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Abstract- A new methodology named Evolutionary Ar-
tificial Potential Field (EAPF) is proposed for real-time
robot path planning. The artificial potential field method
is combined with genetic algorithms, to derive optimal po-
tential field functions. The proposed Evolutionary Ar-
tificial Potential Field approach is capable of navigat-
ing robot(s) situated among moving obstacles. Potential
field functions for obstacles and goal points are also de-
fined. The potential field functions for obstacles contain
tunable parameters. Multi-objective evolutionary algo-
rithm (MOEA) is utilized to identify the optimal poten-
tial field functions. Fitness functions like, goal-factor,
obstacle-factor, smoothness-factor and minimum-path-
length-factor are developed for the MOEA selection cri-
teria. An algorithm named escape-force is introduced
to avoid the local minima associated with EAPF. Moving
obstacles and moving goal positions were considered to
test the robust performance of the proposed methodology.
The simulation results showed that the proposed method-
ology is efficient and robust for robot path planning with
non-stationary goals and obstacles.

1 Introduction

The robot path planning problem can be typically described
as follows [17]: given a robot and a description of its working
environment, plan a collision free path between two specified
locations that satisfies certain optimization criteria. Path plan-
ning has been studied and applied in many research fields.
Collision-free path planning algorithms for robot manipula-
tors are proposed in [1] and [2]. Path-planning methods for
autonomous vehicles working in natural sites are suggested
in [6]. Path planning schemes for multiple robots are dis-
cussed in [11] and [12]. Depending on the field of applica-
tion, robot path-planning methods differ. In general, path-
planning methods can be classified in to two: the artificial
potential field (APF) methods [6, 7, 8, 9, 10] and the artificial
intelligence (AI) methods [1, 2, 3, 4, 5].

Many artificial intelligence methods exist for path plan-
ning, based on tools like, genetic algorithms (GA) [3, 4, 5],
fuzzy [22, 23] and artificial neural network [24, 25]. These
methods are associated with optimization algorithms, result-
ing in optimal global path planning. However, optimization
algorithms are relatively complex, time-consuming, and are
not very useful for real time applications. Artificial intelli-
gence methods can be resorted to when the available informa-
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tion on the environment is ambiguous. The artificial potential
field approaches are much convenient than Al methods for
their high efficiency in path planning provided that the work-
ing environment is known.

Artificial potential ficlds are in use, in the context of ob-
stacle avoidance, since Khatib [18]. In this approach a mo-
bile robot applies a force generated by the artificial potential
field as control input to its driving system. The traditional
artificial potential field approaches were often purely reac-
tive in nature and do not optimize the path arrived at [19, 20].
Modified potential field approaches with robust and improved
performance have been reported lately: Chanclou B. [6] sug-
gested path planners to impart robust features to the artificial
potential field functions. This approach relies on two path-
planners, one for global planning through physical compu-
tations, and the other for local planning though a physical
simulation of the vehicle within the environment. These two
planners work together to arrive at a suitable path through a
natural terrain.

Akishita S. et. al. [8] proposed a navigator function to
deal with the local minima associated with the traditional po-
tential fields. A hydrodynamic potential field is utilized in this
work to guide a mobile robot towards the goal while avoid-
ing moving obstacles. The workspace for the robot is com-
pared with a flow field, and the path to a streamline in this
approach. Makita, Y. et. al. [9] proposed an hybrid method
to improve the performance of the artificial potential fields.
The hybrid method combined fuzzy control rules with poten-
tial field functions, for vehicle navigation and control in pres-
ence of obstacles. The potential field was generated based on
Plumer’s [7] technique, and the path using fuzzy rules. Such
an approach resulted in less number of fuzzy antecedent in-
put variables and prevented the control rules from being com-
plex. Kun et. al. [10] proposed an adaptive fuzzy controller
for robot path planning, to improve the flexibility of the arti-
ficial potential field method. Genetic algorithm (GA) is used
to adjust the fuzzy control rules in the above work. The sys-
tem will switch to the fuzzy tracking mode, when a robot is
trapped in a local minimum. The fuzzy tracking mode con-
troller continuously modifies the path, by tracking the obsta-
cles, until the robot is able to escape from the local minimum.
Compared with the traditional artificial potential field meth-
ods, the above methods provide robust and improved perfor-
mance. However, these methods are complex for fast and real
time path planning, and are not being applied in situations



with moving obstacles and moving goal positions.

In this work, the artificial potential field method is com-
bined with Al to derive an optimal and efficient path planning
method. An evolutionary artificial potential field (EAPF)
method is proposed for real-time path planning. The objec-
tives of this work are:

e To design a simple artificial potential field function

with tunable parameters, for real time application,

o To derive the associated cost functions,

- To optimize the parameters of the potential field func-
tion with the multi-objective evolutionary algorithm
(MOEA), and,

e "To use the proposed evolutionary artificial potential
field for real time robot navigation with moving obsta-
-cles around, and for moving goal positions.

