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Abstract 
 
Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and 
curtail peak demand.  This research focuses on load control by improving the operations in existing 
building HVAC (Heating, Ventilating and Air-Conditioning) systems and by aggregating individual loads 
based on optimization studies.  Emphasis is placed on electricity rates and climate data in California, 
where electricity costs have been of particular concern.  The optimization problem in this research is 
multi-objective in the sense that we aim to reduce building load while maintaining an acceptable level of 
comfort.   
 
The first part of this research focuses on optimizing controls in a single building.  A simple three-zone 
VAV system model is built in EnergyPlus (E+).  The cost function structures and the potential difficulties 
associated with simulation-based optimization are discussed.  Discontinuity and nonlinearity are of major 
concern.  Two optimization algorithms are tested and applied to a variety of problems:  Direct Search 
(DS) and Genetic Algorithms (GA).   An E+ simulation based GA optimization environment is developed 
in Matlab.  DS is found to be efficient with small problems in this research, while GA works in almost 
any situation with the price of intensive computation.  A few operations guidelines are proposed.  
 
The second part of this research presents three ways of optimizing load control in an aggregation pool: 
Enumeration, multi-GA and model-based nonlinear optimization.  Enumeration relies on expert rules to 
find a small set of feasible solutions through automated E+ simulations and search exhaustively for the 
optimal solution.  Multi-GA solves the aggregation problem in the Matlab GA environment with 
sequential E+ simulations as the function evaluator.  Because simulation-based optimization is very 
computationally intensive in handling multiple buildings, the model-based approach develops for each 
aggregation participant a time series model and several regression models to predict individual load 
profiles under load control.  It then applies an interior-point-method-based commercial solver LOQO to 
these simplified building models. This system is fast and easy to scale up.  Certain precision is lost due to 
modeling simplifications, but the results are still satisfactory for practice purposes.  
 
Overall, load aggregation offers load diversification opportunities among participants and improves the 
aggregated load profile.  Load shedding later individual load profiles in a way that enhances the 
aggregation performance. 
 
 
Thesis Supervisor:  Prof. Leslie Norford 
Title:  Professor of Building Technology 
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CHAPTER ONE  

INTRODUCTION 

 

 

1.1 Background 

This thesis work was spurred by the recent energy issues in California, where high peak demand and lack 

of supply growth created electricity shortages and resulted in high cost and economic inefficiency in 

2001.  In summer months in California, air conditioning (AC) accounts for 29% of the peak demand with 

residential AC load contributing 14% and commercial AC load 15% [Ilic 2002].  A variety of solutions 

have been proposed to reduce the overall electricity consumption and curtail peak demand [Rabl et al. 

1991, Keeney et al. 1996, Braun et al. 2001].  Our research focuses on the load control by improving the 

operations in the existing building HVAC (Heating, Ventilating and Air-Conditioning) systems and by 

aggregating the individual loads based on optimization studies.  The optimization problem in this research 

is multi-objective in the sense that we aim to reduce building electricity consumption while maintaining 

an acceptable service level – a reasonably comfortable indoor environment.   

 

Electric load aggregation is considered an effective means of maximizing savings and mitigating risks in 

today’s emerging power markets.  Load aggregation is the process by which individual energy users band 

together in an alliance to secure more competitive prices than they might otherwise receive working 

independently.  Aggregation can be accomplished through a simple pooling arrangement or through the 

formation of clusters where individual contracts are negotiated between the suppliers and each member of 

the aggregate group.  Load aggregation has the following benefits: 1) increased buying power lowers per 

unit cost for pool members; 2) load diversity among multiple facilities improves load factors, which leads 

to a smaller demand charge; 3) load aggregation reduces transaction costs and creates economies of scale;  

4) a facility may be able to realize significant savings by acquiring a portfolio of energy products that 

meets its anticipated needs more efficiently than a full-requirements contract.  The candidate buildings do 

not have to be physically close, and being on the same utility bill with demand charge applied is enough.   

 

A natural question faced by load aggregators is which buildings should go into the aggregation pool.  A 

load aggregator should choose a variety of individual profiles and take advantage of diversification to 

make aggregation effective.  Our research answers this question in a proactive way by allowing load 

shedding in individual buildings.  Based on the improved individual profiles, we explore the cooperation 

nature between buildings aggregated.  By changing building operations temporarily, load shedding offers 

opportunities to reduce and/or shift peak demand.  For example, one building has a much larger peak 
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demand than another; it might help to curtail the chiller load of the smaller-load building at the time when 

the larger-load building reaches its peak, so that the coincident peak is reduced.  The “cushion” effect of 

building thermal mass on indoor thermal environment and human beings’ adaptability to varying thermal 

environment allow load to be shifted to a different time without degrading service level.   

 

A building electric load consists mainly of the electricity consumed by lighting, equipment, and HVAC.  

Cutting equipment electricity use might cause building malfunction and therefore would not be 

considered a viable cost-saving approach in this research.  Lighting control is straightforward, as the 

optimal strategy in summer would always be to keep the lowest acceptable lighting level to minimize 

cooling load.  This work focuses on controlling HVAC electricity use.  We will explore several major 

operation changes such as increasing thermostat set points and shutting down chillers temporarily and 

will look at the optimal ways of determining these parameters.  We choose those control variables that are 

easy for building operators to change and have good load shedding potential.  

 

1.2 Research overview 

In this section we give a brief introduction to what this research intends to accomplish.  Related literature 

will be reviewed in the next section.  The entire thesis is to answer one central question – on a short-term 

basis, e.g. a day or even several hours, how a building operator should control the operations of the target 

building(s) to minimize energy cost.  It could be a building or a group of buildings if aggregation is 

available.  Several key questions are as follows. 

 

• What load control strategies can be implemented?  

A variety of load control approaches and their performance are reviewed.  Load control scheduling is 

often a companion problem.  Comparison between strategies will be made in Chapters 2-4 with load 

control implanted to a specific VAV model in this research.  

• What optimization algorithms and/or systems are used? 

We will review optimization algorithms used in previous building optimization research, their global 

convergence and computational intensity, ways of handling the multi-objective aspect of the problem, 

and ease of integration with simulation. 

• How are building dynamics represented? 

Optimization requires an objective function evaluator – a load model for a building system.  It is 

implemented in two ways in this research:  full-scale simulation using EnergyPlus and a simplified 

load model.  A variety of simulation models, including full-scale packages, statistical approximations 
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and those in between, are reviewed and compared regarding accuracy, computational intensity and 

ease of integration with optimization.  

• How is the aggregation aspect of the multi-building problem captured? 

Direct load control research in electrical engineering is reviewed as it deals with a certain type of load 

control with multiple participants involved.  Several optimization schemes are also discussed to 

handle aggregation. 

 

It is to be noted that most of the examples in this thesis minimize the peak demand.  This, as we will 

argue late in this research, is mathematically equivalent to minimizing the energy cost in terms of 

optimization problem structure.  Although these two may produce different optimization results, the 

difference is only a matter of implementation decided by the pricing vector or rate structure used, as the 

analysis is identical. 

 

1.3 Literature review 

This section reviews previous research addressing the key questions raised in Section 1.2:  simulation, 

optimization, load control strategies and aggregation concerns.  We try to address them separately, but 

most load control research projects cover more than one aspect and therefore only the most important one 

is emphasized.   

 

1.3.1 Simulation 

A big portion of our research relies on building simulation to handle the complex building and plant 

dynamics.  A simulator is essentially a function evaluator in many optimization systems.  Three types of 

simulation are common in research: full-scale simulation package, simplified models, and statistics-based 

simulation.   

 

a) Full-scale simulator  

EnergyPlus, DOE2 and BLAST are examples of full-scale system simulation packages.  They cover a 

wide range of building systems and components, take detailed system description and produce a large 

number of energy and comfort outputs.  Writing modeling script can be quite laborious if started from the 

beginning, but with knowledge of the software and understanding of the building system, the process does 

not require sophisticated physics-based modeling skills.   
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DOE-2 and BLAST are two building energy simulation programs widely used and supported by the US 

government for more than 20 years.  The main difference between the programs is the load calculation 

method – DOE-2 uses a room weighting factor approach while BLAST uses a heat balance approach.  

A new energy simulation program, EnergyPlus [Crawley et al. 2001] [EnergyPlus 2003] is built on 

BLAST and DOE-2 but with a better modular program structure.  The major improvement in EnergyPlus 

over previous energy simulation programs is an integrated (simultaneous loads and systems) simulation 

for accurate temperature and comfort prediction, rather than taking a sequential approach as in DOE2.  In 

detail, the process in EnergyPlus is referred to as a Predictor-Corrector process.  Loads calculated (by a 

heat balance engine) at a user-specified time step (15-minute default) are passed to the building systems 

simulation modules at the same time step.  The building systems simulation module, with a variable time 

step (down to seconds if necessary), calculates heating and cooling system and plant and electrical system 

response.  Feedback from the building systems simulation module to loads not met is reflected in the next 

time step of the load calculations in adjusted space temperatures and humidity if necessary.  As a 

comparison, the sequential approach in DOE2 uses a room weighting factor and calculates the zone 

conditions and determines all heating/cooling loads at all time steps; this information is fed to the air 

handling simulation to determine system response, and that response does not affect zone conditions; 

similarly the system information is passed to the plant simulation without feedback.  This sequential 

technique works well when the system response is a well-defined function of the zone temperature.  

However, in most cases, the system capacity also depends on outside conditions and/or other parameters 

of the conditioned space.  EnergyPlus realizes the fully integrated simulation of loads, systems, and plant 

through the building systems simulation manager, which makes the simulation modular and extensible. 

 

For the heat and mass balance simulation, the hardwired ‘template’ systems (VAV, Constant Volume 

Reheat, etc.) of DOE-2 and BLAST are replaced in EnergyPlus by user-configurable heating and cooling 

equipment components formerly within the template. This gives users much more flexibility in matching 

their simulation to the actual system configurations.  EnergyPlus [Crawley et al. 2001] allows users to 

evaluate realistic system controls, moisture adsorption and desorption in building elements, radiant 

heating and cooling systems, and interzone air flow – little of which can be simulated well before. 

 

A full-scale simulation package can be plugged in the optimization process, but the full-scale simulator 

would make the process time-consuming and data processing complex.  Such a simulator considers many 

design and operation aspects, and certain parameters we are particularly interested in are likely be buried 

in overwhelming details.  Although we can post-process the simulation results as we will do late in this 
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research, this approach provides no direct relation to and insight on how those parameters affect load 

control. 

 

b) Statistical simulator  

Statistical function approximation is a widely-used approach to represent the nonlinear building 

dynamics.  A variety of artificial neural networks (ANNs) and time series models have been used in load 

prediction and control research.   

 

• ANNs 

ANNs take advantage of the highly nonlinear properties of their architecture and are able to replicate 

precisely a variety of dynamics given appropriate training.  Large amount of experimental or simulation 

data are required to train ANNs.  Although able to represent complex nonlinearity, ANNs give little 

insight into the system physics.  

 

[Narendra and Parthasarathy 1990] introduces in detail the concepts of using ANNs to identify and 

control a dynamic system and demonstrates them using several examples.  The paper emphasizes models 

for both identification and control.  Static and dynamic back-propagation methods for the adjustment of 

parameters are discussed.  Multilayer and recurrent networks are compared and shown to be closely 

related, so that they can be studied in a unified fashion.  Based on this, the concept of generalized neural 

networks is presented with four system setups, so that most nonlinear dynamic systems can be generated.  

Eleven examples based on different plant models are presented to show how the identification and control 

can be done for nonlinear dynamic systems using neural networks.  Of these examples, the identification 

and/or control results are compared with those of the reference models.  The comparison shows that 

neural networks perform well.  

 

The concept of a general regression neural network (GRNN) is presented in [Specht 1991] as an 

innovative algorithm of neural network training.  GRNN is a memory-based network that provides 

estimates of continuous variables and converges to the underlying (linear or nonlinear) regression surface.  

GRNN is a one-pass learning algorithm with a highly parallel structure.  Compared to the back-

propagation (BP) algorithm, GRNN is more computationally efficient.  In many cases, BP tends to take a 

large number of iterations to converge to the desired solution.  A similar one-pass neural network learning 

algorithm is the probabilistic neural network (PNN) [Specht 1990].  It is an alternative to BP in 

classification problems.  

 



 24

A few tools for system identification and control with neural networks have been developed.  If used 

properly, these tools can potentially make an application problem easier.  Some examples of general 

purpose software that might be applied to system identification and, to a very limited extent, control 

system design are NeuralWorks Professional II/PLUS from NeuralWare Inc. [Neuralworks 2003], the 

Neural Network Toolbox for MATLAB from The MatchWorks Inc. [Mathworks 2003], and 

NeuroSolutions from NeuroDimension Inc. [Neurosolutions 2003].   

 

In recent years, a wide range of HVAC applications have found neural networks useful.  An ANN model 

[Anstett and Kreider 1993] is used to predict energy use in a complex institutional building without the 

need for a data acquisition system.  The normal predications were done using a formula that was given by 

a previously developed energy management system using linear regression and other statistical measures.  

The motivations of incorporating neural networks into the system are 1) to improve the predictive 

performance; and 2) to provide adaptability to changes in the building’s use and energy plant 

configuration by taking advantage of the fact that ANN can be developed to update automatically their 

learned knowledge over time.  Ten independent variables are used as inputs, including times, schedule of 

operations, and air/water temperatures.  Four dependent variables, neural network outputs, are usages of 

steam, electric, natural gas and water.  BP is applied as the training algorithm.  Several configurations and 

different parameters are studied and compared.  The results show that ANNs are useful for predicting 

energy consumption in buildings even with no data acquisition system present.  

 

[Curtis et al. 1993] discusses the results from a computer simulation that used ANNs for predictive 

control of a hot water coil used to warm an air stream.  The coil model itself is a neural network that has 

been trained on actual data and mimics the nonlinearities of the coil well.  Normal PID control of this 

process has not been very successful, since the controller, feedback, and auxiliary inputs vary across a 

wide range of values.  Based on the system modeled by a well-trained ANN, the predictive control 

performances are compared between a conventional PID controller and two types of ANN controllers: 

FANN (future ANN) and IANN (integrated ANN).  IANN takes the RMS error over the predicting 

windows and uses that in the back propagation, but FANN only looks at a single error at some point in the 

future.  The results show that both FANN and IANN have the potential to outperform the standard PID 

algorithm.  Overall, this research shows that neural networks can be used for adaptive and predictive 

control of a building systems process.  The controller is adaptive in the sense that the output of the 

network used to model the process reflects the changing operating environment, and it is predictive 

because it examines the future effect of the current controller action.  
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As an alternative to the BP algorithm and a promising method with computational efficiency and 

simplicity to implement, GRNN and its applications in HVAC process identification and control have 

been explored.  A local HVAC control example of a heating coil [Ahmed et al. 1996] is chosen to test the 

GRNN’s effectiveness.  A control topology combining feedforward and feedback algorithms is chosen to 

demonstrate the principle of GRNN and to discuss the role of GRNN in identifying and controlling 

HVAC control processes.  By using this combination topology, the majority of the control signal can be 

generated from the feedforward block such that the feedback block only deals with a small steady-state 

error.  As a result, the control speed is improved in tracking the set point change.  The feedforward 

component employs a GRNN for HVAC system identification and control, while the feedback component 

provides a control signal to offset any steady-state error.  The GRNN is used to capture the static 

characteristics for both valves/dampers and coils.  Both simulated and experimental characteristics are 

used as identification as well test data for the GRNN.  The GRNN captures the characteristics well and 

due to its simplicity exhibits promise for implementation in real controllers.  The combined topology 

algorithm uses GRNN to identify static characteristics and then subsequently uses those in a feedforward 

controller to generate control signals.  

 

A related research project [Ahmed 1998] compares the combined control topology with the feedback 

controller for laboratory HVAC applications.  The comparison is made for the pressure control sequences 

commonly found in a laboratory with a VAV system.  The control sequence for pressure is developed and 

a simulation model is built.  Simulated results are then presented for the combined, feedforward only, and 

conventional feedback control approaches.  The results indicate that the combined approach performs 

better than the feedback approach over widely varying operating conditions and different damper 

characteristics.  The combined approach is stable and eliminates all steady-state errors.  

 

To build the load model in our research, ANN could be constructed with previous states, e.g. zone 

temperature, controls, e.g. chiller status and thermostat set points, and current outdoor temperature and 

solar radiation as inputs and new states and energy performance as outputs.  It can be trained offline by 

feeding the network simulation or experimental data.  A large amount of data will be needed, which is a 

disadvantage.  A neural network model can be hooked up with the optimizer fairly easily.  An automatic 

training process with updated data is desirable. 

 

• Time series 

Gross [1987] gives a thorough and thoughtful review of the short-term load forecasting, which is the 

prediction of the system load over an interval ranging from one hour to one week.  The paper discusses 
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the nature of the load and the different factors, including economic, time, weather and random effects, 

influencing its behavior.  A detailed classification of the types of load modeling and forecasting 

techniques is presented.  It reviews the peak load models and the load shape models. The latter is 

categorized into two basic classes: times of day, e.g. spectral decomposition models, and dynamic 

models, e.g. ARMA and state-space models.  Dynamic models represent the stochastically correlated 

nature of the load process, meaning that the load is not only a function of the time of day, but also of its 

most recent behavior, as well weather and random inputs.  [Papalexopoulos et al. 1990] presented a solid 

example of a linear regression-based model for short-term load forecasts.  Its innovations include 

modeling holiday effects using binary variables, modeling temperature using heating and cooling degree 

functions and robust parameter estimation using weighted least-squares linear regression techniques.  

 

The ASHRAE Application Handbook [1995] reviews some of load forecasting models specifically for 

buildings.  MacArthur et al. [1989] presented a load profile predication algorithm that regresses the 

current power consumption to its past values and the time series of exogenous variables such as 

temperatures.  The algorithm uses a series of recursive least-squares estimators with each having a sample 

time of one day, so that accurate predications are not limited to one sample time, e.g., an hour, and load 

profiles for at least a 24-hour period can be obtained.  A very simple algorithm for forecasting either 

cooling or electrical requirements that does not use the 24-hour regressor was presented by Seem et al. 

[1989] and then further developed and validated by Seem and Braun [1991].  In [Seem and Braun 1991] 

the average time-of-day and time-of-week trends are modeled using a lookup table with time of day and 

type of day as the deterministic input variables.  Entries in the table are updated using an exponentially 

weighted moving-average (EWMA) model.  Furthermore, the forecasts are corrected through an 

improved peak load based on a correlation between peak demand and maximum daily temperature 

forecasts.  Residuals are modeled using an auto-regressive moving average (ARMA) model.   

Armstrong [2004] develops a transfer function model predicting the conductive cooling load.  Together 

with the time series data of solar radiation, convective heat transfer and outdoor temperatures, and 

empirical models for chillers, the model relates the detailed dynamic heat transfer process to the plant 

power consumption.   

 

c) Simplified models 

Simplified models fall between full-scale simulation and statistical models.  They consist of approximate 

functional relations for components and systems under study, which makes them more computationally 
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efficient than full-scale simulation while providing a fair amount of insight into the energy balance and 

transfer processes.   

 

For chilled water systems that do not have significant thermal storage, a component-based nonlinear 

algorithm [Braun 1989a] was developed to optimize the system over continuous control variables.  This 

constrained nonlinear procedure was then used as a simulation tool for investigating the optimal system 

performance.  In this nonlinear optimization process, the operating cost and the output of each component 

in a chilled water system were approximated using a quadratic and linear form respectively.  Results of 

this algorithm led to the development of a simpler system-based methodology for near-optimal control 

that is simple enough for on-line implementation. 

 

In load control research, the transfer function plays an important role in simplified models.  A simulation 

environment is described in [Braun et al. 2001] in which an inverse modeling approach is taken.  The 

inverse model is based on a transfer function and uses measured data to ‘learn’ system behavior and 

provide relatively accurate site-specific performance predictions.  Component (fan and chiller) power 

models are quadratic functions of flow or temperature variables.     

 

A model used and validated by Morris [1994] is used to enrich a simulation tool [Keeney and Braun 

1996] to develop and evaluate control simplifications and strategies.  Keeney et al. set up a simulation 

environment by using the multi-zone building energy analysis subroutine of the dynamic simulation 

program TRNSYS [Klein et al. 1990] and the empirical functions developed by Braun [Braun 1989.1] for 

modeling cooling plant power consumption. 

 

An inverse model [Braun 2001] was used to explore the effect of different building thermal mass control 

strategies on the energy cost.  Models are built to represent the behavior of the building, cooling plant, 

and air distribution system.  The transfer functions are used to predict sensible cooling requirements for 

the building.  Empirical or regression results are used for power consumption. Particularly the plant 

power model is obtained statistically by regressing the power to a polynomial of chilled water 

temperature, ambient wet bulb temperature and their squares.  Several thermal mass control heuristics 

with different set point adjustments are compared using this tool.  

 

Armstrong [2004] developed a transfer function based discrete-time, linear and time-invariant system to 

characterize envelope thermal response, improved the model to preserve its physical feasibility, and 

estimated the updated model using a nonlinear least squares method.  Internal loads are exogenous 
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variables.  The chiller power is characterized by an empirical relation [Ng 1999], and is a function of the 

cooling load, which bridges the zone temperatures to the power consumption.  Certain optimization 

processes can be applied.  

 

[Wright and Farmani 2001] optimized simultaneously a building’s fabric, the size of HVAC system, and 

the HVAC system supervisor control strategies using a genetic algorithm.  A single zone lumped 

capacitance model was used to represent the thermal response of the zone, while the HVAC system 

performance has been simulated using steady component models.     

 

[Constantopoulos et al. 1991] came up with a real-time consumer control scheme for space conditioning 

under spot electricity pricing.  The key assumptions made in building the simulation model are: 1) single 

conditioned space - neglect circulation effects and assume uniform inside temperature and humidity; 2) 

lumped model – the shell, the air mass and the other contents of the space have a combined thermal mass; 

3) no independent thermal storage is coupled to the main heating or cooling equipment - assume a single 

piece of equipment; 4) neglect humidity control and focus on temperature control alone; 5) neglect the 

cycling effect of the thermostat. 

 

d) What simulation approach to use? 

The first question is what the precise goals of the simulations.  We need a model that has both dynamic 

building modeling and plant modeling.  We need to take into consideration the plant component part-load 

performance which is important for load control.  We need to be able to vary parameters such as 

temperature set point, supply air temperature, chilled water temperature, and chiller and fan status on an 

hourly basis for studying a variety of load control strategies.  A full-scale simulation package like 

EnergyPlus offers all these, and therefore becomes our choice.  Later in this research, we have built our 

own simplified model which preserves several important modeling aspects.  

 

1.3.2 Optimization and load control 

As the difference in [Morris et al. 1994] and [Conniff 1991] indicates, whether or not a control strategy is 

optimized has tremendous impact on the energy performance.  This section is categorized by the 

optimization methods used in load control and related problems.  As a more general field, optimal control 

is reviewed briefly first.  Then attention is turned to the optimal control problems in the building industry 

and the ways optimization approaches have been applied.  A variety of optimization methods have been 

applied in building control problems and only a few major ones are studied and discussed here: linear and 

non-linear optimization (LP & NLP), dynamic programming (DP), linear-quadratic optimal control (LQ) 
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and genetic algorithm (GA).  As an indispensable part of optimal control research, different simulation 

techniques are also reviewed and the integration of simulation and optimization is emphasized.  Some 

references, although not directly related to building industry, are discussed as well because they help 

understand the methodologies useful to the load control research.  Comments are made during the 

discussion to relate the reference to the load control problem.  

 

a) Optimal Control in general 

From the point of view of control theories, optimal control is one particular branch of modern control that 

sets out to provide analytical designs of a specially appealing type.  The system under optimal control not 

only satisfies the desirable constraints associated with classical control, but it is supposed to be the best 

possible system of a particular type.   

 

From the point of view of mathematics, optimal control problems are among the most difficult of 

optimization problems with equality constraints in terms of differential/difference equations and various 

boundary conditions, while inequality constraints may involve boundary conditions, entire trajectories, 

and controls [Sage 1977].  The two major theoretical bases in the theory of optimal control are dynamic 

programming by Bellman and the minimum principle by Pontryagin.  The dynamic programming 

approach is a natural fit for developing the basic relations in the discrete-time optimal control, whereas 

the minimum principle approach is more suitable for the continuous-time domain. Unfortunately, often 

times we have to face in complex engineering systems the problem of finding a global optimum for a non-

linear optimization problem, which is algorithmically and computationally difficult.  In practice, 

heuristic-based algorithms, such as GA, and direct search methods, such as the Hooke-Jeeves algorithm, 

are widely used due to their practical efficiency and ease of implement.  

 

From the point of view of research in building industry, the term “optimal control” has been used rather 

loosely when referring to the control of building operations.  Two major methods have been widely used.  

One is to follow the strict definition of optimal control by proposing optimization algorithms to minimize 

the cost function.  For example, Keeney and Braun [1996] defined the cost as a combination of energy 

cost and penalized human comfort and minimized it by using the complex method, which is a direct 

search method that generates a shape in the control variable space that always encloses the minimum 

point.  The other is to conduct extensive simulations with different parameter combinations; the 

comparison among those simulations indicates the optimal one, which is, to be precise, a suboptimal 

solution.  For example, Henze et al. [1997] developed a simulation environment to investigate a wide 
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range of key parameters influencing the system’s operating cost.  The optimal control strategy to 

minimize the total electricity cost was validated based on the simulation results.   

 

b) Linear and Non-Linear Programming 

Two methodologies [Braun 1989a] were presented for determining the optimal control settings for chilled 

water systems that do not have significant thermal storage.  A component-based nonlinear optimization 

algorithm was developed to optimize the system over continuous control variables.  This constrained 

nonlinear optimization procedure was then used as a simulation tool for investigating the optimal system 

performance by optimizing over the feasible combinations of discrete controls.  In this nonlinear 

optimization process, the operating cost and the output of each component in a chilled water system were 

approximated using a quadratic and linear form respectively.  Nonlinear output, linear and nonlinear 

equality constraints, and inequality constraints were handled using LP or NLP techniques.  Results of this 

algorithm led to the development of a simpler system-based methodology for near-optimal control that is 

simple enough for on-line implementation.  The system approach involves correlating the overall system 

power consumption with a single function that allows for rapid determination of optimal control variables 

and requires measurement of only total power over a range of conditions.  The estimating coefficients of 

this empirical system model involved regression on the results of the component-based optimization 

algorithm as a simulation tool.  The system cost function led to a set of linear control laws for the 

continuous control variables.  Separate control laws are required for each feasible combination of discrete 

controls.  The number of controls in the system approach is greatly reduced compared to the component 

approach.  With these models, general guidelines for near-optimal performance are developed.  Braun’s 

model optimized a snapshot of the plant, and thermal mass played no role in the analysis.  Therefore, the 

results are time-invariant and can be applied to any time spot.   

 

In another closely related work [Braun 1989b], the component-based optimization methodology 

developed in [Braun 1989a] was utilized as a tool for investigating chilled water systems under optimal 

control.  With this tool, general guidelines for near-optimal performance are developed.  These guidelines 

were incorporated in the system-based near-optimal control methodology, but they are also important to 

plant engineers for improved control practices.  The important uncontrolled variables that affect system 

performance and optimal control settings are identified.  Results and conclusions concerning both control 

and design under optimal control of chilled water systems are presented.  

 

Braun [1990] studied the dynamic building control, dynamic adjustment of the indoor temperature set 

points in order to minimize overall operating costs by applying dynamic optimization techniques to 
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computer simulations of buildings and equipment.  He pointed out that the optimization became 

complicated by the discontinuities associated with the different modes of operations.  These modes 

include mechanical cooling with minimum outside air, mechanical cooling with 100% outside air and free 

cooling.  The approach taken discretized the cost function and applied a non-smooth optimization 

algorithm to determine the set of controls that minimize the sum of costs over the specified time.    

 

Determining dynamic optimal cooling control strategies that utilize building thermal mass is formulated 

as an optimization problem [Keeney and Braun 1996] with zone setting points as controls and a 

combination of energy cost and penalized human comfort as the cost.  The complex method, an extension 

of the simplex method to constrained optimization problems, is used to solve this optimization problem 

over a 24-hour horizon.  Based on detailed optimization, two simplified approaches are proposed for on-

line implementations, where one approach takes two constant zone sensible precooling rates and the other 

applies a constant cooling rate for a given amount of time prior to building occupancy.  With much less 

control variables, these two approaches successfully reduced the computation requirements for 

developing optimal strategies.  Through the component-model-based simulation, these two approaches 

were tested with about 1000 different combinations of building, plant and weather.  They achieved 95% 

and 97%, respectively, of the optimal savings relative to conventional control.  These simplifications 

therefore could be used in the development of an on-line controller.  In this work, zone set points are the 

only control, which makes the analysis and optimization easier. In general, developing cooling control 

strategies which utilize the thermal mass of a building is a formidable optimization problem, especially 

when on-line implementation is a consideration. 

 

c) Dynamic Programming 

Dynamic programming is used [Henze 1997] in determining the optimal control strategies for thermal 

energy storage systems and a predictive optimal controller for thermal storage systems is developed and 

simulated.  An optimal storage charging and discharging strategy is planned at every time step over a 

fixed look-ahead time window utilizing newly available information.  The certainty equivalence principle 

is used, which fixes the weather and internal gains at their expected values, to make it easier to solve the 

DP problem.  Closed-loop optimization is employed, which means only the first control is executed at 

each time step although at each time step the optimization is conducted over the entire planning horizon 

using appropriate algorithms.  The predictive optimal controller is compared to three conventional control 

heuristics: chiller-priority control, constant-proportion control and storage-priority control.  The optimal 

controller was found to have a significant performance benefit over the conventional controls in the 

presence of complex rate structures.  Compared to the load control problem, the thermal storage control 
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problem is not very complex in the sense that the system equations and the cost-to-go functions have 

explicit formulas and fewer controls.   

 

Rossi and Braun [1996] used dynamic programming to obtain optimal service schedules and costs for 

cleaning the condensers and evaporators of air-conditioning equipment.  Cost is defined as a combination 

of operating cost, human comfort, safety, and environmental criteria.  The overall optimization problem is 

formulated in nested loops using key operating parameters.  The innermost loop solves for optimal set of 

time stages between service tasks using DP.  The next loop solves for total number of services in a service 

cycle using the golden section method by Rao.  The outermost loop exhaustively searches for the duration 

of the service cycle and the time stage of the first service task.  In addition, minimum operating costs are 

compared with regular service intervals (representative of current practice) and a strategy where service is 

only performed when a constraint is violated (e.g., a comfort reduction).  It is found that optimal service 

scheduling reduced lifetime operating costs by as much as a factor of two over regular service intervals, 

and by 50% when compared to constrained only service.  For practical implementation, a simple near-

optimal algorithm for estimating optimal service scheduling is developed that does not require on-line 

forecasting or numerical optimization and is easily implemented within a microcontroller.  Over the wide 

range of cases tested, the near-optimal algorithm gives operating costs that were within 1% of optimal.  

 

A multi-criteria model is described [D’Cruz and Radford 1987] for assisting designers in the choice of 

form and construction of parallel-piped open plan office buildings at the schematic design stage of 

building design.  The model considers four performance criteria: thermal load, daylight availability, 

planning efficiency, and capital cost.  Pareto-optimal dynamic programming optimization is employed.  

The model’s form and implementation and some typical results are described.  

 

It is worth mentioning that dynamic programming is widely used in the field of operations management 

(OM).  An optimal inventory purchasing policy is determined [Tsitsiklis 1998] with the DP cost-to-go 

approximated in neuro-dynamic programming (NDP), a method that uses neural nets to approximate the 

cost-to-go based on the features properly extracted in advance.  NDP type of methodologies could 

possibly be applied in the load control problem.  However, the systems in operations management 

scenarios are often less complex than most mechanical systems, so problem setup and computation would 

be more difficult in the load control scenario. 
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d) Linear-Quadratic Optimal Control 

A problem with linear systems and quadratic cost is defined as a linear-quadratic (LQ) problem.  The 

optimal controls can be obtained analytically, which is well known as the Riccati equation [Bertsekas 

2000].  Linear and quadratic approximations are valid in many cases in building load research, and LQ is 

expected to be fairly useful.  However, LQ has not been widely used, possibly due to the complexity in 

the real systems.  Hopefully, research that focuses on solving LQ problems using nontraditional and more 

flexible methods such as neural nets [Lan 1990] and genetic algorithm [Michalewicz 1992] would help 

improve the situation.  

 

e) Genetic Algorithm 

[Wright and Farmani 2001] provided a brief introduction to the major optimization algorithms used in the 

“whole building optimization” problem.  It first described several notable characteristics of the issue: 

problem variables are a mixture of integer and continuous variables; the problem has non-linear inequality 

and equality constraints; and the objective functions can be discontinuous.  The authors reviewed 

previous work and suggested that neither traditional gradient-based methods nor direct search methods 

are effective for the whole building optimization problem.  A genetic algorithm was recommended and 

used. 

 

A PC-based supervisory controller is developed [Gibson 1997] for a building’s energy management and 

control system to optimize cooling equipment operation.  The system provides decision support to 

determine when to operate central cooling equipment to minimize costs under real-time pricing or 

conventional time-of-use electric rates.  An artificial neural network is used to model the dynamic 

behaviors of the building and energy equipment while an evolutionary-based search routine, a genetic 

algorithm is used for optimization.  In the GA-based operation schedule planning, Gibson used the bits of 

the chromosome to represent the status of the cooling equipment in 24 hours.  Each chromosome is an 

operating schedule individual in a “population” of many possible operating schedules.  The GA searches 

for optimal schedule by employing certain techniques of reproduction, crossover and mutation.  The 

ANN-based modeling uses the current external stimuli (outdoor temperature, equipment status, etc.) in 

conjunction with the previous state of the building to predict the current state of the building.  It provides 

a basic profile of building cooling needs against which each of the individual plans can be evaluated.  The 

GA initializes and updates the control population.  The ANN predicts for each individual its 

corresponding load and cost performances and evaluates the fitness which will be sent back to GA.  The 

GA and ANN together form the planning module in this supervisory controller software.  A prototype 

system is installed and operating at a high school in southern California to control a thermal energy 
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storage system: a conventional screw-type chiller, and a gas-fired, engine-driven chiller.  Some lessons 

were learned during the controller development, and insights were gained in the practical application of 

both GA and ANN.  Examples are how to balance the global optimum and the curse of computation in 

GA and how to maintain the accuracy of the ANN by applying a neural network monitor, which addresses 

the relationship between ANN accuracy and the optimization process itself. 

 

Chow [2001] derivd an ANN model of a direct-fired double-effect absorption chiller system.  In the paper 

is discussed the concept of integrating neural network and genetic algorithm in the system optimal control 

in achieving the final goal of minimizing the operation cost.  It is pointed out that to obtain a well 

matched but reasonably simple ANN configuration of the system model, a systematic search on the 

family of architecture is mandatory.  Testing should be well monitored and cross-validated.  Adequate 

representation of test data is a prerequisite for a successful outcome.  

 

Wright and Farmani [2001] simultaneously optimized the building’s fabric constructions, the size of 

heating, ventilating and air-conditioning systems, and the HVAC system supervisory control strategy in 

order to account automatically for the thermal coupling between these building elements.  The problem 

formulation is described in terms of the optimization problem variables, the design constraints, and the 

design objective functions.  The optimization problem is solved using a GA search method.  The 

conclusion is that the GA is able to find a feasible solution, and it exhibits an exponential convergence on 

a solution.  The solutions obtained are near-optimal, the lack of final convergence being related to 

variables having a secondary effect on the energy cost objective function.  Further research is required to 

investigate methods for improving the handling of equality constraints and to reduce the number of 

control variables (which will also improve the robustness of the algorithm).  

 

Wright and Loosemore [2001] investigated the application of a multi-objective genetic algorithm 

(MOGA) in the search for a non-dominated (Pareto) set of solutions to the building design problems.  

Compared to the progressive approach that generates the trade-off curve by assigning different weights 

and repeating the optimization, MOGA employs the Pareto-ranking scheme to form the fitness of each 

solution and complete pay-off characteristic in one optimization of the building design.  Constraint 

functions are aggregated by a normalized sum of their violations to form a single design criterion.  The 

results indicate that the MOGA is able to identify the trade-off characteristic between daily energy cost 

and zone thermal comfort, and that between capital cost and energy cost.  The MOGA exhibits fast 

progress towards the Pareto optimal solutions. 
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f) Control Heuristics in Building Industry 

Engineering heuristics have been a major component in the current building control practice. Developed 

based on local optimization, system simplification, estimation and experiences, heuristics perform fairly 

well in many scenarios.  The ASHRAE Applications Handbook [1999 chapter 40] describes in detail the 

control heuristics that have been widely used in operating HVAC systems and components, including 

cooling tower fan control, chiller water reset with fixed- and variable-speed pumping, sequencing and 

loading of multiple chillers, strategies for air-handling units, strategies for building zone temperature set 

points and control of thermal energy storage systems.  Control heuristics could be used as a starting point 

in an optimization scheme.  In addition, a heuristic type of suboptimal control is often desired as an 

extension from optimal control for on-line implementation purposes.  

 

1.3.3 More load control strategies 

Night cooling has shown in practice its cost-effectiveness for buildings with reasonably heavy thermal 

mass.  In summer time, building thermal mass is cooled at night through natural or mechanical 

ventilation, stores cool energy, and discharges it the next day.  Previous simulations and experiments have 

shown that significant operating savings and peak load reduction can be realized through night cooling.  

 

Braun [2001] used an inverse model to represent the behavior of the building, cooling plant, and air 

distribution system and evaluated several building thermal mass-based control strategies, including a 

variety of pre-cooling schedules at night and discharge processes next day, at five locations with different 

weather and rate structures.  The best strategy turned out to be the maximum discharge, which results in 

an average a 40% reduction in total cooling costs as compared to the conventional night set-up control.   

 

Braun [2001] developed a tool that allows evaluation of thermal mass control strategies using HVAC 

utility costs as the baseline for comparison.  Based on weather and solar inputs, as well as occupancy and 

internal gains schedules and utility rates, the evaluation tool predicts the total HVAC utility cost for a 

specified control strategy.  Intelligent thermal mass control strategies can then be identified in a 

simulation environment using this analysis tool.  The model was validated using the field-site data and 

applied in five cities across the country.  The effects on the cooling load and energy cost of different 

control strategies, locations, utility rates and climates are evaluated using this simulation tool.     

 

Rabl and Norford [1991] studied the load control strategy of subcooling a building a few degrees below 

its normal thermostat set-point during the preceding night, and controlling the warm-up and stored energy 

release through the thermostats to maximize the benefit.  Several thermostat control strategies, 
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distinguished by their knowledge of the building dynamics, are described and simulated using a data-

based dynamic model. 

 

Keeney and Braun [1996] proposed a simplified version of the thermal-mass-based optimal control 

problem, by examining optimal cooling results covering a wide range of buildings, cooling plants, 

weather, utility rates, and internal gains.  Two simplified approaches are based on two-variable 

approximations to the precooling portion of the day, and a set of comfort-based rules when the building is 

occupied.  Those two variables are two constant zone sensible cooling rates in one approach and a 

constant cooling rate and a precooling time period in the other.  The simplified strategy achieved 95% and 

97% of the optimal savings relative to the conventional control.  

