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Abstract

Solving optimization problems with multiple (often conflicting) objectives is, generally, a
very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during
the mid-eighties in an attempt to stochastically solve problems of this generic class. During
the past decade, a variety of multiobjective EA (MOEA) techniques have been proposed
and applied to many scientific and engineering applications. Our discussion’s intent is
to rigorously define multiobjective optimization problems and certain related concepts,
present an MOEA classification scheme, and evaluate the variety of contemporary MOEAs.
Current MOEA theoretical developments are evaluated; specific topics addressed include
fitness functions, Pareto ranking, niching, fitness sharing, mating restriction, and secondary
populations. Since the development and application of MOEAs is a dynamic and rapidly
growing activity, we focus on key analytical insights based upon critical MOEA evaluation
of current research and applications. Recommended MOEA designs are presented, along
with conclusions and recommendations for future work.
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1 Introduction

Solving multiobjective scientific and engineering problems is, generally, a very difficult
goal. In these particular optimization problems, the objectives often conflict across a
high-dimensional problem space and may also require extensive computational resources.
General multiobjective optimization problem (MOP) solution methods range from linear
objective function aggregation to Pareto-based techniques. In an attempt to stochastically
solve problems of this generic class in an acceptable timeframe, specific multiobjective evo-
lutionary algorithms (MOEAs) were initially developed in the mid-eighties for application
to the MOP domain. Since then, a forty-fold increase in the number of MOEA publica-
tions has seen various solution techniques proposed, along with applications in numerous
scientific and engineering disciplines (Van Veldhuizen, 1999; Coello, 1999b).

Our discussion’s intent is to rigorously define MOPs and certain related concepts,
present an MOEA classification scheme, and evaluate the variety of contemporary MOEAs.
Current MOEA theoretical developments are evaluated; specific topics addressed include
fitness functions, Pareto ranking, niching, fitness sharing, mating restriction, and secondary
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populations. We also discuss complexity models and recommend specific MOEA designs
for use in new applications and performance comparisons. As space is limited, the reader de-
siring introductory MOEA material is directed to the following literature: Van Veldhuizen
(1999), Coello (1999a), and Fonseca and Fleming (1995a). Because the development and
application of MOEAs is a dynamic and rapidly growing interdisciplinary field, we focus
here on evolving key analytical insights derived from critically evaluating current MOEA
research and applications.

The remainder of this discussion is arranged as follows. Section 2 introduces relevant
MOP concepts, and Section 3 lists the field’s major literature surveys and presents an MOEA
classification scheme. Sections 4 and 5 address key quantitative and qualitative analytical
results from our research. Section 6 briefly describes recommended MOEA designs, and
Section 7 summarizes our discussion and presents recommendations for future work.

2 MOP Definition and Overview

Neither the problem nor algorithm domains considered within this research is straight-
forward. Thus, we present key concepts defining and bounding both the problem class
(MOPs) and algorithms selected to solve them (MOEAs). Although single-objective opti-
mization problems may have a unique optimal solution, MOPs (as a rule) present a possibly
uncountable set of solutions that, when evaluated, produce vectors whose components rep-
resent trade-offs in objective space. A decision maker then implicitly chooses an acceptable
solution (or solutions) by selecting one or more of these vectors. MOPs are mathematically
defined as follows:

DEFINITION 1 (General MOP): In general, an MOP minimizes F (~x) = (f1(~x); : : : ; fk(~x))

subject to gi(~x) � 0; i = 1; : : : ;m; ~x 2 
. An MOP solution minimizes the components of a
vector F (~x), where ~x is an n-dimensional decision variable vector (~x = x1; : : : ; xn) from some
universe 
.
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Figure 1: MOP evaluation mapping.

An MOP thus consists of n decision variables, m constraints, and k objectives of
which any or all of the objective functions may be linear or nonlinear (Hwang and Masud,
1979). The MOP’s evaluation function, F : 
 �! �, maps decision variables (~x =

x1; : : : ; xn) to vectors (~y = a1; : : : ; ak). This situation is represented in Figure 1 for the
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case n = 2, m = 0, and k = 3. This mapping may or may not be onto some region
of objective function space, depending upon the functions and constraints composing the
particular MOP. Furthermore, all problems discussed in this paper are assumed to be
minimization problems unless otherwise specified (since minfF (x)g = �maxf�F (x)g),
and to be computable.

MOPs are characterized by distinct measures of performance (the objectives) that may
be (in)dependent and/or incommensurable. For example, a radar antenna’s gain and input
resistance may have little dependence on each other; they are also measured in different
units (dB vs. ohms). The multiple objectives being optimized almost always conflict,
placing a partial, rather than total, ordering on the search space. In fact, finding the global
optimum of a general MOP is NP -Complete (Bäck, 1996, 56). “Perfect” MOP solutions,
where all decision variables satisfy associated constraints and the objective functions attain a
global minimum, may not even exist. We represent an MOP’s goals or objectives as distinct
mathematical functions to be achieved and use the terms objective space or objective function
space to denote the coordinate space within which vectors resulting from evaluating MOP
solutions are plotted.

MOPs may require specialized optimization techniques due to these characteristics
(multiple, conflicting objectives and constraints). Regardless of implemented technique, a
key concept many researchers use in determining a set of MOP solutions is that of Pareto
optimality.

2.1 Pareto Concepts

Although Pareto optimality and its related concepts and terminology are frequently invoked,
MOEA researchers often erroneously use them in the literature. To ensure understanding
and consistency we thus define Pareto dominance, Pareto optimality, the Pareto optimal set,
and the Pareto front. Examples of these concepts are found elsewhere (e.g., Van Veldhuizen
(1999)). Using the MOP notation presented in Definition 1, these key Pareto concepts are
mathematically defined as follows:

DEFINITION 2 (Pareto Dominance): A vector ~u = (u1; : : : ; uk) is said to dominate ~v =

(v1; : : : ; vk) (denoted by ~u � ~v) if and only if u is partially less than v, i.e., 8i 2 f1; : : : ; kg,
ui � vi ^ 9i 2 f1; : : : ; kg : ui < vi.

DEFINITION 3 (Pareto Optimality): A solution x 2 
 is said to be Pareto optimal with respect
to 
 if and only if there is no x0 2 
 for which ~v = F (x0) = (f1(x

0); : : : ; fk(x
0)) dominates

~u = F (x) = (f1(x); : : : ; fk(x)). The phrase “Pareto optimal” is taken to mean with respect to
the entire decision variable space unless otherwise specified.

