

The Pennsylvania State University

The Graduate School

College of Engineering

ALGORITHMS TO IDENTIFY PARETO POINTS IN MULTI-

DIMENSIONAL DATA SETS

A Thesis in

Mechanical Engineering

by

Michael A. Yukish

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2004

 ii

The thesis of Michael A. Yukish was reviewed and approved* by the following:

Timothy W. Simpson

Associate Professor of Mechanical Engineering and Industrial Engineering

Thesis Advisor

Chair of Committee

Mary Frecker

Associate Professor of Mechanical Engineering

Mark Traband

Affiliate Professor of Industrial Engineering

Soundar R. T. Kumara

Distinguished Professor of Industrial and Manufacturing Engineering

Richard C. Benson

Professor and Head of Department of Mechanical Engineering

*Signatures are on file in the Graduate School.

 iii

Abstract
The focus in this research is on developing a fast, efficient hybrid algorithm to identify the Pareto frontier

in multi-dimensional data sets. The hybrid algorithm is a blend of two different base algorithms, the Simple

Cull (SC) algorithm that has a low overhead but is of overall high computational complexity, and the

Divide & Conquer (DC) algorithm that has a lower computational complexity but has a high overhead. The

hybrid algorithm employs aspects of each of the two base algorithms, adapting in response to the properties

of the data.

Each of the two base algorithms perform better for different classes of data, with the SC algorithm

performing best for data sets with few nondominated points, high dimensionality, or fewer total numbers of

points, while the DC algorithm performs better otherwise. The general approach to the hybrid algorithm is

to execute the following steps in order:

1. Execute one pass of the SC algorithm through the data if merited

2. Execute the DC algorithm, which recursively splits the data into smaller problem sizes

3. Switch to the SC algorithm for problem sizes below a certain limit

In order to determine whether Step 1 should be executed, and to determine at what problem size the switch

in Step 3 should be made, estimates of both algorithms’ run times as a function of the size of the data set,

the dimension of the data set, and the expected number of nondominated points are needed. These are

developed in the thesis.

To aid in increasing the speed and reducing the computational and storage complexity of the algorithm, and

to enable the ability for the algorithm to adapt to the data, a canonical transformation of the data to a Lattice

Latin Hypercube (LLH) form is developed. The transformation preserves the Pareto property of points but

reduces storage space and algorithm run time.

In order to test the three algorithms, three different methods for creating randomized data sets with arbitrary

dimensionality and numbers of nondominated points are developed. Each of the methods provides insight

into the properties of nondominated sets, along with providing test cases for the algorithms. Additionally, a

spacecraft design problem is developed to serve as a source of real world test data.

 iv

Table of Contents

LIST OF TABLES.. VII

LIST OF FIGURES...VIII

NOMENCLATURE ..XIII

ACKNOWLEDGEMENTS ..XV

CHAPTER 1 INTRODUCTION... 1

CHAPTER 2 SATELLITE DESIGN PROBLEM... 6

2.1 FINITE BURN LOSS .. 6
2.2 TANKS... 11
2.3 ENGINE.. 13
2.4 PROBLEM SETUP.. 16
2.5 SUMMARY ... 16

CHAPTER 3 MATHEMATICAL PROPERTIES OF DATA SETS... 17

3.1 DEFINITION OF TERMS... 17
3.2 TRANSFORMATION TO LATTICE LATIN HYPERCUBE FORM ... 18
3.3 DEFINITION OF PARETO ORDERING AND NONDOMINANCE.. 19
3.4 PROPERTIES OF LLH FORM FOR 2D CASE WHEN ALL POINTS ARE PARETO 20
3.5 DIAGONAL PROPERTY AT HIGHER DIMENSIONS.. 21
3.6 EXPECTED NUMBER OF PARETO POINTS IN RANDOM LATTICES.. 22

3.6.1 Random 2D Lattice ... 22
3.6.2 Expected Number of Pareto Points at Higher Dimensions... 25

3.7 EXPECTED NUMBER OF POINTS DOMINATED BY “BEST” PARETO POINT IN THE 2D PROBLEM...... 28
3.8 SUMMARY ... 32

CHAPTER 4 GENERATING TEST DATA.. 33

4.1 PARTITIONED LATTICE METHOD... 33
4.2 LATTICE HYPERPLANES METHOD ... 37
4.3 RANDOM DOMINANT POINTS METHOD ... 42
4.4 SUMMARY ... 45

CHAPTER 5 INTRODUCTION TO ALGORITHMS TO DETERMINE PARETO SET................. 46

5.1 COMPUTATIONAL FRAMEWORK .. 47
5.2 SIMPLE CULL ALGORITHM .. 47

 v

5.2.1 Analytical Estimate of the Expected Run Time for SC for Arbitrary Dimension 49
5.2.2 Best Case Experiment ... 52
5.2.3 2D Worst Case Experiment .. 53
5.2.4 Random Experiment ... 54
5.2.5 Simple Cull2 ... 54

5.3 DIAGONALIZING ALGORITHM FOR FINDING PARETO POINTS IN 2D CASE 55
5.4 NONRECURSIVE ALGORITHM ON 2D DATA ... 56

CHAPTER 6 DIVIDE & CONQUER ALGORITHM.. 57

6.1 ALTERNATE DEVELOPMENT OF THE DC ALGORITHM ... 63
6.2 WORST CASE - INFINITE DIMENSION RUN TIME.. 65

6.2.1 Balanced Case .. 66
6.2.2 Generalized Unbalanced Case ... 68
6.2.3 Maximum Unbalanced Case... 70

6.3 WORST CASE - FINITE DIMENSION RUN TIME ... 71
6.3.1 Balanced Case .. 71
6.3.2 Generalized Unbalanced Case ... 74
6.3.3 Maximum Unbalanced Case... 77

6.4 EXPECTED PERFORMANCE OF THE ALL POINTS PARETO CASE.. 78
6.5 COMPARISON OF EMPIRICAL RESULTS WITH ANALYTICAL RESULTS .. 79

6.5.1 Model of Run Time for DC Algorithm .. 83
6.5.2 Variation of Number of Comparisons with Percentage of Points Nondominated 86

6.6 THE DEPENDENCE OF DC ALGORITHM PERFORMANCE ON THE ORDERING OF DIMENSIONS......... 89

CHAPTER 7 HYBRID DC ALGORITHM ... 92

7.1 IMMEDIATELY REMOVE ALL POINTS GUARANTEED DOMINATED ... 92
7.2 BREAKPOINT FOR SWITCHING TO SIMPLER ALGORITHM ... 93
7.3 FIRST PASS TRADE .. 99
7.4 FULL DESCRIPTION OF HYBRID ALGORITHM ... 103

CHAPTER 8 TEST OF ALGORITHM AGAINST SATELLITE MODEL DATA 105

CHAPTER 9 CONCLUSIONS AND FUTURE RESEARCH ... 110

9.1 CONCLUSIONS ... 110
9.2 LIMITATIONS ... 111
9.3 FUTURE RESEARCH ... 111

9.3.1 Adaptive Ordering Of Dimensions in the Hybrid Algorithm .. 111
9.3.2 Allowing For Duplicate Elements in the Columns of Tables.. 113
9.3.3 Defining Multiple Levels of Dominance for Visualization.. 115

 vi

REFERENCES ... 118

APPENDIX A FITTING PARAMETERS FOR ESTIMATORS .. 121

APPENDIX B SOLVING RECURSIONS ... 122

APPENDIX C EXPRESSIONS FOR COMPARISONS, FUNCTION CALLS, AND DATA INPUTS

.. 123

 vii

List of Tables

Table 1: Variables for the orbital calculation ... 10
Table 2: Design variables for tank.. 12
Table 3: Engine design variables.. 15
Table 4: Design instances... 18
Table 5: Transformed design instances .. 18
Table 6: Relationship of dimension of random lattice to expected number of Pareto points in terms of

generalized harmonic numbers ... 27
Table 7: Value of mbf[] function for varying dimension .. 72
Table 8: Value of pbf[] for various dimensions... 72
Table 9: Value of unbf[] function for various dimensions .. 75
Table 10: Values for mguf[] at 2 and 3 dimensions .. 75
Table 11: Values of pguf[] for dimensions 2 through 4... 76
Table 12: Breakpoints for Marry and DC algorithms... 97
Table 13: List of dimensions from satellite test problem ... 106
Table 14: Design instances with duplicate elements in the cost column .. 114
Table 15: Transformation to LLH form, with arbitrary ranking of duplicate items in cost column........... 114
Table 16: Coefficients for estimating functions ... 121

 viii

List of Figures

Figure 1: Visualizing the Pareto points (black crosses) as user dynamically varies the data set 3
Figure 2: Finite burn loss.. 7
Figure 3: Problem geometry ... 8
Figure 4: Finite burn loss comparison .. 9
Figure 5: Finite burn loss at varying Isp... 9
Figure 6: Low thrust trajectory... 10
Figure 7: Tank design... 11
Figure 8: Tank volume versus mass ... 13
Figure 9: Tank cost-volume relationship.. 13
Figure 10: Main engine .. 14
Figure 11: Engine mass per thrust .. 14
Figure 12: Engine cost-thrust relationship.. 14
Figure 13: Calculation dependencies.. 16
Figure 14: Conversion to lattice ... 19
Figure 15: Lattice segmented into three disjoint sets A, B, and C.. 20
Figure 16: Bounding hyperplanes... 22
Figure 17: Construction of lattice ... 23
Figure 18: Experimental and Analytical results for expected number of Pareto points in 2D problem 24
Figure 19: Pareto set... 24
Figure 20: Points inserted from below in 3D lattice ... 25
Figure 21: Expected number of Pareto points for 3D problem, with analytical estimate as the solid curve,

and experimental values as the points .. 26
Figure 22: Analytical and experimental results for expected number of Pareto points for lattices ranging in

size from 1 to 100, and dimension from 2 to 9. .. 28
Figure 23: Correlated lattice ... 29
Figure 24: Ratio of problem size to number of points dominated by the "best" Pareto point for a 2D lattice

.. 31
Figure 25: Varying ratios of points dominated... 31
Figure 26: Varying ratio of points dominated for a problem size of 100,000 and varying dimension 32
Figure 27: A 2D lattice of size 20 constructed from two lattices of size 10 ... 34
Figure 28: Expected number of Pareto points for a partitioning of a lattice, where the candidate partitions

are sorted in lexicographic order (black) and sorted by 2 ()E i (red) ... 35

Figure 29: Relation of the restricted subset of candidate partitions to dE ... 36

Figure 30: Lattices with increasing number of expected Pareto points (listed above each plot) 37

 ix

Figure 31: Parallel planes ... 38
Figure 32: Planes with random points .. 38
Figure 33: Rotated 2D point clouds.. 39
Figure 34: Dominance between planes... 39
Figure 35:Trirectangular tetrahedron.. 40
Figure 36: 1000 points total, 25 Pareto points, varying sigma for the half normal distribution 44
Figure 37: 1000 points, 40 Pareto points, 2D, varying σ.. 44
Figure 38: Data with 1000 points, s = 1/10. varying number of Pareto points ... 45
Figure 39: Different ranking functions ... 49
Figure 40: Upper and lower bounds on comparisons, N=500 .. 50
Figure 41: Experimental iterations ... 51
Figure 42: Experimental data, upper bound, lower bound, and analytical estimate 52
Figure 43: Best case configuration of points .. 52
Figure 44: Run time for best case, SC .. 53
Figure 45: Worst case configuration of points ... 53
Figure 46: Worst case run time, SC.. 54
Figure 47: Run time for varying problem size and varying ratio of Pareto points to problem size 54
Figure 48: 160 points in 3 dimensions.. 58
Figure 49: Subdivided problem .. 59
Figure 50: Projection onto cut plane... 59
Figure 51: Divide and conquer in Marry algorithm.. 61
Figure 52: Data sorted on first dimension, and split... 63
Figure 53: After culling the two subsets... 63
Figure 54: Points resorted on the second dimension .. 64
Figure 55: Left B's and right A's marked, and then removed ... 64
Figure 56: Cycle of resort, check for dominance left and right, drop left Bs and right As........................... 64
Figure 57: Balanced case, same number of A and B points in the left and right sets 65
Figure 58: Maximum unbalanced case, with one B point in left set, and one A point in right set 65
Figure 59: Generalized unbalanced case with ratio = 3/8... 65
Figure 60: Process of initial divide, followed by repeated marrying of larger sets 67
Figure 61: Shape of the unbalanced function, problem size of 100 points, varying alpha 68
Figure 62: Plot of number of comparisons versus alpha, for 2000 points, infinite dimension, all

nondominated. Dashed line is the balanced case, shown for reference. ... 70
Figure 63: Plot of the balanced case, the generalized unbalanced case with alpha = .9, and the maximum

unbalanced case for varying problem size.. 71
Figure 64: Number of comparisons as a function of dimension for fixed number of points in problem...... 73
Figure 65: Plot of number of comparisons versus dimension for 10,000 point problem.............................. 73

 x

Figure 66: Plot of comparisons versus dimension for varying problem size, with dashed line indicating the

point where limiting number of comparisons reached.. 74
Figure 67: Plot of the mguf[n,d] function for varying dimension and alpha .. 76
Figure 68: Number of comparisons versus alpha and dimension for a problem size of 4000 points 77
Figure 69: Number of comparisons as a function of number of points and dimension. Also, the infinite

dimension function is shown. ... 78
Figure 70: Comparison of the pbf[] function and the pmuf[] function for varying problem size and

dimension ... 78
Figure 71: Comparing the pguf[] function and the pbf[] function for varying alpha and problem size of

200, d=7, with probability distribution of alpha shown in gray.. 79
Figure 72: Comparison of experimental and analytical estimates of number of comparisons for different

problem sizes and different dimensions ... 80
Figure 73: Experimental and analytical results up to dimension of 60... 80
Figure 74: Data versus curve fits for the pbf[]α i function, with varying dimension 81

Figure 75: Comparison of empirical data with the analytical estimate gained by multiplying pbf[n,d] by .85

.. 81
Figure 76: Plot of the relative imbalance of a Marry function call versus the number of calls, for a data set

with 1000 points, 6 dimensions, all Pareto, only functions with data input size > 35 82
Figure 77: Plot of the relative imbalance of a Marry function call versus the number of calls, for a data set

with 1000 points, 6 dimensions, all Pareto, functions of all sizes .. 83
Figure 78: Number of routine calls in the Marry algorithm as a function of dimension and data size......... 83
Figure 79: Analytical estimate of number of routine calls for Pareto algorithm as a function of problem size

and dimension... 84
Figure 80: total amount of data passed to subroutines as a function of dimension and data size 85
Figure 81: SC estimated run time and DC estimated run time for varying dimension 86
Figure 82: For problem size of 1000 points, the number of comparisons as a function of dimension and of

the number of nondominated points ... 86
Figure 83: Number of comparisons for 10,000 points and varying nondominated points, d=4 87
Figure 84: Data set with single Pareto point, as generated by the RDP algorithm 88
Figure 85: Performance of the RandomDC algorithm with 200 runs... 91
Figure 86: Fraction of points guaranteed dominated as a function of dimension (points) and the function

1/d! (line).. 93
Figure 87: Comparison of ∆ run times for differing numbers of divisions of the Marry algorithm 96
Figure 88: Comparison of ∆ run times for the 4D case .. 96
Figure 89: Comparison of hybrid and non-hybrid algorithm for 6Dcase ... 98
Figure 90: Percent reduction in run time for 6D data, varying data set sizes ... 98

 xi

Figure 91: Comparison of run times of hybrid and nonhybrid algorithms for problem size of 600 and

varying dimension .. 99
Figure 92: Percent reduction in run time of hybrid with respect to nonhybrid algorithm for problem size of

600 and varying dimension... 99
Figure 93: Plot of the break-even point for varying data size and dimension, above which one should first

run the SC algorithm .. 100
Figure 94: Break-even point as a function of dimension and data set size ... 101
Figure 95: Comparison of DC, hybrid with single pass of SC, and hybrid with single pass of SC, for 5D

data set of 400 points, only 5 points Pareto. The horizontal axis correlates to the number of points each

Pareto points dominates, with more points as you move right on the axis. .. 101
Figure 96: Varying the number of points, for 5D data, 1/20 of points dominant, high dispersion of data . 102
Figure 97: 5D data set with 500 points, varying number of dominating points, high dispersion in data.... 102
Figure 98: 5D data set with 500 points, varying number of dominating points, low dispersion in data..... 103
Figure 99: Plot of Propellant mass, delta velocity, and thrust of the engine. Dimensions have been

normalized and scaled for proportion ... 106
Figure 100: Scatter matrix of the 8D data .. 107
Figure 101: Comparison of data derived from the model (red with diamonds) and analytical estimates of

run time (blue with stars) for dimensions ranging from 3 to 8 ... 108
Figure 102: Number of Pareto points versus run time for 8D data with 10,000 points, derived from the

satellite model. Experimental results are marked with diamonds; analytical is blue line with stars... 108
Figure 103: Histogram showing the run times for the 8D spacecraft data, 10,000 points, 712 Pareto points,

with the columns permuted in 40 different possible orderings... 109
Figure 104: Dividing of space in DC algorithm ... 112
Figure 105: Two different 2D projections of a hypothetical 5D data set with some dimensions correlated

and other not ... 112
Figure 106: Pareto frontier for 80 points .. 116
Figure 107: 70 points with three tiers of Pareto points... 116
Figure 108: Mathematica code for generating analytical estimate of number of comparisons for the Marry

algorithm .. 123
Figure 109: Expresssions for mbf[] ... 124
Figure 110: Mathematica code for generating analytical estimate of number of comparisons for the DC

algorithm .. 124
Figure 111: Expressions for pbf[].. 124
Figure 112: Mathematica code for generating analytical estimate of number of function calls for the Marry

algorithm .. 124
Figure 113: Expressions for mff[] ... 125

 xii

Figure 114: Mathematica code for generating analytical estimate of number of function calls for the DC

algorithm .. 125
Figure 115: Expressions for pff[] .. 125
Figure 116: Mathematica code for generating analytical estimates of the amount of data passed in the

Marry algorithm.. 126
Figure 117: Expressions for mtf[] ... 126
Figure 118: Mathematica code for generating analytical estimates of the amount of data passed in the DC

algorithm .. 126
Figure 119: Expressions for ptf[]... 126

 xiii

Nomenclature

, , ,...X Y Z A table of data, also can be thought of as a set of points in a multi-dimensional space
, , ,...x y z A single row in a table, or a single point in a multi-dimensional space

ix The ith row in table X

x A single element from table X

ix The ith element in row x

ijx The jth element in the ith row of table X

ln n Natural logarithm of n

log n Logarithm Base 2 of n

log nα Logarithm Base α of n

All of the following functions are predicated on the data being all points Pareto

mbi[]n Estimator for the the number of comparisons of the marry algorithm, infinite dimension, and

balanced. Takes size of table as input

pbi[]n Estimator for the the number of comparisons of the Pareto algorithm, infinite dimension, and

balanced. Takes size of table as input.

pgui[n] Estimator for number of comparisons, Pareto algorithm, generalized unbalanced case, infinite

dimension.

mgui[n] Estimator for number of comparisons, Marry algorithm, generalized unbalanced case, infinite

dimension.

unbi[n, b] Estimator for the maximum number of comparisons required to identify Pareto points in the

left/right side of the marry algorithm, with n total points of which b are to be tested

pgui[n, α] Estimator for number of comparisons, Pareto algorithm, generalized unbalanced case, infinite

dimension. The parameter α indicated the level of unbalance.

mmui[n, α] Estimator for number of comparisons, Marry algorithm, maximum unbalanced case, infinite

dimension. The parameter α indicates the level of unbalance.

pmui[n] Estimator for number of comparisons, Pareto algorithm, maximum unbalanced case, infinite

dimension

mbf[n,d] Estimator for number of comparisons, Marry algorithm, balanced case, with finite dimension

d

pbf[n] Estimator for number of comparisons, Pareto algorithm, balanced case, with finite dimension

d.

 xiv

pgui[n, α] Estimator for number of comparisons, Pareto algorithm, generalized unbalanced case, finite

dimension d. The parameter α indicates the level of unbalance.

mgui[n, α] Estimator for number of comparisons, Marry algorithm, generalized unbalanced case, finite

dimension d. The parameter α indicates the level of unbalance.

mmuf[n,d] Estimator for number of comparisons, Marry algorithm, maximum unbalanced case, finite

dimension d.

pmuf[n,d] Estimator for number of comparisons, Pareto algorithm, maximum unbalanced case, finite

dimension d.

The next set of estimators all assume balanced operation, all points Pareto

mff[n,d] Estimator for number of function calls, marry algorithm, finite dimension d.

pff[n,d] Estimator for number of function calls, Pareto algorithm, finite dimension d.

mdf[n,d] Estimator total amount of data passed, Marry algorithm, finite dimension d.

pdf[n,d] Estimator for total amount of data passed, Pareto algorithm, finite dimension d.

Various Estimators

spp[n,d] Estimator for numbr of comparisons with a single point Pareto, balanced data, dimension d.

bfm[n,d] Run time estimator for brute force Marry algorithm, dimension d. If d not given, then infinite

dimension.

dcbfm[n,d] Run time estimator for marry algorithm that does a divide of initial problem, then brute force

on subproblems.

dcbfmk[n,d] Run time estimator for Marry algorithm that does k divides of initial problem, then brute

force on subproblems. If d not given, then inifinite dimension. . If d not given, then infinite

dimension.

bfp[n,d] Run time estimator for brute force Pareto algorithm. If d not given, then inifinite dimension.

dcbfp[n,d] Run time estimator for Pareto algorithm that divides the problem first, then does brute force

on subproblems. If d not given, then inifinite dimension.

dcbfpk[n,d] Run time estimator for Pareto algorithm that does k divides on initial problem, then does

brute force on subproblems. If d not given, then inifinite dimension.

 xv

Acknowledgements

There are of course many people to acknowledge as playing key roles in my successful competion of this

degree. I offer many thanks to my committee for their time and their comments on my thesis. Special

thanks are offered to my thesis advisor, Dr. Tim Simpson, for patience in what turned out to be a long, slow

process as I shifted rudder on my thesis topic multiple times.

My supervisors at the Applied Research Lab provided continual support throughout, by both allowing time

away from regular tasks and by direct financial support as I approached the final months. Dr. Mark

Traband, in particular, served as a member of my committee and provided continual gentle nudges as

required.

Dr. Asok Ray was my initial advisor in 1992 when I first started towards my degree. I must acknowledge

his influence, as he instilled a deep respect for rigor and mathematics which I believe I carried through into

this current work.

We live an age of unbelievable growth in computer power and how it allows us to access and manipulate

information. In particular, the symbolic mathematics tool Mathematica and the access to the research of

others through the internet were crucial to my completing this thesis. So I offer my thanks to Stephen

Wolfram and Tim Berners Lee, the inventors of Mathematica and the World Wide Web respectively.

My long suffering family learned to stop asking when I’d be done a number of years ago. My children have

never known their dad not to be a PhD student. I greatly appreciate your patience.

Finally, to my wife Elizabeth, who accepted living on a grad student’s stipend when she deserved better,

and watched me drive in late to the office to work on this degree on more nights than can be counted. I

couldn’t have done it without you.

 xvi

“If one is the master of one thing and understands one thing well, one has at the same time insight into and
understanding of many things.”

- Vincent Van Gogh

 1

CHAPTER 1

Introduction

The motivation for this work stems from ongoing efforts to improve the computational design optimization

process for large, complex systems such as aircraft, land vehicles, or spacecraft. In particular, this work

supports a shift from computational design optimization to design exploration. Whereas past focus has been

on specifying constraints and objectives for a system a priori and generating a “best” design or a set of best

designs in accordance with those objectives (Hazelrigg 1996; Scott and Antonsson 1999; Shah and Wright

2000; Tang and Krishnamurty 2000; Allen 2001; Thurston 2001), the new paradigm is to generate

thousands or millions of candidate designs across the trade space, store them in a database, and then allow

users to a postieri express their constraints and objectives and view the best designs from the set of

candidate designs (Balling 1999; Stump et al. 2002; Yukish and Harris 2002).

The effort in design exploration is supported by ongoing research in the areas of design automation,

metamodeling and response surfaces, and by research in methods to visually explore design trade spaces.

Multidisciplinary design optimization (MDO), where models of systems and subsystems are integrated to

form a set of interacting analyses that can generate feasible design concepts, has risen to fill the need for

design automation. There has been a significant body of research on methods for structuring the interacting

analyses and posing their solution, with tradeoffs between ease of assembling the codes, the ability to

parallelize their execution, ease of solving the posed problem, and minimizing their run time (Cramer et al.

1994; Rogers and Bloebaum 1994; Sobieszczanski-Sobieski and Haftka 1997; Alexandrov and Kodiyalam

1998; Alexandrov and Lewis 1999; Rogers et al. 1999; Alexandrov and Lewis 2000). Along with

structuring the problem to minimize run time, and using efficient optimization algorithms, work in

metamodeling and response surfaces has allowed one to replace codes that have run times as long as hours

or days with codes that run in the order of milliseconds. These accelerated codes can be used to reduce the

run time of the MDO problems by orders of magnitude (Box and Draper 1959; Jones et al. 1998; Barton et

al. 2000; Simpson et al. 2001; Simpson et al. 2003).

Moore’s law has continued to hold true and computing power has continued to grow at an exponential rate,

further reducing computation time. Work in parallel computing and concepts such as grid computing and

computer workfarms allow one to spread processes across hundreds or potentially thousands of computers

to accelerate the creation of design concepts. Taken together, it has become possible to generate hundreds

of thousands of design concepts in a short period of time.

 2

A database populated with N designs, where each design is described by a set of d parameters, can be

considered to be a set of points occupying a trade space of dimension d . Taking this view, one can use

tools developed for multi-dimensional data visualization and visual data mining to explore the trade space

(Goebel and Gruenwald 1999; Nagel et al. 2001; Keim 2002). There are a number of freely available and

commercial tools (e.g., Spotfire1, VisDB2, Cviz3, HighTower4, XmdvTool5) that are used in industries such

as drug discovery and data mining. Within each tool, one can arbitrarily choose which dimensions of the

data to visualize, and assign them to 3D coordinate axes or other methods of indicating a value to see

relationships and correlation between variables. One can also dynamically constrain the data by removing

points that do not satisfy some easily set criteria through a process called brushing (Becker and Cleveland

1987).

To better support the design process, the visual data mining tools can be augmented to allow the user to

express and visualize an arbitrary preference structure over the trade space (Stump et al. 2002). With few

exceptions, the preference criteria will be multiobjective and there are any number of different possible

criteria from which to choose. Some examples are weighting and scoring, setting targets, prioritization

methods such as lexicographic goal programming, min-max criteria, and efficiency (Rosenthal 1985).

The efficiency criterion is also known as noninferiority, nondominated, Pareto-admissibility, and Pareto-

optimality. A point is a member of the nondominated set, also known as the Pareto frontier, if no other

point is more preferred in all attributes. Conversely, a dominated point is one for which there exists another

point that is equal or better in all attributes and strictly better in at least one, e.g., a car is faster, roomier,

and less costly than another.

