518 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 38, NO. 3, AUGUST 1996

[17] R. C. Franz, R. J. Nemzek, and J. R. Winckler, “Television image
of a large upward electrical discharge above a thunderstorm system,”
Science, vol. 249, p. 48, 1990.

Y. N. Taranenko, U. S. Inan, and T. F. Bell, “Optical signatures of
lightning-induced heating of the D-region,” Geophys. Res. Lett., vol.
19, p. 1815, 1992.

M. C. Kelley, J. G. Ding, and R. H. Holzworth, “Intense electric and
magnetic field pulses generated by lightning,” Geophys. Res. Lett., vol.
17, p. 2221, 1990.

Y. Q. Li, R. H. Holzworth, H. Hu, M. McCarthy, D. Massey, P. M.
Kintner, J. Rodriguez, U. S. Inan, and W. C. Armstrong, “Anomalous
optical events detected by rocket- and balloon-mounted detectors in the
WIPP campaign,” J. Geophys. Res., vol. 96, p. 1315, 1991.

F. Hepburn, “Atmospheric waveforms with very low-frequency compo-
nents below 1 kc/s known as slow tails,” J. Atmos. Terr. Phys., vol. 10,
p. 266, 1957.

Z. Ma, Ph.D. thesis, Penn State University, 1995.

R. A. Roussel Dupré, A. V. Gurevich, A: V. Tunnell, and G. M. Milikh,
“Kinetic theory of runaway air breakdown,” Phys. Rev., vol. E 49, no.
3, p. 2257, 1994.

T.F. Bell, V. Pasko, and U. Inan, “Runaway electrons as a source of red
sprites in the mesosphere,” Geophys. Res. Lett., vol. 22, p. 2127, 1995.

[18]
[19]

[20]

[21]

[22]
[23]

[24]

Genetic Algorithm Design of Pareto
Optimal Broadband Microwave Absorbers

D. S. Weile, E. Michielssen, and D. E. Goldberg

Abstract— The concept of Pareto optimality is applied to the study
of choice tradeoffs between reflectivity and thickness in the design of
multilayer microwave absorbers. Absorbers composed of a given number
of layers of absorbing materials selected from a predefined database
of available materials are considered. Three types of Pareto genetic
algorithms for absorber synthesis are introduced and compared to each
other, as well as to methods operating with the weighted Tchebycheff
method for Pareto optimization. The Pareto genetic algorithms are
applied to construct Pareto fronts for microwave absorbers with five
layers of materials selected from a representative database of available
materials in the 0.2-2 GHz, 2-8 GHz, and 9-11 GHz bands.

I. INTRODUCTION

Multilayer microwave absorptive coatings are often used in concert
with other devices for reducing the radar cross section of a wide
diversity of objects, and they find use in variegated applications
ranging from stealth to anechoic chambers. In general, such coatings
must not only suppress reflection over a wide band of frequencies,
but also need to be thin to be practical and economical. These
two goals—thinness and low reflectivity—very often conflict, and
designers are forced to rely upon experience or prolonged experiments
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Fig. 1. Multilayer absorptive coating under investigation. Thé GA can chose
the ¢’s (up to 2 mm) and the n’s (from Table I) to find a good tradeoff.

to determine what tradeoffs are feasible within prescribed design
constraints. In cases where thinness and absorption do conflict, the
“optimal” design with respect to high absorption may be too thick or
expensive to be practical. An engineer is therefore often interested
in the thinnest absorber he can build with a given level of reflection
suppression. Such designs are known in the optimization literature as
Pareto optimal, as they share the quality that no design in the search
space is simultaneously thinner and less reflective [1]-[3]. The set of
designs which are thinnest for a every achievable level of reflectivity
forms a manifold known as the Pareto front. In this paper, we present
a technique for the design of multilayered broadband microwave
absorbers (Fig. 1) which given:
e a database of available materials with arbitrarily frequency
dependent properties;
« anumber of incident angles where reflection is to be suppressed;
« ‘a number of frequencies across a band over which the absorber
is to operate

obtains a discrete approximation to the Pareto front of absorbers
with a fixed number of layers describing optimal tradeoffs between
thickness and some norm of the reflections at all of the given frequen-
cies and angles of interest. While no algorithm can be guaranteed to
find the absolute Pareto front for arbitrary problems, knowledge of
the Pareto front would provide the designer of microwave absorbers
all optimal alternatives: Designs represented by points on the Pareto
front reflect as little as possible for a given thinness of coating;
designs represented by points not on the front are either physically
unrealizable within the constraints of the problem, or represent an
inferior tradeoff to a design on the curve [Fig. 2(a)]. A

