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Abstract  Evolutionary multi-objective optimization 
(EMOO) finds a set of Pareto solutions rather than any 
single aggregated optimal solution for a multi-objective 
problem. The purpose of this paper is to describe a 
newly developed evolutionary approach --- Pareto-
based multi-objective differential evolution (MODE). 
In this paper, the concept of differential evolution, 
which is well-known in the continuous single-objective 
domain for its fast convergence and adaptive 
parameter setting, is extended to the multi-objective 
problem domain. A Pareto-based approach is proposed 
to implement the differential vectors. A set of 
benchmark test functions is used to validate this new 
approach. We compare the computational results with 
those obtained in the literature, specifically by strength 
Pareto evolutionary algorithm (SPEA). It is shown that 
this new approach tends to be more effective in finding 
the Pareto front in the sense of accuracy and 
approximate representation of the real Pareto front 
with comparable efficiency.  

1. Introduction 

Many engineering applications involve multiple 
criteria, and the exploration of Evolutionary Multi-
Objective Optimization (EMOO) to solve this class of 
problem has increased in recent year (Coello, 1999). The 
ideal solution for a multi-objective problem is the one that 
optimizes all criteria simultaneously. However, such an 
ideal solution can never be obtained in practical 
applications where outcome criteria may be fundamentally 
inconsistent. Optimal performance according to a single 
objective, if such an optimum exists, often implies 
unacceptably low performance in one or more of the other 
objective dimensions, creating the need for compromise to 
be reached. 

Evolutionary algorithms inherently explore a set of 
possible solutions simultaneously. This characteristic 
enables the search for an entire set of Pareto optimal 
solutions, at least approximately, in a single run of the 
algorithm, instead of having to perform a series of separate 

runs as in the case of traditional mathematical 
programming techniques. Additionally, evolutionary 
algorithms are less susceptible to problem dependent 
characteristics, such as the shape of the Pareto front 
(convex, concave, or even discontinuous), and the 
mathematical properties of the search space, whereas these 
issues are concerns for mathematical programming 
techniques for mathematical tractability.  

Since the first practical approach to multi-criteria 
optimization using EAs, Vector Evaluated Evolutionary 
Algorithm (VEEA), was proposed by Schaffer (Schaffer 
1985; Schaffer & Grefenstette, 1985), there have been 
several other versions of evolutionary algorithms that 
attempt to generate multiple non-dominated solutions such 
as Fourman (1985), Kursawe (1991), Hajela and Lin 
(1992). However, none of them makes direct use of the 
actual definition of Pareto optimality. The concept of 
Pareto-based fitness assignment was first proposed by 
Goldberg (1989), as a means of assigning equal 
probability of reproduction to all non-dominated 
individuals in the population. This method consists of 
assigning rank 1 to the non-dominated individuals and 
removing them from contention, then finding a new set of 
non-dominated individuals, ranked 2, and so forth.  

Fonseca and Fleming (1993) have proposed a multi-
objective genetic algorithm (MOGA) using a slightly 
different scheme, whereby an individual’s rank 
corresponds to the number of individuals in the current 
population by which it is dominated. Non-dominated 
individuals are, therefore, all assigned the same rank, 
while dominated ones are penalized according to the 
population density in the corresponding region of the 
trade-off surface. Srinivas and Deb (1995) have 
implemented a similar sorting and fitness assignment 
procedure, called NSGA, but based on Goldberg’s version 
of Pareto ranking. Horn et al. (1994) proposed niched 
Pareto genetic algorithm (NPGA) using a tournament 
selection method based on Pareto dominance. The more 
recent algorithms include NSGA-II (Deb and Goel, 2002), 
and the strength Pareto evolutionary algorithm (SPEA) 
algorithm (Zitzler and Thiele, 1999).  



Differential Evolution (DE) is type of single-
objective evolutionary algorithm proposed by Storn and 
Price (1995) for optimization problems over a continuous 
domain. The main motivation of this approach is to adapt 
the search steps while the evolutionary algorithm is 
proceeding. It has been empirically shown that this simple 
strategy turns out to be effective in terms of convergence 
accuracy and speed. In our previous research (Xue, 
Sanderson, and Graves, 2003), the DE approach to single-
objective problem has been extended to solve discrete 
problems, and further to discrete multi-objective 
optimization problem. Abbass el al (2001) and Madavan 
(2002) independently studied the extensio of differential 
evolution to multi-objective optimization problem in the 
continuous domain, though applying different approach 
from that described in this paper.  

