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Abstract- This paper describes the operation of an Evol-
utionary Algorithm (EA) for the creation of linear di-
gital VLSI circuit designs. The EA can produce hard-
ware designs from a behavioural description of a prob-
lem. The designs are based upon a library of high-level
components.

The EA performs a multi-objective search, using
models of the longest-path delay and the silicon area of
a design. These models are based upon the properties of
real-world components, implementable in a 0.18 micron
technology. The accuracy of these models is investigated.

Two important aspects of multi-objective evolution
are the population diversity, and the variability of the
results. Both of these areas are examined. The popula-
tion diversity is assessed in terms of conflict between the
objectives, and the robustness of the EA is experiment-
ally investigated.

1 Introduction

Evolutionary Algorithms [1, 2] are a class of stochastic al-
gorithms that can be used for the discovery of near-optimal
solutions to complex multi-modal problems. EAs make use
of a population of solutions, enabling the simultaneous dis-
covery of multiple solutions to a problem.

Multi-Objective Evolutionary Algorithms (MOEAs) [3]
attempt to optimise more than one objective simultaneously.
The results from such a system are a set of solutions, where
each solution makes a different compromise between satis-
fying the different objectives.

1.1 Evolutionary Hardware Design

Evolutionary Algorithms have been applied to a large num-
ber of problems related to electronic design. In particular,
they have been used for the design of digital hardware, both
at gate level [4], and also using high-level components [5].
EAs can also be used to improve circuit properties such as
area, longest-path delay or power [6]. EAs can be used with
both adaptive and non-adaptive hardware.

There are several advantages to evolutionary approaches
to circuit design. Evolutionary techniques can create use-
ful hardware designs with very little human intervention.
Many electronics problems have multiple objectives; for ex-
ample silicon area, power dissipation, longest path delay or
fault tolerance. When there are multiple objectives, multi-
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objective EAs are a powerful technique for design space
exploration.

1.2 Primitive Operator Circuit Designs

Many useful digital circuits are based upon constant factor
multiplications. When multiplying by a constant, it is of-
ten inefficient to use a full multiplier. In many cases, a
dedicated constant-factor multiplier can be used instead.
Constant-factor multipliers are typically more efficient than
a full multiplier, with respect to area, power and longest-
path delay.

Constant-factor multipliers can be constructed from
Primitive Operators. These are components such as adders,
subtracters, negators, and bit-shifts. When compared with
a full multiplier, Primitive Operators use much less power
and silicon area, and operate much faster. The number of
Primitive Operator components required for the implement-
ation of a particular constant multiplication depends upon
the multiplication factor. While constant multiplier designs
can be derived from the binary or Canonical Signed Digit
(CSD) [7] representation of the constant, better results can
be achieved using the algorithms proposed by Dempster and
Macleod [8].

In many cases, a single value is multiplied by several
different constants. This enables common sub-expression
sharing between the different multiplications. Rather than
using a set of distinct multipliers, a combined multiplication
block can be used.

The synthesis of efficient multiplication blocks is far
more complex than the problem of synthesising constant
multipliers. In fact, the problem of creating a multiplic-
ation block using the minimum number of components is
NP-complete [9, 10]. Therefore, optimal solutions can not
normally be found, and the only reasonable approach is to
search for near-optimal solutions instead. This can be done
with search algorithms such as the RAG-n algorithm [11].
Constant-factor multiplicationblocks are used in transposed
form Finite Impulse Response (FIR) filters, and for many
other signal processing tasks.

Further improvements can be achieved by combining
several multiplication blocks into a single piece of hard-
ware. The combined hardware has multiple inputs and mul-
tiple outputs, and performs a linear transform. An example
of an algorithm for the generation of efficient solutions to
this problem is given in [12].