Historically, a number of studies on the topic of microwave
absorbers have been undertaken using several different schemes. The
vast majority of these studies (e.g., [4]-[8]) use either approximate
closed-form analytic expressions or steepest descent optimization
methods; alternative techniques based on optimal control methods
have also been proposed [9]. Most recently, Perini and Cohen
suggested [10] a technique based on the modified Powell algorithm
which does not rely on any explicit gradient information. Since
all of these classical optimization algorithms process information
about the local characteristics of the function, they by nature find
local optima near the starting point of the algorithm. If the search
space is quite multimodal, many of these techniques may need to be
restarted several times to arrive at an acceptable optimum. Indeed,
Pesque et al. [9] recommend that their optimal control technique
be supplemented by simulated annealing to overcome the local
optimum trap. Also, because most of these methods optimize material

0018-9375/96$05.00 © 1996 IEEE
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parameters, the design the algorithm generates may be physically
unrealizable, forcing the designer to pick existing materials similar
to those found by the search, and reoptimize the thicknesses [10].
Finally, as none of these methods manipulate more than one design
to search for optima, they can not return a Pareto optimal set of
designs without laborious iteration.

Genetic Algorithms (GA’s) have been applied to the design of
microwave absorbers [11]-[13] as well as to the design of such multi-
farious devices as optical filters, antenna arrays, and broadband loaded
wire antennas [14]-[18]. GA’s are nonlinear, stochastic algorithms
based loosely upon the Darwinian theory of descent with modification
by natural selection [19], [20]. Though absolute convergence of the
algorithm is not guaranteed, and the convergence of GA’s is much
slower than local searches, the stochastic nature of GA’s makes them
less likely to converge to weak local optima [19]. In addition, GA’s
typically operate on binary encodings of the search variables. In the
present study this implies that the GA can draw from a database
of available materials with arbitrary characteristics, ensuring that the
design found by the algorithm can be realized.

All of the GA studies mentioned above [11]-{18] use GA’s for
single objective optimization. In this paper, we describe and compare
several Pareto GA schemes which construct approximations to the
Pareto front for the absorber design problem outlined above. Pareto
GA’s are GA’s augmented with specialized operators to permit
multiobjective optimization, for which GA’s are ideally suited since
they are population-based.

This paper is organized as follows. Section II describes the specific
problem under consideration and the operation of Pareto GA’s.
Section III relates the results obtained using various implementations
of the Pareto GA for several practical design problems. Section IV
presents the conclusions of this study.

II. FORMULATION

In this section we describe a number of techniques for design-
ing Pareto optimal stratified absorbers using GA’s. Section II-A
describes techniques for analysis of layered microwave absorbers
and defines the concept of Pareto optimality with applications to
the problem at hand. Section II-B reviews standard GA’s geared
toward single objective optimization with special emphasis on the
specific genetic operators that find use in this study. Section II-
C discusses several additional techniques that allow the standard
GA to accomplish mulitobjective optimization without iteration of a
single objective GA. Lastly, Section II-D discusses several practical
implementations of Pareto GA’s using different combinations of the
techniques introduced in Sections II-B and II-C.

A. Design of Pareto Optimal Microwave Absorbers

Consider a planar stratified absorber composed of Ny, layers of
different materials stacked on a Perfect Electric Conductor (PEC)
(Fig. 1). We wish to select these materials such that they suppress
reflection of an incident plane wave over a frequency band B, but
remain as thin a possible. The materials for the different layers are
selected from a predefined, finite database of available materials
whose constitutive parameters may vary arbitrarily with frequency.

For any frequency f we may recursively evaluate the reflection
coefficient, R(f), of a plane wave normally incident on an absorber
composed of Ny layers of thicknesses t;, permittivities £;(f), and
permeabilities u;(f) (¢ € {1, 2, ---, Np}) backed by a conductive
sheet as [21] .