The adoption of the efficiency criteria requires the assumption of monotonicity in each attribute, whereby it

is assumed that a user’s preference would never decrease as one attribute is increased while holding the

others constant. Given that this assumption holds, Rosenthal (1985) states that “…a rational person would

never deliberately select a dominated point. This is probably the only important statement in multiobjective

optimization that can be made without the possibility of generating some disagreement.”

The Pareto frontier has been long recognized as critical to design decision making, and much research has

occurred and is ongoing in developing algorithms to generate points that occupy the frontier (Cheng and Li

1 http://www.spotfire.com
2 http://www.dbs.informatik.uni-muenchen.de/dbs/projekt/visdb/visdb.html
3 http://www.alphaworks.ibm.com/formula/CViz
4 http://www.hightowersecurity.com/index.html
5 http://davis.wpi.edu/~xmdv/

 3

1997; Messac et al. 1999; Tappeta and Renaud 1999; Tappeta and Renaud 1999; Deb 2001; Deb et al.

2002). However this work again assumes an a priori expression of preference and constraints, as per the

design optimization problem. Recall that the design exploration problem starts with existing points and lets

users arbitrarily choose dimensions to place preferences on and apply constraints. After culling the data set

with constraints, the visualization tool must then identify the points that are nondominated as per the

preference criteria and display them to the user.

Figure 1 shows the visualization of the Pareto frontier in the Advanced Trade Space Visualization (ATSV)

software developed by a team of researchers to include this author (Stump et al. 2004). In the figure, the

nondominated points are indicated in black. As users move the slider bar at the bottom of each screen, they

adjust the constraints, and a new set of points are feasible. The interface must recalculate and display the

Pareto frontier in real time, with large numbers of points. This turns the problem of identifying the Pareto

frontier from a fixed set of points into a computing problem analogous to the sorting problem for 1D data,

or identifying the convex hull for higher dimensional data (O'Rourke 1993). The need to update in real time

drives the goal of efficient computation.

User’s constraint applied to data
Figure 1: Visualizing the Pareto points (black crosses) as user dynamically varies the data set

The literature on algorithms for identifying the Pareto set is surprisingly sparse, consisting mainly of a three

papers: (Kung et al. 1975; Bentley 1980; Bentley et al. 1990). The first two papers develop the divide and

conquer algorithm that is used in this thesis. While the papers provide an order of complexity for the divide

and conquer algorithm, they do not develop actual run time estimates for the algorithms needed to calculate

the switch points in a hybrid version. The third paper develops an expected linear run time algorithm, but

this algorithm is predicated on there being no correlation between each point’s values in the different

dimensions, i.e., the data is uncorrelated between dimensions. This assumption results in relatively few

numbers of Pareto points as a percentage of the total data set. The assumption breaks down for data with

 4

correlation between dimensions and also for uncorrelated data of high dimensionality. Experience with the

design problems addressed in this thesis show that the uncorrelated assumption does not hold in general.

There has been recent work in this area in the constraint programming community (Gavanelli 2001;

Gavanelli 2002), but the common view is that of (Ehrgott and Gandibleux 2000) who, in their annotated

bibliography of multiobjective combinatorial optimization, consider the problem “efficiently solvable and

not of mathematical interest.” Whereas similar problems such as sorting continue to draw attention,

algorithms to identity Pareto points from data sets have not. A probable reason for this view is that there

has not been a requirement for rapid, continual updating of Pareto sets, as is needed in a visualization tool

such as the ATSV.

Apart from visualization, as design exploration becomes more prevalent, large data sets will be used, and

so algorithmic efficiency for computing the Pareto points will become increasingly important. There has

been recent activity in the evolutionary computing literature as researchers have developed a need to

efficiently identify nondominated points (Murata and Ishibuchi 1995; Zitzler and Thiele 1999; Knowles

and Corne 2000; Zitzler et al. 2000; Deb 2001; Deb et al. 2002). In these works the authors have developed
2()O N algorithms to identify the nondominated points. A recent paper in the evolutionary computing

literature (Jensen 2003) has identified the aforementiomed algorithms of Kung and Bentley as applicable to

the evolutionary computing problem, and conducted empirical tests to demonstrate their efficacy.

Consequently, the goal in this research is to develop a fast, efficient hybrid algorithm to identify the Pareto

frontier in multi-dimensional data sets. The hybrid algorithm is a blend of two different base algorithms,

the Simple Cull (SC) algorithm that has a low overhead but is of overall high computational complexity,

and the Divide & Conquer (DC) algorithm, as introduced by Kung(Kung et al. 1975) and developed by

Bentley (Bentley 1980), that has a lower computational complexity but high overhead. The hybrid

algorithm employs aspects of each of these two base algorithms, adapting in response to the properties of

the data.

Each of the two base algorithms perform better for different classes of data, with the SC algorithm

performing best for data sets with few nondominated points, high dimensionality, or few total numbers of

points, while DC algorithm performs better otherwise. The general approach to the hybrid algorithm is to

1. First execute one pass of the SC algorithm through the data if merited

2. Execute the DC algorithm, which recursively splits the data into smaller problem sizes

3. Switch to the SC algorithm for problem sizes below a certain limit

In order to determine whether Step 1 should be executed, and to determine at what problem size the switch

in Step 3 should be made, estimates of both algorithms’ run times as a function of the size of the data set,

 5

the dimension of the data set, and the expected number of nondominated points are needed. These are

developed in the thesis.

To aid in increasing the speed and reducing the computational and storage complexity of the algorithm, and

to enable the ability for the algorithm to adapt to the data, a canonical transformation of the data to a Lattice

Latin Hypercube (LLH) form is developed. The transformation preserves the Pareto property of points, but

reduces storage space and algorithm run time.

In order to test the algorithms, three different methods for creating randomized data sets with arbitrary

dimensionality and numbers of nondominated points are developed. Each of the methods provides insight

into the properties of nondominated sets, along with providing test cases for the algorithms. Additionally, a

spacecraft design problem is developed to serve as a source of real world test data.

Contributions of the thesis

This thesis builds on the work of Kung and Bentley (Kung et al. 1975; Bentley 1980) and also uses many

existing results from the field of number theory. The additional contributions to the body of knowledge are

listed here.

1. The finite burn loss model

2. The concept of transforming the data to LLH form, and all analyses throughout the remainder of

the thesis associated with the data in this form

3. The approach for proving the expected number of Pareto points in uncorrelated data of varying

dimension

4. All methods for generating random data with a predetermined expected number of Pareto points

5. Development of the SC algorithm and analytical estimates of its run time for all cases

6. Analytical estimates of the run time of the DC algorithm for all cases

7. Development of the randomized DC algorithm

8. Development of the hybrid algorithm and analytical estimates of its run time for all cases

9. All experimental results

The remainder of the thesis is structured as follows. Chapter 2 develops a spacecraft design problem to

further motivate the need for Pareto algorithms, and to provide test data for the algorithms. Chapter 3

develops the basic properties of data sets with respect to nondominated points. Chapter 4 develops the

algorithms for creating test data. Chapter 5 introduces the basic computational framework for the Pareto

algorithms, develops the SC algorithmsand presents the linear time algorithm for 2D data. Chapter 6

develops the DC algorithms. Chapter 7 develops the hybrid algorithms. Chapter 8 tests the algorithms

against the spacecraft data. Chapter 9 provides conclusions and offers opportunities for future research.

 6

CHAPTER 2

Satellite Design Problem

This chapter presents a realistic model of sufficient complexity to act as a source of data for validating the

algorithms and to provide an example of the type of trade studies conducted in systems design. The model

will be used in later chapters to generate data against which the Pareto algorithms will be tested.

The model is based on the literature in satellite design (Abraham 1965; Fortescue and Stark 1995; Brown

1996; Brown 1998; Wertz and Larsen 1999; Fleeter 2000). The satellite design problem allows one to

choose the orbit radius, payload mass, propellant mass and main engine thrust and determine the satellite’s

total cost, total mass, and ∆V available over the life of the mission. In general, a design goal is to minimize

satellite mass, as the launch cost is directly related to satellite mass. This would lead one to size the engine

as small as possible, but an effect known as finite burn loss causes a loss in efficiency at low thrust levels,

providing a counter-balancing effect. Key design variables of interest are as follows:

• Orbit radius at Mars

• Propellant mass

• Engine thrust

• Payload mass (includes everything but propulsion system mass)

• Total mass

• Total cost

• ∆V arrival acceptable for orbit insertion

The key calculations to solving the problem are the calculations for finite burn loss, tank design, and main

engine design, as described in the following sections.

2.1 Finite Burn Loss

The Tsiolkowski equation (Brown 1996), is typically used for computing the propellant required to execute

a maneuver that results in a change in velocity, and is

 ln i
c sp

f

M
V g I

M
 

∆ =   
 

 (1)

where V∆ is the difference in the arrival velocity and the orbit velocity, cg is the gravitational constant for

Earth, spI is the specific impulse of the engine and propellant combination, and iM and fM are the initial

and final masses of the satellite. By manipulating Eq. (1), one can also solve for iM or fM . For example,

 7

doing so with values of 1140 kgiM = , 2.8 km/sV∆ = , and sp 312I = seconds gives a propellant mass of

1430 kg.

Note that the mass of propellant only depends on the specific impulse, the change in velocity, and the final

mass, with a lower final mass resulting in a lower propellant mass. This would compel one to choose the

smallest engine possible in order to minimize the engine’s contribution to satellite mass, as specific impulse

is typically independent of engine size.

The Tsiolkowski equation does not, however, account for finite burn loss. Finite burn loss occurs when the

satellite’s attitude is fixed in an inertial frame over the course of a continued engine burn as the satellite

enters orbit. The ideal direction for a satellite’s engine to point, in order to minimize the amount of

propellant needed to enter into an orbit, is tangential to the flight path to maximize the vector product of

thrust with the flight path, but if the satellite’s attitude is fixed in space and is not adjusted to maintain the

tangential relation to the flight path, then a loss in efficiency occurs, see Figure 2. Calculating finite burn

loss requires numerically solving the differential equations of motion, as the orbital dynamics are changing

continually as the satellite’s weight decreases and the angle with respect to the flight path varies, and

orbital parameters vary.

Spacecraft velocity
thrust

Start of burn

End of burn

thrust
Θ

Figure 2: Finite burn loss

To solve for propellant mass required to arrive in orbit, the problem is solved backward by modeling a

satellite that is departing orbit and is gaining mass as it departs, with the starting mass equal to the dry

weight of the satellite. The goal is to find what the maximum arrival∆V for a given propellant mass, dry

mass, engine specific impulse and propellant mass flow rate, and orbit radius. The geometry of the problem

is shown in Figure 3, with the satellite’s attitude indicated by the triangle.

 8

θ
r

δ

Figure 3: Problem geometry

The satellite has a fixed attitude during the departure, δ . The differential equations modeling the motion in

polar coordinates are

()

2

2

final prop

ˆˆ() (2)

ˆˆsin() cos()sp c sp c

F ma

a r r r r r
mF I g r I g

r
m m m t

θ θ θ θ
µ θ δ θ δ θ

=

= − + +

− = + + + + 
 

= +

G G

G � �� ��� �
G

�

 .

The set of coupled equations are nonlinear and cannot be solved for in closed-form; however, they can be

solved numerically, thereby determining relationships for ()r t , ()r t� , ()tθ , and ()tθ� . The relationship

between time and energy can be derived, ()()2 2 21
2() /E t m r r rθ µ= + −�� , and the energy achieved at time

t when all propellant is added obtained. From this energy, the velocity can be calculated.

Solving numerically and examining the propellant needed to achieve the desired energy increase for

varying satellite masses and propellant flows shows the effect of finite burn loss for satellites of varying

empty mass and a fixed radius of orbit (see Figure 4).

 9

0.5 1.5 2 2.5 3 3.5

kg of
propellant
per second

3000

3500

4000

kg
prop .

Mass of propellant required ,
accounting for finite burn loss ,
at varying empty mass

1100 kg

1200 kg

1300 kg

1400 kg

1500 kg

Figure 4: Finite burn loss comparison

One can see that as the propellant flow rate and therefore the thrust decreases, the propellant required for

the maneuver rapidly increases. At a certain point, the maneuver cannot be accomplished at the thrust

available. In the other direction, as the propellant flow rate and thrust increase, the mass of propellant

required to complete the maneuver asymptotically approaches from above the idealized value determined

by the Tsiolkowski equation.

Figure 5 shows how the propellant required varies with respect to propellant flow rate and specific impulse.

1 1.5 2 2.5 3 3.5

kg of
propellant
per second

1300

1400

1500

1600

1700

1800

kg
prop .

Mass of propellant required ,
accounting for finite burn
loss at varying Isp

292 second

302 second

312 second

322 second

332 second

Figure 5: Finite burn loss at varying Isp

 10

An example of an arrival trajectory computed for the case where the engine is of a very low thrust design is

shown in Figure 6. The arrival trajectory approaches Mars, which is modeled by the circle, from the lower

right. The satellite’s thrust vector is fixed pointing left to right as indicated by the arrows. It is clear that for

large portions of the trajectory the thrust vector is not tangential to the flight path, and so the approach is

inefficient.

1×107 2×107 3×107

-2.5 ×107

-2×107

-1.5 ×107

-1×107

-5×106

Figure 6: Low thrust trajectory

Figure 6 is to illustrate a point only. In reality, for an orbit insertion with this low of thrust, specialized

guidance algorithms would be used. Table 1 shows the pertinent variables for the orbital calculation. The

non-shaded variables are input, and the shaded variables are calculated. The independent variables in bold

are changed for each design iteration, while the others are fixed. The bold output variables are used in other

calculations or as a final value.

Table 1: Variables for the orbital calculation

Time and Propellant

isp 312.5688139 seconds

m 4.28E+04 km^3/s^2

Dry mass 1.08E+03 kg

Propellant mass flow rate 0.261211472 kg/s

orbit radius 4.00E+06 meters

Propellant Mass 8.00E+02 kg

g 9.8 m/s^2

Time 3062.652623 seconds

vTrajectory 0 km/s

vOrbit 3272.155253 km/s

best Del 0 Radians

 11

2.2 Tanks

The tank design rules are derived from (Brown 1996). The design rules are for tanks machined from

titanium. Each tank is designed to minimize its weight, given a fixed volume of propellant and an internal

pressure. The tank walls are designed to withstand the required internal pressure, but are constrained to a

minimum thickness for machining considerations. The natural shape for minimum weight is a sphere, but

the maximum diameter is constrained due to packaging considerations. Above a certain volume the tank

will assume a barrel shape with spherical end caps, as shown in Figure 7.

Barrel length

diameter

Weld reinforcements

Penetration

Figure 7: Tank design

The design variables for a tank are shown in Table 2. The shaded variables in the table are calculated, while

the non-shaded variables are input. Most of the variables are fixed in value. Variables shown in bold are of

interest, as they couple with other subsystems or are important to the system properties. The independent

bold variables are varied, while the dependent bold variables are used in other calculations.

 12

Table 2: Design variables for tank

Tank

max pressure 700 psi

allowable stress 100000 psi

Wall density 4428 kg/m3

machine tolerance 0.0001 m

num penetrations 1 #

tank volume 0.696 m^3

max int radius 0.55 m

min Thickness 0.000254 m

weld width 0.1016 m

penetration radius 0.0254 m

internal radius 0.549760513 m

sphere thickness 0.001924162 m

barrel thickness 0.003848324 m

tank length 1.103369351 m

tank mass 32.74763302 kg

external radius 0.565153808 m

tank inertia 6.543063313 kg-m^2

cost 1293.167642

The change in topology from sphere to barrel induces discontinuities in the derivative of the relation

between tank volume and tank weight (see Figure 8). The first discontinuity marks the beginning of the

transition from sphere to barrel shape. The second slope discontinuity marks the point at which the two

weld reinforcement sections no longer overlap, as the barrel section grows in length. The tank is

manufactured first as two halves of a sphere and (possibly) a barrel section, and then the sections are

welded together to form the tank. A spherical tank requires one weld, while a barrel shape requires two.

The welds require reinforcement, doubling the shell thickness for two inches each side of the weld.

 13

0.02 0.04 0.06 0.08 0.1

tank volumeHm3L
2

4

6

8

massHkgL Tank volume versus mass
two different pressures

875 psi

675 psi

Figure 8: Tank volume versus mass

The relationship of cost for the tank also reflects the discontinuity in the first derivative of tank mass with

respect to volume (Figure 9).

0.2 0.4 0.6 0.8 1

tank volumeHm3L
500

1000

1500

2000

2500

CostHnon−dimensional L

Figure 9: Tank cost-volume relationship

2.3 Engine

The main engine is considered to be a standard bi-propellant design with combustion chamber and bell-

shaped nozzle (see Figure 10).

 14

-5

-2.5

0

2.5

5

-5
-2.5
0

2.5
5

0

10

20
-5

-2.5
0

2.5
5

Figure 10: Main engine

The main engine design rules are derived from (Brown 1996; Sutton and Biblarz 2001). In the design rules,

the weight of the engine is a direct function of only the thrust of the engine, and is slightly less than linear

as shown in Figure 11.

.

200 400 600 800 1000

Thrust
Newtons

3.5

4

4.5

5

5.5

6

6.5

Mass
kg Mass per thrust

Figure 11: Engine mass per thrust

The relationship between thrust and cost is approximately quadratic as shown in Figure 12.

500 1000 1500 2000

ThrustHNewtons L
2000

4000

6000

8000

10000

CostHnon−dimensional L Cost per thrust

Figure 12: Engine cost-thrust relationship

 15

The design variables for the engine calculation are shown below in Table 3. The non-shaded bold variables

vary between design cases, while the other non-shaded ones are fixed. The shaded design variables are

calculated, and the ones in bold are used in other calculations.

Table 3: Engine design variables

Main Engine

thrust 2.00E+02 Newton

chamber pressure 300 psi

area ratio 90 exit/throat

cone angle 15 degrees

percent bell 0.9 fraction

chamber throat ratio 2.6

fuel choice N2O4/MMH

ratio of specific heats 1.25

specific gas constant 386.3522305 J/kg-K

combustion temp 3413.888889 Kelvin

mixture ratio 1.5

engine mass 3.484140777 kg

throat diameter 0.008163282 meter

throat area 5.23383E-05 sq. meter

exit area 0.004710446 sq meter

chamber diameter 0.021224534 meter

chamber length 0.112721893 meter

nozzle length 0.116351111 meter

exit diameter 0.077443697 meter

engine length 0.233154646 meter

theoretical impulse 335.2199269 seconds

real impulse 312.5688139 seconds

exit pressure 0.178584432 psi

press ratio 1679.877673

exhaust velocity 3193.888979 m/s

lambda 0.982962913

propellant flow rate 0.065302868 kg/s

cost 743.7066136

 16

2.4 Problem Setup

Graphically plotting the dependencies between calculations results in Figure 13. The mass budget and cost

analysis blocks merely sum their inputs to give mass and cost totals. The ∆V analysis solves the nonlinear

differential equations numerically in order to determine the ∆V available to the mission.

Tank

Engine

Cost
Analysis

Mass
Budget

∆V
Analysis

Orbit
Radius

Propellant
Mass

Engine
Thrust

Satellite
Cost

Satellite
Mass

∆V
Available

Payload
Mass

Figure 13: Calculation dependencies

Of the input and output parameters, payload mass, orbit radius, cost, total mass, and ∆V can all be

considered performance parameters that a user would express a preference against. Assuming that the probe

is used for remote sensing, a larger payload mass implies more sensors of greater accuracy, while a lower

orbit implies better resolution. Cost and total mass are to be minimized, while ∆V available would be

maximized. Propellant mass and thrust are physical design variables, which only affect the preferences

through the calculations of mass, cost, and ∆V. So the design space consists of seven dimensions, with five

of the seven dimensions candidates for selection in determining the Pareto frontier. As will be shown in

Chapter 8, the number of Pareto points for any particular choice of dimensions and application of

constraints will far exceed that for a random set of data.

2.5 Summary

The satellite model presents a typical trade space of interest to a system designer, with multiple competing

objectives. The model can be exercised using Monte Carlo simulation to generate tens of thousands of

points over the trade space so that a decision maker can a postieri set constraints, requirements, and

preferences, and gain understanding of the tradeoffs between them.

 17

CHAPTER 3

Mathematical Properties of Data Sets

This chapter introduces the basic terminology to be used in the remainder of the thesis, develops the Lattice

Latin Hypercube transformation, explores some of the implications of having the data in LLH form, and

develops an analytical estimate of the number of Pareto points in uncorrelated data. The development of the

LLH form and its properties and the method for analytically estimating the expected number of Pareto

points are new contributions to the literature.

3.1 Definition of Terms

The primary data structure used in this work is a two-dimensional table consisting of rows and columns. A

table is indicated in capital bold, V . Each row in the table equates to a single record, indicated in lower

case bold, ∈v V . A record consists of a number of elements corresponding to the columns of the table, and

indicated in lower case v ∈ v . The expression iv indicates the ith element of v , and ijv indicates the jth

element in the ith record in V .

Each column in the table constitutes a totally ordered set, with the ordering indicated by the operator ≤ .

This implies the following four conditions:

1. Reflexivity: v v≤ for all v in a column of V

2. Weak antisymmetry: v w≤ and w v≤ implies v w=

3. Transitivity: v w≤ and w x≤ implies v x≤

4. Comparability: for any ,v w in a column of V , either v w≤ or w v≤

A more restrictive condition adopted for this work is that within a column, each element has a unique

value, i.e., there are no duplicate values in columns. So the fourth condition is changed to indicate either the

condition v w≤ or w v≤ holds, but not both. The rationale for this restriction is given next.

Consider the design instances for a spacecraft listed in Table 4. Note that the values in each column are

unique.

 18

Table 4: Design instances

Spacecraft

∆V Duration Mass Diameter Length Cost

25,000 13000 2000 13.2 230 1,000,000

22,400 12700 2543 13.1 229 1,200,000

28,250 14075 2100 14.7 215 950,000

The table can also be considered to represent a collection of points in a multi-dimensional space. For

example, if the table has N rows and d columns, then it can be considered to represent N points that are

located in a d-dimensional space (e.g., Table 4 shows three designs in a six dimensional space). In this

view, a column may also be referred to as a coordinate or a coordinate axis. Either view, as a table or as a

multi-dimensional space, has its unique advantages in terms of understanding the concepts of

nondominance and the analysis of the Pareto algorithms, and both views are used at different times where

advantageous.

3.2 Transformation to Lattice Latin Hypercube Form

Given a table constituted of N records { }1 2, , , N=V v v v" where each { }1, dv v=v " has d elements, one

can define a transformationT that operates on the set V such that it generates a new table ()T=Z V which

preserves the total ordering among the elements of each column as follows. For each element iv in v , set

the value for the corresponding element iz in z to the position of iv in the order statistic for the ith column

where the most preferred values come first in the new columns of Z . In short, replace each element with

where its position would be if the column were to be transformed into a sorted list. For Table 4, if

transformed by T it would appear as shown in Table 5.

Table 5: Transformed design instances

Spacecraft

∆V Duration Mass Diameter Length Cost

2 2 1 2 3 2

1 1 3 1 2 3

3 3 2 3 1 1

Since the values in each column of Table 4 are by definition unique, V can be unambiguously transformed

into Z . Each column in Z consists of a permutation of the list of numbers{ }1,2, , N" , and so the

collection of points in Z can be considered to be N points in a d-dimensional grid, where each possible

 19

hyperplane in the grid has exactly one point located in it. It is this property that gives rise to the term lattice

latin hypercube. At times, the nomenclature NL is used to indicate a lattice with N points.

3.3 Definition of Pareto Ordering and Nondominance

Given two records , ∈v w V where V has N records each with d elements, the record v is said to dominate

w if for every [1,]i d∈ , i iv w≤ , with a strict inequality for at least one attribute. If no other record

in V dominates w it is considered to be nondominated. Another method of identifying w as nondominated

is to refer to it as a Pareto point.

The transformation T preserves the Pareto ordering by definition. Figure 14 shows an example of the

conversion from a continuously sampled space on the left to the lattice on the right. The assumption is that

lower values of each coordinate axis are preferred.

-500 -250 250 500 750 1000 1250

-1500

-1000

-500

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

Figure 14: Conversion to lattice

Through the remainder of this thesis, an assumption is that the data has been transformed into this LLH

form. The advantages for doing so are as follows:

1. All further manipulations are with integer variables vice floating point numbers, speeding up

algorithms and minimizing memory use

2. Sorting algorithms against the data or subsets of the data can be implemented in linear time

(Cormen et al. 1994)

3. The LLH form allows one to analyze the data prior to determining the Pareto points, to best

choose an algorithm to use

The key disadvantage for manipulating the data is that, in the event that two points share the same value in

one of their dimensions, the transformation will arbitrarily place an order on them. This can be handled by

proper bookkeeping in the algorithms to identify the Pareto frontier, via methods sketched out in Section

9.3.2.

 20

3.4 Properties of LLH Form for 2D Case When All Points are Pareto

For the 2D case with data converted to LLH form, an interesting property arises that if all points in the data

set are Pareto, then they are all located on the diagonal only. To prove this, assume there are N points in

the lattice, with each row and each column containing only one point. Define an operator S such that for a

record z , the operation 1 2() , dS z z z= + + +z " , i.e., the operator sums the elements of z . The set of points

that satisfy () 1S N= +z defines the points on the diagonal. Figure 15 shows a lattice Z with 8N = , and it

shows three sets, A , B and C . Let | |A be the number of points in the set A , and similar for B and C .

In Figure 15, the preferred points are in the lower left corner. Therefore, to prove that all points Pareto

implies all points on the diagonal, we need to show that if a point z is below the diagonal, then there must

be at least one point in the set C , i.e., z dominates at least one other point.

B

A

81 2 3 4 5 6 7

1

2

3

4

5

6

7
C

8

Figure 15: Lattice segmented into three disjoint sets A, B, and C

The point z satisfies the relation () 1S N< +z since z is below the diagonal. Not including z leaves 1N −

points remaining in Z . In order for z to not dominate another point, the remaining points must reside in the

sets A and B . The number of points in the set A B A B∪ = ∪ has the relation

A B A B AB

A B

∪ = + −

≤ +
.

Since every column has one and only one point, similar for every row, then from Figure 15 it can be seen

that 1| | 1A z= − and 2| | 1B z= − , and

1 2

1 2

(1) (1)
() 2

1

A B z z
z z

N

∪ = − + −

= + −
< −

.

 21

Therefore the set C must have at least one point, and z dominates at least one point. A similar argument

shows that for any point above the diagonal, the point must be dominated.

The implication of this result is that a potential algorithm for identifying Pareto points is to first convert the

data to LLH form and then drop all points above the diagonal, since they are dominated by definition, and

repeat until no further points are below the diagonal.

3.5 Diagonal Property at Higher Dimensions

Unfortunately, the 2D diagonalizing algorithm does not work for higher dimensions, since it is possible to

have dominated points above the diagonal plane defined by (for the 3D case) () 2S N= +z . For a d-

dimensional space the diagonal for which all points below it dominate at least one other point is defined by

the set of points z where () (1)S N d= + −z . The expression 1d − in the equation comes from the fact that

each axis is numbered 1 to N. That this relation is true can be shown as follows, where iA is a set of points

such that their ith coordinate is less than iz :

11

1
1

()
(1)
1.

d d

i i
ii

d

i
i

A A

z

S d
N d d
N

==

=

≤

= −

= −
< + − −
= −

∑

∑
z

∪

The upper bounding diagonal plane to ensure a point above it is dominated is, however, not the same as the

lower bounding diagonal plane. The upper bounding diagonal is determined by the relation

 11

()

d d

i i
ii

A N z

dN S
==

≤ −

= −

∑
z

∪ . .

