
Chapter 5

Multi-Objective Controller

Evolution

1 The artificial evolution conducted in prior studies have mainly focused on

single objectives, for example walking, swimming, light-following, block-pushing or

obstacle avoidance (Sims 1994b; Komosinski and Rotaru-Varga 2000; Hornby and

Pollack 2001a; Bongard 2002a). Although there have been some studies that ap-

pear to have multi-objectivity present in the evolutionary system, such as predator-

prey simulations (Cliff and Miller 1996; Nolfi and Floreano 2000; Floreano, Nolfi,

and Mondada 2001), body-brain co-evolution (Bongard and Paul 2000; Hornby and

Pollack 2001a) and evolution by physical competition (Sims 1994b), they do not

explicitly impose the evolutionary search on distinctly different optimization crite-

ria. In other words, these studies do not explicitly qualify the solutions in terms

of a Pareto set (explained in next section), which is a focal concept in evolutionary

multi-objective optimization (EMO). Consequently, the resulting artificial creatures

cannot exhibit clear trade-offs in terms of their different evolutionary goals. Here,

we propose a methodology for multi-objective evolution of creature controllers that

emphasizes the generation of Pareto optimal sets of solutions, that is the generation

of results that explicitly trade-off between two different and conflicting optimization

1Some of the material presented in this chapter have been previously published in Teo and

Abbass (2002a; 2002b; 2002c).
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objectives. More specifically, we will attempt to simultaneously minimize the num-

ber of hidden units used in the creature’s ANN controller while at the same time

maximize the horizontal distance travelled by the creature as guided by its ANN

controller. Hence, our proposed approach will produce a Pareto optimal set of con-

trollers that have clear delineations between optimizing network size and locomotion

capability through an EMO process.

First, we explain the concept of non-dominance and Pareto optimality.

Then, we present an overview of the literature concerning EMO algorithms. This

is followed by a review of the PDE family of EMO algorithms, which our proposed

Pareto EMO algorithm for generating controllers is based upon. Next, we explain in

detail our proposed algorithm called SPANN. This is then followed by a discussion

of the experimental setup for evolving locomotion controllers using the proposed

Pareto EMO methodology. As the experiments from the previous chapter did not

show any discernable differences between the search space difficulties associated

with the four different types of ANN architectures proposed in Section 3.3.3, we will

continue to experiment with all four ANN types. This will ascertain whether or not

significant advantages can be offered by the different ANN architectures under an

EMO paradigm. The remainder of the chapter presents a detailed discussion of the

results from these experiments.

5.1 Dominance and Pareto Optimality

The optimization problem (hereafter referred to as P1) can be stated as

(P1): Minimise f(x)

subject to: θ(x) = {x ∈ Rn | G(x) ≤ 0}

where x is the set of decision variables, f(x) is the objective function, G(x) is a

set of constraints, and θ(x) is the set of feasible solutions. If the optimization

problem is maximization, it is equivalent to a minimization problem by multiplying

the objective by (−1). Also, if a constraint is an equation, it can be represented

by two inequalities — one is “less than or equal” and the other is “greater than or
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equal”. A “greater than or equal” inequality can be transformed to a “less than

or equal” inequality by multiplying both sides by (−1). In short, any optimization

problem can be represented in the previous general form.

Two important types of optimal solutions will be used in this thesis, local

and global optimal solutions. Let us define the open ball, that is a neighborhood

centered on x̄ and defined by the Euclidean distance δ, as follows

Bδ(x̄) = {x ∈ Rn | ||x− x̄|| < δ}

Definition 1: Local optimality A point x̄ ∈ θ(x) is said to be a local minimum

of the optimisation problem iff ∃ δ > 0 such that f(x̄) ≤ f(x), ∀x ∈ (Bδ(x̄)∩
θ(x)).

Definition 2: Global optimality A point x̄ ∈ θ(x) is said to be a global mini-

mum of the optimization problem iff f(x̄) ≤ f(x), ∀x ∈ θ(x).

Usually, there is more than a single objective to be optimized in real life ap-

plications. In this case, the problem is called a multi-objective optimization problem

(MOP). The problem P1 can be re-defined as a general multi-objective optimization

problem, MOP1, by replacing the objective function f(x) with a vector of objectives

F (x) as follows

(MOP1): Minimize F (x)

subject to: θ(x) = {x ∈ Rn | G(x) ≤ 0}

When the objectives are in conflict, the existence of a unique optimal solution is

no longer a valid concept. The solution which satisfies the optimality conditions of

one objective may be a bad solution for another. Consequently, we need to redefine

the concepts of local and global optimality in multi-objective problems. To do this,

we define two operators, � and ≺ and then assume two vectors, X and Y . X � Y

iff ∃ xi ∈ X and yi ∈ Y such that xi 6= yi. X ≺ Y iff ∀ xi ∈ X and

yi ∈ Y, xi ≤ yi, and X � Y . � and ≺ can be seen as the “not equal to” and

“less than” operators over two vectors. We can now define the equivalent concepts

of local and global optimality in a MOP.
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Definition 3: Local efficient (non-inferior) solution: A vector of objective va-

lues F (x̄), x̄ ∈ θ(x) is said to be a local efficient solution of MOP iff @ x ∈
(Bδ(x̄) ∩ θ(x)) such that F (x) ≺ F (x̄) for some positive δ.

Definition 4: Global efficient (non-inferior) solution: A vector of objective

values F (x̄), x̄ ∈ θ(x) is said to be a local efficient solution of MOP iff @ x ∈
θ(x)) such that F (x) ≺ F (x̄).

Definition 5: Pareto solutions: A point x̄ ∈ θ(x) is said to be a Pareto solution

of MOP iff F (x̄) is a global efficient solution of MOP.
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Figure 5.1: Diagram illustrating the concept of dominance and Pareto optimality.

X-axis: Objective 1, Y-axis: Objective 2.

The concept of dominance and Pareto optimality is depicted in Figure 5.1.

Let us consider the case where there are three solutions A, B, and C and assume

that the two objectives 1 and 2 are to be maximized. A is not dominated by any

other solution since it has the highest value for objective 2. Similarly, B is not

dominated by any other solution since it has the highest value for objective 1. C

is not dominated by A since it has a higher value for objective 1. However, C is
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dominated by B since it has lower values for both objectives 1 and 2 compared to

B. Hence we have the following situation

dominate(A) = φ

dominate(B) = φ

dominate(C) = {B}

where dominate(C) denotes the set of solutions that dominate C. Therefore, the set

of non-dominated or Pareto optimal solutions are given by

Pareto Set = {A, B}

5.2 Evolutionary Multi-Objective Optimization

EMO combines the fields of evolutionary computation with multiple crite-

ria decision-making for solving multi-objective optimization problems (Zitzler 1999;

Deb 2001; Coello Coello, Van Veldhuizen, and Lamont 2002). EMO is an established

sub-field of optimization and has been utilized for solving both theoretical and prac-

tical multi-objective optimization problems for over ten years (Zitzler 2002). A large

range of practical applications of EMO to real-life problems across a host of different

disciplines can be found in the reference texts by Deb (2001) and Coello Coello, Van

Veldhuizen, and Lamont (2002). The literature surveyed on EMO covering general

reviews, specific algorithms and related applications in the areas of robotics and

artificial life is summarized in Table 5.1.

