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CHAPTER 3 

MODELING AND PERFORMANCE EVALUATION PROCEDURES FOR STEEL  

MOMENT FRAME STRUCTURES 

 
Abstract: Modeling issues pertinent to steel special moment-resisting frame (SMRF) structures 

under seismic loads are discussed first in this chapter, followed by description and modeling of 

an example perimeter steel SRMF that will be used throughout this study. Different analysis 

procedures are briefly outlined for evaluating seismic structural performance, with emphasis on 

the static pushover analysis. Information of seismic inputs for this study is provided at the end. 

 
3.1 Modeling of steel moment frames for seismic loads 

3.1.1  Overview 

The equivalent lateral force procedure in 2000 NEHRP seismic provisions permits an elastic 

analysis for seismic design of steel moment resisting frame structures that are represented by 

simple linear elastic models with centerline dimensions. A building system designed according 

to these code provisions typically has lower seismic resistance than what can keep the structure 

elastic under design earthquakes. Inelastic structural responses are therefore expected when 

subject to design earthquakes and are accounted for approximately through amplification factors 

provided in these provisions. 

 Design optimization of seismic steel frame structures to be investigated in subsequent 

chapters requires accurate evaluation of actual seismic demands on code-compliant alternative 

designs. A bare-frame linear elastic model with centerline dimensions, which proved to be good 

for design purposes, is inadequate for estimating seismic demands when inelastic responses are 

significant (Gupta and Krawinkler 1999). Nonlinear structural models are thus required in which 
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contributing structural elements that comprise the entire structural system, including moment 

frames (beams, columns, panel zones, beam-to-column connections) and interior gravity frames 

(gravity column and beams, shear connections) as well as non-structural components (cladding, 

partitioning walls), may all need to be modeled appropriately.  

 Use of clear member dimensions as opposed to simple centerline dimensions improves the 

accuracy in performance evaluation. Steel structures dissipate most of seismic energy through 

material hysteresis when subject to cyclic seismic loading, which necessitates modeling of 

nonlinear steel member behaviors in a realistic manner. Geometrical nonliearities are also 

significant when large gravity loads act on deformed structural configuration. Effects of panel 

zone and beam-to-column connection rigidities on seismic structural behavior as observed in 

laboratory tests should also be addressed properly. Moreover, possible degradation/loss in 

strength and/or stiffness of connections due to fractures needs to be modeled in detail. The 

following sub-sections summarize techniques that are most relevant to modeling of steel frames 

buildings under seismic loads. 

 
3.1.2  Nonlinear steel members 

Assuming constant cross-sectional properties over the entire element length, a steel beam 

member in a moment frame is usually modeled in structural analysis software such as DRAIN-

2DX (Prakash et al. 1993) by an elastic element with point plastic hinges at both ends. A 

nonlinear rotational spring element is used to simulate the behavior of plastic hinges, with a 

bilinear moment-rotation relationship defined by yield strength and a constant post-yield strain-

hardening ratio (typically 3% for steel members). 

 For post-Northridge steel frame designs, the plasticity zone in the beam is forced away from 

the column face using either cover plated designs or reduced beam sections (FEMA-267 1995). 
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Accordingly, point plastic hinges in modeling of beam elements should be located at a prescribed 

distance away from the column face with proper strength and/or stiffness modification (Gupta 

and Krawinkler 1999). 

 For columns where higher axial forces are typically present, plasticity may spread over a 

relatively larger region; as a result, point plastic hinge idealization is not justifiable (Gupta and 

Krawinkler 1999). On the other hand, formation of plastic regions in columns are very much 

discouraged or even not allowed in the real-world practice. For example, the AISC seismic 

provisions (AISC 1997, 2000) require a strong-column-weak-beam mechanism in seismic steel 

design. Under this criterion, possible plasticity regions are mostly confined to take place in 

beams; columns are strong enough and essentially remain elastic. Column yielding is allowed 

only at the building base or roof level. Thus, global collapses are hopefully avoided and post-

earthquake rehabilitation work is greatly eased. Therefore, use of the same modeling technique 

(i.e., point plastic hinges plus elastic elements) for column members may not cause significant 

accuracy problems under the present design practice (Gupta and Krawinkler 1999). 

