ABSTRACT

DEVELOPMENT OF MULTIOBJECTIVE OPTIMIZATION PROCEDURES FOR
SEISMIC DESIGN OF STEEL MOMENT FRAME STRUCTURES

Min Liu, Ph.D.
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University of Illinois at Urbana-Champaign, 2003
Yi-Kwei Wen and Scott A. Burns, Advisors

Design of seismic-resistant civil structural systems necessitates a balanced minimization of
two general competing objectives: the present capital investment and the future seismic risk.
Many of the existing seismic design optimization procedures use single objective functions of
either the traditional minimum material usage (weight or cost) or the recent minimum expected
life cycle cost criterion while imposing constraints from relevant code specifications as well as
additional seismic performance concerns. The resulting single optimized structural design may
not always perform satisfactorily in terms of other important but conflicting merit objectives; the

designer’s individual risk-acceptance level is not conveniently integrated into the design process.

Genetic algorithm based automated seismic design procedures are developed in the present
study for member sizing optimization of code-compliant regular plane steel special moment
resisting frame structures with simultaneous as well as separate treatment of multiple objective
functions that reflect steel material usage, initial expenses, degree of design complexity, seismic
structural performance indices, and lifetime seismic damage cost, respectively. A wide
distribution of valid alternative designs is obtained that establishes optimized tradeoff among all
relevant conflicting merit objectives. Therefore, structural engineers have much broader view of
the entire optimized design space and thus more flexibility to select, through an explicit tradeoff
decision-making process with valuable engineering experiences, the most desirable cost-effective

design solution that balances different merit aspects in a preferred manner.
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