As explained in the preceding section, unlike in single-objective optimiza-

tion, a multi-objective optimization problem gives rise to a number of optimal solu-

tions, known as Pareto optimal solutions, of which none can be said to be better than

the others with respect to all objectives. EAs are particularly suited for tackling

multi-objective optimization problems by virtue of their population-based nature

that allows for the generation of multiple solutions of the Pareto set within a single

run (Deb 2001; Coello Coello, Van Veldhuizen, and Lamont 2002). Hence, the pri-

mary goal in EMO is to find or to approximate the set of Pareto optimal solutions

through an evolutionary optimization process.
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Type Description Reference
General - Goldberg (1989)
Reviews Zitzler (1999)

Van Veldhuizen and Lamont (2000a)
Zitzler, Deb, and Thiele (2000)
Deb (2001)
Coello Coello, Van Veldhuizen, and Lamont (2002)
Laumanns, Thiele, Deb, and Zitzler (2002)
Zitzler (2002)

Algorithms VEGA Schaffer (1984)
MOGA Fonseca and Fleming (1993)
NPGA Horn, Nafpliotis, and Goldberg (1994)
NSGA Srinivas and Deb (1994)
SPEA Zitzler and Thiele (1999)
ELSA Menczer, Degeratu, and Street (2000)
IEDS Parmee, Cvetkovic, Watson, and Bonham (2000)

MOMGA Van Veldhuizen and Lamont (2000b)
NSGA-II Deb, Agrawal, Pratab, and Meyarivan (2000)

PAES Knowles and Corne (2000)
MOMGA-II Zydallis, Van Veldhuizen, and Lamont (2001)

Abbass, Sarker, and Newton (2001);PDE
Abbass and Sarker (2002)

MPANN Abbass (2001; 2002a)
SPEA2 Zitzler, Laumanns, and Thiele (2001)
PCGA Kumar and Rockett (2002)
SPDE Abbass (2002b)

Applications Robotics Gacogne (1997; 1999)
& ICS Tan and Li (1997)

Coello Coello, Christiansen, and Aguirre (1998)
Dozier, McCullough, Homaifar, Tunstel, and

Moore (1998)
Pirjanian (1998; 2000)
Tan, Lee, and Khor (1999)
Leger (1999)
Teo and Abbass (2002a)
Teo, Nguyen, and Abbass (2003)

A-Life Oliveira, de Oliveira, and Omar (2000)
Oliveira, Bortot, and de Oliveira (2002)
Kim and Hallam (2002)
Teo and Abbass (2002b; 2002c; 2003)

Table 5.1: Summary of literature survey on EMO reviews, algorithms and related

applications in intelligent control systems (ICS), robotics and artificial life (A-Life).
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The seminal work on EMO was that of Schaffer (1984) where the Vector

Evaluation Genetic Algorithm (VEGA) was introduced for solving machine learning

problems. Goldberg (1989) later outlined a 10-point list of how EMO algorithms

can be formulated based on the concept of Pareto dominance, out of which a num-

ber of the early and well-known EMO algorithms were developed: Multi-Objective

Genetic Algorithm (MOGA) (Fonseca and Fleming 1993), Non-dominated Sorting

Genetic Algorithm (NSGA) (Srinivas and Deb 1994) and Niched Pareto Genetic

Algorithm (NPGA) (Horn, Nafpliotis, and Goldberg 1994). These algorithms share

two common properties in that solutions were ranked according to their dominance

in the population and diversity was maintained using a niching strategy. However,

these algorithms did not use any elite-preserving mechanism and as such, could

not guarantee convergence to the Pareto optimal solutions. More recent algorithms

have since focused on the use of elitism during the EMO process to improve on the

convergence properties, such as Strength Pareto Evolutionary Algorithm (SPEA)

(Zitzler and Thiele 1999), Pareto Archived Evolution Strategy (PAES) (Knowles

and Corne 2000), Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb,

Agrawal, Pratab, and Meyarivan 2000), Multi-Objective Messy Genetic Algorithm

(MOMGA) (Van Veldhuizen and Lamont 2000b), Strength Pareto Evolutionary

Algorithm 2 (SPEA2) (Zitzler, Laumanns, and Thiele 2001) and Multi-Objective

Messy Genetic Algorithm II (MOMGA-II) (Zydallis, Van Veldhuizen, and Lamont

2001).

A special issue of the Evolutionary Computation journal was published

on EMO algorithms in 2000 (edited by Deb and Horn) where a number of seminal

studies on EMO algorithms were presented. Firstly, multi-objective optimization

problems were rigorously defined and the theoretical development of EMO algo-

rithms was reviewed by Van Veldhuizen and Lamont (2000a). This article also

presented an early attempt at classifying the different types of EMO algorithms and

addressed specific issues such as fitness functions, Pareto ranking, niching, fitness

sharing, mating restriction and secondary populations. A systematic comparison

of a number of EMO algorithms was presented by Zitzler, Deb, and Thiele (2000)
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using a set of six test functions specially chosen to elucidate particular problems

associated with the EMO process. In this study, it was shown that elitism is partic-

ularly important for success in an EMO search. The PAES algorithm was introduced

by Knowles and Corne (2000) as a simple (1 + 1) evolutionary strategy algorithm

augmented with local search that is able to generate diverse solutions in solving

multi-objective optimization problems. In this study, six variants of PAES were

compared to variants of NPGA and NSGA over a diverse suite of six test functions.

The results showed that PAES consistently performed well over the range of test

functions. Parmee, Cvetkovic, Watson, and Bonham (2000) introduced the concept

of an Interactive Evolutionary Design System (IEDS) as a methodology which allows

EMO to be an interactive rather than a preset process. It was argued that such an

interactive process permits the redefinition of the variable and objective space over

the evolutionary process that will lead to a more finely tuned design environment.

A simple selection method called local selection, which is based on the comparison

of an individual’s fitness to a fixed threshold rather than to another individual, was

introduced by Menczer, Degeratu, and Street (2000) in an EMO algorithm called

Evolutionary Local Selection Algorithm (ELSA). It was shown that ELSA naturally

maintained genetic diversity by virtue of the local selection process and performed

well for three multi-objective optimization problems.

More recently, the Pareto Converging Genetic Algorithm (PCGA) proposed

by Kumar and Rockett (2002) eliminates the use of a niching strategy for diversity

maintenance and was shown to produce competitive results on three benchmark

problems while at the same time reducing computational cost. Laumanns, Thiele,

Deb, and Zitzler (2002) also recently researched on the problem of maintaining

diversity among the solutions while still being able to converge to the true Pareto

optimal solutions in EMO algorithms. The concept of ε-dominance was proposed

as a method for overcoming these problems and was shown that algorithms using

this methodology for archiving solutions will theoretically converge to the actual

Pareto-front in the limit while being able to maintain an optimal distribution of

solutions along this front.
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5.2.1 EMO in Control, Robotics and Artificial Life

EMO has been previously applied to the automated design of intelligent

control systems by Tan and Li (1997) and Tan, Lee, and Khor (1999). There have

also been studies on using true multi-objective optimization methods for the au-

tomatic design of artificial creatures. Pirjanian (1998, 2000) used multi-objective

optimization to generate action selection modules in a behavior-based robotics ex-

periment. However, this study utilized conventional mathematical optimization

methods and did not make use of an evolutionary optimization approach. Evo-

lutionary methods have been used to solve navigational problems with multiple

objectives for 2D mobile agents in simulation (Dozier, McCullough, Homaifar, Tun-

stel, and Moore 1998; Gacogne 1997; Gacogne 1999). Coello Coello, Christiansen,

and Aguirre (1998) also used an EMO approach for a robotics design problem but

this experiment involved only a non-autonomous subject in the form of an attached

robotic manipulator arm. Multi-objective evolutionary optimization has also been

used by Leger (1999) although the focus of the EMO approach was for optimiz-

ing the physical configurations of modular robotic components rather than for the

generation of autonomous robotic controllers. There have been a number of other

studies involving the use of some form of EMO for the design of robotic manipulator

arms as reviewed by Coello Coello, Van Veldhuizen, and Lamont (2002).