 

Haves and Gu [2001] simulated several load-shedding scenarios in EnergyPlus and came up with 

guidelines for the building operators in commercial office buildings to reduce peak electricity demand by 

limiting buildings’ HVAC operation.  They describe the demand reduction and the increase in discomfort 

over time that can be expected from increasing temperature set points.  They also give examples that 

demand reduction can be achieved by reducing fan capacity and increasing supply air temperature and 

chilled water temperature.  The guidance is aimed at large buildings with built-up HVAC systems and 

chilled water plants, and applies to California and similar climates where humidity control is not a 

significant problem. 

 

1.3.4 Scheduling issues 

Two questions need to be answered to conduct load shedding: first, when load shedding should happen 

and for how long, which is more of a scheduling problem; second, what value the load shedding 

parameter should take.   

 

[Jorge et al. 2000] presented a multi-objective decision support model which allows the consideration of 

the main concerns that have an important role in load management (LM): minimize peak demand as 

perceived by the distribution network dispatch center; maximize utility profit corresponding to the energy 

services delivered by the controlled loads; and maximize quality of service in the context of LM.  [Hsu 

and Su 1991] used dynamic programming in developing an optimization technique to reach the optimal 

direct load control (DLC) dispatch strategy and system generation schedule.  Similarly, [Chen et.al. 1995] 

used DP to study the optimal direct load control pattern which is defined by interruption starting time, 

maximum-interruption-time, minimum-connection-time, and payback energy and payback ratio.   
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[Kurucz et al. 1996] developed a linear programming (LP) model to optimize the amount of system peak 

load reduction through scheduling of control periods in commercial/industrial and residential load control 

programs at Florida Power and Light Company.  The LP model can be used to determine both long and 

short-term control scheduling strategies and for planning the number of customers who should be enrolled 

in each program.  Results of applying the model to a forecasted late 1990s summer peak day load shape 

are presented.  It is concluded that LP solutions provide a relatively inexpensive and powerful approach to 

planning and scheduling load control.  Also, it is not necessary to model completely general scheduling of 

control periods in order to obtain near best solutions to peak load reduction.  Another related paper [Chen 

et al. 1995] that also focused on the scheduling part of load control used DP to study the optimal direct 

load control pattern which is defined by interruption starting time, maximum-interruption-time, 

minimum-connection-time, and payback energy and payback ratio.   

 

[Effler et al. 1992] dealt with the procedures for energy import optimization based on the results of a load 

forecast program for the control center of the Pfalzwerke AG.  Special emphasis is put on load 

management and the investigations for modeling the load behavior depending on season, day type and 

temperature.   

 

1.4 Problem description  

Our load control problem is a multi-objective optimal control one involving complex system (building 

and plant) dynamics and engineering constraints.  It has two stages as follows. 

 

First, optimize controls in a single building to minimize the cost, where the cost is the combination of 

electricity cost and penalized human comfort.  Identify important load shedding strategies through 

parametric studies and propose guidance for building operators to shed the building load appropriately.   

 

The emphasis of our work is on short-term load control strategies that a building operator can 

easily implement.  The intent in general is to curtail service in order to control costs.  While 

building operators are familiar with possible set point adjustments for their plants and may be 

making them, it is important for them to have a basis for choosing among them and selecting the 

magnitude of adjustment.  For example, adjusting supply-air temperature on a VAV plant may 

increase energy costs until service is curtailed.  Turning off or restricting the output of a chiller 

may reduce service and costs for a short period, but may lead to a load (and cost) spike if service 

is restored while peak charges are still in effect. 
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Some issues we explore are: What characteristics does the building optimization cost function 

have?  What are the important load shedding strategies for a specific building?  How to connect a 

building simulator with an optimizer?  What algorithms are efficient in solving building 

optimization given the specific cost function and constraints?  We answer these questions through 

a large number of EnergyPlus simulations and simulation-based optimization. 

 

There has been extensive work in the single building area.  This research distinguishes itself in 

the following ways:  1) it applies a variety of optimization methods to EnergyPlus.  The analysis 

framework is simple and potentially useful for practitioners; 2) as a new and powerful simulation 

tool, EnergyPlus offers great flexibility in studying building operations and controls.  Some of the 

things such as scheduling cannot be fully accomplished by other tools.  We look into a variety of 

issues by taking advantage of new functionalities of the software. 

 

Second, optimize the load aggregation with multiple buildings by applying suitable controls to 

aggregation participants and matching their load profiles.  Set up the structure of the overall optimization 

process.  Build the underlying math model for the central optimizer and a statistical unit simulator for 

single building dynamics.  Solve the optimization problem efficiently.   

 

An optimization scheme is to be developed for building load aggregation.  A brute-force 

algorithm supported by EnergyPlus simulations is less desirable for the multi-building case due to 

the size of the problem.  Our experience with EnergyPlus in the single-building research suggests 

we stay away from full-scale simulation in the multi-building case for the following reasons: 1) it 

is too computationally intensive to manipulate a number of EnergyPlus models; 2) too much 

complexity from individual buildings would bury the system level dynamics and prevent us from 

gaining insight;  3) data from full-scale simulation tend to be nonlinear and discontinuous, which 

makes it difficult to solve the problem using nonlinear optimization algorithms .  The idea is to 

separate simulation and optimization, as we will discuss in Chapter 5, where individual simulator 

serves as the building block of the optimization process.  The optimization process looks at a 

group of such profiles and decides what to do at the macro level.   

 

A generic math formulation of the problem is given in Eqn1.1, which minimizes the total 

electricity cost:  
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Where,  

tiW ,   Electricity consumption by building i at time t , 24,...,1,,...,1 == tNi  

tiPPD ,   Predicted Percentage Dissatisfied values in building i at time t  

tR   Electricity rate at time t  

D   Demand charge rate 

tiu ,   Control variables, ticu ,,  continuous variables, and tidu ,, discrete variables 

tix ,   State variables 

if   Building i dynamics determining electricity consumption at hour t  

ig   Building i dynamics determining thermal comfort i is at hour t  

 

We also need to look at the non-technical side of the load control issue because the energy market and 

energy policy play important roles in practice.  With the utility market moving toward deregulation and 

information technology more advanced, opportunities and challenges emerge in designing an efficient and 

healthy deregulation system, communicating with the market and making informed decisions.  It is also 

interesting to look at the increasingly complex energy-based financial instruments and how they might 

affect the market.   

 

Overall, Chapter 2 is devoted to parametric studies that concern load shedding and control in a single 

building.  Comparison between different strategies helps understand VAV system dynamics.  Important 

operations parameters are identified and chosen to participate in an optimization process in Chapter 3 to 

optimize the load control strategies.  Chapter 4 explores load control when multiple buildings are 

involved through two simplified approaches: educated enumeration and sequential-GA.  Chapter 5 solves 

the multi-building optimization problem.  A time-series linear model is used to simplify the building 

dynamics, on which a nonlinear algorithm is applied to capture the aggregation structure.  
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CHAPTER TWO 
SINGLE BUILDING PROBLEM:  LOAD CONTROL IN A SIMPLE VAV SYSTEM  

 

 

In this chapter, we study load control opportunities in a single building through EnergyPlus-based 

simulation.  A simple VAV system is used as the base model, and a variety of load shedding and control 

strategies are explored.  The purposes of conducting single building research are as follows: 1) gain a 

thorough understanding of building dynamics and a mechanical system’s partial load performance which 

is key to some load shedding strategies; 2) optimize load control in a single building’s framework; and 3) 

prepare at the individual level for the multi-building problem.  We first introduce in detail the building 

model used through the entire research, and test the model.  Several load control strategies including night 

cooling are examined thorough parametric studies to identify important ones to this building.  As a follow 

up, two optimization schemes are applied to load controls in the next Chapter. 

 

2.1 Model description 

• Building  

The base model used in this research is a simple three-zone VAV system1, which is located on a top floor 

of a commercial building with a gross area 126m2.  The system has no ground contact (all floors are 

“partitions”), and three zones are connected by inter-zone partitions.  The roof is exposed to the outdoor 

environment.  All of the zones are air-conditioned with the same temperature set point, and the middle 

zone has a south-facing window that is 10m2.  Figure 2.1 shows the floor plan.  The external walls are 

common brick with a R-value of roughly 0.14.  The floor is eight-inch concrete with a R-value of 0.12.  

The roof is two-inch concrete and its insulation layer has a R-value of 0.58.  The estimated time constant 

is 44 hours for the walls and floor and 3 hours for the roof.  Using the ASHRAE light, medium and heavy 

standards for room envelope construction [ASHRAE handbook 1997], this building is about the medium 

construction type.  The window area is rather small in this building and the solar effect does not dominate.  

The internal loads including people, equipment, and lighting are about 13kW, roughly 0.1 kW/ m2, and 

run at a typical-commercial-building schedule, meaning large load and operation differences exist 

between day time when the building is occupied 8am – 5pm and nighttime and weekends when the 

                                                 
1 This model is based on one named vavsingleductreheat.idf in the free-downloaded EnergyPlus software package.  
We changed the model in a variety of ways including equipment sizing and chiller sequencing, control schedules, 
added an outside air system and disabled the reheat system.  The EnergyPlus input file of the base model can be 
found in AppendixA.1.  More changes will be made later to make available a variety of building systems for load 
aggregation research.   
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building is empty, and between weekdays and weekends.  The load pattern schedule will be changed later 

in this research to come up with a model with less commercial load pattern.  

 

 

 

 

 

 

 

  

 

Figure 2.1 Floor plan of the three-zone VAV system 

 

• Air-handling system 

The building is served by a VAV air-handling system with a design supply airflow of 1.3 m3/s.  A dry-

bulb temperature-controlled economizer is used for air-to-air heat recovery and is set at the return air 

temperature when night cooling is available or turned off other times.  The air handling system operates 

normally from 8am to 5pm weekdays only.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Plant layout of the three-zone VAV system 
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Figure 2.3 Air loop of the three-zone VAV system 

 

 

The mechanical system is shown in Figure 2.2.  It is a variable air volume system with a single air loop.  

The occupied hours are 8am – 5pm and unoccupied hours otherwise.  The original system has purchased 

heating supply and runs all year.  We focus only on the summer.  To be energy efficient, the system has 

no reheat supply.  The cooling set point is 24°C while occupied and 30°C otherwise.  Fans and coils are 

scheduled to be unavailable during unoccupied hours.  The air loop consists of a fan and cooling coil.  

The fresh air is supplied by an outside air system2, as shown in Figure2.3.    In the plant, the cooling loop 

is served by a 35kW electrical chiller and purchased cooling.3  A variable-speed fan, constant-speed 

chilled water and condensed water pumps, and single-speed cooling tower fans are used in the system.  

From April 1 through September 30, the system runs in the summer operations condition, and winter 

condition with the remainder of a year.   

 

Operation schedules are controllable and supervisory controls are adjustable.  Set point managers are used 

to schedule supply air temperatures and mix OA (outside air) ratio.  Fan and cooling coils are controlled 

                                                 
2 The original model has no outside air system. We added one for purposes of studying a real building and 
implementing night cooling.  See Appendix A.2 for the E+ code. 
3 In the original model, the cooling loop is served by a big chiller, a little chiller and purchased cooling, and priority-
based controls determine which piece of equipment to be turned on to meet the demand.  It is changed for simplicity 
purposes.  The new capacity is chosen by design.  
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separately, so that we can implement fan-based night cooling or chiller-based night cooling.  The reheat 

system is controlled in a way that it is always off at night time no matter which load control strategy is 

taken.  The minimal outside air is controlled through min OA schedules under which system shuts down 

outside air at night for conventional night set-up but intakes as much fresh air as possible with night 

cooling available.  All the schedules can be adjusted on an hourly basis. 

 

Our research focuses on summer conditions.  We simulate several typical summer days using San 

Francisco and Los Angeles weather data, and compare the average performance between two locations.  

Table 2.1 has more details about this three-zone VAV system we use.  

 

 

Table 2.1 Basic building model 

Building  

and  

Zones 

Three zones, top floor commercial building, gross area 126 m2 

East and middle zones: 3 people and 3kW equipment 

North zone: 4 people and 4kW equipment 

 

Construction  

and  

insulation 

materials 

C4 - 4 in common brick ext walls - R value 0.14 m2K/W, 1922 kg/m3, 0.84kJ/kgK 

C10 - 8in concrete floor slab – R value 0.12 m2 K/W , 2242 kg/m3, 0.84kJ/kgK 

C12 - 2in concrete roof – R value 0.03m2 K/W, 2242 kg/m3, 0.84kJ/kgK 

C6 - 8in clay tile partitions – R value 0.36 m2K/W, 1121kg/m3, 0.84kJ/kgK 

B5 -1in dense insulation – R value 0.58 m2K/W 

Other insulations include membrane, stucco, gyp board etc. 

 

Plant  

and HVAC 

Chiller: electric chiller, nominal capacity of 35kW, COP 3.0,  

             minimal load ratio 0.15, optimal load ratio 0.65 

             extra cooling resource:  purchased cooling 

Fan:      variable-speed drive, 600Pa and 1.3 m3/s design flow 

Pump:   chilled water and condensed water pumps, constant-speed drive 

             300kPa and 0.0011 m3/s rated flow 

Cooling tower: single speed, 1kW fan  
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2.2 Model test 

As previously noted, the three-zone model described in the previous section originates from an 

EnergyPlus example model that comes with the software package.  A few changes concerning plant 

equipment, air loop and schedules were made to make the model the right one for this research.  Both the 

original model and our modified one, the base model, run smoothly and produce reasonable results.  

Because the base model and a few variations will be used extensively in our research, we consider it 

necessary to validate the model.  We cannot and are not going to conduct the model validation in the 

traditional sense by using experimental data.  Instead we will check the model to make sure it makes 

sense in physics.  Details are as follows:  

 

• Energy balance and mass balance are maintained for components and the system 

o Chilled water and condensed water loops separately 

o Chiller as a whole 

o Air loop heat and mass involving outside air system and cooling coil 

o Convective heat transfer vs. cooling provided on a real-time basis 

o Cooling load itemization 

o Building as a whole and load calculation vs. simulation results 

o Cooling demand and supply match on a daily basis 

o Energy flow in the entire system 

• Component physics maintained  

o All physical parameters (temperatures, flow rates, thermal comfort et al.) take reasonable 

value considering equipment constraints 

o Components behave the way intended and part-load performance looks correct 

o Check components for the trend in power consumption with at different capacities 

o Transition between components is smooth and the system is reasonable (partially checked 

in balance) 

• Input-output relation straight 

o Extreme condition tests  

o For those theoretically or empirically known relations, check if the simulation results 

meet the expected trends 

o Check model performance with different weather and internal loads 

 
After going through all these checking and debugging procedures, the likelihood that the model has 

physical modeling errors is fairly small, although not perfectly guaranteed.  In fact, some EnergyPlus 
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bugs and hidden modeling errors are identified later.  What we have done above is to guarantee a relative 

correctness, meaning that the model by itself is correct in physics, but whether or not the model produces 

the similar results to those from measurements in the real building is less critical, because 1) we are 

conducting this research on a relative platform and the most important thing is the model is consistent in 

itself, so we can compare different load control strategies; 2) experiment-based validation is less viable.  

Real buildings are generally too complex for research purposes, but it is difficult to build an experimental 

chamber with its own complete plant system.   

 

2.3 EnergyPlus Parametric Studies Part I: Basic VAV system dynamics 

EnergyPlus parametric studies are carried out to see how the building system responds to changes of basic 

operation parameters such as thermostat setting points, supply air and chilled water temperatures.  In this 

section, we simply run simulations with one parameter varying at a time.  

 

2.3.1 Thermostat set points 

The original thermostats are set at 24°C for occupied hours and 30°C for unoccupied hours.  Here we vary 

the occupied-time thermostat from 21 to 30°C with 1°C time step on a typical summer day in Los 

Angeles to see how the thermostat set point affects the energy performance.  Figures 2.4a, b, c and d show 

the daytime average fan power, chiller power, total power, and PPD values.  There is no need to consider 

the unoccupied hours when system is off.  It will be a totally different case if night cooling is available, 

which will be addressed late in this chapter.  

 

Increasing the thermostat decreases monotonically all the power consumptions and reduces the service 

level.  It has a large impact on both fan power and chiller power, which is due to the reduction in cooling 

demand.  The marginal energy benefit shrinks with the further increase of the thermostat set point while 

thermal comfort keeps deteriorating.  Therefore, increasing thermostats can only be a load control strategy 

within a certain level, which is a function of the building system and service level requirement. 

 

The simple analysis here adopts new thermostat set points for the entire day, which is seldom the case in 

practice.  In further parametric studies and optimization analysis late in this research, we will focus on 

thermostat set point change with a short-term, e.g. several-hour, horizon, where scheduling load shedding 

and reducing the setback peak will make the analysis more interesting.  
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Figures 2.4a, b, c and d Daytime average chiller, fan, total power, and PPD  
vary with thermostat set points in LA on a typical summer day of August 8 
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2.3.2 Supply air temperature, chilled water temperature and fan capacity reduction 

The rationale behind varying the combination of supply air temperature, chilled water temperature and 

fan static pressure rise is as follows.  In a VAV system, increasing the supply air temperature pushes up 

the fan power if the indoor air temperature remains the same.  If the chilled water temperature can be 

increased accordingly, it will lead to better chiller efficiency and produce some savings.  Two scenarios 

can happen.   

 

• If we can shed the fan capacity, the fan power increase can be mitigated.  Together with the savings 

from more favorable chiller working conditions under higher average chilled water temperatures, this 

strategy is likely to produce pure savings.    

• If we cannot shed the fan capacity, the energy saving potential depends on the relative change 

between chiller power decrease and fan power increase.  In most cases, it has to wait until the fan gets 

saturated and the fan power remains constant after.  

 

The original supply air temperatures are set at 13°C for the entire day 24 hours.  We run the simulation 

with the supply air temperature (Ts) varying from 10°C to 26°C with a 2°C step, and chilled water 

temperature (Tch) taking values of 6.67, 8, 10 and 12 on a typical summer day in LA.  The changes apply 

to all 10 working hours.     

 

Figure 2.5 shows how combinations of Tch and Ts affect the average chiller and fan power and PPD.  

Indoor air temperatures are kept at 24°C until the supply fan is saturated due to the increasing supply air 

temperature.  We see a clear trend of chiller power decrease and fan power increase with the increase of 

Ts and the impact of varying Tch is not as important.  Combining the total power and PPD plots, we see 

that power savings have to come with the price of severe comfort violation.  The increase in fan power 

outweighs the savings in chiller power.  This continues to be so until the fan gets saturated, around 16°C 

in this case, where we start seeing total power savings but the indoor temperatures are higher and PPD 

values have reached 60%.  This rules out the possibility of relying on increasing Ts and Tch alone as a 

load control strategy.  

 

To further improve the energy performance, we allow the fan capacity to change, which can be 

implemented by reducing the static pressure set point of the fan or the maximum speed.  Figure 2.6 

compares the full fan capacity with a 25% capacity reduction:  Figure 2.6a shows that the fan power 

reduction helps reduce the average chiller power, which might be due to the fact that less fan heat is 

released to the air stream and therefore processed by the chiller.  Figure 2.6b indicates a large fan power 
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drop by a 25% fan capacity reduction.  Later in this research, we will quantify the impact of the short-

term fan capacity reduction based on a few representative days in summer.  Figure 2.7 compares the 

chiller and fan power consumptions with a full fan capacity and with a 75% fan capacity at different 

supply air temperature and chilled water temperature combinations.   The fan capacity reduction leads to 

savings in fan power in all four cases, but the chiller power savings are more obvious when both supply 

air and chilled water temperatures are higher.  
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Figure 2.5 Total, chiller and fan power, and PPD vary with the combination of Ts (supply air 

temperature) and Tch (chilled water temperature) with fan capacity stays full and thermostats remain at 

24°C before the comfort is degraded 
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Figure 2.6 a) Chiller power varies with Tch at full and 75% capacity, Ts at 14°C  (top) b) fan power 
varies with Ts at full and 75% capacity, Tch at 6.7°C  (bottom). Parameters apply to all 10 hours 
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Figure 2.7 a) Total, chiller and fan power vary with combination of Ts and Tch at full fan capacity (top) 
and b) 75% fan capacity (bottom). Parameters apply to all 10 hours 
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2.3.3 Economizer set point 

There is an economizer installed in our model, and we can control the fresh air intake by setting the 

economizer temperature.  In previous two cases, the economizer was turned off so that we could focus on 

the impact of other parameters.  In cases where natural ventilation is involved, the economizer will be set 

such that the system can take full advantage of free cooling.  We now look at how the economizer 

temperature set point affects the energy performance.  The base case is that the economizer is set at the 

return air temperature, 24°C, which is expected to be the most energy efficient as it maximizes the use of 

outdoor air.  In other cases, the economizer temperature varies from 24 to 16°C.  System remains off at 

night and all free cooling takes place during the day.  Figure 2.8a) shows the impact of economizer on a 

rather cool day June 9 when the highest temperature is 20°C and the lowest is 15°C, the economizer 

performs the best with a set point of 24°C, which corresponds to the least chiller power.  All the set points 

above 20°C perform equally well and take full advantage of fresh air.  When the set point drops below 

15°C, free cooling no longer comes in and mechanical cooling takes over.  On a cool day like June 9, free 

cooling contributes more than 30% to the total cooling need.  Figure 2.8b) shows the chiller power at 

different economizer set points on a warm day July 14 when the highest temperature is 23°C and the 

lowest is 18°C.  In this case, operators should set the economizer no smaller than 23°C to capture the free 

cooling benefit, which is about 13%.  In both cases, fan power remains unchanged, as the total airflow 

rate is the same.  Therefore, varying economizer set point according to weather can be an easy way of 

saving energy for operators.   
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Figure 2.8 Chiller power vary with economizer set point on a) June 9(left) and b) July 14 (right) in  LA  
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2.4 EnergyPlus Parametric Studies part II: short-term load shedding 

We studied in part I the basic dynamics of a VAV system through parametric studies and identified the 

importance of certain operation parameters.  More simulations are done in this section and the energy 

performance is quantified with the focus on the savings potential of short-term, e.g. several hours, load 

shedding.  In reality, we can only afford sacrificing some comfort for a short period of time.  In this 

section, we apply load shedding to hours 14-17, a four-hour period in the afternoon, and aim at reducing 

the peak demand and/or overall energy consumption.  It is to be noticed that these two goals could yield 

different results, which depends on the specific load profiles and rate structures.   

 

Because we choose the last four working hours as our load control period, any load-control-caused 

setback recovery wouldn’t become the system load.  However, the heat accumulated during the shedding 

period could be only partially dissipated by conduction through envelope at night, and what is left might 

lead to an early morning power pick-up.  Because the convergence of the EnergyPlus simulation is on a 

single-day basis, this morning pick-up effect can be seen in some of our results.  All the simulation in this 

research has a horizon of a day.  During the parametric studies, we apply load shedding to six 

representative days in summer and present the average as the final savings value.    

 

We look at three set-point related load control strategies in LA and SF: increasing thermostat set points, 

reducing supply fan capacity and increasing thermostat set points, and increasing both supply air 

temperatures and chilled water temperatures while reducing the fan capacity.  All the adjustments are 

made during 14-17, last four working hours, except that the fan capacity reduction applies to a whole day.  

We also look at the effect of turning chiller off for an hour during the day.  The impact of load shedding 

schedules is also explored.   

 

The hourly power and PPD profiles in Figures 2.9 a) and b) show the potential demand reductions and 

decrease in service level.  No load setback recovery takes place because the load control is applied in the 

last four work hours, which, however, corresponds to slightly higher power in the morning.    Figures 2.10 

a) and b) are the average daytime chiller and total power reductions for LA and SF.  For thermostat-based 

load control, a 2°C thermostat increase in hours13-17 leads to an average power reduction of 2.8 W/m2 in 

LA and 1.7 W/m2 in SF, and a demand reduction4 of 8 W/m2 in LA and 4.8W/m2 in SF; a 4°C increase 

corresponds to 4.4 W/m2 average power savings in LA and 2.4 W/m2 in SF, and a demand reduction of 11 

                                                 
4 Here we only look at the demand reduction within the control period of hours 13-17.  Note that the new peak might 
be shifted to 12noon by applying load shedding to hours 13-17.  Doing so, we produce demand reduction similar to 
Haves [2001] did, and two research projects are comparable. 
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W/m2 in LA and 7 W/m2 in SF.  Haves [2001] reported a 5W/m2 demand reduction for a 2 degree set-

point change for a prototype office building in California, and 9.3 W/m2 demand reduction for a 4 degree 

set-point change.  According to Figures 2.9b, daily peak PPD reaches 50% with a 4°C increase and below 

40% with a 2°C increase.  Figure 2.10a) shows the total demand reductions in LA and SF and the 

contributions by chiller, which is the major source of the power reduction with thermostat set points 

increases.  Thermostat-based load shedding works better in LA than SF because the base load in SF is 

rather small due to the mild weather and savings from load shedding are relatively less dramatic.   

 

Fan capacity reduction by itself is a fairly effective load shedding method.  In practice, fan often times 

runs at below full capacity.  The very left bars in Figure 2.11 shows the shedding performance of 

controlling fan capacity.  With 25% capacity reduction only, we see 1 W/m2 average power savings in LA 

and 0.6 W/m2 in SF, and a demand reduction of 1.4 W/m2 in LA and 1 W/m2 in SF; 50% fan capacity 

reduction alone leads to 2 W/m2 average power saving in LA and 1.4 W/m2 in SF, and a demand 

reduction of 2.8 W/m2 in LA and 1.8 W/m2 in SF.  It does little harm to the service level as the indoor air 

temperature is maintained at 24°C.  Combining fan capacity reduction with thermostat increase is more 

effective, as shown by the rest of Figure 2.11.  A 25% fan capacity reduction along with a 4°C thermostat 

increase lead to an average power savings of 4.6 W/m2 in LA and 2.5 W/m2 in SF, and a demand 

reduction of 11.8 W/m2 in LA and 7.5 W/m2 in SF.  A 50% reduction together with a 4°C thermostat 

increase produces an average power savings of 4.8 W/m2 in LA and 2.8 W/m2 in SF, and a demand 

reduction of 12.4 W/m2 in LA and 8 W/m2 in SF.   Haves [2001] reported a 4.5 – 6.5 W/m2 demand 

reduction for a 20% supply fan capacity reduction.  The fan static pressure rise in Haves’ research is 

about twice of that in our system.  Therefore, discrepancies between two sets of results are expected when 

fan capacity reduction plays a role.  The service level degradation is similar to that in the previous case, 

shown in Figure 2.9, where only thermostats are adjusted.  Shedding fan capacity helps reduce the power 

profile and has little impact on the service level.  We want to point out that the relative benefit of 

improving thermostat set points and shedding fan capacity is smaller than the sum of implementing them 

alone.  The reason is that a VAV system will cut the flow rate to respond a thermostat set point increase.  

Shedding fan capacity with a smaller flow rate leads less energy savings than with a larger flow rate.  

However, the absolute energy performance is still improved as we combine these two.  A 4°C 

temperature increase alone leads to an 11 W/m2 demand reduction and a combination of 4°C and 25% fan 

capacity reduction to 11.8W/m2.   
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Figures 2.9 a) Hourly power b) PPD profiles for 4-hour thermostat adjustment (24°C up to 28°C for 
hours 14-17) on a typical summer day in LA 
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Figures 2.10 a) daytime average (top) and b) chiller (bottom) power reduction, for LA and SF on typical 
summer days with different thermostat set points during hours 14-17 
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Figures 2.11 c) Average total power reduction (Bottom), b) reduction contributed by fan (middle) and by 
a) chiller (top), for LA and SF in summer with supply air fan capacity reduction (50-75% of the original 
capacity) and 4-hour thermostat adjustment (hours 14-17) 
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Figure 2.12 gives the hourly load and PPD profiles corresponding to different combinations of supply air 

and chilled water temperatures and fan capacity reduction.  In all shedding cases, those hours during and 

after shedding are seeing reduction, but the early morning pick-up can be a problem for systems without 

night cooling available when chilled water temperature is pushed too high, for example Tch of 12°C.  In 

addition, the combination of Ts = 20°C, Tch = 10°C and 25% fan capacity reduction performs worse than 

Ts = 13°C, Tch =10°C and 25% fan capacity reduction, which is because the fan does not saturate until 

20°C, and further increase will lead to energy savings and cause severe comfort problems.  This is 

consistent with our findings before about the relationship between total power and supply air temperature.  

We conclude that there is an optimal combination of Ts and Tch, and simple parametric studies usually 

find a sub-optimum. 

 

Haves [2001] suggested that a combination of supply air temperature increase and chilled water 

temperature increase during peak hours will bring in more demand reduction, and reported 7 - 9 W/m2 

savings by raising supply air temperature by 3°C and chilled water temperature by 4°C while reducing fan 

capacity by 20% for four hours in the afternoon.  We also got substantial demand reduction by taking the 

similar short-term load control approach, but the average savings is still small, shown in Figure 2.13.  For 

a 2°C supply air temperature increase and 2.3°C chilled water temperature increase, plus a 25% fan 

capacity reduction, we see about 1 W/m2 average power savings in both LA and SF, and a demand 

reduction of 7.6 W/m2 in LA and 4.5 W/m2 in SF.  The base case in Figure 2.13 has a supply air 

temperature of 13°C, a chilled water temperature of 6.7°C and full fan capacity.  From the power 

breakdowns, we see that the savings in chiller power was partially cancelled out and in some cases 

overweighed by the fan power increase.  The supply air temperature was not high enough to saturate the 

fan.  Further shedding fan capacity might help if permitted.  Overall, there are more savings in LA than in 

SF, which we believe due to the differences in base loads.  The mild weather in SF leads to a low base 

load, and further reduction is therefore less helpful.   
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Figures 2.12 Hourly power (top) and PPD (bottom) profiles on August 10, LA for different combinations 
of supply air temperature increase and chilled water temperature increase, and fan capacity reduction 
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Figure 2.13 a) Average total demand reduction (top), b) demand reduction contributed by fan and pump 
(middle), and c) demand reduction by chiller (bottom), for LA and SF on typical summer days for 
combinations of supply air temperature increase (within the legend), chilled water temperature increase 
(along the x axis), and fan capacity with 25% reduction 
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Table 2.2 compares the demand reduction results in this research with Haves’ results [2001] for different 

types of load shedding strategies in a few locations in California.  The two sets of research are 

comparable because they both study commercial VAV systems in similar climates by taking similar load 

shedding approaches, and the peak loads per unit area are also close.   The discrepancies are a function of 

the specific buildings under study.   

 

Table 2.2 Demand reduction vs. Load shedding strategies 

Load shedding measures 

Demand reduction 

Our results  

(W/m2) 

Haves’ results  

(W/m2) 

Implementation 
 
 

Increase thermostat set points 

by 4°C 

LA ~ 11.7 

SF ~ 7 

9.3 

 

Network-addressable 

thermostat controller 

Increase thermostats by 4°C and 

reduce fan capacity by 25% 

LA ~ 11.8 

SF ~ 7.5 

11– 12 

 

Adjust max speed or 

static pressure rise 

Increase supply air and chilled 

water temperatures by 3°C while 

shedding fan capacity by 20% 

LA ~7.6 

SF ~ 4.5 

7 -9 

 

Alternative if 

thermostats are 

difficult to control 

 

Norford et al. [2002] used a simplified analytical model the impact of changing thermostat, supply air 

temperatures and lighting on demand reduction and zone temperature for different internal load levels.  

Haves and Gu [2001] did a similar analysis in EnergyPlus for several cities in California and suggested 

some operation guidelines.  Both pointed out VAV systems have more flexibility over CV systems in 

generating energy savings through load shedding.  The exact amount of savings depends on the building 

thermal properties, load characteristics and the load shedding strategies applied.   

 

We want to point out that often times it is the implementation issue associated with a load shedding 

strategy that determines whether it can be used.  As our parametric studies show, increasing thermostats is 

very efficient and the analysis is simple.  In order to implement it in a large commercial building, the zone 

temperature controllers need to be digital and network-addressable.  It would be too difficult to adjust 

thermostats manually.  If the zone temperature controllers are not network-addressable, load can be shed 

by reducing the air handling unit fan capacity, either on its own or while increasing the supply air 

temperature and chilled water temperatures.  This partially motivates our looking at a variety of load 

shedding strategies.  In the next several chapters, we assume thermostats can be adjusted easily. 
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In all the previous studies, we pre-specified the load shedding schedules, such as how long each period 

should be and when load shedding should start.  In practice, however, scheduling itself is an important 

issue and needs to be determined through optimization.  In this section, we illustrate the importance of the 

load shedding scheduling by simply comparing several thermostat set point-based cases with different 

schedules.  It is worth in the future looking into the scheduling problem in detail and in a systematic 

fashion, and making suggestions on how building operators should time load shedding strategies based on 

rate structures, buildings, mechanical systems used, occupants’ preferences, weather, and the shedding 

strategies to be applied.   

 

With only thermostat set points as control variables, we look at the impact of shedding duration and 

starting time, with results shown in Figures 2.14 and 2.15.  The base case, where thermostats are set at 

24°C and no load shedding available, is compared with other three cases: 1) thermostats are set to 28°C 

for hours 13-16, 2) 28°C for hours 14-17, and 3) 28°C for hours 13-14.  The comparison between 1) and 

2) looks at when load shedding should start, and 1) and 3) looks at how long load shedding should last.  

Figure 2.14 compares the daytime average power consumption and the peak demand between these cases, 

and Figure 2.15 shows the corresponding hourly power and PPD profiles.    

 

Because the building load goes down substantially after hour 18, a thermostat increase during hour 14-17 

avoids the load setback recovery spike, although the overall power curve is pushed up for the next day, 

reflected in the increase early morning power.  However, a similar 4-hour 4°C thermostat increase which 

happens two hours earlier incurs large load set-back recovery, which leads to a 1.3 W/m2 average demand 

increase and a 12 W/m2 peak demand increase compared to load shedding that takes place during hours 

14-17.  Therefore, the well-timed hour 14-17 load shedding offers demand charge advantage, giving the 

same the service level reduction.  Compared to the base case, the load shedding case during hours 13-14 

doesn’t really offer any benefit:  almost the same total consumption and the increased peak demand.  This 

is because the load set-back recovery outweighs savings, which shows the importance of choosing the 

shedding period.  The scheduling problem will get more complicated if the occupancy and a few 

operations schedules are subject to change.    
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Figure 2.14 Daytime average power consumption (left) and peak power (right) with different scheduling 

durations and starting times under thermostat-based load control 
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Figures 2.15 Hourly power profile (top) and PPD profile (bottom) with different  

scheduling durations and starting times under thermostat-based load control 
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Chiller power is a big portion of the entire mechanical system energy consumption, 50-70% in this three-

zone VAV case.  Naturally, we’d like to turn off chillers during peak hours to cut peak demand and 

hopefully total power consumption, provided doing so wouldn’t unduly hurt thermal comfort.  In this 

three-zone VAV case, we compared the following cases:  1) chiller is on the whole time; 2) chiller off 15-

16; and 3) chiller off 16-17.  The simulation is done to three types of thermal masses on six individual 

summer days in LA, and averaged results are presented below.  

 

Figure 2.16 shows the occupied-time average load and PPD for three chiller control strategies and three 

types of thermal mass.  1mass is the base case and 2mass and 3mass represent that the thermal mass is 

doubled and tripled.  We simply double and triple the density of major construction materials and the 

system size remains the same.  The details can be found in the material object description of the 

EnergyPlus model given in Appendix 1.2.  As expected, turning chiller off leads to big energy savings 

associated with the much worse comfort condition.  The peak demand chart in Figure 2.16 shows that 

high thermal mass is more tolerant of the temporary shut-off of the chiller, and setup recovery is smaller 

than that with low thermal mass; however, it is also more difficult for heat accumulated during the 

shedding period to dissipate over night when the system is off.  The bottom graph in Figure 2.17 indicates 

that with the same chiller shedding strategy, high thermal mass leads to higher early day power 

consumption, although this doesn’t affect the daily peak.  We plot the hourly load and PPD curves for the 

3mass scenario on a summer day in LA, as shown in Top and Middle of Figure 2.17.  Even with the 

highest thermal mass, a 3mass model, the hour(s) when chiller is off corresponds to a PPD of 70-90%.  

Therefore, turning the chiller off for an hour is not acceptable in this system on a summer hot day.   

 

30

35

40

45

50

1mass 2mass 3mass
time (hrs)

av
g 

po
w

er
 (W

/m
2)

on
hr16 off
hr17 off

 

0

10

20

30

40

50

60

70

1mass 2mass 3mass

time (hrs)

pe
ak

 p
ow

er
 (W

/m
2)

on
hr16 off
hr17 off

 
 

Figure 2.16 Occupied-time average power consumption and PPD for three chiller cases (always on, off 
 during hour 15-16, and off during hrs 16-17) with three different types of thermal mass (1,2, and 3mass) 
 on summer typical days (average of six summer days) 
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Figure 2.17 Hourly load (top) and PPD profiles (middle) vary with mass under temporary chiller-off 
 strategies (on, off hr 15-16, off hr16- 17), and load setback recovery comparison between 1mass and  
3mass (bottom), 8/8, LA  
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We use EnergyPlus version 1.1.0 in this research, and did not find a way to turn the chiller off for less 

than an hour.  The most recent version of EnergyPlus 1.1.1 that came out when this thesis was prepared 

can schedule chillers on a time scale that is less than an hour.  This would be an immediate next step of 

research because turning chiller off for a short period of time could offer good energy saving potential 

without hurting comfort much.   Turning off chiller temporarily might be a more appropriate choice if the 

building thermal mass is cooled over night.  In addition, increasing the thermostat set point and/or 

shedding supply fan capacity when chiller is off might also help.   

 

2.5 Another load control strategy – night cooling 

Previous load control strategies only concern the peak-load related hours in the afternoon.  It will help to 

work on the entire next day’s profile and take advantage of free cooling at night.  We approach load 

control through night cooling in this section through parametric studies, and will come back to the same 

problem through an optimization approach in next chapter.  We compare two night cooling schemes:  

mechanical ventilation – running fan at night and use the free cooling resource, and mechanical cooling – 

running chiller at night, for different thermal mass types and weather conditions.  Scheduling night 

cooling to improve the load control performance is in the center of the discussion.  

 

The base model described in section 2.1 remains in use, in which the system is turned off at night and the 

economizer is off.   For fan-based night cooling, we allow fan starting time and discharge process, e.g. 

early morning thermostat set points, to change while keeping economizer set point at 24°C.  For chiller-

based night cooling, we allow chiller starting time and discharge process to change while keeping 

economizer off.  The thermal mass in the base case is doubled and tripled and impact of thermal mass on 

night cooling performance is compared.  Two weather types, LA and Austin, are compared as well 

regarding the night-cooling-based load control.  Generally, night cooling benefits from large diurnal 

temperature differences, so its performance varies from day to day.  Acknowledging this, we conduct 

parametric studies on the same single day for simplification purposes, and day to day differences are 

ignored.   