Setting the right side equal to (1)N d+ − and solving gives

 () (1) (1)S d N d= − + −z .

So only in the case of 2d = are the lower diagonal and upper diagonal hyperplanes coincident. For higher

dimensions, there is a gap between them, as shown in the 3D case in Figure 16.

 22

Y

X

Z

Lower diagonal

Upper diagonal

Figure 16: Bounding hyperplanes

This gap can contain points that are dominant and points that are nondominant. It is easy to show that the

probability that points are below the hyperplane is approximately proportional to the content contained in

the simplex determined by the hyperplane (equal to the hypercube’s content multiplied by1/ !d). So for a

3D case the volume under the plane is approximately 1/ 6 of the total volume of the cube. An algorithm

that repeatedly removes points below the diagonal will only work for the 2D case.

3.6 Expected Number of Pareto Points in Random Lattices

This section explores the properties of tables that have the values of the columns distributed randomly, with

no correlation between the columns. Expressions for the expected number of Pareto points are calculated

for 2D first. The 2D result is then used as the basis for calculating the expected number of Pareto points in

higher dimension data sets.

3.6.1 Random 2D Lattice

The method for determining the expected number of Pareto points for a 2D data set is based upon a certain

method of construction for creating an N point lattice. Assume that an N point lattice has been created and

is augmented to create an 1N + point lattice as in Figure 17. For this section, assume that the most preferred

point is in the top right corner. This new point is added from the bottom, with a column inserted in one of

1N + possible locations, as in Figure 17. The figure shows on the left a 2D lattice with 5N = , the occupied

positions as gray circles and the Pareto points circled in bold. The 5 point lattice is extended to a 6 point

lattice by adding a point to the bottom, inserting its column in one of 6 possible locations, with equal

probability given to the 6 possible locations. On the right is the 6 point lattice created by inserting the new

point, shown in green. In this case, the new point is dominated.

 23

 latticeN N×

1 possible column insertionsN +

1 1 latticeN N+ × +
Preferred direction

Figure 17: Construction of lattice

Since every column in the N lattice has an element in it, the only position for the new point such that it will

be a Pareto point is the rightmost position, and therefore the probability that it is nondominated is1/(1)N + ,

and the expected number of nondominated points in the (1)N th+ row is 1/(1)N + . Summing up over all of

the rows gives the expression for expected number of Pareto points as

1

1()
n

k
e n

n=

= ∑ (2)

which is the definition of the harmonic number NH (Conway and Guy 1996). Recall that the harmonic

number asymptotically approaches for large N the relation

 1ln
2nH n

n
γ+ +∼

where 0.57721...γ = is the Euler-Mascheroni constant. So in general, the expected number of Pareto

points in a randomly selected N lattice is proportional to ln N .

Figure 18 shows the result of experimental determination of the expected number of Pareto points versus

the analytical calculation via Eq. (2). The experiment considered data sets with size ranging from 1 to 100.

At each size, 60 experiments were conducted. Each experiment consisted of first generating a random data

set of the appropriate size, then calculating the number of Pareto points in the data set. The mean number of

Pareto points per size is plotted. The figure shows agreement between the analytical and experimental.

 24

20 40 60 80 100

Number of
Points

2

3

4

5

Number of
Pareto Points

Figure 18: Experimental and Analytical results for expected number of Pareto points in 2D problem

The lattice in Figure 19 can be constructed where rows are added from below, but any alternate method that

can successfully generate all of the possible permutations of lattices with equal probability to any possible

permutation must also yield the same result. Consider a method where points are added at random positions

in both row and column. This method must result in the same expected number of Pareto points, which

is NH . A question to ask is what is the probability, when inserting a new point with randomly chosen row

and column into a random lattice, that it is a Pareto point? The answer to this question is a key to

calculating the expected number of Pareto points in 3D and higher dimension lattices.

The key point to note in answering the question is that while it is possible to have two different N-1 point

lattices, and insert a point into the same row and column of both, and end up with two new lattices that are

identical, the position of the most recently inserted point will be different in each case. Because of this

property, the probability that any one Pareto point in an N point lattice was the most recently inserted point

is the same for all points, and so the probability that the most recently inserted point is Pareto is /NH N .

3

1

2

4

5

6

Figure 19: Pareto set

 25

3.6.2 Expected Number of Pareto Points at Higher Dimensions

Computing the expected number of Pareto points at higher dimensions builds on the previous section’s

results. In the 2D case, a bottom-up construction for building up NL was used that ensured all possible

NL are equally likely, and that was easy to use in computing the expected number of Pareto points. This

section shows how to compute the analytical estimate of the number of Pareto points for the 3D case, and

how to extrapolate to higher dimensions.

In the 3D case, again new points are inserted from the bottom. But whereas in the 2D case insertion from

the bottom meant picking one point from a 1D line of N possible points, in the 3D case it means picking

one point from a 2D plane of 2N possible insertion points, as shown in Figure 20.

Figure 20: Points inserted from below in 3D lattice

This new point, placed at the bottom plane of the current cube of points, is a Pareto point in the cube if and

only if it is a Pareto point in the 2D problem formed by projecting all points onto a plane parallel to the

bottom plane. If it is Pareto in the N lattice, it remains Pareto in 1N + and higher lattices, as points that are

inserted below it can not dominate it. As this problem is identical to the one in the previous section, the

probability that the added point is Pareto is /NH N . Building up to a 3D NL , the expected number of Pareto

points is then

 1

1 1

[pareto points in 3D latttice]

1 1

N
i

i

N i

i j

H
E

i

i j

=

= =

=

=

∑

∑ ∑
.

This can be solved in closed-form (Knuth 1997) to be equal to

 ()2 (2)

1 1

1 1 1
2

N i

N N
i j

H H
i j= =

= +∑ ∑

where the generalized term ()k
NH is defined as

 26

 ()

1

1N
k

N k
i

H
i=

= ∑ .

While the sequence NH grows without bound for larger N all of the sequences ()k
NH for 1k > do converge.

Note that (1)
N NH H= . For example,

2

(2)lim
6NN

H π
→∞

= .

Again, experiment corroborates the analytical approach as shown in Figure 21. For the 3D experiment, size

was varied from 1 to 100, with 60 random lattices per size, and the mean value of the number of Pareto

points per size is shown. The solid line is the analytical estimate.

20 40 60 80 100

Number of
Points

2

4

6

8

10

12

14

Number of
Pareto Points

Figure 21: Expected number of Pareto points for 3D problem, with analytical estimate as the solid curve,

and experimental values as the points

The expected number of Pareto points for a 4D problem is, by generalizing the 3D case, equal to

 1 1

1 1 1

[Pareto points in 4D lattice]

1

N i
j

i j

jN i

i j k

H
E

j

ijk

= =

= = =

=

=

∑∑

∑∑∑

and the expected number of Pareto points in d dimensions is

21

1 2 11 1 1 1 2 1

1[Pareto points in lattice of dimension]
d

d

iiN

i i i d

E d
i i i

−

−= = = −

 
=  

 
∑∑ ∑"

"
.

All of these expressions can be converted into combinations of generalized harmonic numbers (Knuth

1992). Some of the simplifications are listed in Table 6.

 27

Table 6: Relationship of dimension of random lattice to expected number of Pareto points in terms of
generalized harmonic numbers

Dimensions Expression for the expected number of Pareto points

2 NH

3 ()2 (2)1
2! N NH H+

4 ()3 (2)1 3 3
3! N N NH H H+ +

5 ()4 2 (2) (2)2 2 (3) (4)1 6 3 8 6
4! N N N N N N NH H H H H H H+ + + +

6 ()5 3 (2) (2)2 (2) (3) 2 (3) (4) (5)1 10 15 20 20 30 24
5! N N N N N N N N N N N NH H H H H H H H H H H H+ + + + + +

7 6 4 (2) 3 (3) 2 (4) (5)

(2) (3) (3) (3) (2) (2) (2) (2) (4)

(6)

15 40 90 144 ...
1 120 40 15 90 ...
6!

120

N N N N N N N N N

N N N N N N N N N N

N

H H H H H H H H H

H H H H H H H H H H

H

 + + + + +
 

+ + + + + 
 + 

While the expressions in Table 6 can be written in terms of combinations of various ()k
NH , there is no

simple closed-form solution for the expression that directly emerges. Examining the 5D case and

generalizing shows why this is true. First, rewrite the terms ()kk
N NH H= as (1) (1) (1) (1)

N N N NH H H H" where

(1)
NH is multiplied together k times. Now rewrite terms such as (1) (1) (2) (3)

N N N NH H H H as (1,1,2,3)
NH for

simplification. Using the modified notation, the 5D case can be written as

 ()(1,1,1,1,1,1) (1,1,1,2) (1,2,2) (2,3) (1,1,3) (1,4) (5)1 10 15 20 20 30 24
120 N N N N N N NH H H H H H H+ + + + + + (3)

and similar for the other dimensions. Observation reveals that the terms in the superscript are all of the

possible summations of integers less than or equal to 5 such that their sum is 5. This applies for higher

dimensions too. The number of possible summations such that they equal a number N is the well-known

partition function, ()P N , and this function itself does not have a closed-form solution even in terms of the

number of combinations N , much less the particulars of the combinations (Conway and Guy 1996).

However, the number of Pareto points does scale in proportion to 1lnd N− in the limit for random data of

dimension d , as can be seen by replacing the NH terms with their logarithm approximation.

Figure 22 shows results of experimental and analytical calculations for the expected number of Pareto

points for lattices of size ranging from 1 to 100, and dimension ranging from 2 to 9. The solid lines are the

 28

analytical calculations, while the points represent experimental results. The experiments were conducted as

per the 2D and 3D case described previously.

20 40 60 80 100

Number of
Points

20

40

60

80

Number of
Pareto Points

2D

3D

4D

5D

6D

7D

8D
9D

Figure 22: Analytical and experimental results for expected number of Pareto points for lattices ranging in
size from 1 to 100, and dimension from 2 to 9.

3.7 Expected Number of Points Dominated by “Best” Pareto Point in the

2D Problem

Given a random data set in 2D, each point will dominate zero or more other points. Label the point in the

data set that dominates the most other points as 'p , and the number of points it dominates as *D . Then a

useful result for computing expected run times of the SC algorithm, and in setting the break point in the

hybrid algorithm, is to determine the expected value of *D .

To compute this, first note the following form of 2D correlated lattice, where the available cells in the

lattice are truncated in the preferred direction (up and right in Figure 23). The critical dimensions of the

lattice are the size of the lattice N and the length of the top row M . The positions available to be occupied

are shown in black, while the positions that will remain empty are shown grayed out for reference. The

positions along the diagonal are shown in bold.

 29

N

M

N-M

M

Preferred direction

Figure 23: Correlated lattice

The number of permutations possible in the lattice is

 !N MM M− (4)

That this is true can be seen by noting that options for placement of a point in the top row are M , and

options for the next row down are also M , and so on down through the first N M− rows. The final

M rows have !M placements, resulting in Eq. (4). The probability that a lattice is randomly generated that

meets this restricted form is, assuming all permutations are equally likely

 !
!

N MM M
N

−

. (5)

This probability includes cases where a lattice has no points occupying the bold positions along the

diagonal in Figure 23. Narrowing the probability to cases where the lattice meets the constraints of Figure

23 and has at least one bold position occupied results in

1! (1) (1)!

!

N M N MM M M M
N

− − +− − − . (6)

As shown in Sections 3.4 and 3.5, for a 2D problem of size N , any point with coordinates X and Y will

leave a maximum of 2 ()N X Y− + points nondominated, and so dominate a minimum of

(2 ()) 1N N X Y− − + − points, which simplifies to () 1X Y N+ − − . The number *D is then expressed as

 ()* max 1i ii
D X Y N= + − − (7)

 30

To say that a particular lattice has a value of *D is the same as saying the lattice can be cast in the form of

Figure 23, i.e., a truncated lattice with value * 1M D= + and that at least one position along the upper cut

diagonal (bold points) is occupied. The probability that this occurs, for a random lattice, is

1

* ! (1) (1)![1]
!

N M N MM M M MP D M
N

− − +− − −
= − = (8)

The expected value for the *D is the expression

1

*

1

! (1) (1)![] (1)
!

N M N MN

M

M M M ME D M
N

− − +

=

− − −
= −∑

.
(9)

This can be manipulated algebraically as follows. Define Eq. (5) as ()f M so that

 []*

1

1[] (1) () (1)
!

N

M

E D M f M f M
N =

= − − −∑ . (10)

This can be manipulated and simplified using the relations () 1f N = and (0) 0f = to give

 *

1

![]
!

N MN

M

M ME D N
N

−

=

= − ∑ . (11)

A closed-form approximation to the sum can be developed using the following relation (Knuth 1997):

 ()2
3

0

() ()! 2 11 4 71
! 2 3 24 2 135 1152 2

kn

k

n k n k n O n
n n n n

π π π −

=

− −
= − + + − +∑ ,

which leads to the expression

 *
3

2 11 4 71[]
2 3 24 2 135 1152 2
NE D N

N N N
π π π

− − + + −�
.
 (12)

Plotting the ratio of *[]E D to N in Figure 24 shows that, for randomly distributed 2D data, the best point

will dominate a proportion of the other points, with that proportion rapidly approaching 1. The solid line is

the approximation, and the points are exact solutions to the summation, to show their correlation.

 31

200 400 600 800 1000
Problem size

0.2

0.4

0.6

0.8

1

oitaR
fo

xam
detanimod

stniop
ot

melborp
ezis

Figure 24: Ratio of problem size to number of points dominated by the "best" Pareto point for a 2D lattice

What this implies is that, for a 2D table randomized with no correlation between columns, if one first

identifies the point 'p and uses it to cull the remaining points to remove those that are dominated by 'p , one

can expect to remove most of the points on the first pass. As this is what the SC algorithm does, the SC

algorithm proves to be very efficient for random 2D lattices, as shown later.

This general relation diminishes for higher dimensions, although for a fixed dimension the ratio does

continue to increase with problem size. Figure 25 shows the results of empirical computer experiments

used to determine the relationship between lattice size, dimension, and expected minimum number of

points dominated for lattices of dimension three through six. The 2D curve from Figure 24 is also shown

for reference.

500 1000 1500 2000
Lattice size

0.2

0.4

0.6

0.8

1

oitaR
fo

xam
detanimod

stniop
ot

ecittal
ezis

d=3

d=4

d=5

d=6

Figure 25: Varying ratios of points dominated

Figure 26 is a plot showing how, for 100,000 points, the ratio of minimum expected dominated points to

total table size decreases with increasing dimension. So at high dimension with random data sets, the SC

algorithm’s performance will suffer.

 32

2 4 6 8 10
Dimension

0.2

0.4

0.6

0.8

1

oitaR
fo

xam
detanimod

stniop
rof

melborp
ezis

Figure 26: Varying ratio of points dominated for a problem size of 100,000 and varying dimension

3.8 Summary

This chapter introduced the basic mathematical nomenclature that is used throughout the remainder of the

thesis and also introduced the transformation of the data to LLH form. The transformation preserves the

Pareto partial ordering between points, while reducing required storage space and sort time. In the

following chapters the LLH form is used in optimizing the design of the algorithms and in developing

methods to analyze the data in real time to improve algorithm performance.

The chapter also developed a new method for developing an analytical estimate of the number of Pareto

points for random lattices of arbitrary dimension. The analytical estimate agrees with experimental results,

showing that the expected number of Pareto points scales by 1lnd N− .

For random lattices, one can ask what the expected value for the maximum number of points dominated by

any one point in the lattice is. Analytical results for the 2D case and empirical results for the higher

dimensional cases show that, as lattice size increases, the ratio of total size to maximum number of points

dominated by any one other point is monotonically increasing. However, the growth in this ratio becomes

very slow as the dimension increases.

 33

CHAPTER 4

Generating Test Data

This chapter introduces methods for creating test data. The literature on algorithms for identifying the

Pareto frontier has to date focused only on random data where the distribution of data in each dimension is

independent (Bentley et al. 1990). This independence between dimensions creates data sets that are not

realistic for actual design problem sets. Using such random data can lead one to choose an algorithm that

performs well against the random independent data but poorly otherwise.

There are in general four types of test data that are used in the testing algorithms for determining the Pareto

points: best case, worst case, random uncorrelated case, and random correlated case. The first two, best

case and worst case, are dependent on the algorithm to be tested and are covered in the chapters related to

that particular algorithm. The random uncorrelated case is straight forward to generate, therefore, this

chapter focuses on the random correlated case. All three methods for generating data are new to the

literature.

4.1 Partitioned Lattice Method

The uncorrelated random lattice has a fixed relationship between the number of points N in the lattice and

the expected number of Pareto points. One would like to generate lattices that are random, yet have a

selectable number of expected Pareto points. This section develops one approach for generating lattices

with a predetermined expected number of Pareto points.

The proposed approach uses an analogy to the use of partitioned matrices in linear algebra. The procedure

is to first create a set of separate random uncorrelated sublattices such that the sum of their sizes adds up to

N , then to form a partitioned lattice of size N from the sublattices, such that no point in one sublattice

dominates a point in another. A 2D example is shown in Figure 27. For these lattices, the preferred point is

in the bottom left, with Pareto points marked in red.

 34

1 2 3 4 5 6 7 8 9 1011121314151617181920

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5 6 7 8 9 1011121314151617181920

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5 6 7 8 9 1011121314151617181920

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5 6 7 8 9 1011121314151617181920

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure 27: A 2D lattice of size 20 constructed from two lattices of size 10

Note that no point in the lower right block dominates a point in the upper left and vice versa. If we define

the notation ()dE N to indicate the expected number of Pareto points in a random lattice of dimension d and

size N , then the expected number of Pareto points for the lattice in Figure 27 with 20N = is 22 (/ 2)E N .

Since in general, for arbitrary dimension d and arbitrary nonzero lattice sizes n and m the relationship

 () () ()d d dE n E m E n m+ > + (13)

strictly holds, this is greater than the value one would get without partitioning, i.e., 2 22 (/ 2) ()E N E N> .

Equation (13) suggests that, for a desired value of TargetE , one can arbitrarily choose a set of sublattice sizes

1 2, ,..., kn n n such that they sum to N and Target ()d iE E n∑� .

The number of possible candidate choices for the set of sublattices
1 2

{ , ,..., }
kn n nL L L is the partition function

()P N . An approach to determining the set of lattices would be to start at one end of the set of possible

partitions and search through the set until the best choice is found. However, searching through the set of

all possible partitions would be difficult as the function ()P N grows exponential with N ; also, the function

dE is not monotonic in the lexicographic ordering of the set of partitions, which is how algorithms to

generate the set typically present them.

Figure 28 shows, for a lattice with 20N = , how the list of possible partitions maps to the expected number

of Pareto points. The black points correspond to the list being sorted in lexicographic order, which is

clearly not monotonic. The red points, forming a smooth line, are for the set of partitions sorted by the

expected number of Pareto points they generate. The other point to take from the figure is that there are

over 600 candidate partitions for a lattice of size 20.

 35

100 200 300 400 500 600
Partitions

7.5

10

12.5

15

17.5

20

E2

Figure 28: Expected number of Pareto points for a partitioning of a lattice, where the candidate partitions

are sorted in lexicographic order (black) and sorted by 2 ()E i (red)

In order to deal with the issues of lexicographic ordering and the exponential growth of the number of

possible partitions with problem size, consider as candidate partitions only sets of the form

{ , ,... , 1,... 1, }m m m m m r− − , where m is some integer less than or equal to N , 1m − is the integer one less

than m and for which there may be zero or more occurrences, and r is a remainder such that 1r m< − and

so that the elements of the set sum to N . A couple examples of such sets follow for 15N = .

{6,6,3}
{4, 4,3,3,1}
{4,3,3,3,2}
{2, 2,2,2, 2,1,1,1,1,1}

The total number of candidate sets meeting this criteria is

1 1

1/

ln

N N

i i

N

N i N
i

NH
N N

= =

<  

=

∑ ∑

∼
. (14)

So the number of candidates increases by logN N as opposed to exponential. Figure 29 plots the list of

candidate sets as sorted in lexicographic order versus their expected number of Pareto points, and shows a

monotonic relation that smoothly covers the possible values of dE . For the figure, 30N = and d = 2.

Some additional processing can be done to choose the starting point for the algorithm. Numerically solving

the relationship

 Target (/)dE n E N n= × (15)

for n , and then using the value of /N n   to create the starting partition set ensures that the starting point

will be close to the final partition set chosen.

 36

20 40 60 80
Partitions

5

10

15

20

25

30

E2

Figure 29: Relation of the restricted subset of candidate partitions to dE

The algorithm to generate a random correlated lattice (GRCL) for N points in d dimensions developed for

this research is presented next.

Algorithm GRCL Given a size N , a dimension d and an expected number of Pareto points

[(),]dE E N N∈ , generate a random lattice that has an expected number of Pareto points close to but not

exceeding E .

GRCL-1 [Form starting candidate partition] Form a partition set numerically solving Equation (15)

for n , determining /q N n=    , and forming { }0 , ,..., ,I q q q r= where r is a remainder

less than q .

GRCL-2 [Generate and test candidate partition sets] Generate and test, in reverse lexicographic

order, the candidate partitions iI until the relation satisfies ()d iE I E≤ . The monotonic

relation of the partitions with respect to ()dE ⋅ guarantees that, upon stopping, the set

iI will be the one that most closely meets E without exceeding it. The restriction of E to

the range [(),]dE E N N∈ guarantees that the iteration will stop.

GRCL-3 [Determine the size of the chosen set iI] Count the number of elements in the set iI in the

variable k .

GRCL-4 [Create base lattice] Create a base lattice of size k and dimension d such that all points in

the lattice are nondominated. This can be done by (using the 3D case for an example)

generating a set of points such that each lies on the plane X+Y+Z=0. The values for X and

Y are randomly chosen, and the relation Z=-(X+Y) is used to set Z. Finally, the points are

normalized to make a lattice.

GRCL-5 [Create sublattices] For ii I∈ , create a lattice of size i and dimension d . The sublattice

will be random and uncorrelated, and there will be k of the sublattices.

GRCL-6 [Create final lattice] Replace each of the points in the base lattice with a sublattice chosen

without replacement at random from the set of sublattices.

 37

Figure 30 shows, for 20N = and 2d = , a series of random correlated lattices with increasing expected

number of Pareto points.

9 10 11 12

5 6 7 8

Figure 30: Lattices with increasing number of expected Pareto points (listed above each plot)

4.2 Lattice Hyperplanes Method

The GRCL algorithm has the potential to generate data that can favor a divide and conquer approach due to

decoupling between portions of the point space. To counter this property, a different method based on

populating points on separated hyperplanes is also developed. While in practice this method is more

cumbersome, the development of the method illuminates a number of important properties that define

Pareto points. For clarity, this approach is developed for a 3D space and then extended to problems of

arbitrary dimension.

Start with two planes, parallel to each other, with their normals equal to []1 0 0 , and separated by a

distance .5q = , as shown in Figure 31.

 38

0 0.25 0.5 0.75 1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Figure 31: Parallel planes

Randomly place points on both planes, using a uniform distribution in the Y and Z directions as shown in

Figure 32.

0 0.25 0.5 0.75 1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Figure 32: Planes with random points

Rotate both planes about the origin, so that their normal vectors are now []1 1 1 , as per Figure 33.

 39

-1
0

1

0 1 2
-1

0

1

2

-1
0

1
Figure 33: Rotated 2D point clouds

Letting dominance be defined by higher values of X, Y, and Z, then each point on the plane closer to the

origin defines a space on the outer plane such that if that space is occupied, then the point is dominated.

Figure 34 shows the space, in red, that must be unoccupied for the point on the inner plane to be

nondominated.

-2 0 2
-1 0 1 2 3

-2

0

2

-2 0 2
Figure 34: Dominance between planes

If the area marked in red is a and the area of the outer plane is A , and N points are randomly distributed

on the outer plane, then the probability that any one point in the outer plane does not lie in the region

colored red is () /A a A− . Therefore, the probability that all points do not lie in the red region, and the point

on the inner plane is nondominated, is

 40

 [point is nondominated]
NA aP

A
− =  

 
. (16)

The area a can be determined by the separation q between the planes through basic geometry. Therefore, by

controlling the number of planes, the separation between planes, and the number of points distributed

randomly on the planes, one can generated random data with a predetermined expected number of Pareto

points.

In general, the approach is, for a d-dimensional problem, to first create a series of (d-1) dimensional

hyperplanes perpendicular to the first axis with a fixed separation between them that are randomly

populated with points, then rotate all of them about the origin so that they are now perpendicular to the

[]1 1 T" vector, and then normalize the data into LLH form. The formal description for problems of

arbitrary dimension follows.

The geometric figure shown in Figure 34, and reproduced in Figure 35, is a trirectangular tetrahedron. The

red face is referred to as the base facet, and the vertex opposite the base facet is the peak vertex. It is

trirectangular because the three edges touching the base facet intersect at right angles to each other. For this

case, the lengths of the edges that meet at the peak vertex are all the same length.

Figure 35:Trirectangular tetrahedron

The d-dimensional generalization of a tetrahedron is a simplex, which is for dimension d the simplest

geometric form possible. Referring to a simplex in d dimensions as a d-simplex, it will have 1d + facets,

with each facet being a (d-1)-simplex itself. For example, the tetrahedron above is a simplex in 3D space, it

has 3+1=4 facets, and each facet is a triangle, which is just a simplex in 2D space.

 41

A d-dimensional simplex will be referred to as a d-rectangular simplex if all edges emanating from the peak

vertex are orthogonal to each other, which is the case here. For this work, the lengths of the edges

extending from the peak vertex are equal to each other, resulting in a higher dimensional analog to a right

triangle referred to as a d-right simplex.

The generalized term for the volume (3D) or area (2D) is the content. For a d-right simplex with orthogonal

edges of length l , the content c is

11

2 1
0 0 0

!

dxxl

d

d

c dx dx dx

l
d

−

=

=

∫ ∫ ∫" "
 (17)

The distance q to the base facet from the peak vertex is related to the length of the edges, l , and the

dimension d by the derived relation

 lq
d

= . (18)

The generalized Pythagorean theorem says that for a d-rectangular simplex, the square of the content of the

base facet bc is equal to the sum of the squares of the contents of the other facets. Since the other facets all

have the same content sc for this work the following relation holds:

2 2

2

b s
d

S

c c

dc

=

=

∑
.

Since the content of the side facets is, using Eq. (17), equal to

1

1!

dl
d

−

−
.

 The content of the base facet is

1

1!

dld
d

−

−
.

Since we will be controlling the separation of the hyperplanes rather than edge lengths, Eqn. (18) can be

rewritten using Eqn. to give

/ 2
1

1

1!

d
d

b

d
d

dc q
d

qα

−

−

 
=  − 

=

,

where dα replaces the expression in the parentheses to simplify the notation. Assuming N points in the

outer hyperplane, a total content of the outer hyperplane of 1 (hyperplane bounded by edges of length 1),

 42

and that the base facet of the simplex generated by the candidate point lies wholly within the outer

hyperplane, then the probability of a point on the inner hyperplane being dominated is given by

 ()11
Nd

d qα −− ,

and if there are M points on the inner hyperplane, then the total expected number of nondominated points

in the data is

 1[nondominated points] (1)d N
dE M q Nα −= − + .

