
Chapter 7

Creature Complexity

1 Complexity has been and will remain a debatable concept. We all know

it when we see it, yet when we need to provide a functional definition of complexity,

it becomes a mythical entity. Although the study of complex systems has attracted

much interest over the last decade and a half, the definition of what makes a system

complex is still the subject of much debate among researchers (Adami 1998; Feldman

and Crutchfield 1998b; Standish 2001). What is complexity? Is there a universal

measure of complexity? Does complexity arise when a system reaches a critical

point or is there a phase transition between simple and complex systems? Are

adaptability, adaptation, emergence, hierarchy, bifurcation, and self-organization

evidence for complexity? These are all common concerns raised by researchers when

speaking of complex systems and complexity itself.

Although there are numerous methods available in the literature for mea-

suring complexity (Badii and Politi 1997; Edmonds 1999), it has been argued how-

ever that such complexity measures are typically too difficult to compute to be of

use for any practical purpose or intent (Shalizi 2001). This chapter attempts to

unfold some mysteries about complexity and to pose EMO as a simple and highly

accessible methodology for characterizing the complexity of artificially evolved crea-

tures using a multi-objective methodology. One of the main objectives of evolving

1Some of the material presented in this chapter have been previously published in Teo, Nguyen,

and Abbass (2003).
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artificial creatures is to synthesize increasingly complex behaviors and/or morpholo-

gies either through evolutionary or lifetime learning (Pfeifer and Scheier 1999; Nolfi

and Floreano 2000; Hornby and Pollack 2001a; Komosinski and Rotaru-Varga 2001;

Bongard 2002b). Needless to say, the term “complex” is generally used very loosely

since there is currently no general method for comparing between the complexities

of these evolved artificial creatures’ behaviors and morphologies. As such, without a

quantitative measure for behavioral or morphological complexity, an objective eval-

uation between these artificial evolutionary systems becomes very hard and typically

ends up being some sort of a subjective argument.

We first present attempts at defining complexity followed by a compre-

hensive review of the different views of complexity from the social sciences to con-

crete measures in information systems and the physical sciences. Then, we pro-

pose a characterization of the notion of complexity in embodied cognition using

multi-objectivity as a natural and theoretically-founded paradigm in mathematics.

Specifically, we will attempt to characterize the behavioral and morphological com-

plexities of different artificial creatures using the multi-objective controller evolution

approach introduced in Chapter 5.

7.1 Complexity Defined?

The following list provides some suggested definitions of complexity and

complex systems:

• “The complexity of a system S is a contingent property, depending upon the

nature of the observables describing S, and their mutual interactions.” —

Casti (1986, p.155)

• “Complexity is the study of the behavior of macroscopic collections of such

units that are endowed with the potential to evolve over time.” — Coveney

and Highfield (1995, p.7)

• “. . . a “theory of complexity” could be viewed as a theory of modelling, en-
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compassing various reduction schemes (elimination or aggregation of variables,

separation of weak from strong couplings, averaging over subsystems, evaluat-

ing their efficiency and, possibly, suggesting novel representations of natural

phenomena.” — Badii and Politi (1997, p.6)

• “I use complex and complexity intuitively to describe self-organized systems

that have many components and many characteristic aspects, exhibit many

structures in various scales, undergo many processes in various rates, and

have the capabilities to change abruptly and adapt to external environments.”

— Auyang (1998, p.13)

• “Complexity is that property of a model which makes it difficult to formulate

its overall behavior in a given language, even when given reasonably com-

plete information about its atomic components and their inter-relations.” —

Edmonds (1999, p.72)

• “. . . in defining complexity we need to consider both functions of perception

and analysis. For what we want to know is not whether a simple or short

description can be found of every detail of something, but merely whether

such a description can be found of those features in which we happen to be

interested.” — Wolfram (2002, p.557).

It is surprising to note that although there is a large body of literature

that discusses issues relating to complexity, few actually provide a definition to

complexity as used in their respective contexts (Feldman and Crutchfield 1998b).

As pointed out in the introduction to this chapter, the task of defining complexity

is difficult in itself, which may explain why the term “complexity” is so commonly

used without qualification. A number of books authored about complexity theory

confirms this observation, where an enormous range of views were drawn about what

complexity means to different researchers and to different disciplines (Lewin 1993;

Waldrop 1994; Mainzer 1997).

In the social sciences, complex systems typically refer to social phenomena

that exhibit some form of dynamic nonlinear behavior that are difficult to explain
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using basic linear models. Examples of complex systems described in the social sci-

ences include fluctuations of stock markets and exchange rates, impacts of economic

policies, human population growth and migration, societal organization, political

revolutions, organizational cooperation and conflict, human interactions and their

communication structures (Coveney and Highfield 1995). With reference to complex

systems and the evolution of human society, Mainzer (1997) states that

“The crucial point of the complex system approach is that from a macro-

scopic point of view the development of political, social, or cultural order

is not only the sum of single intentions, but the collective result of non-

linear interactions.” (p.253)

Biological organisms and processes associated with living things and life

in general typically correspond to what we intuitively know as objects and systems

that exhibit the highest degree of complexity (Badii and Politi 1997). Examples of

complex systems in the biological sciences include genomic evolution, genetic regula-

tory networks, population ecology, morphogenesis and biological neural networks to

name but a few (Mainzer 1997). More specific studies of biological complex systems

have been conducted on the self-replication of bio-molecules, in-vitro RNA evolution,

self-regulation of the glycolytic process, self-organization of slime moulds, pattern

formation of the hydra, oscillations of the heart, spatio-temporal organization of

hymenoptera colonies, punctuated equilibrium as catastrophe theory, planetary self-

regulation and Gaia theory (Coveney and Highfield 1995).

In chemical and physical systems, complexity is often attributed to pro-

cesses that exhibit some form of aperiodicity or possess high degrees of freedom

(Badii and Politi 1997). Terms commonly associated with complex physical and

chemical systems include chaos, phase transitions, bifurcation, self-organized criti-

cality and percolation. Examples of such complex phenomena include cement for-

mation caused by the percolation of water through irregularly shaped particles in

cement powder, criticality of sand-piles that produce avalanches beyond a certain ge-

ometric configuration, fluid instabilities that produce turbulence, optical instabilities

in lasers that produce quasi-periodic light patterns and fluctuations of spin-glasses
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caused by the disorderly arrangements of spinning electrons (Coveney and Highfield

1995; Badii and Politi 1997; Adami 1998).

As can be seen from the diverse interpretations and applications to so-

cial, biological and physical systems, complexity provides very different meanings

depending on the context it is being referred to. Perhaps Mainzer (1997) provides

the best summary of what complex systems encompasses:

“. . . the theory of nonlinear complex systems cannot be reduced to spe-

cial natural laws of physics . . . it is an interdisciplinary methodology to

explain the emergence of certain macroscopic phenomena via the non-

linear interactions of microscopic elements . . . ” (p.1)

In the next section, we will provide more concrete examples of complex systems

and specifically what types of measures have been formulated to capture complexity

across the different disciplines.

7.2 Measures of Complexity

In this section, we present a review of existing measures for defining or

simply characterizing complexity as viewed from the social, physical and biological

sciences’ perspectives. A summary of the literature surveyed on general reviews

and specific applications of complexity measures is given in Table 7.1. Here we

give a high-level survey of the more significant measures from these diverse fields.

Our intention is simply to provide an indication of the wide spectrum of efforts

in trying to capture complexity into something mathematical or formal so as to

assist with the characterization or comparison of different systems. A more compre-

hensive and detailed survey of existing complexity measures is available elsewhere

(Edmonds 1999). Nonetheless, our shorter survey will show that such measures

are often highly specific, being specially designed or formulated for application in a

particular domain or area of research not readily transferable to another application

domain. A discussion of the advantages and disadvantages associated with these dif-

ferent methodologies for measuring complexity will be also highlighted. We will also
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Category Reference
General Casti (1986)
Reviews Lewin (1993)

Waldrop (1994)
Coveney and Highfield (1995)
Mainzer (1997)
Auyang (1998)

Biological Cavalier-Smith (1985)
Sciences Bonner (1988)

Atlan and Koppel (1990)
Smith (1994)
Maynard Smith and Szathmary (1995)
Nehaniv (2000a), Nehaniv (2000b)
Szathmary, Jordan, and Pal (2001)

Social Kelly (1955)
Sciences Albin (1980)

Cooper (1993)
Holm (1993)
Lyon (1993)
Gibson (1998)
Halford, Wilson, and Phillips (1998)
Clement (1999)
Neyman and Okada (1999)
Butts (2001)
Andrews and Halford (2002)
DeShazo and Fermo (2002)
Warren and Gibson (2002)

Physical Shannon (1948)
Sciences Kolmogorov (1965)

