
44

Chapter 4
Transonic Wing Design Optimization

Based on Evolutionary Algorithm
4.1 Introduction

The objective of this chapter is to ensure the feasibility of the present EA in aerodynamic
design optimizations. A transonic wing shape design optimization will be demonstrated. Section 4.2
gives an overview of aerodynamic wing design goals. Formulation of the present design problem is
presented in Section 4.3. Sections 4.4 and 4.5 describe the details of the present CFD code and
structural model, respectively. Section 4.6 presents the present EA. The design results are shown in
Section 4.7.

4.2 Aerodynamic Wing Design Goals
A large part of the maximum takeoff weight of a typical transonic commercial aircraft is

occupied by drag-related weights (i.e. fuel and engine size). Therefore, the objective of an
aerodynamic optimization of a transonic wing is, in principle, minimization of its drag. Total drag of a
transonic wing is composed of pressure drag, skin friction drag, induced drag, and wave drag. Because
skin friction drag is mainly determined by the aircraft’s total surface area and the friction coefficient, if
a planform shape and the flow conditions are given, the design goals of a transonic wing shape
optimization are usually minimizations of the other drag components, i.e., pressure drag, induced drag,
and wave drag.

Pressure drag is derived from the net component of a surface pressure distribution in the
horizontal direction. Although this drag component is usually smaller than the other, flow separation
on the upper surface of a wing can drastically increase the pressure drag. Hence, one important design
goal is to reduce pressure drag by realizing fully attached flow.

Reduction of the induced drag associating with the wing-tip vortices is another significant
factor in designing a finite wing because it constitutes a large part of the total drag. The induced drag
is interpreted as caused by three physical phenomena. First the wing-tip vortices simply alter the flow
field in a fashion to change the surface pressure distribution in the direction of increasing drag. The
second is that the lift vector is tilted back, which results in increase of drag force because of the
downward canted local wind about the wing. The last is the lost kinetic energy to generate the wing-tip
vortices. It is well known that elliptical lift distribution gives the minimum induced drag (for example,
see [1]). On the other hand, the parabolic lift distribution is known to give the minimum induced drag
when the structural constraint is considered [2].

Reduction of the wave drag is also critical for a successful transonic wing design. The shock
waves themselves result in an increase in drag. But in addition, the sharp pressure increase across the
shock waves causes the flow to separate from the surface. Such flow separation can create substantial
increase in drag. Thus, the last design goal is not to have any significant shock waves.

Unfortunately, drag minimization for itself is no goal for a wing design. There are
considerable number of tradeoffs. One of the main tradeoffs is between drag and wing structure
weight. An increase in the wing thickness allows the same bending moment to be carried with reduced
skin thickness with an accompanying reduction in weight. On the other hand, it will lead to an increase
in wave drag. There is also a tradeoff between drag and lift because induced drag increases in
proportion to the square of the lift. For instance, a wing that achieves no induced drag would have no
lift.

Therefore, the objectives of an aerodynamic wing optimization can typically characterized as
minimization of each components of the total drag with constraints to maintain the required lift and the
wing thickness, or maximization of lift-to-drag ratio L/D with constraints on the wing thickness.
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4.3 Formulation of Optimization Problem
The objective of the present wing design problem is maximization of L/D at the transonic

cruise design point, maintaining the minimum wing thickness required to stand the bending moment
due to the lift distribution. The cruising Mach number and the angle of attack are set to 0.8 and 0
degree, respectively. The aerodynamic performance L/D is evaluated by the Navier-Stokes code that
will be described in Sec. 4.4 on the assumption that the Reynolds number based on the root chord is
107.

In the present optimization, the planform of the supercritical wing in the NASA Energy
Efficient Transport (EET) Program [3] was selected as the test configuration for the following design
cases (Fig.4.1). Wing profiles of design candidates are generated by the PARSEC airfoils. The
PARSEC parameters and the section angle of attack (in other words, root incident angle and twist
angle) are given at seven span sections, of which spanwise locations are also treated as design
variables except for the wing root and tip locations. The PARSEC parameters are rearranged from root
to tip according to the airfoil thickness so that the resulting wings always have maximum thickness at
the wing root. The twist angle parameter is also rearranged into numerical order from tip to root. The
wing surface is then interpolated in spanwise direction by using the second-order Spline interpolation
(Fig. 4.2). In total, 87 parameters determine a wing geometry. Parameter ranges of the design space
are shown in Table 4.1. It should be noted that in ARGAs, user-defined design space is used just for
the distribution of the initial population. ARGA can promote the search space outside of the user-
defined design space even if it is ill defined.

