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ABSTRACT

The design of buildings is a multi-criterion op-
timization problem, there always being a trade-
off to be made between capital expenditure,
operating cost, and occupant thermal comfort.
This paper investigates the application of a
multi-objective genetic algorithm (MOGA) search
method in the identification of the optimum pay-
off characteristic between the elements of the
building design problem.

Results are presented for the pay-off characteris-
tics between daily energy cost and zone thermal
comfort, and for building capital cost and energy
cost. It was concluded that the MOGA was able
to find the optimum pay-off characteristic between
the daily energy cost and zone thermal comfort,
but that the characteristic between the capital
cost and energy cost was sub-optimal. However, it
can be concluded that multi-criterion genetic al-
gorithm search methods offer great potential for
the identification of the pay-off between the ele-
ments of building thermal design, and as such can
help inform the building design process.

INTRODUCTION

It is common for buildings to be designed and
constructed to a fixed capital cost. Within this
capital expenditure, there may be some optimiza-
tion of the design in an attempt to reduce running
costs without prejudicing the thermal comfort of
the building occupants. This approach however,
pays no attention to the impact that a marginal
increase in capital cost might have on the reduc-
tion in running costs or the improvement in oc-
cupant comfort. The coupling between these de-
sign criteria and its impact on the design solutions
can be evaluated through the application of multi-
criterion decision making (MCDM) methods. The
MCDM process has two elements:

1. the designer must make a decision as to
which pay-off between the criteria results in
the most desirable design solution;

2. a procedure to search for one or more solu-
tions that reflect the desired pay-off between
the criteria.

The relationship between decision and search has
three forms (Van Veldhuizen and Lamont, 2000;
Miettnen, 2001):

A Priori preference articulation (decide —
search), in which the decision maker (DM)
defines the preferred pay-off between the cri-
teria in advance of the search (for instance,
the designer may say that the capital cost
of the building is twice as important as the
operating cost).

Progressive preference articulation (decide «
search), in which the DM and search are
intertwined, with the DM using progressive
solutions to inform the decision making pro-
cess and the final choice of pay-off.

A Posteriori preference articulation (search —
decide), in which the DM is presented with
a set of solutions and then chooses a final
design solution from that set.

The most common a priori approach is one in
which the DM assigns weights to each of criteria,
the weighted sum of the criteria then forming a
single design criterion. An optimization algorithm
is then used to find the single design solution that
minimizes the weighted sum of the criteria. For
instance, the capital cost f.(X), and the operat-
ing cost f,(X), of a building could be transformed
into a single design objective by assigning a weight
(we and w,), to each of the criteria and summing
them (Equation 1). The sum of the criteria could
then be minimized to produce a single design solu-
tion that provided a weighted payoff between the
capital and operating costs. The choice of weights
may be arbitrary, although the weights could be
defined through the life-cycle cost of a building
since this is in principle a weighted sum of the
capital and operating costs.

F(X) =w, fo(X) +we fe(X) (1)

Figure 1 illustrates a possible pay-off between the
capital cost of the building and the operating cost
of the building. Suppose that the designer (DM),
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decided that minimizing capital cost was twice as
important as minimizing the operating cost. Min-
imizing a single weighted criteria would result in
one design solution on the pay-off curve. However,
this does not provide the designer with informa-
tion about how sensitive the operating cost is to
changes in capital cost. For instance, the designer
would not be able to evaluate the potential reduc-
tion in operating cost due to say a 50% increase
in the capital cost.

2:1, Capital:
Operating
Cost

Operating Cost

Capital Cost

Figure 1: Example Pay-off Characteristic

The progressive preference articulation approach
in part solves this problem, by generating at least
one alternative to the single design solution (for in-
stance, by assigning different weights and repeat-
ing the optimization). However, information avail-
able to the designer is restricted since the complete
pay-off curve is not available . Further, this ap-
proach is likely to be computationally too inten-
sive for building thermal design, since each new
optimization would require repeated optimization
and simulation of the building thermal perfor-
mance. Therefore, in this paper, the a posteriori
preference articulation approach is advocated, in
which the complete pay-off characteristic is deter-
mined in one optimization of the building design
(thus minimizing the need for repeated optimiza-
tion and associated simulation of building thermal
performance).

