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Abstract 
The focus in this research is on developing a fast, efficient hybrid algorithm to identify the Pareto frontier 

in multi-dimensional data sets. The hybrid algorithm is a blend of two different base algorithms, the Simple 

Cull (SC) algorithm that has a low overhead but is of overall high computational complexity, and the 

Divide & Conquer (DC) algorithm that has a lower computational complexity but has a high overhead. The 

hybrid algorithm employs aspects of each of the two base algorithms, adapting in response to the properties 

of the data. 

 

Each of the two base algorithms perform better for different classes of data, with the SC algorithm 

performing best for data sets with few nondominated points, high dimensionality, or fewer total numbers of 

points, while the DC algorithm performs better otherwise. The general approach to the hybrid algorithm is 

to execute the following steps in order: 

1. Execute one pass of the SC algorithm through the data if merited 

2. Execute the DC algorithm, which recursively splits the data into smaller problem sizes 

3. Switch to the SC algorithm for problem sizes below a certain limit 

 

In order to determine whether Step 1 should be executed, and to determine at what problem size the switch 

in Step 3 should be made, estimates of both algorithms’ run times as a function of the size of the data set, 

the dimension of the data set, and the expected number of nondominated points are needed. These are 

developed in the thesis. 

 

To aid in increasing the speed and reducing the computational and storage complexity of the algorithm, and 

to enable the ability for the algorithm to adapt to the data, a canonical transformation of the data to a Lattice 

Latin Hypercube (LLH) form is developed. The transformation preserves the Pareto property of points but 

reduces storage space and algorithm run time. 

 

In order to test the three algorithms, three different methods for creating randomized data sets with arbitrary 

dimensionality and numbers of nondominated points are developed. Each of the methods provides insight 

into the properties of nondominated sets, along with providing test cases for the algorithms. Additionally, a 

spacecraft design problem is developed to serve as a source of real world test data. 
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, , ,...x y z  A single row in a table, or a single point in a multi-dimensional space 

ix  The ith row in table X  

x  A single element from table X   

ix  The ith element in row x  

ijx  The jth element in the ith row of table X  

ln n  Natural logarithm of n 

log n  Logarithm Base 2 of n 

log nα  Logarithm Base α of n 

 

All of the following functions are predicated on the data being all points Pareto 

mbi[ ]n  Estimator for the the number of comparisons of the marry algorithm, infinite dimension, and 

balanced. Takes size of table as input 

pbi[ ]n  Estimator for the the number of comparisons of the Pareto algorithm, infinite dimension, and 

balanced. Takes size of table as input. 

pgui[n] Estimator for number of comparisons, Pareto algorithm, generalized unbalanced case, infinite 

dimension. 

mgui[n] Estimator for number of comparisons, Marry algorithm, generalized unbalanced case, infinite 

dimension. 

unbi[n, b] Estimator for the maximum number of comparisons required to identify Pareto points in the 

left/right side of the marry algorithm, with n total points of which b are to be tested 

pgui[n, α] Estimator for number of comparisons, Pareto algorithm, generalized unbalanced case, infinite 

dimension. The parameter α indicated the level of unbalance. 
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dimension. The parameter α indicates the level of unbalance. 

pmui[n] Estimator for number of comparisons, Pareto algorithm, maximum unbalanced case, infinite 

dimension 

mbf[n,d] Estimator for number of comparisons, Marry algorithm, balanced case, with finite dimension 
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pbf[n] Estimator for number of comparisons, Pareto algorithm, balanced case, with finite dimension 

d. 
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mff[n,d] Estimator for number of function calls, marry algorithm, finite dimension d. 

pff[n,d] Estimator for number of function calls, Pareto algorithm, finite dimension d. 
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CHAPTER 1 
 

Introduction 

The motivation for this work stems from ongoing efforts to improve the computational design optimization 

process for large, complex systems such as aircraft, land vehicles, or spacecraft. In particular, this work 

supports a shift from computational design optimization to design exploration. Whereas past focus has been 

on specifying constraints and objectives for a system a priori and generating a “best” design or a set of best 

designs in accordance with those objectives (Hazelrigg 1996; Scott and Antonsson 1999; Shah and Wright 

2000; Tang and Krishnamurty 2000; Allen 2001; Thurston 2001), the new paradigm is to generate 

thousands or millions of candidate designs across the trade space, store them in a database, and then allow 

users to a postieri express their constraints and objectives and view the best designs from the set of 

candidate designs (Balling 1999; Stump et al. 2002; Yukish and Harris 2002). 

 

The effort in design exploration is supported by ongoing research in the areas of design automation, 

metamodeling and response surfaces, and by research in methods to visually explore design trade spaces. 

Multidisciplinary design optimization (MDO), where models of systems and subsystems are integrated to 

form a set of interacting analyses that can generate feasible design concepts, has risen to fill the need for 

design automation. There has been a significant body of research on methods for structuring the interacting 

analyses and posing their solution, with tradeoffs between ease of assembling the codes, the ability to 

parallelize their execution, ease of solving the posed problem, and minimizing their run time (Cramer et al. 

1994; Rogers and Bloebaum 1994; Sobieszczanski-Sobieski and Haftka 1997; Alexandrov and Kodiyalam 

1998; Alexandrov and Lewis 1999; Rogers et al. 1999; Alexandrov and Lewis 2000). Along with 

structuring the problem to minimize run time, and using efficient optimization algorithms, work in 

metamodeling and response surfaces has allowed one to replace codes that have run times as long as hours 

or days with codes that run in the order of milliseconds. These accelerated codes can be used to reduce the 

run time of the MDO problems by orders of magnitude (Box and Draper 1959; Jones et al. 1998; Barton et 

al. 2000; Simpson et al. 2001; Simpson et al. 2003). 

 

Moore’s law has continued to hold true and computing power has continued to grow at an exponential rate, 

further reducing computation time. Work in parallel computing and concepts such as grid computing and 

computer workfarms allow one to spread processes across hundreds or potentially thousands of computers 

to accelerate the creation of design concepts. Taken together, it has become possible to generate hundreds 

of thousands of design concepts in a short period of time. 
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A database populated with N designs, where each design is described by a set of d parameters, can be 

considered to be a set of points occupying a trade space of dimension d . Taking this view, one can use 

tools developed for multi-dimensional  data visualization and visual data mining to explore the trade space 

(Goebel and Gruenwald 1999; Nagel et al. 2001; Keim 2002). There are a number of freely available and 

commercial tools (e.g., Spotfire1, VisDB2, Cviz3, HighTower4, XmdvTool5) that are used in industries such 

as drug discovery and data mining. Within each tool, one can arbitrarily choose which dimensions of the 

data to visualize, and assign them to 3D coordinate axes or other methods of indicating a value to see 

relationships and correlation between variables. One can also dynamically constrain the data by removing 

points that do not satisfy some easily set criteria through a process called brushing (Becker and Cleveland 

1987).  

 

To better support the design process, the visual data mining tools can be augmented to allow the user to 

express and visualize an arbitrary preference structure over the trade space (Stump et al. 2002). With few 

exceptions, the preference criteria will be multiobjective and there are any number of different possible 

criteria from which to choose. Some examples are weighting and scoring, setting targets, prioritization 

methods such as lexicographic goal programming, min-max criteria, and efficiency (Rosenthal 1985).  

 

The efficiency criterion is also known as noninferiority, nondominated, Pareto-admissibility, and Pareto-

optimality. A point is a member of the nondominated set, also known as the Pareto frontier, if no other 

point is more preferred in all attributes. Conversely, a dominated point is one for which there exists another 

point that is equal or better in all attributes and strictly better in at least one, e.g., a car is faster, roomier, 

and less costly than another. 

 

The adoption of the efficiency criteria requires the assumption of monotonicity in each attribute, whereby it 

is assumed that a user’s preference would never decrease as one attribute is increased while holding the 

others constant. Given that this assumption holds, Rosenthal (1985) states that “…a rational person would 

never deliberately select a dominated point. This is probably the only important statement in multiobjective 

optimization that can be made without the possibility of generating some disagreement.” 

 

The Pareto frontier has been long recognized as critical to design decision making, and much research has 

occurred and is ongoing in developing algorithms to generate points that occupy the frontier (Cheng and Li 

                                                           
1 http://www.spotfire.com 
2 http://www.dbs.informatik.uni-muenchen.de/dbs/projekt/visdb/visdb.html 
3 http://www.alphaworks.ibm.com/formula/CViz 
4 http://www.hightowersecurity.com/index.html 
5 http://davis.wpi.edu/~xmdv/ 
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1997; Messac et al. 1999; Tappeta and Renaud 1999; Tappeta and Renaud 1999; Deb 2001; Deb et al. 

2002). However this work again assumes an a priori expression of preference and constraints, as per the 

design optimization problem. Recall that the design exploration problem starts with existing points and lets 

users arbitrarily choose dimensions to place preferences on and apply constraints. After culling the data set 

with constraints, the visualization tool must then identify the points that are nondominated as per the 

preference criteria and display them to the user. 

 

Figure 1 shows the visualization of the Pareto frontier in the Advanced Trade Space Visualization (ATSV) 

software developed by a team of researchers to include this author (Stump et al. 2004). In the figure, the 

nondominated points are indicated in black. As users move the slider bar at the bottom of each screen, they 

adjust the constraints, and a new set of points are feasible. The interface must recalculate and display the 

Pareto frontier in real time, with large numbers of points. This turns the problem of identifying the Pareto 

frontier from a fixed set of points into a computing problem analogous to the sorting problem for 1D data, 

or identifying the convex hull for higher dimensional data (O'Rourke 1993). The need to update in real time 

drives the goal of efficient computation. 

 

User’s constraint applied to data  
Figure 1: Visualizing the Pareto points (black crosses) as user dynamically varies the data set 

The literature on algorithms for identifying the Pareto set is surprisingly sparse, consisting mainly of a three 

papers: (Kung et al. 1975; Bentley 1980; Bentley et al. 1990). The first two papers develop the divide and 

conquer algorithm that is used in this thesis. While the papers provide an order of complexity for the divide 

and conquer algorithm, they do not develop actual run time estimates for the algorithms needed to calculate 

the switch points in a hybrid version. The third paper develops an expected linear run time algorithm, but 

this algorithm is predicated on there being no correlation between each point’s values in the different 

dimensions, i.e., the data is uncorrelated between dimensions. This assumption results in relatively few 

numbers of Pareto points as a percentage of the total data set. The assumption breaks down for data with 
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correlation between dimensions and also for uncorrelated data of high dimensionality. Experience with the 

design problems addressed in this thesis show that the uncorrelated assumption does not hold in general. 

 

There has been recent work in this area in the constraint programming community (Gavanelli 2001; 

Gavanelli 2002), but the common view is that of (Ehrgott and Gandibleux 2000) who, in their annotated 

bibliography of multiobjective combinatorial optimization, consider the problem “efficiently solvable and 

not of mathematical interest.” Whereas similar problems such as sorting continue to draw attention, 

algorithms to identity Pareto points from data sets have not. A probable reason for this view is that there 

has not been a requirement for rapid, continual updating of Pareto sets, as is needed in a visualization tool 

such as the ATSV. 

 

Apart from visualization, as design exploration becomes more prevalent, large data sets will be used, and 

so algorithmic efficiency for computing the Pareto points will become increasingly important. There has 

been recent activity in the evolutionary computing literature as researchers have developed a need to 

efficiently identify nondominated points (Murata and Ishibuchi 1995; Zitzler and Thiele 1999; Knowles 

and Corne 2000; Zitzler et al. 2000; Deb 2001; Deb et al. 2002). In these works the authors have developed 
2( )O N algorithms to identify the nondominated points. A recent paper in the evolutionary computing 

literature (Jensen 2003) has identified the aforementiomed algorithms of Kung and Bentley as applicable to 

the evolutionary computing problem, and conducted empirical tests to demonstrate their efficacy. 

 

Consequently, the goal in this research is to develop a fast, efficient hybrid algorithm to identify the Pareto 

frontier in multi-dimensional data sets. The hybrid algorithm is a blend of two different base algorithms, 

the Simple Cull (SC) algorithm that has a low overhead but is of overall high computational complexity, 

and the Divide & Conquer (DC) algorithm, as introduced by Kung(Kung et al. 1975) and developed by 

Bentley (Bentley 1980), that has a lower computational complexity but high overhead. The hybrid 

algorithm employs aspects of each of these two base algorithms, adapting in response to the properties of 

the data. 

 

Each of the two base algorithms perform better for different classes of data, with the SC algorithm 

performing best for data sets with few nondominated points, high dimensionality, or few total numbers of 

points, while DC algorithm performs better otherwise. The general approach to the hybrid algorithm is to  

1. First execute one pass of the SC algorithm through the data if merited 

2. Execute the DC algorithm, which recursively splits the data into smaller problem sizes 

3. Switch to the SC algorithm for problem sizes below a certain limit 

 

In order to determine whether Step 1 should be executed, and to determine at what problem size the switch 

in Step 3 should be made, estimates of both algorithms’ run times as a function of the size of the data set, 
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the dimension of the data set, and the expected number of nondominated points are needed. These are 

developed in the thesis. 

 

To aid in increasing the speed and reducing the computational and storage complexity of the algorithm, and 

to enable the ability for the algorithm to adapt to the data, a canonical transformation of the data to a Lattice 

Latin Hypercube (LLH) form is developed. The transformation preserves the Pareto property of points, but 

reduces storage space and algorithm run time. 

 

In order to test the algorithms, three different methods for creating randomized data sets with arbitrary 

dimensionality and numbers of nondominated points are developed. Each of the methods provides insight 

into the properties of nondominated sets, along with providing test cases for the algorithms. Additionally, a 

spacecraft design problem is developed to serve as a source of real world test data. 

 

Contributions of the thesis 

This thesis builds on the work of Kung and Bentley (Kung et al. 1975; Bentley 1980) and also uses many 

existing results from the field of number theory. The additional contributions to the body of knowledge are 

listed here. 

1. The finite burn loss model 

2. The concept of transforming the data to LLH form, and all analyses throughout the remainder of 

the thesis associated with the data in this form 

3. The approach for proving the expected number of Pareto points in uncorrelated data of varying 

dimension 

4. All methods for generating random data with a predetermined expected number of Pareto points 

5. Development of the SC algorithm and analytical estimates of its run time for all cases 

6. Analytical estimates of the run time of the DC algorithm for all cases 

7. Development of the randomized DC algorithm 

8. Development of the hybrid algorithm and analytical estimates of its run time for all cases 

9. All experimental results 

 

The remainder of the thesis is structured as follows. Chapter 2 develops a spacecraft design problem to 

further motivate the need for Pareto algorithms, and to provide test data for the algorithms. Chapter 3 

develops the basic properties of data sets with respect to nondominated points. Chapter 4 develops the 

algorithms for creating test data. Chapter 5 introduces the basic computational framework for the Pareto 

algorithms, develops the SC algorithmsand presents the linear time algorithm for 2D data. Chapter 6 

develops the DC algorithms. Chapter 7 develops the hybrid algorithms. Chapter 8 tests the algorithms 

against the spacecraft data. Chapter 9 provides conclusions and offers opportunities for future research. 
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CHAPTER 2 
 

Satellite Design Problem 

 

This chapter presents a realistic model of sufficient complexity to act as a source of data for validating the 

algorithms and to provide an example of the type of trade studies conducted in systems design. The model 

will be used in later chapters to generate data against which the Pareto algorithms will be tested. 

 

The model is based on the literature in satellite design (Abraham 1965; Fortescue and Stark 1995; Brown 

1996; Brown 1998; Wertz and Larsen 1999; Fleeter 2000). The satellite design problem allows one to 

choose the orbit radius, payload mass, propellant mass and main engine thrust and determine the satellite’s 

total cost, total mass, and ∆V available over the life of the mission. In general, a design goal is to minimize 

satellite mass, as the launch cost is directly related to satellite mass. This would lead one to size the engine 

as small as possible, but an effect known as finite burn loss causes a loss in efficiency at low thrust levels, 

providing a counter-balancing effect. Key design variables of interest are as follows: 

• Orbit radius at Mars 

• Propellant mass 

• Engine thrust 

• Payload mass (includes everything but propulsion system mass) 

• Total mass 

• Total cost 

• ∆V arrival acceptable for orbit insertion 

The key calculations to solving the problem are the calculations for finite burn loss, tank design, and main 

engine design, as described in the following sections. 

2.1 Finite Burn Loss 

The Tsiolkowski equation (Brown 1996), is typically used for computing the propellant required to execute 

a maneuver that results in a change in velocity, and is 

 ln i
c sp

f

M
V g I

M
 

∆ =   
 

 (1) 

where V∆ is the difference in the arrival velocity and the orbit velocity, cg is the gravitational constant for 

Earth, spI is the specific impulse of the engine and propellant combination, and iM and fM are the initial 

and final masses of the satellite. By manipulating Eq. (1), one can also solve for iM  or fM . For example, 
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doing so with values of 1140 kgiM = , 2.8 km/sV∆ = , and sp 312I = seconds gives a propellant mass of 

1430 kg. 

 

Note that the mass of propellant only depends on the specific impulse, the change in velocity, and the final 

mass, with a lower final mass resulting in a lower propellant mass. This would compel one to choose the 

smallest engine possible in order to minimize the engine’s contribution to satellite mass, as specific impulse 

is typically independent of engine size. 

 

The Tsiolkowski equation does not, however, account for finite burn loss. Finite burn loss occurs when the 

satellite’s attitude is fixed in an inertial frame over the course of a continued engine burn as the satellite 

enters orbit. The ideal direction for a satellite’s engine to point, in order to minimize the amount of 

propellant needed to enter into an orbit, is tangential to the flight path to maximize the vector product of 

thrust with the flight path, but if the satellite’s attitude is fixed in space and is not adjusted to maintain the 

tangential relation to the flight path, then a loss in efficiency occurs, see Figure 2. Calculating finite burn 

loss requires numerically solving the differential equations of motion, as the orbital dynamics are changing 

continually as the satellite’s weight decreases and the angle with respect to the flight path varies, and 

orbital parameters vary.  

Spacecraft velocity
thrust

Start of burn

End of burn

thrust
Θ

 
Figure 2: Finite burn loss 

To solve for propellant mass required to arrive in orbit, the problem is solved backward by modeling a 

satellite that is departing orbit and is gaining mass as it departs, with the starting mass equal to the dry 

weight of the satellite. The goal is to find what the maximum arrival∆V for a given propellant mass, dry 

mass, engine specific impulse and propellant mass flow rate, and orbit radius. The geometry of the problem 

is shown in Figure 3, with the satellite’s attitude indicated by the triangle. 
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θ
r

δ

 
Figure 3: Problem geometry 

The satellite has a fixed attitude during the departure, δ . The differential equations modeling the motion in 

polar coordinates are 

 
( )

2

2

final prop

ˆˆ( ) ( 2 )

ˆˆsin( ) cos( )sp c sp c

F ma

a r r r r r
mF I g r I g

r
m m m t

θ θ θ θ
µ θ δ θ δ θ

=

= − + +

− = + + + + 
 

= +

G G

G � �� ��� �
G

�

 . 

The set of coupled equations are nonlinear and cannot be solved for in closed-form; however, they can be 

solved numerically, thereby determining relationships for ( )r t , ( )r t� , ( )tθ , and ( )tθ� . The relationship 

between time and energy can be derived, ( )( )2 2 21
2( ) /E t m r r rθ µ= + −�� , and the energy achieved at time 

t when all propellant is added obtained. From this energy, the velocity can be calculated. 

 

Solving numerically and examining the propellant needed to achieve the desired energy increase for 

varying satellite masses and propellant flows shows the effect of finite burn loss for satellites of varying 

empty mass and a fixed radius of orbit (see Figure 4).  
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Figure 4: Finite burn loss comparison 

One can see that as the propellant flow rate and therefore the thrust decreases, the propellant required for 

the maneuver rapidly increases. At a certain point, the maneuver cannot be accomplished at the thrust 

available. In the other direction, as the propellant flow rate and thrust increase, the mass of propellant 

required to complete the maneuver asymptotically approaches from above the idealized value determined 

by the Tsiolkowski equation. 

 

Figure 5 shows how the propellant required varies with respect to propellant flow rate and specific impulse. 
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Figure 5: Finite burn loss at varying Isp 
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An example of an arrival trajectory computed for the case where the engine is of a very low thrust design is 

shown in Figure 6. The arrival trajectory approaches Mars, which is modeled by the circle, from the lower 

right. The satellite’s thrust vector is fixed pointing left to right as indicated by the arrows. It is clear that for 

large portions of the trajectory the thrust vector is not tangential to the flight path, and so the approach is 

inefficient.  

1×107 2×107 3×107

-2.5 ×107

-2×107

-1.5 ×107

-1×107

-5×106

 
Figure 6: Low thrust trajectory 

Figure 6 is to illustrate a point only. In reality, for an orbit insertion with this low of thrust, specialized 

guidance algorithms would be used. Table 1 shows the pertinent variables for the orbital calculation. The 

non-shaded variables are input, and the shaded variables are calculated. The independent variables in bold 

are changed for each design iteration, while the others are fixed. The bold output variables are used in other 

calculations or as a final value. 

Table 1: Variables for the orbital calculation 

Time and Propellant   

isp 312.5688139 seconds 

m 4.28E+04 km^3/s^2 

Dry mass 1.08E+03 kg 

Propellant mass flow rate 0.261211472 kg/s 

orbit radius 4.00E+06 meters 

Propellant Mass 8.00E+02 kg 

g 9.8 m/s^2 

Time 3062.652623 seconds 

vTrajectory 0 km/s 

vOrbit 3272.155253 km/s 

best Del 0 Radians 
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2.2 Tanks 

The tank design rules are derived from (Brown 1996). The design rules are for tanks machined from 

titanium. Each tank is designed to minimize its weight, given a fixed volume of propellant and an internal 

pressure. The tank walls are designed to withstand the required internal pressure, but are constrained to a 

minimum thickness for machining considerations. The natural shape for minimum weight is a sphere, but 

the maximum diameter is constrained due to packaging considerations. Above a certain volume the tank 

will assume a barrel shape with spherical end caps, as shown in Figure 7. 

