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Abstract 

 
The overall complexity of optimisation problems in ship design results in high computation time 
requirements. The high computation time requirements for objective function evaluations in a 
complex design optimisation problem can practically be reduced by either using parallel execution of 
the objective functions in state-of-the-art super computers or concurrent execution of the objective 
functions in a distributed environment. In this paper, the distribution of the function evaluations is 
chosen to improve the performance of the optimisation algorithm. In the proposed distributed 
decision support environment, the tool for each objective function evaluation is represented as an 
agent. Agents are the excellent metaphors for devising a distributed environment, because they are 
able to encapsulate intelligence and tasks modularly as well as taking into account other agents in the 
environment. However, agents are not the entities, which do all the things for a person without human 
intervention. The designer of an agent must take into account all the details of the intelligence that the 
agent requires during its lifecycle. Furthermore, agents need to communicate in an environment, 
where the naming and role features are solved in order to allow them to co-operate, co-ordinate and 
be controlled within a certain extent. Multi-agent systems research focuses on three aforementioned 
topics basically communication, control and collaboration or negotiation. In this paper, the focus is 
given more on the communication aspects of multi-agent systems, the collaboration and control of the 
system is addressed by the multi-objective algorithm and the optimisation agent respectively. The 
optimisation algorithm in the proposed environment is implemented as a multi-objective genetic 
algorithm because of its capabilities of finding diverse and near Pareto-optimal solutions. The 
optimisation algorithm is parallelized in the objective function evaluations part of the NSGA II (A 
Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization) and realized 
by using a multi-agent systems software environment. Two optimisation studies are presented in the 
paper. In the first optimisation problem, a simple test function is used for the validation of the 
distributed optimisation algorithm. In the second problem, an internal hull subdivision optimisation 
problem from the damage stability point of view is implemented and the results and the efficiency of 
the distributed version are presented. Finally, as one of future directions, the incorporation of the 
designer’s preferences in the optimisation study is discussed. 
 
1. Introduction 
 
Multi-agent systems open the new era of the research topics in computer science and partially in 
engineering communities. The research on distributed artificial intelligence is shifted to the multi-
agent systems, since both address the same concepts. Multi-agent systems are widely used in 
application areas ranging from control industry to e-commerce. Introduction of the semantic web and 
XML (Extensible Markup Language) based knowledge systems have also increased the popularity of 
the agents and in a broader extent to multi-agent systems.  
 
Agents are the entities, in literal meaning, that act or have the power of the authority to act on behalf 
of its designer or the user. Agents may vary in the literature, from user interface agents to matchmaker 
agents. The basic and important features of the agents can be listed as autonomy, proactivity and 
collaboration, especially when we are designing agents to be used for engineering design. An 
autonomous agent works in a way that it can have self-activation mechanism, for example if we 
design an agent to check the tolerance of a mechanical system, the agent should be able to have self-
activation behaviour to check the tolerance and report to its user, even if the user has not given the 
stimuli to check except in the involvement of enabling agent at first place. Another example can be 
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easily given as simple auto-update mechanism, when there is critical operating system patch available, 
the agent can download and install the patch with user’s proper authorization. 
 
The proactive behaviour is a property for an agent to pursue and act according to its goals. There are 
different proactive approaches in the literature. The RoboCup is one of the main test cases for 
proactive behaviour. In RoboCup, agents either physical or virtual players, pursue a goal of scoring 
goals in football game. Planning and team formation methods are applied extensively in proactive 
collaborative behaviour. 
 
Collaboration is a very important feature of an agent, which also makes an agent differ from an expert 
system. Collaboration gives the agent to communicate with other agents in the environment for either 
satisfying its goals or retrieving information in the environment. A very good example of 
collaborative behaviour can be seen in the nature. Ants randomly wander in the environment for 
foraging food. When an ant finds food, it carries the food back to its nest, while producing pheromone 
and leaving the pheromone to its path from the food location to the nest. Randomly wandering other 
ants sense the traces of the pheromone and follow the path to reach to the food. This simple 
collaborative behaviour is also investigated in Mars exploration. A reactive robot (There are three 
types of agent architecture in the literature, reactive, deliberative and hybrid, for further details, 
Wooldridge (2002)) while exploring in the planet collects the magnetic samples and while returning 
the samples into the base, it drops some magnetic crumbles in order to find its way back to the sample 
location as well as informing other robots in the environment. There are other agent properties in the 
literature. However, we omit them in here for the sake of brevity. Interested readers may refer to 
Bradshaw (1997). 
 
