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ABSTRACT

Reconfiguration in a Wavelength-Routed Optical Network is a process of re-

arranging a virtual topology to meet traffic demands that change over a period of

time. This dissertation studies a series of reconfigurations corresponding to a series

of changes in traffic demand matrices. A change in a virtual topology is costly in terms

of traffic disruption. However, without response to this change, the virtual topology

would lose its optimality and might not serve the new traffic demand. Therefore,

the reconfiguration problem is a trade-off between a performance objective and a

cost objective. This research describes the reconfiguration problem from two per-

spectives. First, the reconfiguration problem is a multi-objective optimization such

that a single-objective optimization method could not be applied. Second, the recon-

figuration problem consists of a series of reconfigurations with corresponding traffic

demands, thus reconfigurations that consider only the current traffic demand can-

not guarantee the optimal average outcome. Therefore, sequential decision-making

is required to optimize the average outcome from a series of reconfigurations. Since

the reconfiguration objectives are conflicting there exists a Pareto front or a set of

non-dominated solutions in all objectives. A Multi-Objective Evolutionary Algorithm

(MOEA) is required to search the Pareto front and a decision-making process will

pick one solution in the Pareto front accordingly. The major contribution of this
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research is a complete reconfiguration model applicable to any kind of traffic. It is

a stochastic model consisting of two tasks: a reconfiguration process and a policy.

For each reconfiguration in a series, the reconfiguration process finds a Pareto front

and the policy picks a solution from the Pareto front to perform a reconfiguration

operation. Our research presents the problem formulation mathematically and the

design of the model is based on realistic SONET/SDH traffic streams. We use a

MOEA called Strength Pareto Evolutionary Algorithm (SPEA) in the reconfigura-

tion process and use a Markov Decision Process in the policy. A case study based

on simulation experiments is conducted to illustrate the application and efficiency of

the model. It shows that our model generates a higher average outcome than that of

reconfigurations considering only the current traffic demand.
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CHAPTER 1

INTRODUCTION

1.1 General Overview

Wavelength Division Multiplexing (WDM) is a promising approach for ex-

tremely high speed communication over an optical fiber. The WDM allows multiple

wavelengths carrying multiple traffic sessions to be transmitted over a single fiber. An

optical network over which traffic sessions are routed based on their wavelengths is

called a wavelength-routed optical network. Such a network consists of optical nodes

connected by fibers that form a physical topology. The optical node multiplexes

multiple wavelengths into a single fiber transmission and an optical cross-connect

(OXC) to switch optical channels called lightpaths. The optical node is an access

node if it contains an Optical Add/Drop Multiplexer (OADM) to add/drop traffic.

In some particular type of wavelength-routed optical network, it allows the lightpath

to operate on multiple wavelengths along the paths. Such a network provides flexi-

bility for a wavelength assignment but it requires costly wavelength converters at the

intermediate nodes.

There are two levels of topology in the optical network; a physical topology

level and a virtual topology (or logical topology) level. The physical topology is a set

of optical fibers linked to each other and the virtual topology is a set of lightpaths that

carry optical signals unidirectionally from source to destination nodes according to a

traffic demand matrix. Although a lightpath is a virtual view, it requires a routing

and wavelength assignment along the physical fiber links that it spans. The design of

virtual topology over an existing physical topology for a given traffic demand matrix
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is a major task. When the traffic demand matrix is changed, the topology may not

perform well as it did previously. Obviously, the optimal rearranging of a virtual

topology is required to reduce the traffic disruption (also the rearranging operation

cost) and increase the performance. The process of rearranging the virtual topology

to meet the new traffic requirement is called a reconfiguration process[20]. Unlike

the virtual topology design, the reconfiguration process is a trade-off between the

performance objective in virtual topology design and the cost objective in terms of

the number of changes in the virtual topology. Since the reconfiguration is not only

a one-time operation, it could be activated whenever the traffic demand is changed.

The consequent problem is how and when to perform the reconfiguration process.

There must be a policy to control the reconfiguration process to gain the optimal

outcome in a long term. The reconfiguration process and its policy are challenging

problems especially in large optical networks e.g., a WDM backbone network.

1.2 Our Work

There are two contexts in the studies of a reconfiguration in optical net-

work: the reconfiguration in broadcast WDM network and the reconfiguration in

wavelength-routed optical network. Our work is the design of reconfiguration model

for mesh wavelength-routed networks. The model includes two tasks: a reconfigu-

ration process and a reconfiguration policy. A wavelength-routed optical network is

typically a transport network or a backbone network, and a WAN rather than a LAN.

Thus we approach our model with realistic SONET/SDH traffic demands that change

regularly on a daily or weekly basis. The SONET/SDH based traffic is comprised of

multiple streams (e.g., OC-3, OC-12 and OC-48), the grooming at the edge is required

to route the traffic streams.

2



We have stated that the reconfiguration problem consists of a reconfiguration

process and a reconfiguration policy. The reconfiguration process is the process to

redesign a virtual topology under a given physical topology, previous virtual topol-

ogy and a new traffic demand matrix such that the new virtual topology is not too

different from the previous one while it still serves the new demand efficiently. The

reconfiguration policy tells us how and when to perform the reconfiguration process

to gain the maximum average outcome in a series of reconfigurations. We propose a

complete reconfiguration model consisting of a reconfiguration process and a recon-

figuration policy.

1.2.1 Reconfiguration Process Approach

Since a reconfiguration is a problem of two competitive objectives, we propose

a reconfiguration process that optimizes both objectives by the concept of Pareto

optimality. Our reconfiguration process generates a set of non-dominated solutions

known as a Pareto front using a Multi-objective Evolutionary Algorithm (MOEA).

Then we pick the most preferred solution from this set according to a reconfiguration

policy.

1.2.2 Reconfiguration Policy Approach

We propose a Markov Decision Process (MDP) to make a decision for our

reconfiguration policy. The policy picks a solution from the Pareto front that returns

the highest average outcome for a long series of reconfigurations. We define the states,

actions, state transitions, reward/cost function and epoch for the reconfiguration

policy model.
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CHAPTER 2

BACKGROUND

2.1 Early Reconfiguration Process Approaches

Early research in a reconfiguration process has been studied in two differ-

ent contexts: a broadcast optical network and a wavelength-routed optical network.

They are slightly different in objectives and constraints by nature of the network

types. A broadcast network is mostly applied for LAN or MAN network in a passive

star topology while a wavelength-routed network is applied for a transport backbone

network in a mesh topology. Therefore a reconfiguration in a broadcast network

is performed more frequently in terms of packet-by-packet basis and requires faster

turning receivers (or transmitters) than those of a wavelength-routed network. There

are plenty of heuristic approaches in a reconfiguration problem of broadcast optical

networks.

Labourdette et al. [15] considers a reconfiguration as a transition diagram

that disrupts the traffic minimally through a sequence of branch exchange operations.

The problem of finding the shortest sequence is equivalent to the problem of finding

a decomposition of auxiliary graph algorithms. The shortest sequence provides the

minimum duration of reconfiguration phase. At each step, two links are disrupted

(exchanged) on the ring topology. A similar algorithm called the Dynamic Single-

Step Optimization (DSSO) is introduced by Narula-Tam and Modiano [16]. The

DSSO has been proposed for load balancing that tracks rapid changes in a traffic

pattern using branch exchange sequence. Ernest et al. [7] focuses on the cost-benefit

analysis to reduce a reconfiguration cost. Their Merge Split Reconfiguration (MSR)
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algorithm reduces the number of lightpaths that need to be reconfigured while keeping

the network congestion as low as possible. Baldine and Rouskas [3] and Alfouzan and

Jayasumana [2] consider a reconfiguration problem as a trade-off between the number

of receiver retunings and the degree of load balance. Baldine and Rouskas presented

a new algorithm that attempts to construct the new wavelength assignment in a way

that simultaneously achieve both objectives. Alfouzan and Jayasumana developed the

Most and Least Loaded Channel Balance (MLLCB) algorithm such that the demand

on most loaded channel is reduced by exchanging one node with the least loaded

channel.

In a wavelength-routed optical network reconfiguration, the existing research

attempts to maximize the performance and to minimize the number of changes in a

virtual topology. The performance in the wavelength-routed optical network can be

measured by various metrics including the average propagation delay of a lightpath,

the average hop-distance of traffic, the success traffic throughput, the maximum load

offered to any lightpath (congestion) and the utilization of traffic over the lightpaths.

Banerjee and Mukherjee [5] formulated the reconfiguration problem using lin-

ear programming. Their performance objective is to minimize the average packet hop

distance in the network. In the first step, they search for the optimal value of the

performance objective under a new demand and a new virtual topology. In the second

step, they minimize the number of changes in the virtual topology using the optimal

performance objective in the first step as a constraint. Ramamurthy and Ramakrish-

nan [18] extend the objective in [5] to minimize the average number of packet hops in

the network, minimize the total number of lightpaths, minimize the hops as well as

the number of physical links or the sum of these objectives. Since the reconfiguration
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problem is proved as an NP-hard problem [23], the linear programming approaches

do not scale well for a large network.

Sreenath et al. [20] proposed a two-phase heuristic for a reconfiguration prob-

lem such that the performance objective is to minimize the average weighted hop

count. The heuristic is designed to maintain the near-optimality of the virtual topol-

ogy, to provide a compromise between the trade-off objectives and to quickly find the

lightpaths to be reconfigured. Although the algorithm scales well for a large network,

the solution relies on the setup parameter i.e., the bound on the number of changes.

Zheng et al. [24] focus on the virtual private network such that the traffic

demand is in the term of wavelengths required and the performance objective is to

minimize the average propagation delay of the lightpaths. They proposed a Balanced

Alternate Routing Algorithm (BARA) based on a genetic algorithm to solve the

problem. They use the weighted combination of trade-off objectives when applies to

a (single objective) genetic algorithm.

Takagi et al. [23] focuses on the sequence of reconfiguration process in order

to minimize the disruption or maximize the network availability. They propose four

heuristic algorithms including Longest Lightpath First (LPF), Shortest Lightpath

First (SPF), Minimal Disrupted lightPath First (MDPF) and Tree Search (TS) algo-

rithms. The LPF and SPF result in a low performance. The TS and MDPF provide

good performance but both have computational complexity.

The other heuristic approach is introduced by Gencata and Mukherjee [10].

They consider an adaptation mechanism for reconfiguration. The proposed algorithm

redesigns the virtual topology according to an expected traffic pattern. It detects the

imbalances of the network by high and low watermark parameters on lightpath loads
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and reacting promptly (by adding or deleting lightpath one at a time) to balance the

loads.

2.2 Early Reconfiguration Policy Approaches

The reconfiguration process has an overhead cost that interrupts traffic and

rearranges the lightpaths. Therefore frequent reconfiguration is costly. However, in-

frequent reconfiguration will downgrade the performance. The policy guides us when

is the best time to perform a reconfiguration process and what level of reconfiguration

to be performed. There are few studies in the reconfiguration policy. Some of them

are described below.

Geary et al. [9] detects the best time to perform reconfiguration when the

overall average network utilization goes beyond the specified threshold or when a link

runs out of capacity. This method is known as a threshold approach which is difficult

to define the threshold value, and may not result in the optimal outcome. Baldine and

Rouskas[4] propose the reconfiguration policy on the broadcast optical network using

the Markov Decision Process (MDP) to obtain optimal outcome. They define the

reward and cost functions to calculate the optimal outcome. This is an approximate

model, the outcome depends on how close of the state transition probabilities and

the reward/cost functions are to the real network. Usually the model parameters are

obtained from the simulation or real network. However, they have shown that the

MDP model outperforms the threshold approach for a long term.
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CHAPTER 3

RECONFIGURATION PROBLEM

3.1 Problem Definition of The Reconfiguration Process

We assume that our reconfiguration problem is a centralized optimization prob-

lem which acquires a global view or status of the network. The reconfiguration is acti-

vated or triggered by the changes in a traffic demand, neither the failure of equipment

nor the changes in a physical topology.