DEFINITION 4 (Pareto Optimal Set): For a given MOP F (x), the Pareto optimal set (P�) is
defined as:

P� := fx 2 
 j :9 x0 2 
 : F (x0) � F (x)g (1)

DEFINITION 5 (Pareto Front): For a given MOP F (x) and Pareto optimal set P�, the Pareto
front (PF�) is defined as:

PF� := f~u = F (x) = (f1(x); : : : ; fk(x)) j x 2 P
�g (2)
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Pareto optimal solutions are also termed non-inferior, admissible, or efficient solu-
tions (Horn, 1997); their corresponding vectors are termed nondominated. These solutions
may have no clearly apparent relationship besides their membership in the Pareto optimal
set. They form the set of all solutions whose corresponding vectors are nondominated with
respect to all other comparison vectors; we stress here that Pareto optimal solutions are
classified as such based on their evaluated functional values. When plotted in objective
space, the nondominated vectors are collectively known as the Pareto front. To restate, the
Pareto optimal set is a subset of all possible solutions in 
. Its evaluated objective vectors
form the Pareto front, of which each vector is nondominated with respect to all objective
vectors produced by evaluating all possible solutions in 
.

Note that the decision maker (DM) is often selecting solutions via choice of accept-
able objective performance, represented by the (known) Pareto front. Choosing an MOP
solution that optimizes only one objective may well ignore solutions that, from an overall
standpoint, are “better.” The Pareto optimal set contains those better solutions. Identi-
fying a set of Pareto optimal solutions is thus key for a DM’s selection of a “compromise”
solution(s) satisfying the objectives as best possible. Of course, the accuracy of the DM’s
view depends on both the true Pareto optimal set and the set presented as Pareto optimal.

We note here that derived solutions of real-world MOPs often offer only a finite
number of points that may or may not be truly Pareto optimal. Any time the real world
is modeled (e.g., via objective functions) upon a computer (a discrete machine), there is a
fidelity loss between reality’s uncountable infinity and the implemented finite, discretized
model. Complex MOPs do not, generally, lend themselves to analytical determination of
the actual Pareto front, thus making even a computational approximation of an MOP’s
global optimum difficult. We have elsewhere defined an MOP’s globally optimum solution
set to be the Pareto optimal set (Van Veldhuizen, 1999); most MOEA researchers implicitly
accept this definition as they explicitly search for an MOP’s Pareto front.

2.2 Pareto Notation

An MOEA’s algorithmic structure (e.g., multiple unique populations) can easily lead to
confusion when identifying or using Pareto concepts. In fact, MOEA researchers have
erroneously used Pareto terminology in the literature, suggesting a more precise notation
is required.

During MOEA execution, a “current” set of Pareto optimal solutions (with respect
to the current MOEA generational population) is determined at each MOEA generation’s
end and termed Pcurrent (t), where t represents the generation number. Many MOEA
implementations also use a secondary population storing nondominated solutions found
through the generations (Van Veldhuizen, 1999) (see also Section 5.2). Because a solution’s
classification as Pareto optimal depends upon the context within which it is evaluated (i.e.,
the given set 
 of which it’s a member), corresponding vectors of this secondary population
must be (periodically) tested and solutions whose associated vectors are dominated removed.

We term this secondary population Pknown (t). This term is also annotated with t to
reflect its possible changes in membership during MOEA execution. Pknown (0) is defined
as the empty set (;) and Pknown alone as the final set of solutions returned by the MOEA at
termination. Different secondary population storage strategies exist; the simplest is when
Pcurrent (t) is added at each generation (i.e., Pcurrent (t) [ Pknown (t � 1)). At any given
time, Pknown (t) is thus the set of Pareto optimal solutions yet found by the MOEA through
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generation t. Of course, the true Pareto optimal set (termed Ptrue ) is not explicitly known for
problems of any difficulty. Ptrue is implicitly defined by the functions composing an MOP –
it is fixed and does not change. Note that because of the manner in which Pareto optimality
is defined, Ptrue and Pcurrent (t) are always nonempty solution sets (Van Veldhuizen, 1999).

Pcurrent (t), Pknown , and Ptrue are sets of MOEA genotypes;1 each set’s corresponding
phenotypes form a Pareto front. We term the associated Pareto front for each of these
solution sets as PFcurrent (t), PFknown , and PFtrue . Thus, when using an MOEA to solve
MOPs, the implicit assumption is that one of the following holds: PFknown = PFtrue ,
PFknown � PFtrue , or where distance is defined over some norm (Euclidean, RMS, etc.),
f~ui 2 PFknown ; ~uj 2 PFtrue j 8i; 8j min[distance(~ui ; ~uj )] < �g.

3 MOEA Reviews and Classifications

MOEAs are receiving renewed interest from EA researchers. Although the first MOEA
was published in the mid-eighties (Schaffer, 1985), and a substantial MOEA literature has
since developed (over 450+ publications (Coello, 1999b)), there have been only four notable
surveys published. The reviews by Fonseca and Fleming (1995a) and Horn (1997) quickly
examine major MOEA techniques. The former additionally provides many relevant MOP
issues from an MOEA perspective. Both classify existing MOEA approaches differently –
Fonseca and Fleming from a broad algorithmic perspective, and Horn from a DM’s. More
recently, Coello (1999a) presents an MOEA review classifying implementations from a
detailed algorithmic standpoint, discussing the strengths and weaknesses of each technique.

Van Veldhuizen (1999) expands upon these reviews by classifying and cataloging cur-
rently known MOEA efforts, considering more recent and related MOEA citations. Each
citation therein is cataloged by recording key elements of its approach (e.g., problem do-
main, number and type of fitness functions, genetic representation) and classified using
the structure defined in Figure 2. This database contains a major share of the currently
identified MOEA-based citations from the literature. We then use this survey as the basis
for an extensive analysis of key MOEA issues. The cataloged presentation highlights pre-
viously unnoticed MOEA research trends, clearly distinguishes the various implemented
techniques, and identifies distinctive characteristics of each. The remainder of this section
briefly describes the classification used.

Many successful MOEA approaches are predicated upon previously implemented
mathematical MOP solution techniques. For example, operations researchers proposed
several methods well before 1984 (Hwang and Masud, 1979; Van Veldhuizen, 1999). Their
multiple objective decision making problems are closely related to design MOPs. These
problems’ common characteristics are a set of quantifiable objectives, a set of well-defined
constraints, and a process of obtaining trade-off information between the stated objectives
(and possibly also between stated or nonstated nonquantifiable objectives) (Hwang and
Masud, 1979). The various multiple objective decision making techniques are commonly
classified from a DM’s point of view (i.e., how the DM performs search and decision mak-
ing). We consider the DM to be either a single DM or a group, but a group united in its
decisions.