Rz(f) + Ri_l(f)e_zjki_l(f)ti“l
1+ Ri(f)Ri__l(f)6_2jki‘1(f)ti_l

Ri(f) =

@

where

Ruf) = Dk = pi(Hkia (F)

i1 (Dk:(F) + ps (Fkizr (F)

for i > 0, ki(f) = 2af \/ui(f)e(f), Ro = —1, and R(f) =
Ry, (f). This process can then be repeated over a representative
set of frequencies within the band B to find the frequency response
of the absorber. The analysis for the more general case of multiple
angles of . incidence is not much different than the case of normal
incidence [21] and is not presented here. The total thickness of the
absorber, ¢, is given by

0))

t= Z t;. 3)

We wish to minimize both R = 20log,,{max[R(f)],/f € B},
the highest reflection over the band, and the total thickness ¢.
Because we seek the simultaneous minimization of two conflicting
goals simultaneously, there are many possible tradeoffs that require
consideration. The concept of Pareto optimality provides a framework
for defining exactly what is. meant by “optimal tradeoff.”

Though the problem at hand only involves the minimization of
two parameters, the concept of Pareto optimality (and by implication,
Pareto GA’s) can be applied to design problems of any number of
criteria. Imagine a design problem with a vector f = (£, ---, f¢) of
G objectives, each of which we wish to minimize, and two candidate
designs with objective function vectors f; and f;, respectively. Design
1 is said to dominate design 2 (or £ is said to be inferior to f;) if for
alli € {1,2,---, G} i < fi, and there exists at least one i such
that fli < fgi . A design is said to be nondominated if there exists
no feasible design in the entire solution space which dominates it.
The Pareto front is the set of all such nondominated designs [1]-[3],
[19], [22]. )

Once constructed, the Pareto front can be used to find the optimal
design for -a given absorber application. If the application requires
the most absorbent design to be no thicker than a certain value tyax,
the Pareto front can be scanned in the direction of thinner designs
starting with the thickest design until a design of thickness #max
is located. This design is the most absorbent design located by the
algorithm which meets the stated specifications. Once this design
is discovered, the designer can look at how much absorptivity he
would need to sacrifice by going to a slightly thinner design. If a
much thinner design has roughly the same absorptivity, it may be

-a sound engineering decision to use it instead of the design with

thickness #max.

B. Introduction to Genetic Algorithms for
Single Objective Optimization

As discussed in the introduction, this study uses GA’s to find
a discrete approximation of the Pareto front. GA’s are a class of
algorithms which can be applied to reliably find strong local or global
optima of a function over a given domain of interest. Loosely based
on the principle of survival of the fittest, GA’s are complicated like
Nature herself: They are nonlinear, stochastic, and highly parallel in
structure [19], [20].

Unlike more standard classical optimization algorithms, GA’s do
not operate on single design candidates, but simultaneously act on
a whole population of N, designs. The designs are represented in
the population by encoding salient design parameters into bit strings
of length Ny called chromosomes, after which an initial population
of N, candidate designs is created at random. The GA operates
by repeated application of genetic operators to entire populations
resulting in a succession of populations of improved designs. For the
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specific problem considered in this paper, chromosomes are encoded
as follows. The chromosome for an Ny layer design consists of
2Ny genes. Half of these genes are composed of N, bits and
decode to an integer identifying the material choice for a given layer
in the database; the other half contain N; bits and decode via a
linear transformation to the thickness of a layer [12]. Thus, each
chromosome is composed of Ny = Nz X (N, + N) bits. Though
the GA literature abounds with examples of different operators
to improve the GA’s ability to search this prodigious expanse of
design possibilities, all GA’s include three basic operators; selection,
crossover, and mutation [19], [20].

The selection operator implements the principle of survival of
the fittest, and by so doing is the primary operator responsible for
convergence of the algorithm [19], [20]. All designs in the population
are evaluated according to an objective function F which measures the
quality of a solution to a given problem, and represents the quantity
optimized by the GA. Selection creates a new generation of N,
designs by allotting more positions in the new population to those
designs with favorable objective function values, and eliminating
those with poor values. Though there exist several schemes in the
literature for accomplishing this, this study uses only the two most
common: fournament selection in which the better of two randomly
chosen designs in placed into the new population until the population
is full, and roulette-wheel selection which fills each spot in the
new population by selecting designs out of the old population with
probability proportional to their fitness.

