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1. Introduction

Though the basic laws of electromagnetics have been well understood since
the time of Maxwell and Hertz, the design of devices based on these laws remains a
very complicated procedure. Before the recent advent of stochastic optimization
techniques such as Simulated Annealing (SA) [1] and Genetic Algorithms (GAs)
[2], electromagnetic design procedures either relied on deterministic gradient type
searches which are susceptible to getting trapped in local optima, or on human
intuition and guesswork. Given an objective function which somehow measures
the overall quality of a problem solution, many studies (e.g.[3-7]) have shown
stochastic techniques to be very successful in locating optimal or near-optimal
designs in electromagnetic problems.

However, most problems in engineering are multifaceted and thus not well
treated by such an unwavering charge at a single goal abstracted into an objective
function. Instead, tradeoffs must be found which ensure that the device meets all of
many possibly interfering design goals. Though this is often accomplished by
algebraically combining the multitude of goals into a single goal, such a process
involves an enormous amount of experimentation to find an objective function
which produces the necessary combination of features. This work therefore
proposes a method for finding the set of all optimal tradeoffs (as defined by the
concept of Pareto optimality defined below) between conflicting goals inherent in
a given design problem. The method, applicable to a plethora of electromagnetic
design problems, is demonstrated by application to the design of broadband
multilayered microwave absorbers to minimize thickness and reflectance, and to
thinned antenna arrays and arrays with digital phase shifters to minimize maximum
sidelobe level and beamwidth.

2. Formulation

In seeking all optimal tradeoffs in a given design, we define "optimal"
inexclusively—any design is considered optimal if there is no achievable design
within the problem constraints which is better with respect to all goals. In general,
imagine a design problem with a vector f'= (f',---, f°) of G objectives, each of
which we wish to minimize, and two candidate designs with objective function
vectors f, and f, respectively. Design 1 is said to dominate design 2 (or f, is said
to be inferior to f,) if for all i € {1,2,...,G} f < f;, and there exists at least one i
such that f' < f;. A design is said to be nondominated if there exists no feasible
design in the entire solution space which dominates it. The Pareto front is the set of
all such nondominated designs (Fig la) [2, 8). In the case of broadband
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microwave absorbers, the designs must have low thickness 7 and low reflectance R
to be practical. Thus, for a given data base of materials and number of layers of
absorbing material, the Pareto front consists of those designs which are thinnest for
a given reflectivity.

In this study, a modified GA is used to construct the entire Pareto front.
Unlike usual gradient based optimization techniques, GAs operate on an entire
population of designs at a single time. Each design is encoded into a chromosome
which represents of all of the salient features of a design (for example, the
thicknesses and materials in a multilayer microwave absorber). Three operators
then produce new populations (of the same size) in turn. The selection operator
implements survival of the fittest by differentially allotting space in the next
population based on objective function value; good chromosomes get many
representatives and bad ones may get none. The improved population is then
manipulated by the crossover operator which creates from each pair of parents
(with a given fixed probability) two "offspring" chromosomes which are genetic
hybrids of their parents. Finally, each chromosome is mutated with a given
probability, randomly altering the design it represents. This processes is then
iterated producing generations of improved populations of designs.

The above described standard GA is used for single objective optimization,
and would converge as illustrated in Fig. 1b for a linear combination R+ oz of
objectives instead of the behavior shown in lc which represents true Pareto
optimization with the population converging to different points on the front. For
Pareto optimization, this standard GA is modified into the Nondominated Sorting
GA (NSGA) [8] by changing the action of its selection operator in two ways.
First, the population is ranked according to its relative nondominance.
Nondominated designs are give a rank of one, the designs that would be
nondominated if the rank one designs were removed are given a rank of two, and
so on.  Objective function values are then based on rank. Unfortuantely,
nondomination ranking cannot ensure that the entire front is found since it does not
force the GA to find different points on the front. Thus, the NSGA also relies on
sharing, a technique based on the competition of organisms for limited resources in
the environment, to promote diversity. Since similar organisms share resources in
the environment, nature will favor creatures that are novel. Thus the NSGA will
reduce the objective function values by a niche count [2], roughly proportional to
the population density around a given design.

3. Numerical Results

To illustrate the technique, several design problems were considered.
Figure 2 shows the actual behavior of the NSGA when applied to reducing the
normal reflectance over a given frequency band and thickness of broadband
microwave absorbers with five layers for operation from 0.2-2 GHz built from a
database of 16 materials [7]. Each of the 8000 points in the figure represents a
design the GA has found, and the dense edge of the mass is the front. Because of
the large population, most of the front is found by generation 10.

Figure 3 shows the Pareto front achieved by the application of the NSGA to
a the design of absorbers from 2-8 GHz with five layers and the same database as
above, as well as the frequency response of two representative designs from the
Pareto front. A population size of 8000 is again used, and the resulting front
shown is after 150 generations.
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Additional design examples demonstrating the application of the technique

to microwave absorbers designed for several angles of incidence, and to one and
two dimensional antenna arrays with digital phase shifters, and thinned antenna
arrays will be provided in the presentation.
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Figure 1: (a) Definition of the Pareto front; (b) Single objective optimization;

(c) Desired multiobjective performance
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Figure 2: Progression of population to the front. (a) Initial Population;
(b) Generation 10; (¢) Generation 150
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Figure 3: A Pareto curve for the materials database in [7] between 2-8 GHz.
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frequency response of two designs is inset.
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