The calculation can be readily extended to multiple hyperplanes. Assuming that the separation between

hyperplanes is a constant q , then the probability of a point on the rth hyperplane is nondominated is the

product of the probabilities that it is not dominated by any of the points on the hyperplanes before it.

Assuming there are iM points on the ith hyperplane, then the expected number of nondominated points on

the rth hyperplane is

1

1

1

(1 ()) i

r
Md

r d
i

M r iβ
−

−

=

 
− − 

 
∏ .

The rotation from a plane perpendicular to the []1 0 ... 0 vector to a plane perpendicular to the

[]1 1 ... 1 vector is accomplished by first creating the matrix

1 0 ... 0
1 1 0 0

'
0

1 0 1

R

 
 
 =
 
 
 

%
"

then applying the Gram-Schmidt orthogonalization (Golub and Van Loan 1996) to 'R to get rotation

matrix R , and then multiplying each point vector by R to rotate it to the desired plane.

As noted in the introduction to this section, this method proves to be cumbersome, and it is difficult to tune

the various parameters such as points on each plane, and separation of the planes, to get a desired expected

number of Pareto points. However, the method does suggest a simpler approach whereby the total number

of points and the exact number of Pareto points can be specified, and a randomized data set generated to

meet the requirements. Such a method is described in the next section.

4.3 Random Dominant Points Method

The approach to this method is to determine a number of random points that are guaranteed to be

nondominated, and then create the remainder of the points randomly so that they are guaranteed to be

dominated. This method has the advantage of generating a lattice with exactly the number of desired Pareto

points, rather than a data set that has the expected number of Pareto points.

 43

Assume the problem is to generate a set of data with N points, of which Q are nondominated, and is of

dimension d . Again, start with a 1d − dimensional plane perpendicular to the []1 0 ... 0 vector, and

randomly place Q points on the hyperplane. Rotate these points so that the hyperplane is now perpendicular

to the []1 1 ... 1 vector using the method described in the previous section. To generate each of the

remaining N Q− points that are dominated, in turn randomly select a nondominated point z , generate a

random point 'w such that each of its coordinates is greater than zero, than create the dominated point w by

letting '= +w z w .

Since the only constraint on the coordinates of 'w is that they be greater than zero, any number of methods

of generating the random coordinates is available. The one used here is to let each of the coordinates be

distributed i.i.d. with a half normal distribution (same as the normal distribution except restricted to

positive values). Varying the parameter of the distribution, σ , it is possible to change the probability that

w will be dominated by more than point.

Algorithm RDP Given a size N , a dimension d and an expected number of Pareto points [1,]Q N∈ ,

generate a random lattice that has Q an expected number of Pareto points.

RDP-1 [Form points on hyperplane] Randomly assign Q points to the hyperplane perpendicular

to the []1 0 ... 0 vector.

RDP-2 [Rotate the hyperplane] Multiply each of the Q points by the rotation matrix R (generated

as described above), so the hyperplane has been rotated to be perpendicular to the

[]1 1 ... 1 vector.

RDP-3 [Randomly pick one of the Q nondominated points] Pick one of the nondominated points,

with equal probability between them. Name the point z .

RDP-4 [Create point 'w] Create a point 'w such that each of its coordinates is randomly set i.i.d.

via a half-normal distribution with chosen parameterσ . Varying σ varies the “thickness”

of the resulting data set.

RDP-5 [Create dominated point w] Let '= +w z w .

RDP-6 [Repeat until done] Repeat steps RDP-3 through RDP-5 until a total of N points have

been created.

Figure 36 shows how, for a fixed number of Pareto points and total points, the parameter σ affects the

distribution of the data. The parameter adjusts the “thickness” of the data, which in turn affects for each

 44

dominated point the number of Pareto points that dominate it. The top row has the raw data, and the bottom

row the same data converted to LLH form.

200 400600 8001000

200

400

600

800

1000
1êσ = 0.1

200400 600 8001000

200

400

600

800

1000
1êσ = 0.4

200 400600 8001000

200

400

600

800

1000
1êσ = 0.7

200400 600 8001000

200

400

600

800

1000
1êσ = 1.

-0.6-0.4-0.2 0.2

0.2

0.4

0.6

0.8

1
1êσ = 0.1

-0.5 0.5 1

0.5

1

1.5

2
1êσ = 0.4

-0.5 0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

1êσ = 0.7

1 2 3

0.5
1

1.5
2

2.5
3

3.5

1êσ = 1.

Figure 36: 1000 points total, 25 Pareto points, varying sigma for the half normal distribution

Figure 37 shows 1000 points, 40 Pareto points, and a large range of values for σ .

2004006008001000

200
400
600
800
1000

1êσ = 21

2004006008001000

200
400
600
800
1000

1êσ = 26

2004006008001000

200
400
600
800
1000

1êσ = 31

2004006008001000

200
400
600
800
1000

1êσ = 36

2004006008001000

200
400
600
800
1000

1êσ = 1

2004006008001000

200
400
600
800
1000

1êσ = 6

2004006008001000

200
400
600
800
1000

1êσ = 11

2004006008001000

200
400
600
800
1000

1êσ = 16

Figure 37: 1000 points, 40 Pareto points, 2D, varying σ

Figure 38 shows a set of data with varying numbers of Pareto points. One feature to notice is the

appearance of the line in the data at the Pareto frontier. This artifact does not appear to impact the

performance of the algorithms, as later chapters show. The top row is the raw data, while the bottom row is

the same data in LLH form. The appearance of the line at the frontier is heavily dependent on the choice of

σ .

 45

2004006008001000

200
400
600
800
1000

Num Pareto = 250

2004006008001000

200
400
600
800
1000

Num Pareto = 500

2004006008001000

200
400
600
800
1000

Num Pareto = 750

2004006008001000

200
400
600
800
1000
Num Pareto = 1000

-0.6-0.4-0.2 0.20.40.6

0.2
0.4
0.6
0.8
1

1.2

Num Pareto = 250

-0.6-0.4-0.2 0.20.4

0.2
0.4
0.6
0.8
1

1.2
1.4

Num Pareto = 500

-0.6-0.4-0.2 0.20.4

0.2
0.4
0.6
0.8
1

1.2

Num Pareto = 750

-0.7-0.6-0.5-0.4-0.3-0.2-0.1

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Num Pareto = 1000

Figure 38: Data with 1000 points, s = 1/10. varying number of Pareto points

The rationale for using the half-normal distribution is that, with respect to direction, it has the property that

letting each dimension be distributed half-normal uniformly distributes the points over the positive

quadrant of the hypersphere. Other distributions do not have this property, instead they cluster the points

near to the normal vector of the plane. An option in distributing the points is to let the distance from the

origin for the dominated points be a random variable such as the exponential or any other distribution that

generates positive deviates, and the direction of the dominated point from its parent point be randomly

chosen to as to be uniformly distributed on the positive quadrant of the unit hypersphere. To generate the

points for dimension d, let each of 1x through dx be i.i.d. half-normal with fixed variance. Then let the

direction cosines be defined as

2

1

i
i d

jj

x

x
ξ

=

=
∑

.

The direction cosines will be uniformly distributed on the positive quadrant of the unit hypersphere.

4.4 Summary

Three different methods to generate random lattices with predetermined expected numbers of Pareto points

are presented. Of the three, the RDP algorithm is the fastest in run time, allows the user to exactly specify

the number of Pareto points, and provides a parameter to let the user adjust the “thickness” of the data. A

drawback to the method is the appearance of a boundary artifact in the data, which does not appear in the

GRCL algorithm. The GRCL algorithm avoids this artifact, but is slower to execute and does not guarantee

an exact number of Pareto points in the data that it generates. It would be possible to mix and combine the

two methods, but this is not explored here.

 46

CHAPTER 5

Introduction to Algorithms to Determine Pareto Set

This chapter serves as an introduction to the basic issues governing a choice of algorithm to determine the

Pareto frontier from a multi-dimensional data set. It also introduces the Simple Cull (SC) algorithm, a brute

force algorithm that operates in 2()O n time, and the L2D algorithm, a linear time algorithm that only

operates on 2D data. The chapter also introduces the computational framework used for implementing the

algorithms, and executing the experiments.

The premise of the development of Pareto algorithms in the next three chapters of the thesis is that no

single algorithm can perform best against all data sets, so a hybrid adaptive algorithm is needed to give the

best performance. The work of Bentley, in which he develops a recursive divide and conquer algorithm for

computing the Pareto frontier (Bentley 1980) and also identifies the property that certain data sets may be

more amenable to treatment by asymptotically less computationally efficient algorithms (Bentley et al.

1990) will be the starting point for this effort.

A number of algorithms are presented and explored, with the final algorithm, Hybrid Divide & Conquer

(HDC), being a hybrid of a lightweight but inefficient algorithm SC that is introduced in Section 5.2 , a

lightweight and efficient algorithm L2D that only operates on 2D data (Section 5.4), and a heavyweight but

efficient algorithm Divide & Conquer (DC) that operates recursively on higher dimensional data (Chapter

6).

SC is an algorithm that computes in 2()O n time, but is not recursive, leading to a low constant multiplier

for computing the actual run time 2
1SCK n , and that has a run time independent of the dimension of the data.

L2D is a very fast algorithm that computes on (log)O n n on 2D data, or if the data is already in LLH form

the algorithm is ()O n . Also, the algorithm is not recursive, and runs in the same time against all data sets.

DC is a ‘Divide & Conquer’ algorithm that computes in 1(log)dO n n− if the data requires a comparison sort,

or 2(log)dO n n− if the data is already in LLH form. The DC algorithm is recursive leading to a large

constant multiplier for computing its run time 2
1 logd

DC n nκ −× , that includes dimension as a factor in

computing its run time. This implies that, for small problem sizes of high dimension, the SC algorithm will

run faster than DC even though it is asymptotically less efficient. A hybrid algorithm that applies a DC

 47

strategy of recursively dividing the problem until the problem reaches some critical size or a dimension of

2, then switches to either the L2D or the SC algorithm, combines the best of both.

Also, one can best attack certain data sets by using one or more passes of a brute force algorithm such as

the SC algorithm first, followed by running the remainder of the hybrid algorithm. This is true for data sets

with relatively small numbers of Pareto points. As it is possible to compute bounds on the number of Pareto

points up front, one can choose to adapt the algorithm to complement the data.

5.1 Computational Framework

The algorithms and experiments developed in this thesis are all implemented in Mathematica, chosen for its

ease of code development, ease in instrumenting code, and ease in developing graphics to display the

results. However, the use of Mathematica does distort the comparison of the different algorithms in a

number of ways as compared to what results would be with a compiled language such a C or FORTRAN.

Mathematica is a mixture of interpreted code and code that is resident to its kernel, with the code in the

kernel running orders of magnitude faster. Therefore any algorithm that can take advantage of kernel-

resident code has an advantage. One example of kernel-resident code is the algorithm for sorting.

Mathematica also has a heavy overhead for structuring recursive function calls as compared to compiled

code, thereby penalizing an algorithm that uses recursion. The DC algorithm developed in Chapter 6

depends on the recursion.

Mathematica does not support ‘pass by reference’ in its function calls, instead only supporting ‘pass by

value’. This also penalizes recursive algorithms in both execution time and in memory required.

Furthermore, how the DC algorithm is implemented in Mathematica is strongly affected by the need to pass

variables by value as opposed to by reference. As the algorithms are compared, it is necessary to keep these

points in mind, and understand that comparing the algorithms if implemented in a different language would

mean different relative performance between them.

5.2 Simple Cull Algorithm

This section presents the Simple Cull (SC) algorithm, explores issues of estimated run time related to its

operating on LLH data, and presents experimental and analytical estimates of best case, worst case, and

generalized case run times. While the algorithm is fairly obvious to define and implement, the implications

of operating on the LLH form and the analytical and experimental model comparisons are unique to this

thesis. The SC algorithm is as follows.

 48

Algorithm SC Given a table Z find the nondominated points

SC-1 [Sort Z in descending order using a linear weighting scheme] Form a new table U where U is a

permutation of Z such that for , () ()i ji j S S< <u u .

SC-2 [Add top point to collection of Pareto points] Remove the top element of U , (refer to it as 'u)

and add it to the collection of Pareto points P .

SC-3 [Cull the remaining points] Compare 'u to each of the remaining elements in U , deleting those

which are dominated.

SC-4 [Any points left?] If U is empty, algorithm is complete and P contains Pareto points from Z .

SC-5 [Repeat as necessary] Go back to SC-2.

That the algorithm is correct can be seen by the fact that at each execution of Step SC-2, the top element is

non-dominated. No other point above it in the list dominates it or else it would have been culled from the

list already. It is not dominated by points below it in the list either, since for a top element 'u the relation

(') ()S S<u u implies that if u is less than 'u in one coordinate, then it must exceed it in at least one other.

SC is analogous to a bubble sort routine (Knuth 1997), and it has a worst case complexity of ()2nΟ since if

each element of Z is Pareto, each element must be compared with every other element, for a total number

of comparisons of ()2 / 2N N− . The initial sort in step SC-1 requires ()logn nΟ complexity. If Z has only

a few Pareto points, then the algorithm runs very efficiently as the first few passes through the data will

eliminate most of the points. If only one point is Pareto, the algorithm will complete with one pass. If all

points are nondominated, the comparisons will occur in the order of () ()1 2 3 2 1n n− + − + + + +" , i.e., the

most comparisons occur early in the algorithm.

The choice of a linear weighting ranking function to use in sorting the list may seen arbitrary, as in fact

there are many candidate ranking functions from which to choose. In general, any weighting function of the

form p
i iw u∑ would work, as would functions such as []1 2max max , ,...,i i d ii I

X X X
∈

   and

[]1 2max min , ,...,i i d ii I
X X X

∈
   . Some of these are plotted in Figure 39 for the 2D case.

 49

Figure 39: Different ranking functions

However, using the ranking function that is just the linear sum of the dimensions ()S u guarantees that the

most possible dominated points will be removed on the first pass through the algorithm. This can be seen

by recalling the results of Section 3.5 and noting that the minimum number of points dominated by any

point z is () (1) 1S d N− − −z . So maximizing the minimum number of points removed on the first pass

implies using a linear weighting scheme with all of the weights set to 1.

5.2.1 Analytical Estimate of the Expected Run Time for SC for Arbitrary
Dimension

This section computes the expected run time for the SC algorithm given a problem of size N with k Pareto

points. With a predetermined number of Pareto points, it is possible to directly compute upper and lower

bounds on the number of comparisons required. The lower bound is reached when all dominated points are

removed during the first pass, in which case the run time is

2 2 3 2
2 2

k k k k NN k− − +
+ − = . (19)

This result is derived by first noting that there will always be 2() / 2k k− comparisons between the

k nondominated points. Since the remaining N k− dominated points are removed on the first pass,

using N k− comparisons to do so, the total number of comparisons comes to the result in Eq. (19).

0.5 1 1.5 2

0.5

1

1.5

2

[]max min ,X Y  

[]max max ,X Y  

, 1p pX Y p+ >

, 1p pX Y p+ <

X Y+

 50

The upper bound on run time occurs when the dominated points are not culled until the last pass of the

algorithm, in which case the number of comparisons is

2 22()
2 2

k k Nk k kk N k− − −
+ − = . (20)

This result is derived by noting that all k nondominated points must be compared with the N k− dominated

points, with the dominated points not being removed until the last set of comparisons. Plotting the two

curves in Figure 40 shows that the difference between them is an order of magnitude over much of the

possible values of k .

Figure 40: Upper and lower bounds on comparisons, N=500

The estimating model developed here is based on three assumptions as follows:

1. Each Pareto point dominates a fraction of the dominated points, with the fraction [0,1]p ∈

2. Which points are dominated by a Pareto point are random

3. Every Pareto point has a unique dominated point that only the specific Pareto point dominates

The first two assumptions imply that a dominated point can be dominated by more than one Pareto point,

while the third assumption ensures that there will be dominated points remaining in the data set until the

last pass of the algorithm. Based on these assumptions, a fraction of the remaining dominated points are

removed at each pass through the algorithm. Letting in be the number of dominated points remaining after

the ith pass of the algorithm, the expected number remaining after the next pass is 1i in pn+ = . Starting

from 0n , the number remaining after i steps is 0
ip n . The number of comparisons total for a run of the

algorithm is

2

1
0

12

k
i

i

k k p n−

=

−
+ ∑ .

This expression, replacing 0n with N k− , resolves to

 51

2

2
1

0 21

1() ; [0,1)
2 1

2
(); 1

2

k

k
i

i

k k pN k p
k k pp n

k k k N k p

−

=

  − −
+ − ∈  − −  + =  
− + − =  

∑ . (21)

This expression is a generalization of the upper and lower bounds, with the lower bound reached when

0p = while the upper bound results when 1p = .

This type of model where the number of points dominated is reduced through a geometric progression is

supported by observation, which shows that a reasonable choice for p is one where, at the last pass through

the algorithm, the last Pareto point has only one point to remove. This leads to the third assumption. Since

at the last pass, the algorithm will have made 1k − passes through the data, the expression for p can be

determined as

1

11 k
p

N k

− =  − 
.

Inserting this value for p back into Eq. (21) gives the expression

1

2

1
1

11
()

2 11

k
k

k

k k N kN k

N k

−

−

   −  − −   + −  
  −   −  

 (22)

Comparing the upper and lower bounds, the relation captured in Eq. (22), and experimental results at

multiple data dimensions, shows Eq. (22) is a reasonable fit, but that there is significant variance. The

experimental data shown in Figure 41 is for a fixed lattice size of 100N = , varying numbers of Pareto

points, and for varying dimensions of the problem. Each plotted point is the result of one run of the SC

algorithm, with the data generated using the GRCL algorithm.

20 40 60 80 100

Number of
Pareto Points

1000

2000

3000

4000

5000

Iterations

8D

6D

4D

2D

Figure 41: Experimental iterations

 52

The same data shown is in Figure 42 with upper and lower bounds and the analytical estimate of the

number of comparisons, shown as the dashed line.

20 40 60 80 100

Number of
Pareto Points

1000

2000

3000

4000

5000

Iterations

Figure 42: Experimental data, upper bound, lower bound, and analytical estimate

One immediate conclusion that can be drawn from the data is that—as expected—the number of

comparisons in the algorithm is only a function of the number of points in the problem and of the number

of Pareto points. The dimension of the problem does not figure into the run time complexity and only

loosely affects the actual run time of the implemented algorithm.

5.2.2 Best Case Experiment

The best case performance for the SC algorithm is when there is a single Pareto point. An example of such

a configuration of points is shown Figure 43 where the bottom left of the figure is the best solution. For this

configuration, the algorithm will complete with one pass through the data, so for N points the algorithm

will execute in 1N − steps.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 43: Best case configuration of points

 53

One would expect the iterations to vary linearly with problem size, and this is what is observed in

experiments as seen in Figure 44. In these experiments, data with a single Pareto point was generated using

the RDP algorithm for each lattice size from 2000 to 10,000 points.

2000 4000 6000 8000 10000
Number of
points

0.1
0.2

0.3

0.4
0.5

0.6

TimeHSeconds L

2000 4000 6000 8000 10000
Number of
points

2000

4000

6000

8000

10000

Number of
iterations

Figure 44: Run time for best case, SC

5.2.3 2D Worst Case Experiment

The worst case performance occurs when all points are Pareto, as in the 2D case of Figure 45.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 45: Worst case configuration of points

In this situation, the algorithm computes in 2N iterations, as shown in Figure 46. Again, the RDP algorithm

was used to generate lattices, this time ranging in size from 200 to 1000 points. The smaller lattice sizes

were needed to make run times practical, due to the quadratic growth in run time with respect to size.

 54

200 400 600 800 1000
Number of
points

5

10

15

20

25

TimeHSeconds L

200 400 600 800 1000
Number of
points

100000

200000

300000

400000

500000

Number of
iterations

Figure 46: Worst case run time, SC

5.2.4 Random Experiment

Using the expression in Eq. (22) as a model, one can plot how the number of iterations grows for varying

ratios of Pareto points to problem size (see Figure 42). Figure 47 shows the results of experiments where

both the ratio of Pareto points to problem size and the problem size itself are varied. The different curves

represent different ratios of problem size to number of Pareto points. In the experiment, the RDP algorithm

was used to generate lattices with a known ratio of dominated points to total lattice size, with one lattice

generated for each size ranging from 1 to 200.

50 75 100 125 150 175 200

Number of
Points

5000

10000

15000

Iterations

.3

.5

.7

1.0

Ratio

Figure 47: Run time for varying problem size and varying ratio of Pareto points to problem size

The figure indicates that, as expected, the ratio of run times between two data sets of the same size, but

with differing percentages of Pareto points, is independent of the size of the data sets.

5.2.5 Simple Cull2

The second algorithm, Simple Cull 2 (SC2) is a minor variation of the first, included for completeness.

Rather than compare the top ranking point in the list against those remaining on the list to cull the

remaining list, the top point is compared to those points that are already identified as nondominated, to

determine if the top point will be added to the Pareto list.

 55

Algorithm SC2 Given a set Z find the nondominated points that are in the set

SC2-1 [Form list of scalar rankings] Form a new list U where U is a permutation of Z such that

for , () ()i ji j S S< <u u .

SC2-2 [Pick off first point of list] Remove the top element of U , add to list of Pareto points P .

SC2-3 [Pick off top point] Remove the top element of U , (refer to it as 'u) .

SC2-4 [See if it is dominated by higher points] Compare 'u to each of the elements in P . If

nondominated, add to P .

SC2-5 [Any points left?] If U is empty, algorithm is complete and P contains points from Z that are

Pareto.

SC2-6 [Repeat as necessary] Go back to SC2-4.

As per SC, the top point in the list U is nondominated. At each step, the point 'u is not dominated by any

points below it, does not dominate any points previously considered, and is only added to P if it is not

dominated by any points having been previously considered.

SC2 again has a worst case complexity of ()2nΟ since if each element of Z is Pareto, the collection of

points P to be compared with grows linearly, and the number of comparisons is

() ()21 2 1 / 2N N N+ + + + = −" .

5.3 Diagonalizing Algorithm for Finding Pareto Points in 2D Case

Results in Section 3.4 showing that all points Pareto implies all points on the diagonal suggested an

algorithm for finding the Pareto points in a two-dimensional problem. Stated simply, first place the points

into LLH form. Then remove all points below the diagonal. Renormalize the remaining points into LLH

form and repeat until no points are below the diagonal. This is the DIAG algorithm that follows.

Algorithm DIAG Given a set Z of points in a 2D space, find the nondominated points

DIAG-1 [Place into Latin Hypercube form] Form a new list U where ()T=U Z (not necessary if Z is

already in form).

DIAG-2 [Remove elements below the diagonal] Remove the elements of U where () 1S N< +u .

DIAG-3 [Repeat as necessary] If points were removed in DC-2, return to DC-1 and create a new list in

Latin Hypercube form from the remaining elements of U .

As proven in Section 3.4, any dominated points will lie below the diagonal. When no points are below the

diagonal, then all points are nondominated. The complexity of the algorithm, determined experimentally,

 56

shows that the expected number of passes through the DC algorithm varies in proportion to log n , implying

the expected run time of the algorithm is (log)O n n .

5.4 Nonrecursive Algorithm on 2D Data

This section introduces the linear 2D (L2D) algorithm as developed in (Kung et al. 1975). The algorithm

operates on 2D data non-recursively in (log)O n n complexity, with the portion of the algorithm identifying

the Pareto points operating in ()O n . If the data is already in lattice Latin hypercube form, then the

algorithm can be done in ()O n .

Algorithm L2D Given a set Z of points in a 2D space, find the nondominated points

L2D-1 [Order the points by their first column] Form a new list U that is a permutation of Z such that

it is sorted by the first column.

L2D-2 [Pick off first point of list] Remove the top element of U , add to list of Pareto points P .

L2D-3 [Set the value of maxy] Set max 1,2y u= .

L2D-4 [Scan through the points] Compare maxy to the second element of each u in turn. If 2 maxu y≤ ,

add u to the Pareto points P and reset max 2y u= .

That this algorithm is correct can be seen by noting first that the top point in the sorted list is Pareto, as no

point has a lower 1u value. As all other points have greater 1u values, a new point can be Pareto if and only

if it has a lower 2u value. This property holds at any Pareto point iu in the list for all points above it.

The algorithm completes in one pass through the data, with the number of comparisons independent of the

number of Pareto points. Therefore, for 2D data this algorithm clearly is computationally superior. It is

(log)O n n only due to the need to sort the data first, being linear otherwise. If the data is in normalized

form, then it can be sorted in linear time, and the algorithm becomes ()O n , and in fact takes exactly N-1

comparisons.

 57

CHAPTER 6

Divide & Conquer Algorithm

This chapter presents and implements, and analyzes a divide & conquer (DC) algorithm, as developed by

Bentley (Bentley 1980). He shows that for a problem of size N and dimension d that there is an algorithm

of complexity 1(log)dO N N− that will identify the Pareto points. Since he assumed the need to do a

comparison sort in the algorithm, and these sorts can be accomplished in linear time with the data in LLH

form, the algorithm can be considered to run in 2(log)dO n n− .

The presentation of the algorithm is first done geometrically, as from Bentley’s paper. In order to better

develop an analytical estimate of the run time of the algorithm, it is then developed in a form based on

repeated operations on columns of a table. This second presentation is easier to interpret for high

dimensional problems, and leads to both an infinite dimension estimate and a finite dimension estimate of

the number of comparisons. The analytical estimates assume that all points in the data are Pareto. These

analytical estimates are validated against experimental data.

As the DC algorithm is recursive, analytical estimates of the number of function calls in the recursion and

the amount of data passed to each function call are developed. These are needed later in determining the

switch points between the DC algorithm and the SC algorithm.

Unlike the SC algorithm, which has a deterministic number of comparisions when executed against a data

set with all points Pareto, the DC algorithm’s run time can vary by many orders of magnitude between data

sets with all Pareto points. The sensitivity of the DC algorithm to the structure of the data is demonstrated

thorugh a simple example.

To complete the analysis, a simple model for estimating the number of comparisons for the DC algorithm

as a function of the percentage of points that are Pareto is developed. Again, while the SC algorithm is

deterministic in its number of comparisons for a data set with a single point Pareto, the DC algorithm is not.

The range of possible values for the number of comparisons for a data set with only one Pareto point spans

orders of magnitude.

The basic approach in computing the Pareto points in a problem of size N and dimension d is to first solve

two problems of size / 2N and dimension d and then solve a problem of size N and dimension 1d − . The

 58

process of dimension reduction continues recursively until 2d = , at which time the nonrecursive L2D

algorithm L2D can be applied. As an example, consider Figure 48, with 160 points and 3 dimensions. The

preference is for minimum values of coordinates, i.e., the lower left rear corner.

0

50

100

150

0 50 100 1500

50

100

150

0

50

100

150

Figure 48: 160 points in 3 dimensions

Figure 49 shows both the results of problem size reduction and the reduction of dimension. The problem

was first reduced in size by a cut plane into two sets of equal size, A and B so that no point in B dominates

a point in A. This is accomplished by sorting the data along the appropriate dimension and taking all points

into B that are above the median value. For Figure 49, A is the set of points on the left of the cutting plane

and B is the set of points on the right. Each problem’s Pareto points are calculated, with A’s Pareto points

in red, and B’s in blue. As points that are Pareto in region B may not be Pareto in the total problem, they

must be removed in a marriage step.

