@ Centro de Investigaciéon y Estudios
Avanzados del Instituto Politécnico
Nacional

Unidad Zacatenco

Electrical Engineering Department
Computer Science Section

On the Use of Self-Adaptation and Elitism for
Multiobjective Particle Swarm Optimization

By:

Gregorio Toscano Pulido

as the fulfilment of the
requirement for the degree of:
Doctor of Science

Specialization in:
Electrical Engineering

Option:
Computer Science

Advisor:
Dr. Carlos A. Coello Coello

Meéxico City, México. September 29, 2005

@ Centro de Investigaciéon y Estudios
Avanzados del Instituto Politécnico
Nacional

Unidad Zacatenco

Departamento de Ingenieria Eléctrica
Seccién de Computacién

Uso de Auto-Adaptacion y Elitismo para
Optimizaciéon Multiobjetivo Mediante Ctimulos de
Particulas

Tesis que presenta:

Gregorio Toscano Pulido

para obtener el grado de:
Doctor en Ciencias

En especialidad de:
Ingenieria Eléctrica

Opcioén:
Computacién

Director de tesis:
Dr. Carlos A. Coello Coello

México D.F., México. Septiembre 29 de 2005.

A mamad y papa

ii

Acknowledgments

e I express my sincere gratitude to Dr. Carlos A. Coello Coello for his invaluable help
and guidance over the last 5 years. Thanks for being my friend and mentor.

e I thank the reviewers for their valuable comments that greatly helped me to improve
the contents of this dissertation.

e | thank my parents for their love from the first day of my life, for their support,
financial and otherwise which have allowed me to enjoy student life for so long; my
sisters Pao and Mari, and my cousin gabo to be always my friends and accomplices;
and my beloved Gaby to be as she is.

e [acknowledge to all my friends at CINVESTAV: Adric, Agusto, Alex, Alfredo, Car-
los, Efrén, Gustavo, Isai, Jaimico, Ricardo, Luis, Lucio, Margarita, Nareli, Oscar,
Francisco, Rolando and Israel. Thanks also to the rest of my friends (too many to
name).

e [would like to thank to Sofy, Felipa and Flor for their administrative support.

e | acknowledge support from CONACyT through a scholarship to pursue graduate
studies at the Computer Science Section of the Electrical Engineering Department at
CINVESTAV-IPN, in México.

e The research work done in this PhD thesis was derived from CONACyT’s project
“Técnicas Avanzadas de Optimizacién Evolutiva Multiobjetivo” (Ref. 45683-Y) whose
Principal Investigator is Dr. Carlos A. Coello Coello.

iii

v

Abstract

Most real world problems are multiobjective. Usually, traditional nonlinear multiobjec-
tive optimization techniques are computationally expensive. Consequently, it is difficult to
obtain solutions in polynomial time if we increase the complexity of the problem. Further-
more, traditional mathematical programming techniques are normally highly susceptible to
the shape or continuity of the Pareto front. Therefore, alternative ways of thinking are
needed, new algorithms — evolutionary computation.

Particle swarm optimization (PSO) is a relatively recent evolutionary optimization
heuristic that has been found to be very successful in a wide variety of optimization tasks.
Its high speed of convergence and its relative simplicity make PSO a highly viable candidate
to be used for solving not only problems with a single objective function, but also multi-
objective optimization problems. However, PSO lacks an explicit mechanism to manage
multiple objectives.

In this dissertation, we analyze and extend the PSO algorithm to solve “efficiently”
multiobjective optimization problems. Our research is divided into three main components:
1) a proposal which extends PSO to handle multiple objectives. The main novelty of the
approach consists on using a clustering technique in order to divide the population of par-
ticles into several subswarms in variable space. Such modification, significantly improves
the quality of the Pareto fronts produced, since in each subswarm emerge a local search be-
havior. Also, in order to reduce the non-dominated set, we propose an additional approach
to decide whether a solution is accepted or not. 2) We present a mechanism to handle
constraints with PSO. Our proposal uses a simple criterion based on closeness of a particle
to the feasible region in order to select a leader. Our comparison of results indicates that
the proposed approach is highly competitive with respect to three constraint-handling tech-
niques representative of the state-of-the-art in the area. This constraint-handling approach
was implemented into our multiobjective particle swarm optimization algorithm (MOPSO).
3) Finally, in order to improve the general performance of the algorithm, we performed an
study about the MOPSO’s parameters. Then, we proposed a self-adaptation scheme to
select the best parameters’ values; such proposal was validated using several test functions
and metrics taken from the standard literature on evolutionary multiobjective optimization.
The results indicate that our approach is a viable alternative since it outperformed some of

the best multiobjective evolutionary algorithms known to date.

vi

Resumen

La mayoria de los problemas de mundo real son multiobjetivo. Generalmente las técnicas
tradicionales de optimizacién no-lineal multiobjetivo son computacionalmente costosas.
Consecuentemente, es dificil obtener soluciones en tiempo polinomial, si se incrementa la
complejidad del problema. Ademas, las técnicas tradicionales de programacién matematica
son normalmente altamente susceptibles a la forma o continuidad del frente de Pareto. Por
lo tanto, se necesitan nuevas herramientas alternativas para abordar dichos problemas. Una
de ellas es la computacion evolutiva.

La “optimizacién mediante ctimulos de particulas” (PSO!) es una heuristica evolutiva
relativamente nueva que ha sido usada para resolver exitosamente una amplia variedad de
tareas de optimizacién. Su alta velocidad de convergencia y su relativa simplicidad hacen
al PSO un candidato altamente viable para utilizarlo en la resolucién de problemas mul-
tiobjetivo. Sin embargo, el PSO carece de un mecanismo explicito para manejar objetivos
multiples.

En esta tesis, analizamos y extendemos el PSO para resolver “eficientemente” problemas
de optimizacién multiobjetivo. Nuestra investigacion estd dividida en tres partes principales:
1) una propuesta para habilitar al PSO para que pueda manejar objetivos miltiples. La
principal novedad del enfoque consiste en el uso de una técnica de clustering para dividir
la poblacién en diferentes sub-ciimulos (en el espacio de las variables de decisién). Dicha
modificacién mejora significativamente la calidad del frente de Pareto producido, en parte,
debido a que hace emerger una busqueda local en cada sub-ciimulo. También, para reducir
el conjunto de soluciones no-dominadas, proponemos un enfoque adicional para aceptar
soluciones. 2) Presentamos un mecanismo para manejar restricciones usando el PSO. Nues-
tra propuesta usa un criterio de seleccion de lideres basado en la cercania de una particula a
la region factible. Los resultados nos indican que el algoritmo propuesto es altamente com-
petitivo con respecto a tres técnicas de manejo de restricciones representativas del estado
del arte en el drea. Nuestra técnica fue también implentada en nuestro PSO multiobjetivo
(MOPSO). 3) Finalmente, para mejorar el desempeno general del algoritmo, realizamos un
estudio sobre los pardametros del MOPSO. Proponemos un esquema de auto-adaptacién para
seleccionar los mejores valores de los parametros; nuestra propuesta fue validada usando

'Por sus siglas en inglés.

vii

varias funciones de prueba y métricas tomadas de la literatura especializada. Los resultados
indican que nuestro algoritmo final es una alternativa viable, ya que supera el desempeno
algunos de los mejores algoritmos multiobjetivos que se conocen a la fecha.

viii

Contents

Acknowledgments

Abstract

Resumen

Table of Contents

1

Introduction
1.1 Introduction
1.2 Motivation e
1.3 Objectives
1.4 Contributions L e
1.5 Document Outline e
Background
2.1 Introduction e
2.2 Optimization e
2.2.1 Global Optimization
2.2.2 Multiobjective Optimization
2.3 Background Concepts
2.4 Performance Measures
2.5 Test Functions e
2.5.1 Deb 1’s Test Function
2.5.2 Deb 2’s Test Function
2.5.3 Kursawe’s Test Function
2.5.4 DTLZ2’s Test Function
2.5.5 ZDT1’s Test Function
2.5.6 ZDT2’s Test Function

2.5.7 7ZDT3’s Test Function

ii

iv

vii

N DN DN =

S O ot ot gt O

X CONTENTS

2.5.8 7ZDT4’s Test Function 18

2.5.9 ZDT6’s Test Function 18
2.5.10 Kita’s Test Function 19
2.5.11 Welded Beam’s Test Function 20
2.5.12 Speed Reducer’s Test Function 23
2.5.13 Osyczka2 ’s Test Function, 25

3 Evolutionary Algorithms 27
3.1 Introduction e 27
3.2 Evolutionary Algorithms 27
3.2.1 Evolutionary Programming 29
3.2.2 Evolution Strategies 29
3.2.3 Genetic Algorithms oo 30
3.2.4 Genetic Programming oo 31
3.2.5 Swarm Intelligence 31
3.2.5.1 Particle Swarm Optimization 31

3.3 Multiobjective Evolutionary Algorithms 33
3.3.1 Multi-Objective Evolutionary Components 33
3.3.2 Inmitialization Lo 34
3.3.3 Parent Selection Mechanism, 34
3.3.4 Variation Operators 37
3.3.4.1 Mutationo L 37

3.3.4.2 Recombination Lo 38

3.3.5 Survivor Selection Mechanism 38
3.3.5.1 Using a Historical Archive of Solutions 39

4 Multiobjective Optimization Techniques 41
4.1 Introduction L 41
4.2 Traditional Techniques L L 41
4.2.1 No Preference Information 41
4.2.2 A priori Methods 42
4.2.3 A posteriori Methods 42
4.2.4 Interactive Methods 43
4.2.5 Drawbacks of the Conventional Techniques 44

4.3 Evolutionary Techniqueso 44
4.3.1 Vector Evaluated Genetic Algorithm (VEGA) 45
4.3.2 Multiobjective Genetic Algorithm (MOGA) 46
4.3.3 Niched Pareto Genetic Algorithm (NPGA) 46
4.3.4 Non-dominated Sorting Genetic Algorithm (NSGA) 47
4.3.5 Strength Pareto Evolutionary Algorithm (SPEA) 48
4.3.6 Pareto Archived Evolution Strategy (PAES) 50
4.3.7 Multiobjective Micro Genetic Algorithm (MicroGA) 50
4.3.8 eMOEA 51
4.3.9 Multiobjective Particle Swarm Optimization 52

4.3.10 Current Trends 57

CONTENTS xi
4.3.11 Advantages and Disadvantages of Evolutionary Algorithms for MOPs 57

5 Multiobjective Particle Swarm Optimization 59
5.1 Multiobjective Particle Swarm Optimization 60
5.2 Handling multiple objectives oo 0oL 60
5.3 Improving the distribution oo 64
5.3.1 Adaptive Grid 64
5.3.2 edominance. 67
5.3.3 Hyper-plane distribution 0L 68
5.3.4 Experiment 1 70
5.3.5 Experiment 2 75

5.4 Maximizing the Spread L L 78
5.4.1 Using Subswarms to Improve the Spread 80

5.5 MOPSO’s Comparison of Results 84
5.5.1 Kursawe’s Test Function 84
5.5.2 ZDT1 Test Function 86
5.5.3 ZDT2’s Test Function 88

5.6 Conclusions e 90
A Constraint-Handling Mechanism for PSO 91
6.1 Introduction e 91
6.2 Related Work e 92
6.3 Constrained Particle Swarm Optimization 92
6.3.1 Mechanism to Handle Constraints 93

6.4 Test Functions 94
6.5 Comparison of Results 98
6.6 A Constraint-Handling Mechanism for MOPSO 102
6.7 CMOPSO’s Comparison of Results 105
6.7.1 Kita’s Test Function 105
6.7.2 Speed Reducer’s Test Function 107
6.7.3 Osyczka 2’s Test Function 109
6.7.4 Welded Beam’s Test Function 111

6.8 Conclusions e 113
Parameter Control in Multiobjective Particle Swarm Optimization 115
7.1 Introduction 115
7.2 Tuning or Adapting Parameters, 116
7.3 Parameter Adaptation 116
7.4 Related Work 117
7.5 MOPSO: Parameter’s Analysis 118
7.5.1 Experiment 1 119
7.5.2 Experiment 2 119
7.5.3 Experiment 3 120
7.5.4 Conclusions from the Experiments 120

7.6 Self-Adaptation Mechanism 121

xii

CONTENTS

C

7.7

7.8

7.6.1 Debl’s Test Function
7.6.2 Deb2’s Test Function
7.6.3 Kursawe’s Test Function
7.6.4 Kita’s Test Function

7.6.5 ZDT1’s Test Function
7.6.6 ZDT2’s Test Function
7.6.7 7ZDT3’s Test Function
7.6.8 ZDT6’s Test Function
7.6.9 Welded Beam Test Function
7.6.10 Osyczka2’s Test Function
7.6.11 Speed Reducer Test Function
7.6.12 Conclusions from the Experiment
Comparison of Results
7.7.1 Kursawe’s Test Function
7.7.2 7ZDT1’s Test Function

7.7.3 7ZDT2’s Test Function

7.7.4 DTLZ2’s Test Function
7.7.5 Welded Beam Test Function
7.7.6 Kita’s Test Function
7.7.7 Speed Reducer Test Function
7.7.8 Osyczka2’s Test Function
Conclusions

Final Remarks

8.1
8.2

Al
A2
A3
A4
A5
A6
AT
A8

B.1
B.2
B.3

Conclusions

Future Work

ZDT1’s test function
ZDT2’s test function
ZDT3’s test function
ZDT6’s test function
Kursawe’s test function
Deb’s test function

Deb2’s test function
Scheme 4

Experiment 1
Experiment 2
Experiment 3

Bibliografy

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.14
2.13

Example that is meant to show the difference between decision variable space
(left) and objective function space (right).
Example that is meant to show the difference between the Pareto optimal
set (left) and the Pareto front (right).
Example that is meant to show the difference between a false and a true
Pareto fronto

The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Deb 1’s test function.