Once selection has produced a new population of size Np7 the
crossover operator constructs another new population of size N, by
combining information from successful designs. Chromosome pairs
are picked at random from the population and are crossed over with
some predetermined probability p. usually between 0.8 and 1. For
each pair that is to be crossed over, a random crossover site is
picked between the kth and k + 1th bits of the pair. The selected
chromosomes then exchange their k& 4 1th through Ith bits yielding
children chromosomes. Chromosome pairs not chosen for crossover
are copied unmodified into the next generation {19], [20].

Finally, the mutation operator is applied to prevent premature
convergence of the GA, by performing a logical NOT on a few
bits in the population randomly selected with probability 0.0005 <
Ppm < 0.01. Mutation is not the primary search instrument of the GA
but is included mainly to prevent the loss of information, initially
contained in chromosomes that die off prematurely, but which contain
information which may prove useful to the GA in later generations
[19], [20].

Selection, crossover, and mutation are repeatedly applied to succes-
sive populations until some termination criterion is satisfied. Usually,
the GA is stopped either when it meets some preset design goal,
when a predetermined number or generations has passed, or when no
substantial improvement in the objective function value is observed.

When a single objective GA (such as described above) is success-
fully applied to absorber design via a linear combination of objectives
F = R+ ot as in [12}, all population members converge to a single
point on the Pareto front [Fig 2(b)]. We might attempt to construct
the Pareto front by iterating the GA for various values of a. In
fact, a comparison between the designs found in [12] and this study
shows those designs to indeed be a subset of the designs found here.
Unfortunately, this weighting method is doomed to failure as it is clear
from. Fig. 2(b) that it will be incapable of finding concave portions of
the curve [1]-[3]. A better approach is to use the weighted Tchebycheff
procedure, which involves minimizing the objective function [3], [23]

F = max [at, V1—aZ(R - RM)] @)
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Fig. 2. (a) A typical Pareto front. Anything in the hashed region represents

an inferior design as there is a design on the front that is more absorptive for
the same thickness, any design in the white region'is physically unrealizable.
(b) Convergence of standard GA. (c) Desired convergence of Pareto GA.

for values of « ranging from O to 1 and where R™ is an ideal
value for the reflectivity in decibels. While this function is capable
of generating concave parts of the Pareto front, the process of iterating
it for many values of « is computationally wasteful (see Section III),
and does not capitalize on the greatest asset of the GA: the wealth of
information contained in its population. Thus, we want the behavior
of the GA to be like that of Fig. 2(c), where the population spreads
out uniformly over the front.

C. Alterations to the Standard GA for Pareto Genetic Algorithms

Several advanced operators have to be added to the single objective
GA if the Pareto front is to be located in only one run. These
operators assist the GA in pushing the population to the edge of the -
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feasible region, and to ensure the designs spread evenly and densely
on the front. Since a Pareto GA must return a curve dense enough to
accurately represent the Pareto front and diverse enough to present
the full range of possible designs, these operators are essential to the
proper behavior of the GA.

A design evaluated according to multiple objectives is considered
Pareto optimal if it is nondominated—that is, if there exists no
feasible design which is simultaneously superior with respect to all
objectives. The definition of Pareto optimality therefore imposes two
separate (but intimately related) challenges to the traditional GA:
Pareto GA’s must: i) select designs on the basis of their relative Pareto
dominance standing in the population, and ii) force the population to
converge to a diverse Pareto front, not a single design. If diversity is
not actively encouraged in the GA, chromosomes in the population
tend to unevenly distribute themselves along the Pareto front resulting
in instability known as genetic drift. Since the GA is more likely to
promulgate traits of the most prevalent designs in a given population,
these designs garner more representatives in the population which
may result in the loss of diversity. Any successful Pareto GA must
both capably evaluate the dominance relations in the population, as
well as maintain diversity for the length of the GA run.

