
(Final Draft) TR-98-03

Multiobjective Evolutionary Algorithm Research:

A History and Analysis

David A. Van Veldhuizen and Gary B. Lamont

Department of Electrical and Computer Engineering

Graduate School of Engineering

Air Force Institute of Technology

Wright-Patterson AFB, OH 45433-7765

fdvanveld,lamontg@a�t.af.mil

October 14, 1998

1



CONTENTS CONTENTS

Contents

1 Introduction 8

2 MOEA Background 10

2.1 Multiobjective Technique Classi�cation . . . . . . . . . . . . . . . . . . . . . 10

2.2 Search Space Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Pareto Optimality and Terminology . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 MOEA Pareto Notation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Presentation Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 A Priori Techniques 15

3.1 Lexicographic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Linear Fitness Combination Techniques . . . . . . . . . . . . . . . . . . . . . 15

3.3 Nonlinear Fitness Combination Techniques . . . . . . . . . . . . . . . . . . . 17

3.3.1 Multiplicative Techniques . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Target Vector Techniques . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 Minimax Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Progressive Techniques 20

5 A Posteriori Techniques 21

5.1 Independent Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Criterion Selection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Aggregation Selection Techniques . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Pareto Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4.1 Pareto Rank- and Niche-Based Selection . . . . . . . . . . . . . . . . 27

5.4.2 Pareto Deme-Based Selection . . . . . . . . . . . . . . . . . . . . . . 28

5.4.3 Pareto Elitist-Based Selection . . . . . . . . . . . . . . . . . . . . . . 29

6 Related MOEA Publications 31

6.1 Technique Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Multiobjective EA Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 MOEA Survey Analysis (Quantitative) 33

7.1 Published Papers: Numbers and Dates . . . . . . . . . . . . . . . . . . . . . 33

7.2 Technique Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2.1 A Priori Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2.2 Progressive Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.3 A Posteriori Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.4 MOEA Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2.5 MOEA Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.3 MOEA Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.4 MOEA Chromosomal Representations . . . . . . . . . . . . . . . . . . . . . 39

2



CONTENTS CONTENTS

7.5 MOEA Problem Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 MOEA Survey Analysis (Empirical) 41

8.1 MOEA Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.2 MOEA Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.2.1 Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.2.2 Pareto Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.2.3 Pareto Niching and Fitness Sharing . . . . . . . . . . . . . . . . . . . 45

8.2.4 Mating Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.2.5 Solution Stability or Robustness . . . . . . . . . . . . . . . . . . . . . 47

8.3 MOEA Secondary Populations . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.4 MOEA Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.5 MOEAs for Beginners: Which are Appropriate? . . . . . . . . . . . . . . . . 50

9 Parallel MOEAs 52

9.1 MOEA Task Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.1.1 Decomposing MOEA Fitness Assignment and Transformation . . . . 53

9.2 MOEA Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.2.1 Parallel Sharing and Niching . . . . . . . . . . . . . . . . . . . . . . . 55

9.3 MOP and MOEA Domain Integration . . . . . . . . . . . . . . . . . . . . . 56

9.3.1 Integration Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.3.2 Parallel Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9.3.3 Load Balancing Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9.3.4 Parallel Performance Issues . . . . . . . . . . . . . . . . . . . . . . . 59

9.3.5 Parallel Architecture Issues . . . . . . . . . . . . . . . . . . . . . . . 59

9.3.6 Parallel MOEA E�ectiveness . . . . . . . . . . . . . . . . . . . . . . . 60

10 MOP Test Functions 61

10.1 An MOP Test Suite: Is it Important? . . . . . . . . . . . . . . . . . . . . . . 61

10.1.1 General MOEA Test Suite Issues . . . . . . . . . . . . . . . . . . . . 62

10.1.2 MOEA Test Suite Guidelines . . . . . . . . . . . . . . . . . . . . . . 62

10.1.3 Requirements for an MOEA Test Suite . . . . . . . . . . . . . . . . . 63

10.2 An MOEA Test Function Suite . . . . . . . . . . . . . . . . . . . . . . . . . 63

10.2.1 The MOP Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10.2.2 MOEA Test Suite Functions . . . . . . . . . . . . . . . . . . . . . . . 68

10.2.3 NP -Complete MOPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10.3 MOEA Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . 69

10.3.1 Experimental Database . . . . . . . . . . . . . . . . . . . . . . . . . . 70

10.3.2 MOEA Comparative Metrics . . . . . . . . . . . . . . . . . . . . . . . 71

11 Conclusions and Recommendations 73

12 Things to Think About 86

3



CONTENTS CONTENTS

13 NP-Complete MOPs 87

13.1 Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13.2 Knapsack 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13.3 Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13.4 Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4



LIST OF FIGURES LIST OF FIGURES

List of Figures

1 EA-Based MOP Solution Techniques . . . . . . . . . . . . . . . . . . . . . . 11

2 MOP Evaluation Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 MOEA Citations by Year . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 MOEA Citations by Technique . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Generalized EA Task Decomposition . . . . . . . . . . . . . . . . . . . . . . 41

6 MOEA Task Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Rank Assignment Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Parallel Fitness Evaluation Possibilities . . . . . . . . . . . . . . . . . . . . . 54

9 Serial Sharing & Niching MOEA Pseudo-Code . . . . . . . . . . . . . . . . . 55

10 Parallel MOEA Task Decomposition . . . . . . . . . . . . . . . . . . . . . . 57

5



LIST OF TABLES LIST OF TABLES

List of Tables

1 Lexicographic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Linear Fitness Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Multiplicative Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Target Vector Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Minimax Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Interactive Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Independent Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Criterion Selection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Aggregation Selection Techniques . . . . . . . . . . . . . . . . . . . . . . . . 24

10 Pareto Selection Techniques: Ranking . . . . . . . . . . . . . . . . . . . . . . 26

11 Pareto Selection Techniques: Ranking and Niching . . . . . . . . . . . . . . 27

12 Pareto Selection Techniques: Demes . . . . . . . . . . . . . . . . . . . . . . . 29

13 Pareto Selection Techniques: Elitist . . . . . . . . . . . . . . . . . . . . . . . 29

14 Technique Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

15 MOEA Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

16 MOEA Fitness Function Types . . . . . . . . . . . . . . . . . . . . . . . . . 39

17 MOEA Algorithmic Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 50

18 MOP Numeric Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 63

19 MOP Numeric Test Functions (with side constraints) . . . . . . . . . . . . . 65

20 Possible Multiobjective NP -Complete Functions . . . . . . . . . . . . . . . . 70

6



LIST OF TABLES LIST OF TABLES

Abstract

Although computational techniques for solving Multiobjective Optimization Prob-

lems (MOPs) have been available for many years, the recent application of Evolution-

ary Algorithms (EAs) to such problems provides a vehicle with which to solve very

large scale MOPs. Thus, the intent of this paper is to organize, present, and analyze

contemporary Multiobjective Evolutionary Algorithm (MOEA) research and associ-

ated MOPs. Under the umbrella of a priori, progressive, and a posteriori algorithms,

all known MOEA techniques are discussed. Each MOEA proposed in the literature

is classi�ed and cataloged based upon this umbrella and more detailed algorithmic

characteristics; among others these include objective aggregation, interactive methods,

sampling, search, ranking, and niching. The classi�cation, incorporating a consistent

MOEA notation, is presented in tabular form for ease of MOEA identi�cation and

selection.

A detailed quantitative and qualitative analysis is presented. The tabular data

gives a basis for various conclusions about the various algorithmic techniques, �tness

functions, gene representations, and problem domains within which MOEAs are ap-

plied. On a qualitative level, MOEA \state of the art" is discussed, including MOEA

characteristics, theory, additional populations, and complexity. A detailed description

of possible MOEA parallelization schemes is the basis for proposed parallel MOEA

implementations.

Example MOPs from the current MOEA literature are also presented in tabular

form. A proposed classi�cation of these MOPs is based upon problem domain genotype

and and phenotype characteristics; these include connectivity, disjointness, concave or

convex shape, constraints, and symmetry. A collection of MOEA test suite guidelines

is discussed based on our classi�cation. Appropriate MOEA MOP test suites can then

be generated based upon known MOP characteristics, quantitative evaluation of a spe-

ci�c MOEA approach, and applicable MOEA theory. An experimental methodology,

associated experimental MOEA database, and a collection of test suite metrics are

o�ered as a proposed evaluation framework.

Finally, philosophical issues concerning test suite generation, variations in MOEA

structures, completeness of MOEA analysis, and the proposed focus of our future

research are addressed. In its totality, this document presents a complete view of the

current MOEA start-of-the-art and possible MOEA research trends.
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1 INTRODUCTION

1 Introduction

Multiobjective Evolutionary Algorithms (MOEAs) are an expanding research area in

the Evolutionary Computation �eld. The �rst MOEA was Scha�er's Vector Evaluated

Genetic Algorithm in 1985 [128]; since then, numerous EA-based approaches to solving

Multiobjective Optimization Problems (MOPs) have appeared in the literature. For a

good introduction to and historical overview of relevant MOEA concepts and e�orts,

see the articles by Fonseca and Fleming [50, 47] and by Horn [69].

This paper is more than a summary review of existing MOEAs however. Its overall

objective is to organize, present, analyze, and extend existing MOEA research. This

paper accomplishes this goal in several ways. First, it expands upon previous reviews by

adding recent and related MOEA research. It classi�es and catalogs all known (to date)

MOEA e�orts. Proposed approaches are grouped together, and key elements of each

e�ort identi�ed in a condensed summary. These categorized results are listed in tabular

form, allowing easy perusal of past research, and quick access to desired information.

The classi�cation structure used was �rst proposed by Horn [69]; we substantiate and

extend its use. Our cataloged presentation highlights previously unnoticed MOEA

research trends, and distinguishes the various approaches from each other.

Second, the classi�cation structure and cataloged components allow for easy iden-

ti�cation of \suitable" MOEA techniques for a given MOP. A high-level discussion

accompanies each technique, and the mathematical formulation for �tness assignment

and/or selection is also presented. Quantitative conclusions are drawn, e.g., the ap-

propriateness of various techniques for varying MOP domains, possible MOEA �tness

function types, and the current state of MOEA theory.

Third, we address many relevant philosophical topics. The cataloging e�ort high-

lights several MOEA issues which are treated lightly or even ignored in the literature.

For example, we discuss MOEA characteristics, �tness functions, Pareto ranking vari-

ants, niching and sharing, mating restriction, secondary populations, solution stability,

complexity, and other selected topics.

This paper concludes by presenting all MOEA numeric test functions found in the

cited literature. Some of these are not appropriate MOEA test functions because they

are not characteristic of typical MOPs. We thus discuss and suggest an appropriate

MOEA benchmark function set to test major MOP domain characteristics.

In this report we formalize an algorithmic framework for the important and rapidly

expanding research in MOEAs. This review currently classi�es more than 100 refer-

ences to relevant research e�orts and practical applications. The listing is not absolute;

no matter how much e�ort is spent collecting and evaluating references, a proposed list-

ing is never complete. We also assume many applications might remain unpublished for

con�dentiality reasons, but conjecture that our reported data is representative of the

�eld's direction(s). Some approaches have been published in several di�erent venues;

we cite only primary sources for each distinct e�ort.

The remainder of this document is organized as follows. Section 2 introduces our

classi�cation scheme and discusses necessary mathematical and MOP concepts. Sec-

tions 3, 4, and 5 present the three major categories of MOEA research. Section 6

presents publications whose main purpose is either comparing di�erent MOEA tech-

niques or discussing MOEA theory. Basic quantitative and qualitative analysis based

on the cataloged research are given in Sections 7 and 8. Building on the analysis,

8



1 INTRODUCTION

Section 9 presents a discussion on MOEA parallelization. Section 10 discusses his-

toric MOEA test functions and presents a proposed MOEA test suite. Finally, our

conclusions of past research and recommendations for future research are o�ered in

Section 11.

9



2 MOEA BACKGROUND

2 MOEA Background

Many successful MOEA approaches are predicated upon previous mathematical MOP

solution techniques. For example, the Operations Research �eld proposed several meth-

ods well before 1985 [27, 135, 73]. Their Multiple Objective Decision Making (MODM)

problems are closely related to design problems; these problems' common characteris-

tics are a set of quanti�able objectives; a set of well-de�ned constraints; and a process

of obtaining trade-o� information between the stated objectives (and possibly also

between stated or non-stated nonquanti�able objectives) [73].

Various MODM techniques are commonly classi�ed from a Decision Maker's (DM's)

point of view (i.e., how the DM performs search and decision making). Cohon [26] fur-

ther distinguishes methods between two types of DM: a single DM/group, or multiple

DMs whose decisions conict. In this paper we consider the DM to be either a single

DM or a group, but a group united in its decisions.

2.1 Multiobjective Technique Classi�cation

Because the set of solutions a DM is faced with are often \compromises" between

the multiple objectives, some speci�c compromise choice(s) must be made from the

available alternatives. Thus, the �nal MOP solution results from both optimization

(by some method) and decision processes. Several OR classi�cation schemes [73, 27]

de�ne three variants of this process: the �nal solution results from a DM's preferences

being made known either before, during, or after the optimization process. This is

more formally declared as follows [73]:

A Priori Preference Articulation. (Decide �! Search) Decision maker combines

the di�ering objectives into a scalar cost function. This e�ectively makes the

MOP single-objective prior to optimization.

Progressive Preference Articulation. (Search  ! Decide) Decision making and

optimization are intertwined. Partial preference information is provided upon

which optimization occurs, providing an \updated" set of solutions for the deci-

sion maker to consider.

A Posteriori Preference Articulation. (Search �! Decide) Decision maker is pre-

sented with a set of e�cient (de�ned in Section 2.4) candidate solutions and

chooses from that set.

Basic techniques below this top level of the MODM hierarchy may be common to

several algorithmic research �elds, however, we now limit discussion to implemented

MOEA techniques. A hierarchy of known approaches is shown in Figure 1 where the

techniques are classi�ed by the di�erent ways in which the �tness function and/or selec-

tion is treated. See Cohon [27] and Duckstein [38] for other multiobjective techniques

which may be suitable for, but have not yet been implemented in MOEAs.

The next few sections present key points of known MOEA approaches. Some as-

signments of an approach to a particular category are necessarily subjective, as several

approaches incorporate or report results from several MODM techniques. Thus, some

approaches are classi�ed more than once; their classi�cations correspond to the cate-

gories identi�ed in Figure 1.

10



2 MOEA BACKGROUND 2.2 Search Space Description

Existing MOEA (MODM) Techniques

A Priori
(Before) 

Progressive
(During) 

A Postiori
(Generating) 

Aggregation (Ordering) 

Lexicographic

Aggregation (Scalarization) 

Linear Fitness Combination

Nonlinear Fitness Combination

Independent Sampling 

Aggregation Selection

Criterion Selection

Cooperative Search 

Pareto Selection
--  Ranking
--  Ranking and Niching
--  Demes
--  Elitist

Interactive 

--  Multiplicative
--  Target Vector
--  Minimax

Figure 1: EA-Based MOP Solution Techniques

2.2 Search Space Description

Although single-objective optimization problems may have a unique optimal solution,

MOPs (as a rule) present a possibly uncountable set of solutions, which when evaluated

produce vectors whose components represent trade-o�s in decision space. A decision

maker then implicitly chooses an acceptable solution by selecting one of these vectors.

In mathematical terms, an MOP minimizes

1

the components of a vector f(~x) where

~x is an n-dimensional decision variable vector (~x = x

1

; : : : ; x

n

) from some universe 
.

Or in general,

minimize F (~x) = (f

1

(~x); : : : ; f

k

(~x))

subject to g

i

(~x) � 0; i = 1; : : : ;m; ~x 2 
 : (1)

An MOP thus consists of n variables, m constraints, and k objectives, of which any

or all of the objective functions may be linear or nonlinear [73]. The MOP's evaluation

function, F : 
 �! �, maps decision variables x

1

; : : : ; x

n

to vectors (~y = a

1

; : : : ; a

k

).

This situation is represented in Figure 2 for the case n = 2 and k = 3.

MOPs are often characterized by distinct measures of performance (the objectives),

which may be (in)dependent and/or non-commensurable. The multiple objectives be-

ing optimized almost always conict. These opposing objectives place a partial, rather

than total, ordering on the search space. In fact, �nding the global optimum of a

general MOP is NP -complete [6]. Optimal solutions to these problems, where all deci-

sion variables satisfy associated constraints and the objective function attains a global

minimum, may not even exist.

1

Or maximizes, since minfF (x)g = �maxf�F (x)g.
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2 MOEA BACKGROUND 2.3 Mathematical Notation

x2

x1 Ω = {x ∈ℜ  } n Λ = {y ∈ℜ  } k

T

F

F2

1

F3

"Decision Variable Space" "Objective Function Space"

Figure 2: MOP Evaluation Mapping

2.3 Mathematical Notation

We de�ne a formal MOP model to de�ne the mathematical notation used in this paper.

The k objectives (where k � 2) are denoted by f

1

; : : : ; f

k

. All problems are assumed

to be minimization problems unless otherwise speci�ed.

� : 
 �! �

f(a

i

) , F (f

1

(a

i

); : : : ; f

k

(a

i

))

	 : P �! P

0

P = fa

i

j8a

i

; a

i

is \desirable

00

g (2)

Equation 2 presents the general formats used to mathematically represent the var-

ious MOEA techniques. \� : 
 �! �" describes a particular technique's domain

(
) and range (�). \f(a

i

)" is the solution's scalar �tness value derived via the de-

�ned equation. 	 indicates the particular technique incorporates specialized selection

EVOPs, perhaps not relying on an overall solution �tness. Section 5 explains that A

Posteriori MOEA techniques seek the Pareto front. P is a set of solutions returned to

a DM such that every solution in the set is a member of P

known

.

2.4 Pareto Optimality and Terminology

Although \Pareto optimality" and its related concepts and terminology are frequently

invoked, they are sometimes used incorrectly in the literature. To ensure understanding

and consistency, we de�ne Pareto Dominance and Optimality, and then introduce a

consistent notation. Using the MOP presented in Equation 1, key Pareto concepts are

mathematically de�ned as follows [12]:

De�nition 1 (Pareto Dominance): A vector u = (u

1

; : : : ; u

k

) is said to dominate

v = (v

1

; : : : ; v

k

) if and only if u is partially less than v, i.e.,

12



2 MOEA BACKGROUND 2.5 Presentation Layout

8i 2 f1; : : : ; kg; u

i

� v

i

^ 9i 2 f1; : : : ; kg : u

i

< v

i

. 2

De�nition 2 (Pareto Optimality): A solution x

u

2 U is said to be Pareto

optimal if and only if there is no x

v

2 U for which v = f(x

v

) = (v

1

; : : : ; v

k

) dominates

u = f(x

u

) = (u

1

; : : : ; u

k

). 2

Pareto optimal solutions are also termed non-inferior, admissible, or e�cient solu-

tions. Their corresponding vectors are termed non-dominated [69]; selecting a vector(s)

from this non-dominated vector set implicitly indicates acceptable Pareto optimal so-

lutions (genotypes). These solutions may have no clearly apparent relationship besides

their membership in the Pareto optimal set. We stress here that Pareto optimal so-

lutions are classi�ed as such based on their phenotypical expression. Their expression

(the non-dominated vectors), when plotted in criterion space, is known as the Pareto

front. Researchers have inconsistently used these terms in the literature, implying that

a consistent notation is required in order to eliminate the resulting confusion.

2.4.1 MOEA Pareto Notation

During EA execution, a \local" set of Pareto optimal solutions (with respect to the cur-

rent EA population) is determined at each EA generation and termed P

current

. This so-

lution set can be added to a secondary population termed P

known

(i.e., P

current

S

P

known

),

and the process repeated until EA termination. Because a solution's classi�cation as

Pareto optimal is dependent upon the context within which it is evaluated (i.e., the

given set of which it's a member), all corresponding vectors of P

known

are periodically

tested and solutions whose associated vectors are dominated are removed. The result

is a �nal set of Pareto optimal solutions found by the EA. Of course, the actual Pareto

optimal solution set (termed P

true

) is not explicitly known for problems of any di�-

culty. P

true

is de�ned by the functions composing an MOP; it is �xed and does not

change.