The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Deb 2’s test function.
The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Kursawe’s test function.
The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for DTLZ2’s test function.
The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT1’s test function.
The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT2’s test function.
The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT3’s test function.
The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT4’s test function.
The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT6’s test function.
Welded Beam

The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT6’s test function.

10

14

14

15

16

16

17

18

18

19
20

20

xiv

LIST OF FIGURES

2.15

2.16

217

2.18

3.1

3.2

4.1

4.2
4.3

5.1

5.2

5.3

5.4
9.5

5.6

5.7

5.8

5.9

5.10

5.11

6.1

The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Welded Beam’s test
function.
Plane truss used for the fourth example. The structural volume and the joint
displacement (A) are to be minimized. o000
The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Speed Reducer’s test
function. L
The graphic of the left shows 20,000 solutions randomly generated, and the

graphic of the right shows the true Pareto front for Osyczka 2’s test function.

The top figure shows the location of 4 swarms clustered in the variable space
of Kursawe’s test function (see Section 2.5.3), and the figure at the bottom
shows the same in the objective function space.
Possible decision cases to store for the external archive.

A classification of some methods used to conduct multiobjective optimization
using mathematical programming techniques
Graphical representation of the layers adopted by the NSGA.
Mustration of the e MOEA procedure

Graphical representation of the insertion of a new element in the adaptive
grid when the individual lies within the current boundaries of the grid. . . .
Graphical representation of the insertion of a new element in the adaptive
grid when this lies outside the previous boundaries of the grid.
Graphical representation of the adaptive grid. In this case, we used two
objective functions for ease of understanding (assuming minimization). . . .
Graphical representation of the hyper-plane distribution.
Pareto fronts produced by a) adaptive grid, b) e-Pareto, and c¢) hyper-plane
distribution, for the ZDT1’s test function.
Pareto fronts produced by a) adaptive grid, b) e-Pareto, and ¢) hyper-plane
distribution, for the ZDT2’s test function.
Pareto fronts produced by a) adaptive grid, b) e-Pareto, and c¢) hyper-plane
distribution, for the ZDT3’s test function.
Graphical representation of the insertion of a new element in the adaptive
grid when the individual lies within the current boundaries of the grid. . . .
Pareto fronts produced by a) NSGA-II, b) e MOEA, and ¢) MOPSO, for
Kursawe’s test function. o
Pareto fronts produced by a) NSGA-II, b) e MOEA, and ¢) MOPSO, for the
ZDT1’s test function.
Pareto fronts produced by a) NSGA-II, b) eMOEA, and ¢) MOPSO, for
ZDT2’s test function.

Graphical representation of our example that explains the constraint-handling
mechanism incorporated into our PSO algorithm.

22

23

26

35
40

42
48
53

64

65

66
69

72

73

74

75

85

86

88

LIST OF FIGURES XV

6.2 Pareto fronts produced by a) NSGA-II, b) e MOEA, and ¢) CMOPSO, for
Kita’s test function. 106

6.3 Pareto fronts produced by a) NSGA-II, b) e MOEA, and ¢) CMOPSO, for
the Speed Reducer test function. 107

6.4 Pareto fronts produced by a) NSGA-II, b) e MOEA, and ¢) CMOPSO, for
Osyczka 2’s test function. L 109

6.5 Pareto fronts produced by a) NSGA-II, b) e MOEA, and ¢) CMOPSO, for
the Welded Beam test function. 111

7.1 Roulette Wheel Selection example at the a) first, b) second and c) third
generation. L L Lo e 122

7.2 Pareto fronts produced by a) NSGA-II, b) e MOEA, ¢) Mostaghim’s MOPSO
and d) MOPSO, for Kursawe’s test function. 147

7.3 Pareto fronts produced by a) NSGA-II, b) e MOEA, ¢) Mostaghim’s MOPSO
and d) MOPSO, for ZDT1’s test function. 148

7.4 Pareto fronts produced by a) NSGA-II, b) e MOEA, ¢) Mostaghim’s MOPSO
and d) MOPSO, for ZDT2’s test function. 150

7.5 Pareto fronts produced by a) NSGA-II, b) e MOEA, ¢) Mostaghim’s MOPSO
and d) MOPSO, for DTLZ2’s test function. 152

7.6 Pareto fronts produced by a) NSGA-II, b) e MOEA, and ¢) MOPSO, for the
Welded Beam test function. 154

7.7 Pareto fronts produced by a) NSGA-II, b) e MOEA, and ¢) MOPSO, for
Kita’s test function. 156

7.8 Pareto fronts produced by a) NSGA-II, b) e MOEA, and ¢) MOPSO, for
Speed reducer’s test function.o 158

7.9 Pareto fronts produced by a) NSGA-II, b) e MOEA, and ¢) MOPSO, for
Osyczka2’s test function. 160

A.1 Pareto fronts produced by schemes a) 1, b) 2, ¢) 3a and d) 3b for ZDT1’s
test function. 166

A.2 Plots that indicate a) the total of non-dominated solutions, b) the occurrences

of strong dominance, ¢) total of replacements of a leader by the new particle’s

position, d) total of pbest replacements, e) the total of particles which were

dominated and f) the quantity of new non-dominated particles for ZDT1’s
test function. L 167

A.3 Pareto fronts produced by schemes a) 1, b) 2, ¢) 3a and d) 3b for ZTD2’s
test function. L 168

A.4 Plots that indicate a) the total of non-dominated solutions, b) the occurrences

of strong dominance, c¢) total of replacements of a leader by the new particles’

position, d) total of pbest replacements, e) the total of particles which were

dominated and f) the quantity of new non-dominated particles, for ZDT2’s
test function. 169

A5 Pareto fronts produced by schemes a) 1, b) 2, ¢) 3a and d) 3b for ZTD3’s

test function.

xvi LIST OF FIGURES

A.6 Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, c) total of replacements of a leader by the new particle’s
position, d) total of pbest replacements, e) the total of particles which were
dominated and f) the quantity of new non-dominated particles, for ZDT3’s

test function. Lo 171
A.7 Pareto fronts produced by schemes a) 1, b) 2, ¢) 3a and d) 3b for ZTD6’s
test function. Lo 172

A.8 Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, c) total of replacements of a leader by the new particle’s
position, d) total of pbest replacements, e) the total of particles which were
dominated and f) the quantity of new non-dominated particles, for ZDT6’s

test function. 173
A.9 Pareto fronts produced by schemes a) 1, b) 2, ¢) 3a and d) 3b for Kursawe’s
test function. 174

A.10 Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, ¢) total of replacements of a leader by the new particle’s
position, d) total of pbest replacements, e) the total of particles which were
dominated and f) the quantity of new non-dominated particles, for Kursawe’s

test function. 175
A.11 Pareto fronts produced by schemes a) 1, b) 2, ¢) 3a and d) 3b for Deb’s test
function.o L 176

A.12 Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, ¢) total of replacements of a leader by the new particle’s
position, d) total of pbest replacements, e) the total of particles which were
dominated and f) the quantity of new non-dominated particles, for Deb’s test

function. oL 177
A .13 Pareto fronts produced by schemes a) 1, b) 2, ¢) 3a and d) 3b for Deb2’s test
function. Lo 178

A.14 Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, c) total of replacements of a leader by the new particle’s
position, d) total of pbest replacements, e) the total of particles which were
dominated and f) the quantity of new non-dominated particles, for DEB2’s

test function. 179
A.15 Pareto fronts produced by the scheme 4 for test functions 180
B.1 Each square in the mosaic represents the average of inverted generational

distance applied to 30 executions of Kursawe’s test function.. 182
B.2 Each square in the mosaic represents the average of inverted generational

distance applied to 30 executions of Deb1’s test function. 183
B.3 Each square in the mosaic represents the average of inverted generational

distance applied to 30 executions of Deb2’s test function. 184
B.4 Each square in the mosaic represents the average of inverted generational

distance applied to 30 executions of ZDT1’s test function. 185

B.5 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT2’s test function. 186

LIST OF FIGURES xvii

B.6 Each square in the mosaic represents the average of inverted generational

distance applied to 30 executions of ZDT3’s test function. 187
B.7 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT6’s test function. 188
B.8 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kita’s test function. 189
B.9 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of the Welded beam test function. 190
B.10 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Osyczka2’s test function. 191
B.11 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of the Speed Reducer test function. 192
B.12 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kursawe’s test function.. 194
B.13 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Deb1’s test function. 195
B.14 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Deb2’s test function. 196
B.15 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT1’s test function. 197
B.16 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT2’s test function. 198
B.17 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT3’s test function. 199
B.18 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT6’s test function. 200
B.19 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kita’s test function. 201
B.20 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of the Welded Beam test function. 202
B.21 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Osyczka2’s test function. 203
B.22 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of the the Speed Reducer test function. . 204
B.23 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kursawe’s test function.. 206
B.24 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Deb2’s test function. 207
B.25 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT3’s test function. 208
B.26 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kita’s test function. 209

B.27 Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of the Welded Beam test function. 210

xviii

LIST OF FIGURES

B.28 Each square in the mosaic represents the average of inverted generational

C.1

C.2

C.3

C4

C.5

C.6

C.7

C.8

(OR°)

distance applied to 30 executions of Osyczka2’s test function.

Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Debl’s test function.,

Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Debl’s test function.,

Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Debl’s test function. L.

Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Deb2’s test function.o oL

Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Deb2’s test function. oL

Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Deb2’s test function. o L.

Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Kursawe’s test function.

Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a fixed , b random, ¢ self-
adaptation and d self-adaptation (using half of the parameters’ range) mech-
anisms for Kursawe’s test function.

Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Kursawe’s test function.,

C.10 Solutions produced using 50 iterations (2,000 fitness function evaluations)

by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Kita’s test function. L.

214

215

216

217

218

219

220

221

222

LIST OF FIGURES xix

C.11 Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Kita’s test function. 0oL 224
C.12 Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Kita’s test function.o 225

C.13 Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT1’s test function. 226

C.14 Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT1’s test function. 227

C.15 Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT1’s test function. 228
C.16 Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT2’s test function. 229
C.17 Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT2’s test function. 230

C.18 Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT2’s test function. 231

C.19 Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT3’s test function. 232
C.20 Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT3’s test function. 233
C.21 Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT3’s test function. 234

LIST OF FIGURES

C.22 Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT6’s test function. 0oL

C.23 Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT6’s test function.o

C.24 Solutions produced using 250 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for ZDT6’s test function.

C.25 Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for the Welded Beam test function.

C.26 Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for the Welded Beam test function.

C.27 Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for the Welded Beam test function.

C.28 Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Osyczka 2’s test function. 0oL

C.29 Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Osyczka 2’s test function.

C.30 Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for Osyczka 2’s test function.00

C.31 Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for the Speed Reducer test function.

C.32 Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, ¢) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for the Speed Reducer test function.

