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Abstract

In this paper the effects of elitism in the Nondominated Sorting Genetic
Algorithm (NSGA) are analyzed. Three different kinds of elitism: standard,
clustering and Parks & Miller techniques are investigated using two test problems.
For the studied problems, the Parks & Miller mechanism generated the best
results. Finally, the NSGA with Parks & Miller elitism was applied to determine
the nondominated front for a storage magnetic energy system and the IEEE 30-
node system. Simulation results obtained suggest the effectiveness of this
proposed approach to solve real world problems.

I. INTRODUCTION

Many real world optimization problems the aim is to find solutions that are best with regard to
various objectives. These optimization problems are named multiobjective and they are usually
hard computing. Evolutionary based algorithms have been successfully used to determine the
Pareto-Optimal (PO) front for these types of problems because they simultaneously work with a
population of points that is crucial to find the non-dominated solution set [1].

In this paper, the Nondominated Sorting Genetic Algorithm - NSGA [2], [3] is examined
with respect to different kinds of elitist techniques, that is, standard, clustering [4], and Parks &
Miller [5]. Elitism is nowadays a recognized approach to improve the performance of evolutionary
based algorithms. This type of approach in multiobjective optimization is not so simple as in
single-objective problems. However, in multiobjective evolutionary algorithms - MOEAs, elitist
techniques are used to save at generation t non-dominated individuals from the risk of disruption
during genetic operations like mutation and crossover and to restore them to the population on
subsequent generations.

The performance of NSGA with the aforementioned elitist techniques was investigated
taking into account evaluations of three metrics: generational distance, spacing and timing
analysis [6]. As a set of solutions is expected in solving multiobjective optimization problems,
just one metric is not enough to compare results obtained due to modifications performed on the
used algorithm. So, the aim of using these metrics is to provide an understandable sight spotting
the differences amongst the results from the NSGA implemented with one of the elitist
approaches. Two analytical test functions were used in this analysis: the Schaffer’s test functions
F3 and F5 [7] .

The NSGA with the best elitist approach found in the previous investigation is subsequently
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applied to determine a nondominated front for two problems: i) a storage magnetic energy system
– SMES proposed as a benchmark problem TEAM22 [8] and ii) the IEEE 30-node system. The
numerical analysis of SMES problem was performed by using a finite element code with a mesh
of triangular elements of first order.

II. DESCRIPTION OF ELITIST TECHNIQUES

Through elitism implementation, one intends to improve the multiobjective genetic based
algorithms performance by preventing loss of efficient individuals and reinserting them in the
internal population to guide the search. Different elitist approaches were described in the last years
with distinct features and some of them are discussed here. Before doing that, it is important to
point out the following adopted terminology: internal population (Pin) is the on-line or current
population in which the genetic operations are performed; external population (Pext) is an auxiliary
population that is used to preserve the nondominated points found during the optimization
process; Npop is the number of sample points or individuals in the internal population.

A. Standard Elitism

The simplest elitist technique in multiobjective optimization is refereed here as Standard Elitism.
Basically, at each generation t, nondominated individuals of Pint are copied to Pext. At the next
generation t+1 or t+n, where n is an integer number, Npop individuals are chosen from Pext and
reinserted in Pint. Individuals in Pext see your number augmenting at each generation. As any
criterion of discarding individuals is applied in Pext, it is possible to have many similar or identical
individuals in the internal and external populations.

B. Clustering

The clustering technique begins like standard elitist strategy. At each generation, efficient
individuals of Pint are incorporated to Pext. When the external population size exceeds a maximum
admissible number, say Npext, the dominance criterion is applied on the external individuals,
keeping in Pext only the nondominated set. If Pext is reduced under Npext by the dominance
criterion, the program backs to increase the external set Pext until Npext. Else, if Pext is not so
reduced, the clustering technique is used. This technique consists in dividing the external
population in clusters. It is possible to have some clusters represented just by one individual. To
separate these elements, all distances between individuals are evaluated and the closest ones are
grouped in clusters. The number of clusters is made equal to Npext. The individual representing a
cluster will be the one which mean distance to all others individuals in its cluster is the smallest. It
is named centroid. Once Npext centroids are found, they constitute an elite set. From this set, some
individuals are randomly picked and reinserted in Pint, and the process continues. These clusters
are formed in the objective space.

C. Parks and Miller

The P&M technique consists in incorporating to Pext, at each generation, the efficient individuals
of Pint. When Pext size exceeds a threshold, say Npext, the dominance criterion is applied,
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eliminating all dominated solutions. If Pext continues bigger than Npext the distance criterion is
applied. It consists in measuring the distance between the external individuals, taking two per
turn, and if they are within some distance just one of them is kept in Pext, chosen randomly. This
distance is measured in the objective space. After that some individuals of Pext are reinserted in
Pint.

III. MEASUREMENT OF ALGORITHM PERFORMANCE

To evaluate the multiobjective optimization performance, three practical metrics: generation
distance, spacing and timing analysis are used to permit spotting the differences between each
analyzed technique [6].

