
Chapter 2

Evolving Artificial Creatures

2.1 Introduction

As we have seen from the brief introduction given in Chapter 1, the artificial

evolution of embodied and situated creatures can be classified into two groups: (1)

the evolution of virtual creatures in simulation, and (2) the evolution of real physical

robots. Over the last decade, work on evolving robots has become a mainstream

effort in robotics and the field has come to be known as evolutionary robotics (Nolfi

and Floreano 2000). On the other hand, the evolution of virtual abstract creatures

in simulation has not reached the level of maturity achieved by its physical coun-

terpart. As such, there is no commonly agreed upon term that refers to this latter

type of work. Some of the keywords used to describe the evolution of virtual ab-

stract creatures in simulation include virtual embodied evolution (Bongard and Paul

2000), virtual creature evolution (Komosinski and Rotaru-Varga 2001), body-brain

co-evolution (Hornby and Pollack 2002) and evolution of morphology and behavior

(Taylor 2002). In this thesis, we will use the term evolution of morphology and mind

to refer to this class of work. As explained earlier in Section 1.1, the word mind

here is used to refer to the ANN that acts as the artificial creature’s controller.

It should be noted however that there is no strict delineation between the

two fields of physical and simulated evolution of artificial creatures. As we will see

later in this chapter, a significant proportion of the work in evolutionary robotics
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does actually involve simulation of real robots to reduce the steep time requirements

when conducting evolution on real physical robots (Mataric and Cliff 1996). A se-

ries of studies on “minimal simulations” has shown that if the simulation faithfully

captures the robot’s operation in its environment including the presence of noise

in sensors and motors, then evolved controllers in simulation can be successfully

transferred to real world robots (Jakobi, Husbands, and Harvey 1995; Jakobi 1997b;

Jakobi 1997a; Jakobi 1998). Additionally, some of the highly abstract creatures

evolved in simulation, which are far from the design or workings of any real-life

robots, have actually been literally “fleshed out” to become tangible, physical man-

ifestations of the real world (Lipson and Pollack 2000; Hornby, Lipson, and Pollack

2001).

This chapter begins with an overview of the importance of embodied and

situated evolution. The relevant literature concerning the evolution of real physical

robots is then reviewed, followed by a review of the evolution of morphology and

mind in simulated artifacts. Figure 2.1 in conjunction with Table 2.1 provides a

road-map to the literature surveyed in this chapter on the evolution of different

types of artificial creatures. The final level of categorization in Figure 2.1 have

been assigned numerical tags of which the corresponding entries in Table 2.1 list the

details of the research work in that grouping.
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Ref. Year Authors
1.1 1996 Eggenberger

1997 Lund and Hallam
1998 Floreano and Mondada

Floreano and Urzelai
Husbands, Smith, Jakobi, and O’Shea

1999 Nolfi and Floreano
2000 Floreano and Urzelai
2001 Floreano and Mattiussi

Floreano, Nolfi, and Mondada
Floreano and Urzelai
Hulse, Lara, Pasemann, and Steinmetz
Husbands, Philippides, Smith, and O’Shea
Pasemann, Steinmetz, Hulse, and Lara (a)
Pasemann, Steinmetz, Hulse, and Lara (b)
Lara, Hulse, and Pasemann
Smith, Husbands, and O’Shea (a)
Smith, Husbands, and O’Shea (b)

2002 Eggenberger, Gomez, and Pfeifer
Floreano, Schoeni, Caprari, and Blynel
Nolfi
Philippides, Husbands, Smith, and O’Shea
Smith, Husbands, Philippides, and O’Shea
Smith, Philippides, Husbands, and O’Shea
Watson, Ficici, and Pollack

1.2 1995 Thompson
1996 Keymeulen, Durantez, Konaka, Kuniyoshi, and Higuchi
1997 Thompson
1998 Keymeulen, Iwata, Konaka, Suzuki, Kuniyoshi, and Higuchi

1.3 1996 Nordin and Banzhaf
2.1 1997 Harvey, Husbands, Cliff, Thompson, and Jakobi
2.2 1997 Lund, Hallam, and Lee
2.3 1996 Lee, Hallam, and Lund
3.1 1992 Beer and Gallagher

1996 Gallagher, Beer, Espenschied, and Quinn
1997 Gruau
1998 Jakobi

Kodjabachian and Meyer (a)
Kodjabachian and Meyer (b)

1999 Reeve
2001 Fujii, Ishiguro, Aoki, and Eggenberger

Otsu, Ishiguro, Fujii, Aoki, and Eggenberger
Paul and Bongard

3.2 2001 Reil and Massey
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Ref. Year Authors
2002 Reil and Husbands

3.3 1998 Gomi and Ide
1999 Hornby, Fujita, Takamura, Yamamoto, and Hanagata
2000 Hornby, Takamura, Yokono, Hanagata, Yamamoto, and Fujita

4.1 2001 Bongard and Paul
4.2 1997 Arnold
5.1 1993 Cliff, Harvey, and Husbands

1994 Dellaert and Beer
1994 Harvey, Husbands, and Cliff
1996 Cliff and Miller
1997 Husbands, Harvey, Jakobi, Thompson, and Cliff
1999 Lichtensteiger and Eggenberger
2000 Lipson and Pollack

5.2 1999 Dittrich, Skusa, Banzhaf, and Kantschik
6.1 1998 Ijspeert, Hallam, and Willshaw

1999 Ijspeert
Ijspeert, Hallam, and Willshaw
Ijspeert and Kodjabachian

2001 Ijspeert
2002 Bongard (a)
2002 Bongard and Pfeifer

6.2 2000 Ijspeert
Ijspeert and Arbib

7.1 2002 Mandik
7.2 1997 Gritz and Hahn
8.1 1994 Sims (a)

Sims (b)
1999 Komosinski and Ulatowski
2000 Bongard and Paul

Komosinski
Ray

2001 Bongard and Pfeifer
Hornby and Pollack (a)
Komosinski, Koczyk, and Kubiak
Komosinski and Kubiak
Komosinski and Rotaru-Varga
Taylor and Massey

2002 Bongard (b)
Hornby and Pollack

8.2 2001 Hornby, Lipson, and Pollack
Hornby and Pollack (b)

8.3 1997 Eggenberger

Table 2.1: Summary of literature survey on evolution of artificial creatures. Num-
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bered references refer to the numerical tags assigned in Figure 2.1.