235

236

237

238

239

240

241

242

243

244

LIST OF FIGURES xxi

C.33 Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-
adaptation, d) self-adaptation (using half of the parameters’ range) mecha-
nisms for the Speed Reducer test function. 246

xxii LIST OF FIGURES

List of Tables

5.1

5.2

5.3

5.4

5.5

5.6

0.7

5.8

5.9

5.10

5.11

Comparison of results of the approaches used to provide a good distribution
of solutions (adaptive grid, e-dominance and hyper-plane distribution) with
respect to the Hyper Volume metric.
Comparison of results of the approaches used to proved a good distribution
of solutions (adaptive grid, e-dominance and hyper-plane distribution) with
respect to Spacing metric. L
Comparison of results of the approaches to maintain a good distribution of
non-dominated solutions (adaptive grid, e-dominance and hyper-plane distri-
bution) with respect to the Inverted Generational Distance metric.
Comparison of results of the approaches to maintain a good distribution of
non-dominated solutions (adaptive grid, e-dominance and hyper-plane distri-
bution) with respect to the Inverted Generational Distance metric.
Comparison of results of the approaches to maintain a good distribution of
non-dominated solutions (adaptive grid, e-dominance and hyper-plane distri-
bution) with respect to Inverted Generational Distance metric.
Comparison of results of the approaches to maintain a good distribution of
non-dominated solutions (adaptive grid, e-dominance and hyper-plane distri-
bution) with respect to Inverted Generational Distance metric.
Statical results obtained from the counting where the particle was equal to
its gbest. . . . L
Comparison of results of MOPSO with respect to Inverted Generational Dis-
tance metric. L Lo
Comparison of results of the MOPSO, NSGA-II, and e-MOEA with respect
to the Hyper Volume metric for the Kursawe’s test function.
Comparison of results of the MOPSO, NSGA-II, and e-MOEA with respect
to the Two Set Coverage metric for Kursawe’s test function.
Comparison of results of the MOPSO, NSGA-II and our e-MOEA with re-
spect to the Inverted Generational Distance (IGD) and Success Counting
(SC) for Kursawe’s test function.

71

71

7

7

79

82

83

83

84

84

85

xXxXiv

LIST OF TABLES

5.12

5.13

5.14

5.15

5.16

0.17

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

Comparison of results of the MOPSO, NSGA-II, and e-MOEA with respect
to the Hyper Volume metric for ZDT1’s test function.
Comparison of results of the MOPSO, NSGA-II, and e-MOEA with respect
to the Two Set Coverage metric for ZDT1’s test function.
Comparison of results of the MOPSO, NSGA-II and our e-MOEA with re-
spect to Inverted Generational Distance (IGD) and Success Counting (SC)
for ZDT1’s test function.
Comparison of results of the MOPSO, NSGA-II, and e-MOEA with respect
to the Hyper Volume metric for ZDT2’s test function.
Comparison of results of the MOPSO, NSGA-II, and e-MOEA with respect
to the Two Set Coverage metric for ZDT2’s test function.
Comparison of results of the MOPSO, NSGA-II and our e MOEA with re-
spect to the Inverted Generational Distance (IGD) and Success counting (SC)
for ZDT2’s test function.

Values of p for the 13 test problems chosen.
Comparison of our PSO algorithm with respect to the Homomorphous Maps

Comparison of results of our PSO with respect to the Adaptive Segregational
Constraint Handling Evolutionary Algorithm (ASCHEA) [48]..
Comparison of results of the CMOPSO, NSGA-II, and e-MOEA with respect
to Hyper Volume metric for Kita’s test function.
Comparison of results of the CMOPSO, NSGA-II, and e-MOEA with respect
to Two Set Coverage metric for Kita’s test function.
Comparison of results of the CMOPSO, NSGA-II and e-MOEA with respect
to inverted generational distance (IGD) and Success Counting(SC) for Kita’s
test function. L
Comparison of results of the CMOPSO, NSGA-II, and e-MOEA with respect
to Hyper Volume metric for the Speed Reducer test function.
Comparison of results of the CMOPSO, NSGA-II, and e-MOEA with respect
to Two Set Coverage metric for the Speed Reducer test function.
Comparison of results of the CMOPSO, NSGA-II and e-MOEA with respect
to inverted generational distance (IGD) and Success counting(SC) for the
Speed Reducer test function.
Comparison of results of the CMOPSO, NSGA-II, and e-MOEA with respect
to Hyper Volume metric for Osyczka 2’s test function.
Comparison of results of the CMOPSO, NSGA-II, and e-MOEA with respect
to Two Set Coverage metric for Osyczka 2’s test function.
Comparison of results of the CMOPSO, NSGA-II and e-MOEA with respect
to inverted generational distance (IGD) and Success counting(SC) for Osy-
czka 2’s test function.
Comparison of results of the CMOPSO, NSGA-II, and e-MOEA with respect
to Hyper Volume metric for the Welded Beam test function.

87

88

89

89

98

99

100

101

105

105

106

107

108

108

109

110

LIST OF TABLES

XXV

6.15

6.16

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

Comparison of results of the MOPSO, NSGA-II, and e-MOEA with respect
to Two Set Coverage metric for the Welded Beam test function.

Comparison of results of the CMOPSO, NSGA-II and e-MOEA with respect
to inverted generational distance (IGD) and Success counting(SC) for the
Welded Beam test function. 0L

Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Generational Distance metric for Debl’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.

Comparison of results of the approaches for parameter tuning (fixed, ran-
dom, self-adaptive and self-adaptive using half of the parameters’ range)
with respect to the Success Counting metric for Deb1’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.

Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Generational Distance metric for Deb2’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.

Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Generational Distance metric for Kursawe’s test function. In
this comparison, 50, 100, and 250 iterations of the algorithm performed. . .

Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Success Counting metric for Kursawe’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.

Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Generational Distance metric for Kita’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.

Comparison of results of the approaches for parameter tuning (fixed, ran-
dom, self-adaptive and self-adaptive using half of the parameters’ range)
with respect to the Success Counting metric for Kita’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.

Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Generational Distance metric for ZDT1’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.

Comparison of results of the approaches for parameter tuning (fixed, ran-
dom, self-adaptive and self-adaptive using half of the parameters’ range)
with respect to the Success Counting metric for ZDT1’s test function. In
this comparison, 50, 100, and 250 iterations of the algorithm performed. . .

112

112

123

124

125

126

127

128

129

130

131

XXVi

LIST OF TABLES

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Generational Distance metric for ZDT2’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.
Comparison of results of the approaches for parameter tuning (fixed, ran-
dom, self-adaptive and self-adaptive using half of the parameters’ range)
with respect to the Success Counting metric for ZDT2’s test function. In
this comparison, 50, 100, and 250 iterations of the algorithm performed. . .
Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Generational Distance metric for ZDT3’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.
Comparison of results of the approaches for parameter tuning (fixed, ran-
dom, self-adaptive and self-adaptive using half of the parameters’ range)
with respect to the Success Counting metric for ZDT3’s test function. In
this comparison, 50, 100, and 250 iterations of the algorithm performed. . .
Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Generational Distance metric for ZDT6’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.
Comparison of results of the approaches for parameter tuning (fixed, ran-
dom, self-adaptive and self-adaptive using half of the parameters’ range)
with respect to the Success Counting metric for ZDT6’s test function. In
this comparison, 50, 100, and 250 iterations of the algorithm performed. . .
Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Generational Distance metric for the Welded Beam test function.
In this comparison, 50, 100, and 250 iterations of the algorithm performed.
Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Success Counting metric for the Welded Beam test function. In
this comparison, 50, 100, and 250 iterations of the algorithm performed. . .
Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Generational Distance metric for Osyczka2’s test function. In
this comparison, 50, 100, and 250 iterations of the algorithm performed. . .
Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Success Counting metric for Osyczka2’s test function. In this
comparison, 50, 100, and 250 iterations of the algorithm performed.
Comparison of results of the approaches for parameter tuning (fixed, ran-
dom, self-adaptive and self-adaptive using half of the parameters’ range)
with respect to the Generational Distance metric for the Speed Reducer test
function. In this comparison, 50, 100, and 250 iterations of the algorithm
performed.o

132

133

134

135

136

137

138

139

140

141

LIST OF TABLES

xxvii

7.21

7.22

7.23

7.24

7.25

7.26

7.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.35

7.36

Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with re-
spect to the Success Counting metric for the Speed Reducer test function.
In this comparison, 50, 100, and 250 iterations of the algorithm performed.
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
e-MOEA with respect to the Two Set Coverage metric for Kursawe’s test
function. L
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
e-MOEA with respect to the Hyper Volume metric for Kursawe’s test func-
tlon. . oL
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II and e-
MOEA with respect to the inverted generational distance (IGD) and Success
counting (SC) for Kursawe’s test function.
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
e-MOEA with respect to the Two Set Coverage metric for ZDT1’s test func-
tlon. . oL
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
e-MOEA with respect to the Hyper Volume metric for ZDT1’s test function.
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II and e-
MOEA with respect to the inverted generational distance (IGD) and Success
counting (SC) for ZDT1’s test function.
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
e-MOEA with respect to the Two Set Coverage metric for ZDT2’s test func-
tlon. . . . e e e
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
e-MOEA with respect to the Hyper Volume metric for ZDT2’s test function.
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II and e-
MOEA with respect to the inverted generational distance (IGD) and Success
counting (SC) for ZDT2’s test function.,
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
e-MOEA with respect to the Two Set Coverage metric for DTLZ2’s test
function. L
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
e-MOEA with respect to the Hyper Volume metric for DTLZ2’s test function.
Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II and e-
MOEA with respect to the inverted generational distance (IGD) and Success
counting (SC) for DTLZ2’s test function.
Comparison of results of our MOPSO, NSGA-II, and e-MOEA with respect
to the Two Set Coverage metric for the Welded Beam test function. .
Comparison of results of our MOPSO, NSGA-II, and e MOEA with respect
to the Hyper Volume metric for the Welded Beam test function.
Comparison of results of our MOPSO, NSGA-II and e-MOEA with respect
to the inverted generational distance (IGD) and Success counting (SC) for
the Welded Beam test function.

143

146

147

147

148

149

149

150

151

151

152

153

153

154

155

xxviii

LIST OF TABLES

7.37

7.38

7.39

7.40

7.41

7.42

7.43

7.44

7.45

Comparison of results of our MOPSO, NSGA-II, and e-MOEA with respect
to the Two Set Coverage metric for Kita’s test function.
Comparison of results of our MOPSO, NSGA-II, and e-MOEA with respect
to the Hyper Volume metric for Kita’s test function.
Comparison of results of our MOPSO, NSGA-II and e-MOEA with respect
to the inverted generational distance (IGD) and Success counting (SC) for
Kita’s test function.
Comparison of results of our MOPSO, NSGA-II, and e-MOEA with respect
to the Two Set Coverage metric for the Speed Reducer test function.

Comparison of results of our MOPSO, NSGA-II, and e-MOEA with respect
to the Hyper Volume metric for the Speed Reducer test function.
Comparison of results of our MOPSO, NSGA-II and e-MOEA with respect
to the inverted generational distance (IGD) and Success counting (SC) for
the Speed Reducer test function.
Comparison of results of our MOPSO, NSGA-II, and e MOEA with respect
to the Two Set Coverage metric for Osyczka2’s test function.
Comparison of results of our MOPSO, NSGA-II, and e MOEA with respect
to the Hyper Volume metric for Osyczka2’s test function.
Comparison of results of our MOPSO, NSGA-II and e-MOEA with respect
to the inverted generational distance (IGD) and Success counting (SC) for
Osyczka2’s test function.

157

157

158

159

159

160

161

Introduction

1.1 Introduction

ULTIOBJECTIVE optimization problems (e.g., those having two or more objectives to be
M optimized simultaneously) arise in all areas. Operational researchers have developed
a variety of approaches to deal with multiobjective optimization problems. However, such
approaches normally rely on specific features of the problem (e.g., some require that the ob-
jective function and the constraints are continuous), and have several limitations (i.e., most
of them generate one solution per run). This motivates the use of alternative techniques.

Evolutionary computing comprises a set of algorithms which draw inspiration from the
process of natural evolution. These algorithms present a series of suitable characteristics
to solve multiobjective optimization problems. Currently, there is an specific research area
within evolutionary computation that deals with multiobjective optimization problems:
Evolutionary Multiobjective Optimization (EMO for short) which has significantly grown
in the last few years, giving rise to a wide variety of algorithms [19].

Despite the considerable volume of research on evolutionary multiobjective optimization
(see for example [19, 24, 38, 13, 119]), until recently, little emphasis had been placed on
using efficiency as the main design goal when proposing new multiobjective evolutionary
algorithms. Another important issue generally omitted in the current literature on evolu-
tionary multiobjective optimization is on-line adaptation (i.e., the use of mechanisms, based
on information gathered during the evolutionary process, for adjusting the algorithm’s pa-
rameters).

1.2 Motivation

The main motivation of this work was precisely to design and implement new mul-
tiobjective evolutionary algorithms in which these two aspects previously indicated were
emphasized: efficiency (measured in terms of obtaining the highest quality results possible,

2 Introduction

with the lowest amount of fitness function evaluations) and on-line adaption (i.e., to make
it unnecessary to fine tune by hand the parameters required by the algorithms).

