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ABSTRACT 
 
 

This thesis presents a novel feature selection algorithm for medical image

segmentation.  A multiobjective optimization genetic algorithm is used to search among

the candidate features to find an optimal subset which results in the highest segmentation. 

A self-organizing feature map serves as the classifier such that the fitness of the genetic

algorithm is determined by two quality measures of the map, quantization error and

topology preservation.  The algorithm is applied to a 3D simulation model of the human 

brain and six MRI data sets, and shows promising results in comparison with using

principal component analysis as the basis for feature selection.  This indicates that

tailoring a self-organizing feature map to a specific subset of features has the potential to 

increase the segmentation accuracy of medical images.  
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NOMENCLATURE 
 
 

),( yxI  = Intensity value of the pixel located at row x and column y in image I 
   

X = Feature vector 
   

xi = Feature number i 
   

D = Dimension 
   

µ = Mean 
   
σ = Standard deviation 
   

W = 2D window of size w x w 
   

d = distance 
   

θ  = direction 
   

S = Sum histogram 
   

D = Difference histogram 
   

°θ
C  = Scaling factor for sum and difference histograms of direction θ  

   
οG  = Gaussian kernel of standard deviation σ  

   
η  = Regular moments 

   
m = Central moments 

   
φ  = Nonlinear combination of normalized central moments 

   
P = Feature pattern 

   
P’ = Sample of feature vectors 

   
w = Weight vector 

   



 7

 
 
 
 

LIST OF TABLES 
 
 

Page 
 
TABLE I. List Of Twenty-Three Extracted Features Which Form The 

Pattern Matrix P  ………………………………………………. 15
  
TABLE II. Example Of Two Functions To Be Simultaneously Optimized.  

Each Function Is Equally Significant With Respect To The 
Final Solution  …………………………………………………………… 25

  
TABLE III. Parameters Of The Brain Model, Listing Each Structure Of 

The Model And Its Corresponding Gray Level Value    ……… 31
  
TABLE IV. Variations In Segmentation Accuracy From Using Random 

Samples.  The Worst Difference Observed Was 0.45%  ……… 34
  
TABLE V. A Comparison Of Error Values, Fitness Values, And 

Segmentation Accuracy For Most Fit Strings On Simulation 
Models A, C, E, And F ……………………………………………… 37

  
TABLE VI. Segmentation Accuracy Of Top Ten Most Fit Strings On 

Simulation Model ……………………………………………… 39
  
TABLE VII. Optimal Feature Subset For Simulation Model   ……………… 39
  
TABLE VIII. Segmentation Accuracy For Each Structure Of The Brain 

Model, Using The Optimal Feature Subset  …………………… 40
  
TABLE IX. Segmentation Accuracy For Simulation Model Degraded With 

Gaussian Noise  ………………………………………………… 42
  
TABLE X. Optimal Feature Subsets For T1, T2, And PD MRI Data Sets ... 45
  
TABLE XI. Segmentation Accuracy For The T1, T2, And PD MRI Data 

Sets  ……………………………………………………………………… 46
  
TABLE XII. PCA Segmentation Accuracy For Simulation Model  ………… 48
  
TABLE XIII. Summary Of Which Method Performs The Best For Each 

Tissue Type For T1, T2, And PD Images  ………………………… 49



 8

 
 
 
 

LIST OF FIGURES 
 
 

Page 
FIGURE 1. Sample 3 x 3 Image With Three Gray Levels.  This Image Is 

Used To Illustrate How Texture Measures Are Calculated ……… 9
  
FIGURE 2. Sample Sum And Difference Histograms For Figure 1 With 

Distance d = 1 And Direction θ = 90? ….………………………… 9
  
FIGURE 3. Example Of Mapping Feature Vector x To SOFM.  The Feature 

Vector Is Connected To The Output Map Via The Weight Vector, 
w   ………………………………………………………………… 18

  
FIGURE 4. Example Of Topological Neighborhood Definition For A 2D 

SOFM With Hexagonal Neighborhoods  ………………………… 19
  
FIGURE 5. Graphical Representation Of Multiobjective Optimization 

Problem. The Pareto-Optimal Set Is Circled In Red   …………… 26
  
FIGURE 6. System Overview.  After The Features Are Extracted From The 

Original Images, The MOGA Searches For The Subset Of 
Features Which Result In The Best SOFM.  The Best SOFM Is 
Then Labeled And Used To Segment Each Image  ……………… 28

  
FIGURE 7. Sample Image From The Brain Model With Pointers To Each 

Structure.  The Model Follows The Convention Of MRI, Such 
That The Structure On The Right Side Of The Image 
Corresponds To The Structure On The Left Side Of The Subject .. 31

  
FIGURE 8. Example Of T1 And T2 MR Images Of A Subject With Healthy 

Brain Structures.  T1 Images Display Higher Intensity 
(Brightness) For White Matter, While T2 Images Show Higher 
Intensity For Cerebrospinal Fluid    ……………………………… 33

  
FIGURE 9. Example Of A PD MR Image Of A Subject With Multiple 

Sclerosis.  PD Images Are Often Lower In Contrast Than T1 Or 
T2 Images, Showing Slightly Higher Intensity For Gray Matter ... 33

  
FIGURE 10. Improvement In Average Fitness Values For Simulation Model. 

These Results Are Consistent With The Theory Presented In 
Appendix I   ……………………………………………………… 35



 9

 
 
 
 

I. INTRODUCTION 
 
 

Modern medical imaging technology such as magnetic resonance imaging (MRI), 

x-ray computer tomography (CT), positron emission tomography (PET), and ultrasound 

has given physicians a non-invasive means to visualize internal anatomical structures and 

diagnose a wide variety of diseases.  MRI is a particularly powerful and versatile 

modality.  Compared to other such techniques, MRI has superior soft tissue 

differentiation [1], high spatial resolution and contrast [2], and does not use ionizing 

radiation which may be harmful to patients [3].  Such characteristics have shown MRI to 

be a valuable tool in the clinical and surgical environment [4].  

A. Medical Image Segmentation 

MR images are typically interpreted visually and qualitatively by radiologists.  

The need for quantitative information, however, is becoming increasingly important in 

the clinical and surgical environment [5].  The segmentation of MR images into 

anatomical tissues, structures, and fluids would allow their volumes to be calculated, 

providing quantitative measurements useful for a variety of applications.  The delineation 

of tumors before and after radiation therapy for response evaluation, the assessment of 

drug treatment therapies, and the automatic or semiautomatic outlining of areas to be 

treated prior to surgery are a few possible areas of application [6], [7].  The quantitative 

measurement of brain atrophy and tumor volume also contribute to the study of certain 

pathologies, such as Alzheimer’s disease, multiple sclerosis, and schizophrenia [7]. 
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 Alzheimer’s disease, a degenerative disease of the brain [8], is the most common 

cause of dementia in the western world [9].  At present, it has no known cause and is very 

difficult to diagnose, with confirmation being obtained only after death by an autopsy.  

MR images of patients in the later stages of the disease show a decrease in brain size, 

especially around the hippocampus and the temporal lobes, as well as enlarged ventricles, 

sulcal broadening, and a reduction in the gyral size [9], [10].  It is hoped that MRI will 

make it possible to diagnose the presence of Alzheimer’s disease before the manifestation 

of any physical symptoms and to discover the cause of the degeneration of the brain. 

 The routine quantitative analysis of MR images is impractical by manual 

methods, since manual segmentation is time-consuming, costly, and tedious [4].  Errors 

due to low tissue contrast, ambiguous tissue boundaries caused by partial volume effects 

(where individual pixels represent more than one tissue type), and poor hand-eye 

coordination commonly occur [7], [11].  The lack of a standard in MRI further 

complicates the problem; not only can images of the same subject obtained with two 

different MRI machines have different characteristics [12], but the intensity values for 

similar tissues obtained with a single MRI machine can vary across one image volume 

and within a single slice [7].  Although the automatic or semiautomatic segmentation of 

medical images is highly desirable, such a method is still not available for clinical use 

[13]. 

 Several image segmentation systems have been reported in the literature [1], [2], 

[5]-[7], [13]-[16], [19]-[25].  These systems may be divided into four broad approaches: 

classical, statistical, fuzzy, and neural network techniques [13].  Classical approaches 

include such methods as edge- and region-based techniques [14], [15], or intensity 
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thresholding [16], and typically do not utilize any a priori information.  Statistical 

classifiers, such as expectation-maximization (EM) algorithms [1], [5], maximum 

likelihood estimators [17], and Markov random fields [13], represent learned 

classification rules as mathematical formulas.  The concept of a fuzzy set, which allows a 

gradual transition from membership to nonmembership [18], is the basis for fuzzy 

segmentation techniques [19], [20].  A multitude of neural network based approaches 

have been introduced [2], [6], [21]-[25], which rely on a neural network architecture for 

image segmentation. 

 The segmentation of MR images may be generalized as a type of pattern 

classification problem, where anatomically meaningful labels are assigned to each 

component of the segmented image according to its classification.  The classification 

model for pattern recognition contains three parts: a transducer, a feature extractor, and a 

classifier [17].  In this case, the transducer is the MRI process, resulting in images 

suitable for processing.  The feature extractor measures certain properties which should 

characterize one input pattern from another, and the classifier uses these input patterns to 

assign the data to one of a finite number of categories.  In the case of image 

segmentation, there are potentially hundreds of possible features available with which to 

characterize the data set; feature selection aims to find an optimal subset of candidate 

features, and is an important part of the segmentation process.  This thesis focuses 

primarily on the problem of feature extraction and feature selection. 

Thesis Overview 

 In the feature extraction stage, four types of features are calculated: first order 

parameters, textural measures, multiscale features, and moment invariant features.  First 
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order parameters describe the gray level of a single pixel or the gray level distribution in 

an area centered around the pixel.  A type of second order statistic, textural measures take 

into account the spatial interdependence of the pixels.  Multiscale features are created by 

decomposing an image into a set of descriptions at a specific scale.  Moment invariant 

features are invariant under translation, scaling, and rotation, and are an indication of the 

center, spread, and skewness of the image.   

 Once the feature pattern has been constructed, the goal is to find an optimal subset 

of these features which will result in the most accurate image segmentation.  To 

accomplish this, a multiobjective optimization genetic algorithm has been implemented 

to search among the candidate features.  The classifier used in this system is a self-

organizing feature map, a type of Kohonen neural network.  The genetic algorithm 

evaluates the effectiveness of a particular subset of features on the self-organizing feature 

map based on two criteria, resolution and topology preservation of the map.  Ideally, a 

subset of features which result in good feature map quality will also result in high 

segmentation accuracy.  One of the goals of this thesis is to discover if such a relationship 

exists. 

Similar methods have been reported [26]-[32] in the literature.  The classification 

systems used have included a nearest neighbor classifier [26], a rule-based classification 

system [27], a Euclidean distance measure [28], and various types of supervised neural 

networks [29]-[32].  In all these cases, a priori knowledge of the data set was required.  

