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Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco

México, D. F. 07300
gtoscano@computacion.cs.cinvestav.mx

ccoello@cs.cinvestav.mx

Abstract. In this paper, we deal with an important issue generally omitted in the
current literature on evolutionary multiobjective optimization: on-line adaptation.
We propose a revised version of our micro-GA for multiobjective optimization
which does not require any parameter fine-tuning. Furthermore, we introduce
in this paper a dynamic selection scheme through which our algorithm decides
which is the “best” crossover operator to be used at any given time. Such a scheme
has helped to improve the performance of the new version of the algorithm which
is called the micro-GA2 ( � GA

�

). The new approach is validated using several
test function and metrics taken from the specialized literature and it is compared
to the NSGA-II and PAES.

1 Introduction

One of the research topics that has been only scarcely covered in the current literature
on evolutionary multiobjective optimization has been (on-line or self-) adaptation [4].
This is an important issue since evolutionary multiobjective optimization techniques
normally require more parameters than a traditional evolutionary algorithm (e.g., a
niche radius or sharing threshold). In some of our recent research, we have emphasized
the importance of designing computationally efficient evolutionary multiobjective opti-
mization approaches. One of our proposals in this direction was the micro-GA for mul-
tiobjective optimization, which uses a very small internal population (four individuals)
combined with three forms of elitism and a reinitialization process [3]. The micro-GA
has been found to be highly competitive with respect to other techniques that are repre-
sentative of the state-of-the-art in the area (namely, the Nondominated Sorting Genetic
Algorithm or NSGA-II [6] and the Pareto Archived Evolution Strategy or PAES [8]).
However, its main drawback is that the micro-GA requires several parameters whose
fine-tuning may not be intuitive for a newcomer.

This paper presents a revised version of the micro-GA for multiobjective optimiza-
tion [3] which does not require any parameters fine-tuning from the user. The new ap-



proach, called the micro-GA2 ( � GA � ), tends to perform better than our original micro-
GA without needing any non-intuitive parameters. To validate our proposal, we com-
pare it against PAES [8], the NSGA-II [6] and our original micro-GA [3] using several
test functions of high degree of difficulty which have been recently proposed in the
specialized literature.

2 Related Work

There have been very few attempts in the literature to produce an evolutionary multiob-
jective optimization technique that adapts its parameters during the evolutionary process
and that, therefore, does not require any fine-tuning from the user. One of the earliest
attempts to incorporate self-adaptive mechanisms in evolutionary multiobjective opti-
mization was Kursawe’s proposal of providing individuals with a set of step sizes for
each objective function such that his multiobjective evolution strategy could deal with
a dynamic environment [10]. Laumanns et al. [11] showed that a standard self-adaptive
evolution strategy had problems to converge to the true Pareto set of a multiobjective
optimization problem and proposed alternative self-adaptation mechanisms that, how-
ever, were applied only to an aggregating fitness function. Tan et al. [13] proposed the
incrementing multiobjective evolutionary algorithm (IMOEA), which uses a dynamic
population size that adapts based on the tradeoffs produced so far and the desired pop-
ulation distribution density. The IMOEA relies on a measure of convergence based on
population domination and progress ratio [14]. The IMOEA also uses dynamic niches
(i.e., no sharing factor needs to be defined). Another interesting proposal is the idea of
Büche et al. [2] of using self-organizing maps of Kohonen [9] to adapt the mutation step
size of an evolutionary multiobjective optimization algorithm. The authors also define a
recombination operator using self-organizing maps (something similar to intermediate
recombination). Abbass [1] recently proposed a differential evolution algorithm used
to solve multiobjective problems that self-adapts its crossover and mutation rates. Zhu
and Leung [16] proposed an asynchronous self-adjustable island genetic algorithm in
which certain information about the current search status of each island in a parallel
evolutionary algorithm is used to focus the search effort into non-overlapping regions.

The approach proposed in this paper introduces on-line adaptation into a genetic
algorithm (which uses Pareto ranking and an external memory) in order to make un-
ncessary to fine tune its parameters. Unlike the proposals previously discussed, our
approach is mainly focused on performing an appropriate exploration and exploitation
of the search space relying on very simple information and statistical measures obtained
from the evolutionary process itself.

