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Professor In this paper, several new set quality metrics are introduced that can be used to evaluate

. o the “goodness” of an observed Pareto solution set. These metrics, which are formulated

Department of Mechanical Enginegring, in closed-form and geometrically illustrated, include hyperarea difference, Pareto spread,

University of Maryland, accuracy of an observed Pareto frontier, number of distinct choices and cluster. The

College Park, MD 20742 metrics should enable a designer to either monitor the quality of an observed Pareto

solution set as obtained by a multiobjective optimization method, or compare the quality

of observed Pareto solution sets as reported by different multiobjective optimization meth-

ods. A vibrating platform example is used to demonstrate the calculation of these metrics
for an observed Pareto solution sefDOI: 10.1115/1.1329875

1 Introduction (Van Veldhuizer{5] calls a similar metric as a “hyperarea” met-

. . . . ric.) For this hyperarea difference metric, a closed-form formula is
Real-world engineering design problems often involve concur; ) yp

I ; : erived in this paper. In addition, five new set quality metrics are
rent optimization of several incommensurable and competing

- o . : troduced, together with their closed-form formulas. These are:
sign objectiveg1]. The solution to such problems is usually a se th rs s
{arall Pareto spread," objective Pareto spread, accuracy of the

of design alternati.ves. referr(.ad.to as a pareto opti.mal solution g%served Pareto frontier, number of distinct choices and cluster
[2]. Many multiobjective optimization methods exist that can b H set quality metrics ioresented in this paper can be used tb

used to generate Pareto solutions. Some of these methods can . .
tRRSess the goodness of an observed Pareto solution set for a given

gsgli r,[?é?] ;c:ca*l;’;}rgéc; sc?tl)ltjat:i?]n; Y.th')'gd?,”;g[ﬁ es rufhhaﬁsanllrjlz?bjlgg EHroblem without the knowledge of the true Pareto solution set.
y 9 9 The rest of the paper is organized as follows. Definitions for

Eﬁ£$%§$Utfon dsae{r?fg-sg\rsvzgcgéﬁaltz gﬁ?[iré?ln;fect)ri;ﬁgfgr:ﬁ;l:? arious terms with their graphical interpretation are given in Sec-
iactive o tigmization method obtains. Indeed. knowledae of thie" 2. In Section 3, several new set quality metrics are intro-
Y P : ’ 9 ced. Design of a vibrating platform is used in Section 4 to

ggcs)i(z;r:]eeismogn?tgro:rfgr;g?er';%rl?;oirﬁglrlcjntxllcénthsgtpse?%urlrgaigaeblci ?non_strate applicability of the set quality metrics. Finally, the
RPN e per is concluded with some remarks in Section 5.

multiobjective optimization method. It should also help the de-

signer compare and contrast the quality of observed Pareto solu-

tion sets as reported by different multiobjective optimizatio Definition and Terminology

methods. The goodness of an observed Pareto solution set, . . o . L
discussed in this paper, can be evaluated by “set quality” metricséishe formulation of a typical multiobjective design optimization

Relative to other areas in multiobjective optimization, very fe\HrOblem withm objective functions is shown below in E(L).

papers in the literature have reported on metrics for measuring the Minimize f(x)={f;(x), ... ,;i(X), ... fn(X)}

set quality of Pareto solutions. Zitzler and Thiele performed a )

comparative study of four different multiobjective evolutionary subject to: xeD (1)
methods using two metrics in order to assess the set quality OfD:{XEm”:gj(x)sO,j =1,... 3 h(x)=0k=1, ... K}

observed Pareto solution sets. The first metric was the “size of

dominated space” wherein they defined the size of the objectivéerex is a design vector containing components of design
space that is dominated by a set of Pareto solutions. Given twariables,f;(x) is thei'" objective function,g;(x) is the " in-

sets of Pareto solutions, they defined a second metric wherein éguality constraint anb,(x) is thek!" equality constraint. The set
each set a fraction of solutions that is dominated by the solutioofall design vectors which satisfies all constraints is denoted by
in the other set is calculated. Van VeldhuiZ&i (wherein further D. The n-dimensional space wherein its coordinate axes are de-
references can be found, e.g., Sch@} and Srinivas[7]) re- sign variables is referred to as the ‘variable space”. The
viewed and defined nine metrics to assess the quality of Paretalimensional space wherein its coordinate axes are design ob-
solutions. Under the assumption that the true Pareto solution sejeistive functions is referred to as the “objective space.”

