was simply a combination of several NNs that 

used different input information in such a way that the overall output was a weighted 

average of the output of each NN. In this study, three inputs FRFs, modal data, and 
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wavelet transform were used. Other researchers have used fuzzy logic and obtained 

remarkable results even at high noise levels (Sawyer and Rao 2000). 

Genetic algorithms (GA) have received significant attention in recent years and 

have been applied successfully to a variety of optimization problems. Pioneering research 

in the topic was done by Holland (1975) and Goldberg (1989). GAs mimic nature’s 

evolutionary mechanism and Darwin’s “survival of the fittest” theory (Michalewicz 

1996). GAs have been applied to a variety of damage detection problems including crack 

detection in composite materials based on Lamb waves (Xu et al. 2002). To improve the 

performance of SGAs, Xu et al. (2002) employed a restarting strategy together with a 

hybrid approach in which the global search capabilities of GAs are combined with local 

search algorithms. The resulting GA was called the projection GA (pGA). A common 

feature of all GA-based SDIMs is that they employ an error function between the 

measured data and the discrete analytical model. Mares and Surace (1996) used GAs to 

maximize an objective function based on the residual force method, which is computed 

from measured natural frequencies and mode shapes. Dunn (1998) studied the 

performance of GAs and stochastic hillclimbing on a finite element model identification 

problem in which the error function between the measures and analytical FRFs was 

minimized. Krawczuk (2002) employed a simple genetic algorithm (SGA) to find 

damages using spectral beam finite elements for wave propagation. The finite element 

consisted of a dimensionless spring modeling a single non-propagating crack. The goal of 

the optimization was to find the location and extent of the crack by maximizing a 

correlation type objective function between the measured and analytical information. The 

implicit redundant representation (IRR) of genes (Raich and Ghaboussi 1997a), which 

allows the dynamic change or evolution of optimization variables, was applied by Chou 

and Ghaboussi (2001). In their approach, however, static equilibrium equations were used 

instead of vibration data to set up the optimization problem. Moslem and Nafaspour 

(2002) considered the unstructured nature inherent in damage detection problems by 

applying a two-stage identification procedure in which areas with possible damage are 

first identified and then only elements of that area are included in the optimization 

domain. Chiang and Lai (1999) used a simulated evolution algorithm, in which the 
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continuous parameters were not encoded into genes and a random Gaussian mutation 

operator was used without crossover. Another study that used a real coded GA was 

presented by Hao and Xia (2002) in which the error function was based on modal 

information. 

1.4.2 Relevant and On-going Research in Near-optimal Sensor Placement 

1.4.2.1 General Concepts 

A wide variety of engineering tools developed in modern society depend heavily on 

measurement information, especially in terms of quantity and quality. Applications cover 

a broad range of engineering disciplines including aerospace, mechanical and civil 

engineering. Because of the diversity of applications, the information that must be 

captured in measurements varies significantly. In situations when the desired 

measurement input is vibration data, vibration transducers, such as force gauges, 

accelerometers and impedance heads, are the primary source of information (Ewins 

2000). In most cases, however, the number of possible sensor locations is much larger 

than the actual number of sensors used in measurements. Therefore, it is necessary that 

the limited sensors are placed in a near-optimal way with respect to the application that 

uses the measurement information as an input. 

A survey of actuator and sensor placement problems from a wide range of 

engineering disciplines was provided by Padula and Kincaid (1999). Although references 

from different areas were cited, the main focus of the survey was concerned with 

aerospace vibration control and noise attenuation applications. Several optimization 

procedures were discussed, including manual optimization techniques, intuitive recipes, 

and combinatorial and continuous algorithms. Among the possible combinatorial 

optimization techniques, several applications used simulated annealing (SA), tabu search 

(TS), and genetic algorithms (GA). Three aerospace application areas for sensor and 

actuator placement optimization were identified: active structural acoustic control 

(ASAC), where actuators attached to the aircraft fuselage are used to control (reduce) 

noise in the passenger compartment; optimum sensor placement for system identification 
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and control of aeroelastic structures; and smart technologies to provide three-axis control 

in an aircraft wing. The objective for ASAC problems was to determine the control forces 

and locations of the actuators, which minimizes the noise levels at each microphone. 

For the placement of sensors for system identification, in most cases the 

optimization problem is established by assuming a finite element model of the structure. 

Using the finite element model, a matrix, Xa, of the n most important vibration modes at 

m potential sensor locations is formed. The task is to select a subset of k sensor locations 

and to form the reduced mode shape matrix, X, by selecting corresponding rows from Xa. 

The best subset is identified as the one that maximizes the Fisher information matrix 

XTX. This problem can be solved using any combinatorial optimization algorithm. 

Gawronski (1997) targeted two types of actuator and sensor placement problems. 

The first one related to structural testing, in which the dynamic environment cannot be 

duplicated during testing. In this case in order to obtain the performance of the test 

configuration close to the performance of the structure in the real environment, the 

potential actuator and sensor locations are selected to imitate the real-world environment. 

In a control design problem, actuators and sensors are placed at available locations related 

to disturbance and performance evaluation locations, respectively. The procedure 

employs the controllability and observability grammians defined for a modal state space 

representation of a flexible structure, which are used to obtain the Hankel singular value 

as a geometric mean of the two grammians. Reynier and Kandil (1999) also used 

observability requirements for sensor optimization based on the observability grammians. 

In their study, the sensor locations obtained were compared with a technique that 

minimizes the noise effect in modal identification by finding modal parameters in a least 

square sense. 

A study focusing on the modal identification of mechanical systems was provided 

by Shih and Lee (1998). The method was based on modified controllability and 

observability measures with physical representations on FRF plots. Several criteria based 

on the above measures were compared. The selection of optimal sensor locations 

employed a ranking procedure based on the effectiveness of sensors evaluated at different 

locations. 
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Multiobjective optimization for structural control was investigated by Brown et al. 

(1999). The research goal was to identify Pareto optimal solutions of control design such 

that the regulated outputs (control force, displacement, velocity or acceleration) were 

minimized while satisfying design constraints. Pareto fronts were compared to determine 

the preferred locations for actuators and sensors for a given loading situation. To solve 

the multiobjective optimization, a modified multiobjective linear quadratic Gaussian 

(LQG) technique was employed. Pareto optimal trade-off curves for an example shear-

building model were compared to determine the minimum amount of control force while 

satisfying structural response requirements (floor displacement or acceleration). The 

benefit of using Pareto optimal solutions was that the designer could compare the 

potential actuator and sensor locations based on trade-off curves, which show the relation 

between contradicting objectives. 

Other research has focused on evaluating vibration control strategies using 

optimal actuator and sensor locations. Bruant et al. (1999) investigated the optimum 

configuration of piezoelectric actuator and sensor placement on beam structures to 

increase control efficiency (i.e. to suppress unwanted vibrations as quickly as possible). 

Other researches (Hanagan et al. 2000) used different measures for vibration control to 

optimize the actuator and sensor locations, including expressing the dissipation energy of 

the system due to control action in a quadratic performance index (PI) using the output 

feedback. 

1.4.2.2 Sensor Placement for Modal Based Damage Detection 

The optimum sensor placement methodology proposed by Shi et al. (2000) focused on the 

ability to improve measurement information specifically defined for a SDIM that used 

modal information. Assumptions for structural damage detection included that only 

structural stiffness changes were present and the mass and damping properties were not 

affected by damage. It was further assumed that the stiffness changes were small enough 

not to disturb structural connectivity. For a small perturbation in stiffness, the eigenvalue 

problem for a n-DOF dynamic system can be written. 
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where K and M are structural stiffness and mass matrices, respectively; λi and ϕi 

are the ith eigenvalue and mode shape, respectively; and the symbol ∆ indicates small 

perturbations in the corresponding quantities. Assuming that the perturbation of the ith 

mode shape, , is a linear combination of the mode shapes and using orthogonality 

relationships the following expression can be obtained. 
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Shi et al. (2000) assumed that the reduction in structural stiffness could be 

obtained as the summation (assembly) of each elemental stiffness matrix multiplied by a 

damage coefficient. 
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where kk is the kth elemental stiffness matrix, αk is the kth element damage 

coefficient, and ne is the number of elements. Using the definition of the ith mode shape 

perturbation vector and the damage coefficients, the following equation can be written. 
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Using the vector notation for the above equation and introducing the F(K) vector 

of sensitivity coefficients of the ith mode shape changes and the damage vector, δA, 

definition Eq. (1.4) can be written. 

 ( )i δ∆ =φ F K A  (1.5) 

 



 17
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If the mode shapes before and after damage are available than Eq. (1.5) can be 

solved analytically in a least square sense to give the optimal estimates of the damage 

coefficient vector. 
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The bracketed term for which the inverse is taken in the above equation is the 

Fisher information matrix, A0, which is a summation of the contribution of each DOF or 

sensor location to the mode shapes of the structure. 

  (1.8) ( ) ( )0
T=A F K F K

Each DOF contains some information in the Fisher information matrix, but each 

has a different contribution. The information contained in the measurements can be 

formulated as the rank of the following matrix. 

  (1.9) ( ) ( ) ( ) ( )
1T −
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The diagonal terms of the matrix E represent the fractional contribution of each 

DOF to the rank of E. Therefore DOFs contributing the least information are redundant 

and can be eliminated from the candidate set of possible sensor locations. The remaining 

set of DOFs can be considered as the optimum set of sensor locations, which maximizes 
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the information contained in the Fisher matrix with respect to the specific modal-based 

SDIM used. 

Worden and Burrows (2001) also focused on sensor optimization for damage 

detection. Several optimization algorithms were compared, including an iterative 

insertion/deletion technique, genetic algorithms (GA), and simulated annealing (SA). The 

base line SDIM employed a neural network (NN) with the input parameters of mode 

shapes and curvatures. The NN was trained for a cantilever plate problem using a 20 × 20 

finite element mesh. The number of measurement points used for training the neural 

network was 20 out of the 400 available nodal points. The fitness measure used for 

optimization was defined as the mean square error (MSE) between the desired network 

responses and those estimated by the network after training. Using the fitness measures, a 

mixed objective function was defined based on the average and maximum MSE and also 

on the number of misclassifications for each trained neural network. Sensor 

configurations providing the lowest ranks with no misclassifications were judged best. 

Cobb and Liebst (1997) proposed a method of prioritizing sensor locations for a 

damage detection method that used measured modal data based on a finite element 

representation of the structure. The goal was to determine a subset of sensor locations that 

could capture observable changes in natural frequencies and mode shapes. The 

perturbation in a partial mode shape, which is called the partial eigenvector sensitivity, 

was expressed based on the eigenvalue problem using the damage fraction values. 

Damage fraction for an element was defined as the ratio of the stiffnesses of the element 

after and before damage. Two properties of the partial eigenvector sensitivity matrices 

were investigated: detectability and colinearity. Detectability is a measure of the amount 

of change that occurs from changes in a design variable, whereas colinearity is a measure 

of the direction of change. Both sensor prioritization and damage localization problems 

used the same measures (detectability and colinearity) and therefore could be considered 

as dual problems. In solving these problems, threshold values for the two measures were 

used to account for uncertainties and modeling errors. This approach resulted in elements 

in which damage could not be detected from measured data. A subset of collinear 
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elements in the set of the remaining (detectable) elements is indistinguishable from each 

other. 

1.4.2.3 Other Methods 

An application having similar computational challenges to damage detection is structural 

parameter estimation from measured vibration data. The efficiency of parameter 

estimation therefore also depends on the quality of measurements information, which 

suggests the existence of optimal sensor locations specific to this problem. Pothisiri and 

Hjelmstad (2002) proposed an algorithm for the selection of a near-optimal set of 

possible sensor locations. Their method minimizes the sensitivity of the parameter 

estimates with respect to observed response. The structural parameters were estimated 

from modal information by minimizing a combination of weighted error functions for the 

measured modes. The goal was to find a subset of sensor locations that provided the least 

sensitive measurement information for noise. Monte Carlo simulation was also used to 

generate the mean and covariance estimates needed for the selection algorithm. Random 

staring points were used in the optimization to locate multiple local solutions to the 

problem. The optimum set of sensor locations are defined as the set for which the noise 

sensitivity cannot be significantly reduced. 

A review of existing procedures for sensor optimization problems was also 

provided in the paper by Worden and Burrows (2001). The cited literature mainly used 

modal information as the base data for optimization concerning control or identification 

problems. The measures investigated ranged from simple information-based approach, 

Fisher information matrix, average driving point residue, Guyan model reduction to 

kinetic energy methods based on observability of modes. All above methods used mode 

shapes to quantify the quality of measurements based on some intuition that possibly 

provides the best solution for sensor placement. None of them were specifically 

concerned with identifying damage. 
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1.5 Overview of Modal Based Damage Index SDIMs 

In this section three specific SDIMs that use modal information are discussed (Kim and 

Stubbs 1995, Stubbs and Kim 1996, Kim and Stubbs 2002). These SDIMs are widely 

accepted as baseline techniques in damage detection using modal information. 

Assume that a discrete analytical model of the undamaged structure can be 

modeled with ne element and n nodes. If the structure is linear, then the ith modal stiffness 

is obtained from the stiffness matrix of the entire structure and the ith mode shape and the 

contribution of the jth member to the ith modal stiffness is expressed by 

  (1.10) 
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where Ki is the ith modal energy,  is the iiφ
th mode shape, K is the structural 

stiffness matrix, Kij is the contribution of element j to the ith modal energy, and Kj is 

contribution of the jth element to the structural stiffness matrix. Consequently, the fraction 

of modal energy of the ith mode with respect to the jth member can be defined as 
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It is further assumed that the linear stiffness contribution matrix of element j can 

be separated into a matrix dependent on only geometrical properties and a scalar that is 

material specific. 

 0j jE j=K K  (1.12) 

where the scalar Ej is the material stiffness otherwise known as Young’s modulus 

of the jth element and Kj0 is a matrix that only depends on the geometric properties of 

element j. 
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1.5.1 Damage Index A 

This method was proposed by Kim and Stubbs (1995). This was the original damage 

index method. If the damaged structure is denoted by a d superscript and the assumption 

is made that the modal sensitivities in the ith mode and jth element are the same for both 

the undamaged and damaged structure, , then the following expression holds. d
ij ijF F�

 1
d d

ij ij i
d

ij ij i

F K K
F K K

= =  (1.13) 

Substituting the definitions of the modal stiffness and the elemental contribution, 

the damage index of the jth element, βj, is defined by the expression. 
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where  and 0
T

ij i j iγ = φ K φ ( ) 0

Td
ij i j iγ = φ K φd , nm is the number of modes, and 

damage is indicated in element j if βj > 1. Assuming that the relationship between the 

Young’s modulus of the damaged and undamaged structures is described by 

(1d
j jE E )jα= + , the severity estimator, αj, can be written. 

 1 1,    1j
j

α α
β j= − ≥ −  (1.15) 

The severity estimator, αj, gives the reduction in stiffness of the jth member and 

can be used to assess damage in structures. 

 



 22

1.5.2 Damage Index B 

There is a problem with the definition of the damage index in Eq. (1.14). The equation 

becomes singular when the denominator is zero, which can happen if the element size 

approaches zero and its location coincides with a nodal point of a mode. To remove this 

limitation, the reference axis for the modal sensitivities is shifted by one,  and 

. After some mathematical manipulations using this assumption, the 

equation for the damage index, β

1ij ijF F→ +

1d d
ij ijF F→ +

j, for the jth element can be obtained. 

 1 1

1 1

m e

m e

n n
d d
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γ γ
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γ γ

= =

= =

 
+ 

= =
 

+ 
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∑ ∑

∑ ∑
  (1.16) 

where damage is indicated for the jth element if βj > 1. The severity estimator is 

unaltered by the new definition of the damage index and Eq. (1.15) still holds. 

The damage index B procedure was used by Worden et al. (1999) in an 

experimental study involving a stiffened plate. Ho and Ewins (1999) investigated the 

performance of damage index B algorithm in a noisy environment and in situations when 

only partial mode shape measurements were available. 

1.5.3 Damage Index C 

The details of this of this version of the damage index method can be found in Kim and 

Stubbs (2002). Without presenting a rigorous derivation here, the damage index for nm 

vibration modes at the jth location is defined by 
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 (1.17) 
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where  is a dimensionless factor representing the systematic change in 

modal parameters of the i

( ,ig λ φ)
th mode due to damage. Again the severity estimator, αj, is given 

by Eq. (1.15). 

In all of the above damage index procedures, the damage detection model is a 

mathematical representation of the structure in which the degrees of freedoms (DOF) 

correspond to actual or interpolated sensor readings. For one dimensional elements, such 

as Bernoulli beam elements (APPENDIX A) a third order spline, w(x) can be generated 

from the measured mode shape of the ith modal vector φ . Using the spline approximation 

of the mode shape, the instantaneous curvature is computed at each node, 

i

( ) ( )i x w xϕ ′′ ′′= . The values for ijγ , d
ijγ  and iγ  used in the damage index equations are 

computed using the following integrals. 

 ( ) ( ) ( )22 2

0

,    ,    
k k k k

k k

x x x x L
d d

ij i ij i i i
x x

x dx x dx x dxγ ϕ γ ϕ γ ϕ
+∆ +∆

′′ ′′ ′′ = = =       ∫ ∫ ∫  (1.18) 

where xk and xk+∆xk are corresponding nodal locations of element j and L is the 

length of the one dimensional structure. 

The authors (Kim and Stubbs, 2002) used statistical criteria for damage 

localization. For any given set of modes, the damage locations are selected based on a 

rejection of hypotheses. In this approach, the set of damage indices, βj (j = 1,2,…,ne) is 

treated as a normally distributed random variable representing a sample space. Using 

statistical properties, the normalized damage indicator is obtained. 

 2j
jZ

β

β β
σ

−
= −  (1.19) 

where β  and σβ are the mean and standard deviation of the set of damage indices 

βj, respectively. The members are then classified using a statistical pattern recognition 

that utilizes hypotheses testing. The null hypothesis, H0, is that the jth member is not 
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damaged and the alternate hypothesis, H1, is that the member is damaged. The decision 

rule is based on the normalized damage index, Zj, of the jth member: H0, no damage exists 

in member j if Zj < 0, or H1, the jth elements is damaged and Zj ≥ 0. This classification 

procedure can be applied to any of the damage index algorithms. After classification, the 

severity estimator of the elements in the damaged group is computed, which provides the 

corresponding reduction in stiffness of that element. 

1.6 Overview of Frequency Domain Criteria for SDIMs 

When frequency response function measurements are available, correlation measures 

between the analytical and measured data provide useful information about the quality of 

a model. These correlation measures can be used to adjust the analytical model to better 

fit the measured data or to detect damage in structures. An overview of the most 

commonly used frequency domain criteria was provided by Zang et al. (2001). In 

addition to reviewing the commonly used correlations, the authors proposed new 

measures that gave information about the quality of the analytical model on a global 

level. In general, frequency domain criteria have several advantages over modal 

measures. There is no error involved due to modal analysis of the measured data. This is 

particularly beneficial when the modes are closely spaced or high damping exists in the 

structure. For some application it is necessary to find correlated mode pairs, which can be 

cumbersome for industrial applications. 

The first such frequency domain criterion is called the frequency response 

assurance criterion (FRAC) (Heylen and Avitabile 1998), which is defined for the jth 

DOF as. 
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 (1.20) 

where HA(ωi)j is the predicted or analytical FRF for the jth DOF at successive 

frequencies ωi, HX(ωi)j is the vector of corresponding FRF measurements and the 
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superscript, *, indicates complex conjugate transpose. This measure returns a value 

between zero and unity that indicates zero or perfect correlation, respectively. This 

measure contains information for a specific excitation and measurement point pair. In the 

modal domain, a similar measure is the coordinate modal assurance criterion or COMAC 

(Lieven and Ewins, 1988). 

Using the same measurement information, a similar correlation frequency domain 

function, which is called the frequency amplitude assurance criterion (FAAC), can be 

defined as 
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 (1.21) 

Similar to the FRAC in Eq. (1.20), the FAAC returns a correlation value between 

zero and unity. 

Another correlation measure, which is called the frequency domain assurance 

criterion (FDAC), has been defined by Pascual et al. (1997). 

 ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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a x
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ω ω ω ω
ω ω
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H H H H

H H H H
 (1.22) 

where HA(ωA) is a vector of predicted or analytical responses at a given frequency 

ωA, HX(ωX) is a vector of measured responses at a given frequency ωX, and each 

individual element is associated with a different DOF. The FDAC also returns a 

correlation value between zero and one. In the modal domain, a similar measure is the 

modal assurance criterion (MAC), which correlates two operating shape vectors that are 

measured and computed at a given frequency pair. A modified version of the original 

FDAC was used by Heylen and Avitabile (1998). The modified measure returns a value 

between –1 and 1, in which the absolute magnitude of the measure corresponds to the 

correlation, while the sign gives the phase relation between the measured and analytical 

FRFs. 

 



 26

 ( ) ( ) ( )( )( ) ( )*FDAC , sign Re ,m a x X X A A a xFDACω ω ω ω= H H ω ω  (1.23) 

The frequency domain correlation criteria discussed so far are either amplitude 

based (FRAC and FAAC) or shape based (FDAC). In amplitude-based measures the 

correlation is defined for a DOF and in shape-based measures the correlation is a function 

of frequency. Zang et al. (2001) proposed new frequency correlation criteria that 

combined all DOFs and the amplitude and shape information as a function of frequency. 

The two functions defined were the global shape criterion (GSC) and the global 

amplitude criterion (GAC). 
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( ) ( )

where HA(ω) and HX(ω) are the vectors of analytical and measured responses, 

respectively at a series of DOFs i, as a function of ω, while the excitation location is fixed 

at DOF j. From the definition of the GAC, it is easy to formulate an analogue criterion in 

a local sense defined for a pair of measurement and excitation DOF. The local amplitude 

criterion (LAC) differs from GAC only in the indexing. 
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( ) ( )

( ) ( ) ( ) ( )
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ω ω

ω
ω ω ω

=
   +   

H H

H H H H ω
 (1.26) 

where i and j are the response and excitation DOFs, respectively. For the GSC, an 

analogous local correlation also can be defined, but it would always be unity for the entire 

frequency range and therefore would not provide any useful information regarding 

damage detection. The average LAC or LAC  can be obtained by averaging the LAC 

obtained at a series of discrete frequencies over the frequency range. 
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To conclude this section, it should be noted that frequency domain criteria are 

useful in quantifying the closeness of the analytical and measured responses. These 

measures can be used for model updating or damage detection to formulate a set of 

determined (or over determined) simultaneous equations that can be solved for the 

unknown quantities. They are also suitable for optimization when the goal is to obtain the 

best correlation between the analytical and measurement data. Zang et al. (2001) point 

out that the use of GSC and GAC can be particularly useful, because these criteria can 

quantify the overall correlation between two sets of data (analytical and measured) as a 

function of frequency and therefore highlighting frequency regions of good or poor 

correlation. 

1.7 Organization of the Dissertation 

The remainder of this dissertation is divided into nine sections. Section 2 presents the 

theory of SDIMs. The definition of FRFs is given and the modal decomposition of FRF 

matrices is discussed. Statistical measurement theory of FRFs is provided to demonstrate 

common difficulties in designing the measurement configurations. The objective function 

of the optimization problem is defined as an error function between the measured and 

analytical FRFs. In addition, an information measure is defined that allows the 

quantitative evaluation of the excitation and sensor placement optimization problem. The 

mathematical formulation of the multiobjective optimization problem for excitation and 

sensor placement is presented. 

Section 3 discusses both traditional and heuristic optimization algorithms. An 

overview of traditional optimization problem classes and algorithms is provided. GAs are 

introduced by first discussing the simple genetic algorithm (SGA). Several advanced 

genetic operators are discussed which enhance the performance of GAs. Two 

representations are adapted for the proposed SDIM. The fixed representation implements 

the structured design variable formulation of the optimization problem of damage 
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detection while the implicit redundant representation (IRR) allows the number of 

variables to change during optimization. The IRR GA allows an unstructured formulation 

to be used. A local hillclimbing search technique is presented that fine tunes the solutions 

obtained by GAs. The mathematical notion of multiobjective optimization is presented 

and a multiobjective nondominated sorting genetic algorithm (NSGA) is adapted for the 

excitation and sensor layout design problem. 

The implementation details of the SDIM and multiobjective optimization 

methodologies developed are discussed in Section 4. The hierarchical structure of the 

computer software is explained and the connections between the program modules are 

described. A description of the graphical user interface is provided. 

Section 5 describes the case study problem simulations for the cantilever beam, 

two-span continuous beam, moment frame, and plate girder problems (Kim and Stubbs 

2002) investigated in this research. The structural and geometrical parameters and finite 

element mesh of each case study is discussed. Unique designations for all case study 

trials are defined and the specific damage scenarios investigated by the case studies are 

summarized in tables identifying the locations and severity of inflicted damages and the 

excitation and sensor locations used. 

Sections 6 through 9 present the SDIM results for the case study simulations. The 

case studies are discussed in order of increasing complexity. Result for the cantilever 

beam problem are presented in Section 6. Section 7 present SDIM result for the two-span 

continuous beam problem including multiple damage cases. Results obtained for larger 

frame structures are presented in 8. Section 9 provides an objective comparison of the 

proposed SDIM results with results obtained using the damage index SDIMs by Kim and 

Stubbs (2002). New accuracy measures, which assess the accuracy of SDIMs are 

discussed. 

In Section 10, a summary of the results is provided along with the significant 

conclusions made within the scope of this research. In addition, future recommendations 

and future research extensions are identified and discussed. 
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2 THEORY OF DAMAGE DETECTION  

This section discusses the principles of damage detection. The vibration signature used 

for detecting damage in this research is derived from the set of dynamic equations of 

motion. The analytical computation of this signature uses modal decomposition to reduce 

the computational expenses incurred by using the elementary definition of frequency 

response functions. A brief introduction into the measurement theory of frequency 

response functions is provided to demonstrate common difficulties in designing the 

measurement configuration. In the following sections, the mathematical formulation of 

damage detection is developed as an optimization problem. The last topic of this section 

presents the methodology for optimum excitation/sensor layout design, which is used for 

measuring frequency response functions. An information measure pertaining to the 

quality of measurements is defined that facilitates the optimization of the combinatorial 

problem. 

2.1 Equations of Motion for Dynamic Systems 

Although most vibrating structures cannot be represented as single degree of freedom 

systems (SDOF) with reasonable accuracy, SDOF systems convey the fundamental 

concepts of dynamics, including free and forced vibrations, natural frequency, resonance, 

etc. When the structure is too complex to be represented accurately as a SDOF system, 

then the concept of multi degree of freedom (MDOF) systems can be introduced. MDOF 

systems can be specified as two-, three-, or, in general, n-dimensional, indicating that the 

number of independent coordinates required to accurately describe the system is two, 

three, or n. In practice, several different types of MDOF systems are used such as shear 

building models, mass spring and damper systems, and theses systems use different rules 

to combine the stiffness and mass properties of structural members. For MDOF systems 

with only a few degrees of freedom (DOF), D’Alembert’s principle, which includes 

inertia forces, can be used to formulate the equations of motion. The use of this principle, 

however, is impractical for large structures having more DOFs. 
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One particular MDOF technique for discretizing systems with infinite DOF is 

defining a finite element model of the system. The governing finite element equation for 

dynamic analysis can be derived from the principle of virtual work, which states that the 

work done by the internal forces equals to the work done by the external forces for any 

small kinematically admissible displacements. The virtual work expression for a single 

finite element, including inertia effects (Figure 2.1) and dissipative (damping) forces, can 

be written as. 

  (2.1) ( ) ,
1

e e e

n
T T T T T T

e e e d e e e e j
jV V S

dV dV dSδ δ ρ δ κ δ δ δ
=

+ + = + + ∑∫∫∫ ∫∫∫ ∫∫ε σ u u u u u F u Ψ u p�� � j

where σ is the vector of stresses, ue is the vector of displacements for the element, 

δue and δε are the vectors of virtual displacements and corresponding strains respectively, 

F is the vector of body forces, Ψ is the vector of prescribed surface tractions on the 

element surface Se, pj is the vector of concentrated nodal loads at node j, ρ is the mass 

density of the material, κd is a material damping parameter, and volume integration is 

carried out over the element volume Ve. Dots appearing over quantities indicate time 

derivatives, where u��  corresponds with acceleration and  with velocity. e eu�

The displacement field and its time derivatives, which are a functions of both time 

and space coordinates are expressed in the following form. 

 ,     ,      (2.2) e =u NU e =u NU�� e =u NU����

where N is a vector or matrix containing the interpolation functions which are 

functions of space coordinates only, and U is a vector of nodal degrees of freedom for the 

element which are functions of time. Combining Eq. (2.2) with the expression of virtual 

work, Eq. (2.1), yields to the expression of the virtual work for any finite element. 
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Figure 2.1. Stresses, inertial and applied body forces on an infinitesimal element 
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 (2.3) 

In the above equation matrix B is obtained from compatibility equations, which 

state that strains can be obtained from displacements by differentiation. 

 ,     e= ∂ε u =ε BU ,     = ∂B N  (2.4) 

The differential operator matrix ∂ is obtained from theory of elasticity. Since the 

expression of the virtual work must be valid for any arbitrary value of δU, the dynamic 

equation of motion for a single finite element can be written as. 
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  (2.5) int ext+ + =mU cU r r�� �

where the element mass and damping matrices are defined as 

  (2.6) 
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The elemental internal force and external load vectors for the element are defined: 

  (2.8) int
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When the element mass and damping matrices are evaluated using the same 

interpolation functions N as used for the displacement field interpolation, the resulting 

matrices are called consistent mass and consistent damping matrices. Assembly of these 

element matrices is identical to that of the element stiffness matrices. Further details may 

be found in any general finite element book (Cook et al. 2002, Weaver and Johnston 

1984). 

The internal force vector, Eq. (2.8), is valid for both linear and nonlinear materials 

and is a general representation of internal forces. For linear elastic materials this equation 

becomes. 

 ,      (2.10) int =r kU
e

T

V

dV= ∫∫∫k B DB

where k is the element stiffness matrix and D is the matrix representing stress-

strain relationship for the particular material. After assembling the element mass and 
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stiffness matrices, the equation of motion for a linear n DOF structure based on Eqs. (2.5)

 and (2.10) can be stated. 

  (2.11) ext+ + =Mu Cu Ku R�� �

where M is the n × n mass matrix for the whole structure, C is the n × n damping 

matrix, K is the n × n stiffness matrix, and ,  and  are n × 1 vectors of nodal 

acceleration, velocity and displacement, respectively in the global coordinate system, and 

R

u�� u� u

ext is the time dependent n × 1 vector of externally applied loads. Eq. (2.11) is a system 

of coupled, second-order ordinary differential equations in time. Dynamic analysis 

procedures focus on solving this set of differential equations. 

In this research, the simple frame element used is obtained by combining a one-

dimensional axial element and a one-dimensional Bernoulli cubic beam element. To 

obtain the stiffness and consistent mass matrices of the frame element for a linear elastic 

material, Eqs. (2.6) and (2.10) can be used. Derivation of the necessary matrices is 

detailed in Appendix A. Although Eq. (2.7) defines the element damping matrix, the 

development of such matrix usually is not done in practice. The reason is that damping is 

a complex phenomenon that is typically associated with the whole structure rather than 

individual elements. The problem with formulating a damping matrix on the element 

level is that damping is influenced not only by material and sectional properties of the 

element, but also by connection types, micro and macro cracks, plastic behavior, fatigue 

etc. 

2.2 Frequency Response Functions 

In Section 2.1 the equation of motion, Eq. (2.11), was derived for a n-DOF system 

consisting of linearly elastic members. At this point the assumptions about the damping 

forces are not necessary and a generally accepted damping model will be introduced later 

to increase the speed of calculations and provide a better physical representation of 

damping forces. Suppose that an n-DOF system that is described by Eq. (2.11) is 

investigated. If the system is excited by a set of sinusoidal forces with ω circular 
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frequency, but with different amplitudes and phases, then the right hand side of Eq. (2.11) 

can be rewritten (Gatti and Ferrari 1999). 

 0
i te ω−+ + =Mu Cu Ku f�� �  (2.12) 

where f0 is an n × 1 vector of time independent complex amplitudes of excitation, 

t is the instantaneous time, and e is the natural logarithmic base number. 

It is assumed that a solution exists in the from: 

 i te ω−=u z  (2.13) 

where z is an n × 1 vector of time independent complex amplitudes of 

displacement response. Substituting Eq. (2.13) into Eq. (2.12), the formal mathematical 

solution is obtained: 

  (2.14) 2 -1
0iω ω=z (K - C - M) f Rf0≡

where the n × n receptance matrix R is defined as a function of ω. 

 ( ) ( ) 12iω ω ω
−

= ≡ − −R R K C M  (2.15) 

The jkth member of the receptance matrix represents the displacement response of 

the jth DOF when the excitation is applied at the kth DOF. The computational expense 

incurred in obtaining the receptance matrix by means of Eq. (2.15) is prohibitive for 

iterative methods because for each frequency value, ω, in the domain of interest a large 

(n × n) complex matrix must be inverted. 

Because of the assumption made in Eq. (2.13), a matrix representing displacement 

responses is obtained. Each entry of this matrix is a function of ω and is also known as a 

frequency response function (FRF). Consequently the receptance matrix is a type of FRF 

matrix. In this research only receptance, mobility and accelerance matrices are of concern 

 



 35

but in addition to these matrices there exist several other FRF matrices (dynamic 

stiffness, apparent mass, mechanical impedance). 

Using the assumption presented in Eq. (2.13), the velocity and acceleration 

responses can be obtained by differentiation. 
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where v is an n × 1 vector of time independent complex amplitudes of velocity 

response, and a is an n × 1 vector of time independent complex amplitudes of 

acceleration response. Using the above equation it is not difficult to prove the following 

relationship between the receptance, mobility, and accelerance matrices. 
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= −

V R

A R
 (2.17) 

It is widely accepted to denote FRF matrices with the notation of H(ω). In this 

text whenever the notation of the general FRF matrix H(ω) is stated the reader can 

substitute any FRF matrix, namely the receptance R(ω), mobility V(ω) and accelerance 

A(ω) matrices. The equations derived for damage detection using the general FRF matrix 

are valid for any of the particular FRF matrices. After one FRF matrix is selected, 

however, the selection is unique. Let us suppose that the measured FRF data corresponds 

to acceleration response. In this case, it is natural to use the accelerance in the SDIM. If 

the choice of preferred FRF matrix is made then the receptance, mobility and accelerance 

matrices are not interchangeable. 

2.2.1 Free Vibration of a Linear System 

In Eq. (2.11) the system matrices M, C and K are generally symmetric, but not diagonal. 

The non-diagonal property of the system matrices results in the coupling of the equations 
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of motion. When the mass matrix, M, is not diagonal the system is said to be inertially, or 

dynamically coupled, and when K is not diagonal there is elastic, stiffness, or static 

coupling. In practice, the coupling due to the non-diagonal property of the damping 

matrix, C, does not have a specific name, because widely accepted damping models do 

not have measurable physical meanings in the same sense as M and K have. With respect 

to FRF matrices, the coupling effects mean that the inverse of full complex matrices must 

be taken, which can be extremely ineffective due to computational expense for structures 

with large number of DOFs. 

The coupling of the set of equations of motion is not an intrinsic characteristic of 

the structural system, but depends on the choice of the coordinate system. The answer to 

this problem lies in the mathematical science of linear algebra. It is known (without 

rigorously stating the necessary and sufficient conditions) that for a symmetric matrix 

with real entries there exists a coordinate system (or basis vectors) in which the matrix is 

diagonal. The goal now is to find a coordinate system in which both the structural mass 

and stiffness matrices are diagonal, so that the set of equations of motion are uncoupled. 

First consider the equation motion of an n-DOF system in free vibration without 

damping. 

 + =Mu Ku 0��  (2.18) 

Further assuming that the harmonic solution of the above equation exists in the 

form. 

 ( ) i tt e ω−=u φ  (2.19) 

where  is a time independent shape vector, and 0 is an n × 1 zero vector. The 

interpretation of the shape vector, , is while the system moves synchronously its shape 

does not change with respect to time, but the amplitude of motion does. Substituting 

Eq. (2.19) into Eq. (2.18) gives 

φ

φ
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 ( )2ω− =K M φ 0  (2.20) 

or, written in the generalized form, 

  (2.21) 2ω λ= =Kφ Mφ Mφ

Mathematically this equation is referred to as the generalized eigenvalue problem, 

where λ is an eigenvalue and the corresponding eigenvector is φ . Eq. (2.21) will have a 

non-trivial solution if and only if the λ−K M  is singular, or, equivalently, if the 

determinant of the coefficients vanishes. 

 ( )det 0λ− =K M  (2.22) 

where det() indicates matrix determinant. The solution of the generalized 

eigenvalue problem is not discussed here, but may be found in most linear algebra books. 

The expansion of the determinant in Eq. (2.22) leads to n algebraic equations, and 

solutions to these equations (counting multiplicities) represent the eigenvalues of the 

system. The square roots of the eigenvalues are the systems undamped natural circular 

frequencies. The n eigenvalues are collected in a diagonal eigenvalue matrix. 
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where λj is the jth eigenvalue of the system, and ωj is the jth natural circular 

frequency of the system. The convention for the natural frequencies is that they are 

arranged in increasing order, so ω1 is the lowest and ωn is the highest circular natural 

frequency. When substituting the jth natural frequency (j = 1, 2,…, n) back into Eq. (2.20) 

the jth mode shape or natural mode of vibration within a multiplicative arbitrary constant 

is obtained, so if  is a solution then jφ j jα φ  is also a solution where αj is an arbitrary real 
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constant. The mode shapes are arranged in a mode shape matrix in which the jth column 

corresponds to the jth mode shape. 
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To determine the arbitrary multiplicative constant for each mode shape, 

normalization of mode shapes can be used. There are several normalization techniques 

available, such as setting the largest value of each eigenvector to unity or setting the 

norm, or length, of each modal vector to unity. Among the available normalization 

techniques this research assumes that mass normalization is used in which eigenvectors 

are scaled such that 

 j k δ=φ Mφ  (2.25) 

where  and φ  are the jjφ k
th and kth mass normalized mode shapes, and δjk is the 

Kronecker symbol, which equals to unity when j = k and zero when j ≠ k. Whenever the 

mode shapes are used in derivations in this research it is assumed that they are mass 

normalized unless otherwise stated. The consequence of using mass normalized mode 

shapes is that the transformed mass and stiffness matrices have the simple form. 

 T =Φ MΦ I  (2.26) 

  (2.27) TΦ KΦ = Λ

where I is the identity matrix. Without proof it is mentioned that any two φ  and 

 mode shapes are orthogonal to each other when j ≠ k. Moreover, Eqs. (2.26) and 

(2.27) imply that the mode shapes are also mass-orthogonal and stiffness-orthogonal. 

j

kφ
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2.2.2 Modal Decomposition of FRF Matrices for Viscously Damped Systems 

The previous section discussed that the mass and stiffness matrices of an n-DOF linear 

system become diagonal under linear transformation using the eigenvectors. In the 

transformed or natural coordinate system, the equations of motion are uncoupled and can 

be solved as a set of n-SDOF problem. Dissipative forces are often included in models as 

viscous damping forces proportional to velocity. The equation of motion for an n-DOF 

viscously and lightly damped system in free vibration can be written. 

 + + =Mu Cu Ku 0�� �  (2.28) 

Using only the real part of the assumed solution in Eq. (2.19) and substituting into 

the above equation and premultiplying by the transpose of the mass normalized mode 

shape matrix, we arrive to the following expression. 

 T+ + =Iq Φ CΦq Λq 0�� �  (2.29) 

where q is the vector of natural or modal coordinates. In general, the set of n 

differential equations in Eq. (2.29) are not uncoupled unless the damping matrix can be 

diagonalized under the transformation Φ . If this is the case then the n uncoupled 

equations of motion can be written as 

TCΦ

  (2.30) 22 0,      1, 2, ,j j j j j jq q q jω ζ ω+ + = =�� � … n

where ζj is the jth modal damping ratio. The usefulness of a diagonalizable 

damping matrix is apparent from Eq. (2.30). Having a damping matrix that diagonalizes 

under linear coordinate transformation, however, is only a mathematical convenience, 

and usually does not have any connection to the physical dissipative properties of the real 

structure. As mentioned earlier, however, very little is known about damping or 

dissipative forces in structures, since damping is not an intrinsic property of the members 

(or finite elements), but depends on the structure, i.e. connection types, applied material, 

micro cracks etc. Probably the only case when damping is known partially is when 
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dampers are installed at certain structural locations to control dynamic characteristics. 

Therefore, the proposition that is widely accepted in practice is as follows: If we know 

very little about damping then why not make it at least convenient for mathematical 

calculations, i.e. chose it in such a way that it diagonalizes under the modal coordinate 

transformation. 

Some common assumptions about damping matrices include the linear 

combination of the mass and stiffness matrices, since any linear combination of two 

matrices that are diagonalize under modal coordinate transformation will still be 

diagonalizable. 

 
a
b
a b

=
=
= +

C M
C K
C M K

 (2.31) 

where a and b are proportionality constants to be determined. The damping matrix 

formulations in Eq. (2.31) are known as proportional damping and the last one stated is 

often called Rayleigh damping. Only mass or stiffness proportional damping matrices are 

rarely used in practice, since a greater control over the modal damping ratios can be 

achieved using Rayleigh damping. Let’s suppose that from a free vibration amplitude 

decay test, two of the modal damping ratios (ζk, ζm) and natural frequencies (ωk, ωm) were 

measured. Then for these two kth and mth frequencies the following equations can be 

obtained. 
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or, in matrix form, 
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from which the constants a and b can be obtained. The damping ratio in any jth 

frequency can then be determined when j is different from k and m. 
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a bω
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+

=  (2.34) 

Characteristic to Rayleigh damping, the middle frequencies have more or less the 

same damping ratios and the lower and higher frequencies have increasing damping 

ratios. The concept of Rayleigh damping can be extended to any number of r measured 

damping ratios by considering the orthogonality properties of mode shapes. If r damping 

ratios, ζ1, ζ2, … ζr, are given, then a damping matrix using the Caughey summation can 

be used. 
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where the aj proportionality constants can be obtained from the system of r 

simultaneous equations. 
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Another common practice in modal analysis is to directly specify the modal 

damping ratio, ζj, for the jth mode. The modal damping ratios can be determined 

experimentally or by using common sense. Typically, lower modes will have smaller 

damping ratios, while higher modes are damped more. Regardless of the preferred 

formulation, proportional damping matrices become diagonal after modal coordinate 

transformation and Eq. (2.30) holds for all modes. 
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Recall the definition of the receptance matrix presented in Eq. (2.15) and assume 

that the system is proportionally damped so the damping matrix becomes diagonal under 

the modal coordinate transformation. The inverse of the receptance matrix, also known as 

the dynamic stiffness matrix, is given as 

 ( )2iω ω 1−− − =K C M R  (2.37) 

Premultiply both sides by the transpose of the mode shape matrix, ΦT, and 

postmultiply by Φ to obtain 

 ( ) ( )2 2 2 1diag 2 diag 2 T
j j j j ji iω ζ ω ω ω ωζ ω ω − − − = − − = Λ I Φ R Φ D≡  (2.38) 

where diag() indicates diagonal matrix, and D is defined as the inverse receptance 

matrix in the natural coordinate system. Taking the inverse of matrix D, which is simply 

the reciprocal of the diagonal elements, and pre- and postmultiplying both sides by Φ and 

ΦT, respectively, gives the receptance matrix. 

 1
2

1diag
2

T

j j jiω ωζ ω ω
−

 
= =  − − 

R ΦD Φ Φ Φ2
T  (2.39) 

where the jkth element of the receptance matrix can be written as 
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∑   (2.40) 

The computational effort associated with the calculation of the FRF matrix using 

Eqs. (2.39) or (2.40) is considerably less than that of using Eq. (2.15). Using Eq. (2.17), 

the mobility and accelerance matrices for a proportionally damped system can be written 

as 

 



 43

 2diag
2

T

j j j

i
i

ω
ω ωζ ω ω

 −
=  − − 

V Φ 2 Φ  (2.41) 

 2 2
1 2jk jm km

m m m m

V
i

n iω ϕ ϕ
ω ωζ ω ω=

=  − − 
∑

 −
  (2.42) 

 
2

2

ω −
Φ2diag

2
T

j j jiω ωζ ω ω
=  − − 

A Φ  (2.43) 

 
2n ω

2 2
1 2jk jm km

m m m m

A
i

ϕ ϕ
ω ωζ ω ω=

=  − − 
∑

 −
  (2.44) 

For a proportionally damped system, Eqs. (2.39), (2.41) and (2.43) establish the 

relationship between the FRF matrices in physical or global coordinates and the FRF 

matrices in modal coordinates. The FRF matrices in modal coordinates are diagonal since 

in natural (or modal) coordinates the equations of motion are uncoupled. In contrast, the 

FRF matrices in physical (or global) coordinates are usually full matrices and 

consequently, not diagonal. In considering Eqs. (2.40), (2.42) and (2.44), it can be 

concluded that FRF matrices are symmetrical for linear systems, i.e. H = HT. Of course 

this is expected. Symmetry of the FRF matrices is just another form of the reciprocity 

theorem, which states that the response of the jth DOF due to an excitation applied at the 

kth DOF is equal to the response of the kth DOF if the same excitation is applied at the jth 

DOF. 

2.2.3 Measuring FRF Data, Displacement, Velocity and Acceleration 

As stated in Eq. (2.17), there is a unique relationship between the displacement, velocity 

or acceleration responses. Therefore in theory, it does not matter which one of the 

quantities is measured since the necessary measures can be obtained from any of the 

others. In practice, however, the available sensors, equipment, physical structure may 

impose a preferred quantity over the others. Vibration theory shows that displacement 
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measurements amplify low frequency components, and conversely, acceleration 

measurements are useful if high frequency components are important. In considering the 

measurement type it is important to know the expected frequency range in which the 

response can occur. When the frequency range to be measured is distributed with equal 

weight throughout a wide band then velocity response measurements are desirable 

because they weight equally low and high frequency components. Velocity has another 

important property that can be advantageous in certain applications, namely that it is 

directly related to kinetic energy from which conclusions about the severity of vibration 

can be made. 

On the other hand, acceleration transducers, or in short accelerometers, are 

versatile and commercially available at a lower cost. Accelerometers also have small 

dimensions and relatively high frequency and dynamic ranges. In addition, analogue 

electronic integration is more accurate and reliable than electronic differentiation, which 

makes accelerometers more appealing in most cases. In measurement theory, the signal to 

noise ratio is extremely important and it is necessary to keep it as low as possible, which 

can significantly influence the preferred type of measurement. 

The design of the data acquisition system is a rather complicated problem and 

requires careful consideration of many influencing factors and collaboration of experts 

from different fields of science. In a typical single input single output test situation, the 

structure is excited at exactly one point and the response is measured at exactly one point 

i.e. the Hjk entry of an FRF matrix is measured. This type of test is usually performed by 

using a dual channel digital analyzer. The excitation (shaker, sledgehammer, etc.) is 

measured in channel 1 and the response signal is fed into channel 2. By moving either the 

excitation or the response point while the other location remains fixed an entire row or 

column of the n-DOF system FRF matrix can be measured, respectively. In the frequency 

domain, the response at node k when the excitation is at point j can be written as. 

 ( ) ( ) ( )k jk jX H Fω ω ω=  (2.45) 
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where Xk(ω) is the general response (displacement, velocity or acceleration) at the 

kth DOF. The FRF can be calculated by simultaneously sampling the excitation and the 

response signal. The formal solution of the jkth transfer function from Eq. (2.45) becomes. 

 ( ) ( )
( )

k
jk

j

X
H

F
ω

ω
ω

=  (2.46) 

The above expression for the calculation of the response functions is not practical, 

since in real world situations one has to deal with all types of signals (transient, periodic, 

random, etc.) and elimination of noise in the signals is practically impossible. In digital 

analyzers, the FRF functions are obtained from the so-called “trispectrum average” which 

can be defined for any two signals that are simultaneously sampled. The principle of the 

method is to take a number of repeated measurements, calculate the three spectra 

estimates (it is very important that we only deal with estimates) and then average them to 

get the FRF and coherence (measure how well the force signal is related linearly to 

response signal) functions (McConnell 1995). The three spectra under discussion are the 

force signal auto-spectrum Gff(ω), the response signal auto-spectrum Gxx(ω), and the 

cross-spectrum Gfx(ω) between the force and response signals. Without rigorously 

defining the auto-spectrum and cross-spectrum functions, which can be found in any 

books focusing on stochastic vibrations (Lutes and Sarkani 1997), the calculation of FRF 

matrices can be formulated by multiplying both sides of Eq. (2.45) with ( )*
jF ω , which is 

the complex conjugate of Fj(ω). 

 ( ) ( ) ( ) ( ) ( )* *
j jF X H F Fω ω ω ω= ω  (2.47) 

After averaging a theoretically infinite number of measurements the equation for 

the spectrum functions become. 

 ( ) ( ) ( )fx ffG H Gω ω= ω  (2.48) 
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or rearranging and indexing the average estimator transfer function, 

 ( ) ( )
( )1

fx
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ω

ω
ω

=  (2.49) 

Another relationship between the transfer and spectra functions can be derived 

when multiplying both sides of Eq. (2.45) by ( )*
kX ω  to obtain another expression for the 

average estimator transfer function. 
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=  (2.50) 

In ideal situations (noise free measurement, infinite number of measurements) 

Eqs. (2.49) and (2.50) give the same FRF functions. This is rarely the case, however, so a 

coherence function may be defined as an indicator of the linear correlation between the 

obtained transfer functions. 
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The coherence function ranges from zero (no correlation) to unity (perfect 

correlation) and can be thought of as a measure of the quality of the measurements. 

Further assumptions on the signals, i.e. both the excitation and response signals 

consist of a “true” and a “noisy” part, lead to expressions for the transfer functions in 

terms of the auto- and cross-spectrum of the “true” and “noisy” parts of the signals. In 

general noises are classified as electrical or mechanical noises. Typical electrical noises 

are the intrinsic noise of electric circuits, fluctuation or disturbance of the power source, 

interference of electromagnetic or radio frequencies, ground loops, etc. Among the 

unwanted mechanical noises are construction activities in the vicinity of the object to be 

measured, operation of elevators and escalators inside a building, wind induced 

vibrations, etc. Based on the reasonable assumption that noise in signals are uncorrelated 
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with each other and the excitation and the “true” response signals, it can be shown that H1 

and H2 are a lower and upper bound estimators for H. To conclude this section a 

commonly accepted expression for approximating the transfer function is introduced, in 

which the geometric mean of the two functions H1 and H2 is simply taken. 

 ( ) ( ) ( )1 1H H Hω ω= ω  (2.52) 

The goal of the above discussion was to point out the importance of carefully 

designing measurements. Obtaining the necessary FRF functions with acceptable 

accuracy could be the subject of an entire dissertation and would require considerable 

knowledge in the field of probabilistic mathematics and dynamics, electronics, 

measurement theory, instrumentation, etc. This section only briefly discusses the problem 

of measuring transfer functions. In order to evaluate SDIMs and their limitations, 

however, it is necessary to understand that measurements do not lack of noise and 

contamination. In most situations, further manipulating on the raw data to obtain certain 

dynamic characteristics of structures can and will introduce even more errors in to the 

models. With this in mind, the goal is to develop an SDIM that minimizes the 

contamination and manipulations (data filters are not considered as sources of errors) on 

raw measurement data. Ultimately, the methods developed will use FRF data as they are 

measured on structures for damage detection with the hope that they contain the 

information necessary for locating and quantifying damage in members. 

2.3 Damage Indicators 

The definition of damage is difficult to conceptualize in a general and widely accepted 

manner. The sources of damages are unknown in most cases and the range of probable 

causes makes it difficult to generalize damage. However, it is often accepted (with certain 

limitations) that damage affects the behavior of structures (e.g. vibration characteristics), 

which is described by the structural properties of stiffness, damping and mass. In general, 

after damage has occurred the member stiffnesses are affected as well as the damping 

characteristics of the structure. Altering the mass only, in comparison, may or may not be 
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considered damage. Consider a parking garage in downtown Houston that is almost 

empty at dawn, but by 9 a.m. it is closed because the maximum capacity of the garage has 

been reached. In this case, the mass of the structure has changed significantly in a matter 

of couple of hours, but certainly it does not imply that the structure is damaged. 

To avoid ambiguity such as in the example above and to simplify the SDIM it is 

assumed that the mass of the structure does not change between the phases of its lifetime, 

or if it has changed the magnitude of the change is known so the finite element model of 

the structure can be updated accordingly. Although it is not required by the approach used 

in this research, for simplicity and demonstration purposes of the proposed method it is 

assumed that damage only affects the stiffness of the structure, while damping and mass 

are not affected. For a linear finite element model, stiffness reduction can be 

accomplished in several ways, including alteration of section properties (cross sectional 

area, moment of inertia, plate thickness etc.), Young’s modulus, etc. Probably the easiest 

but most effective way to alter member stiffness is to change the Young’s modulus. By 

altering the Young’s modulus, all DOF’s stiffness properties are reduced or increased by 

the same proportions in the same element. As an example, consider a reinforced concrete 

column in compression. Also assume that in the intact structure there were no cracks in 

the column. After some external effect, the column cracks and the goal is to find the 

change in stiffness caused by these cracks. One could assume that the stiffness of the 

column is reduced through its Young’s modulus and obtain a damage indicator. In a more 

realistic case one could argue that when the concrete cracks its cross sectional area (in 

compression) does not change but its second moment of inertia does, which requires the 

introduction of two damage indicators one for the cross sectional area and the other for 

the second moment of inertia. Using two separate damage indicators provides more 

information about the source and characteristics of damage, but the SDIM imposes a 

significantly more difficult problem to solve. For this particular problem, the change in 

the damping properties of the column could also be considered since cracked reinforced 

concrete members dissipate more energy than uncracked members. Another problem may 

arise if it is assumed that this column is part of a multi-story frame system on the first 

floor subject to certain dead loads. In this case the stiffness of the column in compression 
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may not be affected at all. When the column is acting mainly in compression (very small 

bending) then vibration data will not be affected by the change in stiffness of the column 

unless the amplitudes of vibration is adequately large (i.e. the crack opens). In this 

situation the size of the crack does not even matter because the stiffness of the column in 

compression is not affected by the crack. This example points out some of the limitations 

in using vibration data as signatures for damage detection. 

To introduce damage in structures, a damage indicator is assigned to each finite 

element in the model. The goal of the SDIM is to obtain the vector of damage indicators, 

xs, for all finite elements in the structure. The stiffness of a damaged finite element is 

computed by means of its damage indicator. 
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where  is the stiffness matrix of the jdam
jk th damaged finite element, kj is the 

stiffness matrix of the jth intact finite element, s
jx  is the damage indicator of the jth finite 

element, and ne is the number of finite elements in the model. The limits on the damage 

indicators in Eq. (2.53) suggest that only reduction of the element stiffness is attainable. 

A zero damage indicator is related to an undamaged element, whereas a damage indicator 

of unity (100%) means that the element has lost all its stiffness. In some cases, an 

increase in stiffness may occur as certain materials can undergo hardening when stressed 

beyond their elastic limit (the modulus of elasticity increases). The stiffness loss 

assumption made in Eq. (2.53) is not strict and Eq. (2.53) can be easily modified to 

accommodate stiffness increases due to hardening. The use of damage indicators ensures 

that the location of detected damage is unique and that the damage value bears a physical 

meaning, namely the reduction (or increase) in stiffness. Using the damage indicators, 

any of the analytical FRF matrices of the structure can be obtained by Eqs. (2.15) and 

(2.17). 
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2.4 Use of FRF Data in Damage Detection 

The idea behind the SDIM developed in this research is that the difference between the 

FRF matrices of the undamaged structure and the damaged structure captures both the 

location and severity of damage. In real structures, the number of DOFs is infinite. 

Although in a finite element representation the number of DOFs is finite, this number is 

still large and only certain entries of an FRF matrix can be measured in practical 

situations. In general, the jkth member of an FRF matrix represents the response of the jth 

DOF when the excitation is applied at the kth DOF. As was mentioned in earlier sections, 

the particular FRF matrix that is used the SDIM, is insignificant. The same formulation is 

valid for receptance, mobility and accelerance matrices. Therefore to emphasize this 

interchangeability property of FRF matrices in the SDIM, the general notation of H or 

H(ω) will be used in place of any specific FRF matrices. 

In order to formulate the damage detection problem as an optimization problem, 

an objective or error function is defined that needs to be minimized. The main idea is to 

minimize an error term between the measured FRF data and the analytical FRF functions 

computed by means of the damage indicator vector. The solution to the optimization 

problem will result in a damage indicator vector that correctly identifies the location and 

severity of damage(s) in the structure. The objective function defined in Eq. (2.54) 

assumes that there is only one excitation, but measurements may be taken at multiple 

locations. 
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where j is the excitation DOF, k is the DOF where the response is measured, Hjk is 

the jkth FRF function in the finite element model, jkH  is jkth measured FRF function on 

the damaged structure, k1, k2,…kn are the DOF’s where measurements are taken, ϖ0 and 

ϖ1 are the lower and upper frequencies of the measured frequency range, and the symbol 

 indicates complex magnitude. If there are multiple excitation locations then another 
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summation on j is added to the equation and the objective function remains valid for 

multi-excitation, multi-measurement cases. 