For simplicity, the nondominated solutions found are termed Pn, on the other hand, the
Pareto optimal solutions are designated Po. Similarly, the associated fronts for each of these
solution sets are named as PFn and PFo.

D. Generational Distance

This metric is a value representing how “far” PFn is from PFo and is defined as:
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where n is the number of nondominated solutions, p=2, and di is the Euclidean distance on the
objective space between each point in PFn and the nearest of PFo.

E. Spacing

This metric is the spread (distribution) measuring of objectives throughout PFn, and it is defined
as:
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Above, d is the mean value of all di, n is as before and M is the size of the vector of
objectives. A value of zero for this metric indicates all members of PFn are equidistantly spaced.

F. Timing Analysis:

A third metric is used to make the comparison of execution time. This parameter can only be used
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to compare procedures implemented within the same language, and ran under the same CPU.
Besides, the internal parameters of one GA must be equivalent to other GA under analysis.

IV. COMPARISON OF ELITIST TECHNIQUES

The three elitist techniques described were implemented in the Nondominated Sorting Genetic
Algorithm - NSGA. For convenience of notation, the NSGA with standard elitism will be refered
to as NSGA-S, clustering as NSGA-C and NSGA-PM to the Parks and Miller technique. They
were tested with Schaffer test functions F3 and F5 [7]. The obtained results are compared with the
NSGA without elitism (NSGA-N).

The genetic parameters used to Schaffer F3 function were: maximum number of
generations = 50; crossover probability = 0.9; mutation rate = 0.01. The population size is a
specific entry for each technique. The internal population is denoted as Npint and the external one
as Npext. The sum Npint + Npext was kept constant. These parameters received the following
values: Npint = 80 for the NSGA-N, Npint = 30 and Npext = 50 for all others, NSGA-S, NSGA–
C and NSGA–PM. It should be observed that the number of individuals in the internal population
for NSGA with elitism is small if compared when it works without elitism. Also, the size of
Npext in NSGA-S and NSGA-PM is dynamically augmented when is necessary to capture more
efficient points.

The Schaffer F5 function has two variables in the decision space. The same genetic
parameters were used, except Npint and Npext. In this problem, Npint was made equal to 200 for
NSGA-S and 40 in the other cases. Npext was taken equal to 160 for NSGA with elitist
techniques. The total population (Npint + Npext) here was bigger than that used for Schaffer F3.

V. RESULTS

Tables I and II give the number of noninferior solutions found and the results of the three metrics
aforementioned to evaluate the GA performance in the four simulated cases for each function F3

and F5, respectively. Figs. 1 and 2 show the nondominated fronts obtained for these two test
functions.

Although NSGA-C and NSGA-PM have less individuals than NSGA-S, they could
represent better the Pareto-optimal front (PFo), once the NSGA-S has many individuals equal or
very similar. These results show that elitist techniques can enhance the NSGA performance.

Table I - Function Schaffer F3

Algorithm Efficient
Individual

s

Generational
Distance (G)

Spacing
(S)

CPU
Time
(p.u)

NSGA-N 68 265.3x10-5 4.129 2.85
NSGA-S 577 1.349x10-5 10.840 1.58
NSGA-C 50 1.766x10-5 3.066 1.70

NSGA-PM 92 0.2364x10-5 3.770 1.00
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Table II - Function Schaffer F5

Algorithm Efficient
Individual

s

Generational
Distance (G)

Spacing
(S)

CPU Time
(p.u)

NSGA-N 165 7.803x10-3 1.627 5.53
NSGA-S 1141 2.116x10-3 1.684 3.05
NSGA-C 160 11.57x10-3 0.625 2.12
NSGA-PM 214 6.445x10-3 0.573 1.00

-1 -0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

16

18

20

a) NSGA-N
-1 -0.5 0 0.5 1 1.5 2

0

2

4

6

8

10

12

14

16

18

20

b) NSGA-S

-1 -0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

16

18

20

c) NSGA-C
-1 -0.5 0 0.5 1 1.5 2

0

2

4

6

8

10

12

14

16

18

20

d) NSGA-PM

Fig. 1. Nondominated fronts (F3)
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As can be seen, the best results for the test functions were found using NSGA-PM. It spent
less time and gave a nondominated set larger than NSGA-N and NSGA-C. Although the NSGA-S
problem got many individuals, they are equal or very similar. Besides, spacing and generational
distance parameters show that the PFn found by NSGA-PM is very close to PFo and the spread of
the nondominated solutions in objective space throughout the PFn is very small. These results
show that Parks & Miller elitism approach could give good representation of the Pareto-optimal
front without premature convergence problem. These results are possible due to the characteristic
of this approach that does not impose any limitation to the number of dissimilar efficient
individuals added to the external set. Furthermore, Parks & Miller spent less computation effort,
about 60%, than clustering elitism in both cases. This is possible due to the simplicity to eliminate
closer individuals in NSGA-PM, whereas NSGA-C needs more time to group, to choose
representative individuals and to eliminate the others into the clusters.