known a priori, Sayir} 8] defined the metrics of coverage, unifor- Ideal Point and Max Point. Typically, the objective space is
mity and cardinality in order to assess the quality of a discretebounded from below for a minimization problem as in Eh. As
represented Pareto solution set. An assumption made in severawih, if each of the objective functions in E@) is individually

the aforementioned papers is that the true Pareto solution semimimized subject to the constraints defining the feasible design

known a priori, which is unlikely to be valid for engineering desspaceD, then an ideal pointp,=(f},f,, ... ,f.), can be ob-
sign optimization problems. ) ) tained in the objective space such that for any feasible pgint
In the present paper, the set quality metric named as the “sizec p there existd|<f,(x,), forall j=1,... m. In contrast, in

of dominated space” by Zitzler and Thielé] is slightly changed engineering design problems, there is an upper bound design point
and converted to what we call a “hyperarea difference” metrig, the objective space beyond which even feasible designs are not
tolerable. A maximum or a max point defines such a point in the

1, H . .

Corresponding author. , , o objective space agy=(f}',fy, ...t such that for any fea-
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Fig. 1 Good point (pg), bad point (p,), ideal point (p,), and
max point (p,,) in the objective space Fig. 2 Dominant, inferior, and non-inferior regions of a point

Good Point and Bad Point. An estimate of the ideal and the or more _objectives among all Pareto solutions. Extreme values

max point is referred to as a good and a bad point, respectively.rbfer tof, .., andf; ,;, that denote the maximum and minimum

the context of this paper, it is assumed that in the objective spagggled values of thé" objective function, respectively, where:
a good point estimates the ideal point from below while a b hy - e

point estimates the max point from above. In other wordsplet | ma=MaxP, (fi(d) and fi mn=minge (fi(xJ) for any x.e X,
=(f9,13,....,f%) and pp=(f},f5, ... f}) denote the good X=(Xi, ... Xqp). . . _ _

point and the bad point in the objective space, respectively. Then/nferior Region, Non-Inferior Region and Dominant Region
there should always exisﬁ?$f}, and f°=f" for all j of a Point. In a scaled objective space, an inferior region of a

=1,...m. Figure 1 illustrates the definition of the ideal pointPCiNt p; is defined as a hypgr—rectangie;](pj) such that for all
the good point, the max point and the bad point in the case of 6 < Sip(pi)’ there must bep,<p; and p>p,, or in other
design objectives. words:

Scaled Objective SpaceAll of the objective functions in the R F iy R -
objective space are scaled by Ep). so that the scaled good point f'(xk)>f'(ﬁ) and _f'(x")<1 for i“ =1 .!m. ©)
becomespy=(0,...,0) and thescaled bad point becomeswhere p,=(fi(xy),....fn(x)), P;=(F1(%), ... fm(X})),
pp=(1,...,1). pp=(1,...,1).
g The non-inferior regiorS,;,(p;) of a pointp; is defined as the
?(x )= f (%) — 5 2) complementary region of thg;’s inferior region in the scaled
7k fo_ 9 objective space. Let the spat@ea or volumgof the scaled ob-

) ] jective space be unitgwith the good point at the zero coordinate
The hyper-rectangle that is defined by the scaled good and the aght and the bad point at the onéhen the non-inferior region of
points in the objective space is referred to as a scaled objectiyg pointp; is:

space.
Inferior and Dominant Points. Let the two points; andxy in spaceS;i(p;)) =1—spaceSi(p;)) 4)

the variable space be denotedflyandpy in the objective space, sjmilarly, the dominant region of a poipt is defined as a hyper-

respectively. If there exists$;(x;)<f;(x,) for all j=1,... m, rectangleS;o(p;) such that for allp,e Syo(p;), there must be:

one can then state thaf>p, which means the poim; is domi- 5 ~ b “andp,<p,, or:
nant over the poinp,, or the pointp, is inferior to the pointp; . ! g