Barrel length

diameter

Weld reinforcements

Penetration

 
Figure 7: Tank design 

 

The design variables for a tank are shown in Table 2. The shaded variables in the table are calculated, while 

the non-shaded variables are input. Most of the variables are fixed in value. Variables shown in bold are of 

interest, as they couple with other subsystems or are important to the system properties. The independent 

bold variables are varied, while the dependent bold variables are used in other calculations. 
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Table 2: Design variables for tank 

Tank   

max pressure 700 psi 

allowable stress 100000 psi 

Wall density 4428 kg/m3 

machine tolerance 0.0001 m 

num penetrations 1 # 

tank volume 0.696 m^3 

max int radius 0.55 m 

min Thickness 0.000254 m 

weld  width 0.1016 m 

penetration radius 0.0254 m 

internal radius 0.549760513 m 

sphere thickness 0.001924162 m 

barrel thickness 0.003848324 m 

tank length 1.103369351 m 

tank mass 32.74763302 kg 

external radius 0.565153808 m 

tank inertia 6.543063313 kg-m^2 

cost 1293.167642  

 

The change in topology from sphere to barrel induces discontinuities in the derivative of the relation 

between tank volume and tank weight (see Figure 8). The first discontinuity marks the beginning of the 

transition from sphere to barrel shape. The second slope discontinuity marks the point at which the two 

weld reinforcement sections no longer overlap, as the barrel section grows in length. The tank is 

manufactured first as two halves of a sphere and (possibly) a barrel section, and then the sections are 

welded together to form the tank. A spherical tank requires one weld, while a barrel shape requires two. 

The welds require reinforcement, doubling the shell thickness for two inches each side of the weld.  
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Figure 8: Tank volume versus mass 

 

The relationship of cost for the tank also reflects the discontinuity in the first derivative of tank mass with 

respect to volume (Figure 9). 
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Figure 9: Tank cost-volume relationship 

2.3 Engine 

The main engine is considered to be a standard bi-propellant design with combustion chamber and bell-

shaped nozzle (see Figure 10). 
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Figure 10: Main engine 

The main engine design rules are derived from (Brown 1996; Sutton and Biblarz 2001). In the design rules, 

the weight of the engine is a direct function of only the thrust of the engine, and is slightly less than linear 

as shown in Figure 11. 
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Figure 11: Engine mass per thrust 

 

The relationship between thrust and cost is approximately quadratic as shown in Figure 12. 
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Figure 12: Engine cost-thrust relationship 
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The design variables for the engine calculation are shown below in Table 3. The non-shaded bold variables 

vary between design cases, while the other non-shaded ones are fixed. The shaded design variables are 

calculated, and the ones in bold are used in other calculations. 

 

Table 3: Engine design variables 

Main Engine   

thrust 2.00E+02 Newton 

chamber pressure 300 psi 

area ratio 90 exit/throat 

cone angle 15 degrees 

percent bell 0.9 fraction 

chamber throat ratio 2.6  

fuel choice N2O4/MMH  

ratio of specific heats 1.25  

specific gas constant 386.3522305 J/kg-K 

combustion temp 3413.888889 Kelvin 

mixture ratio 1.5  

engine mass 3.484140777 kg 

throat diameter 0.008163282 meter 

throat area 5.23383E-05 sq. meter 

exit area 0.004710446 sq meter 

chamber diameter 0.021224534 meter 

chamber length 0.112721893 meter 

nozzle length 0.116351111 meter 

exit diameter 0.077443697 meter 

engine length 0.233154646 meter 

theoretical impulse 335.2199269 seconds 

real impulse 312.5688139 seconds 

exit pressure 0.178584432 psi 

press ratio 1679.877673  

exhaust velocity 3193.888979 m/s 

lambda 0.982962913  

propellant flow rate 0.065302868 kg/s 

cost 743.7066136  
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2.4 Problem Setup 

Graphically plotting the dependencies between calculations results in Figure 13. The mass budget and cost 

analysis blocks merely sum their inputs to give mass and cost totals. The ∆V analysis solves the nonlinear 

differential equations numerically in order to determine the ∆V available to the mission. 
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Figure 13: Calculation dependencies 

Of the input and output parameters, payload mass, orbit radius, cost, total mass, and ∆V can all be 

considered performance parameters that a user would express a preference against. Assuming that the probe 

is used for remote sensing, a larger payload mass implies more sensors of greater accuracy, while a lower 

orbit implies better resolution. Cost and total mass are to be minimized, while ∆V available would be 

maximized. Propellant mass and thrust are physical design variables, which only affect the preferences 

through the calculations of mass, cost, and ∆V. So the design space consists of seven dimensions, with five 

of the seven dimensions candidates for selection in determining the Pareto frontier. As will be shown in 

Chapter 8, the number of Pareto points for any particular choice of dimensions and application of 

constraints will far exceed that for a random set of data. 

2.5 Summary 

The satellite model presents a typical trade space of interest to a system designer, with multiple competing 

objectives. The model can be exercised using Monte Carlo simulation to generate tens of thousands of 

points over the trade space so that a decision maker can a postieri set constraints, requirements, and 

preferences, and gain understanding of the tradeoffs between them. 
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CHAPTER 3 
 

Mathematical Properties of Data Sets 

 

This chapter introduces the basic terminology to be used in the remainder of the thesis, develops the Lattice 

Latin Hypercube transformation, explores some of the implications of having the data in LLH form, and 

develops an analytical estimate of the number of Pareto points in uncorrelated data. The development of the 

LLH form and its properties and the method for analytically estimating the expected number of Pareto 

points are new contributions to the literature. 

3.1 Definition of Terms 

The primary data structure used in this work is a two-dimensional table consisting of rows and columns. A 

table is indicated in capital bold, V . Each row in the table equates to a single record, indicated in lower 

case bold, ∈v V . A record consists of a number of elements corresponding to the columns of the table, and 

indicated in lower case v ∈ v . The expression iv  indicates the ith element of v , and ijv  indicates the jth 

element in the ith record in V . 

 

Each column in the table constitutes a totally ordered set, with the ordering indicated by the operator ≤ . 

This implies the following four conditions: 

1. Reflexivity: v v≤ for all v in a column of V  

2. Weak antisymmetry: v w≤ and w v≤ implies v w=  

3. Transitivity: v w≤ and w x≤ implies v x≤  

4. Comparability: for any ,v w in a column of V , either v w≤ or w v≤  

A more restrictive condition adopted for this work is that within a column, each element has a unique 

value, i.e., there are no duplicate values in columns. So the fourth condition is changed to indicate either the 

condition v w≤ or w v≤ holds, but not both. The rationale for this restriction is given next. 

 

Consider the design instances for a spacecraft listed in Table 4. Note that the values in each column are 

unique. 
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Table 4: Design instances 

Spacecraft      

∆V Duration Mass Diameter Length Cost 

25,000 13000 2000 13.2 230 1,000,000 

22,400 12700 2543 13.1 229 1,200,000 

28,250 14075 2100 14.7 215 950,000 

 

The table can also be considered to represent a collection of points in a multi-dimensional space. For 

example, if the table has N rows and d columns, then it can be considered to represent N points that are 

located in a d-dimensional space (e.g., Table 4 shows three designs in a six dimensional space). In this 

view, a column may also be referred to as a coordinate or a coordinate axis. Either view, as a table or as a 

multi-dimensional space, has its unique advantages in terms of understanding the concepts of 

nondominance and the analysis of the Pareto algorithms, and both views are used at different times where 

advantageous. 

3.2 Transformation to Lattice Latin Hypercube Form 

Given a table constituted of N records { }1 2, , , N=V v v v" where each { }1, dv v=v " has d elements, one 

can define a transformationT that operates on the set V such that it generates a new table ( )T=Z V which 

preserves the total ordering among the elements of each column as follows. For each element iv  in v , set 

the value for the corresponding element iz  in z to the position of iv in the order statistic for the ith column 

where the most preferred values come first in the new columns of Z . In short, replace each element with 

where its position would be if the column were to be transformed into a sorted list. For Table 4, if 

transformed by T it would appear as shown in Table 5. 

Table 5: Transformed design instances 

Spacecraft      

∆V Duration Mass Diameter Length Cost 

2 2 1 2 3 2 

1 1 3 1 2 3 

3 3 2 3 1 1 

 

Since the values in each column of Table 4 are by definition unique, V can be unambiguously transformed 

into Z . Each column in Z consists of a permutation of the list of numbers{ }1,2, , N" , and so the 

collection of points in Z can be considered to be N points in a d-dimensional grid, where each possible 
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hyperplane in the grid has exactly one point located in it. It is this property that gives rise to the term lattice 

latin hypercube. At times, the nomenclature NL is used to indicate a lattice with N points. 

 

3.3 Definition of Pareto Ordering and Nondominance 

Given two records , ∈v w V where V has N records each with d elements, the record v is said to dominate 

w if for every [1, ]i d∈ , i iv w≤ , with a strict inequality for at least one attribute. If no other record 

in V dominates w it is considered to be nondominated. Another method of identifying w as nondominated 

is to refer to it as a Pareto point. 

 

The transformation T  preserves the Pareto ordering by definition. Figure 14 shows an example of the 

conversion from a continuously sampled space on the left to the lattice on the right. The assumption is that 

lower values of each coordinate axis are preferred. 
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Figure 14: Conversion to lattice 

Through the remainder of this thesis, an assumption is that the data has been transformed into this LLH 

form. The advantages for doing so are as follows: 

1. All further manipulations are with integer variables vice floating point numbers, speeding up 

algorithms and minimizing memory use 

2. Sorting algorithms against the data or subsets of the data can be implemented in linear time 

(Cormen et al. 1994) 

3. The LLH form allows one to analyze the data prior to determining the Pareto points, to best 

choose an algorithm to use 

The key disadvantage for manipulating the data is that, in the event that two points share the same value in 

one of their dimensions, the transformation will arbitrarily place an order on them. This can be handled by 

proper bookkeeping in the algorithms to identify the Pareto frontier, via methods sketched out in Section 

9.3.2. 
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3.4 Properties of LLH Form for 2D Case When All Points are Pareto 

For the 2D case with data converted to LLH form, an interesting property arises that if all points in the data 

set are Pareto, then they are all located on the diagonal only. To prove this, assume there are N points in 

the lattice, with each row and each column containing only one point. Define an operator S such that for a 

record z , the operation 1 2( ) , dS z z z= + + +z " , i.e., the operator sums the elements of z . The set of points 

that satisfy ( ) 1S N= +z defines the points on the diagonal. Figure 15 shows a lattice Z with 8N = , and it 

shows three sets, A , B and C . Let | |A be the number of points in the set A , and similar for B and C . 

In Figure 15, the preferred points are in the lower left corner. Therefore, to prove that all points Pareto 

implies all points on the diagonal, we need to show that if a point z is below the diagonal, then there must 

be at least one point in the set C , i.e., z dominates at least one other point. 
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Figure 15: Lattice segmented into three disjoint sets A, B, and C 

The point z satisfies the relation ( ) 1S N< +z since z is below the diagonal. Not including z leaves 1N −  

points remaining in Z . In order for z to not dominate another point, the remaining points must reside in the 

sets A and B . The number of points in the set A B A B∪ = ∪ has the relation 

 
A B A B AB

A B

∪ = + −

≤ +
. 

Since every column has one and only one point, similar for every row, then from Figure 15 it can be seen 

that 1| | 1A z= − and 2| | 1B z= − , and  

 
1 2

1 2

( 1) ( 1)
( ) 2

1

A B z z
z z

N

∪ = − + −

= + −
< −

. 
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Therefore the set C must have at least one point, and z dominates at least one point. A similar argument 

shows that for any point above the diagonal, the point must be dominated. 

 

The implication of this result is that a potential algorithm for identifying Pareto points is to first convert the 

data to LLH form and then drop all points above the diagonal, since they are dominated by definition, and 

repeat until no further points are below the diagonal. 

3.5 Diagonal Property at Higher Dimensions 

Unfortunately, the 2D diagonalizing algorithm does not work for higher dimensions, since it is possible to 

have dominated points above the diagonal plane defined by (for the 3D case) ( ) 2S N= +z . For a d-

dimensional space the diagonal for which all points below it dominate at least one other point is defined by 

the set of points z where ( ) ( 1)S N d= + −z . The expression 1d − in the equation comes from the fact that 

each axis is numbered 1 to N. That this relation is true can be shown as follows, where iA is a set of points 

such that their ith coordinate is less than iz : 

 

11

1
1

( )
( 1)
1.

d d

i i
ii

d

i
i

A A

z

S d
N d d
N

==

=

≤

= −

= −
< + − −
= −

∑

∑
z

∪

  

The upper bounding diagonal plane to ensure a point above it is dominated is, however, not the same as the 

lower bounding diagonal plane. The upper bounding diagonal is determined by the relation 

 11

( )

d d

i i
ii

A N z

dN S
==

≤ −

= −

∑
z

∪ . . 

Setting the right side equal to ( 1)N d+ − and solving gives 

 ( ) ( 1) ( 1)S d N d= − + −z . 

So only in the case of 2d = are the lower diagonal and upper diagonal hyperplanes coincident. For higher 

dimensions, there is a gap between them, as shown in the 3D case in Figure 16. 
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Figure 16: Bounding hyperplanes 

This gap can contain points that are dominant and points that are nondominant. It is easy to show that the 

probability that points are below the hyperplane is approximately proportional to the content contained in 

the simplex determined by the hyperplane (equal to the hypercube’s content multiplied by1/ !d ). So for a 

3D case the volume under the plane is approximately 1/ 6 of the total volume of the cube. An algorithm 

that repeatedly removes points below the diagonal will only work for the 2D case. 

3.6 Expected Number of Pareto Points in Random Lattices 

This section explores the properties of tables that have the values of the columns distributed randomly, with 

no correlation between the columns. Expressions for the expected number of Pareto points are calculated 

for 2D first. The 2D result is then used as the basis for calculating the expected number of Pareto points in 

higher dimension data sets. 

3.6.1 Random 2D Lattice 

The method for determining the expected number of Pareto points for a 2D data set is based upon a certain 

method of construction for creating an N point lattice. Assume that an N point lattice has been created and 

is augmented to create an 1N + point lattice as in Figure 17. For this section, assume that the most preferred 

point is in the top right corner. This new point is added from the bottom, with a column inserted in one of 

1N + possible locations, as in Figure 17. The figure shows on the left a 2D lattice with 5N = , the occupied 

positions as gray circles and the Pareto points circled in bold. The 5 point lattice is extended to a 6 point 

lattice by adding a point to the bottom, inserting its column in one of 6 possible locations, with equal 

probability given to the 6 possible locations. On the right is the 6 point lattice created by inserting the new 

point, shown in green. In this case, the new point is dominated. 
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Figure 17: Construction of lattice 

Since every column in the N lattice has an element in it, the only position for the new point such that it will 

be a Pareto point is the rightmost position, and therefore the probability that it is nondominated is1/( 1)N + , 

and the expected number of nondominated points in the ( 1)N th+ row is 1/( 1)N + . Summing up over all of 

the rows gives the expression for expected number of Pareto points as 

 
1

1( )
n

k
e n

n=

= ∑  (2) 

which is the definition of the harmonic number NH (Conway and Guy 1996). Recall that the harmonic 

number asymptotically approaches for large N the relation 

 1ln
2nH n

n
γ+ +∼   

where 0.57721...γ =  is the Euler-Mascheroni constant. So in general, the expected number of Pareto 

points in a randomly selected N lattice is proportional to ln N . 

 

Figure 18 shows the result of experimental determination of the expected number of Pareto points versus 

the analytical calculation via Eq. (2). The experiment considered data sets with size ranging from 1 to 100. 

At each size, 60 experiments were conducted. Each experiment consisted of first generating a random data 

set of the appropriate size, then calculating the number of Pareto points in the data set. The mean number of 

Pareto points per size is plotted. The figure shows agreement between the analytical and experimental. 
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Figure 18: Experimental and Analytical results for expected number of Pareto points in 2D problem 

The lattice in Figure 19 can be constructed where rows are added from below, but any alternate method that 

can successfully generate all of the possible permutations of lattices with equal probability to any possible 

permutation must also yield the same result. Consider a method where points are added at random positions 

in both row and column. This method must result in the same expected number of Pareto points, which 

is NH . A question to ask is what is the probability, when inserting a new point with randomly chosen row 

and column into a random lattice, that it is a Pareto point? The answer to this question is a key to 

calculating the expected number of Pareto points in 3D and higher dimension lattices. 

 

The key point to note in answering the question is that while it is possible to have two different N-1 point 

lattices, and insert a point into the same row and column of both, and end up with two new lattices that are 

identical, the position of the most recently inserted point will be different in each case. Because of this 

property, the probability that any one Pareto point in an N point lattice was the most recently inserted point 

is the same for all points, and so the probability that the most recently inserted point is Pareto is /NH N . 
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Figure 19: Pareto set 
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3.6.2 Expected Number of Pareto Points at Higher Dimensions 

Computing the expected number of Pareto points at higher dimensions builds on the previous section’s 

results. In the 2D case, a bottom-up construction for building up NL was used that ensured all possible 

NL are equally likely, and that was easy to use in computing the expected number of Pareto points. This 

section shows how to compute the analytical estimate of the number of Pareto points for the 3D case, and 

how to extrapolate to higher dimensions. 

 

In the 3D case, again new points are inserted from the bottom. But whereas in the 2D case insertion from 

the bottom meant picking one point from a 1D line of N possible points, in the 3D case it means picking 

one point from a 2D plane of 2N possible insertion points, as shown in Figure 20. 

 

 
Figure 20: Points inserted from below in 3D lattice 

This new point, placed at the bottom plane of the current cube of points, is a Pareto point in the cube if and 

only if it is a Pareto point in the 2D problem formed by projecting all points onto a plane parallel to the 

bottom plane. If it is Pareto in the N lattice, it remains Pareto in 1N + and higher lattices, as points that are 

inserted below it can not dominate it. As this problem is identical to the one in the previous section, the 

probability that the added point is Pareto is /NH N . Building up to a 3D NL , the expected number of Pareto 

points is then 

 1

1 1

[pareto points in 3D latttice]

1 1

N
i

i

N i

i j

H
E

i

i j

=

= =

=

=

∑

∑ ∑
.  

This can be solved in closed-form (Knuth 1997) to be equal to 

 ( )2 (2)

1 1

1 1 1
2

N i

N N
i j

H H
i j= =

= +∑ ∑  

where the generalized term ( )k
NH is defined as 
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 ( )

1

1N
k

N k
i

H
i=

= ∑ . 

While the sequence NH grows without bound for larger N all of the sequences ( )k
NH for 1k > do converge. 

Note that (1)
N NH H= . For example,  

 
2

(2)lim
6NN

H π
→∞

= . 

Again, experiment corroborates the analytical approach as shown in Figure 21. For the 3D experiment, size 

was varied from 1 to 100, with 60 random lattices per size, and the mean value of the number of Pareto 

points per size is shown. The solid line is the analytical estimate. 
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Figure 21: Expected number of Pareto points for 3D problem, with analytical estimate as the solid curve, 

and experimental values as the points 

 

The expected number of Pareto points for a 4D problem is, by generalizing the 3D case, equal to 

 1 1

1 1 1

[Pareto points in 4D lattice]

1

N i
j

i j

jN i

i j k

H
E

j

ijk

= =

= = =

=

=

∑∑

∑∑∑
  

and the expected number of Pareto points in d dimensions is 
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1 2 11 1 1 1 2 1

1[Pareto points in lattice of dimension ]
d

d

iiN

i i i d

E d
i i i

−

−= = = −

 
=  

 
∑∑ ∑"

"
. 

All of these expressions can be converted into combinations of generalized harmonic numbers (Knuth 

1992). Some of the simplifications are listed in Table 6. 
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Table 6: Relationship of dimension of random lattice to expected number of Pareto points in terms of 
generalized harmonic numbers 

Dimensions Expression for the expected number of Pareto points 

2 NH  

3 ( )2 (2)1
2! N NH H+  

4 ( )3 (2)1 3 3
3! N N NH H H+ +  

5 ( )4 2 (2) (2)2 2 (3) (4)1 6 3 8 6
4! N N N N N N NH H H H H H H+ + + +  

6 ( )5 3 (2) (2)2 (2) (3) 2 (3) (4) (5)1 10 15 20 20 30 24
5! N N N N N N N N N N N NH H H H H H H H H H H H+ + + + + +  

7 6 4 (2) 3 (3) 2 (4) (5)

(2) (3) (3) (3) (2) (2) (2) (2) (4)

(6)

15 40 90 144 ...
1 120 40 15 90 ...
6!

120

N N N N N N N N N

N N N N N N N N N N

N

H H H H H H H H H

H H H H H H H H H H

H

 + + + + +
 

+ + + + + 
 + 

 

 

While the expressions in Table 6 can be written in terms of combinations of various ( )k
NH , there is no 

simple closed-form solution for the expression that directly emerges. Examining the 5D case and 

generalizing shows why this is true. First, rewrite the terms ( )kk
N NH H= as (1) (1) (1) (1)

N N N NH H H H"  where 

(1)
NH is multiplied together k times. Now rewrite terms such as (1) (1) (2) (3)

N N N NH H H H as (1,1,2,3)
NH  for 

simplification. Using the modified notation, the 5D case can be written as 

 ( )(1,1,1,1,1,1) (1,1,1,2) (1,2,2) (2,3) (1,1,3) (1,4) (5)1 10 15 20 20 30 24
120 N N N N N N NH H H H H H H+ + + + + +  (3) 

and similar for the other dimensions. Observation reveals that the terms in the superscript are all of the 

possible summations of integers less than or equal to 5 such that their sum is 5. This applies for higher 

dimensions too. The number of possible summations such that they equal a number N is the well-known 

partition function, ( )P N , and this function itself does not have a closed-form solution even in terms of the 

number of combinations N , much less the particulars of the combinations (Conway and Guy 1996). 

However, the number of Pareto points does scale in proportion to 1lnd N− in the limit for random data of 

dimension d , as can be seen by replacing the NH terms with their logarithm approximation. 

Figure 22 shows results of experimental and analytical calculations for the expected number of Pareto 

points for lattices of size ranging from 1 to 100, and dimension ranging from 2 to 9. The solid lines are the 
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analytical calculations, while the points represent experimental results. The experiments were conducted as 

per the 2D and 3D case described previously. 
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Figure 22: Analytical and experimental results for expected number of Pareto points for lattices ranging in 
size from 1 to 100, and dimension from 2 to 9. 

 

3.7 Expected Number of Points Dominated by “Best” Pareto Point in the 

2D Problem 

Given a random data set in 2D, each point will dominate zero or more other points. Label the point in the 

data set that dominates the most other points as 'p , and the number of points it dominates as *D . Then a 

useful result for computing expected run times of the SC algorithm, and in setting the break point in the 

hybrid algorithm, is to determine the expected value of *D .  

 

To compute this, first note the following form of 2D correlated lattice, where the available cells in the 

lattice are truncated in the preferred direction (up and right in Figure 23). The critical dimensions of the 

lattice are the size of the lattice N and the length of the top row M . The positions available to be occupied 

are shown in black, while the positions that will remain empty are shown grayed out for reference. The 

positions along the diagonal are shown in bold. 
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Figure 23: Correlated lattice 

The number of permutations possible in the lattice is 

 !N MM M−  (4) 

That this is true can be seen by noting that options for placement of a point in the top row are M , and 

options for the next row down are also M , and so on down through the first N M− rows. The final 

M rows have !M  placements, resulting in Eq. (4). The probability that a lattice is randomly generated that 

meets this restricted form is, assuming all permutations are equally likely 

 !
!