The rest of the paper consists of four sections. Section 2
introduces the evolutionary artificial potential field method.
The implementation of the proposed evolutionary artificial
potential field is described in Section 3. Section 4 contains
simulation results, followed by conclusions and suggestions
for future research in section 5.

2 The Evolutionary Artificial Potential Field

2.1 The traditional artificial potential field methods

In the traditional artificial potential field methods, an obstacle
is considered as a point of highest potential, and a goal as a
point of lowest potential. In the domain of robot path plan-
ning, a robot always moves from a high potential point to a
low potential point. In general, these procedures involve the
following basic steps:

1. Setting up a potential field function ® which can be a
function of distance D, such as: & = 1/D [10],

2. Use of special algorithms to locate a minimum poten-
tial point,

3. Navigating a robot towards the minimum potential
point arrived at, and,

4. The repetition of steps 2 and 3, until the robot reaches
the goal position.

Traditional artificial potential field methods are efficient
in identifying safe paths for robots. However, if an optimal
path is required, it is needed to include the relevant optimiza-
tion functions and associated constraints. The constraints in-
variably introduce complex computations, and the local min-
imum will be difficult to define and tackle.

2.2 The Evolutionary Artificial Potential Field (EAPF)

In the traditional artificial potential field function approach,
no optimization process is involved in. The path generated
through this approach will be safe but not optimal. In order
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to optimize the path arrived at; a new method named the Evo-
Tutionary Artificial Potential Field (EAPF) is proposed. In the
evolutionary artificial potential field method, evolutionary al-
gorithms optimize the potential field functions.

Inspired by the natural potential fields, it is assumed that a
robot moves in a direction along the potential field angle. The
angle direction at any point in the field is along the resultant
of a repulsive force from the obstacle and an attractive force
towards the goal (Figure 2). The complete field associated
with an evolutionary artificial potential field can be derived,
once the repulsive and attractive forces at each point in the
potential field are known (Figure 1).

Unlike the traditional approaches, different potential func-
tions for obstacles and the goal are considered in the proposed
approach. Evolutionary algorithm is used to optimize the ob-
stacle potential field functions. The associated steps are:

e Designing a standard attractive force function for the
goal point, and repulsive force functions with tunable
parameters for different obstacle types. At each point
in the field, the resulting potential field angle is along
the angle of the resultant of the attractive and repulsive
forces. Potential field functions are always considered
as functions of distance. The attractive force towards
the goal F,, and the repulsive force from an obstacle
F, are defined in Equations 1 and 2, respectively.
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Where, F, and F,. represent the attractive and repul-
sive forces. D, is the distance between the robot and
the goal. D,, is the distance between the robot and an
obstacle. The parameters, a and n are to be optimized.

Designing potential field cost functions for the system.
The cost functions determine the fitness of a potential
field function, otherwise known as a string. By compar-
ing the cost functions of two such strings, it is possible
to determine which of the two potential field functions
is the best for the system.

Use of the multi-objective evolutionary algorithm
(MOEA) [14], to optimize the parameters of each of
the potential field functions of the obstacles. The
MOEA has four operations involved with; selection,

258

robot miny g fo.q (11P(-PgLY)

goal

Figure 5: The goal factor

robot

obstacle

max, g [.ig (Ro-llpe(t)-Poll)

Figure 6: The obstacle factor

crossover, mutation and ranking. Selection is the pro-
cess of choosing a user-specified population size from
a pool of population. In the crossover operation genes
are exchanged between two strings. Mutation is used
to randomly alter the genes of a string. The rank of a
string is one plus the number of other superior strings
within the population. The rank is related to a string’s
overall superiority within the population, and is used
in the selection process to choose the strings to gener-
ate a temporary population. The MOEA is used till a
satisfied result is obtained.

Use of the evolutionary potential field function to nav-
igate the robot(s).

The resulting evolutionary artificial potential field func-
tion will be the optimal potential field function for an obsta-
cle. The same function can be used in a multi-obstacle en-
vironment, where all the obstacles are of the same size. In
the proposed EAPF method, only the information of the posi-
tions of the robot(s), obstacles and the goal point are required
to plan the path. Due to this, the algorithm is suitable in sit-
uations where moving obstacles and moving goal point exist.
The resulting robot navigation procedure is simple and fast.

If obstacles are of different sizes, it is needed to find op-
timal potential field functions for each of the obstacles. The
rest of the procedure remains the same.

2.3 The Local Minimum associated with EAPF

The local minimum is a problem to be tackled in the artificial
potential field methods. A robot navigated along an artifi-
cial potential field may be stable or may oscillate at the local
minimum. Due to complex computations associated with, the
traditional APF approaches trouble shoot at the local mini-
mum. The evolutionary artificial potential field approach also
suffers from the local minimum. However, as the associated
computation is simple, the local minimum is easy to define
and, it is easy to include additional algorithm to tackle the
same. In this work, an additional algorithm named ’escape-



force’ is introduced to avoid the local minimum.

In the evolutionary artificial potential field, local minima
exist within the areas around the null-potential points. The
null-potential point condition is:

Fo+) F.=0 )

A local minimum is identified when the following two
conditions are satisfied (Equations 5 and 6).