Pareto Optimization

The optimum pay-off characteristic is represented
by the Pareto optimum set of solutions. Each
solution in the set is said to be non-dominated
by any other solution. This concept is illustrated
in Figure 2, which shows a set of 7 sample so-
lutions for two criteria (f1(X) and f>(X)). The
non-dominated solutions in the set are indicated
by a ranking of 0. For each of the non-dominated

there is no other solution in the set that has a
lower value in any criteria. The solution ranked 3
however, is “dominated” by three other solutions
in the set; that is, three other solutions have a
lower value in both criteria.
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Figure 2: Example Pareto Ranking

The Pareto multi-criterion optimization has been
applied previously to the design of buildings
(D’Cruz and Radford, 1987). The criteria consid-
ered where the thermal load, daylight availabil-
ity, planning efficiency, and capital cost. The op-
timization problem was solved using a dynamic
programming optimization algorithm, which al-
though solutions where obtained, did not provided
a sufficient number of solutions to allow the pay-off
between the criteria to be examined. A solution to
this deficiency is examined in this paper through
the use of a multi-criterion Genetic Algorithm op-
timization method. Note therefore, that the fo-
cus of this paper is on the search element of the
MCDM process rather than the decision making
element. The effectiveness of the search method
is examined in relation to the simultaneous de-
sign of the building fabric construction, the size of
heating ventilating and air conditioning (HVAC)
system, and the HVAC system control strategy.

THE OPTIMIZATION ALGORITHM

The search method advocated for finding the
Pareto, non-dominated, set of solutions is based
on a Genetic Algorithm (GA). Although sev-
eral “traditional” methods exist (Miettnen, 2001),
these often require a sequential and therefore
computationally intensive approach to finding the
Pareto set of solutions. However, rather than
progressively minimizing a single possible solu-
tion, GA’s operate with a set of possible solutions
(known as the population). This enables several
members (if not all members) of the Pareto opti-
mum set to be found in a single run of the algo-
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rithm (Ceollo Coello, 2001).

GA’s often begin with randomly initialized popu-
lation of solutions. The GA then seeks to maxi-
mize the fitness of the population by selecting the
“fittest” individuals from the population and us-
ing their “genetic” information in “mating” and
“mutation” operators to create a new population
of solutions. The form of GA implemented in the
work is derived from the simple GA described by
Goldberg (1989). A detailed description is be-
yond the scope of this paper, but the form of
the GA implemented can be summarized as be-
ing, a simple binary encoded GA with “roulette
wheel” selection, single point cross-over, and a
non-overlapping population.

This GA is an unconstrained search method orig-
inally designed to optimize a single criterion, rep-
resented by the fitness of each individual in the
population. Many of the variations to the ba-
sic GA are concerned with the description of the
individuals fitness, and this is particularly the
case for the multi-criterion optimization. Sev-
eral approaches to defining the fitness for a multi-
criterion GA optimization exist (Coello Coello,
2001); the approach implemented here is the
Multi-Objective Genetic Algorithm (MOGA) by
Fonseca and Fleming (1995, 1998). This algo-
rithm employs the Pareto ranking scheme illus-
trated in Figure 1, the Pareto rank then being
used to form the fitness of each solution (solutions
of equal rank having equal fitness). However, since
GA'’s seek to mazximize fitness and we seek to find
the pay-off that minimizes the criteria, the Pareto
rank is inverted to form the fitness of the indi-
viduals. An exponential weighting is also applied
during the inversion to give extra weight to the
non-dominated (Pareto 0) solutions.