N MM M
N

−

. (5) 

This probability includes cases where a lattice has no points occupying the bold positions along the 

diagonal in Figure 23. Narrowing the probability to cases where the lattice meets the constraints of Figure 

23 and has at least one bold position occupied results in 

 
1! ( 1) ( 1)!

!

N M N MM M M M
N

− − +− − − . (6) 

As shown in Sections 3.4 and 3.5, for a 2D problem of size N , any point with coordinates X and Y  will 

leave a maximum of 2 ( )N X Y− + points nondominated, and so dominate a minimum of 

(2 ( )) 1N N X Y− − + − points, which simplifies to ( ) 1X Y N+ − − . The number *D  is then expressed as 

 ( )* max 1i ii
D X Y N= + − −  (7) 
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To say that a particular lattice has a value of *D is the same as saying the lattice can be cast in the form of 

Figure 23, i.e., a truncated lattice with value * 1M D= + and that at least one position along the upper cut 

diagonal (bold points) is occupied. The probability that this occurs, for a random lattice, is 

 
1

* ! ( 1) ( 1)![ 1]
!

N M N MM M M MP D M
N

− − +− − −
= − =  (8) 

The expected value for the *D is the expression 

 
1

*

1

! ( 1) ( 1)![ ] ( 1)
!

N M N MN

M

M M M ME D M
N

− − +

=

− − −
= −∑

. 
(9) 

This can be manipulated algebraically as follows. Define Eq. (5) as ( )f M  so that 

 [ ]*

1

1[ ] ( 1) ( ) ( 1)
!

N

M

E D M f M f M
N =

= − − −∑ . (10) 

This can be manipulated and simplified using the relations ( ) 1f N = and (0) 0f = to give 

 *

1

![ ]
!

N MN

M

M ME D N
N

−

=

= − ∑ . (11) 

A closed-form approximation to the sum can be developed using the following relation (Knuth 1997): 

 ( )2
3

0

( ) ( )! 2 11 4 71
! 2 3 24 2 135 1152 2

kn

k

n k n k n O n
n n n n

π π π −

=

− −
= − + + − +∑ ,  

which leads to the expression 

 *
3

2 11 4 71[ ]
2 3 24 2 135 1152 2
NE D N

N N N
π π π

− − + + −�
.
 (12) 

Plotting the ratio of *[ ]E D to N in Figure 24 shows that, for randomly distributed 2D data, the best point 

will dominate a proportion of the other points, with that proportion rapidly approaching 1. The solid line is 

the approximation, and the points are exact solutions to the summation, to show their correlation. 
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Figure 24: Ratio of problem size to number of points dominated by the "best" Pareto point for a 2D lattice 

What this implies is that, for a 2D table randomized with no correlation between columns, if one first 

identifies the point 'p and uses it to cull the remaining points to remove those that are dominated by 'p , one 

can expect to remove most of the points on the first pass. As this is what the SC algorithm does, the SC 

algorithm proves to be very efficient for random 2D lattices, as shown later. 

 

This general relation diminishes for higher dimensions, although for a fixed dimension the ratio does 

continue to increase with problem size. Figure 25 shows the results of empirical computer experiments 

used to determine the relationship between lattice size, dimension, and expected minimum number of 

points dominated for lattices of dimension three through six. The 2D curve from Figure 24 is also shown 

for reference. 
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Figure 25: Varying ratios of points dominated 

Figure 26 is a plot showing how, for 100,000 points, the ratio of minimum expected dominated points to 

total table size decreases with increasing dimension. So at high dimension with random data sets, the SC 

algorithm’s performance will suffer. 
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Figure 26: Varying ratio of points dominated for a problem size of 100,000 and varying dimension 

 

3.8 Summary 

This chapter introduced the basic mathematical nomenclature that is used throughout the remainder of the 

thesis and also introduced the transformation of the data to LLH form. The transformation preserves the 

Pareto partial ordering between points, while reducing required storage space and sort time. In the 

following chapters the LLH form is used in optimizing the design of the algorithms and in developing 

methods to analyze the data in real time to improve algorithm performance. 

 

The chapter also developed a new method for developing an analytical estimate of the number of Pareto 

points for random lattices of arbitrary dimension. The analytical estimate agrees with experimental results, 

showing that the expected number of Pareto points scales by 1lnd N− .  

 

For random lattices, one can ask what the expected value for the maximum number of points dominated by 

any one point in the lattice is. Analytical results for the 2D case and empirical results for the higher 

dimensional cases show that, as lattice size increases, the ratio of total size to maximum number of points 

dominated by any one other point is monotonically increasing. However, the growth in this ratio becomes 

very slow as the dimension increases. 
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CHAPTER 4 
 

Generating Test Data 

 

 

This chapter introduces methods for creating test data. The literature on algorithms for identifying the 

Pareto frontier has to date focused only on random data where the distribution of data in each dimension is 

independent (Bentley et al. 1990). This independence between dimensions creates data sets that are not 

realistic for actual design problem sets. Using such random data can lead one to choose an algorithm that 

performs well against the random independent data but poorly otherwise. 

 

There are in general four types of test data that are used in the testing algorithms for determining the Pareto 

points: best case, worst case, random uncorrelated case, and random correlated case. The first two, best 

case and worst case, are dependent on the algorithm to be tested and are covered in the chapters related to 

that particular algorithm. The random uncorrelated case is straight forward to generate, therefore, this 

chapter focuses on the random correlated case. All three methods for generating data are new to the 

literature. 

 

4.1 Partitioned Lattice Method 

The uncorrelated random lattice has a fixed relationship between the number of points N in the lattice and 

the expected number of Pareto points. One would like to generate lattices that are random, yet have a 

selectable number of expected Pareto points. This section develops one approach for generating lattices 

with a predetermined expected number of Pareto points. 

 

The proposed approach uses an analogy to the use of partitioned matrices in linear algebra. The procedure 

is to first create a set of separate random uncorrelated sublattices such that the sum of their sizes adds up to 

N , then to form a partitioned lattice of size N from the sublattices, such that no point in one sublattice 

dominates a point in another. A 2D example is shown in Figure 27. For these lattices, the preferred point is 

in the bottom left, with Pareto points marked in red.  
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Figure 27: A 2D lattice of size 20 constructed from two lattices of size 10 

Note that no point in the lower right block dominates a point in the upper left and vice versa. If we define 

the notation ( )dE N to indicate the expected number of Pareto points in a random lattice of dimension d and 

size N , then the expected number of Pareto points for the lattice in Figure 27 with 20N = is 22 ( / 2)E N . 

Since in general, for arbitrary dimension d and arbitrary nonzero lattice sizes n and m the relationship  

 ( ) ( ) ( )d d dE n E m E n m+ > +  (13) 

strictly holds, this is greater than the value one would get without partitioning, i.e., 2 22 ( / 2) ( )E N E N> . 

Equation (13) suggests that, for a desired value of TargetE , one can arbitrarily choose a set of sublattice sizes 

1 2, ,..., kn n n such that they sum to N and Target ( )d iE E n∑� . 

 

The number of possible candidate choices for the set of sublattices 
1 2

{ , ,..., }
kn n nL L L is the partition function 

( )P N . An approach to determining the set of lattices would be to start at one end of the set of possible 

partitions and search through the set until the best choice is found. However, searching through the set of 

all possible partitions would be difficult as the function ( )P N grows exponential with N ; also, the function 

dE is not monotonic in the lexicographic ordering of the set of partitions, which is how algorithms to 

generate the set typically present them.  

 

Figure 28 shows, for a lattice with 20N = , how the list of possible partitions maps to the expected number 

of Pareto points. The black points correspond to the list being sorted in lexicographic order, which is 

clearly not monotonic. The red points, forming a smooth line, are for the set of partitions sorted by the 

expected number of Pareto points they generate. The other point to take from the figure is that there are 

over 600 candidate partitions for a lattice of size 20. 
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Figure 28: Expected number of Pareto points for a partitioning of a lattice, where the candidate partitions 

are sorted in lexicographic order (black) and sorted by 2 ( )E i (red) 

 

In order to deal with the issues of lexicographic ordering and the exponential growth of the number of 

possible partitions with problem size, consider as candidate partitions only sets of the form 

{ , ,... , 1,... 1, }m m m m m r− − , where m is some integer less than or equal to N , 1m − is the integer one less 

than m and for which there may be zero or more occurrences, and r is a remainder such that 1r m< − and 

so that the elements of the set sum to N . A couple examples of such sets follow for 15N = . 

 

{6,6,3}
{4, 4,3,3,1}
{4,3,3,3,2}
{2, 2,2,2, 2,1,1,1,1,1}

 

The total number of candidate sets meeting this criteria is 

 
1 1

1/

ln

N N

i i

N

N i N
i

NH
N N

= =

<  

=

∑ ∑

∼
. (14) 

So the number of candidates increases by logN N as opposed to exponential. Figure 29 plots the list of 

candidate sets as sorted in lexicographic order versus their expected number of Pareto points, and shows a 

monotonic relation that smoothly covers the possible values of dE . For the figure, 30N = and d = 2. 

 

Some additional processing can be done to choose the starting point for the algorithm. Numerically solving 

the relationship 

 Target ( / )dE n E N n= ×  (15) 

for n , and then using the value of /N n   to create the starting partition set ensures that the starting point 

will be close to the final partition set chosen. 
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Figure 29: Relation of the restricted subset of candidate partitions to dE  

The algorithm to generate a random correlated lattice (GRCL) for N points in d dimensions developed for 

this research is presented next. 

 

Algorithm GRCL Given a size N , a dimension d and an expected number of Pareto points 

[ ( ), ]dE E N N∈ , generate a random lattice that has an expected number of Pareto points close to but not 

exceeding E . 

GRCL-1 [Form starting candidate partition] Form a partition set numerically solving Equation (15) 

for n , determining /q N n=    , and forming { }0 , ,..., ,I q q q r= where r is a remainder 

less than q . 

GRCL-2 [Generate and test candidate partition sets] Generate and test, in reverse lexicographic 

order, the candidate partitions iI until the relation satisfies ( )d iE I E≤ . The monotonic 

relation of the partitions with respect to ( )dE ⋅ guarantees that, upon stopping, the set 

iI will be the one that most closely meets E without exceeding it. The restriction of E to 

the range [ ( ), ]dE E N N∈ guarantees that the iteration will stop. 

GRCL-3 [Determine the size of the chosen set iI ] Count the number of elements in the set iI in the 

variable k . 

GRCL-4 [Create base lattice] Create a base lattice of size k and dimension d such that all points in 

the lattice are nondominated. This can be done by (using the 3D case for an example) 

generating a set of points such that each lies on the plane X+Y+Z=0. The values for X and 

Y are randomly chosen, and the relation Z=-(X+Y) is used to set Z. Finally, the points are 

normalized to make a lattice. 

GRCL-5 [Create sublattices] For ii I∈ , create a lattice of size i and dimension d . The sublattice 

will be random and uncorrelated, and there will be k of the sublattices. 

GRCL-6 [Create final lattice] Replace each of the points in the base lattice with a sublattice chosen 

without replacement at random from the set of sublattices. 
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Figure 30 shows, for 20N = and 2d = , a series of random correlated lattices with increasing expected 

number of Pareto points. 

 

9 10 11 12

5 6 7 8

 
Figure 30: Lattices with increasing number of expected Pareto points (listed above each plot) 

 

4.2 Lattice Hyperplanes Method 

The GRCL algorithm has the potential to generate data that can favor a divide and conquer approach due to 

decoupling between portions of the point space. To counter this property, a different method based on 

populating points on separated hyperplanes is also developed. While in practice this method is more 

cumbersome, the development of the method illuminates a number of important properties that define 

Pareto points. For clarity, this approach is developed for a 3D space and then extended to problems of 

arbitrary dimension.  

 

Start with two planes, parallel to each other, with their normals equal to [ ]1 0 0 , and separated by a 

distance .5q = , as shown in Figure 31. 
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Figure 31: Parallel planes 

Randomly place points on both planes, using a uniform distribution in the Y and Z directions as shown in 

Figure 32. 
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Figure 32: Planes with random points 

Rotate both planes about the origin, so that their normal vectors are now [ ]1 1 1 , as per Figure 33. 
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Figure 33: Rotated 2D point clouds 

Letting dominance be defined by higher values of X, Y, and Z, then each point on the plane closer to the 

origin defines a space on the outer plane such that if that space is occupied, then the point is dominated. 

Figure 34 shows the space, in red, that must be unoccupied for the point on the inner plane to be 

nondominated. 
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Figure 34: Dominance between planes 

If the area marked in red is a and the area of the outer plane is A , and N points are randomly distributed 

on the outer plane, then the probability that any one point in the outer plane does not lie in the region 

colored red is ( ) /A a A− . Therefore, the probability that all points do not lie in the red region, and the point 

on the inner plane is nondominated, is 
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 [point is nondominated]
NA aP

A
− =  

 
. (16) 

The area a can be determined by the separation q between the planes through basic geometry. Therefore, by 

controlling the number of planes, the separation between planes, and the number of points distributed 

randomly on the planes, one can generated random data with a predetermined expected number of Pareto 

points. 

 

In general, the approach is, for a d-dimensional problem, to first create a series of (d-1) dimensional 

hyperplanes perpendicular to the first axis with a fixed separation between them that are randomly 

populated with points, then rotate all of them about the origin so that they are now perpendicular to the 

[ ]1 1 T" vector, and then normalize the data into LLH form. The formal description for problems of 

arbitrary dimension follows. 

 

The geometric figure shown in Figure 34, and reproduced in Figure 35, is a trirectangular tetrahedron. The 

red face is referred to as the base facet, and the vertex opposite the base facet is the peak vertex. It is 

trirectangular because the three edges touching the base facet intersect at right angles to each other. For this 

case, the lengths of the edges that meet at the peak vertex are all the same length. 

 
Figure 35:Trirectangular tetrahedron 

The d-dimensional generalization of a tetrahedron is a simplex, which is for dimension d the simplest 

geometric form possible. Referring to a simplex in d dimensions as a d-simplex, it will have 1d + facets, 

with each facet being a (d-1)-simplex itself. For example, the tetrahedron above is a simplex in 3D space, it 

has 3+1=4 facets, and each facet is a triangle, which is just a simplex in 2D space. 
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A d-dimensional simplex will be referred to as a d-rectangular simplex if all edges emanating from the peak 

vertex are orthogonal to each other, which is the case here. For this work, the lengths of the edges 

extending from the peak vertex are equal to each other, resulting in a higher dimensional analog to a right 

triangle referred to as a d-right simplex.  

 

The generalized term for the volume (3D) or area (2D) is the content. For a d-right simplex with orthogonal 

edges of length l , the content c  is 
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dxxl
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=

=

∫ ∫ ∫" "
 (17) 

The distance q to the base facet from the peak vertex is related to the length of the edges, l , and the 

dimension d by the derived relation 

 lq
d

= . (18) 

The generalized Pythagorean theorem says that for a d-rectangular simplex, the square of the content of the 

base facet bc  is equal to the sum of the squares of the contents of the other facets. Since the other facets all 

have the same content sc  for this work the following relation holds: 
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b s
d

S

c c

dc

=

=

∑
. 

Since the content of the side facets is, using Eq. (17), equal to 

 
1

1!

dl
d

−

−
. 

 The content of the base facet is 

 
1

1!

dld
d

−

−
. 

Since we will be controlling the separation of the hyperplanes rather than edge lengths, Eqn. (18) can be 

rewritten using Eqn. to give 
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1
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d
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dc q
d

qα

−

−

 
=  − 

=

, 

where dα replaces the expression in the parentheses to simplify the notation. Assuming N points in the 

outer hyperplane, a total content of the outer hyperplane of 1 (hyperplane bounded by edges of length 1), 
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and that the base facet of the simplex generated by the candidate point lies wholly within the outer 

hyperplane, then the probability of a point on the inner hyperplane being dominated is given by 

 ( )11
Nd

d qα −− , 

and if there are M points on the inner hyperplane, then the total expected number of nondominated points 

in the data is 

 1[nondominated points] (1 )d N
dE M q Nα −= − + . 

The calculation can be readily extended to multiple hyperplanes. Assuming that the separation between 

hyperplanes is a constant q , then the probability of a point on the rth hyperplane is nondominated is the 

product of the probabilities that it is not dominated by any of the points on the hyperplanes before it. 

Assuming there are iM points on the ith hyperplane, then the expected number of nondominated points on 

the rth hyperplane is 

 
1

1

1

(1 ( ) ) i

r
Md

r d
i

M r iβ
−

−

=

 
− − 

 
∏ . 

The rotation from a plane perpendicular to the [ ]1 0 ... 0 vector to a plane perpendicular to the 

[ ]1 1 ... 1 vector is accomplished by first creating the matrix 

 

1 0 ... 0
1 1 0 0

'
0

1 0 1

R

 
 
 =
 
 
 

# % #
"

 

then applying the Gram-Schmidt orthogonalization (Golub and Van Loan 1996) to 'R  to get rotation 

matrix R , and then multiplying each point vector by R to rotate it to the desired plane. 

As noted in the introduction to this section, this method proves to be cumbersome, and it is difficult to tune 

the various parameters such as points on each plane, and separation of the planes, to get a desired expected 

number of Pareto points. However, the method does suggest a simpler approach whereby the total number 

of points and the exact number of Pareto points can be specified, and a randomized data set generated to 

meet the requirements. Such a method is described in the next section. 

4.3 Random Dominant Points Method 

The approach to this method is to determine a number of random points that are guaranteed to be 

nondominated, and then create the remainder of the points randomly so that they are guaranteed to be 

dominated. This method has the advantage of generating a lattice with exactly the number of desired Pareto 

points, rather than a data set that has the expected number of Pareto points. 
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Assume the problem is to generate a set of data with N points, of which Q are nondominated, and is of 

dimension d . Again, start with a 1d − dimensional plane perpendicular to the [ ]1 0 ... 0 vector, and 

randomly place Q points on the hyperplane. Rotate these points so that the hyperplane is now perpendicular 

to the [ ]1 1 ... 1 vector using the method described in the previous section. To generate each of the 

remaining N Q− points that are dominated, in turn randomly select a nondominated point z , generate a 

random point 'w such that each of its coordinates is greater than zero, than create the dominated point w by 

letting '= +w z w .  

 

Since the only constraint on the coordinates of 'w is that they be greater than zero, any number of methods 

of generating the random coordinates is available. The one used here is to let each of the coordinates be 

distributed i.i.d. with a half normal distribution (same as the normal distribution except restricted to 

positive values). Varying the parameter of the distribution, σ , it is possible to change the probability that 

w will be dominated by more than point. 

 

Algorithm RDP Given a size N , a dimension d and an expected number of Pareto points [1, ]Q N∈ , 

generate a random lattice that has Q an expected number of Pareto points. 

 

RDP-1 [Form points on hyperplane] Randomly assign Q points to the hyperplane perpendicular 

to the [ ]1 0 ... 0 vector. 

RDP-2 [Rotate the hyperplane] Multiply each of the Q points by the rotation matrix R (generated 

as described above), so the hyperplane has been rotated to be perpendicular to the 

[ ]1 1 ... 1 vector. 

RDP-3 [Randomly pick one of the Q  nondominated points] Pick one of the nondominated points, 

with equal probability between them. Name the point z . 

RDP-4 [Create point 'w ] Create a point 'w such that each of its coordinates is randomly set i.i.d. 

via a half-normal distribution with chosen parameterσ . Varying σ varies the “thickness” 

of the resulting data set. 

RDP-5 [Create dominated point w ] Let '= +w z w . 

RDP-6 [Repeat until done] Repeat steps RDP-3 through RDP-5 until a total of N points have 

been created. 

 

Figure 36 shows how, for a fixed number of Pareto points and total points, the parameter σ affects the 

distribution of the data. The parameter adjusts the “thickness” of the data, which in turn affects for each 
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dominated point the number of Pareto points that dominate it. The top row has the raw data, and the bottom 

row the same data converted to LLH form. 
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Figure 36: 1000 points total, 25 Pareto points, varying sigma for the half normal distribution 

Figure 37 shows 1000 points, 40 Pareto points, and a large range of values for σ . 
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Figure 37: 1000 points, 40 Pareto points, 2D, varying σ 

Figure 38 shows a set of data with varying numbers of Pareto points. One feature to notice is the 

appearance of the line in the data at the Pareto frontier. This artifact does not appear to impact the 

performance of the algorithms, as later chapters show. The top row is the raw data, while the bottom row is 

the same data in LLH form. The appearance of the line at the frontier is heavily dependent on the choice of 

σ .  
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Figure 38: Data with 1000 points, s = 1/10. varying number of Pareto points 

The rationale for using the half-normal distribution is that, with respect to direction, it has the property that 

letting each dimension be distributed half-normal uniformly distributes the points over the positive 

quadrant of the hypersphere. Other distributions do not have this property, instead they cluster the points 

near to the normal vector of the plane. An option in distributing the points is to let the distance from the 

origin for the dominated points be a random variable such as the exponential or any other distribution that 

generates positive deviates, and the direction of the dominated point from its parent point be randomly 

chosen to as to be uniformly distributed on the positive quadrant of the unit hypersphere. To generate the 

points for dimension d, let each of 1x through dx be i.i.d. half-normal with fixed variance. Then let the 

direction cosines be defined as 
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The direction cosines will be uniformly distributed on the positive quadrant of the unit hypersphere. 

 

4.4 Summary 

Three different methods to generate random lattices with predetermined expected numbers of Pareto points 

are presented. Of the three, the RDP algorithm is the fastest in run time, allows the user to exactly specify 

the number of Pareto points, and provides a parameter to let the user adjust the “thickness” of the data. A 

drawback to the method is the appearance of a boundary artifact in the data, which does not appear in the 

GRCL algorithm. The GRCL algorithm avoids this artifact, but is slower to execute and does not guarantee 

an exact number of Pareto points in the data that it generates. It would be possible to mix and combine the 

two methods, but this is not explored here. 
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CHAPTER 5 
 

Introduction to Algorithms to Determine Pareto Set 

 

This chapter serves as an introduction to the basic issues governing a choice of algorithm to determine the 

Pareto frontier from a multi-dimensional data set. It also introduces the Simple Cull (SC) algorithm, a brute 

force algorithm that operates in 2( )O n time, and the L2D algorithm, a linear time algorithm that only 

operates on 2D data. The chapter also introduces the computational framework used for implementing the 

algorithms, and executing the experiments. 

  

The premise of the development of Pareto algorithms in the next three chapters of the thesis is that no 

single algorithm can perform best against all data sets, so a hybrid adaptive algorithm is needed to give the 

best performance. The work of Bentley, in which he develops a recursive divide and conquer algorithm for 

computing the Pareto frontier (Bentley 1980) and also identifies the property that certain data sets may be 

more amenable to treatment by asymptotically less computationally efficient algorithms (Bentley et al. 

1990) will be the starting point for this effort. 