Our research will focus particularly on particle swarm optimization, although some of
the concepts proposed may be applicable to other multiobjective evolutionary algorithm.

1.3 Objectives

The main objectives of this work are the following:

e To gain deep knowledge on evolutionary multiobjective optimization using particle
swarm optimization.

e To gain deep knowledge on techniques to maintain diversity in the context of evo-
lutionary multiobjective optimization (mainly focused on the use of particle swarm
optimization).

e To design and implement mechanisms for self- or on-line adaptation in a multiobjec-
tive particle swarm optimization algorithm. The main idea is to produce an approach
whose parameters do not require any manual fine-tuning. Efficiency is another im-
portant design guideline for the aforementioned algorithm.

e To validate the proposed algorithm, comparisons should be performed with respect to
approaches representative of the state-of-the-art in the area, using standard metrics
and test functions.

1.4 Contributions

The expected contributions derived from this research work are the following:

e At least one new multiobjective evolutionary algorithm based on particle swarm op-
timization that doesn’t require a manual fine tuning of its parameters and whose
performance (measured both in terms of efficiency and quality of the results achieved)
is competitive with respect to algorithms representative of the state-of-the-art in the
area.

e At least one new mechanism to maintain diversity in a multiobjective particle swarm
optimization algorithm.

1.5 Document QOutline

The remainder of this document is organized as follows. Chapter 2, introduces some
basic concepts necessary to understand the rest of the document and the metrics usually
adopted to allow a quantitative assessment of the performance of multiobjective optimiza-
tion algorithms. A brief description of evolutionary algorithms is presented in Chapter
3. Chapter 4 presents the main mathematical programming techniques for multiobjective
optimization and shows the state-of-the-art in evolutionary computation for multiobjective

1.5 Document Outline 3

optimization. Chapter 5 presents an extension of the heuristic called “particle swarm op-
timization” (PSO) that is able to deal with multiobjective optimization problems. The
proposed approach uses the concept of Pareto dominance to determine the flight direction
of a particle and is based on the idea of having a set of sub-swarms instead of single par-
ticles. In each sub-swarm, a PSO algorithm is executed and, at some point, the different
sub-swarms exchange information. Our proposed approach is validated using several test
functions taken from the evolutionary multiobjective optimization literature and is com-
pared with respect to algorithms representative of the state-of-the-art in the area. Chapter
6, presents a simple mechanism to handle constraints with a particle swarm optimization
algorithm. Our proposal uses a simple criterion based on closeness of a particle to the fea-
sible region in order to select a leader. Additionally, this constraint-handling mechanism is
incorporated to a multiobjective particle swarm. In Chapter 7, we discuss self adaptation in
the context of multiobjective optimization. We propose a revised version MOPSO (devel-
oped in Chapter 5) for multiobjective optimization which does not require any parameter
fine-tuning. The new approach is validated using several test function and metrics taken
from the specialized literature and it is compared with respect to two algorithms represen-
tative of the state-of-the-art in the area. Finally, Chapter 8, gives conclusions an future
trends.

Introduction

Background

2.1 Introduction

HE most important aim of this chapter is to introduce the basic concepts, definitions
T and performance measures related to multiobjective optimization.

We begin by laying a conceptual and theoretical basis for both global and multiobjective
optimization in Section 2.2. Then, we introduce several concepts and definitions related to
multiobjective optimization in Section 2.3. Next, a brief review of performance measures
commonly used in evolutionary multiobjective optimization is given in Section 2.4. Finally,
definitions of several test functions taken from the specialized literature are shown.

2.2 Optimization

Many optimization problems are very complex and difficult to solve by the use of simple
common sense or by intuition. Engineers usually have to deal with problems of minimizing
or maximizing! one or many objectives.

2.2.1 Global Optimization

The general (single-objective) global optimization problem can be stated as follows:
Definition 1 (Global optimization):
Find Z which optimizes f(Z) (2.1)

subject to:

1Without loss of generality, in this document we will refer only to minimization problems.

6 Background

9i(¥) <0, i=1,...,n (2.2)
hi(Z)=0, j=1,...,p (2.3)
where & is the vector of solutions T = [x1,Ta,...,7,|T, n is the number of inequality con-
straints and p is the number of equality constraints (in both cases, constraints could be linear
or nonlinear). O

2.2.2 Multiobjective Optimization
Multiobjective optimization can be defined as the problem of finding [92]:
a vector of decision variables which satisfies constraints and optimizes a vector
function whose elements represent the objective functions. These functions form
a mathematical description of performance criteria which are usually in conflict
with each other. Hence, the term “optimize” means finding such a solution which

would give the values of all the objective functions acceptable to the decision
maker

The above definition can be stated in a formal way as follows:

Definition 2 (General Multiobjective Optimization Problem (MOP)): Find the
vector &* = [z}, 25, ... ,x;’;]T which will satisfy the m inequality constraints:
gi(¥) <0 i=1,2,...,m (2.4)

the p equality constraints

hi(@)=0 i=1,2,...,p (2.5)
and will optimize the vector function

—

@) = [H(@), (@), ..., (@] (2.6)

where & = [x1, g, . .. ,xn]T is the vector of decision variables. O

In other words, we wish to determine from among the set F (the feasible region) of
all numbers which satisfy (2.4) and (2.5) the particular set z7,z3,..., 2} which yields the
optimum values of all the k objective functions of the problem.

2.3 Background Concepts

Decision variables: The decision variables are a set of n parameters whose values give
a solution (can be valid or not) to a problem. These parameters are denoted as
zj, 7=1,2,...,n. In this work, these variables will be represented by:

2.3 Background Concepts 7

X1
€2
7= (2.7)
Tn
The same can also be written as:
T=[z1,20,...,2,)" (2.8)

Constraints: Most real world optimization problems have (natural and problem depen-
dant) constraints to be satisfied (they draw up the boundaries of the feasible set).
Constraints are functions of the decision variables and can be expressed in form of
mathematical inequalities (eq.(2.9)) or equalities (eq (2.10)).

gi(¥) <0, i=1,...,m (2.9)

hi(@) = 0,i=1,...,p (2.10)

For an inequality constraint that satisfies g;(Z) = 0, then we will say that it is active
at . All equality constraints h; (regardless of the value of ' used) are considered
active at all points of F.

Objective functions: The objective functions are the evaluation criteria used to estimate
how good a solution is. As in the case of the constraints, objective functions are
functions of the decision variables. In multiobjective optimization problems there
are k (> 2) objective functions (f1(Z), f2(Z),..., fe(Z)). In this document,we will

5

represent f in the following way:

f1(%)

. fa(Z)
f@ = (2.11)

Tr(T)

The same can also be written as:
f(@) = [f1(D), fo(@), ..., fo(@)]" (2.12)
Pareto dominance:

Definition 3 (Pareto Dominance): A vector ¥ = (x1,...,xk) is said to domi-

nate §* = (y1,...,yx) (denoted by ¥ <X y) if and only if x is partially less than y, i.e.,
V’iE{l,...,k‘}, xigyi/\ﬂie{l,...,k‘}::ci<yi. |

Background

As an example, for the case of 2 decision vectors @, §* € X,

< g if f fi(@) < fi(y")

Z* strictly dominates y* for every i = 1,....k

T if ffi@) < fily”)
(Z* weakly dominates ¥*) for every i = 1,...,k
o~ iff fi(@) £ L) A f(§) £ fi(E)

(#* is incomparable? to *) for every i = 1,.... k

These definitions are analogous for maximization problems (>, >, ~).

In Figure 2.1 we can see the difference between decision variable space and objective
function space.

/A=[1,1]\\

f{LD=1-1+1=1
f{LD)=1-1+1=1

---@8

: fl(x,y)= x—y+1
B=[3,2]
f{32)=3-2+1=2

f432)=9-4+1=6

| ffxy)=x 2y £1

A B A B
because 1<2 and 1<6

We say that A dominates B
Decision variable space. Obijective function space

Figure 2.1: Example that is meant to show the difference between decision variable space
(left) and objective function space (right).

To reinforce those concepts, let’s consider the following example:
Tk

7 =[2.4,5.3,45]T7, i =[2.4,5.3,4.8]" and z* = [3.4,5.4,4.7)T

T < 2" because 2.4 < 3.4, 5.3 < 5.4 and 4.5 < 4.7,
* < y* because 2.4 < 2.4, 5.3 < 5.3 and 4.5 < 4.8 and

%

iy ~ Z* because 2.4 < 3.4, 5.3 < 5.4 and 4.8 > 4.7.
Pareto optimal set:

Definition 4 (Pareto optimal set): The Pareto optimal set (P*) can be defined
as:

— —

P = {i"e F|-3y € F|fF) = f(@)} (213)

|

2% and ¢ are non-dominated vectors between themselves.

2.3 Background Concepts 9

In words, we can say that a decision vector which belongs to the feasible set F is
a Pareto optimum if there is no other decision vector y* which belongs to F and
dominates it.

The Pareto optimal set is defined in decision variable space.

® Non dominated individuals. S Feasible region._))
@ Feasible individuals. Z Image of S in objective function space.

O Infeasible individuals.

X fa

Decision variable space. %y Objective function space. fy

Figure 2.2: Example that is meant to show the difference between the Pareto optimal set
(left) and the Pareto front (right).

When plotted in objective space, the non-dominated vectors are collectively known
as the Pareto front. A graphical illustration of the Pareto optimal set (i.e., decision
variable space) and the Pareto front (i.e., objective function space) of a problem is
provided in Figure 2.2. In the general case, it is impossible to find an analytical
expression of the line or surface that contains these points. The normal procedure to
generate the Pareto front is to compute the feasible points F and their corresponding
f(F). When there is a sufficient number of these, it is then possible to determine the
non-dominated points and to produce the Pareto front.

Some problems present fronts different from the true Pareto front which attract most
of the solutions. They are known as false (or local) Pareto fronts. Figure 2.3 is meant
to denote the difference between a false and a true Pareto front.

e-dominance e-dominance is a relaxed form of dominance. It is defined as follows:

Definition 5 (e-dominance): A vector & = (x1,...,xk) is said to € dominate
v = (y1,...,yk) (denoted by T <, §) if and only if (1+¢€)- f(Z < f(y), Vi e {1,...,k}.
]

e-approximate Pareto set:

Definition 6 (e-approximate Pareto set): A decision vector &* is an e-
approrimate Pareto set if and only if:

10 Background

True Pareto front

False Pareto fron

-
-

fi

Figure 2.3: Example that is meant to show the difference between a false and a true Pareto
front

— —

e FI3y e FIW) = f(7) (2.14)

2.4 Performance Measures

In order to allow a quantitative assessment of the performance of an evolutionary mul-
tiobjective optimization algorithm, three issues are normally taken into consideration [132]:

1. Minimize the distance of the Pareto front produced by our algorithm with respect to
the Pareto front (assuming we know its location).

2. Maximize the spread of solutions found, so that we can have a distribution of vectors
as smooth and uniform as possible.

3. Maximize the number of elements of the Pareto optimal set found.

Based on these notions, we adopted the following performance measures to allow a
quantitative comparison of results:

1. Success Counting (SC): We define this measure based on the idea of the measure
called Error Ratio proposed by Van Veldhuizen [117] to indicate the percentage of
solutions (from the non-dominated vectors found so far) that are not members of the
true Pareto optimal set. In this case, we count the number of vectors in the current
set of non-dominated vectors available that are members of the Pareto optimal set:

SC =Y s,
i=1

2.4 Performance Measures 11

where n is the number of vectors in the current set of non-dominated vectors available;
s; = 1 if vector ¢ is a member of the Pareto optimal set, and s; = 0 otherwise. It
should then be clear that SC = n indicates an ideal behavior, since it would mean
that all the vectors generated by our algorithm belong to the true Pareto optimal set
of the problem. For a fair comparison, when we use this measure, all the algorithms
should be encouraged to obtain their final Pareto fronts with the same number of
vectors.

2. Inverted Generational Distance (IGD): The concept of generational distance
was introduced by Van Veldhuizen & Lamont [118, 120] as a way of estimating how
far are the elements in the Pareto front produced by our algorithm from those in the
true Pareto front of the problem. This measure is defined as:

NS
ap = Y= d (2.15)

n

where n is the number of non-dominated vectors found by the algorithm being ana-
lyzed and d; is the Euclidean distance (measured in objective space) between each of
these and the nearest member of the true Pareto front. It should be clear that a value
of GD = 0 indicates that all the elements generated are in the true Pareto front of the
problem. Therefore, any other value will indicate how “far” we are from the global
Pareto front of our problem. In our case, we implemented an “inverted” generational
distance measure (IGD) in which we use as a reference the true Pareto front, and we
compare each of its elements with respect to the front produced by an algorithm. In
this way, we are calculating how far are the elements of the true Pareto front, from
those in the Pareto front produced by our algorithm.