Bennett (1988)
Badii and Politi (1997)
Wolpert and MacReady (1997)
Adami (1998)
Feldman and Crutchfield (1998a), Feldman and Crutchfield (1998b)
Edmonds (1999)
Shalizi (2001)
Standish (2001)
Wolfram (2002)

Table 7.1: Summary of literature survey on reviews of complexity measures and

their applications in the biological, social and physical sciences.

cover the more recent complexity measures suggested since the review conducted

by Edmonds (1999) especially for biological organisms as they may provide critical

insights to the measurement of complexity in their artificial counterparts.
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7.2.1 Social Sciences

An early attempt to capture complexity in a numerical form exists in the

psychology literature. It is called cognitive complexity and is used to describe the

complexity of mental constructions of the world possessed by an individual (Kelly

1955). Cognitive complexity here is estimated numerically by counting the number

of different relationships constructed by the subject from given object attributes. In

this sense, a person who sees the world in more dimensions would be considered to

have a higher cognitive complexity. A related and more recent technique for measur-

ing cognitive complexity called Relational Complexity (RC) theory was proposed by

Halford, Wilson, and Phillips (1998). It is defined as the number (arity) of relations

between entities or arguments in a given decision task. For example, an unary rela-

tion would have one entity, such as woman(Jane) and a binary relation would have

two entities such as married(Jane,Dean). Hence, each entity corresponds to a vari-

able or attribute and an n-ary relation maps to a set of points in an n-dimensional

cognitive space. A recent study has tested the validity of this metric and was found

to be effective in measuring the cognitive development of young children (3–8 years)

(Andrews and Halford 2002).

In studies of group and organizational behavior, an early conceptualization

of measuring the complexity of social interactions was proposed by Albin (1980).

It applies graph theory to participating individuals within an interacting group

and measures the level of complexity of social actions based on the connectivity of

actions between individuals. In a more recent application of complexity to the social

sciences, Butts (2001) proposed the use of algorithmic complexity to measure the

complexity of social networks. Again based on graph theory, the interaction of roles

representative of human social structures are first represented as directed graphs, the

complexity of which is then measured according to the amount of “reducibility” or

“compressibility” that can be achieved on the network. In this case, a social network

with higher compressibility would be considered to have higher reducibility and the

converse in a social network with low reducibility. Interestingly, complexity has also

been applied to command and control theory associated with military operations
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in an attempt to unify difficulties encountered with such systems (Cooper 1993).

Specifically, three types of complexity were identified: dimensional, uncertainty and

computational, although no actual method of measuring these complexities within

the military setting was given.

Another area where complexity has been applied numerically is the study

of human language processing. In a theory called Syntactic Prediction Locality

Theory (SPLT) proposed by Gibson (1998), the complexity of a sentence can be

predicted according to the memory cost associated with keeping a partial sentence

in memory and integration cost associated with integrating new words into existing

syntactical structures built thus far. Memory cost is quantified according to the

number of syntactic categories necessary to complete the current input string as

a grammatical sentence. Integration cost is quantified according to the distance

between an incoming input and the nearest syntactic component it attaches to.

This technique has been used to empirically measure how different localizations of

noun phrases affected sentence complexity (Warren and Gibson 2002).

Complexity in economics typically refers to simply the relaxation of as-

sumptions made on the behavior of market agents (Edmonds 1997). More specific

applications of complexity can be found in game theory where the number of agent

states is used as a measure of economic complexity (Holm 1993). An entropy-based

measure has been formulated to capture the complexity of agent strategies in a re-

peated games environment (Neyman and Okada 1999). Complexity measures for

gauging consumer demand and preferences have also been developed based on the

quantity of information and configuration of information present in a given choice

set (DeShazo and Fermo 2002). In a study that looked at the accuracy of market

earnings forecasts, the portfolio complexity of research analysts was defined sim-

ply as the number of firms and industries being tracked in their market analysis

(Clement 1999).

Measures of complexity have largely been applied at only a very superficial

level in the social sciences, typically taking size as a simplistic basis for describing

or capturing complexity. There are obvious deficiencies associated with size-based
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complexity measures, the most evident being that not all large systems are complex

(Edmonds 1999). It has been argued that the application of complex systems the-

ory to the social sciences results in reductionist view of complexity when applied

to the social domain (Lyon 1993). The important point raised is that contextual

relationships such as political and moral issues are lost during the transformation

into a mathematical or metaphoric model for complexity analysis.

7.2.2 Biological Sciences

It is especially difficult to define or measure biological complexity (Maynard

Smith and Szathmary 1995; Szathmary, Jordan, and Pal 2001). An obvious measure

would be the size of an organism’s genome in terms of the number of base pairs (BP)

present in the DNA, which can be thought of in the sense that a more complex

organism would require lengthier instructions for making the organism (Cavalier-

Smith 1985; Maynard Smith and Szathmary 1995). However, a total DNA count

would place the complexity of humans (3.5×109 BP) an order of magnitude below a

newt (19.0×109 BP) and two orders of magnitude below a lungfish (140.0×109 BP)

and a lily (130.0 × 109 BP) (Maynard Smith and Szathmary 1995). An alternate

measure of biological complexity based on DNA is that of counting only parts of

the DNA that actually code for proteins that are expressed (Cavalier-Smith 1985).

This complexity measure would then make more sense in that eukaryotes would

have more coding DNA than prokaryotes, multi-celled organisms have more coding

DNA than single-celled organisms, and that vertebrates have more coding DNA

than invertebrates. However, this is an extremely coarse-grained classification that

tells us very little about the structural and functional complexity between different

organisms.

Another suggested measure of complexity for biological organisms based

on genomic information is the number of genes present in the DNA (Szathmary,

Jordan, and Pal 2001). However, humans, previously thought to have an order of

magnitude more genes, are now estimated to have only around 20,000–35,000 genes

and have the same order of magnitude of genes as the flowering plant A. thaliana
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(25,498 genes), the nematode worm C. elegans (18,424 genes) and the fruit fly D.

melanogaster (13,601 genes) (Szathmary, Jordan, and Pal 2001). As such, merely

counting the number of genes as a measure of biological complexity may not be very

insightful.

There are a number of other suggested methods of measuring biological

complexity. Focusing on multicellular organism, the number of cell types present can

be used to define the complexity of such an organism (Bonner 1988). A problem with

this approach is that what constitute a distinct cell type as opposed to another cell

type depends on our current understanding of molecular biology and biochemistry

and may vary significantly between different groups of researchers (Nehaniv 2000a;

Szathmary, Jordan, and Pal 2001).

The ability to measure the complexity of brains has been critically analyzed

by Smith (1994). He laments

“. . . how very far we are at present from being able to give a numerical

estimate.” (Smith 1994, p.93)

Showing the inadequacies of “borrowed” complexity measures from the physical

sciences, he argues that organization as well as levels of organization need to be

considered when attempting to capture the complexity of brains. A numerical mea-

sure based on the columnar organization of the neocortex was suggested citing a

quantitative example that estimates the complexity of human brains, with roughly

300,000 such columns, to be 375 times greater than that of mouse brains, with only

800 columns.

A more formal approach based on algorithmic complexity to measuring bi-

ological complexity has been suggested by considering the number of developmental

steps required to produce the organism from its DNA (Atlan and Koppel 1990).

However, as critically pointed out by Szathmary, Jordan, and Pal (2001),

“The snag here is that evolution is not an engineer but a tinkerer, so that

there is no reason to expect that, for example, elephants have developed

according to a minimalist program.” (p.1315)
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Another formal measure for biological complexity was suggested by Ne-

haniv (2000a) based on the notion of hierarchical complexity. In this measure,

biological systems are assigned an integer value which gives the least number of

hierarchical organized computing levels needed to construct an automata model of

the biological system. Although powerful in terms of generalization since it does not

require the actual knowledge of how a biological system is built nor its components,

it does however have the requirement that the system can first be adequately mod-

elled using finite automata (Nehaniv 2000a). The process of transforming biological

systems into such automata is highly subjective and can be executed in a myriad of

ways depending on how the system is viewed by the transformer. This measure of

complexity was later applied to the measurement of evolvability in a later study and

argued that open-ended evolutionary systems should show unbounded complexity

increase over time (Nehaniv 2000b).