 

A number of algorithms are presented and explored, with the final algorithm, Hybrid Divide & Conquer 

(HDC), being a hybrid of a lightweight but inefficient algorithm SC that is introduced in Section 5.2 , a 

lightweight and efficient algorithm L2D that only operates on 2D data (Section 5.4), and a heavyweight but 

efficient algorithm Divide & Conquer (DC) that operates recursively on higher dimensional data (Chapter 

6). 

 

SC is an algorithm that computes in 2( )O n time, but is not recursive, leading to a low constant multiplier 

for computing the actual run time 2
1SCK n , and that has a run time independent of the dimension of the data. 

L2D is a very fast algorithm that computes on ( log )O n n on 2D data, or if the data is already in LLH form 

the algorithm is ( )O n . Also, the algorithm is not recursive, and runs in the same time against all data sets.  

 

DC is a ‘Divide & Conquer’ algorithm that computes in 1( log )dO n n− if the data requires a comparison sort, 

or 2( log )dO n n− if the data is already in LLH form. The DC algorithm is recursive leading to a large 

constant multiplier for computing its run time 2
1 logd

DC n nκ −× , that includes dimension as a factor in 

computing its run time. This implies that, for small problem sizes of high dimension, the SC algorithm will 

run faster than DC even though it is asymptotically less efficient. A hybrid algorithm that applies a DC 



 

 47

strategy of recursively dividing the problem until the problem reaches some critical size or a dimension of 

2, then switches to either the L2D or the SC algorithm, combines the best of both. 

 

Also, one can best attack certain data sets by using one or more passes of a brute force algorithm such as 

the SC algorithm first, followed by running the remainder of the hybrid algorithm. This is true for data sets 

with relatively small numbers of Pareto points. As it is possible to compute bounds on the number of Pareto 

points up front, one can choose to adapt the algorithm to complement the data. 

5.1 Computational Framework 

The algorithms and experiments developed in this thesis are all implemented in Mathematica, chosen for its 

ease of code development, ease in instrumenting code, and ease in developing graphics to display the 

results. However, the use of Mathematica does distort the comparison of the different algorithms in a 

number of ways as compared to what results would be with a compiled language such a C or FORTRAN. 

 

Mathematica is a mixture of interpreted code and code that is resident to its kernel, with the code in the 

kernel running orders of magnitude faster. Therefore any algorithm that can take advantage of kernel-

resident code has an advantage. One example of kernel-resident code is the algorithm for sorting. 

 

Mathematica also has a heavy overhead for structuring recursive function calls as compared to compiled 

code, thereby penalizing an algorithm that uses recursion. The DC algorithm developed in Chapter 6 

depends on the recursion. 

 

Mathematica does not support ‘pass by reference’ in its function calls, instead only supporting ‘pass by 

value’. This also penalizes recursive algorithms in both execution time and in memory required. 

Furthermore, how the DC algorithm is implemented in Mathematica is strongly affected by the need to pass 

variables by value as opposed to by reference. As the algorithms are compared, it is necessary to keep these 

points in mind, and understand that comparing the algorithms if implemented in a different language would 

mean different relative performance between them. 

5.2 Simple Cull Algorithm 

 

This section presents the Simple Cull (SC) algorithm, explores issues of estimated run time related to its 

operating on LLH data, and presents experimental and analytical estimates of best case, worst case, and 

generalized case run times. While the algorithm is fairly obvious to define and implement, the implications 

of operating on the LLH form and the analytical and experimental model comparisons are unique to this 

thesis. The SC algorithm is as follows. 
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Algorithm SC Given a table Z find the nondominated points 

SC-1 [Sort Z in descending order using a linear weighting scheme] Form a new table U where U is a 

permutation of Z such that for , ( ) ( )i ji j S S< <u u . 

SC-2 [Add top point to collection of Pareto points] Remove the top element of U , (refer to it as 'u ) 

and add it to the collection of Pareto points P . 

SC-3 [Cull the remaining points] Compare 'u to each of the remaining elements in U , deleting those 

which are dominated. 

SC-4 [Any points left?] If U is empty, algorithm is complete and P contains Pareto points from Z . 

SC-5 [Repeat as necessary] Go back to SC-2. 

 

That the algorithm is correct can be seen by the fact that at each execution of Step SC-2, the top element is 

non-dominated. No other point above it in the list dominates it or else it would have been culled from the 

list already. It is not dominated by points below it in the list either, since for a top element 'u the relation 

( ') ( )S S<u u implies that if u is less than 'u in one coordinate, then it must exceed it in at least one other.  

 

SC is analogous to a bubble sort routine (Knuth 1997), and it has a worst case complexity of ( )2nΟ since if 

each element of Z is Pareto, each element must be compared with every other element, for a total number 

of comparisons of ( )2 / 2N N− . The initial sort in step SC-1 requires ( )logn nΟ complexity. If Z  has only 

a few Pareto points, then the algorithm runs very efficiently as the first few passes through the data will 

eliminate most of the points. If only one point is Pareto, the algorithm will complete with one pass. If all 

points are nondominated, the comparisons will occur in the order of ( ) ( )1 2 3 2 1n n− + − + + + +" , i.e., the 

most comparisons occur early in the algorithm. 

 

The choice of a linear weighting ranking function to use in sorting the list may seen arbitrary, as in fact 

there are many candidate ranking functions from which to choose. In general, any weighting function of the 

form p
i iw u∑ would work, as would functions such as [ ]1 2max max , ,...,i i d ii I

X X X
∈

   and 

[ ]1 2max min , ,...,i i d ii I
X X X

∈
   . Some of these are plotted in Figure 39 for the 2D case. 
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Figure 39: Different ranking functions 

However, using the ranking function that is just the linear sum of the dimensions ( )S u guarantees that the 

most possible dominated points will be removed on the first pass through the algorithm. This can be seen 

by recalling the results of Section 3.5 and noting that the minimum number of points dominated by any 

point z is ( ) ( 1) 1S d N− − −z . So maximizing the minimum number of points removed on the first pass 

implies using a linear weighting scheme with all of the weights set to 1. 

5.2.1 Analytical Estimate of the Expected Run Time for SC for Arbitrary 
Dimension 

This section computes the expected run time for the SC algorithm given a problem of size N with k Pareto 

points. With a predetermined number of Pareto points, it is possible to directly compute upper and lower 

bounds on the number of comparisons required. The lower bound is reached when all dominated points are 

removed during the first pass, in which case the run time is 

 
2 2 3 2
2 2

k k k k NN k− − +
+ − = . (19) 

This result is derived by first noting that there will always be 2( ) / 2k k− comparisons between the 

k nondominated points. Since the remaining N k− dominated points are removed on the first pass, 

using N k− comparisons to do so, the total number of comparisons comes to the result in Eq. (19). 
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The upper bound on run time occurs when the dominated points are not culled until the last pass of the 

algorithm, in which case the number of comparisons is 

 
2 22( )
2 2

k k Nk k kk N k− − −
+ − = . (20) 

This result is derived by noting that all k nondominated points must be compared with the N k− dominated 

points, with the dominated points not being removed until the last set of comparisons. Plotting the two 

curves in Figure 40 shows that the difference between them is an order of magnitude over much of the 

possible values of k . 

 
Figure 40: Upper and lower bounds on comparisons, N=500 

The estimating model developed here is based on three assumptions as follows: 

1. Each Pareto point dominates a fraction of the dominated points, with the fraction [0,1]p ∈  

2. Which points are dominated by a Pareto point are random 

3. Every Pareto point has a unique dominated point that only the specific Pareto point dominates 

The first two assumptions imply that a dominated point can be dominated by more than one Pareto point, 

while the third assumption ensures that there will be dominated points remaining in the data set until the 

last pass of the algorithm. Based on these assumptions, a fraction of the remaining dominated points are 

removed at each pass through the algorithm. Letting in be the number of dominated points remaining after 

the ith pass of the algorithm, the expected number remaining after the next pass is 1i in pn+ = . Starting 

from 0n , the number remaining after i  steps is 0
ip n . The number of comparisons total for a run of the 

algorithm is 
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This expression, replacing 0n with N k− , resolves to 
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This expression is a generalization of the upper and lower bounds, with the lower bound reached when 

0p = while the upper bound results when 1p = . 

 

This type of model where the number of points dominated is reduced through a geometric progression is 

supported by observation, which shows that a reasonable choice for p is one where, at the last pass through 

the algorithm, the last Pareto point has only one point to remove. This leads to the third assumption. Since 

at the last pass, the algorithm will have made 1k − passes through the data, the expression for p can be 

determined as 
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Inserting this value for p back into Eq. (21) gives the expression 
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 (22) 

Comparing the upper and lower bounds, the relation captured in Eq. (22), and experimental results at 

multiple data dimensions, shows Eq. (22) is a reasonable fit, but that there is significant variance. The 

experimental data shown in Figure 41 is for a fixed lattice size of 100N = , varying numbers of Pareto 

points, and for varying dimensions of the problem. Each plotted point is the result of one run of the SC 

algorithm, with the data generated using the GRCL algorithm. 
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Figure 41: Experimental iterations 
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The same data shown is in Figure 42 with upper and lower bounds and the analytical estimate of the 

number of comparisons, shown as the dashed line. 
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Figure 42: Experimental data, upper bound, lower bound, and analytical estimate 

One immediate conclusion that can be drawn from the data is that—as expected—the number of 

comparisons in the algorithm is only a function of the number of points in the problem and of the number 

of Pareto points. The dimension of the problem does not figure into the run time complexity and only 

loosely affects the actual run time of the implemented algorithm.  

5.2.2 Best Case Experiment 

The best case performance for the SC algorithm is when there is a single Pareto point. An example of such 

a configuration of points is shown Figure 43 where the bottom left of the figure is the best solution. For this 

configuration, the algorithm will complete with one pass through the data, so for N points the algorithm 

will execute in 1N − steps. 
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Figure 43: Best case configuration of points 
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One would expect the iterations to vary linearly with problem size, and this is what is observed in 

experiments as seen in Figure 44. In these experiments, data with a single Pareto point was generated using 

the RDP algorithm for each lattice size from 2000 to 10,000 points. 
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Figure 44: Run time for best case, SC 

5.2.3 2D Worst Case Experiment 

The worst case performance occurs when all points are Pareto, as in the 2D case of Figure 45. 
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Figure 45: Worst case configuration of points 

In this situation, the algorithm computes in 2N iterations, as shown in Figure 46. Again, the RDP algorithm 

was used to generate lattices, this time ranging in size from 200 to 1000 points. The smaller lattice sizes 

were needed to make run times practical, due to the quadratic growth in run time with respect to size. 
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Figure 46: Worst case run time, SC 

5.2.4 Random Experiment 

Using the expression in Eq. (22) as a model, one can plot how the number of iterations grows for varying 

ratios of Pareto points to problem size (see Figure 42). Figure 47 shows the results of experiments where 

both the ratio of Pareto points to problem size and the problem size itself are varied. The different curves 

represent different ratios of problem size to number of Pareto points. In the experiment, the RDP algorithm 

was used to generate lattices with a known ratio of dominated points to total lattice size, with one lattice 

generated for each size ranging from 1 to 200. 
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Figure 47: Run time for varying problem size and varying ratio of Pareto points to problem size 

The figure indicates that, as expected, the ratio of run times between two data sets of the same size, but 

with differing percentages of Pareto points, is independent of the size of the data sets. 

5.2.5 Simple Cull2 

The second algorithm, Simple Cull 2 (SC2) is a minor variation of the first, included for completeness. 

Rather than compare the top ranking point in the list against those remaining on the list to cull the 

remaining list, the top point is compared to those points that are already identified as nondominated, to 

determine if the top point will be added to the Pareto list. 
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Algorithm SC2 Given a set Z find the nondominated points that are in the set 

SC2-1 [Form list of scalar rankings] Form a new list U where U is a permutation of Z such that 

for , ( ) ( )i ji j S S< <u u . 

SC2-2 [Pick off first point of list] Remove the top element of U , add to list of Pareto points P . 

SC2-3 [Pick off top point] Remove the top element of U , (refer to it as 'u ) . 

SC2-4 [See if it is dominated by higher points] Compare 'u to each of the elements in P . If 

nondominated, add to P . 

SC2-5 [Any points left?] If U is empty, algorithm is complete and P contains points from Z that are 

Pareto. 

SC2-6 [Repeat as necessary] Go back to SC2-4. 

 

As per SC, the top point in the list U is nondominated. At each step, the point 'u is not dominated by any 

points below it, does not dominate any points previously considered, and is only added to P if it is not 

dominated by any points having been previously considered.  

 

SC2 again has a worst case complexity of ( )2nΟ since if each element of Z is Pareto, the collection of 

points P to be compared with grows linearly, and the number of comparisons is 

( ) ( )21 2 1 / 2N N N+ + + + = −" . 

5.3 Diagonalizing Algorithm for Finding Pareto Points in 2D Case 

Results in Section 3.4 showing that all points Pareto implies all points on the diagonal suggested an 

algorithm for finding the Pareto points in a two-dimensional problem. Stated simply, first place the points 

into LLH form. Then remove all points below the diagonal. Renormalize the remaining points into LLH 

form and repeat until no points are below the diagonal. This is the DIAG algorithm that follows. 

 

Algorithm DIAG Given a set Z of points in a 2D space, find the nondominated points 

DIAG-1 [Place into Latin Hypercube form] Form a new list U where ( )T=U Z (not necessary if Z is 

already in form). 

DIAG-2 [Remove elements below the diagonal] Remove the elements of U where ( ) 1S N< +u . 

DIAG-3 [Repeat as necessary] If points were removed in DC-2, return to DC-1 and create a new list in 

Latin Hypercube form from the remaining elements of U . 

 

As proven in Section 3.4, any dominated points will lie below the diagonal. When no points are below the 

diagonal, then all points are nondominated. The complexity of the algorithm, determined experimentally, 
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shows that the expected number of passes through the DC algorithm varies in proportion to log n , implying 

the expected run time of the algorithm is ( log )O n n . 

5.4 Nonrecursive Algorithm on 2D Data 

This section introduces the linear 2D (L2D) algorithm as developed in (Kung et al. 1975). The algorithm 

operates on 2D data non-recursively in ( log )O n n complexity, with the portion of the algorithm identifying 

the Pareto points operating in ( )O n . If the data is already in lattice Latin hypercube form, then the 

algorithm can be done in ( )O n . 

 

Algorithm L2D Given a set Z  of points in a 2D space, find the nondominated points 

L2D-1 [Order the points by their first column] Form a new list U that is a permutation of Z such that 

it is sorted by the first column.  

L2D-2 [Pick off first point of list] Remove the top element of U , add to list of Pareto points P . 

L2D-3 [Set the value of maxy ] Set max 1,2y u= . 

L2D-4 [Scan through the points] Compare maxy to the second element of each u  in turn. If 2 maxu y≤ , 

add u to the Pareto points P and reset max 2y u= . 

 

That this algorithm is correct can be seen by noting first that the top point in the sorted list is Pareto, as no 

point has a lower 1u value. As all other points have greater 1u values, a new point can be Pareto if and only 

if it has a lower 2u value. This property holds at any Pareto point iu in the list for all points above it. 

 

The algorithm completes in one pass through the data, with the number of comparisons independent of the 

number of Pareto points. Therefore, for 2D data this algorithm clearly is computationally superior. It is 

( log )O n n only due to the need to sort the data first, being linear otherwise. If the data is in normalized 

form, then it can be sorted in linear time, and the algorithm becomes ( )O n , and in fact takes exactly N-1 

comparisons. 
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CHAPTER 6 
 

Divide & Conquer Algorithm 

 

This chapter presents and implements, and analyzes a divide & conquer (DC) algorithm,  as developed by 

Bentley (Bentley 1980). He shows that for a problem of size N and dimension d that there is an algorithm 

of complexity 1( log )dO N N− that will identify the Pareto points. Since he assumed the need to do a 

comparison sort in the algorithm, and these sorts can be accomplished in linear time with the data in LLH 

form, the algorithm can be considered to run in 2( log )dO n n− . 

 

The presentation of the algorithm is first done geometrically, as from Bentley’s paper. In order to better 

develop an analytical estimate of the run time of the algorithm, it is then developed in a form based on 

repeated operations on columns of a table. This second presentation is easier to interpret for high 

dimensional problems, and leads to both an infinite dimension estimate and a finite dimension estimate of 

the number of comparisons. The analytical estimates assume that all points in the data are Pareto. These 

analytical estimates are validated against experimental data. 

 

As the DC algorithm is recursive, analytical estimates of the number of function calls in the recursion and 

the amount of data passed to each function call are developed. These are needed later in determining the 

switch points between the DC algorithm and the SC algorithm. 

 

Unlike the SC algorithm, which has a deterministic number of comparisions when executed against a data 

set with all points Pareto, the DC algorithm’s run time can vary by many orders of magnitude between data 

sets with all Pareto points. The sensitivity of the DC algorithm to the structure of the data is demonstrated 

thorugh a simple example. 

 

To complete the analysis, a simple model for estimating the number of comparisons for the DC algorithm 

as a function of the percentage of points that are Pareto is developed. Again, while the SC algorithm is 

deterministic in its number of comparisons for a data set with a single point Pareto, the DC algorithm is not. 

The range of possible values for the number of comparisons for a data set with only one Pareto point spans 

orders of magnitude. 

 

The basic approach in computing the Pareto points in a problem of size N and dimension d is to first solve 

two problems of size / 2N and dimension d  and then solve a problem of size N and dimension 1d − . The 
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process of dimension reduction continues recursively until 2d = , at which time the nonrecursive L2D 

algorithm L2D can be applied. As an example, consider Figure 48, with 160 points and 3 dimensions. The 

preference is for minimum values of coordinates, i.e., the lower left rear corner. 
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Figure 48: 160 points in 3 dimensions 

Figure 49 shows both the results of problem size reduction and the reduction of dimension. The problem 

was first reduced in size by a cut plane into two sets of equal size, A and B so that no point in B dominates 

a point in A. This is accomplished by sorting the data along the appropriate dimension and taking all points 

into B that are above the median value. For Figure 49, A is the set of points on the left of the cutting plane 

and B is the set of points on the right. Each problem’s Pareto points are calculated, with A’s Pareto points 

in red, and B’s in blue. As points that are Pareto in region B may not be Pareto in the total problem, they 

must be removed in a marriage step. 

. 
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BA

 
Figure 49: Subdivided problem 

The Pareto points from each problem are now projected onto the cut plane between the regions, see Figure 

50, and the Pareto points are identified on this cut plane. Blue points that are not dominated in the 2D 

problem (indicated by gray shading behind them) are not dominated in the 3D problem and are added to the 

Pareto points in set B, and the DC algorithm is finished. 
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Figure 50: Projection onto cut plane 

As stated above, the complexity of the DC algorithm is 2( log )dO n n− . That this is true can be seen by first 

recognizing that for a 2D problem the complexity is ( )O n , since the L2D algorithm is used. Now, assuming 

that N is a power of two, i.e., for some integer 2kN = for some integer k or conversely logk N= , then the 

complexity of the 3D case is 
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and similarly for higher dimensions. 

 

The algorithm is actually a cooperating set of six algorithms, with DC being the main entry point, and L2D, 

SC, MARRY, MARRY2D, and MARRYDIRECT used at different points. L2D and SC have already been 

introduced. MARRY is a recursive algorithm that repeatedly reduces the problem size and reduces the 

dimension. MARRY2D is a modification of L2D for when the two data sets to be married are two 

dimensional. MARRYDIRECT is analogous to SC, in that it uses a brute force enumeration approach when 

the problem size is small. Each is presented in turn. 

 

Algorithm DC Given a table Z of points in a d -dimensional space, find the nondominated points that are 

in the set. 

DC-1 [If dimension of data is 2, call L2D on data and return results]  

DC-2 [If size of problem is below limit, call SC on data and return results] 

DC-3 [Else divide into two problems of equal size] Split Z into two sets of points X and Y by finding 

the median element of the first column, and taking points whose first element is greater the 

median and placing them in the inferior set X , and those points lower in superior set Y . 

DC-4 [Call DC on subproblems] determine ( )DNC=XX X and ( )DNC=YY Y . 

DC-5 [Reduce dimension] drop the first columns of XX and YY to form XXX and YYY . 

DC-6 [Call MARRY to cull remaining dominated points in the inferior set] 

Determine ' MARRY( , )=XXX XXX YYY . 

DC-7 [return the results] Return '∪YYY XXX . 

 

The procedure for marrying the points together is the crux of the algorithm. At the completion of calling 

DC on the two sets of data each N/2 in size, two sets of points PX and PY  of dimension d will remain with 

the property that all the points are Pareto in their respective sets and that no point in PX dominates a point 
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in PY . The marry algorithm must now compare the two sets and remove points in PX that are dominated by 

points in PY .  

 

This step itself is a recursive process of problem reduction followed by dimension reduction and is 

illustrated in Figure 51. With the two sets, PY and PX , first divide them on a cut plane (dotted line) 

into 1X and 2X and 1Y and 2Y respectively. Call 2 2 2MARRY( , )′ =X X Y and 1 1 1MARRY( , )′ =X X Y . In the 

dimension reduction step, drop the first columns of 1Y and 2′X (thereby taking the projection of the points 

onto the remaining 1d − dimensions), and determine 2 2 1MARRY( , )′′ ′=X X Y . Note that 1X is not compared 

to 2Y , as it is not possible for a point in 2Y to dominate a point in 1X . If either 1Y or 2′′X are empty, then the 

dimension reduction process terminates. 

 

 

Figure 51: Divide and conquer in Marry algorithm 

The MARRY algorithm must again track the dimension, and switch to a nonrecursive efficient algorithm 

(MARRY2D) if the dimension reaches two, or to a brute force algorithm (MARRYDIRECT) if the 

problem size reaches a critical point. For now, the critical size will be two, but this size will be adjusted 

based on dimension in the hybrid algorithm. The marrying algorithms follow. 
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Algorithm MARRY Given two sets of points X and Y  in a d -dimensional space, with the properties that 

no point in X dominates another point in X or a point in Y , and no point in Y dominates another point in Y , 

determine the set of points ′ ⊆X X such that no point in ′X is dominated by a point in Y . 

MARRY-1 [If data dimension is 2D, call MARRY2D and return results]  

MARRY-2 [If size of problem is below limit, call MARRYDIRECT on data and return results] 

MARRY-3 [Else divide into two problems of equal size, and recursively call MARRY] 

Choose a cut plane to divide X and Y into 1 2 1 2, , ,X X Y Y such that 2X is inferior 

to 1X and 2Y is inferior to 1Y as based on their first column, and so that 

1 1 2 2+ = +X Y X Y  . 

Call 1 1 1' MARRY( , )=X X Y and 2 2 2MARRY( , )′ =X X Y . 

MARRY-4 [Now drop a dimension, and recursively call MARRY] 

Drop the first columns of 2 'X and 1Y to form 2′XX and 1YY and 

call 2 2 1MARRY( , )′′ ′=XX XX YY . 