3. Spacing (SP): Here, one desires to measure the spread (distribution) of vectors
throughout the non-dominated vectors found so far. Since the “beginning” and “end”
of the current Pareto front found are known, a suitably defined metric judges how
well the solutions in such front are distributed. Schott [108] proposed such a metric
measuring the range (distance) variance of neighboring vectors in the non-dominated
vectors found so far. This metric is defined as:

n

S £ ! > (d—di)?, (2.16)

n—14
=1

where d; = min; (| fi(@) — f(@) | + | i(@) ~ @)) 6.5 = 1,...,ni # j s the
mean of all d;, and n is the number of non-dominated vectors found so far. A value of
zero for this metric indicates all members of the Pareto front currently available are
equidistantly spaced.

4. Two Set Coverage (TSC): This metric was proposed in [132], and it can be termed
relative coverage comparison of two sets. Consider X', X as two sets of objective

12

Background

function’s vectors. TSC is defined as the mapping of the ordered pair (X', X”) to the
interval [0, 1]:

{" € X";3d € X" :d' = d"}|

| X"

If all points in X’ dominate or are equal to all points in X”, then by definition
TSC = 1. TSC = 0 implies the opposite. In general, TSC (X', X”) and TSC(X", X")
both have to be considered due to set intersections not being empty. Of course, this
metric can be used for both spaces (objective function or decision variable space), but
in this case we applied it in objective function space.

TSC(X',X") 2 |

(2.17)

. Improved Generational Distance (ImGD): This metric is proposed in this thesis.

Consider X', X" as two sets of objective function’s vectors. Let d(x,Y") be the distance
from point z to the set Y:

d(z,Y) = mind
(z,Y) = mind(z,y)

where d(z,y) refers to an Euclidean distance. The ImGD metric is defined as the
mapping of (X', X”) to the ordered pair (z/,z")

ImGD(X', X") = (', 2") (2.18)
such that:
1 o
=2 d(z;, T d(t, , X’ 2.1
A | X ate)+ Ya) (2.19)

r, €X'

1 SN
== d(z;,T) + d(t;, X" 2.20
7| &, de D+ X (220)
where t;(t;) € T is the closest point from the true Pareto front to the point i from
the set X'(X"). If the result obtained is (0,v) (where v is a positive value # 0), it
would mean that the first expression (whose solutions are contained in X’) generated
all its solutions exactly on the true Pareto front, and these solutions also cover the
region found by the second expression (whose solutions are contained in X”). The
opposite holds as well. The main motivation of this metric was to overcome the main
limitations of generational distance when measuring closeness to the true Pareto front
of a problem. As we will see later on, in several cases in which generational distance
provides some misleading results, this improved generational distance returns values
that reflect, in a more accurate way, the behavior of each algorithm compared.

. Two Set Difference Hypervolume (HV) This measure was proposed in [130].

Consider X', X" as two sets of phenotype decision vectors. HV is defined by:

HV(X', X")=6§(X + X") - §(X")

2.5 Test Functions 13

where the set X’ + X" is defined as the non-dominated vectors obtained from the
union of X’ and X”, and § is the unary hypervolume measure. 6(X) is defined as
the hypervolume of the portion of the objective space that is dominated by X. In this
way, HV (X', X") gives the hypervolume of the portion of the objective space that is
dominated by X’ but not for X”.

Observe that since this metric is not simetric, then is necessary to consider both
HV(X', X") and HV (X", X").

It should be clear that the values HV (X', X”) = 0 and HV (X", X') > 0, indicate that
all the elements of X’ are dominated by the elements of X”. Therefore, HV (X', X") >
HV (X", X') indicates that X' is better than X".

2.5 Test Functions

We present several test functions taken from the specialized literature below. Such test
functions were selected because each one presents a different complexity.

2.5.1 Deb 1’'s Test Function
This example is a bi-objective test function proposed by Deb [23]:

Minimize fi(z1,22) = 21 (2.21)
Minimize fo(x1,22) = g(x1,22) - h(x1, x2) (2.22)
where:
g(x1,19) = 11 + 23 — 10 - cos(2m3) (2.23)
Az
Wy, zs) =4 17V e 1 1(@022) < glan,22) (2.24)
0 otherwise

and 0 <z <1, =30 < x5 < 30.
Figure 2.4 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).

2.5.2 Deb 2’s Test Function
This example is a bi-objective test function proposed by Deb [23]:

Minimize fi(x1,22) = 1 (2.25)

Minimize fa(x1,z2) = 9(x2) (2.26)
x1

14 Background

20,000 solutions randormly generated + e
True Pareto Front -------

F2

Figure 2.4: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Deb 1’s test function.

z9 — 0.2 2 z9 — 0.6\ 2
—92.0— (22 Vs (=2 2.27
9(x2) P (0.004 > P < 0.4 > (227)

and 0.1 <z <1.0, 0.1 <29 <1.0.

Figure 2.5 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).

1000

True Pareto front

"20,000 solutions randomly generated +
True Pareto front ——-----

0 01 02 03 04 05 06 07 08 09 1
F1

Figure 2.5: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Deb 2’s test function.

2.5.3 Kursawe’s Test Function
This test function was proposed by Kursawe [77]:

n—1

Minimize fi(Z) = Z (—10 exp <—0.2\/3:Z2 + x?H)) (2.28)
i=1
Minimize fo(%) = Z (|£L‘i|0'8 +5 sin(xi)?’) (2.29)

i=1

2.5 Test Functions 15

where: =5 < z1,x0,23 <5

This problem has the Pareto front and the Pareto optimal set disconnected. Figure
2.6 shows the graphical result produced by 20,000 solutions randomly generated (left side).
The true Pareto front of the problem is shown as a continuous line (right side).

Pareto Front ~ +

+
*h% .
"

F2

Figure 2.6: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Kursawe’s test function.

2.5.4 DTLZ2’s Test Function

Proposed by Deb et al in [29]. The test problem presents a big search space and 11° — 1
local attractors.
B Minimize:
fi =1+ g(zm))(cos(z1m/2))(cos(z2m/2))...(cos(xr—27m/2))(cos(zrr—17/2)),
f2 =1+ g(zam))(cos(z1m/2))(cos(xam/2))...(cos(xpm—2m/2)) (sen(zp—17/2)),
fa= 0+ g(xp))(cos(x17/2))(cos(xam/2))...(sen(xpr—27/2)),

fu—1 = (1+ g(zar))(cos(1m/2)) (sin(x27/2)),
far = (1 + g(xar)) (sin(z1m/2)).

with:
glxy) = Z (z; — 0.5)?
r; €Xpr
M = 3,
k = 10
n = M+k—1
y:

0<z <1 V i=12...n

Figure 2.7 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).

16 Background

20,000 solutions randomly generated ~ + True Pareto front +
True Pareto front x

oooooo000
ohRBRNOIBOR

Figure 2.7: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for DTLZ2’s test function.

2.5.5 ZDT1’s Test Function

This test function was proposed by Zitzler et al in [135].

Minimize (f1(Z), f2(Z)) (2.30)
h@) = =
f(2) = g(@hn(f1,9)

9@ =1 + 9 w/(m—1),h(f1,9) =1—/fi/g
i=2

where m = 30, and z; €[0,1].

Figure 2.8 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).

True Pareto front +

20,000 solutions randomly generated ~ +
True Pareto front ~ x

°
T

o
"
ot

Figure 2.8: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT1’s test function.

2.5.6 ZDT2’s Test Function
This test function was proposed by Zitzler et al in [135].

2.5 Test Functions 17

Minimize (f1(Z), f2(Z)) (2.31)
fil@) =
fo(Z) = g(@hn(f1,9)

9@ =1 + 9> w/(m—1),h(f1,9) =1—(f1/9)°
i=2

where m = 30, and z; €[0,1].

Figure 2.9 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).

20,000 solutions randomly generated ~ +
True Pareto front -------

Figure 2.9: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT2’s test function.

2.5.7 ZDT3’s Test Function

This test function was proposed by Zitzler et al in [135].

Minimize (fu(&), fo(#)) (2.32)
[@) = 21
f2(Z) = g(@)h(f1,9)

g(E) =1 + 9> x;/(m—1),h(f1,9) =1—+/fi/g— (f1/g)sin(107 f,)
i=2

where m = 30, and z; €[0,1].

Figure 2.10 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).

18 Background

20,000 solutions randomly generated + Pareto front +
: Pareto front -------
; 4 08| |
Y VN]

Figure 2.10: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT3’s test function.

2.5.8 ZDT4’s Test Function

This test function was proposed by Zitzler et al in [135].

Minimize (f1(Z), f2(Z)) (2.33)
h(E) = o=
fo(®) = g(@)h(f1,9)

g(@)=1 + 10(m—1)+ Z(ac? —10cos(4mx;), h(f1l,9) =1 —/(f1/9)
=2

where m = 10, z¢ €[0,1], and x; €[-5,5].

Figure 2.11 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).

20,000 solutions randomly generated ~ + Paretofront +
Pareto front -------

.
+

.
- T oht R
s L

Figure 2.11: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT4’s test function.

2.5.9 ZDTG6’s Test Function
This test function was proposed by Zitzler et al in [135].

2.5 Test Functions

19

Minimize (f1(Z), f2(Z))
fi(@) = 1—exp(—4x;)sin(6mx;)
fa(@) = g(@)h(f1,9)

m

9@ =1 + 9 z)/(m=1)"P h(fl,9) =1 (f1/9)?
=2

where m = 10, and z; €[0,1].

(2.34)

Figure 2.12 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).

Figure 2.12: The graphic of the left shows 20,000 solutions randomly generated, and the

graphic of the right shows the true Pareto front for ZDT6’s test function.

2.5.10 Kita’'s Test Function

This is a bi-objective optimization problem proposed by Kita [68]:

Maximize fi(z,y) = —2°+y

1
Maximize fo(z,y) = -x+y+1

2
subject to:
1 13
—r+y—— <0
2
1 15
—r+y——<0
2
—+y—30<0
x

and 0 <2 <7.0,0<y<7.0.

(2.35)

(2.36)

(2.37)
(2.38)

(2.39)

20 Background

R
t Tm"%@y\
\\F

Figure 2.14: Welded Beam

This test function presents a concave Pareto front. Figure 2.13 shows the graphical
result produced by 20,000 solutions randomly generated (left side). The true Pareto front
of the problem is shown as a continuous line (right side).

True Pareto front

Figure 2.13: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT6’s test function.

2.5.11 Welded Beam’s Test Function

This example consists of the welded beam problem shown in Figure 2.14. The problem
consists on [98] minimize the cost and minimize the end deflection beam subject to con-
straints on shear stress in weld (7), bending stress in the beam (p), buckling load on the
bar (P,), and side constraints:

Design vector:

2.5 Test Functions 21
I h
T2 o l
I3 - t
Ty b
Minimize f1(Z) = 1.104712% 29 + 0.048112324(L + x3) (2.40)
Minimize fo(Z) = (4FL?)/(Ex3x4) (2.41)
subject to:
91 T < Tmaa (242)
92 P < Pmaz (243)
g3 Ty =4 (2.44)
ga: x1 <0.125 (2.45)
g5 "< Fe (2.46)
where:
F =6,000 b
L=14in

FE =30 x 10° psi
G =12 x 10% psi
Tmaz = 13,600 psi

Pmaz = 30,000 psi

1

a=—
(3Gz373)

22 Background

B 1
N 123:3;172

P. = (4013VEIa/L?) x (1 — (23/(2L) x \/EI/a))
p = (6FL)/(x4z3)
J = 2% (0.707z122(23 /12 + ((z1 + 24)/2)%))
R =\/(23)/4+ ((x1 + 22)/2)
M = F(L + 25/2)
cost = x3/(2R)
7 = MR/J

7= F/(V2 + z172)

T =/(72 4 217" cost + T'"2)
0<x1,24 <2

0 ng,mg S 10

This test function presents a convex Pareto front. Figure 2.15 shows the graphical result
produced by 20,000 solutions randomly generated (left side). The true Pareto front of the
problem is shown as a continuous line (right side).

uuuuu

Infeasible + Pareto Front ——
Feasible x
Pareto Front -

10000 -

8000 -

4000
r+

0.005 -

PR
-
2000 F 4+, 4
Bty by

Figure 2.15: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Welded Beam’s test function.