Szathmary, Jordan, and Pal (2001) more recently proposed the measure-

ment of biological complexity by considering the connectivity of networks of tran-

scription factors and the genes that regulate rather than direct counting of genes

or the interactions among genes. They argue that biological complexity normally

thought of in terms of morphological and behavioral complexity correlates better

with the connectivity of gene-networks than direct measurements such as gene num-

bers since the former will correctly account for the presence of so-called delegated

information processing systems in the form of vertebrate nervous and immune sys-

tems. However, current artificial evolutionary systems lack the level of sophistication

in terms of such gene-regulatory networks and as such, do not readily lend themselves

to such an analysis. Nonetheless, work has begun to imbue artificial evolutionary

systems with some form of genetic regulation (Bongard 2002b) in the hope of evolv-

ing more sophisticated artificial organisms and will conceivably in the future allow

for such a measure to be applied.
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7.2.3 Physical Sciences

In the physical sciences literature, there are generally two widely-accepted

views of measuring complexity. The first is an information-theoretic approach based

on Shannon’s entropy (Shannon 1948) and is commonly referred to as statistical

complexity due to its formulation based on probability. Shannon’s entropy measure

H(X) of a random variable X, where the outcomes xi occur with probability pi, is

given by

H(X) = − C

N∑
i

pi log pi (7.1)

where C is the constant related to the base chosen to express the logarithm. It is

a probabilistic measure of disorder present in a system and thus gives an indication

of how much we do not know about a particular system’s structure. Shannon’s

entropy is used to measure the amount of information content present within a

given message or more generally any system of interest. Thus a more complex

system would be expected to give a much higher information content than a less

complex system. In other words, a more complex system would require more bits

to describe compared to a less complex system. However, a sequence of random

numbers will lead to the highest entropy and hence give a false indication of the

system being complex when it is really just random. In this sense, complexity is

somehow a measure of order or disorder that does not give a true indication of

the information value present in the system, which in turn leads to an inaccurate

characterization of complexity. Furthermore, an entropic measure does not take into

account the semantic nature of the system. Consider for example a simple behavior

such as walking. Let us assume that we are interested in measuring the complexity

of walking in different environments and the walking itself is undertaken by an ANN.

From Shannon’s perspective, the complexity can be measured using the entropy of

the data structure holding the neural network. Obviously a drawback for this view

is its ignorance of the context and the concepts of embodiment and situatedness.

The complexity of walking on a flat landscape is entirely different from walking on a

rough landscape. Two neural networks may be represented using the same number

of bits but exhibit entirely different behaviors. Using the outputs from the neural
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networks as a measure of entropy is similarly problematic. Consider the case where a

particular neural network optimized to perform robotic control has two of its output

nodes swapped. The entropy as measured from the outputs of both the original and

modified networks will remain the same but the behavior of the robot will change

dramatically since the signals being sent to the individual actuators connected to

these swapped output nodes have been disrupted. Hence, the change in the robot’s

behavior cannot be captured using this form of entropic measure.

The other approach to measuring complexity is a computation-theoretic

approach based on Kolmogorov’s application of universal Turing machines (Kol-

mogorov 1965) and is commonly known as Kolmogorov complexity or algorithmic

complexity. It is a deterministic measure concerned with finding the shortest possi-

ble computer program or any abstract automaton that is capable of reproducing a

given string. The Kolmogorov complexity K(s) of a string s is given by

K(s) = min{|p| | s = CT (p)} (7.2)

where |p| represents the length of program p and CT (p) represents the result of run-

ning program p on Turing machine T . A more complex string would thus require

a longer program while a simpler string would require a much shorter program. In

essence, the complexity of a particular system is measured by the minimum amount

of computation required to recreate the system in question. A well-known theo-

retical shortcoming of Kolmogorov complexity is that it is effectively incomputable

since by virtue of the halting problem (Turing 1936), it cannot be determined with

certainty that the absolute shortest program or description has been found (Badii

and Politi 1997; Edmonds 1999; Shalizi 2001). On an empirical level, the follow-

ing example will show the limitations of Kolmogorov complexity. Assume we have

a sequence of random numbers. Obviously the shortest program which is able to

reproduce this sequence is the sequence itself. Consequently, it is somehow also a

measure of order or disorder, thereby endowing it with highly similar properties to

that of Shannon’s entropy (Badii and Politi 1997; Edmonds 1999). In addition, let

us re-visit the neural network example. Assume that the robot is not using a fixed

neural network but some form of evolvable hardware (which may be an evolutionary
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neural network). If the fitness landscape for the problem at hand is monotonically

increasing, a hill climber will simply be the shortest program which guarantees to

re-produce the behavior. However, if the landscape is rugged, reproducing the be-

havior is only achievable if we know the seed. Otherwise, the problem will require

complete enumeration to recreate the behavior. Unlike Shannon’s entropy measure,

Kolmogorov complexity is both a syntactic and semantic measure of complexity but

ignores the pragmatic nature of the system. Furthermore, Kolmogorov complex-

ity has been shown to be a poor measure for biological complexity (Smith 1994;

Szathmary, Jordan, and Pal 2001).

A measure of complexity commonly discussed in computer science and

software engineering literature is computational complexity, which is the time and

storage space required by actual algorithms to solve a given problem (Badii and

Politi 1997). Normally, it is referred to by the big-O notation which is a worst-case

complexity measure that is defined as the order of the rate of growth of the resources

required to compute the output to a problem as compared to the size of its input

(Edmonds 1999). For example, an algorithm with computational complexity O(n2)

would be expected to have a quadratic increase in computational resources with

each linear increase in its input while an algorithm with computational complexity

of O(n3) would be expected to have a cubic increase with each linear increase in its

input. The analysis of computational complexity has important implications in the

study of NP-completeness (Garey and Johnson 1979). The problem is to ascertain

whether or not a particular problem is tractable or intractable, or more accurately

to determine whether or not a polynomial time algorithm exists that can solve the

problem on a von Neumann architecture. However, computational complexity pro-

vides only a rough approximation as it is measured only according to the order of the

polynomial associated with the increase required in computational resources when

there is an increase in input. Furthermore, this measure of complexity specifically

looks at the construction of program code and how the computational cost is af-

fected by this code. Again, it measures complexity at the syntactic level and thus

is unable to accommodate notions of environments or interactions which would be
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paramount in a study of embodied organisms.

Bennett (1988) proposed a measure of complexity called logical depth by

combining the notions of Kolmogorov complexity and computational complexity.

The logical depth Ds(x) of a string s at level x is defined as

Dx(s) = min{T (p) | |p| − |p∗| < x ∧ U(p) = x} (7.3)

where p is the range of programs, T (p) is the run-time required by program p, p∗

is the smallest such program and U is a Turing machine. It essentially states that

the logical depth of a string is based on the running time of the shortest algorithm

that will reproduce a given string. It is poised between Kolmogorov complexity and

computational complexity in that it considers the size of the shortest program as well

as the run-time of the program respectively (Badii and Politi 1997). Logical depth

was proposed as a measure of the value of information as reflected by the degree to

which that information has been organized in a particular object. However, as logical

depth is defined based on Kolmogorov complexity, it too is essentially incomputable

(Badii and Politi 1997).

A starkly contrasting measure of complexity based on self-dissimilarity

properties was recently proposed by Wolpert and MacReady (1997). Incorporating

statistical inference and information theory, this complexity measure based on self-

dissimilarity argues that the spatio-temporal signatures of complex systems vary

markedly at different scales whereas the spatio-temporal signatures of simple sys-

tems do not differ significantly between different scales. Furthermore, the variation

in a complex system’s patterns over different space and time scales are considered to

be the very essence of complexity rather than just an aberration of the modelling or

measurement process. The spatio-temporal patterns in terms of the internal struc-

ture of a complex biological system for example, differs greatly when the observation

scale is changed from the molecular level, to the cellular level, to the level of organs

and to the level of the organisms itself. On the other hand, this self-dissimilarity

measure argues that the spatio-temporal patterns of simple systems such as crystals,

gases and even fractals do not change very much as one changes the scale of obser-

vation. However, as stated by the authors themselves, this notion of complexity has



CHAPTER 7. CREATURE COMPLEXITY 198

only been formulated at the theoretical level and its real worth will only be proven

when it is finally applied to real-world data (Wolpert and MacReady 1997).

In another research field known as computational mechanics, which is con-

cerned with the dynamics of automata behavior, a mathematically-based entity that

captures statistical complexity called the ε-machine was proposed by Feldman and

Crutchfield (1998a). The ε-machine acts as a model for capturing the ensembles al-

lowable configurations of a state machine. In other words, it is an object which allows

for the inference of causal architecture from observed behavior (Shalizi 2001). As

such, it allows for the definition and calculation of the global and macroscopic prop-

erties that reflect the average information processing capabilities of the system. The

ε-machine has been applied empirically to measure the amount of self-organization

achieved by four increasingly sophisticated types of process: memoryless transduc-

ers, time series, transducers with memory, and cellular automata (Shalizi 2001).