More recently, Oliveira, Bortot, and de Oliveira (2002) used an EMO ap-

proach in an artificial life study of 1D cellular automata for the density classification

task problem. It was reported that the use of an EMO approach offered signifi-

cant advantages in terms of defining and evaluating the fitness of evolving popu-

lations over a weighted sum approach carried out in a prior experiment (Oliveira,

de Oliveira, and Omar 2000). Kim and Hallam (2002) also recently reported the

use of EMO for solving the so-called Woods problem, which are goal-search prob-

lems for agents starting at random initial positions and having to find an end-state

goal position. The objective of the study was to quantify the amount of inter-

nal memory states required for the finite state machine controllers to solve a given

Woods task. Pareto-fronts of discrete internal memory states were minimized in a
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trade-off against maximizing the fitness of the agents, which were evaluated as the

minimum number of steps required to reach the end-state goal position from the

initial starting position. However, the artificial creatures were only very simple 2D

agents that acted in a discrete grid-world environment with movement allowed only

in the four cardinal directions. In this chapter, we will demonstrate the use of EMO

for evolving completely autonomous, embodied and situated creatures that act in

a 3D world with fully continuous and non-restrictive movements that trade-off be-

tween the number of internal nodes required in the neural network controller and

locomotion capability achieved. Furthermore, our experiments are aimed at gener-

ating legged locomotion in 3 dimensions rather than wheeled or mobile locomotion

behaviors that are restricted to 2 dimensions.

5.3 PDE Algorithm

Abbass et al. first introduced the Pareto-frontier Differential Evolution

(PDE) algorithm for vector optimization problems (Abbass and Sarker 2002; Ab-

bass, Sarker, and Newton 2001). PDE is a multi-objective adaptation of the original

Differential Evolution (DE) algorithm introduced by Storn and Price (1995) for op-

timization problems over continuous domains. The PDE algorithm outperformed

the SPEA algorithm (Zitzler and Thiele 1999) on five benchmark problems in this

introductory investigation.

PDE combined with local search was later introduced for evolving ANNs

in the MPANN algorithm (Abbass 2001). MPANN was found to be highly effective

for knowledge discovery in databases. In subsequent work, the MPANN algorithm

was empirically shown to possess better generalization in medical diagnosis of breast

cancer whilst incurring a much lower computational cost (Abbass 2002a).

In an extension to PDE, a self-adaptive version called Self-adaptive Pareto

Differential Evolution (SPDE) algorithm was proposed to allow for self-adaptation of

mutation and crossover rates during the optimization process (Abbass 2002b). Both

rates for new individuals are inherited from parents during crossover and mutated
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in the same process that occurs for decision variables. SPDE was found to be highly

competitive against 13 other EMO algorithms on four benchmark test functions and

actually outperformed a number of current state-of-the-art algorithms.

As described above, the SPDE algorithm has been found to be a highly

effective algorithm for optimization over a continuous domain. Moreover, it has also

been tested successfully for the evolution of ANNs. For these reasons, SPDE was

chosen as the algorithm for evolving the creature’s controllers since the parameters

that are being optimized in the evolutionary process are the real-valued weights of

the neural network. Furthermore, it provides an added advantage over the original

PDE algorithm since it allows for self-adaptation of the crossover and mutation

rates. It should be noted that other EMO algorithms may also be used to evolve

the creature’s controllers. However, since the objective of this work is to investigate

the application of an EMO approach for evolving artificial creature controllers and

not a comparison between EMO algorithms, the question of which EMO algorithm

will work best for this purpose is beyond the scope of this thesis and remains an

open question for future work.

5.4 Proposed SPDE-Based Controller Evolution

More recently, the SPDE algorithm has been combined with MPANN for

evolving artificial neural networks called the Self-adaptive Pareto Artificial Neural

Network (SPANN) algorithm (Abbass 2003). In this thesis, we propose a modified

version of SPANN for controller evolution. There are two major differences between

this proposed version and the original version of SPANN. Firstly, SPANN uses back-

propagation for learning. In the case of locomotion controller evolution, the task to

be learned is not clear-cut as in canonical classification problems. As such, the only

learning that takes place in the modified version of SPANN occurs only through

evolutionary adaptation. A possible future work would be to investigate the possi-

bility of augmenting the current proposed version of SPANN with lifetime learning

by somehow introducing a measure of error associated with the locomotion task,
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which would then allow back-propagation to be used. Nolfi (1999) has previously

shown how learning through back-propagation can be integrated with evolutionary

artificial neural networks to predict the next move state for an autonomous agent

in a 2D grid world. However, the prediction task required in this case involved only

movements in the four cardinal directions by virtue of the grid world. As such it

remains an open question how such a methodology can be applied to 3D physically

accurate embodied creatures living in virtual worlds with infinitely large numbers

of possible directions for locomotion.

Secondly, the repair function originally used in SPANN for evolving the

crossover and mutation rates (which truncates the whole number portion leaving

only the decimal portion), though useful for the data mining task, was found to

cause premature convergence of these rates to the lower boundary of 0 when evolv-

ing controllers. Consequently, the evolutionary optimization process would also

prematurely stagnate due to the lack of crossover and mutation during reproduc-

tion. Hence a new repair function as explained in Section 5.4.1 is proposed in the

modified version of SPANN to overcome this problem. For the remainder of the

thesis, this proposed version of the SPANN algorithm for controller evolution is re-

ferred to whenever the acronym SPANN is used. The pseudocode of this proposed

version of the algorithm is given in the next subsection.

5.4.1 The SPANN Algorithm

The pseudocode for the SPANN algorithm is as follows:

1. Create a random initial population of potential solutions. The elements of the

weight matrix Ω are assigned random values according to a Gaussian distri-

bution N(0, 1). The elements of the binary vector ρ are assigned the value 1

with probability 0.5 based on a randomly generated number according to a

uniform distribution between [0, 1], otherwise 0. The crossover rate δ and mu-

tation rate η are assigned random values according to a uniform distribution

between [0, 1].
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2. Repeat

(a) Evaluate the individuals in the population and label those who are non-

dominated.

(b) If the number of non-dominated individuals is less than 3 repeat the

following until the number of non-dominated individuals is greater than

or equal to 3:

i. Find a non-dominated solution among those who are not labelled.

ii. Label the solution as non-dominated.

(c) Delete all dominated solutions from the population.

(d) Repeat

i. Select at random an individual as the main parent α1, and two indi-

viduals, α2, α3 as supporting parents.

ii. Select at random a variable j.

iii. Crossover: With some probability Uniform(0, 1) > δα1 or if i = j,

do

ωchild
ih ← ωα1

ih + N(0, 1)(ωα2
ih − ωα3

ih ) (5.1)

ωchild
ho ← ωα1

ho + N(0, 1)(ωα2
ho − ωα3

ho ) (5.2)

ρchild
h ←





1 if (ρα1
h + N(0, 1)(ρα2

h − ρα3
h )) ≥ 0.5

0 otherwise
(5.3)

δchild ← δα1 + N(0, 1)(δα2 − δα3) (5.4)

ηchild ← ηα1 + N(0, 1)(ηα2 − ηα3) (5.5)

otherwise

ωchild
ih ← ωα1

ih (5.6)
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ωchild
ho ← ωα1

ho (5.7)

ρchild
h ← ρα1

h (5.8)

δchild ← δα1 (5.9)

ηchild ← ηα1 (5.10)

where each variable in the main parent is perturbed by adding to it a

Gaussian value N(0, 1) multiplied by the difference between the two

values of this variable in the two supporting parents. At least one

variable in Ω must be changed. If δ or η are not in [0, 1], repair by

adding (if < 0) or subtracting (if > 1) a random number between

[0, 1] until δ and η are in [0, 1].