3 The �������

Since this paper presents a variation of the micro-GA reported in [3], we consider
convenient to describe our original proposal first. The way in which our micro-GA
works is the following: First, a random population is generated. This random popula-
tion feeds the population memory, which is divided in two parts: a replaceable and a
non-replaceable portion. The non-replaceable portion of the population memory will
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never change during the entire run and is meant to provide the required diversity for the
algorithm. In contrast, the replaceable portion will experience changes after each cycle
of the micro-GA.

The population of the micro-GA at the beginning of each of its cycles is taken
(with a certain probability) from both portions of the population memory so that we
can have a mixture of randomly generated individuals (non-replaceable portion) and
evolved individuals (replaceable portion). During each cycle, the micro-GA undergoes
conventional genetic operators. After the micro-GA finishes one cycle, we choose two
non-dominated vectors from the final population and compare them with the contents of
the external memory (this memory is initially empty). If either of them (or both) remains
as non-dominated after comparing it against the vectors in this external memory, then
they are included there (i.e., in the external memory). This is our historical archive
of non-dominated vectors. All dominated vectors contained in the external memory
are eliminated. The same two vectors previously mentioned are also compared against
two elements from the replaceable portion of the population memory. If either of these
vectors dominates to its match in the population memory, then it replaces it. Otherwise,
the vector is discarded. Over time, the replaceable part of the population memory will
tend to have more non-dominated vectors, some of which will be used in some of the
initial populations of the micro-GA.

The main difference between the ����� � and its ancestor is that we now provide
on-line adaptation mechanisms. The way of which ����� � works is illustrated in Figure
1. Since one of the main features of the new approach is the use of a parallel strategy
to adapt the crossover operator (i.e., we have several micro-GAs which are executed in
parallel), we will start by describing this mechanism. First, the initial crossover oper-
ator to be used by each micro-GA is selected. The three crossover operators available
in our approach are: 1) SBX, 2) two-point crossover, and 3) a crossover operator pro-
posed by us. The behavior of the crossover operator that we proposed depends on the
distance between each variable of the corresponding parents: if the variables are closer
than the mean variance of each variable, then intermediate crossover is performed; oth-
erwise, a recombination that emphasizes solutions around the parents is applied. These
crossover operators were selected because they exhibited the best overall performance
in an extensive set of experiments that we conducted.

Once the crossover operator has been selected, the population memories of the inter-
nal micro-GAs are randomly generated. Then, all the internal micro-GAs are executed,
each one using one of the crossover operators available (this is a deterministic process).
The nondominated vectors found by each micro-GA are compared against each other
and we rank the contribution of each crossover operator with respect to its effectiveness
to produce nondominated vectors. At this point, the crossover operator which exhibits
the worst performance is replaced by the one with the best performance. The external
memory stores the globally nondominated solutions, and we fill the new population
memories (of every internal micro-GA) using this external memory. The new external
memories of the micro-GA are identical to this external memory.

When all these processes are completed, we check if the algorithm has converged.
For this sake, we assume that convergence has been reached when none of the internal
micro-GAs can improve the solutions previously reached (see below for details). The



rationale here is that if we have not found new solutions in a certain (reasonably large)
amount of time, it is fruitless to continue the search.

The ����� � works in two stages: the first one starts with a conventional evolutionary
process and it concludes when the external memory of each slave process is full or when
at least one slave has reached convergence (as assumed in the previous paragraph).
We finish the second stage when global convergence (i.e., when all of the slaves have
converged) is reached.

An interesting aspect of the ����� � is that it attempts to balance between exploration
and exploitation by changing the priorities of the genetic operators. This is done during
each of the two stages previously described. During the first stage, we emphasize ex-
ploration and during the second we emphasize exploitation, which are performed in the
following way:

– Exploration stage: At this stage, mutation has more importance than crossover so
that we can locate the most promising regions of the search space. We use at this
point a low crossover rate and the mutation operator is the main responsible of
directing the search. We also decrease the nominal convergence (i.e., the internal
cycle of the micro-GA), since we are not interested in recombining solutions at this
point.

– Exploitation stage: At this stage, the crossover operator has more importance and
therefore nominal convergence is increased to reach better results.