Although the ε-machine has been shown to be effective and useful in capturing

the increase in statistical complexity of such self-organized systems, this complexity

measure is again based on automata theory and as such requires that the system

being studied readily transforms into some form of state machine. As with other

automata-based methods (Nehaniv 2000a), the question of how these transforma-

tions should be undertaken and what effects these transformations ultimately have

when applied to less readily transformable systems such as creature behaviors and

morphologies remains unanswered. More importantly, it provides a one dimensional

view of complexity through the reduction of complex processes into a finite state

machine and as such, does not leave any room for the interpretation of interactions

between the system and its environment, for example. Hence, such automata-based

complexity measures may not be a suitable methodology to apply to areas such as

embodied cognition in terms of usefulness and pragmatic value where the essence of

complexity lies in the system operating as a fully-interacting, adaptable and reactive

whole.
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7.3 Proposed EMO-Based Complexity Measure

We will now introduce the use of EMO as a convenient platform which

researchers can utilize practically in attempting to define, measure, or simply char-

acterize the complexity of everyday problems in a useful and purposeful manner.

We first explain why a Pareto view to complexity is advantageous and then pro-

ceed to present our proposed method of measuring complexity using EMO. Finally,

we discuss the assumptions associated with our proposed EMO-based complexity

measure.
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Figure 7.1: Diagram illustrating three different Pareto-frontiers for a problem with

multiple objectives. X-axis: Objective 1, Y-axis: Objective 2.

Figure 7.1 provides an illustration of three layers of a potential Pareto-front

of a particular multi-objective optimization problem. These layers can be viewed

as providing three different levels of optimality. If we consider the problem to be

maximization of both objectives, then the Pareto-front that dominates is curve A.

All solutions along this front will dominate all other solutions in B and C because

the solutions of A are more optimal along both objectives. If the problem involves

minimization of both objectives, then the Pareto-front that dominates in this case
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will be the curve C. We will show in the section that follows how this dominance

ordering can provide useful insights for characterizing complexities from more than

one perspective.

7.3.1 A Pareto View to Complexity

Here, we are interested in finding a binary relation which is able to say

that one object “is more complex than” another object. There are a number of

characteristics in which the elements in a set are related to one another and we

shall visit each in turn to see which are desirable to have in such a binary relation.

Assume a set A and a binary relation R on A. R is

• Reflexive if (a, a) ∈ R ∀ a ∈ A. This is undesirable since an object should

not be more complex than itself.

• Irreflexive if (a, a) /∈ R ∀ a ∈ A. This is desirable since an object should not

be more complex than itself.

• Symmetric if ∀ a, b ∈ A, (a, b) ∈ R → (b, a) ∈ R. This is undesirable since if

a is more complex than b, then b should not be more complex than a.

• Asymmetric if ∀ a, b ∈ A, (a, b) ∈ R → (b, a) /∈ R. This is desirable since if

a is more complex than b, then b should not be more complex than a.

• Antisymmetric if ∀ a, b ∈ A, (a, b) ∈ R and (b, a) ∈ R → a = b. This is

undesirable since if a and b are identical objects, then it should not hold true

that a is more complex than b and b is more complex than a.

• Transitive if ∀ a, b, c ∈ A, (a, b) ∈ R and (b, c) ∈ R → (a, c) ∈ R. This is

desirable since if a is more complex than b, and b is more complex than c, then

a should be more complex than c.

• Negatively Transitive if ∀ a, b, c ∈ A, (a, b) /∈ R and (b, c) /∈ R → (a, c) /∈ R.

This is undesirable since if a is not more complex than b and b is not more

complex than c, it does not imply that a is not more complex than c, which
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we will show through contradiction. Assume two complexity measures 1 and 2

with three objects a, b, and c having the complexity values of (20,30), (30,10),

and (10,20) respectively with reference to the complexity measures 1 and 2 in

that order. In this case, a is not more complex than b since b has a higher value

than a in terms of complexity measure 1. Similarly, b is not more complex than

c since c has a higher value than b in terms of complexity measure 2. If the

complexity relation R is negatively transitive, then this implies that a is not

more complex than c. However, this is a contradiction as a is actually more

complex than c since a has higher values in terms of both complexity measures.

Therefore, this axiom is undesirable for the complexity binary relation R.

• Connected if ∀ a, b ∈ A, a 6= b → (a, b) ∈ R or (b, a) ∈ R. This is undesirable

since some pairs of objects may share the same complexity class and hence

not all pairs of objects are necessarily connected through the relation that one

object is more complex than the other. We will show that connectedness is

an undesirable axiom using the example described above. a has higher values

in terms of both complexity measures than c, hence a is more complex than c

and therefore is connected to c through the complexity relation R. However,

a is not more complex than b and thus shares the same complexity class as b,

thus a is not connected to b through the complexity relation R. Similarly, b is

not more complex than c and therefore b is also not connected to c. Thus, this

axiom is undesirable for the complexity binary relation R since some objects

may share the same complexity class.

• Strongly Connected if ∀ a, b ∈ A, (a, b) ∈ R or (b, a) ∈ R. This is unde-

sirable since if the connectedness axiom does not hold true, then this axiom

cannot hold true.

Therefore, the binary relation “is more complex than”, R, should satisfy the irreflex-

ivity, asymmetry and transitivity axioms.

It is important to point out that our purpose here is not to introduce an-

other measure of complexity that can supposedly overcome all previous limitations
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associated with existing measures neither claiming that it is an all-encompassing

technique which will be able to calculate a definitive complexity value for complex

systems. Our objective here is simply to propose and demonstrate that the Pareto

set of solutions arising from an EMO process can be highly beneficial for character-

izing and comparing between the complexities of different systems and at the same

time satisfy the axioms desirable in a complexity binary relation. Furthermore, we

will show through our experiments that the Pareto approach is a useful complexity

measure. A complexity measure is said to be useful when it is able to capture what

we intuitively regard as complex (Edmonds 1999).

There are two major advantages associated with using an EMO-based ap-

proach for capturing complexity. Firstly, it measures complexity of a particular

system as seen from an observer’s point of view. This has been argued by Casti

(1986) to be paramount since the complexity of a system only has meaning through

the interaction with its observer, particularly in more subjective areas such as be-

havioral complexity. As he puts it,

“. . . system complexity is a contingent property arising out of the inter-

action I between a system S and an observer/decision-maker O. Thus,

any perception and measure of complexity is necessarily a function of S,

O, and I.” (Casti 1986, p.149)

More importantly, he highlights the fact that

“Conditioned by the physical sciences, we typically regard S as the active

system, with O being a passive observer or disengaged controller. Such

a picture misses the crucial point that generally the system S can also

be regarded as an observer of O and that the interaction I is a two-way

path.” (Casti 1986, p.149)

Since a Pareto set is the result of optimization across two (or more) objectives, the

solutions can be viewed as the result of a two-way interaction that occurs between

the different objectives during the optimization process. Hence, a Pareto approach

provides a distinct advantage when used to capture complexity by generating a set
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of solutions that inherently exhibits properties of a two-way interaction and which

can be reversibly used simply by looking at the results from the other optimization

objective’s view.

Secondly, we contend that the Pareto approach achieves a certain level of

pragmatism when used as a complexity measure as opposed to simply providing

a syntactic or semantic measure of complexity. In other words, it does not simply

measure the complexity at the level of the language or symbols used to construct the

system as in a typical syntactic measure nor does it measure the system’s complexity

within some predefined context or environment as would a semantic measure. Car-

iani (1992) explains that the syntactic axis represents operations conducted at the

symbolic level, the semantic axis represents operations where symbolic information

is extracted from the environment through measurement and control while the prag-

matic axis represents the selection of appropriate measurements and controls that

are advantageous to the operation of the system. In this sense, the proposed EMO

methodology towards capturing complexity goes one step further in that it captures

complexity through an evolutionary optimization process that continually gener-

ates new solutions from modification of previous solutions arising from testing and

measurement of the system’s performance within a given context or environment,

which in turn is guided by the Pareto approach that imposes evolutionary pressures

from multiple dimensions. In other words, it provides a view of complexity from a

practical standpoint since a Pareto set comprises of solutions from a selection and

adaptation process thereby constituting a pragmatic approach when such a Pareto

set is used as a measure of complexity.

7.3.2 The Complexity Measure

We now present the formulation of our proposed complexity measure and

demonstrate how it can be applied to characterize as well as compare the behavioral

and morphological complexities of embodied artificial creatures. First, we define

an embodied organism as the interaction between five components: morphology,

behavior, controller, environment, and the learning algorithm. We will then show
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how complexity can be defined as a partial order relation over this five-dimensional

hyperspace. Accordingly, the complexity of two embodied organisms can be com-

pared using this partial order relation. Finally, we support our argument with some

experimental results which is presented in Section 7.4.

What follows is our proposal of a generic definition for complexity using

the multi-objective paradigm. However, before we proceed with our definition, we

need first to explain the concept of partial order.