 ( ) ( )
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j j k k

f H H
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 (2.55) 

where j1, j2,…, jr are DOF’s where excitation is applied. The objective function 

formulation implies that the Hjk entries of the FRF matrix must be reevaluated at every 

iterations using the current damage indicators and that at the global optimum point the 

objective value is zero (perfect match of the measured and analytically computed FRF 

data). 

The Hjk FRF is a function of the element stiffness matrices, and therefore, it is also 

a function of the damage indicators. The goal of damage detection is to find the damage 

indicators for each finite element; consequently the damage indicators become the 

unknown variables of the optimization problem. From the definition of the objective 

function it is also clear that the minimum value of this function is zero when the 

measured FRFs perfectly match the analytical FRFs. The imposed problem is an 

unconstrained optimization problem with ne (number of finite elements) continuous 

variables in the interval of zero and unity. Later in the discussion of variable 

representations we will return to this point and redefine the problem to account for the 

unstructured nature of damage detection. 

Other observations related to the SDIM include assuming that an n-DOF finite 

element model of the intact structure is available and that the structure can be modeled as 

a linear system (both material and geometrical non-linearities are insignificant), i.e. the 

principle of superposition holds. By using FRF functions it is implicitly implied that the 

structure is linear otherwise the response in frequency domain could not be obtained as a 

simple multiplication of the forcing term and the FRF. On the other hand, modal 

decomposition of linear structures is a common practice providing a faster way to 

compute the necessary entries of FRF matrices. The assumption of linear structure, 
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however, does not imply in any way that the structure did not undergo nonreversible 

deformations (damages) up to the point when measurements are taken. 

For example, a building was hit by an (moderate) earthquake that induced plastic 

deformations in certain structural connections of the structure. After the overloading 

effect (i.e. the earthquake) ceased, the structure returned to a new equilibrium position 

without any significant or life threatening damages in its structural members and 

connections. The cyclic history of a structural connection is depicted in Figure 2.2. After 

a certain number of cycles the particular connection returns to a new equilibrium position, 

which is in the elastic zone. If the excitation of measurement does not exert significantly 

large forces on the structure then the connection will oscillate around its new equilibrium 

position in the elastic zone, therefore a linear model will suffice. 
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Figure 2.2. Cyclic history of a structural connection 
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Yielding itself, however, may not influence stiffness or the vibration signatures of 

the structure. Referring to Figure 2.2, the stiffness of the material did not change in the 

new linear equilibrium position and consequently, vibration signatures will not be able to 

capture damage (yielding). To be able to detect damage other structural properties must 

change e.g. cross sectional area or second moment of inertia. In bolted connections in 

steel frames, for example, it is possible that the bolts yielded and therefore the connection 

loosened up reducing the stiffness of the structural connection. In this situation it may be 

possible to detect damage(s) using vibration signatures in the elastic region. For some 

reinforced concrete structures subjected to cyclic loading it is possible that the stiffness of 

the new equilibrium position in Figure 2.2 will not be parallel to that of the original 

modulus and in this case damage can also be detected. Again, this has identified some the 

limitations of using vibration data for damage detection. Unfortunately there is not a 

single signature that is able capture all types of damages that can occur in structures. 

Currently there does not exist a universal SDIM that is preferred over any other 

procedures. Relying on a single SDIM in the hope that it is able to detect all type of 

damages is infeasible. Rather, a combination of existing methods may provide a higher 

level of confidence about detecting the location and severity of damages. 

2.5 Excitation and Sensor Placement 

Since most SDIMs operate on measured vibration data it is essential to design the 

excitation and sensor layout in such a way that the information contained in the vibration 

data with respect to the selected SDIM is maximized. Excitation and sensor layout design 

therefore poses an optimization problem with at least two objectives. The first objective is 

to maximize the information included in the vibration data to enhance the efficiency and 

reliability of damage detection. This objective however contradicts the practical need to 

minimize the number of sensors used for measurements. 

In order to evaluate the quality of measurement data, the information contained in 

measurements has to be quantified. Today, a wide variety of sophisticated engineering 

tools depend heavily on measurement data. Applications include a broad range of 

engineering domain including aerospace, mechanical and civil engineering. Because of 
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the diversity of applications the information necessary to capture in measurements varies 

significantly. In this section, an information measure contained in the vibration data will 

be defined considering the SDIM presented in this dissertation. The proposed measure is 

based on the sensitivities of FRFs with respect to the damage indicators of the finite 

element model. By maximizing this information measure, an increased objective value of 

the damage detection problem is expected, which would indicate higher sensitivities and 

possibly results in more unique and stable identification of the damaged elements. The 

number of sensors, however, that can be used for measurement may be limited by the 

available equipment, labor cost or time. For instance if the digital analyzer used for 

measurements only has 8 input channels, then the number of measurements may be 

limited to 7 (one channel is reserved for the excitation) since moving the analyzer 

requires rewiring, calibration, testing, etc. In general, minimizing the number of sensors 

reduces the cost of equipment, preparation, installation and labor. 

2.5.1 Information Contained in Measurements 

The sensor layout design problem is developed using a finite element model of the 

structure. The vibration signatures carrying measurement information are the receptance, 

mobility and accelerance FRFs. In the damage detection process, the goal is to identify 

the damage indicators defined for each finite element in the model. Therefore, it is natural 

to define an information measure that accounts for the sensitivity of FRF data to the 

damage indicators. The sensitivity of an FRF matrix with respect to the damage indicator 

of the jth finite element can be written. 

 ( ) ( ) ( ) ( )s s
j jx x
ω ω

ω ω
∂ ∂

= −
∂ ∂
H Z

H H  (2.56) 

where H(ω) is an FRF matrix (receptance, mobility or accelerance), Z(ω) is the 

inverse of the FRF matrix under investigation (for receptance matrices the inverse is the 

dynamic stiffness matrix, or more precisely the receptance matrix is the inverse of the 

dynamic stiffness matrix, Gatti and Ferrari 1999). Eq. (2.56) is computationally 
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prohibitive for large structures, and in those cases, a numerical differentiation of the FRFs 

is used to obtain the sensitivities. 

 ( ) ( ) ( )
0s s s

j
km km

j jx x xkm
s s
j j

H HH
x x

ω ωω =
−∂

≈
∂ ∆

=∆  (2.57) 

where Hkm(ω) is an FRF (kmth element of H(ω)) for which the excitation is located 

at the kth DOF and the measurement is taken at the mth DOF, and s
jx∆  is a small 

perturbation at element j (usually between 0.1% and 1%). The information function is 

defined for a pair of excitation, kth, and measurement, mth, DOFs using the FRF 

sensitivities with respect to the damage indicator vector xs. 
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where ιkm is the information contained in the Hkm FRF, ϖ0 and ϖ1 are the lowest 

and highest measured frequencies respectively, ne is the number of finite elements in the 

model. The information function is defined with respect to all finite elements in the 

model, consequently this function gives an overall quality measure of the information 

contained in the measurement data. The total information, Ι, contained in nmeas 

measurements (number of sensors) assuming only one excitation DOF is defined as. 

  (2.59) ( )2measn

km
m J

ι
∈

Ι = ∑

where J is the set of unrestrained measured DOFs. The information measure 

defined above is formulated by considering the objective function for damage detection 

and therefore provides a function, which gives the most information about the quality of 

the measurements with respect to the proposed SDIM. 
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2.5.2 Optimum Excitation and Sensor Layout Design 

The optimization problem for the excitation and sensor layout design can be stated as 

follows. Minimize the number of sensors used, and maximize the total information 

contained in the measurement such that the number of sensors used is at least one, but not 

more than a specified number, nu,meas. 
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( )
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2
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=
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x
x

 (2.60) 

subject to: 

 ,0 meas u measn n< ≤  (2.61) 

The decision variables for the sensors are logical variables such that each variable 

acts as an “On/Off” switch related to an unrestrained DOF in the finite element model 

where sensor(s) can be placed. Besides, there is an additional discrete decision variable, 

x0, related to the excitation DOF. 
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The above problem falls into the area of multiobjective optimization. Details 

about the solution of such problems will be given in the next section. 
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3 OPTIMIZATION ALGORITHMS 

In Section 2 the optimization problems for damage detection and excitation/sensor layout 

design were developed. To solve these problems algorithms including traditional and 

evolutionary optimization are considered. A brief overview of standard optimization 

problems and traditional optimization techniques is given in the first two subsections of 

this section. Then genetic algorithms are reviewed and demonstrated through a simple 

example. Advanced operators for the fine-tuning of genetic algorithms are reviewed and 

developed for binary representations. Adaptation of genetic algorithms to the damage 

detection and excitation/sensor layout design problems is developed using different 

representations of the problem domains. The advantages and drawbacks of the traditional 

fixed and a new implicit redundant binary representation are compared. A hybrid 

optimization approach for the damage detection problem is developed by combining 

genetic algorithms with a local hillclimbing search algorithm. In the last subsection of 

this section we revisit the multiobjective optimization problem proposed for the 

excitation and sensor layout design. The notion of Pareto optimum solutions are 

introduced and the nondominated sorting genetic algorithm capable of solving 

multiobjective optimization problems is presented. To tackle the constraints associated 

with the excitation and sensor layout design problem, specialized repair, re-initialization 

and penalty operators are developed. 

3.1 Overview of Traditional Optimization Algorithms 

3.1.1 Classes of Optimization Problems 

In traditional optimization, there are three elementary problems for which solution 

algorithms are sought (Michalewicz and Fogel, 2000). Of course, there are other 

optimization problem domains but all practical problems, in some ways, resemble one of 

the elementary problems. One of these elementary problems is the satisfiability problem 
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(SAT) in which a statement, F(x), of Boolean variables has to be TRUE. An example of 

the SAT problem of n logical variables is shown in Eq. (3.1). 

 ( ) ( ) ( )1 2 3 4 5 2 1( ) n nF x x x x x x x x− −= ∪ ∪ ∩ ∪ ∩ ∩ ∪ ∪x � � � �… n  (3.1) 

where ∪ is the logical AND statement, ∩ is the logical OR statement and ix�  is 

negation of the logical variable xi. The task in this problem is to find the logical (TRUE 

or FALSE) state for each xi variable, i = 1…n, such that F(x) = TRUE. The search space 

of the problem is 2n because there are n variables and each variable has two different 

states (0, 1). 
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Figure 3.1. A 14-city symmetric traveling salesman problem (TSP) 

Another classical optimization problem is the traveling salesman problem (TSP) 

in which a salesman has to visit every city on the map exactly once and then return to the 

starting city. This task is to be accomplished in such a way that the salesman travels the 

minimum total distance. A fourteen-city symmetric TSP is illustrated in Figure 3.1. A 
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symmetric tour occurs when distances between each pair of cities are the same regardless 

the direction of travel. The size of the search space for the TSP is always larger than that 

of the SAT problem if the number of variables is greater than 6. The size of the search 

space for a TSP with n cities is S = n!/(2n) = (n-1)!/2. For most TSP problems, the 

exact solution is not known due to the large number of possible solutions, e.g. a 50-city 

TSP has approximately 1062 possible solutions. Unsymmetric TSPs pose additional 

search difficulties. 

Another class of optimization problems are nonlinear programming problems 

(NLP). Most NLP problems find the vector of n-real variables that optimizes a given 

objective subject to different design constraints. 

 

( )
( )
( )g

1min ( ),    , ,

. . 0,    1, ,

0,    1, ,

,    1, ,

n
n

j

j

i i i

f x x x

s t h j q m

j q

l x u i n

= ∈

= = +

≤ =

≤ ≤ =

x

x

x

… \

…

…
…

 (3.2) 

where x ∈ F ⊆ S, the objective function is defined on the search space S ⊆ \ , 

the feasible region F ⊆ S is defined by a set of m equality and inequality constraints, and 

the variables are restricted by their lower, l

n

i, and upper, ui, bounds. 

The damage detection task discussed in Section 2 can be classified as an 

unconstrained NLP with simple bounds on the variables. In comparison, the 

excitation/sensor layout design problem is classified as a constrained combinatorial 

problem, similar to the TSP. 

3.1.2 Local and Global Search Techniques 

A large number of traditional optimization algorithms have been developed to 

solve one or more of the above classes of problems. The main shortcoming of traditional 

algorithms is their robustness. A traditional algorithm that works well for one problem 

may give poor results for another. If the optimization domain changes, then the algorithm 
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changes too. When used appropriately (for a specific problem for which they were 

designed), traditional methods can be very effective. Michalewicz and Fogel (2000) 

divided the set of traditional algorithms into two main groups: Algorithms that evaluate 

complete solutions and algorithms that evaluate partial or approximate solutions. The 

importance of making this distinction is that solutions obtained using complete solutions 

can be always used even if the algorithm was terminated before convergence. Partial 

solutions, however, may be difficult to use if the algorithm was terminated before a 

complete solution was obtained. 

Conceptually, the simplest algorithm is an exhaustive search that systematically 

checks every possible solution systematically in the search domain in order to find the 

global optimum solution. Exhaustive search, however, is extremely time consuming and 

is therefore not used for practical problems. Random walk is a method similar to 

exhaustive search. Instead of systematically evaluating solutions in the search space, a 

random walk selects possible solutions to evaluate randomly. In the worst case, 

performing a random walk is even more time consuming than an exhaustive search.  

Local search techniques can be summarized based on their characteristics rather 

than the details. A popular local search technique, hillclimbing can be applied to optimize 

problems in any of the optimization problem classes discussed in Section 3.1.1. 

Hillclimbing is easy to implement and only uses the information contained in the 

objective function to improve the current solution iteratively. This technique uses a single 

point for the search. At each iteration, new points are selected from the neighborhood of 

the current (best) solution. If the best among the newly selected points is better than the 

current point, then that solution becomes the current point and a new iteration starts. If 

there was no better point found in the new solutions, then another neighborhood is 

selected and tested. The process terminates if no further improvements are possible or 

another termination condition is satisfied. In Section 3.4, the implementation details of 

the hillclimbing procedure used in this research to improve results obtained by genetic 

algorithms will be discussed. 

There are local search algorithms, GSAT and 2-opt, or its extension k-opt, that are 

developed specifically for SAT and TSP problems, respectively. Both algorithms are 
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similar to hillclimbing in the sense that in a predefined neighborhood the possible 

solution is selected as the current solution. 

Most of the traditional methods available for NLP are local search strategies. 

Some algorithms only use the information provided by the objective function, such as 

bracketing or its improved faster converging modification called Regula Falsi. In 

addition, there is a family of the Newton’s methods that use gradient information and/or 

second order derivates (Hessian matrix). These procedures are designed to find the 

minimum of a quadratic bowl in only one step. Calculating the Hessian using Gaussian 

elimination provides the process called Newton-Gauss, while others often refer to as 

quasi-Newton methods. These procedures are very effective if derivative information 

about the objective is available. In most real world situations, however, this is not the 

case, and getting the inverse of the Hessian can be cumbersome. For problems involving 

linear objective and constraint functions, the exact optimum solution can be found using 

the simplex algorithm and its variations. Heuristic algorithms use some kind of heuristics, 

or rules of thumb, about the best possible move in attaining a solution. Some of the most 

well known heuristic procedures are greedy algorithms (at a step the values of each 

decision variables are assigned one by one such that it makes the “best” available 

decision) and dynamic programming (a recursive procedure that utilizes the 

decomposition of the problem). Branch and bound techniques rely on the idea of 

successive partitioning of the search domain by eliminating parts of the search space that 

are areas where optimum solution cannot be found. 

Most of the traditional methods discussed in this section do not guarantee finding 

the global solution to the problem. Only exhaustive search provides this guarantee but at 

a prohibitive computational cost. Indeed, practical experience shows that local search 

techniques tend to get stuck in local optima, and therefore multiple runs from different 

starting points are required to get a better solution. The solution found is still not 

guaranteed to be the global optimum of the problem. Two methods have been developed 

to circumvent the possibility of getting stuck in a local optimum: simulated annealing and 

tabu search. Simulated annealing is based on the iterated hillclimber with an additional 

parameter (temperature) that controls the probability of accepting a new point as the 
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current point even if its fitness value is worse. Alternatively, tabu search uses the memory 

concept to store information about previous solutions in the view of finding the optimum. 

Regardless of the concepts adapted by these algorithms, the goal is to facilitate 

exploration of the search space at the early stages of the optimization process, while 

performing a more localized search at later stages (exploitation). 

3.2 Introduction to Genetic Algorithms 

In Section 3.1, a brief overview of the traditional optimization methods was provided. 

Some methods use deterministic rules to improve the current solution (e.g. hillclimber) 

and always return the same result for the same initial starting point. Other methods use 

probabilistic rules, such as simulated annealing, that can return different solutions for the 

same problem even using the same starting point. Most of the procedures are local search 

techniques guaranteed to return only a local optimum, although simulated annealing and 

tabu search can escape from local optima by using probabilistic transition rules or a 

memory concept. All of the above techniques, however, share a common characteristic. 

They rely on a single solution (the current solution) to explore the search space and find a 

local or global optimum. 

Now, let us consider an idea that is based on nature’s evolutionary mechanism and 

Darwin’s “survival of the fittest” theory. The method that became known as the genetic 

algorithm (GA) was developed by Holland (1975) who gave encouragement to his former 

student Goldberg (1983) majoring in Civil Engineering to perfect the method. As a result 

of this fruitful collaboration Goldberg (1989) wrote a book, which is still one of the best 

introductory texts on genetic algorithms available today. 

The main driving force in developing genetic algorithms was that traditional 

procedures lack robustness. The idea of a tool that works well on a large variety of 

optimization problems is appealing and contributes largely to the increasing popularity of 

GAs. Furthermore, theoretical and empirical studies proved that GAs provide a robust 

search tool in complex domains. Beside its robustness, GAs are computationally simple 

and easy to implement requiring only basic mathematical knowledge. Rigorous 
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assumptions about the search space are not necessary (continuity, existence of derivatives 

etc.) and therefore their applicability is not restricted. 

GAs cannot be classified in one of traditional optimization tool categories. There 

are clear differences between GAs and traditional methods. Goldberg (1989) identified 

four significant dissimilarities regarding simple genetic algorithms (SGA). 

• Parameters (variables) are coded into strings and GAs operate on these strings 

instead of the parameters, 

• GAs use a population (set) of points instead of a single point, 

• The only information used is provided by the fitness (objective function) of an 

individual (string), no auxiliary information (derivatives etc.) is used, 

• GAs use probabilistic transition rules to explore the search space. 

The above-identified differences make GAs a unique search technique and help 

contribute to their robustness. 

3.2.1 Genetic Operators 

Nature has designed a mechanism that drives evolution into directions that have never 

been explored before. SGAs adapt this biological marvel in a surprisingly simple way. 

Just as humans live in populations (villages, cities, etc.), the SGA works with a set of 

individuals (strings) called the population. In this population, there are several individuals 

carrying different “genetic information” in their string or coding. In biological systems, 

the information carrying units are called chromosomes, which uniquely define the 

individual. When the time comes, biological systems reproduce passing the genetic 

information to the next generation of individuals. Reproduction of species involves 

competition, usually among male members, to gain privilege for mating. The fitter the 

individual is, the more likely that he is the lucky one who can pass his genes to the next 

generation in the mating process. Children of the next generation are like their parents, 

but yet different. They carry most of the characteristics of their parents, both in 

appearance and behavior, but may be worse than or better than their parents in certain 

aspects. In rare situations, the children’s genetic information may change due to an 

unexpected event called mutation. The outcome of the mutation can be either beneficial 
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or harmful, and helps nature to experiment with new genetic solutions to solve the 

problem of survival. 

Convergence?

Output

User Input

Initialization
of Population

Reproduction
(Selection)

Crossover

Mutation

Yes

G
en

et
ic

 O
pe

ra
to

rs

No

Evaluation of
individuals

 
Figure 3.2. Schematic of simple genetic algorithms and genetic operators 

Based on biological systems, the first task in a SGA is to code the parameters into 

strings (chromosomes). In most SGAs, binary stings are used to code the parameters. A 

binary string is a sequence of zeros and ones and each position is called a bit. The binary 

strings then can be interpreted in many different ways to decode the variables (base 2 

numbers mapped to decimal numbers, on/off switches 0-off and 1-off, true and false 

states, etc.). In Figure 3.2, the flowchart of a SGA is depicted. The coding process can be 

identified as part of the population initialization in which the problem domain is 

translated into binary digits. The user input, preceding initialization, consists of crucial 

data that have not been identified yet, including population size, crossover and mutation 
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rate, tournament size, number of crossover sites, etc. In SGAs, three genetic operators are 

defined that are used for generating successive populations (generations). The names 

imply their roles in the mating process. 

Reproduction (selection) is a process in which strings of individuals are copied 

according to some selection criteria based on their fitness value. In GAs the fitness may 

be the objective value but not necessarily. In some situations the fitness can include other 

properties other than the objective of the optimization. In the SGA proposed by Goldberg 

(1989), a roulette wheel reproduction procedure was used to copy individuals according 

to their fitness values. In this selection method, individuals with higher fitness have a 

higher probability of contributing one or more offspring in the next generation. Roulette 

wheel selection is illustrated in Figure 3.3. On the roulette wheel, each individual of the 

current population is assigned a slot that is proportional to its fitness (e.g. if the total sum 

of each individual’s fitness value is 1000 and the fitness value of the first individual is 10 

then this individual is assigned a slot on the roulette wheel which is a 1% slice of the 

whole circle). After spinning the roulette wheel, individuals with larger slots (higher 

fitness values) have a higher chance of being selected. Each time an individual is 

required, the roulette wheel is spun yielding the candidate for reproduction. In SGAs, the 

population size, npop (the number of individuals in the current population), is fixed at each 

generations and individuals in the current population are always replaced with new 

strings in the next generation. This reproduction technique, however, has several 

drawbacks. It assumes that fitness values are nonnegative, which often requires mapping 

the objective (fitness) function. A more important characteristic of this selection process 

is that in most cases regulation of the number of copies of an individual is necessary. In 

early generations of the SGA, especially for GAs with small population size, it is 

common to have a few extraordinary, highly fit individuals in the population. These 

individuals can quickly take over a significant portion of the population, which in turn 

can result in premature convergence. To remedy this undesirable property of the roulette 

wheel selection, Goldberg (1989) suggested the use of fitness scaling. 
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Figure 3.3. Roulette wheel selection, the wheel is spun to select individuals for reproduction proportionally 

to their fitness values 

As an alternative to the roulette wheel, or proportional, selection tournament 

selection may be used to pick the individuals for reproduction (Goldberg 1991). 

Conceptually, tournament selection is even simpler than roulette wheel selection and can 

overcome the difficulties associated with the later one. The process diagram of the 

tournament selection is illustrated in Figure 3.4. In a single operation, the method selects 

ntour (ntour ≤ npop) number of individuals and picks the best one from this set to take into 

the next generation. This process is repeated until the population size, npop, is reached. It 

is clear that larger tournament sizes, ntour, result in increased selection pressure, and 

therefore fitter individuals have higher probability for mating. A typical tournament size 

can vary anywhere between 2 to 10 depending on the population size and the selection 

pressure necessary to obtain good convergence. In this research, tournament selection 

was used because of its simplicity and effectiveness, which are characteristics of a good 

reproduction tool. 
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Figure 3.4. Tournament selection process diagram 

The next genetic operator appearing in Figure 3.2 is the crossover. After selecting 

the individuals for reproduction using one of the selection operators, information is 

exchanged between the selected individuals. Crossover is one of the recombination 

operators that is used for information exchange between any two individuals. Crossover 

combines the features of two parents’ genetic information (strings) to create two similar 

offspring by swapping segments of their parents’ chromosomes (strings). A single point 

crossover operator is depicted in Figure 3.5. In single point crossover operator, the 

crossover site is selected randomly and the bits are simply swapped between two selected 

strings. As mentioned earlier, SGAs use a set of input parameters. One of these 

parameters is the probability of crossover, pc, which gives the expected number, pc⋅npop, 

of strings undergoing recombination. In other words, for each crossover operation a 

random number, r, between zero and one is generated and if the probability of crossover 

is larger than this number, r < pc, then the information exchange between the selected two 

individuals is performed. 

Crossover
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String 2

Before Crossover

New string 1

New string 2

After Crossover

Crossover site  
Figure 3.5. Single point crossover 
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Our next genetic operator is mutation (Figure 3.2). The intuition behind mutation 

is the introduction of new genetic information to facilitate exploration of the search space. 

Since GAs usually work with a finite population, there are features that are not included 

in the chromosomes. A simple mutation operator is depicted in Figure 3.6. Mutation 

arbitrarily switches one or more bits of a chromosome randomly with a probability equal 

to the mutation rate, pm. The expected number of mutated bits in the entire population 

equals pm⋅nbits⋅npop, where nbits is the number of bits in a chromosome. Every bit has the 

same chance to undergo mutation. For each individual in the current population and for 

each bit within the chromosomes, a random number, r, is generated and if r < pm the bit is 

mutated. 
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Figure 3.6. Uniform mutation 

After the genetic operators are applied to the entire population, each individual is 

evaluated based on some objective (Figure 3.2). The role of the evaluation (fitness, 

objective) function is to rank individuals in terms of their fitness. At the end of each 

generation, convergence, which is the maximum number of generation has been reached, 

no improvement in certain number of generations etc., is checked. If it is satisfied, then 

the algorithm terminates (Figure 3.2). 

3.2.2 A Short Tutorial on Simple Genetic Algorithms (SGA) 

To demonstrate how SGAs work to the novice reader, an optimization example similar to 

the one that was used by Goldberg (1989) in his book is presented. In this example, 
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genetic operators are applied to a randomly generated initial population of 6 to 

demonstrate a single generation of the SGA. The optimization problem is a very simple 

maximization of the parabolic function with one independent variable on the integer 

interval [0, 31], Eq. (3.3). A plot of this function is depicted in Figure 3.7. 
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Figure 3.7. Parabolic function on the integer interval [0, 31] 

To start solving the problem using a genetic algorithm, the representation or 

coding of the decision variable x using a finite string must be defined. The most obvious 

representation of the unknown variable is a binary unsigned integer with a length of 5 

bits. Base 2 arithmetic is used to decode the strings into decimal numbers. An example 

for a binary string (00101) is shown by Eq. (3.4). 

  (3.4) 4 3 2 1 00 2 0 2 1 2 0 2 1 2 4 1 5⋅ + ⋅ + ⋅ + ⋅ + ⋅ = + =

Using the binary representation, integer numbers between 0 (00000) and 31 

(11111) can be obtained. In general, in base 2 binary strings with a length of nbit integers 
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from zero to 2  can be encoded. These integers can be mapped to any decimal 

interval representing the search space defined by the variables of the NLP problem using 

Eq. (3.5). 

1bitn −

 (
2 1bit

bin
i i i in

x )x l u l= +
−

−

)

 (3.5) 

where xbin is the nonnegative integer decoded from the base 2 binary 

representation. From the equation it is obvious that the precision provided by the binary 

coding is ( ) (2 1bitn
i iu l− − . As a consequence, if the decimal precision is given then the 

number of bits required to obtain that precision can be calculated. For the parabolic 

function problem stated by Eq. (3.3), if a precision of at least one hundredth (0.01) is 

desired the number of necessary bits would be determined as follows. 

 

31 0ln 1
0.0112 11.59
ln 2bitn

− + 
 = ≥ =  (3.6) 

For a precision of at least one hundredth, 12 bits are required in the binary coding 

and the actual precision obtained would be 0.00757. 

Table 3.1. Randomly generated initial population 

Individual String x - Value f(x) = x2 

1 0 0 1 0 1 5 25 

2 1 1 1 0 0 28 784 

3 0 1 0 1 1 11 121 

4 0 1 0 0 1 9 81 

5 1 0 1 1 0 22 484 

6 0 1 1 0 1 13 169 

Average   277.3 

Max   784 
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The optimization domain is now defined. Now we are ready to randomly generate 

the initial population of size 6. The initial population was created by tossing an unbiased 

coin 30 times (heads = 1, tails = 0). Table 3.1 lists the individuals of the initial population 

together with their decoded x values and fitness values. 

The average fitness value of the initial population was 277.3 and the best 

individual has a fitness of 784, which is quite close to the optimum value of 961. In this 

example, tournament selection is used with a tournament size of 2, along with single 

point crossover with a crossover rate of 1 or 100% and uniform mutation with a mutation 

rate of 0.005 or 0.5%. 

Table 3.2. First generation of individuals 

Individual Tournament Selection with 
Size 2 

Single Point Crossover x - Value f(x) = x2 

 Competing 
individuals 
from initial 
population 

Winner of 
tournament 
selection 

Strings of 
parents 

(crossover site 
indicated) 

Strings in 
the new 

population 

  

1 4, 2 2 1 1 | 1 0 0 1 1 1 1 0 30 900 

2 5, 6 5 1 0 | 1 1 0 1 0 1 0 0 20 400 

3 3, 1 3 0 1 | 0 1 1 0 1 1 1 0 14 196 

4 6, 5 5 1 0 | 1 1 0 1 0 0 1 1 19 361 

5 1, 6 6 0 1 1 | 0 1 0 1 1 1 1 15 225 

6 4, 3 3 0 1 0 | 1 1 0 1 0 0 1 9 81 

Average      360.5 

Max      900 

 

In Table 3.2, the results of a single generation are summarized. According to 

Figure 3.2, the first operator applied is selection. In Table 3.2, the corresponding 

identification numbers (Table 3.1) of the randomly picked individuals are shown. From 

the selected set of individuals, the one with the higher fitness value is picked for 

reproduction. After selection of the individuals, the single point crossover operator is 
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applied to a pair of individuals and is shown in Table 3.2 (the symbol, |, is used to 

identify the location of the randomly picked crossover site). There are no results listed for 

the mutation operator because the expected number of mutated bits in the entire 

population is pm⋅nbits⋅npop = 0.15. In this example, therefore, none of the bits underwent 

mutation. After the application of the genetic operators, the binary strings were decoded 

into the parameter values and the individuals’ fitness were evaluated. Overall, the new 

generation shows better fitness characteristics than the initial population. The average 

fitness increased by 83.2 and the best individual’s fitness increased by 116, which is only 

one away from the global optimum. 

3.2.3 Advanced Genetic Operators 

To enhance the performance of GAs, several researchers have focused on improving the 

basic operators of GAs or on inventing new ones. As an example, tournament selection 

was introduced to overcome the difficulties associated with premature convergence using 

the standard roulette wheel selection. 

The first improvement considered in this research is related to the crossover 

operator. Using the single point crossover (Figure 3.5) certain combination of features 

encoded in the chromosomes cannot be obtained. Other arguments against the single 

point crossover include the asymmetry between mutation and crossover. The number of 

mutations in a chromosome (pm⋅nbits) depends on the string length, while single point 

crossover does not. To remedy this discrepancy, researchers have experimented with 

other crossover operators (Eshelman et al. 1989). A natural extension of the single point 

crossover is the two-point crossover, or in general the multi-point crossover which is 

shown in Figure 3.8. Multi-point crossover works in a similar manner as single-point 

crossover. The chromosomes are sliced into segments that are then swapped between the 

two parents in an alternating fashion. 

There exist more generalized versions of multi-point crossover that are 

particularly useful for one type of problem and quite poor for others. There is an 

enormous number of recommendations for the improvement of the crossover operator. 

Srinivas and Patnaik (1994b) experimented with adaptive probabilities of mutation and 
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crossover. The motivation was to maintain the diversity of the population and to extend 

convergence capacity of GAs. 

Crossover

String 1

String 2

Before Crossover

New string 1

New string 2

After Crossover

Crossover sites

...

...

...

...

 
Figure 3.8. Multi-point crossover 

In this approach, the probability of crossover is dependent on the fitness values of 

the individuals. Individuals with higher fitness are protected (undergo crossover with less 

probability), while poorer individuals are unprotected (more likely to undergo crossover). 

The crossover rate in an adaptive formulation in a maximization problem is defined by. 
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where k1 and k2 are positive constants (primary and secondary crossover rates, 

respectively) between zero and one, fmax and f  denote the maximum and the average 

fitness values of the current population, and f ′  is the larger fitness of the two individuals 

selected for crossover. According to Eq. (3.7), individuals with below average fitness 

have a crossover rate of pc = k2. If one of the individuals selected for crossover is the best 

in the entire population, then the probability of crossover is zero. Individuals between the 

average and maximum fitness have a crossover rate that is linearly interpolated between 

zero and k1. 
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Table 3.3. Binary and Gray codes for 4-bit strings 

Decimal Binary Gray 

0 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 1 

2 0 0 1 0 0 0 1 1 

3 0 0 1 1 0 0 1 0 

4 0 1 0 0 0 1 1 0 

5 0 1 0 1 0 1 1 1 

6 0 1 1 0 0 1 0 1 

7 0 1 1 1 0 1 0 0 

8 1 0 0 0 1 1 0 0 

9 1 0 0 1 1 1 0 1 

10 1 0 1 0 1 1 1 1 

11 1 0 1 1 1 1 1 0 

12 1 1 0 0 1 0 1 0 

13 1 1 0 1 1 0 1 1 

14 1 1 1 0 1 0 0 1 

15 1 1 1 1 1 0 0 0 

 

In base 2 coded binary strings, slow convergence may result from the presence of 

Hamming cliffs. In base 2 binary representations it is possible that two points close to 

each other in the problem space may represent two points that are far apart in the 

representation space. An example is shown in Table 3.3. If the problem search space 

included integer numbers from 0 to 15 then a 4 bit binary string would be suitable for the 

representation. In this search space the integers 7 and 8 are consecutive, but in the 

representation space, these numbers differ in 3 bits or their Hamming distance is 3. If the 

optimum is located at the variable value of 8 but our current best individual in the 

population encodes the value 7, then three bits in the representation must be changed to 

obtain the optimum. 

To remedy the problems associated with Hamming cliffs, Gray coding may be 

used. Gray coding has the property that two points close to each other in the search space 

 



 75

are also close to each other in the representation space. As shown in Table 3.3, Gray 

coding has the property that any two points next to each other in the search space differ 

by one bit only. Gray codes also form a closed loop in the sense that getting from one end 

of the search space to the other is only one bit apart (0 and 15 in Table 3.3). 

Gray codes can be generated in several ways, including recursively or using linear 

transformation matrix. The algorithm for converting a binary number b = [b1,…,bm] into a 

Gray code number g = [g1,…,gm] and vice versa is given in Figure 3.9. 

 

 
procedure Binary to Gray 
begin 
 g1 = b1 
 for k = 2 to m do 
  gk = bk-1 XOR bk 
end 
 
procedure Gray to Binary 
begin 
 value = g1 
 b1 = value 
 for k = 2 to m do 
 begin 
  if gk = 1 then value = NOT value 
  bk = value 
 end 
end 
 

Figure 3.9. Algorithms to convert binary and Gray coding 

In SGAs, the exploration and exploitation of the search space is balanced fairly 

equally throughout the optimization process. In later generations it may be more 

beneficial to put the emphasis on exploitation while in early generations the exploration 

of the search is desired. By shifting the balance between exploration and exploitation of 

the search space fine-tuning of the results can be accomplished. Non-uniform mutation is 

one possibility for fine-tuning the system. The non-uniform mutation operator suggested 

by Michalewicz (1996) is defined for floating point variables. Therefore, a modified 

version of the original operator is presented that is valid for binary strings. 

Consider a base 2 binary string in which the kth variable is coded with m bits, 

bk = [bj,…,bj+m]. In this string, bits that are located at the end of the string have lower 
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cardinality than the ones at the beginning. If the goal is to search a close neighborhood of 

the current solution one should flip the low cardinality bits to attain this task. Using non-

uniform mutation, the probability that bits with lower cardinality can undergo mutation 

increases as the population ages. Let t and T denote the number of the current generation 

and the maximum number of generations allowed by the user, respectively. A function 

that gives the position of the bit that is mutated (flipped) as a function of the current 

generation, t, and string length, m can be defined. 

 ( ) ( )1
, round

ht
Tt m j mr

 − 
 ∆ = +  (3.8) 

where h is the iteration dependency factor (a usual value is 1.5), r is a random 

number between 0 and 1, and round() is rounding function to the nearest integer. The 

normalized contour plots of the bit position function can be seen in Figure 3.10 and 

Figure 3.11. Figure 3.10 shows the relative position of the bit (0 correspond to the 

beginning of the string while 1 corresponds to the end) subjected to mutation as the 

population ages (t/T increases). From the figure it is clear that mutation is more likely to 

occur for bits with low cardinality as the population ages. When the current generation 

number, t, is 10% of the maximum generations, T, then bits are more or less equally 

likely to undergo mutation regardless of their position. For population with high relative 

age (90%), the string is most likely to be mutated in its end segment. Figure 3.11 reaches 

a similar conclusion (with aging population mutation is likely to occur in the end portions 

of the string regardless the random number). 

Michalewicz (1996) reported that GAs using the non-uniform mutation 

outperformed GAs not using non-uniform mutation with respect to the accuracy of the 

found optimal solution. In addition, GAs using non-uniform mutation converged faster to 

the optimum. For Gray coded strings, the cardinality of end bits are not as low as that of 

the base 2 binary coding, and therefore, the performance increase for GAs using non-

uniform mutation may not be as pronounced. 
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Figure 3.10. Normalized contour plot of the bit position function used in non-uniform mutation as a 
function of the random number; The level lines indicate the relative generation age, t/T and b = 1.5 
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Figure 3.11. Normalized contour plot of the bit position function used for non-uniform mutation, as a 
function of the relative generation age, the level lines indicated are corresponding random numbers, r, 

b = 1.5 
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The last performance boosting strategy presented here is called elitism (De Jong 

1975). The argument behind the elitist model is that the best individual found so far 

should be protected and retained to ensure that the fitness of the best individual never 

decreases between consecutive generations. The model is very simple. In an external 

string, the structure of the best individual is stored. If the best individual in the next 

generation is worse then the best individual found so far, then the worst individual in the 

population is replaced by the external string storing the best individual up to this point. 

Otherwise the best individual in the current population is copied to the external individual 

and retained. De Jong (1975) found that the elitist strategy significantly increased 

performance for unimodal functions, although on multi-modal functions it actually 

degraded performance. His conclusion was that elitism improves local search at the 

expense of global perspective. 

3.3 Fixed and Implicit Redundant Representations 

In the previous section, only a small number of advanced operators for the performance 

improvement of SGAs were considered. In addition, research has focused on improving 

the basic operations of SGAs by considering advanced biological phenomena. All SGAs 

share one common element: particular genes are represented in fixed format. One of the 

characteristics of the fixed representation typical to SGAs is that the optimization domain 

must be known beforehand. Each individual in the population represents one complete 

solution of the problem. The fixed SGA representation is a genotype representation of the 

whole problem domain and therefore can become very large. As a consequence, SGAs 

may perform poorly for problems having a large number of design variables 

(Michalewicz 1996). For example, a problem with 100 independent variables that are 

coded with 20 bits each results in a chromosome size of 100⋅20 = 2000. This number is 

quite large and explains the poor performance of SGAs for complex optimization 

domains. 
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3.3.1 Encoding for Damage Detection 

In order to model a structure with reasonable accuracy, hundreds or thousands of finite 

elements may be required. Remember that in Section 2 the optimization problem for 

damage detection used in this research was formulated, Eq. (2.55) in which each finite 

element in the structural model was assigned a unique damage indicator. The primary 

goal of damage detection is to find the damage indicators for all finite elements. As a 

result, the number of independent variables in the damage detection optimization problem 

is equal to the number of finite elements in the model. The optimization problem search 

domain defined by the fixed SGA representation can be very large for these problems. 

For the damage detection problem, however, even when the number of finite 

elements in the model becomes very large, the number of actual damaged elements is 

only a fraction of the total number of finite elements in the model. The difficulty 

presented for damage detection is that neither the number of actual damaged elements, 

nor their locations or severity are known beforehand. The assumption that only a small 

number of elements are damaged, is crucial in damage detection problems. In this case, 

the damage detection problem can be thought of as an inverse problem, in which the goal 

is to find system properties using a limited source of measured responses due to some 

external effect. The available information may not be sufficient to uniquely identify 

damaged elements when the number of damaged elements is relatively large. Therefore, 

obtaining a unique solution for multi-damage cases is often difficult or impossible. This 

special situation defines an unstructured optimization problem in which the number of 

independent variables is unknown, although bounded between zero and the number of 

finite elements in the model. 

The fixed SGA representation for the defined damage detection optimization 

problem is quite straightforward. To use the fixed representation, each finite element in 

the model has a unique damage indicator, or in optimization terms, is an independent 

unknown variable. Therefore, the optimization domain is defined by the number of finite 

elements in the model. In Figure 3.12, each damage indicator is encoded as a binary 

string. The length is determined by the required precision of the encoded continuous 
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floating-point variables. The binary damage indicators are simply concatenated to form a 

string or chromosome. The total length of the string is equal to the number of finite 

elements times the number of bits required to encode a damage indicator, ne⋅nbit. In other 

words, the length of the string is directly proportional to the number of finite elements. 

For complex problems, this means that the SGA has to tackle a search space defined by a 

large number of variables, which results in poor convergence or failure of the search. 

1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0...

Encoded damage
indicator for
Element 1

Encoded damage
indicator for
Element 2

Encoded damage
indicator for
Element ne  

Figure 3.12. Fixed representation for damage detection 

The implicit redundant representation proposed by Raich and Ghaboussi (1997a) 

can overcome the difficulties associated with the unstructured damage detection problem 

identified above. The implicit redundant representation (IRR) introduces redundant 

segments into the string, which allows the number of variables to dynamically change 

during the course of optimization. This property is appealing for damage detection 

problems in which neither the number of damaged elements nor their locations are known 

beforehand. 

A typical IRR string for the damage detection problem is depicted in Figure 3.13. 

In this representation, three parts of the string can be identified: a predefined gene locator 

(GL) pattern; a gene instance, which is the useful part of the string; and redundant 

segments. Each gene instance consists of two parts, a segment encoding the finite element 

number (location of damage) and a segment encoding the damage indicator for that finite 

element (magnitude of damage). Between any two consecutive gene instances, one may 

 



 81

find a redundant segment that does not currently provide any information regarding a 

damaged element. The redundant segment may become a useful gene instance in later 

generations through the actions of genetic operations. Gene instances encode the 

parameter values using binary encodings (base 2 or Gray coding) similar to other GAs. 

To decode a damage indicator, the IRR string is parsed until a GL pattern is found that 

identifies the beginning of a gene instance. Then the finite element number identifying 

the damage location is decoded along with the corresponding damage indicator value. If 

more than one gene instance identifies the same finite element then the average of the 

damage indicators is taken and used to quantify the severity of damage. The IRR does not 

require the number of parameter values to be pre-specified, since the number of gene 

instances can be changed dynamically to reach a better solution implicitly implied in the 

objective function. 

...

Gene instances

: Redundant segments

1 0 0 1 0 1 0 0 0 0 1 0 11 0 0 1 0 1 0 0 01 1 1 0 0 0

Gene locator
(GL) pattern

Encoded finite
element number

Encoded damage
indicator value  

Figure 3.13. Implicit redundant representation (IRR) for damage detection 

The structure of the GL pattern has an arbitrary meaning since there is not one 

preferred combination of binary digits that is superior over any other. The most 

influencing property of a GL pattern is its length. In Figure 3.13, the selected GL pattern 

has a length of three digits and the pattern consists of only binary ones, [1 1 1]. The 
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probability of finding a GL pattern in a binary string decreases as the length of the GL 

pattern increases. The probability of occurrence of a GL pattern consisting of lGL bits is 

defined by the equation (Raich and Ghaboussi 1997b). 
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where pGL is the probability of occurrence of a specific GL pattern, β is the 

probability of occurrence of a specific bit value (it is either 0 or 1, so β = 0.5), and lGL is 

the number of bits in the GL pattern. For example, the probability for the [1 1 1] GL 

pattern is pGL = 0.07143. The probable number of non-overlapping unique GL patterns 

that can be found in a string taking into account the length, lg, of the encoded gene value 

determines the number of gene instances for an individual (Raich and Ghaboussi 1997b). 
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where NGL is the probable number of gene instances found in the string, ls is the 

number of bits in the string, nbits, minus (m-1) bits to account for the end of the string and 

lg is the number of bits in an encoded gene instance, which equals to the sum of the 

number of digits used to encode the finite element number and the corresponding damage 

indicator value. The string length using IRR is allocated in accordance with the expected 

number of damaged elements (gene instances), which is specified by the designer. Using 

the expected number of damaged elements and the number of bits in an encoded gene 

instance, the chromosome length can be determined. 
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For the IRR GA, each individual in the population also represents one complete 

solution, but the solution is defined only by the damage indicators for a small subset of 
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the finite elements in the model, instead of maintaining a representation of all damage 

indicators. The dynamic redundancy of the IRR provides additional benefits such as less 

disruption of crossover and mutation due to the presence of redundant segments, dynamic 

enlargement and reduction of the search space, and exploration of fit members through 

the activation of redundant material into gene instances. The self-organizing capability of 

the IRR provides a beneficial representation for unstructured problem domains such as 

the one posed by damage detection investigated in this research. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...

Encoded zero
damage indicator
for Element 1

Encoded zero
damage indicator
for Element 2

Encoded zero
damage indicator
for Element ne  

Figure 3.14. Zero damage individual using fixed representation 

In damage detection problems it is often assumed that the number of damaged 

elements are small and the severities of these damages are also small then a zero damage 

individual can be used to seed the initial population of the GA. A zero damage individual 

encodes all finite elements with zero damage indicators. The underlying idea behind the 

use of a zero damage individual in the initial population is that this solution may actually 

be the best one in the initial population and can carry beneficial genetic information that 

enables the GA to find the optimum solution faster. A zero damage individual using the 

fixed representation is depicted in Figure 3.14. It is simply a string in which all bits are 

zero and therefore all damage indicators decode to zero. A zero damage individual using 

IRR is shown in Figure 3.15. In this representation the number of gene instances in the 

string is equal to the expected number of damaged elements. The GL patterns and gene 

instances are concatenated without any redundant segments between them. In each gene 
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instance the finite element number is randomly initialized while the damage indicator 

segment has all zero bits encoding a zero damage indicator. 

...

Number of gene instances is equal to the
expected number of damaged elements

: Redundant segment

0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 01 1 1 0 1 0

Gene locator
(GL) pattern

Randomly initialized
encoded finite

element number

Encoded zero
damage indicator

value

 
Figure 3.15. Zero damage individual using IRR 

3.3.2 Encoding for Excitation and Sensor Layout Design 

Similar to the studies performed on the damage detection problem, both types of gene 

representations (fixed and IRR) are adapted for the excitation and sensor layout design 

problem outlined in Section 2. In this problem, there is a set of DOFs where the excitation 

and/or sensors can be placed. These DOFs are collected in a vector at the beginning of 

each run, which is a one-dimensional array called the sensor location vector, sl. For 

example in a two dimensional frame type structure using Bernoulli frame elements 

(Appendix A), the excitation and sensors can be placed at any unrestrained DOFs in the 

horizontal or vertical direction. In most cases, however, the rotational DOFs are not 

available because of the difficulties associated with obtaining rotational DOF 

measurements. 
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The fixed representation gene for the excitation/sensor layout design problem is 

depicted in Figure 3.16. The first part of the chromosome encodes the excitation DOF. 

More precisely this is an index (a discrete number between 1 and the sensor location 

vector size, nsens) of the senor location vector, which in turn identifies the excitation DOF. 

The second part of the gene consists of nsens number of binary digits or “On/Off” switches 

identifying the DOFs where sensors are placed. 

0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1...

Index identifying the
excitation DOF from the
sensor location vector

ON/OFF switches related
to the elements of the
sensor location vector  

Figure 3.16. Fixed representation for excitation and sensor layout design problem 

1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1...

Index identifying
measurement DOF from

the sensor location vector

1 1 0 1 1 1 0 1 1 0 0 1

Index identifying the
excitation DOF from the
sensor location vector

Gene locator
(GL) pattern

Redundant segment

 
Figure 3.17. Implicit redundant representation (IRR) for excitation and sensor layout problem 
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The typical IRR gene representation for the excitation/sensor location problem is 

shown in Figure 3.17. The first part of the chromosome encodes the excitation DOF, 

which is identical to the chromosome defined for the fixed representation. In the second 

part of the IRR string, three different segments can be identified: the GL pattern 

identifying the beginning of a gene instance; the encoded sensor location vector index 

identifying a measurement DOF; and the redundant segments. 

To identify the primary differences between the fixed and IRR representations, 

consider a simple cantilever beam problem consisting of 10 finite elements and 11 nodes 

as depicted in Figure 3.18. In this figure, node numbers are shown in regular text and the 

DOFs are labeled using italic numbers. The DOFs are numbered consecutively in the 

order of horizontal, vertical, and rotational DOFs, for each node starting from node 1. In 

this problem, sensors are placed only in the direction of the vertical DOFs and only the 

labels of the unrestrained vertical DOFs are defined in the sensor location vector. In total 

there are 10 locations where the excitation and sensors can be placed along the beam, 

which means that indices from 1 to 10 are encoded in the binary string. To encode 10 

integer numbers, a 4-bit binary number (values from 0 to 15) is mapped to the integers 

ranging from 1 to 10. Consequently, the length of the fixed representation is 14, which is 

defined as four digits to encode the excitation DOF and 10 digits to encode the 1-bit 

“On/Off” switches. 

Decoding the fixed representation GA string depicted in Figure 3.18 defines the 

following placements: the excitation is located at node 6 and four sensors are placed at 

nodes 3, 7, 8 and 11. In comparison, the IRR GA string shown in Figure 3.18 encodes 

three sensor locations and the excitation is the same as it was for the fixed representation. 

The first gene instance encodes the value 5, which map to DOF 17 at node 6. The other 

two gene instances identify sensor locations at node 10 and 3. 

For this problem, the fixed representation works with a fully defined solution on 

the problem domain while the IRR represents a complete solution using only a smaller 

subset of the variables defined in the problem domain. For this simpler sensor 

optimization, the fixed representation may be more compact than the IRR because the 

coding of “On/Off” switches requires only one bit per sensor. As the structural model 
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becomes more complex, however, the IRR could be more efficient in finding solutions in 

the larger problem search spaces that must be defined. 

Horizontal DOF: 1
Vertical DOF: 2
Rotational DOF: 3

4, 5, 6
1 2 3 4 5 6 7 8 9 10 11

7, 8, 9

10, 11, 12

13, 14, 15

16, 17, 18

19, 20, 21

22, 23, 24

25, 26, 27

28, 29, 30

31, 32, 33

Sensor location vector containing unrestrained vertical DOFs:
sl = [5, 8, 11, 14, 17, 20, 23, 26, 29, 32]

0 1 1 0 0 1 0 0 0 1 1 0 0 1

0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 0 1

5: DOF 17 9: DOF 29 2: DOF 8
Excitation
5: DOF 17

GL pattern GL pattern GL pattern

Fixed:

IRR:

 
Figure 3.18. Comparison of fixed and IRR representations for the excitation and sensor layout design 

problem of simple cantilever beam 

3.4 Local Optimizer, Hillclimbing Algorithm 

In certain situations, GAs will have a slower convergence rate near the global optimum. 

To overcome this phenomenon, a local hillclimbing search technique is implemented to 

allow fine-tuning of the results obtained by the GA for the damage detection problem. 

Hillclimbing methods, like most local search algorithms, are iterative processes that use a 

single solution in the search space. The basic principle of all hillclimbing procedures is 

that if a point in the neighborhood of the current solution provides a better value in terms 

of the evaluation function then the new point becomes the current point. Otherwise, some 

other neighborhood is selected and tried out until no further improvements are obtained 
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or some other convergence criterion is satisfied. The main limitation is that hillclimbing 

procedures can only find local optima that are dependent on the starting point. Provided 

that GAs can find a solution in the region of the global optimum, hillclimbing can 

improve that solution locally with greater efficiency. 

Hillclimbing algorithms differ in the way a new solution is selected in the 

neighborhood of the current solution. A version of an iterated hillclimbing algorithm is 

given in Figure 3.19. The first step in this implementation is to initialize the hillclimber 

(current point xc) with the best solution obtained by the GA. The local optimum of the 

problem is also stored in xlocal initialized with the GA solution. 

Next all possible neighbors of the current point are tested and compared with the 

current solution. If any of the neighboring points, xn, is better then the local solution, 

xlocal, then it becomes the local point. The neighbors of the current point are obtained 

using the step sizes, Si, of each variable. The algorithm loops through each variable and 

modifies the current solution by first adding and then subtracting the corresponding step 

size to the current variable (damage indicator). Initially, the step sizes are equal to the 

decimal precision represented within the binary coding. Throughout the hillclimbing 

procedure, however, the individual step sizes are altered independently based on the 

failure or success of the new point. If there was an improvement in the new solution then 

the step size of the corresponding variable is multiplied by β1 = 1.5. Otherwise it is 

multiplied by β2 = 0.5. After testing all the neighbors of the current solution (looping 

through all variables), the current solution is replaced with xlocal if it is better than the 

current point and a new iteration starts. If the there is no improvement in any of the 

variables, and all step sizes are smaller or equal to the decimal precision, then a local 

optimum is obtained and the procedure terminates. Otherwise, a new iteration starts until 

there is no improvement and all the step sizes are below the precision. 

The success of finding the global optimum using hillclimbing depends on the 

initial starting point provided. Using the solution provided by the GA, hillclimbing 

techniques exploit this solution for possible improvements without further exploring the 

search space globally. Combining robust search procedures, such as GAs, with local 
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search techniques can result in increasing the overall effectiveness of the optimization 

procedure used. 

Starting point, xc, provided by GA
Set initial step sizes equal to the precision of the binary representation

Si = precision, i = 1,...,ne
Initialize best solution, xlocal = xc

i = 1

Select a new point in the neighborhood of the current solution
xn,i = xc,i + Si and xn,i = xc,i - Si

success = FALSE

Is f(xn) better
than f(xc) ?

success = TRUE

Is f(xn) better
than f(xlocal) ?

xlocal = xn

Yes
No

success Yes Si = β 1SiSi = β 2Si

xc = xlocal
Is f(xlocal) better

than f(xc) ?

Is all Si less than or
equal to precision ?

Is i equal to ne ?

No

Yes

Noi = i + 1

No

Yes

No

Yes

No Local optimum
obtained, xlocal

Yes

 
Figure 3.19. Flowchart of hillclimbing algorithm 
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3.5 Multiobjective Optimization Using Nondominated Sorting Genetic Algorithm 

In many real-world optimization problems it is often difficult to come up with a single 

evaluation function that gives objective information about the quality of one solution over 

another. In addition, the objectives of an engineering design problem often contradict 

each other and an improvement in one objective may cause some other objectives to 

become less favorable. In single objective optimization, the aim usually is to find the best 

possible solution to a problem representing some local or global optimum. The notion of 

optimum, however, is redefined in the context of multiple objectives. The goal becomes 

finding a set of “best” solutions and allowing the designer to select the one that is the 

most favorable for the given environment. In these situations instead of trying to find a 

single “best” solution, an evaluation of the compromises or “trade-offs” associated with 

contradicting objectives may be desirable. 

An intuitive approach to multiobjective (MO) optimization is the linear 

combination of objectives into a single scalar objective function using weights. For 

example, for k objectives the scalar objective is obtained. 

  (3.12) 
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where wi is a nonnegative weighting coefficient representing the relative 

importance of the ith objective. The difficulty with applying this approach is that very 

little is known about how to chose the weighting coefficients and that the results vary 

significantly depending on the importance (weighting) factors used. The benefit of this 

approach is that the algorithms developed for single objective optimization can still be 

used. The designer is required to run trials using several different sets of weighting 

coefficients on order to be able select the “best” solution for the given problem. 
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3.5.1 The Notion of Multiobjective Optimization 

The excitation and sensor placement optimization problem considered in this research 

(Section 2) has two objectives: minimize the number of sensors used for measurements 

and maximize the information contained in the measurements. These two objectives 

contradict each other, since reducing the number of sensors usually decreases the 

information contained in the measurements, and vice versa. In cases where there is more 

than one objective function to optimize, a multiobjective optimization approach can be 

defined (Coello 2001), which involves optimizing the vector function consisting of k 

objective functions. 

 ( ) ( ) ( ) ( )1 2, , ,
T

kf f f 
 =f x x x x…  (3.13) 

where  is the vector of decision variables. The solution 

vector, 
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x x x 
 …=x , must also satisfy the p equality constraints 

 ( ) 0     1,2, ,ih i p= =x …  (3.14) 

and the q inequality constraints 

 ( ) 0     1,2, ,i i≥ =xg … q  (3.15) 

In general, a single set of decision variables, * * *
1 2, , , nx x … x , will not be obtained 

since it is rare to find a single solution that simultaneously optimizes all objective 

functions. Instead due to tradeoffs, multiple solutions to the problem will exist and the 

optimum set is defined as a collection of “trade-off” solutions. 