MARRY-5 [Form union of results and return] Return 1 2′ ′′∪X X . 

 

Algorithm Marry2D Given two sets of points X and Y with properties as per the MARRY algorithm, but 

in a 2-dimensional space, determine the nondominated points in X . 

MARRY2D-1 [Mark the inferior and superior points, and form their union] Mark the elements 

of X and Y  to distinguish between them, and form = ∪W X Y . 

MARRY2D-2 [Order the points by their first column] Sort W by its first column. 

MARRY2D -3 [Augment sorted list with minimum element] Prepend to W the record {0, 1}+W , 

marked as an element of Y . 

MARRY2D -4 [Set the value of q ] Set q = W . 

MARRY2D -5 [Scan through the points, updating q only if point is in superior set] Compare q to the 

second element of each w in turn. If the second element of w is q≤ , and if w is also an 

element of X , add w to the inferior nondominated points 'X . If the second element of 

w is q≤ and w is also an element of Y , reset q so that q equals the second element 

of w . 

MARRY2D-6 [Return the inferior points that survived] Return 'X . 
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Algorithm MarryDirect (MD) Given two sets of points X and Y  in a d-dimensional space as per the 

MARRY algorithm, identify the points in X . 

MD-1 [Directly compare each inferior point to each superior point] For reach point in X , directly 

compare it to all of the points in Y ,and if it is not dominated by any of them, add it to the set 'X . 

MD-2 [Return nondominated inferior points]  Return 'X . 

 

As each point in X must be compared with each point in Y , the complexity of this algorithm, given superior 

set Y of size N and inferior set X  of size M is ( )O NM . 

6.1 Alternate Development of the DC Algorithm 

The following sections develop a worst case analysis of the algorithm, which occurs when all points are 

nondominated. To develop a closed-form expression for the worst case run time, first this section develops 

a different approach to understanding the algorithm. 

 

Again, start with a set of N points of dimension d . Recall that in the first step of the DC algorithm, the 

points are sorted based on their first dimension, split into two halves based on that dimension, and the 

nondominated points in each half are identified. As an example, consider a data set of 18 points shown in 

Figure 52. The data is split on the first dimension, and points 1-9 and 10-18 are treated as separate sets. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 
Figure 52: Data sorted on first dimension, and split 

Once the nondominated points in each subset are identified, the two sets must be married via the MARRY 

algorithm. Let the points in the set of points 1-9 that are nondominated be collectively labeled as A, and the 

points from the set 10-18 be collectively labeled as B. Each of the A points are nondominated within their 

set, and they also cannot be dominated by a point in the set of B points, since the value for of the first 

dimension for every point in B is greater than the value of the first dimension for every point in A. Each of 

the B points are nondominated within their set, but they can be dominated by points in A. The object of the 

MARRY algorithm is to remove the B points that are dominated by points in A. 

 

A A A A A A A A A B B B B B B B B B
 

Figure 53: After culling the two subsets 

In the data above, assuming that for each set of 9 points only 8 of them are nondominated within their set, 

the total number of points remaining is now 16; each set having lost one point. In the next step, the points 
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are resorted, this time on the second dimension, and again broken into two sets (see Figure 54). Each set, on 

the left and the right, contains A and B points. Label the left set as L and the right set as R. 

 

A B A A B B B A A A A B A B B B

Set L Set R

 
Figure 54: Points resorted on the second dimension 

 The algorithm then compares the B points in set L with the A points in set L and any B points that are 

dominated are removed, similarly for R. In this case, assume that all points remaining are nondominated, 

and therefore no points are removed from either side. 

 

At this point, what is known is that all of the B points in set L are nondominated by any A points, left or 

right. Also, no A points in set R dominate any B points, left or right. What is not known is whether any A 

points on the left dominate any of the B points on the right. Mark the left B points and the right A points in 

gray (see Figure 55). In the next step, since left B points and right A points cannot dominate or be 

dominated, they do not be to be considered in the algorithm and can be dropped prior to the next step. 

A A A A B B B B

A B A A B B B A A A A B A B B B

 

Figure 55: Left B's and right A's marked, and then removed 

Again resort the data, now on the third dimension, and repeat. Keep doing so until no points remain. 

 

A A B B

A B B A B A B A

A B B A B A B A

A A A A B B B BReady for resort

Sorted on next index

After checking for dominance, drop
B’s from left and A’s from right

Ready for next resort  
Figure 56: Cycle of resort, check for dominance left and right, drop left Bs and right As 

There are three possible situations one ends up with in the resort. The first case, shown in Figure 52 - 

Figure 56, is where the A’s and B’s are distributed on both sides of the split. The second case is where the 

left side has all B’s and the right side has all A’s after the resort. This indicates that all points are 

nondominated with respect to each other, and the MARRY algorithm can return immediately. The final 
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case is where, after the resort, the left side contains all A’s and the right side all B’s. In this situation, the 

algorithm will immediately resort on the next chosen dimension and continue. 

 

The critical point to note is that as long as the nondominance of any two points with respect to each other 

can be established in a finite number of steps of the algorithm, the algorithm will complete even for a set of 

points of infinite dimension. The result stems from the fact that the left B points and right A points are 

discarded each time the algorithm steps to resort on the next dimension. Given that this is true, it is possible 

to determine the worst case run time for a set of points of infinite dimension with all points nondominated. 

From there, the finite dimensional problem can then be described and solved. 

6.2 Worst Case - Infinite Dimension Run Time 

Assuming the problem is of infinite dimension but that the nondominance of any two points with respect to 

each other can be established in a finite number of steps of the algorithm, worst case run times of the 

algorithm can be determined. Three variations of the infinite dimension worst case will be considered here: 

a balanced case, a maximum unbalanced case, and a generalized unbalanced case. The balance refers to 

the distribution of A and B points in the L and R sets when each step in dimension is made. The balanced 

case is when, at each step in dimension, A and B points are equally distributed in sets L and R (see Figure 

57). 

A A A A B B B B A A A A B B B B  

Figure 57: Balanced case, same number of A and B points in the left and right sets 

The maximum unbalanced case is where exactly one B point is in the left set and exactly one A point is in 

the right set after each resort (see Figure 58). 

 

A A A A A A A B A B B B B B B B  
Figure 58: Maximum unbalanced case, with one B point in left set, and one A point in right set 

The generalized unbalanced case is where the ratio of A points on the left (B points on the right) to total 

points on the left (right) varies by some ratio α . Consider the case in Figure 59 where α is equal to 3/8. 

 

A A A A A B B B A A A B B B B B  
Figure 59: Generalized unbalanced case with ratio = 3/8 

Note that the generalized case where 1/ 2α = is equivalent to the balanced case. Consider first the balanced 

case in the analysis. 
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6.2.1 Balanced Case 

Although the algorithm developed here is a divide & conquer algorithm, conceptually it is easier to 

consider it as an initial divide followed by repeated marrying of fewer but larger sets. Define the function 

mbi[ ]n (mbi is short for Marry Balanced Infinite) as a function that determines the number of comparisons 

required to marry n points together (i.e., marry two sets of / 2n points). Define a function pbi[ ]n (pbi is 

short for Pareto Balanced Infinite) to determine the number of comparisons required to verify that a set of 

n points are nondominated. Then there are two recursive relationships, one for each of the two functions. 

For the marrying of balanced infinite dimension points the recursion is 

 mbi[ ] 3mbi
2
nn  =   

.  

This recursion derives from the fact that the Marry algorithm initially splits the problem of size n into two 

subproblems of size / 2n , and then resorts on the next index and calls the Marry algorithm again on the 

remainder. Since the problem is balanced, half of the points are dropped prior to the final call, so three calls 

are made on data sets of size / 2n . 

 

  When determining the Pareto points for a balanced case of infinite dimension, the recursion is 

 pbi[ ] 2pbi mbi[ ]
2
nn n = +  

. (23) 

For the DC algorithm, two recursive calls to the DC algorithm with data sets of size / 2n are followed by a 

call to the Marry algorithm with a data set of size n , leading to Eq. (23).  

 

The base case for inductive purposes is the case 2n = , where mbi[2] 1= and pbi[2] 1= . If one assumes 

that n is a power of 2, i.e., there exists an i such that 2in = , then the recursions can be resolved directly. For 

the marry portion, the recursion resolves as follows: 

 
log 1

log3

1.58

mbi[ ] 3mbi
2

9mbi
4

3 mbi[2]
1
3
1mbi[ ] .
3

n

nn

n

n

n n

−

 =   
 =   

=

=

#

�

 

To compute the total comparisons in determining the nondominated points, use the following relation, 

which is illustrated in Figure 60. Assume again that n is a power of 2. 
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N=16

8 marries of sets of size=1

4 marries of sets of size=2

2 marries of sets of size=4

1 marry of sets of size=8

 
Figure 60: Process of initial divide, followed by repeated marrying of larger sets 

 

pbi[ ] 2pbi mbi[ ]
2

4pbi 2mbi mbi[ ]
4 2

pbi[1] mbi[2] mbi[4] 2mbi mbi[ ]
2 4 2

nn n

n n n

n n nn n

 = +  
   = + +      

 = × + + + + +  

#

"

 (24) 

Recognizing that pbi[1] 0= and mbi[2] 1= , the Eq. (24) can be recast as a summation, 

 
log

1

mbi[2 ]pbi[ ]
2

in

i
i

n n
=

= ∑ .  

Replacing mbi[2 ]i gives 

 
( )2

log 3
log

1

2
pbi[ ]

3 2

in

i
i

nn
=

= ∑ .  

Resolving the summation in closed-form gives the final result, 

 
log3

1.58

pbi[ ]
.

n n n
n n

= −

= −
 (25) 

Note that although the assumption was made that n was a power of 2, the expression for pbi[ ]n , calculating 

the total number of comparisons for the balanced case of infinite dimension, does not depend on this fact, 

and experimental results show that the expression works for other values of n . 
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6.2.2 Generalized Unbalanced Case 

Again for the generalized unbalanced case of infinite dimension define a function to determine the number 

of comparisons to identify the nondominated points, pgui[ , ]n α (Pareto Generalized Unbalanced Infinite), 

and a function for marrying sets together, mgui[ , ]n α ( Marry Generalized Unbalanced Infinite). The 

α term in the functions represent the ratio of A to total points in the left set at each marry step. The 

recursion for the function pgui[ , ]n α  remains the same as for the balanced case, 

 pgui[ , ] 2pgui , mgui[ , ]
2
nn nα α α = +  

. (26) 

The recursion for the marry algorithm is, however, more complex. First define a function that takes as input 

the total number of points in a set (left or right) and the number of B points in that set, and determines the 

maximum number of comparisons to determine all B points are nondominated. Label the function 

unbi[ , ]n b . Assume the recursion 

 unbi[ , ] 3unbi[ , ]
2 2
n bn b =   

holds, and that the base case is unbi[ ,1] 1n n= − . Then the closed-form expression can be calculated as 

 
log

log3unbi[ , ] 3
2

b
bn b n = − 

 
. (27) 

To convert to a form that takes n and α as input, recognize that (1 )b nα= − by definition and substitute in 

Eqn (27) to get 

 
log 3

log 3(1 )unbi[ , ]
1

n nα αα
α

 −
=  − 

. (28) 

Interestingly, the shape of the function is as shown in Figure 61. 
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Figure 61: Shape of the unbalanced function, problem size of 100 points, varying alpha 

Now the recursion for the Marry algorithm can be expressed as thus, 

 mgui[ , ] 2unbi , mgui[ , ]
2
nn nα α α α = +  

. (29) 
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Note the nα term in the last part of the expression. This is due to the fact that after each marry step in a 

dimension, only (1 )nα− points are removed, and nα points remain. In this case assume that n is equal to 

the expression 

 4(1/ )kn α=  (30) 

for some integer value k , for reasons that will become apparent. Express the recursion in expanded form 

(suppressing the dependence on α for clarity) to see the relationship, 

 

( )1/

2

2
3

log / 4 2

mgui[ ] mgui[ ] 2unbi
2

mgui[ ] 2unbi 2unbi
2 2

mgui[ ] 2unbi 2unbi 2unbi
2 2 2

mgui[4 ] 2unbi 2unbi 2unbi 2unbi
2 2 2 2

n

nn n

n nn

n n nn

n n n nα

α

αα

α αα

α α αα

 = +   
   = + +      
     = + + +         

      = + + + + +        

#

" 
  

 (31) 

The reason for ( )1/log / 4nα term in the exponent along with the requirement imposed by Eqn. (30) is to 

ensure that the input to the unbi[ ]⋅ function in the final recursion is 2, as the function is undefined for 

smaller values. Also, the mgui[4 ]α term must be replaced with a closed-form, as repeating the recursion 

would violate the constraint on the input to the unbi[ ], and so the mgui[4 ]α function is replaced with the 

balanced version mbi[4 ]α . Finally, the recursion is placed into summation form to give 

 
1/log

4

0
mgui[ ] [4 ] 2

2

n
i

i

nn mbi unbi
α αα

=

 
= +  

 
∑ . (32) 

As with the balanced equation version of the marry algorithm, this can be resolved to an unwieldy closed-

form the following solution: 

 ( )
log 3 1

log 3 log3 log 3
log 3

1 2 (1 )mgui[ ] (4 ) (4 )
3 3 1

n nα αα α
α

−− = + −  − 
. (33) 

This can be plugged back into the expression pgui[ ] from Eq. (26) and solved for in an analogous fashion 

to give the complete expression 

 ( ) ( )log 3pgui[ ] 1n A n n B n= − + −  (34) 

where 

 
log 3

log 3

2 (1 )
(1 )(1 )

A α α
α α

−
=

− −
, (35) 

and 
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log 3 2log3 3log 3 6log 3 2log 3 log 3

log 3

3( ) 6 (1 )
(1 )(1 )

B α α α α α α
α α

− − + − −
=

− −
. (36) 

A plot of the number of iterations with varying α is shown in Figure 62, with the dashed horizontal line 

showing the value for the balanced case. Note that the two lines intersect at the value of .5α = , as expected. 
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Figure 62: Plot of number of comparisons versus alpha, for 2000 points, infinite dimension, all 

nondominated. Dashed line is the balanced case, shown for reference. 

Note that the number of comparisons increases monotonically with the percentage of imbalance, as 

expected. 

6.2.3 Maximum Unbalanced Case 

Define a Marry algorithm and a Pareto algorithm for the maximum unbalanced case of infinite dimension, 

mmui[ ]n (Marry Maximum Unbalanced Infinite) and pmui[ ]n (Pareto Maximum Unbalanced Infinite) 

respectively. Since this case results in only a single B point in the left set and a single A point in the right 

set at each iteration, the number of comparisons for the marry algorithm can be written as 

 
mmui[ ] 2 1 mmui[ 2]

2
2 mmui[ 2].

nn n

n n

 = − + − 
 

= − + −
 (37) 

This recursion can be resolved to 

 

( )

12

1

2

mmui[ ] 1 2

1 2 4 .
4

n

i
n i

n n

−

=

= +

= − +

∑
 (38) 

The recursive relationship for the Pareto algorithm is 

 pmui[ ] 2pmui mmui[ ]
2
nn n = +  

. (39) 

This can be solved similar to the balanced case to give 
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log

1

2

mmui[2 ]pmui[ ]
2

1 ( 2 log )
2

in

i
i

n n

n n n n

=

=

= + − −

∑

.

 (40) 

It is interesting to note that while the balanced case and the generalized balanced case both vary in the 

number of comparisons by log3( )O n , the maximum unbalanced case varies by 2( )O n . The maximum 

unbalanced case is not a limit for the generalized balanced case as 1α → . Figure 63 is a plot of the three 

different cases. 
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Figure 63: Plot of the balanced case, the generalized unbalanced case with alpha = .9, and the maximum 

unbalanced case for varying problem size 

6.3 Worst Case - Finite Dimension Run Time 

The finite dimension computations are simpler to pose than the infinite dimension case developed in the 

previous section, but the resulting expressions are more complex. First the balanced case is presented, then 

the generalized unbalanced case, and finally the maximum unbalanced case. 

6.3.1 Balanced Case 

Define two functions for the Marry algorithm and the Pareto algorithm, mbf[ , ]n d (Marry Balanced Finite) 

and pbf[ , ]n d (Pareto Balanced Finite). The recursion for the marry algorithm is now 

 mbf[ , ] 2mbf , mbf , 1
2 2
n nn d d d   = + −      

. (41) 

There are two base cases to consider, mbf[2, ] 1d = and mbf[ , 2] 1n n= − . The second case derives from the 

fact that for a 2D problem a linear time algorithm is available. One can recursively define in a manner 

analogous to the infinite case the relationship 

 
1log

2

mbf 2 , 1
mbf[ , ]

2 2

in

i
i

dnn d n
−

=

  −  = +
 
 

∑ . (42) 
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This can be solved for recursively in d resulting in Table 7. 

 

Table 7: Value of mbf[ ] function for varying dimension 

d mbf[n,d] 

2 1n −  

3 1 ( log 2)
2

n n n− +  

4 21 ( log 3 log 10 8)
8

n n n n n− + −  

5 3 21 ( log 6 log 35 log 30 48)
48

n n n n n n n− + − +  

6 4 3 21 ( log 10 log 83 log 194 log 504 384)
384

n n n n n n n n n− + − + −  

 

The Pareto function can be expressed as two base cases and a recursive relationship, 

 
pbf[2, ] 1,
pbf[ , 2] 1,

pbf[ , ] 2pbf , mbf[ , 1]
2

d
n n

nn d d n d

=
= −

 = + −  

  

Using the base cases, the recursion can be expressed as a summation, 

 
log

2

mbf[2 , 1]pbf[ , ]
2 2

in

i
i

n dn d
=

−
= + ∑ .  

Again, this can be solved recursively, generating an example table of solutions, Table 8. 

 

Table 8: Value of pbf[ ] for various dimensions 

d pbf[n,d] 

2 1n −  

3 log 1n n n− +  

4 21 ( log log 4 4)
4

n n n n n− + −  

5 3 21 ( log 3 log 26 log 24 24)
24

n n n n n n n− + − +  

6 4 3 21 ( log 6 log 59 log 54 log 192 192)
192

n n n n n n n n n− + − + −  
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One should note that, as expected, the number of comparisons varies with 2( log )dO n n− . What is interesting 

is a plot of the number of comparisons required versus dimension of the problem for different fixed 

numbers of points, as shown in Figure 64. 
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Figure 64: Number of comparisons as a function of dimension for fixed number of points in problem 

Note that as the dimension increases, the number of comparisons plateaus. The plateau corresponds to the 

limiting case of infinite dimension, where the algorithm repeatedly divides the data until only two points 

are remaining, compares them, and steps to the next dimension in the data set. For the case of high 

dimensionality or few points, the algorithm completes prior to ever stepping through all of the dimensions. 

Figure 65 shows just the curve for a problem with 10,000 points and varying dimension, along with a flat 

line showing the value for infinite dimension. 
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Figure 65: Plot of number of comparisons versus dimension for 10,000 point problem 

The dimension at which the two lines join for a problem of size n is approximately equal to logd n= , for 

a problem of size n , since the mbf[ , ]n d algorithm steps down through log[ ]n dimensions before 

exhausting all of the points, and in order to not reach the linear case of 2d = , must start with a sufficient 

initial dimension. Figure 66 shows a contour curve for this expression. 
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Figure 66: Plot of comparisons versus dimension for varying problem size, with dashed line indicating the 

point where limiting number of comparisons reached 

6.3.2 Generalized Unbalanced Case 

Define two functions for the Marry algorithm and the Pareto algorithm for the generalize unbalanced case, 

finite dimension, mguf[ , , ]n dα  (Marry Generalized Unbalanced Finite) and pguf[ , , ]n dα (Pareto 

Generalized Unbalanced Finite). Also define a function for computing the number of comparisons in the 

left and right sets during the marry computation, unbf[ , , ]b dα  (Unbalanced Finite), where b is the number 

of B points in the left set, which will be equal to (1 )nα− . Start the analysis with the unbf[ , , ]n dα function. 

Suppress the dependency on α in the formulas to simplify the presentation. 

 

The unbf[ , ]b d function has the following relationships: 

 

1log

1

1unbf[1, ] 1

unbf[ , 2] 1

unbf[2 , 1]unbf[ , ]
2

ib

i
i

d

bb

b db d b b

α

α

α

−

=

= −

= −

− = − + 
 

∑

 (43) 

As for the finite dimension balanced problem, this can be solved recursively in dimension to get the desired 

functional forms. Some examples are given in Table 9, rewriting unbf[ , ]b d as unbf[ , ]n d from here by 

replacing b with nα in the original version. 
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Table 9: Value of unbf[ ] function for various dimensions 

d unbf[ , ]n d  

2 1n −  

3 1 ( log (log 4 2) 2)
2

n n n α α+ − + +  

4 2 21 ( log log (2 log 8 3) (log 8 log 3log 8) 8)
8

n n n n nα α α α α α+ − + + − + + −  

 

Analogous to the infinite dimensional case, define the base case and recursive relation for mguf[ , , ]n dα  as 

 
mguf[ , 2] 1,
mguf[2, ] 1,

mguf[ , ] 2 unbf , mguf[ , 1].
2

n n
d

nn d d n dα

= −
=

 = + −  

 (44) 

With a closed-form expression for unbf[ , ]n d , the mguf[ , ]n d function can be recursively defined on d and 

values determined. Two examples are given in Table 10 for dimensions 2 and 3, as the expressions become 

unwieldy with higher dimensions. 

Table 10: Values for mguf[ ] at 2 and 3 dimensions 

d mguf[ , ]n d  

2 1n −  

3 1 log (1 ) (1 ) 1
2 2

nn nα α − − − + 
 

 

 

A plot of the function versus α for varying dimensions in Figure 67 shows that the function reaches a peak 

between 0.5 and 1, rapidly declining as it approaches 1. This is due to the effect of finite dimension, where 

the algorithm terminates early due to reaching dimension size of 2 and completing linear from there. The 

number of dimensions the algorithm will use if unrestricted is proportional to 1/log nα . As 1α → , the term 

1/log nα → ∞ . 
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Figure 67: Plot of the mguf[n,d] function for varying dimension and alpha 

Finally, the number of comparisons to compute the full function pguf[ , ]n d can be determined in a manner 

directly analogous to the balanced finite dimension case, resulting in  

 
log

2

mguf[2 , 1]pguf[ , ]
2 2

in

i
i

n dn d n
=

−
= + ∑  (45) 

This can be used to recursively determine the functional form with increasing d . Some examples are 

shown in Table 11. 