Definition 1: Partial and Lexicographic Order. Assume the two sets A and

B. Assume the l-subsets over A and B such that A = {a1 < · · · < al} and

B = {b1 < · · · < bl}.

A partial order is defined as A ≤j B if aj ≤ bj, ∀j ∈ {1, . . . , l}

A Lexicographic order is defined as A <j B if ∃ak < bk and aj = bj, j <

k, ∀j, k ∈ {1, . . . , l}

In other words, a lexicographic order is a total order. In multi-objective

optimization, the concept of Pareto optimality is normally used. A solution x be-

longs to the Pareto set if there is not a solution y in the feasible solution set such

that y dominates x (that is x has to be at least as good as y when measured on all

objectives and better than y on at least one objective). The Pareto concept thus

forms partial orders in the objective space.

Let us recall the embodied cognition problem. The problem is to study the

relationship between the behavior, controller, environment, learning algorithm and

morphology. A typical question that one may ask is “What is the optimal behavior

for a given morphology, controller, learning algorithm and environment?”. We can

formally represent the problem of embodied cognition as the five sets B, C, E, L, and

M for the five-dimensional hyperspace of behavior, controller, environment, learning

algorithm, and morphology respectively. We also need to differentiate between the

robot behavior B and the desired behavior B̂. The former can be seen as the actual

value of the fitness function and the latter can be seen as the real maximum of

the fitness function. For example, if the desired behavior (task) is to maximize
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the locomotion distance, then the global maximum of this function is the desired

behavior, whereas the distance achieved by the robot (what the robot is actually

doing) is the actual behavior. In traditional robotics, the problem can be seen as

Given the desired behavior B̂, find L which optimizes C subject to E
⋃

M . In

psychology, the problem can be formulated as Given C, E, L and M , study the

characteristics of the set B. In co-evolving morphology and mind, the problem is

Given the desired behavior B̂ and L, optimize C and M subject to E. A general

observation is that the learning algorithm is usually fixed during the experiments.

In asking a question such as “Is a human more complex than a Monkey?”,

a natural question that follows would be “In what sense?”. Complexity is not

a unique concept. It is usually defined or measured within some context. For

example, a human can be seen as more complex than a Monkey if we are looking

at the complexity of intelligence, whereas a Monkey can be seen as more complex

than the human if we are looking at the number of different gaits the monkey has

for locomotion. Therefore, what is important from an artificial life perspective is to

establish the complexity hierarchy on different scales. Consequently, we introduce

the following definition for complexity.

Definition 2: Complexity is a strict partial order relation.

According to this definition, we can establish an order of complexity be-

tween the system’s components/species. We can then compare the complexities of

two species S1 = (B1, C1, E1, L1,M1) and S2 = (B2, C2, E2, L2,M2) as:

S1 is at least as complex as S2 with respect to concept Ψ iff

SΨ
2 = (B2, C2, E2, L2,M2) ≤j SΨ

1 = (B1, C1, E1, L1,M1), ∀j ∈ {1, . . . , l}, Given

Bi = {Bi1 < · · · < Bil}, Ci = {Ci1 < · · · < Cil}, Ei = {Ei1 < · · · < Eil},

Li = {Li1 < · · · < Lil}, Mi = {Mi1 < · · · < Mil}, i ∈ {1, 2} (7.4)

where Ψ partitions the sets into l non-overlapping subsets.
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We can even establish a complete order of complexity by using the lexico-

graphic order as:

S1 is more complex than S2 with respect to concept Ψ iff

SΨ
2 = (B2, C2, E2, L2,M2) <j SΨ

1 = (B1, C1, E1, L1,M1), ∀j ∈ {1, . . . , l}, Given

Bi = {Bi1 < · · · < Bil}, Ci = {Ci1 < · · · < Cil}, Ei = {Ei1 < · · · < Eil},

Li = {Li1 < · · · < Lil}, Mi = {Mi1 < · · · < Mil}, i ∈ {1, 2} (7.5)

The lexicographic order is not as flexible as partial order since the former

requires a monotonic increase in complexity. The latter however, allows individuals

to have similar levels of complexity. Therefore, it is more suitable for defining

hierarchies of complexity. Hence, our definition of complexity based on the Pareto

approach conforms to the set of axioms desirable in a binary operator for measuring

complexity as discussed earlier in Section 7.3.1.

The concept of Pareto optimality is a special case of the partial order

concept in that Pareto optimality is a strict partial order. In other words, Pareto

optimality does not satisfy reflexivity; that is, a solution cannot dominate itself.

Therefore two copies of the same solution cannot co-exist as Pareto solutions. Usu-

ally, when we have copies of one solution, we discard one of them. Therefore this

problem does not arise when the Pareto set is generated. As a result, we can assume

here that Pareto optimality imposes a complexity hierarchy on the solution set.

The previous definition will simply order the sets based on their complex-

ities according to some concept Ψ. However, they do not provide an exact quanti-

tative measure for complexity. In the simple case, given the five sets B, C, E, L,

and M : assume the function f , which maps each element in each set to some value

called the fitness, and assuming that C, E and L do not change, a simple measure

of morphological change of complexity can be

∂f(b)

∂m
, b ∈ B,m ∈ M (7.6)

In other words, assuming that the environment, controller, and the learning algo-

rithm are fixed, the change in morphological complexity can be measured in the
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eyes of the change in the fitness of the robot (actual behavior). The fitness will be

defined later in Section 7.4.2. Therefore, we introduce the following definition

Definition 3: Change of Complexity Value for the morphology is the rate of

change in behavioral fitness when the morphology changes, given that both

the environment, learning algorithm and controller are fixed.

The previous definition can be generalized to cover the controller and en-

vironment quite easily by simply replacing “morphology” by either “environment”,

“learning algorithm”, or “controller”. Based on this definition, if we can come up

with a good measure for behavioral complexity, we can use this measure to quantify

the change in complexity for morphology, controller, learning algorithm, or envi-

ronment. In the same manner, if we have a complexity measure for the controller,

we can use it to quantify the change of complexity in the other four parameters.

Therefore, we propose the notion of defining the complexity of one object as viewed

from the perspective of another object. This is not unlike Emmeche’s idea of com-

plexity as put in the eyes of the beholder (Emmeche 1994). However, we formalize

and solidify this idea by putting it into practical and quantitative usage through the

multi-objective approach. We will demonstrate that results from an EMO run of

two conflicting objectives results in a Pareto-front that allows a comparison of the

different aspects of an artificial creature’s complexity.

In the literature, there are a number of related topics which can help here.

For example, the Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis

1971) can be used as a complexity measure for the controller. A feed-forward neural

network using a threshold activation function has a VC dimension of O(WlogW )

while a similar network with a sigmoid activation has a VC dimension of O(W 2),

where W is the number of free parameters in the network (Haykin 1999). It is

apparent from here that one can control the complexity of a network by minimizing

the number of free parameters which can be done in a number of ways, the most

obvious being the minimization of the number of synapses and/or the number of

hidden units. It is important to separate between the learning algorithm and the

model itself. For example, two identical neural networks with fixed architectures
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may perform differently if one of them is trained using back-propagation while the

other is trained using an evolutionary algorithm. In this case, the separation between

the model and the algorithm helps us to isolate their individual effects and gain an

understanding of their individual roles.

In this set of experiments, we are essentially posing two questions, what

is the change of (1) behavioral complexity, and (2) morphological complexity of the

artificial creature in the eyes of its controller. In other words, how complex is the

behavior and morphology in terms of evolving a successful controller?

7.3.3 Complexity Measures Revisited

Before we proceed with an empirical experiment of how this complexity

measure based on the Pareto concept can be applied to capturing the morphological

and behavioral complexities of artificially evolved creatures, we first provide some

examples of how this methodology can be applied in a more general manner to the

biological, social and physical sciences.

First, we provide a Pareto view to complexity in the biological sciences.

More specifically, we will use two existing measures for biological complexity, namely

genome length and number of genes which were discussed previously in Section

7.2.2. The data used in this example are actual genomic information extracted

from the EnsEMBL on-line database (EnsEMBL.Org 2002)2. We will compare

the complexities of five different organisms (the version of the organism’s genomic

database is given in following parentheses): human (v.8.30a.1), mouse (v.8.3b.1),

zebrafish (v.8.08.1), fugu or pufferfish (v.8.1.1) and mosquito (v.8.1b.1). In terms

of genome length, the order of complexity from least to greatest number of DNA

base-pairs, we obtain

1. zebrafish (0.04× 109 BP)

2EnsEMBL is a joint project between European Molecular Biology Laboratory, European

Bioinformatics Institute and the Sanger Institute to develop a software system that produces and

maintains automatic annotation on eukaryotic genomes. It is one of the three main repositories

for genomic information (Gibas and Jambeck 2001).
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2. mosquito (0.28× 109 BP)

3. fugu (0.33× 109 BP)

4. mouse (2.73× 109 BP)

5. human (3.34× 109 BP)

However, if we take the number of genes instead as the measure for biological com-

plexity, then we obtain the following ordering

1. zebrafish (1511 genes)

2. mosquito (15088 genes)

3. mouse (22444 genes)

4. human (22980 genes)

5. fugu (31059 genes)

As such, by simply changing the complexity measure (scale) from genome length to

number of genes, we have dramatically changed the ordering of complexity for the

mouse, human and fugu, as depicted in Figure 7.2.