 
3.1.3 Panel zones 

 Modern seismic design codes permit use of excellent panel zone hysteresis to dissipate part 

of seismic energy under design earthquakes. Code guidelines usually provide design shear 

strength requirements for panel zones. Very weak panel zones with excessive shear deformation 

at a design force level, which may have detrimental effects on welded connections (Gupta and 

Krawinkler 1999), should nevertheless be avoided. Strength and stiffness of panel zones should 

be incorporated in the analytical model for better seismic response prediction of the structural 

system. 



 

 21

 The simplest panel zone representation is an elastic “scissors” model, where beams and 

column elements, tied by a rotational spring, frame into the panel zone region by rigid links with 

a beam hinge at the panel zone center; the resulting structural model is usually stiffer than the 

centerline model, as the stiffening effects of rigid links overwhelm the softening effects of the 

spring element (Foutch and Yun 2002). As a more advanced nonlinear panel zone model, rigid 

beam-column elements are used as boundary elements to construct a parallelogram of full panel 

zone dimensions; the shear strength and stiffness of the panel zone is modeled by providing a tri-

linear rotational spring for any one corner of the panel zone together with pin connections for the 

other three corners (Foutch and Yun 2002). 

 
3.1.4 Beam-to-column connections 

Both shear and moment beam-to-column connections exist in steel frame buildings. Shear 

connections are mainly used for interior gravity frames. Moment connections in perimeter 

moment resisting frames are of two types: fully restrained (i.e., rigid) and partially restrained 

(i.e., semi-rigid). Rigid connections represent an idealized situation where infinite connection 

stiffness is assumed and bending moments applied on these connections can be fully transferred 

to the neighboring members. A more realistic treatment is to explicitly consider connection 

flexibility, which leads to semi-rigid connection models. The most widely used analytical 

moment-rotational relationship for semi-rigid connections is a four-parameter power model 

(Richard and Abbott 1975; Hsieh and Deierlein 1990), which originally represents only the 

monotonically increasing loading history. To account for the hysteresis behavior of semi-rigid 

connections under cyclic seismic loading, the four-parameter power model is extended to 

represent both unloading and reloading behaviors in moment-rotation curves (Colson 1991; Huh 

and Haldar 2002). 
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Strength and/or stiffness degradation in hysteresis loops were observed in laboratory tests, 

which also need to be modeled for better simulation of actual seismic behaviors. By calibrating 

observed patterns from available experimental data of representative connection types, Foutch 

and Yun (2002) were able to construct in DRAIN-2DX empirical analysis models for hysteresis 

loops with strength/stiffness degradation due to fracture, via a Foutch-Shi element (Foutch and 

Shi 1997). Wang and Wen (2000) developed a smooth analytical hysteresis model using a 

modified Bouc-Wen model to account for asymmetry in hysteresis loops and a slip-lock element 

to address the slip and pinching phenomena in fractured connections. Luco and Cornell (2000) 

also studied effects of brittle connection fractures on seismic drift demands of steel moment 

frames.  

 
3.1.5 P-delta effects due to interior gravity loads 

For seismic steel building designs with perimeter moment resisting frame systems, interior 

frames are typically designed to carry only gravity loads and they will deform along with the 

perimeter moment frames when subject to lateral loads. P-delta effects due to interior gravity 

loads that are transferred to the moment frames via floor slab interactions can be significant 

when a frame undergoes large lateral displacements and have to be addressed properly.  

 Following Foutch and Yun (2002), a fictitious column element with very high axial stiffness 

and negligible flexural stiffness is connected to the moment frame model using rigid links with 

pin connections at both ends. Gravity loads tributary to the relevant interior frames are then 

applied to this dummy column at each floor level. Therefore, this dummy column can deflect 

together with the original moment frame without any additional bending moment resistance. 