Table 11: Values of pguf[ ] for dimensions 2 through 4 

d pguf[ , ]n d  

2 1n −  

3 log 1n n n− +  

4 21 ( log log (2 log(1 ) 12 5) (8 2 log(1 ) 12 ) 4)
4

n n n n nα α α α+ − + − + − − − −  

 

Plotting this function with varying α and dimension reveals a similar behavior, where again the number of 

computations rises to a peak, then rapidly declines with increasing α (see Figure 68). 
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Figure 68: Number of comparisons versus alpha and dimension for a problem size of 4000 points 

6.3.3 Maximum Unbalanced Case 

Based on the behavior of the generalized balanced case with finite dimension, one would expect the 

maximum unbalanced case to terminate rapidly as the dimensions are exhausted. This proves to be true. 

Define functions for the marry and the Pareto algorithms, mmuf[ , ]n d (Marry Maximum Unbalanced 

Finite) and pmuf[ , ]n d  (Pareto Maximum Unbalanced Finite) as 

 
mmuf[ , 2] 1,
mmuf[ , ] ( 2) mmuf[ 2, 1]

n n
n d n n d

= −
= − + − −

 (46) 

which can be simplified to 

 

1

1

mmuf[ , ] 2

( )( 1) 1.

d

i

n d n i

n d d

−

=

= −

= − − +

∑  (47) 

Equation (47) assumes that 2 1n d≥ − . For values below this threshold, the mmui[ ]n function must be 

used. From this expression the pmuf[ , ]n d function can be derived to be 

 
log

1

mmuf[2 , ]pmuf[ , ]
2

in

i
i

dn d n
=

= ∑
.
 (48) 

Due to the switching between marry algorithms depending on the size of n , Eq. (48) cannot be written in 

closed-form. An approximate form for n d� is 

 2pmuf[ , ] ( 1) log ( 1)( 1)n d d n n n d d− − − − −� . (49) 

The dependency is now ( log )O n n . The function has a strong dependency on d , as seen in Figure 69, 

where, multiple curves for different dimensionality are shown, along with a curve for infinite dimension.  
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Figure 69: Number of comparisons as a function of number of points and dimension. Also, the infinite 

dimension function is shown. 

Finally the maximum unbalanced case can be compared to the balanced case for varying dimensions and 

numbers of points in Figure 70. 
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Figure 70: Comparison of the pbf[ ] function and the pmuf[ ] function for varying problem size and 

dimension 

6.4 Expected Performance of the All Points Pareto Case 

While clearly the worst case performance is encountered in the generalized unbalanced case with 0.9α � , 

in reality if the points are distributed randomly, the theoretical worst case will not be encountered. One can 

compute, for randomly distributed points, the distribution of α for a fixed problem size. For example, let 

20n = and calculate the distribution of α assuming randomly distributed points. The distribution is 

hypergeometric and is shown in Figure 71. 
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Figure 71: Comparing the pguf[ ] function and the pbf[ ] function for varying alpha and problem size of 

200, d=7, with probability distribution of alpha shown in gray. 

There are two things to note. First, the support for the distribution of α is primarily in the vicinity of the 

value of 0.5 and is symmetrical. Second, the function mguf[ , , ]n dα is approximately linear about the point 

0.5α = . This implies that a reasonable approximation for the expected number of comparisons is 

 
[pguf[ , , ]] pguf[ , [ ], ]

pguf[ ,.5, ]
pbf[ , ].

E n d n E d
n d

n d

α α α
=
=

�
 (50) 

Another argument in favor of the approximation is that the worst case would require every run of the Marry 

algorithm to occur with 0.9α � , which would have a small probability of occurrence with any randomness 

in the distribution of the points. 

6.5 Comparison of Empirical Results with Analytical Results 

Figure 72 shows results of both experiments and analyses in estimating the number of comparisons for 

problems with all points nondominated, varying problem size, and varying dimension. For the analytical 

results the balanced case function pbf[ , ]n d was used. Experimental results were derived by using the RDP 

algorithm to generate data of dimension ranging from 2 to 20. The results show that the experimental 

values approach the analytical values as the dimension increases. 
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Figure 72: Comparison of experimental and analytical estimates of number of comparisons for different 

problem sizes and different dimensions 

Extending into the higher dimensions shows that the experimental results continue to approach the 

analytical worst case balanced results. Figure 73 shows the approach of the variables to the worst case 

result. Again, the RDP algorithm was used to generate the test data. 
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Figure 73: Experimental and analytical results up to dimension of 60 

By generating data sets with all points Pareto and of sizes ranging from 10 to 600 and dimension from 20, 

one can estimate a scaling coefficientα  to multiply with pbf[ ] function to improve the fit for each 

dimension. Appendix A lists the results of the curve fits. Figure 74 shows the fit between the pbf[ ] function 

scaled by α and the data used to fit the α coefficient. Shown are dimensions 3 through 18. 
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Figure 74: Data versus curve fits for the pbf[ ]α i  function, with varying dimension 

 

Finally, Figure 75 repeats Figure 73 but with the pbf[ , ]n d value multiplied by the mean value of 0.78, 

resulting in better correspondence with the experimental data. This estimate can be used as an approximate 

value of the number of comparisons required for random data with known dimension and all points 

nondominated. 
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Figure 75: Comparison of empirical data with the analytical estimate gained by multiplying pbf[n,d] by .85 

As for reasons for the difference between the balanced worst case estimates and actual experiments, one 

key source of difference is due to the fact that most function calls to the Marry algorithm are in fact 

unbalanced. Figure 76 shows a histogram with the relative imbalance of the input to the Marry algorithm 

plotted versus the number of function calls. The imbalance I  was calculated via the following formula: 

 21 xI
n

= −  (51) 
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where x is the number of points entered as the first argument, and n is the sum of the two arguments. In this 

figure, only function calls with a total data input greater than a size of 35 are shown. The data is from a run 

with 1000 point, 6 dimensional input data that has all points Pareto. Recalling that the Marry algorithm 

takes as arguments two sets of points, an imbalance of 1 indicates that of n points provided as argument to 

the Marry algorithm, all of them were to the second argument. An imbalance of -1 indicates all points were 

to the first argument. An imbalance of 0 indicates the two arguments were equal in size. Any function call 

for which the imbalance is 1 or -1 requires no comparisons. 
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Figure 76: Plot of the relative imbalance of a Marry function call versus the number of calls, for a data set 

with 1000 points, 6 dimensions, all Pareto, only functions with data input size > 35 

Figure 77 shows the histogram from the same data set but looking at function calls with arguments of all 

sizes. Notice that the number of function calls for the functions with smaller input is far greater and that the 

dispersion for the smaller calls is broader. There are spikes at 0, -1, +1, and also +/- ½ and +/- 1/3. These 

are due to the preponderance of function calls with arguments of total size only 2 or 3. 
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Figure 77: Plot of the relative imbalance of a Marry function call versus the number of calls, for a data set 

with 1000 points, 6 dimensions, all Pareto, functions of all sizes 

6.5.1 Model of Run Time for DC Algorithm 

A call to the DC algorithm involves recursive calls to the DC algorithm with diminishing problem size 

and/or lower dimension. This recursion results in more complex calculations to determine the number of 

subroutine calls and the size of the data passed to those subroutine calls. In a manner similar to the process 

for computing the number of comparisons in the DC algorithm, consider the Marry algorithm first. 

 

Define the calculation mff[ ] (Marry Function Finite). The number of function calls needed in the Marry 

algorithm with a data set of size n evenly balanced into sets A and B can be determined via the recursion 

 
1log

2

mff[2, ] 1
mff[ , 2] 1

mff[2 , 1] 1mff[ , ]
2 2

in

i
i

d
n

n dn d n
−

=

=
=

− +
= + ∑

. (52) 

The recursion can be resolved in closed-form and plotted, as shown in Figure 78. 
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Figure 78: Number of routine calls in the Marry algorithm as a function of dimension and data size 
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The mff[ ] function overestimates the actual number of function calls as determined by experiment, and so 

one can adopt a simple model for the corrected function, mff[ , ]d n dα × and fitα for the different 

dimensions. Doing so with experimental data ranging in size from 10 to 600 points and dimension 3 to 20 

results in a series of fitting coefficients listed in Appendix A. One reason for this overestimate is the 

assumption of balance in the calls, which was shown in the previous section (Figure 76 and Figure 77) to 

be unrealistic. 

 

Defining pff[ ] (Pareto Function Finite), the number of function calls for the Pareto algorithm is then 

calculated through the recursion: 

 
log

2

pff[2, ] 1
pff[ , 2] 1

mff[2 , 1] 1pff[ , ]
2 2

in

i
i

d
n

n dn d n
=

=
=

− +
= + ∑

. (53) 

This can be plotted also, this time with dimension on the horizontal axis in Figure 79. One can see how for 

increasing dimension the number of function calls plateaus in a manner analogous to how the number of 

comparisons plateaus. 
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Figure 79: Analytical estimate of number of routine calls for Pareto algorithm as a function of problem size 

and dimension 

The estimated number of function calls differs from the experimentally observed results, in that the analytic 

result overestimates the number of function calls. Again, coefficient multipliers can be determined to fit the 

pff[ ] functions to the data, as listed in Appendix A. 

 

The functions for determining the amount of data passed in the Marry algorithm, mdf[ ] and in the Pareto 

algorithm, pdf[ ] are calculated in a similar manner: 
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1log

2

log

2

mdf[2, ] 2
mdf[ , 2]

mdf[2 , 1]mdf[ , ] log
2

pdf[2, ] 2
pdf[ , 2]

mff[2 , 1]pdf[ , ] log
2

in

i
i

in

i
i

d
n n

dn d n n n

d
n n

dn d n n n

−

=

=

=
=

−
= +

=
=

−
= +

∑

∑

. (54) 

The coefficients for each function are in Appendix A. The plot for the pdf[ ] function is shown in Figure 

80. 
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Figure 80: total amount of data passed to subroutines as a function of dimension and data size 

The total time τ to run the DC and Marry algorithms, respectively, are then estimated to be 

 
mff[ , ] mdf[ , ] mbf[ , ]
pff[ , ] pdf[ , ] pbf[ , ]

mDC S D C

pDC S D C

k n d k n d k n d
k n d k n d k n d

τ
τ

= × + × + ×

= × + × + ×
 (55) 

The values for Sk , Dk and Ck will vary from one environment to another, both in their relative and absolute 

values. One must experimentally determine them for the best results. Using the Sun Java compiler on a 

Windows XP platform resulted in relative values between the parameters of: 

 
1.2
1
1

S

D

C

k
k
k

=

=
=

.  

Although the values of the Dk and Ck parameters will not be exactly the same for the SC and DC 

algorithms, they are approximately similar. Fixing them to be the same, one can plot the run times for the 

two types of algorithm to identify the break points (see Figure 81). 
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Figure 81: SC estimated run time and DC estimated run time for varying dimension 

 

6.5.2 Variation of Number of Comparisons with Percentage of Points 
Nondominated 

Experiments show that the relationship between the number of comparisons and the percentage of points 

that are nondominated is approximately linear. This holds for each of the three algorithms for generating 

random lattices. Figure 82 shows this approximately linear relationship, with individual plots for problems 

of dimensions 2 through 6. Note that the lines for dimension 5 and 6 overlay each other. This corresponds 

to the flat range in the curve of Figure 72, where the dimension has reached the limiting point such that the 

infinite dimension result holds. 

 
Figure 82: For problem size of 1000 points, the number of comparisons as a function of dimension and of 

the number of nondominated points 

This trend holds for larger data sets. Figure 83 shows a data set of size 10,000 and dimension 4. 
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Figure 83: Number of comparisons for 10,000 points and varying nondominated points, d=4 

An approximation, then, for the number of comparisons needed in the DC algorithm is 

 4 pbf[ , ] spp[ , ]
5

p n pn d n d
n n

− + 
 

 (56) 

where p is the number of nondominated points, and the function spp[n,d] is defined to compute the number 

of comparisons required to work through a data set of size n , dimension d , and only one point 

nondominated. The 4/5 is the approximate fractional version of .78.  

 

The analytical estimate of the spp[ ] function proves to be very sensitive to assumptions about the 

distribution of the data. The two limiting cases are (1) that all points are otherwise nondominated if the 

single dominant point is removed, and (2) that the data has the form {{1,…,1},…,{N,…,N}} so  that every 

subset of the data has a single dominant point. The expression for the first case takes the form 

 
spp1[ , ] spp1 , pbf ,

2 2 2
spp1[2, ] 1

n n nn d d d

d

   = + +      
=

 (57) 

By observation, it can be seen that spp1[ ] will be more than one half the value for pbf[ ]. 

 

Assuming that the data is randomly distributed independently in each of the dimensions, one can compute 

the probability that a data set would arise that has a single nondominated point, and this probability proves 

to be very small. The probability for a data set of size N and dimension d equals 

 
11 d

N

−
 
 
 

. (58) 

For a data set of 100 points and three dimensions, the probability of a randomly selected distribution having 

only one Pareto point is 1 in 10,000. More likely, the distribution of data for a data set with one dominant 

point would show correlation between each of the dimensions. The assumptions made in Eq. (57) err to the 
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other side, in that except for the single dominant point the other points are inversely correlated. Therefore 

the spp1[ ] model most likely overestimates typical data sets. 

 

Looking at the second case where the dimensions are exactly correlated with each other, one can derive the 

recursive relationship 

 
spp 2[ , ] 2spp 2 , 1

2
spp 2[2, ] 1

nn d d

d

 = +  
=

 (59) 

which simplifies to the closed-form expression 

 
spp 2[ , ] 1n d n

n
= −
�

. (60) 

The assumptions implicit in Eq. (59) are more realistic than those made for Eq. (57), and so spp2[ ] is a 

better candidate function for spp[ ]. Note that the data sets used for generating Figure 82 and Figure 83 are 

intermediate in their distribution form, as can be seen in Figure 84. This results in experimental run times 

well above the estimates made using spp2[ ]. 
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Figure 84: Data set with single Pareto point, as generated by the RDP algorithm 

Therefore the final form of estimator for the run time of data sets with N points of which p are Pareto is 

 4 pbf[ , ] ( )
5

p n d n p
n

 + − 
 

, (61) 

with the caveat that the actual run time experienced depends heavily on the structure of the data. 
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6.6 The Dependence of DC Algorithm Performance on the Ordering of 

Dimensions 

Interestingly, it is possible to get vastly different performance out of two data sets that both are constituted 

of only nondominated points. Look at the following data set of 6 dimensions: 

 

{ }
{ }

{ }

1,1,1,1,1,1000
2,2,2,2, 2,999

1000, ,1

 
 
 
 
 
  

#
"

 (62) 

The number of comparisons needed to execute the algorithm is 11,207. Conversely, look at this data set, 

identical to the previous except for permuting the order of the columns: 

 

{ }
{ }

{ }

1000,1,1,1,1,1
999, 2, 2, 2, 2,2

1, ,1000

 
 
 
 
 
  

#
"

 (63) 

The number of comparisons for this data set is only 536, which is less than the number of points in the 

problem. Also, this is much less than the set in Eq. (62), with the exact same number of Pareto points, by a 

factor of 20. The reason for the improved performance against the data set lies in the marriage step of the 

algorithm. For the second data set, upon entry into the marriage step, the two sets 1Y and 2X will be empty, 

and the algorithm stops at that point. For the first data set, during the marriage steps the sets 1Y and 2X will 

be occupied, and the sets 2Y and 1X will be empty until the 5th dimension is reached. This results in the large 

increase in the number of comparisons. 

 

In order to overcome this lack of determinism and disparity in run time, the algorithm can be modified to 

randomly choose the next dimension (column of data) upon which to split. The revised, randomized 

versions of the DC and Marry algorithms are shown with changes in the algorithm highlighted in bold and 

italics. 
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Algorithm RandomDC Given a set Z of points in a d -dimensional space, find the nondominated points 

that are in the set. 

RDC-1 [If dimension of data is 2, call L2D on data and return results]  

RDC-2 [If size of problem is below limit, call SC on data and return results] 

RDC-3 [Else divide into two problems of equal size] Split Z into two sets of points X and Y on the 

median element of a randomly chosen column. 

RDC-4 [Call DC on subproblems] Determine ( )RDNC=XX X and ( )RDNC=YY Y  

RDC-5 [Reduce dimension] Drop the chosen columns of XX  and YY to form XXX and YYY  

RDC-6 [Call MARRY to cull remaining dominated points in the inferior set] Determine 

' MARRY( , )=XXX XXX YYY . 

RDC-7 [return the results] Return '∪YYY XXX . 

 

Similarly, the MARRY[ ] algorithm is modified as follows. 

 

Algorithm RandomMarry  

RMARRY-1 [If data dimension is 2D, call MARRY2D and return results]  

RMARRY-2 [If size of problem is below limit, call MARRYDIRECT on data and return results] 

RMARRY-3 [Else divide into two problems of equal size, and recursively call MARRY] Choose a cut 

plane based on a randomly chosen column, and so that 1 1 2 2+ = +X Y X Y . 

Call 1 1 1' RMARRY( , )=X X Y and 2 2 2' RMARRY( , )=X X Y . 

RMARRY-4 [Now drop a dimension, and recursively call MARRY] 

Drop the chosen columns of 2 'X and 1Y to form 2 'XX and 1YY and 

call 2 2 1'' RMARRY( , )=X XX YY . 

RMARRY-5 [Form union of results and return] Return 1 2' ''∪X X . 

 

The other supporting algorithms remain unchanged. The results of randomizing the algorithm can be shown 

against the first data set in Eq. (62), as shown in Figure 85. While there is still significant variance in the 

number of comparisons required to complete the algorithm, the difference between best and worst case is 

much less than a factor of 20. 
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Figure 85: Performance of the RandomDC algorithm with 200 runs 

The disparity in run times for the deterministic algorithm suggests that prior analysis of the data could 

result in an optimum choice of columns to cut on. The approach would be to determine, for each possible 

plane in the d-dimensional problem, the correlation coefficient of the data. Then choose the plane that has 

the correlation coefficient closest to -1, and use the two axes that form the plane as the first two columns in 

the DC algorithm. This is not explored further in the thesis, instead remaining as future possible research, 

discussed in the final chapter. Meanwhile, in the next chapter the hybrid algorithm is introduced next. 
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CHAPTER 7 
 

Hybrid DC Algorithm 

 

This chapter develops the hybrid divide & conquer (HDC) algorithm that combines aspects of both the SC 

algorithm and the DC algorithm. The first motivation in assembling the hybrid algorithm is that, while the 

DC algorithm is asymptotically more efficient than the SC algorithm, it also has a larger computational 

overhead, and so for smaller problem sizes it is better to switch to the simpler algorithm. The second 

motivation is that initial analysis of the data can indicate whether to first use a pass of the SC algorithm to 

efficiently eliminate from consideration a large number of points at the outset, then switch to the DC 

algorithm if warranted. 

 

In the hybrid algorithm, the basic flow is to 

1. Immediately remove all points that are guaranteed dominated; 

2. Apply the SC algorithm if there are points guaranteed to dominate more than some cut off limit; 

3. Apply DC algorithm to remaining points; 

4. At each branching of the DC algorithm, if the problem goes below a certain size, switch to the 

brute force algorithm, either SC or MarryDirect. 

Each of these is described in the following sections. 

7.1 Immediately Remove All Points Guaranteed Dominated 

Previously it was noted by using the LLH form that it is possible to identify points that must dominate 

others. This property is mirrored in that it is possible to identify points that must be dominated by others. In 

particular, for a problem of size N and dimension d , a point must be dominated if the sum of each of its 

dimensions is less than 1N d+ − if larger values are preferred, or greater than ( 1)( 1)d N− +  if smaller 

values are preferred. One can look at the expected percentage of points that meet this criteria as a function 

of the dimension of the problem. This percentage is approximately equal to the volume of the portion of a 

hyper lattice that satisfies the property that the sum of each point’s dimensions is less than 1N d+ − , which 

is itself approximately equal to the ratio of the volume of a right simplex of dimension d and unit edge 

length to a hypercube of dimension d and unit edge length. This ratio is 1/ !d . Figure 86 shows the 

experimental results based on a data set of 10,000N =  and plot of the function 1/ !d together. 
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Figure 86: Fraction of points guaranteed dominated as a function of dimension (points) and the function 

1/d! (line) 

Although Figure 86 shows that the likelihood for finding points that satisfies this property goes down 

rapidly with increasing dimensionality of the data, even for high dimensional data it still merits a test on the 

chance that the data has structure, especially due to the low computational cost of implementing it. 

 

7.2 Breakpoint for Switching to Simpler Algorithm 

To determine the breakpoint for switching to a simpler algorithm, one must first model the operating time 

of the algorithm. Three prime contributors to the algorithm run time are considered. The first is the 

overhead time of starting and ending a subroutine 1f fτ = × , where f is a measure of the time to instantiate 

a function call. The second is the time that scales linearly with the amount of data passed to a 

subroutine, h h nτ = × , where h is a scaling factor for internal data handling and linear sorting. The third is 

the time that scales proportional to the number of comparisons, #comparisons,c cτ = × where c is a scaling 

factor for comparisons. The values for f , h and c will vary from one environment to another, both in their 

relative and absolute values. One must experimentally determine them for the best results. Using the Sun 

Java compiler on a Windows XP platform resulted in relative values between the parameters of: 

 
1.2
1
1

f
h
c

=
=
=

  

In building the models for identifying the breakpoint, the worst case scenario of all points Pareto will be 

used. This is justified first by the fact that the hybrid algorithm will first run a Brute Force pass and remove 

the majority of points dominated, resulting in a data set with a high proportion of points nondominated. 

Second, the relationship between number of comparisons and proportion of points nondominated is 
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reasonably linear for both the DC and SC algorithms for proportions close to one. For the DC algorithm, 

the balanced case developed in Chapter 6 is used as the model. 

 

Starting with the Marry algorithm with infinite dimensional data, define the function bfm[ ] (Brute Force 

Marry) to compute the run time for the Brute Force algorithm: 

 
2

bfm[ ]
4
nn c hn f= + + . (64) 

 The 2 / 4n term is predicated on the Marry algorithm having two sets of data input of / 2n . If we first 

divide once, then run the brute force algorithm on the two subproblems, and the Brute Force algorithm on 

the marrying of the results of the subproblems (dcbfm[ ] = DC Brute Force Marry) we get a run time 

estimate of 

 

( )2

2

/ 2
dcbfm[ ] 3

4 2

3 5 4
16 2

n nn c h f hn f

c hn n f

 
 = × + + + +
 
 

= + +

. 

The goal is to identify the point at which these two infinite dimension run time estimates are equivalent. So 

solving for the equation bfm[ ] dcbfm[ ]n n= results in a quadratic equation in n that resolves to 

 
( )24 3 3 9

M

h cf h
n

c∞

+ +
= . (65) 

Replacing the scaling values with their numerical estimates gives 26Mn ∞ � . 