Pareto Solution Set, True Pareto Solution Set and Observed fi(xo)<fi(x;) and fi(x)>0 foralli=1,...m (5)
Pareto Solution Set.The solution(or a discrete representatioio — — — —
a multi-objective problem is a set of Pareto solutions: Where pi=(fi(x), ... .fm(xd), Py=(f1(x)), - . fm(X})), Pg
=(Xq, ... Xzp) in the variable space wherein for any poiqt =(0,...,0). . . . . . )
e X, there does not exist another poiqie D with k=, suchthat ~ AS shown in Fig. 2, the region that is defined by its corner
fi(x)=fi(x;) foralli=1, ... mwith strict inequality for at least POINtS: FpeApjF, is the dominant region of the poim; . The

onei. In a scaled objective space, the Pareto solution set is writt%ﬁg'?gg?oﬂgppbgcis éhEe iisnft?lgorr\c:r?gi?fgrgrtrheeg iré(:]ifgg . Finally,
= — L= . . i 9 ] } N
isl P (ply\}vith’pnp)ﬁeinwﬁﬁreeto{)ail n(ljr;(t))(é)r’ C.)f. I'Dgrné(t)éj)s)élutijons Inferior Region, Non-inferior Region and Dominant Region
In thls : ,;Tpér a PZEeto sglution 4ee., generally an infinite et of a Pareto Solution Set.For an observed Pareto solution set in
that truiI) Fr)ne;ats this definition is caliég a “trug” Pareto solutior;[he scaled objective space=(py, . - - ,Pag), the inferior region
y f the entire observed Pareto solution Sg(P) is defined as the

set. In contrast, a Pareto solution set that is obtained by a muE-. S A . . N
objective optimization method is referred to as an “observed_hiOn ofnt_gg individual Pareto points” inferior regidi(p;). |
dooonp:

Pareto solution set. In reality, an observed Pareto solution set is al
estimate(or a discrete representatijoof a true Pareto solution set. np

Pareto Frontier. In the objective space, the boundary that is Sin(P)= U Sin(pj) (6)
formed by a set of Pareto solutions is referred to as a Pareto j=1

frontier. This frontier defines a limit beyond which the Paretg . o inferior regiors,,(P) of an observed Pareto solution set

splutions cannot be further improved with respect to all ObjeCtiV(f? defined as the complement of its inferior region in the scaled
simultaneously.

Extreme Points and Extreme Values.Extreme points are objective space:
Pareto solutions that have maximum and minimum values for one spacésS,;(P))=1—space¢S;,(P)) (7
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fA D » used as an estimate of the true Pareto solution set. Sineg if
={pi}={pg}, then: space,(P,))=1. Hence, in a scaled objec-
Dorrinant tive space, Eq(9) becomes:

region of P
Doty Tt HD(P)=1-spaceS(P)) =spacéS,in(P)) (10)

region of P In practice, for anm-dimensional objective space, computing

EpBCpHpDE Non-inferior  the space of a set’s non-inferior region directly can be cumber-

regionof P some. According to Eq$6) and(10), computing the space of an
observed Pareto set’s inferior region can be converted to a prob-
lem of computing the union of the space formed by the inferior
regions for amp number of points. For instance, in a simple case
wherein there are three points in the observed Pareto solution set,

FolpyiGoF:

P=(py+) i.e., P=(p1,p2,p3). The union of the space of the inferior re-
o gions for these three points is:
2 4 B spaceS;,(P))
Fig. 3 Dominant, inferior, non-inferior, and observed pareto =spaceS;,(p1)USin(p2)USin(ps3))

frontier regions of a set P

=SpaceSi(p1)) +spaceS(pz)) +spaceS,(ps))
- SPaCeSn(pl) N Sin(pz)) _SpaCeSn(pl) N Sm(Ps))

Using the concept of a point's dominant region, a Pareto set's —spac N

dominant regiorSy,(P) is defined as the union of Pareto points’ PaceSin(p2) M Sn(Ps))

dominant regions;o(p;), j=1, ... np: +spaceS,(p1) N Sin(P2) NSin(P3)) (11)
np In general, Eq(12) can be used to calculate spasg(py)) for an