2

Because of the manner in which Pareto optimality is de�ned, P

current

is always a

non-empty solution set. We proved this in a previous work [148], as well as showing that

the global optimum of an MOP is the Pareto front (PF

true

) determined by evaluating

the Pareto optimal solution set (P

true

).

P

current

and P

known

are sets of EA genotypes. EA �tness is judged in the phenotype

domain, which is a Pareto front in the MOP case. We term the associated Pareto front

for each of the previous solution sets as PF

current

, PF

known

, and PF

true

. Thus, when

using an EA to solve MOPs, the implicit assumption is that one of the following holds:

P

known

= P

true

, P

known

� P

true

, or PF

known

2 [PF

true

; PF

true

+ �] over some norm

(Euclidean, RMS, etc.).

2.5 Presentation Layout

Figure 1 is presented. This is followed by each technique's mathematical description,

such as Fonseca and Fleming present [47]. Finally, a table cataloging relevant research

2

Horn [69] uses P

online

, P

o�ine

, and P

actual

instead of P

current

, P

known

, and P

true

.
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2 MOEA BACKGROUND 2.5 Presentation Layout

e�orts is shown. Each table, for each e�ort, lists �ve key algorithm and problem domain

components which are:

Approach. Name or type of MOEA used, citation, and year results published

Description. Approach speci�c information of interest, e.g., operators, methodology,

etc.

Application. Problem domain (if any) in which the MOEA is applied

Objectives. Number of objectives and their description

Chromosome. Representation used and gene correspondence (if noteworthy)

These components were capture essential information about each approach; they

are not meant as a complete description. Because of the manner in which the research

e�orts were classi�ed, the \Approach" or \Description" categories contain information

about the speci�c MOEA type, parallelized implementation, specialized evolutionary

operators (EVOPs), etc. Finally, each table's entries are chronologically ordered by

year published.
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3 A PRIORI TECHNIQUES 3.2 Linear Fitness Combination Techniques

3 A Priori Techniques

All techniques presented in this section expect DM input before the EA search process

begins. After search, an optimal solutionn is then presented to the DM. Ordering,

linear, and nonlinear combination techniques are discussed.

3.1 Lexicographic Techniques

Lexicographic selection (ordering) is based on each objective's DM-assigned priority

prior to optimization. The highest priority objective is used �rst when comparing

solutions; if a tie results the next highest-priority objective is compared, etc. All

objectives f

1

; : : : ; f

k

are assumed sorted in order of increasing priority. This is termed

lexicographic ordering [12] and is mathematically represented by:

� : R

n

�! f0; 1; : : : ; �� 1g

f(a

i

) ,

�

X

j=1

� (f(a

j

) l< f(a

i

)) ; (3)

where f(a

j

) l< f(a

i

) if and only if

9p 2 f1; : : : ; kg : 8q 2 fp; : : : ; kg ; f

q

(a

j

) � f

q

(a

i

) ^ f

p

(a

j

) < f

p

(a

i

) ;

and where

� =

�

1 if (f(a

j

) l< f(a

i

))

0 otherwise

This technique is best used with rank-based selection. Table 1 lists the known lexico-

graphic MOEA techniques.

Table 1: Lexicographic Techniques

Approach Description Application Objectives (#) Chromosome

GA [54] (1985) Heuristically prioritizes

objectives

Silicon layout com-

paction

(3) Bounding box

size; Design rule vi-

olations; Rectangle

placement

Variable length; Genes are

lists of layout constraints

Global Evolu-

tionary Planning

and Obstacle

Avoidance system

(GEPOA) [37]

(1998)

Fuzzy tournament se-

lection algorithm im-

plements fuzzy lexico-

graphic preferences

Motion planning

and obstacle avoid-

ance

(3) Euclidean dis-

tance; Sum of path

slope changes; Av-

erage slope change

Real Values; Genes represent

x-y coordinates

3.2 Linear Fitness Combination Techniques

Linear �tness combination is scalar aggregation of several distinct �tnesses; a DM

assigns a strictly positive scalar weight to each objective reecting its relative

importance to the �nal solution. The weighting vector, � = (w

1

; : : : ; w

k

) 2 R

k

,

is often normalized so that its elements sum to unity [135]. This technique is
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3 A PRIORI TECHNIQUES 3.2 Linear Fitness Combination Techniques

mathematically represented by:

� : R

n

�! R

f(a

i

) ,

k

X

j=1

w

j

f

j

(a

i

) ; (4)

where w

j

is the weight assigned to objective f

j

. This technique can be used

in �tness proportional, tournament, or rank-based selection. Table 2 lists the

known linear combinatoric MOEA techniques.

Table 2: Linear Fitness Combination

Approach Description Application Objectives (#) Chromosome

GA [137] (1991) Hybrid GA implemen-

tation; Incorporates a

schedule builder and

evaluator

Laboratory re-

source scheduling

Not stated Permutation task ordering

GA-based learning

system [79] (1992)

Structured popula-

tions; Parameterized

mating only within

overlapping demes;

Parallelized

Machine learn-

ing (route planning

and vehicle control)

(5) Distance; Re-

quired time; Path

deviation; Collision

monitor activa-

tions; Emergency

monitor activations

\Action Chain;" Genes are

lists of actions for robotic

task

GA [80] (1993) Linear normalized

�tness and weighted

penalties

3-D structure con-

formational search

(2) Match penalty;

Energy penalty

Binary string; Genes are ro-

tation angles

GA [14] (1994) Specialized crossover;

GA population se-

lected from training

database; One, some,

or all GA population

members replace least

�t database members

Adaptive image

segmentation

(5) Edge-border co-

incidence, Bound-

ary consistency,

Pixel classi�cation,

Object overlap,

Object contrast

Binary string; Genes are �t-

ness, image conditions, and

parameters; EVOPs operate

only on parameters

Multi-Niche

Crowding (MNC)

GA [150, 21]

(1995,1997)

Fitness obtained by

summing individual

rank in each objec-

tive; Phenotypic-based

crowding; Integrated

with ow-transport

simulation code

Groundwater pol-

lution contanimant

monitoring; Also

tested on multi-

modal, dynamic

function

(3) Cost; Contan-

imant removal;

Contanimant leak-

age

Variable length integer

string; Genes are geographic

nodes

GA [125] (1995) Each solution's �tness

based on how \well" it

�ts its race's ideal

None (2) Numeric op-

timization (one

objective is always

\race" ideal)

Implies binary string

GA [5] (1995) Repair procedure

encodes valid chromo-

somes; Presents unique

bit string representa-

tion of ow-network

paths

Computer Aided

Process Planning

(2) Cost; Quality Binary string; Chromosome

is an encoded ow network

GA [103] (1995) Standard GA Pot core trans-

former design

(2) Device area;

Magnetic ux

density

Binary string

GA [18] (1995) Crowding-based se-

lection; GA deceptive

problem

Food distribution

center management

(2) Quality loss;

Storage utilization

Binary string; Genes are clus-

ter capacity and time utilized

GA [75] (1997) Steady-state GA; Re-

sults appear to use only

two criteria

Selective laser sin-

tering build cylin-

der packing

(3) Part over-

lap; Packing

\tightness"; Part

containment in

cylinder

List of lists; Permutation in-

teger ordering in one dimen-

sion; integers in others
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3 A PRIORI TECHNIQUES 3.3 Nonlinear Fitness Combination Techniques

Table 2: continued

Approach Description Application Objectives (#) Chromosome

Multi-Sexual

GA [92] (1997)

Individuals are \sex"

coded (one for each

function); Recombina-

tion uses one parent

from each sex; Individ-

uals evaluated by their

sex's function

None (2) Numeric opti-

mization

Binary string; \Sex" marker

at end

GA [149] (1998) Integrated two GAs

with electromagnetic

evaluation code; Fit-

ness mapping (scaling)

Wire antenna ge-

ometry design

(4) Antenna gain;

Radiation symme-

try; Resistance; Re-

actance

Real values; Gene triplets

represent wire endpoints in 3-

D space

GA [104] (1998) Weights are functions

of objective functions'

max and min values yet

found

Computer aided

process planning

(2) Processing

and transportation

time; Workstation

load variation

Integer string; Genes are

plans producing certain parts

GA [164] (1998) Steady-state GA;

Specialized EVOPs

and population re-

initialization

Telephone operator

scheduling

(2) Operator short-

age; Operator sur-

plus

Integer string; Genes are par-

tial schedules composed of

shift time, and number and

time of rest breaks

GA [23] (1998) Specialized crossover;

3

4

population: tour-

nament selection,

1

4

roulette wheel and

�tness scaling

Non-chromatic

rectangle boards

(4) Distribution

of colors; # Red,

white, and blue

chromatic rectan-

gles

2-D array of integer values;

Genes are colored squares

3.3 Nonlinear Fitness Combination Techniques

Nonlinear �tness combination is also a scalar aggregative method; several EA-

based variants have been implemented. This aggregation incorporates nonlinear

terms normally derived in some \trial and error" fashion. Thus, in general, many

researchers appear to use \more structured" methods.

For example, penalty functions penalize solutions when a constraint is not met.

Two variants are common in EA research: general penalty functions like that de-

�ned by Goldberg [57], and transforming constraints \into" objectives. According

to Cohon [26] this latter method changes the MOP into a single-objective opti-

mization problem; one objective is arbitrarily selected for optimization and the

other k � 1 objectives are constrained to a maximum value represented by �

i

,

where i = 2; : : : ; k.

However, it appears no EA-based MOP implementations which primarily use

penalty techniques have appeared, at least where the technique results in a single

solution presented to the decision maker. They have been implemented as part of

cooperative population searches, and are thus classi�ed in Sections 5.3 and 5.4.

Other implemented nonlinear combination techniques are now addressed in turn.

3.3.1 Multiplicative Techniques

Multiplicative techniques are scalar aggregative methods where individual func-

tions are combined through multiplication. This technique's general form is

mathematically represented by:

� : R

n

�! R
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3 A PRIORI TECHNIQUES 3.3 Nonlinear Fitness Combination Techniques

f(a

i

) ,

k

Y

j=1

f

j

(a

i

) : (5)

This technique can be used in �tness proportional, tournament, or rank-based

selection. Table 3 lists the known multiplicative MOEA techniques.

Table 3: Multiplicative Techniques

Approach Description Application Objectives (#) Chromosome

Multi Attribute

Utility Analysis

(MAUA)-GA [70]

(1993)

Proposes MAUA to de-

termine �tness function

None None None

GA [155] (1996) Probability of accep-

tance is �tness; Over-

all �tness is logarithm

of all multiplied prob-

abilities; Penalty func-

tion used

Two-member truss

Design

(6) Stress safety

factor and diameter

for each bar (4);

Buckling safety

factor; Cost

Binary string

3.3.2 Target Vector Techniques

The \target vector" technique is a scalar aggregative method that can be thought

of as using \distance to the target" as a �tness metric. A DM assigns perfor-

mance goals to each objective; solutions are evaluated by measuring their distance

(over some norm) from their respective goals in criteria space. This technique is

mathematically represented by:

� : R

n

�! R

f(a

i

) , k [f(a

i

)� g]W

�1

k

�

; (6)

where g = (g

1

; : : : ; g

k

) is a vector representing the desired goals,W is a weighting

matrix accounting for di�ering variance between the k goals, and � is most often

the Euclidean distance (� = 2) [158]. This technique can be used in �tness

proportional, tournament, or rank-based selection. Table 4 lists the known target

vector MOEA techniques.

Table 4: Target Vector Techniques

Approach Description Application Objectives (#) Chromosome

GA [158] (1992) Attempts to achieve

desired criterion goals

(goal programming)

Atomic emission

spectroscopy

(7) Atomic emis-

sion intensities of

seven atomic ele-

ments

Binary string; Represents

NaCl concentration and cur-

rent intensity

3.3.3 Minimax Techniques

Minimax is a scalar aggregative method minimizing the maximum (weighted) dif-

ference between the objectives and DM-speci�ed goals. This technique is math-

ematically represented by:

� : R

n

�! R
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3 A PRIORI TECHNIQUES 3.3 Nonlinear Fitness Combination Techniques

f(a

i

) , max

j=1;:::;k

f

j

(a

i

)� g

j

w

j

; (7)

where g

j

is the performance goal to be reached or bettered for objective f

j

, and

w

j

is a weight indicating the desired search direction in objective space, where

w

j

is often set to k g

j

k [47]. This technique can be used in �tness proportional,

tournament, or rank-based selection. Table 5 lists the known minimax MOEA

techniques.

Table 5: Minimax Techniques

Approach Description Application Objectives (#) Chromosome

GA [159]

3

(1993) Goal attainment; Pop-

ulation monitored

for nondominated

solutions

Unknown Unknown Unknown

GA [24] (1995) Tchebyche� weighting,

Uniformly varies key

parameter

Groundwater con-

tanimant monitor-

ing

(2) Undetected

plumes; Contami-

nated area

Fixed-length integer string

GA [25] (1995) Objectives optimized in

turn; Results optimize

weighted min-max for-

mulation

Robot arm balanc-

ing

(4) Torque at joints

1 and 2; Reaction

force at joints 1 and

2

Real values

3

This e�ort was cited by Fonseca [50]; attempts to obtain the reference failed.
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4 PROGRESSIVE TECHNIQUES

4 Progressive Techniques

The progressive techniques presented in this section involve direct interaction

with the DM during the EA search process. Either cycles of decision making and

search, or of search and decision making, are performed in pursuit of acceptable

solutions. Both a priori and a posteriori techniques may be used in the search

portion of this interactive decision making process; thus, no speci�c mathematical

representation is given. However, as explained in Section 5, the a posteriori

techniques provide a set of solutions instead of a single one; this situation is

often more preferable. Table 6 lists the known progressive MOEA techniques.

Table 6: Interactive Techniques

Approach Description Application Objectives (#) Chromosome

Multiple Objective

Genetic Algorithm

(MOGA) [48, 52]

(1993, 1998)

Fonseca's [50] ranking;

Incorporates niching

and goals (preferences)

Step response of

gas turbine engine

(4) \Reach" time;

\Settle" time;

Overshoot; Error

Binary string; Genes are con-

troller parameters

GA [142] (1995) Initial population con-

tains only solutions in

P

known

; DM selects

preferred returned solu-

tions, used as basis for

further exploration

None (2) Numeric opti-

mization

Binary string

Multiple Objective

GA [131] (1996)

Uses Fonseca's

MOGA [48]; Com-

pares to weighted-sum

approach

Meal production

line scheduling

(3) Rejected

orders; Batch late-

ness; Shift/sta�

balancing

Permutation ordering

Evolutionary

Co-Design

(EvoC) [72, 61]

(1996,1997)

Preference info classi-

�es solutions; Pareto

ranking on preferences

Hardware and soft-

ware co-design

(3) Component

cost; Critical excess

MIPs; Feasibility

factor

Binary string; Genes are im-

plementation type and pro-

cessor

MOGA [51] (1997) Specialized EVOPs Non-linear sys-

tem identi�cation

(polynomial model)

(7) Residual vari-

ance; Long-term

prediction er-

ror; Number of

terms; Model lag;

Model degree;

Auto-correlation;

Cross-correlation

Variable length integer string
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5 A POSTERIORI TECHNIQUES

5 A Posteriori Techniques

A Posteriori techniques perform an MOP search process resulting in a set of

identi�ed solutions for DM selection. Both independent sampling and coopera-

tive population search techniques are presented. We agree with Horn [69] that

these approaches, whether implicitly or explicitly, are seeking the Pareto optimal

solution set denoted by P

true

. By de�nition, this set contains all possible optimal

solutions { assuming a rational DM. Once a \satisfactory" P

known

is discovered

for a particular problem instance, a new DM (e.g., a new production supervisor)

does not require a repeated search. Also, if P

known

is \small enough" the addi-

tional overhead incurred by DM interaction is unnecessary. Thus, we consider a

primary goal of these a posteriori techniques to be identi�cation of P

true

.

5.1 Independent Sampling Techniques

Independent sampling is a technique using multiple single-criterion searches; each

individual search optimizes di�erent objective aggregations. Over time, P

known

and PF

known

emerge and are presented to the DM, as P

true

and PF

true

are often

unknown for problems of any complexity. These techniques are mathematically

represented by:

� : I�! R

P = fa

i

j8a

i

; a

i

2 P

known

g ; (8)

where � is some �tness function assigning solution �tness for an entire EA \run"

(e.g., the multiple functions' associated weights change between runs), and P (i.e.,

P

known

) is returned to the DM where each a

i

results from a single run. Table 7

lists the known independent sampling MOEA techniques.

Table 7: Independent Sampling Techniques

Approach Description Application Objectives (#) Chromosome

GA [54] (1985) Composite strategies

sample the trade-o�

surface

Silicon layout com-

paction

(3) Bounding box

size; Design rule vi-

olations; Rectangle

placement

Variable length; Genes are

lists of layout constraints

GA [100] (1993) Multiple GA runs

use di�erent function

weights; Crowding

replacement

Radar absorbent

material coating

design

(2) Coating reec-

tion; Coating thick-

ness

Binary string; Genes are ma-

terial type and thickness

Multiple Objective

GA [122] (1994)

Proposes multiple GA

runs optimizing one cri-

terion at a time, then

varying the constraints

None None None

GA [24] (1995) Tchebyche� weighting,

uniformly varies key

parameter

Groundwater moni-

toring

(2) Undetected

plumes; Contami-

nated area

Fixed-length integer string

GA [22] (1995) Multiple runs uni-

formly varies weights;

Fitness scaling

Firing angles in

railway traction

substations

(2) Power supply;

Uniform load shar-

ing

Binary string
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Table 7: (continued)

Approach Description Application Objectives (#) Chromosome

GAA and

GAA2 [146] (1995)

Hybrid GA/SA; Lin-

early normalized

weighted functions

uniformly varied over

several runs

Economic-

Environmental

Power Dispatch

(2) Cost; Weighted-

sum of pollutants'

emissions

Real-values; Genes are gener-

ator loadings

5.2 Criterion Selection Techniques

Criterion selection techniques are the �rst discussed to directly use an EA's pop-

ulation capability. Here, fractions of succeeding populations are selected using

various of the k objectives. These techniques are able to �nd multiple members of

P

known

within a single EA run. These techniques are mathematically represented

by:

	 : P �! P

0

P = fa

i

j8a

i

; a

i

2 P

known

g ; (9)

where 	 is some generation transition function selecting solutions based on their

performance in some objective, and P (i.e., P

known

) is returned to the DM. Table 8

lists the known criterion selection MOEA techniques.