 

Some of the following scheduling aspects in fan-based and chiller-based night cooling have been studied 

before [Braun 2001, Rabl and Norford 1991].  We look at them through VBA-automated parametric 

studies: 
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• Thermostat setting points during the night cooling time 

For fan-based night cooling, our strategy is to maximize the use of free cooling.  Whenever the 

outside air temperature is below inside, the economizer is open to full, assuming that humidity is 

not a problem.  Therefore, the nighttime thermostat set points have no impact on fan-based night 

cooling.  For chiller-based night cooling, nighttime thermostat set points work the same way as 

daytime set points 

• Thermostat set points early during the day 

These set points control the warm-up period and the way the stored energy is released, and affects 

the energy performance the entire next day.  We define a set of early morning thermostat set points 

as a discharge process.  Figure 2.18 examines the impact of discharge process on fan-based night 

cooling, and Figure 2.19 does so for chiller-based night cooling. The discharge process affects both 

in the same way.  It would be ideal if we could track thermal mass temperatures and make operation 

decisions accordingly, but it is still difficult to implement this in EnergyPlus currently. 

 

The names of the discharge processes in Figure 2.18.a and 2.19.a are borrowed from Braun’s work [2001] 

which also compares the performance of these processes.  Fast Linear and Slow Linear describe how 

thermostats change gradually, at different paces, from 18°C at night to 24°C after the day starts.  

Maximum discharge means thermostat set points turn to normal, e.g. 24°C or 25°C, right after the day 

starts and stay constant in the rest of the day.  We add one more case named Until Peak which is to keep 

the temperature set points low until the peak is reached or very close.  It starts at 22°C , increases to 23°C  

in an hour, remains flat until 3pm and goes up to 24°C.  In both figures, Slow Linear and Fast Linear both 

cause load spikes early during the day due to the low temperature set points, and Slow Linear corresponds 

to a higher spike.  The early spikes are partially paid off later during the day, but the late-day load 

reduction is fairly small.  Until Peak has a flat power profile with the lowest peak of all the scenarios.  

Figures 2.18.b and 2.19.b have the constant day thermostat set points of 24°C as the base case, and the 

power differences are shown on the charts.  Until Peak is the most efficient with close to a 7W/ m2 peak 

reduction and similar total energy consumption to that in the base case.  Maximum Charge to 25°C is also 

good and sees both peak and total load reduction.  But unlike other four cases where the space is not 

heated up because the temperature set points are lower than in the base case, Maximum Charge to 25°C  

corresponds to an about 6% PPD increase in both fan-based and chiller-based cases.   

 

Overall, reduction in early morning temperature set points helps reduce the afternoon peak but not the 

total load, and comfort is little affected.  Keeping thermostat set points low before peak is very efficient: 

the thermal mass discharge process is controlled such that energy stored through night cooling carries 
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throughout the day and helps reduce the peak.  This shows the benefit of looking at the day as a whole.  

The disadvantage is that most time of the day is probably cold and less comfortable for some occupants.   
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Figure 2.18.a) Load profiles of night cooling by mechanical ventilation with 
 discharge processes, night cooling fan starts midnight with nighttime thermostat  
set points of 18C, and chiller starts 8am, August 8, LA 
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Figure2.18.b) Peak load and average load difference from the base case  
due to fan-based night cooling with different discharge processes  
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Figure 2.19.a) Load profiles of chiller-based night cooling, with different discharge  
processes in the early morning, and chiller starts at 4am with a nighttime thermostat  
set point of 18C, August 8, LA 
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Figure2.19.b) Peak load and average load difference from the base case  
due to chiller-based night cooling with different discharge processes  
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• Night cooling start time 

No matter which approach taken to night cooling, fan-based or chiller-based, when to start night cooling 

is a question.  Early start can always help reduce the day peak load, but is likely to consume too much 

energy overall.  We need a balance between getting enough low-cost cooling resource stored in thermal 

mass over night for next day use and consuming reasonable amount of energy over.  Figure 2.20 is the 

parametric study results for fan-based night cooling, and Figure 2.21 for chiller-based.  A rigorous 

optimization process will be set up in the next chapter.   

 

Figure 2.20.a and Figure 2.21.a are power profiles with different fan and chiller starting times.  Figure 

2.20.b and Figure 2.21.b show the power and PPD difference between different night cooling start times 

and the base case, which is no night cooling at all.  All cases have the same thermostat set points. From 

Figures 2.20, we see that for a fan-based night cooling strategy, early starting of the fan helps reduce the 

peak load and flatten the peak period and lower the maximum PPD and average PPD values.  But early 

starting of the fan leads to the most energy use overall.  It is a trade-off between getting enough energy 

stored and using less energy to run the fan at night.  We need to figure out when the thermal mass gets 

fully charged.  Starting the chiller early has a similar impact, according to Figure 2.21, but the chiller-

based night cooling has more dramatic power and PPD impact.   

 

It is clear that scheduling night cooling is an optimization problem with the peak load and PPD and the 

total load as conflicting goals.  We can unite them under a total energy cost given a certain rate structure, 

which will be part of the next chapter. 

 

The impact of weather and location on determining whether night cooling helps and which night cooling 

strategy is better is examined in Figure 2.22, where the chiller starts at 4am, fan starts at midnight and 

everything else remains the same.  No night cooling, fan-base, and chiller-based night cooling strategies 

are applied to the same building in LA and Austin.  LA has a high of 29°C, low 19°C and average of 

23°C, while Austin has a high of 34°C, low 23°C and average of 28°C.   In LA, chiller starting at 4am is 

almost equivalent to starting fan at midnight in terms of peak load and comfort but at the price of more 

total power consumption.  However, in Austin, fan-based night cooling is less attractive as the outside 

temperature stays above the thermostat set point most of the time.  Chiller-based night cooling reduces 

peak load and improves the overall load profile.  

 

We also look at the impact of thermal mass combined with weather on the night cooling performance.  In 

Figure 2.23, we simulate three types of thermal mass: 1mass, 2mass, and 3mass.  2mass and 3mass have 
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been defined before.  For each thermal mass, we conduct three cases: traditional night set-up, fan-based 

night cooling and chiller-based night cooling.  In the fan-based night cooling, we turn off the chiller at 

night and use mechanical ventilation with an economizer set point of 24°C from 12a to 7a.  In the chiller-

based night cooling, we turn the chiller on at 4am with the nighttime thermostat set point of 18°C, and let 

it run through the end of the working day.  All the cases have the same indoor control target of 24°C 

during the occupied time.  Figure 2.23 shows the results of three mass types, three strategies and two 

locations.  Shown are power differences; the base cases for all charts are no night cooling and 1mass, with 

their figures at the bottom left corner of each chart.  In LA, fan-based night cooling shows an advantage 

over chiller-based in term of peak load at higher thermal mass.  In Austin, chiller-based constantly 

outperforms fan-based.  Given the schedule used, chilled-based night cooling always consumes more total 

power than fan-based.  3mass chiller-based night cooling in LA has a higher peak than that of 2mass, 

which is due to the shift of peak from late afternoon to early morning pick up when the chiller starts at 

4am.  If we increase the night-time temperature set points from 18 to 20°C, the peaks shift back to around 

4pm and 3mass has a smaller peak demand than 2mass.  The 3mass case has the best daytime power 

profile due to the higher mass.  For LA, with the same chiller schedule, 2mass outperforms 3mass in both 

peak and total load, which seems to contradict our expectation of better night cooling performance of 

higher thermal mass.  It is only because chiller-related power is big enough to shift the daily peak and 

therefore leads us to a different problem.   Which strategy and parameter combination is better depends on 

the rate structure, which could be Time of Use (TOU) energy charge, or demand charge plus flat rates or 

demand charge plus TOU energy charge.  The load control strategy that gives the minimal total cost is the 

one should be used in operations. 
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Figure 2.20.a) Load profiles of night cooling by mechanical ventilation with different 
 fan starting times with nighttime thermostat set points of 18C, chiller starts at 8am and  
a maximum discharge to 24°C , August 8, LA 
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Figure 2.20.b) Summary of night cooling by mechanical ventilation with different fan starting times  
with nighttime thermostat set points of 18C and a maximum discharge to 24°C, 8/8, LA  
Left: daily average load and peak load; Right: work time average PPD and peak PPD 
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Figure 2.21.a) Load profiles of night cooling by running chiller at night with a nighttime 
 thermostat set point of 18°C, for different chiller starting times, thermostats maximum  
discharge to 24°C, August 8, LA 
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Figure 2.21.b) Summary of night cooling by chiller-based night cooling with different  
chiller starting times and a maximum discharge to 24°C, August 8, LA 
Left: daily average load and peak load; Right: work time average PPD and peak PPD 
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Figure 2.22 power profiles of no night cooling, chiller-based with chiller on at 4am and 
 fan-based night cooling with fan on at midnight, nighttime thermostat set point 18°C,  
daytime maximum discharge 24, August 8, LA and Austin 

 

 

 

 

 

 



 73

 

 

-10

-8

-6

-4

-2

0
1mass 2mass 3mass

pe
ak

 lo
ad

 (W
/m

2)

noNC
chNC
fanNC

-10

-8

-6

-4

-2

0
1mass 2mass 3mass

pe
ak

 lo
ad

 (W
/m

2)

noNC
chNC
fanNC

 
61 W/m2     72 W/m2 

0

2

4

6

8

10

1mass 2mass 3mass

av
g 

lo
ad

 (W
/m

2)

noNC
chNC
fanNC

0

2

4

6

8

10

1mass 2mass 3mass

av
g 

lo
ad

 (W
/m

2)
noNC
chNC
fanNC

 
22 W/m2     28 W/m2 

 

Figure 2.23 peak load and average load comparison between three thermal mass types, 
 three night cooling strategies and two locations, left: LA; right: Austin, August 8 
Base case given at the lower left corners of the charts 
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There are a few other factors that affect the night cooling performance as well, for example, the 

economizer set point in fan-based night cooling.  In our studies, we set it to 24°C, which in most cases 

equals the indoor thermostat set point, so we already took great advantage of free cooling and further 

studies wouldn’t be essential.  Internal load patterns also affect night cooling, but the load pattern for a 

given building is assumed to be fixed throughout this research for simplification purposes.  Table 2.3 

summarizes briefly the night cooling parametric studies with several examples.    
 

Table 2.3 Night cooling parametric studies summery  

LA Peak load reduction  

(W/m2) 

Average load increase 

(W/m2) 

Fan starts at midnight and early morning 

thermostats remain low 
4 – 9 0 - 2.5 

Chiller starts at 4am and early morning 

thermostats remain low 
1 – 7 0.5 - 2.3 

Double thermal mass in either fan-based 

or chiller-based night cooling 
3 - 5 0.5  

 

 

2.6 Single-building parametric study summary   

Some preliminary operation guidelines are suggested based on extensive EnergyPlus simulations.  Several 

load shedding strategies are proved to be applicable to this VAV system.  The most efficient load 

shedding method is to increase thermostats and reduce fan capacity at the same time.  A 4°C increase in 

four-hour afternoon thermostats and a 25% supply fan capacity reduction corresponded to 4.8W/ m2 

average power savings and 11.8 W/ m2 peak demand reduction for this particular building in LA.  

Increasing thermostats alone is efficient as well.  Increasing supply air temperatures and chilled water 

temperatures helps little, unless supply air temperatures are allowed to increase until the supply fan gets 

saturated, which, however, would hurt the service level much.  Increasing supply air temperatures and 

chilled water temperatures by 4°C, together with a 25% fan capacity reduction, produces an average 

power savings of 1-2W/ m2 and a peak demand reduction around 6 W/m2.  The duration of the load 

shedding period and when to start have impact on energy savings.  Both fan-based night cooling and 

chiller-based night cooling are studied regarding the schedules and discharge processes.  Both approach 

take advantage of thermal mass and help reduce the peak load of next day.  Fan-based night cooling is 

shown to be more energy efficient for this model in LA.  Starting fan early leads to 4 - 9 W/ m2 peak load 

reduction for this three-zone VAV system in LA, around 10% savings.  Chiller-based night cooling has 
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better peak-load reduction performance in Austin, about 12% savings.  Which night cooling approach to 

use largely depends on weather, mechanical system availability and the building under study.  A more 

general load-control scheduling problem is to be studied in next chapter with the help of an optimizer.   

 

If thermostat set points can be easily adjusted, building operators should choose to increase thermostats 

for short term load shedding.  Otherwise, reducing fan capacity is an efficient alternative.  We 

recommend night cooling if the plant and/or fan are programmable and whenever weather permits.   

 

Those buildings with high thermal mass should take full advantage of it:  if outdoor temperatures at night 

are low, use fan-based night cooling; if outdoor temperatures at night are fairly high but the chiller has 

more than one stage, run the chiller with partial capacity at night; if the chiller consumes too much 

electricity at night and the consumption outweighs the benefit, thermostat set point adjustment may be 

made for a period of time during the day.  Other options include shedding fan capacity reduction if 

possible and turning off the chiller for a short period of time.  High mass would help maintain comfort. 

 

Those buildings with light thermal mass have fewer options.  Running fan or chiller at night may end up 

consuming more energy.  Turning chiller off during the day might incur severe comfort problems.  A 

modest adjustment of thermostat set point may still work.  Fan capacity reduction is always an option if 

the system has the extra capacity to be shed.  There are still things operators can do:  if outdoor 

temperatures are low at night and during the day, leave windows open and create some cross ventilation if 

possible; if the building has large windows, shade during the day; if the humidity is low, a small indoor 

fountain would help reduce the temperature.  Passive measures like these are not the target of this 

research, but operators are encouraged to use them as they cost little and can be quite efficient.  

   

Load shedding generally work better in LA than in San Francisco.  The mild weather in summer time in 

SF makes load shedding less helpful.  We also point out that this three-zone VAV system is not among 

the most sensitive ones to load shedding strategies.  It is important to identify buildings that are more 

appropriate for load shedding.  Put another way, what kind of properties in terms of construction, load and 

operations does a building need to possess to be responsive to certain types of load shedding strategies?  

The load control performance depends on the properties of the building under study.  

 

It is to be noticed that lighting is an independent factor and should be considered separately from HVAC.  

The reason is that though light energy increases the cooling load of the HVAC system, the control 

strategy for the lighting system remains the same, which is to always keep the lowest level of lighting as 
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long as doing so will not affect the building’s normal functionality.  Therefore, lighting is not considered 

when we developed the system operation strategies.   

 

The effectiveness of the guidelines proposed in this research heavily relies on a large number of 

EnergyPlus simulations.  We choose this three-zone VAV model in our research due to its simplicity and 

yet completeness as a VAV system.  We have done basic testing such as heat and mass balances and 

qualitative checking on parameter trends, and fixed a few EnergyPlus problems along the way with the 

help of the software package improvement.  For example, we had problems with the pump model at early 

stage of the research and the problem was fixed in a later version of EnergyPlus.  Another thing worth 

pointing out is that the current version of EnergyPlus, as of November 2003 when this thesis is prepared, 

is imprecise in calculating PMV values.  This was observed in our research, as the base case 

corresponding to an average daytime PMV of 1.  A few EnergyPlus users also reported a deviation of 0.5 

at the public mailing list of EnergyPlus maintained by Gard.com.  The conversion between PMV and 

PPD values is correct and based on Fanger empirical results [EnergyPlus 2003].  Throughout this 

research, a PMV of 1.5 or a PPD of 50% is used when comfort is treated as a constraint, with the 

understanding that the true system might be cooler.  Fortunately, the procedures are designed to carry out 

simulation and optimization tasks automatically throughout our research.  Therefore a change in the PMV 

calculator can be easily adopted and wouldn’t hurt the system being developed.  Overall, as a complex 

software package still under improvement, EnergyPlus is a great help to our research and also a challenge 

in the sense that we need to understand and overcome the complexity and potential problems of the 

modeling and simulation process.  We use the three-zone VAV model throughout this research and make 

sure that results are consistent.  To explore load shedding opportunities, especially in a multi-building 

setting, we need a variety of buildings models that have reasonably good responses to load shedding.  It is 

not realistic to build them all from scratch. Therefore, those models used in a multi-building setting are 

derived from the base three-zone VAV model and differences lie in thermal mass or internal load pattern. 
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CHAPTER THREE 

SINGLE BUILDING PROBLEM: LOAD CONTROL OPTIMIZATION 

 

 

We have conducted extensive parametric studies and compared the energy and comfort performance 

between different load shedding strategies.  A natural extension is to find out a way to optimize those load 

control parameters.  In this chapter, we develop a simulation-based optimization scheme for the single 

building problem, and use the framework to study a few strategies.  The fact that we rely on simulation 

for objective function evaluation makes optimization difficult because simulation-based results provide a 

discontinuous search space, and, in addition, our problems are mostly nonlinear.  The number of control 

variables in the problem is always a constraint.  We limit control variables to those found important in 

parametric studies to simplify the problem.    

 

Two types of optimization algorithms are used to solve the single building problem: direct search 

algorithms (DS) implemented at Lawrence Berkeley National Laboratory (LBNL) as a generic 

optimization package GenOpt, and GA implemented in a MATLAB freeware package GAOT.  We will 

first review these algorithms and then present and compare the optimization results by applying DS and 

GA to the single building problem.  We also examine the cost function structure of the single building 

problem to gain insight into the nature of building optimization.  In the end of this chapter, we propose a 

hybrid optimization algorithm for single building optimization.  

 

3.1 Direct Search Algorithms and GenOpt 

3.1.1 Algorithm reviews 

Direct search algorithms (DSs) have been replaced by more sophisticated techniques as numerical 

optimization has matured and globalized quasi-Newton methods have been successful.  However, as 

Lewis [1997] pointed out, direct search methods still persist for three reasons: 1) they work in practice 

and the heuristics on which DSs are built remain sound.  The convergence has been gradually proved in 

recent years [Polak and Wetter 2001] for pattern search methods under certain constraints; 2) Quasi-

Newton methods are not applicable to all nonlinear optimization problems, and DSs have succeeded when 

more elaborate approaches failed; 3) DSs can be the method of first recourse.  DSs are derivative-free 

methods, meaning neither compute nor approximate derivatives, and for unconstrained optimization, they 

depend on the objective function only through the relative ranks of a countable set of function values.    
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DSs can be organized into three basic categories: Pattern Search, Simplex Methods (not the simplex for 

linear programming) and Methods with Adaptive Sets of Search Directions.  Pattern search methods are 

characterized by a series of exploratory moves that consider the behavior of the objective function at a 

pattern of points, all of which lie on a rational lattice.  The Hooke-Jeeves algorithm is a good example of 

pattern search methods.  Simplex methods construct a series of simplexes (a simplex is n+1 points in an N 

-dimensional space) and proceed in the search space by reflecting a simplex through the centroid of one 

of the faces, which doesn’t depend on derivative information.  The Nelder-Mead simplex method has 

enjoyed enduring popularity although its robustness has long troubled numerical optimizers.  Methods 

with Adaptive Sets of Search Directions attempt to accelerate the search by constructing directions 

designed to use information about the curvature of the objective obtained during the search.  Powell’s 

method is such an algorithm, and it takes advantage of the previous results to construct a new search 

direction – a quasi-derivative.  

 

Overall, DSs remain popular because of their simplicity, flexibility, and reliability.  We use this type of 

method as the first course in the building optimization problem, and will compare it with GA later in this 

research. 

 

3.1.2 GenOpt 

To optimize building control using simulation programs such as EnergyPlus, we should be able to 1) 

modify the control variables in the input file and read the objective value from the output file 

automatically and continuously; 2) start simulation automatically; 3) keep improving the objective 

function toward the optimum.  GenOpt, a generic optimization software package developed by the 

Simulation Research Group at LBNL, meets these requirements.  GenOpt is designed to minimize the 

objective function that is calculated by an external simulation program.  Several direct search methods, 

including Hooke-Jeeves and Nelder-Mead-O’Neil, were implemented in its algorithm library.   

 

Besides having implemented several direct search methods, GenOpt provides a good interface to connect 

simulation and optimization.  GenOpt allows any text-based simulation programs to be used, and it does 

all the data management work.  Users only need to define the related parameters and inform GenOpt by 

defining initialization, command, and configuration files.  In case users wish to use their own 

optimization algorithms, they need only to focus on the mathematics, and GenOpt takes care of data 

communication.  Figure 3.1 shows the GenOpt schemes: a) is the overall scheme with the focus on the 

simulation setup and b) more on the optimization side.  Details of how GenOpt works can be found in the 

GenOpt documentation [GenOpt Manual 2002].  The characteristics of GenOpt discussed so far 
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motivated its use in our building load control problem, especially in single buildings.  Later in this chapter 

we will illustrate the process via a single building optimization example.   

 

The Hooke-Jeeves algorithm [GenOpt 2002] is one of the direct search algorithms implemented in 

GenOpt, and is the one used in this research.  It generates steps along the valley of the objective function.  

The algorithm requires neither the gradient of the objective function nor a line search.  The original 

Hooke-Jeeves algorithm solves the unconstrained problem.  It was modified to solve the box-constrained 

problem in GenOpt by redefining the objective function.  The algorithm can be divided into 1) an initial 

exploration, 2) a basic iteration, and 3) a step size reduction.  Steps 1) and 2) make use of so-called 

exploratory moves in order to get local information about the direction in which the function decreases.  

At each resulting base point, a sequence of orthogonal exploratory moves is made.  The algorithm updates 

the base point once a small change in the objective function is found or reduces the search step otherwise.   

 

Unfortunately, the cost functions evaluated in EnergyPlus and other simulation programs such as 

TRNSYS and DOE-2 are 1) nonlinear, which is difficult to deal with by a local optimizer; and 2) 

discontinuous with respect to the design parameter, although the discontinuities could be small.  The 

problem gets worse when the structure of the objective function gets more complex, e.g. the combination 

of total energy consumption and thermal comfort.  To prevent from getting stuck in local optima, which is 

the common problem for direct search methods and most nonlinear optimization algorithms, we can 

conduct several rounds of optimization with different initial guesses and pick the best local optimum as a 

global suboptimum.  An alternative is to implement global-convergence oriented (but not guaranteed) 

algorithms such as genetic algorithms in the GenOpt framework.  At the time this thesis was being 

written, GenOpt at LBNL released a new version with several global optimization algorithms 

implemented, including several global heuristic optimization algorithms that can be used to solve 

optimization problems with continuous and/or discrete independent variables, and a GA-based optimizer 

was also under development.  

 

GenOpt provides a generic simulation-based optimization framework and automates lots of data 

processing work related to text-based simulators.  It also has several optimization algorithms included.  

We are most interested in the data management framework GenOpt has and will take advantage of that in 

our work.  We will also be using the direct search algorithms implemented in GenOpt for the single 

building problem.      
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 Figure3.1 GenOpt overall organization 

 

 
 

Figure3.2 GenOpt optimizer class 
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A detailed description of Hooke-Jeeves and other local-search algorithms implemented in GenOpt, and 

the general structure of GenOpt package can be found in the GenOpt manual [GenOpt 2002].   

 

3.2 Genetic Algorithms and GAOT 

3.2.1 Algorithm review 

GAs have been reviewed in Chapter 1 as a general optimization technique.  They were inspired by the 

natural evolution of species.  They have been studied in the last twenty years as an evolutionary 

computation method along with simulated annealing.  GAs are executed as a series of steps, called 

generations.  They start with a population with a certain number of individuals, different states in the 

search space.  In each generation, the individuals are evaluated with the fittest reproducing and continuing 

the next generations through fitness-based selection.  The reproduction phase also introduces new 

individuals by applying genetic operators such as crossover and mutation to the current generation.  A 

variety of genetic operators have been developed [Michalewicz 1992] to tackle certain aspects of different 

problems.  The selection and/or invention of genetic operators are problem-specific and heavily depend 

on experience.  As the process continues, the population converges to better individuals, which gives a 

higher likelihood of achieving global optimum.   

 

3.2.2 GAOT: A GA Matlab toolbox  

Genetic Algorithm Optimization Toolbox (GAOT) is a Matlab toolbox which implements simulated 

evolution in the Matlab environment using both binary and real representations [GAOT paper].  Ordered 

base representation has also been added to the toolbox.  The implementation is flexible in the genetic 

operators, selection functions, termination functions as well as the evaluation functions that can be used.  

The toolbox was developed at the North Carolina State University and can be downloaded for free at 

http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/. 

 

To use GAOT, users need to provide an evaluation function and several key parameters such as crossover 

and mutation probabilities, population size, and number of generations.  Coding modifications are needed 

if evaluation is done by a simulation package, such as EnergyPlus, instead of an explicit function.  In this 

research, Matlab is connected with EnergyPlus so that Matlab can modify EnergyPlus inputs as needed 

and start EnergyPlus runs within Matlab.  The simulation results are post-processed in VBA for specific 

requirements of the cost function, e.g. certain rate structure, peak load or total load, and the final output is 

read in by Matlab as a fitness value for further optimization use.  The scheme of this simulation-based GA 

is given in Figure 3.3, and the evaluation code myepeval.m is given in Appendix B.1.  The Matlab-based 

GA framework is capable of dealing with 1) both single and multiple buildings; 2) different load control 
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strategies including thermostat control and night cooling; 3) a variety of objective functions and rate 

structures.   

 

GAOT provides binary, real values and order-based representations, and a variety of selection functions 

and crossover and mutation operators for different representations.  The real-value presentation is chosen 

in our problems as it matches the problem structure well, and is fairly computationally efficient 

[Michalewicz 1992].  

 

In the following two sections, single building controls are optimized using GenOpt and GAOT 

respectively and with EnergyPlus as the evaluation function in both cases.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3.3 EnergyPlus-based GAOT scheme 
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3.3 Cost Function Structure 

When dealing with an optimization problem, it is very helpful to have some sense of the search space we 

work on, although in most cases we can only learn limited characteristics of the cost function instead of 

the whole picture.  If function evaluation is based on simulation, the cost function tends to have continuity 

issues, which makes optimization difficult.  Furthermore, power consumption, especially when peak 

demand is involved, is a nonlinear function of operation parameters.  To understand better the 

discontinuity and nonlinearity, we examine in this section cost function structures by visualizing the cost 

function surface over two randomly chosen control variables.  To do so, we simply mesh the search space 

and compute for each grid point the cost function value, and there is no optimization involved.  GenOpt 

provides such an algorithm named EqnMesh, which is used together with our VBA post-processor in 

computing the cost function surfaces.  All the cases presented only have two control variables for 

visualization purposes.  We enumerate 960 grid points over [22, 28] and find the best solution as the 

optimum.  The GenOpt command file for EquMesh can be found in Appendix B.2. 

 

Figure 3.4 illustrates the cost function surface when the total daily power is optimized over the thermostat 

set points in hour 16 and 17.  The z-axis represents the total load while x and y stand for two thermostat 

set points.  This is a monotonic case, as expected, since without comfort penalty, increasing thermostat set 

points will always reduce the total power.  The variation in total power is rather mild because we are 

looking at the impact of two-hour thermostat set points on a whole day performance.    

 

Figure 3.5 shows how the comfort level, measured by PPD, varies with the hour 16 and 17 thermostat set 

points.  Similar to the total load case, PPD is also monotonic when two thermostat set points vary 

between 22°C and 28°C.  Generally, 24°C is considered a comfortable set point for office buildings, but 

whether it leads to the lowest PMV and PPD values depends on other comfort-related factors such as 

clothes and activities.  It could be the case that 22°C is more comfortable to occupants in this building 

than 24.  In addition, the fact that EnergyPlus PMV calculations have been off by about 0.5, as previously 

noted, might play a role.  Because we aim at load reduction, any temperatures lower than 24°C are of less 

interest and concern.  

 

When peak load alone is to be minimized, the cost function structure has a different picture.  As shown in 

Figure 3.6, starting from (22, 22) the peak load keeps dropping with the increase of thermostats and stops 

at (24.4, 24.2), a point in the middle of the field.  Further increase of the thermostat will actually increase 

the peak.  We explain why using Figure 3.7:  three power profiles correspond to three sets of hour 16 and 

17 thermostat set points: line 1 is the base case (24, 24), line 2 is the global minimum (24.3, 24.2) and line 
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3 is a reference case (28, 28).  Line 3 indeed sheds hour 16 and 17 power consumption, but the peak shifts 

to hour 15 from hour 16 after a modest increase of hour 16 and 17 temperature set points, and further 

increase would actually increase the new peak because more heat will be accumulated in the system.  

Since the system is turned off at hour 18, heat accumulated over night pushes up the power curve the next 

day.  Therefore, the peak of (28, 28) at hour 14 on an inflated curve ends up higher than the peak of (24.3, 

24.2) at hour 16 on a curve that is almost identical to the original one.  This simple example shows that 

maximization complicates the minimization problem structure.  We need to keep this in mind as many 

cases of our research have peak demand as part of or the whole cost function. 

 

The cost function surface becomes more complex when both energy and comfort are taken into 

consideration. Figure 3.8 shows a weighted sum of total load and PPD varies with hour 16 and 17 

thermostat set points.  The surface has a clear, though not smooth, trend leading to the global minimum. 

But there are several “dips,” local optima, on the surface.  The optimizer might be trapped in one of those 

dips if starting the search from somewhere close to the border.  In any case, getting to the global 

minimum is not guaranteed.   

 

The examples we discussed here are all simple, but the point is clear that building load control problems 

can be discontinuous, nonlinear and have local optima.  The complexity caused by these factors when the 

problem scales up, e.g. a ten-variable peak demand optimization problem, will become more challenging.  

We will illustrate how this affects the optimization results in the next two sections through two 

algorithms: Direct Search (DS) and Genetic Algorithms (GA).  If, however, the problem is due to the 

existence of spurious local optima caused by simulation discontinuities, we need to refine our simulation 

models and try to eliminate those spurious local optima.  We experienced spurious local optima at an 

early stage of our research.  Increasing the hourly timestep in EnergyPlus simulation helps in some cases.  

The problem is improved in more recent versions of EnergyPlus. 
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Figures 3.4 Surface of a cost function of total load with hours 16 and 17 thermostat set points as 
control variables varying between 22 to 28°C with 1°C temperature step 

 

 
Figures 3.5 Surface of a cost function of PPD with hours 16 and 17 thermostat set points as 
control variables varying between 22 to 28°C with 1°C temperature step 
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Figures 3.6 Surface of a cost function of peak load with hours 16 and 17 thermostat  
set points as control variables varying between  22 to 28°C with 1°C temperature step 
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Figures 3.7 Power profiles of different scenarios when hours 16 and 17 thermostat  
set points can be varied between  22 to 28°C with 1°C temperature step 
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Figures 3.8 Surface of a cost function of aggregated cost (total load + weight * PPD) varies with 
hr16, hr17 thermostat set points - a more complicated cost function structure with local optima 

 

 

3.4 Single Building Optimization Using Direct Search and EnergyPlus 

We first study a simple case with the total energy consumption as the cost function and thermostat set 

points as control variables.  Since we know the optimal solutions for the total load case, by doing so we 

aim at testing the algorithm and tuning the computation parameters.  We then look at two more 

complicated cases with the cost function being peak demand and comfort-penalized energy consumption, 

respectively.    

 

3.4.1 Simple cases with Direct Search 

We continue to use the three-zone VAV system with the economizer off.  Hours 14, 15, 16 and 17 

thermostat set points are varied between 22°C and 28°C to minimize the total daily load without comfort 

constraint.  We expect to see all four control variables end up at 28°C.  Figure 3.9 is the GenOpt interface 

which displays the traces of the cost function value and control variable values over time.  The downward 

line corresponds to the total load while other four upward lines are four temperature set points.  

Optimization evolves monotonically and reaches the optimum after 42 EnergyPlus runs.  The Hooke-

Jeeves algorithm is used in this case.  The results are as expected because the total load is a monotonic 
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function of daytime temperature set points.  The analysis and results should be different if the peak load is 

the cost function as the peak load has a highly nonlinear structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Direct Search in GenOpt optimizes total load over hours 14-17 thermostat set points 
between 22 and 28°C with 0.2°C time step and 24°C as initial point, without comfort constraint 

 

As we argued previously, minimizing peak demand is a min max problem, and associated nonlinearity 

makes finding the global optimum difficult.  With the same model used in the previous case, we optimize 

the daily peak demand without comfort constraints over hour 14-17 temperature set points with different 

initial points, shown in Table 3.1.  Four cases are compared:  base, reference, and two other cases as 

results of direct search.  The reason we list the 28°C case is that without a comfort constraint, we expect 

setting afternoon temperatures to the upper bound will lead to good performance, which is the optimum 

when the total load serves as the cost function.  As we see in the table, this reference case is not optimal. 

The peak load has shifted from hour 16 to hour 13, and the large temperature increase in the reference 

case pushes up the earlier hours’ consumption, although the differences are small.  With a search range of 

[22, 28], starting at 24°C is worse than starting at 26°C.  However, if we narrow the search range to [24, 

28], starting at 24°C performs equally well as starting at 26°C.   In fact, 55.2W/m2 is believed to be the 

global optimum in this case. A few things we learned from the table are: 

 

• It is impossible for some complex problems to know the global optimum 

• DSs don’t handle well problems with discontinuous cost functions.  The discontinuity brought in by 

simulation programs such as EnergyPlus makes the search stuck in local optima 
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• The initial point is essential in getting to the global or a good local optimum   

• Search range also plays a role in whether a good sub-optimum can be found 

One way to get around the dependency on initial points is to conduct optimization with different initial 

points and choose the best local optimum.  While a global optimum is not guaranteed to be found, this 

way gets us a reasonably good sub-optimum and in general a satisfactory one for engineering purposes.  

 

We continue on with the goal of understanding the cost function properties and compare the results of 

four cases shown in Table 3.2.   These four cases correspond to a base and three different cost functions, 

indicated in the first column of the table.  The optimal solutions and cost function values are shown in the 

rest of the Table.  The optimization is done by the Hooke-Jeeves algorithm in GenOpt.  By optimal, we 

mean the best sub-optimum.  The control variables remain hours 14-17 temperature set points with a box 

range of [22, 28].  The GenOpt initialization, command and configuration files can be found in Appendix 

B.2 and the core VBA code in Appendix B.3.  The difference in cost function is handled by the VBA 

post-processor.   

 

In each case, the corresponding cost function value is highlighted in bold face.  In the case with peak load 

as the cost function, the optimization shifts the peak from hour 16 to hour 13 over which the optimization 

has no control and reduces the peak from 61 to 55 W/ m2.  When minimizing the total load, optimization 

sets all four temperatures to the upper bound of 28°C and reduces the total load by 47 Whr/ m2.  The rate 

structure used to calculate the energy cost is shown in Table 3.3.   The results show that the rate structure 

used favors minimizing the peak load.  The power profiles of these cases are shown in Figure 3.10.  

 

Table 3.1 optimize peak load with different start points through Direct Search 

starting point variable range end optimum peak load (W/ m2) E+ runs 
base   61.3  
reference point  (28, 28, 28, 28) 57.1  
(24, 24, 24, 24) [22 28] (23.7, 24.1, 24.4, 24.3) 60.6 96 
(26, 26, 26, 26) [22 28] (24.7, 25.0, 25.1, 25.1) 55.4 93 
(24, 24, 24, 24) [24 28] (24.5, 24.8, 25.0, 24.9) 55.3 100 
 
 
Table 3.3 Example rate structure [pge.com, 2003] 
 On-peak 

$/kWh 
Part peak 
$/kWh 

Off peak 
$/kWh 

Demand charge 
$/kW 

Value ($) 0.19 0.11 0.09 6.5 
Time (hours) 13-18 7-12, 19-21 22-6 N/A 
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Table 3.2 optimize different objective functions through Direct Search 

Cost $/ m2.day Objective 
function 

Ti hr14 
°C 

Ti hr15 
°C 

Ti hr16 
°C 

Ti hr17 
°C 

Peak 
Load 
W/ m2 

Total 
Load 
Whr/ m2 

Total 
cost 

Energy 
cost 

Demand 
charge 

Original 24.0 24.0 24.0 24.0 61.3 
hr 16 

520 0.479 0.081 0.398 

Peak load 24.7 25.0 25.0 25.0 55 
hr 13 

500 0.437 0.077 0.360 

Total load 28.0 28.0 28.0 28.0 57 
hr 13 

463 0.440 0.069 0.371 

Energy cost  24.7 24.8 25.0 24.9 55 
hr 13 

502 0.436 0.076 0.360 
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Figure 3.10 Hourly power and PPD profiles of several thermostat-based operation strategies, 
optimal under different cost functions set as in Table 3.2, 8/8, LA 
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3.4.2 Multiple Objective Optimization using Direct Search 

We mentioned before that the load control problem is a multi-objective one aiming at reducing electricity 

consumption and maintaining a certain service level.  Thermal comfort can be treated as a constraint so 

that an optimizer only searches within the feasible solution space.  An alternative is to penalize the cost 

function in the way illustrated in Eqn.3.1 to take thermal comfort into consideration.  Such a cost function 

is expected to achieve a balance between minimizing energy consumption and maximizing comfort.  The 

importance of comfort depends on the operator or building occupants’ preferences.  This preference is 

reflected by the penalty coefficient.  It helps to provide a Pareto front with varying coefficients so that we 

can have a better sense when it is worth sacrificing comfort because the return on load reduction is large.  

In this section, we take such a Pareto approach through Direct Search and study further the load control 

problem with hour 14-17 temperature set points as control variables.   

 

 ss valuesPPDCoeffLoadTotalCost ×+=      Eqn.3.1 

The subscript of “s” on both total load and PPD values means they are standardized values.  By 

standardizing the data, original magnitude has little impact, and the weighting coefficient can better 

represent the trade off.  The optimization results are presented in Table 3.4 and the Pareto front is shown 

in Figure 3.11.  It is clear that the competition between power and comfort has a great impact on the load 

shedding decisions.  In reality, we can develop for a certain building a trade-off curve like this with more 

operating condition points on it.  Building operators can decide where to be on this trade-off curve 

according to their expectation for energy savings and their knowledge of occupants’ comfort preferences. 

 

As the cost function surface in Figure 3.8 and the results in this section show, having comfort as part of 

the cost function brings more nonlinearity and likely discontinuity.    

 

Table 3.4 Optimize trade off between energy and comfort through Direct Search 
 P1 P2 P3 P4 P5 
Weight Coeff. 
 0.1 0.25 0.375 0.5 1 

Total load 
(Whr/ m2) 464 480 504 515 520 

Average PPD 
(%) 40 35 31 29 28 

Thermostats in 
hrs 14-17 (°C ) 

27.4,  28, 
28, 28 

25.6, 26, 
26.4, 27.2 

24.3, 24.6, 
24.8, 25.2 

24, 24, 
24.1, 24.6 

24, 24, 
24, 24 
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Figure 3.11 Direct Search finds multi-objective trade-off between power and thermal  
comfort by varying thermostat set points during hrs 14, 15, 16, and 17, 8/8, LA 

 

 

3.4.3 Direct Search’s difficulty with discontinuity when the number of variables is large 

The number of control variables in previous cases is fairly limited.  It is necessary to know how the 

optimizer does when the problem scale increases.  For example, it might help to plan an entire day’s 

temperature set points for an optimal profile, corresponding to 10 or 24 variables.  When night cooling is 

available, we want to know how to control fan or chiller status, depending on whether natural ventilation 

or mechanical cooling is used at night, and how to control the discharge process the next morning or all 

temperature set points the next day to maximize the use thermal storage of the building mass.  Again, we 

would have more than 10 control variables.  We found that the Hooke-Jeeves algorithm has difficulty 

dealing with this – it stops at a local optimum which is very close to the starting point after a limited 

number of trials.  We know that Hooke-Jeeves doesn’t handle discontinuous cost function well.  The 

damage of discontinuity seems to worsen when the dimension of the problem increases. 