Because the set of solutions a DM is faced with often represents “compromises” between

1Horn (1997) uses the terms Ponline , Po�ine , and Pactual instead of Pcurrent (t), Pknown , and Ptrue . Our
notation is more precise as it allows for generational specification. It also encompasses each set’s corresponding
Pareto front. Note that Ptrue = P� and PFtrue = PF

�.
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the multiple objectives, some specific compromise choice(s) must be made from the available
alternatives. Thus, the final MOP solution(s) results from both optimization (by some
method) and decision processes. We then choose to classify MOEA-based MOP solution
techniques from a DM’s perspective, defining three variants of the decision process by
which the final solution(s) results from a DM’s preferences being made known either before,
during, or after the optimization process. This is more formally declared as follows (Hwang
and Masud, 1979):

A Priori Preference Articulation. (Decide �! Search) DM combines the differing objec-
tives into a scalar cost function. This effectively makes the MOP single-objective prior
to optimization.

Progressive Preference Articulation. (Search  ! Decide) Decision making and optimiza-
tion are intertwined. Partial preference information is provided upon which optimiza-
tion occurs, providing an “updated” set of solutions for the DM to consider.

A Posteriori Preference Articulation. (Search �! Decide) DM is presented with a set of
Pareto optimal candidate solutions and chooses from that set. However, note that most
MOEA researchers search for and present a set of nondominated vectors (PFknown )
to the DM.

Basic techniques below the top level of this technique hierarchy may be common to
several algorithmic research fields; we limit discussion to implemented MOEA techniques.
A hierarchy of the known MOEA techniques is shown in Figure 2, where each is classified
by the different ways in which the fitness function and/or selection is treated. Although
some may not agree with our detailed classification, perhaps preferring a simpler one (e.g.,
Fonseca and Fleming’s (1995a) tripartite one), our intent is to formalize an algorithmic
framework for the important and rapidly expanding research in MOEAs. We prefer this
more detailed view as it directly reflects specific algorithmic approaches and brings to light
otherwise unseen trends.

Existing MOEA Solution Techniques

A Priori
(Before) 

Progressive
(During) 

A Posteriori
(Generating) 

Aggregation (Ordering) 

Lexicographic

Aggregation (Scalarization) 

Linear Fitness Combination

Nonlinear Fitness Combination

Independent Sampling 

Aggregation Selection

Criterion Selection

Cooperative Search 

Pareto Selection
--  Ranking
--  Ranking and Niching
--  Demes
--  Elitist

Interactive 

--  Multiplicative
--  Target Vector
--  Minimax

Hybrid Selection 

Figure 2: MOEA solution technique classification.
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4 MOEA Research: A Quantitative Analysis

Freeman Dyson once said, “A good engineer is a person who makes a design that works
with as few original ideas as possible.” Our extensive survey (Van Veldhuizen, 1999) and
associated research is meant to help an algorithmic engineer hold those original ideas to a
minimum, giving them a means to quickly identify and incorporate appropriate concepts in
a new MOEA instantiation and/or solve some MOP of interest.

This section is concerned primarily with analyzing raw data from the survey, while
Section 5 presents analysis of a more observational nature. This treatment shows the inter-
ested practitioner where and how the field has focused its energies. Here we present results
concerning the numbers and types of MOEA publications and the solution techniques they
employ. Also included are discussions of MOEA fitness functions, genetic representations,
and application problem domains.

4.1 MOEA Citations

The initial transformations of EAs for the MOP domain did not spark any real interest
until several years later – not until the mid 1990’s is there a noticeable increase in published
MOEA research (Van Veldhuizen, 1999). However, this increase is substantial as almost
three times as many MOEA citations are dated in the last six years (1994-1999) as in the first
ten (1984-1993). The sheer number of recent publications indicates an active and growing
research community interest in MOEAs.

Comparing citations by technique highlights the popularity of a posteriori techniques.
Over twice as many citations occur in that category as in the a priori and progressive categories
combined. When considering only these a posteriori techniques, almost twice as many
Pareto-based selection approaches exist as the others combined. In fact, our research has
shown these Pareto-based selection approaches to currently be the most popular MOEA
solution technique. This is a change from three years ago when Fonseca and Fleming
(1997a) stated linear fitness combination was the most popular technique.

A number of papers are primarily concerned with comparing MOEA implementations.
This is a healthy sign of skepticism in that researchers are seeking to test proposed algo-
rithms on a variety of problems. We also note that MOEA theory noticeably lags behind
applications, at least in terms of published papers. This is even clearer when realizing
few of these categorized papers concentrate on MOEA theoretical concerns. Many discuss
some MOEA theory but do so only as regarding various parameters of their respective
approaches. This quantitative lack of theory is not necessarily bad but indicates further
theoretical development is necessary to (possibly) increase the effectiveness and efficiency
of existing MOEAs.

Finally, we show that genetic algorithm-based MOEAs are the most popular imple-
mentation type by far, with nine times the number of citations as all other types com-
bined (Van Veldhuizen, 1999). Also, we have to date identified only one evolutionary
program-based MOEA in the literature.

4.2 MOEA Techniques

By definition, MOEAs operate on MOPs. A more theoretical discussion of the MOP
domain is given elsewhere (Van Veldhuizen, 1999; Van Veldhuizen and Lamont, 1999;
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Deb, 1999b); here we discuss it in more general terms. When implementing an MOEA
it is (implicitly) assumed that the problem domain (fitness landscape) has been examined,
and a decision made that some MOEA approach is the most appropriate solution tool for
the given MOP. In general, single-objective EAs are useful search algorithms when the
problem domain is multidimensional (many decision variables), and/or the search space is
very large. Most cited MOEA problem domains also appear to exhibit these characteristics.
An MOEA should be applied only when problem solving benefits from it. A particular
problem instance may also determine MOEA performance. This is no different than is the
case with single-objective EAs but bears mentioning.

Many MOEA implementations are currently available. Selecting an appropriate solu-
tion technique (e.g., a priori, progressive, a posteriori) and approach is dependent upon metic-
ulous examination of the problem domain; ensuring derived solutions are the best available
requires careful integration of both problem and algorithm domains. Identifying MOEA
techniques and approaches that have and have not historically “worked” should improve
future MOEA performance. The interested reader is referred elsewhere (Van Veldhuizen,
1999; Coello, 1999a; Fonseca and Fleming, 1997a; Horn, 1997) for an in-depth description
and discussion of attendant strengths/weaknesses of the various approaches identified in
Figure 2.

4.3 MOEA Comparisons and Theory

To date, most MOEA researchers’ modus operandi is comparing some MOEA (usually the
researcher’s own new and improved variant) against an older MOEA (often the vector
evaluated genetic algorithm (VEGA) (Schaffer, 1985), even with its identified shortfalls)
and analyzing results for some MOP (often Schaffer’s F2 (1985) or some other numeric
example). Comparative results are then “clearly” shown in graphical form indicating which
algorithm performed better, often implying the new MOEA’s returned PFknown is a better
representation of PFtrue . To their credit, many of these publications also compare MOEA
performance on real-world applications. An argument can be made along the lines of “if it
works, use it” but, in general, using a test problem and/or an application’s results to judge
comprehensive MOEA usefulness is not conclusive.