Sao(P)= U Suo(Pj) (8) mdimensional scaled objective space:
i=1 "
As shown in the Fig. 3, the regidip,Ap; .1 G p;F is the domi- spaceS = 1—f.(x 12
nant region of the se®, the regionDp?H pJJ-HCpLD is the infe- PaceSi(pi)) |1:[1 [1=1i(x0] 12)

rior region of the seP, and the regioe pBCp;, ;Hp;DE is the

non-inferior region of the se@. Calculating the intersection of the number of solution points’

inferior regions ¢(<np) can be accomplished by:
m
3 Quality Metrics : s
Q. Y . . . ) spac msin(pj) :H 1—maxfi(x;))
In this section, several set quality metrics are introduced. These j=1 i=1 j=1

quality metrics include hyperarea difference, overall Pareto

spread, k™ objective Pareto spread, accuracy of the observadi€refore

Pareto frontier, number of distinct choices and cluster. These met- =

: : o spaceS;,(P))

rics could be used, in the objective space, to assess the goodness o

of an entire observed Pareto solution set. np

:El spacean<Pr>>—rE<t spaceS,(P) NSy (Py)

(13)

3.1 Hyperarea Difference (HD). The hyperarea differ-
ence metric can be used to quantitatively evaluate the difference
between the size of the objective space dominated by an observed
Pareto solution set and that of the space dominated by the true +r<2t<u SpaceSin(Pr) N Sin(PY) N Sin(Py))
Pareto solution set. Note that the true Pareto solution set domi-
nates the entire solution space while an observed Pareto set may
only dominate a portion of the solution space. By comparing the - E
size of the dominatedor inferior) solution space of an observed
Pareto solution set with that of the true Pareto solution set, a + ... +(—1)"P*1spacéS,(P;) NSy, (Py)
guantitative measure is obtained as to how much worse an ob-
served Pareto solution set is when compared to the true Pareto XN ... .NS(Prp) (14)
solution set. Although in reality, the true Pareto solution set |
usually unknown, it should still be possible to identify whether o
not an observed Pareto solution set is worse than the true Pareto HD(P)=1-spaceéS;,(P))
set when compared to another observed Pareto set. .

With the concept of inferior region, hyperarea difference can be np
quantified as the space difference between the inferior region of =1- | E [(—1)”l
the true Pareto solution s& the inferior region of the observed r=1
Pareto solution se®. Let HD(P) represent the hyperarea differ-

spaceS,(Pr) NSin(P) NS (PN Sn(Ps))

r<t<u<s

athematically, the hyperarea difference becomes:

np—r+1 np—(r—1+1)+1

ence quantity, then: % 2 )
HD(P)=spaceSiy(Pt) — Sin(P)) k=t Ki=ki-att
=spaceSy(Py) ~spaceSiy(P)) ©) x o0 -,
wherein the term “space” refers to the “area” in a two-objective xk,:kﬁl ] 1= rjni)(fi(xkj)) (15)

space, or “volume” in a three or more objective space.
In reality the true Pareto solution set is hardly known a priori t&or instance, to calculate the hyperarea difference of an observed
the designer. In that case, the ideal point or the good point canPareto solution se®=(p4,p,,pP3), EQ. (15 becomes:
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HD(P)=1—spaceéS;,(P)) f1A

3 m 1
=1—[<—1)“12 I1 {1—ma><fi<xkj>>
j=1

ki=11i=1

Ulmin’meax)
E

Dp,CpyD: HRgb
3-2+13-(2-2+1)+1 m

+H(-1ZL Y > 11

K=1 k=K1 =1

2 _
1—max(fi(x))
=1

EAFBE:  HR,,

—

H, hy

3-3+13—-(3-2+1)+1

+H-DFL Y Y i ﬁ i 4

Ki=1  kp=Ki+1  kg=kp+1 i=1

(7lmax 7Zmin)
3
1—max(fi(x))

j=1

X

v

] y
— 5 — C

Pg
T U /i

1
—1—[ 11 {1—ma><fi<xkj>>

j=1

Fig. 4 Overall pareto spread and k" pareto spread

1-max(f(x))

j=1

h:h,
1 2 3 m s OC(P):W (19)
e = where h1:|flmax_f1min|v h2:|f2max_f2min|r Hl:|(pg)l

. . . . . —(Pp) 1| andH,=[(Pg)2— (Pb)2|. When comparing two observed
Using the hyperarea difference quality metric, EIp), differ- Pareto solution set®; andP,, the designer prefers the one with

ent observed Pareto solution sets can be compared with one an-:

o . : >
other quantitatively. In general, an observed Pareto solution %}Nlder spread. In other words, @S(P,)>0(P,), then the
e

with a lower hyperarea difference value is considered to be bet rUtlon setPy is preferred toP.
than the one with a higher hyperarea difference value. 3.2.2 K" Objective Pareto Spread0S,). The overall

32 Pareto Spread. The quality metrics under Pareto;garetospread metric is simple in the sense that by usinglEZy.

L : designer can have some knowledge about the overall range of
spread are o address the range of objective function values. ﬁ‘]ﬁ solution set. However, the overall Pareto spread does not pro-

observed Pareto solution set that spreads over a wider range of =} any insight into the range of the solution set with respect to

objective function values provides the designer with broader op- h individual desi biective. The" obiective Paret q
timized design choices. Pareto spread is quantified by two metri Ch individual design objective. objeclive Fareto sprea
S is introduced as an additional metric to the overall Pareto

. .o th . .