.

 59

BA

Figure 49: Subdivided problem

The Pareto points from each problem are now projected onto the cut plane between the regions, see Figure

50, and the Pareto points are identified on this cut plane. Blue points that are not dominated in the 2D

problem (indicated by gray shading behind them) are not dominated in the 3D problem and are added to the

Pareto points in set B, and the DC algorithm is finished.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

Figure 50: Projection onto cut plane

As stated above, the complexity of the DC algorithm is 2(log)dO n n− . That this is true can be seen by first

recognizing that for a 2D problem the complexity is ()O n , since the L2D algorithm is used. Now, assuming

that N is a power of two, i.e., for some integer 2kN = for some integer k or conversely logk N= , then the

complexity of the 3D case is

 60

log

1

(,3)

log

N

k

C N N

N N
=

=

=

∑ ,

while the complexity for the 4D case is

log

1

log

1

2

(, 4) 2 log
2 2

log

log

N
k

k k
k

N

k

N NC N

N N

N N

=

=

  =     

≤

=

∑

∑

and similarly for higher dimensions.

The algorithm is actually a cooperating set of six algorithms, with DC being the main entry point, and L2D,

SC, MARRY, MARRY2D, and MARRYDIRECT used at different points. L2D and SC have already been

introduced. MARRY is a recursive algorithm that repeatedly reduces the problem size and reduces the

dimension. MARRY2D is a modification of L2D for when the two data sets to be married are two

dimensional. MARRYDIRECT is analogous to SC, in that it uses a brute force enumeration approach when

the problem size is small. Each is presented in turn.

Algorithm DC Given a table Z of points in a d -dimensional space, find the nondominated points that are

in the set.

DC-1 [If dimension of data is 2, call L2D on data and return results]

DC-2 [If size of problem is below limit, call SC on data and return results]

DC-3 [Else divide into two problems of equal size] Split Z into two sets of points X and Y by finding

the median element of the first column, and taking points whose first element is greater the

median and placing them in the inferior set X , and those points lower in superior set Y .

DC-4 [Call DC on subproblems] determine ()DNC=XX X and ()DNC=YY Y .

DC-5 [Reduce dimension] drop the first columns of XX and YY to form XXX and YYY .

DC-6 [Call MARRY to cull remaining dominated points in the inferior set]

Determine ' MARRY(,)=XXX XXX YYY .

DC-7 [return the results] Return '∪YYY XXX .

The procedure for marrying the points together is the crux of the algorithm. At the completion of calling

DC on the two sets of data each N/2 in size, two sets of points PX and PY of dimension d will remain with

the property that all the points are Pareto in their respective sets and that no point in PX dominates a point

 61

in PY . The marry algorithm must now compare the two sets and remove points in PX that are dominated by

points in PY .

This step itself is a recursive process of problem reduction followed by dimension reduction and is

illustrated in Figure 51. With the two sets, PY and PX , first divide them on a cut plane (dotted line)

into 1X and 2X and 1Y and 2Y respectively. Call 2 2 2MARRY(,)′ =X X Y and 1 1 1MARRY(,)′ =X X Y . In the

dimension reduction step, drop the first columns of 1Y and 2′X (thereby taking the projection of the points

onto the remaining 1d − dimensions), and determine 2 2 1MARRY(,)′′ ′=X X Y . Note that 1X is not compared

to 2Y , as it is not possible for a point in 2Y to dominate a point in 1X . If either 1Y or 2′′X are empty, then the

dimension reduction process terminates.

Figure 51: Divide and conquer in Marry algorithm

The MARRY algorithm must again track the dimension, and switch to a nonrecursive efficient algorithm

(MARRY2D) if the dimension reaches two, or to a brute force algorithm (MARRYDIRECT) if the

problem size reaches a critical point. For now, the critical size will be two, but this size will be adjusted

based on dimension in the hybrid algorithm. The marrying algorithms follow.

PY PX

1y
2y 2x

1x

 62

Algorithm MARRY Given two sets of points X and Y in a d -dimensional space, with the properties that

no point in X dominates another point in X or a point in Y , and no point in Y dominates another point in Y ,

determine the set of points ′ ⊆X X such that no point in ′X is dominated by a point in Y .

MARRY-1 [If data dimension is 2D, call MARRY2D and return results]

MARRY-2 [If size of problem is below limit, call MARRYDIRECT on data and return results]

MARRY-3 [Else divide into two problems of equal size, and recursively call MARRY]

Choose a cut plane to divide X and Y into 1 2 1 2, , ,X X Y Y such that 2X is inferior

to 1X and 2Y is inferior to 1Y as based on their first column, and so that

1 1 2 2+ = +X Y X Y .

Call 1 1 1' MARRY(,)=X X Y and 2 2 2MARRY(,)′ =X X Y .

MARRY-4 [Now drop a dimension, and recursively call MARRY]

Drop the first columns of 2 'X and 1Y to form 2′XX and 1YY and

call 2 2 1MARRY(,)′′ ′=XX XX YY .

MARRY-5 [Form union of results and return] Return 1 2′ ′′∪X X .

Algorithm Marry2D Given two sets of points X and Y with properties as per the MARRY algorithm, but

in a 2-dimensional space, determine the nondominated points in X .

MARRY2D-1 [Mark the inferior and superior points, and form their union] Mark the elements

of X and Y to distinguish between them, and form = ∪W X Y .

MARRY2D-2 [Order the points by their first column] Sort W by its first column.

MARRY2D -3 [Augment sorted list with minimum element] Prepend to W the record {0, 1}+W ,

marked as an element of Y .

MARRY2D -4 [Set the value of q] Set q = W .

MARRY2D -5 [Scan through the points, updating q only if point is in superior set] Compare q to the

second element of each w in turn. If the second element of w is q≤ , and if w is also an

element of X , add w to the inferior nondominated points 'X . If the second element of

w is q≤ and w is also an element of Y , reset q so that q equals the second element

of w .

MARRY2D-6 [Return the inferior points that survived] Return 'X .

 63

Algorithm MarryDirect (MD) Given two sets of points X and Y in a d-dimensional space as per the

MARRY algorithm, identify the points in X .

MD-1 [Directly compare each inferior point to each superior point] For reach point in X , directly

compare it to all of the points in Y ,and if it is not dominated by any of them, add it to the set 'X .

MD-2 [Return nondominated inferior points] Return 'X .

As each point in X must be compared with each point in Y , the complexity of this algorithm, given superior

set Y of size N and inferior set X of size M is ()O NM .

6.1 Alternate Development of the DC Algorithm

The following sections develop a worst case analysis of the algorithm, which occurs when all points are

nondominated. To develop a closed-form expression for the worst case run time, first this section develops

a different approach to understanding the algorithm.

Again, start with a set of N points of dimension d . Recall that in the first step of the DC algorithm, the

points are sorted based on their first dimension, split into two halves based on that dimension, and the

nondominated points in each half are identified. As an example, consider a data set of 18 points shown in

Figure 52. The data is split on the first dimension, and points 1-9 and 10-18 are treated as separate sets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 52: Data sorted on first dimension, and split

Once the nondominated points in each subset are identified, the two sets must be married via the MARRY

algorithm. Let the points in the set of points 1-9 that are nondominated be collectively labeled as A, and the

points from the set 10-18 be collectively labeled as B. Each of the A points are nondominated within their

set, and they also cannot be dominated by a point in the set of B points, since the value for of the first

dimension for every point in B is greater than the value of the first dimension for every point in A. Each of

the B points are nondominated within their set, but they can be dominated by points in A. The object of the

MARRY algorithm is to remove the B points that are dominated by points in A.

A A A A A A A A A B B B B B B B B B

Figure 53: After culling the two subsets

In the data above, assuming that for each set of 9 points only 8 of them are nondominated within their set,

the total number of points remaining is now 16; each set having lost one point. In the next step, the points

 64

are resorted, this time on the second dimension, and again broken into two sets (see Figure 54). Each set, on

the left and the right, contains A and B points. Label the left set as L and the right set as R.

A B A A B B B A A A A B A B B B

Set L Set R

Figure 54: Points resorted on the second dimension

 The algorithm then compares the B points in set L with the A points in set L and any B points that are

dominated are removed, similarly for R. In this case, assume that all points remaining are nondominated,

and therefore no points are removed from either side.

At this point, what is known is that all of the B points in set L are nondominated by any A points, left or

right. Also, no A points in set R dominate any B points, left or right. What is not known is whether any A

points on the left dominate any of the B points on the right. Mark the left B points and the right A points in

gray (see Figure 55). In the next step, since left B points and right A points cannot dominate or be

dominated, they do not be to be considered in the algorithm and can be dropped prior to the next step.

A A A A B B B B

A B A A B B B A A A A B A B B B

Figure 55: Left B's and right A's marked, and then removed

Again resort the data, now on the third dimension, and repeat. Keep doing so until no points remain.

A A B B

A B B A B A B A

A B B A B A B A

A A A A B B B BReady for resort

Sorted on next index

After checking for dominance, drop
B’s from left and A’s from right

Ready for next resort
Figure 56: Cycle of resort, check for dominance left and right, drop left Bs and right As

There are three possible situations one ends up with in the resort. The first case, shown in Figure 52 -

Figure 56, is where the A’s and B’s are distributed on both sides of the split. The second case is where the

left side has all B’s and the right side has all A’s after the resort. This indicates that all points are

nondominated with respect to each other, and the MARRY algorithm can return immediately. The final

 65

case is where, after the resort, the left side contains all A’s and the right side all B’s. In this situation, the

algorithm will immediately resort on the next chosen dimension and continue.

The critical point to note is that as long as the nondominance of any two points with respect to each other

can be established in a finite number of steps of the algorithm, the algorithm will complete even for a set of

points of infinite dimension. The result stems from the fact that the left B points and right A points are

discarded each time the algorithm steps to resort on the next dimension. Given that this is true, it is possible

to determine the worst case run time for a set of points of infinite dimension with all points nondominated.

From there, the finite dimensional problem can then be described and solved.

6.2 Worst Case - Infinite Dimension Run Time

Assuming the problem is of infinite dimension but that the nondominance of any two points with respect to

each other can be established in a finite number of steps of the algorithm, worst case run times of the

algorithm can be determined. Three variations of the infinite dimension worst case will be considered here:

a balanced case, a maximum unbalanced case, and a generalized unbalanced case. The balance refers to

the distribution of A and B points in the L and R sets when each step in dimension is made. The balanced

case is when, at each step in dimension, A and B points are equally distributed in sets L and R (see Figure

57).

A A A A B B B B A A A A B B B B

Figure 57: Balanced case, same number of A and B points in the left and right sets

The maximum unbalanced case is where exactly one B point is in the left set and exactly one A point is in

the right set after each resort (see Figure 58).

A A A A A A A B A B B B B B B B
Figure 58: Maximum unbalanced case, with one B point in left set, and one A point in right set

The generalized unbalanced case is where the ratio of A points on the left (B points on the right) to total

points on the left (right) varies by some ratio α . Consider the case in Figure 59 where α is equal to 3/8.

A A A A A B B B A A A B B B B B
Figure 59: Generalized unbalanced case with ratio = 3/8

Note that the generalized case where 1/ 2α = is equivalent to the balanced case. Consider first the balanced

case in the analysis.

 66

6.2.1 Balanced Case

Although the algorithm developed here is a divide & conquer algorithm, conceptually it is easier to

consider it as an initial divide followed by repeated marrying of fewer but larger sets. Define the function

mbi[]n (mbi is short for Marry Balanced Infinite) as a function that determines the number of comparisons

required to marry n points together (i.e., marry two sets of / 2n points). Define a function pbi[]n (pbi is

short for Pareto Balanced Infinite) to determine the number of comparisons required to verify that a set of

n points are nondominated. Then there are two recursive relationships, one for each of the two functions.

For the marrying of balanced infinite dimension points the recursion is

 mbi[] 3mbi
2
nn  =   

.

This recursion derives from the fact that the Marry algorithm initially splits the problem of size n into two

subproblems of size / 2n , and then resorts on the next index and calls the Marry algorithm again on the

remainder. Since the problem is balanced, half of the points are dropped prior to the final call, so three calls

are made on data sets of size / 2n .

 When determining the Pareto points for a balanced case of infinite dimension, the recursion is

 pbi[] 2pbi mbi[]
2
nn n = +  

. (23)

For the DC algorithm, two recursive calls to the DC algorithm with data sets of size / 2n are followed by a

call to the Marry algorithm with a data set of size n , leading to Eq. (23).

The base case for inductive purposes is the case 2n = , where mbi[2] 1= and pbi[2] 1= . If one assumes

that n is a power of 2, i.e., there exists an i such that 2in = , then the recursions can be resolved directly. For

the marry portion, the recursion resolves as follows:

log 1

log3

1.58

mbi[] 3mbi
2

9mbi
4

3 mbi[2]
1
3
1mbi[] .
3

n

nn

n

n

n n

−

 =   
 =   

=

=

#

�

To compute the total comparisons in determining the nondominated points, use the following relation,

which is illustrated in Figure 60. Assume again that n is a power of 2.

 67

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N=16

8 marries of sets of size=1

4 marries of sets of size=2

2 marries of sets of size=4

1 marry of sets of size=8

Figure 60: Process of initial divide, followed by repeated marrying of larger sets

pbi[] 2pbi mbi[]
2

4pbi 2mbi mbi[]
4 2

pbi[1] mbi[2] mbi[4] 2mbi mbi[]
2 4 2

nn n

n n n

n n nn n

 = +  
   = + +      

 = × + + + + +  

#

"

 (24)

Recognizing that pbi[1] 0= and mbi[2] 1= , the Eq. (24) can be recast as a summation,

log

1

mbi[2]pbi[]
2

in

i
i

n n
=

= ∑ .

Replacing mbi[2]i gives

()2

log 3
log

1

2
pbi[]

3 2

in

i
i

nn
=

= ∑ .

Resolving the summation in closed-form gives the final result,

log3

1.58

pbi[]
.

n n n
n n

= −

= −
 (25)

Note that although the assumption was made that n was a power of 2, the expression for pbi[]n , calculating

the total number of comparisons for the balanced case of infinite dimension, does not depend on this fact,

and experimental results show that the expression works for other values of n .

 68

6.2.2 Generalized Unbalanced Case

Again for the generalized unbalanced case of infinite dimension define a function to determine the number

of comparisons to identify the nondominated points, pgui[,]n α (Pareto Generalized Unbalanced Infinite),

and a function for marrying sets together, mgui[,]n α (Marry Generalized Unbalanced Infinite). The

α term in the functions represent the ratio of A to total points in the left set at each marry step. The

recursion for the function pgui[,]n α remains the same as for the balanced case,

 pgui[,] 2pgui , mgui[,]
2
nn nα α α = +  

. (26)

The recursion for the marry algorithm is, however, more complex. First define a function that takes as input

the total number of points in a set (left or right) and the number of B points in that set, and determines the

maximum number of comparisons to determine all B points are nondominated. Label the function

unbi[,]n b . Assume the recursion

 unbi[,] 3unbi[,]
2 2
n bn b =

holds, and that the base case is unbi[,1] 1n n= − . Then the closed-form expression can be calculated as

log

log3unbi[,] 3
2

b
bn b n = − 

 
. (27)

To convert to a form that takes n and α as input, recognize that (1)b nα= − by definition and substitute in

Eqn (27) to get

log 3

log 3(1)unbi[,]
1

n nα αα
α

 −
=  − 

. (28)

Interestingly, the shape of the function is as shown in Figure 61.

0.2 0.4 0.6 0.8 1
α

100

200

300

400

500

Number of
Comparisons

Figure 61: Shape of the unbalanced function, problem size of 100 points, varying alpha

Now the recursion for the Marry algorithm can be expressed as thus,

 mgui[,] 2unbi , mgui[,]
2
nn nα α α α = +  

. (29)

 69

Note the nα term in the last part of the expression. This is due to the fact that after each marry step in a

dimension, only (1)nα− points are removed, and nα points remain. In this case assume that n is equal to

the expression

 4(1/)kn α= (30)

for some integer value k , for reasons that will become apparent. Express the recursion in expanded form

(suppressing the dependence on α for clarity) to see the relationship,

()1/

2

2
3

log / 4 2

mgui[] mgui[] 2unbi
2

mgui[] 2unbi 2unbi
2 2

mgui[] 2unbi 2unbi 2unbi
2 2 2

mgui[4] 2unbi 2unbi 2unbi 2unbi
2 2 2 2

n

nn n

n nn

n n nn

n n n nα

α

αα

α αα

α α αα

 = +   
   = + +      
     = + + +         

      = + + + + +        

#

" 
  

 (31)

The reason for ()1/log / 4nα term in the exponent along with the requirement imposed by Eqn. (30) is to

ensure that the input to the unbi[]⋅ function in the final recursion is 2, as the function is undefined for

smaller values. Also, the mgui[4]α term must be replaced with a closed-form, as repeating the recursion

would violate the constraint on the input to the unbi[], and so the mgui[4]α function is replaced with the

balanced version mbi[4]α . Finally, the recursion is placed into summation form to give

1/log

4

0
mgui[] [4] 2

2

n
i

i

nn mbi unbi
α αα

=

 
= +  

 
∑ . (32)

As with the balanced equation version of the marry algorithm, this can be resolved to an unwieldy closed-

form the following solution:

 ()
log 3 1

log 3 log3 log 3
log 3

1 2 (1)mgui[] (4) (4)
3 3 1

n nα αα α
α

−− = + −  − 
. (33)

This can be plugged back into the expression pgui[] from Eq. (26) and solved for in an analogous fashion

to give the complete expression

 () ()log 3pgui[] 1n A n n B n= − + − (34)

where

log 3

log 3

2 (1)
(1)(1)

A α α
α α

−
=

− −
, (35)

and

 70

log 3 2log3 3log 3 6log 3 2log 3 log 3

log 3

3() 6 (1)
(1)(1)

B α α α α α α
α α

− − + − −
=

− −
. (36)

A plot of the number of iterations with varying α is shown in Figure 62, with the dashed horizontal line

showing the value for the balanced case. Note that the two lines intersect at the value of .5α = , as expected.

0.2 0.4 0.6 0.8
α

100000

200000

300000

400000

500000

Number of
Comparisons

Figure 62: Plot of number of comparisons versus alpha, for 2000 points, infinite dimension, all

nondominated. Dashed line is the balanced case, shown for reference.

Note that the number of comparisons increases monotonically with the percentage of imbalance, as

expected.

6.2.3 Maximum Unbalanced Case

Define a Marry algorithm and a Pareto algorithm for the maximum unbalanced case of infinite dimension,

mmui[]n (Marry Maximum Unbalanced Infinite) and pmui[]n (Pareto Maximum Unbalanced Infinite)

respectively. Since this case results in only a single B point in the left set and a single A point in the right

set at each iteration, the number of comparisons for the marry algorithm can be written as

mmui[] 2 1 mmui[2]

2
2 mmui[2].

nn n

n n

 = − + − 
 

= − + −
 (37)

This recursion can be resolved to

()

12

1

2

mmui[] 1 2

1 2 4 .
4

n

i
n i

n n

−

=

= +

= − +

∑
 (38)

The recursive relationship for the Pareto algorithm is

 pmui[] 2pmui mmui[]
2
nn n = +  

. (39)

This can be solved similar to the balanced case to give

 71

log

1

2

mmui[2]pmui[]
2

1 (2 log)
2

in

i
i

n n

n n n n

=

=

= + − −

∑

.

 (40)

It is interesting to note that while the balanced case and the generalized balanced case both vary in the

number of comparisons by log3()O n , the maximum unbalanced case varies by 2()O n . The maximum

unbalanced case is not a limit for the generalized balanced case as 1α → . Figure 63 is a plot of the three

different cases.

100 200 300 400 500 600

Problem
Size

25000

50000

75000

100000

125000

150000

175000

Number of
Comparisons

pmui

pgui

pbi

Figure 63: Plot of the balanced case, the generalized unbalanced case with alpha = .9, and the maximum

unbalanced case for varying problem size

6.3 Worst Case - Finite Dimension Run Time

The finite dimension computations are simpler to pose than the infinite dimension case developed in the

previous section, but the resulting expressions are more complex. First the balanced case is presented, then

the generalized unbalanced case, and finally the maximum unbalanced case.

6.3.1 Balanced Case

Define two functions for the Marry algorithm and the Pareto algorithm, mbf[,]n d (Marry Balanced Finite)

and pbf[,]n d (Pareto Balanced Finite). The recursion for the marry algorithm is now

 mbf[,] 2mbf , mbf , 1
2 2
n nn d d d   = + −      

. (41)

There are two base cases to consider, mbf[2,] 1d = and mbf[, 2] 1n n= − . The second case derives from the

fact that for a 2D problem a linear time algorithm is available. One can recursively define in a manner

analogous to the infinite case the relationship

1log

2

mbf 2 , 1
mbf[,]

2 2

in

i
i

dnn d n
−

=

  −  = +
 
 

∑ . (42)

 72

This can be solved for recursively in d resulting in Table 7.

Table 7: Value of mbf[] function for varying dimension

d mbf[n,d]

2 1n −

3 1 (log 2)
2

n n n− +

4 21 (log 3 log 10 8)
8

n n n n n− + −

5 3 21 (log 6 log 35 log 30 48)
48

n n n n n n n− + − +

6 4 3 21 (log 10 log 83 log 194 log 504 384)
384

n n n n n n n n n− + − + −

The Pareto function can be expressed as two base cases and a recursive relationship,

pbf[2,] 1,
pbf[, 2] 1,

pbf[,] 2pbf , mbf[, 1]
2

d
n n

nn d d n d

=
= −

 = + −  

Using the base cases, the recursion can be expressed as a summation,

log

2

mbf[2 , 1]pbf[,]
2 2

in

i
i

n dn d
=

−
= + ∑ .

Again, this can be solved recursively, generating an example table of solutions, Table 8.

Table 8: Value of pbf[] for various dimensions

d pbf[n,d]

2 1n −

3 log 1n n n− +

4 21 (log log 4 4)
4

n n n n n− + −

5 3 21 (log 3 log 26 log 24 24)
24

n n n n n n n− + − +

6 4 3 21 (log 6 log 59 log 54 log 192 192)
192

n n n n n n n n n− + − + −

 73

One should note that, as expected, the number of comparisons varies with 2(log)dO n n− . What is interesting

is a plot of the number of comparisons required versus dimension of the problem for different fixed

numbers of points, as shown in Figure 64.

5 10 15 20
Dimension

50000

100000

150000

200000

Number of
Comparisons

2500

2000

1500

1000

500

Figure 64: Number of comparisons as a function of dimension for fixed number of points in problem

Note that as the dimension increases, the number of comparisons plateaus. The plateau corresponds to the

limiting case of infinite dimension, where the algorithm repeatedly divides the data until only two points

are remaining, compares them, and steps to the next dimension in the data set. For the case of high

dimensionality or few points, the algorithm completes prior to ever stepping through all of the dimensions.

Figure 65 shows just the curve for a problem with 10,000 points and varying dimension, along with a flat

line showing the value for infinite dimension.

5 10 15 20
dimension

500000

1×106

1.5×106

2×106

number of
Comparisons

Figure 65: Plot of number of comparisons versus dimension for 10,000 point problem

The dimension at which the two lines join for a problem of size n is approximately equal to logd n= , for

a problem of size n , since the mbf[,]n d algorithm steps down through log[]n dimensions before

exhausting all of the points, and in order to not reach the linear case of 2d = , must start with a sufficient

initial dimension. Figure 66 shows a contour curve for this expression.

 74

2.5 5 7.5 10 12.5 15
Dimension

5×106

1×107

1.5×107

2×107

Number of
Comparisons

Figure 66: Plot of comparisons versus dimension for varying problem size, with dashed line indicating the

point where limiting number of comparisons reached

6.3.2 Generalized Unbalanced Case

Define two functions for the Marry algorithm and the Pareto algorithm for the generalize unbalanced case,

finite dimension, mguf[, ,]n dα (Marry Generalized Unbalanced Finite) and pguf[, ,]n dα (Pareto

Generalized Unbalanced Finite). Also define a function for computing the number of comparisons in the

left and right sets during the marry computation, unbf[, ,]b dα (Unbalanced Finite), where b is the number

of B points in the left set, which will be equal to (1)nα− . Start the analysis with the unbf[, ,]n dα function.

Suppress the dependency on α in the formulas to simplify the presentation.

The unbf[,]b d function has the following relationships:

1log

1

1unbf[1,] 1

unbf[, 2] 1

unbf[2 , 1]unbf[,]
2

ib

i
i

d

bb

b db d b b

α

α

α

−

=

= −

= −

− = − + 
 

∑

 (43)

As for the finite dimension balanced problem, this can be solved recursively in dimension to get the desired

functional forms. Some examples are given in Table 9, rewriting unbf[,]b d as unbf[,]n d from here by

replacing b with nα in the original version.

 75

Table 9: Value of unbf[] function for various dimensions

d unbf[,]n d

2 1n −

3 1 (log (log 4 2) 2)
2

n n n α α+ − + +

4 2 21 (log log (2 log 8 3) (log 8 log 3log 8) 8)
8

n n n n nα α α α α α+ − + + − + + −

Analogous to the infinite dimensional case, define the base case and recursive relation for mguf[, ,]n dα as

mguf[, 2] 1,
mguf[2,] 1,

mguf[,] 2 unbf , mguf[, 1].
2

n n
d

nn d d n dα

= −
=

 = + −  

 (44)

With a closed-form expression for unbf[,]n d , the mguf[,]n d function can be recursively defined on d and

values determined. Two examples are given in Table 10 for dimensions 2 and 3, as the expressions become

unwieldy with higher dimensions.

Table 10: Values for mguf[] at 2 and 3 dimensions

d mguf[,]n d

2 1n −

3 1 log (1) (1) 1
2 2

nn nα α − − − + 
 

A plot of the function versus α for varying dimensions in Figure 67 shows that the function reaches a peak

between 0.5 and 1, rapidly declining as it approaches 1. This is due to the effect of finite dimension, where

the algorithm terminates early due to reaching dimension size of 2 and completing linear from there. The

number of dimensions the algorithm will use if unrestricted is proportional to 1/log nα . As 1α → , the term

1/log nα → ∞ .

 76

0.5 0.6 0.7 0.8 0.9 1
α

0

1000

2000

3000

4000

5000

6000

7000

rebmuN
fo

snosirapmoC

7

6

5

4

3

2

Figure 67: Plot of the mguf[n,d] function for varying dimension and alpha

Finally, the number of comparisons to compute the full function pguf[,]n d can be determined in a manner

directly analogous to the balanced finite dimension case, resulting in

log

2

mguf[2 , 1]pguf[,]
2 2

in

i
i

n dn d n
=

−
= + ∑ (45)

This can be used to recursively determine the functional form with increasing d . Some examples are

shown in Table 11.

Table 11: Values of pguf[] for dimensions 2 through 4

d pguf[,]n d

2 1n −

3 log 1n n n− +

4 21 (log log (2 log(1) 12 5) (8 2 log(1) 12) 4)
4

n n n n nα α α α+ − + − + − − − −

Plotting this function with varying α and dimension reveals a similar behavior, where again the number of

computations rises to a peak, then rapidly declines with increasing α (see Figure 68).