These empirical, relative experiments are incomplete as regarding general MOEA
comparisons. The literature’s history of visually comparing MOEA performance on non-
standard and unjustified numeric MOPs does little to determine a given MOEA’s actual
efficiency and effectiveness. Only recently have any researchers proposed formalized,
experimental methodologies for general MOEA comparative analysis (Van Veldhuizen, 1999;
Zitzler and Thiele, 1999; Deb, 1999a; Shaw et al., 1999). An important component of these
methodologies is a validated suite of numeric functions exhibiting relevant MOP problem
domain characteristics to provide a common comparative basis.

Less than one-tenth of published MOEA papers focus on underlying theoretical analy-
ses. These papers concentrate mainly on MOEA parameters, behavior, and concepts. They
attempt to further define the nature and limitations of Pareto optimality, its subsequent
effects upon MOEA search, and discuss the characteristics and construction of appropriate
MOEA benchmark test function suites. Although other MOEA researchers often cite these
works, our detailed categorizations show their efforts to often be modifications of previ-
ously implemented approaches, or perhaps the same approach directed towards a different
application. These papers add little to the body of MOEA theory.
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4.4 Selected MOEA Survey Results

Our cataloged research provides various fitness function types used by MOEAs. We have
identified the following generic fitness function types implemented within MOEAs: eco-
nomic, electromagnetic, entropic, environmental, financial, geometrical, physical (energy
and force), resource, and temporal (Van Veldhuizen, 1999). These fitness functions are
not limited to MOEA applications nor are they the only types possible. However, MOEAs
offer the exciting possibility of simultaneously employing different fitness function types to
capture desirable characteristics of the problem domain regardless of implemented MOEA
approach.

The employed fitness functions appear limited only by the practitioner’s imagination
and particular application. Although many implementations use only two objective func-
tions, several approaches use three, four, seven, or more. However, a fitness function’s
effectiveness depends on its application in appropriate situations, i.e., it measures some rele-
vant feature of the studied problem. The claim by many authors that their particular MOEA
implementations are successful implies the associated fitness functions are appropriate for
the given problem domains.

Our cataloged research clearly shows the incommensurability and independence of
many fitness function combinations. For example, optimizing a radar antenna design may
involve electromagnetic (energy transmission), geometric (antenna shape), and financial
(dollar cost) objectives. The proposed antenna’s shape may have no meaningful impact on
its cost; the objectives may be measured in megawatts, meters, and dollars. These are the
factors responsible for the partial ordering of the search space and the subsequent need to
develop appropriate MOEA fitness assignment procedures.

Genetic representation is another MOEA component limited only by the implemen-
tor’s imagination. The cited efforts indicate the most common representation is a binary
string corresponding to some simple mapping from the problem domain. Real-valued
chromosomes are also often used in this fashion. Array constructs are used, and, just
as in single-objective EAs, combinatorial optimization problems often use a permutation
ordering of jobs, tasks, etc.

An overwhelming majority of cited efforts are applied to nonpedagogical problems,
indicating MOEA practitioners are developing and implementing MOEAs as real-world
tools. In fact, almost 90% of cataloged Pareto-based MOEAs are applied to real-world
scientific and engineering problems (Van Veldhuizen, 1999). These implementations span
several disparate scientific and engineering research areas and give credibility to the MOEA’s
claim as an effective and efficient general purpose search tool.

5 MOEA Research: A Qualitative Analysis

What differentiates an MOEA from a single-objective EA? What components should be
included in an MOEA? When should an MOEA be used? This section addresses these
questions and presents matters of a more philosophical nature raised by the preceding
discussion, considering several MOEA design issues. Although not quantitatively derived,
our analytical observations are based on our catalog and substantiated with other relevant
citations from the literature. This section discusses several MOEA theoretical issues, as
well as MOEA secondary populations, complexity, and parallelization.
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5.1 MOEA Theoretical Issues

We agree with other MOEA researchers (Horn, 1997; Fonseca and Fleming, 1995a), and
indeed have shown (Van Veldhuizen, 1999) that MOEA theory is lagging behind MOEA
implementations and applications. For example, until recently no proof was offered showing
an MOEA is capable of converging to Ptrue or PFtrue (Van Veldhuizen, 1999; Rudolph,
1998a, 1998b). Although the number of known MOEA implementations is significant,
this fact alone does not indicate a corresponding depth of associated theory. This research
makes absolutely clear that past effort has been mainly spent designing new or variant
MOEA approaches and not in comprehensively reviewing the benefits and/or trade-offs of
the various implementations.

Why is there such a lack of underlying MOEA theory? Although some mathematical
foundations exist, the current situation seems akin to Goldberg’s comparison of engineer
and algorithmist (Goldberg, 1998). He likens algorithms to “conceptual machines” and
implies computer scientists are hesitant to move forward without exact models precisely
describing their situation. On the other hand, he claims a design engineer often accepts less
accurate models in order to build the design. MOEA researchers certainly seem to have
taken this approach!

Realizing that simple assumptions are sometimes made in order to develop limited
theoretical results, the foundations of single-objective EA theory seem well-established.
The Handbook of Evolutionary Computation (Bäck et al., 1997) devotes entire chapters to
theoretical results established during the past 20–30 years. Although much of this theory is
(may be?) valid when regarding MOEAs, some is not. Thus, current knowledge concerning
selected MOEA theoretical issues is now discussed.

5.1.1 Fitness Functions

The general manner of fitness function implementation is two-fold. This is reflected by the
work of Wienke et al. (1992) and Fonseca and Fleming (1997b), who each solved MOPs with
seven fitness functions. Wienke et al., essentially, used seven copies of an identical objective
function, that of meeting atomic emission intensity goals for seven different elements.
Although the elements and associated goals are each different, the fitness functions are
conceptually identical. This does not make the MOP “easier” but, perhaps, makes the
objective space somewhat easier to understand.

On the other hand, Fonseca and Fleming’s MOP’s seven objectives appear both in-
commensurable and independent. Both solution and objective space are hard to visualize,
as are their interrelationships. For example, when considering the mathematical polyno-
mial model constructed by their MOEA, it is unclear how the number of terms affects the
long-term prediction error and how that error may affect variance and model lag.

