
1 Introduction
Geographical problems often exhibit considerable complexity, especially when analyses
must extend across multiple scales, knowledge domains, and political perspectives.
Many such problems are also referred to as `wicked', ill-defined, or semistructured
because they contain components that are difficult or impossible to capture in a
mathematical formulation, and because their true nature is revealed only after deci-
sionmakers initiate attempts to solve them (Hopkins, 1984; Rittel and Webber, 1973).
Finding solutions to these problems is made even more difficult because decision-
makers are usually confronted with multiple, often conflicting, objectives (Current
et al, 1990; Ghosh and Rushton, 1987; Malczewski, 1999; Malczewski and Ogryczak,
1995). When addressing such problems, decisionmakers may find it difficult to derive
a single solution that is best in all objectives. Therefore, instead of being presented
with a single solution as a fait accompli, decisionmakers may prefer to explore a set of
alternative solutions (the solution space) by discovering trade-offs amongst objectives,
and to make decisions accordingly (Brill et al, 1990; Hopkins et al, 1982; Keeney and
Raiffa, 1993).

Many alternative generating techniques (for example, the weighting method and the
noninferior set estimation method) have been developed to help decisionmakers search
solution spaces (see Cohon, 1978; Hwang and Masud, 1979; Miettinen, 1999). These
methods are generally based on a technique called scalarization, which collapses
the multiple objectives to form a single objective (Sawaragi et al, 1985). Although
scalarization is effective in some circumstances, the approach has several significant
weaknesses: (1) it can only be applied to problems that are mathematically formulated;
(2) it is inefficient when applied to large problems; and (3) it may fail to find important
solutions (see Miettinen, 1999). As a consequence, builders of decision-support tools
require methods that overcome these limitations and efficaciously generate alternative
solutions to multiobjective decision problems. Evolutionary algorithms (EAs) can be
used to pursue such goals.

Using evolutionary algorithms to generate alternatives for
multiobjective site-search problems

Ningchuan Xiao, David A Bennett, Marc P Armstrong
Department of Geography, 316 Jessup Hall, The University of Iowa, Iowa City, IA 52242, USA;
e-mail: ningchuan-xiao@uiowa.edu, david-bennett@uiowa.edu, marc-armstrong@uiowa.edu
Received 11 May 2001; in revised form 2 November 2001

Environment and Planning A 2002, volume 34, pages 639 ^ 656

Abstract. Multiobjective site-search problems are a class of decision problems that have geographical
components and multiple, often conflicting, objectives; this kind of problem is often encountered and
is technically difficult to solve. In this paper we describe an evolutionary algorithm (EA) based
approach that can be used to address such problems. We first describe the general design of EAs
that can be used to generate alternatives that are optimal or close to optimal with respect to multiple
criteria. Then we define the problem addressed in this research and discuss how the EA was designed
to solve it. In this procedure, called MOEA/Site, a solution (that is, a site) is encoded by using a graph
representation that is operated on by a set of specifically designed evolutionary operations. This
approach is applied to five different types of cost surfaces and the results are compared with 10 000
randomly generated solutions. The results demonstrate the robustness and effectiveness of this EA-
based approach to geographical analysis and multiobjective decisionmaking. Critical issues regarding
the representation of spatial solutions and associated evolutionary operations are also discussed.

DOI:10.1068/a34109

mailto:ningchuan-xiao@uiowa.edu
mailto:david-bennett@uiowa.edu
mailto:marc-armstrong@uiowa.edu


EAs are a family of algorithms that share a set of common features. These
algorithms include evolutionary programming (EP) (Fogel, 1962; Fogel et al, 1966),
evolutionary strategies (ES) (see Rechenberg, 1965), genetic algorithms (GA) (Holland,
1975), and other derivative forms, such as genetic programming (GP) (Koza et al,
1999). EAs have been successfully used to search complex solution spaces in a variety
of application domains (Fogel, 2000; Goldberg, 1989; Holland, 1975; Michalewicz,
1996). More importantly, recent research has led to the development of robust EAs
that can generate alternatives in multiobjective solution spaces for decisionmaking (see
Coello, 2000; Knowles and Corne, 2000; Van Veldhuizen and Lamont, 2000; Zitzler
et al, 2001). This feature makes an EA more than just an optimizer because the quest
for an optimum optimorum is often akin to a pythonic search for grail when what is
required is a set of excellent, yet varied, solutions for decisionmakers to evaluate,
reject, or adapt to the problem milieu.