2.2 Situatedness and Embodiment

The importance of embedding the study of evolving artificial creatures

within the twin principles of situatedness and embodiment is perhaps best exempli-

fied by how natural evolution occurs in real biological organisms. Natural creatures

such as animals and insects have bodies and are situated in a physical environ-

ment. Their skills and behaviors are developed autonomously through the intimate

interplay with their environment. As such, in order to create artificial creatures

that might possess some of these novel properties exhibited by real creatures, such

systems must be built based on the principles of situatedness and embodiment.

This view of intelligence as an emergent phenomenon of embodied and

situated artifacts is regarded by many researchers to be the foundation for success-

ful design and implementation of artificial agents. On embodiment, Varela (1995)

pointed out that

“Cognition depends on the kinds of experience that come from having a

body with various sensorimotor capacities.” (p.15),

while Brooks (1995) stressed that

“The robots have bodies and experience the world directly — their ac-

tions are part of a dynamic with the world and have immediate feedback

on their own sensations.” (p.29),

and Arkin (1998) stated that

“A robot has a physical presence (a body). This spatial reality has

consequences in its dynamic interactions with the world . . . ” (p.26).

Following on to situatedness, Varela (1995) explained that

“The individual sensorimotor capacities are themselves embedded in a

more encompassing biological and cultural context.” (p.15),
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while Brooks (1995) highlighted that

“. . . robots are situated in the world — they do not deal with abstract

descriptions, but with the here and now of the world directly influencing

the behavior of the system.” (p.29),

and Arkin (1998) stated that

“The robot is an entity situated and surrounded by the real world. It

does not operate upon abstract representations of reality, but rather

reality itself.” (p.26).

In Dautenhahn’s work with socially intelligent robots (Dautenhahn 1996;

Dautenhahn 1999), the importance of embodiment was discussed at length in design-

ing reactive cognitive architectures in physical robots and other artificially intelligent

agents that can exist in simulation. Dautenhahn (1996) highlighted the fact that

“. . . there is much evidence to support the assumption that cognitive

capabilities are only possible through the interaction of body and mind,

i.e. that the body is not simply used by the mind, but that there is

a co-development and mutual shaping of cognitive abilities on the one

hand and bodily skills and experiences on the other hand. The body

is not a fixed and pregiven ‘actuator device’, but it is a dynamic and

ontogenetically evolving entity.” (p.27).

Furthermore, Dautenhahn (1996) argued that the study of embodied and situated

artifacts will play a significant role in bridging the gap between phenomenologi-

cal understanding and the computation-theoretic approaches normally adopted in

cognitive science, artificial intelligence and artificial life studies.

Mataric (1997) addressed the issue of how physical embodiment is related

to cognition and reviewed both biological and artificial studies that have endeav-

ored to answer this question. It was argued that artificial systems are preferable

over biological systems as although biological data are abundant, they are often dis-

connected and incomplete due to the restrictions that apply when working with real
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rather than artificial life. On the other hand, the use of artificial systems allows the

researcher complete freedom to experiment with whatever aspects of embodiment

and cognition that are of interest, in particular ablation of neural pathways, am-

putation of limbs and/or other forms of disablement of sensory-motor capabilities,

which are central to the question of the role of embodiment in higher-level cognition.

In the author’s own study, artificial mobile agents were used to answer a number

of key questions relating to social group behavior as well as imitative behavior, and

how these behaviors are in turn related to embodiment and cognition.

Nolfi and Floreano (2002) importantly pointed out that for an external

observer, designing such situated and embodied creatures capable of autonomously

developing the desired behavior through dynamical interactions with their environ-

ments is a very complex task. They further explained that there were two ways in

which this can be achieved: (1) by painstakingly recreating the artificial creature

through careful mimicking of natural organisms, or (2) by employing an artificial

evolutionary process that allows for self-organization to occur automatically. As

such, this makes the evolution of embodied and situated creatures a prime candi-

date for evolutionary computation techniques.

2.3 Evolutionary Robotics

Evolutionary robotics is defined to be the synthesis of autonomous robots

using artificial evolutionary methods (Nolfi and Floreano 2000). An early review

of this field of research is given by Mataric and Cliff (1996) where the majority of

studies focused mainly on the evolution of control structures only. A more recent

overview highlights the move of evolutionary robotics into evolving both the control

and morphology of robots where the interplay between brain and body is considered

to be a crucial factor in the successful synthesis of autonomous robots (Nolfi and

Floreano 2002). A thorough treatment of the field can be found in the seminal

textbook written by Nolfi and Floreano (2000) on this subject.

As pointed out by Harvey (1997), the design of controllers for robots is
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a complex task not suited to human divide-and-conquer design strategies. There

are 3 major problems: (1) it is not obvious how the controller system should be

decomposed, (2) interactions are not limited to direct connecting links but are also

mediated through the environment, and (3) interactions between sub-parts grows

exponentially as system complexity increases. Thus, evolutionary approaches to

controller design are desirable, where the only benchmark is the overall behavior

that should be achieved by the system.

However, Ronald and Sipper (2001) recently pointed out that emergence

stemming from the use of biologically-inspired solutions in engineering problems may

be problematic because unexpected and sometimes unwanted results or behaviors

might arise. Using the so-called emergence test, it was claimed that evolutionary

robotics exhibited mild emergence where the degree of surprise is limited to well-

defined boundaries (unsurprising surprise). On the other hand, traditional hard-

wired engineering solutions exhibited no surprise (unsurprising) while artificial life

exhibits a very high degree of surprise (surprising surprise). Nonetheless, it was

surmised that emergence in engineering solutions that draw on inspirations from

nature such as evolutionary robotics and the related reliability issues are unavoidable

consequences if the desire is to design smart, adaptive and evolvable machines. In

general, evolutionary robotics can be grouped into three main categories, those

involving the evolution of (1) wheeled, (2) legged, and (3) abstract robots.