2 Multi-Objective Evolution

There are many problems for which a single-objective
EA is inadequate. Such problems have multiple conflict-
ing objectives. Multi-Objective Evolutionary Algorithms
(MOEAs) extend Evolutionary Algorithms so that, as well
as attempting to meet particular objectives, various com-
promises between the objectives are considered. The use
of a population of solutions enables the simultaneous dis-
covery of multiple compromise solutions.

If there is no conflict between a set of objectives, the set
of objectives can be combined into a single objective, for ex-
ample by summing the objective values. If the objectives do
conflict, such a strategy is less likely to be useful; the goal is
to find a set of compromise solutions, but a single-objective
approach will typically rank one of the compromise solu-
tions highest.

The best solutions that an MOEA discovers are known
as the non-dominated set, and the individual best solutions
are known as non-dominated solutions. A solution is dom-
inated if there is another solution that is no worse with re-
spect to all objectives, and better with respect to at least one
objective. Hence, a non-dominated solution is one that is
not dominated by any other solution, and can therefore be
considered a ‘best’ solution.

If an MOEA has a large number of objectives, it is un-
likely that one solution will dominate another solution. This
can reduce the amount of competition between the solu-
tions, eventually leading to poorer quality results. If there
are few objectives, competition between solutions is more
likely. For this reason, an MOEA should avoid having non-
conflicting objectives, as far as possible.

Multi-objective EAs need to find a diverse set of solu-
tions, covering many different compromises between the
objectives. This can be achieved through the use of rank-
ing algorithms such as Goldberg’s Non-Dominated Sorting
technique [1]. The advantage of the Non-Dominated Sort-
ing algorithm is that it ranks all of the non-dominated solu-
tions equally, reducing the tendency for all solutions to con-
verge on a particular part of the solution space. It is usu-
ally combined with a method for explicitly encouraging di-
versity, such as niching.

In this paper, we describe an EA system for the creation
of linear digital VLSI circuits. It has three objectives. The
objectives are the functional correctness of a circuit design,
the longest-path delay, and the silicon area required.

3 The Evolution of Digital Hardware

The system described in this paper evolves digital VLSI cir-
cuit designs that perform linear transforms. The desired
transform is described by a user-specified matrix, and the
EA produces circuit netlists for appropriate circuit designs.
Each circuit netlist specifies how high-level components
such as adders and subtracters can be connected together
to form a complete circuit design. The netlists are written
in the Verilog hardware description language.
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Figure 1: A chromosome represented by a graph. The grey
areas represent the graph nodes.

3.1 The Chromosome

Each chromosome represents a circuit design. The chromo-
some is encoded as a graph, where the nodes represent com-
ponents and the edges represent connections. This means
that there is a very close correspondence between the gen-
otype and the phenotype, and that it a very straight-forward
task to convert from the genotype to the phenotype.

Each node in the graph can calculate a value of the form�����������
	��
, where

�
and

�
are the node inputs, and  and �

are integer constants. The nodes can be implemented using
an adder, a subtracter, or an adder followed by a negator.
Multiplications by constant powers of 2 are achieved by bit-
shifting values.

Figure 1 shows an example of how a graph is used to rep-
resent a chromosome. The graph in figure 1 has four inputs,
four nodes, and two outputs. The nodes are represented by
the grey areas. The multiplications in figure 1 can be im-
plemented using bit-shifts. Implementations of the top two
nodes could make use of subtracters.

3.2 Hardware Modelling

The silicon area and longest-path delay are estimated using
data derived from a library of real components. The library
includes adders, subtracters and negators, for all component
widths between 1 and 64 bits.

As the hardware models are only used for the compar-
ison of designs, absolute accuracy is not necessary. All that
is required is that the models should be able to establish
ordinal relationships between designs. Thus the overall sys-
tem is insensitive to many types of inaccuracy in the hard-
ware models. This is very useful, as it reduces the need for
complex, computationally expensive hardware models.

The area estimate is only based upon the cell area. This
is the major part of the total area, and it can be accurately es-
timated. The area used by interconnects is still a significant
part of the total, which is ignored. Note that the intercon-
nect area is in some respects a function of the cell area, as
larger designs require longer wires. The area estimate is cal-
culated by summing the areas of all of the components used
in the design. The component area values are precalculated.