This set of solutions, termed the Pareto optimal set was defined originally by 

Pareto (1896). A vector of decision variables *x ∈F , where F is the set of feasible 

solutions, is Pareto optimal if there does not exist any ∈x F  such that ( ) ( )*
i if f≤x x  for 
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all  and 1,2, ,i k= … ( ) ( )*
j jf f<x x  for at least one j assuming that all objectives are to be 

minimized. If the above conditions are satisfied for a vector of decision variables, , 

then it is said to be nondominated. The set of nondominated solutions is also called the 

Pareto front. 
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3.5.2 Nondominated Sorting Genetic Algorithm (NSGA) 

To aid in the explanation of nondominated sorting genetic algorithms (NSGA), which are 

used in this research, the MO optimization problem for the excitation and sensor layout 

design, discussed in Section 2 is restated in Eqs. (3.16) and (3.17). The MO optimization 

problem concerns minimizing the number of sensors used and maximizing the total 

information contained in the measurements. The number of sensors used is at least one, 

but not more than a specified number, nu,meas. 
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subject to: 

 ,0 meas u measn n< ≤  (3.17) 

The decision variables for the sensors are logical variables. Each variable acts as 

an “On/Off” switch related to an unrestrained DOF in the finite element model where 

sensor(s) can be placed. In addition, a discrete decision variable, x0, related to the 

excitation DOF is defined. 
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In MO optimization, the goal is to find a set of solutions that are members of the 

Pareto front. This is distinct from the goal of a single objective optimization problem of 
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finding the “best” solution. One benefit of GAs is that since GAs work with a population 

of solutions they have the potential to evolve several Pareto optimal solutions within a 

single run. Having a set of solutions allows the designer to select the “best” alternative in 

a given environment by evaluating the possible Pareto optimal solutions. A valuable 

overview of GAs in MO optimization is given by Coello (2001). 

The nondominated sorting genetic algorithm (NSGA) used to evolve the Pareto 

front for the MO sensor optimization problem was proposed by Srinivas and Deb 

(1994a). The NSGA differs from a simple GA (SGA) only in the way the selection 

operator works, while the crossover and mutation operators remain the same. Before 

selection is performed, the population is ranked based on its individuals’ domination 

using a Pareto ranking. First, individuals that are nondominated are identified from the 

population and constitute the first nondominated or Pareto front. Individuals in the 

nondominated front are assigned the same dummy fitness value, which is used in the 

selection process. The dummy fitness value provides the same reproductive potential to 

the nondominated individuals in the same front. To maintain diversity of the population 

on order to maintain solutions over the Pareto front, the nondominated individuals are 

shared using their dummy fitness values. Then the nondominated individuals are removed 

from the population and the ranking procedure is repeated for the remaining individuals. 

The fitness value in the current rank is worse then the fitness value in the previous rank 

after sharing is performed. The ranking process continues until all individuals in the 

population are ranked. 

In traditional fitness sharing (Goldberg 1989), the fitness degradation is 

performed if the phenotypic distance between two individuals in the current front is less 

than the maximum phenotypic distance allowed between any two individuals in the 

current front. The reason for performing fitness sharing is to avoid biasing individuals 

toward some Pareto optimal solutions. With fitness sharing a good distribution of 

individuals on the Pareto front can be maintained. In the sensor optimization problem 

considered in this research, one of the objective functions is discrete. Therefore, the 

definition of distance between two individuals becomes unnecessary. During ranking in 

this research, individuals in the first rank are assigned a fitness value of zero. In each 
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subsequent rank, the fitness value assigned is increased by one. Fitness sharing is 

performed if two individuals have the same number of sensors and carry the same level of 

measurement information. These individuals are ranked in the same level and are also 

possibly identical. 
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,    otherwise
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where fit is the fitness value of individuals, and i and j represent any two 

individuals in the population. 

The only constraint defined for the excitation and sensor layout MO design 

problem is the limit on the number of sensors used to collect measurements. Depending 

on the gene representation, two constraint handling strategies were employed: repair of an 

individual and fitness penalizing (Michalewicz 1996). 

For the fixed representation, an individual was repaired if the number of sensors 

was zero or exceeded the upper limit fixed by the user. The repair operator was 

implemented so that during early generations the individual was more likely to be 

repaired while in later generations it was more likely to be reinitialized. Re-initialization 

facilitated the exploration of the search space. The repair operator (Figure 3.20)defined 

selected the individual to be repaired and randomly turned off (changed the bit from one 

to zero) sensor locations until the number of sensors turned on equaled to a randomly 

selected number of sensors between the fixed limits. The re-initialization operator 

replaced the selected individual with a new individual that has a randomly selected 

number of sensors at randomly selected locations. 

For the IRR representation, the gene length was calculated based on the maximum 

number of sensors allowed using the average number of gene instances that can be 

present within the string length. While the selected string length itself gives a limit on the 

maximum number of sensors that can appear in the gene, it still is possible that the 

encoded number of sensors exceeds the upper fixed limit. In situations where the number 

of sensors encoded was above or below the maximum or minimum number of sensors, 
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respectively, the fitness (or rank) of the corresponding individual was degraded. 

Degrading the fitness of an individual reduces its chances to reproduce or survive. 

0 1 1 0 0 1 0 1 0 1 1 0 0 1

Maximum number of measurements = 10

0 1 0 1 1 1 0 1 0 1

Fixed representation string encoding 11 sensors

0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0

R
ep

ai
r

1. Randomly select the number of
sensors between 1 and 10 that will be
retained in the repaired string.
2. Select the "turned on" sensor
locations from the original string that
will be copied into the initially zero
repaired string

1 1 1 1 1

Repaired fixed representation string encoding 5 sensors  
Figure 3.20. Repair operator for fixed representation strings 

Because in an NSGA there is not a single individual that is superior to all the 

others, some of the advanced genetic operators have to be reconsidered. For example in 

adaptive crossover, the average fitness value of individuals and the fitness of the 

individual selected for crossover were used to compute the crossover rate. In the NSGA, 

individuals are evaluated according to their rank and not to their fitness value. Moreover, 

taking the average fitness of all individuals would not result in an objective measure 

because there is no connection between the ranks of individuals that represent one or ten 

sensor locations. The adaptive crossover for the MO sensor layout problem was modified, 

which used the primary crossover rate for individuals in the Pareto front and the 

secondary crossover rate for all other individuals. 

Elitism also needs to be reconsidered. The difficulty again is that there are several 

individuals in the Pareto front that are equally superior to any other individuals in the 

population. Instead of having a single external individual, an external population of the 

Pareto front was stored. If the best individual’s information measure for a given number 

of sensors was worse than the information measure of the corresponding individual in the 
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elite external set, then the worst individual was replaced with the corresponding string in 

the elite external population. Difficulties arose when there were no individuals 

representing a given number of sensors. In these situations, individuals representing most 

highly populated sensor numbers were selected to be replaced in the elitism process, 

which required additional bookkeeping of the distribution of individuals with respect to 

the number of sensors. 
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4 COMPUTATIONAL PROGRAMMING 

The implementations of the SDIM and the excitation/sensor layout design problems 

required considerable computational programming. In a computational sense, there were 

two major parts of the implementation: a finite element procedure to evaluate the 

objectives and an optimization module, which included the genetic algorithm and the 

local hillclimbing method, to search for optimal solutions for both types of optimization 

problems. The damage detection and excitation/sensor layout programs were coded in 

C++ (Deitel and Deitel 2001) using Microsoft Visual C++ and the Microsoft Foundation 

Classes MFC (MSDN Library 1998, Bates and Tompkins 1998). To facilitate and hasten 

the development of the algorithms, the Maltab C/C++ Math Library 2.1. was used for 

matrix calculations (i.e. assembly of stiffness and mass matrices, eigenvalue and 

eigenvector extraction, etc.) in the finite element model (MATLAB 1999b). 

The complete program consisted of three major modules: 1. preprocessor and a 

utility program, 2. processor including the finite element, GA and hillclimbing 

implementations, and a 3. postprocessor including an easy to use graphical user interface. 

These three units were combined into a single program. Only the utility program, which 

was used to generate simulated measurement data, remained separate. The overall 

software developed is extensive. The code consisted of about 15,000 lines, which is 

approximately equivalent to 320 legal-size printed pages using Times New Roman 12 

point fonts and single spacing. Installation of the program was automated using 

InstallShield for Microsoft Visual C++ 6 (InstallShield 1997). 

Extensive verification of the finite element and the genetic algorithm modules was 

performed on a range of test cases. The finite element module was tested by comparing 

vibration response results to those provided by the ABAQUS general finite element 

software (ABAQUS/Standard 2001). The genetic algorithm was also verified using 

standard optimization test functions for which the optimum solutions were known, 

including De Jong’s Function 1 (F1), Rosenbrock’s Banana function (F2), Rastrigin’s 

function (F6), and Schwefel’s deceptive function (F7). 
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4.1 Preprocessor and Utility Program 

In this research, the measurement data were simulated using a utility program called 

ModalFEM. This program generates FRF input files for different finite element models 

using Bernoulli type frame elements (APPENDIX A). The user provides an input text file 

(*.inp) containing the finite element model of the structure. Using the input file, the 

utility program generates a binary MATLAB data file (*.mat) that contains simulated 

measurement data for specific excitation and measurement locations. Since this is a 

MATLAB data file it can be read into MATLAB and processed or verified by the user as 

necessary. 

The input text file for the utility program works with cards and each card 

processes a different type of information. The cards used in the input files resemble those 

used in ABAQUS input files (ABAQUS/Standard, 2001). A list of the cards and their 

roles in the input file can be seen in Table B.1 of APPENDIX B. A sample input file for a 

cantilever problem is shown in Figure B.1 of APPENDIX B. Although these input files 

are very similar to ABAQUS input files, they are not compatible. It the graphical user 

interface of ABAQUS is used to generate the input file, it still must be manually edited to 

match the syntax of the ModalFEM program. Lines in the input file are commented out 

by using the standard C++ comment symbol “//” and lines starting with comment 

symbols are simply skipped. A typical input file contains the node locations and elements 

that span those nodes, in addition to cross-sectional area and moment of inertia 

information. When generating an input file representing the damaged structure for which 

simulated data are needed, the damaged members are grouped together and are assigned a 

material property having a modified (reduced) modulus of elasticity. This modified value 

corresponds to the severity of damage imposed in those members. Several of these groups 

can be defined to simulate different levels of damages in the same structure. 

The program developed for solving the damage detection and excitation/sensor 

layout design problems is called GaDamDet. This program was built in the Windows 

environment and consists of the preprocessor, processor and postprocessor modules. The 

main menu bar of the program is depicted in Figure 4.1. The preprocessor and processor 
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functions can be accessed through the “Settings” menu or toolbar (Figure 4.2). The first 

four items in the settings menu correspond to preprocessor functions. The first item 

“Objective Function” enables the user to select the objective function and type of 

optimization (damage detection or excitation/sensor layout) through a dialog box (Figure 

B.2 of APPENDIX B). 

By clicking on the “Genetic Algorithm” submenu item (Figure 4.2) a property 

sheet comes up with six tab items on it (Figure B.3 of APPENDIX B). The first property 

page, “population”, contains input items pertaining to the population or its initialization, 

such as population size, number of significant digits, random seed number, tournament 

size, and a checkbox for seeding the initial population with a zero damage individual. The 

next five property pages are shown in Figure B.4 of APPENDIX B. The “Convergence” 

property page takes the input for the maximum number of generations allowed and 

another convergence parameter “stop if no improvement”, which terminates the algorithm 

if there was no improvement within a certain number of generations. On the “Crossover” 

property page, the user can select the number of crossover sites. By choosing adaptive 

crossover, both the primary and secondary crossover rates must be input. Equal 

probability crossover requires only the primary crossover rate to be input. The mutation 

type (uniform or non-uniform) is selected through the “Mutation” property page and the 

rate of mutation is also entered. Non-uniform mutation is only implemented for the fixed 

representation GA, and in this case the iteration dependency factor is also an input 

parameter. The next property page in Figure B.4 of APPENDIX B is the “Variables” 

dialog enabling the selection of the fixed or IRR representations. When selecting an IRR, 

in addition to the number of variables, the user also has to input the expected number of 

damaged elements (gene instances, only if damage detection is to be performed) and the 

length of the GL pattern. The last property page of the “Settings - Genetic Algorithm” 

menu is the “Switches” dialog. On this panel, the user can turn on elitism and/or 

hillclimbing and also select between base 2 binary or Gray coding. A reduced version of 

the hillclimbing algorithm is also available in which hillclimbing is only carried out for 

variables carrying a damage indicator value greater than zero. In this case, when a 
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damage indicator becomes zero during hillclimbing it is removed from the set of 

variables being optimized. 

 
Figure 4.1. Main menu structure of GaDamDet program 

Settings Menu Settings Toolbar

Objective Function

Genetic Algorithm

FEM Input

Output Request

Drawing Properties

Run Analysis

 
Figure 4.2. Settings menu and its corresponding toolbar of GaDamDet program 

The next preprocessor module is associated with the finite element and 

measurement data input. By clicking the “FEM Input” submenu of the “Settings” main 

menu or its corresponding toolbar icon (Figure 4.2) a dialog box opens, in which the 

finite element input file and the MATLAB data file including measurement data can be 

selected (Figure B.5 of APPENDIX B). The finite element input file (*.inp) has the same 

structure as the input files used by the utility program ModalFEM. The only difference is 

that this input file contains information about the undamaged or baseline structure. This 

baseline structure is used to adjust the damage indicators of the finite elements to match 

the FRFs with the measurement data. On the “Finite Element” dialog (Figure B.5 of 

APPENDIX B) the finite element input file is read into a scrollable edit box to enable the 

user to check the syntax and verify that the correct input file is used in the analysis. In 

addition the finite element input file is used to identify the excitation and measurement 
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location in the MATLAB data file (*.mat), which can be selected by clicking the “Open 

Matlab File” button. 

The last preprocessor module is the “Output Request” dialog box, which is shown 

in Figure B.6 of APPENDIX B. This function is accessed by pointing to the “Setting” 

main menu and then clicking on the “Output Request” submenu (Figure 4.2). On this 

panel, the user can control the frequency of information written to the output files and the 

amount of data that is output during each run. Output information can be written into text 

files (*.txt) and/or postprocessor binary files (*.gdd), which are only readable by the 

postprocessor interface of the program GaDamDet. By checking the “Auto Save” option, 

the postprocessor output is saved every time information is written to it so that 

information will not be lost if the system crashes or another disruption occurs. Restart of 

an analysis is not provided in this version of the program. The frequency of output is 

controlled by the recursive equation in Eq . (4.1). 

  (4.1) ( ) 3

, , 1 1 k
out i out in n B i−= + −

where nout,i is the ith output generation number, B is the base multiplier, and k3 is 

the output controlling exponent. As an example if nout,1 = 0, B = 1, and k3 = 0 then 

information for all generation are output. However, if nout,1 = 0, B = 5, and k3 = 2 then the 

sequence of generation numbers for output is 0, 5, 25, 70, 150, etc. 

Although input error checking is done in the program, the program does not 

guarantee that false input parameters cannot be entered. This is especially true for the 

finite element input files for which syntax error checking is performed but the validity of 

input parameters is not checked. Careful inspection of the finite element input files is 

required to avoid fallacious results of damage detection and excitation/sensor layout 

design. 

4.2 Processor 

The processor is the main computational unit of the program and is mostly hidden from 

the user. Therefore, to the user it acts as a black box. The processor can be accessed 
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through the “Settings” main menu by clicking on the “Run Analysis” submenu or the 

corresponding toolbar (Figure 4.2). Before executing an analysis, input parameters and 

files are checked one more time for consistency. If any errors are found the user is 

notified to correct those mistakes. The processor uses the MATLAB C/C++ Math Library 

2.1. (MATLAB 1999b) to store structural stiffness, mass and damping matrices and to 

perform the eigenvalue decomposition of FRF matrices. The eigenvalue decomposition 

has to be done each time the fitness value of an individual is required. The eigenvalue 

solver uses an iterative algorithm for the extraction of modes. Therefore, only a limited 

number of the modes in the low frequency range are included in the analysis, which is 

defined in the finite element input file. Usually the number of modes included in the 

modal decomposition should cover a frequency range that is at least twice as large as the 

highest measured frequency in the FRFs (Gatti and Ferrari 1999). Although the 

evaluation of FRFs typically takes less than a second, the total processing time due to the 

iterative computations in a GA can be very large. Assuming the fitness (FRF) evaluation 

takes one second, the approximate total computational time for a population size of 200 

and 200 generations is 1⋅200⋅200 = 40,000 seconds which is equivalent to 11.11 hours. 

Monitoring the results during the analysis is beneficial in order to make decisions 

about the progress of the GA. If there is no progress then the user is able to terminate the 

program, while preserving the information collected up to the point of termination. Since 

the program is multitasking, the processor can run independently from the graphical user 

interface. Another desirable program feature would be restarting a terminated trial (e.g. 

with different settings), but this is not implemented in the current program. 

The user is able to monitor the progress of the algorithm in three ways. The first 

way of monitoring progress is through the “Monitor” dialog (Figure B.7 of 

APPENDIX B). On this panel, the elapsed time, current generation number, and 

individual information, as well as the progress bars of the convergence criteria, can be 

found. The second progress monitoring capability is a child window of the “Monitor” 

dialog called the “Monitor Graph” dialog, which can be displayed by clicking on the 

“Hide/Show Graph” button. A typical “Monitor Graph” plot obtained for an IRR GA 

damage detection case study trial, generated by the “Monitor Graph” window, is shown 
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in Figure 4.3. On this graph, four separate measures are monitored and updated 

continuously. The best individual’s fitness and the average fitness of the population are 

plotted in the upper graph, while the number of gene instances in the best individual and 

the average number of gene instances are plotted in the bottom graph. All figures can be 

zoomed dynamically by grabbing the handles located at the left and bottom corners of the 

plot. There is also a vertical cursor line (located at generation 93 in Figure 4.3) that can 

be grabbed and moved along the iteration axis, which in return dynamically updates the 

generation information displayed in the graphs. The different measures can be turned on 

and off to examine them independently. In certain situations, a semi-log plot of the fitness 

values versus the iteration number will show convergence better than linear plots. The 

user can switch between linear and semi-log plots to evaluate convergence. A “Monitor 

Graph” plot for a fixed representation GA is shown in Figure B.8 of APPENDIX B, 

which only plots the two progress measures but is essentially the same as the one 

discussed for IRR GA. In a typical plot (Figure B.9 of APPENDIX B) for an excitation 

and sensor location optimization problem, the individuals are plotted in the objective 

space. This plot shows the progress of the Pareto front, as well as the distribution of 

dominated individuals along the number of sensors axis. 

Another monitoring technique uses the features provided by the postprocessor to 

plot the actual structure (cantilever beam, unbraced frame) or the corresponding string 

elements. This allows the damage indicator values of elements, or in case of sensor 

optimization the location of excitation and sensors, to be continuously monitored. The 

genotype of a subset of individuals can also be monitored, which provides the user with 

valuable information concerning the diversity of the population. These features are all 

part of the postprocessor and further details are discussed in details in Section 4.3. All of 

the monitoring capabilities assist the user in determining the real-time performance of the 

GA with the given parameters and the power to subsequently terminate trials with poor 

input parameters or prematurely abort a run if the current results meet the designer’s 

standards. 
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Figure 4.3. Monitor graph of an IRR GA run 

4.3 Postprocessor 

The postprocessor of the program GaDamDet enables the user to efficiently evaluate the 

results obtained in a graphical environment with easy to use navigational capabilities. 

Most of the postprocessor functions are available through the “Results” main menu 

(Figure 4.1). The “Results” menu and its submenus are depicted in Figure 4.4 and the 

corresponding toolbars in Figure 4.5. The navigation functions (“Navigate Generation” 

and “Navigate Individual”) provide tools to quickly find a specific individual in a certain 

generation. In the “Results” toolbar (Figure 4.5), there are additional combo boxes with 

dropdown menus listing all the available generations and individuals for postprocessing. 

By simply selecting a candidate from the dropdown menu, the user can directly navigate 

to a specific location in the output file. The “Plot Convergence” menu brings up the 

“Monitor” (Figure B.7 of APPENDIX B) and “Monitor Graph” (Figure 4.3) dialogs 
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containing the final convergence plots. The “Export to Text” function outputs results into 

a text file defined by the user. 

Results Menu

Navigate Generation Submenu

Navigate Individual Submenu

 
Figure 4.4. Results menu and its submenus 

First Generation

Previous Generation

Next Generation

Last Generation

Generation Combo Box

Last Individual

Next Individual

Previous Individual

First Individual

Individual Combo Box

Plot Convergence

Export to Text

Individual Plot

Structure Plot  
Figure 4.5. Results toolbar corresponding to “Results” menu and its submenus 

There are two mutually exclusive visualization functions provided in the 

“Structure Plot” and the “Individual Plot” submenus. The later draws the current 

individual’s chromosome on the graphical output window. An example of this output can 

be seen in Figure B.10 of APPENDIX B. The “Individual Plot” therefore, contains crucial 

information about the string such as fitness value, representation type, generation number, 
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and number of gene instances. Using the “Individual Plot” facilitates the comparison of 

individuals in the same generation, which aids in providing essential information about 

the diversity of the current population. 

By selecting the “Structure Plot” menu, the two-dimensional structure consisting 

of frame elements is drawn in the graphical output window. An example for a cantilever 

beam is shown in Figure B.11 of APPENDIX B. This view is suitable to reveal the results 

of damage detection or excitation/sensor layout design. There are additional functions 

associated with this view that can be found under the “View” menu (Figure 4.6). The first 

five tools appearing in the “View” menu are all mutually exclusive, in that only one can 

be selected at a time. The first tool in this set is the “Selection Tool”. If this tool is 

selected and the user moves the cursor over an element then that finite element is 

highlighted and a tool tip (small rectangular window used to identify the task of a toolbar) 

appears showing the percent damage indicator for the highlighted element. When the user 

double clicks on an element, a dialog box opens identifying the element number and the 

corresponding damage indicator value (Figure B.12 of APPENDIX B). The “FullView” 

function brings the entire structure into the drawing area. The other zooming and view 

tools are the “Box Zoom”, “Zoom In/Out”, and “Pan View” that are common in every 

CAD software and the names are self-explanatory. 

By selecting the “Drawing Properties” function (Figure 4.2) from the “Settings” 

menu, the appearance and the level of details of the drawing area can be changed when 

“Structure Plot” is selected. This menu option brings up a property sheet with three tabs 

on it related to “Elements” (Figure B.13 of APPENDIX B), “Legend” and “Nodes” 

(Figure B.14 of APPENDIX B) properties. The different panels provide options to turn 

on and off certain features such as a color code legend box for damage detection, 

excitation and/or sensor locations (excitation symbols are a sine wave and sensor symbols 

are a circular gauge with a needle pointing in the direction of measurement, Figure B.11 

of APPENDIX B), element and node numbering, and changing font styles. 
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View Menu View Toolbar

Selection Tool

Full View

Box Zoom

Zoom In/Out

Pan View

 
Figure 4.6. View menu and its corresponding view toolbar 
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5 DESCRIPTION OF CASE STUDIES 

A series of case studies were investigated to evaluate the effectiveness of the proposed 

damage detection and excitation/sensor layout design procedures. In this research, trials 

were performed using both the fixed SGA representation and the IRR GA representation 

to compare their performance on both types of problems. Simulated measurement FRF 

data were generated for all test cases using the ModalFEM program discussed in 

Section 4. The case studies can be divided into three different groups: 1. Simple beam 

structures, including a cantilever and a two-span continuous beam modeled with a 

relatively small number of finite elements; 2. Moment frame structures, including a three-

story, three-bay unbraced frame with 81 finite elements and a two-story, three-bay cross 

braced frame with 46 finite elements; and 3. Two-span continuous beam structure 

modeled with 50 finite elements, which were previously investigated by Kim and Stubbs 

(2002). The case studies defined in the first set are designed to model single damage 

situations and the effect of excitation/measurement location as well as to simulate multi-

damages and to account for the number of measurement locations. The frame structure 

case studies defined have single and multiple damages imposed that represent beam, 

bracing or joint deterioration both in the columns and beams. The frame case studies are 

intended to verify the adequacy of FRF’s as a sensitive vibration signature for damage 

detection and the robustness of the procedure. The last set of case studies (two-span 

continuous beam with 50 elements) provides a comparison of results obtained in this 

research directly with test cases from literature that used SDIMs based on modal 

information (Kim and Stubbs 2002). The performance of the SDIM developed in this 

research is compared with the modal-based SDIMs to assist in identifying strengths and 

weaknesses. 

In addition, the effect of noise on the accuracy of SDIM results obtained was 

studied for all test case studies. In order to introduce noise into the measurements, 

normally distributed random noise was added to the simulated FRF data with zero mean 
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and a variance of unity. The accelerance FRF including noise can be obtained from the 

FRF without noise using the following equation. 

 ( )1 randn()njk jkA A y= +  (5.1) 

where jkA  is jkth measured FRF including noise, Ajk is the jkth measured FRF 

without noise, yn is the noise level (e.g. 0.05 relates to a 5% noise level) and randn() is the 

random noise generator function in MATLAB (MATLAB 1999b). 

To evaluate the benefit and significance of the excitation and sensor layout 

design, an optimized layout is obtained using the MO methodology developed in this 

research and applied to all case studies. The damage detection results obtained using the 

optimal layouts are compared with the SDIM results that do not use optimum sensor 

layouts. 

5.1 Simple Beam Type Structures 

5.1.1 Simple Cantilever Beam 

The first set of case studies focused on two beam type structures: cantilever beam and 

two-span continuous beam. The finite element mesh of the cantilever beam is shown in 

Figure 5.1, in which regular numbers indicate node numbers and element numbers are in 

italics. The finite element mesh of the two-span continuous beam is depicted in Figure 

5.2. Both the cantilever and the two-span continuous beams are constructed of W12 × 65 

standard steel sections with the cross-sectional properties listed in Figure 5.3. The 

Young’s modulus of steel, E, is 207 GPa (30,000 ksi), Poisson’s ratio, ν, is 0.3, and the 

mass density, ρ, is 7780 kg/m3 (0.000728 lb-s2/in4) for all cases in this set. 
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1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11

7.62 m (25 ft)

 
Figure 5.1. Cantilever beam modeled with 10 finite elements, node numbers are regular and element 

numbers are in italics 

1 2 3 4 5 6 7 8 9 10 21
1 2 3 4 5 6 7 8 9 20

7.62 m (25 ft)

10 11 12 13 14 15 16 17 18 19
11 12 13 14 15 16 17 18 19 20

 

15.24 m (50 ft)

Figure 5.2. Two-span continuous beam modeled with 20 finite elements, node numbers are regular and 
element numbers are in italics 

W14 x 132

A = 0.0250 m2 (38.8 in2)

I11 = 6.368⋅10-4 m4 (1530 in4)

I22 = 2.281⋅10-4 m4 (548 in4)

W12 x 65

A = 0.0123 m2 (19.1 in2)

I11 = 2.218⋅10-4 m4 (533 in4)

I22 = 7.242⋅10-4 m4 (174 in4)

1

2

 
Figure 5.3. Standard W-shape steel section and cross sectional properties 

Damage test cases evaluated for the cantilever beam problem are summarized in 

Table 5.1. To distinguish the cantilever beam problems from other cases, the designation 

of CANT and a capital roman number for the subcases are used. The first case, CANT I, 

simulates a damage close to the fixed support of the beam with a severity of 10% 

reduction in the stiffness matrix of element 2. For this case, the single excitation is 

located at the free end while a single measurement is taken almost at mid-span. The next 

case, CANT II, is similar to CANT I, except that the locations of the excitation and 
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measurement are interchanged. Case study CANT III is intended to simulate a 10% 

damage located at mid-span. The transfer function, however, is measured right at two 

nodes on either side of the damaged element, which represents an unusual measurement 

configuration. The fourth case, CANT IV, simulates an awkward configuration of the 

measurement layout. Although the excitation is placed close to the free end (node 9) of 

the beam, the single measurement is taken at a location close to the fixed end (node 2) 

where the response is not very large due to the boundary conditions in the vicinity of this 

location. The last case, CANT OPT, is the same as cases CANT I and II with respect to 

the damage configuration, but the excitation and senor placement is the optimal 

placement obtained from the solution to the MO excitation and sensor layout design 

optimization problem posed in this research. In all cases, the excitation and the measured 

DOFs are in the vertical or transverse direction. 

Table 5.1. Case studies for cantilever beam 

Test Case Imposed Damage Excitation Measurement 

 Element Percent   

CANT I 2 10% 11 7 

CANT II 2 10% 7 11 

CANT III 6 10% 7 6 

CANT IV 6 10% 9 2 

CANT OPT 2 10% Optimum* Optimum 

* Results from excitation and sensor layout design 

5.1.2 Two-span Continuous Beam 

The case studies investigated for the two-span continuous beam are listed in Table 

5.2. To distinguish these problems from the rest of the trials, problems belonging to this 

set are designated with TWSP and a roman capital number, which may be followed by a 

capital letter relating to a sub-case. All the TWSP cases simulate two damaged elements 

with either equal or varying severity. The first two trials, TWSP IA and IB, both have 

damaged elements on one side of the two-span continuous beam at mid-span and at the 
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mid-support. The difference between the two trials is in the number of measurement 

locations. The second test case, TWSP II, is intended to simulate a somewhat unusual 

configuration of excitation and measurement placement when the damaged elements are 

located at the mid-spans of the right and left segments between the supports. Cases 

TWSP IIIA and IIIB are the same as the first two cases (TWSP IA and IB) except that the 

severity of damages is changed, 5% at mid-span and 10% at the mid-support. The last 

case, TWSP OPT, is the same as cases TWSP IIIA and IIIB with respect to the damage 

configuration, but the optimal excitation and senor placement has not been obtained from 

the solution to the MO excitation and sensor layout design optimization problem posed in 

this research. In all cases, the excitation and the measured DOFs are in the vertical or 

transverse direction. 

Table 5.2. Case studies for two-span continuous beams 

Test Case Imposed Damage Excitation Measurement 

 Element Percent   

TWSP IA 6, 10 10% all 18 14 

TWSP IB 6, 10 10% all 18 4, 14 

TWSP II 6, 15 10% all 4 10 

TWSP IIIA 6, 10 5, 10% 18 14 

TWSP IIIB 6, 10 5, 10% 18 4, 14 

TWSP OPT 6, 10 5, 10% Optimum* Optimum 

* Results from excitation and sensor layout design 

5.2 Moment Frame Type Structures 

5.2.1 Two-story, Three-bay Cross-braced Moment Frame 

The first of the two frame test structures is a two-story, three-bay cross-braced moment 

frame (Figure 5.4). All columns and beams are W14 × 132 and W12 × 65 (Figure 5.3) 

standard steel sections, respectively. Cross bracing is located within the center bay on 

both floors and consists of 2L5 × 3½ × ½ double angles (Figure 5.5). The Young’s 
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modulus of steel, E, is 207 GPa (30,000 ksi), Poisson’s ratio, ν, is 0.3, and the mass 

density, ρ, is 7780 kg/m3 (0.000728 lb-s2/in4) for all cases in this set. 

In order to model the beam to column connection, each beam and column was 

divided into three Bernoulli frame elements (APPENDIX A). Each connection was 

therefore surrounded by short elements one foot in length on all sides. The cross braces 

were modeled as a single element with zero moment of inertia to represent a hinge type 

connection. The node numbering of the finite element mesh can be seen in Figure C.1 of 

APPENDIX C and the element number are depicted in Figure C.2 of APPENDIX C. 

There are a total of 46 elements and 40 nodes in the model. In real-world situations, the 

mesh density of this model would not be fine enough, but the goal of this study is first to 

find a set of good GA parameters that maximize performance and then verify the 

performance of the SDIM developed on larger structural systems. 

4.
57

 m
(1

5 
ft)

3.
66

 m
(1

2 
ft)

10.67 m (35 ft) 9.14 m (30 ft) 10.67 m (35 ft)

 
Figure 5.4. Two-story three-bay braced frame and dimensions 

2L5 x 3½ x ½

A = 0.00516 m2 (8.0 in2)

1

2

 
Figure 5.5. Standard double angles, 2L5 × 3½ × ½ 
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The first test case BRFRM I is defined with one damaged element (Table 5.3). In 

this trial, the damaged element is a cross brace on the first story that has a damage 

severity of 50%. The excitation is in the horizontal direction at node 31 on the second 

floor perimeter beam and two sensors are used to measure FRFs in the horizontal 

direction at nodes 19 and 20 on the first and second floor beams of the middle bay. This 

first test case is used to establish a good set of GA parameters, which over a broad range 

of trials results in superior performance. 

Having established a good set of GA parameters, the second case study 

BRFRM II (Table 5.3) is used to test the robustness of GA in situations when multiple 

damage locations exist having varying severity. Also, the optimum excitation and sensor 

locations obtained from the sensor layout design optimization will be used to evaluate the 

significance of measurement quality on the SDIM results obtained. 

Table 5.3. Case studies for two-story three-bay cross-braced moment frame 

Test Case Imposed Damage Excitation Measurement 

 Element Percent   

BRFRM I 43 50% 31 19, 20 

BRFRM II 43, 35, 37, 39 50, 10, 20, 20% 31 or 
Optimum* 

19, 20 or 
Optimum 

* Results from excitation and sensor layout design 

5.2.2 Three-story, Three-bay Unbraced Moment Frame 

The next case study concerns a three-story, three-bay unbraced moment frame 

structure (Figure 5.6). Similar to the previous frame case studies, all columns and beams 

are W14 × 132 and W12 × 65 (Figure 5.3) standard steel sections, respectively. The same 

material properties are also used as for the braced frame. Each column is modeled with 

three Bernoulli type frame elements (APPENDIX A) and each beam is divided into five 

finite elements. Joints are again represented using short 0.3048 m (1 ft) elements. The 

finite element mesh and node numbering of the frame is shown in Figure C.3 of 
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APPENDIX C and the element numbering in Figure C.4 of APPENDIX C. There are a 

total of 81 elements and 76 nodes in the model. 

9.14 m (30 ft) 9.14 m (30 ft)7.62 m (25 ft)
3.
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Figure 5.6. Three-story three-bay unbraced frame and dimensions 

The different test cases investigated for the unbraced frame problem are listed in 

Table 5.4. The designation for this set of problems is UBFRM, which stands for unbraced 

frame. The first problem, UBFRM I, relates to a 10% damage in the first floor perimeter 

beam at mid-span on the left side of the frame. Case UBFRM II introduces 10% damage 

in the same beam as for case UBFRM I but in this case the damage is located at the 

perimeter joint of the beam. Essentially, this case considers joint damage in the frame. 

Case UBFRM III inflicts damages at four locations in the first story columns at joints 

with the beams. In this case, the severities of damages are different: 10% for the 

perimeter columns and 5% for the interior columns. Also the layout of the excitation and 

measurement locations are investigated to evaluate the effectiveness of using optimum 

sensor placement. The last case, UBFRM IV, has six damaged elements all located in the 

first floor beams at the joints. The severity of damage at the exterior beam joints is 20% 

and the interior beam joints have a damage of 10% on either side of the interior joints. 

For this case, the excitation and measurement configuration will be obtained from the 

sensor location optimization for the unbraced frame. The FRFs are measured for 

horizontal DOFs at the nodes specified in Table 5.4, except for the cases using the 

 



 116

optimal sensor locations, in which DOFs can be measured in the horizontal or vertical 

directions. 

Table 5.4. Case studies for three-story three-bay unbraced moment frame 

Test Case Imposed Damage Excitation Measurement 

 Element Percent   

UBFRM I 21 10% 71 59, 67, 69 

UBFRM II 28 10% 71 59, 67, 69 

UBFRM III 49, 27, 3, 34 10, 5, 5, 10% 71 or 
Optimum* 

59, 67, 69 or 
Optimum 

UBFRM IV 28, 16, 11, 4, 10, 18 20, 10, 10, 10, 10, 20% Optimum Optimum 

* Results from excitation and sensor layout design 

5.3 Baseline Structure for Evaluation of the Proposed Damage Detection Method 

In their paper Kim and Stubbs (2002) used a theoretical finite element model of a plate 

girder structure to evaluate three SDIMs using modal information. The procedures that 

were used in their research are outlined in Section 1 and are called Damage Index A, 

Damage Index B, and Damage Index C procedures. The original model used in their 

research consisted of 50 finite elements and three linear springs modeling the supports 

(Figure 5.7(a)). In the current implementation of the GaDamDet program used in this 

research, the only finite element type supported is the Bernoulli frame element 

(APPENDIX A). Therefore in this research, the linear springs are substituted with simple 

roller and hinge supports (Figure 5.7(b)). Changing the support conditions does not 

significantly alter the complexity of damage detection posed by the original problem. The 

geometric properties of the finite elements are an area, A = 1.05⋅10-3 m2 (1.6275 in2) and 

second moment of inertia, I = 7.23⋅10-7 m4 (1.737 in4). The material properties are 

Young’s modulus, E = 70 GPa (10,152 ksi), Poisson’s ratio, ν = 0.33, and mass density, 

ρ = 2710 kg/m3 (0.0002536 lb-s2/in4). 
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1 2 3 4 5 6 7 24 25 51
1 2 3 4 5 6 24 50

4.5 m (14.76 ft)

2.25 m (7.38 ft)

25 26 27 28 29 30 31 49
26 27 28 29 30 31 32 49 50

(a) Original finite element model

1 2 3 4 5 6 7 24 25 51
1 2 3 4 5 6 24 50

4.5 m (14.76 ft)

2.25 m (7.38 ft)

25 26 27 28 29 30 31 49
26 27 28 29 30 31 32 49 50

(b) Finite element model used in this research
 

Figure 5.7. Finite element models of a plate girder structure, (a) original model used by Kim and 
Stubbs (2002), (b) model used in this research 

The damage scenarios investigated by Kim and Stubbs (2002) are summarized in 

Table 5.5. In their studies, all 51 transverse DOFs of the mode shape vector were used to 

generate the mode shapes as a third order spline function. This assumes that a large 

number of sensors are used for measurements. In the research presented in this 

dissertation, only two sensors are used to measure the FRFs between the excitation and 

the measurement locations. The first eight damage cases, KSTSP I-VIII, given in Table 

5.5 represent single damage situations and the damage element is shifted from left to right 

as the case number increases. For scenarios, KSTSP VI-VIII, different damage levels are 

simulated for the same element. The last two cases involve two damaged elements at 

different locations, but having equal magnitudes. 
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Table 5.5. Case studies for two-span continuous beam used by Kim and Stubbs (2002) 

Test Case Imposed Damage Excitation Measurement 

 Element Percent   

KSTSP I 4 10% 14 19, 39 

KSTSP II 9 10% 14 19, 39 

KSTSP III 14 10% 14 19, 39 

KSTSP IV 19 10% 14 19, 39 

KSTSP V 24 10% 14 19, 39 

KSTSP VI 39 1% 14 19, 39 

KSTSP VII 39 10% 14 19, 39 

KSTSP VIII 39 50% 14 19, 39 

KSTSP IX 9, 34 10% all 14 19, 39 

KSTSP X 14, 39 10% all 14 19, 39 

 

Results obtained for the damage cases outlined in Table 5.5 by Kim and Stubbs 

(2002) are summarized in Table 5.6. From the table, it is clear that the Damage Index A 

method is the least accurate. The method often falsely identified elements as damaged 

with significant damage severity and the damage severity for the true damaged element(s) 

was always overestimated. In case KSTSP VI, the damaged element was not found at all. 

The next method, Damage Index B, correctly identified the location of the damaged 

elements, but the severity of damage was always underestimated. In case KSTSP VI for 

instance, the found damage severity was underestimated by an order of magnitude. The 

most accurate procedure was the Damage Index C, which was able to correctly locate the 

damaged elements in all cases and was able to estimate the severity of damage within 

20% of the inflicted damage. All of the damage index methods presented, however used a 

statistical criterion to localize damage by eliminating elements that were not likely to be 

damaged. 
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Table 5.6. Results for the plate girder damage detection problems obtained by Kim and Stubbs (2002) 

Test Case Damage Index A Damage Index B Damage Index C 

 Location Severity Location Severity Location Severity 

KSTSP I 1, 4, 25, 
26 

12.8, 18.9, 
8.6, 23.5% 

4 3.8% 4 11.9% 

KSTSP II 1, 9, 26 11.6, 18.7, 
20.9% 

9 1.3% 9 10.7% 

KSTSP III 14, 26 18.3, 31.4% 14 1.4% 14 9.4% 

KSTSP IV 19, 26 18.1, 16.8% 19 0.8% 19 9.5% 

KSTSP V 24, 25, 
26 

15.7, 18.7, 
7.6% 

24 0.5% 24 9.3% 

KSTSP VI 25, 26, 
49 

11.1, 7.3, 
5.2% 

39 0.1% 39 1.0% 

KSTSP VII 25, 39 29.0, 18.5% 39 1.5% 39 9.6% 

KSTSP VIII 25, 39 6.72, 72.7% 39 14.8% 39 46.4% 

KSTSP IX 9, 34,   
50 

18.3, 17.5, 
7.7% 

9, 34 1.3, 1.1% 9, 34 11.1, 8.0% 

KSTSP X 14, 26, 
39 

17.4, 11.3, 
17.7% 

14, 39 1.4, 1.4% 14, 39 10.3, 10.9% 
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6 CASE STUDY RESULTS AND DISCUSSION, 

CANTILEVER BEAM 

In Sections 6, 7, 8, and 9 the results obtained for the case studies discussed in Section 5 

are presented. These sections provide an objective evaluation of the damage detection and 

excitation and sensor layout design procedures developed in this research. Damage 

detection trials were performed first for ideal noise free measurements and then noisy 

measurements were investigated, to simulate real-world measurement situations. Case 

studies defining structures with increasing complexity are used to objectively assess the 

robustness of damage detection and to reveal its limitations and strengths. The presented 

SDIM is compared with existing modal-based SDIMs through an example benchmarked 

in the literature. New accuracy measures were defined to facilitate the objective 

comparison of SDIM developed with the three others that use modal information, 

Damage Index A, B and C (Kim and Stubbs, 2002). 

Results for the trials are presented both in tabular format and in figures. In most 

cases, these representative aids contain the same information. Therefore, most of the 

tables have been placed in APPENDIX D. To save space and to make data more readable 

whenever possible, results for damage indicators that carry zeros are omitted from the 

graphs and tables and only elements with non-zero damage indicators are shown. This 

convention is followed throughout Sections 6, 7, 8, and 9 unless otherwise stated. 

6.1 Input Parameters for Cantilever Beam Case Studies 

The set of GA parameters used in the cantilever beam case study trials are summarized in 

Table 6.1. These parameters were selected based on the results of initial trials performed 

using different GA parameters. The trials are grouped into three sets of trials: fixed, IRR 

seeded and IRR unseeded. This classification is made to enable the effective comparison 

of the different representations investigated by this research effort. The number of 

significant digits used for the cantilever beam damage indicators was 8, which required 

27 bits to represent a damage indicator with a precision of about 7.38⋅10-9 or 7.38⋅10-7%. 
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Table 6.1. GA parameters for cantilever beam trials 

 Fixed Representation IRR, Seeded* IRR, Unseeded 

Population Size 100 100 100 

Tournament Size 4 8 8 

Initial Seed Yes Yes No 

Maximum Generations 200 200 200 

Stop if no Improvement 30 30 30 

Crossover Type Adaptive Adaptive Adaptive 

Crossover Sites 8 10 10 

Crossover Rates Primary: 0.9, 
Secondary: 1.0 

Primary: 0.9, 
Secondary: 1.0 

Primary: 0.9, 
Secondary: 1.0 

Mutation Type Non-uniform Uniform Uniform 

Mutation Rate 0.01 0.01 0.01 

Elitism Yes Yes Yes 

Hillclimbing Yes, Reduced Yes, Reduced Yes, Reduced 

Coding Gray Gray Gray 

* For the IRR the number of gene instances (expected number of damaged elements) was 5 and the gene 
locator (GL) length is 3 

6.2 Common Cantilever Beam Damage, Case Study CANT I and CANT II 

Results for the first cantilever case study, CANT I (Table 5.1), in which the 

damaged element is located close to the fixed end of the beam and has a severity of 10%, 

are summarized in Table D.1 through Table D.6 of APPENDIX D. The same results are 

depicted in Figure 6.1 through Figure 6.6. Using the GA parameters defined in Table 6.1, 

trials were performed that considered different measurement noise levels: noise free or 

0%, 5%, 10%, 20% and 50%. Fifteen trials were performed for the CANT I case study 

that all used the “sum of square differences” objective function defined in Eq. (2.54). For 

the ideal situation, in which no noise is present in the measurements, the global optimum 

was found for all trials either during the GA evolution process or after hillclimbing. 

Using the fixed GA representation, 9 out of the 10 elements maintained a damage 

indicator larger than zero in the best individual after 200 GA generations (Figure 6.1, 

Table D.1 of APPENDIX D). Strictly speaking this means that 8 elements were falsely 
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identified as damaged. A closer look at the results, however, reveals that the damage 

indicator values for all the falsely identified elements were significantly smaller and 

ranged from 0.31% to 1.18⋅10-5% with an average of 0.09%. The damage indicator for 

element 2 was 9.47%. After hillclimbing, the results indicated the damage in element 2, 

which was the imposed 10% and there were only two falsely identified elements with 

damage indicator less than 2.0⋅10-5%, which were essentially zero. These small residual 

damage indicators may only be numerical errors due to the fact that both GA and 

hillclimbing use a certain precision (obtained from the number of bits used in the binary 

representation) to represent the continuous domain. The results presented for the fixed 

representation were obtained by seeding the initial population with the zero damage 

individual. If the initial population was not seeded for the fixed representation GA, then 

accurate results resembling to the original damage scenario were not obtained. The rest of 

the discussions of the results in the section assume that when a fixed representation is 

under investigation, the initial population was always seeded with the zero damage 

individual. 
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Figure 6.1. Damage detection results for case CANT I, fixed representation, seeded initial population, 

noise levels of 0, 5 and 10% 

 



 123

Simulated 10% Damage in Element 2

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

1 2 3 4 6 8 9 10

Element number

Pe
rc

en
t d

am
ag

e

GA, 20 % noise

Hillclimb, 20 % noise

GA, 50 % noise

Hillclimb, 50 % noise

 
Figure 6.2. Damage detection results for case CANT I, fixed representation, seeded initial population, 

noise levels of 20 and 50% 

Using the IRR GA, both with and without seeding the initial population with the 

zero damage individual, a better convergence to the imposed damage case was obtained. 

Results for the IRR GA trials with an initial seed are shown in Figure 6.3 and 

summarized in Table D.3 of APPENDIX D. After 200 GA generations, element 2 was 

identified with a damage of essentially 10.0% and elements 3 and 4 had damage 

indicators less than 7.44⋅10-4%. In the initial population, the best string was the zero 

damage individual, which had 5 gene instances (damaged elements) but all had a zero 

damage indicator value. In the final population, the best individual had 3 unique gene 

instances, one identifying element 2 with 10% damage and two others identifying 

elements 3 and 4 with practically zero damage indicators. Hillclimbing improved the 

results by adjusting the precision of the best individual in the final population (from 

9.99907% to 9.99993% for element 2, 7.44⋅10-4% to 5.53⋅10-5% for element 3, and 

4.5⋅10-4% to 4.06⋅10-5% for element 4). 

The IRR GA trial without seeding the initial population, performed better in 

locating and quantifying the damaged element (Figure 6.5 and Table D.5 of 

APPENDIX D). The global optimum was obtained after 130 GA generations and 
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therefore hillclimbing was not needed to improve the solution obtained by the GA. In the 

best individual of the final population, the only unique gene instance identified element 2 

as damaged with a severity of 10%. 
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Figure 6.3. Damage detection results for case CANT I, implicit redundant representation (IRR), seeded 

initial population, noise levels of 0, 5 and 10% 
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Figure 6.4. Damage detection results for case CANT I, implicit redundant representation (IRR), seeded 

initial population, noise levels of 20 and 50% 
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Figure 6.5. Damage detection results for case CANT I, implicit redundant representation (IRR), unseeded 

initial population, noise levels of 0, 5 and 10% 
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Figure 6.6. Damage detection results for case CANT I, implicit redundant representation (IRR), unseeded 

initial population, noise levels of 20 and 50% 

To investigate the effect of measurement noise on the accuracy of damage 

detection four different noise levels (5, 10, 20, 50%) were used for the cantilever problem 

CANT I beside the noise free measurement case. Results for these situations can be seen 

in Figure 6.1 through Figure 6.6 and summarized in Table D.1 through Table D.6 of 

APPENDIX D. The accuracy of damage detection degrades with increasing noise levels 
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in the measurements regardless of the representation used, as is typical for any SDIM. 

The figures show, however, that both IRR GA methods (seeded and not seeded) better 

approximate the original damage case then the fixed representation for any given noise 

level. Using the fixed representation, the number of elements identified as damaged after 

200 GA generations were 7, 5, 4 and 7 out of 10 elements for noise levels of 5, 10, 20 and 

50%, respectively. It is quite interesting that with increasing noise levels, the number of 

falsely identified damaged elements actually decreases up to a noise level of 20% and 

after that increases again. After hillclimbing, the number of falsely identified elements 

was 3 in all CANT I trials. Even if the number of falsely identified elements decreased 

with increasing noise levels, the accuracy of the predicted damages degraded. The 

damage indicators for element 2 were 7.64/9.24%, 6.96/8.46%, 6.96/7.84% and 

3.46/3.99% instead of the inflicted 10% for the 5, 10, 20 and 50% noise levels after 200 

GA generations and hillclimbing. Also the damage severity of the falsely identified 

elements typically increased with increasing noise levels. At a noise level of 20%, 

element 2 was still identified with a much larger damage indicator, 6.96/7.84%, than the 

falsely identified element 9 with the largest damage indicator of 1.31-0.85% after 200 GA 

generations and hillclimbing, respectively. At a noise level of 50%, the damage location 

becomes ambiguous since the damage indicator values of the correctly and falsely 

identified elements are similar in magnitude, 3.46-3.99% and 3.23-2.24%. 

For trial including noise and using the IRR GA with an initial seed, the number of 

falsely identified elements was 3 or 2 and for the IRR GA without initial seed this number 

was always two. Regardless of the noise level both sets of trials picked the same falsely 

damaged elements consistently. The predicted damage indicators for element 2 using the 

seeded IRR were 9.66/9.49%, 9.55/9.52%, 9.06/9.01% and 4.37/3.99% instead of the 

imposed 10% for the 5, 10, 20 and 50% noise levels after 200 GA generations and 

hillclimbing, respectively. The damage indicators for the falsely identified elements were 

less than 0.17/0.21%, 0.42/0.40%, 0.83/0.80% and 2.14/2.34% for the 5, 10, 20 and 50% 

noise levels, respectively. 

These results were much better than the results obtained using the fixed SGA. Up 

to a 20% noise level, the predicted damage for element 2 was always larger than 9%, 
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which in turn was at least an order of magnitude larger than the maximum damage 

indicator of the falsely identified elements. At a noise level of 50%, the obtained result is 

essentially identical to that of the fixed representation. Therefore, at this noise level the 

SDIM breaks down. The results for the IRR GA with initial seed were very similar to 

those of the IRR GA without seed except at the noise level of 50%. In this case, the 

solution found still predicted a damage of 7.33% at element 2 and the damages at 

element 4 and 8 were 1.72 and 2.03%, respectively. This difference in damage severities 

implies that element 2 is critical in terms of damage localization. 

In addition, improvements of the results obtained using the fixed representation 

were noticeable after hillclimbing, while these improvements were negligible for the IRR 

GA. Another important observation is that seeding the initial population was not 

necessary to find a good solution for the damage detection problem when using the IRR 

GA. Conversely, the fixed representation GA did not find any viable solution without 

seeding the initial population with the zero damage individual. 

6.2.1 Comparison of Fixed and IRR Representations 

From the trials for the first cantilever case study, CANT I, it is apparent that the IRR GA 

outperforms the traditional SGA with fixed representation even when advanced genetic 

operators are employed to improve the performance of SGA. The possible answer to this 

fact may be found in the optimization domain and the way the different representations 

work. To demonstrate the differences between the fixed and IRR representations, the best 

individuals from the initial (for the fixed GA the best individual in the initial population 

was the zero damage individual so in this case the second best individual is shown) and 

final populations are compared in Figure 6.7 for the noise free measurement case. The 

unstructured nature of the damage detection problem for this case requires finding one 

damaged element (element 2), but the total number of unknown variables is 10. In the 

initial population, neither of the best individuals really resembles the imposed damage 

scenario. Indeed, the damage indicators for the fixed representation are randomly 

generated and values from 0.39 to 88.4% can be found. For the IRR GA, the best 

individual in the initial population encodes five unique gene instances each identifying 
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different elements with different damage indicators. Actually, this individual looks a lot 

better than the fixed representation string since element 2 is already included in the 

damaged element set with a quite good, 16.4%, damage indicator value. As generations 

proceed, the fixed representation GA has to deal with all 10 variables simultaneously and 

therefore inefficiently tries to adjust the damage indicator values for each individual 

element, although only one particular member damage needs to be found. As a result, in 

the final population the best individual for the fixed GA identifies the damage at 

element 2, but still represents all of the unknown variables with some nonnegative 

damage indicator values. 

In the best string of the final population for the IRR GA, in comparison, there are 

only two gene instances defined that encoded the same damaged element. Although 

technically there are two gene instances in this configuration, the number of unique gene 

instances is one. In situations when more than one gene instance encodes the same 

element, the average of the damage indicator values were taken (Figure 6.7). As Figure 

6.7 shows the IRR GA was able to evolve the necessary number of variables to solve the 

problem during the optimization process and therefore significantly reduced the 

exploration of search space. The important key with the IRR GA representation is that the 

redundant segments may become useful gene instances in later generations and vice 

versa. In damage detection problems it is usually the case that the expected number of 

damaged elements (in the present example it was 5) is still larger than the number of 

actually damaged elements. Therefore the average amount of redundant segments usually 

increases with increasing number of generations (Figure 6.7). The redundant segments 

also help to protect good solutions when the crossover or mutation takes place in the 

redundant segments. 
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Figure 6.7. Comparison of the best individuals in the initial and final populations for the fixed 

representation SGA and the IRR GA 

6.2.2 Alternative Objective Function Formulation 

The last set of trials performed for case study CANT I was intended to compare the 

adequacy of different vibration signatures in damage detection. The results presented so 

far were obtained using the “sum of square differences” objective function, which was 

defined for FRFs and was given in Eq. (2.54). In Section 1, several correlation criteria 

were introduced that can be used as measures in quantifying the closeness of the 

analytical and measured responses. Although any of the criteria could be used to 

formulate objective functions for optimization based on the conclusions drawn by Zhang 

et al. (2001) the global shape criterion (GSC), Eq. (1.24) and global amplitude criterion 
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(GAC), Eq. (1.25) appear to hold the most benefit. Both measures are a function of 

frequency and are bounded between the values of zero and one. When these functions are 

unity over the entire frequency range then the correlation between the measured and 

analytical FRFs is perfect. To use the GSC and GAC for optimization, a scalar objective 

function was defined in which each individual term had a maximum value of one (perfect 

correlation). 
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 (6.1) 

where the objective function f is maximized and ϖ0 and ϖ1 are the lower and 

upper frequencies of the measured frequency range. When both terms in the objective 

function represent perfect correlation between the measured and analytical FRFs, the 

value of the objective function is two, which indicates that the global optimum was 

found. 

A comparison between the objective function defined and used in this research 

and the GAC and GSC defined objective function is made using the cantilever beam case 

study CANT I. In Figure 6.8, the accelerance FRFs are plotted for the undamaged and the 

damaged cantilever beam structure measured between nodes 7 and 11. According to the 

objective function defined in Eq. (2.54) the difference between the corresponding FRFs 

are taken as a function of frequency and the area under the curve shown in Figure 6.8 is 

calculated. After calculating the areas under the difference function of each measured and 

corresponding FRFs, the squares of these areas are summed. The objective function used 

in this research is therefore called the “sum of square differences”. 

For the CANT I problem, in comparison the GSC is unity over the entire 

frequency range because there is only one measured accelerance FRF. The plot of the 

GAC function is shown in Figure 6.9 over the measured frequency range. The objective 

function defined in Eq. (6.1) takes the normalized area under the GSC and GAC functions 

and sums the squares of these areas. For the CANT I problem, the first term of the 
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objective function is always unity and only the second term changes. This function is 

termed the “sum of GSC and GAC squares” objective function. 
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Figure 6.8. Undamaged and damaged accelerance FRFs and their differences for the cantilever beam case 

study, CANT I 
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Figure 6.9. Global Amplitude Criterion for the cantilever beam case study, CANT I 
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Results obtained for case study CANT I using the sum of GSC and GAC squares 

objective function are depicted in Figure 6.10 through Figure 6.15 and summarized in 

Table D.7 through Table D.12 of APPENDIX D. In case of noise free measurement the 

fixed representation GA after 200 generations found a near-optimum solution with 9.88% 

damage predicted in element 2 and only very small residual damages, 2.7⋅10-5 - 0.026%, 

in the other 8 beam elements. The local hillclimbing search was performed and the global 

optimum was found. Both seeded and unseeded IRR GA trials were able to find the 

global optimum with 10% damage at elements 2 and zero damages elsewhere after 115 

and 170 generations, respectively. Local hillclimbing search did not improve the solution 

since the GA found the global optimum. Therefore, the performance of the two objective 

functions are comparable for the noise free measurement case and neither one is superior. 