The reconfiguration process is a multi-objective problem that consider not only

the network performance but also the number of changes in the virtual topology. The

problem formulation is different from the ordinary virtual topology design in that

it requires another objective (to minimize the changes in virtual topology) besides

the performance objective. Therefore, it requires both the new traffic demand and

the previous logical topology as inputs. We formulate the reconfiguration process

problem as a Linear Programming (LP) using the principle of multicommodity flow

of the set of lightpaths mapped to the physical layer and the set of traffic on the

designed virtual topology. In order to deal with two objectives in the LP, we have to

set one objective as a constraint while LP optimizes the other and then takes a turn.

Unlike the LP, our approach optimizes both objectives concurrently by the concept

of the Pareto Optimal. Our approach creates a set of non-dominated solutions in a

single run unlike the LP that provides one solution at a time.

We begin the formulation in the virtual topology design (including the groom-

ing) and then we show the dealing of two objectives in the LP for the reconfiguration

problem.
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3.1.1 Virtual Topology Design Problem Formulation

Given a physical topology and traffic demand matrices, we classify a virtual

topology design problem into three subproblems: a lightpath routing subproblem, a

traffic routing subproblem and a wavelength assignment subproblem. The lightpath

routing subproblem is the design of lightpaths routed on the physical topology. The

traffic routing subproblem is a routing of low-speed traffic on a virtual topology un-

der some limitations (e.g.,the available number of transceivers). This subproblem is

known as a traffic grooming subproblem since multiple low traffic streams are groomed

into a single lightpath. The wavelength assignment subproblem is an assignment of

limited number of wavelengths per fiber under a Distinct Color Assignment (DCA)

constraint and a wavelength continuity constraint. The DCA constraint states that

lightpaths on the same fiber link must be assigned with the distinct colors. The

wavelength continuity constraint states that a lightpath must occupy the same wave-

length along the links that it spans. The wavelength continuity constraint could be

relaxed by deploying the wavelength conversion that allows a lightpath to switch to

any wavelengths at the links that it spans.

We assume that all nodes are capable of grooming low-speed traffic to the

available capacity of a lightpath for as many traffics as needed and a transceiver is

freely tuned to any wavelengths. We do not allow the de-multiplexing of OC-x lower

than its capacity when routing through the network. However two or more OC-x

streams of the same source and destination may pick a different route. (The detail of

traffic grooming over WDM network is presented in [17].)

Although our problem formulation considers the SONET streams, it could be

applied to any type of traffic streams or a fraction of lightpath capacity.
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Given Parameters:

• N : Number of Optical nodes.

• W : Number of Wavelengths that can be multiplexed on a single fiber i.e., the

DWDM capacity.

• Ti: Number of transmitters at node i; Ti ≥ 1 ∀i

• Ri: Number of receivers at node i; Ri ≥ 1 ∀i

• K: Number of shortest paths or alternative routes.

• P : Physical topology matrix.

P = [Pmn; m, n = 1, 2, . . . , N ]N×N ,

where Pmn is the number of fibers between node m and node n. Note that:

Pmn = Pnm.

• Λ: N ×N traffic demand matrix

Λx = [Λx
sd; s, d = 1, 2, . . . , N ]N×N ,

where Λx
sd is the demand of low speed streams, OC-x, between node s and node

d; x ∈ {1, 3, 12}.

• Lmax The load of maximally-loaded lightpath in the network.
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Variables:

• σk
ij,mn,w: An indicator representing the existence of lightpath where

σk
ij,mn,w =





1, if there exists a lightpath from i to j

being routed through fiber link mn on

the kth path in K and using wavelength

w in W .

0, otherwise.

• Vij: The number of lightpaths from node i to node j in the virtual topology.

• λx
sd,ij: The number of OC-x streams from node s to node d being routed on the

lightpath ij.

• C: The capacity of a lightpath e.g., C = 48 for OC-48.

• Sx
sd: The number of OC-x streams requested from node s to node d that are

successfully routed. The traffic is blocked if Sx
sd < Λx

sd.

Constraints:

• Traffic (Multicommodity-flow equations for lightpath routing):

∑
m

∑

k

∑
w

σk
ij,mv,w =

∑
n

∑

k

∑
w

σk
ij,vn,wif v 6= i, j∀ij (3.1)

∑
n

∑

k

∑
w

σk
ij,in,w = Vij ∀ij (3.2)
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∑
m

∑

k

∑
w

σk
ij,mj,w = Vij ∀ij (3.3)

Equation (3.1) allows a lightpath to have any wavelength in each link along the

path. It implies that wavelength converters are available at all nodes. Other-

wise, if we need to reserve the wavelength continuity rule, Equations (3.1), (3.2)

and (3.3) will become Equations (3.4), (3.5) and (3.6) respectively.

∑
m

∑

k

σk
ij,mv,w =

∑
n

∑

k

σk
ij,vn,w if v 6= i, j ∀ij, w (3.4)

∑
n

∑

k

σk
ij,in,w = Vij ∀ij, w (3.5)

∑
m

∑

k

σk
ij,mj,w = Vij ∀ij, w (3.6)

• Wavelength Constraints:

∑
ij

∑

k

σk
ij,mn,w ≤ Pmn ∀mn,w (3.7)

Equation (3.7) ensures that distinct channels (lightpaths) on the same fiber link

cannot be assigned the same wavelength. Note that lightpaths ij using different

fibers between link mn are known to be on different paths in K.

• Resource Constraints:
∑

j

Vij ≤ Ti ∀i (3.8)

∑
i

Vij ≤ Rj ∀j (3.9)

Equation (3.8) ensures that the number of lightpaths originate from node s is
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not greater than the number of transmitters at that node. Likewise Equation

(3.9) ensures that the number of lightpaths terminated at node d is not greater

than the number of receivers at that node.

• Traffic (Multicommodity-flow equations for traffic routing):

∑
i

λx
sd,iv =

∑
j

λx
sd,vj if v 6= s, d ∀sd, x (3.10)

∑
j

λx
sd,sj = Sx

sd ∀sd, x (3.11)

∑
i

λx
sd,id = Sx

sd ∀sd, x (3.12)

Sx
sd ≤ Λx

sd ∀sd, x (3.13)

• Capacity Constraint

∑
x

∑

sd

(x× λx
sd,ij) ≤ Vij × C ∀ij (3.14)

Objectives: We list the possible performance objectives in the Optical net-

work design area as shown below:

• Minimize the Average Propagation Delay of the lightpath (APD):

The APD relies on the length of media which represent the cost and perfor-

mance of the network. In the high speed networks, the propagation delay is a

dominant delay while the queuing delay is neglected. The lengthy fiber causes

not only a considerable delay but also the impairments of noise accumulation,

fiber chromatic dispersion, polarization mode dispersion and fiber nonlineari-

13



ties. Moreover, minimizing the APD could reduce the “cleaning up” cost at

intermediate nodes that work as 3R optical regenerators (Re-amplification, Re-

timing and Re-shaping).

Min
1∑

i,j Vij

∑
i,j

∑
m,n

(dmn

∑

k

∑
w

σk
ij,mn,w) (3.15)

Where dmn is the propagation delay weight factor on the fiber link from node

m to n. The value of dmn depends on the length of the fiber.

Note that if dmn = 1 ∀ m,n the APD becomes the average hop distance (or hop

count) of the lightpaths.

• Maximize the traffic throughput:

Max
∑

sd,x

(x× Sx
sd) (3.16)

• Minimize the Maximally-loaded lightpath:

The Lmax represents the maximal congestion on a link. The minimizing of Lmax

will distribute the load to the entire links.

Min Lmax (3.17)

Where Lmax = Max
∑

sd,x

(x× λx
sd,ij) ; ∀ ij

• Minimize the Average Hop-distance of Traffic (AHT):
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Min
1∑

sd,x Λx
sd

∑
ij

∑

sd,x

(x× λx
sd,ij) (3.18)

Note that the AHT is defined for the non-blocking traffic network since this

is SONET traffic that cannot be discarded. We consider the AHT because it

reflects the cost of grooming traffic. Low SONET streams are groomed at the

edge in the electrical domain before they are converted to a light form and

carried over a lightpath. The higher value in the AHT, the more cost and

delay in the network according to O-E-O conversion at the intermediate nodes.

Hence, the AHT must be minimized. The lower bound of AHT is one hop (i.e.,

no intermediate grooming).

• Maximize the Virtual Topology Utilization:

The virtual topology utilization is the use of lightpaths.

Max
1∑
ij Vij

∑
ij

∑

sd,x

(x× λx
sd,ij) (3.19)

• Minimize the Network Resources:

Network resources include the number of lightpaths or the number of trans-

mitters and receivers or the number of wavelengths. Since the optical switch

specification is usually fixed, these resources are set as constraints.

3.1.2 Dealing with Two Objectives in Reconfiguration Process

The Reconfiguration problem formulation is similar to the Optical Network

design formulation but in the reconfiguration part, we do not only maximize network

performance but also minimize the number of changes made in the reconfiguration
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Figure 1: The Two Steps of Optimization.

process. Since changes in virtual topology are costly in terms of traffic disruption and

overhead to make the changes e.g., re-tuning of wavelength. However, these objectives

are in conflict e.g., the lower AHT, the more changes required and vice versa. To deal

with two objectives, we must fix one objective while minimize another one and then

take turns to yield the best solution. Next we show an example of the reconfiguration

formulation with two objectives: minimize AHT and minimize numbers of changes

in the virtual topology. The process requires two steps: fix one objective and then

minimize another objective. The process can be run either way (a or b in Figure

1) or run iteratively until the optimal solution is met. This process generates only

one non-dominated solution on the Pareto front for each run. Moreover, the solution

depends on the initial point and we cannot predict the result position on the Pareto

front. Therefore it is difficult to form the Pareto-front. Note that we describe the

Pareto front and the non-dominated solutions in Chapter 4.

3.1.2.1 Fix AHT, Minimize Number of Changes

First we find AHT ′ of the new traffic demand regardless of the number of
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changes in the virtual topology. Next we replace the objective function in ILP with

the Minimize of the number of changes in lightpaths.

Min
∑
i,j

∑
m,n

∑

k

∑
w

|σ′kij,mn,w − σk
ij,mn,w| (3.20)

where σ
′k
ij,mn,w is an indicator presenting the existing of lightpath from i to j being

routed through fiber link mn on the kth path using wavelength w of the previous

solutions. The equation (3.20) is linear since the σ
′k
ij,mn,w are binary. We can rewrite

the absolute term in (3.20) as following.

|σ′kij,mn,w − σk
ij,mn,w| =





1− σk
ij,mn,w, if σ

′k
ij,mn,w = 1

σk
ij,mn,w, if σ

′k
ij,mn,w = 0

Next we add new constraint to the ILP.

1∑
sd,x Λx

sd

∑
ij

∑

sd,x

(x× λx
sd,ij) ≤ AHT ′ (3.21)

3.1.2.2 Fix Number of Change, Minimize AHT

Given NoC be the number of changes in lightpath. First we replace the

objective function in ILP with the Minimize of AHT.

Min
1∑

sd,x(x× Λx
sd)

∑
ij

∑

sd,x

(x× λx
sd,ij) (3.22)
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Next we add new constraint to the ILP.

∑
i,j

∑
m,n

∑

k

∑
w

|σ′kij,mn,w − σk
ij,mn,w| ≤ NoC (3.23)

3.2 Problem Definition in Reconfiguration Policy

We formulate the reconfiguration policy as a set of decisions in a Markov

Decision Process model or a Dynamic Programming model. The MDP model consists

of five elements:

1. A set of decision epochs which is a period of time that triggers the action.

2. A set of states which indicates the status of the network e.g., a performance

parameter and a current traffic demand.

3. A set of actions.

4. A set of state and actions dependent on immediate rewards and costs. The

reward is the benefit gained from doing the particular action while the cost is

incurred from that action.

5. A set of state transition probabilities which relies on the action and the arrival

traffic that changes the state.