2.3.1 Wheeled Robots

A hybrid genetic programming (GP)/genetic algorithm (GA) methodology

was used to evolve both the controller and parameters of a wheeled robot’s mor-

phology in simulation (Lee, Hallam, and Lund 1996). The controller consisting of a

tree-like program was evolved using the GP part of the system while morphological

parameters such as the robot’s body size, wheel radius and wheel base size encoded

in a linear string of real numbers were evolved using the GA part of the system.

Individuals were assessed for obstacle avoidance behaviors using a fitness function

that combined multiple terms such as distance from obstacles, forward speed and



CHAPTER 2. EVOLVING ARTIFICIAL CREATURES 21

rotating speed into a single objective. It was claimed to be the first study which co-

evolved both the controller and morphology of robots and concluded that because

the evolved controller only functioned within the co-evolved body, the evolution

of the body component played a significant role in the success of the evolutionary

process. An island-GA model was used to maintain genetic diversity during the

evolutionary process. In a related study using simulations, Khepera wheeled robots

were shown to require only simple perceptron controllers that directly connected

sensors to motors for evolving behaviors such as exploration and homing (Lund

and Hallam 1997). It was claimed that the robot’s perception of its environment’s

geometries allowed time-related components to be encoded without requiring any

recurrent connections in the controller. GP alone has also been used to evolve con-

trollers for Khepera robots for obstacle avoidance and object tracking behaviors

utilizing a combination of simulated and real-world testing of evolved controllers

(Nordin and Banzhaf 1996).

The Species Adaptation Genetic Algorithm (SAGA) algorithm was used

to evolve both the controller and visual morphology parameters for simple naviga-

tional tasks in a two-wheeled mobile autonomous robot (Harvey, Husbands, Cliff,

Thompson, and Jakobi 1997). The desired behavior was evolved within 50–100 gen-

erations using 40–60 individuals that were evaluated using a simple single-objective

distance-based fitness function. SAGA allows for increases in length to genotypes

and hence it was argued that it permitted incremental evolution to occur during the

evolutionary process. Conversely, Eggenberger (1996) reported the use of biological

cell differentiation techniques in order to reduce the length of the genotype encoding

when evolving neural network controllers for Khepera robots in simulation. It was

claimed that using such a developmental method, the genome need not necessarily

increase in length whenever the number of neurons increased since no specific data

relating to the presence or otherwise of neurons need to be stored in the genome,

which will now be specified as part of the cell differentiation process rather than

being directly encoded for in the genome. This cell differentiation system has sub-

sequently been used to evolve only the morphologies of static 3D virtual organisms
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(Eggenberger 1997) and more recently to grow the connectivity of a neural network

for controlling a foveating retina of a real physical robot (Eggenberger, Gomez, and

Pfeifer 2002).

Related work with wheeled robots have also shown promising results in

robustness and the ability to cope with changing environments by evolving plas-

tic individuals that are able to adapt both through evolution and lifetime learning

(Floreano and Mondada 1998; Floreano and Urzelai 1998; Nolfi and Floreano 1999;

Floreano and Urzelai 2000; Floreano and Urzelai 2001). A number of different reac-

tive navigation behaviors were generated using evaluation functions that typically

included different terms for rewarding speed, wall avoidance and straight-line mo-

tion combined into a single objective. Instead of evolving the synaptic weights, the

learning rules governing the behavior of individual synapses were evolved when gen-

erating a neural network controller for Khepera robots. It was demonstrated that

the evolved controllers were adaptive to changes in the environment due to their

synaptic plasticity. Lifetime learning or ontogenetic adaptation has several adaptive

functions within evolution: (1) allowing for individuals to adapt to fast-changing

environmental conditions, (2) channelling information extracted from the environ-

ment to evolution, (3) helping to guide evolution, (4) reducing genotype length, and

(5) maintaining genetic diversity (Nolfi and Floreano 1999). Learning and evolution

were shown to be able to solve tasks that evolution alone could not solve. Perfor-

mance increases were also noticed even when the learning tasks differed from the

selection tasks. Learning individuals were thus better adapted to changing environ-

ments than non-learning individuals. Interaction between learning and evolution

deeply altered both these processes in that learning enabled evolution to extract su-

pervision information from the environment. In terms of generality, plastic-general

individuals required less complex control systems compared to full-general individ-

uals. Ontogenic adaptation has also been studied in a competitive co-evolutionary

context of predator-prey simulations using Khepera robots (Floreano, Nolfi, and

Mondada 2001).

Pure reactive agents that do not use any internal representation were shown
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to able to solve complex tasks through the use of sensory-motor coordination only

(Nolfi 2002). By exploiting agent-environment interactions, these embodied arti-

ficial creatures were able to coordinate perception and action that enabled them

to perform complex tasks without needing to react differently to the same sensory

states in different contexts. The experiments involving physical agents were carried

out using Khepera robots and neural networks weights were evolved for the control

of the agents. Sensory-motor coordination allowed the robots to (1) select the most

effective feedback, (2) simplify harder tasks, (3) exploit emergent behaviors, and

(4) exploit environmental constraints. Pure reactive agents although effective were

found to be sub-optimal in most conditions. As a remedy, it was suggested that

more complex behaviors could be allowed to emerge through a simple process of

adding internal representations to the existing reactive behaviors.