The novelty of the approach described in this thesis is the use of an unsupervised self-

organizing feature map as the classification system.  No a priori information about the 

data set is needed, since the fitness of the genetic algorithm is determined by the quality 
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of the map itself.  Furthermore, the genetic algorithm employed uses multiobjective 

optimization in its development.  Although multiobjective optimization has been tried in 

this type of problem before [32], the neural network used still relied upon a priori 

knowledge of the input data set. 

 A 3D geometrical model of the brain, proposed by M. N. Ahmed [33], has been 

used to test the performance of the segmentation algorithm.  This model, similar in 

concept to the famous 2D Shepp-Logan head model, consists of ellipsoids of known 

dimension and gray levels.  The segmentation algorithm was also applied to six real MRI 

data sets to estimate its usefulness in a clinical environment. 

Thesis Organization 

The remainder of this thesis proceeds as follows.  Section II details each of the 

four types of features chosen for the feature extraction process and how the feature 

pattern is constructed.  Section III discusses self-organizing feature maps, genetic 

algorithms, the multiobjective optimization requirement, and the quality measures used in 

this thesis.  An overview of the system design, a discussion of the brain model used for 

testing, and details about the MRI data set are presented in Section IV.  Segmentation 

results are reported in Section V, along with a comparison of the use of principal 

component analysis as a method for feature selection.  Finally, Section VI contains the 

conclusions and recommendations of the thesis. 
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II. FEATURE EXTRACTION 
 
 

The purpose of feature extraction is to reduce the original data set by measuring 

certain properties, or features, that distinguish one input pattern from another [17].  The 

selected features should provide the characteristics of the input type to the classifier by 

condensing the description of the relevant properties of the image into a feature space of 

D dimension.  In this application, the pixels (short for “picture elements”) of the gray 

level image I are transformed to a feature vector,  

[ ]Dxxx ",, 21=X  

where each xi is a unique feature and D is the dimension of the feature vector.  

A variety of approaches have been developed for feature extraction [4], [33], [34], 

including the Fourier transform, moment feature space, orthogonal polynomials, fractal 

dimension measures, Gabor functions, and Markov random fields.  The features used 

here will be derived from first order gray level parameters, textural measures, multiscale 

features, and moment invariant features.  Once these feature vectors are obtained, they 

will be sent to the feature selector to determine which are the most discriminating for 

image segmentation. 

A. First Order Features 
 
 First order features describe the gray level of a single pixel or the gray level 

distribution in a 2D window, W, of size w x w, centered around the pixel.  These features 

do not take the spatial interdependence of the pixels into account.  In this category, three 

features were selected:  

(1)
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1. The gray level,  
),( yxIg =  

 
2. The mean gray level, 

∑
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3. The variance gray level,  
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1
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A sliding window, w = 8, was used to calculate the mean and variance for each pixel in 

the image. 

B. Textural Features 
 
 Although there is no agreement on a formal definition of texture, it can be 

described as the “repetition of a pattern or patterns over a region” [35].  These patterns 

may be qualitatively assessed as being fine, coarse, smooth, random, or lineated, for 

example [36].  Textural features are a type of second order statistic, where the differences 

between the gray levels of two pixels at different locations are compared.  These features 

may be divided into one of two classes, statistical and structural.  Statistical texture can 

be defined as the spatial distribution of intensity variations in an image according to some 

underlying probabilistic model, whereas structural texture is the spatial distribution of a 

set of primitives in an image based on some predefined rules [37].  

Several approaches have been developed to derive textural features, such as first-

order gradient distribution, the edge co-occurrence matrix, the run-length matrix, or the 

gray-level co-occurrence matrix [33].  For this thesis, textural features are acquired using 

a statistical method based on the use of sum and difference histograms, developed by 

(2)

(3)

(4)
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Unser [35], which is based on the gray level co-occurrence matrix described by Haralick 

et al [36]. 

The co-occurrence matrix is an estimate of the second order joint probability, 

),( jip , which is the probability of going from gray level i to gray level j, given the 

distance d between two pixels along a given direction θ.  The matrix is square, where the 

dimension is the number of discrete gray levels in the image.  Four directions are usually 

considered, θ  = 0°, 45°, 90°, and 135°, although to guarantee that the texture features are 

invariant under rotation, Haralick et al [36] suggest using the average of the 4 directions.  

A distance of d = 1 or 2 is typically used as well.  Two forms of the co-occurrence matrix 

exist, (1) symmetric, where pairs separated by d and –d are counted, and (2) not 

symmetric, where only separation by a distance d is counted.  Once the matrix is formed, 

it is normalized by the number of relationship pairs.  The co-occurrence matrix is then 

analyzed and features (Haralick et al described 14 such features) are computed from the 

matrix. 

Although this method is known for its good discrimination abilities [35], in 

practice it is slow and memory intensive.  For each texture to be analyzed, a new co-

occurrence matrix must be created, followed by a calculation of the value for the feature.  

Since it is only the features that are desired and not the co-occurrence matrix itself, Unser 

[35] devised a method for computing the features without creating the matrix, based on 

sum and difference histograms. 

The sum histogram S is simply the histogram of the sums of all pixels dx and dy 

apart.  For example, the gray level at ),( yxI  is added to the gray level at 

),( yx dydxI ++ , and the histogram bin corresponding to that sum is incremented.  
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Similarly, the difference histogram D is the histogram bin of the gray level differences. 

For example, for the image show in Figure 1 with three gray levels, )2,1,0(∈g , 

 
 

FIGURE 1 – Sample 3 x 3 Image With Three Gray Levels.  This Image Is  
Used To Illustrate How Texture Measures Are Calculated. 

 
 

the sum and difference histograms based on a distance d = 1, and direction θ  = 90° are 

shown in Figure 2, 

°==

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
90,1,

201
211
120

θd  

 
        Sum Histogram    Difference Histogram 

   
 

FIGURE 2 – Sample Sum And Difference Histograms For Figure 1  
With Distance d = 1 And Direction θ  = 90°. 

 
 
As with the co-occurrence matrix, the average of directions θ  = 0°, 45°, 90°, and 135° is 

used.  The histograms S and D are then normalized so that their values become 

probabilities.  For an image, I, of dimension M x N, the scaling factors are as follows 

[36], 
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Five features were calculated from these histograms: 

1. Mean, 

∑ ⋅
i

iSi )(
2
1  

 
2. Contrast, 

∑ ⋅
j

jDj )(2  

 
3. Homogeneity, 

∑ ⋅
+j

jD
j

)(
1

1
2  

 
4. Entropy, 

∑∑ ⋅−⋅−
ji

jDjDiSiS ))(log()())(log()(  

 
5. Energy, 

∑∑ ⋅
ji

jDiS 22 )()( . 

 
 
 This application is somewhat different from texture analysis in that the output is 

an image, preferably of the same size and with approximately the same spatial 

characteristics [38].  This may be handled by dividing the image to be analyzed into a 

number of square windows and to set the value of each pixel in the window to that of a 

calculated textural feature.  For this thesis, a window size of 8 x 8 was used so that the 

window would be large enough to capture the textures, while being small enough to 

maintain an acceptable resolution. 

(5)

(6)

(7)

(8)

(9)

(10)
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C. Multiscale Features 
 

The scale-space is a one-parameter family of blurred replicas of the input image, 

proposed by Witkin [39] and Koenderink [40].  Multiscale features are created by 

decomposing an image into a set of descriptions in the scale-space, at a specific scale.  

For an image I, the property, 

I
x

GG
x
I

⊗
∂

∂
=⊗

∂
∂ σ

σ  

 
shows that all image derivatives can be obtained by convolving the image with the 

corresponding derivative of a Gaussian kernel, Gσ  [25], 

2

22

2
)(

2)2(
1),( σ

σ πσ

yx

eyxG
+

−
=  

(noting that images are 2D), where the one-parameter is the standard deviation (“width” 

or “scale”) of the Gaussian kernel.  The zero-th order Gaussian kernel, together with all 

its partial derivatives, form a complete family of scaled differential operators.  It is the 

only such family satisfying the constraints of linearity, and invariance to shift, rotation, 

and scale, and has been established as the unique scale-space operator to change scale 

[41].  From these operators, image structures may be described completely up to any 

desired order at various scales.  Furthermore, Gaussian filtering serves to regularize the 

image, making subsequent differentiation operations mathematically well-posed [41]. 

The Gaussian partial derivatives alone are not invariant under a particular 

coordinate transformation [42], so it is necessary to construct particular combinations of 

derivatives as invariant features.  Two features each were constructed for four different 

values of σ: 

 

(11)

(12)
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1. Squared gradient of L, 
22
yxii LLLL +=  

 
2. Laplacean of L, 

yyxxii LLL +=  
 
where, 

x
GILx ∂

∂
⊗= σ , …  and 

xx
GILxx ∂∂

∂
⊗= σ , … 

 
 

D. Moment Invariant Features 
 

One of the traditional methods for invariant feature extraction involves the use of 

moment invariants.  The use of moments for image analysis and object representation 

was introduced in 1962 by Hu [4].  The regular moments of an image are defined by 

∑∑=
x y

qp
pq yxIyx ),(η  

 
where …,2,1,0, =qp  .  To make these moments invariant to translation, central 

moments are defined by, 

∑∑ −−=
x y
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pq yxIyyxxm ),()'()'(  

 
where 

00
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00
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η
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These central moments can then be normalized for scale invariance using 
 

γµ
00m

mpq
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where 
 

1
2
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+

+
=

qpγ . 

 

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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The following seven nonlinear combinations of normalized central moments developed 

by Hu [4] are invariant under translation, scaling, and rotation, 

1. )( 02201 µµφ +=  
 
2. 2

11
2

02202 4)( µµµφ +−=  
 
3. 2

0321
2

12303 )3()3( µµµµφ −+−=  
 
4. 2

0321
2

12304 )()3( µµµµφ +++=  
 
5. ])(3))[()(3( 2
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2
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 ])()(3)[)(3( 2

0312
2

123003210321 µµµµµµµµ +−++++  
 
6. ])())[(( 2

0321
2
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))((4 0321123011 µµµµµ +++  

 
7. ])(3))[()(3( 2

0321
2

1230123003217 µµµµµµµµφ +−++−=  
    ])()3)[()(3( 2

0312
2

123003121230 µµµµµµµµ +−++−−  
 
In the first two equations, 1φ  and 2φ  provide scale and translation independence, 

equations  3φ  − 6φ  ensure rotation with reflection invariance, and 7φ  provides reflection 

discrimination in it’s sign [4].  As with the textural features, the moment invariant 

features are calculated in an 8 x 8 window, and the value of each pixel in that window is 

set to that feature value. 

E. Constructing the Feature Pattern 
 

Once the features have been obtained for the entire image, they are ordered into a 

matrix P, where each row represents all the features for a single pixel, and each column 

represents a particular feature for all the pixels in the image.  Thus, 

[ ]Dxxx ",, 21=X ,  
 
where D represents the number of features, and 

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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where N represents the total number of pixels. 
 