 77

0.5 0.6 0.7 0.8 0.9 1
α

0

100000

200000

300000

400000

500000

600000

rebmuN
fo

snosirapmoC

7

6

5

4

3

2

Figure 68: Number of comparisons versus alpha and dimension for a problem size of 4000 points

6.3.3 Maximum Unbalanced Case

Based on the behavior of the generalized balanced case with finite dimension, one would expect the

maximum unbalanced case to terminate rapidly as the dimensions are exhausted. This proves to be true.

Define functions for the marry and the Pareto algorithms, mmuf[,]n d (Marry Maximum Unbalanced

Finite) and pmuf[,]n d (Pareto Maximum Unbalanced Finite) as

mmuf[, 2] 1,
mmuf[,] (2) mmuf[2, 1]

n n
n d n n d

= −
= − + − −

 (46)

which can be simplified to

1

1

mmuf[,] 2

()(1) 1.

d

i

n d n i

n d d

−

=

= −

= − − +

∑ (47)

Equation (47) assumes that 2 1n d≥ − . For values below this threshold, the mmui[]n function must be

used. From this expression the pmuf[,]n d function can be derived to be

log

1

mmuf[2 ,]pmuf[,]
2

in

i
i

dn d n
=

= ∑
.
 (48)

Due to the switching between marry algorithms depending on the size of n , Eq. (48) cannot be written in

closed-form. An approximate form for n d� is

 2pmuf[,] (1) log (1)(1)n d d n n n d d− − − − −� . (49)

The dependency is now (log)O n n . The function has a strong dependency on d , as seen in Figure 69,

where, multiple curves for different dimensionality are shown, along with a curve for infinite dimension.

 78

0 1000 2000 3000 4000
Number of points

0

50000

100000

150000

200000

rebmuN
fo

snosirapmoC

2

3

4

5

6

7

∞

Figure 69: Number of comparisons as a function of number of points and dimension. Also, the infinite

dimension function is shown.

Finally the maximum unbalanced case can be compared to the balanced case for varying dimensions and

numbers of points in Figure 70.

0 200 400 600 800
Number of points

0

10000

20000

30000

rebmuN
fo

snosirapmoC

pmuf @3Dpbf@3Dpmuf @5Dpbf@5Dpmuf @7Dpbf@7D

Figure 70: Comparison of the pbf[] function and the pmuf[] function for varying problem size and

dimension

6.4 Expected Performance of the All Points Pareto Case

While clearly the worst case performance is encountered in the generalized unbalanced case with 0.9α � ,

in reality if the points are distributed randomly, the theoretical worst case will not be encountered. One can

compute, for randomly distributed points, the distribution of α for a fixed problem size. For example, let

20n = and calculate the distribution of α assuming randomly distributed points. The distribution is

hypergeometric and is shown in Figure 71.

 79

0 0.2 0.4 0.6 0.8 1
α

0

1000

2000

3000

4000

5000

rebmun
fo

snosirapmoc

ytilibaborP

Figure 71: Comparing the pguf[] function and the pbf[] function for varying alpha and problem size of

200, d=7, with probability distribution of alpha shown in gray.

There are two things to note. First, the support for the distribution of α is primarily in the vicinity of the

value of 0.5 and is symmetrical. Second, the function mguf[, ,]n dα is approximately linear about the point

0.5α = . This implies that a reasonable approximation for the expected number of comparisons is

[pguf[, ,]] pguf[, [],]

pguf[,.5,]
pbf[,].

E n d n E d
n d

n d

α α α
=
=

�
 (50)

Another argument in favor of the approximation is that the worst case would require every run of the Marry

algorithm to occur with 0.9α � , which would have a small probability of occurrence with any randomness

in the distribution of the points.

6.5 Comparison of Empirical Results with Analytical Results

Figure 72 shows results of both experiments and analyses in estimating the number of comparisons for

problems with all points nondominated, varying problem size, and varying dimension. For the analytical

results the balanced case function pbf[,]n d was used. Experimental results were derived by using the RDP

algorithm to generate data of dimension ranging from 2 to 20. The results show that the experimental

values approach the analytical values as the dimension increases.

 80

5 10 15 20
Dim

20000

40000

60000

80000

100000

Number of
Comparisons

1500 analytical
1000 analytical
500 analytical
250 analytical
1500 experimental
1000 experimental
500 experimental
250 experimental

Figure 72: Comparison of experimental and analytical estimates of number of comparisons for different

problem sizes and different dimensions

Extending into the higher dimensions shows that the experimental results continue to approach the

analytical worst case balanced results. Figure 73 shows the approach of the variables to the worst case

result. Again, the RDP algorithm was used to generate the test data.

10 20 30 40 50 60
Dim

20000

40000

60000

80000

100000

Number of
Comparisons

1500 analytical
1000 analytical
500 analytical

250 analytical
1500 experimental
1000 experimental
500 experimental
250 experimental

Figure 73: Experimental and analytical results up to dimension of 60

By generating data sets with all points Pareto and of sizes ranging from 10 to 600 and dimension from 20,

one can estimate a scaling coefficientα to multiply with pbf[] function to improve the fit for each

dimension. Appendix A lists the results of the curve fits. Figure 74 shows the fit between the pbf[] function

scaled by α and the data used to fit the α coefficient. Shown are dimensions 3 through 18.

 81

200 400 600
Size

5000
10000
15000
20000

Comps d=12

200 400 600
Size

5000
9500
14000
19000

Comps d=15

200 400 600
Size

5000
10500
16000
21000

Comps d=18

200 400 600
Size

1000

2500
4000
5000
Comps d=3

200 400 600
Size

4000
7500
11000
15000

Comps d=6

200 400 600
Size

4500
9000
13500
18000

Comps d=9

Figure 74: Data versus curve fits for the pbf[]α i function, with varying dimension

Finally, Figure 75 repeats Figure 73 but with the pbf[,]n d value multiplied by the mean value of 0.78,

resulting in better correspondence with the experimental data. This estimate can be used as an approximate

value of the number of comparisons required for random data with known dimension and all points

nondominated.

5 10 15 20
Dim

50000

100000

150000

Number of
Comparisons

2500 analytical
1500 analytical
1000 analytical
500 analytical
250 analytical
2500 experimental
1500 experimental
1000 experimental
500 experimental
250 experimental

Figure 75: Comparison of empirical data with the analytical estimate gained by multiplying pbf[n,d] by .85

As for reasons for the difference between the balanced worst case estimates and actual experiments, one

key source of difference is due to the fact that most function calls to the Marry algorithm are in fact

unbalanced. Figure 76 shows a histogram with the relative imbalance of the input to the Marry algorithm

plotted versus the number of function calls. The imbalance I was calculated via the following formula:

 21 xI
n

= − (51)

 82

where x is the number of points entered as the first argument, and n is the sum of the two arguments. In this

figure, only function calls with a total data input greater than a size of 35 are shown. The data is from a run

with 1000 point, 6 dimensional input data that has all points Pareto. Recalling that the Marry algorithm

takes as arguments two sets of points, an imbalance of 1 indicates that of n points provided as argument to

the Marry algorithm, all of them were to the second argument. An imbalance of -1 indicates all points were

to the first argument. An imbalance of 0 indicates the two arguments were equal in size. Any function call

for which the imbalance is 1 or -1 requires no comparisons.

-0.75 -0.5 -0.25 0 0.25 0.5 0.75

Relative
Imbalance

10

20

30

40

of Function Calls

Figure 76: Plot of the relative imbalance of a Marry function call versus the number of calls, for a data set

with 1000 points, 6 dimensions, all Pareto, only functions with data input size > 35

Figure 77 shows the histogram from the same data set but looking at function calls with arguments of all

sizes. Notice that the number of function calls for the functions with smaller input is far greater and that the

dispersion for the smaller calls is broader. There are spikes at 0, -1, +1, and also +/- ½ and +/- 1/3. These

are due to the preponderance of function calls with arguments of total size only 2 or 3.

 83

-0.5 0 0.5 1

Relative
Imbalance

2000

4000

6000

8000

10000

of Function Calls

Figure 77: Plot of the relative imbalance of a Marry function call versus the number of calls, for a data set

with 1000 points, 6 dimensions, all Pareto, functions of all sizes

6.5.1 Model of Run Time for DC Algorithm

A call to the DC algorithm involves recursive calls to the DC algorithm with diminishing problem size

and/or lower dimension. This recursion results in more complex calculations to determine the number of

subroutine calls and the size of the data passed to those subroutine calls. In a manner similar to the process

for computing the number of comparisons in the DC algorithm, consider the Marry algorithm first.

Define the calculation mff[] (Marry Function Finite). The number of function calls needed in the Marry

algorithm with a data set of size n evenly balanced into sets A and B can be determined via the recursion

1log

2

mff[2,] 1
mff[, 2] 1

mff[2 , 1] 1mff[,]
2 2

in

i
i

d
n

n dn d n
−

=

=
=

− +
= + ∑

. (52)

The recursion can be resolved in closed-form and plotted, as shown in Figure 78.

200 400 600 800

Problem
Size

5000

10000

15000

20000

Function Calls

3

4

5

6

7

8

Dimension

Figure 78: Number of routine calls in the Marry algorithm as a function of dimension and data size

 84

The mff[] function overestimates the actual number of function calls as determined by experiment, and so

one can adopt a simple model for the corrected function, mff[,]d n dα × and fitα for the different

dimensions. Doing so with experimental data ranging in size from 10 to 600 points and dimension 3 to 20

results in a series of fitting coefficients listed in Appendix A. One reason for this overestimate is the

assumption of balance in the calls, which was shown in the previous section (Figure 76 and Figure 77) to

be unrealistic.

Defining pff[] (Pareto Function Finite), the number of function calls for the Pareto algorithm is then

calculated through the recursion:

log

2

pff[2,] 1
pff[, 2] 1

mff[2 , 1] 1pff[,]
2 2

in

i
i

d
n

n dn d n
=

=
=

− +
= + ∑

. (53)

This can be plotted also, this time with dimension on the horizontal axis in Figure 79. One can see how for

increasing dimension the number of function calls plateaus in a manner analogous to how the number of

comparisons plateaus.

4 5 6 7 8 9 10
Dimension

20000

40000

60000

80000

Function Calls

100
200
300
400
500
600
700
800
900
1000
n

Figure 79: Analytical estimate of number of routine calls for Pareto algorithm as a function of problem size

and dimension

The estimated number of function calls differs from the experimentally observed results, in that the analytic

result overestimates the number of function calls. Again, coefficient multipliers can be determined to fit the

pff[] functions to the data, as listed in Appendix A.

The functions for determining the amount of data passed in the Marry algorithm, mdf[] and in the Pareto

algorithm, pdf[] are calculated in a similar manner:

 85

1log

2

log

2

mdf[2,] 2
mdf[, 2]

mdf[2 , 1]mdf[,] log
2

pdf[2,] 2
pdf[, 2]

mff[2 , 1]pdf[,] log
2

in

i
i

in

i
i

d
n n

dn d n n n

d
n n

dn d n n n

−

=

=

=
=

−
= +

=
=

−
= +

∑

∑

. (54)

The coefficients for each function are in Appendix A. The plot for the pdf[] function is shown in Figure

80.

2000 4000 6000 8000 10000

Problem
Size

2×106

4×106

6×106

8×106

1×107

Data
Passed

3

4

5

6

7

8

Dimension

Figure 80: total amount of data passed to subroutines as a function of dimension and data size

The total time τ to run the DC and Marry algorithms, respectively, are then estimated to be

mff[,] mdf[,] mbf[,]
pff[,] pdf[,] pbf[,]

mDC S D C

pDC S D C

k n d k n d k n d
k n d k n d k n d

τ
τ

= × + × + ×

= × + × + ×
 (55)

The values for Sk , Dk and Ck will vary from one environment to another, both in their relative and absolute

values. One must experimentally determine them for the best results. Using the Sun Java compiler on a

Windows XP platform resulted in relative values between the parameters of:

1.2
1
1

S

D

C

k
k
k

=

=
=

.

Although the values of the Dk and Ck parameters will not be exactly the same for the SC and DC

algorithms, they are approximately similar. Fixing them to be the same, one can plot the run times for the

two types of algorithm to identify the break points (see Figure 81).

 86

50 100 150 200
n

2000

4000

6000

8000

10000

Run
Time

3

4

5

6

BF

Dimension

Figure 81: SC estimated run time and DC estimated run time for varying dimension

6.5.2 Variation of Number of Comparisons with Percentage of Points
Nondominated

Experiments show that the relationship between the number of comparisons and the percentage of points

that are nondominated is approximately linear. This holds for each of the three algorithms for generating

random lattices. Figure 82 shows this approximately linear relationship, with individual plots for problems

of dimensions 2 through 6. Note that the lines for dimension 5 and 6 overlay each other. This corresponds

to the flat range in the curve of Figure 72, where the dimension has reached the limiting point such that the

infinite dimension result holds.

Figure 82: For problem size of 1000 points, the number of comparisons as a function of dimension and of

the number of nondominated points

This trend holds for larger data sets. Figure 83 shows a data set of size 10,000 and dimension 4.

 87

2000 4000 6000 8000 10000

Number of
Nondominated
Points

100000

150000

200000

250000

300000

350000

400000

Comparisons

Figure 83: Number of comparisons for 10,000 points and varying nondominated points, d=4

An approximation, then, for the number of comparisons needed in the DC algorithm is

 4 pbf[,] spp[,]
5

p n pn d n d
n n

− + 
 

 (56)

where p is the number of nondominated points, and the function spp[n,d] is defined to compute the number

of comparisons required to work through a data set of size n , dimension d , and only one point

nondominated. The 4/5 is the approximate fractional version of .78.

The analytical estimate of the spp[] function proves to be very sensitive to assumptions about the

distribution of the data. The two limiting cases are (1) that all points are otherwise nondominated if the

single dominant point is removed, and (2) that the data has the form {{1,…,1},…,{N,…,N}} so that every

subset of the data has a single dominant point. The expression for the first case takes the form

spp1[,] spp1 , pbf ,

2 2 2
spp1[2,] 1

n n nn d d d

d

   = + +      
=

 (57)

By observation, it can be seen that spp1[] will be more than one half the value for pbf[].

Assuming that the data is randomly distributed independently in each of the dimensions, one can compute

the probability that a data set would arise that has a single nondominated point, and this probability proves

to be very small. The probability for a data set of size N and dimension d equals

11 d

N

−
 
 
 

. (58)

For a data set of 100 points and three dimensions, the probability of a randomly selected distribution having

only one Pareto point is 1 in 10,000. More likely, the distribution of data for a data set with one dominant

point would show correlation between each of the dimensions. The assumptions made in Eq. (57) err to the

 88

other side, in that except for the single dominant point the other points are inversely correlated. Therefore

the spp1[] model most likely overestimates typical data sets.

Looking at the second case where the dimensions are exactly correlated with each other, one can derive the

recursive relationship

spp 2[,] 2spp 2 , 1

2
spp 2[2,] 1

nn d d

d

 = +  
=

 (59)

which simplifies to the closed-form expression

spp 2[,] 1n d n

n
= −
�

. (60)

The assumptions implicit in Eq. (59) are more realistic than those made for Eq. (57), and so spp2[] is a

better candidate function for spp[]. Note that the data sets used for generating Figure 82 and Figure 83 are

intermediate in their distribution form, as can be seen in Figure 84. This results in experimental run times

well above the estimates made using spp2[].

500 1000 1500 2000

500

1000

1500

2000

Figure 84: Data set with single Pareto point, as generated by the RDP algorithm

Therefore the final form of estimator for the run time of data sets with N points of which p are Pareto is

 4 pbf[,] ()
5

p n d n p
n

 + − 
 

, (61)

with the caveat that the actual run time experienced depends heavily on the structure of the data.

 89

6.6 The Dependence of DC Algorithm Performance on the Ordering of

Dimensions

Interestingly, it is possible to get vastly different performance out of two data sets that both are constituted

of only nondominated points. Look at the following data set of 6 dimensions:

{ }
{ }

{ }

1,1,1,1,1,1000
2,2,2,2, 2,999

1000, ,1

 
 
 
 
 
  

#
"

 (62)

The number of comparisons needed to execute the algorithm is 11,207. Conversely, look at this data set,

identical to the previous except for permuting the order of the columns:

{ }
{ }

{ }

1000,1,1,1,1,1
999, 2, 2, 2, 2,2

1, ,1000

 
 
 
 
 
  

#
"

 (63)

The number of comparisons for this data set is only 536, which is less than the number of points in the

problem. Also, this is much less than the set in Eq. (62), with the exact same number of Pareto points, by a

factor of 20. The reason for the improved performance against the data set lies in the marriage step of the

algorithm. For the second data set, upon entry into the marriage step, the two sets 1Y and 2X will be empty,

and the algorithm stops at that point. For the first data set, during the marriage steps the sets 1Y and 2X will

be occupied, and the sets 2Y and 1X will be empty until the 5th dimension is reached. This results in the large

increase in the number of comparisons.

In order to overcome this lack of determinism and disparity in run time, the algorithm can be modified to

randomly choose the next dimension (column of data) upon which to split. The revised, randomized

versions of the DC and Marry algorithms are shown with changes in the algorithm highlighted in bold and

italics.

 90

Algorithm RandomDC Given a set Z of points in a d -dimensional space, find the nondominated points

that are in the set.

RDC-1 [If dimension of data is 2, call L2D on data and return results]

RDC-2 [If size of problem is below limit, call SC on data and return results]

RDC-3 [Else divide into two problems of equal size] Split Z into two sets of points X and Y on the

median element of a randomly chosen column.

RDC-4 [Call DC on subproblems] Determine ()RDNC=XX X and ()RDNC=YY Y

RDC-5 [Reduce dimension] Drop the chosen columns of XX and YY to form XXX and YYY

RDC-6 [Call MARRY to cull remaining dominated points in the inferior set] Determine

' MARRY(,)=XXX XXX YYY .

RDC-7 [return the results] Return '∪YYY XXX .

Similarly, the MARRY[] algorithm is modified as follows.

Algorithm RandomMarry

RMARRY-1 [If data dimension is 2D, call MARRY2D and return results]

RMARRY-2 [If size of problem is below limit, call MARRYDIRECT on data and return results]

RMARRY-3 [Else divide into two problems of equal size, and recursively call MARRY] Choose a cut

plane based on a randomly chosen column, and so that 1 1 2 2+ = +X Y X Y .

Call 1 1 1' RMARRY(,)=X X Y and 2 2 2' RMARRY(,)=X X Y .

RMARRY-4 [Now drop a dimension, and recursively call MARRY]

Drop the chosen columns of 2 'X and 1Y to form 2 'XX and 1YY and

call 2 2 1'' RMARRY(,)=X XX YY .

RMARRY-5 [Form union of results and return] Return 1 2' ''∪X X .

The other supporting algorithms remain unchanged. The results of randomizing the algorithm can be shown

against the first data set in Eq. (62), as shown in Figure 85. While there is still significant variance in the

number of comparisons required to complete the algorithm, the difference between best and worst case is

much less than a factor of 20.

 91

4000 5000 6000
Number of
Comparisons

5

10

15

20

25

Freq

Figure 85: Performance of the RandomDC algorithm with 200 runs

The disparity in run times for the deterministic algorithm suggests that prior analysis of the data could

result in an optimum choice of columns to cut on. The approach would be to determine, for each possible

plane in the d-dimensional problem, the correlation coefficient of the data. Then choose the plane that has

the correlation coefficient closest to -1, and use the two axes that form the plane as the first two columns in

the DC algorithm. This is not explored further in the thesis, instead remaining as future possible research,

discussed in the final chapter. Meanwhile, in the next chapter the hybrid algorithm is introduced next.

 92

CHAPTER 7

Hybrid DC Algorithm

This chapter develops the hybrid divide & conquer (HDC) algorithm that combines aspects of both the SC

algorithm and the DC algorithm. The first motivation in assembling the hybrid algorithm is that, while the

DC algorithm is asymptotically more efficient than the SC algorithm, it also has a larger computational

overhead, and so for smaller problem sizes it is better to switch to the simpler algorithm. The second

motivation is that initial analysis of the data can indicate whether to first use a pass of the SC algorithm to

efficiently eliminate from consideration a large number of points at the outset, then switch to the DC

algorithm if warranted.

In the hybrid algorithm, the basic flow is to

1. Immediately remove all points that are guaranteed dominated;

2. Apply the SC algorithm if there are points guaranteed to dominate more than some cut off limit;

3. Apply DC algorithm to remaining points;

4. At each branching of the DC algorithm, if the problem goes below a certain size, switch to the

brute force algorithm, either SC or MarryDirect.

Each of these is described in the following sections.

7.1 Immediately Remove All Points Guaranteed Dominated

Previously it was noted by using the LLH form that it is possible to identify points that must dominate

others. This property is mirrored in that it is possible to identify points that must be dominated by others. In

particular, for a problem of size N and dimension d , a point must be dominated if the sum of each of its

dimensions is less than 1N d+ − if larger values are preferred, or greater than (1)(1)d N− + if smaller

values are preferred. One can look at the expected percentage of points that meet this criteria as a function

of the dimension of the problem. This percentage is approximately equal to the volume of the portion of a

hyper lattice that satisfies the property that the sum of each point’s dimensions is less than 1N d+ − , which

is itself approximately equal to the ratio of the volume of a right simplex of dimension d and unit edge

length to a hypercube of dimension d and unit edge length. This ratio is 1/ !d . Figure 86 shows the

experimental results based on a data set of 10,000N = and plot of the function 1/ !d together.

 93

2 4 6 8 10
Dimension

0

0.1

0.2

0.3

0.4

0.5

oitaR
fo

deetnaraug detanimod
stniop

ot
melborp

ezis

Figure 86: Fraction of points guaranteed dominated as a function of dimension (points) and the function

1/d! (line)

Although Figure 86 shows that the likelihood for finding points that satisfies this property goes down

rapidly with increasing dimensionality of the data, even for high dimensional data it still merits a test on the

chance that the data has structure, especially due to the low computational cost of implementing it.

7.2 Breakpoint for Switching to Simpler Algorithm

To determine the breakpoint for switching to a simpler algorithm, one must first model the operating time

of the algorithm. Three prime contributors to the algorithm run time are considered. The first is the

overhead time of starting and ending a subroutine 1f fτ = × , where f is a measure of the time to instantiate

a function call. The second is the time that scales linearly with the amount of data passed to a

subroutine, h h nτ = × , where h is a scaling factor for internal data handling and linear sorting. The third is

the time that scales proportional to the number of comparisons, #comparisons,c cτ = × where c is a scaling

factor for comparisons. The values for f , h and c will vary from one environment to another, both in their

relative and absolute values. One must experimentally determine them for the best results. Using the Sun

Java compiler on a Windows XP platform resulted in relative values between the parameters of:

1.2
1
1

f
h
c

=
=
=

In building the models for identifying the breakpoint, the worst case scenario of all points Pareto will be

used. This is justified first by the fact that the hybrid algorithm will first run a Brute Force pass and remove

the majority of points dominated, resulting in a data set with a high proportion of points nondominated.

Second, the relationship between number of comparisons and proportion of points nondominated is

 94

reasonably linear for both the DC and SC algorithms for proportions close to one. For the DC algorithm,

the balanced case developed in Chapter 6 is used as the model.

Starting with the Marry algorithm with infinite dimensional data, define the function bfm[] (Brute Force

Marry) to compute the run time for the Brute Force algorithm:

2

bfm[]
4
nn c hn f= + + . (64)

 The 2 / 4n term is predicated on the Marry algorithm having two sets of data input of / 2n . If we first

divide once, then run the brute force algorithm on the two subproblems, and the Brute Force algorithm on

the marrying of the results of the subproblems (dcbfm[] = DC Brute Force Marry) we get a run time

estimate of

()2

2

/ 2
dcbfm[] 3

4 2

3 5 4
16 2

n nn c h f hn f

c hn n f

 
 = × + + + +
 
 

= + +

.

The goal is to identify the point at which these two infinite dimension run time estimates are equivalent. So

solving for the equation bfm[] dcbfm[]n n= results in a quadratic equation in n that resolves to

()24 3 3 9

M

h cf h
n

c∞

+ +
= . (65)

Replacing the scaling values with their numerical estimates gives 26Mn ∞ � .

The three dimensional case can be solved similarly. While the brute force time remains the same, the time

for running a single iteration of the divide first gives

 2

dcbfm[,3] 2 bfm[/ 2,3] bfm[/ 2, 2]

(2) 4 .
8

n n n
c n h c n h f c

= +

= + + + + −
 (66)

This change is due to the fact that bfm[/ 2,2]n runs in linear time. Solving for the breakpoint for the 3D

marry case leads to

2

3

1 54 (3)
2 2

M

chc h c c f h
n

c

 
+ + + + +  

 = , (67)

or replacing the scaling coefficients with their numerical values gives 3 18Mn � . So for data sets of size less

than 18 points and of dimension equal to 3, one should execute the Brute Force algorithm.

To look at the 4D case, one has two choices of possible methods to compute the run time, both shown here.

 95

dcbfm[, 4] 2 bfm[/ 2] dcbfm[/ 2,3]
dcbfm[, 4] 3bfm[/ 2]

n n n
n n

= +
=

 (68)

The top option uses the 3D version of the bfm[] function for the dimension reduction step, while the

bottom uses the brute force option for the dimension reduction step, making it identical to the infinite

dimension case.

Since the dcbfm[n,4] function’s breakpoint will be between the 3D and the infinite dimension case, then in

the top option the value of / 2n is guaranteed to be less than 26/2=13, which is itself less than the

breakpoint for the 3D function, and so the bottom option dominates. The result is that for 4D problems and

higher, the breakpoint to use is the infinite dimension value of 26. For 3D, a value of 18 should be used.

For the DC algorithm, the 3D case is considered first. The Brute Force algorithm (bfp[n] = Brute Force

Pareto) results in a run time of

2

bfp[]
2

n nn c hn f−
= + + , (69)

while the approach that has a single divide stage results in an estimate for the function dcbfp[n] (DC then

Brute Force Pareto)

[]

2

dcbfp[,3] 2 bfp / 2 bfm[, 2]

3 4 .
4 2

n n n

c cn h n f c

= +

 = + + + − 
 

 (70)

The breakpoint is the value of n where the two functions are equivalent. Solving the equations gives

()2

3

2 2 3 4 4
13P

c h cf ch h
n

c

+ + + +
= � . (71)

So for the 3D case, if the data set is less than 13, the SC algorithm should be run.