2.5 Test Functions 23

shaft 1
T
shaft 2 .
bearinM\ / %
T e b jy)% bearings
| | 7’ : ‘
% i&
|]

Figure 2.16: Plane truss used for the fourth example. The structural volume and the joint
displacement (A) are to be minimized.

2.56.12 Speed Reducer’s Test Function

This example consists of the speed reducer problem shown in Figure 2.16. The problem
consists on minimize the stress and the weight of the speed reducer, considering the face
width (x1), the module of teeth (z3), the number of teeth on pinion (x3), the length of the
shaft 1 between bearings (x4), the length of the shaft 1 between bearings (z5), the diameter
of shaft 1 (z¢) and the diameter of shaft 2 (z7).

This is defined as follows [98]:

Minimize

fweight = [1(Z) = 0.7854x123(1023/3 + 14.933x5 — 43.0934) — 1.508z (22 + 22)
+7.477(xd + 23) + 0.7854 (24262 + x527?)
\/(745.024 /22123)2+1.69107

fstress - f2(f) - leg
(2.47)
such that
] 1.0 B 1.0 <0
gi ria3zs 27.0 ©
1.0 1.0
g a:lxgx% 397.5 —
3
Ty 1.0
: —— <0
93 xgmga:é 1.93 —
53 1.0
g4 : ° -—= =<0

gs : a3 — 40.0 < 0

24 Background

ge : $1/$2—12.0§0
g7 5.0 —x1/x9 <0
gg: 1.9 —z4+ 1526 <0

go: 1.9 — x5+ 1.127 <0

/(74524 /293)% + 1.69107

O.la:g

\/ (745z5 /x9w3)2 4+ 1.575108

O.la:?

910 : < 1300)

gi1 - < 1100)

where:

26 <21 <36

2.9 < 26 < 3.9

0.0 <27 <55

This test function presents a disconnected Pareto optimal set. Figure 2.17 shows the
graphical result produced by 20,000 solutions randomly generated (left side). The true
Pareto front of the problem is shown as a continuous line (right side).

1800

1800

Pareto Front

Infeasible +
Feasible
1

1600 - 1600

1400 -

1400

1200 -

1200

1000 -

1000 -

800 - 800 -

6 600

00 L L L L L L L L L L L L L L L
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 2500 3000 3500 4000 4500 5000 5500 6000

Figure 2.17: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Speed Reducer’s test function.

2.5 Test Functions 25
2.5.13 Osyczka2 ’'s Test Function
This example is a bi-objective test function proposed by Osyczka [93]:
Maximize fi(Z) = 25(x1 — 2)* + (20 — 2)% + (23 — 1)? + (x4 — 4)? + (x5 — 1) (2.48)
Minimize fo(%) = 22 + 23 + 23 + 23 + 22 + 22 (2.49)

such that
g1: (r14+22—2)>0
g2: (6—x1 —29)>0
g3: 2—z9+m1) >0
g1: (2—x1+3%x9) >0
gs: (4—(z3—3)2—24)>0
g6 (x5 —3)°+26—4>0
where:

0<z,22,26 < 10

1<@3,25 <5

0<x4<6

This test function presents a disconnected Pareto optimal set. Figure 2.18 shows the
graphical result produced by 20,000 solutions randomly generated (left side). The true

Pareto front of the problem is shown as a continuous line (right side).

26 Background

350 y T T 80 T
+ o+ v, Infeasible ~ + Pareto Front
. Feasible x
*r Pareto Front -
5 L
300 L + 70
60 -
250 -
50 -
200
40
150 -
30
100
20t
50 - w0l
0 0
1800 1600 1400 1200 -1000 -800 -600 400 -200 0 -300 -250 -200 -150 -100 -50

Figure 2.18: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Osyczka 2’s test function.

Evolutionary Algorithms

3.1 Introduction

N this chapter, we will provide a description of evolutionary single/multiobjective opti-
I mization algorithms that is based on a unifying view presenting a general scheme that
forms the common basis of all the current variations reported in the specialized literature.

The main components of an evolutionary algorithm are: an initialization process, a
parent selection mechanism, variation operators and a survivor selection mechanism. Each
of them will be briefly discussed in this chapter, and we will also explain their corresponding
role in multiobjective evolutionary algorithms.

3.2 Evolutionary Algorithms

In nature, those individuals that are best adapted to their environment have more
opportunities to compete for resources and reproduce [21]. In this process (usually known
as “the survival of the fittest”), natural selection plays the main role. However, in [21],
Darwin also identified that some rare modifications in the phenotype! (mutations) affect
directly the performance of an individual in a given environment.

Natural evolution can be seen as an optimization problem, where the aim is to adapt
best the species to their environment. Therefore, it is not surprising that scientists have
taken inspiration from nature, since Neo-Darwinism? has been the most important model
to explain natural evolution.

Neo-Darwinism points out that all the diversity of life in our planet can be explained
through 4 processes:

!Phenotype: The realized expression of the genotype. Genotype: The sum of inherited characters main-
tained within the entire reproducing population [35].

2Neo-Darwinism is the name given to the fusion of natural selection theory [21], Mendel’s inheritance
laws [84] and Weismann’s selectionism [123]

28 Evolutionary Algorithms

e Reproduction: This mechanism ensures the inheritance of genetic material from the
current to the next generation.

e Mutation: It is produced if a copying error occurs in the genetic material (during
reproduction). A mutation is beneficial to an organism if it produces a fitness increase
in its adaptation to the environment.

e Competition: It is a natural process, in which the organisms have a continuous con-
frontation to survive and to inherit their genetic code to next generation.

e Selection: In an environment that can only host a limited number of individuals, only
the organisms that compete most effectively for resources can survive and reproduce.

Evolutionary Algorithms (EA) are able to generate solutions for difficult real world
problems, mainly because of their analogy with the Neo-Darwinism (particularly, the fact
that in nature, the populations evolve through generations using the mechanism of natural
selection and the survival of the fittest principle). The evolution of such solutions depends
on the appropriate implementation of the following points:

e The encoding of the data structures used to represent the solutions of the problem.
Each solution is known as an “individual” and a set of individuals is called a “popu-
lation”.

e Operators to modify the individual’s traits (so-called variation operators).
e A fitness function which plays the role of the environment.

e The survival of the fittest is implemented through of the use of a selection procedure
which plays the role of environmental pressure.

Nowadays, EAs are very popular in many disciplines, mainly because they present sev-
eral advantages in optimization with respect to traditional techniques, such as:

e EAs donot need any specific knowledge about the problem. However if such knowledge
is available, it can be easily incorporated.

e EAs are conceptually very simple.

e EAs have a wide applicability.

e EAs can easily exploit parallel architectures.
e EAs can usually adapt their own parameters.

e EAs are less susceptible to be trapped into a local minimum/maximum (since they
are population-based techniques).

e EAs can cooperate with other search/optimization techniques.

Traditionally, EAs have been grouped into three main paradigms:

3.2 Evolutionary Algorithms 29

Algorithm 1 The general scheme of an EA

1: Initialize population with randomly generated solutions

2: Evaluate each solution

3: while stop condition is not reached do

4: Select parents for reproduction

5. Apply variation operators to the parents selected

6: Evaluate new candidates

7: Select the best individuals (among all) for the next generation (elitism)
8: end while

e Evolutionary Programming.
e Evolution Strategies.
e Genetic Algorithms.
— Genetic Programming (it is a genetic algorithm variant).

Next we will briefly describe each of them.

3.2.1 Evolutionary Programming

Lawrence J. Fogel conceived the use of a form of simulated evolution to solve problems in
the mid-1960s [36]. The technique that he developed was called Evolutionary Programming
(EP). Intelligence in this technique can be seen as an adaptive behavior. This approach
emphasizes the interactions between parents and offspring.

In EP, the crossover operator is not required, since EP is an abstraction of the evo-
lutionary process at an species level (two different species can not be recombined). EP
uses probabilistic selection (usually stochastic tournaments). Nowadays, there are several
variants of this technique.

The basic evolutionary programming algorithm is shown in Algorithm 2.

Algorithm 2 Evolutionary Programming Algorithm
1: Initialize population with randomly generated solutions
2: repeat
3: Apply mutation
4: Evaluate new candidates
5 Select those solutions which will be kept
6: Generate the new population
7: until stop condition is reached

3.2.2 Evolution Strategies

In the mid-60s Peter Bienert [6], Ingo Rechenberg [101] and Hans-Paul Schwefel [109]
developed a randomly discrete adjustment method, inspired in the mutation mechanism
that exists in nature. The technique was called FEvolution Strategy (EE) and it was initially
used to solve highly complex hydrodynamical problems.

30 Evolutionary Algorithms

The original version is the so-called (1 + 1) — EE and it uses a single parent which
generates a single offspring. This offspring survives to become the parent at the following
generation, only if it has a better fitness that his parent; otherwise it is eliminated (this is
called extinctive selection).

In the (1 + 1) — EE, a new individual is generated using;:

7l =7t + N(0,0)

where ¢ refers to the current generation (or iteration), and N(0,0) is a vector of Gaussian
numbers with a zero mean and a standard deviation o.

Evolution Strategies evolve not only the problem’s variables, but also its own parameters
(standard deviation), in a process called “self-adaptation”. Recombination is possible but it
is normally a secondary operator. The selection mechanism adopted is usually deterministic.
Its general algorithm is shown in Algorithm 3.

Algorithm 3 Evolution Strategies Algorithm
1: Initialize the population G with randomly generated solutions

2: t:=0

3: Evaluate G(t)

4: repeat

5 Select Giemp from G(t)

6: Reproduce Giemyp to generate G(t + 1)
7: Apply mutation to G(t + 1)

8: Evaluate G(t + 1)

9: Select survivors

10: t:=t+1
11: until stop condition is reached

3.2.3 Genetic Algorithms

Genetic algorithms (GAs) (originally called reproductive plans) were introduced by John
H. Holland [53] in the early 1960s. Holland’s main interest was to study natural adaptation
in order to apply it to machine learning. Nowadays, GAs are the most popular type of
evolutionary algorithm.

The general pseudocode of a simple GA [9] is shown in Algorithm 4.

Algorithm 4 Simple Genetic Algorithm
1: Initialize the population G' with randomly generated solutions
2: t:=0
3: repeat
4: Evaluate G(t)
5. Select G1(t) from G(t)
6
7
8

Apply crossover and mutation to G1(t) to generate G(t + 1)
ti=t+1
: until stop condition is reached

3.2 Evolutionary Algorithms 31

3.2.4 Genetic Programming

Nichal Lynn Cramer [20] and later, John R. Koza [74] proposed (in a different and
independent way) the use of a tree representation in which a crossover operator for in-
terchanging subtrees among different computer programs was implemented (with certain
constraints imposed by the syntax of the programming language used).

The basic difference between both proposals is that Cramer used an interactive fitness
function (i.e., the user had to supply (manually) the fitness value of each tree of the pop-
ulation), while Koza was able to automate it. Koza’s proposal prevailed and nowadays is
known as Genetic Programming (GP) [75].

The general algorithm of the GP [3] is shown in Algorithm 5.

Algorithm 5 Genetic Programming General Algorithm
1: Initialize the population G' with randomly generated solutions
2:t:=0
3: repeat
4: Evaluate the programs of the population G(t)
5. Select Gy(t) from G(t)
6
7
8

Apply genetic operators to G1(t) to generate G(t + 1)
ti=t+1
. until stop condition is reached

3.2.5 Swarm Intelligence

Swarm Intelligence (SI) encompasses a group of evolutionary optimization systems in-
spired by the collective behavior of social insect colonies and other animal societies. Such
systems are made up by a population of simple agents interacting locally among them and
with their environment. The aim of Swarm Intelligence researchers is the study of collective
behavior in decentralized systems.

Particle Swarm Optimization and Ant Colony are two forms of SI. Instead of genetic
operators, in these algorithms each individual (called agent in this context) varies itself
according to its past experience and the local interaction with other agents. The interactions
among agents usually cause a global behavior.

Since this thesis will be developed around Particle Swarm Optimization, an explanation
of such approach is provided next.