Table 8: Criterion Selection Techniques

Approach Description Application Objectives (#) Chromosome

Vector Evaluated

GA (VEGA) [128]

(1985)

1

k

of new population se-

lected using each of the

k objectives

None (2) Numeric opti-

mization

Binary string; Contains genes

and objective performance in-

formation

ES [88] (1990) Objectives' associated

probabilities used as se-

lection criteria; Poly-

ploid individuals

None (2) Numeric opti-

mization

Both decision and stepsize

variables have dominant and

recessive chromosomes

ES (�+�) [3] (1992) Assigns \gender" to

each function; Each

sex judged only on its

respective function; No

results presented

Pipeline construc-

tion

(2) Cost; Biodiver-

sity destruction

Binary string

GA [118, 16] (1994) VEGA isolates feasible

values of constrained

parameters; Secondary

GA searches hypercube

based on returned val-

ues

Gas turbine engine

cooling hole geome-

try

(3) Metal tempera-

ture; Cooling hole

area; Coolant ow

rate

Unknown

GA [14] (1994) Specialized crossover;

GA population se-

lected from training

database; One, some,

or all GA population

members replace least

�t database mem-

bers; VEGA selection;

Implies only nondom-

inated GA population

solutions retained

Adaptive image

segmentation

(2) Global

(weighted sum

of edge-border

coincidence and

boundary con-

sistency); Local

(weighted sum of

pixel classi�cation,

object overlap and

object contrast)

Binary string; Genes are �t-

ness, image conditions, and

parameters; Only parameters

a�ected by EVOPs

GA [54] (1995) One criteria randomly

selected as comparator

Silicon layout com-

paction

(3) Bounding box

size; Design rule vi-

olations; Rectangle

placement

Variable length; Genes are

lists of layout constraints
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Table 8: (continued)

Approach Description Application Objectives (#) Chromosome

Multiobjective

GA [151] (1997)

Both nondominated-

and roulette wheel

(one objective)- based

selection

Transonic airfoil

design

(2) Mach number;

Lift coe�cient

Binary string; Genes are air-

foil parameters

Multiobjective

GA [109] (1998)

\Two-branch" tourna-

ment selection; Individ-

uals compete in only

one of 2 tournaments;

Linear penalty func-

tions

Non-collocated

control

(2) Control error of

Disk 1 rotational

position; Same for

Disk 2

Binary string; Genes are con-

troller gains

Multiobjective

GA [42] (1998)

\Two-branch" tourna-

ment selection; Individ-

uals compete once in

each of 2 tournaments;

External penalty func-

tions

Satellite constella-

tion design

(2) Constellation

altitude; Number

of satellites

Binary string

Multiobjective

GA [31] (1998)

\Two-branch" tourna-

ment selection; Indi-

viduals compete once

in each of 2 tourna-

ments; Scaled penalty

functions

Two 10-bar truss

designs

(2) Weight; Verti-

cal displacement

Binary string

Parallel GA [?]

(1998)

\n-branch" tourna-

ment selection; Parallel

implementation; In-

tegrated with XFOIL

and WOPWOP codes;

Penalty functions

enforce constraints

Airfoil optimization (2) Drag coef-

�cient; Overall

Averaged Sound

Pressure Level

Binary string; Gray coded

ES [90] (1998) \Predator-prey"

model; Predators

\attack" based on one

of k objectives

None (2) Numeric opti-

mization

Real values

5.3 Aggregation Selection Techniques

Aggregation selection techniques also directly use an EA's population capability.

Here, succeeding populations are selected using their �tness as computed by ei-

ther linear or nonlinear combination techniques, and are thus able to �nd multiple

members of P

known

within a single EA run. These techniques are mathematically

represented by:

	 : P �! P

0

P = fa

i

j8a

i

; a

i

2 P

known

g ; (10)

where 	 is some generation transition function selecting solutions based on their

performance using some aggregative technique (which is not necessarily identical

for each evaluated solution, i.e., � : I�! R changes during the run), and P (i.e.,

P

known

) is returned to the DM. Table 9 lists the known aggregation selection

MOEA techniques.
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Table 9: Aggregation Selection Techniques

Approach Description Application Objectives (#) Chromosome

GA [65] (1992) Weighted sum; Weights

are chromosomally

encoded; Compares

�tness sharing (ap-

plied only to weighting

variables) and two

VEGA [128] variants

Static and dynami-

cally loaded 10-bar

truss & Wing Box

(2) Structural

weight; Vertical

displacement & (2)

Structural weight;

Natural frequencies

Genes are design variables

and weights; Mix of continu-

ous and discrete alleles

Multi-Objective

GAs [106] (1995)

Randomly assigned

weights; Pareto elitist

selection

None (2) Numeric &

Scheduling & Rule

selection examples

Binary string & Permutation

ordering & Tri-Valued string

ES [153] (1996) Fuzzy controller selects

each solution's evalua-

tion function

Railway network

scheduling

(2) Cost; Waiting

time

Unknown

Multi-Objective

Genetic Local

Search Algo-

rithm [76, 77]

(1996, 1998)

Randomly assigned

weights; Elitist selec-

tion; Local search in

direction of current

weights

Flowshop schedul-

ing

(3) Makespan;

Maximum tar-

diness; Total

owtime

Integer permutation order-

ing; Genes are jobs

Non-Generational

GA (NGGA) [147]

(1997)

Non-generational selec-

tion; Fitness calculated

incrementally; k objec-

tives transformed to 2;

Weighted sum of objec-

tives

None (2) Numeric op-

timization (E�ec-

tively minimizes

domination and

niche count)

Binary string

Neighborhood Con-

straint Method [94]

(1997)

Indexed solutions; N �

1 objectives converted

into constraints, the

other optimized; Con-

straint values varied

among solutions; Re-

stricted mating based

on \neighborhood"

Air quality man-

agement

(2) Cost; Con-

straint satisfaction

Real values

GA [19] (1997) Constraints converted

into functions; Both

e�cient and dominated

solutions determine

search direction

None (2) Numeric opti-

mization (Original

function; Con-

straints)

Real values

ES (� + �) [165]

(1997)

Fitness determined

by objective values

and adaptive objective

value hyperplane

Multicriteria pro-

duction process

planning

(2) Processing cost;

Processing time

Permutation integer order-

ing; Genes are selected nodes

for some operation

GA [29] (1997) Kreisselmeier-

Steinhauser function

gives �tness; Mul-

tiple objectives and

constraints combined

into one unconstrained

function

3-bar truss & Rotor

system design

(2) Cost; Weight &

(2) Power; Rotor

system weight

Binary string; Genes are dis-

crete, integer, and continuous

variables

Multi-Objective

Genetic Local

Search Algo-

rithm [78] (1998)

Randomly assigned

weights; Elitist selec-

tion; Local search in

direction of current

weights

Fuzzy rule-based

system rule selec-

tion

(2) Number of if-

then rules; Number

of correctly classi-

�ed patterns

Binary string; Genes are rules

GA [55] (1998) Specialized encoding

and selection EVOP;

Incorporates adaptive

objective evaluation

hyperplane [165] and

auxiliary bi-objective

problem

Topological Net-

work Design

(2) Connection

cost; Message delay

Pr�ufer number encoding; In-

teger string uniquely encodes

a spanning-tree
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5.4 Pareto Sampling Techniques

Pareto sampling directly utilizes the EA's population capability. It also appears

that some approaches incorporate a secondary population, storing all Pareto op-

timal solutions yet found during EA execution. When using these methods, the

generational population (possibly) holds several solutions of P

known

and at least

one member of P

current

. The secondary population is periodically updated to

remove solutions which have become dominated. Pareto sampling techniques

explicitly use Pareto concepts in selection so that Pareto solutions are given pref-

erence over dominated solutions, but are treated equivalently among themselves.

Two types of Pareto �tness assignment are in wide use. The �rst technique,

proposed by Goldberg [57], is mathematically (recursively) represented by:

� : R

n

�! f1; : : : ; �g

f(a

i

) ,

�

1 :(f(a

j

) p< f(a

i

)) 8j 2 f1; : : : ; �g

� :(f(a

j

) p< f(a

i

)) 8j 2 f1; : : : ; �gjfl : �(f(a

l

)) < �g ;

(11)

where f(a

j

) p< f(a

i

) if and only if

8k 2 f1; : : : ; ng f

k

(a

j

) � f

k

(a

i

) ^ 9k 2 f1; : : : ; ng : f

k

(a

j

) < f

k

(a

i

) ;

and where the symbol : denotes logical negation.

The second technique, proposed by Fonseca and Fleming [50] is mathemati-

cally represented by:

� : R

n

�! f0; 1; : : : ; �� 1g

f(a

i

) ,

�

X

j=1

�(f(a

j

) p< f(a

i

)) ; (12)

where � (condition) = 1 if the condition is true, else 0.

Several Pareto-based selection techniques have been implemented, selecting

solutions based directly upon their domination status. These techniques are

mathematically represented by:

	 : P �! P

0

P = fa

i

j8a

i

; a

i

2 P

known

g ; (13)

where 	 is some generation transition function selecting solutions based on Pareto

optimality, and P (i.e., P

known

) is returned to the DM. Table 10 lists the known

\pure" Pareto selection MOEA techniques.
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Table 10: Pareto Selection Techniques: Ranking

Approach Description Application Objectives (#) Chromosome

Thermodynamical

Genetic Algorithm

(TDGA) [82, 105]

(1995)

Simulated annealing

concepts used in se-

lection; Attempts to

balance population

diversity and �tness;

Goldberg's [57] ranking

None (2) Numeric opti-

mization

Binary string

Constrained Op-

timization by

Multi-Objective

Genetic Algorithms

(COMOGA) [136]

(1995)

Pareto ranks solu-

tions by constraint

violations; Binary

tournament selection

uses either adapting

probability of pipe

cost or Pareto rank as

criterion

Gas network design (2) Constraint

violation; Network

pipe cost

Variable cardinality (num-

ber of alleles) integer string;

Genes are pipes' diameters

Genetic Algo-

rithm running

on the INternet

(GAIN) [134]

(1995)

Constraints cast into

objectives; Solutions

ranked �rst by Pareto

optimality, then lexico-

graphically

Microprocessor De-

sign

(3) Hardware bud-

get; Power factor

budget; Cycles per

instruction

String of Architectural Pa-

rameters: Cache size, Cache

line size, Cache associativity,

Write bu�er size, Number of

issued instructions per clock

cycle

Multiobjective

GA [117] (1995)

Integrated with

FORMOSA-P; Gold-

berg's [57] ranking

Pressurized water

reactor reload core

design

(3) Boron contam-

ination, Discharge

burnup; Power

peaking

Integer matrices; Genes are

fuel assembly layouts, load-

ings, and orientations

Multiobjective GA

(MGA) [93] (1995)

Modi�ed Pareto rank-

ing and selection

schemes

Discrete time con-

trol system design

(2) Steady-

state/robustness

controller; Func-

tion response

controller

Binary string; Genes are tun-

ing parameter radii, angles,

and coe�cients

Multi-Criteria

GA [86, 87, 114]

(1996, 1996, 1995)

Maintains population

of Pareto solutions;

New solutions' �tness

determined by min-

imum (phenotype)

distance from any

current solution

Non-linear control

system design

(2) Control input;

State variable de-

scription

Binary string

GA [130] (1996) Goldberg's[57] ranking;

GA applied to back-

propagation neural net-

work

Spinning produc-

tion process

(2) Yarn strength;

Yarn elongation

Binary string; Genes are neu-

ral net inputs

Diploid GA [152]

(1996)

Separately minimizes

each function, Dom-

inated solutions re-

moved from combined

populations

None (3) Numeric opti-

mization

Implies real values

Parallel Multi-

objective GA [2]

(1997)

Unspeci�ed Pareto

ranking scheme

Pairwise object

recognition param-

eter selection

(3) Histogram dis-

tance; Variant set;

Histogram area

Unknown

GA [63] (1997) Specialized dominance

de�nition; 224 decision

variables

Automotive steer-

ing box design

(6) Assembly cost;

Assembly cycle

time; Product relia-

bility; Maintenance

cost; Production

exibility; Re-

design/modi�cation

exibility

Implies mix of continuous

and discrete decision vari-

ables

GA [127] (1997) Goldberg's [57] rank-

ing; Integrated with

two local search

schemes; Progressive

penalties

Water pump

scheduling

(2) Energy cost;

Pump switches

Binary string
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Table 10: (continued)

Approach Description Application Objectives (#) Chromosome

Pareto Converging

GA (PCGA) [84]

(1997)

Rank-ratio histograms

indicate convergence;

Steady-state imple-

mentation

Pattern-space par-

titioning

(6) Hypersphere

overlap; Hyper-

sphere dimen-

sionality; Data

point inclusion;

Hypersphere clas-

si�cation rate;

Partition com-

pactness; Included

patterns

Binary string

MOGA [4] (1998) Proposes use of Fon-

seca's [48] MOGA; Uses

simulation to determine

performance criteria

Fuzzy logic tra�c

signal controller

(3) CO emissions;

NO

x

emissions;

Mean travel time

Unknown

5.4.1 Pareto Rank- and Niche-Based Selection

These approaches base selection upon each solution's assigned �tness, derived

via Pareto ranking and shared �tness (see Goldberg [60] and Deb [34] for an

in-depth �tness sharing explanation). Single objective EAs use shared �tness

and niching to �nd and maintain multiple subpopulations de�ning multiple op-

tima. Although the Pareto front is a single optima, it is composed of at most an

uncountably in�nite number of vectors. Sharing is thus used in MOEAs to (at-

tempt to) maintain a population uniformly spread along the Pareto front. Two

major MOEA sharing techniques are used; Section 8.2.3 discusses them in detail.

Table 11 lists the known Pareto ranking- and niching-based MOEA techniques.

Table 11: Pareto Selection Techniques: Ranking and Niching

Approach Description Application Objectives (#) Chromosome

Multiple Objective

Genetic Algorithm

(MOGA) [48, 52]

(1993, 1998)

Fonseca's [50] ranking;

Incorporates niching

and goals (preferences)

Step response of

gas turbine engine

(4) \Reach" time;

\Settle" time;

Overshoot; Error

Binary string; Genes are �ve

controller parameters

Nondominated

Sorting GA

(NSGA) [133]

(1994)

Assigns and shares

dummy �tnesses in

each front; Gold-

berg's [57] ranking

None (2) Numeric opti-

mization

Binary string

Niched Pareto

GA (NPGA) [71]

(1994)

Specialized Pareto

domination tourna-

ments

Groundwater con-

tanimant monitor-

ing

(2) Plumes de-

tected; Average

volume detected

Binary string; Genes are x, y,

z coordinates

Pareto GA [101]

(1995)

Uses the NSGA [133] Electromagnetic

absorber design

(2) Absorber layer

thickness; Electro-

magnetic reection

Binary string; Genes are

layer's material type and

thickness

NSGA [156] (1996) Uses the NSGA [133];

Population size of 8,000

Microwave ab-

sorber design

(2) Thickness; Re-

ectance

Unknown

Reduced Pareto

Set Algorithm

(RPSA) [32] (1997)

Increased selection of

P

current

; Pareto opti-

mal solutions ranked

according to niche

count

Polymer Extrusion (4) Mass output;

Melt temperature;

Screw length;

Power consumption

Unknown

Multiple Criteria

GA (MCGA) [144]

(1997)

Selection draws from

current and secondary

population; Specialized

EVOPs

Containership load-

ing

(4) Proximity;

Transverse center

of gravity; Vertical

Center of Gravity;

Unloads

Integer string; Genes are pos-

sible (available) placement lo-

cations
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Table 11: (continued)

Approach Description Application Objectives (#) Chromosome

GA [96] (1997) Parallelized; Inte-

grated with CFD and

CEM codes; Uses

NSGA [133] with

tournament selection

Two-dimensional

airfoil design

(2) Drag coe�-

cient; Transverse

magnetic radar

cross section

Real values

Multiobjective

GA [113] (1997)

Uses Fonseca's

MOGA [48]; Elitism in-

corporated; Integrated

with Navier-Stokes

code

Cascade airfoil de-

sign

(3) Pressure rise;

Flow turning angle;

Pressure loss

Real values

Multi-Objective

EP (MOEP) [107]

(1998)

(� + �) elitist strategy;

P

current

solutions se-

lected with high prob-

ability

Voltage reference

circuit parameter

optimization

(2) Room tempera-

ture reference volt-

age; Temperature

variation

Implies real values

MOGA [111]

(1998)

Uses Fonseca's [48]

MOGA; Integrated

with Navier-Stokes and

Squire-Young codes

Transonic wing de-

sign

(2) Lift; Drag Real values

Multi-Objective

Genetic Program-

ming (MOGP) [68]

(1998)

Uses Fonseca's [48]

MOGA; Results

compared to single-

objective GP on same

problems

Model derivation

for distillation col-

umn and cooking

extruder

(4) RMS error;

Residual vari-

ance; Residual and

output correlation;

Model string length

Program

Strength Pareto

Evolutionary Algo-

rithm (SPEA) [166]

(1998)

Actively uses secondary

population in �tness as-

signment and selection;

Uses clustering to re-

duce secondary popula-

tion size; Pareto-based

niching parameter

None (2,3,4) Combina-

torial optimization

example (0/1

knapsack problem)

Binary string; Genes are

items present in ith knapsack

5.4.2 Pareto Deme-Based Selection

The traditional EA islandmodel is composed of several separate demes or subpop-

ulations. The underlying idea is that the separate subpopulations are divisions

of one overall population, but each subpopulation evolves (somewhat) indepen-

dently of the others. Each deme is interconnected by some de�ned topology or

geographic structure used for communication. The communication channels are

normally used for occasional migration of individuals between demes.

At one extreme of the island model, where all demes are fully interconnected,

the island model mimics a single, large population. At the other extreme where

communication is minimized, the model mimics several independent EA trials.

The island model can be executed on a sequential processor, but its power using

multiple processors is readily apparent.

We de�ne Pareto deme-based selection as a technique whereby an MOEA uses

both a solution's Pareto ranking and its location within some sort of geographical

structure imposed upon the population as criteria for selection. Table 12 lists

the known Pareto deme-based selection MOEA techniques.
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Table 12: Pareto Selection Techniques: Demes

Approach Description Application Objectives (#) Chromosome

GA with Redun-

dancies [9] (1995)

85% of new population

selected via local geo-

graphic mating; 15 %

via binary tournament;

Parallelized

Mass-Transit Vehi-

cle Scheduling

(2) Number of

vehicles; Number

of \deadheading"

trips

Integer matrix; Permutation

ordering; Genes are vehicles

assigned a trip; Recessive

genes used

Genetic Program-

ming [89] (1995)

Pareto-based tour-

nament and demic

selection; Non-elitist

�tness based on primi-

tives \passing" a series

of test functions

Evolution of prim-

itives implementing

a FIFO queue

(6) Number of

tests (5) passed by

speci�c functions;

Number memory

cells used

Program trees; Genes are

queue and shared memory

primitives

Hybrid GA [120]

(1995)

Local geographic selec-

tion via Pareto tour-

naments; Hybridized;

Parallelized

Aerodynamic

shape parameteri-

zation

(2) Pressure distri-

butions

Integer string and real-valued

vector

GA [1] (1997) Island model with

Pareto ranking;

EVOPs operate on

sub-populations, not

individuals

Pairwise object

recognition param-

eter selection

(3) Histogram dis-

tance; Variant set;

Histogram area

Array; Genes are histogram,

type, and distance

5.4.3 Pareto Elitist-Based Selection

Elitist selection ensures the best (or n best) individuals are retained in the next

generation. Pareto elitist-based techniques thus �rst select some number of top

Pareto-ranked individuals; the remainder of the population is �lled via some other

method. This is simply a \twist" on the traditional elitist selection technique.

These approaches primarily use a solution's \elite" status as the selection criteria.

Table 13 lists the known Pareto elitist-based selection MOEA techniques.

Table 13: Pareto Selection Techniques: Elitist

Approach Description Application Objectives (#) Chromosome

Pareto Optimal

Genetic Algo-

rithm [95] (1993)

Pareto optimal solu-

tions selected from e�-

cient set formed by par-

ents and o�spring

None (2) Numeric opti-

mization

Binary string

GENMO [10, 11]

(1994)

Pareto optimal solu-

tions given rank 1;

Dominated and infea-

sible solutions given

Rank 2 and discarded

Turbomachinery

airfoil design &

Ceramic composite

(2) Torsional utter

margin; Torsional

resonant amplitude

& (2) Cost; Resid-

ual stress

Binary string

GA [162] (1994) Selects

1

k

\best" val-

ues in each objective

for next population;

Extinction eliminates

identical individu-

als; Immigration of

randomly generated

solutions

Bicriteria linear

transportation

problem

(2) Cost; Deteriora-

tion

Integer matrix

Genetic Algo-

rithm [56] (1995)

Design rule-set evolves;

Optimizes the inverse

problem to obtain at-

tainable criteria set;

Next generation formed

as per Louis [95]

Beam section

topology

(2) Surface area;

Moment of inertia

Binary string; Genes are sets

of executable rules producing

a design
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Table 13: (continued)

Approach Description Application Objectives (#) Chromosome

GA [139]

4

(1995) Retains all (or subset

of) P

current

Unknown Unknown Unknown

PAReto optimal

and Amalgamated

induction for

DEcision trees

(PARADE) [163]

(1996)

Attempts to unify

feature subset selec-

tion, generalization,

and pruning methods;

Discards all non-Pareto

solutions

Decision tree induc-

tion

(2) Error rate;

Number of leaf

nodes

S-expression representing de-

cision tree

Parallel Di�usion

GA [123] (1996)

Reproduction only with

immediate neighbors;

Elitist Pareto selection

between o�spring and

one parent

Solution sensitivity

analysis

(2) Solution quality

change; Number of

considered parame-

ters

Binary string; Genes are

problem parameters

GA [138]

5

(1996) Discards all dominated

solutions; Prohibits

solution duplication;

Population size varies

Unknown Unknown Unknown

Multiobjective

GA [116] (1998)

Integrated with prob-

lem domain code; Spe-

cialized EVOPs; Sec-

ondary population used

Pressurized wa-

ter reactor reload

design

(3) Feed enrich-

ment; Discharge

burnup; Power

peaking

Three 2-dimensional arrays

4

Cited by Tamaki [140]; in Japanese.