With increasing measurement noise, the accuracy of damage detection quickly 

degrades for all trials. Table 6.2 and Table 6.3 present results for both objective functions 

(sum of GSC and GAC squares, Eq. (6.1), as well as the sum of square differences, 

Eq. (2.54)) considering noise levels of 5 and 20%. From these results it is clear that the 

objective function originally proposed in Section 2 is less sensitive to noise than the 

objective function based on the GAC and GSC correlation measures. When comparing 

the two results it can be concluded that the performance of damage detection using the 

correlation measure objective function at a 5% noise level is slightly worse than that of 

the FRF differences objective function at 20% noise level. Also, a similar performance 

lag was seen between the two objective functions (correlation and FRF difference) at 

noise levels of 20 and 50%. The damage identification process breaks down at a noise 

level of 20% for the correlation objective function, since the falsely identified elements 

have a damage indicator value that approximately the same as the value of the correct 

damaged element 2 (Table 6.3). Results for the 50% noise level only contain falsely 

identified elements (element 6 at 5.5% and element 8 at 12.3%) while the correct damage 

location at element 2 has zero damage (Figure 6.11, Figure 6.13 and Figure 6.15). In 

general, the sum of square differences objective function outperformed the correlation 

objective function in every aspect and provided a better signature for damage detection 

even in noisy measurement environments. 
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Figure 6.10. Damage detection results for case CANT I, fixed representation, seeded initial population, 

objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 10% 
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Figure 6.11. Damage detection results for case CANT I, fixed representation, seeded initial population, 

objective function is the sum of GSC and GAC squares, noise levels of 20 and 50% 
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Figure 6.12. Damage detection results for case CANT I, implicit redundant representation (IRR), seeded 
initial population, objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 10% 
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Figure 6.13. Damage detection results for case CANT I, implicit redundant representation (IRR), seeded 

initial population, objective function is the sum of GSC and GAC squares, noise levels of 20 and 50% 
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Figure 6.14. Damage detection results for case CANT I, implicit redundant representation (IRR), unseeded 

initial population, objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 10% 
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Figure 6.15. Damage detection results for case CANT I, implicit redundant representation (IRR), unseeded 

initial population, objective function is the sum of GSC and GAC squares, noise levels of 20 and 50% 
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Table 6.2. Comparison of the performance of different objective functions at a 5% noise level in 
measurements for the cantilever beam 

 5% noise 

 Sum of GSC and GAC Squares Sum of Square Differences 

 Fixed IRR 
seeded 

IRR 
unseeded 

Fixed IRR 
seeded 

IRR 
unseeded 

Damage at 
element 2 

8.67% 8.88% 8.78% 9.24% 9.49% 9.76% 

Number of false 
predictions 

5 2 3 3 3 2 

Maximum false 
damage 

1.04% 1.20% 1.10% 0.35% 0.20% 0.20% 

 

Table 6.3. Comparison of the performance of different objective functions at a 20% noise level in 
measurements for the cantilever beam 

 20% noise 

 Sum of GSC and GAC Squares Sum of Square Differences 

 Fixed IRR 
seeded 

IRR 
unseeded 

Fixed IRR 
seeded 

IRR 
unseeded 

Damage at 
element 2 

4.55% 4.55% 5.03% 7.84% 9.01% 9.01% 

Number of false 
predictions 

3 3 2 3 2 2 

Maximum false 
damage 

4.78% 4.78% 5.01% 0.86% 0.80% 0.80% 

 

6.2.3 Verification Case Study CANT II 

In case study, CANT II (Table 5.1), element 2 is damaged, which is located close to the 

fixed support. The difference between CANT II and CANT I is that the excitation and 

measurement DOFs are switched and the sensor is located a node 11 and the excitation is 

placed at node 7. A second objective of this case study was to verify the finite element 

and optimization modules. The measured FRFs in the two case studies CANT I and II are 

identical because for linear structures the FRF matrices are symmetric. If the modules are 
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programmed correctly, then the results obtained for either case should be very similar. In 

comparing the results, consideration of the probabilistic nature of GAs is also required. 

Results obtained for case CANT II are shown in Figure 6.16 and tabulated in Table D.13 

of APPENDIX D. In this specific trial, only noise free measurements were considered. 

The results obtained for case CANT II are almost identical to those for case study 

CANT I (only minor differences exit in the damage indicators). The fixed representation 

found a good solution of 9.47% damage at element 2 with some small residual damage 

indicator values remaining for other elements after 200 GA generations. Starting with this 

solution, hillclimbing found the global optimum by identifying element 2 with 10% 

damage. The IRR GA trial without initial seed essentially found the global optimal 

solution after 200 generations, hillclimbing only improved this solution by the precision 

provided by the binary representation. The unseeded IRR GA trial converged to the 

global optimum after 130 GA generations, which was the same result obtained in the 

CANT I trial. Switching the measurement configuration practically had no effect on the 

solutions when comparing this case to CANT I. The information contained in the 

measurements collected was sufficient to both locate and quantify damage accurately. 
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Figure 6.16. Damage detection results for case CANT II, fixed and implicit redundant representations 

(IRR), seeded and unseeded initial population, noise free measurements 
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6.3 Unusual Measurement Configurations, Case Studies CANT III and IV 

The cantilever beam case study, CANT III (Table 5.1), represents a configuration 

in which the damaged element (element 6) is located about mid-span and the excitation 

and measurement are placed at the two nodes of the damaged element. To avoid 

premature convergence for the IRR GA, the tournament size (Table 6.1) was reduced 

from 8 to 4, which resulted in a lower selection pressure and promoted the exploration of 

the search space. The number of crossover sites was also reduced from 10 to 6 for the 

IRR GA to decrease the effect of disruption caused by the crossover operator. 

Results for case CANT III and noise free measurements are depicted in Figure 

6.17 and summarized in Table D.14. The fixed GA found a solution in which element 6 

was identified with 9.06% damage and all other elements were predicted as damaged with 

damage indicator values ranging from 0.002 to 0.72%. The performance of the fixed GA 

degraded when compared to the first two cases, CANT I and II, studied due to the 

unusual damage and measurement configuration. After 2459 hillclimbing iterations, the 

global optimum was found with some small (less than 3.1⋅10-5%) residual damage 

indicator values for elements 4, 7 and 9, but with 10% damage in element 6. 

The seeded IRR GA converged to the global optimum after 129 generations and 

required no additional hillclimbing iterations. Since the global optimum was found, the 

number of gene instances in the best individual of the final population was one, which 

corresponded to element 6 with 10% damage. The solution provided by the unseeded IRR 

GA after 200 generations included element 6 with 9.85% damage but still contained three 

other gene instances identifying elements 3, 4 and 7 with 0.11%, 0.095% and 0.20% 

damage magnitudes, respectively. Hillclimbing improved the solution results up to the 

precision allowed by the representation. The results obtained suggest that seeding the 

initial population with the zero damage individual may help in locating damage elements 

when the measurement information does not contain a sufficient amount of information 

due to poor placements of sensors or excitations. 
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Figure 6.17. Damage detection results for case CANT III, fixed and implicit redundant representations 

(IRR), seeded and unseeded initial population, noise free measurements 

The last set of trials performed for the cantilever problem case study corresponds 

to case CANT IV (Table 5.1). In this configuration, the damaged element (element 6) is 

located around mid-span and measurement is taken close to the fixed end at node 2 while 

the excitation is placed at node 9 close to the free end. This measurement layout is 

somewhat unusual since the response close to the free end is much smaller than anywhere 

else along the beam. Results for case CANT IV are provided in Figure 6.18 and 

summarized in Table D.15 of APPENDIX D. 

The fixed representation GA with initial seed found a good solution after 200 

generations in which element 6 was assigned a damage indicator of 9.67% instead of the 

inflicted 10%. Although all other elements had damage indicator values greater than zero 

the maximum of these severities did not exceed 0.26% and smallest was only 5.9⋅10-6%. 

Using the GA result, the convergence of hillclimbing was very slow indicating that the 

objective function did not provide enough information about the global optimum. After 

23,700 hillclimbing iterations the run was terminated because of the slow convergence. 

The final damage indicator of element 6 was 9.95% and three other elements were 

identified as damaged elements with small severity values less than 0.044%. 
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Figure 6.18. Damage detection results for case CANT IV, fixed and implicit redundant representations 

(IRR), seeded and unseeded initial population, noise free measurements 

After 200 generations, the solution found by the IRR GA with initial seed had 

four gene instances, one encoding element 6 with 9.86% and three others encoding 

elements 3, 5 and 9 with damage indicators less than 0.12%. Again this solution was only 

improved very slowly by hillclimbing and the trial was terminated after 20,000 

hillclimbing iterations. The solution at this point included element 6 with 9.96% damage 

and elements 3 and 5 with damage indicators of 0.011% and 0.042%, respectively. The 

IRR GA without initial seed could not locate the correct damaged element after 200 

generations and falsely identified three elements (elements 3-7.85%, 4-3.11% and 5-

1.5%) as damaged. Since reduced hillclimbing was used, the correct damaged element 

could not be located and the same three elements, 3, 4 and 5 were identified as damaged 

with damage values of 0.72, 0.3 and 9.19%, respectively. Although the correct location 

and severity of the damaged element was not obtained it is clear that the region of 

damage still is identified since element 5 is the immediate neighbor of element 6. The 

failure of the process for these trials is attributed to the unusual configuration of the 

measurement setup. As stated for the previous case study, it can be concluded that 

seeding the initial population with the zero damage individual in situations when the 
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measurement configuration is poorly selected can assist localizing damage. This case 

study highlights the effect of the excitation and sensor layout design on the results 

obtained and the need for optimizing the excitation and sensor layouts. 

Table 6.4. GA settings for excitation and sensor layout design for the cantilever problem 

Population Size 100, 200 

Tournament Size 2, 3 

Maximum Generations 1000 

Stop if no Improvement 50 

Crossover Type Equal Probability 

Crossover Sites 1 

Crossover Rates 0.8 

Mutation Type Uniform 

Mutation Rate 0.005 

Elitism Yes 

Coding Binary Base 2 

 

6.4 Optimum Sensor Locations, Case Study CANT OPT 

6.4.1 Optimum Excitation and Sensor Locations 

The optimum locations for the excitation and sensors have to be determined before the 

last case study (CANT OPT, Table 5.1) of the cantilever problem can be discussed. 

Several trials using the GA settings defined in Table 6.4 were performed to determine the 

optimal measurement configurations. In these trials, both the fixed and IRR 

representations were investigated. 

Excitation and sensor location results for the cantilever problem are summarized 

in Table 6.5. The graphical representation of the optimal excitation and sensor locations 

defined in the Pareto set, which were obtained using the program GaDamDet, are 

depicted in Figure D.1 of APPENDIX D. The maximum number of sensors for the trials 

was set to 10 and both horizontal and vertical DOFs were included for optimization. In all 
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cases, the same results were obtained from separate trials regardless of the GA parameters 

used. In general trials with the fixed representation converged faster than trials with the 

IRR representation. 

From Table 6.5, it can be concluded that for a cantilever beam the best place for 

the excitation location is at the free end (node 11) of the beam in the vertical direction 

regardless of the number of sensors used for measurement. It is not surprising that the 

optimum location of the excitation is found at the free end of the beam since this 

configuration requires the least input energy to generate a certain level of response. Using 

10 sensors instead of one sensor, only increases the measurement information by about 

45%, which is not very significant, compared to the fact that by not placing the excitation 

and the first sensor on the free end, the measurement information decreases by several 

magnitudes. In other words, using one sensor should be sufficient for damage detection 

measurements for this particular case if the excitation is placed at the free end. 

Table 6.5. Pareto optimal excitation and sensor locations for the cantilever beam problem, CANT 

Measurement Information Number 
of sensors 

Excitation at 
Node* 

Sensor(s) at Node 

Value Percent 

1 11 11 2.4232⋅1018 100.0% 

2 11 3, 11 2.7479⋅1018 113.4% 

3 11 3, 5, 11 2.9435⋅1018 121.5% 

4 11 3, 5, 7, 11 3.1304⋅1018 129.2% 

5 11 3, 5, 7, 9, 11 3.3009⋅1018 136.2% 

6 11 3, 4, 5, 7, 9, 11 3.3826⋅1018 139.6% 

7 11 3, 4, 5, 7, 8, 9, 11 3.4401⋅1018 142.0% 

8 11 2, 3, 4, 5, 7, 8, 9, 11 3.4860⋅1018 143.9% 

9 11 2, 3, 4, 5, 6, 7, 8, 9, 11 3.5098⋅1018 144.8% 

10 11 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 3.5187⋅1018 145.2% 

* Excitation and measurements are in the vertical direction 

For the cantilever problem the Pareto optimal solutions of interest are those that 

find the best location for one sensor and excitation, which will be used for measurement. 
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Only vertical DOFs are selected for the excitation and measurement locations since the 

frequency range for which the optimization was performed only contains the first six 

natural frequencies of the cantilever beam. Only one of these natural frequencies is 

associated with axial vibration at a higher frequency. 

In Figure D.1 of APPENDIX D a pattern is observed for the sensors placement for 

the cantilever problem studied in this research. If enough representative sensor 

optimization results for different types of structures are available, patterns of sensor 

placement can be identified and then used to develop expert systems to facilitate the 

sensor layout design for measurement. Alternatively, neural networks could be trained 

using the representative results to extend the solutions to structures on a larger scale or 

with different boundary conditions without performing a costly sensor layout 

optimization for every possible configuration. 

In multiobjective optimization problems it is common to plot the results obtained 

in the objective space. If the number of objective functions is two then the plot is two-

dimensional and the axes represent the objective function. Typical plots of the final 

population for the cantilever problem using the fixed and IRR representations in objective 

space are shown in Figure 6.19 and Figure 6.20, respectively. In Figure 6.19 for the fixed 

representation after only 48 generations, 70.5% of the converged population (there was 

no improvement after 50 generations) is in the Pareto front. The number of individuals 

present at a particular number of sensors is labeled next to each Pareto optimal solution. 

Figure 6.19 shows that the individuals are well distributed along the number of sensors 

and the high percentage of individuals in the Pareto front (on average it was 67.5%) 

indicates that a good solution is obtained. 

The individuals in the Pareto front for the IRR GA in Figure 6.20 are not as well 

distributed as the individuals for the fixed representation GA. In general, the IRR GA had 

difficulties distributing individuals on the extremes around one sensor and the maximum 

number of sensors locations (10 for this case) in certain trials. Also, the percentage of 

individuals in the Pareto front for the IRR GA was 47.0% and on average it was 49%. 

The number of generations required for convergence was also somewhat higher at 66 for 

the IRR GA. In both figures, however, the Pareto front obtained is identical and the 
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hypothetical curve connecting the points in the Pareto front have a decreasing slope with 

increasing number of sensors. The decreasing slope can be interpreted such that the 

relative amount of information gained by using more sensors also decreases gradually as 

the number of sensors increases. 
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Figure 6.19. Pareto front and individuals in the final population represented in the objective space for the 

cantilever problem using fixed representation GA, population size is 200 
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Figure 6.20. Pareto front and individuals in the final population represented in the objective space for the 

cantilever problem using IRR GA, population size is 200 
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6.4.2 Results Using Optimal Sensor Locations 

Using the optimal excitation and sensor locations (excitation at the free end of the 

cantilever beam at node 11 and one sensor also placed at is also node 11) the damage 

detection trials for the CANT I case were repeated using same GA settings. In case 

CANT I the severity of damage imposed was 10% at element 2. Three different noise 

levels were investigated for the CANT OPT case: noise free, 10%, and 20% noise. 

Results are presented in Figure 6.21 through Figure 6.23 and summarized in Table D.16 

through Table D.18 of APPENDIX D. Figure 6.21 corresponds to results obtained using 

the fixed representation GA. For the noise free case, the results after 200 generations 

were poor compared to other solutions obtained in earlier trials. The poor performance is 

attributed to premature convergence caused by the high selection pressure imposed by the 

tournament size of 8. Essentially the results did not change significantly after 23 

generations, which clearly suggests premature convergence to an initial fit individual. 

Nevertheless hillclimbing was able to improve the solution and found the global 

optimum. 

The IRR GA in each trial converged to a solution that was a global optimum in a 

sense that hillclimbing could not improve the results. In the noise free situation, element 2 

with a severity of 10% was found after 101 generations. For the 10 and 20% noise cases, 

an optimum was found after 170 and 91 generations and there was only one falsely 

identified element in each trial (element 8) with damage indicators of 0.56 and 1.13%, 

respectively. The IRR GA without initial seed always found a near global or global 

optimum solution and only a couple of hillclimbing iterations were performed for the 

noise free and 10% noise cases. The final results (global optimums) were identical for 

each trial with element 2 at 10, 9.59 and 9.17% damage for the noise free, 10 and 20% 

noise cases, respectively. Also the falsely identified element 8 was the same in each trial 

with damage indicators of 0.56 and 1.13% for the 10 and 20% noisy measurements, 

respectively. 
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Figure 6.21. Damage detection results for case CANT OPT, fixed representation, seeded initial population, 

noise levels of 0, 10 and 20% 
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Figure 6.22. Damage detection results for case CANT OPT, implicit redundant representation (IRR), 

seeded initial population, noise levels of 0, 10 and 20% 
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Simulated 10% Damage in Element 2
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Figure 6.23. Damage detection results for case CANT OPT, implicit redundant representation (IRR), 

unseeded initial population, noise levels of 0, 10 and 20% 

The results obtained using the optimal excitation and sensor locations are 

compared with those obtained without considering optimal placement for the CANT I 

case study. In some specific trials using the optimum sensor layout design resulted in 

faster convergence, but in general this was not the case and can be attributed to the 

probabilistic characteristics of GAs. An increase in the objective function values, 

however, was observed, which indicates higher sensitivities for damage detection. Table 

6.6 compares the average fitness values of the initial populations for the original 

(CANT I) and optimal (CANT OPT) sensor layout designs. The average fitness of the 

initial population increased by an average factor of 3.77 times, or 277%, using the 

optimal sensor location. The actual objective function value increased by an average of 

3.77 times with respect to the same damage. The increase in objective function is not very 

large. This can be explained by the fact that the excitation location is the same (optimal) 

in both configurations. In Figure 6.24, final results (including hillclimbing) for the 

damage detection problem using optimal and non-optimal sensor locations are compared 

at noise level of 10%. A similar plot for the 20% noise level is depicted in Figure 6.25 

using the final results obtained for damage detection when optimal and non-optimal 

sensor locations were applied. Using the optimal sensor layout, the final results obtained 
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were consistently the same regardless of the GA parameters and noise levels. Therefore 

only these final results are plotted in Figure 6.24 and Figure 6.25 for the optimal sensor 

location case. From the figures, it is apparent that the damaged element was correctly 

identified in all cases but the damage indicator values using non-optimal sensor location 

are somewhat worse than those predicted using the optimal sensor layout. The optimal 

sensor layout results are closest to the imposed 10% damage at element 2. In the non-

optimal sensor cases, three (fixed representation) or two (IRR) other finite elements were 

falsely identified as damaged while using the optimal sensor arrangement only one 

element was predicted as falsely damaged. By using the optimal sensor layout design, the 

damage identification is more unique and the predicted damage indicators better 

approximate the actual damage state. 

Table 6.6. Average fitness values of initial populations using non-optimized and optimal sensor locations 
for the cantilever beam case studies CANT I and OPT 

Representation Noise Average Fitness of Initial Population Average Increase [%] 

  CANT I CANT OPT  

Fixed 0% 129,589,540 442,001,920 241.1% 

Fixed 10% 128,215,170 438,705,070 242.2% 

Fixed 20% 127,732,190 438,336,140 243.2% 

IRR Seeded 0% 91,974,469 354,103,060 285.0% 

IRR Seeded 10% 90,819,113 347,492,410 282.6% 

IRR Seeded 20% 90,187,649 382,906,480 324.6% 

IRR Unseeded 0% 94,274,654 368,389,990 290.8% 

IRR Unseeded 10% 93,086,681 361,502,460 288.4% 

IRR Unseeded 20% 92,397,953 368,609,770 298.9% 

   Average: 277.4% 
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Figure 6.24. Comparison of damage detection results using different measurement configurations at a noise 

level of 10% for the cantilever problem 
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Figure 6.25. Comparison of damage detection results using different measurement configurations at a noise 

level of 20% for the cantilever problem 
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7 CASE STUDY RESULTS AND DISCUSSION FOR TWO-SPAN 

CONTINUOUS BEAMS  

The set of GA parameters used in the two-span continuous beam trials are summarized in 

Table 7.1. These parameters were selected on the basis of initial trials using different GA 

parameters and on the experience gained during the cantilever beam trials. The selection 

pressure is reduced (tournament size) for the IRR GA when compared to the selection 

pressure used in the cantilever beam trials to enable increased exploration of the search 

space. Also the number of crossover sites and the mutation rate is reduced to decrease the 

effect of disruptions caused by crossover and mutation. 

Table 7.1. GA parameters for two-span continuous beam trials 

 Fixed Representation IRR, Seeded* IRR, Unseeded 

Population Size 200 200 200 

Tournament Size 4 6 6, 8 

Initial Seed Yes Yes No 

Maximum Generations 200 200 200 

Stop if no Improvement 20 20 20 

Crossover Type Adaptive Adaptive Adaptive 

Crossover Sites 6, 8 6 6 

Crossover Rates Primary: 0.9, 
Secondary: 1.0 

Primary: 0.9, 
Secondary: 1.0 

Primary: 0.9, 
Secondary: 1.0 

Mutation Type Non-uniform Uniform Uniform 

Mutation Rate 0.005 - 0.0075 0.005 0.005 

Elitism Yes Yes Yes 

Hillclimbing Yes, Reduced Yes, Reduced Yes, Reduced 

Coding Gray Gray Gray 

* For the IRR the number of gene instances (expected number of damaged elements) was 10 and the gene 
locator (GL) length is 3 

The trials are grouped into three sets fixed: IRR seeded and IRR unseeded trials. 

This classification is done to enable the effective comparison of the different 
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representations. The number of significant digits for the two-span continuous beam trials 

was 6, which required 20 bits to represent a damage indicator with a precision of about 

9.44⋅10-7 or 9.44⋅10-5%. 

7.1 Equal Damages, Case Studies TWSP IA, IB and II 

Test cases TWSP IA and IB (Table 5.2) represent a damage scenario in which 10% 

stiffness reductions exist in two of the elements. The first element is located about the 

middle of the left span and the second element is located on the left side of the mid-

support (Figure 5.2). The difference in the two sub-cases TWSP IA and IB is in the 

number of sensors used for measurements. TWSP IA uses one sensor location while 

TWSP IB uses two sensors. Only the noise free measurement situation was considered for 

these case studies. 

Results for the two case studies are depicted in Figure 7.1 and Figure 7.2 and 

summarized in Table D.19 and Table D.20 of APPENDIX D. The figures show that the 

fixed representation GA performed reasonably well for the TWSP IA case and predicted 

the two damaged elements 6 and 10 with 7.54 and 9.46% instead of the imposed 10% 

values after 200 generations, respectively. In addition, two other elements (5 and 11) that 

are adjacent to the damaged elements were falsely identified as damaged with damage 

indicators of about 1.6%. The other 7 elements had small residual damages that do not 

even plot on a linear scale (Figure 7.1). Hillclimbing corrected the false readings and the 

global optimum was obtained for the provided precision. 

For the two-sensor case TWSP IB, the fixed GA identified element 6 with 6.93% 

and falsely identified element 11, which is adjacent to the correct damaged element 10, 

with 9.87% damage after 200 GA generations. From Figure 7.2 it is clear that other 

elements were falsely identified with relatively small damages and the number of total 

false identifications was 10. After hillclimbing, the global optimum was obtained within 

the given precision. The false identification of element 11 instead of element 10 may be 

attributed to the protective nature of adaptive crossover and high selection pressure that 

together can cause premature convergence when a highly fit individual is present in the 

initial population. Recall that in adaptive crossover the best individual, if it is selected, 
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will not undergo crossover. In the initial population, the best individual in all cases was 

the zero damage individual (often more superior than any other individuals), which is 

therefore highly protected by adaptive crossover and elitism. It is often selected for 

crossover because of its superiority over other individuals and the relatively high 

selection pressure. This essentially means that the only way to change the zero damage 

individual is through mutation. The mutation rate, however, was reduced for the two-span 

continuous trial from 1% (cantilever problems) to 0.5%. Combining the effects of the 

above factors it is suspected that premature convergence occurred. This conclusion is 

supported by the fact that the solution in the final population (200 generations) was only 

slightly different from the solution at generation 23. 

The IRR GA with initial seed performed quite well for both cases TWSP IA and 

IB. The correct damaged elements were identified with good accuracy, element 6 with 

9.91/10.0% and element 10 with 9.93/9.99% for the two cases after 200 generations, 

respectively. The number of falsely identified elements was 3 in both cases with a 

maximum of 0.11/0.009% in case TWSP IA and IB, respectively. After hillclimbing, the 

global optimum was found in both cases within the available precision provided by the 

binary representation. The IRR GA without initial seed had a similar performance level as 

the seeded IRR GA. Both damaged elements were identified with high accuracy and 

hillclimbing only slightly improved the results obtained after 200 generations (Figure 7.1 

and Figure 7.2). The convergence in general was not improved by including two 

measurement locations instead of one. This, however, does not imply that it may not be 

beneficial to include more measurement information in the damage identification process. 

This conclusion simply emphasizes that for these cases measurements pertaining to one 

sensor location is sufficient to accurately locate damage. 
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Simulated 10% Damages in Elements 6 and 10
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Figure 7.1. Damage detection results for case TWSP IA, fixed and implicit redundant representations 

(IRR), seeded and unseeded initial population, noise free measurements 
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Figure 7.2. Damage detection results for case TWSP IB, fixed and implicit redundant representations 

(IRR), seeded and unseeded initial population, noise free measurements 

In Figure 7.3, the number of gene instances in the best IRR GA individual and the 

average number of gene instances of the population are plotted as functions of the 

generation number for the unseeded IRR GA in case study TWSP IA. On a secondary 
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logarithmic axis, the fitness of the best individual and the average fitness of the 

population are also plotted in the same figure. This figure demonstrates the ability of IRR 

GAs to dynamically change the number of variables (gene instances) implicitly included 

in the objective function. IRR GAs simultaneously alter the number of variables and 

minimize the objective function as seen in Figure 7.3. The number of gene instances or 

damaged elements in the best individual of the initial population was seven, but was 

reduced to three after 200 generations. There were two damaged elements in this case 

study and the falsely identified element had a negligible damage indicator of 0.0033%. 

The average number of gene instances of the population shows a similar tendency and its 

value gradually decreased as the population aged. Since the value of the objective 

function at the global optimum is zero, a semi-logarithmic plot better shows the 

convergence. After two hundred generations, the objective value was 4.1⋅10-5, which was 

small enough to be accepted as zero by most engineers. While the fitness of the best 

individual quickly approached zero, the average fitness of the population shows that 

diversity of the population was maintained throughout the generations. 
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Figure 7.3. Convergence plot demonstrating the dynamic and adaptive ability of IRR GAs, case study 

TWSP IA unseeded IRR GA 
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The two damaged elements for the TWSP II (Table 5.2) case study are located 

approximately at the middle of the both spans of the two-span continuous beam (Figure 

5.2) with damage severities of 10%. The excitation and measurement locations were also 

altered to investigate the effect of sensor location. Results for case TWSP II are depicted 

in Figure 7.4 and summarized in Table D.21 of APPENDIX D. Similar conclusions can 

be drawn about the performances of the different GA representations used as were 

concluded for cases TWSP IA and IB. The fixed representation GA found a good solution 

after 200 generations, which identified the two damaged elements with 10.05 and 8.16% 

damages and the other damage indicators were small or insignificant (Figure 7.4). Both 

the seeded and unseeded IRR GAs outperformed the fixed representation GA and found 

solutions very close to the global optimum after 200 generations. The number of falsely 

identified elements was greatly reduced to 2 and 3 compared to the 18 falsely identified 

elements found by the fixed GA and the severity of the false damages had a maximum 

value of 0.28%. Hillclimbing always obtained the global optimum within the available 

precision regardless of the representation. The change in the location of the damaged 

elements and the measurement configuration did not have an observable effect on the 

performance of SDIM developed in this research. 
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Figure 7.4. Damage detection results for case TWSP II, fixed and implicit redundant representations (IRR), 

seeded and unseeded initial population, noise free measurements 
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7.2 Unequal Damages, Case Studies TWSP IIIA and IIIB 

The case studies in this section, TWSP IIIA and IIIB (Table 5.2), have two damage 

locations with unequal damages. The damage in the middle of the left span at element 6 is 

5% and element 10 on the left side of the mid-support has 10% damage (Figure 5.2). The 

only difference between the two sub-cases is in the number of measurement locations. 

The former sun-case uses one while the later sub-case uses two FRF measurements. 

Results for the TWSP IIIA case are depicted in Figure 7.5 through Figure 7.10 

and summarized in Table D.22 through Table D.27. The sub-case TWSP IIIA 

investigated the effect of noisy measurements by including five different noise levels in 

the simulated measurement data: noise free, 5, 10, 20 and 30% Gaussian noise. 

A similar observation concerning the noise free trials was made as for the first two 

TWSP IA, IB and II case studies presented. The fixed representation GA, which works 

with a complete solution of the problem, was not able to found the global optimum after 

200 generations. Instead the fixed representation GA obtained a solution in which the 

correct damaged elements were identified with higher damage indicator values (4.19 and 

8.82%) than any other elements. The largest false prediction was 1.48% that occurred at 

element 11, which is adjacent to element 10 which had the inflicted damage of 10%. The 

sum of damages for the two elements identified is 10.3%, which is almost equivalent to 

the imposed damage in element 10. All other elements had damage indicator values larger 

than zero, but again the values were negligible compared to the damage magnitude of the 

correct elements (Figure 7.5). Hillclimbing easily found the global optimum, due to the 

precision used in the binary representation. 

As with all other cases studied so far, the IRR GAs found a near global optimum 

of the problem with only a few number of false predictions (3 for the seeded and 2 for the 

unseeded IRR GA) after 200 generations. Since the found solutions were close to the 

global optimum, only a few hillclimbing iterations were required to find the actual global 

optimum within the precision provided in the encodings (Figure 7.7 and Figure 7.9). 
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Simulated 5% Damage in Element 6, and 10% Damage in Element 10
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Figure 7.5. Damage detection results for case TWSP IIIA, fixed representation, seeded initial population, 

noise levels of 0, 5 and 10% 
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Figure 7.6. Damage detection results for case TWSP IIIA, fixed representation, seeded initial population, 

noise levels of 20 and 30% 
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Simulated 5% Damage in Element 6, and 10% Damage in Element 10
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Figure 7.7. Damage detection results for case TWSP IIIA, implicit redundant representation (IRR), seeded 

initial population, noise levels of 0, 5 and 10% 
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Figure 7.8. Damage detection results for case TWSP IIIA, implicit redundant representation (IRR), seeded 

initial population, noise levels of 20 and 30% 
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Simulated 5% Damage in Element 6, and 10% Damage in Element 10
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Figure 7.9. Damage detection results for case TWSP IIIA, implicit redundant representation (IRR), 

unseeded initial population, noise levels of 0, 5 and 10% 
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Figure 7.10. Damage detection results for case TWSP IIIA, implicit redundant representation (IRR), 

unseeded initial population, noise levels of 20 and 30% 

In addition to the noise free measurement case, four different noise levels (5, 10, 

20, 30%) were used to investigate the effect of measurement noise on the accuracy of 

damage detection for the TWSP IIIA (Table 5.2) case study. Results obtained for the 
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noisy measurement cases can be seen in Figure 7.5 through Figure 7.10 and summarized 

in Table D.22 through Table D.27 of APPENDIX D. As it was expected with increasing 

noise levels, the accuracy of damage detection degrades regardless of the representation 

used. Another observation that is valid for all representations, was that predictions tended 

to overestimate the damage in element 6, which was the element with the smaller 5% 

damage, and tended to underestimate the damage in element 10, which was the element at 

the mid-support with the larger 10% damage. This suggests that noise has the effect of 

equalizing damage levels in the predictions when this SDIM developed in this research 

was used. 

Even with a noise level of 5%, all trials resulted in good solutions. The damage in 

the final solution after hillclimbing was between 5.38-5.91% for element 6 instead of the 

imposed 5% and it was between 9.10-9.74% for element 10 instead of the imposed 10% 

in all trials. The maximum false prediction was 0.5% for the 5% noise case and it 

occurred in solutions obtained for the IRR GA trials. The largest false reading for the 

10% noise case was found in the solution obtained by the unseeded IRR GA trial. The 

fixed GA performed surprisingly well for these trials, although the number of false 

predictions (most of them were negligibly small) after 200 generations was considerably 

larger than those for the IRR GAs. The final solutions found with the fixed GA were at 

least as good as those found by the IRR GA (Figure 7.5, Figure 7.7 and Figure 7.9). For 

larger noise levels (20 and 30%), the fixed representation and seeded IRR GA had a 

similar overall performance on damage detection. The predicted damage for element 6 

was 6.22% and 8.27% for element 10 and the same elements were falsely identified with 

the same severity for the 20% noise case. In both trials element 11 (adjacent to 

element 10) was assigned a 1.16% damage that adds up to 9.43% damage in the element 

at the mid-support. At the 30% noise level, similar conclusions can be made for the fixed 

and seeded IRR GAs (Figure 7.6 and Figure 7.8). For both noise levels (20 and 30%), the 

IRR GA without initial seed performed the best in the sense that the falsely identified 

damages were less severe and the predicted damages, 9.10 and 8.77%, for element 10 

were closer to the inflicted value (10%). However, the predicted damages, 6.68 and 

7.33%, for element 6 were somewhat larger than those predicted by the fixed or seeded 
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IRR GAs. Figure 7.10 shows that even though falsely identified elements were present, 

the correct damaged elements appear with more pronounced severity than the falsely 

identified elements. 

In case study TWSP IIIB an additional measurement location was added at node 4 

(Figure 5.2). The goal of this case study was to investigate the effect of including 

additional measurement information in to the damage detection problem. The results for 

this case are depicted in Figure 7.11 and summarized in Table D.28 of APPENDIX D. 

Trials were performed only for the noise free measurement cases. From Figure 7.11 it is 

clear that global optimum solutions were found in each case after hillclimbing, or in case 

of the unseeded IRR GA, after 180 generations. Again the solution obtained by the fixed 

representation GA contained several false readings with negligible damage indicator 

values, but the correct damaged elements were identified with damage severities close to 

the target values after 200 GA generations. The IRR GA with initial seed converged to a 

solution in which 3 elements were falsely identified as damaged with damage indicators 

less than 0.9%. Also, premature convergence can be observed due to the overprotection 

of the best individual (zero damage individual) in the initial population. In case of the 

unseeded IRR GA, however, premature convergence did not occur since there was not an 

extraordinarily fit individual in the initial population and the diversity of the population 

was maintained throughout the entire optimization. Significant improvements in the 

performance of damage detection, however, could not be confirmed for the two-

measurement case over the single FRF measurement case. In both cases, the global 

optimums were found and the process required approximately the same amount of 

computational effort. These results do not provide conclusive information about the 

superiority of one trial over another due to the probabilistic nature of GAs. 
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Figure 7.11. Damage detection results for case TWSP IIIB, fixed and implicit redundant representations 

(IRR), seeded and unseeded initial population, noise free measurements 

7.2.1 Objective Function Based on FRF Correlation Criteria 

The objective function defined in Eq. (6.1) for the global shape criterion (GSC) and 

global amplitude criterion (GAC) correlations were used in trials to compare results 

obtained by using different objective functions for the SDIM. The trials included cases 

with 0, 5, 10, 20 and 30% measurement noise. The damage and measurement 

configuration was the same as investigated in case study TWSP IIIB (Table 5.2). The 

results obtained for the correlation objective function are compared with the results 

obtained for case study TWSP IIIA. Again the only difference between case studies 

TWSP IIIA and IIIB is in the number of measured FRFs. The former case includes, one 

while the later two measurements. 

The “sum of GSC and GAC squares” objective function case study, in which the 

number of measurements is two (TWSP IIIB), was chosen so that the GSC was not unity 

over the entire frequency range. The GSC contributes to the objective function with 

possibly useful information about damages. Results for case study TWSP IIIB using the 

sum of GSC and GAC squares objective function are depicted in Figure 7.12 through 

Figure 7.17 and summarized in Table D.29 through Table D.34 of APPENDIX D. For the 
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noise free measurements, the unseeded IRR GA nearly found the global optimum (only 3 

hillclimbing iterations were performed) after 200 generations without false predictions. 

The solution found by the fixed and seeded IRR GAs after 200 generations were able to 

identify the two damaged elements (6 and 10) but the predicted severities were quite far 

from the imposed values. Both trials picked element 11 as damaged, so the sum of the 

damages in element 10 and 11 were 10.8% and 10.5% for the fixed and seeded IRR GA, 

respectively. Local hillclimbing required several iterations, but adjusted the results for 

both trials. The optimum found was near global (there were small residual damages in 

certain elements). Although the global optimum was found using either objective 

function, the performance of the sum of square differences objective function was 

superior in the sense that solutions after 200 generations better approximated the inflicted 

damage scenario and less hillclimbing iterations were required to adjust the results. Also, 

the number of measurements investigated would be favorable for the correlation objective 

function, although no actual performance advantage was found. 

With increasing measurement noise, the accuracy of damage detection quickly 

degrades for all trials. In Table 7.2 and Table 7.3 results for both the sum of GSC and 

GAC squares, Eq. (6.1), as well as the sum of square differences, Eq. (2.54), objective 

functions are compared for noise levels of 5 and 20%, respectively. From these tables it is 

clear that the objective function proposed in Section 2 of this dissertation is less sensitive 

to noise than the objective function based on correlation measures. When comparing the 

values listed in the two tables it can be concluded that the FRF differences objective 

function outperforms the correlation measure objective function in every aspect. The 

damage indicator values found are closer to the original damage case when the FRF 

differences objective function is used. The number and severity of false predictions is 

also improved. The damage identification process breaks down at a noise level of 20% 

for the correlation objective function since the falsely identified elements have a damage 

indicator that is about the same (~5%) as that of the correct, damaged element 6 (Table 

7.3). The GA using the correlation based objective function therefore breaks down at a 

20% noise level and becomes severely ambiguous at a noise level of 30%. As an example 
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element 6 was not identified for the unseeded IRR GA for a 30% noise level (Figure 7.13, 

Figure 7.15 and Figure 7.17). 
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Figure 7.12. Damage detection results for case TWSP IIIB, fixed representation, seeded initial population, 

objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 10% 
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Figure 7.13. Damage detection results for case TWSP IIIB, fixed representation, seeded initial population, 

objective function is the sum of GSC and GAC squares, noise levels of 20 and 30% 
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Figure 7.14. Damage detection results for case TWSP IIIB, implicit redundant representation (IRR), seeded 

initial population, objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 10% 
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Figure 7.15. Damage detection results for case TWSP IIIB, implicit redundant representation (IRR), seeded 

initial population, objective function is the sum of GSC and GAC squares, noise levels of 20 and 30% 
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Figure 7.16. Damage detection results for case TWSP IIIB, implicit redundant representation (IRR), 

unseeded initial population, objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 
10% 
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Figure 7.17. Damage detection results for case TWSP IIIB, implicit redundant representation (IRR), 

unseeded initial population, objective function is the sum of GSC and GAC squares, noise levels of 20 and 
30% 
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Table 7.2. Comparison of the performance of different objective functions at a 5% noise level in 
measurements for the two-span continuous beam 

 5% noise 

 Sum of GSC and GAC Squares Sum of Square Differences 

 Fixed IRR 
seeded 

IRR 
unseeded 

Fixed IRR 
seeded 

IRR 
unseeded 

Damage at 
element 6 and 10 

5.57, 
9.37% 

5.72, 
9.29% 

5.70, 
9.84% 

5.47, 
9.74% 

5.38, 
9.56% 

5.38, 
9.56% 

Number of false 
predictions 

6 3 2 2 2 2 

Maximum false 
damage 

1.06% 1.19% 1.26% 0.36% 0.51% 0.51% 

 

Table 7.3. Comparison of the performance of different objective functions at a 20% noise level in 
measurements for the two-span continuous beam 

 20% noise 

 Sum of GSC and GAC Squares Sum of Square Differences 

 Fixed IRR 
seeded 

IRR 
unseeded 

Fixed IRR 
seeded 

IRR 
unseeded 

Damage at 
element 6 and 10 

5.93, 
7.14% 

5.85, 
7.19% 

7.94, 
6.39% 

6.22, 
8.27% 

6.22, 
8.27% 

6.68, 
9.10% 

Number of false 
predictions 

5 4 3 3 3 2 

Maximum false 
damage 

4.62% 4.82% 4.82% 1.79% 1.79% 1.28% 
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7.2.2 Effect of Noise on Objective Function Formulations 

Based on the results obtained for the cantilever and two-span continuous beam problems 

it can be concluded that both objective functions work well in localizing damages in a 

noise free environment. When noise is introduced into the measurements, however, (in 

practice noise is always present and cannot be eliminated) the information contained in 

the objective function based on correlation criteria is not adequate to detect damages with 

high confidence. 

To understand the causes behind the failure of the correlation function at higher 

noise levels, the measured FRFs for case study TWSP IIIB are investigated in further 

detail. In this case study there were two measured FRFs on the damaged structure. The 

first one, designated as FRF 1 and measured between node 18 and 4 (Figure 5.2), is 

depicted in Figure 7.18 (a) for the noise free as well as the 10 and 20% added Gaussian 

noise cases. The second simulated accelerance (between nodes 18 and 14) for this case 

study is designated as FRF 2 and can be seen in Figure 7.18 (b) for 0, 10 and 20% noise 

levels. Figure 7.18 shows that the random Gaussian noise is simply superimposed on the 

noise free FRF data simulated for the damaged structure. 

In both objective functions considered the areas under defined curves are taken 

and the sum of squares of these areas form the complete objective function. The sum of 

squares is used frequently in objective functions because if the squared terms were the 

variables, then the objective function would be a quadratic multidimensional bowl or 

sphere. Usually this function is easy to optimize with any kind of method. So for the 

purposes of the present investigation, the areas whose square is taken in the objective 

functions should be closely examined. 
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Figure 7.18. Simulated FRF measurements for case study TWSP IIIB, (a) FRF 1 – Excitation at node 18 

and measurement at node 4, (b) FRF 2 – Excitation at node 18 and measurement at node 14 
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For the objective function proposed in Eq. (2.54) the integrand (the function used 

to calculate the area under) is the complex magnitude of the difference between the 

analytically obtained and measured FRFs. The integrand function is determined for each 

measured FRF between any two DOFs. For this objective function using the FRF 

(accelerance) measurements in case study TWSP IIIB, the integrand functions are 

obtained as the difference between the undamaged and damaged structure. The integrand 

functions for the noise free, 10 and 20% noise levels are plotted in Figure 7.19. The 

differences between the first nine natural frequencies of the two span continuous beam 

for the undamaged and damaged case are very small and the frequencies are 

approximately located at 117, 182, 470, 530, 592, 1055, 1238, 1595 and 1880 rad/s These 

frequencies show up as peaks in Figure 7.18. In Figure 7.19, the peaks of the integrand 

functions for the two measurements still appear at the natural frequencies of the structure, 

which are the main contributors to the total area under these curves. When noise is 

introduced into the measurements, the peaks of the integrand functions still appear at the 

natural frequencies and are magnified so that they are the largest contributors to the area 

under the curve. In frequency regions where the integrand functions were almost zero, 

noise appears with considerably smaller amplitudes than those of the peaks at the natural 

frequencies. This is especially true for the first measured FRF in Figure 7.19 (a), which in 

turn implies that this is a better measurement (less sensitive to noise) than the FRF 

measurement in Figure 7.19 (b). 

For the objective function based on the correlation measures stated in Eq. (6.1), 

the integrands are the Global Shape Criterion (GSC) and Global Amplitude Criterion 

(GAC) functions. These functions combine the measured FRFs into a single function 

(GSC or GAC) and therefore they have the word global in their designation. 
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Using the FRFs for the undamaged and damaged structures, the GSC and GAC 

functions are plotted in Figure 7.20 for the 0, 10 and 20% noise level cases. The valleys 

of these functions for noise free measurements do not necessarily occur at the natural 

frequencies of the structure. For instance, for both correlation measures the deepest valley 

is found at a frequency of about 1400 rad/s, which is not a natural frequency of the two-

span continuous beam. However, both functions show deviations between the undamaged 

and damaged structure at similar frequencies or frequency ranges. For the GSC shown in 

Figure 7.20 (a), there is little difference between the undamaged and damaged structure in 

the frequency range between zero and 1000 rad/s, which is indicated by regions with unit 

magnitude or perfect correlation. The variation for the GAC in this frequency range is 

somewhat higher, but there are large portions of the curve where the correlation between 

the undamaged and damaged structure is unity. These indicate regions where the 

information provided by the correlation measures would not be useful for damage 

detection. When noise is present in measurements, the different regions of the GSC and 

GAC do not amplified in a consistent manner. The deepest valleys for the 0 and 10% 

noise level cases are located around the same frequency regions although the regions that 

were not useful in the noise free case are amplified significantly. At a 20% noise level, 

the valleys are distributed randomly in the entire frequency region and the minimum 

valley found at a frequency that original had an almost perfect correlation value. The 

random distribution of valleys and the large amplification of insignificant frequency 

regions imply that the correlation functions are very sensitive to noise. 
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Figure 7.19. Complex amplitudes of simulated measurement and analytical FRF differences for case study 

TWSP IIIB, (a) FRFs measured between nodes 18 and 4, (b) FRFs measured between nodes 18 and 14 
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Figure 7.20. Correlation measures for case study TWSP IIIB, (a) Global Shape Criterion (GSC), (b) Global 

Amplitude Criterion (GAC) 
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If the FRF vector of the undamaged structure is stored in vector u and the 

corresponding measured FRF in vector v, then the integrand of the sum of square 

differences objective function in the noise free case is simply u – v. When there is a 

disturbance in the measured FRF it can be written simply as v + ∆v. Therefore, the 

difference between the noise free and noisy integrands is (u - v) – (u – (v + ∆v)) = ∆v. In 

other words, noise enters the integrand as a linear additive term for the sum of square 

differences objective function. As long as the responses at the natural frequencies have 

significantly larger amplitudes than that of the noise, the characteristic features of the 

integrand will not change (Figure 7.19) and noise remains a linear additive term. 

To investigate the effect of noise on the correlation measures the definition of 

GSC and GAC at a single frequency value ωx is used. The vector obtained from the 

combination of different FRFs at the ωx frequency for the undamaged structure is denoted 

by u and the corresponding vector combining information at the same frequency from 

measured FRFs is denoted by v. Then for the frequency ωx, the definition of GSC can be 

rewritten using the notation of vector spaces. 

 
2 2 22

2
2 2

cos,GSC cos
, ,

θ
θ〈 〉

= = =
〈 〉〈 〉

u vu v
u u v v u v

 (7.1) 

where 〈〉 is an inner product on the vector space,  is the length or norm of 

vectors, and θ is the angle between vectors u and v. The angle between the analytical and 

measured data is θ and can be denoted as θ = ∠(u,v). When noise is introduced in the 

measured FRFs the angle will be θ + ∆θ = ∠(u,v) + ∠(u,∆v). Therefore, noise changes 

the angle between the analytical and measured vectors in a linear manner, which depends 

on the orientation of ∆v. Therefore, the noise enters the GSC expression in a cosine 

squared manner. If there is perfect correlation between the undamaged and damaged 

structure at a single frequency (GSC = 1) then the error introduced by noise will be 
2cos θ∆ . This relationship results in a larger amplification of noise, and therefore, 

introduces larger errors than introduced using linear relationship. Another drawback is 
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that portions of the correlation integrand where its value is approximately unity (no useful 

information regarding damage detection) will be almost always contaminated by noise, 

while useful parts of the function may or may not be amplified. After performing some 

mathematical manipulations, similar conclusions can be made for the GAC measure. 

Considering the significant differences between the objective functions and the 

results obtained for damage detection in the cantilever and two-span continuous case 

studies, the objective function based on correlation measures will not be investigated 

further. In later case studies, the focus is placed on finding good input parameters for 

damage detection and on identifying the limitations of the proposed SDIM. 

7.3 Optimum Sensor Locations, Case Study TWSP OPT 

7.3.1 Optimal Excitation and Sensor Locations 

Discussion of the two-span continuous beam case study, TWSP OPT, requires the 

knowledge of the optimum locations for placing the excitation and sensors. Several trials 

using the GA settings in Table 7.4 were performed to find optimal measurement 

configurations. In these trials both the fixed and IRR representations were used. 

Excitation and sensor location results for the two-span continuous beam problem 

are summarized in Table 7.5. The graphical representation of the optimal excitation and 

sensor locations in the Pareto set, provided by the program GaDamDet, are depicted in 

Figure D.2 of APPENDIX D. The maximum number of sensors for the trials was set to 

10 and both horizontal and vertical DOFs were included in the optimization resulting in 

38 possible locations for sensor placements. In all trials, the same results were obtained 

regardless of the GA parameters used. Overall, trials with the fixed representation 

converged faster than trials with the IRR representation. Table 7.5 states that for the two-

span continuous beam the best place for the excitation location is at the right span 

(node 13) of the beam at distance of one fifth of the span length from the mid support. 

The same excitation locations were obtained in the vertical direction regardless of the 

number of sensors used for measurement. Using 10 sensors instead of one sensor 

increases the measurement information obtained by about 400%, which appears to be 
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significant. However, not placing the excitation and the first sensor at the same optimum 

location results in the reduction of the measurement information by several orders of 

magnitudes. In other words, using one sensor should be sufficient for damage detection 

measurements for this particular case. This conclusion is also supported by case studies 

TWSP IB and IIIB. 

Table 7.4. GA settings for excitation and sensor layout design for the two-span continuous beam problem 

Population Size 150, 200, 300 

Tournament Size 2, 3 

Maximum Generations 10000 

Stop if no Improvement 100, 200 

Crossover Type Adaptive, Equal 
Probability 

Crossover Sites 1, 2 

Crossover Rates Primary: 0.7, 0.8, 0.9 
Secondary: 1.0 

Mutation Type Uniform 

Mutation Rate 0.002, 0.005, 0.0075 

Elitism Yes 

Coding Binary Base 2, Gray 

 

Only vertical DOFs were selected for the optimal excitation and measurement 

locations since the frequency range under investigation only contains a few axial 

vibration modes, which are associated with higher frequencies that require more energy 

input to obtain the same response level as with transverse vibrations. In Figure D.2 of 

APPENDIX D, a pattern is observable for the sensors placement that is symmetrical up to 

six sensors. After six sensors, the remaining four sensors are placed on the same span 

where the excitation is located. The lack of symmetry in the sensor placement above six 

measurement locations may be an indication of the optimum number of sensors required 

to obtain the most information to be able to identify damage at any element location. 
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Table 7.5. Pareto optimal excitation and sensor locations for the two-span continuous beam problem, 
TWSP 

Measurement Information Number 
of sensors 

Excitation at 
Node* 

Sensor(s) at Node 

Value Percent 

1 13 13 5.3574⋅1014 100.0% 

2 13 13, 19 8.9212⋅1014 166.5% 

3 13 9, 13, 19 1.2077⋅1015 225.4% 

4 13 3, 9, 13, 19 1.4877⋅1015 277.7% 

5 13 3, 9, 13, 19, 20 1.7648⋅1015 329.4% 

6 13 2, 3, 9, 13, 19, 20 1.9772⋅1015 369.1% 

7 13 2, 3, 9, 13, 17, 19, 20 2.1658⋅1015 404.3% 

8 13 2, 3, 9, 13, 15, 17, 19, 20 2.3366⋅1015 436.1% 

9 13 2, 3, 9, 12, 13, 15, 17, 19, 20 2.5027⋅1015 467.1% 

10 13 2, 3, 9, 12, 13, 14, 15, 17, 19, 20 2.6658⋅1015 497.6% 

* Excitation and measurements are in the vertical direction 
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Figure 7.21. Pareto front and individuals in the final population represented in the objective space for the 

two-span continuous beam problem using fixed representation GA, population size is 300 
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Figure 7.22. Pareto front and individuals in the final population represented in the objective space for the 

two-span continuous beam problem using IRR GA, population size is 300 

Typical plots of the final population in the objective space are shown in Figure 

7.21 and Figure 7.22 for the two-span continuous beam problem using the fixed and IRR 

representations, respectively. In Figure 7.21 for the fixed representation after only 34 

generations, 60.3% of the converged population (there was no improvement in 100 

generations) is in the Pareto front. The number of individuals present at a particular 

number of sensors is labeled next to each Pareto optimal solution. The figure shows that 

the individuals are well distributed along the number of sensors and the high percentage 

of individuals in the Pareto front (on average it was 56.5%) indicates that a good solution 

is obtained. The individuals in the Pareto front for the IRR GA results shown in Figure 

7.22 are not as well distributed as individuals for the fixed representation GA. The IRR 

GA had difficulties with keeping individuals on the extremes around the one sensor and 

maximum number of sensors locations. Therefore, more generations were required to 

obtain convergence for the trial in Figure 7.22 and the population converged after 191 

generations. The percentage of individuals in the Pareto front for the IRR GA plot was 

7.33% and on average it was 20.8%. Comparing Figure 7.21 and Figure 7.22, the 
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individuals for the IRR GA are more scattered in the objective space indicating that only 

a smaller fraction of the population occupies Pareto front locations. In both figures, 

however, the Pareto front is identical and the hypothetical curve connecting the points in 

the Pareto front has a decreasing slope with increasing number of sensors. The decreasing 

slope can be interpreted such that the relative information gained by using more sensors 

also decreases gradually. 
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Figure 7.23. Convergence plot of measurement information for the two-span continuous beam sensor 

layout design problem using fixed representation GA with a population size of 300 

Figure 7.23 shows the convergence plot of the measurement information as a 

function number of generations for 1 to 10 sensor locations. The plot is obtained using the 

fixed representation GA with a population size of 300. The figure shows the GAs ability 

to advance the Pareto front in parallel. Sensor locations are explored simultaneously for 

each number of sensors between 1 and 10. Fitness sharing combined with the repair 

operator also enables the information exchange between the optimum solutions for a 
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specific number of sensors, which facilitates fast convergence. For this particular plot, the 

entire population converged in only 34 generations and the trial was terminated after 50 

unsuccessful attempts to improve (no improvement convergence criterion) the solutions 

currently in the Pareto front. 

7.3.2 Damage Detection Results Using Optimal Sensor Placement 

Using the optimal excitation location and one sensor, which are both placed at node 13 of 

the two-span continuous beam (Figure 5.2), the damage detection problem for the 

TWSP IIIA case was repeated using the same GA settings. The severity of damage 

imposed was 5% at element 6 and 10% at element 10. Five different noise levels were 

used for the TWSP OPT case: 0, 5, 10, 20 and 30% noise. The damage detection results 

obtained are presented in Figure 7.24 through Figure 7.29 and summarized in Table D.35 

through Table D.40 of APPENDIX D. For the noise free case, the best solution was 

obtained by the unseeded IRR GA, but all trials somewhat underestimated the actual 

damage magnitudes in elements 6 and 10 after 200 generations. This is particularly true 

for the IRR GA with initial seed. Again, this result can be attributed to premature 

convergence caused by high selection pressure and overprotection of the best individual. 

Nevertheless, hillclimbing was able to improve the solutions and found the global 

optimum for all trials involving noise free FRF data. 