Multi-agent systems combine both above-mentioned and unmentioned agent properties in a 
framework to make the agents work in a distributed, scalable, dynamic and an open environment. 
Communication, which is one of the properties of multi-agent systems, can be divided into two 
categories, semantics and syntax. The syntax addresses the combination of the words in a message 
among agents. There are few such languages that are proposed in the software community, KQML 
(Knowledge Query Manipulation Language), Finin (1994), and ACL (Agent Communication 
Language). The FIPA (Foundation of Physical Agents) organisation created the ACL and encourages 
the use of ACL wide across in the software systems to enable general communication language 
among different agent software. Another feature, which may be considered as a more important 
feature in the communication, is the semantics of the messaging among agents. Semantics can be 
further divided into two categories, ontology and semantics language. Ontology, unlike the literal 
meaning, can be explained as the vocabulary of the content of the message in agent communication. 
Semantics Language is generally based on first order logic and used for information or knowledge 
queries such as FIPA-SL (FIPA Semantics Language), KIF (Knowledge Interchange Format). See 
Fig.1 for an example of messaging. 
 
 
 
 
 
 
 
 
 

 
 

Fig.1: A FIPA-ACL and FIPA-SL based Message between TestAgent and CarDeckAgent 

Another property of the multi-agent systems is the control of the system. The control can be 
introduced into three categories, centralized, federated and autonomous. In a centralized system, one 

 
(QUERY-REF  // FIPA-ACL Communicative Act 
 :sender  ( agent-identifier  :name TestAgent@BEKIRLAP:1099/JADE :addresses) 
 :receiver  (set ( agent-identifier  :name CarDeckAgent@BEKIRLAP:1099/JADE) ) 
 :content  "((Have (SideCasing :Side-Casing-Length 0.0 :Side-Casing-Width 0.0 :Side-Casing-
Height 0.0)))"   // Content Language, ‘Have’ actually is encapsulated within SL 
 :language  fipa-sl // FIPA Semantics Language 
 :ontology  Deck-Ontology // Side-Casing Length , etc. Concepts and ‘Have’ Predicate 
)         // are defined in the Deck Ontology 
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controller agent co-ordinates task and result sharing generally using blackboard like approach. Tasks 
are published and results are written into the blackboard. In federated architecture, certain agents 
(facilitator, matchmaker or middle agents) do the message and task routing. The communication 
among agents happens via facilitators then facilitators direct the message to corresponding agent(s). 
The last control mechanism is the autonomous system, in which agent directly communicates with 
other agents directly without any control. 
 
The last property is the collaboration of the agents in a multi-agent system. Collaboration can be 
accomplished in many ways, planning, auctions, game theoretic, etc. In this paper, the optimisation 
agent, a multi-objective genetic algorithm, is used to achieve collaboration or negotiation by means of 
Pareto-optimality. 
 
Multi-agent systems are also used in engineering design. It is first initiated to enable different 
knowledge bases to perform in collaborative manner, Cutkosky (1993), and extended to include design 
management features, Procura, Goldmann (1996). For detailed overview of use of multi-agent 
systems in engineering design and ship design please refer to Turkmen and Turan (2003), Shen et al. 
(2001). In Turkmen and Turan (2003), a multi-agent system for ship design decision support for 
conceptual and preliminary design is proposed, Fig.2. In the system, the multi-criteria decision 
making tools are added for giving decision support to the designer. The addition of decision support 
agents are new to previous systems, since in previous systems, the general idea is to have autonomous 
multi-agent systems in order to design almost without designer’s involvement. However, ship design 
is so highly complex and interrelated that such an autonomous system will be utopia. 
 

Fig.2: Proposed Multi-Agent System Architecture 

In following sections, Multi-objective genetic algorithms, the parallel and distributed NSGAII (A Fast 
and Elitist Non-Dominated Sorting Genetic Algorithm for Multi Objective Optimization) Deb et al. 
(2000) and the application of the proposed multi-agent system architecture are given for an internal 
hull subdivision arrangement optimisation problem along with the validation of distributed genetic 
algorithm with a classical mathematical test function.  
 