In a departure from classical connectionist models, Floreano, Schoeni,

Caprari, and Blynel (2002) recently demonstrated the use of evolutionary spiking

neurons for the control of an autonomous microbot. A single “spike” in a spiking

neural network is a discrete binary event that simply encodes whether a stimulus

is present or absent. Instead of using conventional non-linear, real-valued sigmoidal

activation functions, the use of spiking neurons in neural circuits were shown to

transfer easily to microcontrollers by virtue of their binary nature, which can be

mapped onto low-level digital circuits using only a few logic operations such as

AND and NOT. In an earlier study, it was shown that viable controllers were easier

to evolve using spiking neurons than sigmoidal neurons for a vision-based navigation

task of a Khepera robot (Floreano and Mattiussi 2001).

Comparatively small neural networks that utilized recurrent connections

were shown to be capable of producing good obstacle avoidance and light-seeking

behaviors in Khepera robots (Pasemann, Steinmetz, Hulse, and Lara 2001a; Pase-

mann, Steinmetz, Hulse, and Lara 2001b) using the ENS3 (Evolution of Neural

Systems by Stochastic Synthesis) algorithm. A weighted sum of different speed and

navigation objectives were combined into a single-objective function for the evalu-

ation of evolved networks. The simplest evolved networks did not use any hidden
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units and it was also demonstrated that larger networks were not necessarily more

robust than smaller ones. In a related study, separately evolved neuromodules for

obstacle avoidance and light-seeking behaviors were combined together to produce a

single controller with both behaviors (Lara, Hulse, and Pasemann 2001) by evolving

additional interface neurons and synapses for the interconnection between these two

neuromodules. It was also shown in another related experiment that the evolved

controllers were robust and performed well in both simulated and actual robots

(Hulse, Lara, Pasemann, and Steinmetz 2001).

The control structures consisting of ANNs for a population of robots were

evolved using a fully decentralized EA (Watson, Ficici, and Pollack 2002). The EE

(Embodied Evolution) methodology was defined as conducting evolution in a group

of real physical robots where evaluation, selection, and reproduction took place by

and between robots in a distributed, asynchronous and autonomous manner. The

robots were simple two-wheeled self-designed mobile agents with inter-agent com-

munication capabilities. Evolved controllers outperformed hand-designed controllers

for a phototaxis task.

A gaseous signalling mechanism was used in the GasNet algorithm for gen-

erating robot controllers in visual discrimination and navigation tasks (Husbands,

Smith, Jakobi, and O’Shea 1998; Husbands, Philippides, Smith, and O’Shea 2001).

The fitness of generated controllers was evaluated using a single function that com-

bined the weighted sum of navigational scores. Although the neural networks using

the gaseous signalling mechanisms could be evolved in fewer generations compared

to neural networks that did not use these mechanisms, implying a less difficult search

space in the former neural networks, all the standard random sampling measures

used to discriminate between the two different search spaces failed to show any

discernable differences between these evolutionary systems (Smith, Husbands, and

O’Shea 2001b). Further analysis showed that the evolutionary robotics search space

exhibited phases of neutral evolution (Smith, Husbands, and O’Shea 2001a). The

population as a whole was shown to move significantly in the genotype space during

such phases of neutrality and was not trapped at a local optimum in the fitness
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landscape. However, no evidence could be found to indicate that neutral adaptation

acted as a scaffolding for later transitions to higher fitness levels. As such, it was

concluded that neutrality did not play any useful role in this particular evolutionary

robotics search space.

It was later shown that the combined effects of increased neutrality and de-

creased ruggedness in evolutionary robotics search spaces allowed for greater evolv-

ability (Smith, Philippides, Husbands, and O’Shea 2002). It was argued that pheno-

typic stability and genetic instability were prerequisites if successful evolution were

to occur in an organism. Four different GasNet neural network models acting as

controllers for simulated mobile robots in a shape discrimination task were imple-

mented with varying degrees of redundancy and coupling to elucidate these effects.

More recently, Smith, Husbands, Philippides, and O’Shea (2002) showed that the

high success rates of GasNets neural networks in the visual discrimination task was

due to temporal adaptivity and argued that this property is fundamental for the

generation of adaptive behavior. Recent related work has also extended the family

of GasNet neural networks to include more details of biological gaseous signalling

mechanisms into two new versions called the plexus and receptor models, which

were shown to be more evolvable than the earlier version of GasNet (Philippides,

Husbands, Smith, and O’Shea 2002).

2.3.2 Legged Robots

The pioneering work of Beer and Gallagher (1992) documented the use of

GA to evolve continuous-time recurrent neural networks for controlling the legged

locomotion of a hexapod insect, although this study was conducted using a highly

simplified physics model. It was shown in a later study that the evolved controllers

could still perform the locomotion successfully when transferred to a real hexapod

robot (Gallagher, Beer, Espenschied, and Quinn 1996). Related studies based on

this simplified six-legged hexapod model have been conducted to investigate the

evolution of neural network architectures rather than synaptic weights alone using a

developmental scheme specified by the Simple Geometry Oriented Cellular Encoding
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(SGOCE) algorithm (Kodjabachian and Meyer 1998a; Kodjabachian and Meyer

1998b).

Arnold (1997) investigated the generation of legged locomotion for four and

six-legged virtual creatures using spectral synthesis (involving Fourier transforms).

The control system was algorithm-based and did not make use of any sensory input

information. Evolution was used only to tune the parameters of the algorithmic con-

trollers and limb attributes for optimizing a single-objective function of maximizing

horizontal distance achieved within a designated time period. In a later study by

Reeve (1999), the control mechanism based on different models of neural networks

for generating legged locomotion for a range of fixed morphology robots were evolved

in simulation using a simple GA. It was found that simple single-termed fitness mea-

sures based on performance attributes such as speed was sufficient to generate the

desired behavior and that more complex fitness measures relating to inner workings

of neurons and joints were not advantageous. It was also found that higher-order

neural networks were significantly better at performing the required tasks and that

very densely connected controllers performed better than sparsely connected ones.