5

Cited by Tamaki [140]; in Japanese.
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6 RELATED MOEA PUBLICATIONS

6 Related MOEA Publications

In addition to proposed MOEA techniques, several MOEA research e�orts focus

on the comparison and theoretical aspects of MOEAs. This section catalogues

publications classi�ed in these categories.

6.1 Technique Comparisons

Several citations not only introduce some new MOEA technique, but also com-

pare the new approach to an existing one(s). Other citations simply apply dif-

ferent MOEAs to some problem and compare/contrast the results. We include

these e�orts for completeness, and as a reference for the discussion on MOEA test

functions in Section 10.1. Table 14 lists the known e�orts comparing di�erent

MOEAs.

Table 14: Technique Comparisons

Approach Description Application Objectives (#) Chromosome

GA [91, 67] (1990,

1989)

Compares VEGA [128]

and Goldberg's rank-

ing [57]; Specialized

crossover

Set cover-

ing problem{

Scheduling algo-

rithm parameter

search

(2) Cost; Violated

constraints{(4)

Fitness function

weights

Binary string

GA [65] (1992) Weighted sum with

chromosomally en-

coded weights; Com-

pares �tness sharing

(applied only to weight-

ing variables) and two

VEGA [128] variants

Static and dynami-

cally loaded 10-bar

truss & Wing Box

(2) Structural

weight; Vertical

displacement & (2)

Structural weight;

Natural frequencies

Genes are design variables

and weights; Mix of continu-

ous and discrete alleles

GA [141] (1994) 2 variants: Pareto eli-

tist and VEGA selec-

tion; VEGA selection

and �tness sharing

Hot rolling process

scheduling

(2) Pressing order;

Slab assignment

Binary string

Multiple Objective

GA [122] (1994)

2 variants: VEGA;

Goldberg's [57] ranking

Groundwater pol-

lution contanimant

monitoring

(2) System cost;

System reliability

Binary string; Genes are op-

erating mode and pumping

rate of n wells

Modi�ed Combi-

natorial ES [83]

(1995)

Compares \Pure"

Pareto selection and

\Best per Objective

Selection"

Constrained facility

layout (formulated

as a Restricted

Quadratic Assign-

ment Problem)

(2) Cost; Violated

zoning constraints

(only for Pareto

variants)

Permutation ordering; Genes

are machine locations

GA [24] (1995) Compares VEGA,

Tchebyche� weighting,

Pareto ranking, and

VEGA-Pareto GA

variants

Groundwater moni-

toring

(2) Undetected

plumes; Contami-

nated area

Fixed-length integer string

Multiple Objective

GA [131] (1996)

Compares Fonseca's

MOGA [48] to separate

weighted-sum runs

Meal production

line scheduling

(3) Rejected

orders; Batch late-

ness; Shift/sta�

balancing

Permutation ordering

Multiobjective

GA [28] (1996)

Compares lin-

ear combination,

\two-branch-" and

Pareto domination-

tournament

Rotor system de-

sign

(2) Rotor system

power; Rotor sys-

tem weight

Binary string
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Table 14: (continued)

Approach Description Application Objectives (#) Chromosome

GA [140] (1996) 4 variants: Parallel se-

lection; Pareto rank-

ing; Tournament se-

lection with sharing;

Pareto reservation

None (2) Numeric opti-

mization

Binary string

MOGAC [35]

(1997)

Fonseca's [50] ranking;

Implements inverse

elitism and dynamic

parameter adaptation

Hardware/software

co-design

(2) Cost; Power

consumption

Unknown

GA [36] (1998) Compares weighted

sum, Goldberg's rank-

ing [57], and Fonseca's

MOGA [48]; Special-

ized EVOPs

\Cell" con�gura-

tion (constrained

facility layout)

(2) Yearly process-

ing; Overall Cost

Integer string; Genes repre-

sent the number of \reactors"

in the corresponding cell

GA [13] (1998) Compares six multiob-

jective ranking meth-

ods

None (2) Numeric opti-

mization

Binary string

MOGA [112, 110]

(1998)

Compares niching and

elitist models; Inte-

grates problem domain

codes

Transonic wing de-

sign

(3) Aerodynamic

drag; Wing weight;

Fuel tank volume

or aspect structure

Real values; Genes are polar-

coordinate x-y pairs

MOGA [167]

(1998)

Compares random,

weighted sum, NPGA,

NSGA, and VEGA

MOEAs

None (2,3,4) Combina-

torial optimization

example (0/1

knapsack problem)

Binary string; Genes are

items present in ith knapsack

6.2 Multiobjective EA Theory

Many of the preceding cited e�orts at least pay \lip service" to di�erent facets of

underlying MOEA theory, but make no signi�cant contribution. These e�orts of-

ten simply cite relevant issues raised by others. However, some (e.g., Fonseca [52]

and Horn [70]) go into signi�cant theoretical detail. Their work provides basic

MOEA models and theories, which are addressed in Section 8.2. Other recent

papers are focused on MOEA theory, using application examples to illustrate key

concepts. We group these related papers here for easy reference. Table 15 lists

the known e�orts discussing MOEA theory.

Table 15: MOEA Theory

Researcher(s) Paper Focus

Fonseca and Fleming [49] (1995) Selection, sharing, and mating parameter values

Fonseca and Fleming [50] (1995) General Pareto concepts

Fonseca and Fleming [52] (1998) Goal incorporation; MOEA parameters and values

Horn and Nafpliotis [70] (1995) Sharing and niching values

Fonseca and Fleming [47] (1997) MOEA mathematical formulations

Horn [69] (1997) MOEA-Pareto observations

Rudolph [124] (1998) MOEA convergence

Van Veldhuizen and Lamont [148] (1998) MOEA convergence and Pareto terminology
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7 MOEA Survey Analysis (Quantitative)

Details of past MOEA research is presented in this section which is concerned

primarily with analyzing raw data; Section 8 presents analysis of a more observa-

tional nature. We are concerned in this section with issues such as the number of

MOEA research e�orts, practicality of the various implemented techniques, and

the �tness functions used in MOEA research.

7.1 Published Papers: Numbers and Dates

As noted in Section 1, a few e�orts are classi�ed under two MOP techniques

reecting dual approaches proposed in the same citation. Additionally, some

e�orts have two di�erent citations, indicating a great deal of duplication between

the papers. We ignore these minor anomalies and deal only with the number

of classi�ed e�orts within each technique; we are interested here in identifying

MOEA research trends rather than absolute values.

Two graphs quantifying the cataloged information are presented; Figure 3

shows the number of citations by year and Figure 4 shows the number by tech-

nique. We immediately see that the initial transformations of EAs into the

multiobjective domain did not spark any real interest for several years. We also

note here that although several researchers credit Scha�er with \inventing" the

�rst MOEA, Fourman too deserves credit for the two MOEAs he implemented

that same year.

Not until the mid 1990's is a noticeable increase in MOEA research appar-

ent. It is more than an increase, however, as almost three times as many MOEA

approaches were published in the last four years (1995-1998) as in the �rst ten

(1985-1994). Thus, the number of publications indicates an active community

interest in MOEAs, at least as far as new approaches and applications are con-

cerned. However, MOEA theory has lagged far behind applications (in numbers

of papers published). This is even more clear when noting only two of the papers
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in Table 15 concentrate on MOEA theoretical concerns. The others do discuss

MOEA theory but only as regarding various parameters of their respective ap-

proaches. This quantitative lack of theory is not necessarily bad, but indicates

supporting work is necessary to (possibly) increase the e�ectiveness and e�ciency

of existing approaches. Section 8.2 discusses this in detail.

Comparing citations by technique highlights the popularity of a posteriori

techniques. Over twice as many citations occur in that category as in the a priori

and progressive categories combined. Does this imply a willingness by DMs to

select solutions from (possibly) unbiased searches? Or is it that DMs are unwilling

(or unable) to assign priorities to objectives without further information? At least

in \real" problems, it seems DMs would want to expend the necessary resources

to �rst perform a search for possible solutions. Making a decision a posteriori

could well be less expensive in the long run than making that decision without

the additional knowledge gained through initial (or interactive) search.

7.2 Technique Discussions

Real estate agents claim that three major factors set the price one can reasonably

expect when buying or selling a home. These factors are: location, location, and

location. There is a direct analogy when using MOEAs to solve MOPs; to wit,

three factors determine the e�ectiveness and/or e�ciency of a particular MOEA:

the problem domain, the problem domain, and the problem domain! An MOEA

should be applied only when the problem requires it. This is no di�erent than is

the case with single-objective EAs, but bears mentioning.

Several MOEA techniques are currently available. Selection of the appropriate

technique is dependent upon careful examination of the problem domain. Careful

integration of both problem and algorithm domains ensures derived solutions are

the best available. Identifying MOEA techniques and components which have and

have not historically \worked" should improve present and future MOEAs. This

section presents general observations about the reported e�orts classi�ed in each

identi�ed MOEA technique. General comments about each of the three major

techniques are given followed by detailed discussions of the classi�ed e�orts.

7.2.1 A Priori Techniques

By de�nition, these techniques require objective importance to be de�ned �rst,

before search occurs. It seems that in scienti�c and engineering problems of any

di�culty this would not be easy to do. The rami�cations of \bad" objective

prioritization choices are easy to see: the DM's \cost", no matter how de�ned,

could be quite great. Additionally, although we know that EAs are not guaran-

teed to return the global optimum, choosing some arbitrary prioritization may

well miss more \acceptable" solutions. No matter what optimization algorithm

is used, this is an inescapable consequence of this category of techniques, which

we now examine in detail.
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Lexicographic techniques have not found favor with MOEA researchers, as

only two implementations are reported. This is most likely due to the fact that

this technique explores objective space unequally, in the sense that priority is

given to solutions in one of the objectives over (an)others, e.g., one objective is

optimized at all costs. As evidenced by Figure 4, the greatest body of MOEA

research centers upon approaches exploring \equally" in all objective dimensions.

The lexicographic method is most suitable only when the importance of each

objective (in comparison to the others) is surely known. On one hand, any re-

ported solutions are Pareto optimal (by de�nition). One the other hand, though,

when is such an \all costs" goal is necessary or even appropriate? If one objec-

tive is to be optimized at all costs, it seems more appropriate to instead use a

single objective EA. That approach does not incur the additional overhead of an

MOEA for what may well be marginal returns.

The linear �tness combination technique is a popular approach despite its

identi�ed shortfalls. This is probably due to its simplicity. Table 2 reects its

application to many real-world problems, although often incorporated with \vari-

ations on a theme." The basic weighted sum MOEA is both easy to understand

and implement; the technique is also computationally e�cient. If the problem

domain is \easy" and a sense of each objective's relative worth is known and

can be quanti�ed, or even if time is short, this may be a suitable method to

discover an acceptable MOP solution. However, this method has an identi�ed

disadvantage.

Fonseca and Fleming [47] explain that for any positive set of weights, �'s

global optimum is always a nondominated solution. However, if PF

true

is (par-

tially) concave, optima in that portion of the front can not be found via this

method. Additionally, they state that the weighted sum approach is the most

popular MOEA technique. Figure 4 clearly indicates that over twice as many

Pareto-based approaches implemented; thus, that statement is no longer true.

The nonlinear combination techniques seem unpopular with researchers. Of

the two cited multiplicative e�orts, only one reports actually implementing the

technique. This is most likely due to the overhead involved in determining appro-

priate probability of acceptance or utility functions, and also the various condi-

tions the functions must meet [81]. Other MOEA techniques may be as e�ective

and e�cient without the overhead required by these nonlinear implementations.

Only one goal programming approach has been incorporated into an MOEA.

If a DM is certain of the desired levels in each objective beforehand, no major

problems should arise when using this method. However, just as in all a priori

techniques, specifying exact goals before search begins may unnecessarily limit

the search space and miss desirable solutions. On the positive side, overhead

is minimal in implementing this technique because the desired goal levels are

incorporated into the �tness function. These comments also hold true for the

cited minimax techniques. However, using the minimax or goal programming

approach to minimize � does not guarantee the resulting solutions are members

of P

true

[47].
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It appears that in general these a prioriMOEA techniques may be undesirable

for use except in isolated situations. If a DM takes the time and trouble to search

for a solution, it stands to reason the DM wishes to obtain an optimal solution.

Because these techniques limit the search space they appear to have a good

chance of not �nding optimal solutions. Additionally, as is shown in Sections 8.5

and 9.3, implementing \more" e�ective and e�cient MOEAs might not be as

di�cult as imagined.

7.2.2 Progressive Techniques

The lack of cited interactive search e�orts is surprising. It seems that no matter

what particular solution technique is implemented, close interaction between the

DM and the searchers can only increase the e�ciency of discovered solutions. It is

understandable that time is at a premium for some DMs. At least to some level,

though, more interaction between DM and searcher(s) implies better results.

Although either a priori or a posteriori techniques may be used interactively, the

latter are more desirable because these techniques o�er a set of solutions rather

than just one. There is a limit to how much information a DM can process

at one time, but surely a greater number of choices vice a single one is more

advantageous in most situations.

One particular technique (Fonseca's MOGA [48]) was used in three of the four

reported e�orts from the literature. It is unclear why other techniques have not

been used, as incorporating DM preferences within and through an interactive

search-decision making process may bene�t all involved. Do researchers and/or

practitioners feel they don't have the time for this? Or is it the DM who balks at

the additional e�ort? Real-world applications should surely use this interactive

process as the economic implications can be quite signi�cant.

7.2.3 A Posteriori Techniques

As indicated in Section 5, these techniques are explicitly seeking P

true

. A search

process is executed and resultant solutions and their evaluations (P

known

and

PF

known

) provided to the relevant DM. We now examine these techniques in

detail.

Several independent sampling methods are reported but we question their

e�ectiveness. All cited methods use a linear combination technique, where the

weights assigned to each objective are varied between a number of separate EA

runs. This is e�ectively identical to a number of single objective EA runs, record-

ing each solution. This technique may have limited utility if only two objectives

are being considered, as it may give a rough idea of P

true

. For example, if

each objective's weight varies from 0 to 1 by 0.05 increments, only 21 EA runs

are necessary to explore the possible weight combinations. However, even at this

weight resolution, the required number of runs combinatorially increases with the

number of objectives. Thus, its overall usefulness seems quite limited, especially
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as the arbitrary weight combinations may well prevent discovery of solutions in

P

true

.

Scha�er's VEGA [128] is an example of a criterion selection technique, where

fractions of succeeding populations are selected based on separate objective per-

formance. This is the �rst time the capability of an MOEA to return a number

of possible solutions within a single run is seen. Several criterion techniques are

faulted for ignoring solutions performing \acceptably" in all dimensions for those

performing \well" in one [69]. However, even with this known shortfall, several

criterion techniques were recently implemented.

Crossley et al. [31, 109] realize that this approach reduces the diversity of

any given generation. They implement elitist selection to ensure survival of

PF

known

endpoints during MOEA execution, claiming this ensures survival of so-

lutions which produce designs along PF

true

. We assume their results were \good

enough" for their particular purpose, but question the ability of solutions corre-

sponding to endpoints of PF

true

to quickly evolve into solutions corresponding

to PF

true

's interior.

Aggregative selection MOEAs incorporate a variety of speci�c techniques to

optimize an MOP. Table 9 shows weighted sums, constraint and objective com-

binations, and hybrid search approaches used. However, rather than using the

same weight combination for the objectives statically throughout the run, the

weights are varied between generation and/or each function evaluation. Some-

times the weights are assigned randomly, sometimes they are functions of the

particular solution, and in other cases were encoded in the chromosome where

EVOPs acted upon them.

The major advantage of any of these techniques is the set of solutions re-

turned by the search process. Thus, P

known

and PF

known

may be reasonable

approximations to P

true

and PF

true

. But these methods are not without their

disadvantages. When using the weighted sum technique we know certain mem-

bers of PF

known

may be missed. Both the constraint/objective combination and

hybrid search approaches have signi�cant overhead (e.g., solving a linear system

of equations to determine an appropriate hyperplane [165]). Thus, a �tness as-

signment or selection technique able to �nd all members of P

true

and PF

true

is

desired. Pareto sampling o�ers this capability.

Almost 90% of reported Pareto-based MOEAs are applied to real world sci-

enti�c and engineering problems. This certainly implies the basic technique is

suitable for a number of di�erent engineering problem domains. Additionally,

rather than the usual two objective functions, several approaches used three,

four, or six. Pareto methodology handles this increased number of functions eas-

ily; one must assume the additional information given to researchers via these

additional functions is worthwhile.

Taken as a whole the Pareto-based techniques are the most popular MOEA

type, with 20 more papers published than e�orts using linear combination (the

next most popular technique). Also, judging merely by the number of published

e�orts, more interest is evident in either \pure" Pareto ranking, or ranking com-
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bined with sharing and niching. The additional overhead of deme-based selection

may be a contributing reason for the technique's relative unpopularity. Deme-

based selection also adds parameters, but sharing and niching do also; one must

assume that factor then has no bearing. Finally, although various elitist meth-

ods are proposed, they may not retain diverse enough populations to �nd and

retain a P

known

truly representative of PF

true

. Pareto elitist approaches keep

only Pareto optimal solutions in the population and discard all others. Once a

population contains almost all Pareto optimal solutions the remaining solutions

may not provide enough diversity for e�ective exploration.

7.2.4 MOEA Comparisons

To date, most MOEA researchers' modus operandi is an algorithm's comparison

(usually the researcher's own new and improved variant) against an older MOEA

(typically VEGA, even though it has identi�ed shortfalls [47]), and analyzing

results for some MOP (typically Scha�er's F2 [128], or some other numeric ex-

ample). Results are often \clearly" shown in graphical form, indicating which

algorithm's PF

known

is a better representation of PF

true

.

Only recently has any researcher proposed experimental methodologies for

general MOEA comparative analysis [167]; we present an extensive discussion on

this subject in Section 10. Most cited e�orts simply compared results of two or

more MOEAs applied to their particular application. Although this is all well

and good, a \sample size of one" is in general undesirable.

7.2.5 MOEA Theory

Seven published papers exist whose major focus is the underlying theoretical anal-

ysis of what \true" MOEAs should and should not operate. Three researchers

produced most of these papers. Other researchers often cite these works (pri-

marily those by Fonseca and Fleming), but our detailed classi�cations show their

e�orts are often modi�cations of similar techniques, or perhaps the same tech-

nique applied to di�erent problems, and add little or nothing to MOEA theoret-

ical underpinnings.

Five papers focus mainly on theoretical analyses of MOEA parameters and

behavior, whereas two attempt to further de�ne the nature and limitations of

Pareto optimality, and the subsequent e�ects upon MOEA search. Rudolph

especially focuses on the limits of MOEA search [124], while Van Veldhuizen and

Lamont attempt to further de�ne the Pareto optimal problem domain [148] (see

also Section 10.2.1).