2. Multi-Objective Evolutionary Algorithms 
 
The success of finding good Pareto-optimal solutions while maintaining a wide spread of solutions 
has increased the popularity of evolutionary algorithms in multi-objective optimisation problems. In 
this study, genetic algorithms are used as an evolutionary algorithm for dealing with multi-objective 
optimisation problems. Genetic algorithms (GAs) are based on the natural selection, recombination 
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and mutation concepts for evolving species. Genetic algorithms have the capability of finding global 
optimum solutions in non-continuous, non-smooth and discrete search domains. The basic definitions 
for a multi-objective problem are given as following. 
 
Definition 1: Pareto-Dominance Principle 
 
The principle is based on a simple ranking of the solutions by their domination over each other in 
objective space. Pareto domination can be defined for a minimisation problem as, 
For two decision vectors u and v, 
 
 u dominates v (u } v)    iff    f(u) < f(v) 
 u weakly dominates v (u } v)    iff    f(u) ≤ f(v) 

 u indifferent v (u ~ v)     iff    f(u) ≤/ f(v) ∧  f(v) ≤/ f(u) 
 
As can be seen from the definitions above u decision vector dominates v if and only if every f(u) 
objective is less than f(v). 
 
Definition 2: Pareto Optimality 
 
Pareto optimality is actually the optimal solutions, which are not comparable or indifferent from each 
other in the concept of Pareto dominance. More rigorously, Zitzler (1998) a decision vector x ∈  Xf 
(feasible set) is said to be non-dominated (non-inferior) regarding a set A ⊆  Xf iff, ∃/ a ∈  A : (a } x).  
 
The Pareto optimal solutions of decision vectors are called Pareto-optimal set, non-dominated (non-
inferior) set and the corresponding objective vectors form the Pareto-front. In practical terms, a 
solution is a Pareto-optimal solution, if you cannot gain an improvement in one objective without 
causing degradation in another objective. We can divide the use of genetic algorithms into two 
categories for multi-objective problems: Population and Pareto-based genetic algorithms. 
 
2.1.Population-Based Genetic Algorithms 
 
One of the first studies of genetic algorithms in multi-objective optimisation is devised by Schaffer 
(1985). In his method, Vector Evaluated Genetic Algorithm (VEGA), the simple genetic algorithm is 
changed only at the selection stage. In the algorithm, every objective is represented by a 
subpopulation and in every generation, individuals are selected randomly to create a mating pool. 
After forming a mating pool, the selection is implemented in the mating pool with respect to chosen 
objective. The same number of individuals for each objective in the selection is preserved for 
avoiding any bias into search. After selection, individuals are shuffled randomly and then crossover 
and mutation operators applied. However, VEGA is still affected by the disadvantages of the 
weighting approach such as not being able to find to non-convex Pareto optimal fronts. 
 
Hajela and Lin (1992) proposed to encode the weightings of the objectives into chromosomes and 
tried to evolve them via genetic operations. The reason for encoding weightings into chromosomes 
can be explained as to find best weighting combinations for the aggregation and to generate more 
solutions with different weighting combinations. In linearly aggregated approaches, the weighting 
combination is a very important measure to get the decision maker’s true preferences. This method is 
also affected by drawbacks of the weighted aggregation method, since it uses the weighted sum 
approach in its core. 
 
2.2.Pareto-based Genetic Algorithms 
 
Most of the algorithms in this section use Pareto-based fitness assignment proposed by Goldberg, 
(1989). In Goldberg’s proposal, firstly non-dominated front is found, and then all the individuals on 
that front are assigned to a same dummy fitness. For the second front, the first front is ignored and the 
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dummy fitness values for those individuals in the second front are assigned but this time the dummy 
fitness values are reduced in order to preserve the non-dominance property of the first front. 
 
Fonseca and Fleming (1993) proposed a different scheme for the fitness assignment, an individual’s 
fitness assigned depending on how many individuals in the population it is dominated by. As a result 
all the non-dominated solutions are assigned to the same fitness, which is zero. 
 