This paper is organized as follows: section 2 is a 
simple introduction about multi-objective problem and the 
Pareto optimal solutions; section 3 briefly introduces the 
differential concept and one particular implementation for 
single-objective problem; section 4 elaborates the main 
idea of the Pareto-based differential evolution for multi-
objective optimization and its operators; section 5 
describes the measures we used to evaluate the algorithm 
performance; section 6 provides a briefing to the set of 
benchmark functions and the experimental results using 
the newly developed approach; and section 7 is the 
conclusion.  

2. Multi-Objective Optimization 

In mathematical notation, a multi-objective 
optimization problem (MOOP) can be loosely posed as 
(without loss of any generality, minimization of all 
objectives is assumed):  
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where ( ) ( ){ }| 0, 0h gΩ = = ≤x x x , and x  is the decision 

variable in nℜ ; , ,Z h g  are vector functions among 

which : n kZ ℜ → ℜ , 1: n mh ℜ → ℜ , and 2: n mg ℜ → ℜ ; k

is the number of objectives, 1m  and 2m  are the number of 
equality and inequality constraints, respectively.  

In practical applications, there is no solution that can 
minimize all of the k  objectives simultaneously. As a 
result, multi-objective optimization problems tend to be 
characterized by a family of alternatives that must be 
considered equivalent in the absence of information 
concerning the relevance of each objective relative to the 
others. These alternatives are referred to as Pareto optimal 
solutions (as shown in Figure 1), which have the same 

meaning with efficient or non-inferior solutions in 
decision space. The corresponding mapped points in 
objective space are usually referred to as non-dominated 
solutions. A Pareto optimal solution is defined as follows: 

Definition: The vector ( )ˆZ x  is said to dominate 

another vector ( )Z x , denoted by ( ) ( )ˆZ Zx x≺ , if and 

only if ( ) ( )ˆi iz z≤x x  for all { }1, 2, ,i k∈ �  and 

( ) ( )ˆj jz z<x x  for some { }1,2, ,j k∈ � . A solution 
∗ ∈ Ωx  is said to be Pareto optimal solution for MOOP if 

and only if there does not exist ∈ Ωx  that satisfies 

( ) ( )Z Z ∗x x≺ .

Figure 1: Illustrative example of a multi-objective 
minimization problem with two objectives, 1z  and 2z , that 
are plotted in the criterion space mapped from the decision 
space. The bold curve indicates the Pareto front. In this 
case, the Pareto front is convex.  

3. Differential Evolution 

Differential Evolution (DE) is a type of evolutionary 
algorithm proposed by Storn and Price (1995) for 
optimization problems over a continuous domain. DE is 
similar to ( ),µ λ  evolution strategy in which mutation 

plays the key role. There are several variants of the 
original differential evolution. The particular one 
described below follows Joshi and Sanderson (1999a, 
1999b). The main operators that control the evolutionary 
process are the mutation and selection operators. The 
following paragraph provides a brief description.  

The algorithm follows the general procedure of an 
evolutionary algorithm: an initial population is created by 
random selection and evaluated; then the algorithm enters 
a loop of generating offspring, evaluating offspring, and 
selecting individuals to create the next generation. In DE, 
for a particular individual ip  in the parent population, the 

following mutation operator is used to create its offspring: 
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where bestp  is the best individual in the parent population, 

[ ]0,1γ ∈ represents greediness of the operator, and K  is 

the number of perturbation vectors, F is the scale factor of 



the perturbation, k
ai

p  and k
bi

p  are randomly selected 

mutually distinct individuals in the parent population, and 

ip′  is the offspring that is generated; γ , K , and F  are 

the parameters associated with the algorithm. The DE 
approach is illustrated schematically in  Figure 2.