The purpose of this paper is to elucidate the important characteristics of an EA
approach to multiobjective spatial decisionmaking, with a focus placed on the geo-
graphical representation of solutions and evolutionary operators. The discussion is
illustrated with an example from a general category of geographical analysis: site-
search problems. In the next section we discuss challenges to the analysis of such
problems and define, in general terms, the multiobjective site-search problem that
is addressed in this research. Then in section 3 we describe the conceptual basis of
EA approaches to multiobjective problem-solving. In section 4 we describe an EA
approach for our site-search problem and provide results for several types of geo-
graphic data sets. The paper concludes with an evaluation of the results, a discussion
of their implications, and some suggestions about future work.

2 Site-search problems
The general goal of a site-search problem is to find a set of contiguous places (for
example, grid cells or polygons) that meet specific optimization objectives, such as
minimizing total cost and maximizing proximity to certain facilities (Arentze et al,
1996; Malczewski, 1992). This kind of problem is a general case for many real ones
(see Baerwald, 1981; Gilbert et al, 1985; Lane and McDonald, 1983; Minor and Jacobs,
1994). For example, a planner may wish to locate a site for the construction of
new residences where the alternative sites must be close to a facility (for example, a
shopping center) and are located such that construction costs are minimized.

The challenge to solving site-search problems lies in the difficulty of enumerating
the feasible solutions. An implicit enumeration strategy was employed by Gilbert et al
(1985), and more recently, Cova and Church (2000a; 2000b) devised an explicit method
to assemble sites. These methods analytically transfer the contiguity requirement of the
problem into constraints so that optimization techniques (in most cases linear pro-
gramming) can be applied. But some solutions [for example, noncompact shapes in
the approach of Cova and Church (2000a)] can be overlooked when these enumeration
approaches are used. In addition, these approaches also encounter computational
difficulties, especially when large, nonlinear, multiobjective problems are involved.

An evolutionary algorithm approach to the site-search problem is described by
Brookes (1998; 2001). In his approach, a seed cell is first selected and then grown
into a region under the control of a region-growing algorithm (Brookes, 1997), in which
a set of parameters (for example, size, location, number of arms, orientation) is used to
guide the growth process. The evaluation of a site or a region is based on two criteria:
its underlying suitability and its shape. A trade-off value is then used to convert these
two objectives into a single value. To search for a site, the parameters, as well as
the trade-off, are used to form an individual solution to which evolutionary operations
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are applied. Though this approach is effective, some shapes may not be captured by the
set of parameters used. In addition, treating the shape, as well as the compactness, of a
solution as an objective and incorporating it into the single overall suitability by using
a trade-off (that is, a weighting scheme) could preclude the consideration of solutions.
In fact, shape and compactness can be considered as constraints; they are not neces-
sarily the goal to be optimized, but are conditions used to control the search (see Cova
and Church, 2000b).

In this paper we describe a new evolutionary approach to address multiobjective
(cost and proximity) site-search problems. Here, a feasible solution (that is, a site) is
represented by using an undirected graph and a set of operations is designed to
manipulate the shape and location of sites during the search for possible solutions.
These operations evolve randomly generated initial solutions into a set of optimal
solutions to this type of problem; at the same time, the contiguity of a site is maintained.
The formal definition of the problem in the context of multiobjective evolutionary
algorithms is provided in section 4. Before that discussion, however, we turn to general
issues regarding multiobjective evolutionary algorithms as they are adapted to search
for solutions to site-search problems.

3 Multiobjective evolutionary algorithms
Researchers have used EA principles to solve spatial problems in numerous application
domains, such as environmental analysis (Bennett et al, 1999; Chambers and Taylor,
1996; Rubenstein-Montano and Zandi, 1999; Xiao et al, 2000), locational modeling
(Dibble and Densham, 1993; Hobbs, 1996; Hosage and Goodchild, 1986; Krzanowski
and Raper, 1999), routing (Guimara¬ es Pereira, 1996; Leung et al, 1998), and spatial
modeling (Diplock, 1998; Fischer and Leung, 1998; Openshaw, 1998; Wong et al, 1999).
However, the role of EAs in multiobjective spatial decisionmaking, not only as objec-
tive function optimizers, but as effective alternative generators, has not been fully
investigated. In addition, the geographical formulation and representation of feasible
solutions require further elaboration.