Results obtained for noisy measurement data show that the final predicted 

damages in element 6 and 10 are slightly underestimated with gradually increasing 

magnitudes as the noise in the FRF data increases. The IRR GA without initial seed 

performed the best and found a solution 3 times out of 4 that was a global optimum (in 

the sense that hillclimbing could not improve on it). The IRR GA with initial seed 

outperformed the fixed representation GA for the noisy cases, but at a noise level of 20% 

premature convergence was experienced. Overall, the final results were very close to the 

inflicted damages for all trials even at a noise level of 30%. A typical solution (seeded 

IRR GA) was 4.67% damage for element 6 and 9.60% for element 10 and there was only 

one falsely identified element 17 with 0.68% damage. 
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Figure 7.24. Damage detection results for case TWSP OPT, fixed representation, seeded initial population, 

noise levels of 0, 5 and 10% 
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Figure 7.25. Damage detection results for case TWSP OPT, fixed representation, seeded initial population, 

noise levels of 20 and 30% 
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Figure 7.26. Damage detection results for case TWSP OPT, implicit redundant representation (IRR), 

seeded initial population, noise levels of 0, 5 and 10% 
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Figure 7.27. Damage detection results for case TWSP OPT, implicit redundant representation (IRR), 

seeded initial population, noise levels of 20 and 30% 
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Figure 7.28. Damage detection results for case TWSP OPT, implicit redundant representation (IRR), 

unseeded initial population, noise levels of 0, 5 and 10% 
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Figure 7.29. Damage detection results for case TWSP OPT, implicit redundant representation (IRR), 

unseeded initial population, noise levels of 20 and 30% 

The results obtained using the optimal sensor location were compared with those 

for the TWSP IIIA case study. In most cases, the optimum sensor layout design resulted 

in faster convergence requiring considerably less hillclimbing iterations to find the global 
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solution. In Table 7.6, the average fitness values of the initial populations are compared 

for the original (TWSP IIIA) and optimal (TWSP OPT) sensor layout designs. The 

average fitness of the initial population increased by an average factor of 2.86 times and 

3.9 for the fixed and IRR GA respectively using the optimal sensor location. The overall 

increase was 3.53 or 253%. The increase in objective function values is an indication of 

higher sensitivities for damage in the vibration signature. In Figure 7.30, final results 

(including hillclimbing) for the damage detection problem using optimal and non-optimal 

sensor locations are compared at a noise level of 5%. Similar plots for the 10, 20 and 30% 

noise levels are depicted in Figure 7.31 through Figure 7.33. All figures show significant 

improvements in damage detection at any noise level using the optimal excitation and 

sensor placements. 

Table 7.6. Average fitness values of initial populations using non-optimized and optimal sensor locations 
for the two-span continuous beam case studies TWSP IIIA and OPT 

Representation Noise Average Fitness of Initial Population Average Increase [%] 

  TWSP IIIA TWSP OPT  

Fixed 0% 3,175,198 9,151,185 188.2% 

Fixed 5% 3,172,925 9,114,538 187.3% 

Fixed 10% 3,173,100 9,098,026 186.7% 

Fixed 20% 3,181,620 9,128,257 186.9% 

Fixed 30% 3,202,043 9,249,699 188.9% 

IRR Seeded 0% 2,310,740 9,033,528 290.9% 

IRR Seeded 5% 2,312,329 8,933,392 286.3% 

IRR Seeded 10% 2,318,418 8,913,561 284.5% 

IRR Seeded 20% 2,344,598 8,928,812 280.8% 

IRR Seeded 30% 2,390,361 9,027,853 277.7% 

IRR Unseeded 0% 2,356,495 9,135,627 287.7% 

IRR Unseeded 5% 2,357,469 9,266,820 293.1% 

IRR Unseeded 10% 2,363,005 9,246,730 291.3% 

IRR Unseeded 20% 2,388,297 9,262,944 287.8% 

IRR Unseeded 30% 2,433,628 9,366,433 284.9% 

   Average: 253.5% 
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There are at least three distinguishable benefits of using optimum measurement 

layouts in damage detection. First, the damage-balancing phenomenon (i.e. predicted 

damage indicators of unequal damages tend to approach to a value in between the 

inflicted damage severities) that is observed for the non-optimal sensor location cases is 

not apparent in the optimum sensor location cases. The number and severity of falsely 

identified elements is also very much reduced. In addition, the consistency of the results 

is maintained at all damage levels and the accuracy of damage detection is less sensitive 

for noise in the measurements. 
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Figure 7.30. Comparison of damage detection results using different measurement configurations at a noise 

level of 5% for the two-span continuous beam problem 
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Figure 7.31. Comparison of damage detection results using different measurement configurations at a noise 

level of 10% for the two-span continuous beam problem 
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Figure 7.32. Comparison of damage detection results using different measurement configurations at a noise 

level of 20% for the two-span continuous beam problem 
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Figure 7.33. Comparison of damage detection results using different measurement configurations at a noise 

level of 30% for the two-span continuous beam problem 
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8 CASE STUDY RESULTS AND DISCUSSION, MOMENT 

FRAMES 

8.1 Two-story, Three-bay Braced Frame 

Cases studies involving the two-story, three-bay braced moment frame (thereafter 

referred to as braced frame) are intended to fine tune different GA parameters for further 

studies. A sensitivity analysis of the GA will be performed by varying six parameters: 

population size, primary crossover rate, mutation rate, random seed, seeding of the initial 

population and whether or not a fixed representation or an IRR is used. From the 

sensitivity analysis, a good set of GA parameters is identified. This set of GA parameters 

will be used in the trials investigating the repeatability of results by running trials having 

different random initial seeds. Random number generators are usually seeded with an 

arbitrary number and if this number is the same for each run then the random numbers 

generated will also be the same for each trial. By varying the initial random seed the 

repeatability of result using the same GA parameters can be tested. Repeatability of 

results is important in order to ensure that the solutions are not dependent on the random 

seed used. 

Having obtained a set of “good” GA parameters, trials involving a scenario with 

four damaged elements will be used to evaluate the robustness of the proposed SDIM. In 

this set, each of the trials will build upon the previous trial. Experience obtained 

throughout the trials will be employed in the considerably harder problems of the three-

story three-bay unbraced moment frame structure, which is the topic of the next section. 

8.1.1 Fine Tuning, Finding a Good Set of GA Parameters 

Using the case study, BRFRM I (Table 5.3), six of the GA parameters were altered to fine 

tune the optimization algorithm and to enhance performance. In this case study, one of 

the cross braces on the first floor is damaged by introducing a 50% reduction in the 

member stiffness. Altogether 25 trials were performed to determine the set of parameters 

that evolves results that most accurately represents the damaged model in case study 
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BRFRM I. A summary of the 25 trials is provided in Table 8.1. The maximum number of 

generations was 200, the “stop if no improvement” convergence criterion was set to 20, 

adaptive crossover was turned on, and measurements with zero noise were used. The 

random seed number was set to 7 and was the same for all trials. 

Table 8.1. GA input parameters for the braced frame case study, BRFRM I 

Trial Population Size Primary 
Crossover Rate

Mutation Rate Fixed or IRR* Initial Seed 

1 100 0.7 0.005 IRR No 

2 300 0.7 0.005 IRR No 

3 300 0.7 0.01 IRR No 

4 100 0.7 0.005 Fixed Yes 

5 300 0.9 0.01 IRR No 

6 200 0.7 0.01 IRR No 

7 100 0.7 0.01 Fixed Yes 

8 200 0.7 0.005 Fixed Yes 

9 100 0.7 0.01 IRR No 

10 100 0.9 0.005 Fixed Yes 

11 100 0.9 0.005 IRR Yes 

12 300 0.9 0.005 IRR Yes 

13 300 0.9 0.01 Fixed Yes 

14 300 0.9 0.01 IRR Yes 

15 100 0.9 0.01 Fixed No 

16 300 0.7 0.01 Fixed Yes 

17 300 0.9 0.005 Fixed Yes 

18 300 0.7 0.005 Fixed Yes 

19 200 0.9 0.01 IRR Yes 

20 200 0.9 0.01 Fixed Yes 

21 200 0.9 0.005 IRR Yes 

22 200 0.7 0.01 Fixed Yes 

23 100 0.9 0.01 IRR Yes 

24 200 0.7 0.005 IRR No 

25 200 0.9 0.005 Fixed No 

* The number of gene instances for the IRR GA was 10 and the gene locator length was 3 
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Results for the first 25 trials are compared in Table 8.2 and the damage indicator 

results are summarized in Table D.41 through Table D.46 of APPENDIX D. Using the 

fixed representation without seeding, the initial population with the zero damage 

individual (trials 15 and 25) resulted in the failure of the SDIM and the correct damaged 

element was not identified. The GA in these cases was not able to find the solution due to 

the unstructured nature of the problem, since the number of variables for the fixed 

representation was quite large (40 finite elements in the model). Seeding the initial 

population provides the fixed representation GA with a solution that is “close” to the 

imposed damage scenario and using this information the GA was able to find solutions 

identifying the correct damaged element. Although most seeded fixed representation 

trials found a reasonable solution, the number of falsely identified elements was high and 

a large number of hillclimbing iterations were needed to obtain a better solution that 

represented the inflicted damage in the structure. 

In trial 16, the element identified with maximum damage was element 44, which 

is the cross bracing symmetrical to element 43 on the first floor in the middle bay. The 

predicted damage for this cross bracing was about 50%. Since the structure is also 

symmetrical the same level of damage in symmetrical members would produce similar 

vibration signatures especially if the excitation and measurement location were also 

symmetrical. This solution can be considered as a local optimum and to prevent this 

result from being identified by the SDIM, the unsymmetrical placement of excitation and 

measurement locations may be desired when the fixed representation GA with seeded 

initial population is used. The trials for the fixed representation GA also show that the 

reliability of damage detection degrades with increasing number of unknown variables 

due to the larger search space that needs to be explored and exploited. For this particular 

problem considering that 20 binary bits were used to encode each damage indicators, the 

search space has a size of ( )4020 2402 6.668 10= = ⋅S , which is extremely large and 

explains the degraded performance of the fixed representation GA. 

 

 

 



 191

Table 8.2. Comparison of results for the braced frame case BRFRM I 

Trial Number of 
Iterations 

Number of Damaged 
Elements 

Damage Indicators 

 GA Hillclimb Before 
Hillclimbing

After 
Hillclimbing

Before Hillclimbing, 
Element 43 and 
Maximum False 

Predicition 

After Hillclimbing 

1 200 3673 5 4 43:49.08%, 44:1.05% 43:49.98%, 39:0.004%, 
28:0.002%, 44,:0.03% 

2 200 4960 4 4 43:46.43%, 44:3.9% 43:49.98%, 6:0.003%, 
44:0.026%, 46:0.0004% 

3 200 37 2 1 43:50.02%, 36:0.20% 43:50% 

4 200 94 Almost All 1 43:49.45%, 27:3.11% 43:50% 

5 200 73 5 1 43:50.01%, 25:1.57% 43:50% 

6 200 14 1 1 43:50% 43:50% 

7 120 93 Almost All 1 43:49.28%, 24:12.4% 43: 50% 

8 200 2106 Almost All 1 43:48.54%, 26:3.18% 43:50% 

9 200 38 3 1 43:50%, 30:0.68% 43:50% 

10 74 4680 Almost All 5 43:46.41%, 4:6.19% 43:49.98%, 6:0.002%, 
18:0.001%, 39:0.003%, 

44:0.03% 

11 169 0 1 1 43:50% 43:50% 

12 177 0 1 1 43:50% 43:50% 

13 57 99 Almost All 1 43:49.5%, 30:49.3% 43:50% 

14 175 0 1 1 43:50% 43:50% 

15 200 761 Failed Failed Failed Failed 

16 50 92 Failed Failed 43:0.0%, 44:49.5% Found 44: 49.73% and Four 
Others 

17 200 7352 All 6 43:24.72%, 
44:24.64% 

43:49.98%, 18:0.0007%, 
26:0.0006%, 37:0.001%, 

44:.03%, 46:0.0003% 

18 155 2360 All 4 43:49.5%, 6:5.44% 43:49.97%, 28:0.001%, 
37:0.001%, 44:0.03% 

19 145 0 1 1 43:50% 43:50% 

20 78 4702 Almost All 5 43.11.7%, 44:24.65% 43:49.73%, 32:0.002%, 
39:0.033%, 44: 0.3%, 

46:0.005% 

 

21 200 3 1 1 43:50% 43:50% 
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Table 8.2. (Continued) 

Trial Number of 
Iterations 

Number of Damaged 
Elements 

Damage Indicators 

 GA Hillclimb Before 
Hillclimbing

After 
Hillclimbing

Before Hillclimbing, 
Element 43 and 
Maximum False 

Predicition 

After Hillclimbing 

22 101 3380 About Half 4 43:47.95%, 24:6.15% 43:49.95%, 6:0.018%, 
29:0.004%, 44:0.058% 

23 200 94 2 2 43:49.86%, 44:0.16% 43:49.9%, 44:0.03% 

24 200 25 3 1 43:50%, 30:0.040% 43:50% 

25 200 537 Failed Failed Failed Failed 

 

The IRR GA performed consistently better than the fixed representation. The 

global solution was always found either during the GA run or after hillclimbing. The IRR 

GA with initial seed, however, provided better results than the IRR GA without initial 

seed. The global solution was found 4 out of 6 times before the maximum number of 

generations was reached. Seeding the initial population proved to beneficial for the IRR 

GA for this particular problem. Also the seeded IRR GA was less sensitive to change in 

other parameters such as population size, mutation and crossover rate. For the unseeded 

IRR GA, a higher mutation rate of 0.1 lead to better results than a mutation rate of 0.005. 

Another factor that was important for the unseeded IRR GA was the population size. A 

population size of 100 resulted in slower convergence than any of the higher population 

sizes, but a population size of 200 proved to be sufficient. 

Even though differences in the performances of the seeded and unseeded IRR 

GAs existed in all trials, using IRR GA outperformed the fixed representation GA in 

every aspect. The IRR GA was able to effectively reduce the search space by adjusting 

the number of gene instances present in the string. For instance for trial 19 (Table 8.1), 

the best individual in the initial population had 8 gene instances (damaged elements), 

which is equivalent to a  times reduction in the search space when 

compared to the fixed GA. In the final population there was only a single gene instance in 

( )3220 1922 4.562 10= ⋅
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the best individual, which meant that the search space had a size of 

considerably less than the initial search space or the s

representation. 

Table D.47 of APPENDIX D shows the results of

trial pairs based on the mutation rate. The data suggests that a mu

preferable for this problem. To investigate the effect of the prim

D.48 of APPENDIX D shows the result of the initial 25 trials arranged in

on the primary crossover rate. The primary crossover rates used in the se

have little effect on the GA results. The population size had ag

results as shown in Table D.49 of APPENDIX D. Having an

detail, the GA parameters in trial 19 (Table 8.1) were selected for use in further studies on 

braced and unbraced frames. The specific parameters selected are a mu

IRR representation, primary crossover rate of 0.9, and a po

the initial population provided better results, therefore, seeding will also be used in the 

following studies. 

To validate the repeatability of results, two additional trials with dif  

seeds using the GA setting given above were performed. Re

cases showed similar performance when compared to trial 19. The global optim  

found in 180 generations and no false identifications occurred as shown in Table 8.3. 

Table 8.3. Results for braced frame study BRFRM I using different random

Trial Random Seed Number of 
GA 

Generations 

Number of 
Damaged 
Elements 

Damage 
Indicators 

202 1,048,576=  

earch space for the fixed 

 the 25 initial trials arranged in 

tation rate of 0.01 is 

ary crossover rate, Table 

 trial pairs based 

nsitivity analysis 

ain little effect on the GA 

alyzed the initial 25 trials in 

tation rate of 0.01, 

pulation size of 200. Seeding 

ferent random

sults for the two additional 

um was

 seeds 

26 21 180 1 43:50% 

27 23 180 1 43:50% 
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8.1.2 A Mixture of Bracing and Joint Damages in Beams and Columns 

In order to extend the knowledge gained from the sensitivity analysis, the case 

study BRFRM II defined in Table 5.3 will be investigated. This problem is considerably 

more difficult than the previous braced frame study BRFRM I, since four damaged 

elements are included. Among the damaged elements there is a cross brace with 50% 

damage (element 43), two damages in the first floor perimeter column at the fixed 

support and at the joint with 20% damages (elements 37 and 39), and a 10% damage 

located in the first floor perimeter beam at the joint (element 35, for the location of 

elements see Figure C.2 of APPENDIX C). The trials for this study involved the use of 

the best parameters from the sensitivity study, except for the last trial where equal 

probability crossover was used instead of the adaptive crossover. 
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Figure 8.  Results for trial 28, noise free measurements case study BRFRM II 

Results for the BRFRM II problem involving noise free measurements (trial 28) 

are depicted in Figure 8.1 and summarized in Table D.50 of APPENDIX D. After 200 

GA generations, there were four gene instances in the best individual identifying the four 

correct damaged elements. For two of the elements, the predicted damages were very 

close to the imposed values: 10.8% for element 35 (joint element on the first floor beam) 

1.
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instead of 10% and 50.14% for element 43 (cross bracing) instead of 50%. The identified 

damage indicators for the joint element in the first floor perimeter column were 

somewhat under- and overestimated (16.48 5 and 26.48% instead of 20%) for elements 

37 and 39. After only 299 hillclimbing iterations, the global optimum was found within 

the precision provided by the binary representation (Figure 8.1). 

Case study BRFRM II was repeated with 5% noise included in the measurements. 

Three trials using the noisy measurements were performed (trials 29, 30 and 31). In 

Trial 29, the same GA settings from the sensitivity study were used to investigate the 

effect on noise on the accuracy of damage detection. Two additional trials (30 and 31) 

investigated the effect of using optimal excitation and sensor locations. 

Table 8.4. Pareto optimal excitation and sensor locations for the two-story three-bay braced moment frame 
problem, BRFRM 

Measurement Information Number 
of sensors 

Excitation at 
Node* 

Sensor(s) at Node 

Value Percent 

1 5 38 6.6806⋅1013 100.0% 

2 5 38, 36 9.3420⋅1013 139.8% 

3 5 38, 36, 35 1.1236⋅1015 168.2% 

4 5 38, 36, 35, 33 1.2660⋅1015 189.5% 

5 5 38, 36, 35, 33, 39 1.3377⋅1015 200.2% 

6 5 38, 36, 35, 33, 39, 5 1.3982⋅1015 209.3% 

7 5 38, 36, 35, 33, 39, 5, 40 1.4331⋅1015 214.5% 

8 5 38, 36, 35, 33, 39, 5, 40, 3 1.4555⋅1015 217.9% 

9 5 38, 36, 35, 33, 39, 5, 40, 38↑ 1.4714⋅1015 220.2% 

10 5 38, 36, 35, 33, 39, 5, 40, 38↑, 32↑ 1.4861⋅1015 222.4% 

* Excitation and measurements are in the horizontal direction except where the node number if followed by 
“↑” symbol in which case the vertical DOF is used 

Based on the experience obtained from the excitation and sensor location 

optimization trials for the cantilever and two-span continuous beams, the fixed 

representation GA was used to determine the optimal sensor locations for the braced 

 

frame. The GA settings were selected from Table 7.4. The optimum excitation and sensor 
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locations for the braced frame are summarized in Table 8.4 and the final population 

showing the Pareto front plotted in the objective space is depicted in Figure 8.2. The 

results obtained from these trials show that the increase in the measurement information 

becomes less significant as the number of sensors is increased. The optimal location for 

the excitation was in the horizontal DOF located at node 5 in the left second floor 

perimeter column. Unlike the optimum layouts determined for the beam problems, in 

which the fist sensor was placed at the same location as the excitation, the first sensor is 

placed symmetrically on the opposite end of the frame in the horizontal direction. 

Subsequent sensors were located at either side of the frame in the horizontal direction up 

to a sensor number of 8. The ninth and tenth sensors measured vertical DOFs. For 

Trials 30 and 31, the optimum sensor locations for two sensors were selected as the base 

measurement FRFs. 
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Figure 8.  Pareto front and individuals in the final population represented in the objective space for the 
two-story three-bay braced moment frame problem using fixed representation GA, population size is 200 

Results obtained for the noisy measurement trials (29, 30 and 31) are depicted in 

Figure 8.3 and summarized in Table D.50 of APPENDIX D. In Trial 29, a total of eight 

2.
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elements were reported damaged. The cross bracing with the highest damage, 50%, was 

identified with 49.8% damage and two other elements that were damaged in the column 

had damages of 22.99 and 11.94% instead of the imposed 20% after 200 GA generations. 

The element in the first floor beam was not identified, instead five elements were falsely 

identified. Element 42 in the second floor perimeter column was falsely reported to have 

9.67% damage. The severity of the other four false identifications ranged between 0.95 

and 7.845% in elements scattered all around the structure. Hillclimbing did not 

significantly improve the results. 

In Trial 30, the two optimal sensor locations were used that were by coincidence 

only in the region of the damaged elements. The GA located seven damaged elements 

and again the cross bracing was correctly identified with 49.33% damage. Element 35 

and 39 had 9.1% and 37.94% damage, respectively. The column element at the fixed 

support was not identified as damaged, however, the column element right next to it was 

reported to have 11.88% damage. The other three falsely identified elements had damages 

less than 3%. Hillclimbing only slightly improved the results. Although these results vary 

significantly from the results obtained in Trial 29, the elements that were falsely 

identified were not scattered in the structure but instead were confined to regions 

neighboring the actual damaged elements. 

A closer look at the genotypes of the best individuals in consecutive generations 

revealed that a premature convergence occurred. The zero damage individual quickly 

spread through the population during early generations, and therefore dominated the 

overall search. The combination of adaptive crossover with elitism prevented the GA 

from discovering regions of the search space. Therefore, in Trial 31 the crossover type 

used was changed to the equal probability crossover. 

In Figure 8.3, results for Trial 31 show that all damaged elements were found and 

that the severity estimates were in good agreement with the inflicted damage scenario. 

The only falsely identified element spans between the originally damaged elements 37 

and 39 in the first floor perimeter column confining the damage in a single structural 

member. Hillclimbing results were in an even better agreement with the original damage 

 

case. The final results were 49.77% damage in element 43, 8.45% in element 35, 20.43% 
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in element 37 and 19.54% in element 39. The only false reading represented a 0.41% 

damage. This trial signifies the importance of using a good set of GA parameters by 

showing that slight changes in the input GA parameters can have significant impact on 

the obtained results due to the selection pressure imposed during the search. 

Table 8.5 shows the change in the average fitness of the initial population for 

trials using the optimal sensor locations relative to trials using the non-optimal sensor 

locations. The fitness value increased by 75.2%, which is an indicator of higher 

sensitivities for damage when optimum sensor locations are used. Studies including four 

damaged elements showed that the IRR GA was robust and could identify damages in a 

noisy measurement environment. 

Simulated 10% Damage in Element 35, 20% Damages in Elements 37 and 39, and 
50% Damage in Element 43
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Figure 8.3. Results for trial 29, 30 and 31, 5% measurement noise, case study BRFRM II 

Table 8.5. Comparison of individuals’ average fitness for trials 29, 30 and 31 

Trial Average Fitness of Initial Population 

 Value Percent 

29 12682.239 100.0% 

30 22220.492 175.2% 

31 22220.492 175.2% 
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8.2 Three-story, Three-bay Unbraced Frame 

The three-story, three bay unbraced frame case studies investigated provide an additional 

study of the robustness of the proposed SDIM on an unbraced moment frame with 81 

finite elements. This structure is of a larger-scale then structures previously studied. The 

first two case studies investigated simulated single damage situations with damage either 

in a first floor beam at mid-span and at a perimeter joint. Trials including several different 

noise levels were performed to investigate the sensitivity of damage detection for larger-

scale problems. 

The first damage scenario considered in the second set of case studies introduces 

multi-damages with different severities in the first floor columns. This configuration 

simulates damages caused by a possible soft story mechanism in the first floor columns at 

the joints within the first floor beams. The second damage scenario considered introduces 

damages in the first floor beams at the joints simulating a damage mechanism that is 

involved in the strong columns weak beams design concept. The goal of the second set of 

case studies is to investigate the effect of the number of sensors and their locations on the 

accuracy of damage detection. Multiple damages with different severities result in 

increased uniqueness problems that make it increasingly difficult to find the true damaged 

elements and severities. Therefore, case studies included in this section pose problems 

that any of the existing SDIMs would have difficulty in solving accurately. 

8.2.1 Single Damage Cases for a First Floor Beam 

The set of GA parameters used for the two case studies, UBFRM I and II (Table 5.4), for 

the unbraced frame are summarized in Table 8.6. Input parameters for the fixed 

representation GA were not provided in the table because during initial trials, GA 

parameters that would lead to acceptable solutions could not be found. For this reason the 

performance of the fixed representation GA was not investigated for the unbraced frame. 

The GA parameters for the IRR GA were selected on the basis of initial trials that used 

different GA parameters and the experience gained in previous case studies. The number 

 

of significant digits for the unbraced frame trials was 6, which required 20 bits to 
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represent a damage indicator value with a precision of approximately 9.44⋅10-7 or 

9.44⋅10-5%. 

Table 8.6. GA input parameters for three-story three-bay unbraced moment frame 

 IRR, Seeded* IRR, Unseeded 

Population Size 200 200 

Tournament Size 8 8 

Initial Seed Yes No 

Maximum Generations 300 300 

Stop if no Improvement 20 20 

Crossover Type Adaptive Adaptive 

Crossover Sites 6 6 

Crossover Rates Primary: 0.9, 
Secondary: 1.0 

Primary: 0.9, 
Secondary: 1.0 

Mutation Type Uniform Uniform 

Mutation Rate 0.005 0.005 

Elitism Yes Yes 

Hillclimbing Yes, Reduced Yes, Reduced 

Coding Gray Gray 

* For the IRR the number of gene instances (expected number of damaged elements) was 15 and the gene 
locator (GL) length is 3 

Damage detection results for the first unbraced frame case study, UBFRM I 

(Table 5.4), are summarized in Table D.51 and Table D.52 of APPENDIX D. Only IRR 

GA solutions are presented, since no acceptable solutions were found using the fixed 

representation GA. The true damaged element 21 is located on the left perimeter first 

floor beam at mid-span with a 10% severity (Figure C.4 of APPENDIX C). Noise levels 

of zero, 5 and 10% were investigated. Solutions obtained using the seeded IRR GA are 

presented in Figure 8.4 and results for the unseeded IRR GA are depicted in Figure 8.5. 

For the case of noise free measurements, the seeded IRR GA found the global optimum 

after 261 generations identifying element 21 with 10% damage. Although the solution 

 

provided by the unseeded IRR GA after 300 generations was not the global optimum, it 
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correctly identified element 21 with 9.71% damage and the global optimum was obtained 

after a few hillclimbing iterations. 

When the noise level increased, the severity of false identifications also increased, 

although, the true damage element was always identified with the highest damage 

indicator value. For both IRR GAs, the maximum number of false identifications stayed 

below 2 and 3% for the 5 and 10% noise levels, respectively. The figures show that the 

predicted severity for the true damage element was always close to the inflicted 10%. In 

most trials, hillclimbing did not improve the results significantly. 
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Figure 8.4. Damage detection results for case UBFRM I, implicit redundant representation (IRR), seeded 

initial population, noise levels of 0, 5 and 10% 
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Simulated 10% Damage in Element 21
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gure 8.5. Damage detection results for case UBFRM I, implicit redundant representation (IRR), unseed

initial population, noise levels of 0, 5 and 10% 
Fi ed 

Damage detection results for the second unbraced frame case study, UBFRM II 

(Table 5.4), are summarized in Table D.53 and Table D.54 of APPENDIX D. The true 

damaged element 28 is located on the left perimeter first floor beam at the perimeter joint 

with a 10% severity (Figure C.4 of APPENDIX C). Solutions obtained using the seeded 

IRR GA are shown in Figure 8.6 and results for the unseeded IRR GA are depicted in 

Figure 8.7 for noise levels of zero, 5 and 10%, respectively. In the case of noise free 

measurements, the seeded IRR GA found the global optimum after 141 generations 

identifying element 28 with 10% damage. For the unseeded IRR GA, hillclimbing took 

only five iterations to find the global optimum starting from the solution obtained after 

300 GA generations. 

At a noise level of 5%, the solutions obtained clearly identified the true damaged 

element with a severity of approximately 8.7% for both the seeded and unseeded IRR GA 

trials. The severity of false identifications remained below 1.3% for all trials. At a higher 

noise level of 10%, the predicted damages for the true damage element were 

underestimated for both trials. The seeded IRR GA found a solution in which the true 

damage element was identified with approximately 6.1% damage, while the unseeded 

IRR GA provided a solution identifying element 28 with approximately 7.6% damage. 
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The largest false identification occurred at element 45 for both the seeded and unseeded 

IRR GA trials with severities of 2.8/2.5%, respectively. Other falsely identified elements 

had predicted damages smaller than those of element 45. 
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Figure 8.6. Damage detection results for case UBFRM II, implicit redundant representation (IRR), seeded 

initial population, noise levels of 0, 5 and 10% 
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Figure 8.  Damage detection results for case UBFRM II, implicit redundant representation (IRR), 
unseeded initial population, noise levels of 0, 5 and 10% 
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8.2.2 Optimum Excitation and Sensor Locations for the Unbraced Frame 

Before damage detection results for case studies UBFRM III and IV can be presented, the 

optimum sensor layout design problem must be presented. Based on the experience 

obtained from the excitation and sensor location optimization trials for the cantilever and 

two-span continuous beams, the fixed representation GA was used to determine the 

optimal sensor locations for the unbraced frame. The GA settings were similar to those 

shown in Table 7.4. The optimum excitation and sensor locations for the unbraced frame 

are summarized in Table 8.7 and the final population obtained from one of the trials is 

plotted in objective space and is presented in Figure 8.8. 

The results obtained showed that the increase in the measurement information 

became less significant as the number of sensors was increased. The best excitation and 

sensor locations are all found at vertical DOFs. There could be several reasons for 

obtaining this particular arrangement. The information measure is based on FRF 

sensitivities with respect to all finite elements in the model. Since the number of beam 

elements is 45 and the number of column elements is 35 for the unbraced frame problem 

it is possible that the beam elements receive more emphasis in the information measure. 

The columns were also stiffer than the beams, and therefore, responses in the beams 

excited in the vertical direction may be larger than those caused by horizontal excitations. 

Nevertheless, placing a sensor at the excitation DOF (interior node on the right, first floor 

perimeter beam, Figure C.3 of APPENDIX C) was the most beneficial just as it was for 

the cantilever and two-span continuous beam cases. The results presented in Table 8.7 

show that using two sensors increases the information by approximately 90%, but using 

more than two sensors does not increase FRF sensitivities significantly. Additional 

sensors were placed on beams in an alternating fashion starting with the right bay then the 

middle bay. In the optimal sensor configuration two sensors are placed on each beam. 
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Table 8.  Pareto optimal excitation and sensor locations for the three-story three-bay unbraced moment 
frame problem, UBFRM 

Measurement Information 

7.

Number of 
sensors 

Excitation 
at Node* 

Sensor(s) at Node 

Value Percent 

1 61 61 9.8223⋅1011 100.0 % 

2 61 61, 62 1.8670⋅1012 190.1 % 

3 61 61, 62, 72 1.8850⋅1012 191.9 % 

4 61 61, 62, 71, 72 1.9029⋅1012 193.7 % 

5 61 61, 62, 66, 71, 72 1.9066⋅1012 194.1 % 

6 61 61, 62, 65, 66, 71, 72 1.9101⋅1012 194.5 % 

7 61 59, 61, 62, 65, 66, 71, 72 1.9132⋅1012 194.8 % 

8 61 59, 60, 61, 62, 65, 66, 71, 72 1.9155⋅1012 195.0 % 

9 61 59, 60, 61, 62, 65, 66, 67, 71, 72 1.9166⋅1012 195.1 % 

10 61 59, 60, 61, 62, 65, 66, 67, 68, 71, 72 1.9174⋅1012 195.2 % 

* Excitation and measurements are in the vertical direction 

252420222725211612

8

0.0E+00

5.0E+11

1.0E+12

1.5E+12

2.0E+12

0 2 4 6 8 10

Number of Sensors

M
ea

su
re

m
en

t I
nf

or
m

at
io

n

2.5E+12

Pareto Front Second Front
Third Front Fourth and below Fronts

Figure 8.8. Pareto front and individuals in the final population represented in the objective space for the 
three-story three-bay unbraced moment frame problem using fixed representation GA, population size 

 

of 200 
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8.2.3 Damages Associated with Soft-story Mechanism 

In case study UBFRM III, damages in four column elements were introduced (Table 5.4). 

All damaged elements were located on the first floor columns right where the columns 

were framed into the first floor beams. The severities of damage for the perimeter 

columns were 10% (elements 34 and 49), while the damage severities for the interior 

columns were 5% (elements 3 and 27, Figure C.4 of APPENDIX C). Four trials based on 

the damage scenarios defined in case study UBFRM III were performed. Most of the GA 

input parameters were selected from Table 8.6. Some input parameters, however, were 

altered to enhance convergence and these are listed in Table 8.8. Two trials, 1(a) and 2(a), 

used the same sensor configuration defined for case study UBFRM III in Table 5.4. Two 

other trials, 1(b) and 2(b), used 3 optimal sensors found in Table 8.7. From the 

observations made for the braced frame studies that adaptive crossover can cause 

premature convergence, two of the trials, 2(a) and 2(b), used the equal probability 

crossover to reduce selection pressure. All trials assumed that the noise level in 

measurements was zero and that seeded IRR GA was used to perform the optimization. 

Table 8.8. GA input parameters for the soft-story mechanism case study, UBFRM III 

Trial Population 
Size 

Tournament 
Size 

Crossover 
Type 

Crossover 
Rate(s) 

Crossover 
Sites 

Sensor 
Placement 

1(a) 200 6 Adaptive Primary: 0.9 
Secondary: 1.0 

6 3 Non-optimal 
Sensors 

1(b) 200 6 Adaptive Primary: 0.9 
Secondary: 1.0 

6 3 Optimal 
Sensors 

2(a) 250 3 Equal 
Probability 

0.8 4 3 Non-optimal 
Sensors 

2(b) 250 3 Equal 
Probability 

0.8 4 3 Optimal 
Sensors 

 

Damage detection results obtained for all four trials are presented in Figure 8.9 

and Figure 8.10, and are summarized in Table D.55 and Table D.56 of APPENDIX D. 

 

For the high selection pressure trials, 1(a) and 1(b), neither of the solutions contained the 
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true damaged element 49 as shown in Figure 8.9. Both trials, however, located the true 

damaged interior column elements, 3 and 27, although with damage severities larger than 

the imposed 5%. The predicted damage indicators for the interior columns obtained using 

the optimal sensor configuration were better than those predicted using the non-optimal 

measurement pattern. One of the true damaged exterior column elements (element 34), 

however, was also identified by the IRR GA using the non-optimal sensor configuration 

while the IRR GA using the optimal sensor locations did not identify it. After 

hillclimbing, the damage indicator for this column element in trial 1(a) was 9.36% instead 

of the imposed 10%. False identifications occurred in both trials away from the true 

damage elements. As was expected, premature convergence occurred in both cases due to 

the high selection pressure combined with the adaptive crossover. 

In an attempt to overcome the difficulties associated with premature convergence, 

the tournament size was reduced and equal probability crossover was selected for trials 

2(a) and 2(b) according to Table 8.8. With the new set of input parameters the trials were 

repeated and the results are presented in Figure 8.10. There were no apparent 

improvements in the solution obtained in trial 2(a) using the non-optimal sensor 

configuration. Actually the results obtained were worse than in case 1(a) since in this trial 

only the two interior column elements were identified. The information provided by the 

three non-optimal sensors was not sufficient for locating all four true damaged elements. 

Result obtained, however, for the optimal sensor locations are strikingly better using the 

new GA input parameters. All four true damage elements were identified after 300 GA 

generations and only one element was falsely identified with a severity of 0.13%. After 

hillclimbing, the global optimum was obtained with the correct damage indicators for all 

true damage elements as shown in Figure 8.10 for trial 2(b). The average increase of the 

average fitness of the initial population was approximately 120 times between the non-

optimal and optimal sensor cases. This increase shows a significantly higher sensitivity of 

the objective function when optimum sensor locations are used. Finding all damaged 

elements showed the superiority of using optimal sensor locations over non-optimal 

sensor configurations. 
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Simulated 5% Damages in Elements 3 and 27, and 10% Damages in Elements 34 
and 49
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Figure 8.9. Damage detection results for soft-story mechanism case UBFRM III, seeded IRR GA, trials 

1(a) and 1(b) 

Simulated 5% Damages in Elements 3 and 27, and 10% Damages in Elements 34 
and 49
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Figure 8.10. Damage detection results for soft-story mechanism case UBFRM III, seeded IRR GA, trials
2(a) and 2(b) 

 
 

8.2.4 Damages Associated with Strong Column Weak Beam Design Concept 

In case study UBFRM IV, which is defined in Table 5.4, six first floor beam elements 

framing into the joints have nonzero damages (Figure C.4 of APPENDIX C). This case 
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study was intended to simulate a damage scenario that may occur in frames sized 

according to the strong column, weak beam design concept. Beam elements at the 

perimeter joint (element 28 and 18) have 20% damage while beam elements at the 

interior joints (element 4, 10, 11 and 16) have 10% damages. The GA input parameters 

used are the same as in trial 2(b) and are given in Table 8.6 and Table 8.8. Only trials 

using the seeded IRR GA were performed. 

The trials performed for case study UBFRM IV are summarized in Table 8.9. In 

this table, the trial number also designates the number of sensors used for measurements, 

e.g. in trial 7, 7 optimal sensors are used. The optimal sensor locations are defined in 

Table 8.7. The trials were intended to reveal the effect of the number of sensors on the 

accuracy of damage detection for two different noise levels (0 and 5%). The maximum 

number of generations was also increased from 300 to 400 to allow for a more thorough 

exploration and exploitation of the search space. 

Table 8.9. Trials for case study UBFRM IV 

Trial Measurement Configuration Noise Level 

3 3 Optimal Sensors 0% 

4 4 Optimal Sensors 0% 

5(a) 5 Optimal Sensors 0% 

5(b) 5 Optimal Sensors 5% 

6 6 Optimal Sensors 5% 

7 7 Optimal Sensors 5% 

8 8 Optimal Sensors 5% 

9 9 Optimal Sensors 5% 

10 10 Optimal Sensors 5% 

 

The first three trials defined by Table 8.9 correspond to noise free measurement 

cases and results for these trials are depicted in Figure 8.11 and summarized in Table 

D.57 of APPENDIX D. The number of correctly identified elements was 4, 5 and 6 using 

 

3, 4 or 5 optimum sensors, respectively. Three interior beam elements (4, 10 and 11) and 
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one the exterior beam element (18) were correctly identified as damaged in all three trials 

and the accuracy of the severity estimates increased with an increasing number of 

sensors. By using four sensors instead of three, the additional exterior beam element (28) 

was also identified with a severity somewhat higher than the imposed 20%. Another 

improvement in the number and severity of falsely identified elements was observed in 

Figure 8.11 between the three and four sensor cases. The inclusion of the fifth sensor 

provided enough information for damage detection to uniquely identify all six damaged 

elements without any false identification. After hillclimbing, the global optimum was 

found when five sensors were used. Clearly with increasing number of sensors, the SDIM 

developed becomes more stable and unique, and therefore more robust. The total number 

of possible sensor locations for this model equals to 216 if the rotational DOFs are 

included or 144 if they are not included in the set of possible sensors. Using the IRR GA, 

only a fraction (5 sensors) out of the total number of potential sensor locations were 

needed to locate and quantify multiple damages with different severities. 

Simulated 10% Damages in Elements 4, 10, 11 and 16, and 20% Damages in 
Elements 18 and 28
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Figure 8.11. Damage detection results for case UBFRM IV, seeded IRR GA, trials 3, 4 and 5(a) 

The last five trials shown in Table 8.9 assume that a 5% noise exists in the 

measurements. The increasing trial numbers, 5(b), 6,…, 10, again correspond to the 
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number of optimal sensors used for the measurements. The goal of the five trials was to 

determine the effect that increasing the number of sensors in the measurements has on the 

performance of the SDIM. Damage detection results obtained for these trials are 

summarized in Table D.58 and Table D.59 of APPENDIX D. The results of trials 5(b) 

and 6 are depicted in Figure 8.12. In Trial 5(b), five of the true damaged elements were 

identified, including all four interior beam elements and one perimeter beam element. The 

predicted damage severities for the interior beam elements (4, 10, 11 and 16) were mainly 

higher than the inflicted 10% damage, e.g. for element 16 the damage predicted was 

approximately 37%. The one correctly identified perimeter beam element 18 had a 

damage indicator of 20.3% instead of the imposed 20%. As shown in Figure 8.12, 

hillclimbing did not significantly improve the results obtained after 400 GA generations. 

There were false identification with damage indicators around 10% for elements 47 and 

59, while other falsely identified elements had smaller predicted damages. Including the 

sixth optimal sensor in Trial 6 did not improve the damage detection accuracy compared 

to Trial 5(b). On the contrary, only three of the true damaged elements were identified, 

including two interior and one exterior beam elements. 

Simulated 10% Damages in Elements 4, 10, 11 and 16, and 20% Damages in Elements 18 
and 28
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Figure 8.12. Damage detection results for case UBFRM IV, seeded IRR GA, trials 5(b) and 6 
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In trial 7 (7 sensors), element 28 (the exterior beam element that was not 

identified in trials 5(b) and 6) was included in the correctly located set of damaged 

elements, although the total number of correctly identified elements was four (Figure 

8.13). The predicted damage severities of the correctly identified elements were closer to 

the inflicted values than they were in trial 5. Other elements were falsely identified, such 

as element 55, with considerable damage indicator values. In trial 8, an improvement in 

damage localization and severity prediction was observed as shown in Figure 8.13. Five 

out of the six true damage elements were located with reasonable damage indicator 

values, including all four interior beam elements and one exterior beam element. 

Element 38 was identified as damaged, which is adjacent to element 28 (exterior true 

damage element), which in a sense correctly localizes the damage to the proper, first floor 

exterior joint. Trial 8 overall shows significantly better results than any of the previous 

trials. 
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Figure 8.13. Damage detection results for case UBFRM IV, seeded IRR GA, trials 7 and 8 

After performing 400 generations in trial 9, all six true damage elements were 

identified with damage indicator values reasonably close to the inflicted damages as 

depicted in Figure 8.14. After hillclimbing, however, element 28 was assigned a zero 
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damage indicator reducing the correctly located elements to five. The information 

contained in the measurements using nine sensors was not sufficient to uniquely locate all 

damage elements, which was expected. In the ten-sensor trial 10 only three elements were 

located correctly. Again element 38 was found to be damaged instead of element 28 at 

one of the first floor joints. 

Based on the trials performed, it is concluded that that increasing the number of 

sensors may not always facilitate damage detection, although typically both localization 

and quantification of damages becomes more accurate with increasing number of sensors. 

Sensor configurations that introduced sensors on the beams where damages were actually 

located provided more information than sensors residing far from the true damage 

locations. 
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Figure 8.14. Damage detection results for case UBFRM IV, seeded IRR GA, trials 9 and 10 

The results of trials investigated for the noisy measurements suggest that there is 

an optimal sensor configuration that is dependent on the damage scenario. In other words, 

different damage locations may impose a different set of optimum sensor locations. 

Intuitively for the damage case UBFRM IV, one could argue that sensors located on the 

damaged beams may contain the most information regarding damage detection. 
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To investigate this intuition, another trial called trial 11 was performed using six 

sensors all located on the first floor beams. Two sensors were placed on each beam and 

the same excitation location from previous trials was used. The excitation was located at 

node 61, while sensors were located at nodes 59, 60, 61, 62, 63 and 64 (Figure C.3 of 

APPENDIX C). Note that four out of these six sensor locations were also defined in the 

optimum configurations obtained from sensor optimization using 8, 9 and 10 sensors, 

which are listed in Table 8.7. 

Damage detection results obtained for trial 11 are presented in Figure 8.15 and 

summarized in Table D.60 of APPENDIX D. The intuition of placing the sensors proved 

to be correct since all six true damage elements were identified. The predicted severity 

values were close to the inflicted values of 10% for the interior and 20% for the exterior 

beam elements. After hillclimbing, only one falsely identified location remained at 

element 3, which is the column element, that frames into the same joint as element 4 and 

10. Even the false prediction was confined to the region of one of the correct joint 

damages. These results are superior to any of the trials previously conducted for noisy 

measurements suggesting that the damage configuration has significant effect on the 

optimal sensor placement. 

For certain types of civil engineering structures, such as frames, the designer may 

have a good understanding about possible damage locations before measurements are 

taken. For instance, joints on lower floors are more likely to be damaged than joints at 

higher elevations. In addition, if beams are weaker than columns, then the beams have a 

higher probability of being damaged than columns. The information measure defined in 

Section 2.5.1 was formulated with respect to all finite elements in the model. This 

measure, however, could be prioritized to include intuitive knowledge during 

optimization. The simplest prioritization technique would be to exclude damage 

information sensitivities for elements that are not likely to be damaged. An additional 

approach would be to use a weighted sum of the damage sensitivities that accounts for the 

importance of detecting damage in each element. The improvement of the sensor location 

optimization proposed in Section 2.5 is not investigated in this research and remains the 

 

target of future studies. 
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Simulated 10% Damages in Elements 4, 10, 11 and 16, and 20% Damages 
in Elements 18 and 28
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Figure 8.15. Damage detection results for case UBFRM IV, seeded IRR GA, trial 11 
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9 CASE STUDY RESULTS AND DISCUSSION, BENCHMARK 

STRUCTURE 

Objective evaluation of newly developed SDIMs by comparing their performance with 

existing methods is crucial in assessing their contribution to the field of damage 

detection. In Section 1.5 of Section 1 three modal-based SDIMs developed by Kim and 

Stubbs (2002) were reviewed. The damage index methods use the information contained 

in mode shape measurements on the damaged structure. Trials in this section are based on 

the theoretical model of a plate girder structure investigated by Kim and Stubbs (2002). 

The description of the finite element model and case studies were presented in 

Section 5.3 of this research dissertation. Results obtained using the damage index 

methods for the plate girder case studies were summarized in Table 5.6. This section 

provides an objective comparison of the results obtained by the SDIM developed in this 

research with the results obtained using the damage index methods. New accuracy 

measures were developed that account for both the location and severity estimation 

accuracy of SDIMs. 

9.1 Result Obtained for the Benchmark Case Studies 

In order to directly compare the results of the damage index methods (A, B and C) 

obtained by Kim and Stubbs (2002) in their research with the SDIM presented in this 

research, the damage indicators obtained by the GA and hillclimbing in this research must 

be postprocessed. In their studies, Kim and Stubbs (2002) used a statistical criterion to 

select possible damage locations based on the damage index of each element. In general, 

the identification of anomalous data from a set is called the outlier analysis in statistics 

(Barnett and Lewis, 1994). This procedure is based on the discordant outlier in a data set, 

which is different from the rest of the data. The discordancy of a candidate outlier is a 

measure, which can be compared with some objective threshold, enabling the statistical 

judgment of the outlier. In damage detection, the judgment is whether or not damage in 

 

the given element exists. 
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The identification of a set of damaged elements can be established using the 

assumption that damage indices have Gaussian distribution. This assumption enables the 

assertion that indices more than two standard deviations above the mean can be 

associated with possible damage locations. Using the notation, βj, for the damage indices, 

the normalized index for element j is defined. 

 2j
jZ

β

β β
σ

−
= −  (9.1) 

where βj is the damage index of element j, which is the ratio of the Young’s 

moduli of the undamaged and damaged element j, β  is the mean of all damage indices in 

the model, and σβ is the standard deviation. Based on the assumption that damaged 

elements have damage indices that lie more than two standard deviations above the 

average damage indices, potential damages are associated with non-negative normalized 

indices, Zj ≥ 0. The severity of damage using the damage indices is determined from the 

expression. 

 1 1,    1j j
j

α α
β

= − ≥ −  (9.2) 

This definition of damage severity, αj, is exactly the same as the damage indicator 

definition, s
jx , used in the present research except that there is a sign difference between 

the two. Another interpretation of the statistical damage classification is that a threshold 

for the damage indicator can be obtained. If the damage indicator of an element is above 

this threshold then the element is classified as damaged. The severity of damage in this 

case equals the damage indicator. Otherwise the element is not damaged. The threshold 

damage indicator is obtained using Eqs. (9.1) and (9.2) with the limit value of Zj = 0. 

 11
2

s
thx

βσ β
= −

+
 (9.3) 
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The set of GA parameters used in the plate girder trials are summarized in Table 

9.1. These parameters were selected on the basis of initial trials using different GA 

parameters and on the experience gained during previous trials. The number of significant 

digits for the plate girder trials was 6, which required 20 bits to represent a damage 

indicator with a precision of about 9.44⋅10-7 or 9.44⋅10-5%. 

Table 9.1. GA parameters for plate girder trials 

 Fixed Representation IRR, Seeded* IRR, Unseeded 

Population Size 200 200 200 

Tournament Size 6 4, 6 4, 6 

Initial Seed Yes Yes No 

Maximum Generations 200 200 200 

Stop if no Improvement 20 20 20 

Crossover Type Adaptive Equal Probability, 
Adaptive 

Equal Probability, 
Adaptive 

Crossover Sites 6 4, 6 4, 6 

Crossover Rates Primary: 0.9, 
Secondary: 1.0 

Primary: 0.8, 0.9, 
Secondary: 1.0 

Primary: 0.8, 0.9, 
Secondary: 1.0 

Mutation Type Uniform Uniform Uniform 

Mutation Rate 0.005 0.005 0.005 

Elitism Yes Yes Yes 

Hillclimbing Yes, Reduced Yes, Reduced Yes, Reduced 

Coding Gray Gray Gray 

* For the IRR the number of gene instances (expected number of damaged elements) was 15 and the gene 
locator (GL) length is 3 

Results obtained using the fixed representation GA and hillclimbing for noise free 

measurements are summarized in Table D.61 through Table D.64 of APPENDIX D. The 

results presented in these tables are the raw data without any statistical postprocessing. 

After 200 GA generations almost all elements were predicted as damaged in all trials. In 

most cases, however, the correct damaged elements had larger damage indicator values 

than the damage indicator values of the elements that were not damaged. The large 

 

number of variables (50) defined in the fixed representation caused the GA to converge 
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slowly to the global optimum. Using the best individual after 200 GA generations, the 

global optimum identifying the correct damaged elements with exact damage indicators 

was found after hillclimbing for all trials. 

Results for the fixed representation GA and hillclimbing using the statistical 

postprocessing are summarized in Table 9.2. To demonstrate the statistical selection 

criteria, the normalized damage indices for case study KSTSP II after 200 GA 

generations are plotted in Figure 9.1. First the damage indices, βj, were obtained from the 

damage indicators, s
jx , using Eq. (9.2). Then having computed the damage indices, the 

average (100.32%) and standard deviation (1.124%) of the damage indices were obtained. 

Using the statistical measures, the normalized damage indices were calculated for each 

element from Eq. (9.1) and plotted in Figure 9.1. Elements that had nonnegative 

normalized damage indices were considered as damaged. In Figure 9.1 two of these 

elements (element 1 and 9) can be identified. In this case, only element 9 was the correct 

damaged element and element 1 was a false identification. Substituting the mean and 

standard deviation of the damage indices into Eq. (9.3) determines the damage indicator 

threshold value, which was 2.51% for this particular example (Table 9.2). The threshold 

value for the damage indicator indicated that elements that have damage indicator values 

above the threshold were not considered as damaged. The threshold for case study 

KSTSP VIII for example was above 20%. This means that any damage below this level 

would not be detected. The statistical selection procedure assumes that the severity of 

damages have similar magnitudes otherwise low-level damages will not be detected. 

Table 9.2 shows that the fixed representation GA after 200 generations was able 

to identify the damaged elements in all cases except for case KSTSP X when element 36 

instead of element 39 was located based on the statistical criterion. After hillclimbing, the 

global optimum was found for all cases. Therefore the SDIM showed perfect agreement 

with the imposed damage scenarios. Based on the perfect agreement, the application of 

the statistical postprocessing can be omitted for results obtained after hillclimbing. 
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Table 9.2. Damage detection result for the plate girder case studies after discordancy test for fixed 
representation GA and reduced hillclimbing, noise free measurements 

Damage Case Fixed Representation after 200 GA 
Generations 

Fixed Representation after 
Hillclimbing 

 Threshold Location Severity Threshold Location Severity 

KSTSP I 2.07% 4 5.99% 3.26% 4 10.0% 

KSTSP II 2.51% 1, 9 4.22, 6.36% 3.26% 9 10.0% 

KSTSP III 2.12% 14 6.18% 3.26% 14 10.0% 

KSTSP IV 2.32% 15, 19 5.41, 4.05% 3.25% 19 10.0% 

KSTSP V 1.85% 20, 24 3.10, 3.09% 3.26% 24 10.0% 

KSTSP VI 0.17% 37, 39, 46 0.19, 0.37, 0.19% 0.30% 39 1.00% 

KSTSP VII 2.28% 36, 39 3.13, 6.18% 3.25% 39 10.0% 

KSTSP VIII 20.5% 39 45.58% 23.2% 39 50.0% 

KSTSP IX 2.99% 9, 34 6.11, 6.19% 4.62% 9, 34 10.0, 10.0% 

KSTSP X 2.87% 14, 36 3.67, 6.21% 4.62% 14, 39 10.0, 10.0% 
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Figure 9.1. Normalized damage indices for case study KSTSP II, fixed representation GA after 20

generations 
0 

Table D.65 through Table D.68 of APPENDIX D summarize the damage 

detection results for the plate girder studies in case of noise free measurements without 
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statistical postprocessing using the seeded IRR GA and hillclimbing. Similarly, results for 

the unseeded IRR GA and hillclimbing are summarized in Table D.69 through Table 

D.72 of APPENDIX D. Both IRR GAs converged to solutions that were very good 

representations of the imposed damage cases after 200 GA generations. The seeded IRR 

GA found the global optimum 5 times out of the 10 damage cases. Therefore hillclimbing 

could not improve these results. Since all IRR GA trials provided a very good solution, 

only a small number of hillclimbing iterations were necessary to obtain the global 

optimum in the other cases. 

Results obtained after applying the statistical postprocessing are summarized in 

Table 9.3 and Table 9.4 for the IRR GA with and without initial seeding, respectively. 

The tables reinforce the superior performance provided by IRR GAs in damage detection 

over the fixed representation. The global optimum was always found either by the GA or 

after hillclimbing. In any case the statistical postprocessing could be omitted since no 

false damage identifications were obtained in the solutions. 

Table 9.3. Damage detection result for the plate girder case studies after discordancy test for seeded IRR 
GA and reduced hillclimbing, noise free measurements 

Damage Case Seeded IRR GA after 200 or less GA 
Generations 

Seeded IRR GA after Hillclimbing 

 Threshold Location Severity Threshold Location Severity 

KSTSP I 3.26% 4 10.0% -* - - 

KSTSP II 3.26% 9 10.0% 3.26% 9 10.0% 

KSTSP III 3.26% 14 10.0% - - - 

KSTSP IV 3.05% 19 9.33% 3.26% 19 10.0% 

KSTSP V 3.26% 24 10.0% - - - 

KSTSP VI 0.27% 39 0.89% 0.30% 39 1.00% 

KSTSP VII 3.26% 39 10.0% - - - 

KSTSP VIII 23.2% 39 50.0% 23.2% 39 50.0% 

KSTSP IX 4.62% 9, 34 10.0, 10.0% - - - 

KSTSP X 4.62% 14, 39 10.0, 10.0% 4.62% 14, 39 10.0, 10.0% 

* Hillclimbing could not improve the results 
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Table 9.4. Damage detection result for the plate girder case studies after discordancy test for unseeded IRR 
GA and reduced hillclimbing, noise free measurements 

Damage Case Unseeded IRR GA after 200 or less GA 
Generations 

Unseeded IRR GA after Hillclimbing 

 Threshold Location Severity Threshold Location Severity 

KSTSP I 3.26% 4 10.0% -* - - 

KSTSP II 3.18% 9 9.71% 3.26% 9 10.0% 

KSTSP III 3.13% 14 9.48% 3.26% 14 10.0% 

KSTSP IV 2.85% 19 8.69% 3.26% 19 10.0% 

KSTSP V 3.25% 24 9.98% 3.26% 24 10.0% 

KSTSP VI 0.29% 39 0.96% 0.30% 39 1.00% 

KSTSP VII 3.09% 39 9.50% 3.25% 39 10.0% 

KSTSP VIII 23.2 5 39 50.0% 23.2% 39 50.0% 

KSTSP IX 4.31% 9, 34 9.84, 8.69% 4.62% 9, 34 10.0, 10.0% 

KSTSP X 4.60% 14, 39 10.0, 9.91% 4.62% 14, 39 10.0, 10.0% 

* Hillclimbing could not improve the results 

9.2 Accuracy Measures of SDIMs 

Although the damage detection error measures defined by Kim and Stubbs (2002) 

are capable of measuring the accuracy of SDIMs these measures were not adapted in this 

research. The main reason that these measures were not used were that the measures were 

not bounded (ranged from zero to infinity) or that they could only account for the location 

or severity of predicted damages, but not both. In this research, new error measures are 

introduced that are normalized between zero and unity and that account for both the 

location and severity of damage predictions. 

The proposed error measures are based on geometrical properties of vectors using 

Euclidean geometry. Consider two vectors, the vector of true damage indicators, 

, and the vector of predicted damage indicators, . The vector 

difference of the two damage indicator vect

. 

ens
true ∈x \

ens
error ∈x \

ens
pred ∈x \

ors is the damage indicator error vector, 
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  (9.4) 

These vectors are depicted in Figure 9.2. The first measure called the Euclidean 

normalized error (ene) is simply the norm or length of the error vector normalized to the 

worst possible damage detection result in which all damage indicators have 100% error. 