The basic idea of DE is to adapt the search step 
inherently along the evolutionary process in a manner that 
trades exploitation off exploration. The mutation operator 
consists of two components: the differential and the 
perturbation. The differential part makes usage of the 
information contained in the best solution and lead other 
solutions in the population toward the best one. On the 
other hand, the perturbation part introduces random 
variation though such variation adapts in the evolutionary 
process. At the beginning of the evolution, the 
perturbation is large since parent individuals are far away 
to each other. As the evolutionary process proceeds to the 
final stage, the population converges to a small region and 
the perturbation becomes small. As a result, the adaptive 
search step enables the evolution algorithm to perform 
global search with a large search step at the beginning and 
refine the population with a small search step at the end. 
The selection operator in DE selects the better one 
between the parent and its offspring by comparing their 
fitness value: 
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Figure 2: Illustrative example of differential evolution for 
single objective optimization in a 2-dimention decision 
space. The darker area indicates better fitness value. The 
thick solid arrow represents the differential vector, and 
dashed arrows represent the perturbation vectors. The 
individual ip  creates its offspring ip′  after the operation.  

4. Multi-Objective Differential Evolution 

As a general evolutionary algorithm, this MODE approach 
has three major components, those are mutation, Pareto-
based evaluation, and selection. These components will be 
described in details in this section.  

4.1 Mutation operator 

In order to mimic the mutation operator in the DE 
approach described in Section 3, we need to define two 
kinds of vectors: the differential vector and the 
perturbation vectors. In the DE for single-objective 
problem, the differential vector is defined as the vector 
between the best individual and the individual under 
operation. This best individual is usually the individual 
with highest fitness value in the population. However, in a 
multi-objective domain, the purpose of evolutionary 
algorithm is to identify a set of solutions, the so called 
Pareto optimal solutions. Thus, the efforts to adapt 
individuals toward a single solution is contradictive to the 
original desire of finding the whole set of Pareto solutions. 
In the proposed MODE, a Pareto-based approach is 
introduced to implement the selection of the best 
individual for the mutation operation of an individual. As 
a by-product of the evaluation and selection operation, the 
non-dominated solutions (Pareto optimal solutions) D  in 
the population are identified at each generation of the 
evolutionary process. In order to apply the mutation 
operation to an individual, ip , we need to examine 

whether the individual is dominated or not. If this is a 
dominated individual, a set of non-dominated individuals, 

iD , that dominates this individual can be identified. A 

“best” solution, bestp , is chosen randomly from the set iD .

The vector defined between bestp  and ip  becomes the 

differential vector for the mutation operation. If the 
individual is already a non-dominated individual, the bestp

will be the individual itself. In this case, the differential 
vector becomes 0 and only perturbation vectors play 
effect. The major difference from single-objective DE is 
that the best individual is varying rather than fixed for the 
reproduction of all individuals in the population. This is in 
accordance with the ultimate purpose of finding the whole 
Pareto optimal set.  

Figure 3: In order to realize the mutation operator of a 
dominated individual in current generation, those 
individuals in the first rank that dominate this individual 
are identified and the differential vector is defined; a non-
dominated individual employs only the perturbation part 
of the mutation operator. 
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The perturbation vectors are defined by randomly 
chosen individual pairs from the parent population. Once 
the differential vector and the perturbation vectors are 
defined, the mutation operation can be formulated in the 
similar way as in the single-objective DE. Assuming the 
natural chromosome representation is applied, that is, each 
allele represents one decision variable. We use this kind of 
representation in our implementation of MODE and 
conduct the experiments in this paper. Thus, each allele of 
an individual will undertake the following procedure with 
certain mutation probability mp  (reader can regard an 

individual as a vector, in which the operation applies to 
each component of the vector):  
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where bestp  is the best individual in the Pareto sense 

chosen from the parent population, [ ]0,1γ ∈  represents 

greediness of the operator, and K  is the number of 
perturbation vectors, F  is the factor the scale the 
perturbation, k

ai
p  and k

bi
p  are randomly selected mutually 

distinct individuals in the parent population, and ip′  is the 

offspring. This approach is illustrated in the objective 
space for a bi-objective problem as shown in Figure 3. In 
this particular case, the dominant set, iD , of individual ip

contains three individuals, one of which would be the 

bestp  for the mutation operator of individual ip , and the 

two dashed arrows are the perturbation vectors. For 
individual jp , which is a non-dominated solution, only 

the perturbation part is applied. These perturbation vectors 
are possibly different from the ones applied on individual 

ip  since they are defined independently for each 

individual. It should be noted that the operation is applied 
to decision variables in the decision space though this 
concept is shown in the objective space in Figure 3 for the 
convenience of illustration.  