 

3.5 A GA-based optimizer for single-building study 

A genetic algorithm is applied to the load control problem.  Like DS, GA is derivative-free and must rely 

on simulation for function evaluation.  Unlike DS, GA moves in the search space in a somewhat random 

fashion and therefore has a much better chance of approaching the global optimum.  In fact, given enough 

time and appropriate parameters, GA can almost always find the global optimum, or more precisely, a 

very good suboptimum, as in most cases we do not know and cannot prove what the global optimum is.  
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In this section, we start with a test case further explaining the Matlab GA system we use.  Then we look at 

two cases with more control variables or complex cost function structures.   

 

The parameters for genetic operators, e.g. probability of crossover and mutation rate are determined 

through a trial-and-error process.  The fact is that as long as these parameters are reasonably appropriate, 

GA can always converge and reach a good sub-optimum at least.  They are adjusted to speed up the 

convergence.  The number of total generations to run and the population size are decided based on the 

problem scale.  For the night cooling case with five control variables, a population of 10 and a generation 

of 100 certainly suffice while the similar problem with eleven control variables is better done with a 

population of 20.  The convergence speed is judged by an optimization/computation ratio, which aims at 

achieving the best trade-off between optimization performance and time taken.  

 

This Matlab GA environment uses real-value coding, which means all the control variables are treated as 

real numbers.  This is perfect for continuous variables such as temperatures but needs special treatment 

for discrete variables such as fan status.  This will be discussed in 3.5.2 when night cooling is optimized.  

Note that genetic operators can be customized for the specific problems.  It is worth noting that genetic 

operators can be customized for the specific problems. 

 

3.5.1 Simple GA test cases 

Again we vary hours 14, 15, 16 and 17 temperature set points to minimize the total daily load, a case we 

know the global optimum for and studied using DS in the previous section.  Figure 3.12 traces the best 

and the average individual in each generation throughout the optimization process.  A successful GA run 

should show visually that 1) best individual trace stabilizes and 2) the average solution trace 

asymptotically approaches the best solution trace, and mathematically, the individuals in the final 

generations are close enough in terms of fitness values.  It is to be noticed that this GA is designed to 

maximize the objective function, so the y-axis can be understood as a constant minus power total load.  

Figure 3.13 explains the GA results in the EnergyPlus language by showing the power profile. 
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Figure 3.12 GA varies hrs 14-17 thermostat set points to minimize the total daily load.  
GA best and average individual traces throughout all generations 
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Figure 3.13 GA varies hrs 14-17 thermostat set points to minimize the total daily load.  
Base and optimal power profiles 
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3.5.2 More complicated GA cases 

In this section, we look at what temperature set points should be set for the entire day so that the total 

electricity cost can be minimized with the specified comfort constraint.  No night cooling is involved and 

the economizer is off.  Therefore only 10 work-time temperature set points need to be optimized.  The 

total electricity cost consists of demand change and energy cost and is calculated based on the rate 

structure in Table 3.3.  The feasibility constraint is that PMV values have to be less than 1.5, which 

roughly corresponds to a PPD value of 50%.  The base case, where all 10 temperatures are set to 24 °C, 

and the GA results are compared in Figure 3.14, where a) shows the temperature set point differences, b) 

power profiles, and c) PPD plots.  It can be seen that the pricing information is reflected in the optimal 

results: the optimal GA case takes advantage of thermal mass by setting morning temperatures lower, and 

increases the peak time temperatures, so that the peak time power consumption is flattened as much as 

possible.  The base case costs $0.48/ m2 while the optimal case $0.44/ m2 with the most benefit coming 

from the peak reduction. 

 

Figures 3.15 and 3.16 present two night cooling cases that GA helps to improve the performance.  We 

studied night cooling and associated scheduling issues in Chapter 2 and found that certain combination 

discharge processes and fan starting times perform better than others.  Here, GA takes one step further 

and optimizes the related parameters.  Two cost functions are compared:  peak demand and an equally 

weighted sum of average and peak load (peak + total).  In both cases, there are a total of five control 

variables: fan starting time and hour 8, 9, 10 and 11 thermostat set points.  Instead of treating hourly fan 

status binary variables, GA takes fan starting time as a real value number varying between 6pm and 7am.  

It is then rounded to the closest integer before putting into EnergyPlus.  Matlab GA sets the hourly fan 

status as on once the fan starts, and during the normal day cycle 8am to 5pm, the fan is always on.  An 

important assumption made here, mostly for simplifying implementation purposes, is that once the fan is 

turned on, it will stay on until the end of the next day.  This is a reasonable assumption for California 

weather as late nights and early mornings are colder than indoor temperature set points in most cases. 

 

Figure 3.15 a) compares the daily temperature set points between the base case, the GA optimal case with 

peak load as the cost function, and the GA optimal case with a weighted sum of peak and total loads as 

cost function.  The fan starts at 8am and all temperatures are set to 24°C in the base case; the fan starts at 

6pm the day before and morning thermostat set points remain low in the GA case with peak load; and the 

GA case with a weighted sum cost function starts the fan at 5am and keeps morning temperatures low as 

well.  Figure 3.15 b) shows the power profiles of these three cases.   The peak load case shifts the overall 

peak to the early morning with a large reduction, while the peak + total case manages to reduce the peak a 
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little bit without incurring too much overall power consumption.  Figure 3.15 bottom present the PPD 

profiles of these three cases.  Overall, different from thermostat-set-point-based load control, night 

cooling improves both the energy performance and the comfort condition at the same time.  The peak load 

case achieves a 9W/ m2 and 14% peak load reduction, while the weight sum case has a 2W/ m2 and 3% 

peak reduction, and 16Whr/ m2 and 3% total load reduction. 

 

Fan start time and four early morning thermostat set points are optimized in Figure 3.15.  As we have 

seen in chapter 2 parametric studies, with night cooling available, more savings can be achieved if the day 

time temperatures are kept low before the peak is reached.  Taking one step further, we will see how 

much better we can do if we allow all the day temperature set points to vary along with the night cooling 

start time.  Put another way, how will the combination of night cooling based and thermostat set point 

based load control do?  With exactly the same set up, we simply scale the problem by adding six more 

control variables for the rest of day temperature set points.  We also run for two cases, peak load and the 

weighted sum of peak and total loads.  Figures 3.16 report the results with the same set up as that in 

Figure 3.15.   Table 3.5 summarizes three cases in terms of the peak load, total load and the cost.  It can 

be seen that with peak load as the cost function, we achieve 14W/ m2 peak load reduction but incur an 

increase in the total load; while with the weighted sum of peak and average load, we achieve reductions in 

both peak and total load.  With the rate structure in Table 3.3 applied, we achieve $0.1/ m2 and $0.02/ m2 

cost savings respectively.   Compared to the savings in Figure 3.15 where only four early morning 

temperature set points are adjustable, Figure 3.16 achieves more savings by planning the day as a whole: 

5 W/ m2 and 8% in the peak load case and 8 W/ m2 and 13% in the weighted sum case.  

 

Apparently, with the entire day temperature set points changeable, the energy performance in terms of 

both peak load reduction and a weighted sum of peak and total consumption is improved.  This matches 

the results from chapter 2 parametric studies that having more control flexibility improves the efficiency.  

Notice that we allow the late afternoon thermostats to change as well, and the system decides to set them 

above the base value of 24°C as it offers the direct peak reduction benefit.  However, a certain amount of 

comfort is sacrificed, with the peak load case having 5% PPD increase and the peak + total load case on 

average 12% PPD increase.  This is precisely what thermostat-set-point-based load control does to a 

system.  In the mean time, night cooling still plays an essential role.  With fan start time and ten 

temperatures, the peak load case achieves a 15W/ m2 and 25% peak reduction, while the peak + total case 

corresponds to a 30Whr/m2 and 6% total load reduction and a 10W/m2 and 17% peak load reduction.   
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Figure 3.14 GA varies 10 work time thermostat set points to minimize the total electricity cost 
a) Set point profile (top), b) power profiles (middle), and c) PPD plots (bottom) 
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Figure 3.15 a) Thermostat set points (top), b) Power profiles (middle) and c) PPD plots (bottom) of the 
base case, the GA optimal case for peak demand, and the GA optical case for a weighted sum of total and 
peak demand, by varying fan starting time and 4 early morning thermostat set points, 8/8, LA  
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Figure 3.16 Thermostat set points (top), Power profiles (middle) and PPD plots (bottom) of base case, 
GA optimal case for peak demand, and GA optical case for a weighted sum of total and peak demand, by 
varying fan starting time and all ten day thermostat set points, 8/8, LA  
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Table3.5 Performance of the Matlab GA optimal results – fan-based night cooling 
  base peak  peak + total 
peak load (W/ m2) 61 47 51 
total load  (W/ m2) 520 596 491 
peak demand ($/m2) 0.40 0.30 0.33 
energy use ($/m2) 0.08 0.08 0.07 
total cost ($/m2) 0.48 0.38 0.4 

 
 
 
3.6 Algorithm comparison 

This chapter focuses on the single building simulation-based optimization.  Two derivative-free 

algorithms are implemented: direct search algorithms (DS) and genetic algorithms (GA).  Compared to 

the majority of linear and nonlinear algorithms, DS and GA are both generalists in the sense that in theory 

they do not have favorable problem structures on which they perform particularly well.  However, we still 

observed certain differences between these two when they are applied to building optimization problems.  

In Table 3.6, we highlight these differences through three simple test cases.  As we can see, DS is more 

efficient than GA at small problems, but seems to have difficulty to make progress when the dimension 

increases.  This is partially because the particular DS method we used, the Hooke-Jeeves algorithm, 

assumes continuity in the cost function, and discontinuity might be a bigger concern for simulation-based 

optimization at a large scale.  GA is truly a generalist but pays a price of intensive computation in almost 

any scenario, which is especially intolerable when the problem is small.  

 

Braun [Keeney and Braun 1996] solved an HVAC supervisory control problem with 24 variables using 

direct search.  However, direct search algorithms were found to be less effective in dealing with 48 

variables [Ren 1997].  Wright et al [2001] pointed out the GA’s advantage over gradient-based and direct 

search algorithms is that GA’s relative effectiveness increases with the size of the solution space, which 

matches what we found in previous sections.  Wright concluded that GA is the best for the whole building 

optimization problem that involves a wide range of design, construction and HVAC operations 

parameters.  In terms of when direct search starts to break down or become less effective, we believe it 

depends on the cost function structure, the building under study, and the specific direct search algorithm 

implemented.  Again, there is no single optimization algorithm that works the best in all scenarios, and it 

takes experience and trial-and-error efforts to tune an algorithm for a specific problem.  GA is more 

general in this sense, but it requires accurate function approximation and more computation.   
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3.7 A hybrid algorithm – Future work 

As we have seen in previous sections, GA is capable of locating the area in which the global optimum 

lies, but its local search performance is not as efficient, reflected by the fast improvement of overall 

performance at the beginning generations and slow convergence approaching the end.  This is illustrated 

through the asymptotic behavior of the GA optimization process, shown in Figure 3.12.  In addition, we 

observed that direct search tends to get stuck at points close to initial points but still offers modest 

improvement.  A natural thought is to combine GA with a local search algorithm, such as Hooke-Jeeves 

used in this chapter – taking advantage of the GA fast search for the optimal sub-area but avoiding its 

slow convergence when the search space becomes small, and taking advantage of the local algorithm’s 

efficiency for locating a local optimum but avoiding its lack of sense for big directions.  Due to time 

constraints, we did not implement this idea, but think it is an interesting problem and worth exploring in 

future work.  
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Table3.6 Comparison of GA and DS 

                                        E+ simulation runs and  Results Cases 

DS (Direct Search: Hooke-Jeeves) GA (Genetic Algorithm) 

Test case 1 
Peak load  
varies with hr 16, 17 
thermostat set points 
without comfort 
constraint 

Computation complexity depends on 
initial points.  Takes 30 – 40 E+ runs.    
Converges to global minimum (24.3, 
24.2) 

Takes 20 generations and a population 
of 10, a total of 200 E+ runs.    
 Converges to global optimum (24.3, 
24.2) 

Test case 2 
Total load  
varies with hr 14-17 
thermostat set points 
without comfort 
constraint 

Takes on average 60 E+ runs.  
 
Converges to the global optimum 
(28,28,28,28) 

Takes 40 generations and a population 
of 10, a total of 400 E+ runs  
Converges to the optimum  
(28,28,28,28) 

Test case 3 
Total load varies with 
10 working time 
thermostats  

Gets stuck at points very close to starting 
points 
Mostly cannot deal with 10 variables 
and/or problems with complicated cost 
functions 
 

Takes 60 generations and a population 
of 20, a total of 1200 E+ runs  
Gets to a good point (24, 26, 28, 28, 28, 
28 , 28, 28, 28, 28) 

Summary and 
Comparison 

DS is efficient when the problem size is 
small.  It fails to deal with discontinuity 
at higher dimensions 

As a generalized method, GA can make 
progress in almost any scenario, but is 
computationally intensive, especially 
with small-scale problems  
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CHAPTER FOUR   

SIMULATION-BASED MULTI-BUILDING OPTIMIZATION 

 

 

Our scope in previous two chapters is limited to single buildings.  In this chapter and the next, we will 

look at the load control problem involving more than one building, discuss the essential difference that 

having multiple participants in the system brings to analysis, and propose three different approaches to 

tackling the multi-building problem.  Two simulation-based methods will be discussed in this chapter: 

engineering-rule based enumeration and a multiple-GA.  Throughout this chapter, we illustrate the 

aggregation concept through two-building or three-building examples and learn from simple cases before 

scaling up the problem.  In addition, as we will discuss late in this chapter, there are computation 

concerns of applying these two methods to large-scale multi-building problems.  A less scale-sensitive 

approach will be discussed in the next chapter.  

 

Section 4.1 looks at an enumeration approach, through which the number of feasible EnergyPlus 

simulations for each aggregation participant is reduced.  The optimal combination of a two-building 

problem is found by matching two sets of feasible solutions in Matlab.  Section 4.2 takes a GA approach 

with the chromosome consisting of control variables from all aggregation participants.  EnergyPlus 

simulations are run sequentially for all the participants, and the GA evaluation is done at the end of the 

simulation.  Section 4.3 compares the two simulation-based approaches, discusses their limitations and 

points out the need of further research on a more efficient method for the multiple building problem.  

Section 4.4 takes a break from the main road of developing computationally efficient aggregation 

methods and looks at how the aggregation decisions vary with the size of the aggregation pool at a small 

scale.  

 

4.1 Smart Enumeration - A Rule-based Engineering Approach 

Reddy and Norford [2002] discussed load aggregation through a portfolio optimization type of approach.  

Four different building profiles, office, retail, grocery and school, are combined exhaustively to find the 

best aggregation effect.  The diurnal load profiles are generated using existing data.  No load controls are 

applied to any of the participants.  Their research examines which buildings are more appropriate to 

participate in the aggregation, and the appropriateness is a function of both individual building systems 

and correlations between participants.  We take one step further in our research and look at how to make a 

group of existing buildings more appropriate for aggregation by applying load control to each of them.   
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In this section, we take a trial-and-error approach based on a reasonably sized trial set.  Instead of solving 

directly the optimization problem, Eqn.1.1, we first run for each building a number of simulations that 

cover a wide range of load control possibilities, then match the individual results and search exhaustively 

for the best one with a specified cost function.  It is impossible to enumerate all load control possibilities, 

and we make simplifications according to the load control strategies used.   

 

Following previous chapters, two types of controls are studied.  In Section 4.1.1, thermostat set points in 

the afternoon hours are increased in each individual building to achieve an overall “optimized” power 

profile.  Night cooling schedules are the control variables in Section 4.1.2.  Both cases study simple two-

building or three-building cases.   

 

We reduce the number of simulations partially by narrowing down the scope of the questions studied.  

With the thermostat control, one simplification comes from the fact that we are dealing with commercial 

buildings in summer time.  The peak takes place somewhere between 1pm and 6pm.  Therefore, for short-

term load control with little emphasis on thermal mass, we only need to focus on the afternoon instead of 

a 24-hour horizon, which greatly reduces the number of control variables.  With the night cooling control 

strategy where thermal mass plays an important role, we have one more control variable which is the 

night cooling start time.    

 

4.2 Set thermostat set points for multiple buildings by smart enumeration 

4.2.1 EnergyPlus models and expert rules  

Three types of building models are used through out the multi-building studies.  All three building models 

are derived from the base VAV model introduced in Chapter 2, with the thermal mass and/or the load 

pattern changed.  Table 4.1 summarizes the main differences between these models, and a detailed 

description about the base model can be found in the Appendix A.1.  The key inputs, including material 

thermal properties, supervisory control schedules and load patterns for models in Table4.1 are given in 

Appendix C.1.   

 
For each of three models, we run extensive E+ simulations on the summer day to which the load 

aggregation is applied.  Thermostats between 1pm and 5pm are allowed to vary.  Temperature set points 

have a maximum hourly change of 3°C and a maximum change period of four hours based on possible 

schedules: one-hour thermostat change, two-hour, three-hour and four-hour changes including both 

consecutive cases and separate ones.  Therefore, we have for each building a total of  
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simulation cases where each of the three integer temperature increase corresponds to 30 cases and the 

base case involves no change.  Notice the big assumption we made: the temperature increase is the same 

across the load control period regardless of the schedule.  Doing so is only to make the analysis simple, 

and we understand that it would lead to a sub-optimal solution.  The trade-off between accuracy and 

computation will be addressed in Section 4.3 when Enumeration and multiple-GA are compared.    

 

Table 4.1 Building model types for aggregation studies 

E+ models Thermal mass5 West wall Load pattern 

Base model original mass No window original: peak in late PM 

Model 1 ½ mass 6 m2 window original: peak in late PM 

Model 2 ½ mass 6 m2 window new: peak in early PM 

Model 3 2 mass No window original: peak in late PM 

 

All the simulations are done automatically through a data processing engine written the Visual Basic 

Application (VBA) for Excel.  For each simulation, the hourly electricity consumptions, PMV and PPD 

values are computed, processed by the VBA code with certain rate structure applied, and results are 

output to a matrix which is further processed in Matlab to search exhaustively the combination with the 

best cost function value.  A simple Matlab code to do the search can be found in Appendix C.2.  We 

present the graphical results in the following section. 

 

To summarize what we have done in reducing computation efforts in the following pre-defined expert 

rules: 

• Run simulations with integer temperature increases and those integers are a good discrete represent of 

the search space, e.g. 1, 2 and 3°C in this case 

• All the hours involved in load shedding experience the same amount of temperature change 

• Starting the enumeration from the smallest temperature increase and gradually approach the upper 

bound.  If a 1°C thermostat setting point increase violates thermal comfort at a certain hour, stop 

searching beyond 1°C at this hour, and the same to 2°C and 3°C increase 

• If a short-period shedding scheme violates comfort at certain hours, no need to search a long-period 

scheme with the same amount of temperature increase at the same hours 

                                                 
5 The definitions for 1/2mass and 2mass are the same as those in Chapter 2 – the densities of main construction 
materials for walls, floor and roof are half and double of what it originally is for ½ and 2masss respectively. 
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• No need to consider a short-term load shedding scheme if a long-term one includes it at the beginning 

and hours after remain below the base 

• For night cooling, instead of enumerating the possibilities that night cooling could start any hour, we 

simulate those starting at 6pm, 8pm, 10pm, midnight, 2am, 4am, and 6am only.  Our research results 

will show that the computation savings is worth the minor loss of optimality 

 

By violating comfort, we mean the specified PMV or PPD is not satisfied.  Here we adopt a single 

standard of comfort and keep the working-period PMV values below 1.5.  All these rules are implemented 

in the VBA engine in Excel to check automatically a solution’s feasibility.  The size of feasible set is 

reduced by 64% for buildings 1 and 2 and by 17% for buildings 1 and 3 with thermostats-based strategies.  

Refer to Appendix C.3 for the VBA code and the detailed savings.  

 

4.2.2 Matching results for thermostat set point-based load control  

1) Peak demand 

Figure 4.1 shows individual load profiles for three models before aggregation, each of which has all 

thermostats set at 24°C.  Corresponding to the building description in Table 4.1, models 1 and 2 have 

lower thermal mass and higher peak load in late afternoon around 4pm and around 1 pm respectively. 

Model 3 has the highest thermal mass and the same load pattern as in model 1, and its load curve is rather 

flat due to the high thermal mass.  The feasible solutions for each of these three are computed.  Based on 

the expert rules proposed in Section4.1.1, model 1 and 2 end up only having 32 feasible solutions, which 

corresponds to a 65% computation savings, and model 3 has 75 feasible solutions and a 17% savings.  

The difference is caused by thermal mass: in building 3, a wide range of temperature increases are 

feasible while in buildings 1 and 2 higher increases violate the comfort constraint.  The optimal solution 

for each pair is found through exhaustive matching.  Figures 4.2 to 4.4 are the “optimal” match results for 

buildings 1 and 2, 2 and 3, and 1 and 3 respectively, while Figure 4.5 illustrates the match results for 

buildings 1, 2 and 3.  In Figures 4.2 to 4.5, peak demand is minimized. 

 

In Figure 4.2, the peaks for models 1 and 2 are comparable but they happen at different times, so that the 

original aggregated load, represented by the solid line on the top of the figure, fairly flat for most of the 

afternoon hours.  In the “optimal” match, building 1 lifts temperature set points at hours 13, 14, 15, and 

16 by 1°C and building 2 increases those at hours 14, 15, 16 and 17 by 1°C.  This change leads to a peak 

load reduction of 5.2%, but the peak remains at hour 13 as any tempt to shed hour 13 load would lead to 

an even higher peak load overall.  The total load profile is flattened, which makes sense.  The high peak 

of building 2 at hour 13 is compensated by the reduction of building 1 at this hour, while the load setback 
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recovery at hour 17 by building 1 is compensated by load shedding of building 2 at the same time.  If we 

look at two buildings separately, they both incur a higher peak after aggregation, however, the total peak 

is reduced.  This is the essence of the aggregation load control:  by communicating with each other in the 

aggregation pool, individuals take actions that favor a centralized goal.  The amount of reduction is a 

function of weather, rate structures and specific buildings under study. 

 

Building 3 by itself needs little load shift because its high thermal mass helps maintain the afternoon load 

profile flat.  However, it is no longer the case when building 3 and 1 are to be aggregated, shown in 

Figure 4.3.  Building 3 chooses to increase thermostats at hours 14, 15, 16 and 17 by 2°C to help cut the 

aggregated peak, and building 1 pushes up thermostats at hours 13, 15, 16 and 17 by 1°C accordingly.  

This case enjoys a 10.4% peak reduction with the peak shifted from hour 16 to 12.  This is a very good 

example of how multiple buildings can collaborate to achieve an overall performance increase that cannot 

be achieved by individuals alone.  

 

Building 3 also plays a complimentary role in Figure 4.4.  Building 2 peaks at hour 13, so building 3 

increases hour 13 and 14 temperature set points by 1°C while building 2 pushes up hours 13, 15 and 16 by 

1°C.  After both buildings cut as much as possible, hour 13 is no longer the aggregated peak, and the 

small setback recovery of building 3 at hour 15 and 16 is cancelled out by the savings of building 2.  

Therefore, the new peak is shifted to hour 12 with 4.8% reduction.  

 

For all three pairs, individuals done worse or just equally well after aggregation than before, but the 

aggregated performance is improved.  Again, this is because two buildings communicate with each other 

during the matching process and decide jointly to shift and/or shed the total peak load.  

  

Aggregation with three buildings is shown in Figure 4.5, where building 1 increases thermostat set points 

at hours 14, 15, 16 and 17 by 1°C, building 2 at hours 13, 14, 15 and 16 by 1°C, and building 3 at hours 

13, 15, 16, 17 by 1°C.  This leads to a 6.3% peak reduction and the peak is shifted from hour 14 to hour 

12.  Recall that our criterion for admitting any load control strategy into the feasible set is that PMV less 

than 1.5, which corresponds to PPD6 below 50%.  Figure 4.6 shows the PPD profiles for the three-

building case.  We consider this less comfortable but acceptable.  Table 4.2 summarizes three two-

                                                 
6 The PMV and PPD values provided by the current EnergyPlus version are generally high.  In the base case with 
indoor air temperatures at 24C, the average PMV is 0.8 and PPD is 20%.  Therefore, PPD below 50% is not a bad 
service level requirement.  
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building cases and one three-building case.  In most cases, the new peak at 12pm is a consequence of 

applying load control to hours 13-17.  

 

Table 4.2 Summary of simple aggregation cases 

Building 
group 

original peak load  
(W/ m2) 

peak time 
 

new peak load  
(W/ m2) 

peak time 
 

   peak load  
   reduction 

1 and 2 135 13 128 13 5.2%
1 and 3 125 16 112 12 10.4%
2 and 3 125 13 119 12 4.8%
1, 2 and 3 190 14 178 12 6.3%

 

We have seen the potential of peak reduction by applying load control to the aggregation pool.  It is 

interesting to see how much of this reduction comes from load control and how much from aggregation.  

For each of the four cases studied before, we compare the aggregated load control results in Table 4.2 

with the results from individual load control.  In individual load control, each building minimizes its own 

peak before aggregation and there is no communication between participants in the pool.  Figure 4.7 

shows for buildings 1 and 2, the aggregated load control achieves 2.4% more peak load reduction than the 

individual load control does.  Notice that in individual load control, both 1 and 2 choose to increase the 

temperature set point at their own peak hours. In aggregated load control, building 1 increases the 

temperature set point at building 2’s peak hour of 1pm while building 2 does the same at building 1’s 

peak hour of 4pm.  It is easier to shed load during non-peak hours, which explains why the aggregated 

load control achieves more peak reduction as a result of communication between aggregation participants.  

Figure 4.8 combines Figures 4.7 and 4.2: there is a 2.8% peak reduction from the base case to the 

individual load control, and a 2.4% reduction from the individual load control to the aggregated load 

control.  Table 4.3 summarizes this comparison for all three two-building cases and one three-building 

case.  It can be seen that the contribution by aggregation is significant and ranges from 30 to 50% in these 

small-scale cases.  

 

When two buildings are identical, aggregation might not help as much.  Figure 4.9 aggregates two 

identical type-1 buildings and Figure 4.10 two identical type-2 buildings.  For two type-2 buildings, the 

aggregated load control is identical to the individual load control; while for two type-1 buildings, the peak 

reduction difference is only 0.3%.  This is due to the lack of diversification in load profiles and limited 

choices in load shedding strategies.     
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Table 4.3 Individual load control vs. aggregated load control 

 Bldg 1 and 2 Bldg 1 and 3 Bldg 2 and 3 Bldg1,2,3 

original total peak load 

(W/ m2) 

135 125 125 190 

Total peak after  individuals minimize 

their peak load (W/ m2) 

131 116 122 184 

total peak load with  aggregation  

(W/ m2) 

128 112 119 178 

Peak load reduction from individual 

load shedding 

2.8% 7.5% 2.8% 3.4% 

Peak load reduction from load-control-

enabled aggregation 

5.2% 10.5% 5% 6.1% 

Contribution of aggregation to the total 

peak load reduction  

46% 29% 44% 44% 

 

It is to be noticed that although we minimized the peak energy consumption above, the methodology 

would remain the same if the cost function is the total energy cost.  We only need to apply a rate structure 

to the hourly energy consumption to convert the peak demand problem to a cost-based one.  Throughout 

this research, we are energy cost-oriented with the recognition that peak demand charge plays an 

important role in cost calculation.  The majority of our research focuses on the peak demand only, which 

is meant to simplify the problem so we can get more insight into the nature of the aggregation.  As we 

will argue in the next chapter, minimizing peak demand captures the essential mathematical structure of 

the problem.  The next section looks at the same problem with total energy cost as the cost function 

aiming to illustrate the difference in optimal control strategies caused by a cost-based cost function.   

 

2) Rate structure 

Based on the information at the PG&E website [pge.com, 2003], we quote the rate structure listed in 

Table4.3 for the small commercial building type in California.  We apply the rate structure to the feasible 

individual simulation results obtained in the previous section and rerun the matching process.  We present 

in Figures 4.11 to 4.14 three two-building cases and one three-building cases under this rate structure, as a 

comparison with peak load oriented counterparts in Figures 4.2-4.5, to learn how rate structures change 

the analysis results.   
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To explain each of Figures 4.11-4.14 the same way we did to Figures 4.2-4.5, the reasoning would be 

more subtle as the cooperation between different buildings is now determined not only by the load 

profiles, but by variations in the rate structure.  The operations details will not be analyzed here, but we 

want to emphasize the differences 1) brought in by considering hourly energy cost on the top of demand 

charge and 2) caused by different demand charges.  There are two figures in each of Figures 4.11-4.14 

where the top one corresponds to a demand charge of $6.5 /kW and the bottom one an extreme case 

without demand charge.  A general trend is that aggregated power profiles tend to be flat when the peak 

demand is $6.5/kW; they tend to have dramatic variation so that the area below the profile, which 

represents the total energy use, is minimized when there is no peak demand.  Table 4.5 gives the summary 

statistics of the load aggregation performance with the rate structure specified in Table 4.4.  The savings 

are comparable to those in Table 4.2, but the actions taken by these participants are different, depending 

on the demand charge applied.  For example, for the no demand charge cases in Figures 4.11 to 4.14, the 

aggregated peak load is not reduced much, and even increased such as in Figure 4.13.  A demand charge 

of $6.5/kW leads to similar results as those in the peak load case, which means that a rate structure with a 

$6.5/kW encourages peak reduction.  

 

Table 4.6 presents the cost-based aggregation results in the same way as Table 4.3 did to the peak-

demand- sum of individual costs.  It compares four cases: the sum of individual costs, the cost of 

aggregated load without load control, the sum of individual costs with individual load control, and the 

cost of aggregated load with aggregated load control results.  Notice that the reference case is the sum of 

individual costs in Table 4.6, which says simply adding two buildings together would do better than 

calculating cost separately.  The case of with buildings 1 and 3 does not see improvement by purely 

aggregating loads because two peaks are at the same time.  Pure aggregation brings 0-4% cost savings 

while individual load control brings in 5-6% savings.  Aggregated load control performs the best and 

achieves 7-10% savings.  Figure 4.15 illustrates the cost savings increases.   

 

Table 4.4 Example rate structure 

 On-peak 

$/kWh 

Part peak 

$/kWh 

Off peak 

$/kWh 

Demand charge 

$/kW 

Value ($) 0.19 0.11 0.09 6.5 

Time (hours) 13-18 7-12, 19-21 22-6 N/A 
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Table 4.5 Summary of simple aggregation cases, cost-based  
Part I: demand charge = $6.5/kW 

Building 
group 

Original total cost 
($/m2) 

Ori. peak load  

(W/ m2) / time 

New total cost 
($/m2) 

New peak load  

($/m2) / time 

Total cost  

reduction 

1 and 2 1.06 135 / hr 13 1.00 128 / hr 13 5.0% 

1 and 3 0.98 125 / hr 16 0.88 112 / hr 12 9.7% 

2 and 3 0.98 125 / hr 13 0.94 119 / hr 12 4.6% 

1,2 and 3 1.49 190 / hr 15 1.41 178 / hr 12 5.7% 

Part II: demand charge = $0/kW 

Building 
group 

Original total cost 

 ($/m2) 

Ori. peak load  

(W/ m2) / time 

New total 
cost ($/m2) 

New peak load  

($/m2) / time 

Total cost  

reduction 

1 and 2 0.18 135 / hr 13 0.17 130 / hr 16 4.4% 

1 and 3 0.17 125 / hr 16 0.15 114 / hr 16 7.3% 

2 and 3 0.17 125 / hr 13 0.16 128 / hr 13 7.1% 

1,2 and 3 0.26 190 / hr 15 0.24 182 / hr 13 6.2% 

 

 

Table 4.6 Individual load control vs. aggregation and load control, cost-based 

 Bldg 1 and 2 Bldg 1 and 3 Bldg 2 and 3 Bldg1,2,3 

sum of individual costs  ($/m2) 1.10 0.98 1.01 1.55 

cost of aggregated load without load 
control ($/m2)  

1.06 0.98 0.98 1.49 

sum of individual costs with individual 
load control  ($/m2)  

1.04 0.92 0.96 1.46 

cost of aggregated load with 
aggregated load control ($/m2) 

1.00 0.88 0.94 1.41 

cost reduction from pure aggregation  3.6% 0% 3% 3.9% 

cost reduction from individual load 
control (peak-reduction-based control) 

5.5% 6.1% 5% 5.8% 

cost reduction from aggregated load 
control  

9.1% 10.2 6.9% 9% 

 

 

 



 112

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

time (hr)

po
w

er
 c

on
su

m
pt

io
n 

(W
/m

2)

single building load profiles

bldg1
bldg2
bldg3

 
Figure 4.1 Individual load profiles of buildings 1, 2 and 3 
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Figure 4.2 “Optimal” load aggregation between buildings 1 and 2 
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Figure 4.3 “Optimal” load aggregation between buildings 1 and 3 
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Figure 4.4 “Optimal” load aggregation between buildings 2 and 3 
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Figure 4.5 “Optimal” load aggregation between buildings 1, 2 and 3 
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Figure 4.6 PPD profiles corresponding to three-building optimal” load aggregation 
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Figure 4.7 Comparisons between aggregated load control and individual  

load control, buildings 1 and 2 
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Figure 4.8 Comparisons between the base case, individual load control  

and aggregated load control, buildings 1and 2 
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Figure 4.9 “Optimal” load aggregation between buildings 1and 1 
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Figure 4.10 “Optimal” load aggregation between buildings 2 and 2 
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Figure 4.11 “Optimal” load aggregation between buildings 1 and 2, cost-based 

        Top: demand charge $6.5/kW. Bottom: no demand charge 
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Figure 4.12 “Optimal” load aggregation between buildings 1 and 3, cost-based 

          Top: demand charge $6.5/kW. Bottom: no demand charge 
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Figure 4.13 “Optimal” load aggregation between buildings 2 and 3, cost-based 

          Top: demand charge $6.5/kW. Bottom: no demand charge 
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Figure 4.14 “Optimal” load aggregation between buildings1, 2 and 3, cost-based 

         Top: demand charge $6.5/kW. Bottom: no demand charge 
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Figure 4.15 cost comparison for two-building and three-building aggregation. 

Base case is the sum of individual costs 

 

4.3 Match Results of a Two-Building Case for Night Cooling-Based Load Control 

As we discussed and our parametric studies showed in previous chapters, night cooling can help shift and 

shed the peak load and improve the overall load profile with comfort maintained at a satisfactory level.  

We study in this section the optimal night cooling strategies in a multi-building setting, and learn how the 

correlations and interdependence among buildings affect night cooling scheduling.  We focus on the fan-

based night cooling performance in Los Angels using models 1 and 2 from Table 4.1.  The economizers 

in both buildings are turned on.  For each of these two models, we run a total of 32 scenarios 

corresponding to eight fan start times and four discharge processes, shown in Table 4.7.  Detailed 

explanations of these terms can be found in Section 2.4, the night cooling parametric studies.  We match 

the results in Matlab in the way as we did to the thermostat-based aggregation.  Of those 1024 

combinations, we find the one with the smallest peak load and the one with the lowest total cost by 

applying the rate structures in Table 4.4.  Table 4.8 gives a summary of these two “optimal” cases, 

compared to two other cases: 1) base1: simply add up two building load profiles without any night 

cooling control at all; 2) base2: night cool two buildings individually before adding up their load profiles.  

 

Figure 4.16 shows the difference between the base case and the optimal base with peak load as the cost 

function.  In the optimal case, both building participants start fans as early as possible, e.g. 6pm in this 

case, and keep early morning thermostats low to slow down the discharge of thermal mass.  The peak load 

is reduced from 135 to 121 W/ m2.  Comparison of hourly power consumptions throughout the day shows 
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that in the base case, night power consumption is zero while day consumption is 1.18kWhr/ m2 on this 

particular day; in the optimal case, night power is 0.3kWhr/ m2 while day consumption drops to 

1.14kWhr/ m2.  With night cooling available, power is consumed when it is cheap and the peak is 

reduced.  The PPD plots in Figure 4.17 indicate significant improvement of comfort by pre-cooling.  It 

can be seen that minimizing peak load through night cooling improves daytime thermal comfort: the 

average PPD down by more than 10%. 

 

Figures 4.18 and 4.19 present the matching results with the objective function being the total electricity 

cost:  4.18 corresponds to a $6.5/kW demand charge; demand charges between $3.5 and $6.5/kW give the 

same aggregation results, and so do demand charges between $2 and $3.5/kW, although the energy 

performance varies from 2 to 3.5 and from 3.5 to 6.5; parts a) to e) in Figure 4.19 show the matching 

results with the demand charge varying from $2/kW to zero with $0.5/kW step.  We can see that the 

impact of the increasing impact of hourly energy cost on the optimal aggregation operations: a demand 

charge of $6.5 leads to a similar control strategy to the peak load case in Figure 4.16, and the cases with a 

smaller demand charge, for example $1.5/kW in Figure 4.19 (b), pay more attention to the overall energy 

use instead of the load timing.  In the $6.5/kW case, both fans start at the earliest possible times and early 

morning thermostats are chosen to be slow linear – as low as possible.  In the $1.5/kW case, fans start late 

compared to the peak load case, at 10pm and 8pm respectively, and the discharge process is chosen to be 

fast linear to consume less energy during the discharge period.  Table 4.9 summarizes differences by the 

cost function type.  The comfort condition is similar to that in Figure 4.17.    

 

We look at the results in Table 4.9 from a different angle, and the analysis is shown in three parts of Table 

4.10 where the aggregated performance is compared to the individual performance without aggregation.  

In part I, the combination of buildings 1 and 2 achieves an 11% peak load reduction, which building 1 and 

2 can achieve 9% and 11% respectively if they simply act alone according to the “optimized” operating 

schedules.  The individual savings would be even better if they act based on individual load control 

optimization.  We drew the similar conclusion in Part II, where the aggregated cost reduction of 7% is 

comparable to that of individuals’, 5% and 8% respectively.  Night cooling offers large energy benefit to 

individual buildings already, and the extra contribution by aggregating these individuals is rather small.   

 

Although not significant, aggregating individual loads still helps by offering the pool diversification 

opportunities and energy/cost saving potential.  We compare in Part III of Table 4.10 four cases: 1) sum 

of the individual costs without night cooling; 2) cost of the aggregated load without night cooling; 3) sum 

of the individual costs with night cooling applied, and 4) cost of the aggregated load with night cooling 
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applied. The fact that 2) is better than 1) and 4) is better than 3) is precisely due to the diversification 

provided by aggregation.  The aggregation contributions are 4% for base case and 5% for night cooling 

case respectively.    