7.3 MOEA Fitness Functions

The cataloged research e�orts provide various types of �tness functions used by

MOEAs. Table 7.3 lists generic �tness function types, their identifying charac-

teristics, and examples of each. The listed types are not limited to MOEA appli-
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Table 16: MOEA Fitness Function Types

Category Characteristic Examples

Electromagnetic Energy transfer or reection [100, 103, 149]

Economic Production growth [63, 131]

Entropy Information content and (dis)order [51, 84, 123]

Environmental Environmental bene�t or damage [3, 24, 146]

Financial Direct monetary (or other) cost [5, 72, 150]

Geometrical Structural relationships [37, 54, 79]

Physical (Energy) Energy emission or transfer [80, 116, 158]

Physical (Force) Exerted force or pressure [30, 113, 151]

Resources Resource levels or usage [9, 35, 131]

Temporal Timing relationships [48, 76, 131]

cations, nor are they the only ones possible. However, MOEAs o�er the exciting

possibility of simultaneously employing di�erent �tness functions to capture de-

sirable characteristics of the current problem domain. This is true regardless of

MOEA technique.

Function types appear limited only by the practitioner's imagination. Several

�tness function types are identi�ed; others must surely exist. However, a �tness

function's e�ectiveness depends on its application in appropriate situations (i.e.,

it measures some relevant feature of the studied problem). The claim by many

cited authors that their particular MOEA implementations were successful imply

their associated �tness functions were appropriate for the given problems.

Finally, the presented e�orts also clearly show the non-commensurability and

independence of many �tness function types. These are the factors responsible

for the partial ordering of the search space.

7.4 MOEA Chromosomal Representations

Theorems exist [46] showing no intrinsic advantage exists in any given genetic

representation. For any particular encoding and its associated cardinality, equiv-

alent evolutionary algorithms (in an input/output sense) can be generated for

each individual problem instance. Although particular gene representations and

operators may be more desirable than others in certain situations, the theorems

show no choice of representation or evolutionary operators operating on one or

two parents, o�ers any capability which can't be duplicated by another represen-

tation and/or operator.

Thus, the genetic representation is another MOEA component limited only

by the implementor's imagination. The cited e�orts show the most common

representation is a binary string having some simple mapping from the problem

domain. Real-valued chromosomes are also often used in this fashion. And, as in
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single-objective EAs, combinatorial optimization problems often use a permuta-

tion ordering of jobs, tasks, etc. However, several other representations are more

intricate, and therefore of more interest here.

Some MOEAs employ arrays as genome constructs. For example, Baita uses

a matrix representation to store recessive information [9]. (As a side note, only

two published MOEAs use dominant and recessive genetic information [9, 88]).

Parks and Chow use matrices as they are more natural representations of their

respective problem domains' decision variables [117, 23].

The Pr�ufer encoding used by Gen [55] uniquely encodes a graph's spanning

tree and allows easy repair of any illegal chromosome. In the only two known mul-

tiobjective Genetic Programming implementations [89, 68], a program/program

tree representation was used. But whatever representation used, we again see

any claims of successful MOEA implementations imply the associated genetic

encodings are appropriate for the given problems.

7.5 MOEA Problem Domains

By de�nition, MOEAs operate on MOPs. A more theoretical discussion of this

domain is given in Section 10.2.1. Here, we discuss the domain in more general

terms. When implementing an MOEA, it is (implicitly) assumed that the prob-

lem domain (�tness landscape) has been examined, and a decision made that

an MOEA is the most appropriate search tool for the given MOP. In general,

it is accepted that EAs are useful search algorithms when the problem domain

is multidimensional (many decision variables), and/or the search space is very

large. Most cited e�orts appear to exhibit these characteristics.

Overall, almost 85% of the cited e�orts were applied to non-pedagogical prob-

lems. This indicates EA practitioners are today developing and implementing

MOEAs as real-world search tools. These implementations span several disparate

scienti�c and engineering research areas, giving credibility to the MOEA's claim

as an e�ective and e�cient general purpose search tool.
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8 MOEA Survey Analysis (Empirical)

This section presents issues of a more philosophical nature raised by the preceding

discussion. Although not quantitatively derived, our observations are based on

the preceding cataloged e�orts, and our conclusions substantiated with other

relevant citations from the literature.

8.1 MOEA Characteristics

What \makes" an MOEA di�erent from an EA? How \hard" is it to use an

MOEA? When should an MOEA be used? We present our views on these issues

in this section.

The major MOEA de�ning characteristic, of course, is the multiple objectives

being simultaneously optimized. Otherwise, a task decomposition clearly shows

little structural di�erence between the MOEA and its single objective counter-

parts. Figures 5 and 6 show a general EA's and MOEA's task decomposition,

respectively.

General EA Tasks

1. Initialize Population
2. Fitness Evaluation
3. Recombination
4. Mutation
5. Selection

1 32 4 2 5

Loop

Sequential Decomposition

Figure 5: Generalized EA Task Decomposition

 General MOEA Tasks

1. Initialize Population
2. Fitness Evaluation

2a. Vector/Fitness Transformation
3. Recombination
4. Mutation
5. Selection

Sequential Decomposition

1 32 4 2a 5

Loop

22a

Figure 6: MOEA Task Decomposition

The major di�erences are noted as follows. By de�nition, Task 2 in the MOEA

case computes k (where k � 2) �tness functions. Also, because EAs expect a
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single �tness value with which to perform selection, additional processing is some-

times required to transform MOEA solutions' �tness vectors into a scalar (Task

2a). Although the various transformation techniques vary in their algorithmic

impact (see Section 8.4), the remainder of the MOEA is structurally identical to

its single-objective counterpart.

A conference reviewer once called a particular MOEA implementation \straight-

forward;" it was also evident the reviewer did not completely understand relevant

MOP concepts. Conversations with other MOEA researchers echo that senti-

ment. Much time and e�ort is expended de�ning and defending MOP concepts

as it seems many EA practitioners do not have an adequate understanding of ba-

sic MOP issues. We hesitate to call any MOEA implementation straightforward,

at least as far as achieving e�ective and e�cient performance is concerned. The

remainder of this section provides a basis for this statement.

This report has detailed 12 di�erent MOEA solution techniques (Sections 3

through 5). Although the cited e�orts explain how various MOEAs are imple-

mented, they do not always explain why. This may well be due to the current

lack of MOEA theory.

8.2 MOEA Theory

We agree with other MOEA researchers [69, 50] that MOEA theory is lagging

behind the applications being continually implemented. We showed in Sections 3

through 5 that although a steady stream of MOEA publications has ensued

since the middle 1990's, this increased number of conference papers and journal

articles does not indicate a corresponding depth of associated theory, clearly

indicated by Table 15. This report makes clear the fact that more e�ort has been

spent designing new or variant MOEA approaches and not in comprehensively

reviewing the bene�ts and/or trade-o�s of the various approaches.

Why is there such a lack of underlying MOEA theory? Although some math-

ematical foundation of MOEA theory exists, the current situation seems akin to

Goldberg's [58] recent comparisons of engineer and algorithmist. Here, he likens

algorithms to \conceptual machines", and implies that computer scientists are

hesitant to move forward without exact models exactly describing the situation.

He claims the design engineer often accepts less accurate models in order to build

his design. MOEA researchers certainly seem to have taken this approach! Or,

is it possible the lack of theory is due to the fact that many current practitioners

do not have the requisite mathematical knowledge; that constructing appropriate

mathematical models is beyond their current expertise?

Basic EA theory is well-established. A Handbook of Evolutionary Compu-

tation [8] exists with entire chapters devoted to the theoretical foundations of

evolutionary computation established during the past 25 years; sample topics in-

clude selection, representation, crossover, mutation, �tness landscapes, etc. Sev-

eral foundational textbooks are also available, such as those by Goldberg [57],

Michalewicz [98], and by B�ack [6]. Although much of this theory is (may be?)
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valid as regarding MOEAs, some is not. Thus, this section discusses the current

state of MOEA theory.

8.2.1 Fitness Functions

The overwhelming majority of published MOEAs use only two �tness functions.

Some use three, and a few use six, but the maximum of any cited e�ort is seven

di�erent functions; both Wienke et al. [158] and Fonseca and Fleming [51] used

this number of functions.

However, Wienke et al. (in e�ect) used seven copies of the same objective

function. Their objectives were to meet certain atomic emission intensity goals for

seven di�erent elements. However, although the elements are di�erent the �tness

functions are conceptually identical. This does not make the MOP \easier", but

perhaps makes the MOP easier to understand.

On the other hand, Fonseca and Fleming's MOP's objectives appear both

incommensurable and independent. Both P

known

and PF

known

are hard to visu-

alize, especially in their e�ects upon each other. For example, considering the

polynomial model built by their MOEA, it is unclear how the number of terms

a�ects the long-term prediction error, and how that error may a�ect variance

and model lag.

How many �tness functions are enough? How many objectives are required

to adequately capture an MOP's essential characteristics? The cataloged e�orts

imply most MOPs (whether numeric or real-world) require only two or three

objectives. There is some practical limit as the time to compute several complex

�tness functions quickly becomes unmanageable. As far as Pareto optimality is

concerned, a theoretical limit also exists.

As more objectives are added to the MOP more and more solutions meet the

de�nition of Pareto optimality. Thus, as Fonseca and Fleming indicate for pure

Pareto MOEAs [50], the size of P

current

, PF

current

, P

known

, and PF

known

grows,

and Pareto selective pressure decreases. However, both they and Horn [69] err

when they imply that the size of PF

true

grows with additional objectives. We

prove in Section 10.2.1 that the Pareto front of an MOP with two objectives

(k = 2) is at most a curve, and is at most a hypersurface when k � 3. And, as

Cantor proved [64] the in�nity of points on a line, surface, cube, or so on are the

same (@

1

). Thus, the size of PF

true

does not grow with the number of objectives.

However, since MOEAs deal with a discrete Pareto front representation, the

number of possible solutions and certainly the number of points on the front may

increase as more objectives are added. However, this number of computationally

representable points is dependent more on the front's shape than on the number

of objectives.

Finally, some limit to human understanding and comprehension exists. The

human mind appears to have a limited capacity for simultaneously distinguishing

between multiple pieces of information or concepts. Perhaps this is best noted

by Miller's [102] seminal paper proposing the human's one-dimensional span of
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judgment and immediate memory to be 7 � 2. He notes that adding objective

dimensions increases this capacity but at a decreasing rate. This argues a \more

the merrier" viewpoint for the number of objectives, but visualizing and under-

standing objective inter-relationships becomes more di�cult as the number of

objectives grow. Thus, techniques were developed to map high-dimensional in-

formation to two- or three dimensions for better understanding (e.g., Sammon

mapping [126] and trade-o� graphs such as those used by Fonseca and Flem-

ing [52]).

Past MOEA implementations imply two or three objectives are enough for

most problems. Thus, at the very least, MOEA application to a given MOP

should begin with two or three objectives to gain problem domain understanding.

One may be able to ascertain how the di�erent objectives a�ect the others and

also some idea of the �tness landscape. Other �tness functions may then be

added as deemed necessary to capture other relevant problem characteristics.

Section 7.3 identi�es several categories of �tness functions for this purpose.

8.2.2 Pareto Ranking

As noted in Section 5.4, one of two Pareto �tness assignments methods is normally

used in MOEAs. In general, both assign preferred solutions the same rank and

other solutions a higher (less desirable) rank. With the scheme proposed by

Goldberg [57], where a solution x at generation t has a corresponding objective

vector x

u

, the solution's rank is de�ned by the algorithm in Figure 7.

curr rank = 1

For i = 1 : n do

If x

u

is nondominated

rank(x; t) = curr rank

od

For i = 1 : n do

If rank(x; t) = curr rank

Store x in temporary population

od

curr rank = curr rank + 1

Figure 7: Rank Assignment Algorithm

The second technique, proposed by Fonseca [50], operates somewhat di�er-

ently. As before, a solution x at generation t has a corresponding objective

vector x

u

. We also let r

(t)

u

signify the number of vectors associated with the

current population dominating x

u

; x's rank is then de�ned by:

rank(x; t) = r

(t)

u

: (14)

This ensures all nondominated solutions receive rank zero.
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It appears neither ranking method has any intrinsic value over the other,

although it was mentioned in the literature that Fonseca's method, which e�ec-

tively assigns a cost value to each solution, might be easier to mathematically

analyze [47]. Horn [69] also notes Fonseca's ranking can determine more ranks

(is �ner-grained) than Goldberg's. There is currently no clear evidence as to

the bene�t(s) of one ranking scheme over the other. No experiments have been

reported in the literature directly comparing the two schemes. Thus, at least for

now, it appears the choice of rank assignment scheme is left to the preference of

individual researchers.

8.2.3 Pareto Niching and Fitness Sharing

Several MOEA Pareto niching and �tness sharing variants have been proposed.

Their goal is the same as in the traditional single-objective optimization sense:

�nding and maintaining all optima so that a \close" representation of PF

true

results;

the MOP case uses sharing to attempt and �nd a uniform distribution represent-

ing PF

true

.

Fonseca and Fleming [52] perform sharing in the normal manner except that

it occurs only between solutions with identical Pareto rank. They also measure

distance in phenotypic space, i.e., the distance (over some norm) between two

solutions' evaluated �tness vectors is computed and compared to �

share

(the key

sharing parameter). If the result is less than �

share

the solution's associated niche

count is adjusted.

The Nondominated Sorting Genetic Algorithm (NSGA) [133] of Srinivas and

Deb implements a slightly di�erent variant. They measure distance (over some

norm) in genotypic space, i.e., the distance between two solutions is compared

to �

share

.

Horn slightly modi�es the traditional niching de�nition but is still aspiring

to more closely approximate PF

true

. His and Nafpliotis' Niched Pareto Genetic

Algorithm (NPGA) [70] performs selection via binary Pareto domination tour-

naments. Solutions are selected if they dominate both the other and some small

group (t

dom

) of randomly selected solutions. However, in the case both solutions

are nondominated or both are dominated, �tness sharing occurs. Each of the two

solution's niche counts is computed not by summing the computed sharing val-

ues but by simply counting the number of solutions whose associated vectors are

within �

share

in phenotype space. The solution with a smaller niche count (i.e.,

fewer neighbors) is then selected. Horn et al. terms this equivalence class shar-

ing [71] because solutions within the various classes can be considered \equally"

�t.

Other variants also exist. For example, one uses the NSGA's rank assign-

ment scheme (i.e., Goldberg's [57] Pareto ranking) and �tness sharing within the

phenotypic domain [101], and another uses a method combining both genotypic

and phenotypic distances [123]. Fitness sharing may also be applied to solutions

regardless of their rank.
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Any of these methods requires setting explicit values for the key sharing pa-

rameter �

share

(i.e., the niche radius), which can a�ect MOEA e�ciency and

e�ectiveness. Fitness sharing's performance is sensitive to the setting of both

�

share

and the population size N . Assigning this parameter's values is di�cult,

as it usually requires some a priori knowledge about the shape and separation of

a given problem's niches. However, both Fonseca and Fleming [52] and Horn [70]

give some bounding guidelines of appropriate �

share

values for MOPs. Horn also

indicated that the NPGA's tournament size parameter (t

dom

) a�ects algorithm

e�ectiveness and suggested appropriate values for it.

Both methods of setting �

share

involve the number of individuals in the popula-

tion, scaling the known attribute values, and determining the minimum/maximum

value in each objective dimension. For now, we assume the population size is

static throughout MOEA execution. Then, attribute value scaling attempts to

reduce niching bias resulting from vastly di�erent attribute ranges. This leaves

determination of the min and max attribute values in each dimension.

Simply computing attribute values for the minimum and maximum of asso-

ciated decision variables does not work; decision variable minimums/maximums

may not correspond to attribute minimum/maximums. Thus, the min and max

values of either the current generation or secondary population may be used. Fon-

seca and Fleming [52] indicate using the values present at each generation yield

good results. We note that the stochastic nature of MOEAs may not preserve

these values' associated solutions between generations. It seems more intuitive

to choose the values from the secondary population which by de�nition contains

the min and max values found so far. This action continually \pushes" the ends

of PF

known

.

However, we once again currently see no clear evidence as to the bene�t(s)

of one Pareto niching and sharing variant over another. No experiments are

reported in the literature comparing any of these variants, and it thus appears

the choice is left to the preference of individual researchers.

8.2.4 Mating Restriction

The idea of restricted mating is not a new one. Goldberg [57] �rst mentions using

restricted mating to prevent or minimize \low-performance o�spring (lethals)."

In other words, it is a method for biasing how solutions are paired for recombi-

nation in the hopes of increasing algorithm e�ectiveness and e�ciency. Goldberg

presented an example using genotypic structure as mating criteria. Parallel GAs

often implement restricted mating in a geographic sense; here solutions may mate

only with neighbors within some restricted topology [20]. Several MOEAs employ

restricted mating in this sense.

For example, Baita et al. [9], and Loughlin and Ranjithan [94] place solutions

on a grid and restrict the possible area within which a solution may mate. Lis

and Eiben [92] allow mating only between solutions of di�erent \sexes." Jakob

et al. [79] restrict mating to within a solution's particular deme. A unique form

46



8 MOEA SURVEY ANALYSIS (EMPIRICAL) 8.2 MOEA Theory

of mating restriction is implemented by Hajela and Lin [65]. In their linear �t-

ness combination (weighted-sum) MOP formulation, they apply restricted mating

based on a solution's associated weighting variables, preventing crossover between

designs with radically di�erent weight combinations.

When considering general MOEAs however, phenotypic-based restricted mat-

ing is of more interest to us. More to the point, several MOEA researchers state

in their published reports [48, 49, 167]:

\Following the common practice of setting �

mate

= �

share

, ..."

This may indeed be a common practice, but how did it get that way? It is an

intuitive choice but little rationale has been o�ered supporting it. In MOEAs,

restricted mating is meant to reduce the formation of un�t (e.g., dominated) o�-

spring as the population distributes itself along PF

known

. Thus, setting �

mate

=

�

share

seems reasonable, but is the extra algorithmic overhead of restricted mat-

ing worthwhile? We currently have only empirical explanations o�ered for the

implementation (or lack of) restricted mating. Obviously, some researchers be-

lieve it is necessary in their particular application or they wouldn't have bothered

with it, but others indicate it is of no value!

Zitzler and Thiele [167] indicate that for several di�erent values of �

mate

, no

improvements were noted for their test problems when compared against the cases

with no mating restriction. Shaw and Fleming [131] report the same qualitative

results for their application when mating restriction was or was not incorpo-

rated. Horn et al. [71] o�er empirical evidence directly contradicting the basis

for mating restriction; they note that recombining solutions whose associated

vectors are on di�erent parts of PF

known

can produce o�spring whose vectors are

on PF

known

between their parents! They also claim that for a particular MOP,

PF

known

is maintained by a constant (re)generation of points on PF

known

through

recombination of two di�erent parents. They believe most recombinations of so-

lutions in P

known

also yield solutions in P

known

.

Yet again we have no quantitative evidence as to the bene�ts of this MOEA

theory component. The empirical evidence presented in the literature can be

interpreted as an argument for or against this recombination form and leaves the

MOEA �eld in an unsatisfactory predicament. If mating restriction is indeed

bene�cial it should be implemented. However, this adds algorithmic complexity

to the MOEA. Section 8.4 shows MOEAs may be O(n

2

) algorithms. Any addi-

tional algorithmic complexity should be known to be worthwhile. The issue of

mating restriction would clearly bene�t from experiments directly comparing its

inclusion/exclusion from MOEAs.

8.2.5 Solution Stability or Robustness

Whether single or multiobjective, EAs seek the global optima of some problem.

At least for MOPs, it has been noted [74] that P

true

may not, and often is

not, the most desirable solution set. because it is \unstable" (due to engineering

tolerances, nonlinear response, etc.). It is suggested that these solutions are often
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on the \edge" of optimality and/or feasibility. Thus, just as in single-objective

optimization, any solutions returned as optimal must be evaluated with respect

to any constraints not explicitly considered in the objective function(s).