The longest-path delay estimate is found by calculating
the delay at every point in a design. These delays are found
by summing the longest-path delays for all of the compon-
ents on a particular path. The interconnect delays are ig-
nored.

There are two significant sources of inaccuracy in the
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Figure 2: Two 4-bit ripple adders in series. The critical path
is 5 full-adders long. The critical path for a single 4-bit
ripple adder is 4 full-adders long.

Operator Probability
insertion of a new component 0.2
modification of a connection 0.2

modification of a shift and/or negation 0.2
component removal 0.2

component reorganisation (associativity) 0.2

Table 1: The genetic operators.

delay estimation system. One problem is that in reality, dif-
ferent bits in a value can be delayed by different amounts,
but the delay model assumes all of the bits have the same,
worst-case delay. For example, the delay through two ripple
adders is less than twice the longest-path delay of a single
ripple adder. This is illustrated in figure 2. A second prob-
lem is that the interconnect delays are ignored. The inter-
connect delays can be significant, as wires that have a large
area can take a relatively long time to propagate data.

The delay model could be improved by calculating the
delays for each bit rather than for each value. Further im-
provements could be achieved by simulating the increase in
area, and hence the increase in delay, as the fanout2 of a
connection is increased.

The desired response of a design is specified by the user.
It is a transformation matrix. The functionality of a design
can be assessed through calculation of the impulse response
of the design, and by comparing the impulse response with
the desired transformation matrix. The current system cal-
culates the sum of squares difference between the actual and
desired responses, and uses that value as a measure of how
functional a particular design is. This objective has been
termed the ‘functional error’.

3.3 Genetic Operators

The genetic operators are entirely mutational. There is no
crossover operator. There are five genetic operators which
are listed in table 1. When a child chromosome is created,
one of these operators is applied to a copy of the parent
chromosome.

2The fanout of a wire is the number of components that are driven by
that wire.

3.4 The Evolutionary Algorithm

The selection scheme should preferentially select individu-
als on the basis of the three objective values. The selection
scheme should also encourage individuals to meet the func-
tionality constraint.

Size-2 tournament selection has been used. The tour-
nament selection chooses individuals based upon the rank
assigned by the non-dominated sorting [1] algorithm. If
the two individuals in a tournament have the same rank ac-
cording to the non-dominated sorting scheme, then the indi-
vidual with the lowest functional error wins the tournament.
This ensures that the most functional designs are rewarded.
This selection scheme is able to reward progress with re-
spect to all three objectives, while particularly encouraging
the development of functional designs.

The EA is a ��������� system. An initial population of 100
individuals is expanded through the creation of 100 mutant
child chromosomes. The resulting population of 200 is then
reduced to 100 individuals. Selection occurs in two different
circumstances — the selection operator is used when choos-
ing parents, and also for choosing survivors when reducing
the population size.

To prevent the elimination of the best solutions, elitism
is also used when reducing the population size. The elit-
ism operator preserves up to ten of the most functional non-
dominated solutions, so that they are not eliminated when
the population size is reduced.

There is usually some level of functional error that can
be considered acceptable. We have termed such function-
ally acceptable designs ‘correct’. If a design is correct,
the EA should only concentrate on reducing the area and
longest-path delay. All correct designs are considered to
have the same functional error score, so there is no reward
for designs that function better than required. The score
at which designs are considered correct is a user-specified
parameter.

4 Experiments

The system was tested on the 4-point Discrete Cosine Trans-
form. This is a linear transform, which has four inputs and
four outputs. It can be specified with the following matrix:	
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This problem was used because it is a relatively small prob-
lem, which can be solved using few components, so large
numbers of tests are possible.