 To further consider lateral resistance provided by interior gravity frames (columns, beam, 

and shear connections that could produce bending moment resistance due to composite action 
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between floor slabs and steel girders) and moment frames (weak-axis columns) in the orthogonal 

direction, a fictitious gravity one-bay frame may be added to the original moment frame model 

(Foutch and Yun 2002). Beams, columns, and rotational springs of this dummy frame bay have 

equivalent stiffness and strength properties of those of the interior gravity frames and of the 

orthogonal moment frames, respectively. Detailed relevant conversion procedures can be found 

in Gupta and Krawinkler (1999). 

 
3.1.6 Other modeling issues 

In addition to the above modeling concerns, there exist other issues that need to be 

considered appropriately if possible. For example, torsional interaction of structural components 

due to spatial seismic excitations and/or structural irregularity may alter significantly 

performance estimates resulting from a simple 2D frame model; non-structural components 

(cladding, partitioning walls, etc.) also contribute extra stiffness to the structural system. 

No matter how refined a structural model is, there exist many uncertainties in depicting 

behavioral characteristics of structural components as well as the entire structural system. As a 

result, assumptions have to be made, for example, regarding strength, stiffness, and deformation 

levels of different structural components. Sensitivities of both element and system level demands 

to these different modeling assumptions were systematically studied in Gupta and Krawinkler 

(1999). In addition, factors that contribute to structural responses may not sometimes be very 

well modeled due to lack of support from field observations and/or experimental data. The 

increased modeling complexity, however, seem unjustifiable due to uncertainties inherent in the 

estimation of both demands and capacity. In view of these, structural models with moderate 

sophistication may be desirable that can still capture major characteristics of seismic structural 

responses. 



 

 24

3.2 Frame modeling for the present study 

3.2.1 An example steel moment frame 

As shown in Figure 3.1, the example structure used in this study is a regular plane five-story 

four-bay steel special moment-resisting frame (SMRF) which constitutes one of the two identical 

north-south perimeter frames in a 100 ft (30.48 m) by 150 ft (45.72 m) office building fixed at 

the base, with a height of 67 ft (20.42 m) assumed to be built in Los Angeles area, California. 

Symmetric pairs of members about the vertical centerline of this SMRF are of the identical 

section types, respectively; in addition, all beam members across the same floor (or roof) are 

grouped with a single section type (Figure 3.2). 

In a realistic steel frame design practice, locations of column splice are usually determined 

before member sizing is performed due to shippability/erectability concern of long column 

shafts. Columns spanning two to four floors are generally recommended to simplify its 

construction. To simulate this practice, column splices are assumed to be located at a distance 

above the second floor level for construction consideration. In order to simplify the analysis, it is 

assumed that column sizes change exactly at the second floor level. There are therefore eleven 

design variables in total: six for column members and five for beam members (Figure 3.2). The 

labor cost needed for a column splice is assumed equivalent to 500 lbs (2.2 KN) of Grade 50 

steel (Carter et al. 2000). 

Following Kang and Wen (2000), dead load intensities for the floor and roof levels are 76 psf 

(3.64 KPa) and 67 psf (3.21 KPa), respectively; live load intensities for the floor and roof levels 

are 45 psf (2.15 KPa) and 16 psf (0.77 KPa), respectively; exterior wall and façade intensities are 

30 psf (1.44 KPa) for all stories. The SMRF is expected to resist half of the lateral seismic force 

of the entire building. 
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 The nominal steel strength is usually used for design purposes. To attain realistic seismic 

structural responses, the expected steel strength should be applied instead. In this study, A36 and 

A-572 steel materials, which are assumed for beam and column members respectively, have 

nominal yield values of 36 ksi (248.2 MPa) and 50 ksi (344.7 MPa), respectively, while their 

expected yield values are 49.2 ksi (339.2 MPa) and 57.6 ksi (397.1 MPa), respectively, based on 

the SSPC documents (1994). 