 

 

Table 4.7 Two EnergyPlus models used for night cooling 

E+ models Thermal mass West wall mass Load pattern 

Model 1  1/2 mass with glass window peak around 4pm 

Model 2 1/2 mass with glass window peak around 1pm 

 

 

Table 4.8 Night cooling schedules 

fan  
starting time 

8am no NC, and NC starts at 6pm, 8pm, 10pm, 
12am, 2am, 4am and 6am 

 
fan-based 
night cooling  
32 scenarios 

Thermostats 
Discharge 
process 

24°C  
constant 

fast 
linear 
increase 

25°C  
8-11am 

slow linear 
increase 

 

 

Table 4.9 Night cooling based load aggregation 

cost function original  new  cost  Load control strategies 
 cost function 

value 
cost function 
value 

function 
reduction 

fan starting time and discharge 
processes 

peak load  135 120 11%

(W/ m2)  bldg 1: fan starts 6p,  slow linear 
bldg 2: fan starts 6p,  slow linear 

   
total cost with a 1.06 0.99 7%
peak demand of 
$6.5/kW ($/m2) 

 bldg 1:  fan starts 8p, slow linear 
bldg 2: fan starts 6p, slow linear 

   
total cost with a 0.385 0.380 1%
peak demand of 
$1.5/kW ($/m2) 

 bldg 1: fan starts 10p, fast linear 
bldg 2: fan starts 8p, fast linear 
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Table 4.10 Aggregated night cooling details: contribution by individual participants 

Part I peak load as cost function  

 base peak load peak time new peak load peak time peak load 
 (W/m2) (W/ m2)  reduction 

sum of 1,2 135 13 121 16 11%

bldg 1 69 16 63 16 9%

bldg 2 74 13 65 13 11%

 

Part II: total electricity cost as the cost function with demand charge of $6.5/kW 

 base total cost demand charge new total cost Demand charge total cost 
 ($/m2.day) / energy cost ($/m2.day) / energy cost reduction 

sum of 1,2 1.06   0.88 / 0.18 0.99   0.79 / 0.2 7%

bldg 1 0.53   0.45 / 0.09 0.51   0.41 / 0.10 5%

bldg 2 0.57   0.48 / 0.09 0.53   0.42 / 0.10 8%

 

Part III:  Itemized contributions 

 cost of bldg1  cost of sum of  cost of bldg1 with NC  cost of sum of bldg 1with 
 + cost bldg2 bldg1 & bldg2 + cost bldg2 with NC NC & bldg 2 with NC 

cost ($/m2) 1.10 1.06 1.04 0.99

reduction  4% 5% 10%

aggregation 
contribution  

 4% 5%
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Figure 4.16 “Optimal” load aggregation between models 1 and 2 with night 
 cooling available, peak-load based 
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Figure 4.17 PPD plots corresponding to “Optimal” load aggregation between  
models 1 and 2, peak-load based 
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Figure 4.18 Optimal load aggregation between models 1 and 2 with NC, cost based with  
$6.5/kW demand charge (same until demand charge drop below $4/kW) 
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Figure 4.19 a) Optimal load aggregation between models 1 and 2 with NC, cost based with  
$2/kW demand charge (same until demand charge goes beyond $3.5/kW) 
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Figure 4.19b) optimal load aggregation between models 1 and 2 with NC, 

 cost based with $1.5/kW demand charge 
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Figure 4.19c) optimal load aggregation between models 1 and 2 with NC,  

cost based with $1/kW demand charge 
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Figure 4.19d) optimal load aggregation between models 1 and 2 with NC, 

 cost based with $0.5/kW demand charge 
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Figure 4.19e) optimal load aggregation between models 1 and 2 with NC, 

 cost based with $0/kW demand charge 
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4.4 A GA approach to the multi-building problem 

The enumeration approach works fairly well, except that the process requires a certain amount of expert 

knowledge to set up.  To generalize the solution, we can solve the problem by expanding the GA 

framework used in the previous single building studies.  This section explores how GA works with 

multiple buildings and compares the GA performance with that of enumeration.  We run EnergyPlus in a 

sequential manner with each simulation corresponding to a single building participant, shown in Figure 

4.20.  The process is illustrated using a two-building example in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Sequential GA process for a two-building aggregation case 

 

Similar to the single GA case, the chromosome in the multi-GA consists of control variables, e.g. 

thermostat set points or fan starting time plus early AM temperatures, from multiple buildings that are 

being aggregated.  The EnergyPlus batch file is modified so that sequential simulations can be done 

automatically.  At the end of the last EnergyPlus simulation, the VBA post-processing is activated, all the 

EnergyPlus simulation results get processed in Excel and sent back to the Matlab GA.  The system is 

designed to be able to handle any cost function and theoretically any number of individual buildings.  The 

bottle neck with a large number of participants lies in the computation, not implementation.  

 

For easy comparison purposes, we redo using the multi-GA framework the three thermostat-set-point-

based cases in Table 4.2, and present the results in Table 4.11.  Recall that in the enumeration setting, the 

maximum thermostat increase is 3°C and PMV is limited to below 1.5 for feasible solutions, which is 

strictly followed by the multi-GA framework: five afternoon thermostat set points are varied within [24, 

27], and results are checked for feasibility to make sure that only those with less than 1.5 PMV values 
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GA fitness evaluation of 
the current generation

GA genetic operators to 
produce next generation

E+ Simulation of bldg 1
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survive.  This is realized by assigning a very small fitness value to those infeasible solutions that will 

have a higher probability being thrown out at the next generation.  Recall that the Matlab GA used in this 

research does maximization.  Table 4.11 shows that GA performs slightly better than enumeration while 

taking a lot more EnergyPlus runs.  Figure 4.21 plots the traces of best individual and average individual 

throughout all the generations.  We can see a very good convergence in the end.  In addition, it only takes 

100 generations to reach the stable solution, although 200 generations have been run.  This saving is 

considered in Tables 4.9 – 4.12 when the computation intensity is compared between Enumeration and 

GA.  An E+ simulation takes 5 to 10 seconds.  The matching time for Enumeration when there are only 

two buildings in aggregation is very short and can be ignored. 

 

Tables 4.12 to 4.14 compare GA with Enumeration for the night cooling two-building aggregation case, 

where Table 4.12 minimizes the aggregated peak demand, Table 4.13 minimizes the total electricity cost 

with a $6.5/kW demand charge, and Table 4.14 targets the total cost with $1.5/kW demand charge.  In all 

three cases, fan starting time and early morning thermostats are varied the same way as in the single 

building case in Chapter 3.  There are several major observations:  1) similar to the thermostat-based load 

control case in Table 4.11, GA does perform better, but pays a high price of intensive computation.  Take 

the peak load case in Table 4.12 as an example: GA takes 17 times more EnergyPlus runs for a mere 1.5% 

more peak load reduction, a 17% increase from the Enumeration case; 2) the total cost case with $6.5/kW 

demand charge works almost the same way as the peak load case does, which means a $6.5/kW demand 

charge is really peak-load control oriented; and 3) the cost reduction is more significant when the demand 

charge is higher, as can be seen by comparing Tables 4.13 and 4.14, which is due to the fact that we apply 

to daily power profiles the rate structure quoted from the PG&E website and meant for monthly power 

usage or even longer horizon.  Therefore, the role of hourly energy use is underestimated and the peak 

demand ends up having more impact on the results.     

 

With the target of minimizing the aggregated peak load, Figure 4.22 compares the GA results with the no-

night cooling base case in terms of aggregated and individual power profiles, and Figure 4.23 compares 

the GA results with the Enumeration results.  Both GA and Enumeration recognize that it helps to 

consume more power at night and early in the morning in order to bring down the peak in the afternoon, 

while GA stretches further in this direction due to the flexibility and therefore achieves more peak load 

reduction.  The total cost case with a $6.5/kW demand charge has the similar load profiles as those in 

Figures 4.22 and 4.23.  Figures 4.24 and 4.25 present the case with a $1.5/kW demand charge, where both 

GA and Enumeration still decide to turn the fans on at night, but at later times.  In addition, they both 
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keep the early morning temperatures at a level lower than normal but not as low as that in the peak-load 

case, as a compromise between total and peak consumption.  

 

Table 4.11 Optimizing two-building thermostat set points with the Matlab GA 
bldg  
1 and 2 

peak  
(W/ m2) 

peak time peak reduction 
(W/ m2) 

E+ runs7 Time(min) 

Base 135 13    
Enum 128 13 5.2% 64 12 
GA 126 15 6.7% 340 57 
bldg 
1 and 3 

peak  
(W/ m2) 

Peak time peak reduction 
(W/ m2) 

E+ runs Time (min) 

Base 125 16    
Enum 112 13 10.4% 107 20 
GA 111 14 11.2% 536 90 
bldg  
2 and 3 

peak 
 (W/ m2) 

Peak time peak reduction 
(W/ m2) 

E+ runs Time (min) 

base 125 13    
Enum 119 12 4.8% 107 20 
GA 118 14 5.6% 514 86 
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Figure 4.21 Traces of the Matlab GA for a two-building aggregation case 

                                                 
7 The numbers of EnergyPlus runs are precise for enumeration, and are approximates for GA runs.  We run a large 
number of GA generations, cut off where the best solution of GA is asymptotically stable, and use this value as the 
necessary simulations by GA.  
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Table 4.12 Optimizing two-building night cooling schedules with Matlab GA- peak load as cost function 

    peak  peak time peak reduction   E+ runs   Optimal operations 
   (W/m2)        
base 137 13     both fans start at 8am 
          early AM temperature set points: 24°C  
Enum 123 15 8.9%     64 both fans start at 6pm 
         both slow linear   20 / 21 / 22 /23 
GA 121 15 10.4%    1163 both fans start at 6pm 
          20 / 20 / 20/ 20,  20 / 20 / 20 / 22 

 

 

Table 4.13 Optimizing 2-building NC schedules with Matlab GA- total cost with $6.5/kW demand charge 

 
  cost cost peak 

peak 
load   total load 

total 
load 

E+ 
runs Optimal operations 

   ($/m2) reduction (W/m2) reduction  (Whr/m2) change     
base 1.059   135   1177    both fans start at 8a 
          1pm       all 24°C  
Enum 0.994 6.2% 122 9.3% 1323 18.4% 64 fan1 starts at 8am 
          3pm       20 / 21 / 22 / 23 
              fan2 starts at 8pm  
                20 / 21 / 22 / 23 
GA 0.988 6.7% 121 10.3% 1315 20.9% 950 fan1 starts at 10pm    
          3pm       22 / 22 / 23 / 23  
              fan2 starts at 10pm 
                 22 / 23 / 23 / 21 

 

 

Table 4.14 Optimizing 2-building NC schedules with Matlab GA- total cost with $1.5/kW demand charge 

 
  cost cost peak 

peak 
load   total load 

total 
load 

E+ 
runs Optimal operations 

   ($/m2) reduction (W/m2) reduction  (Whr/m2) change     
base 0.385   135   1177    both fans start at 8a 
          1pm       all 24°C  
Enum 0.380 1.3% 126 6.6% 1323 12.5% 64 fan1 starts at 8am 
          3pm       20 / 21 / 22 / 23 
              fan2 starts at 8pm  
                20 / 21 / 22 / 23 
GA 0.379 1.5% 126 6.6% 1315 11.7% 1212 fan1 starts at 10pm    
          3pm       22 / 22 / 23 / 23  
              fan2 starts at 10pm 
                 22 / 23 / 23 / 21 
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Figure 4.22 Aggregated and individual power profiles for base and GA optimal cases, 

two-building fan-based night cooling to minimize the aggregated peak , 8/8, LA  
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Figure 4.23 Aggregated and individual power profiles for GA optimal and Enumeration optimal  

cases,  two-building fan-based night cooling to minimize the aggregated peak , 8/8, LA  
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Figure 4.24 Aggregated and individual power profiles for base and the GA optimal cases, two 

building fan-based night cooling to minimize the total cost with $1.5 demand charge, 8/8, LA  
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Figure 4.25 Aggregated power profiles for base, GA optimal and Enumeration optimal cases, 

2bldg fan-based night cooling to minimize the total cost with $1.5 demand charge, 8/8, LA  
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4.5 Computation concerns of simulation-based approaches 

The computation of the enumeration approach consists of two parts: individual simulation and match.  

The matching process simply adds up individual load profiles in Matlab and has little computation 

intensity involved when the number of buildings is small.  However, its complexity increases 

exponentially with the number of individuals.  With the simple exhaustive matching, five buildings with 

30 feasible solutions each take 30^5, about 24 million matches.  Although each match only involves 

summation and maximization, the number of matches makes it impossible to handle more than five 

buildings in a reasonably amount of time.  Such a five-building case takes 2.5 hours on a Pentium4 

1.8GHz machine, although a four-building case only takes 2 minutes. 

 

Educated enumeration performs better than a generalized optimizer, but requires expert knowledge to set 

up.  For models and load control strategies concerned in this research, the simulation for individual 

buildings in the enumeration approach takes about an hour for a typical summer day.  Building operators 

can do it off line the night before to come up with strategies for tomorrow if the aggregation scale is 

small, say computation can be done in minutes.  The system can be used flexibly in practice.  For 

example, building operators can classify those days with similar weather conditions, so that apply the 

same load control strategies to a group of similar days instead of every single day.  In all the analysis, we 

assume that tomorrow’s weather forecast is accurate, which is true in most cases.  However, the system is 

fast enough to rerun in case there are sudden weather, load or price changes, assuming that those changes 

can be forecast couple of hours in advance, which is true in practice.   

 

The enumeration approach is efficient and simple, but its dependence on expert knowledge could be a 

problem in order to generalize the approach.  For those scenarios we know little about it is difficult to 

cover most of the input space by enumerating a limited number of possibilities.  Therefore, the best 

solution from enumeration and match might not be a good sub-optimum overall.  

 

GA is computationally intensive in almost all the cases, but also generally efficient and can always find a 

better operation strategy given enough time.  The process is generic and takes little expert knowledge to 

set up.  The bottleneck is a large number of EnergyPlus simulations are needed for function evaluation.  

As a way to reduce computation, Matlab GA saves the computation results throughout all generations to a 

lookup table.  For every new chromosome, the code searches in this Table first and if this chromosome 

has been calculated before, the result is taken and recalculation can be avoided.  This saves about 30% - 

60% EnergyPlus runs in our Matlab GA studies.   
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Notice that with the multi-GA set up, the amount of computation needed increases linearly with the 

number of buildings.  In reality, GA does slightly better than this due to its advantage of handling large 

parameter sets.  Two-building aggregation cases take anywhere about an hour and the specific number 

depends on the cost function and the convergence requirement.  Five-building cases take about 2.5 hours.  

Table 4.15 shows the E+ runs taken by two-building cases and five-building cases.  Table 4.16 compares 

the computation between Enumeration and GA in terms of the total time.  Enumeration’s exhaustive 

search part takes little time in the two-building case but increases exponentially to 2.5 hours in the five-

building case, while GA’s computation time increases approximately linearly.  Therefore, GA has 

advantage when the size of the problem gets large. 

 
Table 4.15 EnergyPlus runs8 taken by multi-GA 

Cases 2 buildings 1/ 2 5 buildings 1/1/1/2/2 2 buildings 1/ 3 5 buildings 1/1/1/3/3 

E+ runs 340 840 536 1236 

 

Table 4.16 total computation time comparison between Enumeration and multi-GA 

 Enumeration Multi-GA 

 E+ run time 
(min) 

Matching time 
(min) 

Total time 
(min) 

Total time (min) 

2bldg  
1 and 2 

12 (64 E+ runs) <0.1 12 57 (340 E+ runs) 

5bldg  
1/1/1/2/2 

12 (64 E+ runs) 150 162 140 (840 E+ runs) 

 

 

4.6 Economy of scale  

We’ve looked at several simple aggregation cases involving two or three buildings.  It is worth studying 

how aggregation efficiency varies as the number of buildings increases.  Without any load control, 

aggregation still achieves some savings due to the diversification effect, as shown in both thermostat-

based and night-cooling-based strategies early in this chapter.  However, the savings from pure 

aggregation will approach asymptotically an upper bound as the number of buildings goes up because the 

marginal benefit brought to diversification by a new building will drop after some point.  Being able to 

alter the load profiles through load control could make a difference.  We will illustrate the size effect at a 

small scale, up to six buildings, using the Enumeration approach.  The load control strategy is thermostat-

based with the peak load as the cost function.  We continue to use three models in Table 4.2 from Section 
                                                 
8 As in Table4.11, the E+ runs here are the numbers that meet convergence and are chosen after a longer run.  
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4.2, and duplicate those building if necessary.  The same Matlab program is used for matching multiple 

buildings.  

 

Table 4.17 summarizes the peak load reduction with different building types: by total peak reduction, we 

mean the aggregated peak.  The average peak reduction is a conceptual number by assuming all 

individuals make equal contribution to the total reduction, which is not the case in reality because 

different buildings peak at different times.  We make the following observations: 1) the more buildings in 

the aggregation pool, the more total reduction achieved compared to the base case; 2) the profile mix 

plays an important role in determining the aggregation performance.  

 

To focus on the effect of size, we fix the building mix and simply increase the number of buildings in the 

pool.  Table 4.18 part I shows the aggregation results from one to five buildings, all based on building 1.  

The aggregation results in Table 4.18 part II are based on two or three buildings and we simply duplicate 

one or more pairs in the pool.  In both tables, aggregated load control is compared with individual load 

control and the contribution of aggregation is quantified.  Notice that the contribution of aggregation 

stabilizes as the size increases: 12% peak reduction contributed by aggregation in the one-building case 

and 56% in the two-building case with 1 and 3.  The reason is that with the limited number of load 

profiles, a new building into the pool can only choose to cooperate with others in a limited number of 

ways.  When the size increases to some point, new buildings start to repeat what old ones do, and the 

performance reaches an upper bound.     

 

Figures 4.26 and 4.27 present the aggregation results for a three-building case and a four-building case 

respectively.  The related two-building case can be found in Figure 4.3.  We have the following 

observations based on these three cases: 1) the peak reduction potential has been largely exploited even 

with three buildings, indicated by the flat control period of the aggregated profile in Figure 4.26.  A 4-

building pool flattens the aggregated peak even further; 2) two buildings in an aggregation pool with the 

same type tend to behave differently when the size is small, which enhances the aggregation performance.    

 

In reality, we can adjust the control period, e.g. assign different buildings different control periods, and 

try to maximize the reduction potential that can be captured by a group of buildings.  Notice that the 

savings and the scale effect depend on the buildings under study.  Load aggregators should choose those 

buildings that work well together to create a higher reduction potential.   
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Table4.17 Aggregation performance – mix matters 

  2-bldg              3-bldg             4- bldg             5-bldg 
individual model type 1/3 1/3/3 1/1/ 3 1/3/1/3 1/1/1/3 1/1/1/3/3 1/1/1/1/3
total peak reduction    
(W/ m2) 13.1 17.6 21.7 26.4 26.1 34.9 30.4 

 10.5% 9.7% 11.2% 10.6% 10.0% 11% 9.2% 
average peak reduction  
(W/ m2) 6.6 5.9 7.2 6.6 6.5 7.0 6.1 

 5.2% 3.2% 3.7% 2.6% 2.5% 2.2% 1.8% 
 

Table4.18 Aggregation performance – economy of scale  

Part I: size effect with a limited number of profiles – an extreme case 

  1bldg 2bldg 3bldg 4bldg 5bldg 
building mix 1 1/1 1/1/1 1/1/1/1 1/1/1/1/1 
peak reduction from  5.9% 5.9% 5.9% 5.9% 5.9% 
individual load control      
       
peak reduction from  5.9% 6.2% 6.7% 6.7% 6.7% 
aggregated load control      
       
savings from aggregation 0% 0.3% 0.8% 0.8% 0.8% 
       
contribution of aggregation 0% 5% 12% 12% 12% 

 

Part II: size effect with a limited number of profiles 

building mix 1/2 1/2/1/2  
1/1/1/ 
2/2/2 1/3 1/3/1/3 1/2/3 

1/2/3/ 
1/2/3 

                
peak reduction from  2.8% 2.8% 2.8% 7.4% 7.4% 3.4% 3.4% 
individual load control        
         
peak reduction from  5.2% 6.3% 6.3% 10.5% 10.6% 6.1% 6.2% 
aggregated load control        
         
savings from aggregation 2.4% 3.5% 3.5% 3.1% 3.2% 2.7% 2.8% 
         
contribution of aggregation 46% 56% 56% 30% 30% 44% 45% 
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Figure 4.26 “Optimal” load aggregation between buildings with model types of 1, 1 and 3 
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Figure4.27 “Optimal” load aggregation between buildings with model types of 1, 1, 3 and 3  
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CHAPTER FIVE  

A MODEL-BASED NONLINEAR OPTIMIZATION APPROACH  

TO THE MULTI-BUILDING PROBLEM 

 

 

In the previous chapter, we explored the multi-building problem through Enumeration and a multi-GA.  

Both approaches involve tens or hundreds of EnergyPlus simulations and the decision-making processes 

are slow.  One natural development would be separating optimization from simulation, and providing the 

optimizer with simplified building dynamics learned from the simulation data.  This is expected to 

improve the computation efficiency.  We will explore such an approach in this chapter by building a time 

series model to predict building load profile in the base case.  On the top of that, we use linear regression 

and model the load reduction and the service degradation due to load shedding.  The time series model 

and regression models together form the individual load profile prediction model.  The multi-building 

aggregation is then formulated as a nonlinear optimization problem supported by individual load 

prediction models.  The problem is modeled in AMPL (A Mathematical Programming Language) and 

solved by LOQO [Vanderbei 1997], a nonlinear commercial solver.  Optimization results are evaluated 

and compared to those from simulation and Enumeration.   

 

5.1 Problem formulation 

In this section, we review briefly the general mathematical problem of multi-building optimization.  In the 

remaining sections, a detailed load predication and optimization process will be presented.  

 

The general problem is to come up with an optimal scheme for a multi-building aggregation pool to 

minimize the total electricity cost or peak demand while maintaining a certain comfort level in all the 

buildings.  We formulate this problem in two ways that are related: 1) treat comfort as a constraint, shown 

in Eqn.5.1; 2) treat comfort as part of the cost function by penalizing the violation through a Lagrangian 

multiplier, shown in Eqn.5.2.  In both formulations, we have represented the hourly power consumptions 

and the PPD values in each individual building as functions of the individual system, load control 

parameters and time.  In theory, these functions are complicated and nonlinear, and are what full-size 

simulation software packages such as EnergyPlus try to compute.  We will take a simpler approach of 

computing hourly power and PPD, which is key to this chapter.   
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Eqn.5.2 

Where,  

tiW ,   Electricity consumption by building i at time t , 24,...,1,,...,1 == tNi  

tiPPD ,   PPD values in building i at time t  
*
iPPD   PPD requirement in building i  

tR   Electricity rate at time t  

D   Demand charge rate 

tiu ,   Control variables, ticu ,,  continuous variables, and tidu ,, discrete variables 

tix ,   State variables 

if   Building i dynamics determining electricity consumption at hour t  

ig   Building i dynamics determining thermal comfort i is at hour t  
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A mathematically similar problem is presented in Eqn.5.3a where the peak load, instead of the total cost, 

is minimized for the same N-building pool.  The sum of hourly energy use is a linear9 term to this 

optimization problem, and taking it out wouldn’t change the mathematical nature of the problem.  

Although optimizing peak load and optimizing total cost will lead to different results, two problems are 

mathematically similar and the peak load problem has already captures the nonlinearity in Eqn.5.1 and 

Eqn.5.2, so the method developed for the peak load problem can be applied to the total cost problem 

without any extra complexity.  This chapter focuses on the peak load problem. 
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The key characteristic of all three formulations is that they are all min max problems:  first the program 

looks for the peak demand, which is a maximization problem over a 24-hour period on the aggregated 

load profile; then minimizes this peak demand over the control variables specified in both Equations.  

Min max problems are difficult to solve in general due to the nonlinearity.  This min max problem can be 

converted to a typical minimization problem by adding a new variable to the original problem, a linear 

programming technique, as shown in Eqn.5.3b, where the maximization term is replaced by 24 

inequalities in the constraint.   Let ⎟
⎠
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9 By linear, we mean the hourly energy use term to the cost function, not control variables to the energy use.  We 
know that building dynamics are nonlinear, which, however, is not a concern at the top level of model structure.  
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Eqn.5.3b is the model on which this chapter is based.  For simplicity, we only implement the thermostat-

based load control strategy.  The control variables are hourly thermostat set points, therefore, no discrete 

variables will be considered.  This, indeed, is a big simplification, as discrete variables need special 

treatment during optimization.  The next three sections are building blocks: Section 5.2 discusses a time 

series model for predicting base load profiles, responsible for one part of tiW , ; Section 5.3 presents an 

approximation model for load reduction due to load shedding, responsible for the other part of tiW , ; 

similarly, section 5.4 builds an approximated PMV increase model, responsible for tiPPD ,  in Eqn.5.3b.  

Section 5.5 brings these three together and solves this simplified multi-building problem via nonlinear 

optimization. 

 

5.2 Base load predictor – a time series model 

To separate EnergyPlus simulations from optimization, we need a simplified model to capture the 

building dynamics.  We take the approach of function approximation in this section and build a time 

series model by learning from the EnergyPlus simulation data.  The reason why we choose time series 

models is three-fold: 1) load data can be nicely described by a time series with seasonal patterns; 2) time 

series models represent single building dynamics by a small number of parameters, which is important for 

the multi-building problem at a large scale; 3) the linearity of time series models make it easy to solve a 

nonlinear optimization problem for which the time series model is a constraint.  Chapter 1 reviews some 

function approximation approaches including artificial neural networks and time series models.   

 

5.2.1 Data preparation 

We use the models 1 and 3 from Table 4.1 as two participant types, and will duplicate them when the size 

of the pool increases.  For each of these two model types, we run EnergyPlus simulation for the entire 

summer, from June 1 to August 31, and on each day, we simulate a total of nine scenarios:  base without 

temperature set point change, four cases with different increase amount: hours 13-17 set point increase by 

1°C to 4°C respectively, and four cases with temperature increase of 2°C and increasing shedding 

window length from 1 to 4 hours respectively.    

 

June data are used as the training set and July and August as the testing set.  To train the base load model, 

the base case data are enough.  The rest is for training load reduction model due to thermostat-based load 

control.   
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For simplicity, we take out all the weekend data out of the summer time series and use the weekday only 

data for model identification.  Throughout this research, all building systems are completely off over the 

weekends.  Therefore, taking out weekend data points wouldn’t lose any information.  However, weekend 

data are part of the complete time series, and taking them out could possibly distort the embedded 

dynamics in this time series and lead to incorrect model identification and poor estimation, especially for 

Mondays.  However, we argue that this is not a big concern for the model used in this research because 

weekday dynamics dominate.  In addition, Mondays will be given special treatment in prediction.  We 

will show late in this chapter that the model based on purely weekday data achieves a satisfying 

prediction performance.  The time series model only provides a starting point and we have other model 

components to further improve the prediction. 

 

Our goal is to predict load profiles using as fewer inputs as possible.  During EnergyPlus simulations, we 

output hourly total power consumptions (sum of power uses by chillers, fans and pumps), PMV values, 

and indoor air temperatures as system responses and hourly outside temperatures and solar radiations on 

walls and roof as exogenous features.  The internal load patterns remain constant throughout the entire 

summer in this study; therefore weather is the only exogenous factor.  This is not a very accurate but still 

reasonable assumption in reality.  Although internal loads are stochastic by nature, they vary with low 

standard deviations. 

   

By now, we have hourly simulation data over a total of 66 workdays and are ready to conduct model 

identification.    

 

5.2.2 Model identification and estimation 

We start model identification by visualizing and analyzing statistically the time series of power 

consumptions in SPlus, a statistics software package.  We first look at the autocorrelation function (ACF) 

plots of the power time series.  ACF plots [Box and Jenkins 1976] are a commonly-used tool for checking 

randomness in a data set. This randomness is ascertained by computing autocorrelations for data values at 

varying time lags.  If random, such autocorrelations should be near zero for any and all time-lag 

separations. If non-random, then one or more of the autocorrelations will be significantly non-zero.  ACF 

plots are often used in the model identification stage for autoregressive moving average time series 

models, and can be used to access the seasonality (or periodicity) of a data series. 
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Figure5.1 ACF plots of differencing schemes 
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Figure5.1a) shows the autocorrelation coefficient plot of the power time series.  The plot strongly 

suggests a seasonal pattern in the data with a period of 24 hours, which should be the case because the 

building operates periodically on a daily basis.  The oscillatory and nondecaying function indicates a 

nonstationary process.  In order to obtain a stationary process, a number of differencing schemes are 

tested, as illustrated in b), c), and d).  The one that differences twice with 1 and 24 as periods, indicated 

by d), is finally chosen as it has the least overall autocorrelation.  The small-lag autocorrelations, although 

not within the specified uncorrelated range, are fairly low.  The fact that the differencing scheme of 1 and 

24 best describes the data series indicates that the lagged terms by 1 hour, 24 hours, and 25 hours play 

important roles in predicting the current hourly power consumption.  We understand that weather-related 

variables certainly play a role in prediction as well.  As the first attempt, we bring in all possible 

exogenous variables and conduct a regression over the lagged power terms and these factors to decide the 

relative importance of all these inputs.  

 

The exogenous variables here include outdoor temperature and external surface solar incident on each of 

the four relevant surfaces: south wall, east wall, west wall and roof.  All the lagged terms of these 

exogenous variables are also included in this regression.  Eqn.5.4 gives the general format of this 

regression.  Notice that Eqn5.4 is only a symbolic expression of which factors might have impact on the 

current power consumption, and it is a linear relationship.  The coefficients of all these factors are 

determined by regression. 
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  Eqn.5.4 

Where,  

W    Current hourly power consumption 

outT   Current outdoor temperature 

SESRSWSS ,,,  Current solar incident on South wall, West wall, Roof and East wall respectively 

25,24,1With  1-hour, 24-hour and 25-hour lagged terms of the corresponding parameters 

 

All the data available from the simulation are standardized before put in regression.  A generalized linear 

model named glm in SPlus is used for regression.  A glm model is fit using Iterative Reweighted Least 

Squares (IRLS) [SPlus 2001].   The SPlus code is given in Appendix D.1. 
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Table 5.1 gives the regression coefficients and their t values for Eqn.5.4.  Statistically, variables with 

absolute t value greater than 2 are considered significant.  However, y1, y24 and y25 are much more 

significant than others, although the west all solar incident, SW, might also have some minor impact with 

t values slightly greater than 2.  Of the three lagged terms, the same hour yesterday has the biggest 

impact.  Note that although three lagged power terms dominate the prediction and there are no exogenous 

factors in the final formulation, it does not mean exogenous variables are not important.  In fact, the 

lagged terms are results of weather factors acting on the system.  These exogenous variables will be used 

later to enrich the model. 

 

Table5.1 Coefficients and t- values - A first cut 
Factors Value Std. Error t value 

(Intercept) 0.00244 0.00362 0.7 

W1 0.73846 0.02513 29.4 

W24 1.00619 0.00542 185.6 

W25 -0.74007 0.02512 -29.5 

Tout -0.00765 0.01159 -0.7 

SS 0.00313 0.02889 0.1 

SW 0.01574 0.00924 1.7 

SR 0.00933 0.02073 0.5 

SE -0.00529 0.00797 -0.7 

Tout1 0.01799 0.01149 1.6 

SS1 0.05267 0.02874 1.8 

SW1 -0.02729 0.00856 -3.2 

SR1 0.04520 0.02161 2.1 

SE1 -0.00500 0.00905 -0.6 

Tout24 0.01117 0.01185 0.9 

SS24 -0.01891 0.02931 -0.6 

SW24 -0.01867 0.00928 -2.0 

SR24 -0.00301 0.02136 -0.1 

SE24 0.00519 0.00834 0.6 

Tout25 -0.01920 0.01164 -1.6 

SS25 -0.05092 0.02894 -1.8 

SW25 0.02279 0.00855 2.7 

SR25 -0.03891 0.02145 -1.8 

SE25 0.00699 0.00847 0.8 
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Figure5.2 In-sample residual info: a) residual plots b) ACF plots of glm residuals  
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Figure5.3Testing data residuals with the model of Eqn.5.4 and Table 5.1, building type model 1 

 

Table5.2 Model coefficients and their t values for building 1- with only significant variables 

Factors Value Std. Error t value 

(Intercept) 0.00129 0.00186 0.7

yt1 0.87396 0.02175 40.2

yt24 1.00711 0.00374 269.4

yt25 -0.87953 0.02227 -39.5

 

 

Figure 5.2 a) plots the residuals of Table 5.1 and Figure 5.2b) shows the ACF of the regression residuals.  

It only serves as a reference as we cannot judge a model’s predictability using in-sample (training) data. 

However, bad in-sample performance can kill a model without testing it in the testing set.  Figure 5.3 

plots the residuals on testing data using the model in Table 5.1.  The residuals have a mean of 0.1 and a 

variance of 2.2, which is fairly good as a starting point of the prediction.  Since all the exogenous 

variables are less significant at this point, we rerun the regression with only three lagged power terms and 

obtain Table 5.2.  The lag-only model has better prediction performance.  On the testing set, both models 

center around zero as they should, but the full-model has a variance of 2.2 and the lag-only model 1.88, a 

15% variance reduction.  Further analysis is based on Table 5.2. 
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The ACF plot in Figure5.2 b) shows a few spikes at non-zero lags, indicating that residuals are not purely 

white noise and certain system features have not been captured.  To further explain the residuals, we 

could build an ARIMA model for the residuals.  This approach is typical in time series regression studies.  

An alternative is to extract features from the exogenous factors to build a nonlinear regression model for 

residuals.  Here, we decide to ignore the residuals for now and focus on other aspects to improve the 

prediction for simplicity and also for the following reasons:  1) the variance of residuals in testing data 

and the autocorrelations between regression residuals are rather low.  It would not be too far off without a 

residual model; 2) more importantly, the time series analysis did not take into consideration an important 

aspect of this problem, which is we don’t have hourly updated power data for tomorrow, but our predictor 

still tries to predict the power uses at all hours next day.  The prediction mechanism used here is basically 

a one-step system, meaning that for the next step to be precise, the current step needs to be updated with 

the true information instead of estimates.  However, we aim at predicting at the end of today tomorrow’s 

power profile; 24-hour and 25-hour lagged data are available, but one-hour lagged data can only be 

predictions.  How to improve this one-step model to better predict tomorrow’s profile is a far more 

important issue than building a residual model based on assumed perfect data.  

 

We have obtained a load profile for tomorrow based on Table5.2.  Because we do not have the real-time 

one-hour lagged power data, there will be a gap between the predicted and real values.  Especially if there 

is a large prediction error in the morning, it will be carried on all day and lead to even larger errors later in 

the day.  There is not much we can do to the time series model due to the information constraint, but extra 

information from exogenous variables should help.  There could be two approaches to further improve the 

prediction: correct the errors and correct the peak.   

 

Eqn.5.5 presents a model to correct tomorrow’s prediction errors based on previous prediction errors: 

Eqn.5.5 1) is the ideal model consisting of three lagged power terms and a residual term; 2) is the model 

used in reality due to unavailability of one-hour lag term; and 3) is the error prediction.  This approach is 

again another time series modeling problem, as indicated in 3) where f is a time series function 

predicting today’s prediction errors from yesterday’s.  To implement this, we need to use two days’ real 

power consumptions, yesterday and the day before, as initial data and conduct prediction for both 

yesterday and today.   
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Where, 

( ) ( )tWtW ˆ,   - True and estimated power consumption at hour t 

( ) ( )1ˆ,1 −− tWtW  - True and estimated power consumption at the previous hour 

( ) ( )24ˆ,24 −− tWtW  - True and estimated values at the same hour on the previous day 

( )25−tW   - True power consumption, previous hour previous day 

( ) ( )tete ˆ,   - True and estimated residual at hour t 

 

The error time series analysis in Eqn.5.5 makes statistical sense.  Physically, the model says that the 

power consumption at the current hour is a function of previous power values and previous prediction 

errors.  We believe that past power consumptions and errors carry the information about building 

dynamics, and past errors have information about the predictor.   

 

This error-correcting model described above is dynamic and complicated.  The peak-correcting model 

that we will describe below is a static and simpler one.  The peak-correcting model takes advantage of 

everyday specific exogenous information and models the daily peak load as a function of maximum 

temperature and maximum solar incidents on related surfaces.  Figure 5.4 shows the relationship between 

maximum daily temperatures and peak loads in the summer months in LA.  There is clearly an upward 

pattern and close to being linear.  We have seen the similar trends between peak loads and maximum 

solar radiations.  The peak loads in the training set are regressed on corresponding maximum 

temperatures and south, east, west wall and roof solar radiations.  We tried both linear and quadratic 

models in SPlus, and found the linear model, Eqn.5.6, has the best performance – the best balance 

between the coefficient significance, residual variation and model simplicity.  Table 5.3 gives the model’s 

statistics indicting coefficients of the maximum temperature, south wall and east wall solar incidents are 

significant.  In reality, the model identification results depend on the specific building under study.  We 

assume that we have the perfect weather forecast for tomorrow’s maximum temperature and solar 

radiations.  In reality, detailed solar radiation forecast might not be easily obtained and temperature 

forecast could be off too.  We need to keep in mind these potential constraints.  
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Figure5.4 Relationship between peak loads and maximum temperatures in summer, LA 

 

maxmaxmaxmax 015.0032.0468.1 SESSTW ×+×+×=     Eqn.5.6 

Where, maxW is the peak demand of the day, maxT peak temperature, maxSS south wall peak solar radiation, 

and maxSE east wall solar radiation.  

 

Table5.3 Peak load as a function of exogenous variables 

Factors Value Std. Error t value 

(Intercept) 3.913 3.048 1.3

T_max 1.468 0.165 8.9

SS_max 0.032 0.008 4.3

SW_max 0.005 0.004 1.1

SR_max -0.007 0.004 -1.6

SE_max 0.015 0.002 5.9
 

The maximum temperatures have been used to predict peak load for profile adjustment before [Seem and 

Braun 1992].  We compare the full model in Table5.3 with the maximum-temperature-based-only model 

on the testing set.  The model in Table5.3 has a mean of -0.8 and a variance of 2.8, corresponding to a two 

standard deviation range of [-4.2, 2.5], while the maximum-temperature-only model has a mean of 3.84 

and a variance of 3.20, corresponding to a wider range of [2.6, 10.2].  The full model works better. 
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It is to be noticed that we choose the training data set for this model slightly differently.  As we only have 

one data point for each day, using only June data as the training set is not sufficient to yield a convincing 

result.  In addition, we observe the following time-sensitive trend throughout the summer: high 

temperatures lead to higher peaks more easily in June than in July and August.  Therefore we choose half-

month data from June, July and August to form the training set.  It is acceptable to distort the time series 

in this case because we are looking for a static relationship rather than a dynamic and time-related one.  