The functional error of the ‘correct’ solutions was set at
0.004 or lower. In other words, the sum of the squares of
the coefficient errors should be 1000 times smaller than the
sum of the squared coefficients. Only designs that meet this
constraint are shown in the following results.
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Figure 3: An example of conflicting objectives.

4.1 Reliability and Robustness

As EAs are a stochastic technique, there is no guarantee
that they will find an acceptable solution, although for many
problems it is very likely that such a solution will be found.
More significantly, the solution quality can vary consider-
ably between EA runs. This problem is caused by the multi-
modality inherent to many electronic design problems. In
many cases, a small change to a solution can result in severe
changes to the solution properties. Therefore, many elec-
tronics problems have an extremely irregular search space,
and the robustness of a search technique is extremely im-
portant.

In order to estimate the likelihood that a particular solu-
tion can be discovered, a series of runs can be performed.
The objective space can then be divided into different re-
gions, depending upon the proportion of runs that produce
results dominating each point in the objective space.

The results from 1000 runs of 750 generations with the
basic system, are shown in figure 4(a). These results show
that there is a large amount of variation between the runs.
For example, while the best solutions have areas below
12000 � m � , 50% of runs did not produce designs with areas
as low as 17000 � m � .

The lines in figure 4(a) divide up the solution space ac-
cording to the number of runs that dominate a particular
point. For example, each point on the 1% line is dominated
by the results of 10 out of the 1000 runs. Points to the upper-
right of the 1% line can be dominated by more runs, while
points below and to the left of the 1% line are dominated by
fewer runs.

Disabling elitism results in a considerable improvement
in the quality of many of the solutions. The results without
using elitism are shown in figure 4(b). Although there
are relatively minor improvements in the performance of
the best solutions, the worst solutions are considerably im-
proved. Note that for both tests, all 1000 runs produced
correct solutions. It is possible that elitism discourages ex-
ploration, and many of the elitist runs become stuck in local
minima.

4.2 Solution Diversity

There are very strong conflicts between functionality and
area, and between functionality and longest-path delay. In
other words, there are many cases where removing compon-
ents from a design will increase the functional error.

The area and longest-path delay objectives do not inev-
itably conflict. There are some cases in which these object-
ives do conflict. One such situation is illustrated in figure 3.
Figure 3 shows a minimum-area circuit and a minimum-
delay circuit, both of which compute �������
	������� and� ��	�������� . There are also many cases where the area
and delay do not conflict; physically larger circuits tend to
have longer critical paths.

The best results in figure 4 show very little diversity. The
best solutions are concentrated at a single point on the ob-
jective space. This suggests that the area and delay object-
ives are not conflicting in this case. The results suggest that
there are limits to the silicon area and longest-path delay for
a correct design. The limits are largely independent, leading
to a small trade-off surface.

Figures 4(c) and 4(d) show the results of combining the
area and longest-path delay into a single objective. The
combined objective is computed as:

area �
��������� delay

These runs produced far fewer solutions in comparison with
the original EA. Although all runs produced correct res-
ults, the number of non-dominated results per run was much
lower. The quality of the solutions was very slightly lower
with the modified system, possibly as a result of having
slightly more homogeneous populations. Finally, the elitist
system in figure 4(c) did not perform as well as the non-
elitist version in figure 4(d).

The original system was also tested on three other prob-
lems. For these tests elitism was disabled. The problems
are as follows:� the multiplication block for a 24th order FIR filter,� transformation from an RGB colour model to an XYZ

colour model [13],� the 8-point 1-dimensional DCT.
The FIR filter mentioned above is a low-pass filter with
30dB attenuation in the stop band. The first 13 of the 25
coefficients are:

���� "! �  � !# %$&�� ('*) �  +',���# %'.-�!/ %'.0�$/ 1) �  2)+!�-� 3$��#)� ����4  � -��

The coefficient set is symmetrical about the 13th coefficient.
When factors of 5 �76 are divided out, only the following
coefficients are actually required:

0� "-� 2)2$� "��0� 8$/)� � !# 30�$� 3-�!# ()2!&-� "$7�#)

The results for these problems are shown in figure 5. It can
be seen that the amount of diversity in the solution set de-
pends upon the problem.