Besides Schaffer’s initial attempts at Pareto optimization [24],
[25], all other Pareto GA’s proposed in the literature [22], [26],
[27] are variations of a suggestion from Goldberg [19] that the
twin problems of Pareto GA’s be handled separately. To select
designs according to Pareto dominance, Goldberg suggests the use of
nondomination ranking. Specifically, Goldberg delineates a scheme
where all nondominated population members are assigned a rank of
one and removed from the population. The nondominated members
in the remaining part of the population are then assigned a rank of
two, and so on, until the entire population is ranked. Each design
then receives a fitness based on its nondomination ranking.

To prevent the effects of genetic drift, Goldberg suggests the use
of niching methods, which were originally developed so that GA’s
could converge to more than one peak in multimodal problems, but
since have been applied to general GA search and Pareto GA’s as
well [19], [28]. The oldest niching method, called crowding, was
introduced in DeJong’s thesis [28]. Crowding preserves niches by
preferentially eliminating over-represented designs so that, when new
designs are placed in the population, novel designs in the current
generation have a higher probability of survival than hackneyed ones
[19], [28]. A complete description of the crowding algorithm may
be found in [19].

Another method for maintaining diversity in the population is
fitness sharing [19], [29]. Fitness sharing is based on Malthusian
competition between organizms for limited resources in relation to
the preservation of species under natural selection. In a fitness sharing
GA, besides calculating the objective function value F; for each
chromosome ¢, the GA calculates a niche count m; which measures
the density of the population surrounding that chromosome. The niche
count is calculated according to the formula

Np
m; =Y Sh(d,;) )
I=1

where Sh(d) is a monotonically decreasing function of z such that
Sh(0) =1, and d; ; is a distance measure between designs i and j.
In this study, we use the rriangular sharing function

d

Sh(d) = {1 B Oshare
0 d 2 Oshare

d< Us};are 6)

where 0gnare is a designér chosen niche radius. This study uses
Phenotypic sharing, i.e., we measure distances between design prop-

erties rather than the Hamming distance between the chromosomes
describing a design. Phenotypic sharing may be performed on either:
i) the design parameters as decoded from the chromosome (here
the layer thicknesses and material choices) or ii) the chromosome’s
objective function vector (R, ¢). In Pareto GA’s, type ii) phenotypic
sharing is usually preferred because we seck a large variety of
different optimal tradeoffs in objective function space, but we care
little whether or not different points on the Pareto front represent
large differences in the design of the absorber itself [22], [27]. All
objectives are effectively scaled to range between 0 and 1 to ensure
that the metric weighs objectives equitably [22], [26], [27].

Once the m; have been calculated, chromosomes are reproduced
assuming an objective function value of Fiparea,i = Fi/m; instead
of F; so that the GA will not allow all chromosomes to converge
to one solution, but will try to achieve a steady state where any two
chromosomes ¢ and j in the population will satisfy [19], [29]

F;

Fshqrcd, P =
m;

E

my
= L'shared, j- )

In Pareto GA’s, sharing is used to get a better representation of the
front since at equilibrium, all nondominated designs will need to
spread along the front out or die off. Lastly, we note that the entire
population need not be used to calculate the niche counts m;; simply
sampling some percentage of the population to estimate the niche
count usually suffices.

D. Implementations of the Pareto Genetic Algorithm

This section details three specific implementations of the Pareto
GA. The first implementation uses the nondomination ranking scheme
described in Section II-C with crowding and tournament selection. We
refer to this as the Crowded Tournament Pareto GA (CTPGA).

The second Pareto GA used is known as the Niched Pareto GA
(NPGA) [27]. Instead of explicitly using nondomination ranking,
the NPGA uses Pareto domination tournaments which compare
two randomly chosen designs to a randomly chosen comparison
set of t4om designs to determine their relative optimality. If no
determination can be reached, the winner is chosen to be the design
with less similarity to the designs already chosen for the next
generation. A full description of the algorithms used can be found
in [27] and [30].