 

With the newly estimated peak load, we update the previous prediction from Table 5.2 and scale the 

entire power profile to obtain the final base load profile prediction.  The prediction performance is 

examined on several representative days, shown in Figures 5.5, 5.6 and 5.7.  Figure 5.5 emphasizes the 

importance of adjusting peak load where the true load profiles, predictions without peak corrections and 

predictions with peak corrections are compared.  Peak correction helps improve the prediction on most 

days, especially on July 27 and August 17.  In Figure 5.6, a total of eight days are examined.  Figure 5.7 

looks at the same hour prediction over a few days in the testing period.  Overall, the prediction performs 

well.  Afternoon hours are predicted better than early morning ones.  This is because we scale the entire 

curve based on the peak load adjustment which takes place in the afternoon.   
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Figure 5.5 based load profile prediction and peak correction 
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Figure5.6 Base load profiles prediction vs. simulation 
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Figure5.7 Prediction performance for specific hours over the last 20 days in August 

 

An important reason why the prediction is good is that the data used for both training and testing are from 

EnergyPlus simulations and have little noise.  In addition, there are no stochastic aspects associated with 

our system; notably, the load pattern remains the same throughout the entire summer, which keeps the 

load profile shape similar between different days.  We expect to see higher errors and degraded 

performance with data from the real world. 

 

Although the prediction performance for Mondays is acceptable, we could make it better by giving it 

special treatment.  For a Monday, a weighted average of predictions by the previous day, which is a 

Friday in our data set, and by the previous Monday would give a better prediction.  In general, a 

prediction considering both the previous day and the day type performs better than either of the single 

ones.  Day type can be just calendar days such as Monday through Friday.  It can also be the classified 

groups such as “hot day”, “warm day”, and “cold day” based on temperatures.  A more sophisticated way 

is to classify days using an unsupervised classification algorithm, such as the K-means algorithm 

[Johnson and Wichern 2002].  A classification algorithm can consider a lot more exogenous variables 

other than temperatures.   
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Figure 5.8 base load profile prediction improvement based on similar day 

 

For example, the time series prediction for Monday August 7 is based on the previous day which is a 

Friday August 4.  However, the prediction is less satisfying because in reality there is a weekend between 

August 4 and 7 but weekends’ impact on Mondays is not considered in the base time series model, 

Eqn.5.5.  We choose to use a previous Monday July 10 as the equivalent previous day and build the 

prediction on the combination of July 10 and August 4.  Another reason we choose July 10 is that both 

July 10 and August 7 are fairly warm day:  the highest is 26.5°C on July 10 and 26.7°C on August 7.  

Although we developed a model to correct the peak load, it still helps to use a previous day with the 

similar temperature range.  We present the base prediction and the new similar-day-based prediction in 

Figure 5.8:  the new prediction based on the combined day is better.    

 

Another nice by-product of classifying and storing a set of typical days is that a profile from this set can 

be used as an approximation of another load profile to be predicted, given that they belong to the same 

category.  A building operator, with weather forecast info, has the approximated load shape available, and 

a suboptimal load aggregation can be done based on operation experience.   

 

5.3 Load reduction model 

The time series model in section 5.2 provides us a base load profile prediction based on the previous 

day’s real power profile, but there is nothing in the model that can explain the impact of the load control.  
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In this section, we will develop a simple model to describe how thermostat-based load shedding distorts 

the base load profile.  We run the base case, together with four other cases with 1, 2, 3 and 4°C thermostat 

increases during hours 13 – 17.  The system is off at night and no other load control strategies are applied.  

Then we analyze the hourly power difference as a function of thermostat increase and the base load.  As 

previous analysis showed, increasing thermostat set points in the afternoon will reduce greatly the 

shedding-period power consumptions while slightly increasing the power uses at early hours due to the 

heat accumulated in the system at night.  Figure 5.9 shows the power reduction from the base case for 

specific hours 11, 12, 13 and 14 over the entire training set.  Hours before 11am gain little power 

increases and can be ignored.  All the hours during the shedding period have the similar patterns:  power 

reductions increase with base loads and thermostat increase.  Late hours such as 16 and 17 incur more 

reduction than early hours such as 13 and 14.  Figure5.10 looks at hour 14 in detail where power 

reductions are close to being linear with base loads.  Figure5.11 provides a way to observe the 

relationship between power reductions and thermostat increases, where five specific hours on a summer 

day are presented with different thermostat increase in each case.  It can be seen that for different hours, 

the impact of thermostat increases is different, but load reductions are an approximately linear function of 

the square root of thermostat increases.  

 

Based on the observations, we propose a simple linear load reduction model shown in Eqn.5.7, where 

 

( ) BbTbbpdiff iii 2,
5.0

1,0, +∆+=      Eqn.5.7 

Where  

pdiff   Power reduction from the base case 

T∆   Thermostat set point increase 

B   Base load 

 

We reorganize the training data and make it specific-hour oriented.  Hours before noon are affected little, 

so we focus on the period of hours 12-17.  Recognizing that load reduction potential differs from hour to 

hour, training data are regrouped targeting each hour during the period of 12-17.  Again, the glm function 

in SPlus is used for regression.  The process is automated so that multiple hours can be studied easily.  

Appendix D.1 has the SPlus code.  Table 5.4 shows the regression results. The first three columns are 

regression coefficients and the last column of residual variance says that how much of the training 

variance can be explained by the model.  A small number is a necessary condition for good predictability.  

Table 5.5 gives the two standard deviation range of the model’s prediction over the testing set for each of 
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hours 12-17.  We consider 2.2± W/ m2 is acceptable given that the average load reduction magnitude 

over all thermostat increases is 4 W/ m2.  It is very difficult to make the load prediction error and the load 

reduction error one magnitude less than the load itself.  Figure5.12 illustrates the prediction performance 

through hour 14 by comparing the prediction and simulation values in the testing set for different 

thermostat increase.  A perfect prediction would lead to a 45 degree line.  The model did fairly well with 

large temperature increases, but not as well with a 1°C increase.  

 

 

Table5.4 SPlus regression results for load reduction model at different hours 

  Intercept deltaT^0.5 base load residual variance 

hour 12 -2.40 0.98 0.04 19.5% 

hour 13 19.47 -6.43 -0.42 9.2% 

hour 14 17.31 -7.35 -0.31 5.4% 

hour 15 16.53 -8.01 -0.26 3.7% 

hour 16 14.39 -8.43 -0.20 2.9% 

hour 17 12.56 -8.22 -0.16 3.0% 
 

 

Table5.5 Load reduction model prediction errors in testing data set 

testing data 
prediction errors 

mean - 2*stdev   
(W/ m2) 

mean + 2*stdev  
(W/ m2) 

hour 12 -1.2 0.8

hour 13 -2.9 3.5

hour 14 -2.2 2.5

hour 15 -2.0 2.1

hour 16 -2.1 1.9

hour 17 -1.9 1.6

overall -2.2 2.2
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Figure5.9 Power difference from the base case at hours 11, 12, 13 and 14  

vary with base load and thermostat change 
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Figure5.10 Power difference from the base case at hour 14 vary with base load  

and thermostat change, a blow-up of the fourth graph in Fig.5.9 
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Figure5.11 Power difference from the base case at hours 13-17 vary with thermostat change, 

June 2, a section view of Figure5.10 with fixed base load  
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Figure5.12 Hour14 power reduction prediction vs. simulation (real values) 
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Modeling power reductions for a general load control strategy is more complicated than in this specific 

thermostat-base case.  The key thing is the correlation and interdependence between hours.  For example, 

if the thermostat set point is increased at hour 14 alone, hour 15 will certainly see a set-back spike, and 

hours 16 and 17 will experience a small amount of power increase as well.  The challenge is how to 

represent the large number of possible schedule combinations, especially when a longer control period is 

involved.  Integer programming might be used to assign an integer variable to each hour indicating 

whether this particular hour incurs a set-back spike.  Then we could run regression to find the responding 

factor of this specific hour as a function of a variety of inputs.  We ignore the set-back issue in this model 

by applying the load shedding, regardless the magnitude, to all the afternoon hours.  Therefore, the 

scheduling modeling is not an issue for this case, but we understand that we are trading optimality for 

simplicity: the constraint we apply to the process could cost us optimal or good solutions.    

 

5.4 Comfort model 

Similar to load reduction, we will in this section develop a model that describes how thermostat-based 

load shedding degrades the service level compared to in the base case.  Different from the load models, 

we will not develop a full model of predicting base comfort level on an hourly basis throughout the day.  

Instead, we will develop a maximum PMV estimate, which, together with an assigned PMV upper bound, 

will set an upper bound for the maximum PMV increase.  Different from load profiles, PMV values are 

determined mostly on the individual hour basis as a function of air and wall temperatures, and scheduling 

is of little importance.  That is why limiting the maximum PMV is enough to guarantee that the overall 

service level is under control.  Therefore, the model is to bridge load shedding parameters with PMV 

values change.  

 

Correlations between hours are not an issue for PMV modeling.  For any hour that is not in the load 

shedding period, its PMV value is in line and is not affected by previous PMV changes.  For hours during 

the shedding period, scheduling matters.  For example, a person feels worse in the hour 17 when the 

thermostat-based shedding applied to hours 14-17 than at the same hour 17 but with load shedding only 

applying to 16-17, given the same temperature set point increase.  This scheduling impact is rather subtle 

and is not considered explicitly in the current research.  But a longer shedding period corresponds to 

higher mean radiant temperatures, which is in turn reflected in the PMV increases. Overall, PMV 

increases are mainly a function of thermostat set points, provided that thermostat set points can be 

maintained at the desired level and indoor air temperatures are under control.   
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We continue to use June data as training data set and July and August as the testing data set.  We first 

look at how PMV increases vary with afternoon hours’ thermostat set points increased by 1 to 4°C.  

Figure 5.13 shows the PMV changes on June 21 as a function of time and thermostat set point increases; 

the shape of the graph is the same for most summer days.  Hour12 is used as a reference because load 

shedding is applied to hours 13-17 and hour 12 is hardly affected.  We assign the same temperature 

increase to all five hours.  It turned out that the first hour of the load-shedding period has the smallest 

PMV increase while hours after incur increasing PMV changes.  However, the differences between hours 

are not obvious, which makes it possible to ignore the specific hour and build a model for the entire 

shedding period as a whole.  If we do so, the PMV increase estimate at the beginning of the shedding 

period would be overestimated.  It is not a concern because overestimating PMV increases guarantees 

conservative and feasible results.  We put an upper bound of PMV increase on all hours and the service 

level is maintained as long as the worst hour with the highest PMV increase is in line.  In this sense, 

treating all hours as a whole is an over safe design.   

 

Figure 5.14 shows how PMV increases vary with the base load.  Data in the training set are regrouped 

according to the temperature change over the training period.  The PMV increases have little to do with 

base loads, except when temperature increases are large and base loads are small, which is a rather small 

area and can be ignored.   

 

We regress PMV increases to temperature set point increases according to Eqn.5.8, and the t values of the 

coefficients for building 1 are given in the parentheses.  Table 5.7 reports the model prediction 

performance in the testing set in terms of the residual two-standard deviation range.  A change of 0.3 in 

PMV is less likely to cause any comfort concern, so the model is sufficient for this case. 
 

( ) ( )9.762.14
1,0,

−

∆×+=∆ iiii TccPMV
      Eqn.5.8 

Where, PMV∆  represents the PMV increase and T∆  the thermostat set point increase 

 

A further look at how maximum PMV values vary with peak loads in Figure 5.15 suggests a strong linear 

relationship between the two.  We take advantage of this linear relationship and project tomorrow’s 

maximum PMV based on today’s maximum PMV, today’s peak load and tomorrow’s peak load.  Note 

that tomorrow’s peak load is an estimate from previous load models.  
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Figure5.13 PMV difference from the base case at hours 12-17 vary with 

 thermostat change,6/21  
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Figure5.14 PMV differences from the base case at hour 14 vary with base load 

 under different thermostat change  
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Table5.6 PMV model prediction errors in testing data set 

Delta PMV  
prediction errors Mean - 2*stdev mean + 2*stdev 

deltaT = 1 -0.25 0.15

deltaT = 2 -0.21 0.23

deltaT = 3 -0.19 0.34

deltaT = 4 -0.18 0.47

overall -0.25 0.34
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Figure 5.15 Relationship between daytime peak PMV values and peak load in summer, LA 

 

5.5 A nonlinear central optimizer 

The previous three sections are devoted to developing building blocks of a simplified building simulator.  

Now we are ready to assemble these parts and based on them build a nonlinear optimization solver.  

These building blocks, including the base load predictor, the peak load corrector, the load reduction 

model and the PMV increase model, are plugged into Eqn.5.3 and we obtain the final model in Eqn.5.9.  

All statistical results are written into the code of this mathematical formulation.  

 

Eqn.5.9 is fairly easy for a commercial nonlinear solver to handle.  The cost function and most constraints 

are linear, and the only nonlinear constraint is quadratic, a “soft” and computationally friendly one.  We 



 166

code this model in AMPL (A Mathematical Programming Language), which is a platform for 

optimization problems with complicated constraints [ampl 2003] and is supported by a variety of linear 

and nonlinear solvers such as CPLEX, LOQO and MINOS.  Programming in AMPL helps avoid coding 

an optimization algorithm from scratch.  One only needs to formulate the problem as Eqn.5.9 does, and 

describe the cost function and constraints in APML, similar to Matlab programming.  

 

There are plenty of commercial and/or research packages that can be linked to AMPL and to used in a 

certain model.  We choose LOQO as the solver for the multi-building problem.  LOQO [Vanderbei 1997] 

is a system for solving smooth optimization problems.  It is based on an infeasible primal-dual interior-

point method applied to a sequence of quadratic approximations to the given problem.  The problems can 

be linear or nonlinear, convex or nonconvex, constrainted or unconstrained.  The only real restriction is 

that the functions defining the problem be smooth, which is, they should be twice continuously 

differentiable at every point visited by the algorithm.  See Appendix D.2 for the AMPL code.  
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Eqn.5.9 

Where, iα is the peak adjustment correction factor for building i, and iPMV∆ is the PMV increase target, 

determined by the tomorrow’s maximum PMV estimate and an assigned PMV upper bound.  A target of 

PMV less than or equal to 1.5 is used throughout this research and is consistent with all previous studies.  

 

To see how this model-based nonlinear optimizer performs, we first run the program for a single building 

without comfort constraints – total demand as the cost function and hour 14-17 thermostat set points as 
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control variables – as a test case.  With an all-zero starting point, the AMPL code takes no time to get to 

(4, 4, 4, 4), the already-known global optimum for the temperature increases in hours 14-17. 

 

We then run the program for two two-building cases: 1) two identical buildings of model type 1; 2) 

buildings 1 and 3.  Results are reported in Table 5.7.  Enumeration and model-based optimizer lead to 

comparable amount of peak load reduction and similar operations in terms of thermostat set point 

changes, although load predictions by our model are consistently off by about 10%.  Figure 5.16 

compares four profiles for the case with two type-1 buildings: the sum of two base loads from simulation, 

the aggregated load control results by Enumeration, the sum of two predicted base loads, and the sum of 

aggregated load control results by the optimizer.  The predicted base and aggregated load profiles are off 

compared to the simulation and enumeration results, but the differences before and after aggregated load 

control are essentially captured.  

 

We move to a case with five buildings in the aggregation pool:  four building 1s and one building 3.  Here 

Enumeration experiences some computational difficulties.  The exhaustive matching process takes about 

2 hours in Matlab, while the model-based optimizer still takes no time to do the computation.  For a 

commercial solver, several tens of control variables together with linear and quadratic constraints are very 

easy to handle and the optimization is very efficient.  The savings again are reasonably close: simulation 

and Enumeration together produce 9.2% peak reduction while our model is 6.8%, shown in Table 5.7.  

Overall, the operations decisions between these two methods are similar, but our model failed to show the 

fact that same models in an aggregation pool can act quite differently.  All building 1s in our model act 

similarly and their thermostats increases are close, but building 1s in Enumeration choose to act on 

different schedules and therefore achieve more reduction.  The nonlinear optimization model needs to be 

improved to handle the scheduling aspect better.  
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Table5.7 Model-based optimizer vs. Enumeration  
 Peak shift &  

(W/ m2)  

Peak  

Reduction 

Final results      Computation 

Intensity 

 

Enumeration 

 

 

125 / hr 16 -> 

        112 / hr 12 

 

10.4% 

 

bldg1 (0,1,1,1) 

bldg3 (2,2,2,2) 

PMV <= 1.5 

 

 

123 E+ simulations 

Requires simulation every 

time to do aggregation 

bldg1 

and 

bldg3 

 

Model-based 

nonlinear solver 

 

 

114 /  hr 16 -> 

         104 / hr16 

 

8.6% 

 

bldg1 (0.5,0.5,0.5,0.5) 

bldg3 (3, 3, 3, 3) 

PMV <= 1.5 

 

 

460 E+ simulations to 

prepare training data 

One time only 

optimization takes no time 

 

 

Enumeration 

 

 

137 / hr 16 -> 

      128 / hr 16 

 

 

6.6% 

1st  bldg1 (1,1,1,1),   

2nd bldg1 (0,1,1,1) 

results very close to those 

with both at (1,1,1,1) 

PMV <= 1.5 

 

64 E+ simulations 

Requires simulation every 

time to do aggregation 

 

bldg1  

and 

bldg1 

 

 

Model-based 

nonlinear solver 

 

128 / hr 16 -> 

      121 / hr 16 

 

5.7% 

 

both buildings  

(0.5, 0.5, 0.6, 0.6)  

PMV <= 1.5 

460 E+ simulations to 

prepare training data 

One time only 

optimization takes no time 

 

 

Enumeration 

 

 

 

330 / hr16 -> 

       299 / hr 16 

 

9.2% 

(0,1,1,1) 

(1,1,1,1) 

(0,1,1,1) 

(0,0,1,1) 

(2,2,2,2) 

 

123E+ simulations 

takes 2 hours to do 

matching in matlab 

bldg1 

bldg1 

bldg1 

bldg1 

bldg3 

 

Model-based 

nonlinear solver 

 

 

305/ hr16 -> 

        280 / hr16 

 

6.8% 

 

All 4 type-1 buildings  

(0.6, 0.5, 0.5, 0.5) and 
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Figure 5.16 Aggregating 2 identical buildings with model type 1  

model-based optimizer vs. simulation + Enumeration 

 

We show in Chapter 4 that both multi-GA and Enumeration take hours when the size of the problem 

reaches 5.  Running an aggregation case with ten buildings would be computationally formidable for both 

of them, but the model-based approach remains equally efficient.  Table 5.8 shows a few 10-building 

cases with different mix based on buildings 1 and 3.  All ten cases take little computation.  We make the 

following observations: 1) the mix of a pool matters.  Having equal number of building 3 and building 1 

achieves 2% more peak reduction than having nine building 1s and one building 3; 2) individuals play 

different roles as a consequence of individual load profiles and thermal mass etc.  The pool favors more 

building 3s than building 1s.  To run the model-based optimizer, we need to have either simulation or 

experiment data, from which we can learn and train a unit simulator for each participant following the 

procedures developed in this chapter.  We only trained models for buildings 1 and 3 in this research.  An 

immediate next step is to train more models with different load profiles, so we can study the aggregated 

load control at a larger scale.   

 

Table 5.8 Aggregation using model-based approach 

cases 1 bldg1  
/ 9 bldg3 

3 bldg1 
/ 7 bldg3 

5 bldg1  
/ 5 bldg3 

7 bldg1  
/ 3 bldg3 

9 bldg1 
/ 1 bldg3 

peak 
reduction 8.4% 8.6% 8.7% 8.0% 6.5% 
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5.6 Comparison of three approaches to the multi-building problem 

To end this chapter, we compare all three approaches developed in this and the last chapters for solving 

the multi-building problem.  Issues of computation, accuracy, implementation and future research 

opportunities of Enumeration, multi-GA and the model-based optimizer are presented in Table 5.9.   

 

Table 5.9 Comparison between three approaches to the multi-building problem 

approaches Computation  Accuracy Future research 
opportunities 

Implementation 

Enumeration 
 

Efficient when n is 
small (<= 5) 

( )nNΟ~  
2-bldg cases: 2mins 
5-bldg cases:  2.5 - 
8hrs 
 

Good.   
Trade-off between 
reducing size of 
feasible sets and 
achieving accuracy  

Speed up the 
matching process 

Requires expert 
knowledge to form 
feasible sets 

Multi-GA 
 

Intensive in most 
cases  ( )nΟ~  
2-bldg cases: 1-5 hrs  
5-bldg cases: 2.5 -
10hrs 
 

Good.   
GA search performs 
better than 
Enumeration 

Code the 
chromosome more 
efficiently. 
Both binary and 
real-value based 

Requires input files, 
GA parameters, and 
function evaluator 

Model-
based 
optimizer 

Efficient with any 
size of n ( )1~ Ο  
both 2bldg and 
5bldg cases solved 
immediately  

Ok.   
Simplicity affects 
accuracy, but the 
improved operations 
are achieved and are 
close to being 
optimal  

Improve the 
prediction models.  
Develop a load 
profile classification 
system 

Train a set of 
models using either 
simulation or 
experimental data, 
and run the 
optimization 
program 
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CHAPTER SIX  

NON-TECHNICAL ASPECTS OF THE LOAD CONTROL PROBLEM  

 

 

Although we spent most of this thesis developing a technical analysis framework, we understand that 

policies, the economic environment, and human behavior play important roles in the energy problem.  We 

will begin our discussion in this chapter with two disastrous events:  the California Energy Crisis in 2000 

and the New York Blackout in 2003.  Then we briefly discuss non-technical issues with special attention 

to current load aggregation practice. 

 

6.1 Energy crisis review 

a California Energy Crisis 2000 

In summer 2000, with severe weather leading to a huge demand in electricity for air-conditioning, and 

with a booming economy leading to fast-increasing use of electricity, California experienced the largest 

unplanned blackout of electricity since World War II.  Electricity supplies fell to dangerous levels, and 

utilities cut power to more than 100,000 homes.  From spring 2000 to the beginning of 2001, California’s 

two biggest utilities spent $12 billion [Holson 2001, Egan 2001] more for power than they collected from 

ratepayers, and paid about $4 billion more for electricity in summer 2000 than they did in summer 1999.  

Utilities were in danger of bankruptcy, companies put off expansion plans, and residents braced for rate 

increases.  The search for explanations for where money went reached a fever pitch.   

 

The California power market went through deregulation in the late 1990’s, among the first such 

experiments in the nation.  As part of deregulation, utilities such as PG&E and SCE sold off power plants 

to outside power companies such as Duke Energy of Charlotte, N.C., and Reliant Energy of Houston, and 

became middlemen [Greenwald 2001].  The intent was to take advantage of plentiful power supply within 

and outside of the state through a bidding system to reduce the utilities’ expense.  Electricity was bought 

and sold in the California power exchange, where buyers and sellers bid for electricity to be used the next 

day.  Demand was matched to supply by a new state agency, the California Independent System Operator. 

 

However, a deregulated market is only partially free – the state did not allow utilities, the new 

intermediaries, to enter into long-term purchasing agreements for fear they would be locked into fixed-

price contracts as deregulation market developed and prices dropped.  Utilities could only buy power on 

the spot (cash) market and were exposed to spot pricing risk.  At the beginning of deregulation, the prices 

at the spot market were low.  The utilities willingly accepted the limitation, as well as a rate freeze with 
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customers until 2002, which made it impossible to transfer the buying risk to the selling side, or to hedge 

the downside risk.  Unfortunately, the rapidly increasing demand, lack of generation capacity within the 

state, unusual weather, high natural gas prices and environmental restrictions pushed prices to a record 

high in mid-2000.  The fact that utilities could only buy power at the last minute left California utilities 

and Independent System Operator in a desperate position with little negotiating power.  In sum, California 

dismantled its private power-generating industry without securing adequate power supplies.    

 

Much of the blame went to a few power companies that generate most of the power for California, such as 

Reliant Energy, Dynegy and Duke Energy.  Whether these power companies manipulated the market and 

artificially pushed up the prices was disputed. These companies denied doing so.  Houston-based Dynegy 

Inc. had one of the best performing stocks in the S&P 500 in 2000 with its shares more than tripling.  

Reliant Energy made $90 million in operating income from California alone during the third quarter of 

2000 - more than twice what the entire subsidiary made in the period the year before [Holson 2001].  

Although the companies argued that they faced high natural gas costs to run power plants for California 

and did not make much profit in the fourth quarter of 2000, a handful of studies suggested [Joskow 2001] 

that these power generators “engaged in behavior to drive prices above competitive levels.”   

 

There are many aspects to blame for this crisis.  The deregulation plan was a very complicated but flawed 

one.  Lacking thorough and objective analysis for the future power market, California utilities were not 

fully prepared to compete in a more finance-oriented market and did not possess in many situations a 

trader’s mind which is very necessary.  A power surplus in the early 1990’s made the utilities hungry for 

deregulation, but it turned into a shortage, with the state’s booming economy straining both generating 

capacity and the natural gas supplies that run many of the power plants.  The state’s onerous 

environmental regulations made it difficult and slow to build new power plants.  Adding a few untimely 

generator shutdowns and cold, dry weather in the northwest that reduced the supply of hydroelectric 

power from that region, and the result was a recipe for a debacle.  

 

Texas started its own power regulation after learning the lessons from California and paid more attention 

to designing a better market system.  As many sources in Texas pointed out, Texas is different from 

California: it has a higher electricity surplus, plenty of natural gas and a diversity of power generations, 

and environmental regulations make it easier to build new power plants.  After a year of deregulation 

implementation, surveys at the end of 2002 [TEC 2003] showed that the deregulation had been so far 

moderately successful but many customers were still not convinced that changing providers can bring 

much benefit because 1) lack of in-depth knowledge of deregulation and positive perceptions of electric 
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competition was in their way of making decisions; 2) most customers were satisfied with current power 

providers and rates and thought there was little need for competition.  For deregulation, there is still a 

fairly long way to go in both improving the system and overcoming consumer inertia.   

 

b Power blackout 2003 

In August 2003, a massive power outage hit New York and most of New York state as well as other 

northeast cities including Toronto, Ottawa, Detroit and Cleveland.  The blackout affected a total of 50 

million people in the U.S. and Canada, and it took anywhere from two to 16 hours to restore the power 

supply for U.S. commercial and residential areas.  By researching references [CNN 2003, Gibbs 2003], 

we try to understand why this happened and what associated problems are.  

 

The exact reason was difficult to pinpoint, but experts had a fairly good idea why: the electrical system in 

the northeast and midwest consists of much capacity to generate power and too few means of moving it 

around smoothly.  Over the past 10 years, electricity demand has jumped 30%, but transmission capacity 

has increased only half that much.  Because everything is tied together, too much strain in one place can 

cause the whole system to malfunction.  There have been a few disastrous blackouts in the past few years 

and the transmission system had been improved, but the safety margin built into the system has been 

eaten away by lack of investment in modernization.   

 

A combination of market forces, political foot-dragging and the reluctance of residents to welcome high-

voltage lines or towers in their neighborhoods has made it almost impossible to create a transmission 

system that can keep up with demand.  Energy policy tends to have too much regulation in certain areas 

and too little in others:  no one was requiring the utilities to upgrade the grid, and utilities were worried 

that if they did so voluntarily, they might not be allowed to charge enough to cover their cost.  The 

government and the energy industry focused more on whether to deregulate or not deregulate.  The 

blackout crisis looked sure to change the landscape where lawmakers decide on new energy bills. 

 

Environmentalists and industry groups have very different opinions toward this multi-state summertime 

blackout.  Environmentalists emphasize the importance of homeowners generating their own power, 

courtesy of clean, renewable energy sources. Industry officials speak instead about building new nuclear 

or conventional power plants or improving existing ones and delivering the power through a modernized 

distribution system. 
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The blackout helped draw more attention to the idea of "power parks" [Gibbs 2003] —communities or 

groups of homes that would generate their own energy courtesy of solar panels, wind turbines, fuel cells 

or natural-gas generators.  The little clusters could be almost entirely self-sufficient and would have the 

freedom to disconnect from the larger network entirely if a regional crash was threatening to knock them 

off-line along with the bigger consumers.  What has always kept this kind of energy free-lancing from 

becoming more than environmentalist daydreaming is that the necessary technologies have remained 

unreliable and prohibitively expensive.  

 

Proponents of the policy hope that it will boost energy independence, but not everyone thinks that is a 

good idea. Because so much of the American economy is involved in the coal, petroleum and nuclear 

industries, walking away from them would set off severe economic dislocation.  Many believe that 

decentralization will play some role in the energy industry of the future but could well be a minority 

player.  After the 2003 fiasco, however, attitudes might change and plenty of consumers would be happy 

to see the whole system replaced—or at least dramatically improved.  What the changes should be and 

how to implement them are the challenges.   

 

6.2 Non-technical issues 

a. Human behavior 

The change of human energy-use behaviors would have a huge impact on building energy performance. 

For example, the saving s would be large if occupants shut off lights when lighting is not needed.  We 

recognize that it may be difficult to implement behavior-related energy saving due to the associated 

inconvenience, but we believe it is worthwhile to let end users know the options available and ease of 

implementing those.  The following measures are from the California Independent Systems Operator’s 

website [CA ISO 2002]: 

 

• Consider replacing old HVAC systems with new energy-efficient systems 

• Install time clocks or setback-programmable thermostats to maximize efficiency 

• Install locking covers on thermostats to prevent employee tampering with temperature settings 

• Perform scheduled maintenance on units including cleaning condenser coils, replacing air filters 

regularly, and checking ducts and pipe insulation for damage 

• Clean condenser coils and replace filters regularly 

• Install ceiling fans 

• Install blinds, or solar screen shades to cool the office 

• Install reflective window film or awnings on all south-facing windows 
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• Close shades or blinds during early morning and late evening to reduce solar insulation heat gain 

• Consider installing an air conditioning economizer to bring in outside air when cool outside 

• For optimal energy savings, set thermostats at 78 degrees F for cooling in the summer and 68 degrees 

F for heating in the winter 

• Install ceiling and wall insulation 

• Insulate water heaters and supply pipes 

 

b. Aggregation policy 

Aggregation can be a promising business when the aggregator follows the policy, understands the 

electricity reconstructing market, and is able to identify potential customers and know them well.  We 

look at the current situation, policies applied and potential development, and problems through 

aggregation cases in Ohio and Massachusetts [Brown 2002] [Alexander 2002].  Both states have opt-out 

aggregation which allows a municipality or a local branch of government to aggregate the load of some or 

all of its customers within its jurisdiction.  The Texas electricity reconstructing site [TEC 2003] also has 

some information for aggregation where opt-out is not an option.  

 

In Ohio, aggregation accounts for 85 percent of residential customer switching, 50 percent of commercial 

customer switching, 25 percent of industrial customer switching, a 17-percent discount on power prices in 

one town in northern Ohio, and discounts of between 1 percent and 15 percent as well as a guarantee of a 

"greener" power mix for another aggregated group of more than 300,000 people in northern Ohio.  

 

Ohio’s Northeast Public Energy Council (ONPEC) is the nation’s largest aggregated group. It took 

advantage of the Ohio restructuring law’s aggregation provisions by combining not only the load of the 

citizens of a single municipality, but the combined load of many municipalities. It is now a buying group 

representing 97 cities or townships and more than 300,000 people. Green Mountain Energy serves this 

buying group on a six-year contract that offers a single price option at a discount from what customers 

would otherwise pay for power. The savings vary from one customer to another, ranging from a high of 

15 percent for a few customers to as low as 1 percent for others. Green Mountain’s product is guaranteed 

to be cleaner than the average Ohio electricity product. It is a combination of 98 percent natural gas and 

nuclear and 2 percent alternate sources, such as wind.  

 

In Massachusetts a smaller scale pilot aggregation program has yielded approximately 45,000 

participants, discounts of 11 to 22 percent, or $3.50 to $7 per month for an average customer and a set of 

green power options available to participants  



 176

 

An opt-out aggregation is a new concept in power markets and, like any new concept, encounters policy 

and others barriers. The efforts in Ohio and Massachusetts have required tremendous patience, 

sophistication and dedication on the part of its organizers. Aggregation, in general, requires that 

policymakers make what can be controversial decisions about how to manage their competitive power 

markets. It does, however, offer a possibility of bringing the benefits of competition to smaller power 

users, who thus far have not seen much benefit to choosing a new power provider.  

 

Brown [2002] concluded that the success of aggregation is tied to regulated retail prices, and wholesale 

prices remain an important determinant of how successful aggregation can be.  Aggregation is likely to be 

most successful in higher priced areas, just as retail competition has been more successful in the parts of 

the country with the highest electricity rates. Wholesale power markets affect aggregation, just as they 

affect any retail power market. Massachusetts’ situation demonstrates that rising or volatile wholesale 

prices can make it as difficult for a marketer to serve an aggregated group as it can be to serve an 

individual customer. 

 

Aggregation can produce savings and can benefit adoption of alternative power sources.  Aggregation 

appears to have given all participating Ohio customers in the aggregators’ jurisdictions at least some 

access to competitively determined electricity prices. Price reductions have not been dramatic, although 

the benefits to participants in the ONPEC group have been broad, including access to alternative sources. 

The Massachusetts program has served as a new way to offer a portfolio of green products to consumers 

and to offer a new set of efficiency programs to the consumers.  

  

One question we need to answer is how to choose participants in order that all participants benefit as 

much as possible.  Porter [1998] pointed out that a company with a good load profile would probably 

avoid becoming involved in an aggregation group unless it is aggregating with businesses that have 

similarly favorable profiles.  To the utility, the most important consideration is when you buy power 

rather than how much or at what load factor.  For individual participants who pay separately, algorithms 

have been developed to allocate savings according to a customer's usage profile and volume.  There is 

some debate as to whether aggregation – especially aggregation without load-profile preferential 

treatment – is a good deal for even the smallest end users. 
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c. Market Innovation and advance in financial markets 

The power industry is undergoing rapid and significant change with the advent of deregulation.  Electric 

power marketers have emerged, and consumers can shop around for best suppliers.  The industry is 

adopting internet-based electronic reservation and trading systems that provide open access to all 

transmission services information for all market participants.  The ideas of intelligent software agents and 

auction services have been explored by some researchers [e2i 1999, Reticular 1999, NYISO 2002].  The 

agents communicate and cooperate with each other and their owners to buy and sell electric power on 

their behalf.  Ideas that have been explored include the dynamics of the electronic marketplace, proper 

vehicle for investigating the appropriate agent behaviors, buying and selling strategies and market 

algorithms necessary for use in an automated power marketplace. 

 

Electricity is a tradable financial product.  Major investment banks and many investment firms are 

investing in the energy market and trading electricity and natural gas.  Some of them have been quite 

profitable.  Aggregators are in fact playing a broker role in the sense that they are middlemen between 

end users and utilities and they can shop around for the best deal for the customers in the aggregation 

pool.  More energy-based products and derivatives have been created, which helps expand the energy 

market.  Through the use of electricity futures, consumers or load aggregators can purchase futures 

contracts to offset or hedge power prices for deliveries in advance.  By doing so, the energy price 

volatility in a deregulated energy market can be mitigated.  One of the biggest obstacles in dealing with 

the California energy crisis in 2000 is that the regulation policies required electricity only be purchased on 

a spot market.  The California utilities had no way to avoid the volatility and ended up purchasing from 

the power companies at sky-high prices for the next day’s use.  Other energy-related financial instruments 

can help utilities, power companies and eventually end users better achieve their goals.  
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CHAPTER SEVEN   

CONCLUSIONS 

 

 

7.1 Research Conclusions  

Summary 

The entire thesis is devoted to improving building HVAC system operations through a variety of 

simulation and optimization methods.  Based on extensive EnergyPlus simulations we have 

proposed some guidelines that can be applied to practical operations.   We have developed a 

simulation-based Matlab GA environment and a model-based nonlinear optimization scheme that 

can be potentially used by sophisticated operators, and we have illustrated through our research 

that optimization methods have good potential in building research.  Overall, with peak demand 

and/or real time pricing applied, we expect load aggregation to offer diversification opportunities 

among participants and to improve the overall load profile, and load shedding to change 

individual load profiles and enhance the aggregation performance.   

 

Chapter 2 conducts EnergyPlus parametric studies of load shedding in a single building and compares 

different strategies in a VAV system.  The simple and efficient load shedding method is to increase 

thermostats, which can lead to about 10W/m2 peak load reduction.  An alternative is to reduce fan 

capacity and if necessary increase supply air and chilled water temperatures.  Temporarily shutting off the 

chiller for an hour in this building is infeasible as it leads to severe comfort problems.  The duration of the 

load shedding period and the start time affect energy savings.  Fan-based night cooling is shown to be 

more energy efficient than chiller-based for this VAV model in Los Angeles, corresponding to 4-9 W/ m2, 

or 10% peak load reduction.  Chiller-based night cooling achieves 12% peak-load reduction in Austin, 

better than fan-based.  Night cooling is recommended if the plant and/or fan are programmable and 

whenever weather permits.  It is important to identify buildings that are more appropriate for load 

shedding.   

 

In Chapter 3, thermostat-based and night-cooling-based load control strategies are optimized for a single 

building.  Two simulation-based optimization algorithms, Direct Search and Genetic Algorithm, are 

implemented and compared regarding their convergence, complexity and accuracy.  Optimization studies 

in this chapter are highly dependent on the simulation performance.  The cost function structure for single 

building optimization presents nonlinearity and discontinuity.  When few variables are involved and cost 
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functions are relatively smooth, DS converges faster than GA, but GA has the advantage when the size of 

the problem becomes large.  For the particular problem of setting up thermostats for the base model, DS 

works well with up to five variables but fails when the size increases to ten.  The user-friendly platform of 

GenOpt makes it possible for building operators to use it in practice, but it is important to include in the 

package global-oriented optimization algorithms such as GA.  Being able to handle a variety of cost 

functions is also necessary.  An EnergyPlus-based Matlab-GA environment is developed, in which we 

conduct a variety of GA optimizations in a systematic way.   

 

Chapter 4 shows the effectiveness of load aggregation through two simplified approaches: smart 

Enumeration and multi-GA.  Smart Enumeration enumerates representative feasible solutions from 

EnergyPlus simulation but avoids unnecessary computation and reduces the size of the feasible sets with 

the help of expert rules.  Multi-GA is an extension of single-building GA, and the function evaluation is a 

series of EnergyPlus simulations for all the aggregation participants.  Aggregation is applied to a small 

pool of two or three buildings to reduce the total peak demand or the total cost.  For the specific building 

under study, we achieve a peak load reduction of 2 – 14% with thermostats as control variables.  This 

peak load reduction consists of the reduction from individual load control and from aggregation.  The 

contribution of the aggregation ranges from 30% to 50% for the two-building and three-building cases.  

We see a 27% peak load reduction and approximately 20% cost reduction in a two-building case with fan-

based night cooling enabled.  Exact numbers for savings depend on the correlation and interdependence 

of the individual participants.  For night cooling, individual improvement is huge, and the benefit from 

the pure aggregation can be ignored.  Enumeration is more efficient at a small scale, but the computation 

of the exhaustive search increases exponentially with the size of the pool.  Multi-GA has relative 

advantage when the problem size becomes large because its computation increases approximately linearly 

with the size.  For the three building models used, 5 buildings is the break point between Enumeration 

and Multi-GA. 

 

Chapter 5 solves the multi-building optimization problem using a model-based approach.  A simple time-

series model is used to represent building dynamics, and regression is applied to correct the peak load and 

the entire power profile.  Two regression models are developed to describe load reduction and comfort 

degradation respectively from the base case due to load control.  In the end, a nonlinear optimization 

scheme brings all these parts together and solves this soft-nonlinear-constraint problem in seconds.  For 

the peak load optimization, the nonlinear optimizer manages to achieve similar optimal actions as those in 

Enumeration and GA, but the base load and savings predictions are off by a certain amount as a price of 
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the simplicity.  For a large number of buildings, the model-based nonlinear optimization method remains 

computationally efficient, given that the constraints remain linear or soft nonlinear.   