Fig.4.1 Wing planform
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Fig. 4.2 Spline interpolation

Table 4.1 Parameter ranges of the design space
parameters rLE ZTE αTE βTE XUP ZUP ZXXUP XLO ZLO ZXXLO twist
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angle
upper-bound 0.030 0.01 -3.00 8.00 0.70 0.18 0.00 0.60 0.02 0.90 7 degs.
lower-bound 0.002 -0.01 -13.00 4.00 0.30 0.08 -0.30 0.20 -0.04 0.30 -1 degs.

4.4 CFD Analysis for Aerodynamic Design
The flow physics can be represented by a wide range of approximations. Among them, the

Reynolds-averaged Navier-Stokes equations provide the state-of-aft of aerodynamic performance
evaluation. Although a Navier-Stokes calculation requires large computer resources to estimate wing
performances within a reasonable time, the three-dimensional Navier-Stokes equations must be solved
because flows around a wing involve significant viscous effects, such as potential boundary-layer
separations and shock wave/boundary layer interactions in the transonic regime. In this chapter, a
three-dimensional thin-layer Reynolds-averaged Navier-Stokes solver will be used to guarantee an
accurate model of the flow field to demonstrate the feasibility of EA methodology. This code employs
total variation diminishing type upwind differencing, the lower-upper symmetric Gauss-Seidel
scheme, and the multigrid method. In the following subsections, details of the present code will be
shown.

4.4.1 Symbols
$Q generalized-coordinate conserved variables
$ , $ , $E F G generalized-coordinate inviscid fluxes
$ , $ , $E F Gv v v generalized-coordinate viscous fluxes
$S generalized-coordinate viscous thin-layer fluxes
t ,τ time
ξ η ς, , generalized curvilinear coordinates
ρ density
u v w, , vector components of velocity
U V W, , contravariant velocity components
p pressure
e internal energy per unit mass
T temperature
µ viscous coefficient
γ ratio of specific heats
Re Reynolds number
c speed of sound
NN total number of grid points
A B C, , inviscid flux Jacobian matrices
∆t time step size
( )ρ A spectral radius of A

R right eigenvector matrix
Λ eigenvalue matrix
L left eigenvector matrixI identity matrixSubscripts:∞ free-stream values
i j k, , indices of grid point
R the right state of cell interfaceL the left state of cell interfaceSuperscripts:
± splitting due to the sign of eigenvalues
n time level

4.4.2 Governing Equations
The three-dimensional, compressible, thin layer Navier-Stokes equations are used to evaluate

aerodynamic performance of a three-dimensional wing. Under a generalized curvilinear coordinate
system (ξ,η,ζ ), the Navier-Stokes equations are written in the strong conservation law form as
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with the stress terms,
)2(3

2
zyxxx wvu −−= µτ , )2(3

2
xzyyy uwv −−= µτ ,

)2(3
2

yxzzz vuw −−= µτ ,

)( xyyxxy vu +== µττ , )( yzzyyz wv +== µττ ,

)( zxxzzx uw +== µττ
Metrics and Jacobian are given by

)( ηζζηξ zyzyJx −= , )( ηζζηξ xzxzJy −= , )( ηζζηξ yxyxJz −= ,

)( ζξξζη zyzyJx −= , )( ζξξζη xzxzJy −= , )( ζξξζη yxyxJz −= ?

)( ξηηξζ zyzyJx −= , )( ξηηξζ xzxzJy −= , )( ξηηξζ yxyxJz −=

ζηξζηξζηξζηξζηξζηξ xyzzxyyzxyxzxzyzyxJ −−−++=− 1

The contravariant velocity components are defined as

wvuU zyxt ξξξξ +++=
wvuV zyxt ηηηη +++=
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wvuW zyxt ζζζζ +++=
Pressure is related to the conservative variables Q by the equation of state
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2
1

)1( 222 wvuep ργ (4.2)

In high Reynolds number flows, the effects of viscosity are concentrated near wall
boundaries and in wake regions. Considering the memory and CPU time requirement, enough grid
points are usually available only near the wall surfaces. Hence, the resulting grid has fine grid spacing
normal to the surface and coarse grid spacing along the surface.

