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ABSTRACT

In this paper, we propose a new mechanism to maintain di-
versity in multi-objective optimization problems. The pro-
posed mechanism is based on the use of stripes that are ap-
plied on objective function space and that is independent of
the search engine adopted to solve the multi-objective op-
timization problem. In order to validate the proposed ap-
proach, we included it in a multi-objective particle swarm
optimizer. Our approach was compared with respect to two
multi-objective evolutionary algorithms which are represen-
tative of the state-of-the-art in the area. The results obtained
indicate that our proposed mechanism is a viable alternative
to maintain diversity in the context of multi-objective opti-
mization.

1. INTRODUCTION

In the last few years, several multi-objective particle swarm
optimizers (MOPSOs) have been proposed in the special-
ized literature (see for example [2, 12, 14, 5, 7, 8, 15, 13]).

Most of this work, however, focuses mainly on the de-
sign of novel selection or archiving mechanisms. Neverthe-
less, the design of effective mechanisms to maintain diver-
sity remains as a key issue when extending particle swarm
optimizers so that they can deal with multi-objective opti-
mization problems.

In some recent work, a few authors have proposed or
adopted novel mechanisms to maintain diversity in their
MOPSOs (e.g., [11, 10, 15]). Such approaches have led to
the development of very successful multi-objective particle
swarm optimizers.

In this paper, we propose a new mechanism to maintain
diversity, which we show to overcome the main drawbacks
of other popular mechanisms such as ε-dominance [6] and
the sigma method proposed in [11].

The remainder of the paper is organized as follows. Sec-
tion 2 presents some basic concepts related to multi-objec-
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07360, MEXICO, gtoscano@computacion.cs.cinvestav.mx,
ccoello@cs.cinvestav.mx

tive optimization in general. Section 3 presents the most
relevant previous related work. Our proposed approach is
described in Section 4. Section 5 presents a comparison
of the results produced by our approach (coupled to a multi-
objective particle swarm optimizer) and two multi-objective
evolutionary algorithms that are representative of the state-
of-the-art. Finally, in Section 6, we present our conclusions
and some possible paths for future research.

2. BASIC CONCEPTS

The multi-objective optimization problem (MOP) we are
concerned with is to find a vector �x∗ ∈ X ⊂ IRm such
that

F (�x∗) = min
�x∈X

F (�x) = min
�x∈X

[f1(�x), . . . , fd(�x)], (1)

where F : X ⊂ IRm −→ IRd is a given vector func-
tion with components fi : X ⊂ IRm −→ IR for each
i ∈ {1, . . . , d}, and the minimum is understood in the sense
of the standard Pareto order on IRd, which is defined as fol-
lows.

If �u = (u1, u2, . . . , ud) and �v = (v1, v2, . . . , vd) are
vectors in IRd, then �u � �v ⇐⇒ ui ≤ vi ∀ i ∈ 1, . . . , d.
This relation is a partial order.
We also have �u ≺ �v ⇐⇒ �u � �v and �u 
= �v.

Definition 1 A vector �x∗ ∈ X is called a Pareto optimal so-
lution for the multi-objective optimization problem (MOP)
if there is no �x ∈ X such that F (�x) ≺ F (�x∗).

The set P∗ = {�x ∈ X : �x is a Pareto optimal solution}
is called the Pareto optimal set and its image under F , i.e.
F (P∗) := {F (�x) : �x ∈ P∗} , is the Pareto front.

Lemma 1 Let �x1, �x2, . . . , �xd ∈ X be the minimals of the
functions f1, f2, . . . , fd. Then the Pareto front is contained
in the “Hyper-box” defined by the points F (�x1), F (�x2), . . .,
F (�xd).

The proof of Lemma 1 is trivial and is, therefore, omit-
ted here. The Lemma 1 is illustrated in Figure 1, for the
case in which d = 2 and the Pareto front corresponds to the
parts on the boundary of S joining the points A and B, and
also the points C and D,
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Figure 1. F (P∗) is contained in the “Hyper-box” defined
by F (�x1), F (�x2)

We present the well–known “scalarization” result that
we will use later on.