The overwhelming majority of implemented MOEAs use only two fitness functions,
most probably for ease and understanding. Several use three to nine, and the currently
known maximum is 23 fitness functions within a single MOEA. This approach used an
MOEA to solve a heavily constrained single-objective optimization problem (Coello, 2000).
Here, one objective was the fitness function and the other 22 were constraints cast as
objectives. The highest number of conceptually different implemented fitness functions is
found in a linkage design problem (Sandgren, 1994), where nine objectives are used.

How many fitness functions are enough? How many objectives are, generally, required
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to adequately capture an MOP’s essential characteristics? Can all relevant characteristics be
captured? The cataloged efforts imply most real-world MOPs are effectively solved using
only two or three objectives. A practical limit to the maximum number of possible objective
functions exists, as the time to compute several complex MOEA fitness functions quickly
becomes unmanageable.

A theoretical limit also exists as far as Pareto optimality is concerned. As additional
objectives are added to an MOP, more and more MOEA solutions meet the definition
of Pareto optimality. Thus, as Fonseca and Fleming (1995a) indicate, for most Pareto
MOEAs the size of Pcurrent (t), PFcurrent (t), Pknown (t), and PFknown (t) grows, and
Pareto selective pressure decreases. However, some confusion results from both their and
Horn’s (1997) statements implying that the size of PFtrue grows with additional objectives.
We show that the cardinality of PFtrue does not grow with the number of objectives, only
(possibly) it’s topological dimension (Van Veldhuizen, 1999). However, since MOEAs deal
with discretized numerical representations, the number of possible solutions (and therefore
the number of computable vectors composing PFknown ) may increase as more objectives
are added. Finally, some limit to human understanding and comprehension exists. The
human mind appears to have a limited capacity for simultaneously distinguishing between
multiple pieces of information or concepts.

Past MOEA implementation results imply two or three objectives are probably “sat-
isfactory” for most problem domains. Thus, MOEA application to a given MOP should
probably begin with two or three primary objectives in an effort to gain problem domain
understanding. One may be able to ascertain how the different objectives interact and gain
an idea of the fitness landscape’s topology. Other fitness functions may then be added in
order to capture other relevant problem characteristics.

5.1.2 Pareto Ranking

Two Pareto ranking methods are primarily used in MOEAs, although variations do exist.
In general, all assign preferred (Pareto optimal) solutions the same rank and other solutions
some less desirable rank. With the scheme proposed by Goldberg (1989), where a solution
x at generation t has a corresponding objective vector xu, and N is the population size, the
solution’s rank is defined by the algorithm in Figure 3.

The second technique, proposed by Fonseca and Fleming (1998), operates somewhat
differently. As before, a solution x at generation t has a corresponding objective vector
xu. We also let r(t)u signify the number of vectors associated with the current population
dominating xu; x’s rank is then defined by:

rank(x; t) = r(t)u (3)

This ensures all solutions with nondominated vectors receive rank zero.

Some approaches simply split the population in two, e.g., assigning solutions with
nondominated vectors rank 0 and all others rank 1 (Van Veldhuizen, 1999). Using the same
notation this simple ranking scheme is defined by:

rank(x; t) =

(
0 if r(t)u = 0;

1 otherwise:
(4)

When considering Goldberg’s and Fonseca and Fleming’s ranking schemes, it initially
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curr rank = 1
m = N

while N 6= 0 do
For i = 1 : m do

If xu is nondominated
rank(x; t) = curr rank

od
For i = 1 : m do

If rank(x; t) = curr rank
Remove x from population
N = N � 1

od
curr rank = curr rank + 1
m = N

od

Figure 3: Rank assignment algorithm.

appears that neither is “better” than the other, although it is mentioned in the literature
that Fonseca and Fleming’s method, which effectively assigns a cost value to each solution,
might be easier to mathematically analyze (Fonseca and Fleming, 1997a). Horn (1997) also
notes this ranking can determine more ranks (is finer-grained) than Goldberg’s (assuming a
fixed population size).

One last ranking method using Pareto optimality as its basis is proposed by Zitzler
and Thiele (1999). Their MOEA implementation uses a secondary population whose
solutions are directly incorporated into the generational population’s fitness assignment
procedure. Effectively, a solution in Pknown (t) is assigned a rank equal to the proportion
of the generational population’s evaluated vectors that its associated vector dominates.
Because of Pknown (t)’s inclusion in the ranking process, this method’s complexity may be
significantly higher than the others discussed. Additionally, this method is biased in that it
may result in some Pareto optimal solutions receiving preference over others in the selection
process (Deb, 1999b). Given the tth generational population P (t), secondary population
Pknown (t), x 2 Pknown (t), and y 2 P (t), x’s rank is then defined by:

rank(x; t) =
j n j

j P (t) j +1
; where n = fy j F (x) � F (y)g (5)

There is currently no clear evidence as to the benefit(s) of any of these ranking schemes
over another. Further clouding the issue is the fact that rank itself is often not directly
used as a solution’s fitness. For example, Fonseca and Fleming’s (1998) Multi-objective
Genetic Algorithm (MOGA) and Srinivas and Deb’s (1994) Nondominated Sorting Genetic
Algorithm (NSGA) (implementing Goldberg’s scheme) both transform assigned rank before
selection occurs. The MOGA sorts solutions by rank and assigns fitness via linear or
exponential interpolation, while the NSGA uses “dummy” fitness assignment, ensuring
only that each “wave” of identically ranked solutions has a maximum fitness smaller than the
preceding wave’s minimum value. Zitzler and Thiele’s (1999) Strength Pareto Evolutionary
Algorithm (SPEA) assigns fitness to solutions in P (t) by summing the ranks of all solutions
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Table 1: MOEA Pareto ranking complexities.

Technique Best Case Worst Case
Simple N2 �N N2 �N

Fonseca & Fleming N2 �N N2 �N

Goldberg N2 �N 1
3
(N3 �N)

Zitzler & Thiele (N +N1)
2 �N �N1 (N +N1)

2 �N �N1

x 2 Pknown (t) such that F (x) � F (y).

Only one experiment directly comparing any of these schemes is reported in the lit-
erature. Thomas (1998) compared Fonseca and Fleming’s and Goldberg’s Pareto ranking
schemes in an MOEA applied to submarine stern design. He concludes that both outper-
formed tournament selection, and that Fonseca and Fleming’s ranking appears to provide a
fuller, smootherPFknown . However, he and we caution that this is a singular data point. On
a similar note, only two citations in the known MOEA literature give data on the number
of population “waves” using Goldberg’s ranking, presenting graphs showing the number
of waves found in each generation (Van Veldhuizen, 1999; Vedarajan et al., 1997). With a
population size of 300 individuals, Vedarajan et al. show the first generation has over 40
waves. This quickly drops and from generations 10 to 100, oscillates between 20 and 25.