8.3 MOEA Secondary Populations

We agree with Horn [69] and others that any practical MOEA implementation

includes a secondary population of all nondominated solutions found so far dur-

ing an MOEA run. This is due to the stochastic nature of EAs which does not

guarantee that a desirable solution, once found, remains in the population until

EA termination. However, what exactly should be done with this population? Is

it simply a repository, continually added to and then culled of dominated solu-

tions? Or is it integrated as an active component of the MOEA search process?

Although several researchers indicate their use of secondary populations, only a

few explain its exact use in their particular MOEA. As there is no consensus for

its \best" use, we discuss the various cited implementations of MOEA secondary

populations.

A straightforward implementation of a secondary population stores P

current

at

the end of each generation; these solutions are termed P

known

. This set must be

periodically culled of dominated solutions as a solution's designation as Pareto

optimal is always dependent upon the set within which it is evaluated. How often

the set is updated is a matter of choice, but as determination of Pareto optimality

is an O(n

2

) algorithm, it should probably not be performed arbitrarily. As n

grows comparison time may become signi�cant. When using this method no

feedback of solutions from P

known

into the main population is performed.

Conversely, other published algorithms actively involve P

known

in MOEA op-

eration. For example, at the end of each generation Zitzler and Thiele's [166]

Strength Pareto Evolutionary Algorithm (SPEA) stores P

current

in a secondary

population (P

known

) and then culls dominated solutions. Solutions from both the

main population and P

known

then participate in binary tournaments selecting the

next generation. If the number of solutions in P

known

exceeds a given maximum,

the population is reduced by clustering; the goal is generating a representative

subset while maintaining the characteristics of the original set. SPEA also uses

P

known

in computing �tness of solutions in the main population.

Todd and Sen [144] insert nondominated solutions from P

known

into the mating

population to maintain diversity, as do Ishibuchi and Murata [76, 78, 77] and

Cieniawski et al. [24]. However, these implementations never reduce the size

of P

known

except to remove dominated solutions. Parks and Miller [116] and

Parks [117] also implement an archive of Pareto optimal solutions. However,

solutions in P

current

are not always added and archiving occurs only if a solution

is su�ciently \dissimilar" from those already present (in terms of their reactivity

distributions). This also is a form of clustering. If a new solution is added any

archive members which are now dominated are removed. They also select next

generation members from both P

known

and the current generation, choosing some
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fraction from each.

Some researchers use secondary populations not composed of Pareto optimal

solutions. For example, Bhanu and Lee [14] apply an MOEA to adaptive image

segmentation; their secondary population is actually a training database from

which GA population members are selected. Viennet et al. [152] use a GA to

optimize each of the k MOP functions independently; these \additional" popu-

lations are later combined and nondominated solutions removed.

We state a secondary population (of some sort) is an MOEA necessity. Be-

cause the MOEA is attempting to build up a (discrete) picture of a (possibly

continuous) Pareto front, this is probably a case where at least initially, too

much information is better than too little. However, once P

known

exists it in-

tuitively seems that it might also be useful in adding diversity to the current

generation and in expanding the \ends" of the known front. How to e�ectively

and e�ciently use P

known

is still unknown. This MOEA issue would also clearly

bene�t from experiments directly comparing its various implementations.

8.4 MOEA Complexity

It is well known that the time complexity of �tness function evaluation (of real-

world problems) dominates EA execution time. Thus, when discussing the al-

gorithmic complexity of various MOEAs, we are concerned mainly about the

number of �tness evaluations. We do consider some solution comparisons and

calculations, as this is additional overhead missing from simple GA (SGA) im-

plementations. However, EVOP complexity is ignored for our current purposes.

MOEA complexity is generally greater than that of SGAs. In an SGA, after

�tness evaluation, the resultant values are stored in memory and no further com-

putation is (normally) required as far as �tness is concerned. However, an MOEA

sometimes combines and/or compares these stored values, adding additional al-

gorithmic complexity. As a reference we present the complexity of the various

MOEA techniques in Table 8.4; SGA complexity is included for comparison. The

\worst-case" was used to generate these �gures.

The notation in the table is as follows. Population size is denoted by n and

the number of generations by G. The number of �tness functions is designated

by k and m represents the number of solutions per processor (the Pareto demes

case). All table entries are based upon a single generational population, i.e., no

secondary populations are used. All techniques are assumed to store a solution's

evaluated �tness making the computational cost of selection inconsequential. All

listed techniques have the identical basic cost of T

f

G(nk) �tness computations

per generation, and then diverge based on their implementations. Finally, a lin-

ear combination technique was assumed for the independent sampling technique,

and randomly assigned weights (in the �tness functions) for the aggregation tech-

nique. Table 8.4 shows MOEA techniques explicitly incorporating Pareto con-

cepts are the most computationally expensive; this is due primarily to the O(n

2

)

cost of determining Pareto optimality.
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Table 17: MOEA Algorithmic Complexity

MOEA Technique Computational Complexity

SGA T

f

Gn

Lexicographic T

f

Gnk +Gn

2

k �Gnk

Linear Combination T

f

Gnk +Gnk �Gn

Multiplicative T

f

Gnk +Gnk �Gn

Target Vector T

f

Gnk +Gk

2

+ 2Gk

Minimax T

f

Gnk + 3Gnk

Independent Sampling c[T

f

Gnk +Gnk �Gn]

Criterion Selection T

f

Gnk +Gn

Aggregation Selection T

f

Gnk +Gnk � n

Pareto Rank T

f

Gnk +Gn

2

k �Gnk

Pareto Niche and Share T

f

Gnk +Gn

2

k �Gnk + n

2

Pareto Demes T

f

Gnk +G

m

2

k

n

2

�G

mk

n

+

m

n

T

comm

Pareto Elitist T

f

Gnk +Gn

2

k �Gnk

MOEA storage requirements are problem dependent. Like other EAs these re-

quirements are mandated by the data structures used in speci�c implementations.

Although required storage increases linearly with the number of �tness functions

used, a dramatic increase occurs when a secondary population is brought into

play.

8.5 MOEAs for Beginners: Which are Appropriate?

We cannot specify an \all-around" MOEA technique, nor does the NFL theo-

rem [161] allow for one. As far as the implementations we cite it appears that

the a priori techniques are not appropriate. This conclusion is mainly based on

the number of published reports. This technique's lack of popularity may be at-

tributed to the lack of information a DM has before search occurs. Without the

knowledge additional search brings, a DM is somewhat \shooting in the dark."

In cases where stakes are high, the DM is probably better o� using an interactive

decision making process, or making decisions after a more unconstrained search

occurs. However, this does not imply the interactive or a posteriori techniques

are always appropriate, either.

The tables in Sections 3-5 present numerous approaches. Based on that in-

formation, those wishing to implement an MOEA may well be asking \Where

do I begin?" Based on the preceding presentation, we suggest three MOEAs as

initial candidates for the following reasons.

We showed in a previous work [148] that the global optimum of an MOP is

the Pareto front determined by evaluating each member of the Pareto optimal

solution set. Noted in Section 5 is the fact that many approaches are explicitly
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seeking P

known

. And as this section implies, algorithms incorporating as much

known MOEA theory as possible would appear to be rational choices.

Thus, the three suggested MOEAs are Fonseca and Fleming's MOGA [52],

the NPGA [70], and the NSGA [132]. These algorithms are fairly recent and

stand out because of their incorporation of known MOEA theory. Although each

author (rightly so) points out de�ciencies in their own and the other two algo-

rithms, any algorithmic approach is bound to have some shortfalls (c.f., the NFL

theorem [161]). The common theme of these algorithms is their understanding

and addressing of many known relevant theoretical issues, and their empirical

success in both numerical MOPs and real-world applications.

The citations give ample information to implement the algorithms; many ex-

isting EA implementations can be easily modi�ed to incorporate MOEA speci�c

routines. For example, we have used the messy GA [59], GENOCOP III [97],

and the Genetic and Evolutionary AlgorithmToolbox (GEAT) for use with MAT-

LAB [119] to create various MOEAs. A methodology which may quantitatively

show these algorithm's strengths is detailed in Section 10.
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9 Parallel MOEAs

We have noted several parallel MOEA implementations [79, 9, 120, 123, 96, 2].

These implementations execute either several MOEAs on di�erent processors

or spread the MOEA population among processors in a normal demic manner.

None discuss what other parallel MOEA possibilities exist. This section presents

detailed analysis of these possibilities.

We �rst assume the Evolutionary Operators (EVOPs) used by an EA are

computationally inconsequential when compared to communication costs. This

assumption implies EVOPs should operate on entire populations, prohibiting

excessive communication cost due to sending/receiving fractions of a population

6

.

An obvious �rst choice for MOEA parallelization is an exact task to processor

mapping, but this is not a wise choice. Each identi�ed task in Figure 5 executes

for varying time periods. Additionally, one of the tasks (Task 1) executes only

once. It is easy to see the proposed mapping's ine�ciency. One processor com-

pletes its task and then sits idle. The other processors are also unable to operate

in parallel which results in a much greater idle than calculation time.

The four steps in the loop must occur sequentially. Mutation cannot operate

until recombination �nishes. Selection cannot (normally) occur until all �tnesses

are computed. It is conceivable that the �tness evaluation task can operate on

solutions sent immediately after mutation does/does not occur, but the overhead

of opening/closing a communication channel between two processes seems pro-

hibitively expensive compared to the minimal computational gains. Additionally,

since data required by each task is resident on other processors there is an ad-

ditional high communication overhead associated with this implementation. We

thus draw the conclusion that this implementation is not useful. \Pipelining"

the algorithm tasks is also not e�ective, because it is a special case of the exact

task to processor mapping.

Another possible implementation is a \Single Program { Multiple Data"

(SPMD) type. Because MOEAs are a stochastic search algorithm, they are

not guaranteed to return the global optimum. Thus, one could execute sev-

eral MOEAs simultaneously on di�erent processors and compare/contrast the

reported results. As many practitioners execute a number of EAs sequentially

to achieve this same result the parallel implementation's speedup is apparent.

However, we are also interested in parallelizing MOEA tasks. This background

enables us to discuss these possibilities.

9.1 MOEA Task Decomposition

Although several parallel implementations are possible, we only discuss relevant

issues a�ecting selected implementations' e�ectiveness. We �rst note the major

di�erences between single- and multiple-objective EAs. By de�nition, Task 2 in

6

We realize some parallel architectures may be optimized for \small" message passing, but we are here

considering the more general case.
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the MOEA case computes k (where k � 2) �tness functions. Also, because EAs

expect a single �tness value, additional processing is sometimes required to trans-

form MOEA solutions' �tness vectors into a scalar. We have identi�ed several

variants of MOEA �tness assignment and selection techniques (e.g., ordering,

scalarization, independent sampling, and cooperative search). These techniques

vary in their algorithmic impact, while the remainder of the MOEA is essentially

the same as its single-objective counterpart.

We note here that a�ecting the ability to e�ectively and e�ciently parallelize

either the EA or the MOEA is the fact that the majority of each algorithm

is inherently sequential. Thus, these algorithms seem to �t the de�nition of

P-Complete [145], implying only approximations to the global optimum can be

determined in polynomial time.

9.1.1 Decomposing MOEA Fitness Assignment and Transformation

As in single-objective EAs, the steps within the major loop must occur sequen-

tially. Thus, an exact task to processor mapping is undesirable as is pipelining.

Simultaneously executing several MOEA implementations on di�erent processors

is perfectly acceptable, but we are also interested in parallelizing components of

a single MOEA run.

As previously noted, MOEAs are suited for search in large, high-dimensional

solution spaces such as those found in real-world scienti�c and engineering prob-

lems. And in fact, many MOEAs are applied to these problems in tasks such

as airfoil design, nuclear reactor core loading optimization, and electromagnetic

antenna design. Two aspects of these real-world MOPs lend themselves to a

parallel approach: �tness evaluation and transformation.

MOEAs have two or more functions to be evaluated per solution, permitting a

parallel approach by assigning each function's evaluation to di�erent processors,

assigning subpopulations for evaluation on di�erent processors, or assigning each

individual's evaluation across several processors. These are shown in Figure 8;

each option is discussed in turn.

Execution time for each �tness function may be radically di�erent. Blindly

assigning the entire population and each of the k functions to a di�erent processor

may not then be prudent, as one calculation could take many times longer than

the others (see Figure 8a). One could \load balance" these �tness computations

but the e�ort expended to do so may not be worthwhile. It is also possible to

assign fractions of the population to di�erent processors, as identical numbers of

individuals are evaluated via identical �tness functions (see Figure 8b). As long

as communication time is not a signi�cant fraction of the subpopulation's calcu-

lation time, this is an e�ective parallelization method for the �tness evaluation

task. Finally, in the case of an extremely expensive �tness computation, each in-

dividual's �tness computation(s) could be split among processors (see Figure 8c).

This is likely only in domains such as electromagnetic component design where

such parallel codes already exist. One �nal possibility is partitioning the solu-
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Figure 8: Parallel Fitness Evaluation Possibilities

tion space and searching each portion independently of the others (i.e., multiple

MOEA runs searching distinct solution domains). Because Pareto dominance is

a transitive relation, results from the independent searches can be combined and

compared again, resulting in PF

known

. Within each portion, the �tness function

calculations may also be parallelized using any of the preceding methods.

It is commonly accepted among EA researchers that the most computationally

expensive algorithm component is the �tness function evaluation. Considering

most EAs execute from a few thousand to tens of thousands of evaluations per

run, parallelizing the objective function calculations can signi�cantly decrease

total MOEA execution time.

Fitness transformation also o�ers parallelization possibilities. For example,

using Pareto optimality as an MOP solution criterion limits how an MOEA can be

parallelized. Many MOEA schemes use Pareto concepts to assign solution �tness,

e.g., Pareto ranking. This method assigns each solution a �tness based on the

number of evaluated vectors dominating its own; one can identify many MOEA

\avors" based on the technique used for �tness assignment and/or selection.

As algorithmic complexity is an additional indicator of which MOEA techniques

may or may not be good candidates for parallelization, this component must be

considered in any proposed implementation (see Table 8.4 for the complexity of

all known techniques employed in published MOEAs).

Although several �tness assignment and selection techniques are listed we

consider only the Pareto schemes. The other techniques' ability to �nd members

of PF

true

is limited; each has identi�ed aws. Whereas most EAs are O(n),

Table 8.4 shows MOEAs using Pareto schemes are O(n

2

) because each solution

must be compared against every other. With this �tness assignment scheme,

individual �tness (within a subpopulation) can not be transformed in parallel as

each individual's resultant ranking depends on every other solution in the current

generation. Parallelizing the Pareto �tness assignment/transformation tasks thus

appears worthwhile.
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9.2 MOEA Parallelization

Table 8.4 identi�es the four major MOEA Pareto variants; we consider only the

\Niching and Sharing" variant here. This technique incorporates most existing

MOEA theory and thus appears to be the best choice. Figure 9 is the pseudocode

for a serial sharing and niching MOEA; each step is annotated with the appro-

priate task from Figure 6. The Pareto ranking, and sharing and niching actions,

constitute the MOEA's �tness transformation.

t = 0 (Generation Number)

Randomly Generate Initial Population (Task 1)

Evaluate Each Individual's Fitness Vector (Task 2)

Pareto Rank Each Individual's Fitness Vector (Task 2a)

Assign Fitness via Sharing and Niching(Task 2a)

While t < Maximum Number of Generations do

Recombine Some Individuals (Task 3)

Mutate Some Individuals (Task 4)

Evaluate Each Individual's Fitness Vector (Task 2)

Pareto Rank Each Individual's Fitness Vector (Task 2a)

Assign Fitness via Sharing and Niching (Task 2a)

Select Individuals for Next Generation (Task 5)

t = t + 1

od

Figure 9: Serial Sharing & Niching MOEA Pseudo-Code

The �tness evaluation and transformation tasks (Tasks 2 and 2a in Figure 6)

are the most likely candidates for parallelization. We thus assign all other tasks

and overall algorithm control to a single processor (a master processor). For

the moment, we ignore parallelizing the �tness function evaluation itself as that

is application problem dependent. However, we may compute the sharing and

niching values independently.

9.2.1 Parallel Sharing and Niching

Sharing and niching are processes whereby an individual's �tness is degraded by a

quantity proportional to the number of individuals within some speci�ed distance

(over some norm) of it. In MOEAs, this technique's intent is to uniformly spread

the population over, and expand the ends, of PF

known

. In general, niching tends

to distribute individuals around the best optima and sharing models individual

competition for �nite resources within a closed environment [52]. Sharing and

niching can be thought of as a �tness modi�cation. The process occurs in the

following manner. First, sharing values are derived via the following equation:
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sh(d

i;j

) =

�

1� (

d

i;j

�

sh

)

�

sh

if d

i;j

< �

sh

0 otherwise

The parameters �

sh

and �

sh

are user-de�ned. They are normally chosen to

reect some �tness landscape knowledge or other certain objectives; our concern

here is not with these values speci�cally but how they are used. Distance is

computed via some relevant measure; we use Euclidean distance of vectors in the

objective domain. Next, for each individual i, the niche count m

i

is calculated

by:

m

i

=

N

X

j=1

sh(d

i;j

); (15)

where N is the population size. Finally, the shared �tness of each individual i is

given by:

f

sh;i

,

f

i

m

i

(16)

We consider Fonseca and Fleming's MOEA [52] as an example, where each

solution is given a rank equal to the number of vectors dominating its associated

vector. An initial �tness is then assigned by linearly interpolating between the

best and worst individual. Niching, sharing, and shared �tness values are then

computed.

We see that the Pareto ranking and �tness assignment are independent of

the sharing and niching value computations (if sharing is not restricted to indi-

viduals with the same rank). After �tness function evaluations are completed,

the Pareto ranking and �tness assignment may occur using a copy of the �tness

vectors. Another copy of these vectors may be used to compute the sharing and

niching values. However, Fonseca's MOEA and other variants compute niche

counts only between individuals with the same rank, a process requiring the

current Pareto rank of each solution. However, even with this restriction the

sharing value matrix can be computed independently. Shared �tness is com-

puted after the separate ranking and sharing/niching calculations are �nished.

As Pareto ranking, sharing, and niching are each O(n

2

) algorithms (described in

Section 9.3.2), performing as much of calculation in parallel as possible speeds

up overall execution. Of course, an optimal mapping of tasks to processors is

dependent on the speci�c problem. We are now able to consider integrating the

problem and algorithm domains.

9.3 MOP and MOEA Domain Integration

Here we use numeric MOPs as the problem domain. This is not wasted e�ort

as the �tness function for any real-world problem must be mathematically rep-

resented for MOEA use. Thus, identifying numeric MOP characteristics lays the

groundwork for application to more complex scienti�c and engineering problems.
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9.3.1 Integration Mechanics

 Parallel MOEA Tasks

1. Initialize Population
2. Fitness Evaluation on k Processors

2a. Pareto Ranking
2b.  Share Value Computation
2c.  Shared Fitness Assignment

3. Recombination
4. Mutation
5. Selection

Parallel Decomposition

Loop

1 32-2 4 5

2-1

2-k

2-a

2-b

2-c 2-2

2-1

2-k

2-a

2-b

2-c

Figure 10: Parallel MOEA Task Decomposition

Figure 10 shows the proposed parallel MOEA's task decomposition. One pro-

cessor acts as the MOEA \master," executing the population initialization, re-

combination, mutation, and selection tasks. It also controls parallelization of the

�tness evaluation/transformation tasks. This parallelization can be easily imple-

mented via the Message Passing Interface (MPI) [115], as necessary MPI routines

are readily incorporated into MOEA implementations and are portable across a

wide variety of computer architectures with either homogeneous or heterogeneous

processors.