Horn and Nafpliotis (1993) approached the Pareto-based fitness assignment in a different way. The 
proposed method NPGA (Niched Pareto Genetic Algorithm) used the tournament selection operator. 
In NPGA, two individuals are chosen randomly from the population, such as A and B. Moreover, tdom 
individuals from the current population (tdom >3) are again randomly chosen. The algorithm begins 
with the comparison of selected individuals A and B with the selected tdom individuals in the 
tournament set. If B is dominated but A is not, A is selected. If both are dominated or non-dominated, 
the fitness sharing is implemented. The fitness sharing uses continuously updated sharing, in which 
niche counts are calculated not by using current population, but rather partly filled next parent 
population. In other words, the distance metric for the sharing is implemented on the selected 
individuals for the next parent population. 
 
Srinivas and Deb (1995) applied Goldberg’s fitness assignment approach directly with Non-
dominated Sorting Genetic Algorithm (NSGA). The fitness sharing is also applied in this method in 
each front in order to improve the wide spread of solutions. However, the method has disadvantages 
for its computational complexity.  
 
While the above-mentioned methods are all dependent on a sharing parameter σshare, for fitness 
sharing, the following methods do not need σshare but they use the similar ideology which is fitness 
sharing. 
 
SPEA, Zitzler (1998), (Strength Pareto Evolutionary Algorithms) is another multi-objective genetic 
algorithm method. SPEA uses an external set for creating a non-dominated set and adds this external 
set into selection and fitness sharing process. In SPEA, fitness values of the individuals are defined by 
its strength. Fitness sharing is implemented by new Pareto-based niching method. In Pareto-based 
niching method, an individual’s strength can be reduced or improved by Pareto dominance principle 
instead of relative distance among individuals. The algorithm also uses clustering analysis to reduce 
the number of the non-dominated individuals in the external set not to slow down and unbalance the 
algorithm’s performance.  
 
PAES (Pareto Archived Evolution Strategy) is proposed by Knowles and Corne (1999). In this 
method, one parent and one children evolution strategy is used. “The child is compared with the 
parent. If the child dominates the parent, the child is accepted as the next parent and the iteration 
continues. If the child is dominated then the parent is mutated and the iteration is continued. If they 
cannot dominate each other then the child is compared with an archived external set created by the 
best solutions. The algorithm then accepts or ignores the child with respect to crowding property of 
the child”, Deb et al. (2000). Details of the algorithm are given in Knowles and Corne (1999).  
 
NSGAII, a fast and elitist multi objective genetic algorithm, is proposed by Deb et. al (2000) and in 
the algorithm NSGA’s fitness assignment is improved with better book keeping algorithm. The 
algorithm also uses the crowding distance parameter to keep diversity in the population. It also 
defines the constraint-dominance principle in order to work better with constrained optimisation 
problems. There are other algorithms based on multi-objective genetic algorithms, however, they are 
omitted for brevity. 
 
3. Agent Oriented Programming and Distributed NSGAII 
 
Agent oriented programming differs from object oriented programming in a few ways. Agents are 
built up from behaviours and those behaviours represent mental states of the agents. Behaviours also 
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govern agents’ interaction with the environment and with other agents. For an agent to accomplish all 
sorts of different behaviours in timely manner, the system should be able to handle different events 
asynchronously. In the implementation of agents and multi-agent systems in this paper, JADE, Jade 
(2004)] is used for multi-agent software platform. JADE is an agent platform, which comply with 
FIPA tests for interoperability. JADE agents can be embedded into web pages, as applets or JAVA 
Server Pages, or they can reside in the local host. JADE can also work in connection with JESS, Jess 
(2003) and Protégé, Protégé (2004), for ontology support. 
 
The optimisation algorithm is distributed and parallelized in the objective evaluations and update parts 
of NSGAII algorithm. Before going into detail of the software design issues, detailed explanation of 
NSGAII will be necessary for the background information.  
 
3.1. The NSGA II Algorithm 
 
We can divide NSGA II into three sections. The first one is non-dominated sorting for fitness 
assignment. The second one, is fitness sharing (crowding distance assignment) and the last section is 
the binary tournament selection with respect to fitness and crowding distance values. 
 
Non-dominated sorting in NSGA II is a fast and modified version of Srinivas and Deb’s (1995) 
proposal NSGA. In this sorting procedure, non-dominated individuals are found in the population 
with Pareto-dominance principle and assigned to rank zero, then they are ignored to find second front 
and so on. 
 