Since distance measures will be evaluated in the feature space, as discussed in 

Section III, the features need to be normalized so that no one feature dominates the 

others.  To normalize the feature vectors to have zero mean and unit variance, the 

normalization 

x

i
i

x
x

σ
µ−

=' , 

where µ  is the mean and σx is the standard deviation for feature xi, has been used [25]. 

The complete listing of the features is detailed in Table I.  These feature patterns are then 

sent to the feature selector to determine which are the most discriminating for image 

segmentation. 

 

(29)

(30)
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TABLE I 
LIST OF TWENTY-THREE EXTRACTED FEATURES WHICH  

FORM THE PATTERN MATRIX P. 
 

 Feature Feature Class 
x1 Intensity First-order 
x2 Mean First-order 
x3 Variance First-order 
x4 Mean Texture 
x5 Contrast Texture 
x6 Homogeneity Texture 
x7 Entropy Texture 
x8 Energy Texture 
x9 LiLi , σ  = 0.5 Multiscale 
x10 LiLi , σ  = 1.0 Multiscale 
x11 LiLi , σ  = 2.0 Multiscale 
x12 LiLi , σ  = 4.0 Multiscale 
x13 Lii ,   σ  = 0.5 Multiscale 
x14 Lii ,   σ  = 1.0 Multiscale 
x15 Lii ,   σ  = 2.0 Multiscale 
x16 Lii ,   σ  = 4.0 Multiscale 
x17 φ1 Moment Invariant 
x18 φ2 Moment Invariant 
x19 φ3 Moment Invariant 
x20 φ4 Moment Invariant 
x21 φ5 Moment Invariant 
x22 φ6 Moment Invariant 
x23 φ7 Moment Invariant 
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III. FEATURE SELECTION 
 
 

In the case of image segmentation, there are potentially hundreds of possible 

features available with which to characterize the data set.  Such a large number of 

features typically includes many “garbage features” [26], which are not only useless for 

classification purposes, but may degrade the performance of a classifier as well as 

increase the cost and running time of a system.  At the same time, there is a potentially 

opposing need to include a sufficient number of features to achieve high classification 

accuracy.   

In image understanding, finding a minimal set of features necessary for 

classification is an important part of designing an efficient and robust system [28].  This 

has led to the development of a variety of search techniques to find an “optimal” subset 

of features from a larger set of candidate features.  The goal of feature selection is to find 

this optimal subset.   

In this work, a multiobjective optimization genetic algorithm has been 

implemented to search among the candidate features for an optimal subset of features to 

obtain the highest classification accuracy.  A self-organizing feature map will serve as the 

classifier for this system. 

A. Self-Organizing Feature Maps 
 
 An artificial neural network (ANN) is an information-processing model or system 

that attempts to simulate the adaptive biological learning abilities of the mammalian 

brain.  The architecture of a neural network is composed of a large number of highly 
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interconnected processing elements, referred to as neurons or nodes.  As opposed to a 

digital model, in which all computations manipulate ones and zeros, the neural network 

operates by creating weighted connections between its nodes, which represent the 

knowledge of the system.  Neural networks can be roughly categorized into two types in 

terms of their learning features: supervised learning algorithms, where networks learn to 

fit known inputs to known outputs, and unsupervised learning algorithms, where no 

desired output to a set of inputs is defined. ANN models are preferred for image 

segmentation applications because of their parallel processing, learning, and decision-

making abilities [4]. 

Self-organizing feature maps (SOFMs) are a type of neural network developed by 

Kohonen.  The SOFM uses an unsupervised learning method to map high dimensional 

data into a 1D, 2D, or at most 3D data space, subject to a topological ordering constraint.  

A major advantage is that the clustering produced by the SOFM retains the underlying 

structure of the input space, while the dimensionality of the space is reduced. As a result, 

a neuron map is obtained with weights encoding the stationary probability density 

function p(x) of the input pattern vectors [43]. 

1. Network Topology 

The SOFM consists of two main parts, the input layer and the output map.  The 

dimensionality of the input layer is not restricted, while the output map has 

dimensionality 1D, 2D, or 3D.  An example of a planar array of neurons with hexagonal 

neighborhoods is shown in Figure 3.  Each node i of the map is connected to the input 

feature vector, ][ 4321 xxxx=x , with a weight vector, ][ 4321 iiii wwww=w .  
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wi1 wi2 wi4wi3

Output Map

x1 x2 x3 x4

Input Layer
][ 4321 xxxx=x

i

Weights for node i

 

FIGURE 3 – Example Of Mapping Feature Vector x To SOFM.  The Feature Vector  
Is Connected To The Output Map Via The Weight Vector, w. 

 
 

The weight values between the input and output nodes are assigned prior to 

learning.  Traditionally, weight values were often assigned randomly to demonstrate the 

strong self-organizing tendency of the SOFM; however, if the initial values for the weight 

vectors are assigned linearly, the computation of the SOFM can be made considerably 

faster.  Since the SOFM is already approximately organized in the beginning, a narrower 

neighborhood function and smaller learning-rate factor may be used initially [44]. 

The learning procedure is a type of competitive learning, where only the winning 

node and its neighboring nodes are updated during the learning process.  The topological 

neighborhood definition for the previous example is shown in Figure 4.  The winning 

output node is determined by a similarity measure, which can be the Euclidean distance 

measure or the dot product of two vectors.  The best match or the minimum distance 
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measure obtained defines the winning node in the output layer.  For this thesis, the 

Euclidean distance measure, 

}{min iim wxwx −=−  

where wi  represents the winner neuron, has been utilized.   

 

rm
Nmi (t3)

Nmi (t2)

Nmi (t1)

t1 < t2 < t3 < . . .

 
FIGURE 4 – Example Of Topological Neighborhood Definition For A 2D SOFM  

With Hexagonal Neighborhoods. 
 
 
The SOFM update rule for the weight vector of unit i is 

)]()()[()()1( tttNtt imiii wxww −+=+  

where t denotes time, x(t) is an input vector drawn from the input data set at time t, and 

Nmi(t) is the neighborhood kernel around the winner unit m.  The neighborhood function 

in this case is the Gaussian,  
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where rm and ri are the position vectors of the winning node and of the winning 

neighborhood nodes, respectively.  The learning rate factor, 1)(0 << tα , decreases 

(31)

(32)

(33)
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monotonically with time, and )(tσ  corresponds to the width of the neighborhood 

function, also decreasing monotonically with time.  Thus, the winning node undergoes 

the most change, while the neighborhood nodes furthest away from the winner undergo 

the least change. 

2. Batch Training 
 

The incremental process defined above can be replaced by a batch computation 

version which is significantly faster [44].  The batch training algorithm is also iterative, 

but instead of presenting a single data vector to the map at a time, the whole data set is 

given to the map before any adjustments are made.  In each training step, the data set is 

partitioned such that each data vector belongs to the neighborhood set of the map unit to 

which it is closest, the Voronoi set [44].  The sum of the vectors in each Voronoi set are 

calculated as 

∑
=

=
Vin

j
ji t

1

)( xs  

where nVi is the number of samples in the Voronoi set of unit i.  The new values of the 

weight vectors are then calculated as 

∑
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where m is the number of map units and nVj is the number of samples falling into Voronoi 

set Vi.   

3. Quality Measures 
 

Although the issue of SOFM quality is not a simple one, two evaluation criteria, 

resolution and topology preservation, are commonly used [45].  One method to evaluate 

(34)

(35)
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the map resolution is to calculate the average quantization error, Qerr.  This index is the 

average distance between each input data vector and its best matching unit (BMU) [46].  

Topology preservation may be assessed by calculating the topological error, Terr, of the 

map.  This value represents the percentage of data vectors for which its first BMU and 

second BMU are not adjacent units [47].  Both Qerr and Terr are used in the evaluation 

of the SOFM in this thesis.   

B. Genetic Algorithms 
 

Genetic algorithms (GAs) are a type of random search algorithm based on the 

mechanics of natural selection and natural genetics.  GAs operate on pieces of 

information as nature operates on genes in the course of evolution.  Individuals in the 

system are termed strings, and are analogous to chromosomes in biological systems.  As 

chromosomes are composed of genes, a string in a GA is composed of alleles.  These 

strings are represented by a linear sequence of letters of an alphabet, typically ones and 

zeros, and are allowed to mutate, crossover, and reproduce.  All individuals of one 

generation, termed a population, are evaluated by a particular fitness function with 

respect to the given application domain.  After a number of generations, the population 

consists of individuals that are well adapted in terms of the chosen fitness function [28]. 

Genetic algorithms have been proven to provide robust search in complex spaces 

[48].  Their ability to take advantage of accumulating information about an initially 

unknown search space to bias subsequent searches has demonstrated substantial 

improvement over a number of random and local search methods [28].  Since GAs are 

primarily a domain independent search technique, they are particularly suited for 
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applications where domain knowledge is difficult or impossible to provide, as in the case 

of feature selection for image segmentation. 

1. Crossover, Mutation, and Reproduction 

Although several variations of genetic algorithms exist [48], they typically share 

the common operations of crossover, mutation, and reproduction.  In general, after a 

population of individuals has been initialized either randomly or according to a heuristic, 

the fitness of the individuals is calculated according to the given fitness function.  Parents 

are then selected with a probability proportional to their fitness.  The selected parents are 

mated, with possible mutation, to create the next generation.  This process is repeated 

until an acceptable solution is found.  The details explaining how genetic algorithms are 

successful in obtaining an optimal solution may be found in Appendix I. 

The general principle for selecting parents is that of natural selection, with an 

individual’s chance of contributing to the new generation's genetic pool being 

proportional to its fitness. Although there are several ways to implement the reproduction 

operator, one of the computationally simplest and most popular is the “Roulette wheel” 

method [48].  This method selects the strings in a statistical fashion, based solely upon 

their relative fitness values as a percentage of the total.   

 Once the parents have been selected, individuals for the next generation are 

formed using two main genetic operators, crossover and mutation.  Crossover is 

performed in two steps.  First, the selected parents are mated at random.  Second, a 

random position in the gene structure is selected (the crossover site) for each pair of 

mates, and the remaining segments of the parents are swapped with crossover probability 

pc.  For example, if the crossover site is chosen to be between the third and fourth alleles, 
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parent #1 0 1 1 0 0 1 0 
parent #2 1 0 0 1 0 1 1 

 
generates 

child #1 0 1 1 1 0 1 1 
child #2 1 0 0 0 0 1 0 

 
after crossover. Therefore, the features of two individuals are combined to create two 

similar offspring.  If the GA decides not to perform crossover for a particular pair, the 

two selected strings are simply copied to the new population.   

Mutation operates by exchanging a single allele.  For each string element in each 

string in the mating pool, the GA determines whether or not it should perform mutation 

with mutation probability pm  If it does decide to perform mutation on an allele, it 

changes the element value to a new one, for example a one to a zero or vice versa.  The 

mutation probability is typically a very small number, such as 0.001, to prevent fit strings 

from being destroyed.  This operation is a way to insert new information into the 

population, preventing possible stagnation that might occur during the search process.  In 

doing so, the GA is protected against the irrecoverable loss of good solution features and 

maintains diversity in the population. 