Since the main drawback of the micro-GA is that it requires several additional pa-
rameters which have to be fine-tuned by hand [3], the main goal of the ����� � was the
elimination of these parameters. With this goal in mind, we divided the parameters of
the micro-GA into two groups: parameters which cannot be adapted on-line and param-
eters that can be adapted. The first class is composed by those parameters that depend
on the problem characteristics and it includes: bounds for the decision variables, num-
ber of decision variables, number of objectives, and number of nondominated vectors
that we aim to find (this defines the size of the external memory which will be called���������
	��

).
For those parameters that can be adapted, we followed a rationale based on their

possible dependences. Certain parameters such as the mutation rate can be easily fixed
to one divided by the number of genes (or decision variables). After a careful analysis
of the parameters of the micro-GA susceptible of adaptation, we decided the following:

– Crossover rate: It is important that it behaves in such a way that we can explore
more at the beginning of the evolutionary process and we can exploit more at later
stages of the search. In the first stage of the ����� � we use only a 50% for the
crossover rate, while during the exploitation stage, we use a 100% for the crossover
rate. As indicated before, we adapt the crossover operator using a parallel strategy.

– Size of the population memory: The size of the population was set to
��������
	������

.
– Percentage of non-replaceable memory: Since the ����� � is a parallel algorithm,

we decided to decrease the percentage of the non-replaceable memory to a 10%
(with respect to the 30% used in the original micro-GA [3]) of the size of the pop-
ulation memory.



– Total number of iterations: This refers to the external cycle of the micro-GA
[3]. This parameter is set such that we finish after the external memory has been
replaced

� �������
	�� � �
times without having any dominated individual nor any re-

placement of the limits of the adaptive grid.
– Replacement cycle: We replace the replaceable memory whenever

� �������
	��
individ-

uals had been evaluated. Also note that when the replaceable memory is refreshed,
we also refresh the non-replaceable memory, but using randomly generated indi-
viduals (as it was done at the begining of the execution of the algorithm).

– Number of subdivisions of the adaptive grid: The number of subdivisions is
treated with respect to the number of individuals desired per region. This value
is set such that it never exceeds (on average) three individuals per region and is
never less than 1.5 individuals per region. Thus, the number of subdivisions (and
therefore the number of individuals per hypercube) is either increased or decreased
in consequence.

The constraint-handling approach of the original micro-GA was kept intact (see [3]
for details).

4 Metrics Adopted

In order to give a numerical comparison of our approach, we adopted three metrics:
generational distance [15], error ratio [14] and spacing [12]. The description and math-
ematical representation of each metric are shown below.

1. Generational Distance (GD): The concept of generational distance was introduced
by Van Veldhuizen & Lamont [15] as a way of estimating how far are the elements
in the set of nondominated vectors found so far from those in the Pareto optimal set
and is defined as:

� ���
� ���	�
���

�
	

� (1)

where � is the number of vectors in the set of nondominated solutions found so
far and

� 	
is the Euclidean distance (measured in objective space) between each of

these and the nearest member of the Pareto optimal set. It should be clear that a
value of � ����� indicates that all the elements generated are in the Pareto optimal
set. Therefore, any other value will indicate how “far” we are from the global Pareto
front of our problem.

2. Error Ratio (ER): This metric was proposed by Van Veldhuizen [14] to indicate
the percentage of solutions (from the nondominated vectors found so far) that are
not members of the true Pareto optimal set:

����� � �	�
��� 	� � (2)

where � is the number of vectors in the current set of nondominated vectors avail-
able;

� 	
= 0 if vector � is a member of the Pareto optimal set, and

� 	 ���
otherwise.

It should then be clear that
�������

indicates an ideal behavior, since it would
mean that all the vectors generated by our algorithm belong to the Pareto optimal
set of the problem.



3. Spacing (SP): Here, one desires to measure the spread (distribution) of vectors
throughout the nondominated vectors found so far. Since the “beginning” and “end”
of the current Pareto front found are known, a suitably defined metric judges how
well the solutions in such front are distributed. Schott [12] proposed such a metric
measuring the range (distance) variance of neighboring vectors in the nondomi-
nated vectors found so far. This metric is defined as:

���
���� �
��� �

�� 	 
 �
	 � � � 	�� � � (3)

where
� 	 �������� 	����

	� 	�� � � �
�� 	�� � �������

	
� 	��

� � �
�
� 	��

� � � , � ��� ��� �! " " � � ,
�

is the
mean of all

� 	
, and � is the number of nondominated vectors found so far. A value

of zero for this metric indicates all members of the Pareto front currently available
are equidistantly spaced.