Lemma 2 Let �x∗ ∈ X be a solution of the weighted prob-
lem:

min
�x∈X

n∑
s=1

wsfs(�x),

where ws ≥ 0 ∀s ∈ {1, . . . , n} and
∑n

s=1 ws = 1.
Then �x∗ ∈ P∗.

Proof See, for instance, [9, p.78].

3. PREVIOUS RELATED WORK

There are two main approaches to maintain diversity of MOP-
SOs that have been reported in the specialized literature: the
sigma method proposed by Mostaghim et al. [11] and the
ε-dominance method proposed by Laumanns et al. [6].

The sigma method uses the vector that the evaluation of
F (�x) of the particle �x represents, and the leader of this par-
ticle is the individual in the elite set whose sigma is closest
to the sigma of �x (sigma is a direction and is computed using
an expression provided by the authors of this method [11]).
The core idea in the sigma method is to form clusters using
the particles in the elite set as the centers of such clusters.
Note however that the elite set could be very large. Since the
number of elements in each cluster is not bounded, there
could be leaders with many “followers” and some leaders
with no “followers”. In consequence, the approach may fail
to cover all the Pareto front. Also, the approach requires
that all the objective function values are positive (some sort
of scaling is required when this is not the case). Figure 2
shows a case in which the sigma method could fail. In this
figure, all the directions go to the portion of the Pareto front
which is closer to the “ideal vector”. Thus, it is possible that
the solutions generated do not cover all the Pareto front.
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Figure 2. This figure illustrates a situation that causes prob-
lems to the sigma method proposed by Mostaghim et al.
[11].

The concept of ε-dominance [6] refers to a relaxed form
of dominance. A decision vector x1 is said to ε-dominate
a decision vector x2 for some ε > 0 iff: fi(x1)/(1 + ε) ≤
fi(x2),∀i = 1, ...,m and fi(x1)/(1 + ε) < fi(x2), for at
least one i = 1, ...,m (m is the total number of objective
functions of the problem). It is worth noting that ε is a user-
defined parameter.

This concept is normally used to fix the size of the ex-
ternal archive (or secondary population) in which a multi-
objective evolutionary algorithm retains the nondominated
vectors found during the search.

The main drawback of the ε−dominance method is the
number of comparisons and distances that have to be com-
puted. Another possible problem with the ε-dominance ap-
proach is shown in Figure 3. In this case, the point A is
closer to the lower lefthand corner than point B, but point
B is closer to the Pareto front than point A. So, in this case,
the ε-dominance approach retains point A. In contrast, our
approach will retain point B.
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Figure 3. An example in which the ε-dominance approach
retains the wrong point.

4. OUR PROPOSAL

In the rest of the paper we will assume that d = 2, but the
proposed approach can be generalized to any number of di-
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Figure 4. Graphical representation of the stripes proposed
in this paper.

mensions. The core idea of the approach proposed in this
paper (which we call “stripes”) is that the line generated by
the points F (�x1), F (�x2) (defined in Lemma 1) is “similar”
to the Pareto front. Thus, we can use several points (which
we call stripe centers) uniformly distributed along this line,
and we assign the individuals of the population to the near-
est stripe center. This way, we are distributing the individu-
als in several stripes determinated by the stripe centers (see
Figure 4). Now, if we set an upper bound on the number
of individuals in each stripe and on the number of elements
of the Pareto front, the approach will provide a distribution
of points, avoiding an excessive clustering in any particular
region from those defined by the stripes. In this paper, we
use the notion of clustering, but the center of each cluster
is fixed and uniformly distributed along a line, as shown in
Figure 4 (the small circles are the centers of the clusters).