Even when the full Navier-Stokes equations are discretized, the viscous terms associated
with derivatives along the body will not be resolved and in most cases for attached and mildly
separated flows these terms are negligible. Only the terms normal to the body will be resolved by
sufficiently fine grid spacing and these are the substantial terms.

Therefore, the following thin layer Navier-Stokes equations have been widely used for a
variety of applications.
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The thin layer approximation may break down for low Reynolds numbers and in regions of massive
flow separation.

4.4.3 Numerical Algorithm
Following Warming and Beam[4], an implicit three-point time differencing scheme can be

written as
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where nnn QQQ
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. For the first-order scheme in time the parameters ϑ
and ϕ  become 1 and 0, respectively. Applying Eq.(4.4) to Eq. (4.3) , one obtains
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 by a Taylor expansion such that
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where QEA ˆˆˆ ∂∂= , QFB ˆ∂∂
))

= , QGC ˆ∂∂
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= and QSM ˆˆˆ ∂∂= are the flux Jacobians and nQ
)
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Applying Eq. (4.6) to Eq. (4.5) and combining the nQ
)

∆  terms produces the “delta form” of
the algorithm, one obtains
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 (4.7)
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The left and right hand side of Eq. (4.7) are called as the “implicit” and “explicit” parts of the
algorithm, respectively.

4.4.3.1 LU-SGS Method
The LU-SGS (lower-upper symmetric Gauss-Seidel) algorithm is efficient and robust

implicit relaxation scheme originally suggested by Yoon [5]. A slightly modified form of the LU-SGS
method [6] is given by
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where ςηξ ,,=k  and 01.1=χ  typically. ±Â ±B̂  and ±Ĉ are constructed so that the eigenvalues
of “+” matrices are nonnegative and those of “-” matrices are nonpositive. By Eq. (4.8b), the present
numerical method eliminates the need for block diagonal inversions. Note that this is a two-factored
scheme so that the algorithm can be written as
Forward sweep :
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Backward sweep :
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 Though this scheme requires no block-matrix inversion, it introduces large dissipation through the
time integration. Only when the solution converges to a steady state, its effect banishes. Although the
LU-SGS method is first-order accurate in time similar to other implicit methods, unsteady calculations
have to be carried out carefully with the LU-SGS method. The use of Newton iteration [7,8] will be
beneficial not only for removing the excess dissipation but also for obtaining the second-order
accuracy in time.

4.4.3.2 HLLEW Scheme
The cell-vertex finite-volume method are applied to the explicit part of Eq. (4.7) to
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approximate the differential operators ξ∂ η∂ and ζ∂  as
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The cell interface flux is evaluated by the HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) method [9]

as
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The overbar indicates Roe-averaged quantities. This scheme satisfies all the stability, entropy, and

positively conservative conditions required for the nonlinear difference equations.

The HLLE scheme approximates the solution of the Riemann problem with two waves

propagating with speed
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and

( )0,,min 222222
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and a state QLR between those waves. Compared with the Roe scheme, the HLLE scheme introduces

large numerical dissipation at contact discontinuities. The HLLEW scheme improves the resolution at

contact discontinuities by adding ′Λ . The resulting scheme reduces to the Roe scheme when δ=1/2

and to the HLLE scheme when δ=0. Because σ1 represents a jump in entropy, it is zero for isentropic

flows. Then, the present scheme results in the Roe scheme. As the jump in entropy becomes large, the

present scheme turns into the HLLE scheme.

4.4.3.3 Modified Differentiable Limiter
Higher-order numerical fluxes are obtained from higher order interpolation of the primitive

variables for the left and right states at the cell interface [10] as
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where V is the primitive flow variables. ∇ and ∆  are backward and forward difference operations,
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respectively. Third-order interpolation is obtained from κ=1/3. The limiter function  φ in [11] and [12]
is given as
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In this paper, εi
2 is given by
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4.4.3.4 Turbulence Model
Nondimensional viscous coefficient is given by a sum of laminar and turbulent viscosities as
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Laminar viscosity µl is defined by using Sutherland’s formula as
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Turbulent viscosity µt  is calculated by an algebraic mixing length model by Baldwin-Lomax [13]. The
inner layer is governed by the Prandtl mixing length with Van Driest damping, and the outer layer
follows the Caluser approximation. Computed vorticity is used in defining the reference mixing length
required for the outer layer. The turbulence model was designed specifically for use with the thin layer
approximation. The model is appropriate to attached and mildly separated boundary layers.