This model is a discrete time model such that actions, rewards, costs and the state

transition probabilities depend only on the current state (Markov property). Let

Ri(H) be the reward function of H, the performance variable in round ith and Ci(η)

be the cost function of η, the number of changes in lightpaths in round ith of recon-

figuration. For each state transition with a performed action, we want to maximize
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the expected outcome O in every reconfiguration rounds where

O = lim
y→∞

1

y
E{

y∑
i=1

(Ri(H)− Ci(η))} (3.24)

The policy or set of decisions tell us what action we should select in each state to

maximize the expected outcome O.

3.3 Hypothesis

If the reconfiguration problem is a multi-objective problem in which the ob-

jectives are conflicting to each other, there exists a Pareto front corresponding to the

objectives and if we define the status of network as a state, a set of state transitions,

a set of reward/cost functions, and a set of actions in a Markov Decision Process, we

can find the optimal policy by assigning the action in each state. In the long term, the

expected outcome of the MDP policy is higher than that of the Immediate Highest

Outcome (IHO) policy which takes the action that generates the highest outcome at

each state transition.

Next Chapter we describe the detail of Pareto front in the multi-objective

optimization and explain why we need the Multi-Objective Evolutionary Algorithm

in the reconfiguration problem.
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CHAPTER 4

RECONFIGURATION PROCESS APPROACH

4.1 Multi-Objective Optimization

A Multi-objective Optimization (MO) or multicriteria/multiperformance/vector

optimization problem solves several competing objectives simultaneously. In the MO,

there is a set of optimal solutions that non-dominate each other within the set but

dominate other solutions outside of the set when considering all objectives. The set

of optimal solutions is known as a Pareto Optimal set. Most MO algorithms use

the concept of domination to search for the Pareto Optimal set. The definition of

domination is defined in Definition 4.1.1.

Definition 4.1.1 (Pareto Optimal Definition) Given “C” be the operator such that

fk(x) C fk(y) if a solution x = (x1, x2, . . . , xm) is a better solution than a solution

y = (y1, y2, . . . , ym) for the kth objective and m parameters (decision variables). The

“better” means “less than” in case of minimization or means “greater than” in case

of “maximization”.

If there are n objectives, a solution x is said to dominate a solution y if

∀i ∈ {1, 2, . . . , n} : fi(x) 7 fi(y) ∧

∃i ∈ {1, 2, . . . , n} : fi(x) C fi(y)

In words, a solution x is said to dominate a solution y (or x is non-dominated by y)

if 1 and 2 are true: 1) The solution x is no worse than y for all objectives and 2)

The solution x is strictly better than y in at least one objective.
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Figure 2: The Pareto Front and Feasible Solution Area, F , of Two Objective Func-
tions.

The plot of non-dominated solutions over the objective axes will form the

Pareto front. For instance, the Pareto front for the “minimization” on both objective

functions, f1(x) and f2(x) is shown in Figure 2 where the F area denotes the feasible

solutions area. Note that the Pareto front can be either convex or non-convex.

Usually there are more than one solution in the Pareto optimal, called non-

dominated solutions or non-inferior solutions and there are many methods to search

this set of solutions or Pareto optimal set. One of the traditional approaches is the

aggregation methods. It combines the objectives into a scalar function and applies

the single objective optimization methods like a simulated annealing, a stochastic

local search or a tabu search on it. Examples of combining objectives can be found

in weighting method [13], constraint method [13], goal programming [22] and min-

max method [14]. In the weighting method, one may define the utility function that

combines multiple objective functions together as shown in equation (4.1).

U =
n∑

i=1

Wi
fi(x)

f ∗i
(4.1)
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where Wi is a weighting factor for each objective function and f ∗i is the scaling pa-

rameters for the ith objective function.

Another form of utility function which eliminates the scaling problem with

upper bound and lower bound is shown in equation (4.2).

U =
n∑

i=1

Wi
fi(x)− f 0

i

fmax
i − f 0

i

(4.2)

where f 0
i and fmax

i are the lower bound and upper bound for the ith objective function

respectively.

Although the aggregation methods are simple and applicable to the single

objective methods, they cannot generate all members of the Pareto optimum set with

non-convex Pareto front. Also the weighting factor is quite subjective rather than

straightforward and difficult to define.

Other methods for multi-objective optimization are the Evolutionary Algo-

rithms called Multi-Objective Evolutionary Algorithm (MOEA) that simulates the

process of natural evolution using a class of stochastic optimization methods. These

methods are able to capture a Pareto-optimal set in a single run. Moreover, they

are less susceptible to the shape or continuity of the Pareto fronts (i.e., it can search

on a problem with non-convex Pareto front.) In the reconfiguration problem, the

sequence of changes effects the disruption and network availability as presented in

[23]. In our case, we consider the number of changes, not the sequence. The MOEA

will search the possible sequence of changes in the virtual topology that generate

the best performance. Next we show that a different sequence of changes effect the

performance.
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Theorem 4.1.1 A sequence of changes in virtual topology affects network perfor-

mance.

Proof We prove the theorem based on the AHT. Given the network with the physical

topology and the previous virtual topology as shown in Figure 3. Suppose LP1 and

LP2 are the lightpaths from source to destination using different wavelengths as shown

in the previous virtual topology in Figure 3. The lightpath LP1 and LP2 have one

unit of traffic with m hops and n hops between source and destination respectively

where m > n. In the final virtual topology, it is required to move both lightpaths to

the middle physical path which is one hop away between source and destination and

is available for both lightpaths.

If the LP1 is moved first (to the middle path), the NoC = 1 and AHT = (n+1)
Λ

where NoC denotes the numbers of changes and Λ denotes the total traffic. Next the

LP2 is moved, the NoC = 2 and AHT = (1+1)
Λ

.

If the LP2 is moved first (to the middle path), the NoC ′ = 1 and AHT ′ =

(m+1)
Λ

. Next the LP2 is moved, the NoC ′ = 2 and AHT ′ = (1+1)
Λ

.

Although both sequences end up with the same AHT , but at the first move,

the former sequence has better performance that the latter i.e.,AHT ′ < AHT

Theorem 4.1.1 shows that the sequence of changes effects the performance.

Therefore, the changes may increase or decrease the performance. We define the

sequence of changes into two types.

Definition 4.1.2 A sequence of necessary changes is a sequence of changes in virtual

topology that improves the performance. Otherwise it is a sequence of unnecessary

changes.
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Figure 3: The Previous and Final Virtual Topology.
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Theorem 4.1.2 If the AHT of network is not yet optimized, there exists a Pareto

front between “min AHT” objective and “max number of necessary changes” objective.

Proof Given a non-optimized optical network after the traffic has been changed.

There are three possible types of changes in a lightpath corresponding to the differ-

ence between two traffic demand matrices (previous vs new traffic demand matrices).

These three types are the addition of lightpath(s), the deletion of lightpath(s) and

the re-routing/coloring of lightpath(s). Let a sequence of necessary changes contains

i additions, j deletions and k re-routings/colorings. Therefore, NoC = i + j + k.

According to the constraints, the addition of lightpath requires the availability of

transceiver and color. Thus, i depends on j and k. At particular j + k changes, the

NoC depends on i. Since every addition of lightpath will create one hop away for a

new traffic demand and the AHT is decreased, the plot of the AHT and the NoC

forms the Pareto front.

The reconfiguration problem happens when the traffic demand is changed and

causes the performance to be non-optimized. Theorem 4.1.2 shows that there exists

Pareto front for the reconfiguration problem. Note that we simulate the network and

traffic demand to show the Pareto front in our experiment. After we created the

Pareto front, the policy will play its role to pick the best solution in the Pareto front.

The MOEA that creates the Pareto front takes advantage over an aggregation or an

LP method in term of “choices” of the policy has.

4.2 MOEA Overview

Different stochastic search techniques were introduced to solve many real-

world scientific and engineering multi-objective problems. In Germany, the technique
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Figure 4: The MOEA-Operation Diagram.

called evolution strategies (ES) was proposed, while in the United State the genetic

algorithms (GA) and the concept of evolutionary programming (EP) were introduced.

These techniques which transfer evolutionary principles or the Darwinian concept

of “Survival of the Fittest” into the search space of programming languages, are

summarized today under the names evolutionary algorithms (EA) or evolutionary

computation (EC). (The term EA is an algorithm used in the EC). The MOEA is the

EA that deals with multiple objectives based on the Pareto Optimal definition. Most

MOEAs are derived from the single-objective evolutionary algorithms like Genetic

Algorithm. Therefore the operations of MOEA consist of a population initialization,

an evaluation, a fitness assignment, a reproduction (selection), a crossover and a

mutation. Figure 4 shows the MOEA-operation diagram.

The population initialization generates a set of chromosomes or individuals
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randomly. The chromosome is an encoded solution to the problem which is usually

presented in binary or string format. Each chromosome consists of genes which take

on certain values (alleles). A size of population depends on the user. If the size is too

big, it will waste the time to evaluate the chromosomes. If it is too small, the optimal

solution may not be found. An evaluation operation measures how well (good fit-

ness) the chromosome to be survived in the next generation. An evaluation function

or a fitness function is based on objective functions of the problem. In the MOEA,

the fitness function is a combination of objective functions based on the strategies

corresponding to each particular MOEA technique. A reproduction or a selection

operation allows the good solutions with a high chance to be duplicated and the bad

solutions to be eliminated while maintaining the same population size for the next

generation. The common selection schemes are a tournament selection, a proportion-

ate selection and a ranking selection. The tournament operation copies solutions into

two sets and then matches up each pair randomly. The winner (better fitness of the

pair) is placed in the mating pool so the size of population is the same while a good

fitness solution has a chance to win both tournaments and has two copies in the new

population. In the proportionate selection, solutions are assigned the copies propor-

tional to their fitness values. The proportionate selection causes a scaling problem

or genetic drift problem such that a population tends to converge to a single “super”

solution. This problem can be avoided by the ranking selection operation. In this

operation, the chromosomes are sorted by their fitness from the worst (rank 1) to the

best (rank N, where N ≤ Population size). Each member has its rank used in place of

a fitness value. The proportionate selection is then applied with this rank value. The

next operation is the most important operation called the crossover operator. Like in
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biological systems, the crossover process yields recombination of alleles by exchanging

segments between pairs of chromosomes. Two chromosomes are picked randomly to

exchange the segments. If the segment is assigned in a single position of the chro-

mosome, it is called single-point crossover. Similarly, the n-point crossover, choose n

random crossover points. Another scheme called a uniform crossover exchanges bit-

by-bit of chromosomes rather than segments. The mutation operation flips the bit

in the chromosome to keep diversity in the population. The term crossover rate and

the mutation rate are a probability to perform a crossover operation and a mutation

operation respectively. For example, a typical crossover rate is 0.6, and a mutation

rate is 0.001 with the population size of 100. However, there is no specific rule to

define these rates.

There are several approaches in the MOEA including the population-based

non-Pareto approach like Vector Evaluated Genetic Algorithm (VEGA) [19], and

the Pareto-based approaches like the Multi-Objective Genetic Algorithm (MOGA)

[8] , the Non-dominated Sorting Genetic Algorithm (NSGA) [21], Strength Pareto

Evolutionary Algorithm (SPEA) [25] and Niched Pareto Genetic Algorithm (NPGA)

[11]. They intend to find widely spread non-dominated solutions using their unique

fitness assignment schemes for multiple objectives.

The VEGA is simply modified from EA by randomly dividing the mating pool

into an equal size of n parts (n objectives) to deal with multiple objectives. Each part

is assigned a fitness based on a different objective functions, i.e., part one population

are assigned by fitness of the first objective only, part two are assigned by a fitness

of the second objective and so on. The mutation and crossover are performed as

usual. Therefore VEGA is easy to implement and good for problems that satisfy the
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solutions near the individual best solution of each objective. The solutions are not

necessarily globally non-dominated.

The MOGA has its own fitness assignment scheme to deal with multiple objec-

tives. The rank of a certain chromosome corresponds to the number of individuals in

the current population by which it is dominated. The chromosomes in the same rank

are assigned by the average fitness among themselves. In order to maintain diversity

among non-dominated solutions, the MOGA uses niche count with sharing function

to distribute the population over non-dominated solution (the less-crowded region

will have a better scaled fitness). The niche count and sharing function technique

have difficulty in assigning the parameters and it may happen that a solution of lower

rank has a better scaled fitness (if there exist many crowded solutions with a better

rank).