The stripe center set can be computed using

Xi =
iF (x1) + (ns − 1 − i)F (x2)

ns − 1
,

i ∈ {0, 1, . . . , ns − 1}, (2)

where ns is the number of stripes, which is a parameter pro-
vided by the user.

In the case in which there are only two objective func-
tions, d = 2, we can apply a rotation to all elements in the
population and to all elements in the elite set, such that the
vector F (�x1) − F (�x2) is parallel to the x−axis. Then, the
stripe of every element in the population is calculated using
the coordinate x of the rotated element, as follows. Let θ
be the angle between the x−axis and the vector F (�x1) −
F (�x2). Thus, this angle is what we need to rotate all the
elements. Then, if F r(�x) = (fr

1 (�x), fr
2 (�x)) are the rotated

coordinates of F (�x) = (f1(�x), f2(�x)), we have

fr
1 (�x) = cos(θ)f1(�x) − sin(θ)f2(�x)

fr
2 (�x) = sin(θ)f1(�x) + cos(θ)f2(�x)

(3)

Now, to determine the stripe of the individual whose
evaluation is F (�x) we use the following expressions. Let

h =
fr
1 (�x2) − fr

1 (�x1)
ns − 1

, and h�x =
fr
1 (�x) − fr

1 (�x1)
h

then

stripe(�x) =




1 if h�x < 0.5
[[ h�x + 1.5]] if 0.5 ≤ h�x < ns − 0.5

ns if h�x ≥ ns − 0.5

To illustrate the way in which our proposed approach
works, we show in Figure 5 an example for a problem with
two objectives. In the figure, it can be seen that the approach
(which was coupled to a multi-objective particle swarm op-
timizer previously proposed by us [2]).

4.1. PSO with stripes

In order to validate the effectiveness of our proposed ap-
proach to maintain diversity, we used a multi-objective par-
ticle swarm optimizer previously proposed by us [2] as our
search engine. However, in this case, the diversity main-
tenance scheme are the stripes proposed in this paper in-
stead of the adaptive grid originally adopted [2]. We call
our MOPSO with stripes ST-MOPSO.
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Figure 5. An example of the type of distribution of non-
dominated solutions produced by our proposed approach.

Our proposal consists of using one leader in each stripe
and to compute a weighted sum determined by the points
F (�x1) and F (�x2), to select the leaders (i.e., the leader of a
stripe is the point that minimizes this weighted sum). How-
ever, since in our case we have the rotated coordinates F r(�x),
then the leader of a stripe is the particle in the elite set that
minimizes fr

2 (the y-coordinate of F r).



5. COMPARISON OF RESULTS

Several test functions were taken from the specialized lit-
erature to validate our approach. Due to space restrictions,
we will include results only for three of these test functions.
Our results are compared with respect to those produced by
two multi-objective evolutionary algorithms representative
of the state-of-the-art in the area: the NSGA-II [4] and ε-
MOEA [3].

In the results shown next, each approach performed 3000
fitness function evaluations. The results shown correspond
to 30 independent runs. In order to allow a quantitative com-
parison of results we adopted the following metrics: two set
coverage [19, 18], Hypervolume [18], inverted generational
distance [16], and success counting (which is a variation of
the metric called “error ratio” [16]).

The definition of each of these metrics is presented next.

Definition 2 (Two Set Coverage (TSC) ) : This metric can
be termed relative coverage comparison of two sets. Let
℘(X) be the power set of X , then TSC is defined as fol-
lows:

TSC : ℘(X)× ℘(X) −→ [0, 1],

SC(X ′,X ′′) :=
|{x′′ ∈ X ′′;∃ x′ ∈ X ′ : F (x′) 
 F (x′′)}|

|X ′′|
∀ X ′,X ′′ ⊆ X.

If all points in X ′ dominate or are equal to all points
in X ′′, then by definition TSC = 1. SC = 0 implies that
none of the points in X ′′ are dominated by X ′. In general,
TSC(X ′,X ′′) and TSC(X ′′,X ′) both have to be consid-
ered due to set intersections not being empty.