 
3.2.2 Modeling considerations 

The main goal of the present study is to develop general seismic design optimization 

procedures for steel SMRF structures considering multiple merit objective functions, some of 

which are based on evaluation of actual seismic performance of code-conforming alternative 

designs. A simplified analytical steel frame model may be justifiable that accounts for major 

contributions of structural elements to seismic responses, in particular, to displacement-related 

responses.  

 The following modeling issues are considered in the present study:  

• A bare-frame model of the plane steel SMRF structure is created in the DRAIN-2DX, 

where centerline beam-column elements (Type 2) without strength/stiffness deterioration 

are used to model all beams and columns with a 3% strain hardening ratio for point 

plastic hinges located at the element ends. Torsional effects are not considered. 

• Full restraints are assumed in the minor axis directions of column members and only 

buckling strengths of columns in the major axes are considered. Compact sections are 

used and adequate lateral bracing is applied where appropriate, which avoid, at an 

assurance level provided by the design provisions, the occurrence of strength and 
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stiffness deterioration due to local and lateral torsional buckling in severe earthquakes. 

Practical design details such as cover plates and the reduced beam sections are not 

included. 

• P-delta effects are modeled using the equivalent gravity column technique as described in 

Section 3.1.5. Stiffness due to interior gravity frames, which renders larger drift 

capacities and smaller drift demands (Foutch and Yun 2002), is not considered. 

• Rigid connections are assumed, that is, neither ductile nor brittle connection behaviors 

will be modeled. It is known that pre-qualified moment connections for post-Northridge 

designs will unlikely experience significant fracture problems.  

• Panel zone deformation (shear distortion) is neglected, which will partly counteract the 

effects of centerline dimensions assumption on quantification of lateral structural 

deformation. It is noted that panel zone designed in accordance with the current code 

provisions may be weak enough to attract most of the inelastic deformations under 

designated earthquakes, which will cause undesirable weld fractures in the connections 

(Gupta and Krawinkler 1999). Stiffer panel zones may therefore be needed in a practical 

design. 

 
3.3 Seismic performance evaluation procedures 

3.3.1 Overview 

In order to evaluate seismic performance of steel SMRF designs, structural analyses are 

conducted to predict relevant response parameters using appropriate analytical structural models 

that represent strength and deformation characteristics of building systems, as discussed in 
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Section 3.2. Four alternative evaluation procedures in FEMA-273 (1997) and FEMA-350 (2000) 

are briefly described as follows. 

(1) Linear static procedure (LSP). Similar to the elastic analysis procedure in code 

provisions, LSP uses response spectrum accelerations at the fundamental period as 

seismic inputs and applies an equivalent lateral force vector to the intended building 

structure; design parameters such as deflections and member forces are then determined. 

Unlike the design code provisions, LSP tries to predict ‘real’ structural responses by 

using more refined formulas, rather than that in the design code provisions where more 

conservative response estimates are usually desired. 

(2) Linear dynamic procedure (LDP). In this procedure, elastic response spectrum analyses 

are performed followed by a modal superposition technique using SRSS or CQC rules. 

(3) Nonlinear static procedure (NSP). With this simplified nonlinear analysis procedure 

commonly known as the static pushover analysis, forces and deformations induced by 

monotonically increasing lateral loading are evaluated at a target displacement level. 

More of this procedure will be discussed in Section 3.3.2. 

(4) Nonlinear dynamic procedure (NDP). This is the most accurate analysis procedure 

provided that the structural elements and system as well as seismic inputs can be modeled 

realistically. The response of a building to a set of selected ground motions is determined 

through numerical integration of the system equations of motion. Inelastic seismic 

demands can be best predicted. 
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3.3.2 Static pushover analysis 

 Use of nonlinear time history analysis is impractical in the present design optimization due to 

its prohibitive computational expenses. The nonlinear static procedure or the pushover analysis 

will be used instead. It is one of the most popular approximate methods to evaluate seismic 

structural demands due to its conceptual simplicity (ATC-40 1996; FEMA-273 1997). With this 

procedure, the nonlinear analytical model of a structural system is statically subjected to 

monotonically increasing lateral loads, with either a predetermined or an adaptive pattern, that 

approximate the earthquake-induced inertial force distribution on the structure, until a target 

displacement level of a controlling point is reached. Seismic strength and deformation demands 

at this target displacement level are then checked against relevant performance criteria for 

evaluation purposes. 