In NSGA, the population is ranked using Pareto ranking i.e., non-dominated

chromosomes are classified into one category with a dummy fitness value that is pro-

portional to the population size. The fitness assignment process of NSGA allows

non-dominated front being emphasized systematically toward the Pareto-optimal re-

gion front-wise. The distance used in the sharing function is calculated with decision

variables (phenotype, not the genotype but can do either) so that it allows pheno-

typically diverse solutions. However, the sharing function requires fixing parameters

(there exist dynamic parameter approach) which affect the performance of the algo-

rithm. Besides the sharing function itself is complex by the size of members in each

front.

The NPGA uses a tournament selection scheme (different from single-objective

optimization) based on Pareto dominance. A higher number of chromosomes is in-
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volved in the competition (it defines the subpopulation with tdom size for comparison).

If the competitors tie, the result of the tournament is decided through fitness shar-

ing in the objective domain. There is no need for specifying any particular fitness

value to each solution. The selection operator prefers non-dominated solutions in a

stochastic manner. Since the domain-check is performed only within subpopulations

of solutions, the complexity does not depend on the number of objectives, but the

tdom (the subpopulation size). Therefore, NPGA is efficient for a problem with high

number of objectives. However, it requires two fixed parameters, a sharing function

parameter and tdom which affect the performance.

The SPEA is a Pareto-based approach like MOGA, NSGA and NPGA which

implement the Pareto-based fitness assignment strategy to determine the reproduc-

tion probability of each individual. It maintains the set of non-dominated solutions

in the separated population. Hence, there are two populations, the dominated pop-

ulation Pt of size N and the external non-dominated population P̄t with the limited

size of N̄ , where t denotes the tth generation. The SPEA maintains the external pop-

ulation of the Pareto optimal solutions to reserve the elites in every generation. It

assigns a scalar fitness called strength to the external population and assigns fitness

to (internal) population based on the domination and strength values. The size of

non-dominant solutions in Pareto front,N̄ , is controlled by a clustering algorithm such

that less crowded elites are kept for the next generation. The selection or reproduc-

tion is a binary tournament selection procedure with better fitness values. A crossover

operator and a mutation operator are applied to the mating pool as usual. Unlike for-

mer Pareto-based approaches that control the distribution of non-dominated solution

by a sharing function, the SPEA clustering ensures that a better spread is achieved

30



among the obtained non-dominated solutions. This clustering requires no external

parameter excepting N̄ , the size of external population. If N̄ is too small, the effect

of elitism will be lost.

4.3 MOEA Approach

In this dissertation we study the reconfiguration process of a large mesh

wavelength-routed network. We have illustrated that the reconfiguration process

using the linear programming is not applicable. Hence, the Multi-Objective Evolu-

tionary Algorithm dealing with the Multi-Objectives optimization which can generate

all candidate solutions in a single run is the right algorithm for the reconfiguration

problem.

We design the MOEA for the reconfiguration process using the SPEA which

outperforms other MOEAs as stated in [25]. We summarize the SPEA fitness as-

signment sub-operations in Figure 5. The first block is to find non-dominated so-

lutions within Pt. Then the non-dominated solutions are copied into the external

non-dominated population P̄t. Thereafter, some of the copied solutions may dom-

inate the existing solutions in P̄t. The dominated solutions found in P̄t must be

deleted. This is to ensure that non-dominated solutions are kept in P̄t and carried

through the next generation (elitist property). In the next step, it maintains the size

of P̄t i.e., the number of solutions in P̄t must be less than or equal to N̄ . Otherwise,

the clustering algorithm is performed to reduce the size of P̄t to N̄ . The clustering

algorithm is based on the Euclidean distance. At the beginning, each solution itself

is a cluster. Thereafter, two clusters with the minimum cluster-distance are merged

into a bigger cluster. The merging is repeated until the number of clusters is reduced

to N̄ . Next the number of solutions in each cluster must be reduced to one. The
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Figure 5: The SPEA Fitness Assignment Diagram.
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algorithm keeps the solution which has the minimum average distance from other

solutions in the cluster and deletes the others in that cluster. After the size of P̄t is

reduced, the fitness called Strength is assigned to each solution in P̄t and Pt by the

equations shown in the final block of Figure 5. Note that we consider a two-objective

minimization problem, so a smaller fitness value represents a better solution. More

detail of the SPEA algorithm can be found in [25] and [6].

The reconfiguration objectives are incorporated in the SPEA fitness assign-

ment process to generate the Pareto front. For the reconfiguration process, the solu-

tion is a virtual topology with the objectives that minimizes the AHT in Equation

(3.18) and minimizes the number of changes of lightpaths in Equation (3.20). We

optimize these objective by the concept of Pareto Optimal i.e., our solutions are the

non-dominated solutions. A solution x is said to dominate a solution y if 1 and 2 are

true:

1. The solution x has equal or less AHT than that of y and has equal or lower

number of changes in lightpaths than that of y.

2. There exists one objective that the solution x is better (not just equal) than

that of y. Where the term “better” means less AHT or lower number of changes

in lightpaths.

4.3.1 Chromosome Encoding

The reconfiguration process is based on the design of virtual topology. There-

fore the chromosome or individual is the encoded virtual topology which is a solution.

We encode the solution by the string of N × (N − 1) elements, where N is the total

number of nodes in the optical network. The first element presents the lightpaths
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Figure 6: An Example of Chromosome Encoding.

from node 0 to node 1, the second element for node 0 to node 2, the third element for

node 0 to node 3 and so forth. Each element contains Ti unit of path indexes from

node i to node j where i 6= j and Ti is the number of transmitters at node i. Each

path index presents the physical route of a lightpath. If the path index kth = 0, there

is no lightpath on that transmitter. Otherwise, the lightpath is using the kth path.

The path index between node i and j is pre-calculated based on the K-shortest paths

over a physical topology or by the random alternative paths. The set of shortest paths

or alternative paths is calculated in advance regarding to the given physical topology.

Figure 6 shows the example of chromosome encoding where number of transmitters

equal 3. There is one lightpath from node 0 to 1 using the first transmitter with path

index=1.

4.3.2 Traffic Routing and Wavelength Assignment

After randomly generating the virtual topology solutions in a population, it is

possible that the number of required lightpaths is greater than the number of available

transmitters. We have to delete some lightpaths to satisfy this constraint. We take

the heuristic process by eliminating a lightpath which occupy the lowest traffic first,

and then repeat the process until the constraint is satisfied. The traffic in this process

is the sum of SONET OC-streams in traffic demand matrices required between source
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and destination nodes of the lightpath.

Next steps are the Traffic Routing and the Wavelength Assignment. The chro-

mosome is not encoded with a traffic route and an assigned wavelength. Otherwise,

a size of the chromosome is considerably large which makes a huge search space. We

route the traffic and assign wavelength based on our heuristics. The traffic is routed

over a virtual topology using a shortest path algorithm. The routing starts from the

highest streams first e.g., route OC-12 demands first, followed by OC-3 demands and

OC-1 demands. Bifurcate routing is allowed only in the same OC stream level (i.e.,

an OC-12 stream cannot be broken into four OC-3s and routed separately but two

OC-12 streams of the same source and destination may use the different routes.) We

route traffic streams as many as possible over a single hop of lightpath first. The

remaining traffic after that is routed over multiple hops of lightpaths. If all SONET

streams are routed over a single-hop, the AHT will equal to 1 which is the lower

bound.

We number the entire wavelengths (colors) and keep them in a stack one

for each fiber link. If the wavelength continuity is considered, we assign the lowest

available number (comparing to every stack that is on the lightpath span) to the

lightpath that has the maximum hop-count (physical hop) first and so on. Otherwise,

without wavelength continuity constraint, we assign the lowest color number found

in each link’s stack to the lightpath. We set a penalty function to the chromosome

if any of the lightpaths in the chromosome cannot assign a color or the traffic is

blocked. The penalty function will downgrade the fitness value of chromosome and

cause it to be eliminated in the next generation. The flowchart of fitness assignment is

presented in Appendix A. The result of the SPEA is the set of non-dominated solutions
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(non-blocking virtual topology) or the Pareto front that optimizes the objectives and

restricts to the constraints. Next step is a reconfiguration policy that picks one of the

solutions in the Pareto front.

4.3.3 Changes in Virtual Topology

There are four kinds of changes in lightpaths according to the problem formu-

lation:

1. Changing route,

2. Changing wavelength along the path,

3. Adding new lightpath and

4. Deleting lightpath.

If the “delete” operation is counted as a change, the reconfiguration process will try

not to delete the lightpaths since it must minimize the number of changes. There-

fore, the reconfiguration process will let the virtual topology keep expanding in each

round if it still complies with the constraints. This results in a low utilization of the

lightpaths. We get rid of this problem by not counting the “delete” operation.
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CHAPTER 5

RECONFIGURATION POLICY APPROACH

5.1 MDP Overview

A Markov Decision Process (MDP) is sometime known as a sequential stochas-

tic optimization, a discrete-time stochastic control and a stochastic dynamic program-

ming. It is a study of a sequential optimization of discrete time stochastic systems.

We refer to the word “Markov” since the MDP is based on a Markov Chain or a dis-

crete time, discrete state stochastic process that satisfies the Markov property. The

Markov property states that the conditional probability of any future state given an

arbitrary sequence of past states and the present state depends only on the present

state. The MDP is a Markov Chain excepting a transition matrix which depends on

a set of actions taken at each transition step. A different action generates a different

outcome. The goal is to find a decision or an action to be taken in each state, called a

policy, so as to maximize the expected outcome. The outcome consists of two parts,

the reward that gains from the action and the cost that incurs from the action. Notice

that the outcome could be negative value if the cost is greater than the reward and

it needs not be in the monetary unit. In many situation decision with the highest

immediate outcome may not be good in view of future events. In our case, we state

in the hypothesis that MPD policy generates the optimal expected outcome in the

reconfiguration problem.

The MDP is defined through the following five elements:

1. A set of decision epochs.

2. A set of states
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3. A set of actions.

4. A set of state and action dependent immediate rewards and costs.

5. A set of state and action dependent transition probabilities.

We study the discrete-time process which the epoch (or time) between transitions is

a constant. Without the action, suppose the MDP contains N states, oij and pij is

the outcome and transition probability when it makes a transition from state i to

state j, respectively. Let vi(n) be the expected total outcome earnings in the next n

transitions if the system is currently in state i. The vi(n) in the recursive form is:

vi(n) =
N∑

j=1

pij[oij + vj(n− 1)] i = 1, 2, . . . , N n = 1, 2, 3, . . . (5.1)

Equation (5.1) may be rewritten as:

vi(n) =
N∑

j=1

pijoij +
N∑

j=1

pijvj(n− 1) (5.2)

Let a quantity qi be the outcome to be expected in the next transition out of state i

or the expected immediate outcome of state i.

qi =
N∑

j=1

pijoij (5.3)

Equation (5.2) becomes the following form.

vi(n) = qi +
N∑

j=1

pijvj(n− 1) (5.4)
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Figure 7: A State Diagram and Alternative Actions.

Now we consider a set of actions. Each outcome and transition probability

has its specific values according to the action. Let ok
ij and pk

ij be the outcome and

transition probability when moving from state i to j using the action k. Figure 7

shows the diagram of states and alternative actions.

The quantity qk
i becomes the expected outcome from a single transition from

state i using action k.

qk
i =

N∑
j=1

pk
ijo

k
ij (5.5)

The vi(n) becomes the total expected outcome in the next n transition starting

from state i and making a move (selecting action) by following the optimal policy.

The optimal policy is action for each state that maximize total expected outcome.