Turbulent viscosity can be written as
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y is the distance from wall and ycrossover is the minimum distance satisfying outertinnert µµ ≥ . Fmax is the
maximum value of the following function

( ) ( )[ ]++−−= AyyyF exp1ω (4.20)
and ymax is a distance from wall to Fmax location. The above coefficients are defined as

26=+A , 4.0=k , 6.1=CPC , 3.0=KLEBC , 0.1=WKC ,

0168.0=K
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4.4.3.5 Time Stepping Technique
In the following calculations, a locally varying time step [14] was taken as
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NN is a total number of grid points. This expression reduces the effective time step in regions of
clustered grid while a large time step is maintained in the inviscid regions. Local time-stepping is
useful for three-dimensional computations where high mesh refinement in two or more coordinate
directions is required.

4.4.3.6 Multigrid Method
Multigrid techniques have derived from the observation that many numerical methods for

solving discretized partial differential equations are adept at smoothing high frequency error
components, but are a poor smoother for lower frequency components. Convergence histories at first
show a region of rapid error reduction by removing high frequency components. However, a long
region of slow error reduction corresponding to the slow expulsion of the low frequency modes
follows.

The multigrid method efficiently dissipates the lower frequency errors using a sequence of
grids Gh ,G2h ,G4h , ... where Gh denotes the finest grid from which successively coarser grids can be
formed by deleting every other grid line in all coordinate directions. On coarser grids, the fine-grid
low frequency error components are resolved as higher frequencies due to the increased grid spacing,
and thus they are effectively damped. When this correction is interpolated back to the fine grid, high
frequency errors can be generated but they are damped quickly by the fine-grid smoothing iteration. A
sequence of grids about a NACA0012 airfoil is shown in Fig. 4.3.

The multigrid method used in the current study is the full approximation scheme (FAS) [15].
The current cycling strategy uses a V-cycle with three grid levels as shown in Fig 4.4. On the coarser
grids, two time steps are proceeded. Convergence was not improved significantly any more by
increasing the grid levels in the V-cycle or by changing the V-cycle to the W-cycle.

      
Grid H                   Grid 2H                   Grid 4H

Figure 4.3 Grid sequence
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T : Euler/N-S calculation
C : Residual/Q collection
I : Correction interpolation

H

2H

4H

TQ Qc

I

I

C

C
T

T

TQ Qc

I

I

C

C
T

T

GRID LEVEL

Figure 4.4 V-cycle

The multigrid method is illustrated by a grid sequence between two grid levels. The Euler or
Navier-Stokes equations are solved approximately on a fine grid H by dividing the domain into
discrete cells yielding a system of algebraic equations as

HHHH tRQtLQM ∆−=∆−=∆ )( (4.23)

where M is the explicit or implicit relaxation operator of the scheme considered and L QH H( )  is the

explicit part of Eq. (4.7), corresponding to the current conservative variables QH . After Eq. (4.23) is
calculated, the residual and the dependent variables on the first coarse grid are calculated by restricting
the corresponding fine-grid values as

H
H

HH QIQ 2
2 = (4.24)

H
H

HH RIR 2
2 = (4.25)

A volume weighted restriction operator I H
H2  transfers values on the fine grid H to the coarse grid 2H

as

∑∑= VVQQI H
H

H /2
(4.26)

∑∑= VVRRI H
H

H /2
(4.27)

where the summations are taken over the entire fine grid cells which make up the coarse grid cell and
V is volume of the fine-grid cell. This restriction operator is conservative and thus the surface integral
of the fluxes crossing the cell boundaries on the coarse grid are the same as the corresponding integral
on the fine grid. The relative truncation error on the coarse grid is calculated from the

H
H

HH
H

HHH RIQIL 22
22 )( −=τ (4.28)

On the coarse grid, a few iterations of the approximate factorization scheme can be conducted by
adding the relative truncation error as

HHHHH tRQtLQM 22222 )( ∆−=−∆−=∆ τ (4.29)
Since τ2H  has been previously calculated, the residual is easily calculated by simply calculating

L Qh h
c

2 2( )  from the most current values on the mesh and subtracting τ2h . The residual on the coarser
grid is thus expressed as

HHHH QLR 2222 )( τ−= (4.30)
The correction V H2  is calculated as
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H
H

HHH QIQV 2
22 −= (4.31)

This correction is transferred to the fine grid by using trilinear interpolation I H
H2 .