Lastly, we implement a third scheme known as the Nondominated
Sorting GA (NSGA) [26], which executes Goldberg’s suggestions
most faithfully. In the NSGA, designs are ranked using the non-
domination ranking of Section II-C. The designs ranked one are
given a nominal fitness value Fg); and then their niche counts
m; are calculated. Their shared fitness is then calculated in the
usual way Fipared,i = F;/mi. The designs ranked two are then
assigned a nominal fitness value Fpo less than the lowest shared
objective function value of those ranked one, and then undergo
sharing themselves. This process is continued until all members of
the population are assigned a fitness value, and then roulette wheel
selection is used to create the next population. In our implementation
of the NSGA, the nominal fitness value of groups ranked less than one
was actually chosen to be equal to the lowest shared fitness value of
the previous group. This choice of nominal fitness value assignment
tempers the quick selective action of the NSGA and helps allow the
GA to maintain diversity in the population. Additionally, Srinivas
and Deb use type 1) phenotypic sharing in the NSGA; we, however,
use type ii) because as mentioned in Section II-C we desire great
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TABLE I
Lossless Dielectric Materials (1,=1.4j0.)
# &
1 1040
2 50+i0.
Lossy Magnetic Materials (g,=15.4j0.)
pep -y ph=ELSED f?Hz) p () =HASHD ffHZ)
# 1. (1 GHz),a u,(1 GHz),B
3 5.,0.974 10., 0.961
4 3., 1.000 15., 0.957
5 7., 1.000 12., 1.000
Lossy Dielectric Materials (¢,=1.+j0.)
. €,(1 GHz) _ (1 GHz)
e=¢—je £(f)= BT &= BT
# &,(1 GHz), 0 €,(1 GHz), B
6 5., 0.861 8., 0.569
7 8., 0.778 10.,0.682
8 10., 0.778 6., 0.861
Relaxaﬁbn—?pe Magnetic Materials
wEp - B= f’f:f}: = % (fandf, in GHz)
g, =15+ j0
‘ By T

9 35, 0.8
10 35. 0.5
11 30. 1.0
12 18. ' 0.5
13 20. 1.5
14 30. 2.5
15 30. 2.0
16 25. 3.5

variety in the behavior of the multilayer, but not necessarily in its
physical construction.

III. NUMERICAL RESULTS

In this section, we present the results of applying the afore-
mentioned Pareto GA algorithms as well as weighted Tchebycheff
algorithms to find Pareto optimal absorber designs. We design ab-
sorbers for operation over the bands from 0.2-2 GHz, 2-8 GHz, and
9-11 GHz, and compare the results obtained on the basis of both
the diversity and density of the ffont. The database of materials used
(reproduced as Table I) is from Michielssen et al. [12] and contains 16
materials (N,.. = 4). For all Pareto GA’s (unless otherwise stated), we
set pe = 0.9, p,, = 0.005, N, = 8000, and run for 150 generations.
The choices for the crossover and mutation probabilities are quite well
within the ranges usually given in the GA literature, and we found
that the algorithm was very robust with regard to moderate changes
in them. A good rule of thumb for changing the population size is that
is should be a large constant (roughly 100-1000) times the number
of bits in the chromosome. In all chromosomes Ny, = 5 (a common
number of layers) and N; = 7, which allows the algorithm enough
precision to design a wide variety of absorbers without including too
many insignificant bits. '

First, all three algorithms described in Section II-D are applied to
the design of absorbers in the lower frequency band of 0.2-2 GHz.
Pareto fronts are shown in Fig. 3. which shows that the CTPGA with
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Fig. 3. The Pareto fronts obtained for the 0.2-2 GHz band.

Py = 0.6 and Nogr = 40 was able to keep much diversity over the
curve, as well as relatively dense front.

The NPGA, however, was unable to maintain such a compromise.
Figure 3 also shows the result of running the NPGA with t4or, = 100
and a niche radius o sp4rc = 0.025 with respect to a two-dimensional
phenotypic Euclidean metric defined as

2 2 .
o= ()  (BE) e
RM and tM are constants included in the metric to effectively scale
both the reflectivity axis and the thickness axis to range between
0 and 1. Niche counts were estimated from sampling 2.5% of the
population. ) )

Fig. 3 shows that the best front was provided by the NSGA using
the same metric and niche radius as used for the NPGA. Fig. 4 depicts
the progression of the population to the front in the NSGA. Notice
that by generation 10 the NSGA has located most of the Pareto front,
and in the final generations the curve only becomes more well defined
and just marginally more diverse. The fact that the NSGA preserves
diversity through large numbers of generations is important: It implies
that the designer need not check the convergence of the population
every generation to ensure that diversity is not lost; he need only make
sure that the GA has sufficient time to converge. We also emphasize
that depending on the quality of front desired, the run time can be
cut down considerably. The NSGA finds most of the front in 10
generations (80,000 objective function evaluations) and if this front
is good enough, there is no need for 1.2 million it calculated in our
run. :