 

Key issues 

a. EnergyPlus simulations 

Most of this thesis is based on EnergyPlus simulation.  Therefore, its accuracy, consistency and 

computational efficiency are very important to us.  As a complex software package still under 

development and improvement, EnergyPlus is a great help to our research and also a challenge in the 

sense that we need to understand the complexity and overcome the potential problems.  To the base VAV 

model, we have done basic validation such as heat and mass balances and qualitative checking on 

parameter trends.  In reality, field test will be desired to further verify the model.  We fixed a few 

EnergyPlus problems along the way with the help of the EnergyPlus development team [EnergyPlus 

Support 2003].  EnergyPlus so far is still a computation engine.  We developed a data post-processor in 

VBA to handle a variety of cost functions.   

 

b. The building dynamics model in multi-building optimization  

Developing building dynamics models is not a new topic.  The difficulty here is to come up with a 

modeling scheme that can consider both the time dimension at the individual building level and the space 

dimension at the aggregation level.  Quite a few research results available from references focus on the 

time dimension and have great details of a specific system and its components.  It is not simple to handle 

a number of such models at the same time.  On the other hand, aggregation examples are plentiful:  load 

patch and water heater control in the direct load control field [Chen et al.1995, Kurucz et al.1996] and 

mean-variance portfolio optimization in the investment community [Markowitz 1952], etc. In these 

aggregation examples, individuals are extracted to a static point with several representative properties, 

and the individual dynamics are ignored.  Timing is key to our research – when the peak shows up in the 

aggregated case compared to in the individual cases.  We choose the structure of a central optimizer and 

time-series based individual simulators and believe it has a good balance in handling both time and space.  

Each of the steps is quite simple, but enough to meet the goal discussed above.  

 

c. Which buildings are more appropriate to be aggregated? 

Without load control, the aggregation performance is determined by the diversity of individual profiles 

and differences between individuals.  Diversification guarantees the aggregated profile is flatter than any 

individual ones, but large performance discrepancies between individuals might hurt certain individuals’ 

initiatives of participating in aggregation.  With aggregated load control, deciding whether or not a 
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building is appropriate for aggregation is two-fold:  at the individual level, whether the building responds 

well to load control and shedding; at the aggregation level, whether this building can cooperate with 

others to achieve good overall savings.  This thesis focuses on developing an analytic process and 

assumes that all the individual participants are given, but choosing the right buildings is a very important 

task for a load aggregator in reality.   

 

7.2 Future work 

a. Load prediction model as a whole 

Currently, the load prediction errors are comparable in magnitude to energy savings.  The savings of the 

models in this research are moderate due to the specific system, but further improvement with the 

prediction is still needed.  We simply build today’s profile on yesterday or a similar day’s, and correct the 

predicted profile using an improved peak load.  The base load prediction model could incorporate more 

physics but still be useful for multi-building optimization.  The load reduction model does not consider 

the setback recovery situations, and it is an immediate next step.   

 

b. Discrete variables 

Being able to deal with discrete variables is key to some load control strategies such as scheduling night 

cooling and turning off the chiller for a short period of time, e.g. less than an hour.  In addition, discrete 

variables can be used to represent different operation modes.  For example, we can present different day 

types, Monday through Friday, using five 1/0 variables within the same model and require the sum of 

these five 1/0 variables to be 1 as a constraint.  In this research, we converted the fan status in the night 

cooling problem to a continuous variable specifically for California. But we need a more general 

approach to deal with discrete variables.  It would help to make GA handle both binary and real value 

based coding, which can be an immediate research topic.  In addition, the nonlinear optimizer cannot deal 

with integer variables through the interior point method.  Algorithms such as branch-and-bound can be 

brought into the framework. 

 

c. Peak demand generalized 

In practice, demand charge is applied on a horizon longer than a day, such as a month or a year.  We 

simplify the analysis by assuming the rate structure applied to a single day.  We wish to point out:  1) this 

simplification overestimates the peak demand because a monthly rate structure is applied to a day’s 

profile; 2) the analysis can be generalized to a monthly scale.  The peak load pricing research [Raymond 

1971] in economics will help this expansion.  Peak load pricing deals with the stochastic demand in a 

time series fashion.    
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d. Sensitivity analysis 

Most of this thesis work assumes accuracy in weather and load data.  It does not quantify how the results 

will change and how robust the analysis is when the inputs, such as outdoor temperature measurement, 

change.  Sensitivity analysis is critical in practice and is one of the next steps.   

 

A related topic is that whether our results and/or analysis can be generalized to other building types.  

Much of our work is based on short-term oriented load shedding strategies, such as thermostat set points.  

It might not be appropriate to expand into the situations where mid to long-term load planning is required.  

For example, aggregating hotels, offices and grocery stores would have a much longer control period than 

in our research.  The methods proposed in this research will need to be improved to handle a larger 

parameter space.  

 

e. Stochastic factors 

Throughout the research, we assume all the factors static in order to focus on the major issue of 

aggregation and optimization.  However, we recognize that weather, human behavior and equipment use 

are all stochastic factors.  An ideal solution should have the stochastic aspect in the optimization 

framework.  We argue that for many commercial buildings, the load patterns are relatively stable over 

days and weather forecast, given our setting of predicting a day in advance, is fairly accurate.  Therefore, 

ignoring the stochastic aspect is acceptable at this point, but further studies incorporating stochastic 

factors would be helpful.  Stochastic programming [Freund 2002] can be helpful as long as we categorize 

the stochastic factors in advance with assigned probability.  
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Appendix A.1 EnergyPlus code for the base model 
 
Download at http://mit.edu/hxing/www/3vav.idf or email to hxing@alum.mit.edu 
for the base model.  
 
 
Appendix A.2 Core EnergyPlus code 
 

1. We vary the densities of major construction materials to create models 
with different thermal mass 

2. An outside air system is added to enable free cooling 
3. Thermostat set point schedules, fan schedules and chiller schedules are 

varied during parametric studies and simulation-based optimization 
4. reduce the fan static pressure rise for capacity reduction 

 
 
   MATERIAL:Regular, 
    C4 - 4 IN COMMON BRICK,  !- Name 
    Rough,  !- Roughness 
    0.1014984,  !- Thickness {m}    
    !- Conductivity {W/m-K}, !- density, !- Specific Heat {J/kg-K} 
  !- base material 
    0.7264224, 1922.216,   836.8000,    
  !- high thermalmass (2mass) 
  ! 0.7264224, 3844.432,   836.8000,    
  !- low thermal mass (halfmass) 
  ! 0.7264224, 961.108,   836.8000,    
    0.9000000,  !- Absorptance:Thermal 
    0.7600000,  !- Absorptance:Solar 
    0.7600000;  !- Absorptance:Visible 
  
  MATERIAL:Regular, 
    C10 - 8 IN HW CONCRETE,  !- Name 
    MediumRough,  !- Roughness 
    0.2033016,  !- Thickness {m} 
    !- Conductivity {W/m-K}, !- density, !- Specific Heat {J/kg-K} 
 !- base material 
    1.729577,  2242.585, 836.8000,  
 !- high thermalmass 
 !   1.729577,  4485.17, 836.8000,  
 !- low thermal mass 
 !   1.729577,  1121.293, 836.8000,  
    0.9000000,  0.6500000, 0.6500000;   
 
 MATERIAL:Regular, 
    C12 - 2 IN HW CONCRETE,  !- Name 
    MediumRough,  !- Roughness 
    5.0901599E-02,  !- Thickness {m} 
    !- Conductivity {W/m-K}, !- density, !- Specific Heat {J/kg-K} 
 !- base material 
    1.729577,  2242.585,  836.8000,  
 !- high thermalmass 
 !   1.729577,  4485.17,  836.8000,  
 !- low thermal mass 
 !   1.729577,  1121.293,  836.8000,  
    0.9000000, 0.6500000, 0.6500000;   
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!nightcooling 
  CONTROLLER:OUTSIDE AIR, 
    OA Controller 1,  !- Name 
    ECONOMIZER,  !- EconomizerChoice 
    RETURN AIR TEMP LIMIT,  !- ReturnAirTempLimit   
    NO RETURN AIR ENTHALPY LIMIT,  !- ReturnAirEnthalpyLimit 
    NO LOCKOUT,  !- Lockout 
    FIXED MINIMUM,  !- MinimumLimit 
    Mixed Air Node,  !- Control_Node 
    Outside Air Inlet Node,  !- Actuated_Node 
    0.2,  !- minimum outside air flow rate {m3/s} 
    1.3,  !- maximum outside air flow rate {m3/s} 
    10,  !- temperature limit {C}  !!! how to set this temp needs more 
thoughts 
    ,  !- temperature lower limit {C} 
    ,  !- enthalpy limit {J/kg} 
    Relief Air Outlet Node,  !- Relief_Air_Outlet_Node 
    Air Loop Inlet Node,  !- Return_Air_Node 
    Min OA Sched;  !- Minimum Outside Air Schedule Name 
 
DAYSCHEDULE, 
    Zone Hi Temp Day Sch, Temperature,   

30.,30.,30.,30.,30.,30.,30.,24.,24.,24.,24.,24., 
24.,24, 24, 24, 24.,30.,30.,30.,30.,30.,30.,30.; 

!    ,  ,  ,  ,  ,  ,  ,20,20,20,20,24,24,24,24,24,24,  ,  ,  ,  ,  ,  , ; 
 
  DAYSCHEDULE, 
    FanAndVAVOperatingDaySched,  Fraction,  !- ScheduleType 
  night setup - fan not running at night 
     0.,0.,0.,0.,0.,0.,0.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,0.,0.,0.,0.,0.,0.,0.; 
 !   1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.; 
 
 
DAYSCHEDULE, 
    CoolingcoilOperatingDaySched,  Fraction,  !- ScheduleType 
 !  original chiller schedule - start at 8am 
    0.,0.,0.,0.,0.,0.,0.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,0.,0.,0.,0.,0.,0.,0.; 
 
 
  FAN:SIMPLE:VariableVolume, 
    Var Vol Supply Fan 1,  !- Fan Name 
    FanAndVAVAvailSched,  !! FanAndCoilAvailSched,  !- Available Schedule 
    0.7,  !- Fan Total Efficiency 
    600.0,  !- Delta Pressure {Pa} ! originally 600 delta pressure 
    1.3,  !- Max Flow Rate {m3/s} 
    0.20,  !- Min Flow Rate {m3/s} 
    0.9,  !- Motor Efficiency 
    1.0,  !- Motor In Airstream Fraction 
    0.35071223,  !- FanCoefficient 1 
    0.30850535,  !- FanCoefficient 2 
    -0.54137364,  !- FanCoefficient 3 
    0.87198823,  !- FanCoefficient 4 
    0.000,  !- FanCoefficient 5 
    Mixed Air Node,  !- Fan_Inlet_Node 
    Cooling Coil Air Inlet Node;  !- Fan_Outlet_Node 
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Appendix B.1 Matlab GA code for both single and multiple buildings 
 
B.1.1 Main program 
 
%function mymain(pop, gen, model_index, weather) 
%function mymain(pop, gen, model_index, weather) 
%pop - population in GA, gen- total generations to run 
%model_index  - which model to run 
%               1: single bldg, 14-17p 4hr thermostats 
%               2: single bldg, 10 worktime hrs thermostats 
%               3: single bldg, fan starting time + 8-11a 4 thermostats 
%               4: single bldg, chiller start time + 8-11a 4 thermostats 
%      5: single bldg, fan on fixed period, 10 thermostats 
%      6: 2 bldgs, 14-17p thermostats, (8 vars) 
%      7: 2 bldgs, fan starting time + 8-11a 4 thermostats (10 vars) 
%      8: 5 bldgs, 13-17 thermostats (or could be all 10 worktime 
hrs) 
% weather - "SF", "LA" and "Austin" etc. 
% VBA codes apply comfort constraints 
 
%cost function - peak load, or total cost or a mix of total cost and comfort 
%control variables - thermostats, nightcooling schedules, and ... 
 
clear all 
close all 
%load nextPop.mat 
global history_array_new  array_temp 
global evaluation_ctr epEval_ctr simsave_ctr 
global model_index  
 
model_index = 7; 
 
num_of_gen=150; 
num_in_pop=20; 
 
evaluation_ctr=0; 
epEval_ctr=0; 
simsave_ctr=0; 
 
 
% Crossover Operators 
xFns = 'arithXover simpleXover'; 
xOpts = [1 0; 1 0]; 
 
% Mutation Operators 
mFns = 'boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'; 
mOpts = [2 0 0;3 200 4;2 200 4;2 0 0]; %change multiNonUnif and nonUnif paras 
3 ->2 
 
% Termination Operators 
termFns = 'maxGenTerm'; 
termOps = [num_of_gen]; % number of generations before program terminates 
 
% Selection Function 
selectFn = 'normGeomSelect'; %could be 'roulette' too 
selectOps = [0.08]; 
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% Evaluation Function 
evalFn = 'myepeval'; 
evalOps = [];  %consider putting base file name in here? [2, 24, 15, 16] 
 
% GA Options [epsilon float/binar display] 
gaOpts=[1e-3 1 1]; 
 
%4-hr thermostats 14,15,16,17pm 
if model_index ==1  
   bounds = [22 28; 22 28; 22 28; 22 28];   
     
 %10-hr thermostats 
elseif model_index ==2  
   bounds =[22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28]; 
 
%fan-based night cooling, fan starting time, early AM thermostats 
elseif model_index ==3  
   bounds =[17 31; 20 26; 20 26; 20 26; 20 26];  
    
%fan-based night cooling. fan starting time and all day thermostats    
elseif model_index ==30 
   bounds=[17 31; 20 26; 20 26; 20 26; 20 26; 20 26; ... 
            20 26; 20 26; 20 26; 20 26; 20 26]; 
       
%chiller-based night cooling, chiller starting time, early AM thermostats 
elseif model_index ==4 
   bounds= [17 31; 20 26; 20 26; 20 26; 20 26]; 
    
%with fan on 12a-5a, 10-hr thermostats, other times float with economizer 
elseif model_index ==5  
   bounds =[22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28]; 
    
%two bldgs, 4-hr thermostats 14,15,16,17pm (8 vars total) 
elseif model_index ==6 
   bounds = [24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 
24 26]; 
 
%two bldgs with night cooling, fan start time, early AM thermostats (10vars) 
elseif model_index ==7     
   bounds = [17 31; 20 26; 20 26; 20 26; 20 26; 17 31; 20 26; 20 26; 20 26; 
20 26]; 
 
elseif model_index ==8 
 bounds = [24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 
... 
24 26; 24 26; 24 26; 24 26; 24 26; 24 26; ... 
 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26]; 
 
 end 
 
 
% Generate an intialize population of size 20 
startPop = initializega(num_in_pop, bounds, evalFn, evalOps, [1e-3 1]) 
%startPop=endPop; 
 
history_array_new=[floor(startPop(:,1:end-1))*10 startPop(:,end)];%put into 
array 
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save history_array_new history_array_new; 
array_temp = history_array_new; 
 
%run the GA to create next generation 
%end of GA when the criteria are satisfied or limit is reached 
start_time=cputime; 
 
[x,endPop,bestPop,trace]=ga(bounds,evalFn,evalOps,startPop,gaOpts,... 
    termFns,termOps,selectFn,selectOps,xFns,xOpts,mFns,mOpts); 
    
 % x is the best solution found 
x; 
% endPop is the ending population 
endPop; 
% bestPop is the best solution tracked over generations 
bestPop; 
% trace is a trace of the best value and average value of generations 
trace; 
 
% Plot the best over time 
% clf 
plot(trace(:,1),trace(:,2)); 
hold on 
plot(trace(:,1),trace(:,3)); 
 
num_of_epEval =  epEval_ctr 
num_of_simSave = simsave_ctr 
%num_of_epEval_GA = evaluation_ctr 
timeuse_in_min=(cputime-start_time)/60 
time_per_Eval = timeuse_in_min / num_of_epEval 
 
save history_array_new history_array_new 
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B.1.2 EnergyPlus-based function evaluator 
 
   function [sol, val]= myepeval(sol,options) 
    
   global epEval_ctr 
   global model_index  
    
   T0=24; 
    
   cd C:\EnergyPlus1.1.0\ExampleFiles 
    
   %4hr thermostat control only, no nightcooling 
   if model_index ==1  
        
       dos('copy Tibase.idf Tivary.idf');            
       file_id=fopen('Tivary.idf','A'); 
        
       fprintf(file_id,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch, 
Temperature'); 
       for i=1:7 
          fprintf(file_id, '%s%s', ',', ' ' ) 
       end 
       for i=8:13   
           fprintf(file_id, '%s%f ', ',', T0); 
       end 
       for i=14:17  %hours 14,15,16,17 
           fprintf(file_id, '%s%f ', ',', sol(i-13)); 
       end 
       for i=18:24 %hours 18-24 
           fprintf(file_id, '%s%s ', ',', ' '); 
       end 
       fprintf(file_id,'%s ',';'); 
        
       fclose(file_id); 
        
        
   %10hr thermostat control only, no nightcooling      
   elseif model_index ==2 
       
       dos('copy Tibase.idf Tivary.idf');                  
       file_id=fopen('Tivary.idf','A'); 
        
       fprintf(file_id,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch, 
Temperature'); 
       for i=1:7 
           fprintf(file_id, '%s%s', ',', ' ' ) 
       end 
       for i=8:17  %hours 8-17 
           fprintf(file_id, '%s%f ', ',', sol(i-7)); 
       end 
       for i=18:24 %hours 18-24 
           fprintf(file_id, '%s%s ', ',', ' '); 
       end 
       fprintf(file_id,'%s ',';'); 
        
       fclose(file_id); 
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   % nightcooling enabled - fan start time and discharge process 
 elseif model_index ==3 
     
       dos('copy fanTibase1.idf Tivary.idf');                  
       file_id=fopen('Tivary.idf','A'); 
 
       fprintf(file_id,'\n %s ', 'DAYSCHEDULE, FanAndVAVOperatingDaySched, 
Fraction'); 
       tfan=round(sol(1)); 
       if tfan > 24 
          tfan=tfan-24; 
          for i=1:tfan 
             fprintf(file_id, '%s%d ',',',0); 
          end 
          for i=(tfan+1):17 
             fprintf(file_id, '%s%d ',',',1); 
          end 
          for i=18:24 
             fprintf(file_id, '%s%d ',',',0); 
          end 
          fprintf(file_id,'%s ',';');      
       elseif 17 <tfan <24   
          for i=1:17 
             fprintf(file_id, '%s%d ',',',1); 
          end 
          for i=18:tfan 
             fprintf(file_id, '%s%d ',',',0); 
          end 
          for i=(tfan+1):24 
             fprintf(file_id, '%s%d ',',',1); 
          end 
          fprintf(file_id,'%s ',';');       
       elseif tfan ==24 
          for i=1:17 
             fprintf(file_id, '%s%d ',',',1); 
          end 
          for i=18:24 
             fprintf(file_id, '%s%d ',',',0); 
          end 
          fprintf(file_id,'%s ',';');       
       elseif tfan ==17 
          for i=1:24 
             fprintf(file_id, '%s%d ',',',1); 
          end 
          fprintf(file_id,'%s ',';');                        
       end 
        
       %% only specify four temperatures in the earlyAM discharging process 
       fprintf(file_id,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch, 
Temperature'); 
       for i=1:7 
          fprintf(file_id, '%s ',' ,'); 
       end 
       for i=8:11 
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          fprintf(file_id, '%s%f ', ',', sol(i-6)); 
       end 
       for i=12:17 
          fprintf(file_id, '%s%f ', ',', T0); 
       end 
       for i=18:24 
          fprintf(file_id, '%s ',' ,'); 
       end 
       fprintf(file_id,'%s ',';');  
        
       fclose(file_id); 
       %%-------------------------------------------------- 
    
    elseif model_index ==30 
     
       dos('copy fanTibase10.idf Tivary.idf');                  
       file_id=fopen('Tivary.idf','A'); 
 
       fprintf(file_id,'\n %s ', 'DAYSCHEDULE, FanAndVAVOperatingDaySched, 
Fraction'); 
       tfan=round(sol(1)); 
       if tfan > 24 
          tfan=tfan-24; 
          for i=1:tfan 
             fprintf(file_id, '%s%d ',',',0); 
          end 
          for i=(tfan+1):17 
             fprintf(file_id, '%s%d ',',',1); 
          end 
          for i=18:24 
             fprintf(file_id, '%s%d ',',',0); 
          end 
          fprintf(file_id,'%s ',';');      
       elseif 17 <tfan <24   
          for i=1:17 
             fprintf(file_id, '%s%d ',',',1); 
          end 
          for i=18:tfan 
             fprintf(file_id, '%s%d ',',',0); 
          end 
          for i=(tfan+1):24 
             fprintf(file_id, '%s%d ',',',1); 
          end 
          fprintf(file_id,'%s ',';');       
       elseif tfan ==24 
          for i=1:17 
             fprintf(file_id, '%s%d ',',',1); 
          end 
          for i=18:24 
             fprintf(file_id, '%s%d ',',',0); 
          end 
          fprintf(file_id,'%s ',';');       
       elseif tfan ==17 
          for i=1:24 
             fprintf(file_id, '%s%d ',',',1); 
          end 
          fprintf(file_id,'%s ',';');                        
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       end 
        
       %% all 10 thermostats 
       fprintf(file_id,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch, 
Temperature'); 
       for i=1:7 
          fprintf(file_id, '%s ',' ,'); 
       end 
       for i=8:17 
          fprintf(file_id, '%s%f ', ',', sol(i-6)); 
       end 
       for i=18:24 
          fprintf(file_id, '%s ',' ,'); 
       end 
       fprintf(file_id,'%s ',';');  
        
       fclose(file_id); 
       %%-------------------------------------------------- 
    
   %nightcooling enabled - chiller starting time and discharge process,  
 elseif model_index == 4            
   %with fan on 12a-5a, 10-hr thermostats, not used 
   elseif model_index ==5  
      
   %two bldgs, 4-hr thermostats 14,15,16,17pm (8 vars total) 
   %thermal comfort constraints applied by VBA codes 
   elseif model_index ==6 
       
       dos('copy Tibase1.idf Tivary1.idf'); 
       dos('copy Tibase2.idf Tivary2.idf');            
 
       file_id1=fopen('Tivary1.idf','A'); 
       fprintf(file_id1,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch, 
Temperature'); 
       for i=1:7 
          fprintf(file_id1, '%s%s', ',', ' ' ) 
       end 
       for i=8:12   
           fprintf(file_id1, '%s%f ', ',', T0); 
       end 
       for i=13:17  %hours 14,15,16,17 of bldg1 (1,2,3,4 of 8 vars) 
           fprintf(file_id1, '%s%f ', ',', sol(i-12)); 
       end 
       for i=18:24 %hours 18-24 
           fprintf(file_id1, '%s%s ', ',', ' '); 
       end 
       fprintf(file_id1,'%s ',';'); 
        
 
       file_id2=fopen('Tivary2.idf','A'); 
       fprintf(file_id2,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch, 
Temperature'); 
       for i=1:7 
          fprintf(file_id2, '%s%s', ',', ' ' ) 
       end 
       for i=8:12   
           fprintf(file_id2, '%s%f ', ',', T0); 
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       end 
       for i=13:17  %hours 13,14,15,16,17 of bldg2 (6,7,8,9,10 of 10 vars) 
           fprintf(file_id2, '%s%f ', ',', sol(i-7)); 
       end 
       for i=18:24 %hours 18-24 
           fprintf(file_id2, '%s%s ', ',', ' '); 
       end 
       fprintf(file_id2,'%s ',';'); 
        
       fclose(file_id1); 
     fclose(file_id2); 
 
   %two bldgs, nightcooling enabled, fan start time, early AM thermostats  
 elseif model_index ==7     
       
       dos('copy NC_fan1.idf Tivary1.idf'); 
       dos('copy NC_fan2.idf Tivary2.idf');            
        
       file_id1=fopen('Tivary1.idf','A'); 
       file_id2=fopen('Tivary2.idf','A'); 
        
   % bldg 1 input -------------------------------- 
       fprintf(file_id1,'\n %s ', 'DAYSCHEDULE, FanAndVAVOperatingDaySched, 
Fraction'); 
       tfan=round(sol(1)); 
       if tfan > 24 
          tfan=tfan-24; 
          for i=1:tfan 
             fprintf(file_id1, '%s%d ',',',0); 
          end 
          for i=(tfan+1):17 
             fprintf(file_id1, '%s%d ',',',1); 
          end 
          for i=18:24 
             fprintf(file_id1, '%s%d ',',',0); 
          end           fprintf(file_id1,'%s ',';');      
       elseif 17 <tfan <24   
          for i=1:17 
             fprintf(file_id1, '%s%d ',',',1); 
          end 
          for i=18:tfan 
             fprintf(file_id1, '%s%d ',',',0); 
          end 
          for i=(tfan+1):24 
             fprintf(file_id1, '%s%d ',',',1); 
          end 
          fprintf(file_id1,'%s ',';');       
       elseif tfan ==24 
          for i=1:17 
             fprintf(file_id1, '%s%d ',',',1); 
          end 
          for i=18:24 
             fprintf(file_id1, '%s%d ',',',0); 
          end 
          fprintf(file_id1,'%s ',';');       
       elseif tfan ==17 
          for i=1:24 
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             fprintf(file_id1, '%s%d ',',',1); 
          end 
          fprintf(file_id1,'%s ',';');                        
       end 
        
       %% only specify four temperatures in the earlyAM discharging process 
       fprintf(file_id1,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch, 
Temperature'); 
       for i=1:7 
          fprintf(file_id1, '%s ',' ,'); 
       end 
       for i=8:11 
          fprintf(file_id1, '%s%f ', ',', sol(i-6)); 
       end 
       for i=12:17 
          fprintf(file_id1, '%s%f ', ',', T0); 
       end 
       for i=18:24 
          fprintf(file_id1, '%s ',' ,'); 
       end 
       fprintf(file_id1,'%s ',';');  
       % bldg 1 input ends --------------------------------- 
        
       % bldg 2 input -------------------------------------- 
       fprintf(file_id2,'\n %s ', 'DAYSCHEDULE, FanAndVAVOperatingDaySched, 
Fraction'); 
       tfan=round(sol(6)); 
       if tfan > 24 
          tfan=tfan-24; 
          for i=1:tfan 
             fprintf(file_id2, '%s%d ',',',0); 
          end 
          for i=(tfan+1):17 
             fprintf(file_id2, '%s%d ',',',1); 
          end 
          for i=18:24 
             fprintf(file_id2, '%s%d ',',',0); 
          end 
          fprintf(file_id2,'%s ',';');      
       elseif 17 <tfan <24   
          for i=1:17 
             fprintf(file_id2, '%s%d ',',',1); 
          end 
          for i=18:tfan 
             fprintf(file_id2, '%s%d ',',',0); 
          end 
          for i=(tfan+1):24 
             fprintf(file_id2, '%s%d ',',',1); 
          end 
          fprintf(file_id2,'%s ',';');  
       elseif tfan==24 
          for i=1:17 
             fprintf(file_id2, '%s%d ',',',1); 
          end 
          for i=18:24 
             fprintf(file_id2, '%s%d ',',',0); 
          end 
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          fprintf(file_id2,'%s ',';'); 
       elseif tfan ==17 
          for i=1:24 
             fprintf(file_id2, '%s%d ',',',1); 
          end 
          fprintf(file_id2,'%s ',';');              
       end 
        
     fprintf(file_id2,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch, 
Temperature'); 
       for i=1:7 
          fprintf(file_id2, '%s ',' ,'); 
       end 
       for i=8:11 
          fprintf(file_id2, '%s%f ', ',', sol(i-1)); 
       end 
       for i=12:17 
          fprintf(file_id2, '%s%f ', ',', T0); 
       end 
       for i=18:24 
          fprintf(file_id2, '%s ',' ,'); 
       end 
       fprintf(file_id2,'%s ',';');  
 
       fclose(file_id1); 
       fclose(file_id2); 
      
   
    elseif model_index == 8 %five buildings, testing for time 
        
       dos('copy Tibase1.idf Tivary1.idf'); 
       dos('copy Tibase1.idf Tivary2.idf'); 
       dos('copy Tibase1.idf Tivary3.idf');            
       dos('copy Tibase2.idf Tivary4.idf');            
       dos('copy Tibase2.idf Tivary5.idf');   
             
       for Tik = 1:5 
           
          if Tik==1 
             estr = ['file_id = fopen(''Tivary1.idf'',''A'');']; 
          elseif Tik ==2 
             estr = ['file_id = fopen(''Tivary2.idf'',''A'');']; 
          elseif Tik ==3 
             estr = ['file_id = fopen(''Tivary3.idf'',''A'');']; 
          elseif Tik == 4 
             estr = ['file_id = fopen(''Tivary4.idf'',''A'');']; 
          elseif Tik ==5 
             estr = ['file_id = fopen(''Tivary5.idf'',''A'');']; 
          end 
          eval(estr); 
                         
       fprintf(file_id,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch, 
Temperature'); 
       for i=1:7 
          fprintf(file_id, '%s%s', ',', ' ' ) 
       end 
       for i=8:12   
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           fprintf(file_id, '%s%f ', ',', T0); 
       end 
       for i=13:17   
          fprintf(file_id, '%s%f ', ',', sol(i-12+(Tik-1)*5)); 
       end 
       for i=18:24  
           fprintf(file_id, '%s%s ', ',', ' '); 
       end 
       fprintf(file_id,'%s ',';'); 
             
       fclose(file_id); 
       end 
             
 end  
   if model_index == 6 | model_index ==7 % two-buildings 
       epEval_ctr=epEval_ctr+2; 
       cd C:\EnergyPlus1.1.0 
       %runeplus2 starts runeplus Tivary2 weather in the end 
       dos('runeplus2bldg Tivary1 LA');            
    elseif model_index ==8 
   epEval_ctr=epEval_ctr+5; 
       cd C:\EnergyPlus1.1.0 
       dos('runeplus5 Tivary1 LA');        
    else %single building 
       epEval_ctr=epEval_ctr+1; 
       cd C:\EnergyPlus1.1.0 
       dos('runeplus Tivary LA');            
    end      
     
    cd C:\my_research\single_para\genoptfiles\ 
    file_out=fopen('newoutput.txt','r'); 
    val=fscanf(file_out, '%f'); 
     

cd C:\'Program Files'\MatlabR11\work\GA 
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Appendix B.2 GenOpt codes 
 
B.2.1 GenOpt Command file 
 
Vary 
{ 
 Parameter 
 { 
  Name    = Ti2; 
  Min     = 22; 
  Ini     = 26; 
  Max     = 28; 
  Step    = 0.2; 
 } 
 Parameter 
 { 
  Name    = Ti3; 
  Min     = 22; 
  Ini     = 26; 
  Max     = 28; 
  Step    = 0.2; 
 } 
  
} 
 
OptimizationSettings 
{ 
 MaxIte = 100; 
 MaxEqualResults = 5; 
 WriteStepNumber = false; 
} 
Algorithm 
{ 
        Main = HookeJeeves;   // Main = EquMesh; 
        StepReduction = 0.5; 
        NumberOfStepReduction = 3; 
} 
 
 
B.2.2 GenOpt initialization file 
 
Simulation { 
  Files { 
    Template { 
      File1 = xTemplate.txt; 
      Path1 = C:\My_Research\single_para\genoptfiles; 
    } 
    Input { 
      File1 = x.idf; 
      Path1 = C:\EnergyPlus1.1.0\ExampleFiles; 
      //SavePath = Simulation.Files.Template.Path1; 
    } 
    Log { 
      File1 = x.err; 
      Path1 = Simulation.Files.Input.Path1; 
      //SavePath = Simulation.Files.Template.Path1; 
    } 
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    Output { 
      File1 = newoutput.txt; 
      Path1 = Simulation.Files.Template.Path1; 
      //SavePath = Simulation.Files.Template.Path1; 
    } 
    Configuration { 
      File1 = configuration.cfg; 
      Path1 = C:\Research\go_prg\cfg; 
    } 
  } 
  CallParameter { // optional section 
    Suffix = Austin; 
  } 
 
  ObjectiveFunctionLocation 
  { 
// Delimiter1 = "Peak load," ; 
// Name1      = "Peak load"; 
 Delimiter1 = "Total load," ; 
 Name1      = "Total load"; 
// Delimiter3 = "day avg PPD," ; 
// Name3      = "day avg PPD"; 
// Delimiter1 = "Total energy cost," ; 
// Name1      = "Total energy cost"; 
// Delimiter1 = "aggr cost," ; 
// Name1      = "aggr cost"; 
 
  } 
} // end of section Simulation 
 
Optimization { 
  Files { 
    Command { 
      File1 = Command.txt; 
      Path1 = Simulation.Files.Template.Path1; 
    } 
 
B.2.3 GenOpt configuration file  
 
// Error messages of the simulation program 
SimulationError 
{ 
    ErrorMessage = "** Severe  **"; 
    ErrorMessage = "**  Fatal  **"; 
    ErrorMessage = "** EnergyPlus Terminated--Error(s) Detected"; 
} 
// Format of simulation input files 
IO 
{ 
    NumberFormat = Float; 
} 
SimulationStart 
{ 
   Command = "cmd /c \"start /DC:\\EnergyPlus1.1.0 /WAIT /MIN RunEPlus.bat 
%Simulation.Files.Input.File1% %Simulation.CallParameter.Suffix%\"" ;    
   WriteInputFileExtension = false; 
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Appendix B.3  
VBA code for data post processing for Matlab GA and GenOpt DS 
 
Public Sub transition () 
 
Dim title As String 
Dim page As String 
Dim Tik As Integer 
 
For Tik = 1 To 5  'can post-process 1 – n buildings 
 
title = "C:\EnergyPlus1.1.0\ExampleFiles\Tivary" & Tik & ".csv" 
page = "bldg" & Tik 
 
Workbooks.Open Filename:=title 
Cells.Select 
Selection.Copy 
Windows("extract.xls").Activate 
Sheets.Add 
Cells.Select 
ActiveSheet.Paste 
ActiveSheet.Name = page 
 
'column o - avg PMV 
Range("O2").Formula = "=(L2+M2+N2)/3" 
Range("O2").Select 
Selection.AutoFill Destination:=Range("O2:O25"), Type:=xlFillDefault 
' column P - avg PPD 
Range("P2").Formula = "=100-95*exp(-(0.03353*O2^4+0.2179*O2^2))" 
Range("P2").Select 
Selection.AutoFill Destination:=Range("P2:P25"), Type:=xlFillDefault 
' working time PPD 
Range("P26").Formula = "=average(P9:P18)" 
 
' column Q - load W/m2 
Range("Q2").Formula = "=(G2+H2+I2)/(3600*102)" 
Range("Q2").Select 
Selection.AutoFill Destination:=Range("Q2:Q25"), Type:=xlFillDefault 
' peak load 
'matlab GA is max, so '-' used for peak load as cost fn 
Range("Q26").Formula = "=max(Q2:Q25)" 
' total load 
Range("Q28").Formula = "=sum(Q2:Q25)" 
 
Next Tik 
 
For i = 9 To 18  ' only care about the peak during 8-17 
 

If Sheets("bldg1").Range("P" & i).Value > 50 Or  
Sheets("bldg2").Range("P" & i).Value > 50 Or  
Sheets("bldg3").Range("P" & i).Value > 50 Or  
Sheets("bldg4").Range("P" & i).Value > 50 Or  
Sheets("bldg5").Range("P" & i).Value > 50 Then 
Sheets("price").Range("J" & i).Value = 399 'set output if PPD violates 
 

Else 
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Sheets("price").Range("J" & i).Value = Sheets("bldg1").Range("Q" & 
i).Value + Sheets("bldg2").Range("Q" & i).Value + Sheets("bldg3").Range("Q" & 
i).Value  
+ Sheets("bldg4").Range("Q" & i).Value + Sheets("bldg5").Range("Q" & i).Value 
 
End If 
 
Next i 
 
' aggregated peak load - Matlab GA is maximization 
Sheets("price").Range("J26").Formula = "=max(J9:J18)" 
Sheets("price").Range("J27").Formula = "=400-max(J9:J18)" 
 
fr = FreeFile 
Open "C:\My_Research\single_para\genoptfiles\newoutput.txt" For Output As #fr 
 
'peak demand output for GenOpt Direct Search  
'Print #fr, "Peak load,"; 
'Print #fr, Sheets("price").Range("J26").Value 
 
'peak demand output for matlab GA  
Print #fr, Sheets("price").Range("J27").Value 
 
Close #fr 
     
Sheets("bldg1").Activate 
DeleteWorksheet 
Sheets("bldg2").Activate 
DeleteWorksheet 
Sheets("bldg3").Activate 
DeleteWorksheet 
Sheets("bldg4").Activate 
DeleteWorksheet 
Sheets("bldg5").Activate 
DeleteWorksheet 
 
 
ChDir "C:\EnergyPlus1.1.0\ExampleFiles" 
Workbooks("Tivary1.csv").Close 
Workbooks("Tivary2.csv").Close 
Workbooks("Tivary3.csv").Close 
Workbooks("Tivary4.csv").Close 
Workbooks("Tivary5.csv").Close 
 
 
ChDir "C:\My_Research\single_para\genoptfiles" 
Workbooks("extract.xls").Save 
Workbooks("extract.xls").Close 
 
End Sub 
 
Public Sub DeleteWorksheet() 
Application.DisplayAlerts = False 
ActiveWindow.SelectedSheets.Delete 
Application.DisplayAlerts = True 
End Sub 
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Appendix C.1  
Key EnergyPlus inputs for three models used in the multi-building studies 
 
 
Difference in thermal mass can be found in Appendix A.2 
 

Model 1 and 2: half mass 
Model 3: 2 mass 

 
Difference in the internal load pattern 
 

Model 1 and 3: 
  DAYSCHEDULE, 
    BLDG Day   1,  !- Name 
    Any Number,  !- ScheduleType 
    0.00,0.00,0.00,0.00,0.00,0.00,0.10,0.50,1.00,1.00,1.00,1.00, 
    0.50,1.00,1.00,1.00,0.50,0.10,0.00,0.00,0.00,0.00,0.00,0.00; 
  DAYSCHEDULE, 
    BLDG Day   5,  !- Name 
    Any Number,  !- ScheduleType 
    0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00,1.00,1.00,1.00, 
    1.00,1.00,1.00,1.00,1.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00; 

 
Model 2: 
  DAYSCHEDULE, 
    BLDG Day   1,  !- Name 
    Any Number,  !- ScheduleType 
    0.00,0.00,0.00,0.00,0.00,0.50,0.50,1.00,1.10,1.20,1.30,1.30, 
    1.50,1.30,1.00,0.80,0.40,0.10,0.00,0.00,0.00,0.00,0.00,0.00; 
  DAYSCHEDULE, 
    BLDG Day   5,  !- Name 
    Any Number,  !- ScheduleType 
    0.00,0.00,0.00,0.00,0.00,0.20,0.20,0.4,1.00,1.10,1.30,1.30, 
    1.5,1.10,0.90,0.70,0.55,0.50,0.30,0.30,0.00,0.00,0.00,0.00; 