In EAs a solution space is mapped into a search space by encoding solutions as
individuals that collectively form a population. Each individual is assigned a fitness
value that is usually derived from the value of an objective function in an optimization
context. EAs are then executed iteratively and each iteration is called a generation.
In each generation, those individuals with the highest fitness values have a greater
probability of being selected and reproduced to form a new generation; evolutionary
operations (for example, crossover and mutation) are applied so that the overall fitness
of the population can be improved as the generations progress. A typical EA procedure
can be described as follows (see Michalewicz, 1996):

EA-Procedure()
t :� 0
Initialize population p(t)
Evaluate p(t)
while (not termination-condition) do

t := t+1
Generate p(t) from p(tÿ1)
Evaluate p(t)

od

Since each generation consists of a number of individuals (that is, solutions),
by specific design, a diverse set of solutions can be maintained (Goldberg, 1989;
Michalewicz, 1996). Because of this property we can devise EAs to search multiobjective
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solution spaces. Before discussing this, however, we introduce the concept of Pareto
optimality, which provides a theoretical perspective on the trade-offs that are made
among conflicting objectives.

3.1 Pareto optimum
The notion of a Pareto optimum is derived from Pareto's original work (first published
1896; see Pareto, 1971). To illustrate this concept, we consider a k-objective problem:

minimize f
!� x!� � �f1 � x!�, f2 � x!�, .::, fk � x!��T ,

subject to

gi � x!�5 0, i � 1, 2, .::, m ,

hi � x!� � 0, i � 1, 2, .::, p ,

where x! � [x1 , x2 , .::, xn ]
T is a vector of decision variables, gi is an inequality con-

straint, and hi is an equality constraint. A solution vector x!� � [x �1 , x
�
2 , .::, x

�
n ]

T is said
to dominate x! if and only if

8i fi � x!��4 f i � x!� ^ 9i f i � x!�� < f i � x!�, i 2 f1, .::, kg .
In practice, especially when objectives conflict, it is often impossible to find a single

optimum that dominates all other solutions. In contrast, we expect to encounter many
nondominated solutions. A solution x! is said to be Pareto optimal (also called non-
dominated, noninferior, or efficient) if no other solution dominates it; an example is
shown in figure 1(a), where points A, B, and C are three Pareto-optimal solutions. A
Pareto front is formed by nondominated solutions, where the decrease in one objective
causes an increase in at least one other objective; the goal of multiobjective optimiza-
tion is to generate feasible solutions that are on, or close to, the Pareto front. From
those alternatives that are considered to be good with respect to the components of the
problem captured by the model, decisionmakers can make the final decision. This
strategy is consistent with the approach espoused by Brill et al (1990) and Hopkins
et al (1982).
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Figure 1. A drawback of weighting schemes. (a) The solution space of a two-objective probem:
minimize f1 (t) and minimize f2 (t) where f1 (t) � t 2 and f2 (t) � (tÿ 2)2. The portion of the curve
between the two intercepts forms the Pareto front. (b) The search spaces of three weighting
schemes. When the objectives are equally weighted, the goal is to search for point B on the
Pareto front, and it is consequently almost impossible to find points A and C, which would be
optimal if alternative weighting schemes were selected.
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3.2 Multiobjective EAs
The classical approach to handling a multiobjective problem using an EA is to convert
it to a single-objective optimization, and this converted objective is then used as a
fitness function (Van Veldhuizen and Lamont, 2000). Although this approach will
certainly generate a set of solutions, it will not thoroughly explore the Pareto front.
That is, the search may be biased by the problem-conversion technique used (weight-
ing, for example). The goal, therefore, becomes one of searching for a single solution
on the Pareto front that dominates all other solutions, given the weighting scheme
selected (figure 1). Decisionmakers, however, often wish to consider more than a single
solution.