iv. Mutation: With some probability Uniform(0, 1) > ηα1 , do

ωchild
ih ← ωchild

ih + N(0, ηα1) (5.11)

ωchild
ho ← ωchild

ho + N(0, ηα1) (5.12)

ρchild
h ←





1 if ρchild
h = 0

0 otherwise
(5.13)

δchild ← N(0, 1) (5.14)

ηchild ← N(0, 1) (5.15)

(e) Until the population size is M

3. Until maximum number of generations is reached.
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5.5 Experimental Setup

Four series of experiments were conducted to compare the evolution of

controllers using the four different types of ANN architecture. The fitness of each

genotype in these experiments was evaluated according to both the f1 and f2 ob-

jective functions, which measures the locomotion distance achieved and number of

hidden units used by the controller respectively as defined in Section 3.4.1. The

evolutionary and simulation parameters used were as reported in Section 3.5: 1000

generations, 30 individuals, 500 timesteps and 10 repeated runs. As with the fitness

landscape experiments in Chapter 4, the maximum number of hidden units allowed

in the ANN was set to 15. Being the objects of the evolutionary optimization pro-

cess, the locomotion distance and number of hidden units used in the ANN were

recorded for every individual generated in every generation.

First, we analyze the optimization results from the evolution of creature

controllers for the four types of ANN architectures. Next, we compare the con-

trollers obtained using our SPANN algorithm against those obtained from using the

random search, hill-climbing and random walk algorithms. Then, we analyze the

evolutionary dynamics at the individual as well as population level of genotypes gen-

erated during the evolutionary optimization process to provide a deeper insight into

how the evolution of controllers affects the evolution of locomotion capabilities in a

physically simulated artificial creature. This is followed by a characterization of the

search space difficulty associated with each of the four types of ANN architectures

to investigate whether any of the four ANN architectures provide any significant ad-

vantages in terms of evolutionary search for controllers with high locomotion fitness.

Finally, we analyze the operational dynamics of the overall best controller evolved

for locomotion distance using the SPANN algorithm to ascertain what is actually

happening in the creature’s limbs as they are controlled by the evolved ANN during

locomotion as well as the effect of noise on the performance of the evolved ANN

controller.
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5.6 Results and Discussion
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Figure 5.2: Pareto-front of solutions obtained for 10 runs using the SPANN algo-

rithm for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right), 3.

NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Locomotion distance,

Y-axis: No. of hidden units.

The Pareto-fronts achieved at the last generation for each of the 10 runs

are plotted in Figure 5.2. It can be noticed that a variety of solutions in terms of

controller size and locomotion capability was obtained in the majority of the evolu-

tionary runs. Most of the solutions on the Pareto-frontier comprised of controllers

with less than 5 hidden units in the ANN. This is an indication that larger networks

did not offer significant advantages in terms of generating better locomotion capa-

bilities compared to smaller networks. There were no obvious differences between
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the four different types of ANN architectures. However, having direct input-output

connections did have an observable effect on networks with 0 hidden units. The

locomotion achieved with NNType1 (Figure 5.2.2) and NNType3 (Figure 5.2.4) ar-

chitectures ranged between 2 up to almost 15 whereas NNType0 (Figure 5.2.1) and

NNType2 (Figure 5.2.3) architectures were clustered between 2 to 4. It should be

pointed out that although NNType0 and NNType2 networks with 0 hidden units do

not have any sensor-to-motor mappings whatsoever, some small movement is still

achieved due to the initial forces generated from the outputs of the these networks

since an activation value of zero would still produce an output signal of 0.5 by virtue

of the sigmoidal transfer function — however, without any mapping between the in-

put and output layers of the networks, this initial movement is unsustainable due

to the lack of synchronization ability (Teo and Abbass 2002a). Hence, NNType1

and NNType3 controllers with direct input-output connections could achieve suffi-

ciently good locomotion capabilities without requiring a hidden layer. The ability

of such pure reactive agents for solving complex sensory-motor coordination tasks

have previously been reported in wheeled robots (Lund and Hallam 1997; Pasemann,

Steinmetz, Hulse, and Lara 2001a; Nolfi 2002). These direct connections between

the input and output layers also appeared to have generated Pareto optimal net-

works with smaller sizes in a large majority of the runs. This may be due to the fact

that the direct input-output connections are already providing a good mechanism

for basic locomotion, thus requiring only a few extra hidden units to further improve

on this basic locomotion.

The largest network on the Pareto-front can be found with the NNType2

architecture using up to 13 hidden units. This suggests that the recurrency is some-

how making the locomotion task more difficult to learn and thereby adding unneces-

sary complexity to the task (it must be remembered that the recurrent connections

in NNType2 are already themselves adding structural complexity to the ANN ar-

chitecture). This observation is supported by comparing against the Pareto optimal

controllers obtained using the simple feed-forward-only NNType0 architecture, a

number of which utilized fewer hidden units than the NNType2 Pareto optimal
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controllers but were still able to achieve highly similar locomotion capabilities.
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Figure 5.3: Best locomotion distance of Pareto solutions obtained over 1000 gener-

ations for 10 runs using the SPANN algorithm for ANN architecture 1. NNType0

(top left), 2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom

right). X-axis: Generation, Y-axis: Locomotion distance.

The evolution of the Pareto solution for best locomotion distance using the

SPANN algorithm for the 10 runs over 1000 generations is depicted in Figure 5.3.

No marked differences between the four ANN architectures could be seen. Most

of the improvement occurred early during the evolutionary process where in most

runs, the best solution exceeded a locomotion capability of beyond 10 units by the

150th generation. Compared to the best solutions obtained using random search,

hill-climbing and random walk, the EMO algorithm provided a smoother progress
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over time in discovering fitter solutions. This may be an indication that the land-

scape is explored better using EMO. Among the four different ANN architectures,

NNType1 appeared to have the least amount of variation in terms of the best solu-

tion obtained over the 10 different runs (Figure 5.3.2). On the other hand, NNType2

showed much larger differences between the 10 runs (Figure 5.3.3). This might be

an indication that the additional direct input-output connections exhibited a less

rugged landscape compared to additional recurrent-only connections in the ANN

when evolving controllers using the EMO algorithm. In the former case, most of

the runs were able to proceed along more similar paths due to the presence of a

smoother landscape, thereby leading to less variation among solutions.

NNType Overall Best Average Best t-statistic
Locomotion Locomotion Distance (against NNType0)

Distance ± Standard Deviation
0 16.4104 13.4755 ± 1.8613 -
1 16.5375 13.6866 ± 1.8318 0.30
2 16.5418 12.7079 ± 2.4674 (0.87)
3 17.6994 13.9626 ± 1.7033 0.53

Table 5.2: Comparison of best locomotion distance for Pareto solutions found using

the SPANN algorithm over 10 independent runs.

The overall best Pareto solution in terms of locomotion fitness together

with the mean best locomotion fitness and standard deviations obtained using the

SPANN algorithm are given in Table 5.2. The overall and average best solutions

were obtained with the NNType3 architecture although the differences between ar-

chitectures were small. A t-test at both α = 0.05 and α = 0.01 significance levels

showed no significant differences between the four ANN architectures in terms of

the best solutions obtained over 10 independent runs. The lowest average best loco-

motion fitness was given by NNType2, which also showed a much larger deviation

among the best solutions found compared to the other architectures. This supports

the earlier observation that the evolutionary path encountered when using addi-

tional recurrent-only connections in NNType2 was more rugged, leading to greater

variation among solutions.