Crowding distance assignment is used in order to penalize the individuals that are closer to each other 
according to fitness sharing. The assignment works in the following way; individuals are sorted with 
respect to each objective for the optimisation problem in ascending order. The border individuals, the 
individuals having lower and upper values for each objective function, are assigned to an arbitrary big 
value. Assigning big values to border individuals is applied in order to preserve the border individuals 
to find wide spread Pareto-front. Crowding distance values for every objective are then calculated and 
summed to find a single value for the individual’s crowding distance. This procedure is applied for 
each front. 
 
The third main part is the crowding distance selection. This selection method is a modified version of 
the binary tournament selection. The only difference in this selection method is that, the method 
compares crowding distance values of two selected individuals as well as comparing fitness values 
(ranks, in this case), when two individuals are in the same rank. 
 
NSGA II is an elitist multi-objective genetic algorithm. The NSGA II implements elitism by 
combining parent and child populations for every generation. The selection of the individuals to create 
new parent population from two sets is realized by sorting the last front with respect to crowding 
distance in descending order and selecting the individuals having higher crowding distance values. 
 
3.2. Distributed NSGAII 
 
As mentioned before, for the objective function evaluations and updates we distribute the 
computational load to other computers in the environment. In order to achieve this, two modifications 
have been made to the current local version of NSGAII algorithm. The first modification is needed to 
devise a behaviour for allowing us to distribute the computation among agents and the second 
modification is the basic loop of generation module in the local version. 
 
3.2.1. The Behaviour Design for Distribution of Objective and Constraint Evaluations 
 
A behaviour must be devised to send the job to the other agents, and wait for the results for certain 
amount time and inform optimisation agent which embeds NSGAII algorithm. Thankfully, JADE has 
built-in behaviours for achieving the above-mentioned behaviour. The behaviour in the JADE is 
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called AchieveREInitiator/Responder which are defined in order to implement FIPA-Request like 
interaction protocols, such as FIPA-Request, FIPA-Query. This behaviour is used to achieve rational 
effect, the expected effect of the action. A protocol is used in here in order to keep track of the status 
of rational effect’s achievement, Bellifemine (2003). In the current implementation, the optimiser 
agent uses the initiator behaviour, but other worker agents use simple behaviour of JADE, which 
compares the communicative act and sends the result, Fig.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: Description of Agent Behaviours and JADE GUI 

Other types of behaviour, which need to be added to the agent’s behaviour queue are the update and 
evaluate behaviours for the optimisation algorithm in order to set the objective and constraint function 
fields of the individuals in the population. 
 
3.2.2. Modified Generation Method for NSGAII 
 
The generation needs to be divided into groups of behaviours and pushed into agent’s behaviour 
queue in order to run the algorithm. In JADE, when the behaviour is done and finished, it is also 
removed from the behaviour’s queue. This results in adding behaviours in every generation. The 
NSGAII is divided into five main groups, evaluation, first generation, update, second generation and 
update. The generation behaviour is devised as a sequential behaviour loop. In this sequential 
behaviour, evaluate and update behaviours are added as parallel behaviours, Fig.4. 
 
There are two missing implementation details in this distributed algorithm. The first one is related to 
the task sharing, instead of AchieveREInitiator, the more advanced version of Initiator, Contract Net 
protocol may have been used, and secondly the optimisation algorithm waits for results from every 
agent to proceed (Granularity problem). Those missing parts can be easily implemented and they will 
be further detailed in the future research part. 

class AgentSubjectInitiator extends AchieveREInitiator 
{ 
  Vector prepareRequests(ACLMessage msg) 
  void handleAllResultNotifications(Vector allResNotif) 
  void handleNotUnderstood(ACLMessage notUstd); 
  void handleAgree(ACLMessage agree); 
  void setValues(ACLMessage msg); 
} 

public class WorkerBeh extends SimpleBehaviour 
{ 
  public void action(ACLMessage msg) { 
  if (msg != null) { 
  if(msg.getPerformative() == ACLMessage.REQUEST) 
  { 
 calculate and send back results 
   }  
  } // End if (msg!=null) 
  else block(); // Block the behaviour not the agent 
 } // End of action  
}
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Fig.4: Generation Behaviour for NSGA II Algorithm 

 
3.3. The Test of The Algorithm with a Classical Test Function 
 
In order to validate the code, the classical Schaffer test function is used. The local code has been 
already tested in various test functions for validation. The Schaffer Test Function F2, Schaffer et al. 
(1985), is given below. 
 