The infinite dimension case is more complicated. At first glance, the approach would be to compare the

brute force run time bfp[]n with a divided approach dcbfp[] 2 bfp[/ 2] bfm[]n n n= + . However, when

comparing the two it turns out that the bfp[]n approach dominates for all values of n . The reason is that

the bfm[]n approach is suboptimal for the values of n considered. Instead, the bfm[]n function should be

replaced with one that divides at least once, but possibly more times. Define the following functions for

computing various run times for the Marry algorithm:

dcbfm2[] 3dcbfm[/ 2]
dcbfm3[] 3dcbfm2[/ 2] .

n n hn f
n n hn f

= + +
= + +

 (72)

Now the candidate run times to compare for the DC algorithm are

 96

bfp[]
dcbfp[] 2 bfp[/ 2] bfm[]

dcbfp2[] 2 bfp[/ 2] dcbfm[]
dcbfp3[] 2 bfp[/ 2] dcbfm2[]
dcbfp4[] 2 bfp[/ 2] dcbfm3[] .

n
n n n hn f
n n n hn f
n n n hn f
n n n hn f

= + + +
= + + +
= + + +
= + + +

 (73)

Plotting the difference between each of these (using the scaling coefficient values provided above) and the

value of bfp[]n over varying n shows, for each one, at what point the function becomes preferred to the

strictly brute force approach. Candidate breakpoints are where the X-axis is crossed (Figure 87). The figure

indicates that the dcbfp3[n] function has the lowest breakpoint, since its point of crossing the X-axis is

closest to the origin. Setting bfp[] dcbfp3[]n n= gives a breakpoint of 55Pn ∞ � , so for the limiting infinite

dimensional case one would use the SC algorithm if the data set has fewer than 55 points.

10 20 30 40 50 60 70
n

-100

-50

50

100

150

200

Delta
Run Time

dcbfp4 @nD−bfp@nDdcbfp3 @nD−bfp@nDdcbfp2 @nD−bfp@nDdcbfp @nD−bfp@nD

Figure 87: Comparison of ∆ run times for differing numbers of divisions of the Marry algorithm

For the 4D case with the DC algorithm, a similar process of comparing differing amounts of dividing in the

Marry portion of the algorithm leads to Figure 88, with a calculated value of 4 33Pn � .

10 20 30 40 50 60 70
n

-100

-50

50

100

Delta
Run Time

dcbfp3 @nD−bfp@nDdcbfp2 @nD−bfp@nDdcbfp @nD−bfp@nD

Figure 88: Comparison of ∆ run times for the 4D case

For the 5D case, we know that the value of 5Pn must be between the value for the 4D case of 33 and the

limiting infinite dimension case of 55. Writing

 dcbfp[,5] 2 bfp[/ 2] marry[,4]n n n hn f= + + + (74)

 97

the question is, how to implement the marry[,4]n function? Since the value of n will be greater than 26, the

breakpoint for the 4D marry algorithm, we know it will divide itself at least once, and so

 marry[, 4] 2 bfm[/ 2] marry[/ 2,3]n n n hn f= + + + . (75)

The bfm[/ 2]n terms are dominant since we know that / 2 55 / 2 27n < � , which is close enough to the

breakpoint of 26 to assume the bfm procedure will have the same run time as one that might divide again.

As for the marry[/ 2,3]n term, since the divide point for the 3D marry algorithm is 18, and we know

that16.5 / 2 27.5n< < , the marry term will involve another divide, so that

 marry[/ 2,3] 2 bfm[/ 4] marry[/ 4,2]n n n hn c= + + + . (76)

The marry[/ 4, 2]n term will use the linear algorithm, and so the full run time estimate of the

dcbfp[,5]n algorithm is

 213 21dcbfp[,5] 10
32 4

c h cn n n f c− = + + − 
 

. (77)

Solving for bfp[] dcbfp[,5]n n= and using the coefficient values give a result of 5 50Pn = . For higher

dimensions than 5, the infinite dimension value for the breakpoint should be used.

To summarize, Table 12 shows the breakpoints for the Marry and the DC algorithms for the varying

dimensions.

Table 12: Breakpoints for Marry and DC algorithms

Dimension Marry DC

3 18 13

4 26 33

5 26 50

6+ 26 55

Experimental results indicate that using the hybrid algorithm results in significant savings in total run time.

Figure 91 shows results for 6-dimensional data of varying size.

These are for the total number of points in the data set, recalling that the relationships used to create the

table assume that all points are Pareto. The values for breakpoints should approximately hold even if only

subsets of the points are Pareto, since the relationship of comparisons to percentage of points Pareto are

approximately linear for both the SC and DC algorithms.

 98

Figure 89: Comparison of hybrid and non-hybrid algorithm for 6Dcase

The percent reduction in run time is shown in Figure 90. The reduction appears to approach a value of

approximately 30%.

200 400 600 800 1000 1200

30

40

50

60

70

Figure 90: Percent reduction in run time for 6D data, varying data set sizes

Fixing the size of the data set at 600 points and varying the dimension provides the graph shown in Figure

91.

200 400 600 800 1000 1200
Size

50000

100000

150000

200000

250000

300000

Run
Time

Hybrid −vs− Nonhybrid
Algorithm for 6D Case

Hybrid

No Hybrid

 99

4 5 6 7 8 9 10
Dimension

20000

40000

60000

80000

100000

120000

140000

Run
Time

Hybrid −vs− Nonhybrid
Algorithm for
600 point Case

Hybrid

No Hybrid

Figure 91: Comparison of run times of hybrid and nonhybrid algorithms for problem size of 600 and

varying dimension

The corresponding percent reduction is shown in Figure 92 for each dimension.

4 5 6 7 8 9 10
d

20

25

30

35

40

% Reduction

Figure 92: Percent reduction in run time of hybrid with respect to nonhybrid algorithm for problem size of

600 and varying dimension

7.3 First Pass Trade

The last relationship to build is for the tradeoff between either a single pass of the SC algorithm followed

by the DC algorithm, or directly going to the DC algorithm. The tradeoff between these two occurs when

the run time for a single pass of the SC algorithm is less than the run time expected to be saved by its

execution.

The SC algorithm takes 1n − comparisons for a single pass through data of size n. If we indicate the

number of points to be removed as ∆ , then we can estimate the number of comparisons required by running

the DC algorithm with a full data set versus running with a data set of n − ∆ , and if the difference is greater

than the cost of a single pass through the SC algorithm, then the single pass is warranted. To compute this

breakpoint, define a DC run time estimator to be

 100

 ()pdc[,] 0.66 0.73pff[,] 0.77 pdf[,] 0.78pbf[,]n d n d n d n d= + + , (78)

where the coefficients to the estimates for the number of function calls, data passed, and comparisons are

derived by using 1.2Sk = and 1d Ck k= = . The multipliers to each of the functions are taken from the

Appendix A, while the leading .66 is due to the application of the mixed DC and Brute Force algorithm,

which is developed in the previous section. Since the relationship of the run time with respect to the

number of Pareto points is approximately linear, the number of comparisons that would be avoided is

approximately

 pdc[,]C n d
n
∆

= (79)

Since it will cost one function call and 1n − comparisons and 1n − data passed to remove ∆ points, we can

solve for ∆ to get

 2(1)
pdc[,]

n n
n d
−

∆ = (80)

The minimum value for ∆ is () 1n S d∆ = − + −z . Replacing ∆ in Eqn. (80) results in the inequality that

determines whether or not to perform the single pass, where if the inequality holds true, a single pass is

merited:

 2(1)() 1
pdc[,]

n nS n d
n d
−

≤ − + −z . (81)

Figure 93 shows the break-even point as a function of data set size and dimension. So, for example, with

4d = and 8000n = , the break-even point is approximately 150.

2000 4000 6000 8000 10000
n

50

100

150

200

250

300

350

Delta
Run Time

8d

7d

6d

5d

4d

3d

Figure 93: Plot of the break-even point for varying data size and dimension, above which one should first

run the SC algorithm

Figure 94 shows the same results but with dimension on the X axis.

 101

4 5 6
Dimension

50

100

150

200

250

Break Even
Point

2500

2000

1500

1000

500

Figure 94: Break-even point as a function of dimension and data set size

Figure 95 shows results of the DC algorithm alone, the hybrid algorithm without using a single pass of SC,

and the full hybrid algorithm using a single pass. All runs were with 400 points, of which only 5 were

Pareto. The horizontal axis is a data dispersion factor, which is one of the inputs to the RDP algorithm used

to generate the test data. Recall from Section 4.3 that as the dispersion factor grows larger, that probability

that a dominated point is dominated by more than one point increases, and for very high dispersions each

Pareto point dominates all dominated points. Note the independence of the DC and the hybrid to this factor.

2.5 5 7.5 10 12.5 15 17.5

Data
Dispersion
Factor

5000

10000

15000

20000

Run
Time

DC

Hybrid no SC

Hybrid with SC

Figure 95: Comparison of DC, hybrid with single pass of SC, and hybrid with single pass of SC, for 5D
data set of 400 points, only 5 points Pareto. The horizontal axis correlates to the number of points each

Pareto points dominates, with more points as you move right on the axis.

Figure 96 shows a comparison between the three algorithms for a data set of 5D, with a ratio of 1/20 of the

points Pareto, with a high data dispersion value, and varying numbers of points in the data.

 102

100 200 300 400
Size

2500

5000

7500

10000

12500

15000

17500

Run
Time

DC

Hybrid no SC

Hybrid with SC

Figure 96: Varying the number of points, for 5D data, 1/20 of points dominant, high dispersion of data

Figure 97 shows a 5D data set with 500 points, high dispersion, and varying number of Pareto points.

Interestingly, the hybrid with one pass of SC performs better for a significantly wider range of possible

values than would be predicted by the analytical model, indicating that additional effects are at work,

discussed below.

100 200 300 400 500

Dominant
Points

10000

20000

30000

40000

50000

60000

70000

Run
Time

DC

Hybrid no SC

Hybrid with SC

Figure 97: 5D data set with 500 points, varying number of dominating points, high dispersion in data

Figure 98 is a repeat of Figure 97, but with lower dispersion. Again, for all but the data sets with almost all

points Pareto, the first pass of the SC algorithm is merited.

 103

100 200 300 400 500

Dominant
Points

10000

20000

30000

40000

50000

60000

70000

Run
Time

DC

Hybrid no SC

Hybrid with SC

Figure 98: 5D data set with 500 points, varying number of dominating points, low dispersion in data

While the rationale for this unexpected performance is not investigated in detail, a cursory examination of

the data sets as the algorithm executes suggests that a single pass of the SC algorithm shapes the data in

such a way that the DC algorithm performs especially well. If the data is initially in the shape of a

hypersphere or hypercube, then a single pass of the SC algorithm can be expected to remove a center core

of points, leaving the remaining points distributed in a hypertoroid. This shape possibly lends itself to the

DC algorithm by allowing it to avoid the comparison of points that are on opposite sides of the toroid.

7.4 Full Description of Hybrid algorithm

The hybrid algorithm is presented here in three parts. The first is the HYBRID algorithm itself, which then

serves as a wrapper for the HYBRID_DC algorithm and the HYBRID_MARRY algorithm.

Algorithm HYBRID Given a set Z of points in a d -dimensional space, find the nondominated points that

are in the set.

HYBRID-1 [If dimension of data is 2, call LC1 on data and return results]

HYBRID -2 [Remove all points guaranteed dominated] Test each point, if the sum of its

elements are greater than (1)(1)d N− + delete the point.

HYBRID -3 [Test to determine single pass of the cull algorithm] Define S as the sum of each of

a point’s elements, and maxS as the maximum S from among all points. Then if,

*()(1) (,) (() ,)S D C pDC pDCk k k N n d n S d dτ τ+ + − < − − +z do one pass of the SC

algorithm.

HYBRID - 4 [Call HYBRID_DC] Call the hybrid DC algorithm.

HYBRID - 5 [Return the results] Return.

The HYBRID_DC algorithm receives data of at least 3 dimensions.

 104

Algorithm HYBRID_DC Given a set Z of points in a 3-dimensional or greater space, find the

nondominated points that are in the set.

HYBRID_DC - 1 [Call the HYBRID_DC or SC algorithm] Chose the HYBRID_DC or the SC

algorithm based on which has a lower value of its estimated run time. If

HYBRID_DC, split the data as per the DC algorithm and call recursively.

HYBRID_DC - 2 [Call HYBRID_MARRY to cull remaining dominated points in the inferior set]

Call the HYBRID MARRY algorithm on the remaining data.

HYBRID_DC - 3 [Return the results] Return.

The HYBRID_MARRY algorithm receives data of at least 2 dimensions.

Algorithm HYBRID_MARRY

HYBRID_MARRY - 1 [Use linear algorithm if 2D problem] If problem is of dimension 2, use

MARRY2D algorithm.

HYBRID_MARRY - 1 [Call the HYBRID_MARRY or MD algorithm] Chose the HYBRID_MARRY

or the MD algorithm based on which has a lower value of its estimated run

time. If HYBRID_MARRY, split the data as per the MARRY algorithm and

call recursively.

HYBRID_MARRY - 3 [Return the results] Return

 105

CHAPTER 8

Test of Algorithm against Satellite Model Data

While the algorithms developed in the thesis have been comprehensively tested using random test data, the

test data is by nature of a particular form that is derived from the algorithm to generate it, and so the

possibility exists that the algorithm’s performance is tied to the structure of the data. A concern is that real

world test data that has a different structure than the test data may cause the algorithms to perform

differently. Therefore, this chapter exercises the model created in Chapter 2 to generate a single data set of

10,000 sample points in the 8D space. The inputs, listed in Table 13, were randomly sampled via a

distribution uniformly spread between their upper and lower bounds. The input and resulting output values

were recorded to form the data set. This data set is then decomposed into multiple data sets of varying

numbers of dimensions, resulting in a total of 247 distinct data sets available for testing the hybrid

algorithm. The preference for each dimension is also noted in the table.

The experiments were run against the entire 8D data set, and also against all possible choices of dimensions

with at least 2 dimensions. For the original data set of dimension d there are a total of 2 1d d− − possible

choices of dimensions to pick in creating subsets of the problem (neglect the picks that have a single

dimension, and also the empty set.) For d=8, there are 247 possible combinations. Of those there are 28 2D

combinations, 56 3D combinations, 70 4D combinations, 56 5D combinations, 28 6D combinations, 8 7D

combinations, and just one 8D combination (i.e., the whole data set).

Each of these data sets are run through the hybrid algorithm, and compared with the analytical predictions.

The parameters are listed in Table 13 along with whether they were to be maximized or minimized.

 106

Table 13: List of dimensions from satellite test problem

Parameter In or out Preference Range of Values

Propellant mass

(PropMass)

Input Minimize 500 – 3000 kg

Payload mass (payload) Input Maximize 300 – 1,100 kg

Orbit radius (radius) Input Minimize 4000 – 4,400 km

Thrust (thrust) Input Minimize 20 – 1,000 Newtons

Delta angle of burn (del) Calculated Minimize -1.18 – 0 Radians

Velocity of trajectory

(DV)

Calculated Maximize 0 – 5,000 km/s

Total mass (mass) Calculated Minimize 1,473 – 4,452 kg

Total cost (cost) Calculated Minimize 1,400 – 10,600

(dimensionless)

An example of a projection of the 8D space into a 3D space is shown in Figure 99. Noting that DV is to be

maximized and thrust and propellant mass are to be minimized, it can be observed that most of the points in

this plot would be Pareto points.

Prop Mass

Thrust

DV

Prop Mass

Thrust

Figure 99: Plot of Propellant mass, delta velocity, and thrust of the engine. Dimensions have been

normalized and scaled for proportion

 107

Figure 100 shows the full 8-by-8 scatter plot matrix of the data. The matrix is symmetric about the

diagonal, with the diagonal plots just showing the variables plotted againsts themselves. Note the tight

correlation between propellant mass and total mass, indicative of the fact that a spacecraft’s total mass is

typically dominated by the propellant mass. ∆V correlates with propellant mass also, as expected. As cost

and total mass are be definition correlated, cost then correlates with propellant mass and ∆V. The scatter

matrix does not reflect the trends of design variables such as payload and radius on cost, as their effect is

dwarfed by the effect of the mass variables.

del

radius

payload

cost

mass

DV

thrust

PropMass

PropMass thrust DV mass cost payload radius del

Figure 100: Scatter matrix of the 8D data

By decomposing the data set, a broad variation in dimensions and number of Pareto points is possible.

Figure 101 shows the model-derived data in red and the analytical estimates of run time in blue for each

dimension from 3 to 8. The hybrid algorithm with a first pass of the SC was used. The figure shows that for

the 3D and 4D case the analytical model underestimates the total run time but that the analytical model is a

good fit for higher dimensions. The underestimates for the lower dimensions is most probably a reflection

of the sensitivity of the run time estimates to the structure of the data, as discussed in Section 6.5.2.

 108

2000 4000 6000

1×106
2×106
3×106
4×106
5×106

d=6

2000 4000 6000

1×106
2×106
3×106
4×106
5×106

d=7

2000 4000 6000

3.×106

6.×106
d=8

750 1500

150000

300000

d=3

2000 4000 6000

750000

1.5×106
d=4

2000 4000 6000

1.75 ×106

3.5×106
d=5

Figure 101: Comparison of data derived from the model (red with diamonds) and analytical estimates of

run time (blue with stars) for dimensions ranging from 3 to 8

As there was only one data set for the 8D case, the preference structure was modified to allow for an

additional 27 8D data sets. For the data set in Figure 101, the columns of data were multiplied by 1, -1, 1, 1,

1, 1 ,-1 and 1 respectively, in order to reflect whether the attribute was to be minimized or maximized. In

order to generate new 8D data sets, all possible permutations of preferences {1, 1, -1, -1, -1, -1, -1, -1} and

{1, -1, -1, -1, -1, -1, -1, -1}, which maximizes either two parameters or one parameter, respectively, were

applied to the original 8D data set prior to determining the number of Pareto points and the run time. The

results are shown in Figure 102.

2000 4000 6000 8000 10000
Number of
Pareto Points

3.×106

6.×106

Run
Time d=8

Figure 102: Number of Pareto points versus run time for 8D data with 10,000 points, derived from the

satellite model. Experimental results are marked with diamonds; analytical is blue line with stars

Comparing the performance of the algorithm against both the satellite model derived data and the test data

shows that the run time estimates derived from the test data are applicable to other data sets. One difference

is the dispersion in the run times for the satellite data is much greater than from the test data. Since many of

the parameters of the satellite model are directly correlated, e.g., propellant mass, total mass and cost, we

are probably seeing the effects that the ordering of the dimensions in the divide & conquer steps has on

 109

total performance, as per Section 6.6. This would lead to shorter than estimated run times. Figure 103

shows the results of experimentally determining the effect of permuting the columns of the 8D data on the

run time of the algorithm. In this experiment, 40 different permutations of the columns were selected at

random from the 8! possible choices, and the hybrid algorithm was executed. The results show significant

dispersion in the run times, quantified by Figure 103 as being greater than a factor of 2, and reinforce the

point that column ordering has a significant effect on the efficiency of the algorithm.

600000 800000 1000000 1200000 1400000

Run
Time

1

2

3

Figure 103: Histogram showing the run times for the 8D spacecraft data, 10,000 points, 712 Pareto points,

with the columns permuted in 40 different possible orderings

 110

CHAPTER 9

Conclusions and Future Research

9.1 Conclusions

The main goal in this research has been to develop a hybrid algorithm that would be efficient in terms of

run time in identifying Pareto points from multi-dimensional data sets. This task was accomplished,

resulting in an algorithm that demonstrates an average of 40% reduction in run time over a pure divide &

conquer (DC) algorithm, and that can adapt to the data to operate most efficiently. The hybrid algorithm is

analogous to hybrid algorithms for sorting, which for example often employ QuickSort for initial stages,

switching to a less efficient but lighter weight algorithm for subproblems below a critical size.

In developing the algorithm, analytical estimates of upper bounds on the expected worst case run times

were developed for data sets where all points are Pareto. These upper bounds were shown to be typically

125% of the actual run times of the algorithm against experimental data. The analytical estimates also show

that for data sets of very high dimension or small number of points, the run time is bounded by the number

of points in the data set only. This result is not obvious from the initial theoretical computational

complexity for the DC algorithm of 2(log)dO n n− , which contains a dependence on the dimension.

For data sets with all points Pareto, the ordering of the columns in the data was shown to have significant

impact on the run time of the DC algorithm, possibly affecting it by orders of magnitude. This is in contrast

to the Simple Cull (SC) algorithm, which has a deterministic run time for all points Pareto.

For data sets with few points Pareto, the structure of the remaining dominated points strongly impacts the

run time of the DC algorithm. This effect is mitigated in the hybrid algorithm by running a single pass of

the SC algorithm first.

While the experimental data used to validate the analytical models of run time resulted in fairly tight

groupings of run time versus number of Pareto points, the data set generated from the satellite design model

had much more dispersion. This suggests that more aggressive adaptation in the algorithm to take

advantage of structure in the data would be beneficial.

Fast, efficient algorithms to identify the Pareto set are enabling technologies to the larger goal of trade

space exploration. With these algorithms one can consider larger data sets of higher dimensionality, thereby

 111

improving the a decision maker’s understanding of impact of requirements, constraints, and preferences on

the trade space, ultimately resulting in a better product.

9.2 Limitations

An assumption underlying much of the development of the SC and DC algorithms in this thesis is that each

element in the initial table T was unique in its column, which may not be true if input or output values of a

model are restricted to take one of a finite set of values. The transformation to LLH form, the ranking of

points in the SC algorithm, and the fundamental operation of the DC algorithms were all predicated on this

assumption.

Another assumption made is that all data is transformed to LLH form. This is clearly justified for the use of

the algorithm to support visualization, as one is operating against a fixed data set throughout, so the penalty

for transforming to the LLH form is offset by the savings in future sorting operations and in the Pareto

algorithm. For problem domains where each data set is only operated on once, the gains may not

necessarily offset the up-front computation. While the DC algorithm and the hybrid algorithm without the

first pass do not depend on the LLH form, identifying the point to use for a single first pass in the hybrid

does. Also, the analytical estimates of run times would no longer hold true if each divide step of the DC

algorithm required a comparison sort.

9.3 Future Research

There are a number of future research topics stemming from this thesis, which would either complete the

work done here or would represent new thrusts that are motivated by this work. They are

1. Adaptive ordering of dimensions in the hybrid algorithm

2. Allowing for duplicate elements in the columns of tables

3. Defining multiple levels of dominance for visualization

Each of these is elaborated upon in the following sections.

9.3.1 Adaptive Ordering Of Dimensions in the Hybrid Algorithm

As introduced in Section 6.6 and seen in Chapter 8, the ordering of columns in the table can change the run

time of the DC algorithm by orders of magnitude. Section 6.6 introduced a method to mitigate this effect,

by randomly choosing the next column/dimension on which to operate. This random approach is

reminiscent of a mini-max approach to decision making in that it minimizes the worst expected run time

that the algorithm could experience, rather than minimize the run time. The random selection of columns

not only minimizes the worst expected run time but also maximizes the minimum expected run time. An

ideal solution would be to take advantage of the disparity in run times between different column orderings,

and order them so as to minimize the run time. This section sketches out an approach to doing so.

 112

Recall the previously introduced Figure 51, repeated here for reference as Figure 104. In the figure, the

lower left corner is the preferred direction. The figure represents a projection of a higher dimensional space

onto a 2D space. These two dimensions will be the next two chosen in the MARRY algorithm for cutting.

PY PX

1y
2y 2x

1x

Figure 104: Dividing of space in DC algorithm

If the regions 1y or 2x are unoccupied as in the projection of points onto the plane as shown in Figure 104

then the algorithm will terminate early, greatly reducing the number of comparisons required. Figure 105

shows two different projections of a 5D data set onto a 2D plane. The first plot clearly has the X and Y

points inversely correlated, and so would have regions 2x and 1y relatively empty. One would expect the

Marry algorithm to perform well if these two dimensions are chosen as the first two to operate on. The

second projection does not share this property, and the performance of the Marry algorithm, would suffer

accordingly, even though both cases are with the same data. The key research question in support of

adaptively selecting the ordering of the dimensions is how to most accurately analyze the best choice of

dimensions to order on which to order, while minimizing extra computational time?

200 400 600 800 1000

200

400

600

800

1000

200 400 600 800 1000

200

400

600

800

1000

Figure 105: Two different 2D projections of a hypothetical 5D data set with some dimensions correlated

and other not

Assuming the table Z is of size N and dimension d , then there will be 2() / 2d d+ possible choices of 2D

projections from which to choose. One possible approach that suggests itself is to compute the correlation

coefficients for each of the possible projections, and then choose the one that most nearly approaches -1. A

 113

negative to this approach is that it would require 2() / 2N d d+ multiplications to compute all of the

coefficients. This could be mitigated by only taking a sample of the points, assuming that if randomly

chosen then the correlation coefficients calculated from the samples would be sufficient on which to make

a decision. The absolute values of the coefficients are not as important as their relative values. Another

issue is that the correlation coefficient is skewed by points that lie in the upper left or lower right quadrant,

when the key to algorithm efficiency is strictly based on which quadrants are occupied, not where they are

occupied.

Another approach would be to set up a parallel data structure where, for each point, its position would be

either 1 or -1, reflecting whether it was in the upper or lower half of values within its column. Then one can

compute the correlation coefficient. This approach would not skew the coefficient based on point position,

and it also would have the advantage in that the multiplication step could be replaced by a more efficient

comparison of the two values. Again, a statistically representative sample of the points could be used to

reduce the time to compute the coefficients.

Analysis and experiments would be needed to fix the number of samples of the data set to best estimate the

points. An interesting issue is that, since the goal is to estimate the relative ordering of the coefficients

rather than there absolute values, the sampling itself may need to be adaptive. For cases as in Figure 105 it

would require relatively few points to establish that the first ordering clearly is better than the second, while

for projections that are similar, many more samples might be needed to establish the best ordering, while

the gains expected from a proper ordering would diminish. If no one coefficient is clearly dominating or if

perhaps two are dominating but similar and three are clearly deficient, the algorithm for choosing

dimensions would stop and randomly pick one of the two remaining projections.

9.3.2 Allowing For Duplicate Elements in the Columns of Tables

An assumption underlying much of the development of the SC and DC algorithms in this thesis is that in

the initial table T , each element was unique in its column. The transformation to LLH form, the ranking of

points in the SC algorithm, and the fundamental operation of the DC algorithms were all predicated on this

assumption. This section discusses issues in relaxing the assumption, and sketches out methods for

handling duplicate elements in the SC and DC algorithms.

To provide an example for discussion, two tables are given. T (see Table 14) is a table of designs that has

duplicate elements in the cost column, while Z (see Table 15) is the data transformed to LLH form, with the

transform arbitrarily assigning an ordering within the cost column. To reflect the preference of more speed

and range and less mass, diameter, length and cost, the values for speed and range are given in negative

numbers.

 114

Table 14: Design instances with duplicate elements in the cost column

T Speed ↑ Range ↑ Mass ↓ Diameter ↓ Length ↓ Cost ↓

1t -25 -13000 2000 13.2 230 1,000,000

2t -23.2 -12980 2050 15.0 231 1,000,000

3t -22.4 -12700 2543 13.1 229 1,200,000

4t -28.25 -14075 2100 14.7 215 950,000

Note that design 1t dominates 2t . In the conversion to LLH form, however, an arbitrary ranking is placed

between the duplicates, and now 1z does not dominate 2z . This simple example shows that one cannot

simply transform the table to LLH form and have the proper dominance relationships preserved.