We define the policy in a decision vector d.

vi(n + 1) = max
k

N∑
j=1

pk
ij[o

k
ij + vj(n)] n = 0, 1, 2, . . . (5.6)
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Equation (5.6) is rewritten with term qk
i below.

vi(n + 1) = max
k

[qk
i +

N∑
j=1

pk
ijvj(n)] (5.7)

Equation (5.7) is called the value-iteration equation. We can use this recursive equa-

tion with the initial vi(0) to find the optimal policy. This method is known as a

value-iteration method. It may take a long process before termination. The other

method called a policy-iteration method by Howard [12] can find the optimal policy

in a smaller number of iteration than the previous one. The policy-iteration consists

of two parts; the value-determination operation and the policy-improvement routine.

• The value-determination operation uses pij and qi for a given policy to solve

Equation (5.8) by setting vN = 0

g + vi = qi +
N∑

j=1

pijvij i = 1, 2, . . . , N (5.8)

where g is the gain (expected outcome per transition) of the system, g =
∑N

i=1 πiqi, where πi is the probability of being in State i.

• The policy-improvement routine finds the alternative action k′ that maximizes

qk
i +

∑N
j=1 pk

ijvi then set di = k′ in each State i

These two operations take turns and produce the gain g. The iteration cycle could

begin in either part. However it is convenient to start in the policy-improvement

routine by setting all vi = 0. Then let the policy-improvement select the policy. The

iteration will be terminated when g does not improve i.e., we found the optimal policy

in the decision vector d.
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5.2 MDP Approach

We model a policy or a set of decision by the Markov Decision Process model.

The MPD elements for the reconfiguration policy are the following.

1. A set of decision epochs:

Our MDP is a discrete-time Markov process. We assume that the time between

transitions is a constant. For example, the SONET/SDH demand matrices are

modified weekly so the decision is made in every week.

2. A set of states:

A state reflects the shape and position of Pareto front in the next transition.

Next we define the term used in our state.

Definition 5.2.1 (Virtual Topology Utilization) Given N be the number of op-

tical node, T be the maximum number of transmitters per node and C be a

capacity of lightpath. The virtual topology utilization Ψ is defined by the frac-

tion between the volume of traffic routed through the network and the upper

bound of virtual topology capacity of the network.

Ψ =

∑
sd,x(x× Sx

sd)

N × T × C
(5.9)

Since we consider the non-blocking network, Equation (5.9) becomes:

Ψ =

∑
sd,x(x× Λx

sd)

N × T × C
(5.10)

The terms N , T and C are constant or rarely upgraded unless the total network

capacity is full. Therefore Ψ relies on the volume of traffic demand. The Ψ
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reflects the Pareto front curve because the reconfiguration process in a high

demand volume (or high virtual utilization environment) requires more number

of changes than in a low demand volume. Since the Pareto front is the function

of NoC and AHT, we define state as a tuple (AHT, Ψ) for our model. Note

that using both Ψ and AHT increase the state space thus in the experiment

we retain the volume of traffic in each reconfiguration round so that the state

becomes the term AHT only.

3. A set of actions:

An action states how to perform the reconfiguration process or how to pick the

solution on the Pareto front. Performing different solutions (different positions)

on the Pareto front will transfer to different states or different Pareto front

curves since the solution with low AHT trends to generate the Pareto front

lower than those of high AHT.

We define the set of actions as the different positions of the Pareto front’s

curve as an example as shown in Figure 8. For each required position (action),

we select the solution that has a pseudo-weight factor closest to that position.

The pseudo-weight factor in Equation (5.11) is calculated for each solution on

the Pareto front’s curve. The fmax
i and fmin

i are the maximum value and the

minimum value of the objective function i respectively.

wi =
(

fmax
i −fi(x)

fmax
i −fmin

i
)

∑Obj
j (

fmax
j −fj(x)

fmax
j −fmin

j
)

(5.11)

where Obj is the number of objective functions (Obj = 2 in our case) and x

is the solution in the Pareto front. Figure 8 shows an example of five actions
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Figure 8: An Example of Pareto Front with Five Actions [a..e].

[a..e] with their expected pseudo-weight (wi, wj) where i belong to the number

of changes objective and j belongs to the AHT objective. The action a is the

solution at the position (0.0, 1.0). That solution does zero change and 100%

or highest AHT available on the curve. The action d is the solution at the

position (0.75, 0.25) which performs 20 changes in the reconfiguration process.

Note that there may not exist the solution at the marked position defined in

the action set but we take the solution which has the nearest pseudo-weight to

the marked position.

4. A set of state and action dependent immediate rewards or costs:

We define the outcome ok
ij be the outcome when moving from state i to j using

action k as shown below.

ok
ij = rk

ij − ck
ij (5.12)

where rk
ij and ck

ij is the immediate gaining reward and incurring cost respectively

when moving from state i to j using action k. We set the reward function and
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cost function as linear functions shown below.

Reward function:

rk
ij(H

k
ij) = βHk

ij + c (5.13)

where Hk
ij is the Average Hop-Distance of Traffic when moving from state i to

j using action k, β is a weight assigned to the reward and c is a constant.

Cost function:

ck
ij(η

k
ij) = αηk

ij + γ (5.14)

where ηk
ij denotes the average number of changes required in the reconfiguration

process from state i to j using action k, α is the weight assigned to the cost

and γ is a one-time charge when start the reconfiguration operations.

Note that reward and cost functions can be any functions that reflect perfor-

mance and cost such as delay, throughput, packet loss, load balance, manage-

ment cost, resource cost and etc.

5. A set of state transition probabilities:

A state transition probability P k
ij is the probability when transferring from state

i to j under action k. Notice that each action has its own transition probability.

We find the optimal outcome as stated in Equation (3.24) by using Howard’s

Policy-Iteration method [12].
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CHAPTER 6

EXPERIMENTATION DESIGN AND RESULTS

6.1 Design of Experimentation

We setup the experiment on the 6-node network and the 14-node NSFNET T1

backbone network to illustrate the Pareto front of the reconfiguration process. The

6-node network is shown in Figure 9 and the NSFNET is a mesh topology shown

in Figure 10. Each link in both network is a pair of an optical fiber, one for each

direction. We assume each node is working as both an access node and a routing

node. Therefore the node is capable of grooming at the edge and equipped with

a wavelength converter (i.e., no wavelength continuity constraint). The lightpath

capacity is OC-48 for the 6-node network and OC-192 for the 14-node NSFNET

network. The capacity of the DWDM is eight wavelength multiplexing, W = 8 thus

a single fiber can carry the traffic stream up to OC-1536 (or 1536 × OC-1; OC-

1 = 51.84Mbps) in the NSFNET network. The number of transceivers per node,

Tx = Rx = 6 so there are at most six lightpaths initiated or terminated at a node.

These transceivers are tunable to any wavelengths on the fiber links. There are

three types of traffic streams, OC-1, OC-3 and OC-12. In the grooming capability,

we assume that each node has unlimited multiplexing/demultiplexing and time-slot

interchange capabilities. The lower streams can be groomed as long as the groomed

traffic does not exceed the lightpath capacity. We generate the initial OC-1, OC-3

and OC-12 traffic streams by a uniform distributed random number between [0,8],

[0,4] and [0,1] respectively. Table B1-B3 in Appendix B show the traffic demand

matrices for the NSFNET network. The total traffic streams are OC-2976 (or 2976
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Figure 9: The 6-node Network.

Figure 10: The 14-node NSFNET Network.
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OC-1s).

We initialize a virtual topology for the first round of the reconfiguration by

assigning a blank topology as a previous virtual topology and performing the re-

configuration process as usual then picking up one solution in the Pareto front. The

transition of traffic in each round could be in any patterns but we simulate the change

of traffic by swapping the data randomly within each traffic matrix to preserve the

Ψ values. We expect to randomly swap all pairs of data or N(N−1)
2

pairs (i.e., we

swap 91 pairs of data in NSFNET). The results are the new traffic demand matrices

used in the next round of a reconfiguration process. We show the second round of

traffic matrices in Table B4-B6 in Appendix B. The total traffic streams remain as

OC-2976. We prepare thirty sets of traffic demand matrices for 29 rounds of recon-

figuration processes used in the policy experiment. The SPEA parameters are set as

follows: the probability of crossover = 0.6, the probability of mutation = 0.01, the

dominated population size = 50 and the external non-dominated population size =

50. We run the experiments to show the Pareto front with the experimental variable

including the number of generations, the number of shortest K and Ψ.

In the reconfiguration policy, we simplify the problem and reduce the state

space by considering only the traffic with the same Ψ. Therefore we can ignore Ψ

in the state tuple (AHT, Ψ). Now the state is defined by the AHT only. Since the

AHT is a continuous value (real number), we define a discrete state based on a range

of the AHT instead and use the median of the range to represent that state. The

more the intervals of the AHT, the higher the accuracy of the model. However it

increases the state space. The reward function, cost functions and the transition

probabilities are defined. We compare the efficiency of our policy with the Immediate
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Figure 11: The Pareto Front of the Reconfiguration with Different Number of Gener-
ations at K=3 for 6-node Network.

Highest Outcome (IHO) policy over thirty sets of traffic demand matrices (29 rounds

of reconfigurations).

6.2 Experimental Results

First we compare the results of reconfiguration process performed on the first

round of traffic change. We plot the Pareto fronts varied by the number of generations

of the SPEA for the 6-node network and the NSFNET network as illustrated in Figure

11 and Figure 12 respectively. The horizontal axis is the number of changes in the

virtual topology and the vertical axis is the AHT in hops.

The plots show that the more the number of generations, the better the results

(the curve is approaching the origin point). However, the result was not improved

much when the number of generations are over 600 generations in the 6-node network

and 1000 generations in the NSFNET network. There are more non-dominated solu-

tions in the NSFNET network than those of the 6-node network since the NSFNET
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Figure 12: The Pareto Front of the Reconfiguration with Different Number of Gener-
ations at K=2 for NSFNET Network.

network is larger and thus more choices of changes. Table 1 shows the detail of re-

configuration performed on 6-node network. The initial virtual topology consists of

28 lightpaths with AHT=1.0232 hops. After the reconfiguration process, the new

virtual topology contains 32 lightpaths with result in AHT=1.009 hops. The process

requires seven changes (including the add operations).

Next we plot the Pareto front varying by the values of K. The result in K = 2

is better than those of K = 1 since it provides more choices of paths. However, we

found that K = 2 generated better results than those of K = 3 and K = 4. We will

use K = 2 in the policy experiments. Since the search space grows along the value

of K. Therefore the optimal results of K = 3 and K = 4 are not yet found at 1000

generations.

Next we compare the Pareto front by the values of Ψ to show that the states

in a Markov process relies on the Ψ value. In Figure 14, the curve of Ψ = 0.355 has a
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Table 1: Virtual Topology Reconfiguration Detail on 6-node Network.
Initial Virtual Topology New Virtual Topology Reconfigure
Src, Dst Path Color Src, Dst Path Color

0, 1 0 1 4 0, 1 0 1 4 -
0, 2 0 1 2 2 2 0, 2 0 1 2 2 2 -
0, 3 0 1 3 3 2 0, 3 0 1 3 3 2 -
0, 4 0 1 2 4 0 0 0 0, 4 0 1 2 4 0 0 0 -
0, 5 0 1 2 5 1 1 0 0, 5 0 1 2 5 1 1 0 -
1, 0 1 0 2 1, 0 1 0 2 -
1, 2 1 2 5 1, 2 1 2 5 -
1, 3 1 0 3 1 0 1, 3 1 0 3 1 0 -
1, 4 1 2 4 3 2 1, 4 1 2 4 3 2 -
1, 5 1 3 4 5 0 0 0 1, 5 1 3 4 5 0 0 0 -
- - - 2, 0 2 1 0 4 3 add
- - - 2, 0 2 1 0 5 4 add

2, 1 2 1 3 2, 1 2 1 3 -
2, 3 2 4 3 3 2 2, 3 2 4 3 3 2 -
2, 4 2 5 4 1 1 2, 4 2 5 4 1 1 -
2, 5 2 4 5 4 1 2, 5 2 4 5 4 1 -
3, 0 3 0 1 3, 0 3 0 1 -
3, 1 3 1 2 3, 1 3 1 2 -
3, 2 3 1 2 1 4 3, 2 3 1 2 1 6 color
3, 4 3 4 2 3, 4 3 4 2 -
3, 5 3 4 5 1 2 3, 5 3 4 5 1 2 -
4, 0 4 3 0 3 0 4, 0 4 3 0 3 0 -
4, 1 4 2 1 1 2 4, 1 4 3 1 4 3 path&color
- - - 4, 2 4 3 1 2 0 0 4 add

4, 3 4 2 1 3 0 0 1 4, 3 4 2 1 3 0 0 1 -
4, 5 4 2 5 2 2 4, 5 4 2 5 2 2 -
5, 0 5 2 1 0 0 1 0 5, 0 5 2 1 0 0 1 0 -
5, 1 5 4 3 1 0 0 0 5, 1 5 4 2 1 0 1 2 path&color
- - - 5, 2 5 2 2 add

5, 2 5 4 2 2 3 5, 2 5 4 2 2 3 -
5, 3 5 2 4 3 1 1 1 5, 3 5 2 4 3 1 1 1 -
5, 4 5 4 3 5, 4 5 4 3 -
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Figure 13: The Pareto Front of the Reconfiguration with Different K Values at 1000
Generations.
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Figure 14: The Pareto Front of the Reconfiguration with Ψ = 0.355 and Ψ = 0.184.
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Figure 15: The Pareto Fronts of Action 1 and 5 Performed on Round 7’s Pareto Front.

higher range of the AHT than those of Ψ = 0.184 because the solutions of the former

curve do not have much room to grow and serve their high demands.