The NSGA outperforms the CTPGA and NPGA, but also is the
most computationally expensive algorithm we describe, followed by ’
the CTPGA and finally the NPGA. This is quite evident from the
algorithms themselves. Both the NSGA and CTPGA involve the
ranking of the entire population; the NPGA does not. Additionally,
sharing is more expensive than crowding making the NSGA the
most expensive algorithm of all. For the above design problem CPU
time on a DEC Alpha workstation for the NSGA, the CTPGA and
the NPGA were about 1 h, 50 min, and 45 min, respectively. The
differences in time are not very drastic, however, because most of the
computational expense comes in calculating the objective function
and all three algorithms calculated it exactly the same number of
times. )

In addition to comparing the various Pareto GA’s to each other, we
present a comparison of the Pareto front obtained by the NSGA to
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Fig. 4. The population distribution of the NSGA (a) initially, (b) in gen-
eration 10, and (c) in generation 150. Notice that the population does not
change much between (b) and (c). We believe that the extra dense ridge in the
population is a set of local optima; they reappear in the classical optimization
schemes shown in Fig. 3.

those produced by iterated runs of Simulated Annealing (SA) and the
standard GA optimizing the Tchebycheff formula (5). Like a GA, SA
is a stochastic algorithm which has been applied to electromagnetic
problems [9], [31], but it is based on the minimization of energy
states in 2 Boltzmann distribution rather than the theory of evolution
[32], [33]. A full description of the algorithm may be found in [33].

Since the NSGA found about 400 different points on the front, we
ran both Tchebycheff schemes 400 times each with different values of
a linearly spaced between 0 and 1. For the GA, we used N, = 100
and ran for 100 generations to find each point, for SA we used 10000

Comparison of NSGA with Classical Techniques
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Fig. 5. The Pareto fronts obtained by “classical methods” versus the NSGA.

Pareto Fronts (2-8 GHz)
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Fig. 6. The Pareto fronts obtained for the 2-8 GHz band.

iterations, giving each algorithm a total of 4 million objective function
evaluations—a number more than 200% greater than the 1.2 million
allotted to the NSGA and 1300% greater than the 80000 it used to
find the front of Fig. 4(b). We note that Fig. 5 demonstrates that even
with the extra computational time allotted neither the standard GA nor
SA could find a coherent front using the Tchebycheff formula, with
many points converging to local optima rather than to the Pareto front.

We next turned to the 2-8 GHz band and found that all three Pareto
GA’s behaved much like in the previous example (Fig. 6). Fig. 7 and
Tables II and III give the frequency response and design parameters
for two particular designs on the curve. Note once again that the
Pareto GA returns a whole profusion of designs in only one run. All
of these designs may be stored in a database where they could easily
be retrieved for future design problems with different criteria.

As a final test of the NSGA, we applied it to a problem which
included multiple incidence angles as well as frequencies. The re-
flectivity objective function was redefined to be the highest reflection
over that entire 9—11 GHz band and at incidence angles ranging from
0-70° for both TE and TM polarizations. Because of the difficulty of
this problem, we took IV, = 80000, but only ran for 15 generations.
The Pareto curve obtained by the three algorithms is shown in Fig. 8.

IV. CONCLUSIONS

This study has presen.ted three techniques for constructing Pareto
optimal designs of microwave absorbers using genetic algorithms.
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Frequency Response of Pareto Optimal Designs
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Fig. 7. The frequency responses for the two designs highlighted in Fig. 6,
both of which are Pareto optimal. One design is very absorbent but quite
thick, the other is more of a compromise.