The length of the worst damage detection result is 

s s s
error true pred= −x x x

en  since all entries in the damage 

indicator error vector are unity. 

 
( ),

,   0 1

Ts s ss s
error error errorerror error

e e e

ene ene
n n n

〈 〉
= = = ≤

x x xx x
≤  (9.5) 

where 〈,〉 is an inner product of vectors (for Euclidean geometry the inner product 

is equivalent to the dot product of vectors). If this measure is zero then the predicted 

damage indicators are exactly equal to the true damage indicators and both the locations 

and severities of damages are correctly identified without any false identification. A unit 

value for this measure would indicate that all of the predicted damage indicators are in 

100% error. 

The next geometric measure is called the true projection error (tpe), which is also 

normalized to the worst possible damage detection scenario. 

 
( )1 ,    0 1

Ts s
error true

s
truee

tpe tpe
n

= ≤
x x

x
≤  (9.6) 

The geometrical interpretation of the true projection error can be seen in Figure 

9.2. This measure represents the amount of error that occurred with respect to the true 

damaged elements (projection of the error vector on the true damage vector). If all the 

true damages are identified with the correct severities then the measure is zero (no error), 

regardless of the number and severity of false identifications. A value of unity indicates 

that all elements were damaged, but none of them was identified. 
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Figure 9.2. Geometrical definition of error measures 

Consequently, the error that relates to the falsely identified elements can be 

obtained from the Pythagorean relationship of ene and tpe and is called the orthogonal 

projection error (ope) (Figure 9.2). 

 2 2 ,    0 1ope ene tpe ope= − ≤ ≤  (9.7) 

A zero value of this measure indicates that there are no false identifications and 

all, if any, errors are in the identification of the true damaged elements. This measure 

with a unit magnitude is interpreted as all of the non-damaged elements are falsely 

identified with 100% error. 

The last geometrical measure defined is the cosine of the angle between the true 

and predicted damage indicator vectors. This measure is called the trigonometric angle 

error (tae). 

 
( )

cos ,    0 1
Ts s

true pred

s s
true pred

tae taeθ= = ≤
x x

x x
≤  (9.8) 

In general the tae is bounded between negative unity, and unity but in this case 

since all entries of the damage indicator vectors are between zero and unity the angle 

between the vectors is bounded by zero and 90°. Therefore the tae is bounded by zero and 
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unity. A value of one indicates that only true damaged elements were identified and all 

predicted severities can be obtained from the true damage values by multiplying them 

with the same scalar (the true and predicted damage vectors are linearly dependent). 

When this measure becomes zero than none of the true damages were identified. 

Based on the damage detection results provided in Table 5.6, the accuracy 

measures for the damage index A, B and C algorithms are summarized in Table 9.5 and 

Table 9.6. In these tables, all of the measures were applied to each individual case study 

and then the average value of each measure was calculated. The first measure considered 

was the Euclidean normalized error (ene), which clearly shows the superiority of the 

damage index C algorithm over the other two algorithms. Another way to interpret the 

geometrical accuracy measures is to multiply them with the normalizing worst possible 

damage detection results and compare the absolute error values. The average Euclidean 

absolute errors are 22.43%, 11.14% and 1.16% for the damage index A, B and C 

procedures, respectively, which can be used as indicators of an overall error. For 

example, the damage index A method resulted in a 22.34% absolute error. The next two 

measures, true projection error (tpe) and orthogonal projection error (ope), express the 

vector components of ene related to the true damaged elements and the non-damaged 

elements. The tpe measures for the damage index A and B methods are similar 9.37% and 

11.14%, and are indication of the absolute error in predicting the damage severities for 

the true damaged elements. The absolute tpe measure is only 0.99% for the damage index 

C method. Similar ene and tpe values, such as for damage index B and C algorithms, 

indicate that most of the errors resulted in the vector direction of the true damaged 

elements. In other words, there were very little or no false damage identifications. 

Consequently, similar ene and ope values (damage index A method 22.43% and 18.94%, 

respectively) state that most errors occurred in the vector direction of non-damaged 

elements suggesting that false identifications happened frequently. 

The trigonometric angle error (tae) is an indicator of the linear dependence of the 

predicted and true damage vectors (note that tae is not a normalized value and therefore 

there is not an average absolute value reported in the tables for this measure). Since the 

 

damage index A method frequently identified false damaged elements the average tae 
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value of this procedure is only 0.64. For the other two damage index SDIMs the average 

tae values show an almost perfect correlation of the predicted and true damage vectors 

(only true damaged elements were predicted as damaged). 

The proposed measures well reflect the performance of SDIMs that can be 

inferred from the results in Table 5.6 intuitively. For instance, damage index A and B 

methods consistently over and underestimated the true damages, but with about the same 

error. This is reflected in similar tpe values for these two methods. Furthermore, damage 

index methods B and C only identified true damage locations, which is expressed in 

almost unit tae values and very small ope values. The damage index A procedure falsely 

identified several elements as damaged and therefore its ope measure is large compared 

to the other two methods. It is also clear that the measures can capture both location and 

severity type errors in an efficient way. 

Table 9.5. Damage detection accuracy measures for Damage Index A and B methods, noise free 
measurement cases 

Damage Case Damage Index A Damage Index B 

 ene tpe ope tae ene tpe ope tae 

KSTSP I 0.04170 0.01259 0.03975 0.55800 0.00877 0.00877 0.00000 1.00000 

KSTSP II 0.03597 0.01230 0.03380 0.61617 0.01230 0.01230 0.00000 1.00000 

KSTSP III 0.04593 0.01174 0.04441 0.50353 0.01216 0.01216 0.00000 1.00000 

KSTSP IV 0.02638 0.01146 0.02376 0.73294 0.01301 0.01301 0.00000 1.00000 

KSTSP V 0.02966 0.00806 0.02855 0.61395 0.01344 0.01344 0.00000 1.00000 

KSTSP VI 0.02023 0.00141 0.02018 0.00000 0.00127 0.00127 0.00000 1.00000 

KSTSP VII 0.04274 0.01202 0.04101 0.53782 0.01202 0.01202 0.00000 1.00000 

KSTSP VIII 0.03348 0.03210 0.00950 0.99576 0.04978 0.04978 0.00000 1.00000 

KSTSP IX 0.01921 0.01580 0.01092 0.95650 0.01760 0.01760 0.00310 0.99655 

KSTSP X 0.02199 0.01510 0.01598 0.91008 0.01720 0.01720 0.00060 1.00000 

Average: 0.03173 0.01326 0.02679 0.64247 0.01576 0.01576 0.00002 0.99965 

Average 
Absolute: 

22.43% 9.37% 18.94% - 11.14% 11.14% 0.01% - 
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Table 9.6. Damage detection accuracy measures for Damage Index C method, noise free measurement 
cases 

Damage Case Damage Index C 

 ene tpe ope tae 

KSTSP I 0.00269 0.00269 0.00000 1.00000 

KSTSP II 0.00099 0.00099 0.00000 1.00000 

KSTSP III 0.00085 0.00085 0.00000 1.00000 

KSTSP IV 0.00071 0.00071 0.00000 1.00000 

KSTSP V 0.00099 0.00099 0.00000 1.00000 

KSTSP VI 0.00000 0.00000 0.00000 1.00000 

KSTSP VII 0.00057 0.00057 0.00000 1.00000 

KSTSP VIII 0.00509 0.00509 0.00000 1.00000 

KSTSP IX 0.00323 0.00090 0.00310 0.98708 

KSTSP X 0.00134 0.00120 0.00060 0.99960 

Average: 0.00164 0.00140 0.00037 0.99867 

Average 
Absolute: 

1.16% 0.99% 0.26% - 

 

Accuracy measures calculated for results obtained for the plate girder problem 

using the SDIM developed using GAs are reported in Table 9.7 through Table 9.9 for 

noise free measurements. Since the global optimum was found in all cases after 

hillclimbing, all measures show 100% accuracy of the methods, i.e. zero values of ene, 

tpe and ope and unit magnitude of tae. As a result all GA procedures combined with 

hillclimbing perform better than any of the damage index procedures for the case of noise 

free measurements. 

Variations in performance of the different GA representations can be better 

identified using the accuracy measure values for solutions before hillclimbing. The 

average absolute value of ene for the fixed representation GA was 5.85%, which is better 

than the corresponding values of damage index A and B methods, but worse than that of 

damage index C. In general, the prediction of damage severities using the fixed 

representation GA were more representative of the true damage cases than those obtained 

 

using damage index A and B. The similar average value of ene and tpe (5.02%) also is an 
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indication that errors primarily occurred in predicting the correct severity of the true 

damages. The 2.42% average absolute ope value shows that the fixed representation GA 

resulted in some false identifications and in this sense was less effective than damage 

index B and C methods although the fixed representation performed much better than 

damage index A. Due to some false damage identifications, the tae measure of the fixed 

representation was on average worse than those of damage index B and C, but still better 

than that of damage index A. The measures reveal the lack of robustness of fixed 

representation GAs when the problem domain is relatively large. 

Table 9.7. Damage detection accuracy measures for fixed representation GA, noise free measurement cases 

Damage Case Fixed Representation 

 After 200 GA Generations After Hillclimbing 

 ene tpe ope tae ene tpe ope tae 

KSTSP I 0.00567 0.00567 0.00000 1.00000 0.00000 0.00000 0.00000 1.00000 

KSTSP II 0.00788 0.00514 0.00597 0.83336 0.00000 0.00000 0.00000 1.00000 

KSTSP III 0.00540 0.00540 0.00000 1.00000 0.00000 0.00000 0.00000 1.00000 

KSTSP IV 0.01137 0.00842 0.00765 0.59935 0.00000 0.00000 0.00000 1.00000 

KSTSP V 0.01156 0.00977 0.00619 0.57712 0.00000 0.00000 0.00000 1.00000 

KSTSP VI 0.00039 1.00000 

0.00540 0.00000 

0.00625 0.00000 

0.00770 0.00000 

0.01633 0.00000 

0.00710 0.00000 

0.00097 0.00088 0.80772 0.00000 0.00000 0.00000 

KSTSP VII 0.00698 0.00443 0.89220 0.00001 0.00001 1.00000 

KSTSP VIII 0.00625 0.00000 1.00000 0.00000 0.00000 1.00000 

KSTSP IX 0.00770 0.00007 0.99998 0.00000 0.00000 1.00000 

KSTSP X 0.01890 0.00952 0.35995 0.00000 0.00000 1.00000 

Average: 0.00827 0.00342 0.80697 0.00000 0.00000 1.00000 

Average 
Absolute: 

5.85% 5.02% 0.00% 2.42% - 0.00% 0.00% - 

 

Performance measures calculated based on the results obtained using the seeded 

and unseeded IRR GAs are presented in T  and T , respectively. The 

average absolute accuracy measures for the IRR GA with seeded initial population after 

200 or fewer generations show the outstanding performance of the SDIM developed. Two 

able 9.8 able 9.9
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of the measures (ope, tae) show no errors in damage detection (no false identifications 

and linearly dependent true and predicted damage vectors) and the other two errors (ene, 

tpe) are very small in average absolute value 0.08%. The small measures of ene and tpe 

are also an indication of the high precision attainable in damage severity prediction using 

the IRR GA. Overall, the IRR GA with a seeded initial population performed better than 

any of the damage index methods in every aspect for the plate girder test cases 

investigated in this research. 

Table 9.8. Damage detection accuracy measures for seeded implicit redundant representation (IRR) GA, 
noise free measurement cases 

Damage Case Seeded Implicit Redundant Representation 

 After 200 or less GA Generations After Hillclimbing 

 ene tpe ope tae ene tpe ope tae 

KSTSP I 0.00000 0.00000 0.00000 1.00000 -* - - - 

KSTSP II 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 

0.00000 

KSTSP VI 0.00016 1.00000 0.00000 1.00000 

- 

1.00000 

0.00000 

KSTSP X 0.00000 0.00000 0.00000 0.00000 

Average: 0.00000 

1.00000 

KSTSP III 0.00000 0.00000 1.00000 - - - - 

KSTSP IV 0.00095 0.00095 0.00000 1.00000 0.00000 0.00000 0.00000 1.00000 

KSTSP V 0.00000 0.00000 0.00000 1.00000 - - - - 

0.00016 0.00000 0.00000 0.00000 

KSTSP VII 0.00000 0.00000 0.00000 1.00000 - - - 

KSTSP VIII 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

KSTSP IX 0.00000 0.00000 1.00000 - - - - 

0.00000 1.00000 0.00000 1.00000 

0.00011 0.00011 0.00000 1.00000 0.00000 0.00000 1.00000 

Average 
Absolute: 

0.08% 0.08% 0.00% - 0.00% 0.00% 0.00% - 

* Hillclimbing could not improve the results 

The performance measures in T  calculated based on the results obtained 

by the unseeded IRR GA after 200 or less generations were slightly worse than those of 

the IRR GA with initial seed and on average were better than any of the damage index 

methods investigated. Again errors are confined to severity estimates of the true damaged 

able 9.9
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elements without any false identification. The linear dependence of the predicted and true 

damage vectors were not perfect (average tae = 0.99981). The lack of perfect linear 

dependence resulted in a very small average absolute error, ope = 0.09%, projected on the 

non-damaged elements, although most errors were related to the severity estimates for the 

true damaged elements (ene = 0.41%, tpe = 0.38%). 

Table 9.9. Damage detection accuracy measures for unseeded implicit redundant representation (IRR) GA, 
noise free measurement cases 

Damage Case Seeded Implicit Redundant Representation 

 After 200 or less GA Generations After Hillclimbing 

 ene tpe ope ope tae ene tpe tae 

KSTSP I 0.00000 0.00000 0.00000 1.00000 -* - - - 

KSTSP II 0.00042 0.00042 0.00000 0.00000 

0.00074 0.00000 1.00000 

0.00185 1.00000 0.00000 

KSTSP V 0.00000 1.00000 0.00000 0.00000 

0.00000 0.00000 0.00000 1.00000 

0.00071 1.00000 

0.00000 

0.00147 

0.00000 

0.00012 

1.00000 0.00000 0.00000 1.00000 

KSTSP III 0.00074 0.00000 1.00000 0.00000 0.00000 

KSTSP IV 0.00185 0.00000 0.00000 0.00000 1.00000 

0.00003 0.00003 0.00000 1.00000 

KSTSP VI 0.00005 0.00005 0.00000 1.00000 

KSTSP VII 0.00071 0.00000 1.00000 0.00000 0.00000 0.00000 

KSTSP VIII 0.00003 0.00003 0.00000 1.00000 0.00000 0.00000 1.00000 

KSTSP IX 0.00186 0.00114 0.99811 0.00000 0.00000 0.00000 1.00000 

KSTSP X 0.00013 0.00009 0.00009 0.99999 0.00000 0.00000 1.00000 

Average: 0.00058 0.00054 0.99981 0.00000 0.00000 0.00000 1.00000 

0.41% 0.38% 0.09% - 0.00% 0.00% - Average 
Absolute: 

0.00% 

* Hillclimbing could not improve the results 

To investigate the accuracy measures of the proposed SDIM, the plate girder case 

studies were repeated using the seeded IRR GA and adding 5% Gaussian random noise to 

the FRF measurements. The damage detection results obtained without statistical 

postprocessing are summarized in T  through T  of APPENDIX D. The 

results obtained after applying the statistical criterion to identify damaged elements are 

listed in Table 9.10. From the table it is clear that only true damaged elements were 

able D.73 able D.76
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identified in all cases except for case KSTSP VI, in which the correct damaged 

element 39 was not identified and instead three non-damaged elements were falsely 

picked. For this case, the imposed damage at element 39 was 1%, which caused very 

small changes in FRF measurements that was comparable to changes introduced by the 

added noise. For this low-severity level damage case, the SDIM failed to locate and 

quantify the true damage. For the other case studies, however, both the locations and 

severities of damages were identified with reasonable accuracy as shown in Table 9.10. 

Table 9.10. Damage detection result for the plate girder case studies after discordancy test for seeded IRR 
GA and reduced hillclimbing, 5% measurement noise included 

Damage Case Seeded IRR GA after 200 or less GA 
Generations 

Seeded IRR GA after Hillclimbing 

 Threshold Location Severity Threshold Location Severity 

KSTSP I 3.00% 4 9.12% 2.99% 4 9.09% 

KSTSP II 3.09% 9 9.27% 3.24% 9 9.92% 

KSTSP III 2.69% 14 8.12% 2.65% 14 7.99% 

19 8.79% 

3.30% 

1, 25, 46 

6.25% 

22.6% 

9, 34 

5.72, 8.60% 

KSTSP IV 2.92% 3.19% 19 9.58% 

KSTSP V 24 10.0% 3.30% 24 10.0% 

KSTSP VI 0.39% 1, 25, 46 0.42, 0.85, 
0.60% 

0.36% 0.39, 0.71, 
0.64% 

KSTSP VII 2.35% 39 2.35% 39 6.22% 

KSTSP VIII 39 48.9% 22.3% 39 48.6% 

KSTSP IX 4.65% 9, 34 10.2, 9.83% 4.64% 10.1, 9.82% 

KSTSP X 3.66% 14, 39 3.93% 14, 39 7.94, 8.62% 

 

The accuracy measures calculated for the results obtained using the seeded IRR 

GA in case of 5% noise in measurements are reported in Table 9.11. The average 

absolute ene of damage detection after 200 generations was 1.57%, which shows that 

errors in the severity estimation were small. The 1.45% tpe indicates that most errors 

occurred in the severity estimation of the true damaged elements and only a small portion 

of the total error occurred in non-damaged elements (average absolute ope = 0.34%). The 

linear dependence of the true and predicted damage indicator vectors was 0.9 on average, 
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which includes the zero tae value of case KSTSP VI where the true damage element was 

not identified. Without this false identification case the average tae is very close to unity. 

Since the severity of false predictions for case KSTSP VI were small (the largest false 

reading was 0.85% in Table 9.10) the ene, tpe and ope measures were not significantly 

affected by the results for this case. After hillclimbing, all measures showed 

improvements and the average absolute error, ene, was only 1.28%. 

Table 9.11. Damage detection accuracy measures for seeded implicit redundant representation (IRR) GA, 
5% measurement noise included 

Damage Case Seeded Implicit Redundant Representation 

 After 200 or less GA Generations After Hillclimbing 

 ene tpe ope tpe tae ene ope tae 

0.00124 0.00124 0.00000 1.00000 0.00129 0.00000 1.00000 

0.00103 0.00103 0.00000 1.00000 0.00012 0.00000 1.00000 

0.00266 0.00266 0.00000 1.00000 0.00284 0.00000 1.00000 

0.00171 0.00171 0.00000 1.00000 0.00059 0.00000 1.00000 

0.00001 0.00001 0.00000 1.00000 0.00001 0.00000 1.00000 

0.00213 0.00141 0.00159 0.00000 0.00141 0.00147 0.00000 

0.00531 0.00531 0.00000 1.00000 0.00534 0.00000 1.00000 

0.00149 0.00149 0.00000 1.00000 0.00200 0.00200 0.00000 1.00000 

KSTSP IX 0.00032 0.00001 0.00032 0.99987 0.00030 0.00029 0.99990 

KSTSP X 0.00637 0.00568 0.00288 0.98032 0.00351 0.00344 0.00068 0.99915 

Average: 0.00223 0.00206 0.00048 0.89802 0.00180 0.00171 0.00024 

Average 
Absolute: 

1.57% 1.45% 0.34% - 1.28% 1.21% 0.17% - 

KSTSP I 0.00129 

KSTSP II 0.00012 

KSTSP III 0.00284 

KSTSP IV 0.00059 

KSTSP V 0.00001 

KSTSP VI 0.00204 

KSTSP VII 0.00534 

KSTSP VIII 

0.00008 

0.89990 

 

The measures obtained for the noisy measurement cases using the seeded IRR GA 

are comparable with the measures obtained for damage index C method without noise 

(Table 9.6), and much better than those obtained for damage index A and B methods 

(except the tae measure for damage index B due to the failure in identifying the true 

damaged element for case study KSTSP VI). One of the current limitations of the IRR 
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GA SDIM is computational time. The average run for the plate girder studies took 6-7 

hours. 

As a conclusion to this section, the proposed accuracy measures for damage 

detection are summarized in T  for the different SDIMs. In this table the average 

absolute values are used for comparison. For noise free measurements, it is clear that GAs 

combined with hillclimbing have the best performance measures. The fixed 

representation GA, however, is less effective in localizing and quantifying damages than 

the IRR GA. In this research, the seeded IRR GA SDIM was superior over any of the 

other SDIMs since it provides high confidence in damage detection when noise in 

measurements is negligible. 

able 9.12

Damage Detection Algorithm 

Table 9.12. Comparison of accuracy measures for different types of damage detection algorithms 

Average Absolute Damage Detection Accuracy Measures 

 ene tpe ope tae 

22.43% 9.37% 18.94% 0.64247 

Damage Index B 11.14% 

0.26% 

0.08% 0.08% 1.00000 

Seeded IRR GA after 
Hillclimbing 

0.00% 1.00000 

Unseeded IRR GA after 
Hillclimbing 

1.45% 

11.14% 0.01% 0.99965 

Damage Index C 1.16% 0.99% 0.99867 

Fixed Representation GA 
before Hillclimbing 

5.85% 5.02% 2.42% 0.80697 

Fixed Representation GA after 
Hillclimbing 

0.00% 0.00% 0.00% 1.00000 

Seeded IRR GA before 
Hillclimbing 

0.00% 

0.00% 0.00% 

Unseeded IRR GA before 
Hillclimbing 

0.41% 0.38% 0.00012% 0.99981 

0.00% 0.00% 0.00% 1.00000 

Seeded IRR GA before 
Hillclimbing, 5% noise 

1.57% 0.34% 0.89802 

Seeded IRR GA after 
Hillclimbing, 5% noise 

1.28% 1.21% 0.17% 

Damage Index A 

0.89990 
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Kim and Stubbs (1995) investigated the effect of uncertainties on damage 

detection using the damage index A method. In their study, three types of uncertainties 

were investigated; 1. Uncertainties of damage detection model (shear building, Bernoulli 

or Timoshenko elements, 3-dimensional model); 2. Uncertainty in stiffness parameters of 

elements; and 3. Uncertainty in mode shape measurements. Their conclusion was that the 

first type of error has significant influence on the severity estimation of the true damaged 

elements and on the number of falsely identified elements. Uncertainty in stiffness 

parameters had relatively small influence on damage detection. The uncertainties in mode 

shape measurements had the most influence on damage detection especially on 

identifying true damaged elements and falsely predicting undamaged elements. 

Other studies found in literature have identified the current limitations of the 

damage index B method using experimental data and in noisy environments (Worden et 

al. 1999, Ho and Ewins 1999). Worden et al. (1999) classified the damage index B 

method as a level two SDIM, i.e. it gives the location of probable damages. The studies 

showed that the method could locate damages to nearest sensor, which implies that spatial 

distribution of sensors have significant influence on the accuracy of damage detection. 

The numerical studies used by Ho and Ewins (1999) lead to the conclusion that the 

damage index B method is sensitive to measurements noise, spatial resolution of the 

mode shapes, and the location of the damage. Estimates for the acceptable noise level for 

successful damage detection were also presented for the case studies, which limited noise 

to 0.15% and 0.19% for a 99% and 68% chance of successful damage location, 

respectively. A spatial distribution density of measurement locations was also established 

for the case studies. The damage index showed a large drop when 33% of all possible 

mode shape data were used in the identification process. This again implies that a large 

number of sensor locations must be available for damage detection in order to apply 

damage index A, B and C methods. References on the evaluation of the performance of 

the damage index C method were not found in the literature (Kim and Stubbs 2002). 

The proposed SDIM using GAs provides an alternative to the damage index 

methods by requiring only a few number of measurement locations. In this study for the 

GAs it was assumed that measurements were taken at two out of the 50 possible sensor 
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locations, while the damage index procedures assumed that all 50 mode shape 

measurements are available. Another important observation is that statistical 

postprocessing of the results is not required by the present algorithm therefore providing 

the chance to detect damages with dissimilar severities. 
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10 CONCLUSIONS 

To avoid the loss of crucial measurement information, the measured FRFs are 

directly used in the objective function of optimization. Reduction or expansion of discrete 

measurement information on a continuous domain may result in the loss of useful 

information or may lead to undesirable false data signaling unrealistic identification of 

undamaged elements. Recovery of characteristic properties of a continuous system from 

noisy, discrete and often limited information results in an ill-posed problem for which a 

unique solution often does not exist. In optimization terms, the objective has multiple 

local optima suggesting that traditional local search algorithms may result in solutions 

that are not representations of the actual damage scenario. To overcome the difficulties 

associated with uniqueness of solutions GAs have been chosen as the primary tool to 

solve the optimization problem. 

In this research, two types of GAs were considered and were tested on simulated 

damage cases that included cantilever, two-span continuous beam and planar frame 

structures. The first implementation investigated uses a fixed representation in which 

each parameter is encoded to form a chromosome providing a complete solution to the 

damage detection problem. The fixed representation GA was able to evolve solutions that 

were representation of the true damage cases as long as the search domain was reasonably 

small. The use of fixed representation GA was limited by the size of the search domain 

and in all trials the initial population had to be seeded with a zero damage individual in 

This research addressed the problem of structural damage detection using the inherent 

information contained in vibration signatures for specific type of damages. The SDIM 

developed adjusts the stiffness properties of the undamaged linear discrete analytical 

model by minimizing the difference between the measured and analytically computed 

FRFs. The problem of damage detection is therefore stated as an unconstrained 

optimization problem using continuous variables representing the stiffness reductions of 

elements. A non-zero value of a damage indicator for a particular element signals the 

occurrence of damage and its magnitude expresses the severity of that damage. 
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order to obtain a solution representing true damage identification. Because the fixed 

representation GA works with a complete solution of the optimization problem the local 

hillclimbing algorithm implemented improved the solution obtained by the fixed GA 

significantly. As the complexity of damage detection increased the fixed representation 

GA failed to correctly locate damaged elements due to the ill-posed nature of damage 

detection. The accuracy of damage detection using the fixed representation GA also 

degraded when noise was included in measurements. 

To circumvent the difficulties associated with fixed representation GAs, an 

implicit redundant representation (IRR) was adapted for damage detection. Consideration 

of the unstructured nature of damage detection problem, i.e. the number of damaged 

elements, although not know, is much less than the number of finite elements in the 

model, makes the IRR gene encoding extremely efficient. In a typical IRR GA the 

number of damage indicators is not explicitly encoded in the representation but changes 

as the individuals converge to a steady state population. The IRR GA could determine the 

number of damaged elements, while minimizing the error between the measured and 

analytical FRF information. The adaptive characteristics of IRR GA facilitated the 

efficient reduction of search space without making subjective assumptions about 

candidate damaged elements. In a noise free environment, the solutions found were 

global or near-global optimum and the IRR GA was considerably less sensitive to 

measurement noise compared to the fixed representation GA. As consequence, on 

average the IRR GA converged faster than the fixed representation GA and its ability to 

find the true damaged elements was much more stable and unique. Even for large 

problems, the IRR GA was capable of identifying the true damaged elements due to 

encoding only a small subset of all possible finite elements. Seeding the initial population 

with the zero damage individual was not necessary to find the solution for IRR GA, but 

was advantageous in certain situations. 

Objective comparison between the SDIM developed and other modal-based 

benchmark procedures was presented in Section 9. The proposed FRF-based SDIM 

performed considerably better than the damage index methods developed by Kim and 

Stubbs (2002) on the plate girder benchmark case study. The benefit of having a new set 
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of accuracy measures is that these measures account for both location and severity 

accuracies based on geometrical considerations. The measures objectively represent the 

errors of SDIMs in relation to the true damaged elements and false damage 

identifications. All measures are bounded between zero and unity and provide a clear 

quantitative and qualitative interpretation of SDIM accuracy. 

The FRF-based SDIM developed in this research is distinct from other methods in 

several aspects. The measured FRF data is used directly in the SDIM without 

preprocessing the measured information. Damage can be localized and quantified using 

only a small subset of the possible measurement locations. Unlike other optimization 

techniques, the IRR GA is able to evolve solutions that adapt the unstructured nature of 

damage detection. The SDIM developed is robust and is able to locate and quantify 

multiple damages in relatively large-scale structures. Reduced sensitivity of the proposed 

SDIM to noise provides high confidence in damage detection for measurements 

containing noise at a practical level. The SDIM developed requires linear responses of 

structures after damage has occurred. In time critical situations the applicability of the 

presented SDIM is limited due to its iterative, and therefore time consuming nature. 

This research presents a methodology for optimizing excitation and sensor layouts 

used for detecting damage in structures by applying multi-objective genetic algorithms. 

The contradicting objectives of sensor optimization are to reduce the number of sensors 

required while trying to maximize the amount and quality of information contained in the 

vibration signatures. The sensor layout design is formulated as a multiobjective 

combinatorial optimization problem. The solution to the multi objective optimization 

problem is a set of optimal sensor layout designs, which define tradeoffs between the two 

objectives. An information measure was designed particularly for the damage detection 

technique proposed, which quantitatively characterizes each frequency response function 

measurement on the basis of their sensitivities for damage detection. To solve the 

multiobjective optimization problem a nondominated sorting genetic algorithm was 

implemented and a finite element model of the structure was used. In addition, two 

different gene representations were investigated to determine their impact on obtaining 

the Pareto front. The fixed representation encoded all design variables representing a 
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complete solution in a string, while the IRR allowed the number of encoded design 

variables defining a complete solution to change during optimization. Sensor layout 

results provided by the fixed and IRR GAs resulted in the same prioritization of sensor 

locations, although the fixed representation GA converged faster and the distribution of 

individuals was more uniform in the Pareto front. Damage detection trials were repeated 

for the case study simulations to determine the effect of using the optimum sensor layout 

designs evolved on the performance of the damage detection method. The results showed 

that the quality of the measurement information increased when the optimal sensor 

locations were used. For all trials, the ability of the damage detection method to uniquely 

identify damaged elements was enhanced using the optimal sensor layout designs, even in 

noisy measurement environments. Significant improvement in the robustness of the 

damage detection method was found when the optimal sensor layout designs were used 

for detecting damage in larger frame structures having multiple damaged elements. 

10.1 Future Recommendations 

.2.4

The SDIM developed in this research updates stiffness parameters of the analytical model 

iteratively and therefore requires a significant amount of computation time. To enhance 

convergence speed, alternative procedures for the calculation of FRFs could be 

considered. Several possibilities to reduce computation time include sub-structuring the 

finite element model, approximate calculation of FRFs using sensitivities, and advanced 

modal analysis. Parallel implementation of GAs on multiprocessor systems would also be 

an alternative since GAs are relatively easy to parallelize due to the use of a set of 

solutions. Considering advanced biological phenomena (variable population size, niching, 

competing populations, aging, etc.) in genetic operators could further increase 

convergence speed. Combination of local search techniques with GAs at various stages of 

the optimization may also increase convergence speed. Experimental verification of the 

proposed algorithms is desired in future studies. 

Results obtained in Section 8  indicate that knowledge about the possible 

damage locations should be exploited in the information measure defined for different 

sensor locations. One possible improvement is to only include elements that are likely to 
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be damaged in the definition of the information measure. Alternatively, weights could be 

used to emphasize the relative importance of particular elements for damage detection. 

For instance, if the designer is most interested in locating damages in beams of a multi-

story frame, then the information measure can be modified to only include beam elements 

with higher weights assigned to beam elements with lower story number. Taking into 

consideration the loss of sensors in the sensor optimization problem provides further 

improvements in selecting the optimal set of sensors. The goal in this case is to ensure 

that the amount of diagnostic information is sufficient for damage detection even if a 

certain number of sensors are lost or give false measurements, which may introduce noise 

bias. 

This research shows that GAs, in particular IRR GAs, have the ability to adapt 

information from the environment to adjust system parameters. The power of GAs 

combined with artificial intelligence promotes the development of smart structures as 

outlined in Section 1 . The application of GAs in smart structures as a damage detection 

tool currently may be limited due to the time intensive nature of the proposed SDIM. 

Their ability, however, to optimize unstructured problems makes GAs an attractive tool 

for optimizing the individual modules and the connections between them in smart 

structures. For instance, GAs can be used to optimize the number of neurons and layers in 

neural networks (NN) that may be the primary tool of damage detection. 

.1

The robustness and versatility of GAs promotes the development of interactive, 

highly-sophisticated, engineering systems capable of identifying crucial changes in the 

environment. In future research, the roles of GAs and their linkage with other soft 

computing technologies in smart structures must be defined to facilitate the development 

of intelligent decision-making systems. The widespread use of GAs in engineering will 

identify new solution techniques, alter the way in which we define the problems, and will 

broaden the boundaries of smart design technologies. 

The objective of this research outlined in Section 1 to develop a robust and 

efficient SDIM that only requires minimal measurement information to precisely locate 

and quantify the severity of damage in structures has been met. 
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APPENDIX A  

A plane frame member can deform both axially and in bending. To obtain a frame element, the assumption 
that the axial forces can be uncoupled from bending forces is made. After uncoupling the equilibrium 
equations, a bar and a beam element can be derived from the virtual work principle. Figure A.1 shows a 2-
DOF plane-bar element and a 4-DOF plane-beam element. 
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Figure A.1. One dimensional finite elements, (a) Bar element, (b) Beam element 

From the constant state of strains requirement for any finite element it is established that for a bar 
element the interpolation functions must be at least first order polynomials. Therefore, linear interpolation 
functions are appropriate to approximate the displacement field for bar elements. 
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If the material is linear elastic, has a modulus of elasticity, E and mass density, ρ, and the cross-
sectional area of the element is constant, A, along the longitudinal axis, then the integrals for the element 
stiffness and consistent mass matrices can be stated: 
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For the beam element, the constant state of strain requirement imposes cubic interpolation 
functions for the displacement fields. 
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Assuming a linear elastic material and constant cross-section with a second moment of inertia, I, 
the element stiffness and consistent mass matrices can be stated. 
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A general two-dimensional, frame element is depicted in Figure A.2, with arbitrary orientation 
with respect to the global coordinate system. The element stiffness and consistent mass matrices are 
obtained by the combination of a bar and a beam element. In the development of the frame element, the 
effect of rotational inertia is neglected, which is a reasonable assumption for slender beams. 
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Figure A.  Arbitrarily oriented two-dimensional frame element with 6 DOF 2.
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The stiffness matrix appearing in Eq. (A.7) is a modified version of the original Bernoulli beam 
element stiffness matrix, which accounts for transverse shear deformation. For slender beams, the value of 
φy approaches zero resulting in the engineering beam theory. Since the distribution of shear stresses across 
the cross section is not uniform, a so-called shear factor ky also appears in the expression. For a rectangular 
cross section the parabolic variation of shear stresses gives a ky of 1.2. For other cross sections, the shear 
factor changes, although it is usually between 1.2 for rectangular cross section and 2.0 for I shapes. 

In Eqs. (A.7) and (A.8), the element stiffness and consistent mass matrices are formulated in the 
local coordinate system of the element (u, v) as shown in Figure A.2. The relationship between the global 
and local coordinate axes is established by the introduction of the rotation matrix Tr. 
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The element rotation matrix  for a 2-node element can be constructed from the rotation matrix 
of the global and local coordinate axes. The element stiffness and consistent mass matrices in the global 
coordinate system are obtained from Eq. (A.10). 
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Number of modes 
modes to be extracted. 

APPENDIX B 

Table B.1. Cards that can be used in the text input file (*.inp) for the ModalFEM utility program 

Card Usage Explanation 

*Node *NODE 
Node #, X-coor, Y-coor 

Defines finite element nodes. The first input is the 
node number followed by the x and y coordinates 
of the node. The iput line can be repeated as many 

as necessary to define all nodes in the model. 

*Element *ELEMENT, TYPE = B23 
Elem. #, 1st node #, 2nd node # 

Defines finite elements. The “TYPE =” option 
determines the finite element type (B23 = 

Bernoulli frame element). The input parameters 
are the element number followed by the first and 

second node numbers enclosing that element. 

*Material *MATERIAL, NAME = STEEL Defines a material. The option “NAME =” is used 
to uniquely identify this material definition. This 
card does not have any input parameters but it is 

followed by other cards defining the material 
behavior. 

*Elastic *ELASTIC 
Young’s Modulus, Poisson’s ratio 

Preceded by the “*Material” card and defines a 
linear elastic material. Input parameters are the 

Young’s modulus and Poisson’s ratio. 

*Density *Density 
ρ 

Preceded by the “*Material” card and defines the 
mass density of the material. The only input 

parameter is the mass density ρ. 

*Elset *ELSET, ELSET = NAME 
Elem. #, Elem. #, Elem. # 
 
*ELSET, ELSET = A, GENERATE 
1st Elem. #, Last Elem. #, Increment 

Groups selected elements that share some 
common characteristics. The “ELSET =” option is 
used to uniquely identify this group of elements. 
Input parameters are the element numbers. Using 

“GENERATE” option, element numbers are 
generated between the first and last element with 

increment given in the input line. 

*Beam 
General 
Section 

*BEAM GENERAL SECTION, ELSET = 
ELS_NAME, MATERIAL = MAT_NAME 
Moment of Inertia, Area 

Sectional properties of frame finite element. The 
option “ELSET =” identifies the element set for 
which these properties are applied. The option 

“MATERIAL =” identifies the material used for 
these set of elements. The input line contains the 

moment of inertia and the area of the frame 
element. 

*Nset *NSET, NSET = NAME 
Node #, Node #, Node # 

Defines a set of nodes that share some common 
characteristics. The input line contains the node 
numbers in this set and can be repeated as many 

times as necessary to list all nodes. 

*Boundary *BOUNDARY 
Nset, DOF 

Defines the boundary conditions. The first input 
identifies the set of nodes for which this boundary 
condition is applied. The second input parameter 

identifies the degree of freedom in the local 
coordinate system that is restrained (1 – 
horizontal, 2 – vertical, 3 – rotational) 

*Step *STEP Identifies the beginning of a finite element step 

*End Step *END STEP Identifies the end of a finite element step 

*Frequency *FREQUENCY Performs mode shape and eigenvalue extraction. 
The input parameter identifies the number of 
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Table B  (Continued) 

Card Usage Explanation 

.1.

*Node Print *NODE PRINT 
Output 
 
*NODE PRINT, NSET = NAME 
Output 

Output request associated with nodal finite 
element results. If the option “NSET =” is omitted 

then information for all nodes are output. Using 
“NSET =” a subset of nodes can be defined. The 

input line can be U (natural frequencies and mode 
shapes) provided that the *FREQUENCY card is 

used in the current step. In a *MODAL 
DYNAMIC step the input line can be U 

(displacement), V (velocity), A (acceleration), 
FRFI1, FRFI2, FRFI3 (accelerance in 1, 2 or 3 

DOF). 

*Modal 
Dynamic 

*MODAL DYNAMIC 
∆t, Ttotal 

Defines a response analysis or a frequency 
response function calculation analysis using modal 

decomposition. The input line contains the time 
interval ∆t and the total time for the analysis. For 
the frequency response function analysis the time 

data are converted into the frequency domain. 

*Modal 
Damping 

*MODAL DAMPING 
Start mode, Last mode, damping 

Defines the modal damping ratio for different 
modes. The first input parameter identifies the 

starting mode, the second input parameter the end 
mode and the third input parameter the damping 

ratio for each mode between the starting and 
ending modes. 

*Base Motion *BASE MOTION, DOF = #, INPUT = file.ext, 
SCALE = # 

Defines a base motion within a step. The option 
“DOF =” identifies the degree of freedom for 
which the base motion is defined. The option 
“INPUT =” identifies the input file containing 

acceleration information of the base motion. The 
option “SCALE =” multiplies (scales) the input 

data with the provided scale number. 

*Cload *CLOAD, INPUT = file.txt 
Nset, DOF, scale 

Defines a load applied at a node or nodes. The 
option “INPUT =” identifies the input file 

containing load data. This parameter is omitted for 
frequency response function calculations. The first 
parameter in the input line identifies the node set 

for which this load is applied. The second 
parameter identifies the degree of freedom in 

which the load acts. The third parameter scales the 
input data (omitted for FRF calculations). 

*Noise *NOISE 
level, # of measurements 

Introduces noise into simulated measurement 
(frequency response function) data. The first 

parameter defines the noise level and the second 
parameter identifies the number of simulated 

measurements. If the second parameter is more 
than 1 then the average of the generated frequency 

response functions are taken. 
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*NODE 
1,  0.,   0. 
2,  30.,  0. 
3,  60.,  0. 
4,  90.,  0. 
5,  120., 0. 
6,  150., 0. 
7,  180., 0. 
8,  210., 0. 
9,  240., 0. 
10, 270., 0. 
11, 300., 0. 
*ELEMENT,TYPE=B23 
1, 1, 2 
2, 2, 3 
3, 3, 4 
4, 4, 5 
5, 5, 6 
6, 6, 7 
7, 7, 8 
8, 8, 9 
9, 9, 10 
10, 10, 11 
*MATERIAL,NAME=STEEL 
*ELASTIC 
30.E6, 0.3  
*DENSITY 
0.000728 
*ELSET, ELSET=EALL, GENERATE 
1, 10, 1 
*BEAM GENERAL SECTION,ELSET=EALL,MATERIAL=STEEL 
19.1, 533.0 
*NSET,NSET=FIXED 
1 
*BOUNDARY 
FIXED, 1 
FIXED, 2 
FIXED, 3 
*NSET,NSET=MEAS 
11 
*NSET,NSET=EXC 
11 
*STEP 
*FREQUENCY 
12 
*NODE PRINT 
U 
*END STEP 
*STEP 
*MODAL DYNAMIC 
0.001, 0.4 
*MODAL DAMPING 
1, 3, 0.02 
4, 6, 0.035 
7, 10, 0.05 
*CLOAD, INPUT=dummy.txt 
EXC, 2, 100.0 
*NOISE 
0.0, 0 
*NODE PRINT, NSET=MEAS 
FRFI2 
*END STEP 
 

Figure B.1. Sample input file of a cantilever beam for the ModalFEM utility program 
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Figure B.2. Objective function dialog box 

 
Fi ram gure B.3. Genetic algorithm property sheet in GaDamDet prog

 



 258

  

  

 
on the genetic algorithm property sheet Figure B.4. Additional property pages 
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Figure B.5. Finite element input and MATLAB measurement data file dialog 
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Figure B  Preprocessor dialog box for output request control 

 

.6.
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Figure B.7. Dialog to monitor progress of the GA and hillclimber at run-time 
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Figure B  Monitor graph of a fixed GA run .8.

 
Figure B  Monitor graph of an excitation/sensor layout design problem .9.
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Figure B.10. Individual plot of an IRR string 

 
Figure B.11. Structure plot of a cantilever beam 

 
Figure B.12. Damage indicator dialog 
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Figure B.13. Draw splay configuration ing properties property sheet and property page to set element di

  
Figure B.14. Property pages for legend

 

 and finite element nodes display settings 
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APPENDIX C 
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Figure C. . Finite element bay moment frame 
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Figure C. . Finite elem e-bay moment frame 4

 



 269

APPENDIX D 

Table D.1. Damage detection results for case CANT I, fixed representation, seeded initial population, noise 
levels of 0, 5 and 10% 

Element Fixed Representation, Seeded Initial Population 

 Damage Indicator, 0% noise Damage Indicator, 5% noise Damage Indicator, 10% noise 

 200 GA 
Generations 

1492 Hillclimbing 
Iterations 

200 GA 
Generations 

522 Hillclimbing 
Iterations 

200 GA 
Generations 

466 Hillclimbing 
Iterations 

1 0.00001% 0.00000% 0.00005% 0.00000% 0.00014% 0.00000% 

2 9.46989% 9.99997% 7.63769% 9.24123% 6.96041% 8.46504% 

3 0.02455% 0.00000% 0.00000% 0.00000% 0.00009% 0.00000% 

4 0.31257% 0.00000% 0.14112% 0.27812% 0.19965% 0.56216% 

5 0.03763% 0.00001% 0.38844% 0.00000% 0.00000% 0.00000% 

6 0.00682% 0.00000% 0.00081% 0.05283% 0.58128% 0.10285% 

7 0.00009% 0.00000% 0.00009% 0.00000% 0.00000% 0.00000% 

9 0.12951% 0.00002% 1.45024% 0.34569% 1.78881% 0.69349% 

10 0.20794% 0.00000% 0.00009% 0.00000% 0.00000% 0.00000% 

 

Table D.2. Damage detection results for case CANT I, fixed representation, seeded initial population, noise 
levels of 20 and 50% 

Element Fixed Representation, Seeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 50% noise 

 200 GA Generations 970 Hillclimbing 
Iterations 

200 GA Generations 1194 Hillclimbing 
Iterations 

1 0.00000% 0.00000% 0.00009% 0.00000% 

2 6.96085% 7.84201% 3.45751% 3.98700% 

3 0.00000% 0.00000% 0.00019% 0.00000% 

4 1.12390% 0.81451% 3.22744% 2.23694% 

6 0.11226% 0.00000% 1.54729% 0.00000% 

8 0.14190% 0.44460% 0.65491% 1.02702% 

9 1.31235% 0.85530% 1.50497% 2.34162% 

10 0.00000% 0.00000% 0.00042% 0.00000% 
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Table D.3. Damage detection results for case CANT I, implicit redundant representation (IRR), seeded 
initial population, noise levels of 0, 5 and 10% 

Element IRR, Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

1233 Hillclimbing 
Iterations 

200 GA 
Generations 

1130 Hillclimbing 
Iterations 

200 GA 
Generations 

181 Hillclimbing 
Iterations 

2 9.99907% 9.99993% 9.65594% 9.49064% 9.54556% 9.51973% 

4 0.00074% 0.00006% 0.13786% 0.19211% 0.26858% 0.30362% 

5 0.00045% 0.00004% 0.00000% 0.00000% 0.00000% 0.00000% 

8 0.00000% 0.00000% 0.17231% 0.11397% 0.41130% 0.39419% 

9 0.00000% 0.00000% 0.09862% 0.20390% 0.00000% 0.00000% 

 

Table D.4. Damage detection results for case CANT I, implicit redundant representation (IRR), seeded 
initial population, noise levels of 20 and 50% 

Element IRR, Seeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 50% noise 

 200 GA Generations 193 Hillclimbing 
Iterations 

200 GA Generations 1146 Hillclimbing 
Iterations 

2 9.05524% 9.01000% 4.38611% 3.98869% 

4 0.57470% 0.63063% 2.08773% 2.23636% 

8 0.82232% 0.79622% 1.16577% 1.02758% 

9 0.00000% 0.00000% 2.13629% 2.34069% 

 

Table D.5. Damage detection results for case CANT I, implicit redundant representation (IRR), unseeded 
initial population, noise levels of 0, 5 and 10% 

Element IRR, Unseeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 130 GA 
Generations 

0 Hillclimbing 
Iterations 

200 GA 
Generations 

199 Hillclimbing 
Iterations 

200 GA 
Generations 

583 Hillclimbing 
Iterations 

2 10.00000% - 9.72164% 9.76354% 9.02287% 9.39894% 

4 0.00000% - 0.19184% 0.14888% 0.00000% 0.00000% 

8 0.00000% - 0.18339% 0.19603% 0.39144% 0.45845% 

9 0.00000% - 0.00000% 0.00000% 0.57560% 0.27398% 
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Table D.6. Damage detection results for case CANT I, implicit redundant representation (IRR), unseeded 
initial population, noise levels of 20 and 50% 

Element IRR, Unseeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 50% noise 

 200 GA Generations 228 Hillclimbing 
Iterations 

200 GA Generations 156 Hillclimbing 
Iterations 

2 9.25336% 9.01001% 7.33490% 7.32853% 

4 0.27789% 0.63062% 1.71190% 1.72483% 

8 0.98131% 0.79622% 2.03632% 2.03191% 

 

Table D  Damage detection results for case CANT I, fixed representation, seeded initial population, 
objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 10% 

Element Fixed Representation Seeded Initial Population 

.7.

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

145 Hillclimbing 
Iterations 

200 GA 
Generations 

313 Hillclimbing 
Iterations 

200 GA 
Generations 

213 Hillclimbing 
Iterations 

1 0.00000% 0.00000% 0.00153% 0.00000% 0.00000% 0.00000% 

2 9.87712% 9.99998% 8.48057% 8.66573% 7.20235% 7.44847% 

3 0.00003% 0.00000% 0.19412% 0.00000% 0.05152% 0.00000% 

4 0.00164% 0.00000% 0.09728% 0.08292% 0.27197% 0.23736% 

5 0.09669% 0.00001% 0.01874% 0.07984% 0.00015% 0.00000% 

6 0.00095% 0.00000% 1.20898% 1.03130% 2.41714% 2.22387% 

7 0.00604% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

8 0.00116% 0.00000% 0.82021% 1.04380% 2.07844% 2.22831% 

9 0.02592% 0.00000% 0.38899% 0.27622% 0.41165% 0.26918% 

10 0.01218% 0.00000% 0.00000% 0.00000% 0.00076% 0.00000% 

 

Table D  Damage detection results for case CANT I, fixed representation, seeded initial population, 
objective function is the sum of GSC and GAC squares, noise levels of 20 and 50% 

Element Fixed Representation Seeded Initial Population 

.8.

 Damage Indicator 20% noise Damage Indicator 50% noise 

 200 GA Generations 159 Hillclimbing 
Iterations 

200 GA Generations 61 Hillclimbing 
Iterations 

2 4.47063% 4.54827% 0.00000% 0.00000% 

4 0.77549% 0.74391% 0.00000% 0.00000% 

6 4.85824% 4.77670% 5.60742% 5.48590% 

8 4.63897% 4.68195% 12.22920% 12.32950% 

 

 



 272

Table D.9. Damage detection results for case CANT I, implicit redundant representation (IRR), seeded 
initial population, objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 10% 

Element IRR, Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 115 GA 
Generations 

0 Hillclimbing 
Iterations 

200 GA 
Generations 

79 Hillclimbing 
Iterations 

200 GA 
Generations 

122 Hillclimbing 
Iterations 

2 9.99998% - 8.88843% 8.87897% 7.59546% 7.58479% 

5 0.00001% - 0.00000% 0.00000% 0.00000% 0.00000% 

6 0.00000% - 1.06034% 1.07454% 2.18710% 2.19911% 

8 0.00000% - 1.20567% 1.19902% 2.33847% 2.32807% 

9 0.00000% - 0.00000% 0.00000% 0.27747% 0.28495% 

 

Table D.10. Damage detection results for case CANT I, implicit redundant representation (IRR), seeded 
initial population, objective function is the sum of GSC and GAC squares, noise levels of 20 and 50% 

Element IRR, Seeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 50% noise 

 200 GA Generations 95 Hillclimbing 
Iterations 

100 GA Generations 0 Hillclimbing 
Iterations 

2 4.55385% 4.54833% 0.00000% - 

4 0.74182% 0.74388% 0.00000% - 

6 4.76893% 4.77661% 5.48587% - 

8 4.68574% 4.68200% 12.32960% - 

 

Table D  Damage detection results for case CANT I, implicit redundant representation (IRR), unseeded 
initial population, objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 10% 

Element IRR, Unseeded Initial Population 

.11.

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 170 GA 
Generations 

0 Hillclimbing 
Iterations 

200 GA 
Generations 

108 Hillclimbing 
Iterations 

200 GA 
Generations 

108 Hillclimbing 
Iterations 

2 10.00000% - 8.78771% 8.78275% 7.59490% 7.58477% 

6 0.00000% - 1.04798% 1.05489% 2.18922% 2.19912% 

8 0.00000% - 1.10679% 1.10064% 2.32900% 2.32808% 

9 0.00000% - 0.24410% 0.24747% 0.28046% 0.28495% 
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Table D  Damage detection results for case CANT I, implicit redundant representation (IRR), unseeded 
initial population, objective function is the sum of GSC and GAC squares, noise levels of 20 and 50% 

Element IRR, Unseeded Initial Population 

.12.

 Damage Indicator 20% noise Damage Indicator 50% noise 

 200 GA Generations 89 Hillclimbing 
Iterations 

130 GA Generations 0 Hillclimbing 
Iterations 

2 5.04175% 5.02909% 0.00000% - 

6 4.66383% 4.67692% 5.48589% - 

8 5.01702% 5.01090% 12.32950% - 

 

Table D.13. Damage detection results for case CANT II, fixed and implicit redundant representations 
(IRR), noise free measurements 

Element Damage Indicator, 0% noise 

 Fixed Representation, Seeded Initial 
Population 

IRR, Seeded Initial Population IRR, Unseeded Initial Population 

 200 GA 
Generations 

1502 Hillclimbing 
Iterations 

200 GA 
Generations 

306 Hillclimbing 
Iterations 

130 GA 
Generations 

0 Hillclimbing 
Iterations 

2 9.46167% 9.99997% 9.99960% 10.00000% 10.00000% - 

3 0.01854% 0.00000% 0.00000% 0.00000% 0.00000% - 

4 0.31496% 0.00000% 0.00000% 0.00000% 0.00000% - 

5 0.05051% 0.00001% 0.00000% 0.00000% 0.00000% - 

6 0.00670% 0.00000% 0.00040% 0.00000% 0.00000% - 

8 0.00005% 0.00000% 0.00000% 0.00000% 0.00000% - 

9 0.13331% 0.00002% 0.00000% 0.00000% 0.00000% - 

10 0.20785% 0.00000% 0.00074% 0.00001% 0.00000% - 

 

Table D.14. Damage detection results for case CANT III, fixed and implicit redundant representations 
(IRR), noise free measurements 

Element Damage Indicator, 0% noise 

 Fixed Representation Seeded Initial 
Population 

IRR, Seeded Initial   Population IRR, Unseeded Initial Population 

 200 GA 
Generations 

2459 Hillclimbing 
Iterations 

129 GA 
Generations 

0 Hillclimbing 
Iterations 

200 GA 
Generations 

1145 Hillclimbing 
Iterations 

1 0.25380% 0.00000% 0.00000% - 0.00000% 0.00000% 

2 0.00256% 0.00000% 0.00000% - 0.00000% 0.00000% 

3 0.02340% 0.00000% 0.00000% - 0.10732% 0.00001% 

4 0.72149% 0.00003% 0.00000% - 0.09482% 0.00000% 

5 0.00203% 0.00000% 0.00000% - 0.00000% 0.00000% 
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Table D.14. (Continued) 

Element Damage Indicator, 0% noise 

 Fixed Representation Seeded Initial 
Population 

IRR, Seeded Initial   Population IRR, Unseeded Initial Population 

 200 GA 
Generations 

2459 Hillclimbing 
Iterations 

129 GA 
Generations 

0 Hillclimbing 
Iterations 

200 GA 
Generations 

1145 Hillclimbing 
Iterations 

6 9.06363% 9.99998% 10.00000% - 9.85362% 9.99999% 

7 0.58333% 0.00002% 0.00000% - 0.19715% 0.00001% 

8 0.18839% 0.00000% 0.00000% - 0.00000% 0.00000% 

9 0.28378% 0.00001% 0.00000% - 0.00000% 0.00000% 

10 0.40565% 0.00000% 0.00000% - 0.00000% 0.00000% 

 

Table D.15. Damage detection results for case CANT IV, fixed and implicit redundant representations 
(IRR), noise free measurements 

Element Damage Indicator 0% noise 

 Fixed Representation Seeded Initial 
Population 

IRR, Seeded Initial  Population IRR, Unseeded Initial Population 

 200 GA 
Generations 

23700 
Hillclimbing 

Iterations 

200 GA 
Generations 

20000 
Hillclimbing 

Iterations 

200 GA 
Generations 

3566 Hillclimbing 
Iterations 

1 0.02588% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

2 0.01208% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

3 0.25412% 0.01243% 0.04117% 0.01121% 7.84827% 0.72110% 

4 0.03805% 0.00000% 0.00000% 0.00000% 3.10735% 0.30362% 

5 0.03983% 0.04437% 0.12433% 0.04225% 1.50064% 9.18526% 

6 9.68912% 9.95258% 9.85895% 9.95550% 0.00000% 0.00000% 

7 0.00774% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

8 0.00001% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

9 0.01526% 0.00000% 0.00312% 0.00000% 0.00000% 0.00000% 

10 0.07970% 0.00118% 0.00000% 0.00000% 0.00000% 0.00000% 
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Table D.16. Damage detection results for case CANT OPT, fixed representation, seeded initial population, 
noise levels of 0, 10 and 20% 

Element Fixed Representation Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 10% noise Damage Indicator 20% noise 

 200 GA 
Generations 

1281 Hillclimbing 
Iterations 

200 GA 
Generations 

170 Hillclimbing 
Iterations 

200 GA 
Generations 

113 Hillclimbing 
Iterations 

1 0.00021% 0.00000% 0.00076% 0.00000% 0.00005% 0.00000% 

2 4.19312% 9.99997% 8.50479% 9.59081% 8.50781% 9.16841% 

3 0.00000% 0.00000% 0.00607% 0.00000% 0.00085% 0.00000% 

4 3.09683% 0.00002% 0.53225% 0.00000% 0.35027% 0.00000% 

5 1.93397% 0.00001% 0.00001% 0.00000% 0.00614% 0.00000% 

6 0.00001% 0.00000% 0.87164% 0.00000% 0.41728% 0.00000% 

7 0.00151% 0.00000% 0.00000% 0.00000% 0.00077% 0.00000% 

8 0.00151% 0.00000% 0.13409% 0.56156% 0.88805% 1.13376% 

9 1.25684% 0.00000% 0.12451% 0.00000% 0.00405% 0.00000% 

10 0.02426% 0.00000% 0.00000% 0.00000% 0.00012% 0.00000% 

 

Table D.17. Damage detection results for case CANT OPT, implicit redundant representation (IRR), 
seeded initial population, noise levels of 0, 10 and 20% 

Element IRR, Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 10% noise Damage Indicator 20% noise 

 101 GA 
Generations 

0 Hillclimbing 
Iterations 

170 GA 
Generations 

0 Hillclimbing 
Iterations 

91 GA 
Generations 

0 Hillclimbing 
Iterations 

2 10.00000% - 9.59081% - 9.16840% 10.00000% 

8 0.00000% - 0.56156% - 1.13376% 0.00000% 

 

Table D  Damage detection results for case CANT OPT, implicit redundant representation (IRR), 
unseeded initial population, noise levels of 0, 10 and 20% 

Element IRR, Unseeded Initial Population 

.18.