 

The three dimensional case can be solved similarly. While the brute force time remains the same, the time 

for running a single iteration of the divide first gives 

 2

dcbfm[ ,3] 2 bfm[ / 2,3] bfm[ / 2, 2]

(2 ) 4 .
8

n n n
c n h c n h f c

= +

= + + + + −
 (66) 

This change is due to the fact that bfm[ / 2,2]n  runs in linear time. Solving for the breakpoint for the 3D 

marry case leads to 

 

2

3

1 54 ( 3 )
2 2

M

chc h c c f h
n

c

 
+ + + + +  

 = , (67) 

or replacing the scaling coefficients with their numerical values gives 3 18Mn � . So for data sets of size less 

than 18 points and of dimension equal to 3, one should execute the Brute Force algorithm. 

 

To look at the 4D case, one has two choices of possible methods to compute the run time, both shown here. 
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dcbfm[ , 4] 2 bfm[ / 2] dcbfm[ / 2,3]
dcbfm[ , 4] 3bfm[ / 2]

n n n
n n

= +
=

 (68) 

The top option uses the 3D version of the bfm[ ] function for the dimension reduction step, while the 

bottom uses the brute force option for the dimension reduction step, making it identical to the infinite 

dimension case. 

 

Since the dcbfm[n,4] function’s breakpoint will be between the 3D and the infinite dimension case, then in 

the top option the value of / 2n is guaranteed to be less than 26/2=13, which is itself less than the 

breakpoint for the 3D function, and so the bottom option dominates. The result is that for 4D problems and 

higher, the breakpoint to use is the infinite dimension value of 26. For 3D, a value of 18 should be used. 

 

For the DC algorithm, the 3D case is considered first. The Brute Force algorithm (bfp[n] = Brute Force 

Pareto) results in a run time of 

 
2

bfp[ ]
2

n nn c hn f−
= + + , (69) 

while the approach that has a single divide stage results in an estimate for the function dcbfp[n] (DC then 

Brute Force Pareto) 

 
[ ]

2

dcbfp[ ,3] 2 bfp / 2 bfm[ , 2]

3 4 .
4 2

n n n

c cn h n f c

= +

 = + + + − 
 

 (70) 

The breakpoint is the value of n where the two functions are equivalent. Solving the equations gives 

 
( )2

3

2 2 3 4 4
13P

c h cf ch h
n

c

+ + + +
= � . (71) 

So for the 3D case, if the data set is less than 13, the SC algorithm should be run. 

 

The infinite dimension case is more complicated. At first glance, the approach would be to compare the 

brute force run time bfp[ ]n with a divided approach dcbfp[ ] 2 bfp[ / 2] bfm[ ]n n n= + . However, when 

comparing the two it turns out that the bfp[ ]n approach dominates for all values of n . The reason is that 

the bfm[ ]n approach is suboptimal for the values of n considered. Instead, the bfm[ ]n function should be 

replaced with one that divides at least once, but possibly more times. Define the following functions for 

computing various run times for the Marry algorithm: 

 
dcbfm2[ ] 3dcbfm[ / 2]
dcbfm3[ ] 3dcbfm2[ / 2] .

n n hn f
n n hn f

= + +
= + +

 (72) 

Now the candidate run times to compare for the DC algorithm are 
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bfp[ ]
dcbfp[ ] 2 bfp[ / 2] bfm[ ]

dcbfp2[ ] 2 bfp[ / 2] dcbfm[ ]
dcbfp3[ ] 2 bfp[ / 2] dcbfm2[ ]
dcbfp4[ ] 2 bfp[ / 2] dcbfm3[ ] .

n
n n n hn f
n n n hn f
n n n hn f
n n n hn f

= + + +
= + + +
= + + +
= + + +

 (73) 

Plotting the difference between each of these (using the scaling coefficient values provided above) and the 

value of bfp[ ]n over varying n shows, for each one, at what point the function becomes preferred to the 

strictly brute force approach. Candidate breakpoints are where the X-axis is crossed (Figure 87). The figure 

indicates that the dcbfp3[n] function has the lowest breakpoint, since its point of crossing the X-axis is 

closest to the origin. Setting bfp[ ] dcbfp3[ ]n n= gives a breakpoint of 55Pn ∞ � , so for the limiting infinite 

dimensional case one would use the SC algorithm if the data set has fewer than 55 points. 
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Figure 87: Comparison of ∆ run times for differing numbers of divisions of the Marry algorithm 

For the 4D case with the DC algorithm, a similar process of comparing differing amounts of dividing in the 

Marry portion of the algorithm leads to Figure 88, with a calculated value of 4 33Pn � . 
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Figure 88: Comparison of ∆ run times for the 4D case 

For the 5D case, we know that the value of 5Pn must be between the value for the 4D case of 33 and the 

limiting infinite dimension case of 55. Writing 

 dcbfp[ ,5] 2 bfp[ / 2] marry[ ,4]n n n hn f= + + +  (74) 
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the question is, how to implement the marry[ ,4]n function? Since the value of n will be greater than 26, the 

breakpoint for the 4D marry algorithm, we know it will divide itself at least once, and so 

 marry[ , 4] 2 bfm[ / 2] marry[ / 2,3]n n n hn f= + + + . (75) 

The bfm[ / 2]n terms are dominant since we know that / 2 55 / 2 27n < � , which is close enough to the 

breakpoint of 26 to assume the bfm procedure will have the same run time as one that might divide again. 

As for the marry[ / 2,3]n term, since the divide point for the 3D marry algorithm is 18, and we know 

that16.5 / 2 27.5n< < , the marry term will involve another divide, so that 

 marry[ / 2,3] 2 bfm[ / 4] marry[ / 4,2]n n n hn c= + + + . (76) 

The marry[ / 4, 2]n term will use the linear algorithm, and so the full run time estimate of the 

dcbfp[ ,5]n algorithm is 

 213 21dcbfp[ ,5] 10
32 4

c h cn n n f c− = + + − 
 

. (77) 

Solving for bfp[ ] dcbfp[ ,5]n n= and using the coefficient values give a result of 5 50Pn = . For higher 

dimensions than 5, the infinite dimension value for the breakpoint should be used. 

 

To summarize, Table 12 shows the breakpoints for the Marry and the DC algorithms for the varying 

dimensions.  

Table 12: Breakpoints for Marry and DC algorithms 

Dimension Marry DC 

3 18 13 

4 26 33 

5 26 50 

6+ 26 55 

 

Experimental results indicate that using the hybrid algorithm results in significant savings in total run time. 

Figure 91 shows results for 6-dimensional data of varying size. 

 

These are for the total number of points in the data set, recalling that the relationships used to create the 

table assume that all points are Pareto. The values for breakpoints should approximately hold even if only 

subsets of the points are Pareto, since the relationship of comparisons to percentage of points Pareto are 

approximately linear for both the SC and DC algorithms. 
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Figure 89: Comparison of hybrid and non-hybrid algorithm for 6Dcase 

The percent reduction in run time is shown in Figure 90. The reduction appears to approach a value of 

approximately 30%. 
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Figure 90: Percent reduction in run time for 6D data, varying data set sizes 

Fixing the size of the data set at 600 points and varying the dimension provides the graph shown in Figure 

91. 
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Figure 91: Comparison of run times of hybrid and nonhybrid algorithms for problem size of 600 and 

varying dimension 

The corresponding percent reduction is shown in Figure 92 for each dimension. 
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Figure 92: Percent reduction in run time of hybrid with respect to nonhybrid algorithm for problem size of 

600 and varying dimension 

7.3 First Pass Trade 

The last relationship to build is for the tradeoff between either a single pass of the SC algorithm followed 

by the DC algorithm, or directly going to the DC algorithm. The tradeoff between these two occurs when 

the run time for a single pass of the SC algorithm is less than the run time expected to be saved by its 

execution.  

 

The SC algorithm takes 1n − comparisons for a single pass through data of size n. If we indicate the 

number of points to be removed as ∆ , then we can estimate the number of comparisons required by running 

the DC algorithm with a full data set versus running with a data set of n − ∆ , and if the difference is greater 

than the cost of a single pass through the SC algorithm, then the single pass is warranted. To compute this 

breakpoint, define a DC run time estimator to be 
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 ( )pdc[ , ] 0.66 0.73pff[ , ] 0.77 pdf[ , ] 0.78pbf[ , ]n d n d n d n d= + + , (78) 

where the coefficients to the estimates for the number of function calls, data passed, and comparisons are 

derived by using 1.2Sk = and 1d Ck k= = . The multipliers to each of the functions are taken from the 

Appendix A, while the leading .66 is due to the application of the mixed DC and Brute Force algorithm, 

which is developed in the previous section. Since the relationship of the run time with respect to the 

number of Pareto points is approximately linear, the number of comparisons that would be avoided is 

approximately 

 pdc[ , ]C n d
n
∆

=  (79) 

Since it will cost one function call and 1n − comparisons and 1n − data passed to remove ∆ points, we can 

solve for ∆ to get 

 2( 1)
pdc[ , ]

n n
n d
−

∆ =  (80) 

The minimum value for ∆ is ( ) 1n S d∆ = − + −z . Replacing ∆ in Eqn. (80) results in the inequality that 

determines whether or not to perform the single pass, where if the inequality holds true, a single pass is 

merited: 

 2( 1)( ) 1
pdc[ , ]

n nS n d
n d
−

≤ − + −z . (81) 

Figure 93 shows the break-even point as a function of data set size and dimension. So, for example, with 

4d = and 8000n = , the break-even point is approximately 150. 
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Figure 93: Plot of the break-even point for varying data size and dimension, above which one should first 

run the SC algorithm 

Figure 94 shows the same results but with dimension on the X axis. 
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Figure 94: Break-even point as a function of dimension and data set size 

Figure 95 shows results of the DC algorithm alone, the hybrid algorithm without using a single pass of SC, 

and the full hybrid algorithm using a single pass. All runs were with 400 points, of which only 5 were 

Pareto. The horizontal axis is a data dispersion factor, which is one of the inputs to the RDP algorithm used 

to generate the test data. Recall from Section 4.3 that as the dispersion factor grows larger, that probability 

that a dominated point is dominated by more than one point increases, and for very high dispersions each 

Pareto point dominates all dominated points. Note the independence of the DC and the hybrid to this factor. 
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Figure 95: Comparison of DC, hybrid with single pass of SC, and hybrid with single pass of SC, for 5D 
data set of 400 points, only 5 points Pareto. The horizontal axis correlates to the number of points each 

Pareto points dominates, with more points as you move right on the axis. 

Figure 96 shows a comparison between the three algorithms for a data set of 5D, with a ratio of 1/20 of the 

points Pareto, with a high data dispersion value, and varying numbers of points in the data. 
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Figure 96: Varying the number of points, for 5D data, 1/20 of points dominant, high dispersion of data 

Figure 97 shows a 5D data set with 500 points, high dispersion, and varying number of Pareto points. 

Interestingly, the hybrid with one pass of SC performs better for a significantly wider range of possible 

values than would be predicted by the analytical model, indicating that additional effects are at work, 

discussed below. 
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Figure 97: 5D data set with 500 points, varying number of dominating points, high dispersion in data 

Figure 98 is a repeat of Figure 97, but with lower dispersion. Again, for all but the data sets with almost all 

points Pareto, the first pass of the SC algorithm is merited. 
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Figure 98: 5D data set with 500 points, varying number of dominating points, low dispersion in data 

While the rationale for this unexpected performance is not investigated in detail, a cursory examination of 

the data sets as the algorithm executes suggests that a single pass of the SC algorithm shapes the data in 

such a way that the DC algorithm performs especially well. If the data is initially in the shape of a 

hypersphere or hypercube, then a single pass of the SC algorithm can be expected to remove a center core 

of points, leaving the remaining points distributed in a hypertoroid. This shape possibly lends itself to the 

DC algorithm by allowing it to avoid the comparison of points that are on opposite sides of the toroid. 

7.4 Full Description of Hybrid algorithm 

The hybrid algorithm is presented here in three parts. The first is the HYBRID algorithm itself, which then 

serves as a wrapper for the HYBRID_DC algorithm and the HYBRID_MARRY algorithm. 

 

Algorithm HYBRID Given a set Z of points in a d -dimensional space, find the nondominated points that 

are in the set. 

HYBRID-1 [If dimension of data is 2, call LC1 on data and return results]  

HYBRID -2 [Remove all points guaranteed dominated] Test each point, if the sum of its 

elements are greater than ( 1)( 1)d N− + delete the point. 

HYBRID -3 [Test to determine single pass of the cull algorithm] Define S as the sum of each of 

a point’s elements, and maxS as the maximum S from among all points. Then if, 

*( )( 1) ( , ) ( ( ) , )S D C pDC pDCk k k N n d n S d dτ τ+ + − < − − +z do one pass of the SC 

algorithm. 

HYBRID - 4 [Call HYBRID_DC] Call the hybrid DC algorithm. 

HYBRID - 5 [Return the results] Return. 

 

The HYBRID_DC algorithm receives data of at least 3 dimensions. 
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Algorithm HYBRID_DC Given a set Z of points in a 3-dimensional or greater space, find the 

nondominated points that are in the set. 

HYBRID_DC - 1 [Call the HYBRID_DC or SC algorithm] Chose the HYBRID_DC or the SC 

algorithm based on which has a lower value of its estimated run time. If 

HYBRID_DC, split the data as per the DC algorithm and call recursively. 

HYBRID_DC - 2 [Call HYBRID_MARRY to cull remaining dominated points in the inferior set] 

Call the HYBRID MARRY algorithm on the remaining data. 

HYBRID_DC - 3 [Return the results] Return. 

 

The HYBRID_MARRY algorithm receives data of at least 2 dimensions. 

 

Algorithm HYBRID_MARRY 

HYBRID_MARRY - 1 [Use linear algorithm if 2D problem] If problem is of dimension 2, use 

MARRY2D algorithm. 

HYBRID_MARRY - 1 [Call the HYBRID_MARRY or MD algorithm] Chose the HYBRID_MARRY 

or the MD algorithm based on which has a lower value of its estimated run 

time. If HYBRID_MARRY, split the data as per the MARRY algorithm and 

call recursively. 

HYBRID_MARRY - 3 [Return the results] Return 
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CHAPTER 8 
 

Test of Algorithm against Satellite Model Data 

 

While the algorithms developed in the thesis have been comprehensively tested using random test data, the 

test data is by nature of a particular form that is derived from the algorithm to generate it, and so the 

possibility exists that the algorithm’s performance is tied to the structure of the data. A concern is that real 

world test data that has a different structure than the test data may cause the algorithms to perform 

differently. Therefore, this chapter exercises the model created in Chapter 2 to generate a single data set of 

10,000 sample points in the 8D space. The inputs, listed in Table 13, were randomly sampled via a 

distribution uniformly spread between their upper and lower bounds. The input and resulting output values 

were recorded to form the data set. This data set is then decomposed into multiple data sets of varying 

numbers of dimensions, resulting in a total of 247 distinct data sets available for testing the hybrid 

algorithm. The preference for each dimension is also noted in the table. 

 

The experiments were run against the entire 8D data set, and also against all possible choices of dimensions 

with at least 2 dimensions. For the original data set of dimension d there are a total of 2 1d d− − possible 

choices of dimensions to pick in creating subsets of the problem (neglect the picks that have a single 

dimension, and also the empty set.) For d=8, there are 247 possible combinations. Of those there are 28 2D 

combinations, 56 3D combinations, 70 4D combinations, 56 5D combinations, 28 6D combinations, 8 7D 

combinations, and just one 8D combination (i.e., the whole data set). 

 

Each of these data sets are run through the hybrid algorithm, and compared with the analytical predictions. 

The parameters are listed in Table 13 along with whether they were to be maximized or minimized. 
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Table 13: List of dimensions from satellite test problem 

Parameter In or out Preference Range of Values 

Propellant mass 

(PropMass) 

Input Minimize 500 – 3000 kg 

Payload mass (payload) Input Maximize 300 – 1,100 kg 

Orbit radius (radius) Input Minimize 4000 – 4,400 km 

Thrust (thrust) Input Minimize 20 – 1,000 Newtons 

Delta angle of burn (del) Calculated Minimize -1.18 – 0 Radians 

Velocity of trajectory 

(DV) 

Calculated Maximize 0 – 5,000 km/s 

Total mass (mass) Calculated Minimize 1,473 – 4,452 kg 

Total cost (cost) Calculated Minimize 1,400 – 10,600 

(dimensionless) 

 

 

An example of a projection of the 8D space into a 3D space is shown in Figure 99. Noting that DV is to be 

maximized and thrust and propellant mass are to be minimized, it can be observed that most of the points in 

this plot would be Pareto points. 
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Prop Mass

Thrust

 
Figure 99: Plot of Propellant mass, delta velocity, and thrust of the engine. Dimensions have been 

normalized and scaled for proportion 
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Figure 100 shows the full 8-by-8 scatter plot matrix of the data. The matrix is symmetric about the 

diagonal, with the diagonal plots just showing the variables plotted againsts themselves. Note the tight 

correlation between propellant mass and total mass, indicative of the fact that a spacecraft’s total mass is 

typically dominated by the propellant mass. ∆V correlates with propellant mass also, as expected. As cost 

and total mass are be definition correlated, cost then correlates with propellant mass and ∆V. The scatter 

matrix does not reflect the trends of design variables such as payload and radius on cost, as their effect is 

dwarfed by the effect of the mass variables. 
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Figure 100: Scatter matrix of the 8D data 

By decomposing the data set, a broad variation in dimensions and number of Pareto points is possible. 

Figure 101 shows the model-derived data in red and the analytical estimates of run time in blue for each 

dimension from 3 to 8. The hybrid algorithm with a first pass of the SC was used. The figure shows that for 

the 3D and 4D case the analytical model underestimates the total run time but that the analytical model is a 

good fit for higher dimensions. The underestimates for the lower dimensions is most probably a reflection 

of the sensitivity of the run time estimates to the structure of the data, as discussed in Section 6.5.2. 
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Figure 101: Comparison of data derived from the model (red with diamonds) and analytical estimates of 

run time (blue with stars) for dimensions ranging from 3 to 8 

As there was only one data set for the 8D case, the preference structure was modified to allow for an 

additional 27 8D data sets. For the data set in Figure 101, the columns of data were multiplied by 1, -1, 1, 1, 

1, 1 ,-1 and 1 respectively, in order to reflect whether the attribute was to be minimized or maximized. In 

order to generate new 8D data sets, all possible permutations of preferences {1, 1, -1, -1, -1, -1, -1, -1} and 

{1, -1, -1, -1, -1, -1, -1, -1}, which maximizes either two parameters or one parameter, respectively, were 

applied to the original 8D data set prior to determining the number of Pareto points and the run time. The 

results are shown in Figure 102. 
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Figure 102: Number of Pareto points versus run time for 8D data with 10,000 points, derived from the 

satellite model. Experimental results are marked with diamonds; analytical is blue line with stars 

Comparing the performance of the algorithm against both the satellite model derived data and the test data 

shows that the run time estimates derived from the test data are applicable to other data sets. One difference 

is the dispersion in the run times for the satellite data is much greater than from the test data. Since many of 

the parameters of the satellite model are directly correlated, e.g., propellant mass, total mass and cost, we 

are probably seeing the effects that the ordering of the dimensions in the divide & conquer steps has on 
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total performance, as per Section 6.6. This would lead to shorter than estimated run times. Figure 103 

shows the results of experimentally determining the effect of permuting the columns of the 8D data on the 

run time of the algorithm. In this experiment, 40 different permutations of the columns were selected at 

random from the 8! possible choices, and the hybrid algorithm was executed. The results show significant 

dispersion in the run times, quantified by Figure 103 as being greater than a factor of 2, and reinforce the 

point that column ordering has a significant effect on the efficiency of the algorithm. 
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Figure 103: Histogram showing the run times for the 8D spacecraft data, 10,000 points, 712 Pareto points, 

with the columns permuted in 40 different possible orderings 
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CHAPTER 9 
 

Conclusions and Future Research 

9.1 Conclusions 

The main goal in this research has been to develop a hybrid algorithm that would be efficient in terms of 

run time in identifying Pareto points from multi-dimensional data sets. This task was accomplished, 

resulting in an algorithm that demonstrates an average of 40% reduction in run time over a pure divide & 

conquer (DC) algorithm, and that can adapt to the data to operate most efficiently. The hybrid algorithm is 

analogous to hybrid algorithms for sorting, which for example often employ QuickSort for initial stages, 

switching to a less efficient but lighter weight algorithm for subproblems below a critical size. 

 

In developing the algorithm, analytical estimates of upper bounds on the expected worst case run times 

were developed for data sets where all points are Pareto. These upper bounds were shown to be typically 

125% of the actual run times of the algorithm against experimental data. The analytical estimates also show 

that for data sets of very high dimension or small number of points, the run time is bounded by the number 

of points in the data set only. This result is not obvious from the initial theoretical computational 

complexity for the DC algorithm of 2( log )dO n n− , which contains a dependence on the dimension. 

 

For data sets with all points Pareto, the ordering of the columns in the data was shown to have significant 

impact on the run time of the DC algorithm, possibly affecting it by orders of magnitude. This is in contrast 

to the Simple Cull (SC) algorithm, which has a deterministic run time for all points Pareto. 

 

For data sets with few points Pareto, the structure of the remaining dominated points strongly impacts the 

run time of the DC algorithm. This effect is mitigated in the hybrid algorithm by running a single pass of 

the SC algorithm first. 

 

While the experimental data used to validate the analytical models of run time resulted in fairly tight 

groupings of run time versus number of Pareto points, the data set generated from the satellite design model 

had much more dispersion. This suggests that more aggressive adaptation in the algorithm to take 

advantage of structure in the data would be beneficial. 

 

Fast, efficient algorithms to identify the Pareto set are enabling technologies to the larger goal of trade 

space exploration. With these algorithms one can consider larger data sets of higher dimensionality, thereby 
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improving the a decision maker’s understanding of impact of requirements, constraints, and preferences on 

the trade space, ultimately resulting in a better product. 

9.2 Limitations 

An assumption underlying much of the development of the SC and DC algorithms in this thesis is that each 

element in the initial table T  was unique in its column, which may not be true if input or output values of a 

model are restricted to take one of a finite set of values. The transformation to LLH form, the ranking of 

points in the SC algorithm, and the fundamental operation of the DC algorithms were all predicated on this 

assumption. 

 

Another assumption made is that all data is transformed to LLH form. This is clearly justified for the use of 

the algorithm to support visualization, as one is operating against a fixed data set throughout, so the penalty 

for transforming to the LLH form is offset by the savings in future sorting operations and in the Pareto 

algorithm. For problem domains where each data set is only operated on once, the gains may not 

necessarily offset the up-front computation. While the DC algorithm and the hybrid algorithm without the 

first pass do not depend on the LLH form, identifying the point to use for a single first pass in the hybrid 

does. Also, the analytical estimates of run times would no longer hold true if each divide step of the DC 

algorithm required a comparison sort.  

9.3 Future Research 

There are a number of future research topics stemming from this thesis, which would either complete the 

work done here or would represent new thrusts that are motivated by this work. They are 

1. Adaptive ordering of dimensions in the hybrid algorithm 

2. Allowing for duplicate elements in the columns of tables 

3. Defining multiple levels of  dominance for visualization 

Each of these is elaborated upon in the following sections. 