TABLE II

Design #1 Parameters

Layer Number [ Material Number | Thickness (mm)
1 9 0.2506
2 15 0.5011
3 10 0.9866
4 4 1.9575
5. 16 0.4385

Max. Reflectance = —23.16 dB
Tot. Thickness = 4.134 mm

TABLE III
Design #2 Parameters
Layer Number | Material Number | Thickness (mm)
1 15 0.5481
2 8 0.4072.
3 12 0.0016
4 6 0.4228

Max. Reflectance = —13.63 dB
Tot. Thickness = 1.394 mm

Pareto Front (9 11 GHz, 0-70°)
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Fig. 8. The Pareto fronts for the 9-11 GHz band obtained by considering
oblique incidence.

The methods employ niching techniques in combination with non-
domination ranking or tournaments to present the designer of absorp-

tive coatings with a good approximation to all of the best tradeoffs
possible in only one run of the algorithm. The Pareto GA provides
the designer with an abundance of optimal desighs which may be
applied to vastly different types of design problems. A comparison
of the several Pareto GA techniques for the problem of designing
absorbers was given, and results indicate that the NSGA is the
algorithm most suited to this problem. The NSGA also compared
favorably with both GA and SA Pareto optimization schemes based -
on the Tchebycheff weighing method. The technique presented may
be modified to design lJow cost urethane cone absorbers by changing
the chromosome structure and using a homogenization approach [34],
[35] for the analysis. Furthermore, the materials list may be expanded
to include ferrite tiles, and with the above mentioned modifications,
the same algorithms could be used for the design of hybrid absorber
systems [36].
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Predictability of Radiation in Vertical Directions
Based on In Situ Measurements Close to the
Ground at Frequencies Above 30 MHz

Tan P. Macfarlane

Abstract—National and international standards specify limits for the
radiated disturbances created by industrial, scientific, and medical (ISM)
radio-frequency equipment. The in situ E-field limits they specify above
30 MHz apply at heights above ground of 6 m or less. The international
standard CISPR 11 specifies limits at a fixed height of 3 m. The US FCC
specifies 1-4 m or 2-6 m height scans, subject to measuring distance.

_ Specified measuring distances vary. For protection of aeronautical safety

of life services, CISPR 11 specifies in situ limits 10 m from the exterior wall
of the building housing the ISM equipment. The actual distance from the
ISM equipment is not specified. This paper considers the predictability of
radiation in vertical directions based on in situ measurements using the
CISPR and FCC methods. The paper shows that the ISM fields measured
by these methods are very poor guides to the fields at elevated angles. In
consequence, the specified in siru limits cannot deliver the protection they
are assumed to provide for aeronautical safety services. Recommendations
are provided to improve the predictability of the fields at elevated angles.

Index Terms— ISM, Numerical Electromagnetics Code (NEC), aero-
nautical safety of life services, vertical radiation patterns, field strength
prediction.

I. INTRODUCTION

Limits for radiated disturbances emitted in situ from ISM radio-
frequency (RF) equipment are specified in FCC [1] and CISPR [2]
standards. Above 30 MHz, the limits apply to E-fields at heights
of 6 m or less. In general, the limits are to protect terrestrial radio
and television services. In addition, CISPR ‘11 Table VI provides
in situ limits for “protection of specific safety services.” Table VI
lists aeronautical services, including the instrument landing system
(ILS). A note to Table VI states: “Many aeronautical communications
require the limitation of vertically radiated electromagnetic distur-
bances. Work is continuing to determine what provisions may be
necessary to provide protection. for such systems.”

In CISPR 11 Table VI the in situ measuring distance above 30
MHz is 10 m “from (the) exterior wall outside the building in which
the equipment is situated.” Significantly, the CISPR does not specify
the precise measuring distance from the ISM equipment. The FCC
specifies in situ measurement distances from the ISM equipment,
varying from 30 to 1600 m, or closer distances if the limits are
adjusted in inverse proportion to distance.

The CISPR specifies vertically and horizontally polarized E-field
measurements at a fixed height of 3 m for Group 2 Class A equipment,
and may be interpreted to require a 1-4 m height scan in situ for
Group 1 and Group 2 Class B equipment. The FCC specifies height
scans of 14 m at distances up to 10 m, and 2-6 m at distances
greater than 10 m.

By their nature, ISM machines, generating RF powers up to 1
MW or more [3], can radiate high levels of spurious electromagnetic
disturbances. To protect aeronautical services, it is important to
know whether or not the specified in situ measurements accurately
predict the field strengths created at elevated angles. Therefore, some
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