 Damage Indicator 0% noise Damage Indicator 10% noise Damage Indicator 20% noise 

 200 GA 
Generations 

71 Hillclimbing 
Iterations 

170 GA 
Generations 

32 Hillclimbing 
Iterations 

141 GA 
Generations 

0 Hillclimbing 
Iterations 

2 9.99945% 10.00000% 9.59281% 9.59082% 9.16841% - 

6 0.00018% 0.00000% 0.00000% 0.00000% 0.00000% - 

8 0.00000% 0.00000% 0.56146% 0.56156% 1.13376% - 

10 0.00072% 0.00000% 0.00000% 0.00000% 0.00000% - 
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1. Optimum excitation and sensor layout designs in the Pareto front for the cantilever Figure D. problem 

Table D.19. Damage detection results for case TWSP IA, fixed and implicit redundant representations 
(IRR), noise free measurements 

Element Damage Indicator 0% noise 

 Fixed Representation Seeded Initial 
Population 

IRR, Seeded Initial   Population IRR, Unseeded Initial Population 

 200 GA 
Generations 

315 Hillclimbing 
Iterations 

200 GA 
Generations 

215 Hillclimbing 
Iterations 

200 GA 
Generations 

40 Hillclimbing 
Iterations 

1 0.19959% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

5 1.54990% 0.00009% 0.03824% 0.00009% 0.00000% 0.00000% 

6 7.54093% 9.99975% 9.90637% 9.99975% 9.99795% 9.99965% 

7 0.01209% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

10 9.45904% 9.99965% 9.93253% 9.99965% 9.99852% 9.99965% 

11 1.58842% 0.00047% 0.11462% 0.00047% 0.00330% 0.00066% 
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Table D.19. (Continued) 

Element Damage Indicator 0% noise 

 Fixed Representation Seeded Initial 
Population 

IRR, Seeded Initial   Population IRR, Unseeded Initial Population 

 200 GA 
Generations 

315 Hillclimbing 
Iterations 

200 GA 
Generations 

215 Hillclimbing 
Iterations 

200 GA 
Generations 

40 Hillclimbing 
Iterations 

13 0.00151% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

14 0.00651% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

15 0.00349% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

18 0.00727% 0.00009% 0.01539% 0.00009% 0.00000% 0.00000% 

19 0.00019% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

 

Table D.20. Damage detection results for case TWSP IB, fixed and implicit redundant representations 
(IRR), noise free measurements 

Element Damage Indicator 0% noise 

 Fixed Representation Seeded Initial 
Population 

IRR, Seeded Initial   Population IRR, Unseeded Initial Population 

 200 GA 
Generations 

923 Hillclimbing 
Iterations 

200 GA 
Generations 

156 Hillclimbing 
Iterations 

200 GA 
Generations 

195 Hillclimbing 
Iterations 

1 0.00019% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

4 0.00000% 0.00000% 0.00000% 0.00000% 0.00028% 0.00000% 

5 0.25039% 0.00028% 0.00000% 0.00000% 0.00000% 0.00000% 

6 6.93498% 9.99937% 9.99625% 9.99937% 9.99295% 9.99937% 

7 0.00000% 0.00000% 0.00000% 0.00000% 0.00057% 0.00000% 

10 0.77259% 9.99899% 9.99323% 9.99852% 9.98913% 9.99876% 

11 9.86738% 0.00123% 0.00935% 0.00189% 0.01766% 0.00161% 

12 0.61039% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

13 0.48982% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

14 0.00151% 0.00019% 0.00000% 0.00000% 0.00000% 0.00000% 

15 1.09860% 0.00028% 0.00189% 0.00057% 0.00208% 0.00066% 

16 0.00321% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

18 0.00000% 0.00000% 0.00076% 0.00009% 0.00000% 0.00000% 

19 0.37841% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

20 0.15229% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 
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Table D.21. Damage detection results for case TWSP II, fixed and implicit redundant representations 
(IRR), noise free measurements 

Element Damage Indicator 0% noise 

 Fixed Representation Seeded Initial 
Population 

IRR, Seeded Initial  Population IRR, Unseeded Initial Population 

 200 GA 
Generations 

2333 Hillclimbing 
Iterations 

200 GA 
Generations 

971 Hillclimbing 
Iterations 

200 GA 
Generations 

1615 Hillclimbing
Iterations 

1 0.01671% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

2 0.00028% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

3 0.00472% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

4 0.00047% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

5 0.31742% 0.00113% 0.00000% 0.00000% 0.01086% 0.00142% 

6 10.04600% 9.99928% 10.03570% 10.00190% 10.07440% 9.99909% 

7 0.00566% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

8 0.00670% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

9 0.03314% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

10 0.02908% 0.00104% 0.00000% 0.00000% 0.05328% 0.00126% 

11 0.26285% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

12 0.00227% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

13 0.00604% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

14 0.01312% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

15 8.16142% 9.99824% 9.86502% 9.99323% 9.66996% 9.99777% 

16 1.20812% 0.00161% 0.08979% 0.00576% 0.28579% 0.00208% 

17 0.01076% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

18 0.01794% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

19 0.39087% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

20 0.02077% 0.00000% 0.09602% 0.00085% 0.00000% 0.00000% 

 

Table D.22. Damage detection results for case TWSP IIIA, fixed representation, seeded initial population, 
noise levels of 0, 5 and 10% 

Element Fixed Representation Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

341 Hillclimbing 
Iterations 

200 GA 
Generations 

176 Hillclimbing 
Iterations 

200 GA 
Generations 

740 Hillclimbing 
Iterations 

1 0.39220% 0.00000% 0.19921% 0.00000% 0.01057% 0.00000% 

2 0.00009% 0.00000% 0.00028% 0.00000% 0.00019% 0.00000% 

3 0.00736% 0.00000% 0.00066% 0.00000% 0.00349% 0.00000% 

 

4 0.00009% 0.00000% 0.01067% 0.00000% 0.00142% 0.00000% 

5 0.17098% 0.00009% 0.12652% 0.00000% 0.05013% 0.00000% 
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Table D.22. (Continued) 

Element Fixed Representation Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

341 Hillclimbing 
Iterations 

200 GA 
Generations 

176 Hillclimbing 
Iterations 

200 GA 
Generations 

740 Hillclimbing 
Iterations 

6 4.18914% 4.99969% 4.67094% 5.47232% 5.55871% 5.73356% 

7 0.00576% 0.00000% 0.00312% 0.00000% 0.00293% 0.00000% 

8 0.00651% 0.00000% 0.00566% 0.00000% 0.00019% 0.00000% 

9 0.00670% 0.00000% 0.00094% 0.00000% 0.00019% 0.00000% 

10 8.81599% 9.99965% 10.05580% 9.74379% 9.31846% 9.21923% 

11 1.48400% 0.00047% 0.00019% 0.00000% 0.40768% 0.42297% 

12 0.02559% 0.00000% 0.00066% 0.00000% 0.00264% 0.00000% 

13 0.02700% 0.00000% 0.01209% 0.00000% 0.00245% 0.00000% 

14 0.08677% 0.00000% 0.00009% 0.00000% 0.00142% 0.00000% 

15 0.04532% 0.00000% 0.28560% 0.35840% 0.84944% 0.86814% 

16 0.01350% 0.00000% 0.05098% 0.12491% 0.09101% 0.15559% 

17 0.04589% 0.00000% 0.00293% 0.00000% 0.00094% 0.00000% 

18 0.04268% 0.00009% 0.00019% 0.00000% 0.00019% 0.00000% 

19 0.08072% 0.00000% 0.03229% 0.00000% 0.00000% 0.00000% 

20 0.14200% 0.00000% 0.00699% 0.00000% 0.01218% 0.00000% 

 

Table D.23. Damage detection results for case TWSP IIIA, fixed representation, seeded initial population, 
noise levels of 20 and 30% 

Element Fixed Representation Seeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 30% noise 

 200 GA Generations 1717 Hillclimbing 
Iterations 

200 GA Generations 2552 Hillclimbing 
Iterations 

1 0.00066% 0.00000% 0.01360% 0.00000% 

2 0.00425% 0.00000% 0.00085% 0.00000% 

3 0.00538% 0.00000% 0.01690% 0.00000% 

4 0.00651% 0.00000% 0.00028% 0.00000% 

5 0.21215% 0.00000% 0.20252% 0.00000% 

6 6.19393% 6.22537% 6.97171% 6.51144% 

7 0.00906% 0.00000% 0.00094% 0.00000% 

8 0.00264% 0.00000% 0.00009% 0.00000% 

9 0.00368% 0.00000% 0.00217% 0.00000% 

10 7.89762% 8.27113% 8.72998% 7.12928% 

 

11 1.38071% 1.16478% 0.25265% 2.20655% 
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Table D.23. (Continued) 

Element Fixed Representation Seeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 30% noise 

 200 GA Generations 1717 Hillclimbing 
Iterations 

200 GA Generations 2552 Hillclimbing 
Iterations 

12 0.00161% 0.00000% 0.00651% 0.00000% 

13 0.00680% 0.00000% 0.00132% 0.00000% 

14 0.00161% 0.00000% 0.00264% 0.00000% 

15 2.23714% 1.78612% 1.31415% 2.77180% 

16 0.06798% 0.21073% 0.86927% 0.16456% 

17 0.00151% 0.00000% 0.01218% 0.00000% 

18 0.00869% 0.00000% 0.00264% 0.00000% 

19 0.00009% 0.00000% 0.01020% 0.00000% 

20 0.02077% 0.00000% 0.00576% 0.00000% 

 

Table D.24. Damage detection results for case TWSP IIIA, implicit redundant representation (IRR), seeded 
initial population, noise levels of 0, 5 and 10% 

Element IRR, Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

240 Hillclimbing 
Iterations 

200 GA 
Generations 

1598 Hillclimbing 
Iterations 

200 GA 
Generations 

70 Hillclimbing 
Iterations 

1 0.01416% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

6 4.93057% 4.99931% 4.54404% 5.38376% 5.88916% 5.90889% 

10 9.96661% 9.99918% 7.73212% 9.56346% 9.53306% 9.50927% 

11 0.07902% 0.00132% 2.63670% 0.26955% 0.00000% 0.00000% 

13 0.00529% 0.00019% 0.00000% 0.00000% 0.00000% 0.00000% 

15 0.00000% 0.00000% 1.19424% 0.50719% 0.69522% 0.68927% 

16 0.00000% 0.00000% 0.00000% 0.00000% 0.20403% 0.24312% 
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Table D  Damage detection results for case TWSP IIIA, implicit redundant representation (IRR), seeded 
initial population, noise levels of 20 and 30% 

Element IRR, Seeded Initial Population 

.25.

 Damage Indicator 20% noise Damage Indicator 30% noise 

 200 GA Generations 2162 Hillclimbing 
Iterations 

200 GA Generations 1899 Hillclimbing 
Iterations 

6 5.82467% 6.22508% 5.12195% 6.48972% 

10 7.15298% 8.27065% 4.58143% 6.97086% 

11 2.54020% 1.16544% 5.25073% 2.40916% 

15 2.31772% 1.78645% 3.96755% 2.91635% 

16 0.00236% 0.21054% 0.00000% 0.00000% 

20 0.00038% 0.00000% 0.00000% 0.00000% 

 

Table D.26. Damage detection results for case TWSP IIIA, implicit redundant representation (IRR), 
unseeded initial population, noise levels of 0, 5 and 10% 

Element IRR, Unseeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

71 Hillclimbing 
Iterations 

200 GA 
Generations 

1588 Hillclimbing 
Iterations 

200 GA 
Generations 

1406 Hillclimbing 
Iterations 

1 0.01614% 0.00019% 0.00000% 0.00000% 0.00000% 0.00000% 

6 4.99006% 4.99987% 4.59389% 5.38367% 5.33235% 5.71199% 

10 10.00170% 10.00000% 8.07668% 9.56341% 8.42307% 9.10436% 

11 0.00000% 0.00000% 2.24790% 0.26965% 1.48135% 0.59131% 

15 0.00000% 0.00000% 0.99865% 0.50722% 1.29838% 1.00003% 

16 0.00238% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

 

Table D  Damage detection results for case TWSP IIIA, implicit redundant representation (IRR), 
unseeded initial population, noise levels of 20 and 30% 

Element IRR, Unseeded Initial Population 

.27.

 Damage Indicator 20% noise Damage Indicator 30% noise 

 200 GA Generations 116 Hillclimbing 
Iterations 

200 GA Generations 58 Hillclimbing 
Iterations 

6 6.72793% 6.68129% 7.34559% 7.33095% 

10 9.08422% 9.10253% 8.77194% 8.77251% 

15 1.30678% 1.27695% 1.77007% 1.78149% 

16 0.42916% 0.46107% 0.65240% 0.65712% 
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Table D.28. Damage detection results for case TWSP IIIB, fixed and implicit redundant representations 
(IRR), noise free measurements 

Element Damage Indicator 0% noise 

 Fixed Representation Seeded Initial 
Population 

IRR, Seeded Initial   Population IRR, Unseeded Initial Population 

 200 GA 
Generations 

981 Hillclimbing 
Iterations 

200 GA 
Generations 

1131 Hillclimbing 
Iterations 

180 GA 
Generations 

40 Hillclimbing 
Iterations 

1 0.33007% 0.00000% 0.00000% 0.00000% 0.00000% - 

2 0.00935% 0.00000% 0.00000% 0.00000% 0.00000% - 

3 0.05193% 0.00000% 0.00000% 0.00000% 0.00000% - 

5 0.46074% 0.00047% 0.23464% 0.00050% 0.00000% - 

6 3.86530% 4.99780% 3.95821% 4.99770% 5.00008% - 

7 0.07846% 0.00000% 0.00000% 0.00000% 0.00000% - 

8 0.00066% 0.00000% 0.00000% 0.00000% 0.00000% - 

9 0.00028% 0.00000% 0.00000% 0.00000% 0.00000% - 

10 9.91090% 9.99843% 9.33800% 9.99843% 9.99994% - 

11 0.21706% 0.00208% 0.90033% 0.00208% 0.00000% - 

12 0.00104% 0.00000% 0.00000% 0.00000% 0.00000% - 

13 0.00604% 0.00000% 0.00000% 0.00000% 0.00000% - 

14 0.00519% 0.00000% 0.00000% 0.00000% 0.00000% - 

15 0.39909% 0.00189% 0.85482% 0.00198% 0.00000% - 

16 0.01350% 0.00000% 0.00000% 0.00000% 0.00000% - 

17 0.00463% 0.00000% 0.00000% 0.00000% 0.00000% - 

18 0.00387% 0.00000% 0.00000% 0.00000% 0.00000% - 

19 0.00019% 0.00000% 0.00000% 0.00000% 0.00000% - 

20 0.00179% 0.00000% 0.00000% 0.00000% 0.00000% - 

 

Table D  Damage detection results for case TWSP IIIB, fixed representation, seeded initial population, 
objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 10% 

Element Fixed Representation Seeded Initial Population 

.29.

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

1525 Hillclimbing 
Iterations 

200 GA 
Generations 

664 Hillclimbing 
Iterations 

200 GA 
Generations 

633 Hillclimbing 
Iterations 

1 0.04079% 0.00000% 0.00935% 0.00000% 0.00038% 0.00000% 

2 0.04853% 0.00000% 0.00019% 0.00000% 0.00302% 0.00000% 

3 0.00000% 0.00000% 0.00217% 0.00000% 0.00009% 0.00000% 

4 0.00104% 0.00000% 0.06571% 0.00000% 0.00123% 0.00000% 

5 0.47660% 0.00019% 0.58395% 0.00000% 0.00009% 0.00000% 

6 2.31871% 4.99884% 3.40758% 5.57297% 5.89718% 6.04031% 
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Table D.29. (Continued) 

Element Fixed Representation Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

1525 Hillclimbing 
Iterations 

200 GA 
Generations 

664 Hillclimbing 
Iterations 

200 GA 
Generations 

633 Hillclimbing 
Iterations 

7 0.00463% 0.00000% 0.00057% 0.00000% 0.00208% 0.00000% 

8 0.01001% 0.00000% 0.00887% 0.00000% 0.04910% 0.00000% 

9 0.01180% 0.00000% 0.26049% 0.15050% 0.00661% 0.42581% 

10 5.81108% 9.99795% 6.86115% 9.37095% 6.95915% 8.60337% 

11 5.05671% 0.00255% 3.41504% 0.00000% 1.46700% 0.00000% 

12 1.20113% 0.00066% 1.05819% 0.37718% 1.35342% 0.82178% 

13 0.53353% 0.00028% 0.16947% 0.00000% 0.59528% 0.00000% 

14 0.10150% 0.00000% 0.05637% 0.00000% 0.00529% 0.00000% 

15 0.33904% 0.00028% 1.16016% 0.25520% 0.20214% 0.00000% 

16 0.00718% 0.00000% 0.00151% 0.06212% 0.51352% 0.40957% 

17 0.00085% 0.00000% 0.04947% 0.00000% 0.02417% 0.00000% 

18 0.05325% 0.00000% 0.78713% 1.06433% 1.44784% 2.33438% 

19 0.00113% 0.00000% 0.04371% 0.02398% 0.06005% 0.00000% 

20 0.05693% 0.00000% 0.09592% 0.00000% 0.38672% 0.00000% 

 

Table D  Damage detection results for case TWSP IIIB, fixed representation, seeded initial population, 
objective function is the sum of GSC and GAC squares, noise levels of 20 and 30% 

Element Fixed Representation Seeded Initial Population 

.30.

 Damage Indicator 20% noise Damage Indicator 30% noise 

 200 GA Generations 1171 Hillclimbing 
Iterations 

200 GA Generations 548 Hillclimbing 
Iterations 

1 0.00378% 0.00000% 0.00623% 0.00000% 

2 0.00113% 0.00000% 0.00633% 0.00000% 

3 0.00104% 0.00000% 0.10187% 0.00000% 

4 0.01671% 0.00000% 0.00453% 0.00000% 

5 0.41703% 0.00000% 0.09696% 0.00000% 

6 3.47802% 5.92636% 3.67081% 4.48843% 

7 0.02256% 0.00000% 0.00076% 0.00000% 

8 0.03031% 0.00000% 0.00935% 0.00000% 

9 3.53958% 2.05718% 5.22798% 5.02470% 

10 7.07924% 7.14127% 3.40551% 5.46156% 

11 0.68403% 0.00000% 0.40362% 0.00000% 

12 1.29611% 1.57898% 3.62068% 2.38763% 
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Table D.30. (Continued) 

Element Fixed Representation Seeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 30% noise 

 200 GA Generations 1171 Hillclimbing 
Iterations 

200 GA Generations 548 Hillclimbing 
Iterations 

13 1.02241% 0.00000% 0.03078% 0.00000% 

14 0.00019% 0.00000% 0.00321% 0.00000% 

15 1.37703% 0.00000% 0.43053% 0.00000% 

16 0.33914% 0.90071% 2.06596% 1.63242% 

17 0.01945% 0.00000% 0.01142% 0.00000% 

18 2.43682% 4.62014% 6.17835% 6.62814% 

19 0.57111% 0.00991% 0.00038% 0.00000% 

20 0.00085% 0.00000% 0.00227% 0.00000% 

 

Table D.31. Damage detection results for case TWSP IIIB, implicit redundant representation (IRR), seeded 
initial population, objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 10% 

Element IRR, Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

1301 Hillclimbing 
Iterations 

200 GA 
Generations 

407 Hillclimbing 
Iterations 

200 GA 
Generations 

255 Hillclimbing 
Iterations 

5 0.00000% 0.00000% 0.78798% 0.00000% 0.00000% 0.00000% 

6 3.57479% 4.99893% 3.54817% 5.72337% 5.91304% 6.45186% 

10 7.07755% 9.99777% 6.46546% 9.28598% 7.18055% 8.47015% 

11 3.53353% 0.00283% 3.44636% 0.00000% 1.47359% 0.00000% 

12 1.02175% 0.00076% 1.43197% 0.42449% 1.39563% 0.89618% 

13 0.21762% 0.00028% 0.02596% 0.00000% 0.00000% 0.00000% 

15 0.42080% 0.00028% 0.86880% 0.23405% 0.62304% 0.34461% 

18 0.00000% 0.00000% 0.75899% 1.18999% 2.36601% 2.43607% 

20 0.00000% 0.00000% 0.27040% 0.00000% 0.00000% 0.00000% 
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Table D.32. Damage detection results for case TWSP IIIB, implicit redundant representation (IRR), seeded 
initial population, objective function is the sum of GSC and GAC squares, noise levels of 20 and 30% 

Element IRR, Seeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 30% noise 

 200 GA Generations 831 Hillclimbing 
Iterations 

200 GA Generations 660 Hillclimbing 
Iterations 

6 3.43100% 5.84762% 7.95418% 4.48796% 

9 4.21312% 2.12573% 1.90792% 5.02508% 

10 8.85677% 7.19292% 3.12538% 5.46165% 

12 0.49020% 1.51761% 3.79322% 2.38758% 

15 1.35880% 0.77873% 0.00000% 0.00000% 

16 0.00000% 0.00000% 1.75629% 1.63242% 

18 4.46681% 4.81737% 6.72066% 6.62814% 

20 0.27739% 0.00000% 0.00000% 0.00000% 

 

Table D.33. Damage detection results for case TWSP IIIB, implicit redundant representation (IRR), 
unseeded initial population, objective function is the sum of GSC and GAC squares, noise levels of 0, 5 and 

10% 

Element IRR, Unseeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

3 Hillclimbing 
Iterations 

200 GA 
Generations 

83 Hillclimbing 
Iterations 

200 GA 
Generations 

302 Hillclimbing 
Iterations 

5 0.00000% 0.00000% 0.55638% 0.00000% 0.00000% 0.00000% 

6 4.99997% 4.99997% 5.15141% 5.69976% 5.40463% 6.45186% 

10 9.99994% 10.00000% 9.66751% 9.84425% 6.23434% 8.47015% 

11 0.00000% 0.00000% 0.00000% 0.00000% 2.40538% 0.00000% 

12 0.00000% 0.00000% 0.00000% 0.00000% 1.84088% 0.89618% 

15 0.00000% 0.00000% 0.00000% 0.00000% 0.85983% 0.34461% 

16 0.00000% 0.00000% 0.14540% 0.11009% 0.00000% 0.00000% 

18 0.00000% 0.00000% 1.37726% 1.26066% 2.38225% 2.43607% 
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Table D.34. Damage detection results for case TWSP IIIB, implicit redundant representation (IRR), 
unseeded initial population, objective function is the sum of GSC and GAC squares, noise levels of 20 and 

30% 

Element IRR, Unseeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 30% noise 

 200 GA Generations 123 Hillclimbing 
Iterations 

200 GA Generations 272 Hillclimbing 
Iterations 

6 7.93662% 7.93633% 0.00000% 0.00000% 

9 0.00000% 0.00000% 8.60629% 8.45514% 

10 6.37020% 6.39484% 8.27660% 6.91223% 

12 2.06493% 2.05020% 0.51635% 1.50222% 

16 0.72066% 0.71434% 1.62633% 2.00209% 

18 4.82068% 4.82540% 6.68412% 6.25926% 

 

Table D.35. Damage detection results for case TWSP OPT, fixed representation, seeded initial population, 
noise levels of 0, 5 and 10% 

Element Fixed Representation Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

577 Hillclimbing 
Iterations 

200 GA 
Generations 

186 Hillclimbing 
Iterations 

200 GA 
Generations 

208 Hillclimbing 
Iterations 

1 1.11635% 0.00000% 0.02691% 0.00000% 0.03021% 0.00000% 

2 0.04673% 0.00000% 0.01879% 0.00000% 0.00179% 0.00000% 

3 0.00349% 0.00000% 0.00425% 0.00000% 0.05061% 0.00000% 

4 0.03002% 0.00000% 0.00566% 0.00000% 0.03361% 0.00000% 

5 0.51588% 0.00000% 0.04768% 0.00000% 0.00538% 0.00000% 

6 3.93328% 4.99921% 4.69171% 4.94965% 4.62987% 4.89819% 

7 0.02946% 0.00000% 0.04296% 0.00000% 0.01275% 0.00000% 

8 0.01964% 0.00000% 0.00444% 0.00000% 0.00897% 0.00000% 

9 0.00161% 0.00028% 0.00028% 0.00000% 0.00151% 0.00000% 

10 9.18354% 9.99871% 9.66798% 9.92875% 9.45007% 9.85775% 

11 0.17080% 0.00170% 0.17552% 0.00000% 0.51021% 0.00000% 

12 0.01917% 0.00000% 0.02266% 0.00000% 0.00009% 0.00000% 

13 0.02323% 0.00000% 0.00548% 0.00000% 0.00264% 0.00000% 

14 0.00009% 0.00000% 0.06373% 0.00680% 0.03928% 0.01567% 

15 0.29344% 0.00019% 0.00906% 0.00000% 0.01275% 0.00000% 

16 0.03333% 0.00019% 0.00963% 0.00000% 0.11481% 0.00000% 

17 0.02493% 0.00000% 0.02266% 0.11301% 0.09961% 0.22065% 

 

18 0.01803% 0.00000% 0.01435% 0.00000% 0.00972% 0.00000% 
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Table D.35. (Continued) 

Element Fixed Representation Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

577 Hillclimbing 
Iterations 

200 GA 
Generations 

186 Hillclimbing 
Iterations 

200 GA 
Generations 

208 Hillclimbing 
Iterations 

19 0.00595% 0.00000% 0.02832% 0.00000% 0.00312% 0.00000% 

20 0.05306% 0.00000% 0.02615% 0.00000% 0.05316% 0.00000% 

 

Table D  Damage detection results for case TWSP OPT, fixed representation, seeded initial population, 
noise levels of 20 and 30% 

Element Fixed Representation Seeded Initial Population 

.36.

 Damage Indicator 20% noise Damage Indicator 30% noise 

 200 GA Generations 262 Hillclimbing 
Iterations 

200 GA Generations 301 Hillclimbing 
Iterations 

1 0.01728% 0.00000% 0.01803% 0.00000% 

2 0.00236% 0.00000% 0.00170% 0.00000% 

3 0.00028% 0.00000% 0.00142% 0.00000% 

4 0.00991% 0.00000% 0.00359% 0.00000% 

5 0.01086% 0.00000% 0.00236% 0.00000% 

6 4.07707% 4.79141% 3.65429% 4.67972% 

7 0.02313% 0.00000% 0.00312% 0.00000% 

8 0.00170% 0.00000% 0.00142% 0.00000% 

9 0.00217% 0.00000% 0.00746% 0.00000% 

10 8.49602% 9.71603% 7.26420% 9.57423% 

11 1.80057% 0.00000% 3.17448% 0.00000% 

12 0.01124% 0.00000% 0.00019% 0.00000% 

13 0.00349% 0.00000% 0.00604% 0.00000% 

14 0.14521% 0.04135% 0.38625% 0.07742% 

15 0.00482% 0.00000% 0.00000% 0.00000% 

16 0.29910% 0.00000% 0.48689% 0.00000% 

17 0.32620% 0.41825% 0.09460% 0.59367% 

18 0.00085% 0.00000% 0.00009% 0.00000% 

19 0.00132% 0.00000% 0.01057% 0.00000% 

20 0.02351% 0.00000% 0.00330% 0.00000% 
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Table D.37. Damage detection results for case TWSP OPT, implicit redundant representation (IRR), 
seeded initial population, noise levels of 0, 5 and 10% 

Element IRR, Seeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

508 Hillclimbing 
Iterations 

200 GA 
Generations 

12 Hillclimbing 
Iterations 

184 GA 
Generations 

31 Hillclimbing 
Iterations 

1 1.91986% 0.00033% 0.00000% 0.00000% 0.00000% 0.00000% 

2 0.32620% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

6 2.87188% 4.99950% 4.94360% 4.94304% 4.80392% 4.88540% 

10 8.69932% 9.99912% 10.00390% 10.00330% 10.02410% 10.00650% 

11 1.59805% 0.00113% 0.00000% 0.00000% 0.00000% 0.00000% 

15 0.38342% 0.00028% 0.00000% 0.00000% 0.00000% 0.00000% 

 

Table D.38. Damage detection results for case TWSP OPT, implicit redundant representation (IRR), 
seeded initial population, noise levels of 20 and 30% 

Element IRR, Seeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 30% noise 

 200 GA Generations 133 Hillclimbing 
Iterations 

200 GA Generations 27 Hillclimbing 
Iterations 

6 3.96321% 4.79528% 4.68170% 4.68699% 

10 8.46515% 9.72736% 9.60864% 9.59608% 

11 1.94219% 0.00000% 0.00000% 0.00000% 

16 0.28834% 0.00000% 0.00000% 0.00000% 

17 0.05174% 0.46556% 0.66864% 0.68186% 

 

Table D.39. Damage detection results for case TWSP OPT, implicit redundant representation (IRR), 
unseeded initial population, noise levels of 0, 5 and 10% 

Element IRR, Unseeded Initial Population 

 Damage Indicator 0% noise Damage Indicator 5% noise Damage Indicator 10% noise 

 200 GA 
Generations 

189 Hillclimbing 
Iterations 

180 GA 
Generations 

0 Hillclimbing 
Iterations 

180 GA 
Generations 

0 Hillclimbing 
Iterations 

5 0.22395% 0.00019% 0.00000% - 0.00000% - 

6 4.74736% 4.99983% 4.95031% - 4.89965% - 

7 0.09035% 0.00009% 0.00000% - 0.00000% - 

10 9.88617% 9.99984% 9.93051% - 9.86190% - 

15 0.02370% 0.00009% 0.00000% - 0.00000% - 

17 0.00000% 0.00000% 0.12085% - 0.23868% - 
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Table D.40. Damage detection results for case TWSP OPT, implicit redundant representation (IRR), 
unseeded initial population, noise levels of 20 and 30% 

Element IRR, Unseeded Initial Population 

 Damage Indicator 20% noise Damage Indicator 30% noise 

 115 GA Generations 0 Hillclimbing 
Iterations 

200 GA Generations 57 Hillclimbing 
Iterations 

6 4.76110% - 4.68028% 4.67981% 

10 9.68972% - 9.57489% 9.57441% 

14 0.35698% - 0.07402% 0.07666% 

17 0.00000% - 0.59868% 0.59452% 

 

 
gure D.2. Optimum excitation and sensor layout designs in the Pareto front for the two-span continu

beam problem 
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Table D.41. Damage detection results of trials 1, 2, 3 and 5 for the braced frame problem BRFRM I 

Element Damage Indicators 

 Trial 1 Trial 2 Trial 3 Trial 5 

 GA Hillclimb GA Hillclimb GA Hillclimb GA Hillclimb 

2 0.00161% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

4 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.72812% 0.00000% 

6 0.00000% 0.00000% 0.54685% 0.00349% 0.00000% 0.00000% 0.00000% 0.00000% 

18 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.15701% 0.00000% 

25 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 1.56963% 0.00000% 

28 0.06902% 0.00179% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

30 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.45734% 0.00000% 

36 0.00000% 0.00000% 0.00000% 0.00000% 0.19775% 0.00000% 0.00000% 0.00000% 

39 0.11830% 0.00378% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

43 49.07550% 49.97520% 46.42820% 49.97720% 50.01890% 50.00000% 50.00550% 50.00000% 

44 1.04502% 0.02809% 3.98965% 0.02578% 0.00000% 0.00000% 0.00000% 0.00000% 

46 0.00000% 0.00000% 0.07997% 0.00038% 0.00000% 0.00000% 0.00000% 0.00000% 

 

Table D.42. Damage detection results of trials 4, 7, 8 and 10 for the braced frame problem BRFRM I 

Element Damage Indicators 

 Trial 4 Trial 7 Trial 8 Trial 10 

 GA Hillclimb GA Hillclimb GA Hillclimb GA Hillclimb 

1 0.00132% 0.00000% 0.00585% 0.00000% 0.32922% Corrupted 0.08988% 0.00000% 

2 0.00142% 0.00000% 0.00264% 0.00000% 0.23556% Corrupted 0.01199% 0.00000% 

3 0.00472% 0.00000% 0.38634% 0.00000% 2.74593% Corrupted 0.38370% 0.00000% 

4 0.40485% 0.00000% 0.19270% 0.00000% 0.42552% Corrupted 6.18751% 0.00000% 

5 0.00000% 0.00000% 0.59207% 0.00000% 0.08459% Corrupted 0.00529% 0.00000% 

6 0.00566% 0.00000% 0.01199% 0.00000% 1.64384% Corrupted 0.01813% 0.00189% 

7 0.00066% 0.00000% 0.33838% 0.00000% 0.04220% Corrupted 0.00038% 0.00000% 

8 0.09366% 0.00000% 0.04825% 0.00000% 0.01048% Corrupted 0.19327% 0.00000% 

9 0.00000% 0.00000% 0.00000% 0.00000% 0.00009% Corrupted 0.00264% 0.00000% 

10 0.00000% 0.00000% 0.00227% 0.00000% 0.02861% Corrupted 0.00453% 0.00000% 

11 0.87002% 0.00000% 2.70703% 0.00000% 0.28985% Corrupted 0.02341% 0.00000% 

12 0.00000% 0.00000% 0.00000% 0.00000% 0.30137% Corrupted 0.09659% 0.00000% 

13 0.00028% 0.00000% 0.00585% 0.00000% 0.02115% Corrupted 0.41080% 0.00000% 

14 0.58461% 0.00000% 0.04825% 0.00000% 0.04862% Corrupted 0.00066% 0.00000% 
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Table D.42. (Continued) 

Element Damage Indicators 

 Trial 4 Trial 7 Trial 8 Trial 10 

 GA Hillclimb GA Hillclimb GA Hillclimb GA Hillclimb 

15 0.19912% 0.00000% 0.19279% 0.00000% 3.16655% Corrupted 0.38521% 0.00000% 

16 0.01813% 0.00000% 0.77042% 0.00000% 2.99802% Corrupted 0.00000% 0.00000% 

17 0.01124% 0.00000% 3.09338% 0.00000% 0.00642% Corrupted 1.73561% 0.00000% 

18 0.21413% 0.00000% 1.52327% 0.00000% 0.01473% Corrupted 0.00123% 0.00104% 

19 0.00179% 0.00000% 2.47128% 0.00000% 0.62955% Corrupted 0.02408% 0.00000% 

20 0.00009% 0.00000% 0.67676% 0.00000% 0.01209% Corrupted 0.77334% 0.00000% 

21 0.00000% 0.00000% 6.18751% 0.00000% 0.01218% Corrupted 0.00000% 0.00000% 

22 0.01813% 0.00000% 0.19176% 0.00000% 0.09253% Corrupted 0.02379% 0.00000% 

23 0.09347% 0.00000% 0.02417% 0.00000% 0.00000% Corrupted 0.00000% 0.00000% 

24 0.18845% 0.00000% 12.37500% 0.00000% 0.76825% Corrupted 0.19034% 0.00000% 

25 0.00038% 0.00000% 5.49253% 0.00000% 0.58914% Corrupted 0.04825% 0.00000% 

26 0.00066% 0.00000% 0.00000% 0.00000% 3.17665% Corrupted 0.18128% 0.00000% 

27 3.11245% 0.00000% 2.93665% 0.00000% 1.37504% Corrupted 2.99981% 0.00000% 

28 0.02341% 0.00000% 0.00869% 0.00000% 0.37388% Corrupted 0.00000% 0.00000% 

29 0.00283% 0.00000% 1.54716% 0.00000% 0.10839% Corrupted 0.00000% 0.00000% 

30 0.02219% 0.00000% 1.50448% 0.00000% 3.14134% Corrupted 0.00000% 0.00000% 

31 0.29287% 0.00000% 0.77334% 0.00000% 1.65526% Corrupted 0.04825% 0.00000% 

32 0.13303% 0.00000% 0.00000% 0.00000% 0.03588% Corrupted 0.00293% 0.00000% 

33 0.19024% 0.00000% 1.54678% 0.00000% 0.00255% Corrupted 0.02417% 0.00000% 

34 0.01511% 0.00000% 0.02408% 0.00000% 0.01199% Corrupted 0.00009% 0.00000% 

35 0.16976% 0.00000% 0.29004% 0.00000% 0.03635% Corrupted 0.38663% 0.00000% 

36 0.00142% 0.00000% 0.38634% 0.00000% 3.28107% Corrupted 0.00000% 0.00000% 

37 0.00000% 0.00000% 0.00538% 0.00000% 0.65958% Corrupted 0.00604% 0.00000% 

38 0.00916% 0.00000% 0.02275% 0.00000% 1.16459% Corrupted 0.68847% 0.00000% 

39 0.01095% 0.00000% 0.37445% 0.00000% 0.07544% Corrupted 0.02408% 0.00274% 

40 0.08308% 0.00000% 0.00585% 0.00000% 0.00076% Corrupted 0.00293% 0.00000% 

41 3.09375% 0.00000% 11.79190% 0.00000% 2.12809% Corrupted 0.09659% 0.00000% 

42 1.54386% 0.00000% 0.00000% 0.00000% 2.71789% Corrupted 1.54083% 0.00000% 

43 49.45160% 50.00000% 49.28260% 50.00000% 48.54280% Corrupted 46.40630% 49.97560% 

44 0.19298% 0.00000% 0.00000% 0.00000% 0.59981% Corrupted 3.09366% 0.02766% 

45 0.04239% 0.00000% 0.00585% 0.00000% 0.37152% Corrupted 1.59220% 0.00000% 

46 0.00000% 0.00000% 0.00595% 0.00000% 0.15087% Corrupted 0.04825% 0.00000% 
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Table D.43. Damage detection results of trials 6, 9, 11 and 12 for the braced frame problem BRFRM I 

Element Damage Indicators 

 Trial 6 Trial 9 Trial 11 Trial 12 

 GA Hillclimb GA Hillclimb GA Hillclimb GA Hillclimb 

30 0.00000% 0.00000% 0.68054% 0.00000% 0.00000% - 0.00000% - 

31 0.00000% 0.00000% 0.27677% 0.00000% 0.00000% - 0.00000% - 

43 50.00260% 50.00000% 49.99660% 50.00000% 50.00000% - 50.00000% - 

 

Table D.44. Damage detection results of trials 13, 15, 16 and 17 for the braced frame problem BRFRM I 

Element Damage Indicators 

 Trial 13 Trial 15 Trial 16 Trial 17 

 GA Hillclimb GA Hillclimb GA Hillclimb GA Hillclimb 

1 0.00009% 0.00000% 54.41260% 54.12450% 0.00000% 0.00000% 0.00227% 0.00000% 

2 0.00293% 0.00000% 80.85270% 7.45813% 0.00000% 0.00000% 0.01161% 0.00000% 

3 0.00066% 0.00000% 70.57250% 77.05070% 0.00000% 0.00000% 0.38615% 0.00000% 

4 0.00000% 0.00000% 29.61760% 43.15640% 0.00000% 0.00000% 0.02398% 0.00000% 

5 0.77334% 0.00000% 0.34895% 1.03714% 0.00142% 0.00000% 0.20072% 0.00000% 

6 0.74927% 0.00000% 86.90370% 96.14170% 0.00000% 0.00000% 0.04749% 0.00000% 

7 0.00906% 0.00000% 57.73530% 59.40040% 0.00000% 0.00000% 0.00066% 0.00000% 

8 12.37200% 0.00000% 21.66080% 15.84760% 0.02408% 0.00000% 0.19317% 0.00000% 

9 0.38521% 0.00000% 1.88809% 0.00000% 0.00066% 0.00000% 0.26766% 0.00000% 

10 0.40787% 0.00000% 4.31405% 5.20862% 0.00000% 0.00000% 0.02445% 0.00000% 

11 3.09366% 0.00000% 48.77350% 72.95930% 0.00000% 0.00000% 0.77334% 0.00000% 

12 0.04825% 0.00000% 9.52296% 11.27340% 0.00000% 0.00000% 0.16910% 0.00000% 

13 0.04825% 0.00000% 89.58850% 90.20570% 0.00595% 0.00000% 0.02426% 0.00000% 

14 0.00009% 0.00000% 78.41260% 64.29120% 0.00000% 0.00000% 0.03852% 0.00000% 

15 0.00000% 0.00000% 65.05840% 76.82010% 0.01199% 0.00000% 0.11622% 0.00000% 

16 3.14200% 0.00000% 4.85976% 0.00000% 0.00000% 0.00000% 2.32041% 0.00000% 

17 0.00529% 0.00000% 96.65170% 95.41500% 0.00000% 0.00000% 0.14785% 0.00000% 

18 1.54083% 0.00000% 18.90890% 0.00000% 0.00000% 0.00000% 0.02408% 0.00066% 

19 0.33980% 0.00000% 53.23130% 88.56880% 0.04825% 0.00000% 0.03635% 0.00000% 

20 0.00000% 0.00000% 36.19300% 42.71410% 0.00000% 0.00000% 0.13435% 0.00000% 

21 0.00057% 0.00000% 75.96550% 85.88320% 0.00000% 0.00000% 0.07327% 0.00000% 

22 0.00000% 0.00000% 0.99352% 0.00000% 3.04541% 0.00000% 0.00028% 0.00000% 

 

23 0.08459% 0.00000% 57.00420% 36.96350% 0.00000% 0.00000% 0.00019% 0.00000% 
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Table D.44. (Continued) 

Element Damage Indicators 

 Trial 13 Trial 15 Trial 16 Trial 17 

 GA Hillclimb GA Hillclimb GA Hillclimb GA Hillclimb 

24 0.00000% 0.00000% 1.01589% 29.11130% 0.00000% 0.00000% 3.09064% 0.00000% 

25 4.64063% 0.00000% 28.58440% 0.00000% 0.09659% 0.24330% 0.34008% 0.00000% 

26 0.00000% 0.00000% 30.46230% 0.00000% 0.00000% 0.00000% 0.01265% 0.00057% 

27 10.85860% 0.00000% 59.46320% 84.14710% 0.00000% 0.00000% 4.25391% 0.00000% 

28 1.74014% 0.00000% 47.77320% 49.00120% 0.02408% 2.93051% 0.09545% 0.00000% 

29 0.00000% 0.00000% 73.75180% 54.02320% 0.00293% 0.00000% 1.24504% 0.00000% 

30 49.30660% 0.00000% 60.34000% 47.78830% 0.19327% 0.00000% 0.00019% 0.00000% 

31 10.84010% 0.00000% 86.05240% 81.03160% 0.00000% 0.00000% 0.77353% 0.00000% 

32 0.58036% 0.00000% 2.36082% 1.66008% 0.00595% 0.10008% 0.00293% 0.00000% 

33 0.00595% 0.00000% 65.81550% 41.09830% 0.00000% 0.00000% 0.16324% 0.00000% 

34 0.02408% 0.00000% 9.43902% 5.28633% 0.00000% 0.00000% 0.00000% 0.00000% 

35 0.00595% 0.00000% 1.34993% 6.24972% 0.00000% 0.00000% 0.00293% 0.00000% 

36 0.00000% 0.00000% 63.03360% 47.59390% 0.00000% 0.00000% 0.01199% 0.00000% 

37 5.60733% 0.00000% 86.33660% 86.28590% 0.00000% 0.00000% 2.70854% 0.00123% 

38 0.02408% 0.00000% 66.47860% 91.83910% 0.00000% 0.00000% 0.81725% 0.00000% 

39 0.09659% 0.00000% 25.50810% 0.00000% 18.56250% 6.51720% 7.43688% 0.00000% 

40 6.18741% 0.00000% 56.37880% 46.73180% 0.00000% 0.00000% 0.38653% 0.00000% 

41 0.04230% 0.00000% 57.71420% 49.26250% 0.00264% 0.00000% 0.05429% 0.00000% 

42 1.54074% 0.00000% 69.12020% 0.00000% 0.00000% 0.00000% 1.45586% 0.00000% 

43 49.50000% 50.00000% 6.14719% 0.00000% 0.00000% 0.00000% 24.72280% 49.97670% 

44 0.00066% 0.00000% 0.12274% 0.00000% 49.49700% 49.72710% 24.63510% 0.02625% 

45 0.00000% 0.00000% 0.31997% 0.00000% 0.00000% 0.00000% 0.07515% 0.00000% 

46 0.29297% 0.00000% 4.18555% 0.00000% 0.00000% 0.00000% 0.41127% 0.00028% 

 

Table D  Damage detection results of trials 14, 19, 21, 23, 24 for the braced frame problem BRFRM I 

Element Damage Indicators 

.45.

 Trial 14 Trial 19 Trial 21 Trial 23 Trial 24 

 GA GA GA Hillclimb GA Hillclimb GA Hillclimb 

6 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% Corrupted 0.00444% 0.00000% 

30 0.00000% 0.00000% 0.00009% 0.00000% 0.00000% Corrupted 0.04044% 0.00000% 

43 50.00000% 50.00000% 50.00000% 50.00000% 49.86010% Corrupted 49.99950% 50.00000% 

44 0.00000% 0.00000% 0.00000% 0.00000% 0.15852% Corrupted 0.00000% 0.00000% 
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Table D.46. Damage detection results of trials 18, 20, 22, and 25 for the braced frame problem BRFRM I 

Element Damage Indicators 

 Trial 18 Trial 20 Trial 22 Trial 25 

 GA Hillclimb GA Hillclimb GA Hillclimb GA Hillclimb 

1 1.20840% 0.00000% 0.38663% 0.00000% 0.00000% 0.00000% 86.51860% 94.28540% 

2 0.04825% 0.00000% 0.04825% 0.00000% 0.00113% 0.00000% 91.97620% 90.19280% 

3 0.69489% 0.00000% 24.36470% 0.00000% 0.02408% 0.00000% 39.30120% 52.84360% 

4 0.01057% 0.00000% 0.04560% 0.00000% 0.00000% 0.00000% 9.65306% 23.85630% 

5 0.19043% 0.00000% 9.28126% 0.00000% 0.74955% 0.00000% 0.40201% 4.46068% 

6 5.43522% 0.00000% 0.38030% 0.00000% 0.00585% 0.01784% 14.86390% 0.00000% 

7 0.00000% 0.00000% 9.28721% 0.00000% 0.00000% 0.00000% 55.56570% 24.52340% 

8 0.01832% 0.00000% 0.01133% 0.00000% 0.00009% 0.00000% 69.90200% 59.31170% 

9 0.03918% 0.00000% 0.17514% 0.00000% 0.00000% 0.00000% 1.45841% 0.00000% 

10 0.01199% 0.00000% 0.00000% 0.00000% 0.08601% 0.00000% 0.12302% 0.00000% 

11 0.38955% 0.00000% 1.53489% 0.00000% 3.11783% 0.00000% 81.88700% 59.27040% 

12 0.14502% 0.00000% 3.04532% 0.00000% 0.38653% 0.00000% 29.50190% 9.90552% 

13 0.15069% 0.00000% 0.00000% 0.00000% 0.04230% 0.00000% 67.19970% 65.48070% 

14 0.04532% 0.00000% 0.00000% 0.00000% 0.00142% 0.00000% 21.00750% 23.16670% 

15 0.01511% 0.00000% 0.39871% 0.00000% 0.02408% 0.00000% 1.04469% 0.00000% 

16 0.68743% 0.00000% 1.54669% 0.00000% 0.04806% 0.00000% 62.67410% 58.29140% 

17 0.04371% 0.00000% 0.00142% 0.00000% 0.02351% 0.00000% 13.53970% 14.01600% 

18 0.02332% 0.00000% 0.77334% 0.00000% 0.74927% 0.00000% 9.62256% 0.00000% 

19 0.00132% 0.00000% 0.02323% 0.00000% 1.54678% 0.00000% 61.32670% 67.35020% 

20 0.01133% 0.00000% 0.00066% 0.00000% 0.00066% 0.00000% 7.85514% 15.16820% 

21 0.02408% 0.00000% 0.01813% 0.00000% 0.00028% 0.00000% 45.88990% 32.04900% 

22 0.62700% 0.00000% 0.01209% 0.00000% 0.14502% 0.00000% 1.73721% 0.00000% 

23 0.19327% 0.00000% 0.09630% 0.00000% 0.76740% 0.00000% 55.33450% 45.64440% 

24 0.24765% 0.00000% 0.07251% 0.00000% 6.15116% 0.00000% 61.92440% 60.12340% 

25 2.82845% 0.00000% 11.60160% 0.00000% 0.00000% 0.00000% 33.37780% 16.04830% 

26 1.37533% 0.00000% 18.56540% 0.00000% 1.54688% 0.00000% 24.59650% 44.01560% 

27 0.05108% 0.00000% 11.98970% 0.00000% 0.00000% 0.00000% 91.77840% 92.07220% 

28 0.00453% 0.00123% 3.04551% 0.00000% 0.01057% 0.00000% 36.86410% 31.21650% 

29 0.19213% 0.00000% 1.45029% 0.00000% 0.00009% 0.00359% 84.85330% 80.03480% 

30 0.05108% 0.00000% 1.54688% 0.00000% 0.19279% 0.00000% 57.22560% 57.22560% 

31 0.77259% 0.00000% 0.77334% 0.00000% 0.00293% 0.00000% 85.23010% 86.39190% 

32 0.01171% 0.00000% 0.00066% 0.00179% 0.09659% 0.00000% 16.60150% 22.48760% 
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Table D.46. (Continued) 

Element Damage Indicators 

 Trial 18 Trial 20 Trial 22 Trial 25 

 GA Hillclimb GA Hillclimb GA Hillclimb GA Hillclimb 

33 0.00264% 0.00000% 1.16082% 0.00000% 0.00000% 0.00000% 31.52170% 27.21440% 

34 0.00066% 0.00000% 0.02408% 0.00000% 0.00000% 0.00000% 2.41180% 2.79153% 

35 0.33838% 0.00000% 0.00142% 0.00000% 0.00000% 0.00000% 27.61530% 40.50390% 

36 0.01813% 0.00000% 2.90899% 0.00000% 2.90020% 0.00000% 15.61750% 0.00000% 

37 0.00283% 0.00123% 0.00000% 0.00000% 0.00000% 0.00000% 36.06120% 33.71710% 

38 0.00000% 0.00000% 0.00604% 0.00000% 0.00000% 0.00000% 90.45890% 90.24560% 

39 0.74917% 0.00000% 0.37605% 0.03333% 3.81885% 0.00000% 75.05040% 81.38550% 

40 0.35915% 0.00000% 0.09649% 0.00000% 0.07242% 0.00000% 35.66120% 35.66120% 

41 0.77325% 0.00000% 0.00009% 0.00000% 0.04862% 0.00000% 58.06210% 55.02630% 

42 1.53621% 0.00000% 0.19327% 0.00000% 0.00000% 0.00000% 11.92840% 0.00000% 

43 49.50000% 49.97480% 11.69810% 49.73350% 47.95320% 49.94900% 3.69290% 3.53570% 

44 0.13303% 0.02861% 24.65330% 0.30118% 2.70703% 0.05778% 7.08793% 7.53234% 

45 0.00000% 0.00000% 0.38209% 0.00000% 0.04825% 0.00000% 0.64268% 0.00000% 

46 0.00585% 0.00000% 0.72510% 0.00491% 3.11783% 0.00000% 0.80205% 0.00000% 

 

Table D.47. Results of 25 initial trials arranged in trial pairs by mutation rate 

Trial Population Size Primary 
Crossover 

Rate 

Mutation 
Rate 

Fixed or 
IRR 

Initial 
Seed 

Generation 
Number 

Hillclimbing 
Iterations 

Elements 
located before 
hill-climbing 

Elements 
located after 
hill-climbing

4 100 0.7 0.005 Fixed yes 200 94 Almost All 1 

7 100 0.7 0.01 Fixed yes 120 93 Almost All 1 

8 200 0.7 0.005 Fixed yes 200 2106 Almost All 1 

22 200 0.7 0.01 Fixed yes 101 3380 About Half 5 

18 300 0.7 0.005 Fixed yes 155 2360 Almost All 4 

16 300 0.7 0.01 Fixed yes 50 92 Failed Failed 

10 100 0.9 0.005 Fixed yes 74 4680 Almost All 5 

15 100 0.9 0.01 Fixed no 200 761 Failed Failed 

25 200 0.9 0.005 Fixed no 200 537 Failed Failed 

20 200 0.9 0.01 Fixed yes 78 4702 Almost All 5 

17 300 0.9 0.005 Fixed yes 200 7352 Almost All 6 

13 300 0.9 0.01 Fixed yes 57 99 Almost All 1 
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Table D.47. (Continued) 

Trial Population Size Primary 
Crossover 

Rate 

Mutation 
Rate 

Fixed or 
IRR 

Initial 
Seed 

Generation 
Number 

Hillclimbing 
Iterations 

Elements 
located before 
hill-climbing 

Elements 
located after 
hill-climbing

1 100 0.7 0.005 IRR no 200 3673 5 4 

9 100 0.7 0.01 IRR no 200 38 3 1 

24 200 0.7 0.005 IRR no 200 25 3 1 

6 200 0.7 0.01 IRR no 200 14 1 1 

2 300 0.7 0.005 IRR no 200 4960 4 4 

3 300 0.7 0.01 IRR no 200 37 2 1 

11 100 0.9 0.005 IRR yes 169 0 1 1 

23 100 0.9 0.01 IRR yes 200 94 2 2 

21 200 0.9 0.005 IRR yes 200 3 1 1 

19 200 0.9 0.01 IRR yes 145 0 1 1 

12 300 0.9 0.005 IRR yes 177 0 1 1 

5 300 0.9 0.01 IRR no 200 73 5 1 

14 300 0.9 0.01 IRR yes 175 0 1 1 

 

Table D  Results of 25 initial trials arranged in trial pairs by primary crossover rate 

Trial Population Size Primary 
Crossover 

Rate 

Mutation 
Rate 

Fixed or 
IRR 

Initial 
Seed 

Number 
Generations 

Hill-climbing 
Operations 

Elements 
located before 

climbing 

Elements 
located after 

climbing 

.48.