To overcome this drawback, Goldberg (1989) first proposed a selection strategy
based on Pareto dominance; it has subsequently been modified and improved by others
(Fonseca and Fleming, 1993; 1995; Srinivas and Deb, 1995). The key element in this
approach is Pareto sorting, as illustrated by the following pseudo-code:

Pareto-Ranking()
for i := 1 to popsize do /* initially, all unranked */

rank[i] := ÿ1
od
remain := popsize
curr rank := 1
while (remain > 0) do /* search all unranked individuals */

for i := 1 to popsize do /* non-dominated with curr rank */
if (rank[i] = ÿ1) do

if (not IsDominated(i, curr rank))
rank[i] := curr rank
remain := remainÿ1

od
od
curr rank := curr rank+ 1

od

IsDominated(ix, curr rank)
for i := 1 to popsize do

if (i 6� ix and (rank[i] = ÿ1 or rank[i] = curr rank))
do

k1 := 0 /* count # dominating obj */
for j := 1 to num objective do

if (obj[ix] [j] < obj[i] [j]) /* a dominating obj */
k1 := k1+ 1

od
if (k1 = 0) /* ix is dominated */

return TRUE
od

od
return FALSE

It should be noted that the notion of Pareto optimality in the above algorithm is
theoretically different from its original meaning. Here, Pareto optimum means the
current optimum, indicated by curr rank = 1, and consequently the nondominated
solutions only apply to the solutions that have been found in the current generation.
In each generation of an EA, the nondominated solutions of the current population

Evolutionary algorithms and multiobjective site-search problems 643



have high probabilities to be selected and recombined into the next generation. In this
iterative manner, the entire population can finally reach or approach the Pareto front.

In essence, the algorithm Pareto-Ranking() evaluates each individual according to its
current Pareto optimality. After sorting, the rank of each individual is used to calculate
its fitness value, which is then used in the selection procedure. When used in a single
objective problem, Pareto-Ranking() is a de facto, but inefficient, rank-based selection
procedure (Grefenstette, 1997).

In the course of evolving EA generations, a few local solutions may come
to dominate the population. This is a type of premature convergence, in which the
dominant solutions form only a limited portion of the Pareto front and, consequently,
the rest of the front is not evolved. To avoid this problem, several algorithms have been
designed to diversify the distribution of solutions in the solution space. These algo-
rithms include population gap (De Jong, 1975), crowding (De Jong, 1975), niche and
sharing (Beasley et al, 1993; Goldberg and Richardson, 1987), and Pareto niching and
fitness sharing (see Van Veldhuizen and Lamont, 2000). An implementation of a multi-
objective EA (MOEA) may use one or more of these diversification techniques as well
as the Pareto-sorting procedure described earlier.

MOEAs have been tested using a variety of artificially coined multiobjective func-
tions that are designed to evaluate their performance (Deb, 1999; Van Veldhuizen and
Lamont, 2000; Zitzler and Thiele, 1999; Zitzler et al, 2000), and they have also been
applied in several real-world problem contexts (see, for example, Fonseca and Fleming,
1998; Obayashi et al, 2000; Ritzel et al, 1994). It has been shown that MOEAs provide
a flexible approach to handling `̀ complex, highly nonlinear problems that more accu-
rately reflect the real world'' (Ritzel et al, 1994, page 1601). They can also be used to
provide solutions that have not been identified using conventional methods (Obayashi
et al, 2000). To support multiobjective geographical decisionmaking, however, additional
issues must be considered. In particular, in the next section we focus on geographical
representation strategies and the manipulation of the geographical characteristics of
solutions to achieve the goal of evolutionary optimality.

4 An MOEA approach to multiobjective site-search problems
To define the multiobjective site-search problem addressed in this paper, we assume
that the cost for each cell (for example, construction cost) is known a priori. That is,
there exists a cost surface represented in raster form so that the total cost for a site can
be calculated by the summation of the cost of each cell. We also assume that the
location of the facility is fixed and specified a priori. Let
i be an index of a cell contained in a site,
N be the number of cells that a site contains,
ci be the cost for cell i ,
xi be the x-coordinate (column) of cell i ,
yi be the y-coordinate (row) of cell i ,
x 0 be the x-coordinate (column) of the facility, and
y 0 be the y-coordinate (row) of the facility.
Then the objectives can be defined as:

minimize c �
XN
i � 1

ci , (1)

minimize d � 1

N

XN
i � 1

��xi ÿ x 0�2 � � yi ÿ y 0�2�1=2 . (2)
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The objective specified by equation (1) is to minimize the total cost for the site, whereas
the objective specified by equation (2) is to minimize the mean distance between the
site and the facility. The constraints (contiguity, inequalities, and equalities) are imple-
mented in the encoding of solutions and the design of evolutionary operations as
discussed below.