H
H
HH

c
H VIQQ 22+= (4.32)

The fine-grid solution is fully updated by one more smoothing iteration using Eq. (4.23).
Compared with the conventional time-marching scheme, the V-cycle requires additional

computations on coarser grids. However, on the first coarse grid 2H, the computational efforts are
reduced to 1/8 of the calculation on the finest grid in the three dimensions since the number of nodes is
reduced to 1/2 in each coordinate direction. Thus the computational cost on coarser grids is extremely
small. Similarly, it becomes 1/64 on the 4H grid. Thus the total computational cost of the present V-
cycle becomes,

2+2/8+2/64? 2.3  (4.33)
while 6 time steps are computed in one cycle.

Another merit of multigrid strategy is that the time step sizes limited by the CFL number can
be doubled as the grid spacing is doubled from the previous grid. Then the multigrid cycle proceeds
the total time step sizes of

tttt ∆=∆×+∆×+∆× 13)4(2)2(2)(2 (4.34)
compared with 6 ∆t  for the single grid method, where ∆t  represents the time step size on the fine
grid.

4.5 Estimation of Required Thickness
To estimate the required thickness distribution to stand the bending moment due to the lift

distribution, the wing is modeled by a thin walled box-beam as shown in Fig. 4.5.

t2

t1

c

croot

b/2

Fig. 4.5 Wing planform geometry and cross section of the wing

The shear panels of the box-beam are considered to shear the bending moment. From the load L, the
spanwise bending moment distribution M is calculated by

L
dy

Md −=2

2

(4.35)

For the brevity, the lift distribution is replaced by spanwise concentrated loads. The bending stress at
each station is given by
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2
1t

I
M=σ (4.36)

where

2
2
12

2
1

2
1

2
2 tctct

t
I ⋅⋅=⋅⋅





⋅= (4.37)

The constraint is then given by the local stress to be less than the ultimate shear stress of, say,
Aluminum alloy 2024-T351.

ultimateσσ < (4.38)
Using Eqs. (4.36) to (4.38), we obtain the minimum thickness tmin  at each segment,

min
2

t
tc

Mt
ultimate

=
⋅⋅

>
σ (4.39)

Following assumptions are made: the thickness of the skin panels are 2.5[cm] and its ultimate normal
stress is 39[ksi]. The length of the chord at wing root Croot  and maximum wingspan b/2 are 10[m] and
18.8[m], respectively. (see, for example, [16]).

4.6 Optimization Using EA
The present EA is the real-coded ARGA described in Chap.2. Parameters of the ARGA, ωµ,

ωσ and N, are set to 1, 0.3 and 4, respectively. The structured coding coupled with one-point crossover
proposed in Chap. 3 is also incorporated. The present EA adopts the elitist strategy where the best and
the second best individuals in each generation are transferred into the next generation without any
crossover or mutation. The parental selection consists of the stochastic universal sampling and the
ranking method using Michalewicz’s nonlinear function. Mutation takes place at a probability of 10%
and then adds a random disturbance to the corresponding gene in the amount up to ±10% of each
parameter range in Table 4.1. The population size is kept at 64 and the maximum number of
generations is set to 65. The initial population is generated randomly over the entire design space.

The main concern related to the use of EAs coupled with three-dimensional Navier-Stokes
solvers for aerodynamic shape designs is the required computational effort. In the present case, each
CFD evaluation takes about 100 min. of CPU time even on a vector computer. Because the present
optimization evaluates 64 x 65 = 4160 design candidates, sequential evolutions would take almost
7000 h (more than half a year!).

Fortunately, parallel vector computers are now available in many institutions and
universities. In addition, EAs are intrinsically parallel algorithms and can be easily parallelized. One
of such computers is Numerical Wind Tunnel (NWT)[17] located at National Aerospace Laboratory in
Japan. NWT is a MIMD parallel computer with 166 vector-processing elements (PEs) and its total
peak performance and the total main memory capacity are about 280 GFLOPS and 45GB,
respectively. In the present optimization, evaluation process at each generation was parallelized using
the master-slave concept; the grid generations and the flow calculations associated to the individuals
of a generation were distributed into 64 PEs of NWT. This made the corresponding turnaround time
almost 1/64 because the CPU time used for EA operators are negligible.