Next we show that an action with low AHT generates a Pareto front curve

closer to the origin than those of an action with high AHT. We plot Pareto front of

data in round 7 and perform reconfiguration process using Action 1 and Action 5 as

shown in Figure 15. It shows that the Pareto front of Action 5 is closer to the origin

than those of Action 1. With this property, we can estimate the state transition

probabilities and their rewards and costs to find the optimal outcome.

Next we calculate the optimal policy. As we stated previously, we simplify the

problem by fixing the Ψ at 0.184 in the traffic demand matrices (we swap the demand

pairs to alter the data). Therefore, the states of a Markov process are stated by the
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AHT only. We setup the set of states into six states with five actions. The states and

their range are

1. AHT=1.375 with range [1.35-1.40],

2. AHT=1.425 with range [1.41-1.45],

3. AHT=1.475 with range [1.46-1.50],

4. AHT=1.525 with range [1.51-1.55],

5. AHT=1.575 with range [1.56-1.60] and

6. AHT=1.625 with range [1.61-1.65].

The actions are:

1. Do a reconfigure process by the solution at position [0.0, 1.0],

2. Do a reconfigure process by the solution at position [0.25, 0.75],

3. Do a reconfigure process by the solution at position [0.5, 0.5],

4. Do a reconfigure process by the solution at position [0.75, 0.25] and

5. Do a reconfigure process by the solution at position [1.0, 0.0] of the Pareto front.

State diagram in Figure 16 shows only the state transitions originated from

state 1 to other states. A pk
ij denotes the state transition probability from state i to

state j using action k and an ok
ij denotes the outcome when transferring from state i

to state j using action k.
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Figure 16: State Diagram of Outgoing Transitions from State 1.

Given Rk and Ck be the reward matrix and cost matrix for the action k with

element rk
ij obtained by the reward function and ck

ij obtained by the cost function.

The outcome for the transition from state i to j using action k is

ok
ij = rk

ij − ck
ij

Since we want to show the performance of the policy, we balance the reward and

cost weighted in the experiment. We do simulation to find out the margin of the

H and η. Note that AHT is H and NoC(Number of Change) is η in our case. We

found that the H is in the range [1.35-1.65] and η is in the range [20-50]. We create

the linear function of outcome such that H = 1.65 when η = 20 and H = 1.35

when η = 50. Therefore, β = (50−20)
(1.35−1.65)

= −100, c = 185, α = 1 and γ = 0 with

regard to parameters in Equation (5.13) and (5.14). The outcome function becomes

ok
ij = −100Hk

ij + 185 − ηk
ij. For example, the o2

12 = −100(1.425) + 185 − 24 = 18.5

where H2
i2 = 1.425 and η2

12 = 24 when transferring from state 1 to 2 using action 2.

We apply the iterative cycle of Howard [12] to find the optimal decision.
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Table 2: Initial Data for Reconfiguration Policy.
i k pk

ij ok
ij qk

i
j=1 2 3 4 5 6 j=1 2 3 4 5 6

1 1 0.020 0.080 0.300 0.600 0.000 0.000 27.50 22.50 17.50 12.50 7.50 2.50 15.10
2 0.050 0.150 0.600 0.200 0.000 0.000 23.50 18.50 13.50 8.50 3.50 -1.50 13.75
3 0.800 0.200 0.000 0.000 0.000 0.000 19.50 14.50 9.50 4.50 -0.50 -5.50 18.50
4 0.900 0.100 0.000 0.000 0.000 0.000 15.50 10.50 5.50 0.50 -4.50 -9.50 15.00
5 1.000 0.000 0.000 0.000 0.000 0.000 11.50 6.50 1.50 -3.50 -8.50 -13.50 11.50

2 1 0.050 0.150 0.650 0.080 0.060 0.010 27.50 22.50 17.50 12.50 7.50 2.50 17.60
2 0.010 0.680 0.310 0.000 0.000 0.000 22.50 17.50 12.50 7.50 2.50 -2.50 16.00
3 0.200 0.800 0.000 0.000 0.000 0.000 17.50 12.50 7.50 2.50 -2.50 -7.50 13.50
4 0.700 0.300 0.000 0.000 0.000 0.000 12.50 7.50 2.50 -2.50 -7.50 -12.50 11.00
5 0.900 0.100 0.000 0.000 0.000 0.000 7.50 2.50 -2.50 -7.50 -12.50 -17.50 7.00

3 1 0.000 0.100 0.700 0.100 0.080 0.020 23.50 18.50 13.50 8.50 3.50 -1.50 12.40
2 0.050 0.900 0.050 0.000 0.000 0.000 17.50 12.50 7.50 2.50 -2.50 -7.50 12.50
3 0.350 0.550 0.080 0.020 0.000 0.000 12.50 7.50 2.50 -2.50 -7.50 -12.50 8.65
4 0.600 0.400 0.000 0.000 0.000 0.000 6.50 1.50 -3.50 -8.50 -13.50 -18.50 4.50
5 0.800 0.200 0.000 0.000 0.000 0.000 1.50 -3.50 -8.50 -13.50 -18.50 -23.50 0.50

4 1 0.000 0.050 0.100 0.500 0.200 0.150 22.50 17.50 12.50 7.50 2.50 -2.50 6.00
2 0.050 0.100 0.700 0.150 0.000 0.000 15.50 10.50 5.50 0.50 -4.50 -9.50 5.75
3 0.300 0.600 0.100 0.000 0.000 0.000 9.50 4.50 -0.50 -5.50 -10.50 -15.50 5.50
4 0.600 0.350 0.050 0.000 0.000 0.000 6.50 1.50 -3.50 -8.50 -13.50 -18.50 4.25
5 0.900 0.080 0.020 0.000 0.000 0.000 3.50 -1.50 -6.50 -11.50 -16.50 -21.50 2.90

5 1 0.000 0.000 0.000 0.020 0.180 0.800 22.50 17.50 12.50 7.50 2.50 -2.50 -1.40
2 0.000 0.000 0.100 0.700 0.200 0.000 14.50 9.50 4.50 -0.50 -5.50 -10.50 -1.00
3 0.050 0.100 0.700 0.150 0.000 0.000 7.50 2.50 -2.50 -7.50 -12.50 -17.50 -2.25
4 0.300 0.600 0.100 0.000 0.000 0.000 -0.50 -5.50 -10.50 -15.50 -20.50 -25.50 -4.50
5 0.600 0.300 0.100 0.000 0.000 0.000 -7.50 -12.50 -17.50 -22.50 -27.50 -32.50 -10.00

6 1 0.000 0.000 0.000 0.000 0.100 0.900 17.50 12.50 7.50 2.50 -2.50 -7.50 -7.00
2 0.000 0.000 0.000 0.100 0.500 0.400 9.50 4.50 -0.50 -5.50 -10.50 -15.50 -12.00
3 0.000 0.050 0.150 0.700 0.080 0.020 2.50 -2.50 -7.50 -12.50 -17.50 -22.50 -11.85
4 0.300 0.600 0.100 0.000 0.000 0.000 -5.50 -10.50 -15.50 -20.50 -25.50 -30.50 -9.50
5 0.600 0.300 0.100 0.000 0.000 0.000 -12.50 -17.50 -22.50 -27.50 -32.50 -37.50 -15.00

Howard’s method contains two operations, the value-determination operation and

the policy-improvement operation to solve as stated in previous Chapter. The com-

plete set of state transition probabilities, outcomes and qk
i are presented in Table 2.

These data could be obtained either from the actual network or simulations.

Table 2 shows that performing reconfiguration process with the lower action

number causes a higher chance to transfer up to a higher state while performing with

the higher action number, it causes a higher chance to transfer down to a lower state.

The lower states have more outcome than the upper state. Therefore, the MDP tries

to keep the policy in lower states to gain the optimum outcome.

We apply iterative cycle of Howard [12], beginning with the policy-improvement

routine by setting vi = 0; i = 1, . . . , 6 since we have six states. Then we select the

initial policy that maximizes expected immediate outcome i.e., select action k in each
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state i that has the maximum qk
i . From Table 2, the initial policy in the decision

vector d are

d =




3

1

2

1

2

1




The state transition probabilities matrix P and expected immediate rewards corre-

sponding to this policy are

P =




0.800 0.200 0.000 0.000 0.000 0.000

0.050 0.150 0.650 0.080 0.060 0.010

0.050 0.900 0.050 0.000 0.000 0.000

0.000 0.050 0.100 0.500 0.200 0.150

0.000 0.000 0.100 0.700 0.200 0.000

0.000 0.000 0.000 0.000 0.100 0.900




q =




18.50

17.60

12.50

6.00

−1.00

−7.00
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Now the iteration begins at the Value-Determination Operation.

g + v1 = 18.5 + 0.8v1 + 0.2v2 + 0.0v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.1)

g + v2 = 17.6 + 0.5v1 + 0.15v2 + 0.65v3 + 0.08v4 + 0.06v5 + 0.01v6 (6.2)

g + v3 = 12.5 + 0.5v1 + 0.9v2 + 0.05v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.3)

g + v4 = 6.0 + 0.0v1 + 0.05v2 + 0.1v3 + 0.5v4 + 0.2v5 + 0.15v6 (6.4)

g + v5 = −1.0 + 0.0v1 + 0.0v2 + 0.1v3 + 0.7v4 + 0.2v5 + 0.0v6 (6.5)

g + v6 = −7.0 + 0.0v1 + 0.0v2 + 0.0v3 + 0.0v4 + 0.1v5 + 0.9v6 (6.6)

Solving Equation (6.1),(6.2),(6.3),(6.4),(6.5) and (6.6) by setting v6 = 0, we obtain

g = 6.894 v1 = 313.6670 v2 = 255.640 v3 = 264.594

v4 = 132.272 v5 = 138.944 v6 = 0

Note that we can select to set any vi = 0. It will come out the same optimal policy.

Next we return the iteration to the Policy-Improvement Operations. We found

the new policy that maximize the reward by the calculation in Table 3.