 
Lateral force distributions 

FEMA-273 suggests three lateral force patterns *s  for practical use:  

(1) a uniform distribution, with *
j js m=  where j =  floor number, jm = mass at the j-th floor;  

(2) an equivalent lateral force distribution, with * k
j j js m h=  where jh = height of the j-th floor 

from the base, k = an exponent factor (k =1 for the fundamental period 0.5T ≤ sec., k = 2 

for 2.5T ≥ sec, and linear interpolation for other T values is permitted.);  

(3) a square-root-of-sum-of-squares distribution, with *
js  being defined by the lateral forces 

back-calculated from the story shears determined by linear elastic response spectrum 

analysis.  
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 The second lateral force distribution pattern, which is also provided in the 2000 NEHRP 

provisions (Section 2.1.2), will be used in this study; DRAIN-2DX is used to perform the static 

pushover analysis with a displacement control option. 

 
Basic theory 

The following material is based on Krawinkler and Seneviratna (1998). The static pushover 

analysis uses an ‘equivalent’ single-degree-of-freedom (SDOF) system analogy to represent the 

original multi-degree-of-freedom (MDOF) structural system. Assuming that the MDOF system 

vibrates with a constant shape pattern φ  that is normalized at a controlling node (e.g., the roof 

node), the displacement vector of this MDOF system is then ( )( ) roof tt x=X φ . The discretized 

equations of motion of the MDOF system are 

( ) ( ) ( )( ) groof rooft t tx x t x+ + = −Mφ Cφ Q M1&& & &&                                                                (3.1) 

where M = mass matrix, C = damping matrix, Q = external force vector, gx&& = ground motion 

acceleration. Pre-multiplying Equation 3.1 by Tφ and defining the SDOF displacement as 

*( ) ( )
T

roofTx t x t 
 
 

= φ Mφ
φ M1

                                                                                              (3.2) 

leads to  

* * * * * *( ) ( ) ( ) ( )gM x t C x t Q t M tx+ + = −&& & &&                                                                            (3.3) 

where * TM = φ M1 , * T
T

TC
 

=  
 

φ Cφφ M1
φ Mφ

, * TQ = φ Q  are the mass, damping, and restoring 

force, respectively, of the equivalent SDOF system. 
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 Subjected to monotonically increased lateral forces of a usually predefined pattern, the load-

deformation characteristics, or the pushover curve, of the MDOF system is typically represented 

by a base shear vs. roof displacement diagram (Figure 3.3). A bilinear representation is then 

obtained that defines, for the MDOF system, nominal yield strength yV , yield displacement y∆ , 

effective elastic stiffness eK , and straining-hardening stiffness s eK Kα= . The yield strength and 

yield displacement of the SDOF system are then 

* T
y yQ = φ Q                                                                                                                       (3.4) 

  *
y

T

yT
 
 
 

∆ = ∆φ Mφ
φ M1

                                                                                                         (3.5) 

The elastic period of the SDOF system is 

* *
*

*2 y

y

M
T

Q
π

∆
=                                                                                                              (3.6) 

 The strength reduction factor for this SDOF system can be obtained by 

 
* *

*

( )a

y

S T MR
Q

=                                                                                                                (3.7) 

where *( )aS T  is the spectral acceleration at the period *T of the SDOF system. 

The inelastic peak displacement at the controlling node of the MDOF system, u∆ , is 

obtained by 

*
u

T

u T
 
 
 

∆ = ∆φ M1
φ Mφ

                                                                                                         (3.8) 
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where the peak displacement of the SDOF system, *
u∆ , may be quantified through empirical 

R Tµ− − relationships, where * *
u yµ = ∆ ∆  is the displacement ductility of the SDOF system. 

