APPENDIX E
PROBABILISTIC BASIS FOR SAC/FEMA GUIDELINES

This appendix outlines the probabilistic framework for seismic design and assessment of
steel frame buildings in the SAC/FEMA guidelines. The following material is basically

excerpted from Cornell et al. (2002).

E.1 Basic approach

Seismic structural behavior in SAC/FEMA guidelines is represented explicitly by nonlinear,
dynamic, displacement-based quantities. Both demand D and capacity C are measured in terms
of maximum interstory drift ratios. From the total probability theorem, the probability of a

performance level not being met can be evaluated as

P, =P[C<D]=[P[C<D|D=d]|dH,(d) E.1)
sz[Csd]‘dHD(d)‘

where H, ( d ) is the (structure-specific) drift hazard curve that provides the (mean) probability

of the drift demand D exceeding any specified value d. It is obtained from

H,(d)=P[D>d]=[P[D>d|S,=s,]dH s,) (E2)
where ‘dH (s, )‘ is the absolute value of the derivative of the site’s spectral acceleration hazard

curve times dx, which is approximately the likelihood of S, ==, .

Closed-form formulas can be derived based on a series of assumptions. First, by assuming

that conditional median drift demand D can be approximated by

D=a(s, (E-3)
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and the drift demand D follows a lognormal distribution about its median value D with a

standard deviation of ,HD‘ ¢ » the integrand of Equation E.2 becomes
In|d/as’
P[Dzd|S,=s,]=1-® u (E.4)
ols,
in which @ is the standardized Gaussian distribution function.

Further assuming that the site hazard curve can be approximated by

H(s,)=P[S,=s,]=k,s," (E.5)

o a

Equation E.2 can then be derived as
H,(d)=H(s )exp[2 = — By, } (E.6)

in which s¢ =(d/ a)”b the spectral acceleration associated with the drift demand d.

Assuming the drift capacity C also follows a lognormal distribution about its median value

C with a standard deviation of B, the integrand of Equation E.2 becomes

In[ 4/ ]|

P[C<d]=1-® (E.7)
Be
Substituting Equations E.6 and E.7 into E.1 leads to
C
Py = (S )GXP{Z b? (IBD‘S +ﬂc)} (E.8)

A N 1/b N
in which s¢ = (C/ a) the spectral acceleration associated with the median drift capacity C.

204



E.2 Uncertainty treatment
By considering the (epistemic) uncertainties in both drift demand and capacity, P,, itself

becomes a random variable. The mean estimate of P,, is

B, =H(s¢ )expBﬂ,i}expB’;—z(ﬂ;R + B+ By +ﬁéy)}
i (E.9)
= I-_I(sf)exp {%I;T(/BER + Bry + Bén + Bew )}

where H,H = median and mean estimates of spectral acceleration hazard, respectively; S, =
dispersion measure for hazard; f,,, ., = dispersion measures for randomness in drift demand

and capacity, respectively; B, , ., = dispersion measures for uncertainty in drift demand and
capacity, respectively.

The median or 50% confidence estimate of P, is
T 1 k*
Py :H(Sac)eXp{Eb_z(ﬂ;R + B )} (E.10)
An (epistemic) uncertainty for P, can be calculated by
k2 1/2
B, = [b—z(ﬂéy + By )} (E.11)

Hence the confidence level estimate of P, is obtained from

Py =B, exp| K., | (E.12)

where K = standardized Gaussian variate associated with probability x of not being exceeded.
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E.3 Codified safety/performance checking schemes

Using the mean estimate of probability as the objective, one rearranges Equation E.9 with a

performance level P, to obtain

{exp{—%%(ﬂ& + :Béu )}} C> {exp {%%(ﬂfm + ﬂzz)u ):|}15Pm (E.13)

or in a codified form

¢C >y D" (E.14)

with

k(o 2
¢:exp[_gg(ﬂc1e + ey )}
-, (E.15)
V= exp{ag(ﬂfm + By )}

To obtain the associated confidence level, one calculates the factored-demand to factored-

capacity ratio

Ap A 1k
ﬂ“con = 7DPD[V /¢C = eXp|:_KxﬂUT +EZIB5T:| (E16)

h {22 2 2 2 \V2
where f3;; = (ﬂDR + Py + Pex +ﬂcu) :

The Gaussian variate K _is then solved for as

(E.17)
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