To handle the structural constraint with the single-objective EA, the constrained optimization
problem was transformed into an unconstrained problem as

fitness




−⋅+
+

=
)exp()/100(

/100

minttDL
DL

function  
otherwise

if mintt ≥
(4.40)

where t and tmin are thickness and minimum thickness at the span station of the maximum local stress.
The exponential term penalizes the infeasible solutions by reducing the fitness function value. Because
some design candidates can have negative L/D, the summation of 100 and L/D is used.
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4.7 Results
The optimization history of the present EA is shown in Fig. 4.6 in terms of L/D. During the

initial phase of the optimization, some members had a strong shock wave or failed to satisfy the
structural constraint. However they were weeded out from the population because of the resultant
penalties to the fitness function. The final design has L/D of 18.91 satisfying the given structural
constraint. Aerodynamic performances of the design are summarized in Table 4.2. Compared with a
typical long-range transport aircraft, the present wing has smaller CL. Although L/D is an important
aircraft performance measure because the range of an aircraft depends on it, wing optimizations by
maximizing L/D may result in a design that has too lower lift to fly. Therefore, another constraint on
lift or multiobjective approach is required for a wing design optimization.
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D

GENERATIONS
Fig. 4.6 Optimization history of L/D

Table 4.2 Aerodynamic performances of the design
CL 0.26213
CD 0.01386
L/D 18.9143

The wing thickness distribution of the design is given in Fig. 4.7. The minimum thickness
constraint appears at the kink because the inboard sections of the wing have large chord lengths and
allow a large moment. The design satisfies this structural constraint while minimizing its thickness
distribution to reduce the wave drag.
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Fig. 4.7 Spanwise thickness distribution

Figure 4.8 compares the span load distribution of the designed wing with a parabola that is
known to give the minimum induced drag when the structural constraint is considered. The design
does not have the parabolic span load distribution but a straight load distribution, which helps to
reduce the bending moment at the inboard of the wing. The thickness distribution for the
corresponding parabolic span load distribution is presented in Fig. 4.9. This figure indicates that a
design that minimizes the induced drag would have 18% thickness-to-chord. Such design would result
in an unacceptably large wave drag associated with a stronger shock wave. The present structural
constraint imposed a tradeoff between minimizations of induced drag and wave drag. The present
straight span load distribution is a compromised design.
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Fig. 4.8 Spanwise lift distribution
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Fig. 4.9 Comparison of thickness distributions between the present design

and the minimum induced-drag design

The spanwise twist angle distribution and its control points are illustrated in Fig. 4.10. The
angle of attack drastically decreases at the kink. Because the inboard of the wing has large chord
length it allows large bending moment and thus large twist angle. On the other hand, since the
outboard has smaller chord length, the wing requires significant twisting down outside the kink to
reduce the moment.
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Fig. 4.10 Spanwise twist angle distribution

The designed airfoil sections and the corresponding pressure distributions at the 0, 33, and
66% spanwise locations are shown in Fig. 4.11. Neither any strong shock wave nor any flow
separation are found that may significantly increase pressure drag.

4.8 Summary
The real-coded ARGA coupled with structured coding strategy has been applied to an
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aerodynamic design optimization of a transonic wing shape for generic transport aircraft.
Aerodynamic performances of the design candidates are evaluated by using the three-dimensional
compressive Navier-Stokes equations. Structural constraint is introduced to avoid an apparent solution
of zero thickness wing for low drag in high speeds.

To overcome enormous computational time necessary for the optimization, aerodynamic
evaluations are distributed to the PEs of NWT. Parallelization of EA on NWT is straightforward, and
its performance is extremely good in reducing the turnaround time.

The present structural constraint imposed a tradeoff between minimizations of induced drag
and wave drag. The straight span load distribution of the design is a compromised design. The
designed wing has a fully attached flow and the allowable minimum thickness so that pressure drag
and wave drag are minimized under the present structural constraint. The present design ensures the
feasibility of the present approach.

Because the tradeoff between minimizations of induced drag and wave drag directly related
to the structural strength, more accurate structural modeling is desired. In addition, because the
structural strength is a function of the structural weight, multiobjective optimization by an MOEA for
minimizing both aerodynamic drag and structural weight is required.
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Fig. 4.11 Designed airfoil sections and the corresponding pressure distributions
at the 0, 33, and 66% spanwise locations
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