A dynamically-rearranging neural network (DRNN) was evolved to act as

a controller for legged locomotion in a simulated biped robot (Fujii, Ishiguro, Aoki,

and Eggenberger 2001). Generated controllers were assigned fitness values based

on a single-objective function of horizontal movement achieved. Neuromodulators

were used to dynamically change synaptic weights as well as network architecture

by activating and blocking neurons and synapses. However, it was observed that

many of the evolved controllers did not actually make use of the modifiable synaptic

weights, in other words normal neural networks with fixed synaptic weights would

have sufficed. Nonetheless, it was claimed that the DRNN would have exhibited

superior performance in a changing environment due to their polymorphic charac-

teristics although this was not investigated using the biped robot. In related work

using a simulated quadruped robot, a DRNN was again evolved to act as a controller

for legged locomotion (Otsu, Ishiguro, Fujii, Aoki, and Eggenberger 2001). It was

claimed that the controllers generated were adaptive to changes in the environment
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(retardant forces and uneven slopes) due to the neuromodulations present in the

DRNN. However, as no analysis was provided on the actual dynamics of the neuro-

modulators during the legged locomotion of the quadruped, it remains unclear what

roles these elements actually played towards the generation of a successful legged

locomotion in the changing environments.

Both the controller and morphology of a biped robot were evolved using

a GA with a simple single-objective fitness function based on horizontal distance

travelled (Paul and Bongard 2001). It was claimed that the experiments produced

the first reported results of stable bipedal locomotion achieved through the opti-

mization of both controller and morphology. An interesting point to note was that

only 6 out of the 60 evolutionary runs were successful in evolving a stable gait.

The architecture of the recurrent neural networks that were used as the controllers

remained fixed with only the synaptic weights being evolved. Also, only certain

parameters of robot’s morphology were allowed to be modified during evolution. A

related study using similar biped robots where both the controller and morphol-

ogy were co-evolved found that the inclusion of certain morphological parameters

allowed for fitter individuals to be discovered by evolutionary search (Bongard and

Paul 2001). It was shown that fitter individuals did not arise simply because a

better morphology was found but rather the addition of morphological parameters

into the genotype space allowed for extra-dimensional bypasses to be formed in the

higher dimensional search space, thereby allowing the evolutionary search to find

these fitter individuals. This phenomenon facilitated the connection of otherwise

isolated adaptive peaks in the objective space, making it easier for the evolutionary

search process to proceed smoothly from one adaptive peak to the next.

Central pattern generators (CPGs) were evolved as controllers for gener-

ating planar walking behaviors in two different physically simulated bipeds (Reil

and Massey 2001). It was shown that using the appropriate mechanical construc-

tion, Hopfield neural network controllers and optimization through a GA with a

single-objective distance-based fitness function, minimal bipedal locomotion can be

achieved by CPGs that do not require sensor inputs. In the second more sophis-
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ticated biped, incremental evolution was used where a weak stabilizing controller

was used during the initial stages of evolution and later removed after a certain

fitness level was achieved. The lower portions of the more sophisticated biped’s

legs were implemented as passive limbs to allow for a more anthropomorphic gait

to emerge. Only 10% of the first biped’s evolutionary runs produced successful

controllers whereas 80% of the second biped’s evolutionary runs produced successful

controllers. However no analysis was given on whether the two search spaces differed

significantly in terms of optimization difficulty.

In a related study, CPGs were again evolved to generate bipedal locomo-

tion in a simulated robot in a real-time physics environment (Reil and Husbands

2002). Once more, it was shown that no sensory inputs were necessary to generate

successful straight-line walking behavior although this was achieved only on a ho-

mogenous planar surface. It was suggested that the fitness landscape underlying the

evolutionary search space of the recurrent ANN architecture is very smooth leading

to successful evolution of controllers despite using only a very simple single-objective

fitness function based on a combination of two objectives of maximizing distanced

travelled from origin and minimizing occurrences of falling below a certain height

threshold for the robot’s center of gravity. However it was also reported that only

10% of the evolutionary runs resulted in stable controllers and that an additional

fitness term that rewarded cyclic activity in the ANN was necessary to improve the

success rate. The authors also noted a shortfall in the experimental setup in that

the effect of network size on the efficiency of the approach was not studied. A num-

ber of important contributions of the evolutionary robotics approach to designing

controllers for legged locomotion of artificial creatures were highlighted: (1) fully

automated process that allows for changes or additions to the creature’s structure

to be accommodated very easily through re-evolution, (2) diversity of solutions, and

(3) relatively cheap evolutionary computational requirements.

Real physical robots have also been used to study the generation of legged

locomotion using EAs. Online evolution was used by Gruau (1997) and Gomi and

Ide (1998) to generate static gaits for an octopod robot, and by Hornby and his co-
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researchers to generate dynamic gaits for a Sony quadruped robot (Hornby, Fujita,

Takamura, Yamamoto, and Hanagata 1999) as well as for the Sony entertainment

robot dog AIBO (Hornby, Takamura, Yokono, Hanagata, Yamamoto, and Fujita

2000). The cellular encoding method of (Gruau 1994) was used to evolve not only

the weights but also the architecture of the neural network controller for the oc-

topod robot and also relied on interactive user assignment of fitness values rather

than integrating a fully automated fitness assignment into the artificial evolutionary

process (Gruau 1997). Jakobi (1998) utilized his “minimal simulation” method to

also evolve gaits in simulation for the same octopod robot in order to reduce the

time requirements of evolution on the real physical robot.

2.3.3 Abstract Robots

The neural network controller and visual morphology for visually guided

behaviors in a specialized gantry robot was evolved using the SAGA algorithm

(Harvey 1992) for a visual discrimination task (Harvey, Husbands, and Cliff 1994;

Husbands, Harvey, Jakobi, Thompson, and Cliff 1997). Minimal vision systems and

small networks were found to be sufficient for generating the required behaviors us-

ing a weighted sum combination of navigational scores as the evaluation function.