Table 5.3 lists the global Pareto optimal solutions found by SPANN over
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NNType No. of Hidden Units Locomotion Distance
0 0 4.9981

1 10.6792
2 14.1010
3 14.9951
4 16.4104

1 0 14.6870
4 15.2998
5 16.4548
6 16.5375

2 0 4.5740
1 15.4944
9 16.5418

3 0 14.7730
1 15.7506
2 16.2295
3 17.0663
4 17.6994

Table 5.3: Comparison of number of hidden units used and locomotion distance

for global Pareto optimal controllers obtained using the SPANN algorithm over 10

independent runs.

the 10 runs for each type of ANN architecture. The solutions with the highest

locomotion fitness used between 4 and 9 hidden units in the ANN controller. For

NNType0 and NNType3, the maximum number of hidden units required to generate

the best locomotion was only 4 hidden units whereas NNType1 required 6 hidden

units. NNType2 required the most number of hidden units (9). It is interesting to

note that by allowing direct input-output connections in NNType1 and NNType3,

controllers which did not use the hidden layer at all (0 hidden units) could generate

a sufficiently good locomotion ability, moving the creature up to a distance of 14.7

and 14.8 units respectively. This is empirical proof that perceptron-like controllers,

which rely only on input-to-output connections without any internal nodes, are

sufficient for generating simple locomotion in a four-legged artificial creature. As

previously pointed out, this phenomenon has been previously observed to occur in

wheeled robots as well (Lund and Hallam 1997; Pasemann, Steinmetz, Hulse, and

Lara 2001a; Nolfi 2002). As such, robots that are only required to perform simple
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tasks can be evolved as purely reactive agents, which would dramatically simplify the

process of synthesizing successful robot controllers. As previously explained in the

first paragraph of this section, for NNType0 and NNType2 controllers with 0 hidden

units, there is still an act of force on the creature produced by the zero-activation

output from these networks that permit the small initial movements.

5.6.1 SPANN vs. Random Search, Hill-Climbing and Ran-

dom Walk

NNType Algorithm Average Best t-statistic No. of
Locomotion Distance (against Hidden
± Standard Deviation SPANN) Units

0 SPANN 13.4755 ± 1.8613 - 6.5 ± 2.0
Random Search 7.5406 ± 0.6733 (9.96) 10.0 ± 2.3
Hill-Climbing 5.5969 ± 0.9714 (11.39) 7.0 ± 2.3
Random Walk 9.7725 ± 1.2009 (4.63) 7.4 ± 2.1

1 SPANN 13.6866 ± 1.8318 - 4.1 ± 3.5
Random Search 10.0931 ± 0.7348 (6.06) 7.4 ± 4.0
Hill-Climbing 8.4652 ± 2.6246 (5.45) 7.4 ± 2.0
Random Walk 10.4776 ± 0.9616 (4.84) 7.4 ± 2.2

2 SPANN 12.7079 ± 2.4674 - 6.2 ± 3.5
Random Search 7.3609 ± 0.7490 (7.02) 10.9 ± 2.5
Hill-Climbing 7.6568 ± 2.9365 (3.49) 6.4 ± 2.5
Random Walk 9.5602 ± 1.3372 (3.59) 8.2 ± 2.0

3 SPANN 13.9626 ± 1.7033 - 4.9 ± 2.6
Random Search 10.2878 ± 1.2747 (5.59) 9.2 ± 4.2
Hill-Climbing 6.9057 ± 1.5719 (11.46) 6.8 ± 2.2
Random Walk 10.0333 ± 1.2535 (5.78) 7.0 ± 1.4

Table 5.4: Comparison of best locomotion distance for Pareto/best solutions ob-

tained over 10 independent runs using the SPANN, random search, hill-climbing

and random walk algorithms over 10 independent runs.

Table 5.4 provides a comparison of the best results for locomotion distance

obtained using the SPANN, random search, hill-climbing and random walk algo-

rithms. For all four ANN architectures, the SPANN algorithm produced controllers

that had much higher locomotion capabilities than controllers obtained using ran-

dom search, hill-climbing and random walk. To confirm that the results obtained
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using the proposed SPANN algorithm were significantly superior, a t-test was con-

ducted. At both significance levels of α = 0.05 and α = 0.01, the best solutions

obtained using SPANN over 10 independent runs were all significantly higher in

terms of locomotion fitness than random search, hill-climbing and random walk

across all four ANN architectures.

The last column of Table 5.4 shows the average number of hidden units

used in the ANN of the best controller evolved for locomotion distance obtained over

the 10 different runs. It is clear that with the additional optimization objective of

minimizing the number of hidden units used in the ANN for the SPANN algorithm,

the number of hidden units required by the best controllers obtained from evolution

for all four different types of ANN architectures were lower than those obtained

using random search, hill-climbing and random walk, which were just optimizing

along the single objective of locomotion distance. However, what is interesting is

the fact that a significantly higher locomotion distance was achieved with a smaller

controller size when the EMO algorithm was used. This may be explained by the

strong evolutionary pressures on the survival of controllers within the population

during reproduction and selection, thereby playing a significant role in forcing con-

trollers to become increasingly efficient at locomotion as well as requiring fewer

active hidden units in the ANN controller. Moreover, the inclusion of a second ob-

jective to the optimization process may have provided an extra-dimensional bypass

in which the SPANN algorithm was able to reach a fitter solution space compared

to random search, hill-climbing and random walk. This phenomenon has been pre-

viously encountered during the evolution of walking behavior in a simulated biped

robot when additional morphological parameters for size and mass distribution of

body segments were added to the original chromosome of the artificial creature

(Bongard and Paul 2001). The EMO methodology may have naturally created

the extra-dimensional bypass through the optimization of multiple objectives. The

extra-dimensional bypass may have also arisen from the usage of ρ, which allows

hidden units to continuously evolve even though it may be inactive during certain

periods of the evolutionary process.
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5.6.2 Evolutionary Dynamics
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Figure 5.4: Non-dominated solutions generated by the SPANN algorithm over 1000

generations for runs using the first seed for ANN architecture 1. NNType0 (top left),

2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom right).

X-axis: Generation, Y-Axis: No. of hidden units, Z-axis: Locomotion distance.

Additional graphs can be found in the accompanying CD-ROM.

Figure 5.4 illustrates the evolution of non-dominated solutions over 1000

generations from the first run using the four different ANN architectures. Three main

results can be concluded from the analysis of these graphs, which are representative

of the dynamics of controller evolution from the other 9 runs conducted for each of

the architecture types respectively. Firstly, a large variety of solutions in terms of

locomotion capability and controller size is maintained throughout the evolutionary
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process. The evolution starts off with an even spread of solutions across the range

of permissible hidden layer sizes. A high level of evolutionary activity can then

be seen to occur before the 250–300th generation. During this evolutionary era,

solutions with different controller sizes and locomotion capabilities were actively

competing for survival as non-dominated solutions that will be carried over to the

next generation as parents. After the initial flurry of evolutionary activity, the

optimization process begins to stabilize after the 400–500th generation. Even at the

end of 1000 generations, between 3 to 6 different Pareto controllers in terms of the

number of hidden units used in the ANN were still present in the optimal set of

solutions out of a possible 16 different configurations for active hidden units.

Secondly, the graphs show that some genotypes with a certain hidden layer

architecture disappears from the non-dominated set of solutions and then reap-

pears, for example controllers with 8 hidden units in NNType0 (Figure 5.4.1) and

controllers with 5 hidden units in NNType2 (Figure 5.4.3). This phenomenon is

indicative of the evolutionary search process moving through the fitness landscape

by experimenting with different hidden layers sizes and eventually re-discovering a

network configuration previously used but now with added locomotion capabilities.