4.1 MOEA/Site: encoding and evolutionary operations
We name our approach MOEA/Site and its overall procedure is adopted from the
general EA-Procedure() for site-search problems:

MOEA-Site()
t := 0
Initialize population p(t)
Evaluate p(t) using equations (1) and (2)
while (not termination-condition) do

Pareto-Ranking(p(t))
t := t + 1
Select p(t) from p(tÿ1)
Crossover p(t)
Mutate p(t)
Evaluate p(t) using equations (1) and (2)

od

In this procedure, the crossover and mutation operations are implemented on repre-
sentations of individuals (that is, solutions). In a standard EA, decision variables are
encoded using binary strings (Holland, 1975), real numbers (Michalewicz, 1996), finite
state machines (Fogel, 2000), or parse trees (Koza et al, 1999). In practice, however,
representation is a flexible issue: it is common for EA designers to use a representation
strategy that is most suitable for their problems (De Jong, 1998); it has also been
argued that the best way to encode a solution is to use a natural representation (Fogel
and Angeline, 1997). Given the representation of solutions, the design of related
operations (crossover and mutation) becomes an essential task in the development
and application of EAs (Deb, 1997; Michalewicz, 1996).

Two basic requirements were considered during the design of our representation
schemes and related operations. First, solutions must be represented by a well-defined
data structure that can be efficiently manipulated by evolutionary operations. Second,
solution contiguity must persist through all generations of the evolutionary algorithm.
Consequently, we have constrained the set of acceptable crossover and mututation
operations to those that do not violate the spatial contiguity of solutions.

To accomplish this goal, we use an undirected graph to represent each feasible
solution [figures 2(a) and 2(b), see over]. In this approach, space is discretized into
raster cells: each vertex in the graph represents a cell in the space, and an edge
represents the connection between two cells (we consider 4-connected regions only).
Since each vertex has four edges and each edge connects to either another vertex, an
empty cell or a boundary [figure 2(b)], the graph can be implemented by using the data
structure illustrated in figure 2(c). In this data structure, each vertex has four pointers
that indicate its edges.

An initial set of feasible solutions is generated in three steps. First, a position (given
by row and column identifiers) is randomly chosen. Then, a rectangular block of cells is
built with the upper-left cell located at this position. For example, if a site consists of 9
cells, then a block of 3� 3 cells is set; for a 10-cell site, a single cell would be added to
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the first column of the fourth row. Finally, the shape of the solution is changed by
using crossover and mutation operations.

In the crossover operation, two parent solutions are selected from the current
population and are used to create a child solution. The child takes its position from
one parent and its shape from the other. In implementation, the operation would, for
example, simply move parent 2 to the position of parent 1 and then copy the new
parent 2 to the child (figure 3). Of course, the bounding rectangle of parent 2 must
not exceed the boundary of the grid after the move has been made (see figure 3).

For mutation, traditional methods, such as randomly changing a part of the
solution, may violate the contiguity constraint by breaking a graph into disjoint sub-
graphs. To avoid this, we developed two new mutation algorithms that change the
shape and location, but maintain the contiguity, of a feasible solution.

The basic strategy that is used to change the shape of a solution is to select a
moveable vertex at random and translate it to a new eligible place. To determine if a
vertex is moveable, we first enumerate its empty edges (value � ÿ1). If the sum is zero,
the vertex is not moveable [for example, vertex 6 in figure 2(b)]. All cells with three
empty edges are moveable [for example, vertex 0 in figure 2(b)]. If a cell has two empty
edges, it is moveable if there is a path that connects its two nonempty neighbors, but
not through the cell itself [in figure 2(b) vertices 1 and 2 are nonmoveable, whereas
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Figure 3. A crossover operation, in which parent 1 provides position information and parent 2
provides shape information. In this example, the upper-left corner of parent 2 is used to match
that of parent 1 to avoid the former exceeding the boundary; similar considerations are applied in
other cases.