Analyzing these schemes’ mathematical complexity is revealing. Table 1 (showing
each scheme’s best and worst case) and the following analysis only consider population
size in computing complexity, where N is the size of P (t) and N1 the size of Pknown (t).
Assuming that as comparisons are performed, appropriate counter or rank assignments
are made or updated, the simple, Fonseca and Fleming, and Zitzler and Thiele ranking
schemes require only one “pass” through the population(s) regardless of the number of
nondominated solutions. Their worst and best case complexities are identical. Goldberg’s
scheme, however, requires at most N � 1 “passes” through the population if there is only
one Pareto optimal solution per reduced population (or front). In addition, Zitzler and
Thiele’s scheme’s complexity increases if Pknown (t)’s size is significantly larger than P (t)’s.
Thus, Goldberg’s and Zitzler and Thiele’s ranking schemes (potentially) involve significantly
more overhead than do the others, but note that the latter scheme often limits the size of
N +N1 (Zitzler and Thiele, 1999).

It is also instructional to look at the possible value ranges for each ranking scheme.
The simple scheme (Equation 4) offers only two values, � 2 f0; 1g. Both Fonseca and
Fleming’s (Equation 3) and Goldberg’s scheme (Figure 3) offer N possible values, � 2
f0; 1; : : : ; N � 1g. In practice, however, Goldberg’s scheme uses some subset of these
values (resulting in a “coarser” ranking). Zitzler and Thiele’s scheme (Equation 5) offers
possibly noninteger values � 2 [1; N). Figure 4 shows the resultant solution rankings of
three Pareto ranking schemes for a particular MOP (Van Veldhuizen, 1999).

5.1.3 Pareto Niching and Fitness Sharing

Several MOEA Pareto niching and fitness sharing variants have been proposed with the same
goal as in traditional single-objective optimization – that of finding and maintaining multiple
optima. However, MOEAs use fitness sharing in an attempt to find a uniform (equidistant)
distribution of vectors representing PFtrue , i.e., one in which PFknown ’s shape is a “good”
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Figure 4: Pareto ranking schemes.

approximation of PFtrue . We compare selected implementations of this concept.

Fonseca and Fleming’s (1998) MOGA uses restricted sharing, in the sense that fitness
sharing occurs only between solutions evaluating to vectors with identical Pareto rank. They
measure niching distance in phenotypic space; the distance (over some norm) between two
solutions’ evaluated fitness vectors is computed and compared to �share (the key sharing
parameter). If the distance is less than �share , the solution’s associated niche count is then
adjusted. The NSGA implements a slightly different scheme. Distance (over some norm)
is measured, here, in genotypic space; the distance between two solutions is compared to
�share . The NSGA also shares fitness only between solutions evaluating to vectors with
identical Pareto rank.

Horn et al. (1994) define niching differently in their Niched Pareto Genetic Algorithm
(NPGA), which performs selection via binary Pareto domination tournaments. Solutions
are selected if they dominate both the other and some small group (tdom ) of randomly
selected solutions, but fitness sharing occurs only in the cases where both solutions are
(non)dominated. Each of the two solution’s niche counts is derived not by summing
computed sharing values, but by simply counting the number of objective vectors within
�share of their evaluated vectors in phenotype space. The solution with a smaller niche
count (fewer phenotypical neighbors) is then selected. Horn et al. term this equivalence class
sharing.

Another fitness sharing variant is NSGA-based but instead uses phenotypic shar-
ing (Michielssen and Weile, 1995); yet another variant combines both genotypic and
phenotypic distances in determining niche counts (Rowe et al., 1996). Fitness sharing
may also be indiscriminately applied to all solutions regardless of associated Pareto rank.

All of these methods require setting explicit values for the key sharing parameter �share ,
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which can affect both MOEA efficiency and effectiveness. Fitness sharing’s performance is
also sensitive to the population size N . Assigning appropriate values to �share is generally
difficult as it usually requires some a priori knowledge about the shape and separation
of a given problem’s niches. However, as phenotypic-based niching attempts to obtain
equidistantly spaced vectors along PFknown , both Fonseca and Fleming (1998) and Horn
and Nafpliotis (1993) are able to give guidelines for determining appropriate MOEA �share
values. These values are based on known phenotypical extremes (minimum and maximum)
in each objective dimension. Appropriate values for the NPGA’s tournament size parameter
(tdom ) are also suggested.

To determine �share ’s value using Fonseca and Fleming’s method, one uses the number
of individuals in the population (which implicitly determines the number of niches), scales
the known attribute values, and determines the extreme attribute values in each objective di-
mension. These parameters are then used to derive �share . Horn and Nafpliotis’ guidelines
use the above parameters to define bounds for �share ’s value.

How does one find each objective dimension’s extreme values? Using the minimum
and maximum values of either the generational or a secondary population is the easy answer.
Fonseca and Fleming (1998) indicate recomputing �share at each generation (using current
generational extremums) yields good results. However, we note that the MOEA’s stochastic
nature may not preserve these values between generations, i.e., the associated solutions may
not survive. Thus, it is better to select objective extremes from the secondary population
if one is incorporated in the MOEA. By definition, this population contains each objective
dimension’s extrema so far, ensuring the “ends” of PFknown are not lost.

As with the proposed Pareto ranking schemes, there is not yet any clear evidence as
to the benefit(s) of one Pareto niching and sharing variant over another. Nor are any
formal experiments reported in the literature comparing key components of these different
approaches (e.g., �share value assignment).

We note the following as regarding the appropriate sharing domain. Horn et al. (1994)
indicate sharing should be performed in a space we “care more about.” Phenotypic-based
sharing does make sense if one is attempting to obtain a “uniform” representation ofPFtrue .
On the other hand, Benson and Sayin (1997) indicate many operations researchers “care
more about” obtaining a uniform representation of Ptrue , in which case genotypic-based
sharing seems appropriate. The end representation goal should drive the sharing domain.

5.1.4 Mating Restriction

The idea of restricted mating is not new. Goldberg (1989) first mentions its use in
single-objective optimization problems to prevent or minimize “low-performance offspring
(lethals).” In other words, restricted mating biases how solutions are paired for recombina-
tion in the hope of increasing algorithm effectiveness and efficiency. Goldberg presented
an example using genotypic-based similarity as the mating criteria. Deb and Goldberg
(1989) then implemented phenotypic-based restricted mating in their GA niching and shar-
ing investigation. Note that these implementations only allow mating between “similar”
solutions (over some metric). Island model GAs also implement restricted mating but in a
geographic sense, where solutions mate only with neighbors residing within some restricted
topology (Cantú-Paz, 1997). It is also noted (Coello, 1999a) that some researchers believe
restricted mating should allow for recombination of dissimilar (over some metric) individ-
uals. However defined, restricted mating is also incorporated within many MOEAs in an
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attempt to reduce unfit (non-Pareto optimal) offspring (Van Veldhuizen, 1999).