Over the years various R Tµ− − relationships have been proposed (Miranda and Bertero 

1994). The one proposed by Nassar and Krawinkler (1991) takes the following form: 

[ ]1/( 1) 1 cR c µ= − +                                                                                                          (3.9) 

where 

1

a

a

T bc
T T

= +
+

                                                                                                              (3.10) 

with a and b being strain hardening ratio α -dependent coefficients as given in Table 3.1. 

 
Application issues  

 In general, the static pushover analysis works fairly well for structures that respond primarily 

in the fundamental mode (usually the first mode). For taller and more flexible structures possibly 

with mass and/or stiffness irregularity, contributions from higher modes can be significant, for 

which the pushover analysis may fail to give good estimates of seismic responses. Moreover, 

behavioral characteristics of structural elements under cyclic loading conditions, such as 

cumulative damage, are not considered in the pushover analysis. In addition, most of static 

pushover analysis procedures use time-invariant lateral load patterns, which are a very crude 

approximation of time-varying height-wise inertial force distribution; static pushover analysis 

with time-varying adaptive lateral load patterns has been investigated in the literature (e.g., 

Gupta and Kunnath 2000). 
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3.4 Seismicity for the present study 

The target 5%-damped smooth elastic response spectra (Table 3.2, Figure 3.4), which were 

used to generate sets of SAC ground motion records for the Los Angeles area with soil profile D 

(Somerville et al. 1997) at two hazard levels corresponding to 50-year exceedance probabilities 

of 50% and 2% (denoted as 50/50 and 2/50), respectively, are adopted in conjunction with the 

static pushover analysis to evaluate seismic performance for design optimization problems that 

will be investigated in the later chapters. Figure 3.5 plots the 50-year and annual exceedance 

probability vs. spectral acceleration curves for Los Angeles area, assuming a lognormal 

distribution. Note that these two sets of exceedance probability are related through 

( )1/50
501 1annualPE PE= − −                                                                                             (3.11) 

Because of the approximate nature of the static pushover analysis, seismic performance of a 

code-compliant structural design needs to be further evaluated by the more accurate time history 

analysis so that possible structural weakness that cannot be captured by the simplified analysis 

procedure may be exposed and assessed. Sets of twenty SAC ground motion records at 50/50 and 

2/50 hazard levels, respectively, whose 5%-damped median elastic response spectra match the 

above-mentioned target response spectra at 0.3, 1.0, 2.0, and 4.0 sec in a least-square sense, will 

be used in later chapters to perform the time history analysis in DRAIN-2DX. Tables 3.3 and 3.4 

provide the characteristic information of these individual ground motion records at 50/50 and 

2/50 hazard levels, respectively, with individual response spectra being plotted in Figure 3.4. 

Viscous damping ratios are set, at the first mode and at the 0.2 second, to be 4.0%, which is 

linearly interpolated from 4.3% and 3.6% for typical three- and nine-story steel SMRF buildings, 

respectively (Lee and Foutch 2000). 
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Table 3.1   Coefficients for R Tµ− −  relationship  
 (Nassar and Krawinkler 1991) 

α  a b 

0.00 1.00 0.42 

0.02 1.00 0.37 

0.10 0.80 0.29 

 

 

 

 

Table 3.2  Target response spectra values  
 (Somerville et al. 1997) 

Hazard level 0.3 sec 1.0 sec 2.0 sec 4.0 sec 

50/50 0.514 g 0.288 g 0.149 g 0.069 g 

2/50 1.610 g 1.190 g 0.540 g 0.190 g 
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Table 3.3   Characteristics of SAC 50/50 set of Los Angeles ground motion records 

ID Information Duration 
[sec] 

Magnitude 
[Mw] 

R [km] Scale PGA 
[in/sec/sec] 