Definition 3 ( Hypervolume (HV)) This metric was propo-
sed by Zitzler and Thiele [18]. The hypervolume defines
the area (for the two dimensional case) of objective value
space covered by the solution of an algorithm (P∗

a ) (i.e., the
“area under the curve”). For example, a vector in P∗

a for
a two-objective multi-objective problem defines a rectangle
bounded by an origin and (f1(�x); f2(�x)). The union of all
such rectangles’ area defined by each vector in P∗

a is then
the comparative measure and is defined as:

HV =

{⋃
i

ai | xi ∈ P∗
a

}
,

where xi is a nondominated vector in P∗
a and ai is the Hy-

pervolume determined by the components of xi and the ori-
gin.

Definition 4 (Inverted Generational Distance (IGD)) The
concept of generational distance was introduced by Van Veld-
huizen & Lamont [16, 17] as a way of estimating how far

are the elements in the Pareto front produced by our algo-
rithm from those in the true Pareto front of the problem. This
measure is defined as:

GD =

√∑n
i=1 d2

i

n
(4)

where n is the number of nondominated vectors found
by the algorithm being analyzed and di is the Euclidean dis-
tance (measured in objective space) between each of these
and the nearest member of the true Pareto front. It should
be clear that a value of GD = 0 indicates that all the ele-
ments generated are in the true Pareto front of the problem.
Therefore, any other value will indicate how “far” we are
from the global Pareto front of our problem. In our case,
we implemented an “inverted” generational distance mea-
sure (IGD) in which we use as a reference the true Pareto
front, and we compare each of its elements with respect to
the front produced by an algorithm. In this way, we are cal-
culating how far are the elements of the true Pareto front,
from those in the Pareto front produced by our algorithm.
Computing this “inverted” generational distance value re-
duces the bias that can arise when an algorithm didn’t fully
cover the true Pareto front.

Definition 5 (Success Counting (SC)) We define this mea-
sure based on the idea of the measure called Error Ratio
proposed by Van Veldhuizen [16] which indicates the per-
centage of solutions (from the nondominated vectors found
so far) that are not members of the true Pareto optimal set.
In this case, we count the number of vectors (in the current
set of nondominated vectors available) that are members of
the Pareto optimal set:

SC =
n∑

i=1

si,

where n is the number of vectors in the current set of non-
dominated vectors available; si = 1 if vector i is a mem-
ber of the Pareto optimal set, and si = 0 otherwise. It
should then be clear that SC = n indicates an ideal behav-
ior, since it would mean that all the vectors generated by
our algorithm belong to the true Pareto optimal set of the
problem. For a fair comparison, when using this measure,
all the algorithms should limit their final number of non-
dominated solutions to the same value. Note that SC avoids
the bias introduced by the Error Ratio measure, which nor-
malizes the number of solutions found (which belong to the
true Pareto front) and, therefore, provides only a percentage
of solutions that reached the true Pareto front. This percent-
age does not provide any idea regarding the actual number
of non-dominated solutions that each algorithm produced.



5.1. ZDT1’s test function

Minimize (f1(�x), f2(�x))
f1(�x) = x1

f2(�x) = g(�x) h(f1(�x), g(�x))

g(�x) = 1 + 9
m∑

i=2

xi

(m − 1)
,

h(x, y) = 1 −
√

x

y

where m = 30, and xi ∈ [0, 1].

TSC ST-MOPSO ε-MOEA NSGA-II
ST-MOPSO 0.999333 0.999666
epsMOEA 0 0.411102
NSGA-II 0 0.0983892

HV ST-MOPSO ε-MOEA NSGA-II
ST-MOPSO 0 0
epsMOEA 0.0203594 0.000509322
NSGA-II 0.0303835 0.0107699

Table 1. Results of the Two Set Coverage and Hyper Volume
metrics for the ZDT1’s test function.