When considering general MOEAs, phenotypic-based restricted mating between sim-
ilar solutions is of more interest to us. This is due to the fact most researchers focus on
finding a uniform representation of PFtrue and thus perform fitness sharing in the pheno-
type domain. Also, some state in published reports (Fonseca and Fleming, 1993, 1995b;
Zitzler and Thiele, 1998): “Following the common practice of setting �mate = �share ...”

This may be a common practice, but no background is cited in the literature. As
�share attempts to define a region within which all vectors are “related,” setting �mate equal
to �share is intuitive (and the same rationale holds in genotypic-based sharing and mating
restriction). We currently have only empirical explanations offered for the implementation
(or lack) of restricted mating in various MOEA approaches. In fact, it has been noted that
the use of mating restriction in MOEAs does not appear to be widespread (Fonseca and
Fleming, 1995a; Zitzler and Thiele, 1999). Obviously, some researchers believe restricted
mating is necessary or they would not have implemented it, but others indicate it is of no
value!

Zitzler and Thiele (1998) state that for several different values of �mate , no improve-
ments were noted in their test problem results (an MOP with two, three, and four objectives)
when compared to those with no mating restriction. Shaw and Fleming (1996) report the
same qualitative results for their application (an MOP with three objectives) whether or not
mating restriction was incorporated. Horn et al. (1994) offer empirical evidence directly
contradicting the basis for mating restriction. They note that recombining solutions whose
associated vectors are on different portions of PFknown (t) can produce offspring whose
vectors are on PFknown (t + 1) but between their parent’s vectors. They also claim that
for a specific MOP, a constant (re)generation of vectors through recombination of “dissim-
ilar” parents maintains PFknown . Finally, they believe most recombinations of solutions in
Pknown also yield solutions in Pknown .

Just as in single-objective optimization, no clear quantitative evidence exists regarding
the benefits of restricted mating. The empirical evidence presented in the literature can be
interpreted as an argument either for or against this type of recombination and leaves the
MOEA field in an unsatisfactory predicament. This issue clearly benefits from experiments
directly comparing its algorithmic inclusion/exclusion. One must also consider the NFL
theorems (Wolpert and Macready, 1997), realizing that mating restriction may not always
be effective (or needed) for every problem (class).

5.2 MOEA Secondary Populations

We agree with Horn (1997) that any practical MOEA implementation must include a sec-
ondary population composed of all Pareto optimal solutions found so far during search
(Pknown (t)). This is due to the MOEA’s stochastic nature, which does not guarantee that
desirable solutions, once found, remain in the generational population until MOEA termi-
nation. This is analogous to elitism, but remember that Pknown (t) is a separate population
- the question is then how best to utilize it. Is this additional population simply a reposi-
tory, continually added to and periodically culled of solutions whose associated vectors are
dominated? Or is it an integrated component of the MOEA? Several researchers indicate
their use of secondary populations, but only a few explain its use in their implementation.
As there is no consensus for its “best” use we present some of its incarnations.
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A straightforward implementation stores Pcurrent (t) at the end of each MOEA gener-
ation (Pcurrent (t) [ Pknown (t � 1)). This set must be periodically culled since a solution’s
designation as Pareto optimal is always dependent upon the set
within which it is evaluated.
How often the population is updated is generally a matter of choice, but as determination of
Pareto optimality is anO(n2) algorithm, it should probably not be performed arbitrarily. As
this population’s size grows, comparison time may become significant. This implementation
does not feed solutions from Pknown (t) back into the MOEA’s generational population.

Conversely, other published algorithms actively involve Pknown (t) in MOEA opera-
tion. For example, SPEA stores Pcurrent (t) in a secondary population, immediately culling
solutions whose evaluated vectors are dominated. If the number of solutions in Pknown (t)
exceeds a given maximum, the population is reduced by clustering in an attempt to generate
a representative solution subset while maintaining the original set’s (Pknown (t� 1)’s) char-
acteristics. Solutions from both the MOEA’s generational and secondary populations then
participate in binary tournaments selecting the next generation. SPEA uses Pknown (t) in
computing the fitness of solutions in the general population (effectively resulting in a larger
generational population).

Solutions from Pknown (t) are sometimes inserted into the mating population in an
attempt to maintain diversity (Todd and Sen, 1997; Ishibuchi and Murata, 1998). These
implementations never reduce Pknown (t)’s size except when removing solutions whose eval-
uated vectors become dominated. Although Parks and Miller (1998) implement an archive
of Pareto optimal solutions, solutions in Pcurrent (t) are not always archived (placed in
Pknown (t)); archiving occurs only if a solution is sufficiently “dissimilar” from those already
resident (clustering). If a new solution is added, any archive members no longer Pareto
optimal (with respect to Pknown (t)) are then removed. Like SPEA, the next generation’s
members are selected from both Pknown (t) and the current generational population. Fi-
nally, some researchers even use secondary populations not composed of Pareto optimal
solutions (Van Veldhuizen, 1999).

A secondary population (of some sort) is an MOEA necessity. Because the MOEA
is attempting to build up a (discrete) picture of a (possibly continuous) Pareto front, this
is probably a case where, at least initially, too many solutions are better than too few. It
intuitively seems that a secondary population might also be useful in adding diversity to
the current generational population and in exploring “holes” in PFknown , although how to
effectively and efficiently use Pknown in this way is currently unknown. Again, we suggest
experiments directly comparing various secondary population implementations and their
effect on MOEA performance.

5.3 MOEA Complexity and “Cost”

It is well known that fitness function evaluation (for many real-world problems) may domi-
nate EA execution time. Thus, when discussing various MOEAs’ algorithmic complexity we
are concerned mainly about the number of fitness evaluations, although solution compar-
isons and additional calculations are also considered, as this overhead is not found in simple
GA implementations. We show elsewhere that MOEA complexity is generally greater than
that of simple GAs and that MOEA storage requirements are problem dependent (Van Veld-
huizen, 1999). Like other EAs the storage requirements are mandated by the specific data
structures used. Required storage increases linearly with the number of fitness functions
used and when a secondary population is brought into play.
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When practically considered, fitness evaluation cost limits EA-based search. Since
all algorithms must eventually terminate, the number of fitness evaluations is then often
selected as the finite resource expended in search, i.e., the choice is made a priori for an EA
to execute n fitness evaluations. The “best” solution(s) found is then returned. Assuming
solutions are not evaluated more than once (no clones) a total ofn possible solutions in the
search space are explored.