Since many problems are constrained (as is the
case in thermal design of buildings), the MOGA
includes an approach to handling the constraint
functions. In short, the constraints are treated
as criteria and “goal restraints” applied to force
the solutions into the desired feasible region (by
penalizing the Pareto rank of the infeasible so-
lutions). Treating the constraints as criteria has
the advantage that the pay-off between constraint
function bounds and the true design criteria can
be examined, but has the disadvantage that the
pay-off characteristic becomes increasingly diffi-
cult to interpret as the number of criteria increases
(the pay-off curve becomes a pay-off surface as the
number of criteria is increased from 2 to 3 for in-
stance). For this reason, a means of aggregating
the constraints into a single criteria has been de-
veloped (Wright and Loosemore, 2001). As well as
reducing the number of criteria, the method also

allows the aggregated constraint “criterion” to be
removed from the search once feasible solutions
are obtained, further reducing the dimensionality
of the pay-off information.

Finally, in order to maintain a spread of solutions
across the Pareto “front”, it is necessary to em-
ploy a “sharing” function. These functions pre-
vent clustering of solutions by re-assigning the fit-
ness of the individuals in relation say, to how close
a given solution is to a similar solution. The prox-
imity of the solutions to each other can be mea-
sured in the variable space or the criterion space.
A criterion space sharing function has been imple-
mented here (Deb, 1989).

EXAMPLE PROBLEM FORMULATION

The multi-criterion optimization of building ther-
mal systems is investigated here through the de-
sign of a single zone “all outside air” heating,
ventilating and air conditioning (HVAC) system
(Figure 3). Traditional single criterion optimiza-
tion problems are defined in terms of the prob-
lem variables, the design criterion, and the de-
sign constraints (Wright and Farmani, 2001). For
instance, for the system in Figure 3, the design
would be optimized for either operating cost, cap-
ital cost, or life-cycle cost; with the optimization
being subject to constraints on the zone thermal
comfort and the HVAC system design. However,
in the multi-criterion problem described here, all
potential objective criteria are included in the
problem formulation; the design constraints are
also treated as criteria (by aggregating them to
form a single criterion). The choice and form of
the problem variables, design criteria, and design
constraints, is only summarized here, but a more
detailed description is available in Wright and Far-
mani (2001).
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Figure 3: The Example HVAC System

Problem Variables

In order to account for the coupling between the
fabric thermal storage, the HVAC system size, and
the HVAC system control strategy, the optimiza-
tion problem must include variables that repre-
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sent:

e the choice of building fabric construction;
e the size or capacity of the HVAC system;

e the HVAC system supervisory control strat-
egy.

In this paper, the building fabric construction
is defined for three weights of building (“light”,
“medium” and “heavy”), two types of glass (clear
and low emissivity glass), and three glazed areas
(10%, 20%, 30%).

Since the capital cost of the building is a criteria
of interest, the “size” of the HVAC system is de-
scribed by the physical dimensions of the system
components rather than just the system thermal
capacity. The system size is therefore represented
by the width, height, number of rows and num-
ber of water circuits for each coil, and the supply
fan diameter (the extract fan is not explicitly in-
cluded in the problem formulation). The hot and
chilled water maximum flow rates to the coils are
also problem variables, since these govern the peak
capacity of the coils.

Finally, the HVAC system supervisory control
variables are described as the supply air setpoint
temperature and flow rate (M; and 6, Figure 3),
in each hour of the day, giving 48 setpoints for
each day of operation. The ON/OFF operation of
the system outside of the occupied period is con-
trolled by a further 15 system status (ON/OFF)
variables, giving a total of 63 variables for each
day of operation. The number of control variables
could be significantly reduced (Ren and Wright,
1997), but this has not been implemented here in
order to allow the performance of the MOGA to
be investigated for a large solution space.