VI. MULTIOBJECTIVE OPTIMIZATION OF BENCHMARK PROBLEM 22

The “TEAM benchmark problem 22” was chosen to demonstrate the performance of the NSGA
with P&M elitism in multiobjective optimization problem in electromagnetics. The aim of this
problem is to optimize the Super-Conducting Energy Storage configuration [8] as shown in Fig. 3,
with respect to two objectives and one constraint, to ensure the minimal stray field (f1), 180MJ of
stored energy (f2) and that physical quench condition (g) is met.
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Fig.3 – SMES basic configuration (not to scale)

Table III – Three Variables Problem Ranges

R1 H1 D1 R2 H2 D2 J1 J2

m m m m m m MA/m2

Min - - - 2.6 0.408 0.1 - -
Max - - - 3.4 2.2 0.4 - -
Fixed 2.0 1.6 0.27 - - - 22.5 -22.5
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The problem was specified with three continuous variables keeping the others fixed. The
details are shown in Table III. Mathematically, the multiobjective optimisation problem was stated
as:
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where Bnormal = 3*10-3 (T) and Eref = 1.8*108 (J). The quench physical condition was
neglected in this simulation.

The genetic parameters: population size, maximum number of generations, crossover and
mutation probabilities used were taken equal to 40, 80, 0.9 and 0.01, respectively.

Figure 4 shows the nondominated front found, traced in the objective space. It can be seen
that there is a uniform distribution of the points in the graph except between 0.15 and 0.33 on the
F1 axis. In this range, it is hard and not so important to get many individuals because there are just
a few variations on the value of F2.

Using the same results, the noninferior front can be seen using different axes. Figure 5
shows the nondominated front in a graph where y-axis represents the storage energy and x-axis
represents the stray field.

Fig. 4. Nondominated front. F1 x F2
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Fig. 5. Nondominated front. Energy x Bstray2

VII. MULTIOBJECTIVE OPTIMAL LOAD FLOW

Electrical Power Systems require an operational state that attends the system load, saves the
available resources and respects the operational limits of the equipments. The problem consists of
finding conditions of operation that satisfies these requirements simultaneously, through
minimization of objectives with non-linear constraints. It is a nonlinear and a non-convex
problem.

Mathematically, the multiobjective problem of minimizing the system transmission loss and
improving the voltage profile can be stated as:

minimize:
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where:

LOSSPxf =)(1  is the objective that denotes the system transmission loss;
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that limits the reactive power on P,V-nodes;

)x(h1  and )x(h2  are the load-flow equations.

Moreover, x  represents the control variables, NB is the total number of nodes in the system,
NBPQ the number of P,Q-nodes, NBPV the number of P,V-nodes, iV is the calculated voltage to

the i-th node, esp
iV is the specified (rated) voltage to the i-th node, min

jV  and max
jV  are the inferior

and superior voltage limits to the j-th P,Q-node, jQ , min
jQ  and max

jQ  are, respectively, the

calculated reactive power, the inferior and superior limits to the j-th P,V-node.
The IEEE 30-node system, see Fig. 6, was chosen to demonstrate the performance of NSGA

with P&M elitism in solving the multiple load flow problem. The control variables are the
voltages on the nodes 1, 2, 5, 8, 11 and 13. The inferior and superior limits for these variables
were defined as 0.90pu and 1.10pu respectively. The limits of reactive power in the controlled
voltage busbars are shown in Table IV.
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Table IV - Reactive Bounds

Busbar
number

Qmin

(MVar)
Qmax

(MVar)

2 -20.0000 100.0000

5 -15.0000 80.0000

8 -15.0000 60.0000

11 -10.0000 50.0000

13 -15.0000 60.0000

This problem was solved using NSGA and the inequalities constraints were handled as
objectives [9], [10], together with the P&M elitism that was modified as described in [9]. The first
front, Fig. 7.a, was obtained using population size and generation number equal to 40 and 150,
respectively. The load flow problem was solved using the fast decoupled method [11]. The
maximum error accepted to consider convergence was 0.001pu for both active and reactive power.
The maximum iteration number was 10. The results presented in Fig 7.b were obtained using the
same parameters except the generation number that was taken equal to 500. Both results show the
effectiveness of the multiobjective approach used.

Fig. 7. Non-dominated front found for the IEEE 30-node system:
a) Nbpop = 40, Nbgen = 150; b) Nbpop = 40, Nbgen = 500. [f1 (MW) X f2 (V2)]

VIII. CONCLUSION

The results obtained on analyzing the three elitist techniques suggest the effectiveness in mapping
nondominated fronts in multiobjective optimization. The results with NSGA together with the
Parks & Miller elitism approach pointed out the potential of this approach in all cases
investigated. The results of both SMES problem and the IEEE 30-node system show that the
proposed approach can be used to solve complex multiobjective optimization problems.
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