(slz)r(tag% overall Pareto spread, arid) the k™ objective Pareto spread metric aiming at quantitatively depicting the solution range
' with respect to each individual design objective. Kifeobjective

3.2.1 Overall Pareto SpreadOS). The overall Pareto Pareto spread metrik=1, ... m, is defined as:

spread metric quantifies how widely the observed Pareto solution —p -

set spreads over the objective space when the design objective OS.(P)= Imax™®; ((pi)i) —min®1((pi) )|

functions are considered altogether. This metric is defined as the Sd(P) [(Po)k— (Pg)k]

volume ratio of two hyper-rectangles. One of these rectangles is _ _

HRy, that is defined by the good and bad points with respect to =Imax'P, (f (%)) —min™ (f, (x;))] (20)

each design objective. Similarly, the extreme points for an o

served Pareto solution set defines the other hyper-rectangle th

denoted byHR.. The overall Pareto spread is defined as the rat

%'){Susing Eq.(20), the observed Pareto solutions shown in Fig. 4
s the # and 2 objective Pareto spread value, as follows:

of the area or volume dfiR., to that of HRy,: h, — —
0S(P)= H_:|flmax_flmin| (21)
OSP)= HRex(P) 17 '
S )_Tgb (A7) and
whereP refers to an observed Pareto solution set. By using the 0S,(P)= E:|?2max_?2min| (22)
objective values to interprédRq,(P) andHRy;,, Eq.(17) can be Ha
expressed as: Using thek™" objective Pareto spread(@S,) to compare two ob-
m served Pareto solution set, @S (P,)>0S(P,), one can con-
s . clude that the solution sét; is preferred tdP, with respect to the
p L np . 1 2
E |ma)Q:l( pk)l mlnk:l( pk)l| kth ob]ectlve spread.

oS(P)="

m 3.3 Accuracy of the Observed Pareto Frontier(AC).
I1 |(Pp)i = (Pg)il Once an observed Pareto solution §et., a discrete set in its
i=1 nature is obtained, its corresponding observed Pareto frontier can
be estimated. Knowledge of an observed Pareto frontier in addi-
P o1 P T f tion to the observed Pareto solution set may become important to
1 ImaXEalfi(x) 1= mine, [ i (18) a designer dealing with real-world engineering problems. The
more accurate the observed Pareto frontier is estimated, the more
For example, in a two-objective space shown in Fig. 4, the over&thowledge the designer gains about the nature of the Pareto de-
Pareto spread is calculated as: sign solutions and tradeoffs that exist between such solutions.

.
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According to the definitions for the inferior and dominant re- A Ps
gions of an observed Pareto solution &t (p4, ... psp), if f2
there exist additional observed Pareto solutions that are undetec-
ted, then such solutions have to be non-inferior with respect to the Tre
current observed Pareto solutions and thus could not belong to 9,
either the observed Pareto solution set'’s inferior regi8p(P))
or dominant region $3,(P)). Indeed, such undetected observed ”j .
Pareto solutions have to belong to a region that is left over from q
the scaled objective spacer after the inferior and dominant regions
are subtracted from it. Let the quantiyP(P) denotes the region 3
wherein an observed Pareto frontier falls into for an observed °
Pareto solution seR. The quantityAP(P) is defined as the fron-
tier approximation of the observed Pareto solutionfsethe im-
preciseness of the approximation comes from the fact that not all
the points in the region can be simultaneously on the Pareto fron-
tier. When the approximation gets more and more accurate to the Pg fi
level where it eventually becomes the true Pareto frontier, the
impreciseness will vanish. The quantiyP(P) is obtained as Fig. 5 Indifference region T,(q), as shown by a shaded grid
follows:

v

AP(P)=1-spaceS;,(P)) —spaceSy,(P)) (23)
Figure 4 gives a graphical interpretation of the me#i®(P) able to the designer. In other words, the more number of observed
which essentially is the spacarea or volumgdifference of non- Pareto solutions does not necessarily mean that the more is the
inferior and dominant regions for an observed Pareto soltRion number of design choices. In short, for an observed Pareto solu-
Calculating the value of the quantitP(P), as shown in Eq. tion setP=(py, ...,psp), only those solutions that are suffi-
(23), involving computing the volume of the Pareto solution segiently distinct from one another should be accounted for as useful
P's inferior and dominant regions. From the derivation for th&esign options.