This gives a total of 77 problem variables (63 con-
trol variables, 11 HVAC system size variables, and
3 building construction variables). Optimizing
for three design days of operation (a winter day,
“swing” season day, and a summer day), would
increase the number of variables to 203 (Wright
and Farmani, 2001).

Design Criteria
Three design criteria have been specified:

1. the capital cost of the construction and the
HVAC system,;

2. the operating cost of the HVAC system over
a design day;

3. and the maximum thermal discomfort dur-
ing occupancy for the design day.

The capital cost has been calculated as a func-
tion of the building construction, (building weight,
glass type, and window area), and the physical size
of the coils and supply fan (coil width, height and
number of rows, and fan diameter).

The operating cost of the HVAC system is defined
here simply as the system energy cost over the
design days. The hot water supplied to the heat-
ing coil is considered to have originated from a
gas fired boiler and the chilled water from an elec-
tric powered chiller. A two part electricity tariff
has been applied, the high tariff occurring from
8:00am to 12:00pm. The gas is charged at a flat
rate over the day.

The zone comfort criteria are represented here by
the “predicted percentage of dissatisfied” (PPD).
It is not necessary to include a comfort criteria for
every hour of the day, it is only necessary to spec-
ify the maximum PPD occurring at any point in
the day (this representing the maximum discom-
fort). Hence one comfort criteria is specified for
each design day.

Design Constraints

The design constraints are derived from restric-
tions on the design of the coils, the performance
envelop of the supply fan, and the need to ensure
that the system has sufficient capacity to meet the
supply air temperature and flow rate setpoints.

The design of the coils is restricted by 3 con-
straints (giving 6 constraints for both coils). First,
the air face velocity is restricted to limit noise, and
moisture carry-over in the cooling coil. Second,
the water velocity per water circuits is limited to
prevent excessive pipe erosion. Finally, the coil
water circuits configuration is restricted to ensure
that the flow and return headers are on the same
side of the coil.

The supply fan is restricted to remain within
the manufacturers performance envelop by 4 con-
straints, the first two constraints restricting the
fan speed and the second two restricting the vol-
ume flow rate through the fan.

The ability of the system to meet the supply air
setpoints has been described by 2 constraints, one
on the error in the supply air temperature, and a
second on the error in the supply air flow rate.

The constraint functions are aggregated by a nor-
malized sum of their violations (Wright and Loose-
more, 2001), to form a single design criterion.

Evaluation of Trial Solutions

Each trial solution is evaluated by running a sim-
ulation of the building performance. The simula-
tion is based on a finite difference model of the
building (Ren and Wright, 1998), and a steady
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state model of the HVAC system (Wright and Far-
mani, 2001). The boundary conditions have been
taken from UK weather data (also in Wright and
Farmani, 2001).

RESULTS AND ANALYSIS

In order to investigate the performance of the
MOGA in identifying the pay-off characteristic
for building thermal design problems, two sub-
problems have been optimized. The first is for
a fixed building construction, but with the pay-
off characteristic between daily operating cost and
occupant thermal discomfort. The problem vari-
ables in this sub-problem are the control variables
and the HVAC system size variables. The charac-
teristic is identified for a medium weight construc-
tion, with low emissivity glass and 20% window
area. The system operation is only optimized and
simulated for a summer day.

The second sub-problem includes the building
construction in the problem variables, and seeks
to identify the pay-off characteristic between the
capital and running cost of the building. In this
sub-problem, the comfort criteria have been de-
fined as constraints, with a maximum PDD of 10%
allowed during the occupied period. In this opti-
mization, the operating cost is defined as the sum
of the energy cost for the three design days (win-
ter, “swing” season, and summer).

Operating Cost versus Thermal Comfort
Figure 4, gives the optimum pay-off characteristic
between the daily energy cost and occupant ther-
mal discomfort for a summer design day. As would
be expected, an improvement in thermal comfort
requires an increase in energy use.