               Min. 2
1 )(f x=x , 

       Min. ( )2
2 2)(f −= xx ,           (1) 

-1000< x <1000 
 

Fig.5: Comparison of Distributed Version with Local Version 

// Create generation behaviour 
SequentialBehaviour gen=new SequentialBehaviour(myAgent) 
{ 

onEnd() {  
if(genCounter<nGens-1)  {++genCounter; …} 
else { // clean-up and print out results 
} 

} 
// Evaluate Objective & Constraint Evaluations  
 addEvaluateBehaviours(); // Parallel Behaviours added to the gen, in a sequential 
behaviour loop 
// First Generation 
gen.addSubBehaviour(new RunFirstGenerationBehaviour()); // OneShotBehaviour 
// Update ChildInds 
addEvaluatebehaviours(); 
// Run Second Generation  
// Loop Through Until Generation Counter Exceeded The Max. Limit 
runAndUpdateSecondGeneration(); // Add generation behaviour to the agent’s queue 
//myAgent.addBehaviour(gen); 
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The test run parameters for this optimisation problem are as follows; The population parameters for 
this problem are; Probability of single point crossover, pc, 0.9, probability of random mutation, pm, 
0.01, and number of generations, nGens, 250 and the population size, nInds, 100. Two agents are 
created in order to calculate above functions. The agents are executed locally in order to measure the 
performance. Fig.5 compares results showing that the algorithm works as expected, however, the time 
took for the calculation in distributed version is increased. (That is already expected, since agents and 
JADE Agent platform will cause the algorithm to run slower than its local counterpart) 
 
That is also important to note that, the validation of the code is just to ensure that the distributed code 
works the same way as its local version does. Although, the distributed code uses the local code 
segments, the behaviour management must be carefully investigated in the software. JADE provides 
two tools for debugging agent applications, introrespector and sniffer agents. The sniffer agent is used 
in the implementation of developed software for debugging. 
 
4. Application Study: Internal Hull Subdivision of a Ro-Ro Passenger (ROPAX) Vessel 
 
The optimisation problem for applying the distributed algorithm in ship design is an internal hull 
subdivision problem for a Ro-Ro Passenger ship (ROPAX). The tragic accidents of the Herald of Free 
Enterprise in 1987 and the Estonia in 1994 initiated a significant surge of research related to the 
capsizing of Passenger Ro-Ro type of ships, which have a very large undivided car deck. Flooding of 
that undivided car deck even with a small amount of water caused rapid capsize of the ships and loss 
of significant number of lives as experienced with above-mentioned tragic accidents. This effort 
culminated in significant developments that helped the ferry industry to raise safety levels to 
demanding new heights. New regulations require all the ROPAX Vessels to comply with SOLAS’ 90, 
SOLAS (2001), standards as well as new water on deck standards known as the Stockholm 
Agreement, which determines the limiting wave height at which ROPAX vessel survives in damaged 
condition. In response to the strict new regulations, the shipping industry is demanding new modern 
Passenger Ro-Ro designs with very high standards cost effectively.  
 
Furthermore, due to recent European Union (EU) regulations, which banned the tax-free sales during 
the journeys between EU countries, forced designers and operators to look for design and route 
alternatives to meet customer demands in line with high safety standards as well as cost effectiveness. 
The end of tax-free sales created a surplus store space in those designs, which cannot be used for 
passenger accommodation due to safety regulations. The main aim of this case study is to maximise 
the survivability and stability standards while improving the cargo capacity by introducing new design 
alternatives. The internal arrangement of the hull is a very important factor for a ship’s damage 
stability and survivability, especially when damage occurred. The optimisation problem is therefore 
limited to arrangement of transverse bulkheads, car deck height, lower hold height, and lastly side 
casing, which is known to be important parameter for increasing stability and survivability, Fig.6. The 
problem described here is a successive work of Olcer et al. (2003) and objectives of this optimisation 
problem are given in Table I. The optimisation variables are also given in Appendix A.1. 