3.2.5.1 Particle Swarm Optimization

Kennedy & Eberhart [65] proposed an approach called “Particle Swarm Optimization”
(PSO) which was inspired on the choreography of a bird flock. Like other evolutionary
algorithms, PSO uses a set of possible solutions which will be “evolving” until an optimal
solution or a termination criteria is reached. In this case, each solution (Z) is represented
by a particle. And, a particle swarm is a set of particles. The responsibility of evolving
(moving) the swarm to the optimal region corresponds to the velocity equation. This
equation is usually composed by three elements: a velocity inertia, a cognitive component

32 Evolutionary Algorithms

(pbest) and a social component (gbest). The entire approach can be seen as a distributed
behavioral algorithm that performs (in its more general version) multidimensional search.
In the simulation, the behavior of each particle is affected by either the best local (i.e.,
within a certain neighborhood) or the best global particle.

An interesting aspect of PSO is that it allows individuals to benefit from their past ex-
periences (note that in other approaches such as the genetic algorithm, normally the current
population is the only “memory” used by the individuals). PSO has been successfully used
for both continuous nonlinear and discrete binary single-objective optimization [65].

The pseudocode of the PSO algorithm is shown in Algorithm 6. First, the particles are
initially randomly initialized through the search space. These initial positions also initialize
each particle’s pbest. Next, the fittest particle from all the particle swarm is selected and
assigned to the gbest solution. Then, the particle swarm flies the search space until certain
termination criteria is reached. This flight consists on applying to the particle swarm a
velocity equation, which updates the position and fitness of each particle. The new fitness
obtained by each particle is compared with respect to the particle’s pbest position; in case
that the new position has a better fitness, then it replaces to the pbest position. The same
procedure is performed for the gbest solution.

Algorithm 6 PSO Algorithm

1: gbgst — T0
2: for i=0to nparticles do
3: pbest; «— x; « initialize_randomly()

4 fitness; — f(&7)

5. if fitness; < f(gbgst) then

6: gbgst — T

7 end if

8: end for

9: repeat
10: for i = 0 to nparticles do
11: for d = 0 to ndimensions do
12: velocity;q «— W x velocity;q + C1 x U(0,1) X (pbest;q — x;q) + Ca X U(0, 1) X (gbest — x;4)
13: Tid < Tiq + velocity;q
14: end for
15: fitness; — f(z7)
16: if fitness; < f(pbgsti) then
17: pbgsti — T
18: end if
19: if fitness; < f(gbest)) then
20: gbgst — T
21: end if

22: end for
23: until Termination criterion

The PSO algorithm requires the following parameters:

e Termination criterion: it refers to the criterion adopted to conclude the execution
of the algorithm (usually the total number of generations that the algorithm will be
executed).

3.3 Multiobjective Evolutionary Algorithms 33

e nparticles: it refers to the total number of particles that will be over-flying the search
space.

e IW: it refers to the velocity inertia of the previous movement.

e ('1: is the constant of the cognitive component. This constant indicates how strong
will be the attraction from its best position.

e (2: is the social component. It indicates how strong will be the attraction from the
best particle’s position found so far.

3.3 Multiobjective Evolutionary Algorithms

There are several variants of multiobjective evolutionary algorithms
(MOEASs). Recent MOEAs, however, can be classified into a general scheme. First, the ini-
tial population is filled by randomly generated solutions. Next, given the objective functions
to be minimized, the population is evaluated and ranked on the basis of non-domination
and distribution. Based on this rank, some of the best candidates are chosen to seed the
next generation by applying variation operators. Next, the non-dominated solutions from
both, the parents and offspring population are merged to become the parents for the next
population. This process is repeated until a stop condition is reached.

The main difference of recent MOEAs with respect to earlier MOEAs is the use of
elaborated forms of elitism (i.e. recent MOEAs spend a considerably part of their efforts on
the selection of the best distributed non-dominated solutions and on mechanisms aimed to
improve their convergence time). The aim of elitism is mainly to retain the non-dominated
solutions generated during the search. The general pseudocode of a MOEA is given in
Algorithm 7.

Algorithm 7 The general scheme of a MOEA

: Initialize population with randomly generated solutions
: Evaluate each solution
while stop condition is not reached do
Select parents for reproduction (Pareto Selection Mechanism)
Apply variation operators to the parents selected
Evaluate new candidates
Select the best individuals (among all) for the next generation (Survivor Selection Mechanism
and retention of Non-Dominated Solutions)
end while

LR i e

®

3.3.1 Multi-Objective Evolutionary Components

This Section will provide a description of mono/multiobjective evolutionary algorithms
that is based on an unifying view presenting a general scheme that forms the common basis
of most of the current variations reported in the specialized literature.

Initialization, parent selection mechanism, variation operators and survivor selection
mechanism are the main components of an evolutionary algorithm [31]. We briefly discuss
them below, and we explain their role in MOEAs.

34 Evolutionary Algorithms

3.3.2 Initialization

Like in single-objective EAs, the initial population is filled by randomly generated so-
lutions (normally, a uniform distribution is adopted). The aim of this process is to spread
solutions uniformly throughout the search space.

3.3.3 Parent Selection Mechanism

This mechanism is responsible for selecting the individuals who will become parents to
give rise to the next generation based on their quality. The parent selection mechanism is
typically probabilistic. Thus, non-dominated individuals have a higher probability of being
selected. Nonetheless, dominated individuals are often given a small (but non-zero) chance
of survival. There is evidence that indicates that the parent selection mechanism has a
significant impact on the performance of a MOEA. For example in [97] it was discovered
that the recombination of spatially dissimilar solutions tended to produce offspring that
performed relatively badly, so it was necessary that the parent selection mechanism chose
well-distributed but not spatially dissimilar solutions, for recombination purposes. The
main drawback, if we pretend to select spatially similar solutions in the parent selection
mechanism, is that it could be possible to lose promising points which are located far
away from the majority. A good solution to solve this problem is to interact with an
external archive, such that the algorithm takes the parents from here (this would avoid
losing promising points). Furthermore, a good mechanism to keep diversity and to divide
located solutions into clusters based on their spatial similarity is necessary. In this case,
clustering techniques are needed.

A good clustering technique should be able to group the solutions with respect to their
spatial similarity (as is shown in Figure 3.1).

Knowles [70] identified several features or dimensions of quality of mechanisms for pro-
moting speciation and the maintenance of diversity:

1. Time complexity — particularly in terms of the population size.
2. Selection pressure and the exploration/exploitation tradeoff.

3. What measure of diversity is adopted: genotypic vs phenotypic in EAs, and different
tradeoffs in objective space in MOEAs.

4. Accuracy and stability — how closely the method approaches the desired number of
solutions on each optimum (usually related to the fitness of the optimum) and how
steadily it maintains these numbers as selection continues i.e. in the steady state.

5. Robustness to optima of different sizes and shapes, and to optima distributed non-
uniformly in the search space.

6. Parameterization/self-adaptiveness. How much a priori knowledge is needed about
the size, position and number of optima in the solution space in order to apply the
technique, how many parameters need to be fine-tuned, and how much robustness
there is if parameters are not set accurately.

3.3 Multiobjective Evolutionary Algorithms

35

ner

Swarm 1
Swarm 2
Swarm 3
Swarm 4

&

b

2 T L] L] L] L]
Swarm 1«
Swarm 2
o | o Swarm 3\
& Swarm 4 =
-2k
_4 L
_B 5
_8 5
_10 5
_12 L L L L
-20 -19 -18 -17 -16 -15

Figure 3.1: The top figure shows the location of 4 swarms clustered in the variable space
of Kursawe’s test function (see Section 2.5.3), and the figure at the bottom shows the same

in the objective function space.

36 Evolutionary Algorithms

In addition to the previous features, the parent selection mechanism should include the
following desirable characteristics:

e To interact with an external archive, with the aim of avoiding losing promissory points.

e To group and select spatially similar solutions, with the aim of avoiding the production
of offspring that perform poorly.

e To maintain enough diversity in the population, with the aim of avoiding premature
convergence.

In general, the clustering problem is to find q groups of similar elements, from a collection
of p elements, where p > ¢ [130].

Clustering techniques are grouped into two different classes: hierarchical and partitional
clustering methods.

Hierarchical clustering techniques organize the data into a nested sequence of groups.
Partitional clustering methods generate a single partition of the data in an attempt to
recover natural groups present in the data [58]. Hierarchical clustering methods, generally
require only the proximity matrix among the objects, whereas partitional techniques expect
the data in the form of a pattern matrix.

e Hierarchical Agglomerative Clustering Algorithms: These methods start with
disjoint clustering, which places each of the n objects in an individual cluster. The pro-
cess concludes with a procedure for transforming a proximity matrix into a sequence
of nested partitions. T'wo algorithms belonging to this class are briefly described next.

— Johnson’s algorithm: This algorithm is a hierarchical clustering method [63].
The pseudocode of this algorithm is shown in Algorithm 8.

Algorithm 8 Single-link clustering

1: Begin with the disjoint clustering having level L(0) = 0 and sequence number m = 0.

2: repeat

3: Find the least dissimilar pairs of clusters in the current clustering, say pair (r), (s),

4: According to d[(r), (s)] = min{d[(i),(j)]} where the minimum is over all pairs of clusters in
the current clustering.

5: Increment the sequence number: m = m + 1. Merge clusters (r) and (s) into a single cluster
to form the next clustering m. Set the level of this clustering to L(m) = d[(r), (s)]

6: Update the proximity matrix, D, by deleting the rows and columns corresponding to clus-
ters (r) and (s) and adding a row and a column corresponding to the newly formed cluster.
The proximity between the new cluster, denoted (r,s) and the old cluster (k) is defined as:
dl(k). (r, 5)] = min{d(k), ("), d[(k), (5)]}

7: until objects are not in N clusters.

— Average linkage method: Another well-known hierarchical algorithm is the
average linkage method proposed by Morse [90] which has been found successful
in practice. The pseudocode of this algorithm is shown in Algorithm 9.

3.3 Multiobjective Evolutionary Algorithms 37

Algorithm 9 Average-linkage method
: output
P external set
N external set’s maximum size
output
15,5+1 updated external set
Initialize cluster set C; each individual i € P constitutes a distinct cluster: C' =;.p {{i}}.
while C > N do
Calculate the distance of all possible pairs of clusters. The distance d. of two clusters ¢; and
co € C'is given as the average distance between pairs of individuals across the two clusters.
9: Determine two clusters ¢; and co with minimal distance d.; the chosen clusters amalgamate
into a larger cluster: C' = C{cy, cau{ciucs}
10: end while

e Partitional clustering methods: The K-means algorithm is a well-known parti-
tional clustering method. Its methodology consists of dividing the data into K clus-
ters where K is a user-specified parameter. The K-means algorithm starts with K
centroids (K randomly selected solutions, represent the K centroids) and iteratively
performs the following steps [39]:

— assign each data instance to the cluster whose centroid is nearest to that instance;

— compute the new centroids of each cluster.

These two steps are iteratively performed until no data instance moves from one
cluster to another.

The basic idea is to cluster each solution to its nearest centroid, such that the distance
between each instance and its nearest centroid is minimized.

3.3.4 Variation Operators

The goal of variation operators is to create new non-dominated individuals derived from
the old ones. The variation operators can be used for exploration (search in an untested
region of the search space) or exploitation (search for better solutions in the vicinity of
good ones). Variation operators should be used with a strong exploration emphasis at the
beginning of the search, and with an exploitation emphasis at the end of the execution of
the evolutionary algorithm.

Variation operators vary according to the evolutionary paradigm adopted. It is also
important to note that variation operators are representation-dependent. That is, for dif-
ferent representations different variation operators have to be defined. The most widely
used variation operators are mutation and recombination.

3.3.4.1 Mutation

The mutation operator is used to create a new individual solution from an old one by
applying some kind of randomized change to the genotype. Mutation is normally used as
an exploration operator.

38 Evolutionary Algorithms

3.3.4.2 Recombination

The role of recombination is to create new individual solutions from the information con-
tained within two or more parent solutions, with the aim that each new offspring has desir-
able features from its ancestors, but different to them. Recombination is usually adopted
as an exploitation operator.

Since there are many recombination operators proposed in the specialized literature,
choosing a “good” recombination operator plays an important role when we try to solve
a specific multiobjective optimization problem. Toscano and Coello [114] found that there
are recombination operators that perform better than others in multiobjective optimization
problems (e.g. simulated binary crossover [26] performs better than arithmetical crossover
in the presence of a disjoint Pareto optimal set).

3.3.5 Survivor Selection Mechanism

The survivor selection mechanism? is similar to the parent selection mechanism, but it

is used at a different stage of the evolutionary cycle. The survivor selection mechanism
is invoked after having created the offspring from the parents selected [31]. Since the
population size in an evolutionary algorithm is usually constant we need to decide which
individuals (from the union of parents and offspring) will be allowed to survive for the next
generation. DeJong [30] proposed a methodology that avoids a performance degradation
by copying the best individual from the parent generation to the next. This strategy is
commonly known as elitism. However, as the notion of Pareto dominance is normally used
in multiobjective optimization, then the design of an elitist mechanism becomes elusive. One
could retain all the non-dominated individuals generated (since they all are conceptually
equally good). However, this is normally impractical because of the very large number of
solutions that may be necessary to store.