Lastly, we see from the evolutionary dynamics of controller evolution that

it is generally very hard for larger controllers with more hidden units to survive

due to the strong evolutionary pressure of trading-off the ANN performance and its

complexity. This observation is attributed to the fact that a larger controller does

not easily lead to locomotion abilities that can’t be achieved with a smaller controller

in this particular problem. As a result, larger controllers find it hard to compete

with smaller controllers in trying to maximize the horizontal distance travelled by

the quadruped.

In summary, the multi-objective approach maintains genetic diversity by

allowing individuals with different controllers and capabilities to be retained within

the genetic pool. This shows that the EMO approach is highly advantageous since

it allows for simultaneous maintenance of genetic diversity as well as survival of

individuals that exhibit particular advantages over the rest of the population. The
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maintenance of genetic diversity using an EMO approach has recently been verified

by Abbass and Deb (2003).
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Figure 5.5: Mean locomotion distance of population over 1000 generations (selected

seeds only) using the SPANN algorithm for ANN architecture 1. NNType0 (top

left), 2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom

right). X-axis: Generation, Y-Axis: Locomotion distance. Additional graphs can

be found in the accompanying CD-ROM.

Next, we analyze the mean of the population for locomotion distance as it

evolved over 1000 generations, which is depicted in Figure 5.5. There were gener-

ally four trends in the movement of the population mean during the evolutionary

optimization process present across the four types of ANN architectures. The most

commonly occurring trends in the population means were that of an early increase
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followed by a decrease and then stabilizing into a constant range, which is depicted

in Figure 5.5.1, and that of a slow and small increase over time, which is depicted in

Figure 5.5.4. However, there were also instances where there was a sudden evolution-

ary jump into a much higher fitness space which was then maintained throughout

the evolutionary process, as shown in Figure 5.5.2. This can be explained by reach-

ing an evolutionary peak and maintaining the search process within this high fitness

subspace, perhaps assisted by the presence of a large basin of attraction associated

with this subspace. This occurrence may also be indicative that the majority of

new solutions being generated are located near or close to a newly-found superior

solution, which results in the increase in population mean since new solutions being

generated have fitness values close to this superior individual. Finally, there were

also occurrences of the opposite phenomenon, that of a sudden decrease in the pop-

ulation mean, indicative of reaching an evolutionary peak which is surrounded by

low fitness subspaces, as illustrated in Figure 5.5.3. This again suggests the pres-

ence of a large basin of attraction, this time associated with a low fitness subspace.

Overall, these results support the earlier characterization of the random walk fitness

landscape using informational measures (Section 4.5.3.1) which showed that there

were a variety of shapes present on the evolutionary landscape and that depending

on the initialization and trajectory of the search process, smooth or highly rugged

landscape regions may be encountered.

NNType Average Locomotion Distance ± Standard Deviation
0 3.9848 ± 0.7972
1 5.5943 ± 1.9875
2 3.4466 ± 1.2297
3 5.1650 ± 1.7368

Table 5.5: Mean and standard deviation of all individuals’ f1 fitness generated within

all generations and over all 10 runs for SPANN. The average is calculated over

300,000 individual f1 fitness recorded across the entire evolutionary optimization

process.

Table 5.5 lists the average locomotion fitness achieved by all individuals

generated throughout the 1000 generations over 10 runs. On average, the fitness
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space occupied by the evolving population was highest in NNType1 followed closely

by NNType3. Correspondingly, a much lower fitness region of the search space was

occupied by the evolving populations of NNType0 and NNType2. This indicates

that the NNType1 and NNType3 architectures, which have the direct input-output

connections, permitted reproduction of offspring that were generally fitter than those

produced by NNType0 and NNType2. The inclusion of direct input-output connec-

tions introduces some sort of a lower bound on the performance of controllers having

the NNType1 and NNType3 architectures since these direct input-output connec-

tions are not subjected to evolutionary pressures and hence are always present in

any controller of these types. On the other hand, controllers using NNType0 and

NNType2 architectures have no such lower bound since controllers of these types

that use no hidden units will not have any mapping between the input and output

layers whatsoever. Nonetheless, it should be noted that although the fitness regions

occupied by the evolving populations of NNType1 and NNType3 were higher than

that of NNType0 and NNType2, no significant advantages were evident in terms of

leading the search towards a more optimal final solution since a t-test showed that

there were no significant differences between the best locomotion distances of the

Pareto solutions found using the four different types of ANN architecture (see Table

5.2).

5.6.3 Search Space Characterization

The distribution of genotypes generated during the EMO search process

is plotted in Figure 5.6 in terms of locomotion distance and number of hidden

units used in the ANN. Except for NNType1, the distribution of solutions obtained

across the solution space was less clustered for all other architectures using the

EMO algorithm compared to random search, hill-climbing and random walk. This

suggests that the EMO search process was able to sample more uniformly across both

objective spaces in spite of having the added optimization criterion of minimizing

the number of hidden units used in the ANN. In NNType1, a number of spikes

in the frequency distribution could be seen (Figure 5.6.2). A separate graph is
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Figure 5.6: Frequency distribution of solutions using the SPANN algorithm for ANN

architecture 1. NNType0 (top left), 2. NNType1 (top right), 3. NNType2 (bottom

left), 4. NNType3 (bottom right). X-axis: Locomotion distance, Y-axis: No. of

hidden units, Z-axis: Frequency.

plotted for this architecture in Figure 5.7. This occurrence is discussed further in

the next paragraph where the concentration of solutions in terms of the two separate

objectives is more evident in the accompanying contour graphs. Furthermore, for

all four architectures, a significantly larger proportion of individuals were generated

in the fitter regions of the locomotion objective space compared to random search,

hill-climbing and random walk.

The contour graphs in Figure 5.8 illustrate the distribution of solutions

across the two objectives of minimizing the hidden layer and maximizing locomotion
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Figure 5.7: Frequency distribution of solutions obtained using the SPANN algorithm

for ANN architecture NNType1 with re-scaled frequency axis. X-axis: Locomotion

distance, Y-axis: No. of hidden units, Z-axis: Frequency.

distance. Compared to hill-climbing and random walk, the effect of having an extra

objective in the form of minimizing the number of hidden units used in the ANN can

be seen from the slight shift in distribution of solutions towards the lower halves of

the graphs, which is very prominent in NNType3 (Figure 5.8.4) and most obvious in

NNType1 (Figure 5.8.2). As was discussed previously, the presence of direct input-

output connections allowed the search process to find effective locomotion controllers

using a very small number of hidden units or none at all. For NNType1, the spikes

highlighted in the previous paragraph can be seen in the high fitness regions of both

objective spaces using only 0 or 1 hidden units and achieving between 9 and 15 units

of locomotion distance.

The probability density function of solutions obtained using the SPANN

algorithm is illustrated in Figure 5.9 for all four ANN architectures. The graphs

clearly show that the probability of encountering fitter solutions in terms of lo-

comotion distance was much higher than in all previous search algorithms. The

probability density curves were similar to a large extent across all four architec-

tures in terms of the locomotion fitness. From the cumulative curve, it can be

seen that for NNType0 (Figure 5.9.1) and NNType2 (Figure 5.9.3), the probability



CHAPTER 5. MULTI-OBJECTIVE CONTROLLER EVOLUTION 116

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Locomotion distance

N
o.

 o
f h

id
de

n 
un

its

EMO NNType0

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Locomotion distance

N
o.

 o
f h

id
de

n 
un

its

EMO NNType1

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Locomotion distance

N
o.

 o
f h

id
de

n 
un

its

EMO NNType2

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Locomotion distance

N
o.

 o
f h

id
de

n 
un

its

EMO NNType3

Figure 5.8: Contour graphs of frequency distribution of solutions obtained using the

SPANN algorithm for ANN architecture 1. NNType0 (top left), 2. NNType1 (top

right), 3. NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Locomotion

distance, Y-axis: No. of hidden units.

of generating controllers approached 0 beyond a locomotion capability of 12 units

whereas for NNType1 (Figure 5.9.2) and NNType3 (Figure 5.9.4), the probability

only approached 0 beyond a locomotion capability of 14 units. This is another weak

indication that the direct input-output connections provided an easier path to reach

fitter controllers in terms of locomotion capability while the recurrent connections

did not appear to provide any significant advantages over the simple feed-forward

ANN architecture that had no extra connections between layers.
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Figure 5.9: Density (solid) and cumulative (dashed) probability distribution of solu-

tions obtained using the SPANN algorithm for ANN architecture 1. NNType0 (top

left), 2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom

right). X-axis: Locomotion distance, Y-axis: Probability.

