
 

 203

APPENDIX E 

PROBABILISTIC BASIS FOR SAC/FEMA GUIDELINES 

 
 This appendix outlines the probabilistic framework for seismic design and assessment of 

steel frame buildings in the SAC/FEMA guidelines. The following material is basically 

excerpted from Cornell et al. (2002). 

 
E.1  Basic approach 

 Seismic structural behavior in SAC/FEMA guidelines is represented explicitly by nonlinear, 

dynamic, displacement-based quantities. Both demand D and capacity C are measured in terms 

of maximum interstory drift ratios. From the total probability theorem, the probability of a 

performance level not being met can be evaluated as 

  
[ ] ( )

[ ] ( )
PL D

D

P P C D P C D D d dH d

P C d dH d

 = ≤ = ≤ = 

≈ ≤

∫
∫

                                                            (E.1) 

where ( )DH d  is the (structure-specific) drift hazard curve that provides the (mean) probability 

of the drift demand D exceeding any specified value d. It is obtained from 

  ( ) [ ] ( )D a a aH d P D d P D d S s dH s = ≥ = ≥ = ∫                                                       (E.2) 

where ( )adH s  is the absolute value of the derivative of the site’s spectral acceleration hazard 

curve times dx, which is approximately the likelihood of a aS s= . 

 Closed-form formulas can be derived based on a series of assumptions. First, by assuming 

that conditional median drift demand D̂  can be approximated by 

  ( )ˆ b
aD a S=                                                                                                                     (E.3) 
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and the drift demand D follows a lognormal distribution about its median value D̂  with a 

standard deviation of 
aD Sβ , the integrand of Equation E.2 becomes 
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in which Φ  is the standardized Gaussian distribution function. 

 Further assuming that the site hazard curve can be approximated by 
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Equation E.2 can then be derived as 
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in which ( )1/bd
as d a= the spectral acceleration associated with the drift demand d. 

 Assuming the drift capacity C also follows a lognormal distribution about its median value 

Ĉ  with a standard deviation of Cβ , the integrand of Equation E.2 becomes 
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 Substituting Equations E.6 and E.7 into E.1 leads to  
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in which ( )1/ˆ ˆ bC
as C a= the spectral acceleration associated with the median drift capacity Ĉ . 
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E.2  Uncertainty treatment 

 By considering the (epistemic) uncertainties in both drift demand and capacity, PLP  itself 

becomes a random variable. The mean estimate of PLP  is  
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where ˆ ,H H = median and mean estimates of spectral acceleration hazard, respectively; Hβ = 

dispersion measure for hazard; ,DR CRβ β = dispersion measures for randomness in drift demand 

and capacity, respectively; ,DU CUβ β = dispersion measures for uncertainty in drift demand and 

capacity, respectively. 

 The median or 50% confidence estimate of PLP  is  
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 An (epistemic) uncertainty for PLP  can be calculated by 
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 Hence the confidence level estimate of PLP  is obtained from 
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where xK = standardized Gaussian variate associated with probability x of not being exceeded. 
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E.3  Codified safety/performance checking schemes 

 Using the mean estimate of probability as the objective, one rearranges Equation E.9 with a 

performance level objP  to obtain 
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or in a codified form 
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with  
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 To obtain the associated confidence level, one calculates the factored-demand to factored-

capacity ratio 
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where ( )1/ 22 2 2 2
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 The Gaussian variate xK is then solved for as 
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