A possible solution is to use a historical archive where the non-dominated solutions are
stored. Historical archives have been studied in more detail in recent years, and a number
of mechanisms have been proposed to encourage a good distribution of the solutions stored
in the archive [71, 80, 70, 66, 69].

Since it is normally the case that a bound is imposed on the size of the external
archive, an additional selection mechanism is usually necessary to discriminate among non-
dominated solutions. This additional mechanism should choose those solutions which are
better spread along the known Pareto front (It is important to note that the survivor selec-
tion mechanism should be applied in objective function space, whereas the parent selection
mechanism should be applied in design variable space).

The easiest possible implementation in this regard is a historical archive in which all
the non-dominated vectors will be stored after each generation (removing any dominated
solutions). The adaptive-grid is another algorithm commonly used [71]. It is an external
file with a diversity approach based on geographical distribution of solutions in objective
function space. e-dominance proposed in [80] is a fast algorithm for maintaining the diversity
based on e-dominance and e-Pareto optimality [87]. Clustering techniques [39] are also
suitable to be included in the survivor selection mechanism.

®In this work, survivor selection mechanism and replacement mechanism will be used interchangeably.

3.3 Multiobjective Evolutionary Algorithms 39

3.3.5.1 Using a Historical Archive of Solutions

The basic idea is to use an external archive to store all the solutions that are non-dominated
with respect to the contents of the archive.

The function of the external archive is to decide whether a certain solution should be
added or not to the archive. The decision-making process is the following (the same but in
pseudocode form is shown in Algorithm 10).

After the MOEA finishes one cycle, the non-dominated vectors found are extracted from
the final population and are compared (on a one-per-one basis) with respect to the contents
of the external archive. If the external archive is empty, then the current solution is accepted
(see case 1 in Figure 3.2). If this new solution is dominated by an individual within the
external archive, then such a solution is automatically discarded (see case 2 in Figure 3.2).
Otherwise, if none of the elements contained in the external population dominates the
solution wishing to enter, then such a solution is stored in the external archive (see case 3
in Figure 3.2). If there are solutions in the archive that are dominated by the new element,
then such solutions are removed from the archive (see case 4 from Figure 3.2).

Finally, the external population is normally bounded in size. If this is the case, once
the external population has reached its maximum allowable capacity, an extra mechanism
is invoked to encourage diversity in the archive (see case 5 from Figure 3.2). Otherwise, the
external archive will not accept any other solution, until a space is freed.

Algorithm 10 External archive(solution)

1: if external-archive £ = ¢ then
store solution in F
else if solution dominates F then
eliminate dominated individuals
store solution in F
else if solution is not dominated by F then
if F is not full then
store solution in F
Call-an-additional-mechanism-to-keep-diversity
10: end if
11: end if

D

40 Evolutionary Algorithms

Ns = New solution

A~ B =Aisindifferent to B
A S B = A weakly dominates B

A > B= B weakly dominates A

Ns D D D
Empty Ns
archive Ns Ns E S1 S1 Ns ~ S1 S1

Case 1 Case 2 Case 3

S6

S5

S4 s4

Ne<f s3| [> | s4 Ns~(| g3 | [>
—U s2 Ns 52
s1 s1 s1
Case 4 Case 5
S|
S5
S4
S3
S2| s
S1 S5
S4
S3
S2|
S
Ns|

Figure 3.2: Possible decision cases to store for the external archive.

Multiobjective Optimization
Techniques

4.1 Introduction

INCE the economist Vilfredo Pareto introduced in 1896 the compromise solution concept
S [95], several multiobjective optimization techniques have been developed.

This chapter introduces the state-of-the-art related to multiobjective optimization. The
main traditional and evolutionary multiobjective methods in current use are briefly reviewed
in Sections 4.2 and 4.3, respectively.

4.2 Traditional Techniques

The Operations Research community has developed more than 30 multiobjective opti-
mization algorithms [92, 87]. A general classification of mathematical programming tech-
niques used for multiobjective optimization is shown in Figure 4.1. The main approaches
included in this taxonomy are briefly discussed next.

4.2.1 No Preference Information

We consider within this group simple methods where the decision maker does not provide
any information regarding the type of non-dominated solutions that he or she prefers.
These methods are usually adopted when the decision maker does not have any particular
preference for certain types of solutions and is satisfied with any Pareto optimal solution
[87].

Some methods included under this category are:

e Method of the global criterion [125, 127].

42 Multiobjective Optimization Techniques

Method of the Global Criterion
Multiobjective Proximal Bundle Method

No Preference
Information

Value Function Method
Lexicographic Ordering Method
Goal Programming Method

A priori Preference
Information

Mathematical
Programming
Techniques

AN

Weighting Method
Epsilon Constraint Method
Achievement Scalarizing Function Approach

A posteriori Preferenc
Information

o

Tchebycheff Method
Interactive Preference Reference Point Method
Information GUESS Method

Light Beam Search

Reference Direction Approach

Figure 4.1: A classification of some methods used to conduct multiobjective optimization
using mathematical programming techniques

e Multiobjective proximal bundle method [83].

4.2.2 A priori Methods

In these methods the preference specification is provided before the solution process.
The main drawback of these methods is that the desirable features for the solutions of an
arbitrary problem are rarely known in advance. The most important techniques within this
class are the following;:

e Value function method [64].
e Lexicographic ordering method [33].

e Goal programming [11]

4.2.3 A posteriori Methods

These methods produce a Pareto optimal set (or part of it), through the use of a com-
putationally expensive process. The decision maker selects the most preferred solution from
among all the available alternatives.

These methods can be divided into two classes: those that can find the whole Pareto
front, and those that can only generate those points which are located on each farthest end
of the Pareto front.

The main advantages of these methods are that the solutions are independent from
the decision maker’s preference. Therefore the analysis has to be performed only once.
However, they have some disadvantages such as the computational cost, which in most of
these methods tends to be prohibitively high (computationally speaking) and usually there
are too many solutions to choose from, which complicates the decision-making process.

4.2 Traditional Techniques 43

Some examples of this type of approach are shown below:
e Weighting method [40, 126].

e c-constraint method [47].

e Method of weighted metrics [127].

e Achievement scalarizing function approach [121].

4.2.4 Interactive Methods

This type of method is more developed than the classes previously described. Methods
in this class work based on the hypothesis that the decision maker is unable to indicate
preference information a priori because of the complexity of the problem. Thus, the decision
maker specifies and adjusts his or her preferences at the same time as he or she is learning
more about the problem. Andersson [2] lists some advantages of this type of method:

e There is no need for a priori preference information.
e Only local preference is needed.

e [t is a learning process in which the decision maker gets a better understanding of the
problem.

e As the decision maker takes an active part in the search it is more likely that he or
she accepts the final solution.

And some disadvantages:

e The solutions depend of how well the decision maker can articulate his or her prefer-
ences.

e A high effort is required from the decision maker during the whole search process.

e The solution depends of the behavior of the decision maker.

The basic algorithm for multiobjective optimization used by this type of approach [87]
can be seen in Algorithm 11.

Algorithm 11 Basic algorithm of an interactive method
Find a feasible solution
repeat
Interact with the decision maker (introduction of preferences)
Obtain a new solution according to the user’s preferences
until a solution is accepted

Some methods grouped under this category are the following:

e Interactive surrogate worth trade-off method [10].

44 Multiobjective Optimization Techniques

e Geoffrion-Dyer-Feinberg method [42].

e Sequential proxy optimization technique [105].
e Tchebycheff method [112].

e Reference point method [122].

e GUESS method [7].

e Light Beam search [59].

e Reference direction approach [73].

e NIMBUS method [88].

4.2.5 Drawbacks of the Conventional Techniques

Traditional multiobjective methods are usually computationally expensive. Consequently,
it is difficult to obtain solutions in polynomial time if we increase the complexity of the
problem. And, even when these methods reach the true Pareto front of a problem, they
generate only one solution at a time (i.e., they need to be run several times from differ-
ent starting points). Furthermore, traditional mathematical programming techniques are
normally highly susceptible to the shape or continuity of the Pareto front.

4.3 Evolutionary Techniques

The first notion about the use of evolutionary algorithms in multiobjective problems
dates back to the mid-1960s. Rosenberg’s Ph. D. thesis [102] included a suggestion about
how to use multiple properties (closeness with respect to some chemical composition) in his
simulation of genetic and the chemistry of single-cell organisms. Since his implementation
comprised a single property, he could not show a multiobjective approach in his work.
However, this work was the first indicative of the use of evolutionary algorithms to deal
with several objective functions.

The first practical implementation of a multiobjective evolutionary algorithm was per-
formed by Schaffer [106] in the mid-1980s. After this novel work, practically there was no
interest in the area until the publication of Goldberg’s book [43] in which the concept of
“Pareto ranking” was introduced. Pareto ranking is a selection scheme which basically con-
sists on selecting individuals based not on their fitness, but on Pareto dominance, in such a
way that the non-dominated individuals (i.e. the non-dominated vectors) of the population
have all the highest fitness (they all have the same fitness).

In the mid-1990s the area now called “evolutionary multiobjective optimization” had
its greatest development. It was during that period that researches proposed algorithms
that became widely used (e.g. MOGA [37], the NSGA [110] and the NPGA [55]). The last
ten years have produced more sophisticated algorithms which are both more effective and
efficient than their predecessors (e.g., the NSGA-II [110], PAES [71], SPEA [137], SPEA2
[134]).

4.3 Evolutionary Techniques 45

The area has become increasingly popular in the last few years as reflected by a consid-

erable number of publications !.

There are several mutiobjective evolutionary algorithms in the specialized literature.
Coello [13] classifies them as follows:

e Simple approaches:

— Aggregating functions.
— Goal programming.
— Goal attainment.

— e-constraint method.
e Approaches not based on the notion of Pareto optimum.

— VEGA.

— Lexicographic ordering.

— Using gender to identify objectives.
— Weighted Min/Max approach.

— Use of randomly generated weights and elitism.

e Approaches based on the notion of Pareto optimum.

MOGA.

— NSGA and NSGA-IL
NPGA.

— SPEA and SPEA2.
PAES.

— MicroGA.

Next, we will provide a brief description of the most significant characteristics of the
approaches that are most representative of the area (the others are described in detail
somewhere else [13, 19]).

4.3.1 Vector Evaluated Genetic Algorithm (VEGA)

David Schaffer modified [107] the GENESIS’ [45] selection process so that it could
handle multiple objectives. The resulting algorithm was called the Vector Evaluated Genetic
Algorithm (VEGA). This algorithm is classified as a criterion selection technique. The
general idea is that, a population of size M must be subdivided into k subpopulations
(where k is the number of objectives). These subpopulations are then shuffled together
to obtain a new population of size M. Finally crossover and mutation are applied to the
resulting population. This process is performed until a stop condition is reached. The
pseudocode of this algorithm is shown in Algorithm 12.

1See the EMOO repository which contains over 2000 bibliographic references:
http://delta.cs.cinvestav.mx/~ccoello/ EMOO

46 Multiobjective Optimization Techniques

Algorithm 12 VEGA Algorithm

Initialize population with randomly generated solutions

Evaluate each solution

while stop condition is not reached do
Generate k sub-populations
Perform proportional selection to each subpopulation
Mix the individuals from the subpopulations into one population
Apply crossover
Apply mutation
Evaluate new candidates

end while

4.3.2 Multiobjective Genetic Algorithm (MOGA)
This approach was proposed by Fonseca & Fleming [37]. In this technique, the ranking

process is based on Pareto dominance (i.e. the non-dominated individuals will be assigned
rank 1, and the ranking assigned to the other individuals proportionally increases with
respect to the number of individuals that dominate them). The rank position is then given
by the following expression:

Rank(z;,t) =1+ p! (4.1)
where:

x; = the ith individual.

t = current generation.
p! = number of individuals that dominate to the ith individual at generation ¢ .

Fitness assignment is performed in the following way [37]:

1. Sort population according to rank.

2. Assign fitness to individuals by interpolating from the best (rank 1) to the worst (rank
n < M) in the way proposed in [43], according to some function, usually linear, but
not necessarily.

3. Average the fitness of individuals with the same rank, so that all of them are sampled
at the same rate. This procedure keeps the global population fitness constant while
maintaining approp