Maximum PPD (%)
E

Daily Energy Cost (£)

Figure 4: Summer Day Energy Cost versus PPD
Pay-off

A comparison between Figures 5 and 6 illustrates
that the higher energy cost is driven largely by
changes in plant operation during the afternoon.

The solid lines on both figures represent the vari-
able bounds in the optimization; the dashed line
for the temperature setpoints is the ambient tem-
perature at that hour.
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Figure 6: Setpoints versus Energy Cost at 4:00pm

Figure 5 illustrates that the energy cost is prac-
ticably unaffected by the system operation at
10:00am, with the temperature setpoint being
equal to the ambient temperature and the flow
rate tending to the minimum allowable flow rate.
Conversely, the changes to both setpoints at
4:00pm (figure 6), are clearly contributing to the
increase in energy cost (the increase in flow rate
resulting in more fan power and the supply air
temperature demanding increasing levels of me-
chanical cooling). The trend of little change in
setpoints during the morning and increased cool-
ing in the afternoon is driven by the load charac-
teristic for the building. In general, the building is
comfortable during the morning, and it is not un-
til the afternoon that the thermal loads increase
to a level where mechanical cooling is necessary
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to maintain comfort (Wright and Farmani, 2001).
Hence, the greatest coupling between the thermal
comfort and the energy use occurs during the late
afternoon when the thermal loads are the highest.

It is informative to investigate the setpoint solu-
tions for the extreme points on the curve, since
this gives an insight to the extremes of system op-
eration and to some extent, the degree to which
the solutions are optimal. Figure 7 illustrates the
supply air setpoints for the lowest energy cost so-
lution (and the highest discomfort solution). It
would be expected that the lowest energy cost
would result from a setpoint schedule that de-
manded no mechanical cooling and set the flow
rate to the minimum allowable value. Figure 7
illustrates that this is the case for the solution
obtained from the optimization. Note that the
occupied period is between 8:00am and 5:00pm.
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The solution for the highest energy cost (and low-
est thermal discomfort) is somewhat harder to

predict, although it would be expected that en-
ergy use would increase during the afternoon as
the thermal load increases (hence more mechan-
ical cooling is required in order to minimize the
thermal discomfort). Figure 8 indicates that this
is the case, with the increase in thermal load first
being offset by an increase in flow rate. As the load
increases further however, it can only be offset by
a lower supply air temperature. This occurred at
1:00pm, the change in temperature setpoint be-
ing so marked that the supply air flow rate was
also reduced so as to not over-cool the building.
Note also that the supply air temperature during
the early part of occupancy is above the ambi-
ent temperature; this occurs since during summer
operation, the building maybe slightly cool dur-
ing the early part of occupancy until the thermal
gains increase. Hence the supply air temperature
is above cool morning ambient temperature so as
to not over-cool the building.

The optimality of the extreme points has not been
confirmed, although they appear to be consistent
with the perceived operation of the HVAC system.
This is examined further through a mid-range so-
lution, the solution closest to a 10% PPD.The so-
lution obtained from the MOGA has been com-
pared to the corresponding solution obtained from
a single criterion optimization for the same build-
ing (the procedure being described in Wright and
Farmani, 2001). This optimization was performed
to minimize only the energy cost, with the max-
imum thermal discomfort of 10% PPD set as a
constraint on the optimization.

The energy cost and the thermal discomfort are
very close for the two optimizations. The MOGA
led to an energy cost of £0.3125 and the single cri-
terion search, £0.3120; clearly an insignificant, if
not unquantifiable difference. The maximum ther-
mal discomfort was 9.99% PPD for the MOGA
search, and 9.96% for the single criterion search,
again very little difference.