5 Test Functions and Numerical Results

Several test functions were taken from the specialized literature to compare our ap-
proach. In all cases, we generated the true Pareto fronts of the problems using exhaus-
tive enumeration (with a certain granularity) so that we could make a graphical and
metric-based comparison of the quality of the solutions produced by the ����� � . We
also compared our results with respect to the NSGA-II [6], with respect to the PAES [8]
and with respect to our original micro-GA [3]. In the following examples, the NSGA-II
was run using a population size of 100, a crossover rate of 0.8 (using SBX), tournament
selection, and a mutation rate of 1/vars, where vars = number of decision variables of
the problem. PAES was run using a depth of 5, a size of the archive of 100, and a muta-
tion rate of 1/bits, where bits refers to the length of the chromosomic string that encodes
the decision variables. Our micro-GA used a crossover rate of 0.7, an external memory
of 100 individuals, a number of iterations to achieve nominal convergence of two, a
population memory of 50 individuals, a percentage of non-replaceable memory of 0.3,
a population size (for the micro-GA itself) of four individuals, 25 subdivisions of the
adaptive grid, and a mutation rate of

�$#$%
(
% �

length of the chromosomic string).

The number of fitness function evaluations for the original micro-GA, the NSGA-II
and PAES was the closest value to the average number of fitness function evaluations
obtained from performing 20 runs with the ����� � .

5.1 Test Function 1

Our first example is a � -objective, � -variable test function proposed by Deb et al. [7]:



Minimize � � 	�� � ��� � �
...

...
Minimize ����� � 	�� � ��� �	� � �
Minimize � � 	�� � � 	 � ��
 	�� � � �� 	�� � � � � �! " ! � � ���

�
� 
 � �

where 
 	�� � � � � � �� ����� ��� ��� � � � � �� ��� � � �	� �	 
��� � ��"!$# 	 � �&% ��� 	�'�( � 	 � ��) �
subject to

�+*,� 	 * � for � ��� � �  � � � �

(4)

This test function has
� ��� � disconnected Pareto-optimal regions in the search

space. Deb et al. [7] propose to use 22 variables to make it more challenging. That
is precisely the number of decision variables that were adopted for our experiments.
Results for the first test function are summarized in Table 1. Figures 2 and 3 show the
average behavior of each algorithm with respect to the generational distance metric.
From the results shown in Table 1, it can be seen that in the first test function, the
����� � had the best performance with respect to generational distance and spacing and
it placed second (after the NSGA-II) with respect to the error ratio.

Table 1. Results obtained in the first test function (DTLZ6) by the ����� �

, the NSGA-II, PAES
and the original micro-GA. We show in boldface the best values for each metric.

�.-0/21
Perf. measure Iterations GD ER SP

Average 20382 354 363676869;:�3;:�9 0.171 354 3=<>76?6@6?>35:
Best 16954 0.00304658 0.1 0.0598198

Worst 24394 0.00440405 0.25 0.0886338
Std. Dev. 2019.793840 0.000372 0.04290 0.007385

PAES
Average 20382 0.0161938745 0.49492855 0.125067925

Best 20382 0.00260934 0.2 0.0770419
Worst 20382 0.109795 0.75 0.258494

Std. Dev. 0 0.023217 0.1603101 0.049333
NSGA-II

Average 20100 0.003606146 3;4A:B:�8 0.077738055
Best 20100 0.00281355 0.07 0.039322

Worst 20100 0.0052915 0.16 0.0940669
Std. Dev. 0 0.000634 0.030174 0.012038

micro-GA
Average 20376 0.8760464 1.0425015 0.97022395

Best 20376 0.381188 1.025 0.232188
Worst 20376 1.66206 1.07143 3.4051

Std. Dev. 0 0.3524874 0.01302171 1.0298174
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Fig. 2. Pareto fronts produced by the NSGA II (left) and PAES (right) for the first test function.

PFtrue
Micro-GA

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
F1  0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9

F2

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

F3

PFtrue
Micro-GA 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F1 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

F2

2.5

3

3.5

4

4.5

5

5.5

6

Fig. 3. Pareto fronts produced by the micro-GA (left) and the � ��� �

(right) for the first test
function.

5.2 Test Function 2

Our second example is an � -objective, � -variable test function proposed by Deb et al.
[7]:

Minimize � � 	�� � � 	 � � 
 	�� � � � ��� % 	 � � ( # � �  " ! ��� %"	 � ��� � ( # � � �
Minimize � � 	��

� � 	 � � 
 	�� � � � ��� % 	 � � ( # � �  " ! % � � 	 � ��� � ( # � � �
...