There are various ways to implement generation replacement.  In total generation 

replacement, every offspring becomes a part of the next generation, while every parent is 

discarded.  Some variations of generation replacement compare the original parent 

individuals and the offspring simultaneously.  For a population size n, only the best n of 

the 2n parents and children become part of the next generation.  This method is called 

elitist generation replacement [49].  Although it guarantees that fit individuals are not lost 

from one generation to the next, it has been suggested that elitism improves local search 

at the expense of global perspective [48].  For this reason, total generation replacement 
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has been utilized in this thesis.  Termination may be activated by finding an acceptable 

approximate solution or by observing no performance improvements over a certain 

number of generations.   

2. Multiobjective Optimization 

The fitness function discussed in the previous section assumed that there was a 

single objective for the genetic algorithm to optimize.  In single objective optimization, 

the goal is to obtain the “best” design or decision, which is typically the global minimum 

or global maximum, depending on the nature of the problem.  However, in many real-

world design or decision making problems, the simultaneous optimization of several 

objectives is required. 

When multiple objectives are to be optimized, a singular solution which is best 

with respect to all objectives may not exist.  Instead, a set of solutions may be considered 

superior to the rest of the solutions in the search space considering all objectives, but 

which are inferior to other solutions in the space.  These solutions are known as Pareto-

optimal or nondominated solutions.  The rest of the solutions are known as dominated 

solutions.  Since none of the solutions in the nondominated set are absolutely better than 

any other, any one of them is considered acceptable.  Mathematically, the problem can be 

written as follows [50], 

Minimize/Maximize fi(x)  i = 1, 2, …, N 

Subject to  gj(x) ≤ 0 j = 1, 2, …, J 

   hk(x) = 0 k = 1, 2, …, K 

The parameter x is an n dimensional vector have n design or decision variables. Using the 

following definitions [51], 

(36)
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1. A vector ),,( 1 nuu "=u  is said to be inferior to ),,( 1 nvv "=v  iff v is 
partially less than u (v p < u), such that, ii uvni ≤=∀ ,,,1" , 

 
2. A vector ),,( 1 nuu "=u  is said to be superior to ),,( 1 nvv "=v  iff v is 

inferior to u, and 
 

3. Vectors ),,( 1 nuu "=u  and ),,( 1 nvv "=v  are said to be non-inferior to 
one another if v is neither inferior nor superior to u, 

 
 
each element in the Pareto-optimal set constitutes a non-inferior solution to the 

multiobjective problem.  To illustrate, consider two functions to be simultaneously 

minimized, )(1 xf  and )(2 xf .  Suppose the solution set for these functions is as shown in 

Table II. 

TABLE II 
EXAMPLE OF TWO FUNCTIONS TO BE SIMULTANEOUSLY OPTIMIZED.  

EACH FUNCTION IS EQUALLY SIGNIFICANT WITH RESPECT TO  
THE FINAL SOLUTION. 

 
Solution f1 (x) f2 (x) 

A 0.9501 0.8381 
B 0.2311 0.1096 
C 0.6068 0.6813 
D 0.4860 0.3795 
E 0.8913 0.8318 
F 0.7621 0.5028 
G 0.4565 0.7095 
H 0.1085 0.4289 
I 0.8214 0.3046 
J 0.4447 0.1897 

 
 
The Pareto-optimal set includes {B, H}, as visualized in Figure 5, since they are both 

non-inferior solutions.  While B performs better with respect to )(2 xf , H performs better 

with respect to )(1 xf ; neither solution dominates the other.  Although J is not inferior to 

H, it is inferior to B, and therefore is not included in the set. 
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FIGURE 5 – Graphical Representation Of Multiobjective Optimization Problem.   
The Pareto-Optimal Set Is Circled In Red. 

 

A number of methods have been developed to address the issue of multiobjective 

optimization, including the vector-valued genetic algorithm (VEGA), the nondominated 

sorting genetic algorithm (NSGA), and goal programming [50], [51].  One classical 

technique is to scalarize the vector of objectives into one objective by averaging them 

with a weight vector.  This process is known as objective weighting and allows a simpler 

optimization algorithm to be used.  Multiple objective functions are combined into one 

overall objective function, Z, as follows [50]: 
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where x ∈ X, and X is the feasible region.  The weights wi are fractional numbers 

10 ≤≤ iw , and all weights are summed to one, 
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With this method, the optimal solution is controlled by the weight vector w such that an 

objective may be favored by a simple weight adjustment. 

A common problem with multiobjective optimization is the appearance of an 

objective conflict [50], where none of the feasible solutions allow simultaneous optimal 

solutions for all objectives.  Thus a mathematically most favorable Pareto-optimum is 

that solution which offers least objective conflict.  In addition to being computationally 

inexpensive, solutions obtained with equal weights in objective weighting are typically 

Pareto-optimum solutions with minimal objective conflict.  For this reason, this is the 

multiobjective optimization routine employed in this thesis.  The two objective functions 

are Qerr and Terr, given equal weighting between the two. 

Genetic algorithms seek to maximize fitness values, but Qerr and Terr are defined 

as minimization problems.  The following cost-to-fitness transformation is normally used 

[48] when this situation occurs, 



 <−

=
otherwise0

)(when)(
)( maxmax CxgxgC

xf  

where )(xg is the original function and Cmax may be taken as an input coefficient, as the 

largest g value observed, as the largest g value in the current population, or the largest of 

the last k generations [48].  In this work, Cmax was taken as an input coefficient to 

facilitate the comparison of one generation with another across all modalities. 

 

(39)
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IV. IMPLEMENTATION 
 
 

The proposed system is divided into three main procedures:  (1) feature 

extraction, (2) feature selection, and (3) post-processing.  An overview of the system is 

shown in Figure 6.  All programming was done in the Matlab 5 computing environment 

by MathWorks, Inc. 
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FIGURE 6 – System Overview.  After The Features Are Extracted From The Original 
Images, The MOGA Searches For The Subset Of Features Which Result In The Best 

SOFM.  The Best SOFM Is Then Labeled And Used To Segment Each Image. 
 
 

A. System Design 

In the feature extraction stage, an input image of dimension 256 x 256 is 

presented to the system.  From this image, 23 features are calculated, forming the pattern 

matrix P.  The dimensions of P are N x D, where N = 65536 is the number of pixels in the 

image and D = 23 is the number of features.  
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A random sample of 5% of the feature vectors, P′ , were then presented to the 

genetic algorithm.  The reason for using a small percentage of the feature vectors as has 

also been done in [28], [52], [53] was not only to decrease the computational complexity, 

but it has been suggested that self-organizing feature maps are more effective in mapping 

a small amount of linearly independent data [53].  The validity of this method is 

discussed further in Section V.   

It has been indicated that good GA performance requires the use of a moderate 

population size, a high crossover probability, and a low mutation probability [48].  For 

this reason, the following parameters have been used in this thesis, 

1. population sizes, Ps  = 30, 40, 50, 

2. crossover probability, pc = 0.7, 

3. mutation probability, pm = 0.01. 

The features are represented as a binary string of length N = 23, where a 1 denotes 

the presence of a feature and a 0 denotes its absence.  After a population has been 

randomly initialized, the first string extracts the appropriate features from the reduced 

pattern matrix and presents them to the self-organizing feature map.  For example, if the 

first string in the population is 

0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1, 

then features 2, 5, 6, 8, 20, and 23 of P′  are the only ones used to train the SOFM. 

The SOM Toolbox for Matlab [54] was used to generate the maps in this thesis.  

An implementation of the SOFM, the Toolbox has been widely used in many applications 

[44]-[46], [53].  The dimension of the maps are determined automatically.  First, the 

number of map units are calculated according to the heuristic, 
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54321.05 smapunits ⋅=  

where s is the number of samples.  Then, the two largest eigenvalues of the training data 

are calculated, and the ratio of these eigenvalues define the ratio between the sidelengths 

of the map grid.  The final values of the sidelengths are set such that their product most 

closely matches the desired number of map units [54].  The maps are initialized linearly 

and are trained using the batch algorithm described in Section III.  After the SOFM has 

converged, the two quality measures, Qerr and Terr, are calculated and stored.  Each 

string in the population undergoes this same procedure.   

Once quality measures have been obtained for every string in the population, 

objective weighting in conjunction with the cost-to-fitness transformation is applied to 

calculate the fitness of each string as, 

)5.05.0(1 TerrQerrfitness ⋅+⋅−=  
 
The Roulette wheel method is used to select the parents, which are then mated with 

crossover and mutation to produce the next generation.  The process is repeated for each 

generation in turn.  

A post-processing step to label the SOFM is necessary because of its 

unsupervised nature.  The array neurons are labeled in response to a specific known 

vector from the training set [43].  In this thesis, the classification for each pixel is known 

in advance, so the labels assigned to each pixel are used to label the SOFM.    

B. Brain Model 
 

The simulation images used to test the system were contributed by M. N. Ahmed 

[33].  Thirty-five images consisting of ellipsoids of known dimension and gray levels 

were constructed to represent a 3D model of the head.  The gray levels assigned to each 

(41)

(40)
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structure of the model are shown in Table III.  An example of one of the images is shown 

in Figure 7. 

 
TABLE III 

PARAMETERS OF THE BRAIN MODEL, LISTING EACH STRUCTURE OF THE 
MODEL AND ITS CORRESPONDING GRAY LEVEL VALUE. 

 
Notation Structure Gray level value 

SKN Skin 41 
WM White matter 81 
GM Gray matter 251 
CC Corpus callosum 101 
LV Left ventricle 32 
RV Right ventricle 31 

LCN Left caudate nucleus 132 
RCN Right caudate nucleus 131 
LTN Left thalamus nucleus 141 
RTN Right thalamus nucleus 143 
FO Fornix 201 

BKG Background 1 
 
 
 

 
 

 
FIGURE 7 – Sample Image From The Brain Model With Pointers To Each Structure.  
The Model Follows The Convention Of MRI, Such That The Structure On The Right 
Side Of The Image Corresponds To The Structure On The Left Side Of The Subject. 
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C. MRI Data Set 
 

Magnetic resonance imaging (MRI) uses magnetic energy and radio waves to 

create images (“slices”) of the human body.  During the examination, the MRI scanner 

creates a strong magnetic field, causing the nuclei within body tissues to align.  The 

energy absorbed by the nuclei is then released, returning the nuclei to their initial state of 

equilibrium.  It is this transmission of energy by the nuclei that is observed as the MRI 

signal. 

Two physical processes return the nuclei to their initial state:  the relaxation back 

to equilibrium of the component of the nuclear magnetization which is 1) parallel and 2) 

perpendicular to the magnetic field.  The first process takes roughly T1 time, and the 

second takes T2 time.  The density of protons in a tissue (PD), T1, and T2 determine the 

strength of the MRI signal [55]. 