646 N Xiao, D A Bennett, M P Armstrong



vertices 3, 5, 7, 8, and 9 are moveable]. The same path requirement also applies to those
cases in which a vertex has only one empty edge [in figure 2(b) vertex 4 is nonmoveable
because there is no path through vertices 2, 3, and 6]. To change the shape of a
solution, we select and remove a moveable vertex from the graph and then translate
it to an eligible place. An eligible place is an empty cell that is directly connected to the
graph but does not bridge two existing vertices [for example, the cell marked as X in
figure 4(a) is a bridging cell). This restriction prevents perforated solutions.

Given the above definitions, we designed the following algorithm to modify the
shape of a feasible solution to the site-search problem:

Morph-Mutate()
1. randomly select a vertex (p) that is moveable
2. remove p and update the connections of the neighbors of p
3. randomly find a vertex (pm) where

(p 6�pm),
(not adjacent(p, pm)),
((pe � contains(pm, ÿ1)) 6�null), and
(not bridging(pe))

4. set the mutual connection of p and pm
5. update the row and column number of p according to pm
6. update the connections of p and vertices adjacent to p
7. repeat steps 1 through 6 n times

The functions used in this algorithm are described in table 1 (see over).
Figure 4(a) shows a sequence of four moves, starting from an initial feasible solution.

From this example, it is clear that a moveable vertex can become nonmoveable, and vice

Dx

Dy

Moveable vertex

Nonmoveable vertex

Bridging cell

(a)

(b)

Figure 4. Mutations: (a) a sequence of four cell moves by Morph-Mutate(); (b) an illustration of
Location-Mutate().
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versa (vertex 3, for example). By applying the above algorithm, where in practice n
(in step 7) is a small random number from 1 to 5, we can alter a solution (that is, a site)
from its initial regular shape without breaking its contiguity.

Using Morph-Mutate(), we can obtain a large variety of site shapes, but the location
of a site is changed slowly because each iteration of this algorithm moves a site, at
most, only one cell. The second mutation algorithm was designed to mutate the
location of a solution by moving the entire graph to a new random position without
changing its shape [figure 4(b)]. In this algorithm, listed below, nrows is the total
number of rows, ncols is the total number of columns, and minr, maxr, minc, and
maxc represent the first and last row number, and the first and last column number
of a site, respectively.

Location-Mutate()
1. randomly select Dx and Dy, where

Dx 2 [-minc, ncols-maxc-1], and
Dy 2 [-minr, nrows-maxr-1]

2. add Dx and Dy to the column and row value of all vertices, respectively

The functions of the two mutation operations are complementary. On the one
hand, Morph-Mutate() works in an exploitative manner to adapt solutions to their local
cost `niches'. Location-Mutate(), on the other hand, plays an explorative role by placing
individual solutions into new locations that might otherwise be difficult to reach by
using either Morph-Mutate() or a crossover operation. The comprehensive effect of
these mutation and crossover operations, as well as the collective behavior of individ-
uals in the population, results in a thorough search of the solution space and, thus, a
set of diverse nondominated alternatives can be established.

In the implementation of MOEA-Site, we applied the technique called population
gap (De Jong, 1975) to ensure a diverse population. In this approach, a proportion
of the old population is directly copied to the new generation without any genetic
operations applied.

4.2 Results
We focused our analyses on a 128� 128 grid of cells, where a facility was located at
the center of the area; the number of cells for a site [N in equation (1) and (2)] was
fixed and set at 10. Five different types of cost surfaces were used: uniform random,
two fractals, a conical, and a deformed sombrero-like surface (table 2 and figure 5,
see over). In choosing these surfaces, we hoped to obtain a spectrum of spatial
variation from unstructured (random), to self-organized (fractals), to well-structured
(conical and deformed sombrero), so that we could examine the impact of spatial
structure on the solution space explored by using MOEA/Site. The two fractal
surfaces were used here with the specific intent of introducing complexity into the

Table 1. Functions used in algorithm Morph-Mutate().

Function Return value Conditions

adjacent(p, pm) true cells p and pm are adjacent
false otherwise

contains(pm, ÿ1) cell cell pm contains an empty edge
null otherwise

bridging(pe) true cell pe is a bridging cell [see figure 4(a)]
false otherwise

648 N Xiao, D A Bennett, M P Armstrong



Table 2. Summary of the five cost surfaces.