F,-Y F,
cos(LF, — £ ZF,) < —cos(e) 6)

When Equations (4) and (5) are satisfied, an additional es-
cape force is applied:

F, = (le—n) (‘ cos(LF, — £ ZFT) - cos(c)D @)

Where, F; represents the escape force. The parameters,
b,c, d and m are to be optimized with the multi-objective
evolutionary algorithm

Figures 3 and 4 show the results with and without the
escape-force function. The result is better in Figure 4 with
the escape force function.

3 Implementation of the evolutionary artificial
potential field approach

3.1 The attractive and repulsive force functions in EAPF

In this section, the implementation of the evolutionary arti-
ficial potential field is discussed. It is assumed that there are
several obstacles of equal size and a single goal within the en-
vironment. The aim is to plan an optimal collision-free path
for the robot. EAPF is used to navigate the robot. The ob-
stacles and goal are considered as different potential field re-
sources. The potential field functions for the attractive and
repulsive forces are (described in Section 2.2):

1
F, =
D, 3
1
Fo= —— 9
(aDyo)™ ©)
Potential field angle = /(F, + Y F;) (10)

3.2 The cost function

Three fitness functions, namely, the goal-factor, the obstacle-
avoidance-factor, and the minimum-path-length-factor are
utilized in the proposed approach while arriving at an opti-
mal path. The associated cost functions are defined in Equa-
tions 8, 9 and 10. The goal-factor is zero when the robot is
at the target point. The obstacle-factor is zero as long as the
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robot is not in collision with an obstacle. The minimum-path-
length-factor denotes the path length of the shortest path.
Goal-factor (Figure 5):

|

Obstacle-factor (Figure 6):

0
Fy+mingepo,, (Ip(#) = Pyll)  otherwise
(an

no collision

0
fo= { Fo +maziep,,) (Ra —|lpe(t) = Poll) otherwise
(12)
Minimum-path-length-factor:
fpalh length = whole length of the planned path  (13)

Through evolution it is desired to have zero values for the
goal-factor and the obstacle-factor. Smaller minimum-path-
length-factor means better performance of the potential func-
tion.

3.3 Optimization of the evolutionary potential field func-
tion using MOEA

The multi-objective evolutionary algorithm is used to op-
timize the parameters of the potential field function. The
multi-objective evolutionary algorithm (MOEA) is a stochas-
tic search technique inspired by the principles of natural se-
lection and natural genetics. It has attracted significant at-
tention from researchers and technologists in various fields,
because of its ability to search for a set of Pareto optimal
solutions. In this paper, the MOEA toolbox [14] is used to
facilitate the optimization process. The MOEA toolbox is de-
veloped at The National University of Singapore as a tool for
multi-objective optimization. Figure 7 shows the necessary
settings to run MOEA toolbox.

4 Simulation Results

The evolutionary artificial potential field was implemented on
different tasks in diversity situations to test its robust perfor-
mance.

Figure 8 shows four path planning tasks with a station-
ary obstacle and a stationary goal situation. In each task, the
obstacle is kept at different locations. Collision free optimal
paths were obtained in all the four cases.

Figure 9 shows four path-planning tasks with a moving
obstacle and a moving goal situation. In the first three cases
in Figure 9, the goal point and the obstacle move in different
directions. To show the robustness of the proposed EAPF, the
goal point and the obstacle are considered on the move in a
random fashion in the last case in Figure 9.

Figure 10 shows four path-planning tasks in a multi-
obstacle situation with a single stationary goal point. In the

robot at target point



Figure 7: MOEA Toolbox settings

first case in Figure 10, the robot could reach the stationary
goal avoiding the two stationary obstacles. In the next two
cases in Figures 10, the robot could seek the moving goal
point while avoiding several moving obstacles. In the last
case in Figure 10, the robot was able to seck the random mov-
ing goal while avoiding three randomly moving obstacles.

From the above results, it is observed that the proposed
evolutionary artificial potential ficld method can always plan
an optimal smooth path, irrespective of whether the obstacles
and the goal point are stationary or on the move.

5 Conclusion and suggestions for future re-
search

In this paper, an evolution artificial potential field method is
proposed for robot path planning. The proposed method is ca-
ble of navigating robots among moving obstacles and is able
to seek the moving goal points as well. Compared with the
traditional potential field method, the resulting paths are al-
ways smooth and optimal. Added to that, the path planning
process is simple and fast.

Future research is still needed on the following points:

e Further improvement on path planning performance.
Although the multi-objective evolutionary algorithm
optimizes the potential function, the path planning per-
formance is still limited by the basic model of the po-
tential field function. To further improve the path-
planning performance, optimal algorithms for the basic
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model of the potential field function are to be derived.

e This paper considered only obstacles of equal size.
Without any loss of generality, the same algorithm can
be extended to environments where the obstacle sizes
differ.

e Recently, several methods have been reported, which
combined the fuzzy and neural network tools with the
artificial potential field [7,10]). A combination of these
methods with the proposed method will be interesting
to look into.
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