Now let us take a multi-objective approach to characterizing the complexi-

ties of these different organisms by combining the two biological complexity measures

into a 2D graph.

Let us assume that a real biological organism can be made analogous to

an artificial embodied creature. Now we can compare between the organisms’ com-

plexities by making the following representations: assume that all the organisms

share a common environment E being the Earth, acquire knowledge through some

common learning mechanism L such as reinforcement learning, that the organisms

have different morphologies M , that the genome is acting as a master controller C

and that the primal behavior in the organism B is a reflection of its genes.

Using the Pareto approach, we can now characterize the complexity of

these five organisms at four different levels. Firstly, we can make some observations
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Figure 7.2: Conflicting ordering of biological complexity when taking a single-

objective view to complexity measures (scales).
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about which organisms are more complex than others by considering the dominance

ordering present in one set of organisms defined within the two complexity dimen-

sions B and C. Since the mosquito dominates the zebrafish along both complexity

dimensions, we can say that the mosquito is more complex than the zebrafish. In a

similar manner, we can also say that the mouse is more complex than the mosquito

and that both the human and fugu is in turn more complex than the mouse. How-

ever, if we compare the human against the fugu, we cannot say that either is more

complex than the other because they both each dominate the other along one of the

complexity dimensions. In other words, the human and fugu are at the Pareto-front

of this particular set of organisms when compared using these two measures of bio-

logical complexity. In this case, the hierarchy of complexity can be illustrated as in

Figure 7.4.

Figure 7.4: Diagram illustrating the complexity hierarchy of 5 organisms constructed

using a Pareto approach.

Secondly, we can make some quantitative comparisons by looking at the

Euclidean distance between these organisms. We can see that the increase in com-

plexity from the zebrafish to the mosquito was smaller than the increase in complex-

ity from the mosquito to the mouse. We can also look at the change in complexity

along one dimension relative to the other. For example, a relatively small change in

the zebrafish’s number of DNA base-pairs resulted in a surprisingly large increase in

number of genes as compared to the required increase in number of DNA base-pairs
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going from the mosquito to the mouse for a roughly similar increase in the number

of genes.

Thirdly, if we had another dimension of complexity, say in terms of the

environment E and that E now represents the planet Mars, then this second set of

organisms from Mars can be compared with the first set of organisms from Earth

by taking the two Pareto-fronts present in these two sets of organisms and finding

some common ground for complexity along one dimension and comparing the rela-

tive change in the other. In this case, let us presume that Organism M-human and

Organism M-fugu represent the two organisms placed at the Pareto-front of organ-

isms from Mars, then these two organisms can be compared against the human and

fugu from Earth, since these form the Pareto-front of organisms from Earth. For

example, say if we find that Organism M-human has a comparable number of DNA

base-pairs as the fugu but has double the number of genes, then we might conclude

that the change in the environment from Earth to Mars shows a more complex en-

vironment in Mars in terms of the required number of genes to survive as compared

to on Earth since for the same number of DNA base-pairs, the organism in Mars

required more number of genes to allow for the survival of Organism M-fugu.

In terms of the social sciences, an example can be taken from the political

governance of two different countries, which can be regarded as two distinct complex

systems. Let us assume that Country A has less citizens than Country B and define

the complexity of the country based on the number of citizens that needs to be

governed. Using this measure, Country A would be considered less complex than

Country B. Let us assume that another measure of complexity can be formulated

in terms of the governance structure of the different countries. Assume Country A

is democratic with a government that is lead by a group of elected representatives

while Country B is autocratic with a government that is lead by a single dictator.

It is reasonable to assume that Country A requires many interactions between its

politicians before any decision can be made compared with no interaction required

whatsoever in the case of a decision made by the sole dictator in Country B. In this

sense, Country A may now be considered to be more complex than Country B on
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this new scale. A Pareto view will again help in comparing between the political

complexities of these countries by considering one complexity measure in the eyes

of the other complexity measure rather than taking these conflicting viewpoints as

stand-alone indicators, which would then reflect a failure in providing a reasonable

characterization of political complexity between the two countries by virtue of the

contrasting quantizations.

Let us now see how this can be done in terms of our formulated measure

of complexity. First, let us consider that the actual political complexity of these

countries are the result of interactions between both its citizens and governance

structure, rather than just either of these singular components. Then let us assume

that the political complexities of the countries represent the morphology M of the

complex system, that the environment E is unchanged if we consider them to be

geographically located in the same region of the world, that learning occurs through

some common medium L such as the mass media, that the populations represent the

behavior B and that the governance structures represent the controller C. Now we

can compare the change in political complexity between these two different countries

∂M by measuring some quantitative change in the behavior of the population ∂B

through some commonality that can be found in the hyperspace of the controlling

governance structure C. Conversely, we can compare the governance complexity

between the two countries ∂M from the reverse viewpoint by measuring some quan-

titative change in terms of the controlling governance structure ∂C through estab-

lishing some commonality in the hyperspace of the population’s behavior B. Casti

(1986) provides an elegant example of how such a complex system emerges from the

interactions between its governance structure and its citizens. Here, he states that

the citizens views the governance structure as complex if the actions taken by its

political leaders seem to be incomprehensible:

“. . . they [the citizens ] see a byzantine and unwieldy government bureau-

cracy and a large number of independent decision-makers (government

agencies) affecting their day-to-day life.” (p.150)

Similarly, the government typically also views its citizens as being very complex:
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“They [the political leaders ] would see a seemingly fickle, capricious pub-

lic, composed of a large number of independent self-interest groups clam-

oring for more and more public goods and services.” (p.150)

Hence, we can see that a multi-objective view to the study of social sciences such as

political complexity can again be very insightful and valuable.

In revisiting complexity measures for the physical sciences, let us turn to

an example from computer science itself. Wuensche (1999) has recently devised a

method for automatic classification of 1D cellular automata (CA) rules into one

of three dynamical groups, that is ordered, complex and chaotic systems based

on the frequency of particular updating rules being looked-up over time called the

input-entropy. Based on Shannon’s entropy measure, Wuensche (1999) formulated

input-entropy S at time-step t as

St = −
2k∑
i=1

(
Qt

i

n
× log(

Qt
i

n
)) (7.7)

where k and n are the neighborhood and system size of the CA, and Qt
i is the

lookup frequency of neighborhood i at time t. One of the proposed classification

methods was based on indications given by two measures: (1) the input-entropy

itself, and (2) the variability (standard deviation) of the input-entropy. An example

from Wuensche (1999) classified three rules from a Boolean CA system with k = 5

and n = 150, described as typical examples of CA behaviors, as given in Table 7.2:

Rule No. Classification Input-Entropy Variability of Input-Entropy

01 dc 96 10 Ordered low low

6c 1e 53 a8 Complex medium high

99 4a 6a 65 Chaotic high low

Table 7.2: Classification of 3 cellular automata rules according to Wuensche (1999).

Let us now consider two rules arising from the same CA setup that after

experimentation and analysis gave the following indications:

• Rule X: moderately high entropy, moderately high variability
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• Rule Y: very high entropy, very high variability

It would be difficult to classify these two rules since they are placed mid-way between

the existing classes. However, if we take a multi-objective view to this problem, we

would be able to provide the following perspective:
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Multi−Objective View of 5 CA Rules

Figure 7.5: Multi-objective view of 5 cellular automata rules by combining input-

entropy and variability of input-entropy. X-axis: Variability of input-entropy, Y-

axis: Input-entropy.

If we now cast the cellular automata system into our proposed measure

of complexity, we can formulate the following representations. The environment

E is represented by the CA’s overall system setup as defined by the neighborhood

size, periodic boundary conditions and dimensionality. As such, E remains constant

since both rules arise from the same CA setup. L would be null in all cases since

no learning occurs in a CA system. Let us now consider that the difference between

Rule X and Rule Y represents a change in the controller C of the CA system since

the dynamics of a CA is dependent on the rule being used in the CA. Next, we shall

consider that the morphology M of the CA is represented by the input-entropy and

that the behavior B of the CA is represented by the variability in the input-entropy.
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Firstly, we can see that Rule Y dominates all other rules in this particular

system since it has higher values for both complexity dimensions of B and M .