Figure 9, illustrates the supply air setpoints for the
MOGA solution closest to 10% PPD. As expected,
the highest demand for mechanical cooling is in
the late afternoon, the temperature setpoints fol-
lowing the ambient temperature during the early
part of occupancy. Figure 10 illustrates the corre-
sponding solution obtained from the single crite-
rion optimization. The main differences between
the two solutions is that the single criterion opti-
mization has made some use of free cooling dur-
ing the off-peak period, whereas the MOGA solu-
tion has not. The MOGA solution is also using
more energy through a generally higher flow rate
setpoint, although this is compensated for by a
slightly higher supply air temperature setpoint in
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the late afternoon.
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Figure 9: Setpoints for 10% PPD (MOGA Search)
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It can be concluded, that for this example, the
MOGA is finding a near optimal pay-off character-
istic between the daily energy cost and zone ther-
mal discomfort. The extreme points on the curve
are consistent with the expected behaviour of the
system, and comparison with a solution found
from a single criterion optimization confirmed that
the difference in energy cost was unquantifiable.
As to which solution the “decision maker” should
choose, it would seem that the solution with the
lowest energy cost is a good solution, considering
that this corresponded to a 15.0% PPD, (this not
withstanding that the sensitivity of the solution
has not been investigated).

Capital Cost versus Operating Cost

The Pareto “optimal” solutions found for the cap-
ital versus operating cost pay-off are illustrated
in Figure 11. Only five solutions have been found,

x10°

Capital Cost (£)

. I . . I I I
32 34 36 38 4 4.2 4.4 4.6 4.8
Daily Energy Cost (£)

Figure 11: Capital Cost versus Energy Cost

with all of the solutions corresponding to a “heavy
weight” construction (the variation in cost being
due to a combination of HVAC system size and
window type and area). Inspection of the capital
versus energy cost solutions indicates that there
are very few non-dominated solutions for other
constructions. It can therefore be concluded that
the MOGA has found a good proportion of the
non-dominated solutions available, although the
Pareto set is sub-optimal.

Performance of the MOGA

The search results indicate that the MOGA has
the potential to find Pareto optimal solutions for
building design problems. It is however, prudent
to examine the computational effectiveness of the
algorithm in finding these solutions. In order
to determine the pay-off characteristic between
the energy cost and zone thermal discomfort, the
MOGA was run with a population of 200 sam-
ple solutions, and was allowed to run for a 1000
generations. It is common to allow a GA based
search to run for a fixed number of generations
since defining stopping rules for these stochastic
optimizers is difficult. The fixed number of gener-
ations could result in a total of 200,000 trial solu-
tions. However it is likely that the number of trial
solutions required to find the Pareto optimum set
was much less, since GA based optimizer exhibit
an exponential convergence towards the solution.
This is illustrated in Figure 12, in which starting
from an initial randomly generated population of
solutions, the search has converged to the region
of the optimum within 20 generations. It should
also be noted that all solutions in the initial pop-
ulation were infeasible, but that feasible solutions
was found within 4 generations.

CONCLUSIONS

The design of buildings is a multi-criterion opti-
mization problem, there always being a trade-off
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Figure 12: “Convergence” of the MOGA Search

to be made between capital expenditure, operat-
ing cost, and occupant thermal comfort. Such a
design process can be informed by the application
of multi-criterion decision making (MCDM) tech-
niques. The MCDM process has two elements, the
search for viable solutions, and the decision as to
which solution is the most desirable. This paper
investigates that application of a multi-objective
genetic algorithm (MOGA) in the search for a
non-dominated (Pareto) set of solutions to the
building design problem.

The results indicate that the MOGA was able to
identify the pay-off characteristic between daily
energy cost and zone thermal comfort. The
MOGA was also able to identify a pay-off char-
acteristic between capital cost and energy cost,
although inspection of the results suggests that
the solution set was incomplete and was therefore
sub-optimal. The MOGA exhibits fast progress
towards the Pareto optimal solutions, and in par-
ticular is able to find feasible solutions within a
very few trail solutions.

It can be concluded that multi-criterion genetic
algorithm based optimizers can be used to solve
multi-criterion building optimization problems,
particularly with respect to aiding the under-
standing of the characteristic behaviour of the de-
sign problem.
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