...
Minimize ��� 	�� � � 	 � ��
 	�� � � � % ��� 	 � � ( # � � �
subject to

�+*,� 	 * � for � ��� � �  � � � �
where 
 	�� � � � ��� 	 � � � 	 � 	 � �  � � �  

subject to
�+*,� � *�� � ���	� � � � � � �! " ! � �  

(5)

Results for the second test function are summarized in Table 2. Figures 4 and 5
show the average behavior of each algorithm with respect to the generational distance
metric. It is interesting to observe in Table 2, that for the second test function, PAES
had the best performance with respect to generational distance and spacing, and that
the original micro-GA produced better results than the ����� � for all of the metrics
considered. In fact, the ����� � exhibited the worst performance with respect to spacing
although it was not the worst of all with respect to error ratio and generational distance.
This poor performance is mainly due to the fact that the ����� � could not get rid of some
points that did not lie on the true Pareto front of the problem.



Table 2. Results obtained in the second test function (DTLZ2) by the ����� �

, the NSGA-II, PAES
and the original micro-GA. We show in boldface the best values for each metric.

� -2/ 1
Perf. measure Iterations GD ER SP

Average 28035.6 0.06768955 0.4782749 0.12874763
Best 22662 0.0466557 0.07 0.0864405

Worst 38626 0.0808061 0.87 0.258394
Std. Dev. 3935.705252 0.009093 0.307199 0.036003

PAES
Average 28035 3;4 3B35:�?6?68=:�8����=8 0.661 354 3=<B?>3 ?686?68

Best 28035 0.000960599 0.49 0.0645913
Worst 28035 0.00372801 0.83 0.0969163

Std. Dev. 0 0.000729 0.099994 0.007436
NSGA-II

Average 28100 0.071364695 0.595 0.086525355
Best 28100 0.0012885 0.37 0.0600044

Worst 28100 0.146352 0.88 0.151025
Std. Dev. 0 0.039513 0.12279 0.026498

micro-GA
Average 28032 0.0079807725 354 �=769;:�9B96968 0.07967385

Best 28032 0.00196516 0.25 0.0469776
Worst 28032 0.0139376 0.82 0.1319

Std. Dev. 0 0.0035755 0.1511332 0.0271390
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Fig. 4. Pareto fronts produced by the NSGA II (left) and PAES (right) for the second test function.
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5.3 Test Function 3

The third example is a bi-objective optimization problem proposed by Deb [5]:

Minimize � � 	 � � � � �
� ��� �

Minimize � � 	 �
�
� � �

� � 
 	 � � � � �
��� � 	 � � � � � � (6)

where: 
 	 � � � � �
� ��� � � � �� � � �

�
��� %!	 � ( � �

�
(7)

� 	 � � � � �
� � � � ��� ����� � �
	 ���# � � ��	 ��� if � � 	 � � � � �

� * 
 	 � � � � �
�

�
in other case

(8)

and
�2* � � *��

, � ' �+* � � * ' � .
Results for the third test function are summarized in Table 3. Figures 6 and 7 show

the average behavior of each algorithm with respect to the generational distance metric.
Table 3 shows that in the third test function, the ����� � produced the best results for
both the generational distance and the error ratio metrics. With respect to spacing, it
placed second (after the NSGA-II).

Table 3. Results obtained in the third test function (Deb) by the ����� �

, the NSGA-II, PAES and
the original micro-GA. We show in boldface the best values for each metric.

� -2/01
Perf. measure Iterations GD ER SP

Average 9171.8 3;4 3B3635:�9;:�@ <>3 ?68 354 :6:�8 0.0088751215
Best 6186 0.000102157 0 0.00721023

Worst 13826 0.000218467 0.32 0.0100066
Std. Dev. 0.081917 1956.912487 4.252223-05 0.000822

PAES
Average 9171 0.4651514 0.70408545 5.46232964

Best 9171 0.242424 0.0252054 0.0829736
Worst 9171 1 7.97044 64.8108

Std. Dev. 0 0.180424 2.012568 16.406210
NSGA-II

Average 9100 0.0002118179 0.2105 354 363 < ���6?;:�@;:�8
Best 9100 0.000155758 0.01 0.00646298

Worst 9100 0.000282185 0.74 0.0089998
Std. Dev. 0 3.577123-05 0.224252 0.000594

micro-GA
Average 91068 0.0556739552 0.162 0.281928729

Best 91068 0.000159071 0.05 0.00637886
Worst 91068 0.465348 0.31 1.22778

Std. Dev. 0 0.1079727 0.0796439 0.3647516
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Fig. 6. Pareto fronts produced by the NSGA II (left) and PAES (right) for the third test function.
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Fig. 7. Pareto fronts produced by the micro-GA (left) and the ����� �

(right) for the third test
function.