IGD ST-MOPSO ε-MOEA NSGA-II
Best 0.000343805 0.00167212 0.0020484

Worst 0.000670735 0.0190439 0.0276651
Mean 0.000430186 0.00795849 0.00641032
Stdev 7.39891e-05 0.0050593 0.0052243

Median 0.000419506 0.00655261 0.00495141

SC ST-MOPSO ε-MOEA NSGA-II
Best 100 2 8

Worst 95 0 0
Mean 99.3 0.3 1.1
Stdev 1.20773 0.534983 1.66816

Median 100 0 1

Table 2. Results of the Inversed Generational Distance and
Sucess Counting metrics for the ZDT1’s test function.

Figure 6 shows the graphical results produced by ST-
MOPSO, ε-MOEA and the NSGA-II in the first test func-
tion chosen. (The true Pareto front of the problem is shown
as a continuous line in the left handside picture). Tables 1
and 2 show the comparison of results among the three al-
gorithms considering the metrics previously described. It
can be seen that the performance of ST-MOPSO is the best
with respect to all the metrics tested. By looking at the
Pareto fronts produced by each algorithm in this test func-
tion, it should be clear that ST-MOPSO was the only algo-
rithm that could reach the true Pareto front in most of the

runs performed (the output of the 30 independent runs was
combined in a single file in order to generate the plots from
Figure 6).

5.2. ZDT2’s test function

Minimize (f1(�x), f2(�x))
f1(�x) = x1

f2(�x) = g(�x) h(f1(�x), g(�x))

g(�x) = 1 + 9
m∑

i=2

xi

(m − 1)
,

h(x, y) = 1 −
(

x

y

)2

where m = 30, and xi ∈[0,1].

Figure 7 shows the graphical results produced by ST-
MOPSO, the NSGA-II [4], and ε-MOEA [3] in the second
test function adopted.

TSC ST-MOPSO ε-MOEA NSGA-II
ST-MOPSO 0.993918 0.993918
epsMOEA 0 0.485246
NSGA-II 0 0.012

HV ST-MOPSO ε-MOEA NSGA-II
ST-MOPSO 0 0
epsMOEA 0.0377096 0.000175564
NSGA-II 0.0610739 0.0235162

Table 3. Results of the Two Set Coverage and Hypervolume
metrics for the ZDT2’s test function.

Tables 3 and 4 show the comparison of results among
the three algorithms considering the metrics previously in-
dicated. As in the previous example, the performance of ST-
MOPSO was the best with respect to all the metrics adopted.

Graphically (see Figure 7), it can be seen that in this
case, our ST-MOPSO generated a few points outside the
true Pareto front in one of the runs. However, when looking
at the graphical output generated by the other algorithms, it
is clear that our ST-MOPSO had the most robust behavior
in this problem, since the others produced a considerably
large number of solutions outside the true Pareto front of
the problem.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Figure 6. Pareto fronts produced by ST-MOPSO (left), ε-MOEA (center) and NSGA-II (right) for the ZDT1’s test function.
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Figure 7. Pareto fronts produced by our ST-MOPSO (left), ε-MOEA (center) and NSGA II (right) for the test ZDT2’s function.

IGD ST-MOPSO ε-MOEA NSGA-II
Best 0.000346726 0.0038222 0.00461677

Worst 0.051142 0.0516044 0.0550343
Mean 0.0104091 0.016797 0.0373733
Stdev 0.0186685 0.0128839 0.0202878

Median 0.000439715 0.0112029 0.0518229

SC ST-MOPSO ε-MOEA NSGA-II
Best 100 0 0

Worst 1 0 0
Mean 75.6 0 0
Stdev 41.8384 0 0

Median 100 0 0

Table 4. Results of the Inversed Generational Distance and
Sucess Counting metrics for the ZDT2’s test function.