Small population sizes and small number of generations were also sufficient for suc-

cessfully evolving these controllers. A good choice of control system primitives were

suggested as the main reason for the success of these evolutionary runs. Work has

also been carried where only the morphology of a compound eye on an abstract robot

was evolved while the neural network controller was kept fixed (Lichtensteiger and

Eggenberger 1999). Cliff, Harvey, and Husbands (1993) have also conducted work

on evolving both the visual morphology and recurrent neural network controller of

a mobile robot. In a later related study, Cliff and Miller (1996) also evolved both

visual morphologies and neural controllers of predator-prey agents in a competitive

co-evolutionary environment although the simulation was only carried out in a 2D

world. Using developmental methods, the bodies and controllers of autonomous 2D

agents have also been co-evolved in a study by Dellaert and Beer (1994).
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GP was used to evolve controllers for a robot with manually reconfig-

urable morphology called a random morphology robot (RM robot) (Dittrich, Skusa,

Banzhaf, and Kantschik 1999). Evaluation of controller fitness was carried out using

a single-objective function consisting of weighted scores for the robot’s speed and

distance. The fitness landscape was found to be highly dynamic because the robot

moves around on a carpeted floor and hence encounters situations with different

levels of difficulties arising from the directionality of individual carpet strands. It

was shown that discrimination between good and bad individuals was hard during

certain periods of the evolutionary process where the noise level was high. Hence

it was proposed that reference individuals be employed to enable a differential fit-

ness value to be calculated for evolving individuals in order to better capture the

actual performance of individuals throughout the highly variable evolutionary pe-

riods. Nevertheless, it was later observed that there were periods where the fit-

ness landscape oscillated, which created a problem for the proposed relative fitness

methodology as well.

Lipson and Pollack (2000) combined both simulated and physical approach-

es for evolving simple robots composed of bars, actuators and artificial neurons for

the single objective of maximizing horizontal distance moved. The authors claimed

that to fully realize artificial life, autonomy must be achieved not only at the level

of power and behavior but also at the levels of design and fabrication. They demon-

strated this point in their experiments where artificial evolution was conducted to

automatically design abstract robots that could perform locomotion in simulation

and then the best virtual designs were fabricated into real robotic body parts using

3D thermoplastic solid printing techniques. The results from testing the physical

versus the virtual robots showed that in one case, the distance travelled was almost

identical while in the two other cases, the distances travelled were quite dissimilar

although it was argued that the overall control and mechanics of the motion were

still maintained when moving from simulation to reality.
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2.3.4 Evolvable Hardware

Evolvable hardware circuits in the form of field programmable gate arrays

(FPGAs) were utilized to evolve obstacle avoidance controllers for Khepera robots

(Thompson 1995; Thompson 1997) and was claimed to be the first example of intrin-

sic hardware evolution (Harvey 1997), where every actual hardware specified during

the evolutionary process was tested in situ rather than in simulation. Another series

of studies also utilized FPGAs as evolvable controllers for producing visual tracking

and obstacle avoidance behaviors in Khepera robots (Keymeulen, Durantez, Kon-

aka, Kuniyoshi, and Higuchi 1996; Keymeulen, Iwata, Konaka, Suzuki, Kuniyoshi,

and Higuchi 1998). Solutions generated were evaluated using a fitness function that

took a weighted sum combination of two objectives of minimizing the robot-target

distance and minimizing the number of steps required to complete the task. It

has been argued that true evolvable hardware should allow for both control circuits

and body plans to be evolved (Lund, Hallam, and Lee 1997). Such true evolvable

hardware using a modified version of the Khepera robot with a reconfigurable audi-

tory morphology was developed by Lund, Hallam, and Lee (1997) as a framework

for studying the evolution of phonotaxis in crickets although no result from actual

experimentation was reported.

2.4 Evolution of Morphology and Mind

The study of evolving physically situated and virtually embodied artificial

creatures has been a hotbed of research in recent years. The availability and matura-

tion of commercial-off-the-shelf physics engines coupled with the dramatic increase

of personal computing power have encouraged widespread research into this intrigu-

ing field of artificial life (Taylor and Massey 2001). Not surprisingly, there were

notably few significant advancements in this field since the pioneering work of Sims

(1994a, 1994b) until very recently.

Research in this area generally falls into two categories: (1) the evolution

of controllers only for creatures with fixed morphologies (Gritz and Hahn 1997;
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Taylor 2000; Bongard and Pfeifer 2002; Mandik 2002), and (2) the evolution of

both the creatures’ morphologies and controllers simultaneously (Sims 1994a; Sims

1994b; Komosinski and Ulatowski 1999; Bongard and Paul 2000; Komosinski 2000;

Komosinski and Rotaru-Varga 2000; Ray 2000; Bongard and Pfeifer 2001; Hornby

and Pollack 2001a; Komosinski and Rotaru-Varga 2001; Taylor and Massey 2001;

Bongard 2002b; Hornby and Pollack 2002). Some work has also been carried out

in evolving only the morphology alone for static 3D virtual organisms (Eggenberger

1997) and evolving morphology with a fixed controller (Lichtensteiger and Eggen-

berger 1999).

The idea of using artificial evolutionary methods to automatically gener-

ate 3D embodied virtual creatures was first introduced by Karl Sims in 1994. A

proprietary physics-based simulation system was implemented to evolve both the

morphology and neural systems of virtual creatures using a directed graph gram-

mar. Conventional artificial evolution was used to evolve specific behaviors such

as swimming, walking, jumping and light-following (Sims 1994b) and a competitive

co-evolutionary method was used to evolve creatures for resource acquisition (Sims

1994a). The fitness of evolved creatures was judged using simple single-objective

functions such as speed and height achieved. Although highly interesting mor-

phologies and behaviors were evolved, the applicability of the system for evolving

real robots remained questionable as the physics specifications for synthesizing the

creatures allowed for interpenetrating surfaces. While Sims required Connection

Machine CM-5 parallel computers to conduct his artificial evolution, Taylor and

Massey (2001) recently re-implemented Sims’ work using only standard personal

computers. Ray (2000) has also implemented a system highly reminiscent of Sims’

system but rather than using a fixed fitness function within the artificial evolution-

ary system for selection, he relied upon aesthetic user selection. Both Taylor and

Massey (2001) and Ray (2000) used a commercial-off-the-shelf physics engine called

MathEngine, which is the predecessor to the physics engine known as Vortex used

in this thesis (see Section 3.1.1).