For most soft tissues in the body, the proton density is very homogenous but may 

exhibit higher intensity for gray matter.  T1 and T2 can be very different for different soft 

tissues, contributing to higher contrast in the images [55].  While T1 shows higher 

intensity for white matter, T2 presents higher intensity for cerebrospinal fluid.  

The six MRI data sets used were obtained from The Whole Brain Atlas project 

[55] and the Computer Vision and Image Processing Laboratory at the University of 

Louisville [56].  Forty-four T1 and T2 images from a subject with healthy brain 

structures and from a subject with Alzheimer’s disease constituted the four sets from 

[55].  The images from each subject have been registered such that the pixel at (x, y) in 

the T1 image represents the same structure as the pixel at (x, y) in the corresponding T2 

image.  An example of a T1 and T2 image of the same slice is shown in Figure 8.  From 
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[56], 18 PD images from two subjects with multiple sclerosis comprised the remaining 

two sets.  An example of a PD image from one subject is shown in Figure 9. 

 
T1 32      T2 32 

  
 

FIGURE 8 – Example Of T1 And T2 MR Images Of A Subject With Healthy Brain 
Structures.  T1 Images Display Higher Intensity (Brightness) For White Matter, While T2 

Images Show Higher Intensity For Cerebrospinal Fluid. 
 
 

 
 

FIGURE 9 – Example Of A PD MR Image Of A Subject With Multiple Sclerosis.  PD 
Images Are Often Lower In Contrast Than T1 Or T2 Images, Showing Slightly  

Higher Intensity For Gray Matter.
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V. SEGMENTATION RESULTS 
 
 

For each volume, population sizes of 30, 40, and 50 were tested over 30 

generations, and the quality measures Qerr and Terr, the fitness values, and the generated 

strings were stored for each case.  For all trials, only 5% of the feature vectors were used 

to train the maps.  Varying percentages of the feature vectors in increments of 5%, up to 

100%, were tried; in all cases, as the percentage of feature vectors used was increased, 

the quality of the SOFM decreased, which is consistent with the findings in [53].  

Selecting the features randomly had a small impact on the segmentation accuracy when 

all other parameters were fixed.  The worst case observed is shown in Table IV.  For this 

reason, all percentages reported should be considered to have a tolerance of %5.0± .   

 
TABLE IV 

VARIATIONS IN SEGMENTATION ACCURACY FROM USING RANDOM 
SAMPLES.  THE WORST DIFFERENCE OBSERVED WAS 0.45%. 

 
Segmentation 

Accuracy 
Trial 1 94.38 
Trial 2 94.22 
Trial 3 94.27 
Trial 4 94.51 
Trial 5 94.67 
Trial 6 94.64 
Trial 7 94.54 
Trial 8 94.67 
Trial 9 94.45 
Trial 10 94.37 
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A. Simulation Results 

Although the whole volume was processed, the details from only six images are 

described to keep the documentation manageable, while illustrating the variations seen 

across the volume.  As expected, the average fitness values did improve over time.  

Figure 10 shows the average fitness values for one trial of each population size on Model 

A.  Typically, no additional improvement was observed after 18-26 generations, but the 

genetic algorithm was allowed to run for 30 generations to facilitate analysis. 

 
 

FIGURE 10 – Improvement In Average Fitness Values For Simulation Model.  These 
Results Are Consistent With The Theory Presented In Appendix I. 

 
 

The largest Pareto-optimal set observed for any one image contained four strings.  

Consequently, four strings from each image, consisting of the Pareto-optimal set and the 

next highest performers when needed, were selected to generate SOFMs for their 
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respective images.  For each SOFM, the set of feature vectors P were assigned to the 

neuron which was its best matching unit.  Each neuron was then labeled according to the 

majority of feature vectors with which it was associated.  For example, if nine BKG 

feature vectors and one SKN feature vector were assigned to the same neuron, that 

neuron would take the label of BKG.  An example of a U-matrix, which depicts the 

distances between neighboring model vectors as intensity values [57] and its 

corresponding labeled map are shown in Figure 11.   

 
 

FIGURE 11 – Sample U-Matrix And Corresponding Labeled Map.  The U-Matrix 
Depicts The Distances Between Neighboring Model Vectors As Intensity Values.  The 

Labeled Map Shows Which Neurons Represent Which Structures. 
 

The segmentation accuracy was defined as the percentage of feature vectors 

which were correctly classified, as shown in Table V, with the Pareto-optimal set for 
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Models A, C, E, and F highlighted in pale yellow.  These models were included in Table 

V because they produced the strings which resulted in the highest segmentation accuracy. 

 
TABLE V 

A COMPARISON OF ERROR VALUES, FITNESS VALUES, AND 
SEGMENTATION ACCURACY FOR MOST FIT STRINGS  ON SIMULATION 

MODELS A, C, E, AND F. 
 

Features Represented 
in String Qerr Terr Fitness  

Value 
Segmentation 

Accuracy 
  Model A 

1, 5, 8, 18, 19 0.0330 0.0700 0.9485 94.46 
2, 5, 6, 8, 20, 23 0.0580 0.0650 0.9385 85.27 
5, 6, 8, 10, 19, 21, 22 0.0560 0.0950 0.9245 88.99 
2, 5, 8, 18, 20, 21 0.0610 0.1370 0.9010 84.52 

  Model C 
2, 3, 4, 6, 18, 19, 20 0.0610 0.0570 0.9410 92.07 
1, 4, 5, 6, 7, 10, 17, 19 0.0340 0.1110 0.9275 97.88 
1, 6, 7, 10, 17, 19 0.0280 0.1590 0.9065 98.25 
2, 3, 5, 6, 17, 23 0.0740 0.0590 0.9335 91.28 

Model E 
1, 4, 5, 8, 19, 21 0.0420 0.0650 0.9465 96.71 
1, 8, 18, 19, 21 0.0390 0.1020 0.9295 96.52 
1, 4, 5, 10, 19, 21 0.0320 0.1240 0.9220 97.80 
1, 4, 7, 8, 18, 19, 22 0.0290 0.1480 0.9115 96.05 

Model F 
7, 11, 13, 17 0.0330 0.0760 0.9455 98.56 
1, 4, 7, 8, 17, 18, 19, 21, 22 0.0820 0.0670 0.9255 99.20 
1, 5, 12, 21 0.0290 0.2000 0.8855 99.23 
1, 5, 7, 14, 17, 18, 20, 22 0.0540 0.0810 0.9325 98.42 

 
 

Although for many of the trials, high fitness values did result in high classification 

rates, this was not always the case.  For example, with Model A, fitness values as high as 

0.9385 only resulted in 85.27% of the pixels being correctly classified.  The image which 

resulted from this particular string is shown in Figure 12.  Despite the fact that no direct 

correlation between SOFM quality and segmentation accuracy was found, 82% of the 
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strings for all Pareto-optimal sets did result in a segmentation accuracy between 94.01 – 

99.91% for their respective images in the volume. 

 
FIGURE 12 – Example Of Discrepancy Between High Fitness Value And  

Segmentation Accuracy Due To A Loss In Spatial Resolution. 
 

To determine which string would result in the highest segmentation accuracy for 

the volume as a whole, the strings which resulted in the ten highest classification rates, 

were used to generate maps for each image in the volume.  The segmentation results of 

each string on the volume are presented in Table VI, and showed string #5 to result in the 

highest segmentation accuracy. 

The features included in this optimal subset are listed in Table VII.  Using this 

subset of features, the segmentation accuracy for each structure in the brain model was 

calculated, as shown in Table VIII.  The worst errors most often resulted from the SOFM 

incorrectly classifying a right-side structure as its corresponding left-side structure, and 

vice versa.  This error typically occurred on the boundaries of one structure with another. 
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TABLE VI 
SEGMENTATION ACCURACY OF TOP TEN MOST FIT  

STRINGS ON SIMULATION MODEL. 
 

String 
Number 

Features Represented 
in String 

Simulation 
Model 

1 1, 4, 7, 8, 17, 18, 19, 21, 22 97.65 
2 1, 5, 12, 21 96.72 
3 1, 5, 7, 14, 17, 18, 20, 22 96.82 
4 1, 6, 7, 10, 17, 19 97.91 
5 1, 4, 5, 6, 7, 10, 17, 19 98.17 
6 1, 4, 5, 10, 19, 21 97.66 
7 1, 5, 8, 18, 19 96.44 
8 1, 8, 18, 19, 21 95.99 
9 1, 4, 5, 8, 19, 21 95.43 
10 1, 4, 7, 8, 18, 19, 22 97.13 

 
 

TABLE VII 
OPTIMAL FEATURE SUBSET FOR SIMULATION MODEL. 

 
 Feature Feature Class 

x1 Intensity First-order 
x4 Mean Texture 
x5 Contrast Texture 
x6 Homogeneity Texture 
x7 Entropy Texture 
x10 LiLi,, σ = 1.0 Multiscale 
x17 1φ  Moment Invariant 
x19 3φ  Moment Invariant 

 
 
An example of an image segmented using this feature subset is shown in Figure 13.  The 

six original images under consideration and their corresponding segmented images are 

shown in Appendix II. 
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TABLE VIII 
SEGMENTATION ACCURACY FOR EACH STRUCTURE OF  

THE BRAIN MODEL, USING THE  OPTIMAL FEATURE SUBSET. 
 

Brain 
Structure 

Simulation 
Model 

BKG 99.41 
CC 99.36 
FO 96.70 

WM 99.79 
LCN 72.59 
LT 81.81 
LV 49.32 

RCN 87.18 
RT 91.59 
RV 63.30 

SKN 98.52 
GM 98.99 

Total 98.17 
 

Original Image    Segmented Image 

  
 

FIGURE 13 – Example Of Segmented Model Image, Compared To Original.   
 

To test the robustness of the system, the images were degraded with Gaussian 

noise.  The signal-to-ratio (SNR) values were taken to be 10, 20, and 30, as defined by, 





⋅=

 variancenoise
 varianceimagelog10 10SNR . (42)
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An example of the degraded images for Model A is shown in Figure 14.  The 

segmentation accuracy for the degraded models using the optimal feature subset is 

presented in Table IX.  The results for the volume were as anticipated; the system 

performed adequately for smaller additions of noise, but was relatively unacceptable for 

large additions.   

Original Image    SNR = 30 

  
 

SNR = 20     SNR = 10 

  
 

FIGURE 14 – Model Image Degraded With Increasing Levels Of Gaussian Noise. 
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TABLE IX 
SEGMENTATION ACCURACY FOR SIMULATION MODEL 

DEGRADED WITH GAUSSIAN NOISE. 
 