5.3. ZDT3’s test function

Minimize (f1(�x), f2(�x))
f1(�x) = x1

f2(�x) = g(�x) h(f1, g)

g(�x) = 1 + 9
m∑

i=2

xi

(m − 1)
,

h(x, y) = 1 −
√

x

y
− x

y
sin(10πx)

where m = 30, and xi ∈[0,1].

Figure 8 shows the graphical results produced by the
ST-MOPSO, the NSGA-II, and ε-MOEA in the third test
function chosen.

Tables 5 and 6 show the comparison of results among
the three algorithms considering the metrics previously de-
scribed.

Once more, our ST-MOPSO had the best performance
with respect to all the metrics considered. Graphically (see
Figure 8), it can be seen that in this case, our ST-MOPSO
generated some points outside the true Pareto front in some
of the runs. However, when looking at the graphical out-
put generated by the other algorithms, it is clear that our
ST-MOPSO had the most robust behavior in this problem,
since the others produced a considerably large number of
solutions outside the true Pareto front of the problem (this
is corroborated by the values of the metrics).

Summarizing our results, it can be seen that the perfor-
mance of our ST-MOPSO is the best with respect to all the
metrics tested. By looking at the Pareto fronts of the three
test functions adopted, it can be easily seen that most of
the executions of the ST-MOPSO algorithm reached the true
Pareto front, which is an indicative of the robustness of the
approach. This contrasts with the other approaches, which
not only showed a higher variation of results, but were also
unable to reach the true Pareto front in most of the runs (this
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Figure 8. Pareto fronts produced by ST-MOPSO (left), ε-MOEA (center) and NSGA II (right) for the ZDT3’s test function.

TSC ST-MOPSO ε-MOEA NSGA-II
ST-MOPSO 0.934675 0.93291
epsMOEA 0 0.24594
NSGA-II 0 0.0680684

HV ST-MOPSO ε-MOEA NSGA-II
ST-MOPSO 0 0
epsMOEA 0.019099 0.000320688
NSGA-II 0.026448 0.0076528

Table 5. Results of the Two Set Coverage and Hyper Volume
metrics for the ZDT3’s test function.

IGD ST-MOPSO ε-MOEA NSGA-II
Best 0.000705166 0.00236056 00163111

Worst 0.0397353 0.0225697 0.0231257
Mean 0.0036884 0.00842278 0.0065121
Stdev 0.00707846 0.00397113 0.00445668

Median 0.00203803 0.00804916 0.0059502

SC ST-MOPSO ε-MOEA NSGA-II
Best 100 4 1

Worst 0 0 0
Mean 82.7333 0.566667 0.0666667
Stdev 25.8082 1.16511 0.253708

Median 88.5 0 0

Table 6. Results of the Inversed Generational Distance and
Sucess Counting metrics for the ZDT3’s test function.

is due to the relatively low number of fitness function eval-
uations considered. When using a larger number of evalua-
tions the two other approaches are able to reach consistently
the true Pareto front of the test functions adopted). Note
that our ST-MOPSO was the only algorithm able to cover
the entire Pareto front of the test problems adopted in our
comparative study.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new mechanism to main-
tain diversity which is based on the use of stripes. The

mechanism was incorporated into a multi-objective particle
swarm optimizer (MOPSO) in order to validate its effective-
ness. The results indicate that the approach is a viable alter-
native to maintain diversity in a multi-objective evolution-
ary algorithm (not necessarily a particle swarm optimizer).

As part of our future work, we will extend the approach
to handle any number of dimensions (i.e., objectives), since
our current version only deals with bi-objective optimiza-
tion problems. We also intend to test this approach with
other types of multi-objective optimization heuristics, such
as the artificial immune system [1]. Finally, we are also
developing a new metric based on the stripes introduced in
this paper. The idea is that this new metric can be used to
assess the performance of multi-objective evolutionary al-
gorithms regarding spread and distribution of nondominated
solutions.
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