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Abstract
In this paper we consider a simulated annealing algorithm for multiobjective opti-
mization problems. With a suitable choice of the acceptance probabilities, the algo-
rithm is shown to converge asymptotically, that is, the Markov chain that describes
the algorithm converges with probability one to the Pareto optimal set.
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1 Introduction

This paper concerns multiobjective optimization problems in which one wishes to optimize
a vector function, say F(x) = (fi(x), ..., fa(x))-

A typical way to approach these problems is to transform the multiobjective optimization
problem into a series of single-objective (or “scalar”) problems. This approach indeed makes
sense if the functions fi, ..., fg are of the same type, but otherwise (for instance, if f; denotes
distance, f, denotes time, and so on) the scalarized problem might be meaningless.

For such cases, one can try a direct approach to the multiobjective optimization problem
such as evolutionary algorithms, simulated annealing, and any other related heuristics [2].

Although there have been some convergence proofs for multiobjective evolutionary algo-
rithms (see [10, 11]), most heuristics used for multiobjective optimization do not have such
convergence proof reported in the literature. This paper intends to bridge this gap for a
class of simulated annealing algorithms.

Here, we consider a simulated annealing algorithm (SAA) for solving multiobjective op-
timization problems. Under mild assumptions and a suitable choice of the acceptance prob-
abilities, our SAA is shown to converge asymptotically (with probability one) to the Pareto
optimal set of the problem.

The remainder of this paper is organized as follows. The multiobjective optimization
problem (MOP) is stated in Section 2. In Section 3 we introduce the SAA we are concerned
with; we also briefly discuss the algorithm’s acceptance probabilities, which are crucial for
proving asymptotic convergence. Our main result is stated in Section 4. Finally, our conclu-
sions are provided in Section 5 with some general remarks.

2 The multiobjective optimization problem

To compare vectors in JR? we will use the standard Pareto order on IR? defined as follows.
If @ = (u1,us,...,ug) and ¥ = (vy,vs,...,v4) are vectors in IR?, then

U=<7 <<= yu, <y Viel, ... d

This relation is a partial order because it is reflexive, antisymmetric and transitive. We also
have 4 < v <= 4 < ¥ and U # v.

The multiobjective optimization problem (MOP) we are concerned with is to find a vector
" € X C IR™ such that

P(@) =min F(7) = minlfi(D), .., £,(@)) (1)

reXx

where F': X C IR™ — IR%is a given vector function with components f; : X C R™ — IR
for each i € {1,...,d}, and the minimum is understood in the sense of the Pareto order.
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Definition 1:(Pareto optimality).
A vector Z* € X is called a Pareto optimal solution for the MOP (1) if

there is no ¥ € X such that F(Z) < F(Z").

The set P* = {Z € X : Zis a Pareto optimal solution} is called the Pareto optimal set and
its image under F', i.e.

F(P*) = {F(¥) : ¥ € P},

is the Pareto front.
In the sequel we will use the following well-known “scalarization” result.

Proposition 1:
Let £* € X be a solution of the weighted problem:

d
minZwsfs(:Z‘), where w; > 0 Vs € {1,...,n} and Zws =1
s=1

Then z* € P*.

We omit the proof of this lemma because it is trivial.

As we are concerned with computational aspects, in the remainder of the paper we will
replace the set X in (1) with a finite set S C IR™.

3 The simulated annealing algorithm

Nicholas Metropolis et al. [8] originally proposed (in 1953) an algorithm to simulate the
evolution of a solid in a heat bath until it reached its thermal equilibrium. The process
started from a certain thermodynamic state of the system, defined by a certain energy and
temperature. Then, the state was slightly perturbed. If the change in energy produced by
this perturbation was negative, the new configuration was accepted. If it was positive, it
was accepted with a certain probability. This process was repeated until a frozen state was
achieved [4, 12].

About thirty years after the publication of Metropolis’ approach, Kirkpatrick et al. [5]
and Cerny [9] independently pointed out the analogy between this “annealing” process and
combinatorial optimization. Such analogies led to the development of an algorithm called
“Simulated Annealing” which is a heuristic search technique that has been quite successful
in combinatorial optimization problems (see [1] and [6] for details).



The SAA generates a succession of possible solutions of the optimization problem. These
possible solutions are the states of a Markov chain and the “energy” of a state is the evalu-
ation of the possible solution that it represents.

The temperature is simulated with a sequence of positive control parameters cy.

A transition of the Markov chain occurs in two steps, given the value ¢, of the control
parameter. First, if the current state is ¢, a new state j is generated with a certain probability
Gij(ck), defined below. Then an “acceptance rule” A;;(c;) is applied to j. Our main result
hinges on a suitable selection of the acceptance rule, which we now discuss.