Brain 
Structure 

Volume, 
Original Image

Volume, 
SNR = 30 

Volume, 
SNR = 20 

Volume, 
SNR = 10 

BKG 99.41 99.20 99.90 97.02 
CC 99.36 99.90 74.15 22.70 
FO 96.70 95.51 99.21 43.64 

WM 99.79 99.57 99.62 96.17 
LCN 72.59 43.80 55.53 58.58 
LT 81.81 63.00 24.44 49.86 
LV 49.32 40.07 22.54 92.71 

RCN 87.18 58.27 75.04 26.62 
RT 91.59 69.09 65.56 20.86 
RV 63.30 68.35 22.29 45.77 

SKN 98.52 94.31 94.87 83.29 
GM 98.99 99.97 99.50 97.11 

Total 98.17 96.59 93.73 87.58 
 
 

B. Experimental Results 
 
 The algorithm was then tested on the six MRI data sets.  As with the simulation 

model, the details of only six slices will be presented from each volume.  The areas of 

interest were taken to be white matter (WM), gray matter (GM), and cerebrospinal fluid 

(CSF).  First, the structures which did not fall into one of these three categories, such as 

bone and skin, were manually removed from the images.  The images were then manually 

segmented according to their classification.  An example of a T1 and T2 image cleared of 

the undesirable structures and the manual segmentation are shown in Figure 15.  It should 

be noted that the lack of ground truth values means that the classification accuracy is 

determined by the manual segmentation alone. 
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MR Images With Undesirable Structures Removed 

  
 

Manual Segmentation 

 
  

FIGURE 15 – Example Of Images Cleared Of Undesirable Structures And The Manual 
Segmentation Depicting White Matter, Gray Matter, Cerebrospinal Fluid, And 

Background. 
 
 

As with the simulation model, the average fitness values of the genetic algorithm 

for the MRI data sets did improve over time, as seen by the example given in Figure 16.  

The GA did seem to converge more quickly for the MRI data sets, often within 10 – 20 

generations; however, the GA was allowed for run for 30 generations as before.  

 

WM  =  red 
GM   =  blue 
CSF  =  green 
BKG =  black 



 52

 
FIGURE 16 – Example Of Improvement In Average Fitness Values For MRI Data Set, 

Consistent With Theory Presented In Appendix I. 
 
 
The procedure used to find the most fit strings for the simulation model was 

similarly performed on the MRI data sets.  The segmentation accuracy for the T1, T2, and 

PD strings on their respective volumes is deferred to Appendix III.  The features present 

in the most fit strings for each modality are listed in Table X.  It is interesting to note that 

three of the features, x1, x3, and x7,  are present in the subsets for all three modalities.  

Furthermore, x1 and x7 were also present in the optimal subset found for the simulation 

model.  In all cases, at least one feature from each of the four feature classes is present in 

each subset. 
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TABLE X 
OPTIMAL FEATURE SUBSETS FOR T1, T2, AND PD MRI DATA SETS. 

 
T1 Data Set 

 Feature Feature Class 
x1 Intensity First-order 
x2 Mean First-order 
x3 Variance First-order 
x5 Contrast Texture 
x7 Entropy Texture 
x8 Energy Texture 
x9 LiLi,, σ = 0.5 Multiscale 
x20 4φ  Moment Invariant 
x21 5φ  Moment Invariant 

T2 Data Set 
 Feature Feature Class 

x1 Intensity First-order 
x3 Variance First-order 
x4 Mean Texture 
x7 Entropy Texture 
x13 Lii,, σ = 0.5 Multiscale 
x17 1φ  Moment Invariant 
x22 6φ  Moment Invariant 
x23 7φ  Moment Invariant 

PD Data Set 
 Feature Feature Class 

x1 Intensity First-order 
x2 Mean First-order 
x3 Variance First-order 
x7 Entropy Texture 
x8 Energy Texture 
x9 LiLi,, σ = 0.5 Multiscale 
x13 Lii,, σ = 0.5 Multiscale 
x14 Lii,, σ = 1.0 Multiscale 
x17 1φ  Moment Invariant 
x21 6φ  Moment Invariant 
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Using each optimal feature subset, the segmentation accuracy for their respective 

data sets was calculated, and is shown in Table XI.  For the T1 and T2 data sets, Set #1 

refers to the subject with healthy brain structures, and Set #2 refers to the subject with 

Alzheimer’s disease.  Each of the PD data sets were obtained from subjects with multiple 

sclerosis.  An example of the segmentation of a T1 image is shown in Figure 17, while 

the segmentation for six images from each of the six volumes are displayed in Appendix 

IV. 

TABLE XI 
SEGMENTATION ACCURACY FOR THE T1, T2, AND PD MRI DATA SETS.   

 
 T1 Data Sets T2 Data Sets PD Data Sets 

Tissue Set #1 Set #2 Set #1 Set #2 Set #1 Set #2 
BKG 99.61 99.50 99.58 99.40 99.46 99.50 
GM 84.51 80.81 58.42 57.00 81.70 68.36 
CSF 77.53 74.59 73.22 53.01 80.43 81.42 
WM 92.08 91.54 78.56 82.44 84.99 83.91 
Total 95.94 95.31 91.72 90.54 95.51 95.36 

 
 

Manually Segmented Image   SOFM Segmented Image 

  
 

FIGURE 17 – Example Of A Manually Segmented T1 Image And Its Corresponding 
SOFM Segmentation Using Its Optimal Feature Subset. 
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In terms of overall performance, the T1 and PD data sets resulted in comparably 

acceptable classification rates.  In considering the regions of interest, the T1 data sets 

were better able to classify white matter and gray matter, while the PD data sets were 

more suitable for correctly classifying cerebrospinal fluid.  The results for the T2 data 

sets were less satisfactory, and were outperformed by the T1 and PD data sets in all cases.  

Considering that T2 images show a high contrast between cerebrospinal fluid and white 

and gray matter, the segmentation results for the T2 data set were somewhat 

disappointing.  Taking into account the fact that cerebrospinal fluid, by nature, often 

occupies such a curvilinear and narrow space, these results are not entirely unexpected.  

This fact would also explain why the white matter was more accurately classified than the 

gray matter for all three modalities. 

C. Comparison with Principal Component Analysis 
 

To assess the quality of the feature selection algorithm implemented in this thesis, 

it was compared against using principal component analysis to reduce the feature set.  

Principal component analysis (PCA) is one of the most well known techniques to reduce 

the dimensionality of a data set [58].  This reduction is achieved by transforming the 

original data set to its principal components, ordered such that the first few variables 

retain most of the variation present in all of the original variables. 

Assume that the input vectors are as given previously, 

[ ]Dxxx ",, 21=X . 

The input vectors are transformed using the relation, 

XY A=  

(43)

(44)
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where A is an m x d transformation matrix, dm ≤ .  The rows of A correspond to the m 

largest eigenvalues of the sample autocovariance matrix, 

TXX=∑  

where  represents expectation. 

 To compare the PCA performance with the results achieved by the genetic 

algorithm, the simulation model data set was reduced with m = 4, 5, ... 9.  This particular 

range was selected based on the number of features represented in each string of Table VI 

to compare the two algorithms objectively.  The results for the original model is shown in 

Table XII, and the results for the model degraded with Gaussian noise is given in 

Appendix V.  For the original model, the genetic algorithm outperformed PCA for nearly 

every structure.  For the models degraded with Gaussian noise, however, the PCA was 

more uniform in segmentation accuracy than the GA.   

 
TABLE XII 

PCA SEGMENTATION ACCURACY FOR SIMULATION MODEL. 
 

Original Model Number of Principal Components 
Brain 

Structure GA 4 5 6 7 8 9 

BKG 99.41 96.58 98.49 98.03 98.79 98.54 98.53 
CC 99.36 96.86 95.41 96.48 98.66 97.48 97.82 
FO 96.70 53.99 54.05 55.06 48.89 54.79 95.03 

WM 99.79 95.64 94.07 95.38 97.25 96.62 97.84 
LCN 72.59 55.28 20.81 34.72 67.46 0.04 21.20 
LT 81.81 75.95 13.91 2.98 27.02 69.32 39.53 
LV 49.32 52.08 45.67 26.31 43.87 16.43 70.32 

RCN 87.18 22.03 59.70 47.36 14.14 29.28 68.00 
RT 91.59 47.75 78.25 75.49 57.92 12.78 59.38 
RV 63.30 41.33 35.27 59.68 52.81 64.41 12.30 

SKN 98.52 96.24 95.95 95.64 94.36 94.55 96.88 
GM 98.99 91.46 94.99 93.68 90.92 95.14 94.88 
Total 98.17 91.43 91.37 90.97 91.85 91.40 93.76 

(45)
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Principal component analysis was then applied to the MRI data sets.  As before, 

the number of principal components was selected according to the length of the strings in 

Appendix III.  The segmentation accuracy acquired using this method for the T1, T2 and 

PD MRI data sets, respectively, are tabulated in Appendix VI. 

For the T1 data sets, the GA outperformed PCA with the exception of 

cerebrospinal fluid being more accurately classified by using either eight or nine principal 

components.  The results for the T2 data sets were more diverse.  In all cases, the GA was 

better able to distinguish white matter, but PCA was clearly superior at detecting gray 

matter.  The results for cerebrospinal fluid were more varied; however, the greatest 

accuracy was obtained using either five or eight principal components.  Although the GA 

performed better in terms of overall segmentation accuracy than PCA for the PD data 

sets, the results for the individual tissues were less conclusive.  In classifying gray matter, 

often when one method was superior in the first data set, it was inferior in the second data 

set.  A similar effect was observed for cerebrospinal fluid, although the GA appeared to 

perform slightly better.  With respect to white matter, PCA was the superior method, in 

particular when using nine principal components.  These comparisons are summarized in 

Table XIII. 

 
TABLE XIII 

SUMMARY OF WHICH METHOD PERFORMS THE BEST FOR EACH  
TISSUE TYPE FOR T1, T2, AND PD IMAGES. 

 
Tissue T1 T2 PD 

GM GA PCA, 4 Inconclusive 
CSF PCA, 9 PCA, 5 GA 
WM GA GA PCA, 9 

Overall GA PCA, 9 GA 
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All tests were performed on a PC with an Intel® Celeron™ processor.  The 

average run time for each procedure is shown in Table XIV. 

 
TABLE XIV 

PROCESSING TIMES FOR EACH PROCEDURE. 
 

Procedure Processing Time (sec) 
Calculating the feature pattern 110.43 
GA, population size = 30, one generation 81.02 
GA, population size = 40, one generation 101.25 
GA, population size = 50, one generation 120.09 
PCA 25.61 
Labeling the SOFM 19.56 
Calculating segmentation accuracy 27.22 
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VI. CONCLUSIONS AND RECOMMENDATIONS 
 
 

The segmentation algorithm did successfully find an optimal feature subset which 

resulted in a high segmentation accuracy for both the simulation model, the T1 MRI data 

sets, and the PD MRI data sets.  The results for the T2 MRI data sets were only 

marginally acceptable with respect to correctly distinguishing white matter, gray matter, 

and cerebrospinal fluid. 

In spite of the fact that a large number of strings generated by the genetic 

algorithm based on self-organizing feature map quality did result in high classification 

rates, no direct correlation between map quality and segmentation accuracy was found.  

This fact was most clearly demonstrated by Figure 12 and Table V.  This appeared to be 

largely due to the loss of spatial resolution of the texture measures and the multiscale 

features.  One possibility for increasing the spatial resolution of these features would be 

to calculate the features in a window surrounding each pixel independently, although this 

would significantly increase the computation time in the feature extraction stage.   