Surface Algorithm Parameters

Random Cij � random(0:0, 1:0) uniform random number
generator

Conical Cij � 1ÿ [f(i, j )=(2� 642�]1=2 f(i, j ) � (iÿ 64)2 � ( jÿ 64)2

i, j 2 (1, 2, .::, 128)

Deformed Cij � 0:0002f(i, j )� 4 exp [ÿ 0:01f(i, j )]� 0:00015ij f(i, j ) � (iÿ 64)2 � ( jÿ 64)2

sombrero ÿ3 exp [ÿ 0:01f(iÿ 50, jÿ 50)] i, j 2 (i, 2, .::, 128)
ÿ exp [ÿ 0:01f(i� 50, j� 50)]

Fractal 1 midpoint displacement (Saupe, 1988) d � 2:3 (fractal dimension)

Fractal 2 midpoint displacement (Saupe, 1988) d � 2:6
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Figure 5. Five cost surfaces: (a) conical, (b) uniform random, (c) deformed sombrero, (d) frac-
tal 1 (d � 2:3), and (e) fractal 2 (d � 2:6).
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Figure 6. The results of MOEA/Site, presented in five rows, for conical cost surface (a), random
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surface (e). For each row, the first row chart shows the trade-off between distance and cost, where
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marked, and their shapes are drawn in the rightmost column.
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solution processöthe surface can be generated to different roughnesses by changing
the fractal dimension, but the solution space cannot be analytically predicted.

MOEA/Site was run for 100 generations with 100 individuals. For each generation,
the ten best individual solutions (according to their Pareto rank) were reported and
then displayed on the corresponding surface. The results are shown in figure 6, where,
for each surface, the Pareto front and the distribution of all nondominated solutions are
displayed. For the sake of comparison, 10 000 random solutions are also drawn in
figures 6(b) ^ (e). These random solutions were generated by applying the Morph-Mutate()
algorithm to the initial solutions [see figure 4(a)].

The comparison between the random solutions and MOEA/Site solutions suggests
the clear effectiveness of the latter approach: MOEA/Site consistently captures the
nondominated solutions. It is also easily discerned, especially in figures 6(b), (d), and
(e), that the solution are evolving: the early generations are dominated by successive
generations. The concept of the evolution of solutions toward the Pareto front is
further elucidated in figure 7.

Figure 6(a) shows that, since proximity to the center is associated with an increase in
cost on the conical surface, a conflict exists between the two objectives, and the Pareto
front becomes a straight line. Theroetically, every feasible solution on the conical surface
is on the Pareto front, and this is demonstrated by the results shown in figure 6(a)
(we did not draw the random solutions in this case because they exactly match the front).
It can be noted that the solution process did not become trapped in any specific loca-
tion through all generations; to the contrary, solutions are well distributed throughout
the area.

For the random surface, it is notable in figure 6(b) that most of the nondominated
solutions are clustered close to the center in the area with the shortest distances to the
facility located there (for example, points B and C). This indicates the importance of
the center area where the facility is located. The interpretation of these results is
straightforward because the uniform randomness of the cost surface does not produce
significant bias over space and, therefore, those sites that are close to the center
become dominant.

The results for the deformed sombrero cost surface [figure 6(c)] indicate that non-
dominated solutions are found in three areas. The first is a cluster of solutions around
the center. The other two areas correspond to the two depressions [compare figure 5(b)]
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surface. The curves indicate the current front of corresponding generations.
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in the cost surface [A and B in figure 6(c)]. They are not dominated by the solutions
around the center because of their superiority in cost.

It is also interesting to note that the two fractal surfaces did not present a signifi-
cant obstacle to MOEA/Site as it attempted to find the Pareto fronts. This is indicated
by the width of the band of MOEA/Site generated solutions [formed by the points
marked as Àll gen' in figures 6(b) ^ (e)]. This width roughly reflects the number of
generations used to evolve solutions from their initial generation (mostly located at
the upper-right side of the band, see also figure 7) to the Pareto front. By using this
rule of thumb, it is clear that the random surface presents the greatest search challenge.