The generation probability. For each state i, let S; be a subset of S\ {i} called the
neighborhood of 7. We shall assume that the number of elements in S; is the same, say O,
for all 7 € S, and also that the neighbor relation is symmetric, that is, j € S; if and only if
i € S;. Then, denoting by xg, the indicator function of S; (i.e. xs,(j) :=1if j € S; and 0
otherwise), we define the generation probability

Gi(ck) == Xsé(j)

The acceptance probability. The acceptance probability, which is crucial for the behavior
of the SAA, can be defined in several different ways. For instance, Serafini [13] proposes to
use the L,,—Tchebycheff norm given by

forall¢,57 € S. (2)

A0 = min {Lexp( . As(fs(i)—fs(j)))},

s€{l,...,d} C

where the \; are given positive parameters. This acceptance probability has the “inconve-

nience” that if a single entry is improved (i.e. f5(i) > fs(j) for some s) or has the same value,

then the state 7 is accepted, which obviously is not very good. For example, in Figure 1, in

which fi(j) = fi(i), we have A;; = 1 although f5(j) is too “bad” in comparison with f5(i).
On the other hand, Ulungu and coworkers [14, 15, 17, 16] use

P {1,exp (Z A0 = fs(j))> }

s=1

- _(ZAs(fs(j)c—fs(z‘))) | )

s=1

where as usual, let a™ be the positive part of a number a € IR, namely

R ifa >0,
1 0 otherwise.



Figure 1: Graphical illustration of the “inconvenience” of the acceptance probability Af;(c)
proposed by Serafini [13].

But again, in this case it is possible to have the acceptance probability depending on the
change of a single entry fs(i) — f5(5), s=1,...,n.
Here, we shall use the acceptance probability [13]

Ayi(c) = f[min {1, exp (M) } ,

which can be expressed in the simpler form

> () - fs(i))+) |

Cc

AU(C) = exp (- (4)

This acceptance probability is obviously “better” than the one in (3) because only the en-
tries that do not improve are taken into account to calculate the probability; this probability
could be improved changing ¢ by an individual ¢, for each entry s =1,...,n.

The transition probability. Having the generation and the acceptance probabilities, we
can now define the transition probability from 7 to j as

Pi(ci) Gij(ce)Aij(cr)  ifi # 7,
3i\C =
Jk 1= esupi Paler) ifi=j

where A;; is as in (4) (or as in (3)).
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Note that for theoretical purposes we can use fs(i) — fs(j) instead of A;(fs(7) — fs(j)) or
(fs(i) — fs(4))/cs, because the last two expressions can be transformed into the first one via
the changes g; = A;fs or gs = fs/cs, respectively. Hence, at the remainder of this work we
will use the first one.

4 Main result
Let

Yot ={1 €8 : 23:1 fs(@) = S},

where .
Ym = mi s(7)- 6
min ; f(7) (6)
Then, by Proposition 1, the Pareto optimal set P* contains X, i.e.
Sopt C P (7)

We next present our main result, which in particular states the convergence of the SAA
for the MOP (1). The convergence is understood in the following sense.

Definition 2:

Let P(c) be the transition matrix associated with the SAA defined by (2), (4), (5), and
let {Xk(c),k =0,1,2,...} be the corresponding Markov chain, at temperature c. The SAA
is said to converge with probability 1 if

£1\r‘%klggolp{Xk(c) eP}=1

The next theorem, which is the main result in this paper, is an extension to MOPs of the
results presented in [1]. Here we use ideas similar to those in that paper, with the appropriate
changes.

In the proof of this theorem we show that the algorithm converges to the set 3,,, C P*,
because of the particular transition probability we use.

Theorem 1:
Let P(c) be as in Definition 2 and, moreover, suppose that G(c) is irreducible. Then:

(a) The Markov chain has a stationary distribution ¢(c), whose components are given by



4i(c) = Nol(c) exp (-M) vies, (8)

where

(b) For each i € S
1
_ 1 :
g; = limg;(c) = 3 X (4),

where |X,,:| denotes the number of elements in X,,.
(c) The SAA converges with probability 1

These results remain valid if (4) is replaced with (3).
Before presenting the proof of Theorem 1 we state some preliminary results. First, we
note the following fact, which is due to a* =a + (—a)™ (=a+a™).

Lemma 1:
For any real numbers aq, as, ..., a,, b1,bs, ..., by,

d d + d +
Zak_bk (Zbk_ak) = (Zak_bk) ;
k=1
Z(ak — bk + Z bk — ak = ak — bk)+.

k=1 k=1 k=1

We will need some properties of the limiting distribution, which we will present next.
Recall that a probability distribution ¢ is called the limiting distribution of a Markov chain
with transition probability P if

G = klim P(X, =ilXo=j) foralli,jeS.
—00

If such a limiting distribution ¢ exists and a;(k) = IP(Xy = i), for i € S, denotes the
distribution of X, then

\ h_r)nc><> a;(k) = g; for all i € S.