We assume (for the moment) that any of the k �tness functions used are of

nearly equal computational complexity, i.e., there is no signi�cant di�erence in

the times required to compute them. Thus, the parallelization scheme indicated

in Figure 8a is preferred. Knowing a priori the number of �tness functions,

k processors may be assigned at the MOEA run's beginning; the overhead of

sending the entire population and a function to be computed should be minimal.

The same is true of each processor's result (an n-valued vector containing the

kth �tness for each of the n solutions). Figure 8b's scheme likely requires a

dynamic processor request and sub-population determination before data send;

the parallelization possibility shown in Figure 8c is unnecessary here as we are

considering only numeric �tness functions.

An argument may be made that the value of k may be higher than the number

of available processors. Our past research indicates that max jkj of any published

MOEA is seven. A lack of available processors should not then be a problem;

functions may also be \doubled up" on processors if necessary, minimizing pro-

cessor idle time.

As previously noted, the MOEA being implemented performs sharing only

between solutions with the same Pareto rank; however, computing the sharing

values themselves (Section 9.2.1) does not require Pareto rank information. Each

of these tasks (computing Pareto rank and share values) may then be assigned

to di�erent processors. After each task completes each solution's niche count

(Equation 15) and shared �tness (Equation 16) can be computed and MOEA

execution continued.
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9.3.2 Parallel Scheduling

As we assumed each of the k �tness functions were of equal computational com-

plexity, no load balancing is required; processor idle time should be inconsequen-

tial. This may not be the case for the parallelized Pareto ranking and share value

computation tasks.

The implemented Pareto ranking requires n � 1 comparisons per solution

for a total of n

2

� n comparisons. Some number of assignments statements

are (possibly) executed, bounded by zero and n

2

� n. Thus, the total possible

computational complexity of the Pareto ranking algorithm is between n

2

�n and

2(n

2

� n).

The implemented share value computation builds a matrix whose elements

each require two subtractions, two absolute value assignments, one summation,

one comparison, and one assignment. Some additional calculations are (possibly)

executed, bounded by zero and n

2

divisions and subtractions. Thus, building the

total possible computational complexity of the share value matrix computation

is between 7n

2

and 9n

2

.

Assuming all mathematical, comparison, and assignment statements execute

in (nearly) identical time, maximum and minimum possible load imbalances are

8n

2

and 5n

2

, respectively. This assumption is not entirely without basis as long

as the necessary operations execute in about the same time. The di�erence in

execution times between the Pareto ranking and sharing algorithms may then not

be signi�cant unless n is large. Traditionally, MOEAs use a value of n between a

few tens and hundreds. Additionally, tuning the share value calculation routine

may result in additional computational savings. The \bottom line?" As both

Pareto ranking and sharing are O(n

2

) algorithms, processor idle time should not

be unreasonable.

9.3.3 Load Balancing Issues

For a general parallel MOEA, implementing many of the available static or dy-

namic processor scheduling and load balancing techniques appears to be \more

trouble than its worth [41, 85]." The overhead involved may well be more than

the MOEA computation saved. The proposed general MOEA is not a complex

algorithm. Represented as a Directed Acyclic Graph (DAG), the MOEA tasks

show more precedence relationships than asynchrony. Put another way, the paral-

lel MOEA has a larger grain size; algorithmic decomposability is rapidly reaching

its limit.

Because of this relationship where much computational information is avail-

able at compile time, some static scheduling method (automated or manual) is

probably best. That is not to say that an automated scheduler has no bene�t.

As parallel MOEAs are applied to real-world scienti�c and engineering problems

(where the �tness calculation time, T

f

is signi�cant) these scheduling heuristics

become more important.
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9.3.4 Parallel Performance Issues

Several performance metrics exist to determine parallel algorithm e�ciency and

e�ectiveness. We de�ne primary metrics; for a more complete discussion see

Kumar et al.'s textbook [85].

Serial run time is the elapsed time between program execution start and �nish

on a sequential computer. Parallel run time is the elapsed time from the initial

parallel computation to the last (by any processor). Speedup is a relative measure

showing (or not) the bene�t of executing an algorithm in parallel. It is de�ned

as the ratio of serial run time to parallel run time, using the same problem

instance and executing on p processors. E�ciency measures the fraction of time

a processor is actually processing, and is de�ned as the ratio of speedup to the

number of processors. Cost is the product of parallel run time and the number

of processors used.

No MOEA parallel performance results have yet been published. Additionally,

any calculated results may well vary due to dissimilar MOEA implementations.

For pedagogical purposes, however, we use the above Pareto ranking and sharing

algorithms' worst case of 2(n

2

� n) and 9n

2

, respectively. We also assume any

of the n operations and startup times, communication times, etc., are equal.

Speedup is

S =

9n

2

+ 2n

2

� 2n

9n

2

=

11n

2

� 2n

9n

2

�

11

9

� 1:22 ; (17)

e�ciency is

E =

1:22

2

= 0:61 ; (18)

and cost is

C = 9n

2

� 2 = 18n

2

: (19)

Although referring only to the �tness transformation tasks, these results in-

dicate at least some degree of MOEA parallelization is bene�cial. More realistic

results are obtained by identifying the time required to perform each operation

type, start up and communication times, etc., and then computing the above

metrics in regard to the entire MOEA.

9.3.5 Parallel Architecture Issues

The parallel implementation discussed in this section tacitly considers a dis-

tributed architecture of homogeneous processors. A parallel MOEA implemented

on a shared memory architecture allowing global data access would look some-

what di�erent, and may be more e�ective than the current implementation.

For example, the �tness assignment scheme shown in Figure 8b becomes more

desirable. Shared memory removes the explicit communication bottleneck, allow-

ing \automatic" load balancing as each processor essentially executes in a SPMD

manner. Also, some niching and shared �tness computations can begin before all
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share values are computed. As shown in Section 9.3.2, as Pareto ranking com-

pletes before all shared values are computed, shared memory allows easy access

to the completed data while the remainder is computed.

The e�ectiveness and e�ciency of any implemented algorithm depends on its

underlying architecture. We focused more on a distributed architecture because

that is the most likely computational domain. However, by identifying possible

task and data decompositions, much of the work required to implement a parallel

MOEA on various parallel architectures is already completed.

9.3.6 Parallel MOEA E�ectiveness

Section 9.3.2 focuses more on MOEA e�ciency, i.e., how well it performs com-

putationally. The other major issue to consider is MOEA e�ectiveness, i.e., how

\good" its reported solutions are. As we noted in Section 2.4.1 an MOEA's

global optimum is PF

true

. Thus, an MOEA implementation's e�ectiveness may

be judged by how close to, and how much of PF

true

the reported solutions cover.

One MOEA execution is not enough to determine e�ectiveness. Many MOEA

runs using several di�erent examples are necessary to obtain a more likely indi-

cation of MOEA e�ectiveness. We have elsewhere proposed suitable metrics for

judging MOEA e�ectiveness [148] and have also proposed a standardized MOEA

benchmark test function suite (see Section 10).

In broad terms, any parallel implementation o�ers the possibility of evaluating

more candidate solutions than a serial version, possibly providing a \better" view

of the �tness landscape.
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10 MOP Test Functions

We have noted that multiobjective Evolutionary Algorithms (MOEAs) are now

a well-established �eld within Evolutionary Computation. They were \born" in

1985 when Scha�er [128] and Fourman [54] implemented the �rst MOEAs dealing

with Multiobjective Optimization Problems (MOPs). This document has shown

that since then, over 100 published papers propose various MOEA implementa-

tions and applications, and to a much lesser extent, underlying MOEA theory.

Many of these e�orts use numeric MOPs as examples to show algorithmic perfor-

mance. Nowhere in the literature, however, is there a comprehensive collocated

discussion of relevant MOP landscape issues; nor is there any explanation of why

numeric MOPs may be appropriate MOEA test functions. Extensive experimen-

tation and result analyses from testing various MOEA parameters, components,

and approaches are also missing.

Thus, we provide various numeric MOPs for use as part of a standardized

MOEA test suite, and propose a methodology whereby various MOEAs can be

directly compared. Substantiating these contributions is a detailed discussion of

MOP landscapes and general test suite issues, and identi�cation of the salient

characteristics of all known MOEA example numeric functions. A theorem is pre-

sented de�ning one MOP characteristic. Possible multiobjective NP -Complete

problems are also suggested.

In this section we introduce necessary test suite concepts, discuss the debate

the merits of past numeric examples, and propose appropriate numeric exam-

ples given the MOP domain. We also o�er a methodology for quantitatively

comparing MOEA performance.

10.1 An MOP Test Suite: Is it Important?

Test function suites have both supporters and detractors. Any algorithm suc-

cessfully passing all submitted test functions has no guarantee of continual ef-

fectiveness and e�ciency (i.e., examples prove nothing). Automotive passenger

airbags are a prime example; not until they were widely �elded was it discovered

that airbag-babyseat interactions were possibly deadly. Pattern recognition work

has also recognized the problem of \testing on the training data," where an algo-

rithm is tuned for one or a few problem instantiations [39]. These analogies hold

when integrating problem and algorithm domains: new and unforeseen situations

may easily arise. An MOEA test suite can be a valuable tool if these issues are

properly considered.

Any proposed MOP test suite must contain \MOEA challenging" functions.

In order to identify appropriate functions for inclusion, relevant MOP character-

istics must be identi�ed. We have shown in a previous work [148] that the global

optimum of an MOP is the Pareto front determined by evaluating each member

of the Pareto optimal solution set. Pareto concepts are crucial components of

appropriate MOEA test functions, and are also now de�ned.
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10.1.1 General MOEA Test Suite Issues

The \No Free Lunch" (NFL) theorem [161] implies that if problem domain knowl-

edge is not incorporated into the algorithm domain, no formal assurances of an

implemented algorithm's general e�ectiveness exist. Previously, EA test suites

containing various functions were proposed for testing an EA's capability to \han-

dle" various problem domain characteristics. These suites incorporate relevant

search space features which should be addressed by a particular EA instantiation.

For example, De Jong [33] suggests �ve single-objective optimization test func-

tions (F1 - F5), and Michalewicz [99] suggests �ve single-objective constrained

optimization test functions(G1 - G5). Whitley et al. [157] cite �ve other pro-

posed test sets. Goldberg et al. [59] suggest deceptive problems.

De Jong's test bed includes functions with the following characteristics [57]:

continuous and discontinuous, convex and nonconvex, unimodal and multimodal,

quadratic and nonquadratic, low- and high-dimensionality, and deterministic and

stochastic. Michalewicz's test bed addresses the following issues [99]: type of

objective function, number of decision variables and constraints, types of con-

straints, number of active constraints at the function's optimum, and the ratio

between the feasible and complete search space size. Particular EA instantiations

are then subjected to test beds like these, e.g., De Jong [33], Michalewicz [99],

and Schwefel [129].

Note that the NFL theorem also implies that incorporating too much prob-

lem domain knowledge into a search algorithm reduces its e�ectiveness on other

problems. However, as long as a test suite involves only major problem domain

characteristics, any search algorithm giving e�ective and e�cient results over the

test suite might remain broadly applicable to problems from that domain. Thus,

we must de�ne traits common to all (most) MOPs for test suite consideration.

10.1.2 MOEA Test Suite Guidelines

We have already mentioned that test suites must contain characteristic problems

from the tested algorithm's problem domain. Some of these problems should

represent real world situations, and also range in di�culty from \easy" to \hard."

In addition, we consider the following guidelines suggested by Whitley et al. [157].

� Some test suite problems should be resistant to simple search strategies.

� Test suites should contain nonlinear, nonseparable, and nonsymmetric prob-

lems.

� Test suites should contain scalable problems.

� Some test suite problems should have scalable evaluation cost.

� Test problems should have a canonical representation.

In Section 10.2.2 we relate proposed functions to these speci�c guidelines. But

�rst, we discuss the general need for an MOEA test suite.
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10.1.3 Requirements for an MOEA Test Suite

To date, most MOEA researchers' modus operandi is an algorithm's comparison

(usually the researcher's own new and improved variant) against an older MOEA

(typically VEGA, even though it has identi�ed shortfalls [47]), and analyzing

results for some MOP (typically Scha�er's F2 [128], or some other numeric ex-

ample). Results are often \clearly" shown in graphical form, indicating which

algorithm's PF

known

is a better representation of PF

true

.

These empirical comparisons do not contribute much to a common basis for

MOEA comparisons. The literature's history of visually comparing MOEA per-

formance on non-standard numeric problems does little to determine a given

MOEA's e�ciency and e�ectiveness. A standard suite of numeric functions ex-

hibiting relevant MOP problem domain characteristics provides a common com-

parative basis.

As indicated, the MOEA community has created a limited de facto test suite.

However, its functions are used only because they appear to exercise MOEA

capabilities, or perhaps because other researchers used them as examples for

their algorithms. Thus, a documented MOP test suite would be an asset to

MOEA research.

10.2 An MOEA Test Function Suite

As indicated, a de facto test suite exists. As a reference for this discussion, all

known MOPs used as MOEA numeric test examples are presented in Tables 18

and 19. All are minimization problems unless otherwise speci�ed.

Table 18: MOP Numeric Test Functions

Researcher &

Major MOP

Characteris-

tics

De�nition Constraints

Fonseca [50];

P

true

connected,

PF

true

concave

F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) = 1� exp(�(x� 1)

2

� (y + 1)

2

);

f

2

(x; y) = 1� exp(�(x+ 1)

2

� (y � 1)

2

)

None

Fonseca

(2) [49];

P

true

connected,

PF

true

concave,

Analytical so-

lution

F = (f

1

(~x); f

2

(~x)), where

f

1

(~x) = 1� exp(�

n

X

i=1

(x

i

�

1

p

n

)

2

);

f

2

(~x) = 1� exp(�

n

X

i+1

(x

i

+

1

p

n

)

2

)

�2 � x

i

< 2
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Table 18: (continued)

Researcher &

Major MOP

Characteris-

tics

De�nition Constraints

Kursawe

7

[88];

P

true

disjoint,

PF

true

contin-

uous

F = (f

1

(~x); f

2

(~x)), where

f

1

(~x) =

n�1

X

i=1

(�10e

(�0:2)

q

x

2

i

+x

2

i+1

);

f

2

(~x) =

n

X

i=1

(jx

i

j

0:8

+ 5sin(x

i

)

3

)

None

Laumanns [90];

P

true

disjoint,

PF

true

convex

F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) = x

2

+ y

2

;

f

2

(x; y) = (x+ 2)

2

+ y

2

�50 � x; y � 50

Lis [92];

P

true

disjoint,

PF

true

discon-

tinuous and

concave

F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) =

8

p

x

2

+ y

2

;

f

2

(x; y) =

4

q

(x� 0:5)

2

+ (y � 0:5)

2

�5 � x; y � 10

Murata

8

[106];

P

true

connected,

PF

true

concave

F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) = 2

p

x;

f

2

(x; y) = x(1� y) + 5

1 � x � 4; 1 � y � 2

Rendon [147];

P

true

connected,

PF

true

convex

F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) =

1

x

2

+ y

2

+ 1

;

f

2

(x; y) = x

2

+ 3y

2

+ 1

�3 � x; y � 3

Rendon

(2) [147];

P

true

connected,

PF

true

convex

F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) = x+ y + 1;

f

2

(x; y) = x

2

+ 2y � 1

�3 � x; y � 3

Scha�er

9

[128];

P

true

connected,

PF

true

convex,

Analytical

solution

F = (f

1

(x); f

2

(x)), where

f

1

(x) = x

2

;

f

2

(x) = (x� 2)

2

None

7

Marco Laumanns indicates this MOP was misprinted in Kursawe's original paper (personal correspon-

dence).

8

Tamaki [141] gives an almost identical function.

9

Norris [109] gives an almost identical function; his modi�cation was intended to ease analysis.
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Table 18: (continued)

Researcher &

Major MOP

Characteris-

tics

De�nition Constraints

Scha�er

(2) [133, 13];

P

true

disjoint,

PF

true

discon-

tinuous

F = (f

1

(x); f

2

(x)), where

f

1

(x) = �x; if x � 1;

= �2 + x; if 1 < x � 3;

= 4� x; if 3 < x � 4;

= �4 + x; if x > 4;

f

2

(x) = (x� 5)

2

�5 � x; y � 10

Viennet [152];

P

true

connected

and symmetric,

PF

true

curved

surface

F = (f

1

(x; y); f

2

(x; y); f

3

(x; y)), where

f

1

(x; y) = x

2

+ (y � 1)

2

;

f

2

(x; y) = x

2

+ (y + 1)

2

+ 1;

f

3

(x; y) = (x� 1)

2

+ y

2

+ 2

�2 � x; y � 2

Viennet

(2) [152];

P

true

connected,

PF

true

discon-

tinuous

F = (f

1

(x; y); f

2

(x; y); f

3

(x; y)), where

f

1

(x; y) =

(x� 2)

2

2

+

(y + 1)

2

13

+ 3;

f

2

(x; y) =

(x+ y � 3)

2

36

+

(�x+ y + 2)

2

8

� 17;

f

3

(x; y) =

(x+ 2y � 1)

2

175

+

(2y � x)

2

17

� 13

�4 � x; y � 4

Viennet

(3) [152];

P

true

disjoint

and unsymmet-

ric, PF

true

con-

tinuous

F = (f

1

(x; y); f

2

(x; y); f

3

(x; y)), where

f

1

(x; y) = 0:5 � (x

2

+ y

2

) + sin(x

2

+ y

2

);

f

2

(x; y) =

(3x� 2y + 4)

2

8

+

(x� y + 1)

2

27

+ 15;

f

3

(x; y) =

1

(x

2

+ y

2

+ 1)

� 1:1e

(�x

2

�y

2

)

�3 � x; y � 3

Table 19: MOP Numeric Test Functions (with side constraints)

Researcher &

Major MOP

Characteris-

tics

De�nition Constraints

Belegundu [10];

P

true

connected,

PF

true

contin-

uous

F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) = �2x+ y;

f

2

(x; y) = 2x+ y

0 � x � 5; 0 � y � 3,

0 � �x+ y � 1;

0 � x+ y � 7
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Table 19: (continued)

Researcher &

Major MOP

Characteris-

tics

De�nition Constraints

Kita [82];

P

true

disjoint,

PF

true

discon-

tinuous and

concave

Maximize F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) = �x

2

+ y;

f

2

(x; y) =

1

2

x+ y + 1

x; y � 0,

0 �

1

6

x+ y �

13

2

;

0 �

1

2

x+ y �

15

2

;

0 � 5x+ y � 30

Osyczka [114];

P

true

disjoint,

PF

true

convex

F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) = x+ y

2

;

f

2

(x; y) = x

2

+ y

2 � x � 7; 5 � y � 10,

0 � 12 � x� y;

0 � x

2

+ 10x�

y

2

+ 16y � 80

Osyczka

(2) [114];

P

true

disjoint,

PF

true

discon-

tinuous

F = (f

1

(~x); f

2

(~x)), where

f

1

(~x) = �(25(x

1

� 2)

2

+ (x

2

� 2)

2

+ (x

3

� 1)

2

+ (x

4

� 4)

2

+ (x

5

� 1)

2

;

f

2

(~x) = x

2

1

+ x

2

2

+ x

2

3

+ x

2

4

+ x

2

5

+ x

2

6

0 � x

1

; x

2

; x

6

� 10,

1 � x

3

; x

5

� 5;

0 � x

4

� 6,

0 � x

1

+ x

2

� 2;

0 � 6� x

1

� x

2

;

0 � 2� x

2

+ x

1

;

0 � 2� x

1

+ 3x

2

;

0 � 4� (x

3

� 3)

2

� x

4

;

0 � (x

5

� 3)

2

+ x

6

� 4

Srinivas [133];

P

true

disjoint,

PF

true

contin-

uous

F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) = (x� 2)

2

+ (y � 1)

2

+ 2;

f

2

(x; y) = 9x� (y � 1)

2

�20 � x; y � 20,

0 � x

2

+ y

2

� 225;

0 � x� 3y + 10

Tamaki [140];

P

true

connected,

a curved sur-

face, PF

true

a

curved surface

Maximize F = (f

1

(x; y; z); f

2

(x; y; z); f

3

(x; y; z)),

where

f

1

(x; y; z) = x;

f

2

(x; y; z) = y;

f

3

(x; y; z) = z

0 � x; y; z,

x

2

+ y

2

+ z

2

� 1

Tanaka [142];

P

true

connected,

PF

true

convoluted

Minimize F = (f

1

(x; y); f

2

(x; y)), where

f

1

(x; y) = x;

f

2

(x; y) = y

0 < x; y � �,

0 � �(x

2

) � (y

2

) + 1 +

0:1cos(16arctan

x

y

)

1

2

� (x�

1

2

)

2

+ (y �

1

2

)

2

66



10 MOP TEST FUNCTIONS 10.2 An MOEA Test Function Suite

Table 19: (continued)

Researcher &

Major MOP

Characteris-

tics

De�nition Constraints

Viennet

(4) [152];

P

true

connected

and unsymmet-

ric, PF

true

a

curved surface

F = (f

1

(x; y); f

2

(x; y); f

3

(x; y)), where

f

1

(x; y) =

(x� 2)

2

2

+

(y + 1)

2

13

+ 3;

f

2

(x; y) =

(x+ y � 3)

2

175

+

(2y � x)

2

17

� 13;

f

3

(x; y) =

(3x� 2y + 4)

2

8

+

(x� y + 1)

2

27

+ 15

�4 � x; y � 4,

y < �4x+ 4;

x > �1;

y > x� 2

When implementing an MOEA, it is (implicitly) assumed that the problem

domain (�tness landscape) has been examined, and a decision made that an

MOEA is the most appropriate search tool for the given MOP. We also assume

the MOEA returns P

known

and PF

known

, i.e., a set of solutions and their evaluated

function values. It is not clear that all existing test functions are appropriate

for MOEA search; thus, identi�cation of appropriate functions is required to

objectively determine MOEA e�ciency and e�ectiveness.