 
Whether or not there is a west window 
 

Models 1 and 2 have a west window, but model 3 does not 
!! west window in north zone 

   Surface:HeatTransfer:Sub, 
     Zn003:Wall001:Win001,  !- User Supplied Surface Name 
     Window,  !- Surface Type 
     WIN-CON-LIGHT,  !- Construction Name of the Surface 
     Zn003:Wall001,  !- Base Surface Name 
     ,  !- OutsideFaceEnvironment Object 
     0.5000000,  !- View Factor to Ground 
     ,  !- Name of shading control 
     ,  !- WindowFrameAndDivider Name 
     1.0,  !- Multiplier 
     4,  !- Number of Surface Vertice Groups -- Number of (X,Y,Z) 
group 
     0.0000000E+00,10.0,3.048000,  !- X,Y,Z ==> Vertex 1 
     0.0000000E+00,10,0.0000000E+00,  !- X,Y,Z ==> Vertex 2 
     0.0000000E+00,8.0,0.0000000E+00,  !- X,Y,Z ==> Vertex 3 
    0.0000000E+00,8.0,3.048000;  !- X,Y,Z ==> Vertex 4 
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Appendix C.2 Matlab code to match multiple building in Enumeration 
 
 
data1=load('bldg1_load.dat'); 
data2=load('bldg2_load.dat'); 
data3=load('bldg3_load.dat'); 
data4=load('bldg1_load.dat'); 
data5=load('bldg1_load.dat'); 
 
N1=length(data1); 
N2=length(data2); 
N3=length(data3); 
N4=length(data4); 
N5=length(data5); 
 
ppd1=load('bldg1_ppd.dat'); 
ppd2=load('bldg2_ppd.dat'); 
ppd3=load('bldg3_ppd.dat'); 
ppd4=load('bldg1_ppd.dat'); 
ppd5=load('bldg1_ppd.dat'); 
 
sum12_base=data1(:,1)+data2(:,1); 
sum13_base=data1(:,1)+data3(:,1); 
sum23_base=data2(:,1)+data3(:,1); 
sum14_base=data1(:,1)+data4(:,1); 
sum25_base=data2(:,1)+data5(:,1); 
 
figure 
plot(data1(:,1),'g*') 
hold 
plot(data2(:,1),'r+') 
plot(data3(:,1),'kx') 
plot(data4(:,1),'mo') 
plot(data5(:,1),'c-') 
legend('bldg1', 'bldg2', 'bldg3','bldg4','bldg5') 
plot(data1(:,1),'g') 
plot(data2(:,1),'r') 
plot(data3(:,1),'k') 
plot(data4(:,1),'m') 
plot(data5(:,1),'c') 
xlabel('time (hr)') 
ylabel('power consumption (W/m2)') 
title('single building load profiles') 
 
 
[sum12, peak12, index12_1, index12_2]=match2(data1,N1, data2, N2); 
plotcomp2(sum12_base, data1(:,1), data2(:,1), sum12, data1(:,index12_1), 
data2(:,index12_2)); 
plotppd2(ppd1, index12_1, ppd2, index12_2); 
[peak12_base,peak12_base_time]=max(sum12_base) 
[peak12_check, peak12_time]=max(sum12) 
singlesum12 = demandp*max(data1(:,1))+sum(data1(:,1).*costp)+... 
   demandp*max(data2(:,1))+sum(data2(:,1).*costp);; 
[singlesum12max, singlesum12max_index]=max(singlesum12) 
indvsum12 = demandp*max(data1(:,32))+sum(data1(:,32).*costp)+... 
   demandp*max(data2(:,28))+sum(data2(:,28).*costp);; 
[indvsum12max, indvsum12max_index]=max(indvsum12) 
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[sum13, peak13, index13_1, index13_2]=match2(data1,N1, data3, N3); 
plotcomp2(sum13_base, data1(:,1), data3(:,1), sum13, data1(:,index13_1), 
data3(:,index13_2)); 
plotppd2(ppd1, index13_1, ppd3, index13_2); 
[peak13_base,peak13_base_time]=max(sum13_base) 
[peak13_check, peak13_time]=max(sum13) 
singlesum13 = demandp*max(data1(:,1))+sum(data1(:,1).*costp)+... 
   demandp*max(data3(:,1))+sum(data3(:,1).*costp);; 
[singlesum13max, singlesum13max_index]=max(singlesum13) 
indvsum13 = demandp*max(data1(:,32))+sum(data1(:,32).*costp)+... 
   demandp*max(data3(:,89))+sum(data3(:,89).*costp);; 
[indvsum13max, indvsum13max_index]=max(indvsum13) 
 
% 3-building case 
sum123_base=data1(:,1)+data2(:,1)+data3(:,1); 
[sum123, peak123, index123_1, index123_2, index123_3]=match3(data1,N1, data2, 
N2, data3, N3); 
plotcomp3(sum123_base, data1(:,1), data2(:,1), data3(:,1), sum123, 
data1(:,index123_1), data2(:,index123_2), data3(:,index123_3)); 
plotppd3(ppd1, ppd2, ppd3, index123_1, index123_2, index123_3) 
[peak123_base,peak123_base_time]=max(sum123_base) 
[peak123_check, peak123_time]=max(sum123) 
singlesum123 = demandp*max(data2(:,1))+sum(data2(:,1).*costp)+... 
   demandp*max(data3(:,1))+sum(data3(:,1).*costp)+... 
   demandp*max(data1(:,1))+sum(data1(:,1).*costp);; 
[singlesum123max, singlesum123max_index]=max(singlesum123) 
indvsum123 = demandp*max(data2(:,28))+sum(data2(:,28).*costp)+... 
   demandp*max(data3(:,89))+sum(data3(:,89).*costp)+... 
   demandp*max(data1(:,32))+sum(data1(:,32).*costp);; 
[indvsum123max, indvsum123max_index]=max(indvsum123) 
 
% 4-bldg 
sum1234_base=data1(:,1)+data2(:,1)+data3(:,1)+data4(:,1); 
[sum1234, peak1234, index1234_1, index1234_2, index1234_3, index1234_4]... 
    = match4(data1,N1, data2, N2, data3, N3, data4, N4); 
 plotcomp4(sum1234_base, data1(:,1), data2(:,1), data3(:,1), data4(:,1),... 
    sum1234, data1(:,index1234_1), data2(:,index1234_2),... 
    data3(:,index1234_3), data4(:,index1234_4)); 
plotppd4(ppd1, ppd2, ppd3, ppd4, index1234_1, index1234_2, index1234_3, 
index1234_4) 
[peak1234_base,peak1234_base_time]=max(sum1234_base) 
[peak1234_check, peak1234_time]=max(sum1234) 
 
 %5-bldg 
sum12345_base=data1(:,1)+data2(:,1)+data3(:,1)+data4(:,1)+data5(:,1); 
[sum12345, peak12345, index_1, index_2, index_3, index_4, 
index_5]=match5(data1,N1, data2, N2, data3, N3, data4, N4, data5, N5); 
plotcomp5(sum12345_base, data1(:,1), data2(:,1), data3(:,1),data4(:,1), 
data5(:,1),...  
  sum12345, data1(:,index_1), data2(:,index_2), data3(:,index_3), 
data4(:,index_4), data5(:,index_5)); 
plotppd5(ppd1, ppd2, ppd3, ppd4, ppd5, index_1, index_2, index_3, index_4, 
index_5) 
[peak12345_base,peak12345_base_time]=max(sum12345_base) 
[peak12345_check, peak12345_time]=max(sum12345) 
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Appendix C.3 VBA code for automated E+ simulation in Smart Enumeration 
 
C.3.1 computational savings illustration 
 

Load control strategy original E+ runs New E+ runs savings 

Bldg1 – vary thermostats 90 32 64% 

Bldg3 – vary thermostats 90 75 17% 

Bldg1 - night cooling  70 40 43% 

 
 
C.3.2 VBA code 
 
Public Sub main() 
 
Dim N, Nt, flag As Integer 
Dim Tshed, deltaT As Variant 
Dim sheetname As String 
 
Dim Ti(24) As Variant 
Dim I, j As Integer 
Dim k As Integer                    ' 1-hr shedding 
Dim k21, k22 As Integer             ' 2-hr shedding 
Dim k31, k32, k33 As Integer        ' 3-hr shedding 
Dim k41, k42, k43, k44 As Integer   ' 4-hr shedding 
 
Count = 0 
 
' compute the original case without load shedding 
Worksheets("Tisum").Activate 
 
FileCopy "C:\My_Research\Multi_SmartEnum\bldg1_Ti.idf", 
"C:\EnergyPlus1.1.0\ExampleFiles\Tivary.idf" 
fr = FreeFile 
Open "C:\EnergyPlus1.1.0\ExampleFiles\Tivary.idf" For Append As #fr 
Print #fr, "DAYSCHEDULE, Zone Hi Temp Day Sch, Temperature,"; 
For i = 1 To 23 
Print #fr, Cells(i, 4).Value, ","; 
Next i 
Print #fr, Cells(24, 4).Value, ";"; 
Close #fr 
     
Shell "C:\My_Research\Multi_SmartEnum\myrunep.bat" 
Sleep 15000 ' wait for energyplus 
Count = Count + 1 
 
Sheets.Add 
ActiveSheet.Name = "base" 
Call Readin 
 
For i = 1 To 24 
Worksheets("Tisum").Cells(i + 25, 4).Value = ActiveSheet.Cells(i + 1, 
17).Value 
Worksheets("Load").Cells(i, 1).Value = ActiveSheet.Cells(i + 1, 17).Value 
Worksheets("PPD").Cells(i, 1).Value = ActiveSheet.Cells(i + 1, 16).Value 
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Next i 
ChDir "C:\EnergyPlus1.1.0\ExampleFiles" 
Workbooks("Tivary.csv").Close 
 
Nt = 1 
 
' k = 1 case -------------------------------------------- 
For k = 1 To 5 
         
    Worksheets("Tisum").Activate          
    Tshed = 1 
    deltaT = 1 
 valueloop_1: 
       
 If Tshed < 4 Then 
     
    Worksheets("Tisum").Activate 
    For i = 1 To 24 
    Ti(i) = Cells(i, 4).Value 
    Next i 
     
    Ti(12 + k) = Ti(12 + k) + Tshed 
     
    FileCopy "C:\My_Research\Multi_SmartEnum\bldg1_Ti.idf", 
"C:\EnergyPlus1.1.0\ExampleFiles\Tivary.idf" 
     
    fr = FreeFile 
    Open "C:\EnergyPlus1.1.0\ExampleFiles\Tivary.idf" For Append As #fr 
    Print #fr, "DAYSCHEDULE, Zone Hi Temp Day Sch, Temperature,"; 
    For i = 1 To 23 
    Print #fr, Ti(i), ","; 
    Next i 
    Print #fr, Ti(24), ";"; 
    Close #fr 
 
    Shell "C:\My_Research\Multi_SmartEnum\myrunep.bat" 
    Sleep 15000 ' wait for energyplus 
    Count = Count + 1 
        
    Sheets.Add 
    Call Readin 
     
    flag = 0 
    For i = 9 To 18 
        If Range("P" & i).Value > 50 Then 
        flag = 1 
        End If 
    Next i 
            
    ChDir "C:\EnergyPlus1.1.0\ExampleFiles" 
    Workbooks("Tivary.csv").Close 
     
    If flag = 0 Then 
    sheetname = 12 + k & "_" & Tshed 
    ActiveSheet.Name = sheetname 
     
    For i = 1 To 24 
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    Worksheets("Tisum").Cells(i, Nt + 4).Value = Ti(i) 
    Worksheets("Tisum").Cells(i + 25, Nt + 4).Value = Cells(i + 1, 17).Value 
    Worksheets("load").Cells(i, Nt + 1).Value = Cells(i + 1, 17).Value 
    Worksheets("PPD").Cells(i, Nt + 1).Value = Cells(i + 1, 16).Value 
    Next i 
    Worksheets("Tisum").Cells(25, Nt + 4).Value = sheetname 
 
    Nt = Nt + 1 
    Tshed = Tshed + deltaT 
    GoTo valueloop_1 
    Else  'ActiveSheet.Move After:=Sheets("Tisum") 
    DeleteWorksheet 
    End If 
            
End If 'if Tshed < 4 
          
Next k 
         
 ' k = 2 case -------------------------------------------- 
For k21 = 1 To 4 
    For k22 = k21 + 1 To 5 
         
    Worksheets("Tisum").Activate          
    Tshed = 1 
    deltaT = 1 
             
valueloop_2: 
       
 If Tshed < 4 Then 
 
    Worksheets("Tisum").Activate 
    For i = 1 To 24 
    Ti(i) = Cells(i, 4).Value 
    Next i 
         
    Ti(12 + k21) = Ti(12 + k21) + Tshed 
    Ti(12 + k22) = Ti(12 + k22) + Tshed 
     
    FileCopy "C:\My_Research\Multi_SmartEnum\bldg1_Ti.idf", 
"C:\EnergyPlus1.1.0\ExampleFiles\Tivary.idf" 
     
    fr = FreeFile 
    Open "C:\EnergyPlus1.1.0\ExampleFiles\Tivary.idf" For Append As #fr 
    Print #fr, "DAYSCHEDULE, Zone Hi Temp Day Sch, Temperature,"; 
    For i = 1 To 23 
    Print #fr, Ti(i), ","; 
    Next i 
    Print #fr, Ti(24), ";"; 
    Close #fr 
 
    Shell "C:\My_Research\Multi_SmartEnum\myrunep.bat" 
    Sleep 15000 ' wait for energyplus 
    Count = Count + 1 
        
    Sheets.Add 
    Call Readin 
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    flag = 0 
    For i = 9 To 18 
        If Range("P" & i).Value > 50 Then 
        flag = 1 
        End If 
    Next i 
            
    ChDir "C:\EnergyPlus1.1.0\ExampleFiles" 
    Workbooks("Tivary.csv").Close 
     
    If flag = 0 Then 
    sheetname = 12 + k21 & "_" & 12 + k22 & "_" & Tshed 
    ActiveSheet.Name = sheetname 
    Tshed = Tshed + deltaT 
     
    For i = 1 To 24 
    Worksheets("Tisum").Cells(i, Nt + 4).Value = Ti(i) 
    Worksheets("Tisum").Cells(i + 25, Nt + 4).Value =Cells(i + 1, 17).Value 
    Worksheets("load").Cells(i, Nt + 1).Value =Cells(i + 1, 17).Value 
    Worksheets("PPD").Cells(i, Nt + 1).Value = Cells(i + 1, 16).Value 
    Next i 
    Worksheets("Tisum").Cells(25, Nt + 4).Value = sheetname 
     
    Nt = Nt + 1 
    
    GoTo valueloop_2 
     
    Else  'ActiveSheet.Move After:=Sheets("Tisum") 
    DeleteWorksheet 
    End If 
             
 End If ' Tshed <4 
  
    Next k22 
Next k21 
         
'  k = 3 case -------------------------------------------- 
For k31 = 1 To 3 
    For k32 = k31 + 1 To 4 
        For k33 = k32 + 1 To 5 
         
    Worksheets("Tisum").Activate 
                
    Tshed = 1 
    deltaT = 1 
             
valueloop_3: 
       
 If Tshed < 4 Then 
 
    Worksheets("Tisum").Activate 
    For i = 1 To 24 
    Ti(i) = Cells(i, 4).Value 
    Next i 
         
    Ti(12 + k31) = Ti(12 + k31) + Tshed 
    Ti(12 + k32) = Ti(12 + k32) + Tshed 
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    Ti(12 + k33) = Ti(12 + k33) + Tshed 
     
    FileCopy "C:\My_Research\Multi_SmartEnum\bldg1_Ti.idf", 
"C:\EnergyPlus1.1.0\ExampleFiles\Tivary.idf" 
     
    fr = FreeFile 
    Open "C:\EnergyPlus1.1.0\ExampleFiles\Tivary.idf" For Append As #fr 
    Print #fr, "DAYSCHEDULE, Zone Hi Temp Day Sch, Temperature,"; 
    For i = 1 To 23 
    Print #fr, Ti(i), ","; 
    Next i 
    Print #fr, Ti(24), ";"; 
    Close #fr 
 
    Shell "C:\My_Research\Multi_SmartEnum\myrunep.bat" 
    Sleep 15000 ' wait for energyplus 
    Count = Count + 1 
        
    Sheets.Add 
    Call Readin 
     
    flag = 0 
    For i = 9 To 18 
        If Range("P" & i).Value > 50 Then 
        flag = 1 
        End If 
    Next i 
            
    ChDir "C:\EnergyPlus1.1.0\ExampleFiles" 
    Workbooks("Tivary.csv").Close 
     
    If flag = 0 Then 
    sheetname = 12 + k31 & "_" & 12 + k32 & "_" & 12 + k33 & "_" & Tshed 
    ActiveSheet.Name = sheetname 
     
    For i = 1 To 24 
    Worksheets("Tisum").Cells(i, Nt + 4).Value = Ti(i) 
    Worksheets("Tisum").Cells(i + 25, Nt + 4).Value = Cells(i + 1, 17).Value 
    Worksheets("load").Cells(i, Nt + 1).Value = Cells(i + 1, 17).Value 
    Worksheets("PPD").Cells(i, Nt + 1).Value = Cells(i + 1, 16).Value 
    Next i 
    Worksheets("Tisum").Cells(25, Nt + 4).Value = sheetname 
    Nt = Nt + 1 
 
    Tshed = Tshed + deltaT 
    GoTo valueloop_3 
    Else  'ActiveSheet.Move After:=Sheets("Tisum") 
    DeleteWorksheet 
    End If 
          
 End If ' if Tshed < 4 
 
    Next k33 
  Next k32 
Next k31 
 
'  k = 3 case -------------------------------------------- 
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For k41 = 1 To 2 
    For k42 = k41 + 1 To 3 
        For k43 = k42 + 1 To 4 
            For k44 = k43 + 1 To 5 
         
    Worksheets("Tisum").Activate 
                
    Tshed = 1 
    deltaT = 1 
             
valueloop_4: 
 
 If Tshed < 4 Then 
 
    Worksheets("Tisum").Activate 
    For i = 1 To 24 
    Ti(i) = Cells(i, 4).Value 
    Next i 
         
    Ti(12 + k41) = Ti(12 + k41) + Tshed 
    Ti(12 + k42) = Ti(12 + k42) + Tshed 
    Ti(12 + k43) = Ti(12 + k43) + Tshed 
    Ti(12 + k44) = Ti(12 + k44) + Tshed 
     
    FileCopy "C:\My_Research\Multi_SmartEnum\bldg1_Ti.idf", 
"C:\EnergyPlus1.1.0\ExampleFiles\Tivary.idf" 
     
    fr = FreeFile 
    Open "C:\EnergyPlus1.1.0\ExampleFiles\Tivary.idf" For Append As #fr 
    Print #fr, "DAYSCHEDULE, Zone Hi Temp Day Sch, Temperature,"; 
    For i = 1 To 23 
    Print #fr, Ti(i), ","; 
    Next i 
    Print #fr, Ti(24), ";"; 
    Close #fr 
 
    Shell "C:\My_Research\Multi_SmartEnum\myrunep.bat" 
    Sleep 15000 ' wait for energyplus 
    Count = Count + 1 
        
    Sheets.Add 
    Call Readin 
     
    flag = 0 
    For i = 9 To 18 
        If Range("P" & i).Value > 50 Then 
        flag = 1 
        End If 
    Next i 
            
    ChDir "C:\EnergyPlus1.1.0\ExampleFiles" 
    Workbooks("Tivary.csv").Close 
     
    If flag = 0 Then 
    sheetname = 12 + k41 & "_" & 12 + k42 & "_" & 12 + k43 & "_" & 12 + k44 & 
"_" & Tshed 
    ActiveSheet.Name = sheetname 



 215

    For i = 1 To 24 
    Worksheets("Tisum").Cells(i, Nt + 4).Value = Ti(i) 
    Worksheets("Tisum").Cells(i + 25, Nt + 4).Value = Cells(i + 1, 17).Value 
    Worksheets("load").Cells(i, Nt + 1).Value = Cells(i + 1, 17).Value 
    Worksheets("PPD").Cells(i, Nt + 1).Value = Cells(i + 1, 16).Value 
    Next i 
    Worksheets("Tisum").Cells(25, Nt + 4).Value = sheetname 
    Nt = Nt + 1 
 
    Tshed = Tshed + deltaT 
    GoTo valueloop_4 
    Else  'ActiveSheet.Move After:=Sheets("Tisum") 
    DeleteWorksheet 
    End If  
     
 End If ' if Tshed < 4 
     
    Next k44 
  Next k43 
 Next k42 
Next k41 
     
End Sub 
 
Public Sub Readin() 
    Workbooks.Open Filename:="C:\EnergyPlus1.1.0\ExampleFiles\Tivary.csv" 
    Cells.Select 
    Selection.Copy 
    Windows("bldg1_Ti.xls").Activate 
    Cells.Select 
    ActiveSheet.Paste 
     
    Range("O2").Formula = "=(L2+M2+N2)/3" 
    Range("O2").Select 
    Selection.AutoFill Destination:=Range("O2:O25"), Type:=xlFillDefault 
    ' column P - avg PPD 
    Range("P2").Formula = "=100-95*exp(-(0.03353*O2^4+0.2179*O2^2))" 
    Range("P2").Select 
    Selection.AutoFill Destination:=Range("P2:P25"), Type:=xlFillDefault 
    ' working time PPD 
    Range("P26").Formula = "=average(P9:P18)" 
    ' column Q - load W/m2 
    Range("Q2").Formula = "=(G2+H2+I2)/(3600*102)" 
    Range("Q2").Select 
    Selection.AutoFill Destination:=Range("Q2:Q25"), Type:=xlFillDefault 
    ' peak load 
    Range("Q26").Formula = "=max(Q2:Q25)" 
    ' total load 
    Range("Q28").Formula = "=sum(Q2:Q25)" 
 
End Sub 
 
Public Sub DeleteWorksheet() 
Application.DisplayAlerts = False 
ActiveWindow.SelectedSheets.Delete 
Application.DisplayAlerts = True 
End Sub 
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Appendix D.1 Key Splus code for training load prediction models 
 
 
D.1.1 Time series model for base load profile prediction in SPlus 
 
import.data(DataFrame="Xf", FileName ="_Data//_model3//Xt3.txt", 

FileType="ascii") 
 
y <- Xf[,1] 
yt1 <- Xf[,2] 
yt24 <- Xf[,3] 
yt25 <- Xf[,4] 
Tout <- Xf[,5] 
SS <- Xf[,6] 
SW <- Xf[,7] 
SR <- Xf[,8] 
SE <- Xf[,9] 
Tout1 <- Xf[,10] 
SS1 <- Xf[,11] 
SW1 <- Xf[,12] 
SR1 <- Xf[,13] 
SE1 <- Xf[,14] 
Tout24 <- Xf[,15] 
SS24 <- Xf[,16] 
SW24 <- Xf[,17] 
SR24 <- Xf[,18] 
SE24 <- Xf[,19] 
Tout25 <- Xf[,20] 
SS25 <- Xf[,21] 
SW25 <- Xf[,22] 
SR25 <- Xf[,23] 
SE25 <- Xf[,24] 
 
Xglm <- glm(y ~ yt1 + yt24 + yt25 + Tout+SS+SW+SR+SE +Tout1+SS1+SW1+SR1+SE1 

+Tout24+SS24+SW24+SR24+SE24 +Tout25+SS25+SW25+SR25+SE25) 
plot(Xglm) 
summary(Xglm) 
Xres <- residuals(Xglm) 
plot(Xres) 
Xresacf <- acf(Xres, lag.max=48, type="correlation") 
acf.plot(Xresacf) 
 
Xglm2 <- glm(y ~ yt1 + yt24 + yt25) 
summary(Xglm2) 
 
import.data(DataFrame="reshat", FileName ="_Data//_model3//reshat.txt", 

FileType="ascii") 
reshat <- reshat[,1] 
Xglm3 <- glm(y ~ yt1 + yt24 +yt25 + reshat) 
 
import.data(DataFrame="hat", FileName ="_Data//_model3//hat.txt", 

FileType="ascii") 
yt1hat <- hat[,1] 
ytreshat <- hat[,2] 
Xglm4 <- glm(y~ yt1hat + yt24 + yt25 + ytreshat) 
summary(Xglm4) 
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D.1.2 Regression model for peak load correction in SPlus 
 
import.data(DataFrame="max", FileName="_Data//_deltaP//TEmax.txt", 

FileType="ascii") 
Emax <- max[,1] 
Tmax <- max[,2] 
SSmax <- max[,3] 
SWmax <- max[,4] 
SRmax <- max[,5] 
SEmax <- max[,6] 
 
Emaxfullglm <- glm(Emax ~ Tmax + SSmax + SWmax + SRmax + SEmax) 
summary(Emaxfullglm) 
 
EmaxTglm <- glm(Emax ~ Tmax) 
summary(EmaxTglm) 
 
 
D.1.3 Regression model for load reduction in SPlus 

 
new.database(where="_Data//_deltaP", type="directory") 
attach("_Data//_deltaP", pos=1) 
 
import.data(DataFrame="H14", FileName="_Data//_deltaP//H14.txt", 

FileType="ascii") 
H14E <- H14[,1] 
H14T <- H14[,2] 
H14B <- H14[,3] 
H14glm <- glm(H14E ~ H14T^0.5 + H14B) 
H14res <- residuals(H14glm) 

 
import.data(DataFrame="H15", FileName="_Data//_deltaP//H15.txt", 

FileType="ascii") 
H15E <- H15[,1] 
H15T <- H15[,2] 
H15B <- H15[,3] 
H15glm <- glm(H15E ~ H15T^0.5 + H15B) 
H15res <- residuals(H15glm) 
 
import.data(DataFrame="H16", FileName="_Data//_deltaP//H16.txt", 

FileType="ascii") 
H16E <- H16[,1] 
H16T <- H16[,2] 
H16B <- H16[,3] 
H16glm <- glm(H16E ~ H16T^0.5 + H16B) 
H16res <- residuals(H16glm) 
 
import.data(DataFrame="H17", FileName="_Data//_deltaP//H17.txt", 

FileType="ascii") 
H17E <- H17[,1] 
H17T <- H17[,2] 
H17B <- H17[,3] 
H17glm <- glm(H17E ~ H17T^0.5 + H17B) 
H17res <- residuals(H17glm) 
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D.1.4 Regression model for PMV increase in SPlus  
 
import.data(DataFrame="Hpmv3", FileName="_Data//_PMV//Hpmv.txt", 

FileType="ascii") 
pmv3 <- Hpmv3[,1] 
deltaT3 <- Hpmv3[,2] 
baseld3 <- Hpmv3[,3] 
pmvglm3 <- glm(pmv3 ~ deltaT3 + baseld3) 
summary(pmvglm3) 
 
 
import.data(DataFrame="TPMV", FileName="_Data//_PMV//TPMVmax.txt", 

FileType="ascii") 
PMVmax <- TPMV[,1] 
Tmax <- TPMV[,2] 
Emax <- TPMV[,3] 
PMVmaxglm <- glm(PMVmax ~ Tmax + Emax) 
summary(PMVmaxglm) 
 
 
SupportCode 1 Power difference data visualization and analysis 
 
%visualize all power data in summer 
close all 
V_deltaT=[0 1 2 3 4]; 
N=length(V_deltaT); %number of shedding case + 1 
M=length(Short_powerData); 
powerDiff = zeros(M,N);  
 
for i=1:N 
   powerDiff(:,i)=Short_powerData(:,5+i) - Short_powerData(:,6); 
end 
 
%plotting power difference 
for i=1:10 
   figure 
   plot(powerDiff(14+i*2*24,:), 'c*') 
hold 
plot(powerDiff(14+i*2*24,:),'c') 
plot(powerDiff(15+i*2*24,:), 'gx') 
plot(powerDiff(15+i*2*24,:), 'g') 
plot(powerDiff(16+i*2*24,:), 'ro') 
plot(powerDiff(16+i*2*24,:), 'r') 
plot(powerDiff(17+i*2*24,:), 'k-') 
plot(powerDiff(17+i*2*24,:), 'k') 
title('power diff 14-17pm, 6/7') 
end 
 
Np = N-1; % number of data point categories 
%graphically review for each hour the power change varying with temp 
increases 
Mp=M/24; 
hrly_pdiff = zeros(12, Mp, Np); 
hrly_load = zeros(12, Mp); 
 
for i=1:12 % hours 7 -18 examined 
   for j=1:Mp %Mp=66 with weekends taken out 
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      hrly_load(i,j) = Short_powerData((j-1)*24+(i+6), 6); 
      for k=1:Np %Np=4 
         hrly_pdiff(i,j,k)= powerDiff( (j-1)*24+(i+6), k+1); 
      end 
   end 
end 
 
% powerDiff for each hour varies with days and Temp change 
for i=1:3 
   figure 
   for j=1:4 
      subplot(2,2,j) 
      hold 
      plot(hrly_pdiff((i-1)*4+j, :, 1), 'c') 
      plot(hrly_pdiff((i-1)*4+j, :, 2), 'g') 
      plot(hrly_pdiff((i-1)*4+j, :, 3), 'r') 
      plot(hrly_pdiff((i-1)*4+j, :, 4), 'k') 
      axis([0 70 -10 5]) 
      xlabel('time (days)') 
      ylabel('hourly power reduction (W/m2)') 
   end 
end 
 
% powerDiff for each hour varies with original load and Temp change 
for i=1:3 
   figure 
   for j=1:4 
      subplot(2,2,j) 
      plot(hrly_load((i-1)*4+j,:), hrly_pdiff((i-1)*4+j, :, 1), 'c.') 
      hold 
      plot(hrly_load((i-1)*4+j,:), hrly_pdiff((i-1)*4+j, :, 2), 'g.') 
      plot(hrly_load((i-1)*4+j,:), hrly_pdiff((i-1)*4+j, :, 3), 'r.') 
      plot(hrly_load((i-1)*4+j,:), hrly_pdiff((i-1)*4+j, :, 4), 'k.') 
      axis([0 70 -10 5]) 
      xlabel('base load (W/m2)') 
      ylabel('hourly power reduction (W/m2)') 
   end 
end 
 
 
SupportCode 2 Power difference predication check in testing data in Matlab 
 
function [lb, ub]=hrbound(nlhr, hr) 
close all 
 
nl = nlhr; %[12.558, -8.217, -0.161]' for hr17 for example 
 
for i=1:44 
   for j=1:4 
      hsim(i,j) = hrly_pdiff(hr-6,(i+22),j); 
      hpred(i,j) = nl(1)+nl(2)*sqrt(V_deltaT(j+1))+nl(3)*hrly_load(hr-
6,i+22); 
   end 
end 
hres = hsim - hpred; 
 
figure 
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for i=1:4 
   subplot(2,2,i) 
   plot(hsim(:,i), hpred(:,i),'.') 
   axis([-20 3 -20 3]) 
end 
xlabel('simulated power reduction (W/m2)') 
ylabel('predication (W/m2)')   
 
 
figure 
for i=1:4 
   subplot(2,2,i) 
   plot(hres(:,i),'.') 
end 
 
std_h_res=std(reshape(hres,44*4,1)); 
mean_h_res=mean(reshape(hres,44*4,1)); 
 
lb = mean_h_res - 2*std_h_res; 
ub = mean_h_res + 2*std_h_res; 
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Appendix D.2 AMPL code for nonlinear optimization  
 
D.2.1 Model file 
 
We trained two models for building 1 and building 3.  the statistical results 
are embedded in the code. The code presented here is a 10-building case with 
five type-1s and five type-3s.  The mix and the total number can both be 
adjusted easily. The data file needs to be adjusted accordingly. 
 
 
reset; 
 
set T := 1..24; 
# total number of buildings 
set bn := 1..10; 
# number of building 1 
set bn1 := 1..5; 
set bn3 := 6..10; 
param n1 := 5; 
 
param Tmax  >= 0; 
param SSmax >= 0; 
param SEmax >= 0; 
param SRmax >= 0; 
param Tmaxpre >= 0; 
 
param Epre {bn, T} >= 0; 
param Emaxpre {bn} >= 0; 
param PMVmaxpre {bn} >=0; 
param corr {i in bn} := if i <= n1 then (1.468*Tmax + 0.032*SSmax + 
0.015*SEmax + 0.0*SRmax)/Emaxpre[i] else 1 ; 
 
param PMVgoal >= 0; 
 
data 10bldg.dat; 
 
var Ebase {bn, T} >= 0; 
var Eadj {bn, T} >= 0; 
var dT {bn, 1..4} >= 0; 
var sqdT {bn, 1..4} >= 0; 
 
var z >= 0; 
 
option solver loqo; 
#option solver minos; 
 
minimize peak: z; 
subject to peakcon {i in T}: sum {k in bn} Eadj[k,i] <= z; 
 
#minimize totalcon : sum{k in bn, i in T} Eadj[k,i]; 
 
 
#bldg type 1 
subject to initial {k in bn}: Ebase[k,1]=0; 
subject to Earma1 {k in bn1, i in 2..24}: Ebase[k,i]= 0.874*Ebase[k,i-
1]+1.007*Epre[k,i]-0.88*Epre[k,i-1]; 



 222

subject to Earma3 {k in bn3, i in 2..24}: Ebase[k,i]= 0.873*Ebase[k,i-
1]+1.01*Epre[k,i]-0.88*Epre[k,i-1]; 
subject to dTrange {k in bn, i in 1..4}: dT[k,i]<= 4; 
subject to sq {k in bn,i in 1..4}: dT[k,i] = sqdT[k,i] * sqdT[k,i]; 
 
subject to Tadjusta1 {k in bn1, i in 1..13}: Eadj[k,i] = Ebase[k,i]*corr[k]; 
subject to Tadjust141 {k in bn1, i in 14..14}: Eadj[k,i]=Ebase[k,i]*corr[k] + 
17.31 - 7.35*sqdT[k,i-13] - 0.31*Eadj[k,i]; 
subject to Tadjust151 {k in bn1, i in 15..15}: Eadj[k,i]=Ebase[k,i]*corr[k] + 
16.53 - 8.01*sqdT[k,i-13] - 0.26*Eadj[k,i]; 
subject to Tadjust161 {k in bn1, i in 16..16}: Eadj[k,i]=Ebase[k,i]*corr[k] + 
14.39 - 8.43*sqdT[k,i-13] - 0.20*Eadj[k,i]; 
subject to Tadjust171 {k in bn1, i in 17..17}: Eadj[k,i]=Ebase[k,i]*corr[k] + 
12.56 - 8.22*sqdT[k,i-13] - 0.16*Eadj[k,i]; 
subject to Tadjustb1 {k in bn1, i in 18..24}: Eadj[k,i]= Ebase[k,i]*corr[k]; 
subject to PMV1 {k in bn1, i in 14..17}: 0.005*Eadj[k,i] + 0.124*dT[k,i-13] - 
0.199 <= (if(PMVgoal-PMVmaxpre[k]*Tmax/Tmaxpre)> 0.15 then PMVgoal-
PMVmaxpre[k]*Tmax/Tmaxpre else 0.15);  
 
subject to Tadjusta3 {k in bn3, i in 1..13}: Eadj[k,i] = Ebase[k,i]*corr[k]; 
subject to Tadjust143 {k in bn3, i in 14..14}: Eadj[k,i]=Ebase[k,i]*corr[k] + 
15.62 - 4.4* sqdT[k,i-13] - 0.38*Eadj[k,i]; 
subject to Tadjust153 {k in bn3, i in 15..15}: Eadj[k,i]=Ebase[k,i]*corr[k] + 
15.68 - 4.74*sqdT[k,i-13] - 0.363*Eadj[k,i]; 
subject to Tadjust163 {k in bn3, i in 16..16}: Eadj[k,i]=Ebase[k,i]*corr[k] + 
15.61 - 5.08*sqdT[k,i-13] - 0.347*Eadj[k,i]; 
subject to Tadjust173 {k in bn3, i in 17..17}: Eadj[k,i]=Ebase[k,i]*corr[k] + 
15.17 - 4.98*sqdT[k,i-13] - 0.343*Eadj[k,i]; 
subject to Tadjustb3 {k in bn3, i in 18..24}: Eadj[k,i]= Ebase[k,i]*corr[k]; 
subject to PMV3 {k in bn3, i in 14..17}: 0.00886*Eadj[k,i] + 0.0981*dT[k,i-
13] - 0.2885 <= (if(PMVgoal-PMVmaxpre[k]*Tmax/Tmaxpre)> 0.15 then PMVgoal-
PMVmaxpre[k]*Tmax/Tmaxpre else 0.15);  
 
solve; 
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D.2.2 Data file  
 
 
param PMVgoal := 1.5; 
 
 
param Epre :=            
: 1 2 3 4 5 6 7 8 9 10 11 12  
1 0 0 0 0 0 0 0 29.1 39.4 44.2 49 53.2  
2 0 0 0 0 0 0 0 29.1 39.4 44.2 49 53.2  
3 0 0 0 0 0 0 0 29.1 39.4 44.2 49 53.2  
4 0 0 0 0 0 0 0 29.1 39.4 44.2 49 53.2  
5 0 0 0 0 0 0 0 29.1 39.4 44.2 49 53.2  
6 0 0 0 0 0 0 0 30.2 39.4 41.1 42.8 44.6  
7 0 0 0 0 0 0 0 30.2 39.4 41.1 42.8 44.6  
8 0 0 0 0 0 0 0 30.2 39.4 41.1 42.8 44.6  
9 0 0 0 0 0 0 0 30.2 39.4 41.1 42.8 44.6  
10 0 0 0 0 0 0 0 30.2 39.4 41.1 42.8 44.6  
 13 14 15 16 17 18 19 20 21 22 23 24 := 
 54.9 58.6 60.2 60.8 59.6 0 0 0 0 0 0 0  
 54.9 58.6 60.2 60.8 59.6 0 0 0 0 0 0 0  
 54.9 58.6 60.2 60.8 59.6 0 0 0 0 0 0 0  
 54.9 58.6 60.2 60.8 59.6 0 0 0 0 0 0 0  
 54.9 58.6 60.2 60.8 59.6 0 0 0 0 0 0 0  
 45.1 47.4 48.9 50 49.6 0 0 0 0 0 0 0  
 45.1 47.4 48.9 50 49.6 0 0 0 0 0 0 0  
 45.1 47.4 48.9 50 49.6 0 0 0 0 0 0 0  
 45.1 47.4 48.9 50 49.6 0 0 0 0 0 0 0  
 45.1 47.4 48.9 50 49.6 0 0 0 0 0 0 0 ; 
 
 
param Emaxpre :=  
1 60.8 
2 60.8 
3 60.8 
4 60.8 
5 60.8 
6 50.0 
7 50.0 
8 50.0 
9 50.0 
10 50.0; 
 
param PMVmaxpre :=  
1 1.21 
2 1.21 
3 1.21 
4 1.21 
5 1.21 
6 1.00 
7 1.00 
8 1.00 
9 1.00 
10 1.00; 
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param Tmax := 28.0; 
param Tmaxpre := 25.6; 
param SSmax := 442; 
param SEmax := 595; 
param SRmax := 970; 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