Moreover, §'is an invariant (or stationary) distribution of the Markov chain, which means
that



7=qPp; (10)
that is, ¢'is a left eigenvector of P with eigenvalue 1. A converse to this result (which is

true for finite Markov chains) is given in Lemma 3 below.
Observe that (10) trivially holds if ¢ is a probability distribution satisfying

Equation (11) is called the detailed balance equation, and (10) is called the global balance
equation.

It is well known that in an irreducible Markov chain all of the states have the same
period. This observation yields the following.

Lemma 2:
An irreducible Markov chain with transition matrix P is aperiodic if there exists j €
S such that P;; > 0.

Lemma 3: [7, pag.19]

Let P be the transition matrix of a finite, irreducible and aperiodic Markov chain. Then
the chain has a unique stationary distribution ¢, that is ¢ is the unique distribution that
satisfies (10), and, in addition, ¢ is the chain’s limiting distribution

Proof of Theorem 1

(a) Since G is irreducible, using Lemma 2 it can be seen that the Markov chain is irreducible
and aperiodic (see [1, p.39]). Hence, by Lemma 3 there exists a unique stationary distri-
bution. We now use (2) and (5) to see that (11) holds for all 7 # j. First note that

4(0)Pij(c) = qi(c)Gij(c)Aij(c)

[ Lail0)Aile) itje S
0 if j & 5.

Similarly,

2i(c)Pji(c) = q;(c)Gji(c)A;i(c)
_ { C]j(C)AJ‘Z‘(C) if7 € Sj
0 ifigs,.

o]l

Thus, since ¢ € S; if and only if j € S;, to obtain (11) we only have to prove that
gi(c)Aij(c) = q;4;5(c).
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But this follows from (4), (8) and Lemma 1, because

gi(c)Asj(c) =
_ 1 >e, f.(6) S (f(5) = £(0)*
T N9 P (‘7) P (‘ c )
b (a0 (e e) — £i(6) + 3 (fa) — £())
N No(c) P c P c
1 e () S0 () = £,())*
TG R (‘7> op (‘ c )
= gj(c)Aji(c).

This shows that (11) holds, which in turn yields part (a) in Theorem 1. (Note that this

proof, with obvious changes, remains valid if the acceptance probability is given by (3)
rather than (4)).

(b) Note that for each a < 0

1 ifa=0
: a/z ’
E{‘% © { 0 otherwise. (12)

Now, by (6), (8) and (9)



exp (_ELI fs(i)>
d .
Zjes exp (_ ESZICfS(J)>
exp (zm—z‘:zl fs(i))

c

Sm=30_ fs(
Z]es eXp ( Zz_lf (]))
(EmeLl fs(2)
c

exp

_yd ;
Zjes exp (Em Esczl Js(9)
1

_\d . Xzopt (Z)
Zjes eXp (Zm ZZZI fs(]))

exp (zm—zgzl fs(i)>
) ) XS—Eopt (Z) *

) (XS0pt (8) + X5-50,: (1))

+

Em =30 fs
Z]’ES exp ( 20_1 [ (.7

Now let ¢ N\, 0. Then, by (12), the second term of the latter sum goes to 0, whereas the
denominator of the first term goes to |3,,|. Hence

1
1 -
Cl\IJ% qZ ( ) ‘ Eopt | Xzopt

which completes the proof of part (b).

(i) + 0 = g,

(c) By (b) and Lemma 3

=i} =1 =gq;
};I\I‘%klirgoP{Xk i} lmCIz() 4q;

and so by (7)

ll\r‘%khm P{X, eP}> hm hm P{Xk €Yo} =1 (13)
Thus
lim lim P{X 1} =1,
C1\1‘1%k1m {Xr € P} =
and (c) follows. |
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5 Concluding remarks

We have shown in Theorem 1 that a suitable choice of the acceptance probabilities yields
the asymptotic convergence of the SAA. This is reassuring, of course, because it means that
the algorithm is indeed heading in the right direction. However, for computational purposes,
our approach might not be very useful.

Indeed, what we actually prove is that, as in (13), the underlying Markov chain converges
to the set X,,; which can be very “small” compared to the Pareto optimal set P*.

This is illustrated in Figure 2 in which the Pareto front corresponds to the parts on the
boundary of S joining the points A and B, and also the points C' and D, whereas F'(X,,)
corresponds only to the points that give p; and ps.

Figure 2: Comparison of ¥, and P*

To improve our SAA one possibility would be to introduce an “elite set”, which is a
standard procedure in multiobjective evolutionary algorithms [2, 3]. At each step of the
algorithm, the elite set contains all the nondominated points generated so far. Thus, by
introducing the elite set, the idea would be to make the contents of such elite set to converge
to the Pareto optimal set. Research along these lines is in progress.
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