9.3.1 Adaptive Ordering Of Dimensions in the Hybrid Algorithm 

As introduced in Section 6.6 and seen in Chapter 8, the ordering of columns in the table can change the run 

time of the DC algorithm by orders of magnitude. Section 6.6 introduced a method to mitigate this effect, 

by randomly choosing the next column/dimension on which to operate. This random approach is 

reminiscent of a mini-max approach to decision making in that it minimizes the worst expected run time 

that the algorithm could experience, rather than minimize the run time. The random selection of columns 

not only minimizes the worst expected run time but also maximizes the minimum expected run time. An 

ideal solution would be to take advantage of the disparity in run times between different column orderings, 

and order them so as to minimize the run time. This section sketches out an approach to doing so. 
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Recall the previously introduced Figure 51, repeated here for reference as Figure 104. In the figure, the 

lower left corner is the preferred direction. The figure represents a projection of a higher dimensional space 

onto a 2D space. These two dimensions will be the next two chosen in the MARRY algorithm for cutting. 

PY PX

1y
2y 2x

1x
 

Figure 104: Dividing of space in DC algorithm 

If the regions 1y or 2x are unoccupied as in the projection of points onto the plane as shown in Figure 104 

then the algorithm will terminate early, greatly reducing the number of comparisons required. Figure 105 

shows two different projections of a 5D data set onto a 2D plane. The first plot clearly has the X and Y 

points inversely correlated, and so would have regions 2x and 1y relatively empty. One would expect the 

Marry algorithm to perform well if these two dimensions are chosen as the first two to operate on. The 

second projection does not share this property, and the performance of the Marry algorithm, would suffer 

accordingly, even though both cases are with the same data. The key research question in support of 

adaptively selecting the ordering of the dimensions is how to most accurately analyze the best choice of 

dimensions to order on which to order, while minimizing extra computational time? 
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Figure 105: Two different 2D projections of a hypothetical 5D data set with some dimensions correlated 

and other not 

 

Assuming the table Z is of size N and dimension d , then there will be 2( ) / 2d d+ possible choices of 2D 

projections from which to choose. One possible approach that suggests itself is to compute the correlation 

coefficients for each of the possible projections, and then choose the one that most nearly approaches -1. A 
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negative to this approach is that it would require 2( ) / 2N d d+ multiplications to compute all of the 

coefficients. This could be mitigated by only taking a sample of the points, assuming that if randomly 

chosen then the correlation coefficients calculated from the samples would be sufficient on which to make 

a decision. The absolute values of the coefficients are not as important as their relative values. Another 

issue is that the correlation coefficient is skewed by points that lie in the upper left or lower right quadrant, 

when the key to algorithm efficiency is strictly based on which quadrants are occupied, not where they are 

occupied. 

 

Another approach would be to set up a parallel data structure where, for each point, its position would be 

either 1 or -1, reflecting whether it was in the upper or lower half of values within its column. Then one can 

compute the correlation coefficient. This approach would not skew the coefficient based on point position, 

and it also would have the advantage in that the multiplication step could be replaced by a more efficient 

comparison of the two values. Again, a statistically representative sample of the points could be used to 

reduce the time to compute the coefficients. 

 

Analysis and experiments would be needed to fix the number of samples of the data set to best estimate the 

points. An interesting issue is that, since the goal is to estimate the relative ordering of the coefficients 

rather than there absolute values, the sampling itself may need to be adaptive. For cases as in Figure 105 it 

would require relatively few points to establish that the first ordering clearly is better than the second, while 

for projections that are similar, many more samples might be needed to establish the best ordering, while 

the gains expected from a proper ordering would diminish. If no one coefficient is clearly dominating or if 

perhaps two are dominating but similar and three are clearly deficient, the algorithm for choosing 

dimensions would stop and randomly pick one of the two remaining projections. 

 

9.3.2 Allowing For Duplicate Elements in the Columns of Tables 

An assumption underlying much of the development of the SC and DC algorithms in this thesis is that in 

the initial table T , each element was unique in its column. The transformation to LLH form, the ranking of 

points in the SC algorithm, and the fundamental operation of the DC algorithms were all predicated on this 

assumption. This section discusses issues in relaxing the assumption, and sketches out methods for 

handling duplicate elements in the SC and DC algorithms. 

 

To provide an example for discussion, two tables are given. T (see Table 14) is a table of designs that has 

duplicate elements in the cost column, while Z (see Table 15) is the data transformed to LLH form, with the 

transform arbitrarily assigning an ordering within the cost column. To reflect the preference of more speed 

and range and less mass, diameter, length and cost, the values for speed and range are given in negative 

numbers. 
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Table 14: Design instances with duplicate elements in the cost column 

T  Speed ↑  Range ↑  Mass ↓  Diameter ↓  Length ↓  Cost ↓  

1t  -25 -13000 2000 13.2 230 1,000,000 

2t  -23.2 -12980 2050 15.0 231 1,000,000 

3t  -22.4 -12700 2543 13.1 229 1,200,000 

4t  -28.25 -14075 2100 14.7 215 950,000 

 

Note that design 1t  dominates 2t . In the conversion to LLH form, however, an arbitrary ranking is placed 

between the duplicates, and now 1z does not dominate 2z . This simple example shows that one cannot 

simply transform the table to LLH form and have the proper dominance relationships preserved. 

 

Table 15: Transformation to LLH form, with arbitrary ranking of duplicate items in cost column 

Z        

1z  2 2 1 2 3 3 

2z  3 3 2 4 4 2 

3z  4 4 4 1 2 4 

4z  1 1 3 3 1 1 

 

 

The key to modifying the process is to recognize that the data converted to LLH form is used for two 

different functions in the SC and DC algorithms: (1) it is used to order the points, and (2) it is used to 

compare the points. The key to allowing duplicate elements is to recognize the two different functions of 

the data and adjust accordingly. The recommended approach is to still transform the data to LLH form and 

use the LLH data for ordering the points, and to use either the original data or additionally modified LLH 

data with duplicate elements to compare the points. As the only way points are removed in either the SC or 

DC algorithms is through a direct comparison with another point, this will ensure that no nondominated 

point is inadvertently removed. The issue is to determine how the conversion to LLH form and how the SC 

and DC algorithms need to be modified to ensure that all dominated points are removed. There are three 

candidate approaches, enumerated as follows: 

1. Use LLH form to order points, but compare points using original data 
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2. Use a modified LLH form that allows for duplicate elements, to both order and compare points 

3. Use LLH form to order points, and use a modified LLH form with duplicate elements to compare 

points 

The advantage to the first approach is that it requires minimal modification to the existing algorithm and no 

additional storage. A disadvantage is that comparing real numbers is more time consuming than comparing 

integers. 

 

The advantage to the second approach is that no additional storage is required and that comparisons will be 

between integers. A disadvantage is that the DC algorithm may not perform optimally if, when dividing the 

data sets, the divide is imbalanced. 

 

The third approach has the advantage of simplicity of ordering and comparing, but it requires either 

additional storage for the modified LLH data or additional bookkeeping to track common elements. Both 

increase the complexity of the algorithm. 

 

While it appears that all three approaches applied to the SC and DC algorithms should result in algorithms 

that are correct, it remains to be rigorously proven. 

 

9.3.3 Defining Multiple Levels of Dominance for Visualization 

Since the current prime use of the algorithms developed here is to support multi-dimension visualization, 

issues that arise in the visualization reflect back on the algorithms. One of the issues is on identifying more 

points than those strictly considered nondominated, in order to “thicken” the boundary region of 

nondominated points or to identify points that are “almost nondominated”. Figure 106 shows the Pareto 

frontier (red points) for an 80 point, 2D data set. For this data set, down and left are preferred. One can see 

in looking at the figure that there are a number of other points that are very close to the frontier also, 

although the algorithm does not identify them as such. 
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Figure 106: Pareto frontier for 80 points 

An alternate approach, for example, would be to break points up into “tiers” of Pareto points (i.e., multiple 

Pareto fronts), where for example Figure 107 shows a plot with 70 points, down and left preferred, with 

three tiers of Pareto points. The red points are Pareto in the entire set. The blue points are Pareto in the set 

remaining if the red points are removed. The green points are Pareto if the red and blue points are first 

removed. Another candidate would be to show in the second tier points that only have one dominating 

point, and show in the third tier points that have two dominating points, etc. One can easily come up with 

additional candidate methods for showing both the Pareto points and points that are nearly Pareto. 

 
Figure 107: 70 points with three tiers of Pareto points 
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This problem is exactly analogous to the current problem in evolutionary computing, where researchers are 

attempting to develop efficient algorithms to identify multiple layers of Pareto frontiers, also known as 

Pareto sorting (Murata and Ishibuchi 1995; Zitzler and Thiele 1999; Knowles and Corne 2000; Zitzler et al. 

2000; Deb 2001; Deb et al. 2002; Jensen 2003). Whatever method is developed to mark additional points, it 

is likely that the SC and DC algorithms can be improved upon to best identify them. The methods to assign 

the tiers of Pareto points, and how to modify the SC and DC algorithms to best identify these points, are 

open research questions. 
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APPENDIX A 
 

Fitting Parameters for Estimators 
 

Table 16: Coefficients for estimating functions 

Dimension Pbf[ ] Pff[ ] Pdf[ ] Mbf[ ] Mff[ ] Mdf[ ]

3 1.05913 1.19093 1.03041 1.02115 0.634506 0.918568

4 0.872525 0.63957 0.798846 0.946639 0.603141 0.853297

5 0.70962 0.544582 0.698684 0.805111 0.57684 0.793526

6 0.657503 0.525402 0.687411 0.71493 0.544081 0.75109

7 0.659375 0.518626 0.696837 0.682871 0.499059 0.698144

8 0.681469 0.508409 0.690546 0.697301 0.508089 0.708953

9 0.710089 0.534579 0.7184 0.711502 0.506027 0.70492

10 0.736185 0.547895 0.730274 0.708196 0.50814 0.694486

11 0.75745 0.562509 0.744163 0.755914 0.546505 0.745668

12 0.772541 0.57927 0.758007 0.757405 0.550855 0.747881

13 0.774487 0.575436 0.76189 0.794202 0.57917 0.78029

14 0.795029 0.584329 0.771653 0.775273 0.560446 0.757071

15 0.750314 0.557616 0.734427 0.756452 0.530607 0.722296

16 0.81629 0.615247 0.797987 0.824969 0.596409 0.789224

17 0.819606 0.608744 0.79109 0.842754 0.605894 0.809232

18 0.808472 0.589733 0.778427 0.867312 0.619583 0.827767

19 0.833996 0.62287 0.805897 0.863022 0.63231 0.831596

20 0.822385 0.610228 0.797431 0.868603 0.62227 0.830964

Mean 0.779804 0.606443 0.766243 0.799645 0.567996 0.775832
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APPENDIX B 
 

Solving Recursions 
 

 

This section shows how to solve the recursions that appear throughout the thesis. The general form of the 

recursion is ( ) 2 ( / 2) ( )f n f n g n= + . This can be converted to a summation as follows: 

 

3 3 2 2 1 1 0 0

log 3 log 2 log 1 log
log 3 log 2 log 1 log

1 2 log 1 log

1 2 log 1 lo

( ) 2 ( / 2) ( )
4 ( / 4) 2 ( / 2) ( )
2 ( / 2 ) 2 ( / 2 ) 2 ( / 2 ) 2 ( / 2 )

(2 ) (2 ) (2 ) (2 )
2 2 2 2

(2 ) (2 ) (2 ) (2 )
2 2 2 2

n n n n
n n n n

n n

n

f n f n g n
f n g n g n
f n g n g n g n
n n n ng g g g

g g g gn

− − −
− − −

−

−

= +
= + +

= + + +

= + + +

= + + + +

#

" g

log

1

(2 )
2

n

in

i
i

gn
=

 
 
 

= ∑

 

A commonly occurring form for ( )g n is ( ) logdg n n n= for some {0,1, 2, }d ∈ … . This can be solved for in 

closed form. 

 
log log

1 1

(2 ) log (2 )
2

i d in n
d

i
i i

n n i
= =

=∑ ∑  

Using the result for the generalized summing of powers of integers (Jeffrey 2000), one can write as 

 
1log

1 3 5
2 4 6

1

log log 1 1 1log log log
1 3 51 2 2 4 6

q qn
d q q q

i

q q qn nn i n n B n n B n n B n n
q
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− − −

=

     
= + + + + +     +      

∑ "   

where iB are the Bernoulli numbers, and the series terminates at either log n or 2log n .  
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APPENDIX C 
 

Expressions for Comparisons, Function Calls, and Data Inputs 
 

The following figures show the expressions for the analytical estimates for number of comparisons pbf[ ] 

and mbf[ ], the analytical estimates for number of function calls pff[ ] and mff[ ], and the analytical 

estimates for amount of data passed ptf[ ] and mtf[ ].  

 

The Mathematica code for generating the analytical estimates of the run time for the Marry algorithm are in 

Figure 108. The code generates estimates up to a dimension of 20, but can be modified to generate 

estimates for any range. The code is exercised for d=5. 

 

In[9]:= mbf@n_,2D:= n−1;
mbf@2,d_D:= 1;

TableAmbf@n_,dD:= EvaluateA n 
ik12 + „

i=2

Log@2,nDik mbfA
2i

2
, d−1E
2i

y{y{E, 8d,3,20<E;
mbf@n,5D

Out[12]= n
ik 12 +

48Log@2D3− 54nLog@2D3+ 35nLog@2D2 Log@nD −6nLog@2D Log@nD2 + nLog@nD3
48nLog@2D3 y{  

Figure 108: Mathematica code for generating analytical estimate of number of comparisons for the Marry 
algorithm 

Note in the result for mbf[n,5] in Figure 108 the expression Log[2] appearing in the numerator and the 

denominator. This is because Mathematica converts all Base 2 logarithms such as 2log n into the equivalent 

form ln / ln 2n . In Mathematica Log[n] means the natural logarithm of n. To maintain consistency within 

this thesis and simplify presentation of the results below, Mathematica’s output has been modified so that 

log[n] (note the lower case ‘l’ in the function) indicates the logarithm Base 2 of n. 

 

Figure 109 shows the estimates for the Marry algorithm for dimensions 2 through 8. All logarithms are in 

Base 2. 
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Dimension mbf@n,dD
2 −1+ n
3 1− n

2
+ 1

2
nlog@nD

4 −1+ 5n
4

− 3
8
nlog@nD + 1

8
nlog@nD2

5 1− 5n
8

+ 35
48

nlog@nD − 1
8
nlog@nD2+ 1

48
nlog@nD3

6 −1+ 21n
16

− 97
192

nlog@nD + 83
384

nlog@nD2− 5
192

nlog@nD3 + 1
384

nlog@nD4
7 1− 21n

32
+ 1537nlog@nD

1920
− 47

256
nlog@nD2+ 11

256
nlog@nD3− 1

256
nlog@nD4+ nlog@nD5

3840

8 −1+ 85n
64

− 2087nlog@nD
3840

+ 181
720

nlog@nD2− 43nlog@nD3
1024

+ 59nlog@nD4
9216

− 7nlog@nD5
15360

+ nlog@nD6
46080  

Figure 109: Expresssions for mbf[ ] 

Figure 110 shows the code for generating the estimates of number of comparisons for the DC algorithm. 

Figure 111 shows pbf function for dimensions 2 through 8. 

In[51]:= pbf@n_, 2D:= n−1;
pbf@2,d_D:= 1;

TableApbf@n_, dD:= EvaluateA n 
ik12 + „

i=2

Log@2,nDik mbf@2i, d−1D
2i

y{y{E, 8d, 3,20<E;  
Figure 110: Mathematica code for generating analytical estimate of number of comparisons for the DC 

algorithm 

Dimension pbf@n,dD
2 −1+ n
3 1− n+ nlog@nD
4 −1+ n− 1

4
nlog@nD + 1

4
nlog@nD2

5 1− n+ 13
12

nlog@nD − 1
8
nlog@nD2+ 1

24
nlog@nD3

6 −1+ n− 9
32

nlog@nD + 59
192

nlog@nD2− 1
32

nlog@nD3+ 1
192

nlog@nD4
7 1− n+ 263

240
nlog@nD − 29

192
nlog@nD2+ 23

384
nlog@nD3 − 1

192
nlog@nD4+ nlog@nD5

1920

8 −1+ n− 55
192

nlog@nD + 3677nlog@nD2
11520

− 21
512

nlog@nD3+ 41nlog@nD4
4608

− nlog@nD5
1536

+ nlog@nD6
23040  

Figure 111: Expressions for pbf[ ] 

Figure 112 shows the code for generating the estimates of number of function calls for the Marry 

algorithm. Figure 113 shows mff function for dimensions 2 through 8. 

 

In[48]:= mff@n_, 2D:= 1;
mff@2,d_D:= 1;

TableAmff@n_, dD:= EvaluateA n
2

+n 
ik „

i=2

Log@2,nDik mffA
2i

2
, d−1E +1

2i

y{y{E, 8d, 3,20<E;  
Figure 112: Mathematica code for generating analytical estimate of number of function calls for the Marry 

algorithm 
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Dimension mff@n,dD
2 1
3 −2+ 3n

2

4 1− 3n
4

+ 3
4
nlog@nD

5 −2+ 15n
8

− 9
16

nlog@nD + 3
16

nlog@nD2
6 1− 15n

16
+ 35

32
nlog@nD − 3

16
nlog@nD2+ 1

32
nlog@nD3

7 −2+ 63n
32

− 97
128

nlog@nD + 83
256

nlog@nD2− 5
128

nlog@nD3 + 1
256

nlog@nD4
8 1− 63n

64
+ 1537nlog@nD

1280
− 141

512
nlog@nD2+ 33

512
nlog@nD3− 3

512
nlog@nD4+ nlog@nD5

2560  
Figure 113: Expressions for mff[ ] 

Figure 114 shows the code for generating the estimates of number of function calls for the DC algorithm. 

Figure 115 shows pff function for dimensions 2 through 8. 

 

In[45]:= pff@n_,2D:= 1;
pff@2, d_D:= 1;

TableApff@n_,dD:= EvaluateA n
2

+n 
ik „

i=2

Log@2,nDik mff@2i, d−1D+1
2i

y{y{E, 8d,3,20<E;  
Figure 114: Mathematica code for generating analytical estimate of number of function calls for the DC 

algorithm 

Dimension pff@n,dD
2 1
3 −2+ 3n

2

4 1− 3n
2

+ 3
2
nlog@nD

5 −2+ 3n
2

− 3
8
nlog@nD + 3

8
nlog@nD2

6 1− 3n
2

+ 13
8
nlog@nD − 3

16
nlog@nD2+ 1

16
nlog@nD3

7 −2+ 3n
2

− 27
64

nlog@nD + 59
128

nlog@nD2− 3
64

nlog@nD3 + 1
128

nlog@nD4
8 1− 3n

2
+ 263

160
nlog@nD − 29

128
nlog@nD2+ 23

256
nlog@nD3− 1

128
nlog@nD4+ nlog@nD5

1280  
Figure 115: Expressions for pff[ ] 

Figure 116 shows the code for generating the estimates of the amount of data passed in the Marry 

algorithm. Figure 117 shows pff function for dimensions 2 through 8. 
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In[42]:= mtf@n_,2D:= n;
mtf@2,d_D:= 2;

TableAmtf@n_,dD:= EvaluateA n 
ikLog@2,nD + „

i=2

Log@2,nDik mtfA
2i

2
, d−1E
2i

y{y{E, 8d,3,20<E;
 

Figure 116: Mathematica code for generating analytical estimates of the amount of data passed in the 
Marry algorithm 

Dimension mtf@n,dD
2 n
3 − n

2
+ 3

2
nlog@nD

4 n
4
+ 3

8
nlog@nD+ 3

8
nlog@nD2

5 − n
8
+ 17

16
nlog@nD + 1

16
nlog@nD3

6 n
16

+ 43
64

nlog@nD+ 35
128

nlog@nD2− 1
64

nlog@nD3+ 1
128

nlog@nD4
7 − n

32
+ 567

640
nlog@nD + 25

256
nlog@nD2 + 13

256
nlog@nD3− 1

256
nlog@nD4+ nlog@nD5

1280

8 n
64

+ 987nlog@nD
1280

+ 781nlog@nD2
3840

+ 3nlog@nD3
1024

+ 23nlog@nD4
3072

− 3nlog@nD5
5120

+ nlog@nD6
15360  

Figure 117: Expressions for mtf[ ] 

Figure 118 shows the code for generating the estimates of the amount of date passed in the DC algorithm. 

Figure 119 shows ptf function for dimensions 2 through 8. 

 

In[36]:= ptf@n_,2D:= n;
ptf@2,d_D:= 2;

TableAptf@n_,dD:= EvaluateA n 
ikLog@2,nD + „

i=2

Log@2,nDik mtf@2i,d−1D
2i

y{y{E, 8d, 3,20<E;  
Figure 118: Mathematica code for generating analytical estimates of the amount of data passed in the DC 

algorithm 

Dimension ptf@n,dD
2 n
3 −n+ 2nlog@nD
4 −n+ 5

4
nlog@nD + 3

4
nlog@nD2

5 −n+ 3
2
nlog@nD + 3

8
nlog@nD2+ 1

8
nlog@nD3

6 −n+ 45
32

nlog@nD + 35
64

nlog@nD2+ 1
32

nlog@nD3 + 1
64

nlog@nD4
7 −n+ 231

160
nlog@nD + 15

32
nlog@nD2+ 11

128
nlog@nD3 + 1

640
nlog@nD5

8 −n+ 457
320

nlog@nD + 1937nlog@nD2
3840

+ 29
512

nlog@nD3 + 17nlog@nD4
1536

− nlog@nD5
2560

+ nlog@nD6
7680  

Figure 119: Expressions for ptf[ ] 



VITA 

 

Dr. Michael A. Yukish 

 
Michael Yukish is the Head of the Manufacturing Product and Process Design Department at the 

Applied Research Laboratory of The Pennsylvania State University. He has been employed as a Research 

Assistant at ARL since 1993. The focus of his research at ARL is in the areas of multidisciplinary design 

optimization, simulation based design, and conceptual trade space exploration for complex systems. 

 

He received a B.S. in Physics from Old Dominion University in 1983, an M.S. in Mechanical 

Engineering from The Pennsylvania State University in 1997, and a Ph.D. in Mechanical Engineering from 

The Pennsylvania State University in 2004.  

 

From 1985 to 1992 Michael Yukish served on active duty in the United States Navy as a Naval 

Aviator. He has over 1800 flight hours in the E-2C Hawkeye and the T-2C Buckeye, and made multiple 

deployments to North Atlantic, the Mediterranean, and the Indian Ocean. He is now a Commander in the 

US Naval Reserve. 

 

 

 