Now the decision vector d has been changed corresponding the maximum test
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Table 3: The First Iteration for the Policy-Improvement.
State Action Test Quantity

i k qk
i +

∑N
j=1 pk

ijvi

1 1 200.57
2 252.99
3 320.56
4 322.86
5 325.17

2 1 262.53
2 275.00
3 280.75
4 307.26
5 314.86

3 1 247.52
2 271.49
3 282.85
4 294.96
5 302.56

4 1 139.17
2 252.05
3 279.44
4 295.15
5 310.94

5 1 26.26
2 145.84
3 244.05
4 269.44
5 281.35

6 1 6.89
2 70.70
3 144.33
4 264.44
5 276.35
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quantity of each state in Table 3.

d =




5

5

5

5

5

5




From the new vector d, the matrix P and the vector q become

P =




1.000 0.000 0.000 0.000 0.000 0.000

0.900 0.100 0.000 0.000 0.000 0.000

0.800 0.200 0.000 0.000 0.000 0.000

0.900 0.080 0.020 0.000 0.000 0.000

0.600 0.300 0.100 0.000 0.000 0.000

0.600 0.300 0.100 0.000 0.000 0.000




q =




11.50

7.00

0.50

2.90

−10.00

−15.00
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Next the iteration continues at the Value-Determination Operations.

g + v1 = 11.5 + 1.0v1 + 0.0v2 + 0.0v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.7)

g + v2 = 7.0 + 0.9v1 + 0.1v2 + 0.0v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.8)

g + v3 = 0.5 + 0.8v1 + 0.2v2 + 0.0v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.9)

g + v4 = 2.9 + 0.9v1 + 0.08v2 + 0.02v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.10)

g + v5 = −10.0 + 0.6v1 + 0.3v2 + 0.1v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.11)

g + v6 = −15.0 + 0.6v1 + 0.3v2 + 0.1v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.12)

Again we solve Equation (6.7),(6.8),(6.9),(6.10),(6.11) and (6.12) by setting v6 = 0,

we obtain

g = 11.5 v1 = 29.20 v2 = 24.20 v3 = 17.20

v4 = 19.96 v5 = 5.00 v6 = 0

We found that the gain g is improved. We then return to the Policy-Improvement

operations. The iteration continues until the gain g is not improved. Eventually we

found the maximum gain g = 16.833 with the decision vector d below

d =




3

4

2

5

4

4
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Figure 17: The Outcome of Reconfiguration from Round 1 to Round 29.

Thus the expected optimal outcome is 16.833 under this policy and MDP model. The

policy in the vector d denotes that if the current state is 1 then perform action 3, if

the current state is 2 then perform action 4, if the state is 3 then perform action 2, if

the state is 4 then perform action 5 and if the state is 5 or 6 then perform action 4.

We compare our MDP policy with the Immediate Highest Outcome (IHO)

policy. The IHO selects the solution in the Pareto front that produces the immediate

highest outcome in the current state to perform the reconfiguration process. We ran

both policy on the same set of traffic series for 29 rounds and compare the outcomes

in each round as shown in Figure 17. Although the IHO selected the highest outcome

in every round, it does not generate an overall outcome better than those of the MDP.

Different selections lead to different states which have a different Pareto front and

outcome. We show the Pareto front of the first round in Figure 19. The IHO selects
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Figure 18: The Accumulative Outcome of Reconfiguration from Round 1 to Round
29.

AHT=1.438 and NoC=32 which generate outcome=9.183, while the MDP selects

action 4 where AHT=1.387 and NoC=40 which generate an outcome=6.324. The

IHO transfers to state 2 and the MDP transfers to state 1. The Pareto front of MDP

in the second round generates a better outcome than those of IHO. In the long term,

the MDP produces a greater outcome than those of IHO. We plot the accumulative

outcome in Figure 18. After 29 rounds, IHO produces outcome=425.787 and MDP

produces outcome=442.947.

All of the experiments performed in this dissertation were carried out using

800 MHz Intel based processor. The worst case experiment took less than 30 min-

utes which is considered acceptable for the reconfiguration process where the traffic

demand matrices are changed in a weekly basis. The computational complexity of
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Figure 19: The Pareto Front with Outcome for the First Round and the Second Round
of Reconfiguration using the IHO Policy and the MDP Policy.
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the SPEA is O(P2) where P is the population size. The routing and wavelength

assignment computational complexity is O(N2) where N is the number of nodes in

the network. Thus the overall complexity needed in each generation of the SPEA is

O((PN)2).
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CHAPTER 7

RECONFIGURATION APPROACH FOR DYNAMIC TRAFFIC

7.1 Overview

In this chapter we are interested in a wavelength-routed network under dy-

namic traffic demand such that the traffic pattern is not known in advance. Therefore

the MDP approach could not be applied to the reconfiguration policy. The reconfig-

uration must act immediately if the network performance falls below the acceptable

point. Therefore the performance is monitored regularly and the reconfiguration pro-

cess is initiated as needed. It appears that the virtual topology is self-adaptive or

self-reconfiguration, since it takes action before it reaches the critical point.

The self-reconfiguration has been proposed by Gencata and Mukherjee [10].

Their approach monitors the load of each link to make a decision whether or not to

perform a reconfiguration. At each observation period, a lightpath may be added if the

load is above the high watermark or deleted if the load is below the low watermark.

Otherwise the virtual topology needs not change. Self-tuning is attractive but it

brings a set of difficulties. The optimal solution is influenced by the parameters (e.g.,

the level of high/low watermark and the length of observation period). Also the

oscillation problem could happen if lightpath is alternately added and deleted in each

of decision period. Besides, drastic changes could happen in a short period of time

such as a coming of burst traffic or multiple equipment failures. In this case, the

self-reconfiguration of one change at a time could not handle that traffic or outage.

7.2 A Heuristic Approach

We propose the heuristic models using the advantage of MOEA to allow mul-
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Figure 20: Data Flow Diagram of the Reconfiguration Model.

tiple changes in the reconfiguration process in each observation period. The models

have a common Data-Flow Diagram (DFD) and Control-Flow Diagram (CFD) as

presented in Figure 20 and 21 respectively. The first process in the DFD generates

a Pareto front between AHT and NoC based on a given traffic demand, a Physical

topology and a specification of optical node/link (known as constraints).

Next process is to pick a solution from the Pareto front according to the given

policy. If the pattern of traffic is known in advance, the MDP policy could be applied.

Otherwise some policies must be applied.

Next process is to perform the reconfiguration operations (e.g., add, delete,

reroute, or switch the wavelength) according to the selected solution above. The

result is the new virtual topology for a new traffic demand.

In the CFD, the Perception of Network process monitors the network status

and the traffic demand then collects the data to the Reflective Control Process. If

there is a significant change in a traffic demand, the process will trigger the Reflective

Control Process. Then the Reflective Control Process picks the right policy and starts

the Reconfiguration Process (shown in DFD). The Reflective Control Process may

collect the data and analyze the pattern of traffic to make some adjustment on the

policy.

Notice that the policy could be an adaptive (dynamic) one regarding to the
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Figure 21: Control Flow Diagram of the Reconfiguration Model.

particular traffic pattern. The advantage of adaptive policy makes the model appli-

cable to various types of traffic.

7.3 A Heuristic Algorithm

The reconfiguration problem is a trade off between the performance and the

cost objectives. We still consider the performance in term of the Average Hop-distance

of Traffic (AHT) and the cost in term of a number of changes in the lightpaths. We

keep considering in the transport backbone network but in a short term and we

consider the SONET streams that changed within one day. Since it is a backbone

network, the traffic must be non-blocking. The traffic monitoring will be done hourly

to trigger the reconfiguration processes.

We propose a heuristic algorithm that keeps monitoring the AHT of the net-

work. Whenever the AHT value is above the upper-limit or when any traffic streams

are blocked, the reconfiguration will be activated. In our case, the upper-limit is the

maximum level of AHT that we allow in the network. If the traffic is blocked, it

implies that the current virtual topology is no longer serving the demand. Hence

reconfiguration is necessary. The reconfiguration starts with the searching for so-

lutions and forming the Pareto Front. We propose two heuristic policies to pick a

solution; the Pick-Min policy which picks a solution with the minimum NoC and the
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Pick-Max policy which picks a solution at NoC ≤ n where n is the maximum num-

ber of changes allowed. If there is no feasible solution (i.e., traffic is blocked), some

constraints must be relaxed likes extending the OXC ports, increasing the DWDM

capability or installing an extra fiber underground. We present the algorithm with a

Pick-Max policy picking a solution with NoC ≤ n in Figure 22.

In order to deal with a dynamic traffic, we introduce the upper-limit of AHT

and NoC. The upper-limit is a breakpoint such that the cost of starting reconfiguration

if AHT is below this point is worthless. In the other words, if the virtual topology is

able to serve the variation of dynamic traffic, the reconfiguration is unneeded.

Not only the AHT that we concern, we also consider the utilization of the

lightpath. A lightpath that serves less than LW% of its capacity (for the single-hop

traffic) will be deleted. Where LW% is a low-watermark of the virtual topology in

percentage. For the high-watermark, we set it at 100% to allow the maximum usage

of lightpath.

7.4 Performance Study

7.4.1 Simulation Environment

We conducted the experiment on the 14-node NSFNET network with a light-

path capacity of OC-192, W = 8, and number of transmitters = 6 for each node. The

transmitters are tunable to any wavelengths on the fiber links. There are three types

of traffic streams, OC-1, OC-3 and OC-12 and the grooming capabilities are available

at all nodes. We consider the dynamic traffic during one day period by imitating the

actual traffic pattern of Abilene Network [1]. We found that traffic is slightly changed

hourly. Therefore we alter data in the OC-1 traffic matrix only. According to the
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Figure 22: Heuristic Algorithm with the Pick-Max with NoC ≤ n.
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Figure 23: One-day Traffic for the Simulation.

Abilene’s traffic pattern, we generate a one-day OC-1 traffic as shown in Figure 23.

We decrease OC-1 traffic by randomly adding a value in the set of {-2, -1, 0, 1} to

traffic in each source-destination pair and adding a value in the set of {-1, 0, 1, 2}
for the increasing traffic.

The simulation was conducted on different heuristic policies that pick a solu-

tion from the Pareto front (i.e., pick a solution with the minimum NoC or pick the

one with NoC ≤ n where n is the maximum number of changes allowed.)

7.4.2 Experimental Results

We compare the different policies that pick a solution. They are: the Pick-

Min policy that picks a solution with the minimum NoC and the AHT below the

upper-limit, the Pick-Max policy with n = 10 at most, the Pick-Max policy with

n = 15 at most, and the Pick-Max policy with n = 20 at most. The chosen solution

must have the AHT less than the upper limit, otherwise a solution is unacceptable
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Figure 24: The AHT Results of Pick-Min, Pick-Max with n=10, Pick-Max with n=15
and Pick-Max with n=20 Policies.

and the constraints must be attuned. First experiment, we compare the performance

objective (the AHT) at different policies as presented in Figure 24. We set the upper-

limit of AHT at 1.675 hops. (This AHT value is obtained from the AHT after the

6th state in the MDP.)

Figure 24 shows that the higher the number of changes, the better performance

(lower AHT). The average AHT of each of the Pick-Max with n=20, the Pick-Max

with n=15, the Pick-Max with n=10, and Pick-Min is 1.586 hops, 1.597 hops, 1.599

hops, and 1.663 hops respectively. We can see that the Pick-Max policy generates

better performance than that of the Pick-Min policy. There are not much different

among the Pick-Max policies except the first reconfiguration process (at 5pm). After

the first reconfiguration process, the virtual topology serves the next traffic demand

very well whereas a solution with NoC < 15 dominated the other solutions with

higher NoC.
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Figure 25: The Number of Changes for the Pick-Min, the Pick-Max with n=10, the
Pick-Max with n=15 and the Pick-Max with n=20 Policies.

Next we compare the values of NoC at different policies as presented in Figure

25. Although the Pick-Min chooses a solution with the minimum changes in the

lightpaths in each period but it takes totally 64 changes of 15 reconfiguration processes

in a day. Note that the reconfiguration process takes place only at the beginning of

the period which causes the traffic interruption. The Pick-Max with n=10 takes 59

changes in 7 reconfiguration processes, the Pick-Max with n=15 takes 56 changes

in 5 reconfiguration processes while the Pick-Max with n=20 takes 50 changes in

5 reconfiguration processes. We see that the Pick-Min is costly since it interrupts

the traffic most frequently. In this environment, the Pick-Max with n=20 is the best

choice since the first reconfiguration with 20 changes produces a virtual topology that

could serve traffic for a longer period.