4.3 Hardware Modelling

The quality of the hardware models is important. If a model
is inaccurate, the EA system is less likely to produce good
results.

The correct 4-point DCT designs from 100 runs of the
EA system were extracted as Verilog netlists. The proper-
ties of these designs were then modelled by the Synopsys
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(a) Non-dominated sorting, elitist.
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(b) Non-dominated sorting, non-elitist.
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(c) Linear, elitist.
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(d) Linear, non-elitist.

Figure 4: Correct DCT designs for different selection schemes. As all of these designs meet the functional constraint, the
functional error values are not illustrated here.
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(a) Results of 1000 runs with the 24th order FIR problem.
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(b) Results of 1000 runs with the RGB to XYZ transformation.
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(c) Results of 20 runs with the 8-point DCT.

Figure 5: Correct results for various problems.
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(b) The delay model compared with Design Compiler.

Figure 6: A comparison of the hardware models with Syn-
opsys Design Compiler.

Design Compiler synthesis system. This produced higher-
quality pre-placement estimates to the area and longest-path
delay. The results of comparing the EA models with Design
Compiler are shown in figure 6.

The EA area model produces results that are very similar
to the design compiler results. There is no interconnect area
information in the low-level technology library, so neither
of these models incorporates an estimate of the interconnect
area.

The results of the delay comparison are shown in fig-
ure 6(b). The two different models often give significantly
different results. Possible reasons for this were discussed
earlier. Note that the EA overestimates the delay by nearly
a factor of 2. As mentioned in section 3.2, the delay model
could be improved by incorporating wire-load modelling,
and by calculating delays on a per-wire basis.

Finally, the area-delay properties calculated by Design
Compiler are shown in figure 7. The use of a wire-load
model might be expected to increase the diversity of the
solutions, as designs with few components might have more
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Figure 7: Results using the Design Compiler hardware
models.

high-fanout connections. The non-dominated solutions in
figure 7 show a trade-off of about 15% of the absolute area
and delay values, suggesting that there is a small increase in
the population diversity.

5 Conclusions

The paper has studied issues of robustness, reliability, pop-
ulation diversity, and modelling, within the context of a
multi-objective EA for the design of digital VLSI systems.
The EA considers three objectives; functionality, area, and
delay.

The area and longest-path delay do not always conflict,
and can potentially be combined into one objective. The
amount of conflict between the objectives is problem de-
pendent — this was demonstrated using several real-world
problems. The search space can be characterised as having
a lower limit for area, and a lower limit for delay. In many
cases this causes the non-dominated set to be concentrated
in a small area.

There is a large amount of variation between individual
EA runs. This is a symptom of the complex, multi-modal
search space. The likelihood that particular solutions are
discovered is something that can be experimentally as-
sessed. This was demonstrated with the results in figure 4.

Elitism was found to be counterproductive. This is prob-
ably due to reduced population diversity.

The accuracy of the area and longest-path delay models
was assessed. It was found that the area model performs
acceptably. The delay model is inaccurate. There are two
ways in which the delay model could be improved. If the
delays were modelled on a per-wire basis, rather than on
a per-value basis, the results would be more accurate. In
particular, the tendency to overestimate the delay would be
reduced. A second way in which the delay model could be
improved would be to incorporate a model of wire-loads.
In spite of the inaccuracy, the delay model is still useful in
encouraging the development of low-delay designs.

The results produced by Design Compiler suggest that,
if the wire-load modelling is improved, the area and delay

objectives are more likely to conflict. If the lowest area solu-
tions for a particular problem have high-fanout connections
on the critical path, then there will probably be a conflict
between the objectives. The alternative possibility is that
the lowest area solution does not have high-fanout connec-
tions on the critical path, in which case objective conflicts
are less likely.
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