hyperarea difference in Section 3.1, the Bt inferior region is: ~ Let the quantityu (0<w<1) be a number specified by the
designer, which can be used to dividerasdimensional objective

spaceSi,(P)) space into 4™ number of small grids. For simplicity, &/ is
o APor+l mp-(r—l+1)+1 taken to be as an integer. Each of the grids refers to a square
(—1)r+t Z (hyper-cube inm-dimension, the indifference regionT ),
4 o=t K= 1 wherein any two solution points; and p; within the region are
1 | 1-1 . L . o .
considered similar to one another or that the designer is indifferent
H to such solutions. Figure 5 illustrates the quantitandT ,(q) in

:r:
np m
x > 11

k=k,—1i=1

1-max(f(x))
j=1

(24) a two-dimensional objective space.
Let the quantityN T, (q,P) indicate whether or not there is any
point p,e P that falls into the regionT,(q). The quantity
NT,(q,P) will be equal to unity(or 1) as long as there is at least

=

and the seP’s dominant region is:

spaceéSy,(P)) one solutiqn poinipy falling into the indifference regiof ,(q).
= el FE-r—l+D+1 The qgantltyNT#(_q,P) V\_nII b_e equal to ;ero(or 0) as long as
P P there is no solution falling into the regiofi,(q). In general,
=2 (-1t kEl LA NT,(q,P) can be stated as:
r= = 1=K _1+
_ l 1 1 3peP peT, ()
n m =
X 11 {1mrin(f_i(xk.))H (25) NP =0 vpeP peeTu@ @)
ke=k—=1i=1 =1 : The quality metricNDC,(P), that is the number of distinct

Let AC(P) denote the value of the quality metric “accuracy ofchoices for a pre-specified value pf can then be defined as:

the observed Pareto frontier”. Then the quanttZ(P) is de- v=1  »=1 v-1
fined as: NDC,(P)= 2 2 2 NT,(q,P)
Im=0  15=017=0
AC(P)= —— (26) .
APCP) where q=(dy Az, ... Q) With == (28)

When an observed Pareto solution set is empty, the designer has

the least(zero amount of knowledge about the correspondingvhereinv=1/i. The pointq, located at any intersection ofgrid
Pareto frontier. In this case and according to E2fl): AP(P) lines in the objective space, has coordina®s,{,, . . . ,0m). AS

=1, andAC(P)=1. In the other extreme case when the observeliustrated at the beginning of this section, for a pre-specified
Pareto solution set contains all of the Pareto solutions belonginglue of ., an observed Pareto solution set with a higher value of
to the observed Pareto frontier, and the Pareto frontier is contirthe quantityNDC,,(P) is preferred to a set with a lower value.
ous, thenAP(P)=0, andAC(P)=«. When comparing two ob- . . .

served Pare(to )solution seté, 2he set with a highergvalue of thes-> Cluster(CL,). The quality metric of the previous sec-

quantity AC(P) is preferred to the one with a lower value. ion, i.e., the_ n_umber Of distinct ch_oice_B\IDCM), indicates the
number of distinct solutions that exists in an observed Pareto so-

3.4 Number of Distinct Choices(NDC,)). From a design- lution set. By using this quality metric alone, however, the cluster
er’s point of view, the more is the number of points contained iphenomenon can not be properly interpreted. For instance, sup-
an observed Pareto solution set, the more is the number of desigse for a pre-specified value pf the observed Pareto solution
options to choose from. However, if the observed Pareto solutioset P, provides 10 distinct solutions withNDC,=10. Suppose
are too close to one another in the objective space, then the variaw that there is also another observed Pareto solutidh.setth
tions between the observed Pareto solutions may be indistingui¢0 solutions wittNDC,,=10. It can be observed that the solu-
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tion setP, is not desirable by the designer since many of thglinimize f,(d;,d,,ds,b,L,M;)=—(/2L?)(El/u)°®
solutions in this set are likely to be clustered. Hence, the quality 3 3 3 3 3
(EN=(2b/3)[E d]+ E5(d5—dy) +Ez(d3—d3)]

metric clusterCL ,(P), is introduced:

(u)=2b[p1d;+po(dy—d;) + pa(dz—dy)]
7 Minimize f,(d;,d,,ds,b,L,M;)
NDC,(P) (29) e

. i =2b[c,d; +c,(dy—dy) +c3(d3—dy)]
whereN(P) is the number of the observed Pareto solutions. In tfg bi ) .
ideal case where every Pareto solution obtained is distinct, thaHPiect 101 911 L —2800<0 (30

CL(P)= NP

the value of the quantit¢L ,(P) is equal to 1. In all other cases, g,: d,—d;—0.15<0
CL,(P) is greater than 1. Also, the higher the value of the cluster gs: ds—d,—0.01=0
quantity CL,(P) is, the more clustered the solution set is, and 378 W2

hence the less preferred the solution set. 0.05<d;=<0.5

0.2<d,=<0.5

4 Example 0.2<d;<0.6
The purpose of this section is to numerically illustrate the pro- 0.35<b=<0.5
posed set quality metrics using a simple two-objective engineering 3<| <6

design optimization example: design of a vibrating platform. ) . ) ) .
Here,E; is the modulus of elasticity of materidd;, while p; is

4.1 Vibrating Platform: Problem Description With an Ob-  the density, and; is the cost. According to the material type
served Pareto Solution Set. This example was adopted fromVariableM;, the value of the parameteEs, p;, andc; are dif-
Messac[9] with some modifications. It consists of a pinnedjerent for different Iaygr material, as given in Table 1. It is as-
pinned sandwich beam with a vibrating motor on its top. Agumed that the material types for the three layers are mutually
shown in Fig. 6, the beam has five layers of three different mat@xclusive. In other words, the same material cannot be used for
rials. There is a middle layer and two sandwich layers. The diglore than one layer. However, the layers are allowed to have zero
tance from the center of the beam to the outer edge of each lajftigkness. The first three constraints refer to upper bounds on the
comprises three of the sizing design variables, d,, d;. The Mass o_f the beam, thickness of layer 2, and thickness of layer 3,
width of the beam b and the length of the beam L are the othgspectively, and they are labelgd throughgs. The last 5 con-
two sizing design variables. There are also three combinatorféfaints are the set constraints on the sizing varigles
variables for the material typel; , wherei=1,2,3, for the differ- _ By using a multiobjective optimization method.0], three
ent materials that can be used for each layer. Hence, there ar@ageto solutions are observed. The obseryed Rareto solution val-
design variables, which consist of 3 combinatorial variables féfes and the good and bad values are given in Table 2. These
the material type of the 3 layers and 5 sizing variables. values are scaled so that the good and bad points d@:Catand

The two design objectives are to maximize the fundamentgl1), respectively.
frequency of the beam, and to minimize the material cost. The
maximization of the fundamental frequency is converted to a4.2 Quality of the Observed Pareto Solution Set. In order
minimization form by minimizing the negative of the fundamentalo assess the quality of the observed Pareto solutiorPséte
frequency. The problem formulation is shown below: value of the quality metrics introduced in Section 3 are computed
in the scaled objective space.

The hyperarea difference metric refers to the area of the non-
inferior region of the observed Pareto set. By using Ed),
hyperarea difference can be calculated as follows:

Vibrating
Motor

HD(P)=1-[((1-0.26)X(1-0.68+(1—0.28 X (1-0.65
+(1-0.7)X(1—0.24)+((1—0.28 X (1—0.68
+(1-0.7%X(1-0.65+(1—0.7) X (1—0.69)
+((1-0.07%(1-0.69)]

=0.6186 (31)

Fig. 6 Vibrating platform example

Table 1 Layer material properties of the vibrating platform example

Material M;

2 (Kg/m’)