5.7 Operational Dynamics

5.7.1 Behavior Inside and Outside Evolutionary Window

A top-down view of the artificial creature’s path as controlled using the

overall best ANN evolved for locomotion distance is plotted in Figure 5.10.1 for the

actual period between 1–500th timestep where the fitness of the controller is being

evaluated. A second graph of the artificial creature’s path for the period between

the 501–1000th timestep is plotted in Figure 5.10.2 to observe the locomotion be-



CHAPTER 5. MULTI-OBJECTIVE CONTROLLER EVOLUTION 118

−8 −6 −4 −2 0 2 4 6 8

−25

−20

−15

−10

−5

0

Top−Down View of Path Taken by Best Overall Controller: 1−500th Timestep

X−Plane

Z
−

P
la

ne

−8 −6 −4 −2 0 2 4 6 8

−25

−20

−15

−10

−5

0

Top−Down View of Path Taken by Best Overall Controller: 501−1000th Timestep

X−Plane

Z
−

P
la

ne

Figure 5.10: Path taken by artificial creature as controlled by overall best ANN

evolved for locomotion distance using the SPANN algorithm — NNType3: 4 Hidden

Units. 1. 1–500th timestep (left), 2. 501–1000th timestep (right) X-axis: X-Plane,

Y-axis: Z-Plane (in Vortex, the Z-Plane is the Y-axis).

havior beyond the actual fitness evaluation window used during evolution. This

controller has the NNType3 architecture and uses 4 hidden units. Although the

path taken was not exactly a straight line, it did however maximize the horizontal

distance moved fairly well. It begins from the origin at coordinates (0,0) and after

500 timesteps ends approximately at coordinates (−6.9,−16.5). This emergent be-

havior is interesting in that although the initial setup has the creature’s forwards

orientation as being in the positive coordinate areas of the X-Plane and Z-Plane,

the evolved locomotion behavior was in fact a backwards oriented walk if the ini-

tial positioning of the creature is taken as the reference frame. Visualization of the

other global Pareto solutions revealed similar orientations for the evolved locomo-

tion behaviors (interested readers can view video clips of these evolved behaviors in

the accompanying CD-ROM). This can be explained by the fact that all the global

Pareto solutions using the NNType3 architecture were actually obtained from one

run using a particular seed. Across the global Pareto solutions obtained with other

architectures using SPANN as well as other algorithms, the majority of the evolved

controllers produced movement in the forwards direction rather than this backwards
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movement. The design of the creature’s limbs and in particular how the joint con-

straints were set up allowed for both forwards and backwards oriented walks to be

evolved. Note that the initial movement seen in the other direction from coordi-

nates (0,0) to approximately (0.5,0) occurred during the standing up phase of the

creature’s locomotion. Once the creature stood up, it then started the backwards

oriented walk to achieve the maximal horizontal distance moved.

Towards the end of the walk, the path could be seen to start curving

back towards the X-Plane. The continuation of this peculiar behavior beyond 500

timesteps as controlled by this evolved ANN can be seen in the plot of the path in

Figure 5.10.2. Nonetheless, the creature was still able to walk in a fairly straight

line thereby achieving a reasonably maximal locomotion distance during this next

500 timesteps. If the path of the creature is considered over the entire 1-1000th

timestep, what this analysis shows is that the operational dynamics of the evolved

behavior during the period which the controller was actually evolved to perform can

be quite different to the operational dynamics when used beyond its evolutionary

design period. This phenomenon relates back to what was highlighted by Ronald

and Sipper (2001) in that the use of biologically-inspired solutions in engineering

problems may be problematic because unexpected and sometimes unwanted results

or behaviors might arise (discussed in the last paragraph of Section 2.3).

5.7.2 Limb Dynamics

The outputs generated from the operation of the overall best controller

evolved for locomotion distance to Actuators y1–y8 are plotted in Figure 5.11. In

all except one of the outputs, sine-like wave signals were generated by the evolved

ANN to the motors in the respective limb actuators. This is consistent with the

evolved walking behavior which is cyclic in nature.
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It is also interesting to note that the signals generated were quite distinctive

over time as near maximal outputs of either 0 and 1 at the peaks and troughs of

the cycle were being generated by the ANN. This behavior is close to the optimal

control strategy known as “Bang-Bang Controls”, which take their values on the

extreme points (in our case, 0 and 1) (Macki and Strauss 1982). In terms of the

single output which generated a totally flat signal of practically 0 magnitude over

time (Figure 5.11.7), this indicated the presence of a passively-controlled lower limb,

which obtained its swinging motion from the movement of the attached upper limb.

A visual inspection of the creature in simulation confirmed that this limb did in

fact exhibit some dynamical behavior during locomotion. This suggests that the

evolutionary search found a simpler control solution through the use of a passive

dynamic limb (McGeer 1990).

Limbs Correlation Coefficient
Upper and Lower Back Left 0.9410
Upper and Lower Front Left −0.9648
Upper and Lower Back Right 0.0376
Upper and Lower Front Right −0.9998

Table 5.6: Correlation coefficients for neural network outputs between the upper

and lower limbs of each leg.

Another interesting dynamical behavior that emerged from the outputs

of the ANN is that the component limbs in all of the legs learnt to coordinate and

synchronize their movements within each leg, with the exception of the leg containing

the passive dynamic limb. This is evidenced by the very high correlation between

the upper and lower limbs of the back left, front left and front right legs as shown

in Table 5.6. For a legged gait with good locomotion capabilities, the constituent

components in each leg would be expected to function as a cohesive unit in order for

each leg to generate useful movements for locomotion. The outputs to the individual

limb actuators for the back left leg have evolved to be almost entirely in-phase, as

evidenced by the very high positive correlation coefficient (0.9419). On the other

hand, the outputs to the individual limb actuators for the front left and front right

legs have evolved to be almost entirely out-of-phase, as evidenced by the very high
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negative correlation coefficients (−0.9648 & −0.9998). This shows that the neural

network controller has learnt to coordinate and synchronize between the limbs of

each leg, thereby allowing for successful locomotion to occur.

5.7.3 Effects of Noise

In this section, we investigate the effects of noise on the performance of

the overall best evolved controller for locomotion distance obtained from SPANN.

Seven different levels of noise were applied to the joint angle sensors, touch sensors

and outputs to the actuators individually as well as in combination for all three

elements. Random noise levels ranging from 1% to 50% of the individual ranges of

values for these sensors and actuators (see Section 3.2) were applied.