 
Table I: Optimisation Objectives 

 
No Objectives Type Description 
1 HS value Maximisation for the worst two compartment damage case 
2 KG limiting value Maximisation for the worst two compartment damage case 
3 Cargo capacity Maximisation expressed in car lanes, lorry lanes kept constant 
 
There are three objectives in this study. The first objective is the maximisation of Hs (Significant 
wave height), which is a measure used to assess survivability of ships in waves. Static Equivalent 
Method, Vassalos et al. (1996), Tagg and Tuzcu (2002), is deployed here in order to calculate Hs.  
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Fig.6: ROPAX Ship Sectional Representation 

 
Another objective is to achieve the right stability standards by achieving limiting KG (vertical centre 
of gravity) as high as possible. Limiting KG is a way of expressing allowable loading condition of a 
ship. It is a crucial fact that limiting KG must be higher than the KG value for a loading condition 
(operational KG) in order to achieve enough stability. Operational KG is a very important parameter 
for a ship, since it tends to increase during the life cycle of the ship and that causes changes in loading 
condition. The higher limiting KG values enable designers to make design changes during the life 
cycle of a ship. The third objective is earning capacity of the ship, which is defined as the number of 
car lanes in the ROPAX ship. 
 
There are also constraints in this optimisation problem in order to comply with SOLAS’90 
Regulations, such as minimum GZ Area, and maximum heel. The minimum bulkhead distance for 
two adjacent bulkheads must be greater than 0.03.Ls +3.0m. We applied this approach in order to 
comply with SOLAS’90 regulations with no additional calculation cost. Ls is the subdivision length 
defined in the SOLAS’ 90 regulations. Another important constraint in the case study is the 
operational constraint, which is used to satisfy operational KG requirements in the life cycle of the 
ship. The tabulated form of all constraints is given in Appendix A.2. 
 
The constraint approach for minimum bulkhead distance is modified in order to make the search more 
robust. The approach applied here sums all violating bulkhead distances for an individual (string or 
inputs for optimisation problem in genetic algorithms) and NSGAII with constraint violation 
penalizes the individuals, which violate the bulkhead distance constraint more. 
 
4.1. Representation of Results 
 
Two different runs are carried out, the first one is the local version and the second is the one with 
multi-agent systems based distributed genetic algorithm. Same parameters are used in both runs. The 
population size, number of individuals in the population, is set to 80 and the number of generations is 
set to 32. Real coding is used as a chromosome representation. Although, the real coding of 
chromosome representation is used, the crossover and mutation operators are selected as one-point 
crossover and random mutation. The reason for using crossover and mutation operators, which are not 
generally suitable for real coding, was due to the problem’s combinatorial property. The transverse 
bulkhead positions along with side-casing width and lower hold height are discrete and that is why, 
the problem can be seen as a combinatorial problem. One can argue that, using multi-point crossover 
may perform better in this kind of problems by better preserving building blocks. However, the aim is 
here to show the multi-agent systems based distributed genetic algorithm, and also we strongly 
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believe that, even if the multi-point crossover used, the best individual found would not differ too 
much, due to problem’s nature. 
 
In Table II, the best individuals found in both runs are shown. The difference between the best-found 
individuals in both runs is due to the random features of the genetic algorithms. The selection of the 
design will of course be the best design found from MAS-NSGAII. 
 

Table II: The Original Design and Found Best Designs 

No Optimisation Variables Original Design GA-NSGAII MAS-NSGAII 
1 Car deck height 9.7m 9.9 9.9 m 
2 Side-casing width No side-casing 1 1 m 
3 Lower-hold height (from 

car deck) 
2.6m 5.2 5.2 m 

Watertight Transverse Bulkheads In frame numbers In frame numbers  
4 Transverse bulkhead 02 27 29 26 
5 Transverse bulkhead 03 39 41 38 
6 Transverse bulkhead 04 51 52 49 
7 Transverse bulkhead 05 63 65 65 
8 Transverse bulkhead 06 81 83 83 
9 Transverse bulkhead 07 99 97 98 
10 Transverse bulkhead 08 117 115 115 
11 Transverse bulkhead 09 129 127 127 
12 Transverse bulkhead 10 141 143 140 
13 Transverse bulkhead 11 153 155 151 
14 Transverse bulkhead 12 165 166 164 
15 Transverse bulkhead 13 177 177 179 
16 Transverse bulkhead 14 189 190 191 
Performance scores of designs    
1 Cargo capacity expressed 

in car lanes 
8 (abt.1033 m.) 14 (abt.1450) m 14 (abt.1450) m. 