MathEngine was also used to develop a 3D biomechanical simulation of
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a salamander for a computational neuroethological experiment into the underlying

neural circuits that generated the aquatic and terrestrial locomotion of real salaman-

ders (Ijspeert 2000). Although no evolutionary results were reported, an algorithmic

CPG controller was developed that allowed for realistic and life-like swimming and

trotting gaits to be reproduced in the artificial salamander. The CPGs were shown

to be stable enough to receive higher-level sensory input from vision modules to

enable tracking and approach towards a moving target (Ijspeert and Arbib 2000).

These studies stem from earlier work on evolving CPGs based on neural controllers

that generate swimming gaits for a 2D lamprey (Ijspeert, Hallam, and Willshaw

1999; Ijspeert and Kodjabachian 1999) as well as for generating locomotion gaits

for a 2D salamander (Ijspeert, Hallam, and Willshaw 1998; Ijspeert 1999; Ijspeert

2001). The fitness of evolved neural controllers was evaluated using single-objective

functions based on either single or multiply-combined network output metrics.

GP has also been used to evolve controllers for a fixed morphology vir-

tual creature (Gritz and Hahn 1997). In this study, the emphasis was on evolving

different control programs for a 3D animated character as opposed to traditional

“key-framing” techniques that involved human hand-designed frames used by most

animators. It was claimed that the evolved controller produced fluid, physically

and biologically plausible motions. An incremental approach where additional con-

straints were phased into the single-objective fitness function as the evolutionary

optimization progressed was used to evolve the final desired behavior. This incre-

mental methodology was adopted after it was found that a direct approach incorpo-

rating all the desired motion styles into the fitness function from the start severely

restricted the evolvability of the system. Both evolutionary robotics and virtual

embodied evolution techniques have also been extended to practical applications

in the entertainment and edutainment industries (Taylor 2000; Grand 2001; Lund

2001). Commercially-based research conducted by Grand (2001) produced the ar-

tificial life game called Creatures in which owners could breed, nurture and evolve

virtual organisms known as Norns on their personal computers and even exchange

genetic material with other owners over the Internet. Techniques used included
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user-guided behavior-based systems, user-guided evolutionary and co-evolutionary

robotics as well as those including morphogenesis (Lund 2001) while it was sug-

gested that to enable scaling to more complex behaviors required for characters in

computer games, other techniques such as lifetime learning, virtual ecologies and

evolution of behavioral primitives need to be considered (Taylor 2000).

Bongard and Paul (2000) investigated the relationship between morpholog-

ical symmetry and locomotive efficiency by co-evolving the controller and morphol-

ogy of virtual embodied organisms using a physically accurate simulation. A variable

length GA based on the SAGA algorithm (Harvey 1992) was used to evolve the arti-

ficial creatures and a recurrent neural architecture was used to act as the creatures’

controllers. Two single-objective fitness functions were designed to reward firstly

a combination of locomotion distance and morphological symmetry, and secondly

locomotion distance and morphological asymmetry. It was found that bilaterally

symmetrical agents were favored by evolution in terms of locomotion capability. Al-

though these experiments entailed two separate objectives of distance and symmetry,

these objectives were combined into a single fitness evaluation function.

Bongard and Pfeifer (2002) also conducted experiments in which only the

weights for fixed architecture recurrent neural controllers were evolved. 10 creatures

with different but fixed morphologies were used to investigate the difficulties of

evolving locomotion controllers for creatures with different body masses and number

of legs. Using a single-objective fitness function that measured forward displacement,

it was claimed that hexapedal agents were the easiest while worm-like agents were

the hardest to evolve successful controllers. In a related study, artificial evolution

was shown to automatically add more complex behaviors to simpler ones through

the use of different sensor modalities (Bongard 2002a). Using a quadrupedal agent

with two simulated chemical sensors, a lower-level chemotaxis behavior was shown,

through a number of lesioning experiments, to provide a base for the generation of a

higher-level forward locomotion behavior. Hidden units in the neural networks were

also lesioned to demonstrate that over evolutionary time, some hidden units became

specialized in processing certain input signals.
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A similar but separate series of studies focused on the developmental pro-

cesses associated with evolving virtual embodied organisms where both the controller

and morphology were again being co-evolved (Bongard and Pfeifer 2001; Bongard

2002b). Using the designed system called Artificial Ontogeny (AO), artificial or-

ganisms were evolved to locomote and push boxes in which a standard GA using

a single-objective evaluation function was augmented with a genetic model based

on biological differential gene expression. As such, the genotype-to-phenotype mor-

phogenesis allowed for changing pattern expressions similar to that found in genetic

regulatory networks (GRNs). It was claimed that the AO system had high evolvabil-

ity since the artificial evolutionary system was able to produce modular structures

as well as dissociate between the genotypic and phenotypic complexities (Bongard

and Pfeifer 2001). In the later study, Bongard (2002b) showed that the AO system

was able to generate modular GRNs early during the evolutionary process which

led to the successful generation of creatures with high parts count. The early ap-

pearance of modular GRNs was attributed to the high pleiotropy (co-regulation of

genes) within the neurogenesis process and low pleiotropy between the neurogenesis

and morphogenesis processes. However, a somewhat biased weighted sum fitness

function that involved a “shaping” term, which explicitly rewarded organisms with

number of body parts, sensors, motors and synapses, was used to encourage the

early appearance of active agents during evolution.