Next we consider the utilization issue. We plot the number of lightpaths

required in each hour and the overall utilization in each hour as shown in Figure 26
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Figure 26: The Number of Lightpaths for Pick-Min, Pick-Max with n=10, Pick-Max
with n=15 and Pick-Max with n=20 Policies.

and Figure 27 respectively. The overall utilization is the fraction between total traffic

and the network capacity. The network capacity is the number of lightpaths multiplied

by a lightpath capacity. The results show that the Pick-Min consumes less number

of lightpaths than those of Pick-Max policies. Consequently, the Pick-Min results

in a superior overall utilization. The overall utilization of the Pick-Max with n=20,

the Pick-Max with n=15, the Pick-Max with n=10 and the Pick-Min policies are

24.56%, 25.16%, 25.77% and 29.05% respectively. It is a trade-off between the AHT

performance and the utilization. The Pick-Min performs reconfiguration processes

frequently thus the virtual topology is always in a good shape that fits the new

demand (the unused lightpaths are deleted). So the Pick-Min policy brings in a

higher utilization.

Notice that the utilization seems pretty low because the lightpaths come in a

big trunk (OC-192) while the base unit of traffic is in OC-1.
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CHAPTER 8

CONCLUSIONS

8.1 Conclusions

In this dissertation, we proposed a complete model of reconfiguration in

wavelength-routed optical network. Wavelength-routed optical networks are usually

in a mesh topology and serve as the backbone for wide area networks. Therefore we

conducted research on a mesh topology with realistic SONET/SDH traffic streams,

mostly deployed in a wide area network backbone. The grooming at the access node

is our key to route multiple low speed streams onto a huge lightpath capacity. We im-

plemented grooming as part of the reconfiguration. We found that the reconfiguration

problem is a multi-objective optimization since the reconfiguration objectives are the

network performance optimization and the cost minimization simultaneously. These

objectives are conflicting thus there are multiple solutions to satisfy the objectives.

We presented the set of objectives and selected the AHT as a performance objective

and considered the number of changes in lightpaths as a cost objective. Since the

AHT reflects the number of O-E-O conversions at intermediate nodes. The lower the

AHT, the higher the network performance. We optimize the objectives by the Pareto

optimal concept. The ILP and previous literature approaches are not able to generate

the set of satisfied solutions or the Pareto front since they consider one objective at

a time. We propose the Multi-objective Evolutionary Algorithm to create the set of

Pareto optimal solutions and the policy to pick one of the solutions for each round of

reconfiguration (when traffic demands are changed). The MOEA is one of stochas-

tic searches that work out from the random solutions. A solution is evaluated and
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promoted systematically if it fits well with the objectives. The fitness function, the

evolutionary operations e.g., selection, crossover and mutation are determined.

Our model of reconfiguration contains two tasks: a reconfiguration process

and a reconfiguration policy. We present the technique by applying the SPEA, one of

the MOEAs, in the reconfiguration process. The SPEA outperforms other MOEAs

and generates a perfect Pareto front that distributes solutions along the curve using

a clustering method. We need the perfect curve since our policy Actions rely on

it. The reconfiguration policy picks one of the solutions in the Pareto front that

generates the maximum expected outcome. We present the Markov Decision Process

and its elements that apply to our problem. The case study based on simulation of

the 14-node NSFNET network which is considered as a large network, illustrates the

Pareto front in the reconfiguration process. It shows that a reconfiguration problem

is a multiple conflict objectives and a Pareto front corresponding to the problem is

formed. We defined the MDP for a reconfiguration policy in the case study, compared

the efficiency of MDP with the IHO policy and found that we can find the optimal

policy which the expected outcome greater than that of the IHO policy. Therefore

the hypothesis is accepted. The result of the MDP policy is superior to that of the

IHO policy because the MDP optimizes the reconfigurations in the entire series not

just a particular one like the IHO. Since the MDP model is based on estimation or

probability, the accuracy of the model depends on how close the model is to the actual

network.

We also extend the study of the reconfiguration on the dynamic traffic using

a similar model. Since dynamic traffic is unpredictable, the pattern of traffic cannot

be defined by a stochastic model. We introduce the Pick-Min and Pick-Max policies
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to pick the solution in the Pareto front. The experiments of a one-day traffic show

the effective of the proposed heuristics. The model can make multiple changes or

zero change according to the new traffic, current virtual topology and the policy. In

the other words, the virtual topology is adaptable according to the traffic. In the

model, we leave the cost or weight cost between the AHT and NoC open. Hence, it

is applicable to any kind of traffic and cost function.

8.2 Future Work

Our model is not restricted to SONET/SDH streams. It could be applied

to other traffic like the fractional lightpath or packet-rate traffic. Other interesting

efforts are in the definition of the cost and reward functions in the policy. They need

not be linear and may be acquired from existing network parameters. Besides the

accuracy of the model could be improved by refining the states of the network. The

range of AHT in a state should be narrowed down and the Ψ should be included if

the volume of traffic is varied in each round.

The dynamic traffic reconfiguration model is affected by several parameters

like a Low-watermark and a monitoring period. It requires a deep study on these

parameters to satisfy the objectives. Another research effort is the policy that could

predict the dynamic traffic pattern since the recent record of traffic may predict the

incoming traffic. In addition, multiple policies (adaptable policy) may be applied to

the problem according to the current environment.
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APPENDIX A

FITNESS (SCORE) ASSIGNMENT CHART



This chart is the part of the SPEA fitness assignment. It reads the chromosome

to be decoded as a virtual topology. Traffic routing and color assignment are processed

and evaluated in term of the scores. Each chromosome has two scores corresponding

to the objectives.
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APPENDIX B

INPUT TRAFFIC DEMAND MATRICES FOR NSFNET



Table B1: The First Round of OC-1 Traffic Demand Matrix for NSFNET.




0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 5 1 0 5 5 7 7 8 8 6 1 0 1
1 3 0 2 1 1 6 0 4 0 0 2 6 8 2
2 6 4 0 7 8 7 3 1 3 5 2 8 6 5
3 3 8 2 0 7 3 5 7 6 7 2 7 7 8
4 4 8 8 5 0 0 4 7 6 8 2 5 4 2
5 8 0 4 3 3 0 0 1 4 0 1 5 2 1
6 3 2 2 5 7 2 0 7 8 1 4 8 3 3
7 2 2 4 0 3 7 1 0 0 4 1 3 0 5
8 6 5 4 4 0 5 1 8 0 0 6 2 4 8
9 4 7 8 4 7 6 5 7 0 0 6 2 5 8
10 0 0 5 3 3 4 8 0 0 3 0 3 8 0
11 1 6 7 4 5 3 5 1 2 4 5 0 6 5
12 7 6 7 0 7 5 8 7 5 8 5 3 0 0
13 2 8 8 4 5 6 2 3 4 3 3 0 4 0




Table B2: The First Round of OC-3 Traffic Demand Matrix for NSFNET.




0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 4 1 1 2 1 3 1 1 3 3 4 0 2
1 3 0 0 2 4 2 3 0 3 3 4 4 3 1
2 2 2 0 4 1 2 3 4 2 4 3 4 2 0
3 0 4 4 0 1 3 4 1 0 2 2 2 4 3
4 1 1 1 3 0 4 0 3 4 3 3 0 0 4
5 3 4 2 1 0 0 4 1 2 0 0 3 4 2
6 2 0 3 0 4 0 0 3 1 1 2 0 1 1
7 2 2 0 3 2 4 4 0 2 3 3 2 4 0
8 4 3 2 1 3 1 3 0 0 3 0 1 1 3
9 2 1 1 0 3 0 3 0 4 0 0 1 1 1
10 2 4 4 1 1 1 1 0 3 4 0 0 4 0
11 3 2 2 0 1 1 3 4 2 0 4 0 1 4
12 0 0 1 4 3 4 3 2 1 0 3 3 0 4
13 0 4 3 0 2 1 0 0 2 0 1 3 4 0
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Table B3: The First Round of OC-12 Traffic Demand Matrix for NSFNET.




0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 1 0 0 1 1 1 1 0 1 1 1 1 1
1 1 0 1 0 1 1 1 0 1 1 1 1 0 0
2 0 0 0 1 0 0 1 1 0 1 1 1 1 1
3 1 1 0 0 0 1 0 0 0 1 0 0 0 0
4 1 0 1 0 0 1 1 1 1 0 1 0 1 1
5 0 1 1 0 0 0 0 1 0 0 1 0 0 0
6 1 0 0 1 1 0 0 0 0 1 1 1 0 0
7 1 0 0 1 1 0 0 0 1 1 0 1 0 1
8 0 0 0 1 0 0 1 1 0 1 0 1 1 0
9 0 1 0 1 0 1 1 1 0 0 1 0 1 0
10 1 1 0 1 0 1 0 0 1 1 0 1 0 0
11 1 1 0 1 1 0 1 0 0 0 1 0 1 0
12 0 1 0 0 0 0 1 1 0 1 1 1 0 1
13 0 1 1 0 0 1 0 0 0 0 0 1 0 0




Table B4: The Second Round of OC-1 Traffic Demand Matrix for NSFNET.




0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 5 1 4 5 8 0 0 8 8 5 1 0 0
1 0 0 5 0 2 6 0 4 0 0 2 2 8 2
2 8 8 0 7 5 7 3 1 3 5 0 3 6 5
3 5 8 5 0 7 2 1 7 6 7 2 6 7 1
4 8 8 1 2 0 4 4 5 6 8 2 5 4 4
5 8 6 4 3 1 0 4 1 4 4 1 5 2 7
6 3 2 7 6 7 2 0 3 0 1 5 8 3 3
7 4 2 7 0 3 5 7 0 3 6 4 7 0 2
8 7 6 7 6 7 5 0 8 0 8 2 6 4 5
9 4 3 3 7 3 6 8 8 8 0 8 6 3 3
11 1 6 7 2 5 1 5 1 2 4 5 0 6 4
12 7 4 7 0 0 3 4 3 1 7 0 1 0 5
13 2 8 8 5 8 8 0 3 4 0 3 4 5 0
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Table B5: The Second Round of OC-3 Traffic Demand Matrix for NSFNET.




0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 2 0 1 0 3 1 1 3 2 3 3 3
1 3 0 4 2 0 1 0 2 3 1 4 4 4 3
2 2 2 0 2 4 2 1 3 2 4 3 4 0 0
3 2 3 4 0 3 3 1 1 0 1 3 2 1 2
4 1 3 3 3 0 4 1 1 2 4 2 0 3 4
5 4 4 3 4 0 0 4 1 3 1 4 3 2 4
6 2 3 0 1 4 3 0 0 0 1 0 1 1 2
7 4 2 0 1 4 4 2 0 2 3 3 3 4 2
8 4 0 2 1 1 1 2 1 0 3 3 1 1 3
9 0 1 3 4 3 3 3 4 4 0 0 1 0 1
10 2 0 2 4 4 0 1 0 1 3 0 1 2 0
11 0 0 0 1 2 1 4 0 4 0 4 0 1 4
12 0 0 4 4 0 4 0 2 1 3 3 3 0 0
13 0 2 2 4 2 1 0 4 0 3 0 3 1 0




Table B6: The Second Round of OC-12 Traffic Demand Matrix for NSFNET.




0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 1 0 1 1 1 0 0 1 1 0 0 1
1 1 0 1 1 1 1 1 1 0 1 1 1 1 0
2 1 1 0 1 0 1 1 1 0 1 1 1 0 1
3 1 1 0 0 1 0 0 0 0 0 0 0 0 0
4 1 1 0 0 0 1 1 1 0 1 0 1 1 1
5 1 1 0 0 1 0 0 0 0 0 0 0 0 0
6 1 0 1 1 1 1 0 0 0 0 1 0 0 0
7 1 0 0 1 0 0 0 0 1 1 1 1 0 1
8 1 1 0 1 0 0 1 1 0 0 1 1 1 1
9 0 0 1 0 0 0 0 1 0 0 1 0 1 0
10 1 0 0 1 1 0 0 1 1 1 0 1 0 0
11 1 0 0 1 1 0 1 0 1 0 1 0 1 0
12 0 0 0 0 0 1 1 0 0 1 1 1 0 1
13 0 1 1 0 0 1 1 0 1 0 1 0 0 0
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