LA41 Coyote Lake, 1979 39.38 5.7 8.8 2.28 227.7 

LA42 Coyote Lake, 1979 39.38 5.7 8.8 2.28 128.7 

LA43 Imperial Valley, 1979 39.08 6.5 1.2 0.40 55.4 

LA44 Imperial Valley, 1979 39.08 6.5 1.2 0.40 43.1 

LA45 Kern, 1952 78.60 7.7 107.0 2.92 55.7 

LA46 Kern, 1952 78.60 7.7 107.0 2.92 61.4 

LA47 Landers, 1992 79.98 7.3 64.0 2.63 130.4 

LA48 Landers, 1992 79.98 7.3 64.0 2.63 118.8 

LA49 Morgan Hill, 1984 59.98 6.2 15.0 2.35 123.0 

LA50 Morgan Hill, 1984 59.98 6.2 15.0 2.35 211.0 

LA51 Parkfield, 1966, Cholame 5W 43.92 6.1 3.7 1.81 301.4 

LA52 Parkfield, 1966, Cholame 5W 43.92 6.1 3.7 1.81 243.8 

LA53 Parkfield, 1966, Cholame 5W 26.14 6.1 8.0 2.92 267.7 

LA54 Parkfield, 1966, Cholame 5W 26.14 6.1 8.0 2.92 305.1 

LA55 North Palm Springs, 1986 59.98 6.0 9.6 2.75 199.8 

LA56 North Palm Springs, 1986 59.98 6.0 9.6 2.75 146.3 

LA57 San Fernando, 1971 79.46 6.5 1.0 1.30 97.7 

LA58 San Fernando, 1971 79.46 6.5 1.0 1.30 89.2 

LA59 Whittier, 1987 39.98 6.0 17.0 3.62 296.7 

LA60 Whittier, 1987 39.98 6.0 17.0 3.62 184.7 
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Table 3.4   Characteristics of SAC 2/50 set of Los Angeles ground motion records 

ID Information Duration 
[sec] 

Magnitude 
[Mw] 

R [km] Scale PGA 
[in/sec/sec] 

LA21 1995 Kobe 59.98  6.9 3.4 1.15 495.3 

LA22 1995 Kobe 59.98  6.9 3.4 1.15 355.4 

LA23 1989 Loma Prieta 24.99   7.0 3.5 0.82 161.4 

LA24 1989 Loma Prieta 24.99   7.0 3.5 0.82 182.6 

LA25 1994 Northridge 14.95  6.7 7.5 1.29 335.3 

LA26 1994 Northridge 14.95  6.7 7.5 1.29 364.3 

LA27 1994 Northridge 59.98  6.7 6.4 1.61 357.8 

LA28 1994 Northridge 59.98  6.7 6.4 1.61 513.4 

LA29 1974 Tabas 49.98  7.4 1.2 1.08 312.4 

LA30 1974 Tabas 49.98  7.4 1.2 1.08 382.9 

LA31 Elysian Park (simulated) 29.99  7.1 17.5 1.43 500.5 

LA32 Elysian Park (simulated) 29.99  7.1 17.5 1.43 458.1 

LA33 Elysian Park (simulated) 29.99  7.1 10.7 0.97 302.1 

LA34 Elysian Park (simulated) 29.99  7.1 10.7 0.97 262.8 

LA35 Elysian Park (simulated) 29.99  7.1 11.2 1.10 383.1 

LA36 Elysian Park (simulated) 29.99  7.1 11.2 1.10 424.9 

LA37 Palos Verdes (simulated) 59.98  7.1 1.5 0.90 274.7 

LA38 Palos Verdes (simulated) 59.98  7.1 1.5 0.90 299.7 

LA39 Palos Verdes (simulated) 59.98  7.1 1.5 0.88 193.1 

LA40 Palos Verdes (simulated) 59.98  7.1 1.5 0.88 241.4 
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Figure 3.1    Plan view and elevation of an example steel building 

 

 

 

 

 

 

 

 

 

Figure 3.2    Member linking patterns assumed in the example steel frame 
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Figure 3.3    Illustrative sketch of the static pushover analysis 
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Figure 3.4    Acceleration response spectra at two hazard levels 
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Figure 3.5   50-year and annual probabilities of exceedance for SAC spectral accelerations 
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