Komosinski and Ulatowski (1999) developed a proprietary platform for

studying the evolution of 3D physically simulated virtual creatures called Fram-

sticks. The system allows for both directed as well as open-ended evolutionary runs

to be conducted although published results have only documented experiments with

directed evolution for behaviors such as walking and swimming (Komosinski and

Ulatowski 1999; Komosinski 2000). An initial investigation into the design and use

of more evolvable genotype representations for achieving open-ended evolution was

discussed by Komosinski and Rotaru-Varga (2000). It was found in a later study

that higher-level encodings that included either recurrent or developmental elements

in the genotype representation allowed for more structured phenotypes to be gen-
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erated, which in turn led to the appearance of fitter individuals for separate single-

objective maximization tasks involving height and locomotion speed (Komosinski

and Rotaru-Varga 2001). The Framsticks artificial evolutionary system has also

been used to create a method for studying the taxonomy of evolved agents based on

how dissimilar agents were in terms of their morphological geometry (Komosinski

and Kubiak 2001). The results obtained from using these taxonomic measures on

artificial organisms were later compared to the characteristics and properties of bi-

ological phylogenic trees constructed for real organisms (Komosinski, Koczyk, and

Kubiak 2001). The Framsticks creatures have also been used by Mandik (2002) to

study the evolvability of mental representations where the neural controllers of fixed

morphology agents were optimized using a combination of both human and artifi-

cial evolutionary design inputs for food-finding tasks in both walking and swimming

creatures.

The emphasis of Hornby and Pollack (2001a) in their study of evolving

both the controller and morphology of virtual creatures was also on the genotype

encoding for achieving more complex designs. Using a developmental grammar based

on Lindenmayer systems (L-systems), 3D agents with simple bars and actuators

were evolved in a quasi-static virtual world which could physically simulate low

momentum movements similar to that of Lipson and Pollack (2000). A weighted

sum fitness function was utilized to optimize maximization of locomotion distance

and minimization of occurrences where body parts were dragged on the ground.

They showed that creatures evolved using generative encodings outperformed those

evolved using non-generative encodings for a locomotion task by capturing useful

design space biases while allowing large scale mutations to be performed viably,

which in turn enabled the encapsulated and coordinated re-use of hierarchies of

parts (Hornby and Pollack 2002). It was claimed that the morphologies of these

generatively encoded creatures were more complex than those previously reported

by Sims (1994b), Komosinski and Rotaru-Varga (2000) and Lipson and Pollack

(2000), by virtue of having more parts in the morphology and more regularity in

the overall design of the evolved creatures. In related work, oscillator controllers
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similar to CPGs were used in place of neural network controllers for evolving both

2D (Hornby, Lipson, and Pollack 2001) and 3D virtual agents (Hornby and Pollack

2001b). The 2D agents were also successfully transferred to real physical robots

(Hornby, Lipson, and Pollack 2001).

2.5 The Emergent Questions

As we have seen, the research into evolving artificial creatures have focused

mainly on generating the desired behavior using single-objective fitness functions.

These evaluation functions typically consist only of a single term for assigning the

fitness of individuals generated (Sims 1994b; Arnold 1997; Gritz and Hahn 1997;

Harvey, Husbands, Cliff, Thompson, and Jakobi 1997; Reeve 1999; Lipson and Pol-

lack 2000; Fujii, Ishiguro, Aoki, and Eggenberger 2001; Komosinski and Rotaru-

Varga 2001; Paul and Bongard 2001; Reil and Massey 2001; Bongard and Pfeifer

2002) or a combination of multiple terms into a single weighted objective when the

desired behavior cannot be achieved with simpler single-termed functions (Lee, Hal-

lam, and Lund 1996; Floreano and Mondada 1998; Husbands, Smith, Jakobi, and

O’Shea 1998; Keymeulen, Iwata, Konaka, Suzuki, Kuniyoshi, and Higuchi 1998;

Dittrich, Skusa, Banzhaf, and Kantschik 1999; Bongard and Paul 2000; Hornby and

Pollack 2001a; Pasemann, Steinmetz, Hulse, and Lara 2001b; Bongard 2002b; Reil

and Husbands 2002). It is highly surprising that a true multi-objective optimiza-

tion approach involving optimization of explicitly distinct objectives have not been

explored yet thus far for artificial creature evolution. Such an investigation might

very well reveal significant advantages over standard single-objective EAs in terms

of the evolutionary optimization process itself in addition to the possibility of gener-

ating greater varieties of creature morphologies and behaviors. We investigate this

problem in Chapters 5, 6 and 8.

Although it was reported that more complex creatures could be evolved

with certain artificial evolutionary systems (Hornby and Pollack 2001a; Komosinski

and Rotaru-Varga 2001; Bongard 2002b), these claims were made simply based on
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the fact that the artificial creatures had more moving parts or greater regularity

in their morphology. Obviously such a trivial comparison leaves much to be de-

sired since a millipede would be considered to be more complex than a human on

both counts! Hence, it remains unclear how we can objectively compare between

the complexities of artificially evolved creatures using more intuitive measures or

methodologies. We attempt to tackle this problem in Chapter 7.

Additionally, apart from the work of Smith with wheeled robots (2001b,

2001a, 2002), there has been little effort invested in systematic explorations of the

fitness landscape characteristics for evolving artificial creature controllers. There

has been even less work conducted on characterizing the underlying search space

difficulty when evolving controllers for legged artificial creatures. Only the work of

Dittrich, Skusa, Banzhaf, and Kantschik (1999) with an abstract morphology robot

has provided some empirical information regarding the evolutionary fitness land-

scape for a non-wheeled robot. Although a conjecture concerning the smoothness

of the underlying search space for evolving CPG controllers for bipedal robots was

postulated by Reil and Husbands (2002), no actual experimental results have been

reported yet thus far with regards to testing this hypothesis. As such, very little is

known at this stage concerning the fitness landscape and difficulty associated with

evolutionary searching of controllers for legged artificial creatures. We attempt to

tackle this problem in Chapter 4.

2.6 Chapter Summary

A literature review of the related fields of evolutionary robotics and evo-

lution of embodied artificial life was presented in this chapter. The importance of

situating and embodying the artificial agents within a physically-based world was

first highlighted. A comprehensive survey of the various methods employed for

evolving artificial creatures comprising of both real physical robots and simulated

virtual agents was then given. Finally, the research questions emerging from this

literature review were presented.