4 100 0.7 0.005 Fixed yes 200 94 Almost All 1 

10 100 0.9 0.005 Fixed yes 74 4680 Almost All 5 

8 200 0.7 0.005 Fixed yes 200 2106 Almost All 1 

25 200 0.9 0.005 Fixed no 200 537 Failed Failed 

18 300 0.7 0.005 Fixed yes 155 2360 Almost All 4 

17 300 0.9 0.005 Fixed yes 200 7352 Almost All 6 

1 100 0.7 0.005 IRR no 200 3673 5 4 

11 100 0.9 0.005 IRR yes 169 0 1 1 

24 200 0.7 0.005 IRR no 200 25 3 1 

21 200 0.9 0.005 IRR yes 200 3 1 1 

2 300 0.7 0.005 IRR no 200 4960 4 4 

12 300 0.9 0.005 IRR yes 177 0 1 1 

7 100 0.7 0.01 Fixed yes 120 93 Almost All 1 

15 100 0.9 0.01 Fixed no 200 761 Failed Failed 
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Table D.48. (Continued) 

Trial Population Size Primary 
Crossover 

Rate 

Mutation 
Rate 

Fixed or 
IRR 

Initial 
Seed 

Number 
Generations 

Hill-climbing 
Operations 

Elements 
located before 

climbing 

Elements 
located after 

climbing 

22 200 0.7 0.01 Fixed yes 101 3380 About Half 5 

20 200 0.9 0.01 Fixed yes 78 4702 Almost All 5 

16 300 0.7 0.01 Fixed yes 50 92 Failed Failed 

13 300 0.9 0.01 Fixed yes 57 99 Almost All 1 

9 100 0.7 0.01 IRR no 200 38 3 1 

23 100 0.9 0.01 IRR yes 200 94 2 2 

6 200 0.7 0.01 IRR no 200 14 1 1 

19 200 0.9 0.01 IRR yes 145 0 1 1 

3 300 0.7 0.01 IRR no 200 37 2 1 

5 300 0.9 0.01 IRR no 200 73 5 1 

14 300 0.9 0.01 IRR yes 175 0 1 1 

 

Table D.49. Results of 25 preliminary trials arranged by population size 

Trial Population Size Primary 
Crossover 

Rate 

Mutation 
Rate 

Fixed or 
IRR 

Initial 
Seed 

Number 
Generations 

Hill-climbing 
Operations 

Elements 
located before 

climbing 

Elements 
located after 

climbing 

4 100 0.7 0.005 Fixed yes 200 94 Almost All 1 

1 100 0.7 0.005 IRR no 200 3673 5 4 

7 100 0.7 0.01 Fixed yes 120 93 Almost All 1 

9 100 0.7 0.01 IRR no 200 38 3 1 

10 100 0.9 0.005 Fixed yes 74 4680 Almost All 5 

11 100 0.9 0.005 IRR yes 169 0 1 1 

15 100 0.9 0.01 Fixed no 200 761 Failed Failed 

23 100 0.9 0.01 IRR yes 200 94 2 2 

8 200 0.7 0.005 Fixed yes 200 2106 Almost All 1 

24 200 0.7 0.005 IRR no 200 25 3 1 

22 200 0.7 0.01 Fixed yes 101 3380 About Half 5 

6 200 0.7 0.01 IRR no 200 14 1 1 

25 200 0.9 0.005 Fixed no 200 537 Failed Failed 

21 200 0.9 0.005 IRR yes 200 3 1 1 

20 200 0.9 0.01 Fixed yes 78 4702 Almost All 5 

19 200 0.9 0.01 IRR yes 145 0 1 1 
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Table D.49. (Continued) 

Trial Population Size Primary 
Crossover 

Rate 

Mutation 
Rate 

Fixed or 
IRR 

Initial 
Seed 

Number 
Generations 

Hill-climbing 
Operations 

Elements 
located before 

climbing 

Elements 
located after 

climbing 

18 300 0.7 0.005 Fixed yes 155 2360 Almost All 4 

2 300 0.7 0.005 IRR no 200 4960 4 4 

16 300 0.7 0.01 Fixed yes 50 92 Failed Failed 

3 300 0.7 0.01 IRR no 200 37 2 1 

17 300 0.9 0.005 Fixed yes 200 7352 Almost All 6 

12 300 0.9 0.005 IRR yes 177 0 1 1 

13 300 0.9 0.01 Fixed yes 57 99 Almost All 1 

5 300 0.9 0.01 IRR no 200 73 5 1 

14 300 0.9 0.01 IRR yes 175 0 1 1 

 

Table D.50. Damage detection results of trials 28, 29, 30, and 31 for the braced frame problem BRFRM II 
including 5% measurement noise 

Element Damage Indicators 

 Trial 28 Trial 29 Trial 30 Trial 31 

 GA Hillclimb GA Hillclimb GA Hillclimb GA Hillclimb 

7 0.00000% 0.00000% 7.83550% 7.46549% 0.00000% 0.00000% 0.00000% 0.00000% 

13 0.00000% 0.00000% 0.00000% 0.00000% 2.52925% 3.04390% 0.00000% 0.00000% 

18 0.00000% 0.00000% 1.29687% 2.04444% 0.00000% 0.00000% 0.00000% 0.00000% 

25 0.00000% 0.00000% 0.00000% 0.00000% 3.10102% 2.69816% 0.00000% 0.00000% 

28 0.00000% 0.00000% 2.72648% 1.54943% 0.65703% 0.66571% 0.00000% 0.00000% 

35 10.80300% 10.00000% 0.00000% 0.00000% 9.09281% 9.05155% 8.05284% 8.44711% 

37 16.54160% 19.99960% 19.36170% 22.99270% 0.00000% 0.00000% 18.23220% 20.42830% 

38 0.00000% 0.00000% 0.00000% 0.00000% 11.88210% 11.76250% 2.19541% 0.41098% 

39 26.48200% 20.00080% 18.35700% 11.94120% 37.93530% 38.18210% 23.22010% 19.53880% 

41 0.00000% 0.00000% 0.95226% 0.50011% 0.00000% 0.00000% 0.00000% 0.00000% 

42 0.00000% 0.00000% 9.67421% 9.07402% 0.00000% 0.00000% 0.00000% 0.00000% 

43 50.14190% 50.00000% 49.80030% 49.55560% 49.32840% 49.34110% 49.45930% 49.76620% 
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Table D.51. Damage detection results for case UBFRM I, implicit redundant representation (IRR), seeded 
initial population, noise levels of 0, 5 and 10% 

Element IRR, Seeded Initial Population 

 Damage Indicator 0 % noise Damage Indicator 5 % noise Damage Indicator 10 % noise 

 261 GA 
Generations 

0 Hillclimbing 
Iterations 

300 GA 
Generations 

332 Hillclimbing 
Iterations 

300 GA 
Generations 

231 Hillclimbing 
Iterations 

6 0.00000% - 0.23566% 0.26823% 0.61907% 0.65316% 

12 0.00000% - 0.00000% 0.00000% 1.02194% 1.39279% 

14 0.00005% - 0.00000% 0.00000% 0.62738% 0.68308% 

21 10.00000% - 8.99736% 9.94867% 10.19170% 10.18320% 

22 0.00000% - 0.88900% 0.00000% 0.00000% 0.00000% 

31 0.00000% - 0.12293% 0.11103% 0.23056% 0.21555% 

36 0.00000% - 1.15062% 0.96935% 2.48733% 2.42464% 

45 0.00000% - 0.14870% 0.40900% 0.00000% 0.00000% 

52 0.00000% - 0.10329% 0.10650% 0.20894% 0.19742% 

58 0.00000% - 0.93857% 1.12589% 1.36088% 1.01023% 

61 0.00000% - 0.15729% 0.17929% 0.33399% 0.32842% 

 

Table D.52. Damage detection results for case UBFRM I, implicit redundant representation (IRR), 
unseeded initial population, noise levels of 0, 5 and 10% 

Element IRR, Unseeded Initial Population 

 Damage Indicator 0 % noise Damage Indicator 5 % noise Damage Indicator 10 % noise 

 300 GA 
Generations 

179 Hillclimbing 
Iterations 

300 GA 
Generations 

181 Hillclimbing 
Iterations 

300 GA 
Generations 

164 Hillclimbing 
Iterations 

6 0.00000% 0.00000% 0.00000% 0.00000% 1.43396% 0.98077% 

10 0.00000% 0.00000% 0.00000% 0.00000% 0.43666% 0.11877% 

12 0.00000% 0.00000% 0.00000% 0.00000% 2.44491% 1.70631% 

14 0.00000% 0.00000% 0.14285% 0.24312% 0.00000% 0.00000% 

16 0.00000% 0.00000% 0.00000% 0.00000% 2.22080% 0.00000% 

20 0.48387% 0.00047% 0.00000% 0.00000% 0.00000% 0.00000% 

21 9.71037% 9.99965% 10.04130% 10.11320% 8.66209% 9.64334% 

24 0.73369% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

31 0.00000% 0.00000% 0.23802% 0.26653% 0.00000% 0.00000% 

33 0.21998% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

36 0.00000% 0.00000% 1.80028% 1.99449% 0.00000% 0.00000% 

45 0.00000% 0.00000% 0.25256% 0.00000% 1.20878% 2.66521% 

52 0.00000% 0.00000% 0.14342% 0.14105% 0.36293% 0.34414% 

58 0.00000% 0.00000% 0.45432% 0.37643% 0.00000% 0.00000% 

67 0.08724% 0.00028% 0.00000% 0.00000% 0.00000% 0.00000% 

 

69 0.00000% 0.00000% 0.74096% 0.75295% 1.89262% 1.65451% 
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Table D.53. Damage detection results for case UBFRM II, implicit redundant representation (IRR), seeded 
initial population, noise levels of 0, 5 and 10% 

Element IRR, Seeded Initial Population 

 Damage Indicator 0 % noise Damage Indicator 5 % noise Damage Indicator 10 % noise 

 141 GA 
Generations 

0 Hillclimbing 
Iterations 

300 GA 
Generations 

82 Hillclimbing 
Iterations 

300 GA 
Generations 

89 Hillclimbing 
Iterations 

6 0.00000% - 0.46036% 0.47301% 1.02722% 1.02600% 

12 0.00000% - 0.57687% 0.70046% 0.99050% 0.98606% 

20 0.00000% - 0.10584% 0.00000% 0.00000% 0.00000% 

21 0.00000% - 0.00000% 0.00000% 0.62955% 0.63701% 

28 10.00000% - 8.57570% 8.70779% 6.08054% 6.05967% 

36 0.00000% - 0.60963% 0.56696% 0.94046% 0.95131% 

45 0.00000% - 0.99097% 0.96397% 2.77407% 2.77699% 

52 0.00000% - 0.15031% 0.14181% 0.29429% 0.29495% 

61 0.00000% - 0.13463% 0.13180% 0.29391% 0.29382% 

75 0.00000% - 0.11849% 0.11481% 0.17212% 0.16928% 

 

Table D.54. Damage detection results for case UBFRM II, implicit redundant representation (IRR), 
unseeded initial population, noise levels of 0, 5 and 10% 

Element IRR, Unseeded Initial Population 

 Damage Indicator 0 % noise Damage Indicator 5 % noise Damage Indicator 10 % noise 

 300 GA 
Generations 

5 Hillclimbing 
Iterations 

300 GA 
Generations 

179 Hillclimbing 
Iterations 

300 GA 
Generations 

55 Hillclimbing 
Iterations 

6 0.00000% 0.00000% 0.50096% 0.53627% 0.94197% 0.97010% 

12 0.00000% 0.00000% 0.91430% 1.04110% 1.32642% 1.45728% 

16 0.00000% 0.00000% 0.61431% 0.41557% 0.00000% 0.00000% 

28 9.99994% 10.00000% 8.48006% 8.74640% 7.59635% 7.52242% 

36 0.00000% 0.00000% 0.00000% 0.00000% 1.29828% 1.22927% 

45 0.00000% 0.00000% 1.38703% 1.30914% 2.41407% 2.50895% 

52 0.00000% 0.00000% 0.00000% 0.00000% 0.37341% 0.37737% 

58 0.00000% 0.00000% 0.00000% 0.00000% 0.29193% 0.16862% 

61 0.00000% 0.00000% 0.14096% 0.16050% 0.00000% 0.00000% 

69 0.00000% 0.00000% 0.00000% 0.00000% 1.27969% 1.22313% 

70 0.00047% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 
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Table D.55. Damage detection results of trials 1(a) and 1(b) for the unbraced frame problem UBFRM III 

Element Damage Indicator, 0% noise 

 Trial 1(a) Trial 1(b) 

 300 GA Generations 2026 Hillclimbing 
Iterations 

300 GA Generations 327 Hillclimbing 
Iterations 

2 1.20585% 0.12840% 0.00000% 0.00000% 

3 1.53243% 7.14826% 5.98876% 6.43251% 

5 2.38031% 0.76725% 0.00000% 0.00000% 

6 0.00000% 0.00000% 0.37378% 0.50729% 

11 0.00000% 0.00000% 1.73655% 0.89146% 

18 0.00000% 0.00000% 0.73737% 0.71377% 

27 9.02615% 8.95553% 5.78285% 7.67547% 

28 0.00000% 0.00000% 0.00264% 0.00000% 

31 0.28107% 0.00000% 0.06005% 0.05759% 

34 2.99405% 9.36208% 0.00000% 0.00000% 

42 0.00000% 0.00000% 0.96954% 0.76315% 

44 0.00000% 0.00000% 0.59830% 0.57187% 

46 4.88082% 1.11862% 0.00000% 0.00000% 

59 0.00000% 0.00000% 0.34782% 0.46924% 

 

Table D.56. Damage detection results of trials 2(a) and 2(b) for the unbraced frame problem UBFRM III 

Element Damage Indicator, 0% noise 

 Trial 2(a) Trial 2(b) 

 300 GA Generations 1150 Hillclimbing 
Iterations 

300 GA Generations 159 Hillclimbing 
Iterations 

2 0.68497% 0.37482% 0.00000% 0.00000% 

3 4.26533% 6.70310% 4.82105% 4.99959% 

5 1.84716% 2.03759% 0.00000% 0.00000% 

19 2.74409% 3.56823% 0.00000% 0.00000% 

27 11.64880% 11.61440% 4.72485% 4.99950% 

34 0.00000% 0.00000% 10.14160% 10.00030% 

46 3.36491% 1.90952% 0.12576% 0.00000% 

49 0.00000% 0.00000% 9.34404% 9.99984% 
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Table D  Damage detection results of trials 3, 4 and 5(a) for the unbraced frame problem UBFRM IV 

Element Damage Indicators, 0% noise 

.57.

 Trial 3 Trial 4 Trial 5(a) 

 255 GA 
Generations 

490 Hillclimbing 
Iterations 

330 GA 
Generations 

258 Hillclimbing 
Iterations 

400 GA 
Generations 

293 Hillclimbing 
Iterations 

4 10.61320% 10.14140% 10.25360% 10.04200% 10.49980% 10.00120% 

10 9.81932% 9.99276% 9.72236% 9.99541% 9.81828% 9.99918% 

11 8.08428% 8.80135% 10.45030% 9.83330% 9.77098% 9.99975% 

16 0.00000% 0.00000% 0.00000% 0.00000% 8.32900% 9.99862% 

18 20.18990% 20.00060% 20.18140% 20.00090% 20.14120% 20.00070% 

19 14.44860% 14.72690% 0.81810% 0.00000% 0.00000% 0.00000% 

20 4.48400% 5.60856% 3.83651% 2.72620% 0.00000% 0.00000% 

21 4.71465% 3.37690% 0.00000% 0.00000% 0.00000% 0.00000% 

28 0.00000% 0.00000% 22.48590% 21.39320% 20.74540% 20.00080% 

48 0.23018% 1.37646% 0.00000% 0.00000% 0.00000% 0.00000% 

51 0.86776% 0.48821% 0.00000% 0.00000% 0.00000% 0.00000% 

75 0.17127% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

 

Table D  Damage detection results of trials 5(b), 6 and 7 for the unbraced frame problem UBFRM IV 

Element Damage Indicators, 5% noise 

.58.

 Trial 5(b) Trial 6 Trial 7 

 400 GA 
Generations 

211 Hillclimbing 
Iterations 

400 GA 
Generations 

424 Hillclimbing 
Iterations 

379 GA 
Generations 

758 Hillclimbing 
Iterations 

4 20.59410% 20.55670% 0.00000% 0.00000% 9.86323% 10.48130% 

5 5.37290% 5.49913% 0.00000% 0.00000% 0.00000% 0.00000% 

6 0.00000% 0.00000% 0.00000% 0.00000% 1.59286% 0.00000% 

7 0.00000% 0.00000% 0.00000% 0.00000% 1.44425% 3.06203% 

10 8.53784% 8.63179% 12.08830% 11.99440% 10.80200% 10.09610% 

11 13.91800% 13.91800% 21.14400% 22.11360% 0.00000% 0.00000% 

16 36.33210% 36.98790% 0.00000% 0.00000% 0.00000% 0.00000% 

18 20.34630% 20.31970% 18.05740% 18.11920% 19.09350% 19.67370% 

22 2.79238% 2.79248% 0.00000% 0.00000% 0.00000% 0.00000% 

24 0.00000% 0.00000% 0.00000% 0.00000% 2.85064% 2.22071% 

28 0.00000% 0.00000% 0.00000% 0.00000% 29.50820% 24.22880% 

38 0.00000% 0.00000% 0.00000% 0.00000% 4.02264% 9.20540% 

40 1.78782% 2.00516% 0.00000% 0.00000% 0.00000% 0.00000% 

42 0.00000% 0.00000% 0.00000% 0.00000% 1.50411% 3.69234% 

 

 



 303

Table D.58. (Continued) 

Element Damage Indicators, 5% noise 

 Trial 5(b) Trial 6 Trial 7 

 400 GA 
Generations 

211 Hillclimbing 
Iterations 

400 GA 
Generations 

424 Hillclimbing 
Iterations 

379 GA 
Generations 

758 Hillclimbing 
Iterations 

47 10.16050% 8.94363% 0.00000% 0.00000% 0.00000% 0.00000% 

48 0.00000% 0.00000% 4.81935% 5.65766% 0.00000% 0.00000% 

51 0.00000% 0.00000% 0.00000% 0.00000% 2.23761% 3.72972% 

55 0.00000% 0.00000% 0.00000% 0.00000% 12.32780% 5.87197% 

56 7.23474% 7.08472% 0.00000% 0.00000% 0.00000% 0.00000% 

59 9.41523% 9.66439% 0.00000% 0.00000% 0.00000% 0.00000% 

68 0.00000% 0.00000% 6.19364% 3.96283% 0.00000% 0.00000% 

73 0.00000% 0.00000% 5.81769% 5.31748% 0.00000% 0.00000% 

79 0.00000% 0.00000% 2.65501% 2.50461% 0.00000% 0.00000% 

 

Table D.59. Damage detection results of trials 8, 9 and 10 for the unbraced frame problem UBFRM IV 

Element Damage Indicators, 5% noise 

 Trial 8 Trial 9 Trial 10 

 400 GA 
Generations 

624 Hillclimbing 
Iterations 

400 GA 
Generations 

502 Hillclimbing 
Iterations 

400 GA 
Generations 

308 Hillclimbing 
Iterations 

2 0.00000% 0.00000% 0.00000% 0.00000% 0.62502% 0.75767% 

4 12.79700% 11.44210% 11.02550% 9.72642% 14.25630% 12.54260% 

10 8.04637% 9.49629% 6.88296% 9.58792% 0.00000% 0.00000% 

11 8.12157% 8.50961% 8.23751% 9.72104% 7.43481% 8.04132% 

12 0.00000% 0.00000% 2.73583% 2.90370% 0.00000% 0.00000% 

13 0.00000% 0.00000% 0.00000% 0.00000% 0.78005% 1.32859% 

16 11.83270% 15.47480% 10.75810% 17.15590% 0.00000% 0.00000% 

18 21.82430% 20.64470% 22.35360% 20.19610% 25.89780% 25.08900% 

19 0.00000% 0.00000% 0.00000% 0.00000% 7.13400% 0.00000% 

21 5.21929% 5.57712% 2.06351% 3.52135% 4.15581% 4.03732% 

24 0.00000% 0.00000% 0.00000% 0.00000% 0.27446% 1.29092% 

28 0.00000% 0.00000% 17.97740% 0.00000% 0.00000% 0.00000% 

36 14.80750% 14.06480% 0.00000% 0.00000% 0.00000% 0.00000% 

38 26.34010% 8.03358% 0.00000% 0.00000% 46.59810% 44.25530% 

43 0.00000% 0.00000% 0.87342% 0.00000% 0.00000% 0.00000% 

56 0.00000% 0.00000% 0.00000% 0.00000% 2.26055% 1.10983% 

67 0.00000% 0.00000% 0.00000% 0.00000% 13.38410% 0.00000% 

73 4.23125% 3.78609% 0.00000% 0.00000% 0.00000% 0.00000% 
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Table D.60. Damage detection results of trial 11 for the unbraced frame problem UBFRM IV 

Element Trial 11, Damage Indicators, 5% noise 

 400 GA Generations 302 Hillclimbing Iterations 

3 5.60157% 6.29816% 

4 7.75978% 8.00988% 

10 11.56650% 11.50770% 

11 12.52250% 12.45570% 

16 11.81700% 9.95164% 

18 18.35340% 18.37000% 

28 16.87670% 19.43840% 

49 1.78225% 0.00000% 

 

Table D  Plate girder damage detection results for cases KSTSP I, II and III, fixed representation, 
seeded initial population, noise free measurements 

Element Damage Indicators, Fixed Representation Seeded Initial Population, 0% noise 

.61.

 KSTSP I KSTSP II KSTSP III 

 200 GA 
Generations 

119 Hillclimbing 
Iterations 

200 GA 
Generations 

285 Hillclimbing 
Iterations 

200 GA 
Generations 

187 Hillclimbing 
Iterations 

1 0.33262% 0.00000% 4.22049% 0.00047% 0.00000% 0.00000% 

2 0.09130% 0.00000% 0.03635% 0.00000% 0.36255% 0.00000% 

3 0.38899% 0.00000% 0.10083% 0.00000% 0.00000% 0.00000% 

4 5.99075% 10.00000% 0.00642% 0.00000% 1.54952% 0.00000% 

5 0.39909% 0.00000% 0.11830% 0.00000% 0.01057% 0.00000% 

6 0.00415% 0.00000% 0.09064% 0.00000% 0.00066% 0.00000% 

7 1.37721% 0.00000% 0.00755% 0.00000% 0.01133% 0.00000% 

8 0.04900% 0.00000% 0.46150% 0.00000% 0.09668% 0.00000% 

9 0.00009% 0.00000% 6.36330% 9.99975% 0.00009% 0.00000% 

10 0.02530% 0.00000% 0.14445% 0.00000% 0.68242% 0.00000% 

11 0.11084% 0.00000% 0.00529% 0.00000% 0.02379% 0.00000% 

12 0.04164% 0.00000% 0.04815% 0.00000% 0.00142% 0.00000% 

13 0.09300% 0.00000% 0.47094% 0.00000% 0.00028% 0.00000% 

14 0.00944% 0.00000% 0.08384% 0.00000% 6.18146% 9.99994% 

15 0.04796% 0.00000% 0.00264% 0.00000% 0.43525% 0.00009% 

16 0.00038% 0.00000% 0.38691% 0.00009% 0.02408% 0.00000% 

17 0.00283% 0.00000% 0.09828% 0.00000% 0.01199% 0.00000% 

18 0.02181% 0.00000% 0.05429% 0.00000% 0.72529% 0.00000% 

19 0.01124% 0.00000% 0.00038% 0.00000% 0.19034% 0.00009% 
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Table D.61. (Continued) 

Element Damage Indicators, Fixed Representation Seeded Initial Population, 0% noise 

 KSTSP I KSTSP II KSTSP III 

 200 GA 
Generations 

119 Hillclimbing 
Iterations 

200 GA 
Generations 

285 Hillclimbing 
Iterations 

200 GA 
Generations 

187 Hillclimbing 
Iterations 

20 0.04721% 0.00000% 0.15097% 0.00000% 0.77948% 0.00000% 

21 0.77363% 0.00000% 0.02011% 0.00000% 0.00453% 0.00000% 

22 0.42420% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

23 0.03559% 0.00000% 0.67534% 0.00009% 0.10612% 0.00000% 

24 0.05721% 0.00000% 0.16919% 0.00000% 0.00000% 0.00000% 

25 0.00906% 0.00000% 0.00283% 0.00000% 0.00085% 0.00000% 

26 0.00000% 0.00000% 0.00283% 0.00000% 0.00670% 0.00000% 

27 0.16910% 0.00000% 0.00255% 0.00000% 0.00000% 0.00000% 

28 0.02842% 0.00000% 0.01180% 0.00000% 0.04843% 0.00000% 

29 0.12746% 0.00000% 0.00142% 0.00000% 0.07742% 0.00000% 

30 0.19336% 0.00000% 0.15210% 0.00000% 0.01133% 0.00000% 

31 0.04825% 0.00000% 0.04683% 0.00000% 0.00000% 0.00000% 

32 0.12378% 0.00000% 0.10839% 0.00000% 0.07478% 0.00000% 

33 0.00283% 0.00000% 0.00651% 0.00000% 0.01841% 0.00000% 

34 0.04296% 0.00000% 0.07553% 0.00000% 0.19902% 0.00000% 

35 0.00633% 0.00000% 0.02115% 0.00000% 0.00302% 0.00000% 

36 0.00161% 0.00000% 0.16881% 0.00000% 0.39607% 0.00000% 

37 0.33196% 0.00000% 0.01237% 0.00000% 0.00142% 0.00000% 

38 0.10839% 0.00000% 0.09810% 0.00000% 0.04598% 0.00000% 

39 0.38710% 0.00000% 0.34707% 0.00000% 0.00028% 0.00000% 

40 0.02747% 0.00000% 0.11906% 0.00000% 0.00217% 0.00000% 

41 0.48604% 0.00000% 0.01180% 0.00000% 0.01209% 0.00000% 

42 0.67902% 0.00000% 0.11840% 0.00000% 0.02124% 0.00000% 

43 0.10480% 0.00000% 0.02747% 0.00000% 0.00000% 0.00000% 

44 0.19147% 0.00000% 0.31487% 0.00000% 0.10640% 0.00000% 

45 0.02530% 0.00000% 0.09696% 0.00000% 0.00066% 0.00000% 

46 0.33970% 0.00000% 0.07393% 0.00000% 0.00000% 0.00000% 

47 0.02398% 0.00000% 0.01643% 0.00000% 0.00028% 0.00000% 

48 0.11330% 0.00000% 0.00066% 0.00000% 0.00151% 0.00000% 

49 0.00293% 0.00000% 0.00312% 0.00000% 0.00000% 0.00000% 

50 0.16834% 0.00000% 0.03767% 0.00000% 0.00000% 0.00000% 
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Table D.62. Plate girder damage detection results for cases KSTSP IV, V and VI, fixed representation, 
seeded initial population, noise free measurements 

Element Damage Indicators, Fixed Representation Seeded Initial Population, 0% noise 

 KSTSP IV KSTSP V KSTSP VI 

 200 GA 
Generations 

656 Hillclimbing 
Iterations 

200 GA 
Generations 

286 Hillclimbing 
Iterations 

109 GA 
Generations 

608 Hillclimbing 
Iterations 

1 0.28409% 0.00000% 0.38700% 0.00000% 0.00000% 0.00000% 

2 0.37747% 0.00000% 0.00312% 0.00000% 0.00009% 0.00000% 

3 0.00595% 0.00000% 0.01482% 0.00000% 0.00000% 0.00000% 

4 0.00000% 0.00000% 0.01057% 0.00000% 0.02408% 0.00000% 

5 0.10877% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

6 0.00066% 0.00000% 0.00444% 0.00000% 0.00000% 0.00000% 

7 0.00066% 0.00000% 0.01190% 0.00000% 0.00009% 0.00000% 

8 0.00066% 0.00000% 0.18128% 0.00009% 0.00066% 0.00000% 

9 0.00066% 0.00000% 0.36397% 0.00000% 0.00009% 0.00009% 

10 0.00113% 0.00000% 0.02341% 0.00000% 0.00566% 0.00000% 

11 0.00000% 0.00000% 0.00566% 0.00000% 0.00132% 0.00000% 

12 0.05117% 0.00000% 0.02341% 0.00000% 0.00633% 0.00000% 

13 0.00076% 0.00000% 0.00132% 0.00000% 0.00000% 0.00000% 

14 0.04966% 0.00000% 0.03616% 0.00000% 0.00009% 0.00000% 

15 5.40793% 0.00113% 0.00019% 0.00000% 0.00000% 0.00000% 

16 0.08913% 0.00047% 0.01879% 0.00000% 0.00000% 0.00000% 

17 0.77042% 0.00000% 0.09640% 0.00000% 0.00000% 0.00000% 

18 1.63761% 0.00085% 0.00028% 0.00000% 0.00453% 0.00000% 

19 4.04913% 9.99843% 0.01171% 0.00000% 0.07251% 0.00000% 

20 0.37530% 0.00028% 3.09517% 0.00038% 0.00000% 0.00000% 

21 0.01133% 0.00000% 0.00312% 0.00000% 0.00000% 0.00000% 

22 0.01275% 0.00000% 0.02087% 0.00000% 0.00028% 0.00000% 

23 0.10933% 0.00000% 1.26552% 0.00000% 0.00000% 0.00000% 

24 0.00736% 0.00000% 3.09309% 9.99946% 0.01199% 0.00000% 

25 0.00000% 0.00000% 0.54260% 0.00000% 0.00595% 0.00019% 

26 0.38445% 0.00000% 0.01237% 0.00000% 0.00142% 0.00000% 

27 0.00161% 0.00000% 1.49863% 0.00038% 0.00009% 0.00000% 

28 0.19402% 0.00000% 0.00000% 0.00000% 0.09668% 0.00000% 

29 0.10867% 0.00000% 0.00009% 0.00000% 0.00000% 0.00000% 

30 0.24236% 0.00000% 0.10763% 0.00000% 0.01209% 0.00028% 

31 0.12321% 0.00000% 0.07175% 0.00000% 0.00000% 0.00000% 

32 0.10046% 0.00000% 0.01822% 0.00000% 0.00000% 0.00000% 

33 0.19327% 0.00000% 0.00066% 0.00000% 0.02408% 0.00028% 

 

34 0.00595% 0.00000% 0.02039% 0.00000% 0.00293% 0.00000% 
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Table D.62. (Continued) 

Element Damage Indicators, Fixed Representation Seeded Initial Population, 0% noise 

 KSTSP IV KSTSP V KSTSP VI 

 200 GA 
Generations 

656 Hillclimbing 
Iterations 

200 GA 
Generations 

286 Hillclimbing 
Iterations 

109 GA 
Generations 

608 Hillclimbing 
Iterations 

35 0.10301% 0.00000% 0.00085% 0.00000% 0.09659% 0.00000% 

36 0.00170% 0.00000% 0.00746% 0.00000% 0.00000% 0.00000% 

37 0.09555% 0.00000% 0.01237% 0.00000% 0.19345% 0.00000% 

38 0.01322% 0.00000% 0.01171% 0.00000% 0.00028% 0.00170% 

39 0.19506% 0.00000% 0.07572% 0.00000% 0.37463% 0.99720% 

40 0.07666% 0.00000% 0.05146% 0.00000% 0.15701% 0.00094% 

41 0.39588% 0.00000% 0.09677% 0.00000% 0.01199% 0.00000% 

42 0.79534% 0.00000% 0.38058% 0.00000% 0.00000% 0.00000% 

43 0.56167% 0.00000% 0.04230% 0.00000% 0.00000% 0.00000% 

44 0.19364% 0.00000% 3.09479% 0.00000% 0.00000% 0.00000% 

45 0.04230% 0.00000% 0.07251% 0.00000% 0.00000% 0.00000% 

46 0.00283% 0.00000% 0.00142% 0.00000% 0.19327% 0.00000% 

47 0.07260% 0.00000% 0.00019% 0.00000% 0.01199% 0.00000% 

48 0.31402% 0.00000% 0.00897% 0.00000% 0.00000% 0.00000% 

49 0.42515% 0.00000% 0.00444% 0.00000% 0.00000% 0.00000% 

50 0.07544% 0.00000% 0.18364% 0.00000% 0.09054% 0.00000% 

 

Table D.63. Plate girder damage detection results for cases KSTSP VII and VIII, fixed representation, 
seeded initial population, noise free measurements 

Element Damage Indicators, Fixed Representation Seeded Initial Population, 0% noise 

 KSTSP VII KSTSP VIII 

 200 GA Generations 1370 Hillclimbing 
Iterations 

200 GA Generations 1173 Hillclimbing 
Iterations 

1 0.09507% 0.00000% 0.42854% 0.00000% 

2 0.01218% 0.00000% 0.16910% 0.00000% 

3 0.00293% 0.00000% 0.00368% 0.00000% 

4 0.01209% 0.00000% 0.38719% 0.00000% 

5 0.01057% 0.00000% 0.03852% 0.00000% 

6 0.00009% 0.00000% 0.02115% 0.00000% 

7 0.04758% 0.00000% 0.00076% 0.00000% 

8 0.01199% 0.00000% 0.00557% 0.00000% 

9 0.00566% 0.00000% 0.14172% 0.00019% 
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Table D.63. (Continued) 

Element Damage Indicators, Fixed Representation Seeded Initial Population, 0% noise 

 KSTSP VII KSTSP VIII 

 200 GA Generations 1370 Hillclimbing 
Iterations 

200 GA Generations 1173 Hillclimbing 
Iterations 

10 0.00009% 0.00000% 0.02172% 0.00000% 

11 0.04683% 0.00000% 0.02341% 0.00000% 

12 0.02530% 0.00000% 0.42439% 0.00000% 

13 0.00434% 0.00000% 0.26710% 0.00000% 

14 0.00831% 0.00000% 0.38766% 0.00000% 

15 0.00066% 0.00000% 0.15522% 0.00000% 

16 0.00000% 0.00000% 0.10801% 0.00000% 

17 0.00151% 0.00000% 0.04211% 0.00000% 

18 0.00066% 0.00000% 0.10744% 0.00000% 

19 0.00009% 0.00000% 0.02256% 0.00000% 

20 0.01057% 0.00000% 0.07393% 0.00000% 

21 0.19648% 0.00000% 0.09073% 0.00000% 

22 0.02143% 0.00000% 0.24123% 0.00000% 

23 0.00293% 0.00000% 0.03635% 0.00000% 

24 0.05174% 0.00000% 0.80507% 0.00000% 

25 0.33838% 0.00038% 0.13039% 0.00028% 

26 0.01171% 0.00000% 0.09432% 0.00000% 

27 0.09394% 0.00000% 0.01256% 0.00000% 

28 0.03918% 0.00000% 0.03314% 0.00000% 

29 0.00142% 0.00076% 0.00736% 0.00142% 

30 0.32639% 0.00019% 0.07279% 0.00000% 

31 0.08526% 0.00000% 3.28371% 0.00000% 

32 0.00529% 0.00151% 0.29967% 0.00170% 

33 0.00161% 0.00000% 0.05278% 0.00000% 

34 0.00000% 0.00000% 0.06939% 0.00000% 

35 0.00113% 0.00000% 0.54345% 0.00000% 

36 3.12925% 0.00000% 0.04551% 0.00000% 

37 0.00453% 0.00000% 0.41070% 0.00000% 

38 0.76268% 0.00293% 3.80705% 0.00397% 

39 6.18184% 9.99474% 45.58140% 49.99770% 

40 0.09630% 0.00236% 3.89882% 0.00359% 

41 0.00595% 0.00000% 0.06109% 0.00000% 

42 0.02691% 0.00000% 1.31651% 0.00000% 

 

43 0.09696% 0.00019% 1.20689% 0.00000% 
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Table D.63. (Continued) 

Element Damage Indicators, Fixed Representation Seeded Initial Population, 0% noise 

 KSTSP VII KSTSP VIII 

 200 GA Generations 1370 Hillclimbing 
Iterations 

200 GA Generations 1173 Hillclimbing 
Iterations 

44 0.09139% 0.00000% 0.12085% 0.00000% 

45 0.77372% 0.00000% 0.63814% 0.00000% 

46 0.02294% 0.00000% 0.08724% 0.00000% 

47 0.01199% 0.00000% 0.81281% 0.00000% 

48 0.29004% 0.00000% 0.01293% 0.00000% 

49 0.39880% 0.00000% 0.00472% 0.00000% 

50 0.07534% 0.00000% 0.04164% 0.00000% 

 

Table D.64. Plate girder damage detection results for cases KSTSP IX and X, fixed representation, seeded 
initial population, noise free measurements 

Element Damage Indicators, Fixed Representation Seeded Initial Population, 0% noise 

 KSTSP IX KSTSP X 

 200 GA  Generations 425 Hillclimbing 
Iterations 

200 GA  Generations 1582 Hillclimbing 
Iterations 

1 0.39909% 0.00000% 0.08308% 0.00000% 

2 0.65259% 0.00000% 0.00028% 0.00000% 

3 0.05117% 0.00000% 0.00085% 0.00000% 

4 0.00302% 0.00000% 0.03890% 0.00000% 

5 0.19336% 0.00000% 0.00151% 0.00000% 

6 0.00623% 0.00000% 0.00142% 0.00000% 

7 0.00670% 0.00000% 0.00897% 0.00000% 

8 0.24161% 0.00009% 0.00293% 0.00000% 

9 6.11490% 9.99984% 0.10310% 0.00000% 

10 0.00670% 0.00000% 2.27764% 0.00000% 

11 0.00085% 0.00000% 0.06637% 0.00000% 

12 0.02332% 0.00000% 0.09158% 0.00000% 

13 1.46096% 0.00000% 2.75537% 0.00028% 

14 0.01171% 0.00000% 3.67393% 9.99946% 

15 0.08875% 0.00009% 0.77268% 0.00038% 

16 0.09555% 0.00000% 0.00028% 0.00000% 

17 0.19327% 0.00000% 0.00217% 0.00000% 

18 0.00142% 0.00000% 0.04843% 0.00000% 

 



 310

Table D.64. (Continued) 

Element Damage Indicators, Fixed Representation Seeded Initial Population, 0% noise 

 KSTSP IX KSTSP X 

 200 GA  Generations 425 Hillclimbing 
Iterations 

200 GA  Generations 1582 Hillclimbing 
Iterations 

19 0.00028% 0.00000% 0.01199% 0.00000% 

20 1.64497% 0.00000% 0.06307% 0.00000% 

21 0.00123% 0.00000% 0.00066% 0.00000% 

22 0.00482% 0.00000% 0.84274% 0.00000% 

23 0.00000% 0.00000% 0.09668% 0.00000% 

24 0.00274% 0.00000% 0.00019% 0.00000% 

25 0.26653% 0.00000% 0.38587% 0.00000% 

26 0.16910% 0.00000% 0.02417% 0.00009% 

27 0.00151% 0.00000% 0.08223% 0.00000% 

28 0.00142% 0.00000% 0.02228% 0.00019% 

29 0.01199% 0.00000% 0.19506% 0.00000% 

30 0.40419% 0.00000% 1.01419% 0.00019% 

31 0.01218% 0.00000% 0.00151% 0.00000% 

32 0.09196% 0.00000% 0.02408% 0.00038% 

33 0.79676% 0.00047% 0.01190% 0.00019% 

34 6.18581% 9.99937% 0.38398% 0.00000% 

35 0.72973% 0.00038% 0.07846% 0.00000% 

36 0.01662% 0.00000% 6.21215% 0.00000% 

37 0.59160% 0.00000% 0.94112% 0.00000% 

38 0.02493% 0.00000% 1.54612% 0.00198% 

39 0.09130% 0.00000% 2.02914% 9.99720% 

40 0.04522% 0.00000% 0.16617% 0.00123% 

41 0.02436% 0.00000% 0.11528% 0.00000% 

42 1.04837% 0.00000% 0.00293% 0.00000% 

43 0.19185% 0.00000% 0.19327% 0.00000% 

44 0.00104% 0.00000% 0.04135% 0.00000% 

45 0.09064% 0.00000% 0.78316% 0.00000% 

46 0.00000% 0.00000% 0.20847% 0.00000% 

47 0.02332% 0.00000% 0.19176% 0.00000% 

48 0.01199% 0.00000% 1.58729% 0.00000% 

49 0.00113% 0.00000% 0.43534% 0.00000% 

50 0.19374% 0.00038% 0.18581% 0.00000% 
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Table D.65. Plate girder damage detection results for cases KSTSP I, II and III, implicit redundant 
representation (IRR), seeded initial population, noise free measurements 

Element Damage Indicators, IRR Seeded Initial Population, 0% noise 

 KSTSP I KSTSP II KSTSP III 

 143 GA 
Generations 

0 Hillclimbing 
Iterations 

200 GA 
Generations 

18 Hillclimbing 
Iterations 

123 GA 
Generations 

0 Hillclimbing 
Iterations 

4 10.00000% - 0.00000% 0.00000% 0.00000% - 

9 0.00000% - 9.99937% 10.00000% 0.00000% - 

14 0.00000% - 0.00000% 0.00000% 9.99994% - 

17 0.00000% - 0.01718% 0.00000% 0.00000% - 

 

Table D.66. Plate girder damage detection results for cases KSTSP IV, V and VI, implicit redundant 
representation (IRR), seeded initial population, noise free measurements 

Element Damage Indicators, IRR Seeded Initial Population, 0% noise 

 KSTSP IV KSTSP V KSTSP VI 

 200 GA 
Generations 

266 Hillclimbing 
Iterations 

144 GA 
Generations 

0 Hillclimbing 
Iterations 

200 GA 
Generations 

705 Hillclimbing 
Iterations 

15 0.81187% 0.00047% 0.00000% - 0.00000% 0.00000% 

18 0.30973% 0.00024% 0.00000% - 0.00000% 0.00000% 

19 9.32941% 9.99956% 0.00000% - 0.00000% 0.00000% 

24 0.00000% 0.00000% 10.00000% - 0.00000% 0.00000% 

29 0.00000% 0.00000% 0.00000% - 0.01614% 0.00028% 

32 0.00000% 0.00000% 0.00000% - 0.02700% 0.00076% 

33 0.00000% 0.00000% 0.00000% - 0.00302% 0.00009% 

38 0.00000% 0.00000% 0.00000% - 0.05778% 0.00113% 

39 0.00000% 0.00000% 0.00000% - 0.88579% 0.99748% 

40 0.00000% 0.00000% 0.00000% - 0.04343% 0.00104% 

50 0.30647% 0.00000% 0.00000% - 0.00000% 0.00000% 

 

Table D.67. Plate girder damage detection results for cases KSTSP VII and VIII, implicit redundant 
representation (IRR), seeded initial population, noise free measurements 

Element Damage Indicators, IRR Seeded Initial Population, 0% noise 

 KSTSP VII KSTSP VIII 

 176 GA Generations 0 Hillclimbing 
Iterations 

200 GA Generations 6 Hillclimbing 
Iterations 

32 0.00000% - 0.00024% 0.00014% 

38 0.00000% - 0.00057% 0.00047% 

 

39 10.00000% - 49.99990% 49.99990% 
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Table D.68. Plate girder damage detection results for cases KSTSP IX and X, implicit redundant 

representation (IRR), seeded initial population, noise free measurements 

Element Damage Indicators, IRR Seeded Initial Population, 0% noise 

 KSTSP IX KSTSP IX 

 157 GA Generations 0 Hillclimbing 
Iterations 

200 GA Generations 17 Hillclimbing 
Iterations 

9 10.00000% - 0.00000% 0.00000% 

14 0.00000% - 9.99998% 9.99998% 

29 0.00000% - 0.00184% 0.00005% 

34 9.99998% - 0.00000% 0.00000% 

39 0.00000% - 9.99909% 9.99994% 

 

Table D.69. Plate girder damage detection results for cases KSTSP I, II and III, implicit redundant 
representation (IRR), unseeded initial population, noise free measurements 

Element IRR Unseeded Initial Population, 0% noise 

 KSTSP I KSTSP II KSTSP III 

 143 GA 
Generations 

0 Hillclimbing 
Iterations 

200 GA 
Generations 

339 Hillclimbing 
Iterations 

123 GA 
Generations 

62 Hillclimbing 
Iterations 

1 0.00000% - 0.88858% 0.00090% 1.15201% 0.00000% 

4 9.99998% - 0.00000% 0.00000% 0.00000% 0.00000% 

9 0.00000% - 9.70603% 9.99965% 0.00000% 0.00000% 

14 0.00000% - 0.00000% 0.00000% 9.47811% 10.00000% 

16 0.00000% - 0.07166% 0.00009% 0.00000% 0.00000% 

18 0.00000% - 0.00000% 0.00000% 0.46258% 0.00000% 

23 0.00000% - 0.05533% 0.00009% 0.00000% 0.00000% 

32 0.00000% - 0.00000% 0.00000% 0.58804% 0.00000% 

33 0.00000% - 0.00000% 0.00000% 0.37010% 0.00000% 

43 0.00000% - 0.07204% 0.00009% 0.00000% 0.00000% 
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Table D  Plate girder damage detection results for cases KSTSP IV, V and VI, implicit redundant 
representation (IRR), unseeded initial population, noise free measurements 

Element IRR Unseeded Initial Population, 0% noise 

.70.

 KSTSP IV KSTSP V KSTSP VI 

 200 GA 
Generations 

321 Hillclimbing 
Iterations 

200 GA 
Generations 

30 Hillclimbing 
Iterations 

200 GA 
Generations 

122 Hillclimbing 
Iterations 

13 0.03824% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

15 1.05172% 0.00052% 0.00000% 0.00000% 0.00000% 0.00000% 

18 0.66309% 0.00031% 0.00000% 0.00000% 0.00000% 0.00000% 

19 8.69240% 9.99946% 0.00000% 0.00000% 0.00000% 0.00000% 

24 0.00000% 0.00000% 9.97869% 10.00000% 0.00000% 0.00000% 

26 0.04173% 0.00009% 0.00000% 0.00000% 0.00000% 0.00000% 

27 0.00000% 0.00000% 0.01992% 0.00000% 0.00000% 0.00000% 

32 0.00000% 0.00000% 0.00000% 0.00000% 0.02030% 0.00009% 

39 0.00000% 0.00000% 0.00000% 0.00000% 0.96198% 0.99984% 

41 0.27050% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

42 0.00000% 0.00000% 0.00189% 0.00000% 0.00000% 0.00000% 

46 0.00000% 0.00000% 0.00000% 0.00000% 0.02710% 0.00009% 

50 0.00000% 0.00000% 0.00000% 0.00000% 0.01445% 0.00000% 

Table D.71. Plate girder damage detection results for cases KSTSP VII and VIII, implicit redundant 
representation (IRR), unseeded initial population, noise free measurements 

Element IRR Unseeded Initial Population, 0% noise 

 KSTSP VII KSTSP VIII 

 176 GA Generations 604 Hillclimbing 
Iterations 

200 GA Generations 46 Hillclimbing 
Iterations 

29 0.00000% 0.00000% 0.06694% 0.00019% 

32 0.14644% 0.00057% 0.00000% 0.00000% 

38 0.34513% 0.00118% 0.00000% 0.00000% 

39 9.49737% 9.99824% 49.98120% 49.99990% 

40 0.23674% 0.00090% 0.00000% 0.00000% 
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Table D.72. Plate girder damage detection results for cases KSTSP IX and X, implicit redundant 
representation (IRR), unseeded initial population, noise free measurements 

Element IRR Unseeded Initial Population, 0% noise 

 KSTSP IX KSTSP X 

 109 GA Generations 303 Hillclimbing 
Iterations 

109 GA Generations 90 Hillclimbing 
Iterations 

9 9.83688% 9.99994% 0.00000% 0.00000% 

14 0.00000% 0.00000% 10.00250% 9.99998% 

29 0.00000% 0.00000% 0.09389% 0.00005% 

33 1.16091% 0.00038% 0.00000% 0.00000% 

34 8.69495% 9.99956% 0.00000% 0.00000% 

35 0.74323% 0.00028% 0.00000% 0.00000% 

39 0.00000% 0.00000% 9.90769% 9.99994% 

50 0.00000% 0.00000% 0.30109% 0.00009% 

 

Table D.73. Plate girder damage detection results for cases KSTSP I, II and III, implicit redundant 
representation (IRR), seeded initial population, 5% noise in measurements 

Element Damage Indicators, IRR Seeded Initial Population, 5% noise 

 KSTSP I KSTSP II KSTSP III 

 200 GA 
Generations 

342 Hillclimbing 
Iterations 

200 GA 
Generations 

77 Hillclimbing 
Iterations 

200 GA 
Generations 

310 Hillclimbing 
Iterations 

1 0.00000% 0.00000% 1.79292% 0.01463% 0.00000% 0.00000% 

4 9.12293% 9.08526% 0.00000% 0.00000% 0.00000% 0.00000% 

6 0.14190% 0.12604% 0.00000% 0.00000% 0.66505% 0.53797% 

7 0.00000% 0.00000% 0.00000% 0.00000% 0.39512% 0.54656% 

8 0.00000% 0.00000% 0.18439% 0.11311% 0.00000% 0.00000% 

9 0.00000% 0.00000% 9.27220% 9.91666% 0.00000% 0.00000% 

12 0.61133% 0.65986% 0.00000% 0.00000% 0.00000% 0.00000% 

14 0.00000% 0.00000% 0.00000% 0.00000% 8.12129% 7.99072% 

15 0.00000% 0.00000% 0.00000% 0.00000% 0.50294% 0.84047% 

16 0.00000% 0.00000% 0.12043% 0.00000% 0.00000% 0.00000% 

19 0.00000% 0.00000% 0.00000% 0.00000% 1.07575% 0.99550% 

24 0.00000% 0.00000% 0.01690% 0.01690% 0.00000% 0.00000% 

26 0.40315% 0.40589% 0.68969% 0.64343% 0.00000% 0.00000% 

34 0.52268% 0.57630% 0.00000% 0.00000% 0.49624% 0.32375% 

46 0.53316% 0.55893% 0.00000% 0.00000% 0.52995% 0.62190% 

50 0.38233% 0.26545% 0.00000% 0.00000% 0.00000% 0.00000% 
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Table D.74. Plate girder damage detection results for cases KSTSP IV, V and VI, implicit redundant 
representation (IRR), seeded initial population, 5% noise in measurements 

Element Damage Indicators, IRR Seeded Initial Population, 5 % noise 

 KSTSP IV KSTSP V KSTSP VI 

 200 GA 
Generations 

177 Hillclimbing 
Iterations 

200 GA 
Generations 

51 Hillclimbing 
Iterations 

200 GA 
Generations 

200 Hillclimbing 
Iterations 

1 0.00000% 0.00000% 0.00000% 0.00000% 0.42090% 0.39371% 

8 0.00000% 0.00000% 0.13473% 0.13416% 0.00000% 0.00000% 

15 1.03940% 0.22244% 0.00000% 0.00000% 0.00000% 0.00000% 

16 0.22867% 0.12954% 0.00000% 0.00000% 0.00000% 0.00000% 

18 0.19034% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

19 8.79135% 9.58036% 0.00000% 0.00000% 0.00000% 0.00000% 

24 0.00000% 0.00000% 10.00640% 10.00720% 0.33885% 0.25756% 

25 0.00000% 0.00000% 0.40041% 0.40286% 0.84812% 0.71377% 

26 0.99153% 0.94083% 0.38124% 0.37860% 0.05415% 0.17075% 

33 0.20606% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

40 0.00000% 0.00000% 0.01548% 0.01426% 0.33341% 0.31651% 

46 0.00000% 0.00000% 0.00000% 0.00000% 0.60415% 0.64353% 

49 0.14068% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

50 0.77297% 1.64478% 0.94291% 0.94282% 0.00000% 0.00000% 

 

Table D  Plate girder damage detection results for cases KSTSP VII and VIII, implicit redundant 
representation (IRR), seeded initial population, 5% noise in measurements 

Element Damage Indicators, IRR Seeded Initial Population, 5 % noise 

.75.

 KSTSP VII  KSTSP VIII  

 200 GA Generations 63 Hillclimbing 
Iterations 

200 GA Generations 3387 Hillclimbing 
Iterations 

1 1.53441% 1.71210% 1.01353% 1.99912% 

20 0.00000% 0.00000% 0.10235% 0.01709% 

25 0.75479% 0.74129% 0.68988% 0.69413% 

30 1.83805% 1.83805% 1.37117% 1.96522% 

32 1.35342% 1.37023% 0.00000% 0.00000% 

33 0.00000% 0.00000% 0.91808% 1.45879% 

34 0.43733% 0.45744% 0.00000% 0.00000% 

39 6.24524% 6.22485% 48.94410% 48.58800% 

40 2.34033% 2.31720% 0.83169% 1.90848% 

46 0.09649% 0.10773% 1.19868% 1.03978% 
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Table D.76. Plate girder damage detection results for cases KSTSP IX and X, implicit redundant 
representation (IRR), seeded initial population, 5% noise in measurements 

Element Damage Indicators, IRR Seeded Initial Population, 5 % noise 

 KSTSP IX  KSTSP X  

 200 GA Generations 76 Hillclimbing 
Iterations 

200 GA Generations 860 Hillclimbing 
Iterations 

7 0.00000% 0.00000% 1.05097% 0.63309% 

8 0.02370% 0.08535% 0.00000% 0.00000% 

9 10.15210% 10.10220% 0.00000% 0.00000% 

13 0.00000% 0.00000% 0.77542% 0.25010% 

14 0.00000% 0.00000% 5.71676% 7.93841% 

15 0.00000% 0.00000% 3.51333% 1.76828% 

18 0.00000% 0.00000% 0.82626% 0.66142% 

20 0.10121% 0.10423% 0.67846% 0.36227% 

25 0.70074% 0.73454% 0.00000% 0.00000% 

34 9.83301% 9.81517% 0.00000% 0.00000% 

39 0.00000% 0.00000% 8.59945% 8.62041% 

43 0.14653% 0.07147% 0.00000% 0.00000% 

46 0.00000% 0.00000% 2.10345% 1.97580% 

50 0.96359% 1.18074% 0.00000% 0.00000% 

 

 



 317

VITA 

Tamás Róbert Liszkai was born in Miskolc, Hungary on September 8, 1974, the son of 

Kálmán Liszkai and Irén Krompák. He attended a 5-year integrated program at the 

University of Miskolc where he received his Master of Science degree in mechanical 

engineering in 1997 and continued his Ph.D. studies at the same university from 1997 to 

1999. 

In 1999 Mr. Liszkai received a Fulbright Scholarship and worked as a visiting 

researcher at Texas A&M University under the guidance of Dr. Gary T. Fry and Dr. 

Harry L. Jones, professors in the Civil Engineering Department. Having completed his 

Fulbright program, he started his Ph.D. studies in civil engineering at Texas A&M 

University in August 2000. From June 2001 to May 2003, he worked as a research 

assistant in the Civil Engineering Department at Texas A&M University. His research 

interests include structural mechanics and dynamics, nondestructive damage detection, 

traditional and heuristic optimization algorithms and the finite element method. 

 

Contact address: 

Stadion u. 55. 1/3. 

Miskolc, 

Hungary, H-3534 

 

 


	INTRODUCTION
	Overview(
	Research Objectives
	Scope
	Background and Literature Review
	Relevant and On-going Research in Damage Detection
	General Concepts
	Modal Methods
	FRF Methods
	Other Methods

	Relevant and On-going Research in Near-optimal Sensor Placement
	General Concepts
	Sensor Placement for Modal Based Damage Detection
	Other Methods


	Overview of Modal Based Damage Index SDIMs
	Damage Index A
	Damage Index B
	Damage Index C

	Overview of Frequency Domain Criteria for SDIMs
	Organization of the Dissertation

	THEORY OF DAMAGE DETECTION
	Equations of Motion for Dynamic Systems
	Frequency Response Functions
	Free Vibration of a Linear System
	Modal Decomposition of FRF Matrices for Viscously Damped Systems
	Measuring FRF Data, Displacement, Velocity and Acceleration

	Damage Indicators
	Use of FRF Data in Damage Detection
	Excitation and Sensor Placement
	Information Contained in Measurements
	Optimum Excitation and Sensor Layout Design


	OPTIMIZATION ALGORITHMS
	Overview of Traditional Optimization Algorithms
	Classes of Optimization Problems
	Local and Global Search Techniques

	Introduction to Genetic Algorithms
	Genetic Operators
	A Short Tutorial on Simple Genetic Algorithms (SGA)
	Advanced Genetic Operators

	Fixed and Implicit Redundant Representations
	Encoding for Damage Detection
	Encoding for Excitation and Sensor Layout Design

	Local Optimizer, Hillclimbing Algorithm
	Multiobjective Optimization Using Nondominated Sorting Genetic Algorithm
	The Notion of Multiobjective Optimization
	Nondominated Sorting Genetic Algorithm (NSGA)


	COMPUTATIONAL PROGRAMMING
	Preprocessor and Utility Program
	Processor
	Postprocessor

	DESCRIPTION OF CASE STUDIES
	Simple Beam Type Structures
	Simple Cantilever Beam
	Two-span Continuous Beam

	Moment Frame Type Structures
	Two-story, Three-bay Cross-braced Moment Frame
	Three-story, Three-bay Unbraced Moment Frame

	Baseline Structure for Evaluation of the Proposed Damage Detection Method

	CASE STUDY RESULTS AND DISCUSSION, CANTILEVER BE�
	Input Parameters for Cantilever Beam Case Studies
	Common Cantilever Beam Damage, Case Study CANT I�
	Comparison of Fixed and IRR Representations
	Alternative Objective Function Formulation
	Verification Case Study CANT II

	Unusual Measurement Configurations, Case Studies CANT III and IV
	Optimum Sensor Locations, Case Study CANT OPT
	Optimum Excitation and Sensor Locations
	Results Using Optimal Sensor Locations


	CASE STUDY RESULTS AND DISCUSSION FOR TWO-SPAN CONTINUOUS BEAMS
	Equal Damages, Case Studies TWSP IA, IB and II
	Unequal Damages, Case Studies TWSP IIIA and IIIB
	Objective Function Based on FRF Correlation Criteria
	Effect of Noise on Objective Function Formulations

	Optimum Sensor Locations, Case Study TWSP OPT
	Optimal Excitation and Sensor Locations
	Damage Detection Results Using Optimal Sensor Placement


	CASE STUDY RESULTS AND DISCUSSION, MOMENT FRAMES
	Two-story, Three-bay Braced Frame
	Fine Tuning, Finding a Good Set of GA Parameters
	A Mixture of Bracing and Joint Damages in Beams and Columns

	Three-story, Three-bay Unbraced Frame
	Single Damage Cases for a First Floor Beam
	Optimum Excitation and Sensor Locations for the Unbraced Frame
	Damages Associated with Soft-story Mechanism
	Damages Associated with Strong Column Weak Beam Design Concept


	CASE STUDY RESULTS AND DISCUSSION, BENCHMARK STRUCTURE
	Result Obtained for the Benchmark Case Studies
	Accuracy Measures of SDIMs

	CONCLUSIONS
	Future Recommendations