Now consider a k-objective MOP. Here, k fitness evaluations are performed for each
possible solution (one for each objective). Assuming resources are still limited to the same
number of fitness evaluations and that each objective’s evaluation is equally “expensive”, only
bn
k
c solutions are now evaluated. All else held equal, a k-objective MOP may then result

in a k-fold decrease in search space exploration. Note also that in the context of MOEAs,
this implies using the term “fitness function evaluations” to measure computational effort,
which may be somewhat misleading. The term “solution evaluations” is clearer in this
context.

This result implies an MOEA may require longer (than a single-objective EA) “wall
clock” execution times for good performance. Further search is never guaranteed to return
the optimal answer, but one wishes as much exploration as possible in the time allowed.
This increases the sense of confidence that one has found the true, and not a local, optimum.

5.4 MOEA Parallelization

We have noted several parallel MOEA implementations executing either several MOEAs
on different processors (several independent, synchronous runs) or distributing an
MOEA’s population among processors in a demic manner (a “master-slave” or island
model) (Van Veldhuizen, 1999). However, none discuss what other parallel MOEA possi-
bilities exist.

Affecting the ability to effectively and efficiently parallelize an MOEA is the fact it is
inherently sequential. However, its fitness function evaluation task can be and has been
parallelized. MOEA fitness function evaluation allows for parallelism by assigning each of
k fitness function’s evaluations to different processors, assigning subpopulations for all k
function evaluations to different processors or, in the case of expensive fitness functions,
assigning each individual’s evaluation across several processors, one of the k fitness functions
at a time. These options are illustrated in Figure 5.
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Figure 5: MOEA parallel fitness evaluation possibilities.
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In broad terms, any parallel MOEA implementation should result in some speedup
gains. Additionally, it offers the possibility of evaluating more candidate solutions, perhaps
providing a “better” view of the fitness landscape. However, some MOEA technique
modifications may be required when implemented in a parallel manner.

6 MOEA Design Recommendations

We have identified numerous MOEA approaches (Van Veldhuizen, 1999). When consid-
ering these approaches, those researchers wishing to implement an MOEA may well be
asking, “Where do I begin?” We cannot specify an “all purpose” MOEA technique, nor do
the NFL theorems (Wolpert and Macready, 1997) allow for one. However, we can suggest
MOEAs that appear appropriate as a starting point. Interested researchers may then select
one to begin their own exploration of the MOP domain.

We focus on those MOEAs employing Pareto-based selection and specifically consider
a MOGA, the multiobjective messy GA (MOMGA) (Van Veldhuizen, 1999), the NPGA,
the NSGA, and the SPEA.

These algorithms stand out because they incorporate known MOEA theory. The
Pareto-based selection each employs explicitly seeks Ptrue . All incorporate niching and
fitness sharing in an attempt to uniformly sample PFtrue . Mating restriction may (or may
not) be included in any of the five, as may a secondary population (the SPEA requires a
secondary population). Finally, their general algorithmic complexity is no higher than other
known MOEA techniques.

Although each MOEA’s authors (and rightly so) point out deficiencies in their own and
other MOEAs, any algorithmic approach is bound to have some shortfalls when applied
to certain problem classes, as proved by the NFL theorems. These selected algorithms’
common theme is their respect of known relevant theoretical issues, and their empirical
success in both (non-)numeric MOPs and real-world applications. The MOGA, NPGA,
and NSGA easily win the title “Most Often Imitated MOEAs” – this implies other re-
searchers also see value in them. The MOGA, MOMGA, NPGA, and NSGA are used
in extensive experiments supporting this research; the experiments and their results are
detailed elsewhere (Van Veldhuizen, 1999). Additionally, the NPGA, NSGA, and SPEA
are used in other detailed comparative experiments (Zitzler and Thiele, 1999). The five
recommended MOEAs are only briefly described here.

1. MOGA. Implemented by Fonseca and Fleming (1998). Initially used to explore
incorporation of DM goals and priorities in the multiobjective search process. Employs
the Pareto ranking scheme in Equation 3 (Section 5.1.2) and incorporates fitness
sharing.

2. MOMGA. Implemented by Van Veldhuizen (1999). Initially used to explore the
relationship between MOP solution building blocks and their use in MOEA search.
Incorporates fitness sharing and Horn et al.’s (1994) tournament selection.

3. NPGA. Implemented by Horn et al. (1994). Initially used to explore benefits of
providing Pknown as input to a decision analysis technique. Uses tournament selection
based on Pareto optimality. Incorporates fitness sharing.
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4. NSGA. Implemented by Srinivas and Deb (1994). Initially used to explore bias preven-
tion towards certain regions of the Pareto front. Employs the Pareto ranking shown
in Figure 3 (Section 5.1.2) and incorporates fitness sharing.

5. SPEA. Implemented by Zitzler and Thiele (1999). Initially used to explore active use
of PFknown (t) in assigning generational fitnesses. Employs the Pareto ranking scheme
shown in Equation 5 (Section 5.1.2). Incorporates fitness sharing.

Although perhaps not straightforward, many existing EA implementations are extend-
able into the MOEA domain. For example, GENOCOP III (Michalewicz and Nazhiyath,
1995) was readily modified to incorporate both a specialized problem domain code and
linear fitness combination technique (Van Veldhuizen et al., 1998). The GEATbx for use
with MATLAB2 (Pohlheim, 1998) allowed us to quickly create both MOGA and NSGA
variants; these codes are now being incorporated into the toolbox’s baseline version. Other
researchers have also provided their MOEA code upon request. Thus, initial algorithmic
development should not be a barrier to solving MOPs with MOEAs.

7 Summary

As we have indicated, MOEAs continue to have substantial success across a variety of
MOP applications, from pedagogical multifunction optimization to real-world engineering
design. The variety of MOEAs as well as their numerous applications suggested a classi-
fication framework be developed. Thus, we have presented such a framework cataloging
current MOEA research and applications, in which it is easy to include both new citations
and new MOEA approaches. In concert with our consistent Pareto-based notation, this
framework permitted an extensive discussion of MOEA research trends, and the multitude
of contemporary MOEAs and associated key elements. Moreover, our analysis resulted in
validated MOEA design recommendations for new applications and is hoped to stimulate
new theoretical approaches. An integral aspect of this paper is the “points to ponder” when
redesigning current MOEAs and EAs for solving MOPs; a set of references is also given for
initiating this effort.

Highlighted in our discussion are many opportunities for further MOEA research.
The formalized methodologies for MOEA comparative analysis require additional vali-
dated MOPs and further development to make them more effective. As indicated, no
formal studies exist directly comparing the known Pareto ranking and fitness assignment
schemes, determining appropriate niching/fitness sharing parameter value assignments, or
recommending “best” secondary population implementations. Finally, MOEA researchers
appear to have only scratched the surface concerning MOEA parallelization possibilities.
Appropriate research addressing these issues may well lead to more effective and efficient
MOEAs.
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