E; (N/m®

C; ($/volume)

i

100

1.6 x 10°

500

2

3,770

70 x 10°

1,500

3

7,780

200 x 10°

800

Table 2 Good and bad points and the three Pareto solutions in the vibrating

platform example

Pareto solution

Frequency

Cost

Scaled Frequency

Scaled Cost

P

-363.7

167.9

0.26

0.68

P2

-357.9

165.1

0.28

0.65

P

-265.1

123.8

0.70

0.24

Good point p,

-420

100

0

[

Bad point p},

-200

200

1

1
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Table 3 (a) The observed Pareto solution set P, by using I-SHOT [10]; (b) the
observed pareto solution set P, by using MOGA [10]

Pareto solution Frequency Cost Scaled Frequency Scaled Cost
Pi -400.734 184.260 0.088 0.843
P2 -396.671 182.937 0.106 0.829
3 -363.778 167.959 0.256 0.680
Ps -351.899 165.111 0.310 0.651
Ps -317.219 148.132 0.467 0.481
Ps -265.168 123.824 0.704 0.238
P -219.723 102,244 0.910 0.022
Good point pg -420 100 0 0
Bad point py, -200 200 1 1
Pareto solution Frequency Cost Scaled Frequency Scaled Cost
§2) -388.125 199.692 0.145 0.997
D2 -363.332 192.793 0.258 0.928
D3 -326.017 159.496 0.427 0.595
P -320.859 157.597 0.451 0.576
s -299.300 151.005 0.549 0.510
Ps -289.273 150.546 0.594 0.505
P7 -259.578 133.528 0.729 0.335
Ps -219.629 132323 0.911 0.323
Po -215.992 120.642 0.927 0.206
Good point py -420 100 0 0
Bad point p,, -200 200 1 1

By applying Eq.(18), the metric for overall Pareto spread is comference region, the observed Pareto solutions are regarded to be
puted: the same. By applying Eq$27) and(28), the number of distinct
design choices is obtained:

HRe(P =
OS(P)= %()z(m—o.zax(o.ssr 0.24=0.194 NDCo,=2 37
9b (32) By using Eq.(29), the value of the cluster metric is:
, , _— , N(P) 3
Since there are two design objectives, the metrics for fhelt CLo4(P) (38)

T NDCou(P) 2

Two sets of Pareto solutions, as shown in Table 3, are observed
by using two multiobjective optimization procedures reported in

jective Pareto spread and th&%Dbjective Pareto spread can be
calculated by using Eq20). They are:

0S,(P)=0.7-0.26=0.44 (33) Azarm et al.[10]. The graphical results are shown in Fig. 7. By
applying the suggested quality metrics, the quantitative informa-
0S,(P)=0.68-0.24=0.44 (34) tion about the goodness of these observed Pareto solutions can be

) _easily calculated. The quality results are shown in Table 4. From
To calculate the accuracy of the approximated Pareto frontigfig. 7, one can see that the observed Pareto solutio® sés
both the area of the Pareto set's inferior region and dominagibser to the ideal points and generally preferred by the designers.
region should be calculated first. The area of the Pareto solutipRis conclusion agrees with the values of the quality metrics.

set P's inferior region is spacgS,(P))=1-CD(P)=1  Asone can see from this example, the set quality metrics can be
—0.6186=0.3814. Its dominant region can be calculated by usingasily computed and applied for assessing the quality of any ob-
Eqg. (25) as shown below: served Pareto solution set. By using these quality metrics, the

SPacéSy,(P))=(0.26x 0.68+0.28x 0.65+ 0.7 0.24)
—(0.26X0.65+0.26x 0.24+0.28x 0.24)

200
+(0.26%0.24) o
180 \.\
=0.2906 (35) 170 A
-
According to Eq.23) and Eq.(26), the accuracy of the observed & 18° >
Pareto frontier is: g 1%
QO 140
130 -
AC(P)= ! = L 120 _1 —e.—P KSHOT | . L
AP(P) 1-—spaceS,,)—spaceéSy,) o —m—P MOGA | ~.
1 100 : Y
=~ 170381402906 3.05 (36) -420 -380 -340 -300 -260 -220 -180
Frequency (-Hz)
For a pre-specified value gi=0.1, the two-objective space is
divided into 100 indifference regions wherein within each indif- Fig. 7 Two sets of observed Pareto solutions
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Table 4 The quality of the observed Pareto sets P, and P,

Observed HD os [ AC NDC, CL,
Pareto (=0.1) (1=0.1)
Solution Set
08, 05,
P, 0.53 0.68 0.82 0.82 5.92 7 1
Py 0.66 0.62 0.78 0.79 8.77 7 1.29
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