2 HS value 4.641 m 5.443 m 5.908 m 
3 KG limiting value 13.845 m 14.048 m 14.044 m 

 
The time required for the algorithm is reduced about 40 % percent. The question may arise why the 
reduction was not 50 %, the answer to this question is two folds. The first one is that the algorithm 
runs slower than its counterpart due to communication and Jade’s involvement, and secondly, the 
distributed algorithm has a granularity problem as mentioned before. 
 
5. Discussions and Conclusions 
 
The paper represented a multi-agent systems based distributed genetic algorithm in a master/slave 
parallel genetic algorithm. The algorithm can be further improved with investigating on island model 
genetic algorithms to reduce the communication needs, however there could be other problems such 
as selecting migration rate or how many times the migration will be implemented. The algorithm has 
so called granularity problem, but we strongly believe that the algorithm may be improved with better 
scheduling with little effort. 
 
The use of multi-agent systems can also be further improved by using contract net approach, for task 
and result sharing, and furthermore, Directory Facilitator (In JADE, agents can register themselves to 
the directory facilitator, with their service description, the semantics language and so on, in other 
words, the directory facilitator works as a yellow page service) may be used to find the agents in the 
environment in order to make optimiser agent more dynamic in changing environments. 
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The selection of the best individual is performed by designer’s preferences, to select among almost 
10~ 15 near Pareto-optimal solutions. The designer’s preferences are valuable ingredient for the 
optimisation especially for engineering design problems, having time and resource bounds. The 
introduction of designer’s preferences may have been introduced in three categories. The first 
category, a priori, such as the weighted aggregation techniques or posteriori as the way it has been 
introduced for the solution of this problem, or progressive, the algorithm can be guided during the 
optimisation with changing designer’s preferences. The third approach, progressive designer’s 
involvement, is obviously the best choice among three, however when there is an extensive need for 
designer’s involvement may make the method discouraging and tedious to use. An intelligent agent 
which will be acting on behalf of designer in order to guide search very important asset to the solution 
of the problem. 
 
In conclusion, a multi-agent systems based genetic algorithm is implemented and implementation 
details are outlined. The algorithm performed well both in mathematical test function as well as ship 
design problem. The original ROPAX design is improved for survivability and operational 
parameters, operational KG and Car- lane length. Increasing the lower hold height has also enabled to 
load truck’s into the lower hold, which enables the ship to work on different load conditions. 
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Appendix A 
 

Table A-I: Optimisation Variables 

  Bounds  
No Variables Lower Upper Increment 
1 Car deck height 9.6m 9.9m 0.025m 
2 Side-casing width 1m 2m 0.5m 
3 Lower-hold height (from car 

deck) 
2.6m 5.2m - 

4 Transverse Bulkhead 02 25 29 1 
5 Transverse Bulkhead 03 37 41 1 
6 Transverse Bulkhead 04 49 53 1 
7 Transverse Bulkhead 05 61 65 1 
8 Transverse Bulkhead 06 79 83 1 
9 Transverse Bulkhead 07 97 101 1 
10 Transverse Bulkhead 08 115 119 1 
11 Transverse Bulkhead 09 127 131 1 
12 Transverse Bulkhead 10 139 143 1 
13 Transverse Bulkhead 11 151 155 1 
14 Transverse Bulkhead 12 163 167 1 
15 Transverse Bulkhead 13 175 179 1 
16 Transverse Bulkhead 14 187 191 1 
Bounds for transverse bulkheads are given in frame numbers 

 

Table A-II: Optimisation Constraints 

No Constraints Requirements 
1 Range Range of positive stability minimum of 15 degrees 
2 Min. GZ Area Minimum area of GZ-curve at least 0.015mrad 
3 Maximum GZ 

Taking into account the 
greatest of those heeling 
moments 

1. The crowding of all passengers towards one 
side 

2.  the launching of all fully loaded davit-
launched survival craft on one side 

3. due to wind pressure 
 

GZ (in metres) = 04.0+
ntdisplaceme
entheelingmom

 

 
However, in no case is this righting lever to be less 
than 0.1 m. 

4 Maximum Heel Maximum static heel not more than 12degrees (two 
adjacent compartment) 

5 Minimum GM Minimum GM (Metacentric Height) at least 0.05m 
6 Margin Line Margin line should not be immersed 
7 Bulkhead distance Minimum bulkhead distance (0.03*Lbp+3m) 
8 KG Operational Limiting KG greater or equal to 1.005 of 

Operational KG 
 