5 Discussion
In the experiments described in the previous sections, MOEA/Site was able to generate
the Pareto front for each multiobjective site-search problem considered. This suggests a
promising future for incorporating MOEAs into spatial decision systems (SDSS). As
we conducted this research, however, we also identified several areas in which further
work is needed and we discuss these issues in this section.

In our experiments, the implementation of MOEA/Site was made possible through
the design of an appropriate representation strategy and a set of evolutionary operators.
This `tuning to the problem' (Michalewicz and Fogel, 2000) approach, however, may not
be suitable for other problems. A search for a general and problem-independent spatial
solution representation strategy can be guided by perspectives derived from formal
theory (Casati et al, 1998; Fonseca and Egenhofer, 1999; Fonseca et al, 2000; Galton,
2001; Guarino, 1998). In particular, the work of Casati et al (1998) suggests that geo-
graphical entities can be formally represented by a set of ontological tools that are based
on mereology, topology, and location theory. In the context of spatial decision problems
(for example, site search), solutions can be expressed by using a formal ontological
framework, and then, the predicate symbols of formal expressions can be manipulated
by evolutionary operations. This approach is similar to genetic programming, where
computer programs, represented by formal languages, such as LISP, form a solution
space (see Koza et al, 1999). In a formal ontology-based MOEA, solutions to spatial
decision problems would be encoded and manipulated by using ontological tools.

One additional key to the successful implementation of an EA is constraint
handling (Michalewicz, 1996). In this paper we enforced only a contiguity constraint.
In future work on site-search problems, we will explore the interaction of additional
geometric constraints (for example, the compactness of feasible solutions) as well as
physical constraints (for example, the exclusion of water bodies) from the set of feasible
solutions. These constraints can be implemented by modifying the initialization pro-
cess, moveable ^ nonmoveable conditions, and eligible ^ noneligible conditions in the
evolutionary operations discussed earlier. For example, to consider the compactness
of a feasible solution, we can restrict the definition of moveable cells to only those with
three empty edges.

Performance is a pragmatic issue in EA implementations and improvements can
be achieved in many ways including expediting convergence, and reducing the time
required to spawn new generations. In our example, two additional factors may play
important roles in the convergence of solutions: changes in their shape and location.
It would be useful to determine which element provides a greater contribution to the
emergence of the Pareto front. Such knowledge could be used to design crossover
and mutation operations in which the more important factor would be given a higher
priority, and consequently convergence would be expedited. To do this, solution
shapes must be classified and measured (see, for example, Wentz, 2000), and the
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relative contribution from shape change and location change would then need to be
systematically analyzed.

Geographical models are often computationally intensive (Armstrong, 2000).When
MOEAs evaluate the fitness of individuals, their iterative nature requires considerable
computation power when large, realistic problems are addressed. EAs exhibit latent
parallelism, however, and this feature can be exploited by using parallel architectures
(see Cantü-Paz and Goldberg, 2000; Marco and Lanteri, 2000; Martin et al, 1997).
Besides speedup, a diverse population of solutions can be obtained through the evolu-
tion of subpopulations of EAs on interacting, but independent, processors (Herrera
and Lozano, 2000). This is especially important for MOEA because the maintenance
of population diversity is central to the generation of alternatives in multiobjective
solution spaces.

Finally, to improve human-guided multobjective spatial decisionmaking, MOEA-
generated points on or near the Pareto front must be linked visually to the values of
their corresponding decision variables [for example, sites in this research and raster
maps in Bennett et al (1999)]. In such a fashion, human pattern recognition, and un-
modeled aspects of problems can enter into the analysis process, and decisionmaking
can be more effective (see Armstrong et al, 1992; Bennett et al, 1999; Densham, 1994;
Malczewski et al, 1997).

6 Conclusions
In this paper we have illustrated the application of an evolutionary algorithm approach
to multiobjective spatial decisionmaking, using site-search problems as motivating
examples. In our experiments, a graph representation is used to ensure that the spatial
properties (contiguity in this case) of the solutions are maintained. Based on this
representation strategy, and the evolutionary algorithms we designed and implemented,
on each test cost surface, MOEA/Site successfully captured the nondominated solu-
tions and generated the Pareto front. These results suggest that MOEA can be used to
generate alternative solutions and provide support to decisionmakers when they must
cope with the complexity of finding solutions to multiobjective problems.
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