5.4 Test Function 4

Our fourth example is a bi-objective test function proposed by Kursawe [10]:

Minimize � � 	�� � �
� � �� 	�
��� � � ������� � � �  � � � �	 � � �	 !�	�
� (9)

Minimize � � 	��
� � �� 	 
��� � � 	 � �� � � � % ��� 	 � 	 ����� (10)

where:

� � *&� � � � � � � � * �
(11)

Our fourth test function has a discontinuous Pareto optimal set and a discontinuous
Pareto front. The main difficulty of this test function resides in the fact that it has a
fairly large search space.

Results for our fourth test function are summarized in Table 4. Figures 8 and 9 show
the average behavior of each algorithm with respect to the generational distance metric.
Table 4 shows that in the fourth test function, the ����� � produced better results than our
original micro-GA for all the metrics, but it had poorer values than the NSGA-II, which
beats all of the other approaches in this problem with respect to all the metrics consid-
ered. Note, however, that the NSGA-II does not completely cover the true Pareto Front



(see Figure 8, left graph). In contrast, the ����� � has a wider spread of nondominated
solutions, but with a poorer distribution than the NSGA-II.

Table 4. Results obtained in the fourth test function (Kursawe) by the ����� �

, the NSGA-II, PAES
and the original micro-GA. We show in boldface the best values for each metric.

�.-0/21
Perf. measure Iterations GD ER SP

Average 12521.2 0.005006659 0.3505 0.11070785
Best 9350 0.00326891 0.2 0.103748

Worst 16262 0.0176805 0.51 0.131396
Std. Dev. 2075.483192 0.003133 0.080031 0.005867

PAES
Average 12521 0.1963858 1.01001 0.30378948

Best 12521 0.139281 1.01 0.00477854
Worst 12521 0.383218 1.0102 1.24913

Std. Dev. 0 0.061842 4.4721-05 0.355380
NSGA-II

Average 12100 354 363 76968 ����� :�8 354 @ <>968 354 3 96@67B9 <B@69
Best 12100 0.00311988 0.21 0.0536878

Worst 12100 0.00541468 0.44 0.0815969
Std. Dev. 0 0.000506 0.052342 0.007113

micro-GA
Average 12520 0.0065217035 0.59144695 0.130839305

Best 12520 0.00357395 0.39 0.0636691
Worst 12520 0.00969116 0.73 0.180439

Std. Dev. 0 0.00171691 0.08471597 0.02968868

6 Conclusions and Future Work

We have proposed an on-line adaptation scheme that allows the use of a micro-GA
designed for multiobjective optimization without requiring the definition of any non-
intuitive parameters. The proposed approach obtains information from the evolutionary
process to guide the search efficiently. Among other things, our scheme decides on
the most appropriate crossover operator and it switches between an exploration and an
exploitation stage by changing the importance of the crossover and the mutation opera-
tors. We also define a criterion that allows to stop the execution of the algorithm when
the search seems to be fruitless and therefore, the definition of a maximum number of
generations is no longer necessary.

The approach has been validated with several test functions from which four were
included in this paper. We compared our results with respect to our original micro-GA
and with respect to PAES and the NSGA-II using three metrics: generational distance,
error ratio and spacing. Our preliminary results indicate that although our approach does
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Fig. 8. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the fourth test function.
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Fig. 9. Pareto fronts produced by the micro-GA (left) and the ����� �

(right) for the fourth test
function.

not always beat the other approaches, it remains competitive, and it normally improves
on the results generated by the micro-GA without the need of defining any parameters.

As part of our future work, we want to experiment with spatial data structures to
make more efficient the storage and retrieval of nondominated vectors from the external
memory. We are also working on the development of a mechanism that allows to reduce
the number of fitness function evaluations required to approximate the true Pareto front
of a problem.
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