As such, we can say that Rule Y is the most complex rule from a multi-objective

perspective. Also, we can see that a Pareto-front is formed by the Chaotic and

Complex rules, and that both rules are as complex as each other since they both

dominate each other in one dimension. Furthermore, since Rule X is not dominated

by either the Chaotic nor the Complex rule in both dimensions, it too belongs to the

Pareto set for this particular CA system and that its complexity can be characterized

as being similar to that of the Chaotic and Complex rules in terms of B and M . As

for the Ordered rule, it has the same value for B (variability of input-entropy) as

the Chaotic rule and has a lower value for M (input-entropy) than the Chaotic rule.

As such, the Ordered rule is dominated by the Pareto-front of which the Chaotic

rule is a member. Hence, it can be characterized as being the least complex among

all the rules in this particular CA system since it is dominated by all other rules.

As with the biological example visited earlier, a change in the environment E, for

example increasing the neighborhood size, will produce a second set of observations

which can then be compared with this first set of observations by comparing the

two Pareto-fronts obtained from these two different CA systems.

In the next section, we will describe the setup of the experiments which

demonstrate empirically how our proposed measure for capturing complexity can

be applied to the comparison of the morphological and behavioral complexities of

artificially evolved creatures.

7.4 Experimental Setup

7.4.1 Two Artificial Creatures

Two artificial creatures were used in this study (Figure 7.6): (1) a quadru-

ped creature with four legs, (2) and a hexapod creature with six legs. The first

artificial creature (Figure 7.6.1) is the same quadruped used in Chapters 4, 5, and
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Figure 7.6: Screen dump of the 1. quadruped (left), 2. hexapod (right) artificial

creatures.

6. The second artificial creature (Figure 7.6.2) is a hexapod3 with 6 long legs that

are connected to the torso by insect hip joints. Each insect hip joint consists of two

hinges, making it a joint with two degrees of freedom: one to control the back-and-

forth swinging and another for the lifting of the leg. Each leg has an upper limb

connected to a lower limb by a hinge (one degree of freedom) joint. The hinges are

actuated by motors in the same fashion as in the first artificial creature.

Morphological Characteristic Simulated Quadruped Simulated Hexapod

No. of legs 4 6

Degrees of freedom 8 24

No. of sensors 12 24

No. of motors 8 18

Table 7.3: A comparison of the simulated quadruped and hexapod creatures’ mor-

phological characteristics.

Table 7.3 presents a comparison of the main features of the two artificial

creatures. It would appear that the quadruped has a much simpler design compared

to the hexapod creature. However, this is only a subjective observation from a

human designer’s perspective. It remains to be seen whether this view will hold when

3The design and experimentation of the hexapod creature was carried out jointly with another

graduate student Ms. Minh Ha Nguyen.
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we compare the complexities of these two artificial creatures from the controller’s

and behavior’s perspectives.

7.4.2 Controller Architecture

The Pareto-frontier of our evolutionary runs are obtained from optimizing

two conflicting objectives as in Chapter 5: (1) minimizing the number of hidden

units used in the ANN that act as the creature’s controller, and (2) maximizing

horizontal locomotion distance of the artificial creature. What we obtain at the end

of the runs are again Pareto sets of ANNs that trade-off between number of hidden

units and locomotion distance. The locomotion distances achieved by the different

Pareto solutions will provide a common ground where locomotion competency can

be used to compare different behaviors and morphologies. It will provide a set of

ANNs with the smallest hidden layer capable of achieving a variety of locomotion

competencies. The structural definition of the evolved ANNs can now be used as a

measure of complexity for the different creature behaviors and morphologies.

The type of ANN architecture used for the experiments in this chapter

is NNType3 as presented in Section 3.3.3, which has fully-connected feed-forward

network with recurrent connections on the hidden units as well as direct input-output

connections. Only one type of architecture was used since the results from Chapter

5 showed no significant differences between the four architectures. Of the four

architectures, NNType3 was chosen since the best overall locomotion distance was

achieved using this particular architecture. A diagrammatic representation of part

of the ANN architecture is illustrated in Figure 3.4.4. The genotype representation

used for specifying the ANN controller remains unchanged as explained in Section

3.4 and the SPANN algorithm as presented in Section 5.4.1 was again used to drive

the artificial evolutionary process.

7.4.3 Assumptions

Two assumptions need to be made. First, the Pareto set obtained from

evolution is considered to be the actual Pareto set. This means that for the creature



CHAPTER 7. CREATURE COMPLEXITY 219

on the Pareto set, the maximum amount of locomotion is achieved with the minimum

number of hidden units in the ANN. We do note however that the evolved Pareto

set in the experiments may not have converged to the optimal set. Nevertheless, it

is not the objective of this paper to provide a method which guarantees convergence

of EMO but rather to introduce and demonstrate the application of measuring

complexity in the eyes of the beholder. It is important to mention that although

this assumption may not hold, the results can still be valid. This will be the case

when creatures are not on the actual Pareto-front but the distances between them on

the intermediate Pareto-front are similar to that of creatures on the actual Pareto-

front.

The second assumption that we are making is that there are no redundan-

cies present in the ANN architectures of the evolved Pareto set. This simply means

that all the input and output units as well as the synaptic connections between lay-

ers of the network are actually involved in and required for achieving the observed

locomotion competency. We have investigated the amount of redundancy present

in evolved ANN controllers in Section 6.4.5 and found that the self-adaptive Pareto

EMO approach produces networks with virtually no redundancy.

Before excluding these assumptions, it is important to emphasize that none

of these assumptions will dramatically change our findings. Since we are interested

in the partial order and the rate of change, getting to the exact Pareto-front or

obtaining the neural network with zero redundancy may not affect the results. Take

for example the solutions on the Pareto set found during a hypothetical EMO run

X1 = (0, 5), X2 = (1, 4). Let us assume that the two solutions on the actual Pareto-

front are Y1 = (0, 5.5), Y2 = (1, 4.5). What we are interested in is the difference

between the two solutions and the partial order between them, which as can be

seen in this case, are not affected by the evolved Pareto-front not being the actual

Pareto-front. Obviously this is a hypothetical example but at least it demonstrates

that the assumptions may hold in a large number of actual cases.
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7.4.4 Evolutionary Runs

Two series of experiments were conducted. Behavioral complexity was

investigated in the first series of experiments and morphological complexity was

investigated in the second. For both series of experiments, each evolutionary run

was allowed to evolve over 1000 generations with a randomly initialized population

size of 30. The maximum number of hidden units was again fixed at 15 as in previous

experiments carried out in Chapters 4, 5, and 6. The number of hidden units used

and maximum locomotion achieved for each genotype evaluated as well as the non-

dominated set of solutions obtained in every generation were recorded. The Pareto

solutions obtained at the completion of the evolutionary process were compared to

obtain a characterization of the behavioral and morphological complexity.

To investigate behavioral complexity in the eyes of the controller, the mor-

phology was fixed by using only the quadruped creature but the desired behavior was

varied by having two different fitness functions. The first fitness function measured

only the maximum horizontal locomotion achieved but the second fitness function

measured both maximum horizontal locomotion and static stability achieved. By

static stability, we mean that the creature achieves a statically stable locomotion

gait with at least three of its supporting legs touching the ground during each step

of its movement. The two problems we have are:

(P1)

f1 = ⇑ d(g) (7.8)

f2 = ⇓
H∑

h=0

ρh (7.9)

(P2)

f1 = ⇑ d(g)/20 + s(g)/500 (7.10)

f2 = ⇓
H∑

h=0

ρh (7.11)

where P1 and P2 are the two sets of objectives used. f1 and f2 represent the respec-

tive fitness functions used to evaluate the genotypes g. d refers to the locomotion

distance achieved and s is the number of times the creature is statically stable as
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controlled by the ANN at the end of the evaluation period of 500 timesteps. P1

is using the locomotion distance as the first objective while P2 is using a linear

combination of the locomotion distance and static stability. Minimizing the number

of hidden units is the second objective in both problems.

To investigate morphological complexity, another set of 10 independent

runs was carried out but this time using the hexapod creature. This is to enable

a comparison with the quadruped creature which has a significantly different mor-

phology in terms of its basic design. The P1 set of objectives was used to keep the

behavior fixed. The results obtained in this second series of experiments were then

compared against the results obtained from the first series of experiments where the

quadruped creature was used with the P1 set of objective functions. Where the P1

experiments involving the quadruped creature was required, the results from Section

5.6 for NNType3 were used since the setup of the experiments were identical.