In general, it is accepted that EAs are useful search algorithms when the

problem domain is multidimensional (many decision variables), and/or the search

space is very large. Many of the numerical examples used by MOEA researchers

do not explicitly meet this criteria. Our research identi�es 21 di�erent numerical

MOPs (both constrained and unconstrained) used in published MOEA e�orts.

All but two use at most two decision variables and the majority use only two ob-

jective functions. This implies that unless the search space is very large, MOEA

performance claims and comparisons based on these functions may not be mean-

ingful. The algorithm may be operating in a problem domain not particularly

well-suited to its capabilities. We must then determine relevant MOP problem

domain characteristics.

10.2.1 The MOP Domain

What is the nature of the Pareto optimal set (P

true

)? Few MOEA e�orts re-

port any description of an example MOP's underlying decision variable space,

i.e., the space where P

true

resides. Since an MOP is composed of two or more

single-objective optimization problems, the solution space is restricted by the lim-

itations of those combined functions. Within that space, P

true

may be connected,

disconnected, a hyperarea, separate points, etc. However, in MOEA search the

Pareto front is of more interest because solutions are often implicitly chosen via

selecting a point from PF

known

.

What is the nature of the Pareto front (PF

true

)? Other researchers have

alluded that the structure of any Pareto front (independent of dimensionality) has

theoretical limitations. For example, any Pareto surface must be monotonic (i.e.,
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10 MOP TEST FUNCTIONS 10.2 An MOEA Test Function Suite

all �rst-order partial derivatives never change sign), and that the Pareto surface

has asymptotic bounds in terms of area [52, 70]. We have recently realized that

an additional structural limitation exists, and developed a theorem describing it.

Theorem 1: The Pareto front of an MOP with two objectives (k = 2) is at

most a curve, and is at most a surface when k � 3. 2

Proof: By de�nition, all vectors of the Pareto front are nondominated. Given a

minimizationMOP with two objectives (k = 2), assume PF

true

is a polygon. Now

assume an imaginary line parallel to either of the objective axes passing through

at least two points (represented by vectors) of the polygon. Since performance in

each objective is to be minimized, one of these points is clearly \better" than the

other and dominates it. But PF

true

is composed only of nondominated vectors.

Thus, the original assumption is incorrect and the Pareto front of an MOP with

two objectives is at most a curve.

Given a minimization MOP with three or more objectives (k � 3), assume

PF

true

is a volume. Now assume an imaginary line parallel to any of the objective

axes passing through at least two points (represented by vectors) of the volume.

Since performance in each objective is to be minimized, one of these points is

clearly \better" than the other and dominates it. But PF

true

is composed only of

nondominated vectors. Thus, the original assumption is incorrect and the Pareto

front of an MOP with three or more objectives is at most a surface. 2

Horn states that in a k-objective MOP, the Pareto front is a k�1 dimensional

surface [70]. We have just shown this is incorrect; PF

true

is at most a surface

only when k � 3. Although asymptotic bounds are useful, researchers must also

understand the front's possible shape within those bounds.

This theorem also implies that any MOEA test suite should contain MOPs

with both types of Pareto fronts: k-dimensional curves and (k � 1)-dimensional

surfaces. This is necessary to fully test an MOEA's search capability.

10.2.2 MOEA Test Suite Functions

We have identi�ed several MOP characteristics which must be dealt with by ef-

fective and e�cient MOEAs: large search spaces, high-dimensionality (i.e., many

decision variables), multiple objectives, a global optimum composed of a shape

of bounded complexity, and a set of solutions. We now propose initial problems

for an MOP test suite, drawn from the published literature, which incorporate

some of these characteristics.

Scha�er's �rst (unconstrained) two-objective function (see Table 18) is se-

lected for three primary reasons. First is its historical signi�cance; almost all

proposed MOEAs have been tested using this function. It is also an exemplar of

relevant MOP concepts. Secondly, as we have noted elsewhere [148], this MOP

allows us to determine an analytical expression for the Pareto front. Third, as

noted by Rudolph [124], this MOP's PF

true

is given in closed form. The represen-
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tation of solutions composing P

true

, at any resolution, is thus easily determined

without the necessity of exhaustively enumerating the search space. However, its

one decision variable implies a large search space should be used when testing an

MOEA (e.g., �50 � x � 50). We rename this function MOP1.

As part of the test suite, we also propose Fonseca's second function (see

Table 18). This function has the advantage of arbitrarily adding decision variables

without changing PF

true

's structure. Additionally, this MOP's P

true

is given in

closed form [49]. We rename this function MOP2.

Finally, we propose Viennet's third function (see Table 18). This function

has three objective functions, and its Pareto front appears to follow a fairly

convoluted path through objective space. This front is a k-dimensional curve.

This MOP should challenge an MOEA's ability to �nd and maintain the entire

front. We rename this function MOP3.

Appendices ?? and ?? present a complete set of �gures showing P

true

and

PF

true

for each function listed in Tables 18 and 19, respectively. These �gures

are deterministically derived by computing all variable combinations possible at a

given computational resolution. As the underlying resolution is varied the �gures

may slightly change. These �gures highlight major structural characteristics of

both P

true

and PF

true

.

The proposed MOP test function suite problem's characteristics address some

of the issues mentioned in Section 10.1.2. MOP1 is arguably an \easy" MOP.

MOP2 is scalable, in that any number of decision variables may be used to

increase the search space. MOP3's functions are nonlinear and nonsymmetric.

Other relevant MOP characteristics (as reected in Tables 18 and 19 ) should be

addressed by further MOPs selected for test suite inclusion.

10.2.3 NP -Complete MOPs

We also consider the use of combinatorial optimization problems in the test suite.

EAs often employ specialized representations and operators when solving these

real-world problems. This may prevent general comparison between MOEAs, but

the problems' inherent di�culty should present desired algorithmic challenges.

Table 10.2.3 suggests possible NP -Complete MOPs for test set inclusion.

10.3 MOEA Experimental Methodology

Having investigated the MOP domain, and proposed appropriate functions com-

posing an MOP test suite, we are now in a position to perform useful MOEA

experiments. Although test suite functions provide a common basis for MOEA

comparison, these comparisons are still empirical unless PF

true

is known. We

earlier intimated this is the case for most MOPs of any complexity. However,

there is a way to determine PF

true

at a given computational resolution! This sec-

tion describes such a process we are currently using to construct an experimental

database for selected MOPs. It also suggests appropriate metrics and statistical

analysis which might be used when comparing MOEAs.
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Table 20: Possible Multiobjective NP -Complete Functions

NP -Complete Problem Examples

0/1 Knapsack - Bin Packing Max pro�t; Min weight (Multiple Knapsacks [167])

Coloring Min # colors, # of each color

Layout Min space, overlap, costs

Maximum Independent Set (Clique) Max set size; Min geometry

Scheduling Min time, missed deadlines, waiting time, resources used

Set/Vertex Covering Min total cost, over-covering

Traveling Salesperson Min energy, time, and/or distance; Max expansion

Vehicle Routing Min time, energy, and/or geometry

NP -Complete Problem Combinations Vehicle scheduling and routing

10.3.1 Experimental Database

When the real (continuous) world is modeled (e.g., via objective functions) upon

a computer (a discrete machine), there is a �delity loss between the real world and

implemented model. However, at a standardized resolution and representation,

MOEA results can be compared against both each other and PF

true

. Thus,

whether or not a given MOP's true Pareto front is actually continuous or discrete

is then not a major concern, as the front is always composed of discrete points

at a speci�ed computational resolution.

We suggest both a large search space and a binary encoding for any MOEA

comparisons. The large search space challenges an MOEA's ability to �nd the

global optimum; the binary encoding allows for both a standard chromosomal

representation and a method for deterministically searching an entire space. At a

given resolution, the entire solution space is enumerated, thus obtaining P

true

and

PF

true

(at that resolution).

For example, assume a 30-bit binary encoding. This search space contains

2

30

possible solutions, over one billion distinct possibilities! Published results

indicate most EAs execute between thousands and tens of thousands of �tness

evaluations during search, thus, the e�ectiveness of any MOEA approach should

be readily apparent in how well its results (P

known

and PF

known

) compare to

P

true

and PF

true

in a search space of this large size. We have constructed an

experimental database allowing this comparison for selected examples.

This e�ort is in part due in part to a paper suggesting that exhaustive search

may be the only viable approach to solving irregular or chaotic problems [108].

The authors propose harnessing ever-expanding computational capability to solve

problems by exhaustive deterministic enumeration. We constructed such a pro-

gram executing on the IBM SP-2.

Our program's \C" implementation uses the Message Passing Interface (MPI)

to distribute function evaluation among many processors. For a given MOP, each
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processor initially evaluates some subset of solutions and stores the resultant vec-

tors. These vectors are compared on the basis of Pareto optimality; nondomi-

nated solutions and their corresponding vectors are written to disk. Noting that

Pareto optimality places a partial ordering on the entire search space, combin-

ing the separate solutions/vectors from di�erent processors and again comparing

vectors results in P

true

and PF

true

, for that particular binary encoded resolution.

Program timing and processor loading are also recorded to determine problem

scaling. To date, we have successfully extracted an MOP's P

true

and PF

true

from

a search space of size 2

26

.

Using this database, solutions o�ered by various MOEAs can be compared not

only against each other, but against the true Pareto optimal set and front. At

least for selected MOPs, relativity is removed and a true quantitative comparison

is possible. This methodology allows absolute, rather than relative observations.

10.3.2 MOEA Comparative Metrics

We propose quantitative comparisons between MOEA implementations via a

rigorous, carefully designed series of experiments. However, we must �rst de�ne

the metrics upon which we base MOEA performance.

Our deterministic enumerative search provides P

true

and PF

true

(at a given

level of resolution). After executing an MOEA on some MOP we are able to

compare the reported front (PF

known

) against the true front and determine error

measures. For example, an MOEA reports a �nite number of solutions. These

solutions will or will not be members of PF

true

. If they are not the MOEA

has erred. Summing each error gives one measure of MOEA e�ectiveness. For

example, an error of \0" means that every vector reported by the MOEA in

PF

known

is actually in PF

true

. This technique is mathematically represented by:

n

X

i=1

e

i

; (20)

where n is the number of vectors in PF

known

, e

i

= 0 if vector i is a member of

PF

true

, and 1 otherwise.

The generational distance used by Van Veldhuizen and Lamont in earlier ex-

periments [148] may be an e�ective metric gauging MOEA performance. Gen-

erational distance is a value representing how \far" PF

known

is from PF

true

(an

error measure).

Zitzler and Thiele propose two MOEA comparative metrics [167]. First is

that of coverage. Coverage occurs when one solution's associated objective vec-

tor (phenotype) dominates another's (mathematically represented by a � b),

or the two solutions are equal (a = b). Coverage de�nes the size of objective

value space covered by PF

known

. For example, a point on PF

known

in the two-

dimensional (minimization) case de�nes a rectangle bounded by the points (0; 0)

and (f

1

(x); f

2

(x)). The union of all such rectangles de�ned by each vector in

PF

known

is used as the comparative measure. Secondly, for any two P

known

sets,
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they compute the fraction of solutions in one set covered by solutions in the

other.

Finally, another possible metric is one measuring the \spread" of vectors

throughout PF

known

. Many MOEAs perform sharing and niching [52, 70, 133],

attempting to spread their population (PF

current

) evenly along the front. Be-

cause PF

true

's \beginning" and \end" are known (at some resolution), a suitably

de�ned metric judges how well PF

known

conforms. Srinivas and Deb [133] de�ne

such a measure which expresses how well an MOEA has distributed individuals

over the nondominated region.

They de�ne this performance measure as:

� =

v

u

u

t

q+1

X

i=1

(

n

i

� n

i

�

i

)

2

; (21)

where q is the number of desired optimal points and the (q + 1)-th subregion

is the dominated region, n

i

is the actual number of individuals serving the ith

subregion (niche) of the nondominated region, n

i

is the expected number of

individuals serving the ith subregion of the nondominated region, and �

2

i

is the

variance of individuals serving the ith subregion of the nondominated region.

They show that if the distribution of points is ideal with n

i

number of points

in the ith subregion, the performance measure � = 0. Thus, a low performance

measure characterizes an algorithm with a good distribution capacity.
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11 Conclusions and Recommendations

This report organizes, presents, analyzes, and extends existing MOEA research.

All known MOEA implementations and techniques are discussed under the um-

brella of a priori, progressive, and a posteriori techniques. This classi�cation and

tabular presentation forms a consistent foundation upon which to evaluate the

contemporary MOEA \state of the art." A short discussion and mathematical

formulation of known MOEA techniques, along with key points of these known

MOEA implementations are presented. Known publications which either focus

on MOEA comparisons or di�erent aspects of MOEA theory are also o�ered.

These descriptions are the basis for our conclusions and recommendations.

Contemporary MOEA research emphasizes Pareto-based approaches. This

interest is understandable, as these particular approaches can be used in more

desirable MOP search techniques (progressive and a posteriori) with their general

ability to �nd acceptable representations of P

true

/PF

true

. MOEA utility is

demonstrated by its application to several problem domains, and incorporation

of various �tness function types and chromosomal representations.

Current MOEA theory, however, leaves much to be desired. The e�ciency

and e�ectiveness of various algorithmic possibilities (e.g., number and types of

�tness functions; Pareto ranking, niching, and �tness sharing schemes; mat-

ing restriction schemes, etc.) is not yet quanti�ably determined. Furthermore,

this performance evidence is sometimes contradictory. The discussion of vari-

ous MOEA parallelization possibilities does however indicate possible e�ciency

gains. Although appropriate MOEAs are suggested based on the known evidence,

a methodology with which to quantitatively test MOEAs is required.

We suggest such an experimental methodology along with potential functions

for inclusion in an MOP test function suite. This methodology allows for the

desired quantitative performance comparisons of various MOEA techniques and

theoretical components.

Finally, our future e�orts include adding new MOEA citations as they be-

come available. We are also extending the MOEA test suite and experimental

methodology laid forth in this paper, as well as constructing additional \MOEA

challenging" functions. We are also investigating alternative EA-based MOP so-

lution approaches such as Ant Colony Optimization [17] and Immune EAs [66].
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12 Things to Think About

� EA approach competitiveness as opposed to other paradigms? (perfor-

mance, e and e)

� Note di�erence between actual application vs numeric test example? (char-

acteristics)

� What kind of random search can be used to compare against EAs on any

proposed MOP test suite? (NFL theorem)

� Only progressive talks about involving DM; any technique could theoret-

ically be used in DM involvement. Talk about real-world implications of

this?

� Selection is discussed in C.2.1 of the HEC. Do I want to include a discussion

of that before techniques, then reference it? (for what each technique is

\good" for)

� What about talking about larger population size when more objectives are

being considered; sharing must consider a larger space each time; thus, does

size increase exponentially?

� What about comparing di�erent Pareto techniques?

� For an MOP with a global minimum, how about f1 = x2, f2 = y2, and f3

= z3? That should work

� General NP-complete formulation?

� Page numbers for Ryan in bibliography

� check the slash-pwhatever before a period?
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13 NP-COMPLETE MOPS

� talk about solution stability and robustness per ignizio

� do more objectives require more members in the population?

� re�gure the deme complexity

� Allude to Horn's unitation problem

� Get current ref from or lit, like a summary paper, from Deckro

13 NP-Complete MOPs

13.1 Knapsack Problem

Given: A �nite set of items U = fu

1

; : : : ; u

m

g; for each u 2 U there is an

associated weight w(u) 2 Z

+

, pro�t p(u) 2 Z

+

, and maximum weight (W ) the

knapsack can hold. For some subset U

0

� U :

F = (f

1

(U

0

); f

2

(U

0

)), where

f

1

(U

0

) = max

X

u2U

0

p(u) ;

f

2

(U

0

) = min

X

u2U

0

w(u) (22)

subject to

P

u2U

0

w(u) � W .

13.2 Knapsack 2

Note: This problem is presented in Zitzler and Thiele [167].

Given: A �nite set of m items and k knapsacks, where p

ij

is the pro�t of

item j in knapsack i, w

ij

is the weight of item j in knapsack i, and c

i

is the

capacity of knapsack i. Find a vector x = (x

1

; : : : ; x

m

) 2 f0; 1g

m

, such that

8i 2 f1; : : : ; kg :

P

m

j=1

w

ij

x

j

� c

i

and for which f(x) = (f

1

(x; : : : ; f

k

(x)) is

maximum, where

f

i

(x) =

m

X

j=1

p

ij

x

j

; (23)

and where x

j

= 1 if and only if item j is selected.

13.3 Traveling Salesman Problem

Given: A �nite set of cities C = fc

1

; : : : ; c

m

g; a distance d

1

(c

i

; c

j

) in Z

+

for each

pair of cities c

i

; c

j

2 C; a distance d

2

(c

i

; c

j

) =

p

(c

i1

� c

i2

)

2

+ (c

j1

� c

j2

)

2

for each

pair of cities c

i

; c

j

2 C; and a permutation < c

�(i)

; : : : ; c

�(m)

>, � : [1 : : :m 7!
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1 : : :m].

F = (f

1

(C); f

2

(C)), where

f

1

(C) = min

m�1

X

i=1

d

1

(c

�(i)

; c

�(i+1)

) + d

1

(c

�(m)

; c

�(1)

) ;

f

2

(C) = min

m�1

X

i=1

d

2

(c

�(i)

; c

�(i+1)

) + d

2

(c

�(m)

; c

�(1)

) : (24)

13.4 Vehicle Routing Problem

Given: A �nite set of cities C = fc

1

; : : : ; c

m

g and edges E = fe

1

; : : : ; e

n

g, where

each edge represents a possible path between some pair of cities c

i

; c

j

2 C; each

edge e

i

has an associated time (e

it

) and cost (e

ic

) associated with it. Each pair

of cities c

i

; c

j

2 C may be connected via multiple edges.

F = (f

1

(C;E); f

2

(C;E)), where

f

1

(C;E) = min

m

X

i=1

)e

it

;

f

2

(C;E) = min

m

X

i=1

e

ic

: (25)
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