Table 15: Transformation to LLH form, with arbitrary ranking of duplicate items in cost column

Z

1z 2 2 1 2 3 3

2z 3 3 2 4 4 2

3z 4 4 4 1 2 4

4z 1 1 3 3 1 1

The key to modifying the process is to recognize that the data converted to LLH form is used for two

different functions in the SC and DC algorithms: (1) it is used to order the points, and (2) it is used to

compare the points. The key to allowing duplicate elements is to recognize the two different functions of

the data and adjust accordingly. The recommended approach is to still transform the data to LLH form and

use the LLH data for ordering the points, and to use either the original data or additionally modified LLH

data with duplicate elements to compare the points. As the only way points are removed in either the SC or

DC algorithms is through a direct comparison with another point, this will ensure that no nondominated

point is inadvertently removed. The issue is to determine how the conversion to LLH form and how the SC

and DC algorithms need to be modified to ensure that all dominated points are removed. There are three

candidate approaches, enumerated as follows:

1. Use LLH form to order points, but compare points using original data

 115

2. Use a modified LLH form that allows for duplicate elements, to both order and compare points

3. Use LLH form to order points, and use a modified LLH form with duplicate elements to compare

points

The advantage to the first approach is that it requires minimal modification to the existing algorithm and no

additional storage. A disadvantage is that comparing real numbers is more time consuming than comparing

integers.

The advantage to the second approach is that no additional storage is required and that comparisons will be

between integers. A disadvantage is that the DC algorithm may not perform optimally if, when dividing the

data sets, the divide is imbalanced.

The third approach has the advantage of simplicity of ordering and comparing, but it requires either

additional storage for the modified LLH data or additional bookkeeping to track common elements. Both

increase the complexity of the algorithm.

While it appears that all three approaches applied to the SC and DC algorithms should result in algorithms

that are correct, it remains to be rigorously proven.

9.3.3 Defining Multiple Levels of Dominance for Visualization

Since the current prime use of the algorithms developed here is to support multi-dimension visualization,

issues that arise in the visualization reflect back on the algorithms. One of the issues is on identifying more

points than those strictly considered nondominated, in order to “thicken” the boundary region of

nondominated points or to identify points that are “almost nondominated”. Figure 106 shows the Pareto

frontier (red points) for an 80 point, 2D data set. For this data set, down and left are preferred. One can see

in looking at the figure that there are a number of other points that are very close to the frontier also,

although the algorithm does not identify them as such.

 116

Figure 106: Pareto frontier for 80 points

An alternate approach, for example, would be to break points up into “tiers” of Pareto points (i.e., multiple

Pareto fronts), where for example Figure 107 shows a plot with 70 points, down and left preferred, with

three tiers of Pareto points. The red points are Pareto in the entire set. The blue points are Pareto in the set

remaining if the red points are removed. The green points are Pareto if the red and blue points are first

removed. Another candidate would be to show in the second tier points that only have one dominating

point, and show in the third tier points that have two dominating points, etc. One can easily come up with

additional candidate methods for showing both the Pareto points and points that are nearly Pareto.

Figure 107: 70 points with three tiers of Pareto points

 117

This problem is exactly analogous to the current problem in evolutionary computing, where researchers are

attempting to develop efficient algorithms to identify multiple layers of Pareto frontiers, also known as

Pareto sorting (Murata and Ishibuchi 1995; Zitzler and Thiele 1999; Knowles and Corne 2000; Zitzler et al.

2000; Deb 2001; Deb et al. 2002; Jensen 2003). Whatever method is developed to mark additional points, it

is likely that the SC and DC algorithms can be improved upon to best identify them. The methods to assign

the tiers of Pareto points, and how to modify the SC and DC algorithms to best identify these points, are

open research questions.

 118

References

Abraham, L. H. (1965). Spacecraft Systems, Washington: Scientific and Technical Information Division
National Aeronautics and Space Administration; [for sale by the Superintendent of Documents U.
S. Govt. Print. Off.], 1965

Alexandrov, N. M. and S. Kodiyalam (1998). "Initial Results of an MDO Method Evaluation Study." 7th
AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Vol. 2, St.
Louis, MO: AIAA, 2-4 September, pp. 1315-1327

Alexandrov, N. M. and R. Lewis (2000). "Analytical and computational aspects of collaborative
optimization," NASA NASA/TM-2000-210104, Hampton, VA, April 2000

Alexandrov, N. M. and R. M. Lewis (1999). "Comparative Properties of Collaborative Optimization and
Other Approaches to MDO," NASA NASA/CR-1999-209354, Hampton, VA, July 1999

Allen, B. (2001). "On the Aggregation of Preferences in Engineering Design." ASME Design Engineering
Technical Conferences - Design Automation Conference, ed. by A. Diaz, Pittsburgh, PA: ASME,
September 9-12

Balling, R. (1999). "Design by Shopping: A New Paradigm?" Proceedings of the Third World Congress of
Structural and Multidisciplinary Optimization (WCSMO-3), ed. by C. L. Bloebaum, K. E. Lewis
and R. W. Mayne, Vol. 1, Buffalo, NY: University at Buffalo, May 17-21, pp. 295-297

Barton, R. R., M. Meckesheimer, et al. (2000). "Experimental Design Issues for Simultaneous Fitting of
Forward and Inverse Metamodels." ASME 2000 Design Engineering Technical Conference and
Computers and Information in Engineering Conference

Becker, R. and W. Cleveland (1987). "Brushing Scatterplots." Technometrics 29: 127-142
Bentley, J. (1980). "Multidimensional Divide-and-Conquer." Communications of the ACM 23, no. 4 (April

1980): 214-229
Bentley, J., K. Clarkson, et al. (1990). "Fast linear expected-time algorithms for computing maxima and

convex hulls." Annual ACM-SIAM Symposium on Discrete Algorithm, Jan 1990, pp. 509-517
Box, G. E. P. and N. R. Draper (1959). "A Basis for the Selection of a Response Surface Design." Journal

of the American Statistical Association 54: 622-654
Brown, C. D. (1996). Spacecraft Propulsion, Washington, DC: AIAA, 1996
Brown, C. D. (1998). Spacecraft Mission Design, 2nd ed., Washington, DC: AIAA, 1998
Cheng, F. Y. and D. Li (1997). "Multiobjective Optimization Design with Pareto Genetic Algorithm."

Journal of Structural Engineering 123, no. 9: 1252-1261
Conway, J. H. and R. K. Guy (1996). The Book of Numbers, New York, NY: Copernicus, 1996
Cormen, T. H., C. E. Leiserson, et al. (1994). Introduction to Algorithms, Cambridge, Massachusetts: The

MIT Press, 1994
Cramer, E. J., J. E. Dennis, Jr., et al. (1994). "Problem Formulation for Multidisciplinary Optimization."

SIAM Journal of Optimization 4, no. 4: 754-776
Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms, New York: Wiley, 2001
Deb, K., S. Pratab, et al. (2002). "A Fast and Elitist Multiobjective Genetic Algorithm: NGSA-II." IEEE

Transactions on Evolutionary Computing 6 (Apr 2002): 182-197
Ehrgott, M. and X. Gandibleux (2000). "An Annotated Bibliography of Multiobjective Combinatorial

Optimization," Universitat Kaiserslautern NR 62/2000, Kaiserslautern, Germany, 13 April 2000
Fleeter, R. (2000). The Logic of Microspace ed. J. R. Wertz, Space Technology Library ; v 9, El Segundo,

Calif., Microcosm Press, 2000
Fortescue, P. W. and J. P. W. Stark (1995). Spacecraft Systems Engineering, 2nd ed., Chichester ; New

York: Wiley, 1995
Gavanelli, M. (2001). "Partially Ordered Constraint Optimization Problems." Principles and Practice of

Constraint Programming, 7th International Conference-CP2001, ed. by T. Walsh, Vol. 2239,
Paphos, Cyprus: Springer Verlag

Gavanelli, M. (2002). "An Implementation of Pareto optimiality in CLP(FD)." CP-AI-OR-International
Workshop on Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, ed. by N. Jussein and F. Laburthe, Le Croisic, France: Ecole des Mines de
Nante, pp. 49-64

 119

Goebel, M. and L. Gruenwald (1999). "A Survey of Data Mining and Knowledge Discovery Software
Tools." SIGKDD Explorations 1, no. 1 (June 1999): 21-33

Golub, G. H. and C. F. Van Loan (1996). Matrix Computations, 3rd ed., Baltimore: Johns Hopkins
University Press, 1996

Hazelrigg, G. A. (1996). Systems Engineering : an Approach to Information-Based Design, Upper Saddle
River, NJ: Prentice Hall, 1996

Jeffrey, A. (2000). Handbook of Mathematical Formulas and Integrals, 2nd ed., New York: Academic
Press, 2000

Jensen, M. T. (2003). "Reducing the Run Time Complexity of Multiobjective EAs: The NGSA-II and
Other Algorithms." IEEE Transactions on Evolutionary Computing 7, no. 5 (October 2003): 503-
515

Jones, D. R., M. Schonlau, et al. (1998). "Efficient Global Optimization of Expensive Black-Box
Functions." Journal of Global Optimization 13: 455-492

Keim, D. A. (2002). "Information Visualization and Visual Data Mining." IEEE Transactions on
Visualization and Computer Graphics 8, no. 1: 1-8

Knowles, J. D. and D. W. Corne (2000). "Approximating the Nondominated Front Using the Pareto
Archived Evolutionary Strategy." Evolutionary Computing 8 (2000): 149-172

Knuth, D. E. (1992). Literate Programming, Stanford, CA: Center for the Study of Language and
Information, 1992

Knuth, D. E. (1997). The Art of Computer Programming, 3rd ed., Reading, Mass.: Addison-Wesley, 1997
Kung, H. T., F. Luccio, et al. (1975). "On Finding the Maxima of a Set of Vectors." Journal for the

Association of Computing Machinery 22, no. 4: 469-476
Messac, A., J. G. Sundararaj, et al. (1999). "The Ability of Objective Functions to Generate Non-Convex

Pareto Frontiers." 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference and Exhibit, Vol. 1, St. Louis, MO: AIAA, April 12-15, pp. 78-87

Murata, T. and H. Ishibuchi (1995). "MOGA: multi-Objective Genetic Algorithms." IEEE Conference on
Evolutionary Computation: IEEE, 1 Nov 29-Dec 1 1995, pp. 289-294

Nagel, H., E. Granum, et al. (2001). "Methods for Visual Mining of Data in Virtual Reality." International
Workshop on Visual Data Mining at ECML/PKDD 2001, San Francisco: Simeon Simoff, 7 Sep
2001, pp. 13-27

O'Rourke, J. (1993). Computational Geometry in C, Cambridge: Cambridge University Press, 1993
Rogers, J. and C. L. Bloebaum (1994). "Ordering Design Tasks Based on Coupling Strengths," NASA TM-

109137, Langley, VA, Sept. 1994
Rogers, J., C. M. McCulley, et al. (1999). "Optimizing the Process Flow of Complex Design Projects."

Design Optimization, International Journal for Product and Process Improvement 1, no. 3 (1999):
281-292

Rosenthal, R. (1985). "Principles of Multiobjective Optimization." Decision Sciences 16: 133-152
Scott, M. J. and E. K. Antonsson (1999). "Arrow's Theorem and Engineering Design Decision Making."

Research in Engineering Design 11, no. 4: 218-228
Shah, J. J. and P. K. Wright (2000). "Developing Theoretical Foundations for DfM." ASME Design

Engineering Technical Conferences - Design for Manufacturing, Baltimore, MD: ASME,
September 10-13

Simpson, T. W., A. J. Booker, et al. (2003). "Approximation Methods in Multidisciplinary Analysis and
Optimization: A Panel Discussion." Structural and Multidisciplinary Optimization (In Press)

Simpson, T. W., J. Peplinski, et al. (2001). "Metamodels for Computer-Based Engineering Design: Survey
and Recommendations." Engineering with Computers 17, no. 2 (2001): 129-150

Sobieszczanski-Sobieski, J. and R. T. Haftka (1997). "Multidisciplinary Aerospace Design Optimization:
Survey of Recent Developments." Structural Optimization 14: 1-23

Stump, G., M. Yukish, et al. (2002). "Multidimensional Visualization and Its Application to a Design by
Shopping Paradigm." 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Washington, DC: AIAA, 4-6 Sept.

Stump, G., M. Yukish, et al. (2004). "Trade Space Exploration of Satellite Datasets Using a Design by
Shopping Paradigm." IEEE Aerospace Conference, New York: IEEE, 7-13 March 2004

Stump, G. M., M. Yukish, et al. (2002). "Multidimensional Visualization and Its Application to a Design by
Shopping Paradigm." 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Atlanta, GA: AIAA, September 4-6, 2002

 120

Sutton, G. P. and O. Biblarz (2001). Rocket Propulsion Elements, 7th ed., New York: John Wiley & Sons,
Inc., 2001

Tang, X. and S. Krishnamurty (2000). "On Decision Model Development in Engineering Design." Journal
of Engineering Valuation & Cost Analysis, Special Edition on Decision-Based Design 3(2/3): 131-
150

Tappeta, R. V. and J. E. Renaud (1999). "Interactive Multiobjective Optimization Design Strategy for
Decision Based Design." Advances in Design Automation, Las Vegas, NV: ASME, September 12-
15

Tappeta, R. V. and J. E. Renaud (1999). "Interactive Multiobjective Optimization Procedure." 40th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and
Exhibit, Vol. 1, Washington, DC: AIAA, April 12-15, pp. 27-41

Thurston, D. L. (2001). "Real and Misconceived Limitations to Decision Based Design with Utility
Analysis." ASME Journal of Mechanical Design 123, no. 2: 176-182

Wertz, J. R. and W. J. Larsen (1999). Space Mission Analysis and Design, 3rd ed., ed. J. R. Wertz, Space
Technology Series, El Segundo, CA, Microcosm Press, Kluwer Academic Publishers, 1999

Yukish, M. and E. Harris (2002). "Formulations To Support the Conceptual Design of Satellites." World
Space Congress 2002, Houston, TX: AIAA, 18 Oct 2002

Zitzler, E., K. Deb, et al. (2000). "Comparison of Multiobjective Evolutionary Algorithms: Emprical
Results." Evolutionary Computing 8, no. 2 (2000): 173-195

Zitzler, E. and L. Thiele (1999). "Multiobjective Evolutionary Algorithms: a Comparative Case Study and
the Strength Pareto Approach." IEEE Transactions on Evolutionary Computing 3 (November
1999): 257-271

 121

APPENDIX A

Fitting Parameters for Estimators

Table 16: Coefficients for estimating functions

Dimension Pbf[] Pff[] Pdf[] Mbf[] Mff[] Mdf[]

3 1.05913 1.19093 1.03041 1.02115 0.634506 0.918568

4 0.872525 0.63957 0.798846 0.946639 0.603141 0.853297

5 0.70962 0.544582 0.698684 0.805111 0.57684 0.793526

6 0.657503 0.525402 0.687411 0.71493 0.544081 0.75109

7 0.659375 0.518626 0.696837 0.682871 0.499059 0.698144

8 0.681469 0.508409 0.690546 0.697301 0.508089 0.708953

9 0.710089 0.534579 0.7184 0.711502 0.506027 0.70492

10 0.736185 0.547895 0.730274 0.708196 0.50814 0.694486

11 0.75745 0.562509 0.744163 0.755914 0.546505 0.745668

12 0.772541 0.57927 0.758007 0.757405 0.550855 0.747881

13 0.774487 0.575436 0.76189 0.794202 0.57917 0.78029

14 0.795029 0.584329 0.771653 0.775273 0.560446 0.757071

15 0.750314 0.557616 0.734427 0.756452 0.530607 0.722296

16 0.81629 0.615247 0.797987 0.824969 0.596409 0.789224

17 0.819606 0.608744 0.79109 0.842754 0.605894 0.809232

18 0.808472 0.589733 0.778427 0.867312 0.619583 0.827767

19 0.833996 0.62287 0.805897 0.863022 0.63231 0.831596

20 0.822385 0.610228 0.797431 0.868603 0.62227 0.830964

Mean 0.779804 0.606443 0.766243 0.799645 0.567996 0.775832

 122

APPENDIX B

Solving Recursions

This section shows how to solve the recursions that appear throughout the thesis. The general form of the

recursion is () 2 (/ 2) ()f n f n g n= + . This can be converted to a summation as follows:

3 3 2 2 1 1 0 0

log 3 log 2 log 1 log
log 3 log 2 log 1 log

1 2 log 1 log

1 2 log 1 lo

() 2 (/ 2) ()
4 (/ 4) 2 (/ 2) ()
2 (/ 2) 2 (/ 2) 2 (/ 2) 2 (/ 2)

(2) (2) (2) (2)
2 2 2 2

(2) (2) (2) (2)
2 2 2 2

n n n n
n n n n

n n

n

f n f n g n
f n g n g n
f n g n g n g n
n n n ng g g g

g g g gn

− − −
− − −

−

−

= +
= + +

= + + +

= + + +

= + + + +

#

" g

log

1

(2)
2

n

in

i
i

gn
=

 
 
 

= ∑

A commonly occurring form for ()g n is () logdg n n n= for some {0,1, 2, }d ∈ … . This can be solved for in

closed form.

log log

1 1

(2) log (2)
2

i d in n
d

i
i i

n n i
= =

=∑ ∑

Using the result for the generalized summing of powers of integers (Jeffrey 2000), one can write as

1log

1 3 5
2 4 6

1

log log 1 1 1log log log
1 3 51 2 2 4 6

q qn
d q q q

i

q q qn nn i n n B n n B n n B n n
q

+
− − −

=

     
= + + + + +     +      

∑ "

where iB are the Bernoulli numbers, and the series terminates at either log n or 2log n .

 123

APPENDIX C

Expressions for Comparisons, Function Calls, and Data Inputs

The following figures show the expressions for the analytical estimates for number of comparisons pbf[]

and mbf[], the analytical estimates for number of function calls pff[] and mff[], and the analytical

estimates for amount of data passed ptf[] and mtf[].

The Mathematica code for generating the analytical estimates of the run time for the Marry algorithm are in

Figure 108. The code generates estimates up to a dimension of 20, but can be modified to generate

estimates for any range. The code is exercised for d=5.

In[9]:= mbf@n_,2D:= n−1;
mbf@2,d_D:= 1;

TableAmbf@n_,dD:= EvaluateA n
ik12 + „

i=2

Log@2,nDik mbfA
2i

2
, d−1E
2i

y{y{E, 8d,3,20<E;
mbf@n,5D

Out[12]= n
ik 12 +

48Log@2D3− 54nLog@2D3+ 35nLog@2D2 Log@nD −6nLog@2D Log@nD2 + nLog@nD3
48nLog@2D3 y{

Figure 108: Mathematica code for generating analytical estimate of number of comparisons for the Marry
algorithm

Note in the result for mbf[n,5] in Figure 108 the expression Log[2] appearing in the numerator and the

denominator. This is because Mathematica converts all Base 2 logarithms such as 2log n into the equivalent

form ln / ln 2n . In Mathematica Log[n] means the natural logarithm of n. To maintain consistency within

this thesis and simplify presentation of the results below, Mathematica’s output has been modified so that

log[n] (note the lower case ‘l’ in the function) indicates the logarithm Base 2 of n.

Figure 109 shows the estimates for the Marry algorithm for dimensions 2 through 8. All logarithms are in

Base 2.

 124

Dimension mbf@n,dD
2 −1+ n
3 1− n

2
+ 1

2
nlog@nD

4 −1+ 5n
4

− 3
8
nlog@nD + 1

8
nlog@nD2

5 1− 5n
8

+ 35
48

nlog@nD − 1
8
nlog@nD2+ 1

48
nlog@nD3

6 −1+ 21n
16

− 97
192

nlog@nD + 83
384

nlog@nD2− 5
192

nlog@nD3 + 1
384

nlog@nD4
7 1− 21n

32
+ 1537nlog@nD

1920
− 47

256
nlog@nD2+ 11

256
nlog@nD3− 1

256
nlog@nD4+ nlog@nD5

3840

8 −1+ 85n
64

− 2087nlog@nD
3840

+ 181
720

nlog@nD2− 43nlog@nD3
1024

+ 59nlog@nD4
9216

− 7nlog@nD5
15360

+ nlog@nD6
46080

Figure 109: Expresssions for mbf[]

Figure 110 shows the code for generating the estimates of number of comparisons for the DC algorithm.

Figure 111 shows pbf function for dimensions 2 through 8.

In[51]:= pbf@n_, 2D:= n−1;
pbf@2,d_D:= 1;

TableApbf@n_, dD:= EvaluateA n
ik12 + „

i=2

Log@2,nDik mbf@2i, d−1D
2i

y{y{E, 8d, 3,20<E;
Figure 110: Mathematica code for generating analytical estimate of number of comparisons for the DC

algorithm

Dimension pbf@n,dD
2 −1+ n
3 1− n+ nlog@nD
4 −1+ n− 1

4
nlog@nD + 1

4
nlog@nD2

5 1− n+ 13
12

nlog@nD − 1
8
nlog@nD2+ 1

24
nlog@nD3

6 −1+ n− 9
32

nlog@nD + 59
192

nlog@nD2− 1
32

nlog@nD3+ 1
192

nlog@nD4
7 1− n+ 263

240
nlog@nD − 29

192
nlog@nD2+ 23

384
nlog@nD3 − 1

192
nlog@nD4+ nlog@nD5

1920

8 −1+ n− 55
192

nlog@nD + 3677nlog@nD2
11520

− 21
512

nlog@nD3+ 41nlog@nD4
4608

− nlog@nD5
1536

+ nlog@nD6
23040

Figure 111: Expressions for pbf[]

Figure 112 shows the code for generating the estimates of number of function calls for the Marry

algorithm. Figure 113 shows mff function for dimensions 2 through 8.

In[48]:= mff@n_, 2D:= 1;
mff@2,d_D:= 1;

TableAmff@n_, dD:= EvaluateA n
2

+n
ik „

i=2

Log@2,nDik mffA
2i

2
, d−1E +1

2i

y{y{E, 8d, 3,20<E;
Figure 112: Mathematica code for generating analytical estimate of number of function calls for the Marry

algorithm

 125

Dimension mff@n,dD
2 1
3 −2+ 3n

2

4 1− 3n
4

+ 3
4
nlog@nD

5 −2+ 15n
8

− 9
16

nlog@nD + 3
16

nlog@nD2
6 1− 15n

16
+ 35

32
nlog@nD − 3

16
nlog@nD2+ 1

32
nlog@nD3

7 −2+ 63n
32

− 97
128

nlog@nD + 83
256

nlog@nD2− 5
128

nlog@nD3 + 1
256

nlog@nD4
8 1− 63n

64
+ 1537nlog@nD

1280
− 141

512
nlog@nD2+ 33

512
nlog@nD3− 3

512
nlog@nD4+ nlog@nD5

2560
Figure 113: Expressions for mff[]

Figure 114 shows the code for generating the estimates of number of function calls for the DC algorithm.

Figure 115 shows pff function for dimensions 2 through 8.

In[45]:= pff@n_,2D:= 1;
pff@2, d_D:= 1;

TableApff@n_,dD:= EvaluateA n
2

+n
ik „

i=2

Log@2,nDik mff@2i, d−1D+1
2i

y{y{E, 8d,3,20<E;
Figure 114: Mathematica code for generating analytical estimate of number of function calls for the DC

algorithm

Dimension pff@n,dD
2 1
3 −2+ 3n

2

4 1− 3n
2

+ 3
2
nlog@nD

5 −2+ 3n
2

− 3
8
nlog@nD + 3

8
nlog@nD2

6 1− 3n
2

+ 13
8
nlog@nD − 3

16
nlog@nD2+ 1

16
nlog@nD3

7 −2+ 3n
2

− 27
64

nlog@nD + 59
128

nlog@nD2− 3
64

nlog@nD3 + 1
128

nlog@nD4
8 1− 3n

2
+ 263

160
nlog@nD − 29

128
nlog@nD2+ 23

256
nlog@nD3− 1

128
nlog@nD4+ nlog@nD5

1280
Figure 115: Expressions for pff[]

Figure 116 shows the code for generating the estimates of the amount of data passed in the Marry

algorithm. Figure 117 shows pff function for dimensions 2 through 8.

 126

In[42]:= mtf@n_,2D:= n;
mtf@2,d_D:= 2;

TableAmtf@n_,dD:= EvaluateA n
ikLog@2,nD + „

i=2

Log@2,nDik mtfA
2i

2
, d−1E
2i

y{y{E, 8d,3,20<E;

Figure 116: Mathematica code for generating analytical estimates of the amount of data passed in the
Marry algorithm

Dimension mtf@n,dD
2 n
3 − n

2
+ 3

2
nlog@nD

4 n
4
+ 3

8
nlog@nD+ 3

8
nlog@nD2

5 − n
8
+ 17

16
nlog@nD + 1

16
nlog@nD3

6 n
16

+ 43
64

nlog@nD+ 35
128

nlog@nD2− 1
64

nlog@nD3+ 1
128

nlog@nD4
7 − n

32
+ 567

640
nlog@nD + 25

256
nlog@nD2 + 13

256
nlog@nD3− 1

256
nlog@nD4+ nlog@nD5

1280

8 n
64

+ 987nlog@nD
1280

+ 781nlog@nD2
3840

+ 3nlog@nD3
1024

+ 23nlog@nD4
3072

− 3nlog@nD5
5120

+ nlog@nD6
15360

Figure 117: Expressions for mtf[]

Figure 118 shows the code for generating the estimates of the amount of date passed in the DC algorithm.

Figure 119 shows ptf function for dimensions 2 through 8.

In[36]:= ptf@n_,2D:= n;
ptf@2,d_D:= 2;

TableAptf@n_,dD:= EvaluateA n
ikLog@2,nD + „

i=2

Log@2,nDik mtf@2i,d−1D
2i

y{y{E, 8d, 3,20<E;
Figure 118: Mathematica code for generating analytical estimates of the amount of data passed in the DC

algorithm

Dimension ptf@n,dD
2 n
3 −n+ 2nlog@nD
4 −n+ 5

4
nlog@nD + 3

4
nlog@nD2

5 −n+ 3
2
nlog@nD + 3

8
nlog@nD2+ 1

8
nlog@nD3

6 −n+ 45
32

nlog@nD + 35
64

nlog@nD2+ 1
32

nlog@nD3 + 1
64

nlog@nD4
7 −n+ 231

160
nlog@nD + 15

32
nlog@nD2+ 11

128
nlog@nD3 + 1

640
nlog@nD5

8 −n+ 457
320

nlog@nD + 1937nlog@nD2
3840

+ 29
512

nlog@nD3 + 17nlog@nD4
1536

− nlog@nD5
2560

+ nlog@nD6
7680

Figure 119: Expressions for ptf[]

VITA

Dr. Michael A. Yukish

Michael Yukish is the Head of the Manufacturing Product and Process Design Department at the

Applied Research Laboratory of The Pennsylvania State University. He has been employed as a Research

Assistant at ARL since 1993. The focus of his research at ARL is in the areas of multidisciplinary design

optimization, simulation based design, and conceptual trade space exploration for complex systems.

He received a B.S. in Physics from Old Dominion University in 1983, an M.S. in Mechanical

Engineering from The Pennsylvania State University in 1997, and a Ph.D. in Mechanical Engineering from

The Pennsylvania State University in 2004.

From 1985 to 1992 Michael Yukish served on active duty in the United States Navy as a Naval

Aviator. He has over 1800 flight hours in the E-2C Hawkeye and the T-2C Buckeye, and made multiple

deployments to North Atlantic, the Mediterranean, and the Indian Ocean. He is now a Commander in the

US Naval Reserve.