7.5 Results and Discussion

7.5.1 Morphological Complexity
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Figure 7.7: Pareto-frontiers of controllers obtained from 10 runs using the P1 set

of objectives for the 1. quadruped (left), 2. hexapod (right). X-axis: Locomotion

distance, Y-axis: No. of hidden units.
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Figure 7.8: Global Pareto-front of controllers obtained from 10 runs using the P1 set

of objectives for the quadruped and hexapod. X-axis: Locomotion distance, Y-axis:

No. of hidden units.

We first present the results for the quadruped and hexapod evolved under

P1. Figure 7.7 compares the Pareto optimal solutions obtained for the two differ-

ent morphologies over 10 runs. Figure 7.8 plots the global Pareto-front for both

the hexapod and quadruped. As such, we are comparing two Pareto-fronts that

characterize the complexities of two different systems. Here we are fixing E and

L. Therefore, we can either measure the change of morphological complexity in the

eyes of the behavior or the controller: that is, ∂f(B)
∂M

or ∂f(C)
∂M

respectively. If we fix

the actual behavior B as the locomotion competency of achieving a movement of

13 < d < 15, then the change in the controller ∂f(C) is measured according to the

number of hidden units used in the ANN. At this point of comparison, we find that

the quadruped is able to achieve the desired behavior with 0 hidden units whereas

the hexapod required 3 hidden units (Figure 7.8). Therefore, this is an indication



CHAPTER 7. CREATURE COMPLEXITY 223

that from the controller’s point of view, given the change in morphology ∂M from

the quadruped to the hexapod, there was an increase in complexity for the con-

troller ∂C from 0 hidden units to 3 hidden units. Hence, the hexapod morphology

can be seen as being more complex than the quadruped morphology in the eyes of

the controller.

Conversely, if we would like to measure the complexity of the morphology

from the eyes of the locomotion behavior, we can choose a common point of com-

parison in terms of the network size. If we fix the controller C to having a hidden

layer size of 3 hidden units, then the change in the locomotion behavior ∂f(B) is

measured according to the maximum distance achieved by artificial creatures. At

this point of comparison, we find that the quadruped achieves just over 17 units dis-

tance while the hexapod is only able to achieve just under 14 units distance (Figure

7.8). Thus, this is an indication that from the locomotion behavior’s point of view,

given the change in morphology ∂M from the quadruped to the hexapod, there

was an increase in complexity for the locomotion behavior ∂B of approximately 3

units distance. In this case, the quadruped morphology can be seen as being more

complex than the hexapod morphology.

As such, by taking different viewpoints, we find different interpretations

of which morphology is more complex than the other. This is not unlike what we

have seen in the biological sciences (see Section 7.2.2) where different complexity

measures result in different orderings of organismic complexity. Therefore, a Pareto

approach to capturing complexity is advantageous in the sense that it gives multiple

views of complexity through a single comparison exercise.

7.5.2 Behavioral Complexity

A comparison of the results obtained using the two different sets of fitness

functions P1 and P2 is presented in Table 7.4. Here we are fixing M , L and E and

looking for the change in behavioral complexity. The morphology M is fixed by using

the quadruped creature only. For P1, we can see that the Pareto-frontier offers a

number of different behaviors. In this case, we are comparing complexities within a
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Type of Pareto No. of Locomotion Static
Behavior Controller Hidden Units Distance Stability

P1 1 0 14.7730 19
2 1 15.7506 24
3 2 16.2295 30
4 3 17.0663 26
5 4 17.6994 14

P2 1 0 5.2065 304
2 1 3.3355 408
3 2 3.5935 420
4 3 3.6829 419

Table 7.4: Comparison of number of hidden units, locomotion distance and static

stability for global Pareto optimal controllers obtained using the quadruped for the

P1 and P2 sets of objective functions.

system by using the evolved Pareto-front to represent the complexity characteristics

of a single system. For example, a network with no hidden units can achieve up to

14.7 units of distance while the creature driven by a network with 5 hidden units

can achieve 17.7 units of distance within the 500 timesteps. This is an indication

that to achieve a higher speed gait entails a more complex behavior than a lower

speed gait.

We can also see the effect of static stability, which requires a walking

behavior, by comparing the two Pareto-fronts that characterize the P1 and P2

systems respectively. By comparing a running behavior using a dynamic gait in P1

with no hidden units against a walking behavior using a static gait in P2 with no

hidden units, we can see that using the same number of hidden units, the creature

achieves both a dynamic as well as a quasi-static gait. If more static stability is

required, this will necessitate an increase in controller complexity.

At this point of comparison, we find that the behavior achieved with the

P1 fitness functions consistently produced a higher locomotion distance than the

behavior achieved with the P2 fitness functions. This meant that it was much

harder for the P2 behavior to achieve the same level of locomotion competency in

terms of distance moved as the P1 behavior due to the added sub-objective of having
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to achieve static stability during locomotion. Thus, the complexity of achieving the

P2 behavior can be seen as being at a higher level of the complexity hierarchy than

the P1 fitness function in the eyes of the controller.
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Figure 7.9: Locomotion distance of Pareto solutions obtained from 10 runs using

the quadruped with the P1 (left) and P2 (right) sets of objective functions. X-axis:

Locomotion distance, Y-axis: No. of hidden units.

Figure 7.9 depicts the locomotion distance achieved using the quadruped

with the P2 set of objectives, which measure for both locomotion distance and static

stability, along with the Pareto-fronts obtained from using the P1 set of objectives.

Note that the graph for P2 does not depict Pareto-fronts since we are only inter-

ested in the locomotion distance, which is only part of the objective function. Here

we see that the locomotion distance achieved was much lower due to the added

sub-objective of attempting to maximize static stability. This is expected since the

creature will be discouraged from jumping behaviors, which may allow for greater

locomotion capabilities. No controllers could be found that achieved a locomotion

distance of d > 7. As such, it was not possible to compare the behavioral complex-

ities of standard locomotion versus locomotion with stability since the quadruped

evolved for standard locomotion achieved a distance of 13 < d < 15 with the least

complex network of 0 hidden units. In other words, no commonality could be found

that would have enabled a comparison of the change in behavioral complexity from
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the eyes of the controller.

7.5.3 Limitations

From our experiments, we note the following limitations with the proposed

complexity measure based on the Pareto approach:

• To compare across Pareto-fronts from different systems, some common ground

needs to be established to enable a fair comparison of complexity. The first

disadvantage arising from this requirement is that the inherent complexity of

the particular component being investigated may be so different between the

different systems that no common ground exists. For example, we found that

no common ground existed when we tried to compare between the two fit-

ness functions P1 and P2 when viewed from the controllers perspective (see

Section 7.5.2). Secondly, the actual determination of the range of values con-

sidered to be within this area of commonality is dependent on the results of

the components being compared. For example, in our comparison between the

quadruped and hexapod creatures, we determined that the locomotion com-

petency range used as the common ground when viewing from the controller’s

perspective was 13 < d < 15 by virtue of the results that were obtained (see

Section 7.5.1).

• In empirical studies involving artificial evolutionary systems, some form of con-

flicting objectives needs to be present before this Pareto approach will provide

any additional benefits in taking a multi-objective view to complexity. In the

case where the objectives of a particular problem are not in conflict, the Pareto

approach will simply reflect an hierarchical ordering similar to those obtained

when the individual single objectives are used to characterize the objects in

question. As such, this requirement of having conflicting objectives is not so

much of a disadvantage but rather a desirable characteristic to have for the

Pareto approach to be able to provide a different view towards capturing com-

plexity. For example, if the evolutionary runs conducted in our experiments
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had maximization of locomotion distance and straight-line walking behavior,

then there exists no conflict since the maximum distance will be achieved when

the walking behavior results in a path that is maximally straight. In other

words, this complexity measure will not provide any additional value towards

characterizing complexity unless the system in question can be formulated in

some form of conflicting components.

7.6 Chapter Summary

In the introductory sections of this chapter, we have reviewed the concept

of complexity as well as a number of existing measures of complexity as applied in

the social, biological and physical sciences. We then proposed a Pareto approach to-

wards complexity and revisited each of these areas to show how conflicting measures

of complexity can be re-formulated using a Pareto approach to provide an under-

standing of complexity from different perspectives. Subsequently, we proceeded to

demonstrate how this technique can be applied empirically for studying the behav-

ioral and morphological complexities of artificially evolved embodied creatures. In

doing so, we found that the morphological complexity of a quadruped creature was

lower than the morphological complexity of a hexapod creature as seen from the

perspective of an evolving locomotion controller. At the same time, the quadruped

was found to be more complex than the hexapod in terms of behavioral complexity.

This proposed measure will allow for artificial creatures with evolvable morphologies

to be compared in terms of their morphological as well as behavioral complexity in

the next chapter.