It is important to note that relying upon the manual segmentation to determine 

classification accuracy does leave room for error.  It is possible that the algorithm 

correctly distinguished one tissue type from another, but was classified incorrectly if the 

manual segmentation was inaccurate. 

In all cases, the T1 and PD data sets were more useful in distinguishing tissue 

types than the T2 data sets.  Even noting the greater ability of principal component 

analysis over the genetic algorithm at detecting gray matter, and in some cases 
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cerebrospinal fluid, for the T2 data set, the segmentation accuracy achieved for the T1 

and PD data sets was superior in every instance.  For the T1 data set, using the genetic 

algorithm to obtain an optimal feature subset did prove to result in higher classification 

rates than using principal component analysis, pointing to the validity of this method.   

It should also be noted that this algorithm would be inappropriate for any type of 

real-time processing application.  Depending on the size of the population used, each run 

of the GA typically took between 30-50 minutes, and the trained SOFMs required 

approximately 27.22 seconds to segment and label each image.  However, for the purpose 

of diagnosing the presence of Alzheimer’s disease before the onset of physical symptoms 

or to study the cause of the degeneration of the brain, these run times might be adequate.  
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APPENDIX  I 
 
 

The search heuristics of a genetic algorithm are based upon Holland’s Schema 

Theorem [48].  Without loss of generality, only the binary representation will be 

considered here.  A schema H is defined as a template for describing a subset of strings 

with similar sections.  The template consists of 0’s, 1’s, and “don’t care” symbols, #’s.  

For example, the schema 0#0 matches two strings, 000 and 010.  Thus, the total number 

of schema present in a binary string of length L is 3L.  The order of a schema )(HO  is 

equal to the number of fixed positions (the number of 0’s and 1’s) in the schema.  The 

defining length )(Hd  is the distance between the first and last specific string position.  

Considering the schema 1#00#0#, 

4)#0#00#1( =O , and 
 

5)#0#00#1( =d  
 

(the first specific string position is 1, the last specific string position is 6, so 

516)( =−=Hd ). 

Assume at time t there are m instances of a schema H in the population )(tA ; these 

m instances are denoted ),( tHm .  If a string Ai is selected with probability, 

∑
=

i

i
i f

fp  

 
during reproduction, then for a nonoverlapping population of size n, where )(Hf is the 

average fitness of the strings representing schema H at time t, the number of 

representatives of the schema H expected at time t + 1 is, 

 

(46)

(47)

(48)
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∑
⋅⋅=+

if
HfntHmtHm )(),()1,( . 

 
Since the average fitness of the population )(tA may be denoted, 
 

n
f

f i∑=  

 
then, 
 

f
HftHmtHm )(),()1,( =+ . 

 
Thus, schemata with fitness values higher than the population average will receive an 
increasing number of samples in the next generation [48]. 

A schema H survives crossover with probability, 
 

)1(
)(1

−
−=

L
Hdpsc  

 
since the schema is likely to be disrupted whenever the crossover site falls within the 

defining length from the L – 1 possible choices.  Thus, if crossover is performed with 

probability pc, then the probability of survival may be written as, 

 

)1(
)(1

−
−≥

l
Hdpp csc  . 

 
The schema survival probability when considering mutation with probability pm , is 

)()1( HO
msm pp −= . 

 
For values of pm << 1, the survival probability may be approximated [48] by  
 

msm pHOp ⋅−= )(1  
 
With the combined effect of reproduction, crossover, and mutation, a schema H is 

expected to receive 

 

(49)

(52)

(51)

(50)

(53)

(54)

(55)
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copies in the next generation.  As such, particularly good schemata will propagate in 
future generations, thereby increasing the average fitness over time.  In this way, the 
genetic algorithm is a global technique which shifts attention to the productive regions in 
the search space. 
 
 

(56)
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APPENDIX  II 
 
 

Model A 
Original Image    Segmented Image 

  
 
 
 

Model B 
Original Image    Segmented Image 

  
 
 

FIGURE 18 – Segmented Image Compared To Original Image For Models A And B.
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Model C 
Original Image    Segmented Image 

  
 
 
 

Model D 
Original Image    Segmented Image 

  
 
 

FIGURE 19 – Segmented Image Compared To Original Image For Models C And D.



 71

 
 
 

Model E 
Original Image    Segmented Image 

  
 
 
 

Model F 
Original Image    Segmented Image 

  
 
 

FIGURE 20 – Segmented Image Compared To Original Image For Models E And F. 
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APPENDIX III 
 
 

TABLE XV 
SEGMENTATION ACCURACY OF TOP TEN MOST FIT STRINGS FOR T1 

IMAGES.  STRING #7 PERFORMS THE BEST ACROSS ALL IMAGES. 
 

String 
Number 

Features Represented 
in String 

Subject With 
Healthy 

Structures 

Subject With 
Alzheimer’s 

Disease 
1 3, 5, 6, 7, 9, 21 94.47 94.26 
2 3, 5, 8, 10, 17, 18, 20, 21, 22, 23 94.05 93.89 
3 3, 6, 7, 9, 13, 21 94.91 94.51 
4 3, 4, 5, 6, 8, 13, 14, 17, 19, 23 95.08 94.35 
5 1, 3, 5, 8, 14, 20, 21, 23 94.83 94.84 
6 1, 3, 4, 6, 14, 20, 21, 23 94.81 94.50 
7 1, 2, 3, 5, 7, 8, 9, 20, 21 95.94 95.31 
8 1, 3, 4, 5, 6, 14, 23 95.06 95.05 
9 3, 6, 7, 8, 9, 14, 20, 21, 23 94.45 94.45 
10 1, 3, 4, 5, 6, 8, 14, 21, 23 95.33 94.93 

 
 

TABLE XVI 
SEGMENTATION ACCURACY OF TOP TEN MOST FIT STRINGS FOR T2 

IMAGES.  STRING #10 PERFORMS THE BEST ACROSS ALL IMAGES. 
 

String 
Number 

Features Represented 
in String 

Subject With 
Healthy 

Structures 

Subject With 
Alzheimer’s 

Disease 
1 1, 4, 7, 13 89.84 89.35 
2 2, 3, 4, 5, 6, 17 91.07 90.06 
3 3, 8, 9, 13, 17, 20, 23 90.71 89.96 
4 3, 8, 9, 13, 18, 20, 23 90.86 90.13 
5 1, 4, 7, 10, 13, 17 90.57 88.86 
6 1, 4, 5, 6, 7, 8, 10, 13, 17 90.30 90.15 
7 1, 4, 6, 7, 8, 10, 13, 17 90.33 90.01 
8 2, 3, 4, 5, 13, 19 90.67 89.65 
9 3, 6, 7, 10, 13, 19 90.94 90.09 
10 1, 3, 4, 7, 13, 17, 22, 23 91.72 90.54 
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TABLE XVII 
SEGMENTATION ACCURACY OF TOP TEN MOST FIT STRINGS FOR PD 

IMAGES.  STRING #3 PERFORMS THE BEST ACROSS ALL IMAGES. 
 

String 
Number 

Features Represented 
in String Set #1 Set #2 

1 2, 6, 10, 12, 13, 14, 19, 21, 22, 23 94.32 94.81 
2 4, 6, 8, 9, 13, 14, 17, 19 93.56 92.72 
3 1, 2, 3, 7, 8, 9, 13, 14, 17, 21 95.51 95.36 
4 1, 2, 3, 14, 18, 19, 20, 23 94.01 94.88 
5 1, 3, 18, 21, 22, 23 93.84 93.53 
6 4, 5, 10, 14, 17, 18, 22 95.28 94.33 
7 2, 3, 4, 7, 8, 9, 18, 20, 23 94.43 95.01 
8 1, 3, 14, 18, 19, 20, 21, 22, 23 94.55 94.35 
9 4, 6, 7, 8, 10, 14, 17, 20 95.12 94.24 
10 4, 7, 8, 10, 13, 14, 20, 23 94.17 93.48 
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APPENDIX IV 
 
 

Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 21 – T1 Segmentation Results For Subject With Healthy Brain Structures, 
Slice 23. 

 



 75

 
 
 

Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 

  
FIGURE 22 – T1 Segmentation Results For Subject With Healthy Brain Structures, 

Slice 26.
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Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
  

 
FIGURE 23 – T1 Segmentation Results For Subject With Healthy Brain Structures, 

Slice 29.
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Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 

  
FIGURE 24 – T1 Segmentation Results For Subject With Healthy Brain Structures, 

Slice 32.
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Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 

  
FIGURE 25 – T1 Segmentation Results For Subject With Healthy Brain Structures, 

Slice 35. 
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Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 

  
FIGURE 26 – T1 Segmentation Results For Subject With Healthy Brain Structures, 

Slice 38. 
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Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
  

 
FIGURE 27 – T1 Segmentation Results For Subject With Alzheimer’s Disease,  

Slice 23. 
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Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
  

 
FIGURE 28 – T1 Segmentation Results For Subject With Alzheimer’s Disease,  

Slice 26. 
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Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 

  
FIGURE 29 – T1 Segmentation Results For Subject With Alzheimer’s Disease,  

Slice 29. 
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Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 

  
FIGURE 30 – T1 Segmentation Results For Subject With Alzheimer’s Disease,  

Slice 32. 
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Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 

  
FIGURE 31 – T1 Segmentation Results For Subject With Alzheimer’s Disease,  

Slice 35. 
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Original T1 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 

  
FIGURE 32 – T1 Segmentation Results For Subject With Alzheimer’s Disease,  

Slice 38. 
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 33 – T2 Segmentation Results For Subject With Healthy Brain Structures, 
Slice 23. 
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 34 – T2 Segmentation Results For Subject With Healthy Brain Structures, 
Slice 26.
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 35 – T2 Segmentation Results For Subject With Healthy Brain Structures, 
Slice 29.
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 36 – T2 Segmentation Results For Subject With Healthy Brain Structures, 
Slice 32. 
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 37 – T2 Segmentation Results For Subject With Healthy Brain Structures, 
Slice 35.
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 38 – T2 Segmentation Results For Subject With Healthy Brain Structures, 
Slice 38. 
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 39 – T2 Segmentation Results For Subject With Alzheimer’s Disease,  
Slice 23.
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 40 – T2 Segmentation Results For Subject With Alzheimer’s Disease,  
Slice 26.
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 41 – T2 Segmentation Results For Subject With Alzheimer’s Disease,  
Slice 29.
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 42 – T2 Segmentation Results For Subject With Alzheimer’s Disease,  
Slice 32.
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 43 – T2 Segmentation Results For Subject With Alzheimer’s Disease,  
Slice 35.
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Original T2 MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 44 – T2 Segmentation Results For Subject With Alzheimer’s Disease,  
Slice 38. 