Noise Locomotion Locomotion Locomotion Locomotion
Level Distance Distance Distance Distance

with Noise in with Noise in with Noise in with Noise in
Joint Angle Touch Sensors Actuators All Sensors

Sensors and Actuators
1% 13.4402 ± 1.7281 14.3599 ± 0.9073 13.8640 ± 0.9970 13.8147 ± 1.2219
5% 13.2121 ± 2.0271 12.5348 ± 1.0275 13.2310 ± 0.7213 11.2828 ± 0.8163
10% 11.8406 ± 1.2960 10.6214 ± 1.3914 12.9669 ± 1.2229 9.5492 ± 0.5552
20% 8.7969 ± 0.8017 6.3701 ± 1.9298 10.8933 ± 2.5271 4.8763 ± 0.4763
30% 6.8828 ± 0.4429 3.5598 ± 1.2999 8.8441 ± 1.9260 2.6185 ± 1.0707
40% 6.6890 ± 0.6028 1.6049 ± 1.1109 6.7339 ± 1.7209 1.2486 ± 0.6111
50% 6.7256 ± 0.9367 1.3050 ± 1.0950 3.7132 ± 1.9092 1.2153 ± 0.4210

Table 5.7: Comparison of average locomotion distance achieved over 10 runs by

overall best controller evolved for locomotion distance using the SPANN algorithm

with varying noise levels in the sensors and actuators.

Table 5.7 lists the average and standard deviation of locomotion distances

achieved by the overall best locomotion controller from SPANN with varying levels

of noise applied to the sensors and actuators of the artificial creature. The perfor-

mance of the controller degraded monotonically in all cases as the level of noise was

increased from 1% to 50%, except for 50% noise in the joint angle sensor. At the

lowest level of noise of 1%, the least significantly affected component was the touch

sensor which still achieved on average 81.1% of the original locomotion distance.
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However, as the noise level was increased, the touch sensors seemed to be most af-

fected by the presence of noise. In all cases where noise ranging from 5% to 50% was

applied to the individual components, the lowest average locomotion distance was

obtained when there was the presence of noise in the touch sensors. When noise was

introduced to all sensors and actuators of the artificial creature in combination, the

performance was lower than in all cases where noise was applied to each individual

component except for 1% noise in the joint angle sensors. A visual inspection of the

artificial creature in simulation with 10% random noise added to the sensors and

actuators both individually and in combination revealed that the major character-

istics of the locomotion behavior was still present, such as the backwards oriented

walk and general movement of the limbs (interested readers can view video clips of

a sample of these behaviors in the accompanying CD-ROM). Therefore, the evolved

controller was still able to perform reasonably well with low levels of noise present

in the sensors and actuators of the artificial creature.

5.8 Advantages of Pareto EMO

From these experiments, it can be seen that the most significant advantage

in using a Pareto EMO approach for studying the evolution of artificial creatures as

proposed in our SPANN algorithm is that a variety of controllers can be generated in

a single evolutionary run without requiring any further modification of parameters by

the user. This means that an entire set of controllers with varying network sizes and

locomotion capabilities can be generated at once, allowing for comparisons between

creatures with different abilities and controllers to be made after just a single run is

conducted for each type of creature. As such, the Pareto EMO approach provides

a flexible and convenient platform for conducting investigations into the evolution

of artificial creatures. This represents a significant advantage over single-objective

evolutionary systems that need to be re-run multiple times in order to test the

effect of other factors such as number of hidden units on the locomotion capability

of the artificial creatures (Bongard and Pfeifer 2002). Such a setup would require a
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significantly larger number of evolutionary runs before a suitable set of controllers

with different network characteristics and locomotion capabilities can be obtained

in order to conduct comparisons between different creature designs. An alternative

method would be to re-formulate the problem by taking a weighted sum of the two

objectives into a single objective. However, there are a number of drawbacks in using

a weighted sum methodology, which we discuss in detail later in Section 6.4.2. In

short, the Pareto EMO paradigm allows the user the option to conveniently choose

from a variety of controllers with varying architectural complexities and locomotion

competencies to suit the eventual simulation environment, constraints and purposes.

A further advantage of using a Pareto multi-objective approach for arti-

ficial evolution is that genetic diversity is maintained naturally during the course

of the evolutionary process (Abbass and Deb 2003). A common problem with evo-

lutionary optimization algorithms is premature convergence due to loss of genetic

diversity and this phenomenon has been observed to cause problems in the artificial

evolution of virtual creatures as well (Komosinski and Rotaru-Varga 2001). In a

simple artificial life ecosystem, mutualism (Pachepsky, Taylor, and Jones 2002) was

proposed as a method for promoting genetic diversity and was shown to improve

evolvability as well as population stability in the artificial evolutionary system. Here,

we propose an evolutionary multi-objective algorithm that promotes reproductive

diversity by allowing the evolutionary process to optimize along two separate and

distinct goals of minimizing network size while maximizing locomotion ability. This

type of evolutionary optimization algorithm therefore fits well into the scheme of

creating artificial creatures. In this case, evolutionary creativity should not be sti-

fled by the optimization process but should instead be encouraged if interesting and

diverse creatures are to emerge from the process.

The use of EMO also opens up the possibility of creating extra-dimensional

bypasses through the search space that provide an easier path for the optimization

process to reach fitter regions of the solution space. This phenomenon has been

previously encountered in conventional single-objective evolutionary optimization

systems through the addition of extra genotypic parameters into the artificial evo-
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lutionary system (Bongard and Paul 2001). However, such artificial methods of

increasing the search space is rather subjective and may require significant experi-

mentation in order to find the right parameters that can create the extra-dimensional

bypass. In our proposed methodology, this is achieved in a natural manner through

the use of multiple optimization objectives. Here, we do not make the claim that

such extra-dimensional bypasses will be present under all EMO runs but simply

that the use of multiple objectives in an artificial evolutionary system allows for the

possibility of such bypasses to emerge through the inherently more complex inter-

actions between genes under multiple evolutionary pressures. The presence of high

epistatis is evidenced by the highly rugged fitness landscape areas present in certain

sub-regions of the search space as discussed in Section 4.5.3.1.

5.9 Chapter Summary

An investigation into the use of multi-objective evolutionary optimization

for automatic synthesis of ANN controllers that are proficient at generating locomo-

tion capabilities in a physically simulated quadruped yielded the following results:

• An EMO algorithm called SPANN was implemented for the multi-objective

evolution of artificial creature controllers. ANN controllers based on four dif-

ferent types of underlying architecture were successfully evolved for maximum

horizontal locomotion capability and minimum usage of number of hidden

units in the ANN.

• An EMO algorithm provides significant advantages over conventional single-

objective optimization algorithms by: (1) reducing the number of runs re-

quired to test different design factors associated with the synthesis of artificial

creatures, (2) preserving genetic diversity and, (3) offering extra-dimensional

bypasses for the search process to reach fitter solution spaces.

• Additional recurrent connections do not provide any significant advantages

over conventional feed-forward neural network architectures for evolving loco-
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motion capability in a four-legged artificial creature.

• Pure reactive agents not requiring hidden layer transformations in the ANN

controller produced sufficiently good locomotion capabilities. The use of di-

rect input-output connections in a perceptron-like controller was sufficient for

generating a basic locomotion ability in a four-legged artificial creature. The

use of a hidden layer was not required to synthesize a controller with a com-

paratively good locomotion capability.

• An operational dynamics analysis revealed that the ANN controller learnt to

coordinate and synchronize between the upper and lower limbs in three of the

simulated quadruped’s legs. The presence of a passively-controlled dynamic

limb was observed in the remaining leg. The ANN controller still performed

well when a reasonable level of noise was present in the sensors and actuators.

The design, implementation and use of an EMO algorithm called SPANN

for the evolution of artificial creature controllers has been presented in this chapter.

ANN controllers were successfully evolved for minimum hidden layer size and maxi-

mum horizontal locomotion distance using four different types of ANN architecture.

In the next chapter, we will compare the SPANN algorithm against more conven-

tional methods of evolutionary optimization to verify that this approach is actually

beneficial for evolving artificial creature controllers.