 
 
 
 



 98

 
 
 

Original PD MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 45 – PD Segmentation Results For Subject #1 With Multiple Sclerosis,  
Slice 8. 
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Original PD MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 46 – PD Segmentation Results For Subject #1 With Multiple Sclerosis,  
Slice 10. 
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Original PD MR Image 

 
 

 
Manually Segmented Image   SOFM Segmented Image 

  
 

  
FIGURE 47 – PD Segmentation Results For Subject #1 With Multiple Sclerosis,  

Slice 12. 
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Original PD MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 48 – PD Segmentation Results For Subject #1 With Multiple Sclerosis,  
Slice 14. 
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Original PD MR Image 

 
 

 
Manually Segmented Image   SOFM Segmented Image 

  
  

 
FIGURE 49 – PD Segmentation Results For Subject #1 With Multiple Sclerosis,  

Slice 15. 
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Original PD MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 50 – PD Segmentation Results For Subject #1 With Multiple Sclerosis,  
Slice 16. 
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Original PD MR Image 

 
 

 
Manually Segmented Image   SOFM Segmented Image 

  
  

 
FIGURE 51 – PD Segmentation Results For Subject #2 With Multiple Sclerosis,  

Slice 8. 
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Original PD MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 52 – PD Segmentation Results For Subject #2 With Multiple Sclerosis,  
Slice 10. 
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Original PD MR Image 

 
 

 
Manually Segmented Image   SOFM Segmented Image 

  
  

 
FIGURE 53 – PD Segmentation Results For Subject #2 With Multiple Sclerosis,  

Slice 12. 
 
 
 



 107

 
 
 

Original PD MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 54 – PD Segmentation Results For Subject #2 With Multiple Sclerosis,  
Slice 14. 
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Original PD MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 

  
FIGURE 55 – PD Segmentation Results For Subject #2 With Multiple Sclerosis,  

Slice 15. 
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Original PD MR Image 

 
 
 

Manually Segmented Image   SOFM Segmented Image 

  
 
 

FIGURE 56 – PD Segmentation Results For Subject #2 With Multiple Sclerosis,  
Slice 16. 
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APPENDIX  V 
 

TABLE XVIII 
SEGMENTATION ACCURACY OF ORIGINAL MODEL STRUCTURES, 

COMPARING GA WITH PCA. 
 

Original Model Number of Principal Components 
Brain 

Structure GA 4 5 6 7 8 9 

BKG 99.41 96.58 98.49 98.03 98.79 98.54 98.53 
CC 99.36 96.86 95.41 96.48 98.66 97.48 97.82 
FO 96.70 53.99 54.05 55.06 48.89 54.79 95.03 

WM 99.79 95.64 94.07 95.38 97.25 96.62 97.84 
LCN 72.59 55.28 20.81 34.72 67.46 10.04 21.20 
LT 81.81 75.95 13.91 2.98 27.02 69.32 39.53 
LV 49.32 52.08 45.67 26.31 43.87 16.43 70.32 

RCN 87.18 22.03 59.70 47.36 14.14 29.28 68.00 
RT 91.59 47.75 78.25 75.49 57.92 12.78 59.38 
RV 63.30 41.33 35.27 59.68 52.81 64.41 12.30 

SKN 98.52 96.24 95.95 95.64 94.36 94.55 96.88 
GM 98.99 91.46 94.99 93.68 90.92 95.14 94.88 
Total 98.17 91.43 91.37 90.97 91.85 91.40 93.76 

 
TABLE XIX 

SEGMENTATION ACCURACY OF MODEL STRUCTURES DEGRADED WITH 
GAUSSIAN NOISE, SNR = 30, COMPARING GA WITH PCA. 

 
Model ,  

SNR = 30 Number of Principal Components 

Brain 
Structure GA 4 5 6 7 8 9 

BKG 99.20 96.81 97.37 97.98 98.60 98.08 99.25 
CC 99.90 99.31 96.99 98.74 98.25 98.10 98.04 
FO 95.51 51.62 41.99 54.81 55.14 72.45 56.60 

WM 99.57 96.36 94.89 96.32 94.92 95.99 95.98 
LCN 43.80 31.60 68.31 48.13 64.59 29.65 51.45 
LT 63.00 75.06 14.78 39.08 68.92 49.69 30.24 
LV 40.07 46.09 56.89 41.02 24.43 37.82 66.06 

RCN 58.27 81.60 46.03 64.86 43.15 64.83 67.32 
RT 69.09 28.38 65.94 45.08 17.95 46.56 62.86 
RV 68.35 52.30 41.01 41.55 69.30 42.50 26.11 

SKN 94.31 92.98 93.72 92.78 93.18 94.70 94.87 
GM 99.97 91.56 92.93 93.87 92.78 90.85 92.49 
Total 96.59 91.84 90.97 91.72 92.50 91.69 92.02 
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TABLE XX 
SEGMENTATION ACCURACY OF MODEL STRUCTURES DEGRADED WITH 

GAUSSIAN NOISE, SNR = 20, COMPARING GA WITH PCA. 

 
Model,  

SNR = 20 Number of Principal Components 

Brain 
Structure GA 4 5 6 7 8 9 

BKG 99.90 93.76 95.41 92.37 96.16 93.11 93.36 
CC 74.15 94.14 95.74 93.90 97.22 94.61 96.81 
FO 99.21 47.02 37.84 51.82 52.03 69.31 50.56 

WM 99.62 92.76 93.06 93.41 90.10 94.81 92.36 
LCN 55.53 18.19 44.70 45.76 59.71 28.58 47.38 
LT 24.44 70.08 9.818 38.77 62.87 45.24 30.06 
LV 22.54 42.23 53.95 36.12 21.78 33.25 64.92 

RCN 75.04 76.69 40.62 60.90 37.79 58.65 60.78 
RT 65.56 23.54 62.09 42.10 11.94 44.19 59.16 
RV 22.29 50.35 39.19 40.23 63.78 18.09 24.39 

SKN 94.87 90.39 86.87 87.95 92.34 90.18 91.14 
GM 99.50 86.72 89.93 93.76 90.45 87.13 88.00 
Total 93.73 86.89 88.52 90.68 90.45 88.31 90.10 

 
TABLE XXI 

SEGMENTATION ACCURACY OF MODEL STRUCTURES DEGRADED WITH 
GAUSSIAN NOISE, SNR = 10, COMPARING GA WITH PCA. 

 
Model,  

SNR = 10 Number of Principal Components 

Brain 
Structure GA 4 5 6 7 8 9 

BKG 97.02 90.00 80.90 73.63 89.67 95.27 75.47 
CC 22.70 65.99 82.23 44.67 75.32 82.77 59.19 
FO 43.64 33.43 36.34 32.67 40.89 59.52 41.66 

WM 96.17 73.11 94.21 88.05 82.37 73.81 85.24 
LCN 58.58 5.21 26.51 33.84 28.54 16.33 2.95 
LT 49.86 67.68 11.13 26.22 48.78 44.86 21.34 
LV 92.71 0.13 9.83 19.57 9.02 15.39 17.89 

RCN 26.62 57.66 24.25 52.27 36.66 48.32 51.19 
RT 20.86 24.47 46.48 35.35 9.80 43.06 50.53 
RV 45.77 0.06 30.77 28.42 4.22 35.46 2.26 

SKN 83.29 86.98 82.36 71.05 74.65 83.27 79.27 
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GM 97.11 76.50 85.50 76.55 72.44 74.84 79.11 
Total 87.58 75.61 77.32 80.15 71.68 79.67 75.57 
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APPENDIX  VI 
 
 

TABLE XXII 

PCA SEGMENTATION ACCURACY FOR THE T1 MRI DATA SETS OF THE 
SUBJECT WITH HEALTHY STRUCTURES AND THE SUBJECT WITH 

ALZHEIMER’S DISEASE. 
 

Subject With Healthy Structures 

T1 Volume Number of Principal Components 
Tissue GA 6 7 8 9 10 
BKG 99.61 99.54 99.08 99.62 99.56 99.50 
GM 84.51 75.32 83.29 75.38 74.34 77.89 
CSF 77.53 71.56 72.67 77.60 78.93 76.73 
WM 92.08 90.01 83.34 89.33 89.35 89.46 
Total 95.94 94.60 94.68 95.01 94.93 95.13 

Subject With Alzheimer’s Disease 

T1 Volume Number of Principal Components 
Tissue GA 6 7 8 9 10 
BKG 99.50 99.52 98.75 99.24 99.31 99.11 
GM 80.81 73.33 80.09 74.02 73.30 76.69 
CSF 74.59 70.44 72.30 76.28 77.06 75.85 
WM 91.54 88.41 81.67 88.90 88.59 87.64 
Total 95.31 94.57 93.99 93.70 94.87 93.76 
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TABLE XXIII 

PCA SEGMENTATION ACCURACY FOR THE T2 MRI DATA SETS OF THE 
SUBJECT WITH HEALTHY STRUCTURES AND THE SUBJECT WITH 

ALZHEIMER’S DISEASE. 
 

Subject With Healthy Structures 

T2 Volume Number of Principal Components 
Tissue GA 4 5 6 7 8 9 
BKG 99.58 99.18 99.27 99.40 99.55 98.95 99.63 
GM 58.42 69.52 61.69 66.15 68.00 63.03 69.41 
CSF 73.22 59.42 78.42 68.66 68.17 76.37 74.36 
WM 78.56 66.88 71.82 75.49 75.10 77.59 70.46 
Total 91.72 91.35 92.16 92.35 92.60 92.32 92.87 

Subject With Alzheimer’s Disease 

T2 Volume Number of Principal Components 
Tissue GA 4 5 6 7 8 9 
BKG 99.40 99.16 99.07 98.95 99.12 98.46 99.51 
GM 57.00 68.82 61.00 66.26 67.30 62.78 68.22 
CSF 53.01 58.68 78.24 67.17 68.11 75.07 73.36 
WM 82.44 66.42 70.87 74.40 73.83 77.64 69.69 
Total 90.54 90.40 92.19 91.38 92.59 91.03 92.77 
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TABLE XXIV 

PCA SEGMENTATION ACCURACY FOR THE PD MRI DATA SETS OF  
SUBJECT #1 AND SUBJECT #2 WITH MULTIPLE SCLEROSIS. 

 
Subject #1 With Multiple Sclerosis 

PD Volume Number of Principal Components 
Tissue GA 6 7 8 9 10 
BKG 99.46 99.01 98.92 99.17 99.45 99.40 
GM 81.70 77.81 77.33 82.52 80.19 80.68 
CSF 80.43 77.78 80.45 77.28 80.30 80.18 
WM 84.99 83.96 84.62 83.89 86.46 83.20 
Total 95.51 93.60 93.90 94.27 94.65 94.28 

Subject #2 With Multiple Sclerosis 

PD Volume Number of Principal Components 
Tissue GA 6 7 8 9 10 
BKG 99.50 98.88 99.46 99.37 99.28 99.48 
GM 68.36 61.84 71.90 67.07 70.31 65.94 
CSF 81.42 73.38 74.91 68.74 76.37 75.00 
WM 83.91 93.74 88.76 89.77 88.54 92.39 
Total 95.36 94.50 95.07 94.68 94.92 95.17 
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