4.2 Pareto-based evaluation 

The Pareto-based rank assignment (Goldberg, 1989) 
is employed as the way of evaluating individuals. Rank 1 
is assigned to the non-dominated individuals and thus 
indicating highest fitness values in the population and 
these assigned individuals are removed from contention. A 
new set of non-dominated individuals in the rest of the 
population are ranked as 2 with next highest fitness values, 
and so forth until all of the individuals in the population 
are assigned a rank. In order to maintain multiple optimal 
solutions, the fitness sharing technique (Goldberg, 1989) is 
usually employed in MOEA in the literature. In this 
method, distance (usually Euclidean distance in either 
objective space or decision space) is calculated between an 
individual to all other individuals in the same rank. A 

predefined sharing radius is used as the boundary to count 
the number of individuals within the boundary. The more 
individuals counted in the boundary for an individual, the 
heavier the fitness value of this individual is panelized. 
The difficulty with this approach is to determine the value 
of the fitness sharing radius, which is dependent to the 
nature of the objective or the decision space of the 
problem.  

In NSGA-II (Non-dominated Sorting Genetic 
Algorithm II), Deb et al. (2002) introduced another way to 
realize the fitness sharing idea. The approach has similar 
initiatives to the previous fitness sharing techniques. The 
individuals within each rank that reside in the least 
crowded region in that rank are less penalized. Certain 
crowding distance metric is calculated to determine the 
within-rank solution density. A crowding distance metric 
for a particular individual is obtained by calculating the 
summation of normalized distance along each objective 
dimensions between the two individuals within the same 
rank that define the smallest interval of this individual in 
that objective dimension. Let ( 1,2 )jB j k= �  be the 

boundary for objective j , which can be roughly estimated 

by examining the solutions in the first rank of the 
population, specifically the difference between maximum 
and minimum along dimension j  in the first rank defines 

the corresponding boundary for that objective dimension. 
The crowd distance metric can be formulated as:  
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where 
l

j
iz  is the thj  objective value of the individual li ,

this value is the next smaller value to individual i  for the 
thj  objective; similarly, 

u

j
iz  is the thj  objective value of 

the individual ui , this value is the next greater value to 

individual i  for the thj  objective; k  is the total objectives 

of the problem. Such a crowding distance metric is used to 
estimate the density of solutions around such particular 
individual. Smaller iCr  indicates individual i  is located in 

a dense region. This crowd distance metric is used to 
penalized the fitness of the individual, the denser area that 
the individual is located, the more penalty is applied.  

4.3 Selection operator 

The original NSGA-II applies a ( )µ λ+  selection 

strategy, that is, both parents and offspring are put together 
to compete for entering into the next generation. In the 
selection procedure, this approach incorporates an elite-
preserving strategy. The individuals are first compared 
using their Pareto ranks. The individuals with higher rank 
are selected into the next population. If the Pareto ranks 
ties, the crowd distance metric is compared to fill the 
population of next generation. As pointed elsewhere (Xue 
et al., 2003), this strong elitism strategy does not produce 



good results. Using this fitness evaluation and selection 
strategy, any solution in a higher rank would be selected 
for sure whatever its within-rank density is. The author 
(Deb and Goel, 2001) also points out the importance to 
keep diversity among ranks to allow individuals in lower 
rank to enter the next generation.  

In the MODE, there is another parameter crowdσ  to 

specify how close the solution is to its surrounding 
solutions in objective space in order to reduce its fitness to 
a very small value. This strategy could prevent very 
similar individuals from entering the next generation, 
which might lead to premature convergence. In shortly, 
the MODE based only the fitness ranking to select the best 
N  individuals as the next generation from both parents 
and offspring produced by the reproduction operator. 

Comparing to the fitness sharing techniques 
proposed by Goldberg (1989), the crowd distance metric 
can be calculated without specifying any parameters in 
ahead. Although a new parameter crowdσ  is introduced in 

the proposed MODE, this is not that sensitive as the 
sharing radius to the performance of MOEA since the 
purpose is to prevent very similar individuals. In our 
experiments, a small value of crowdσ  is good for different 

situations.  

5. Performance measure of MOEA 

In recent years, there has been research works on 
MOEA and the comparisons of quantitative performance 
measures on a common comparative basis. (Fonseca and 
Fleming , 1996; Zitzler, et al., 2000). There is no general 
agreement on the criteria to evaluate performance of 
MOEA, commonly used criteria include (1) the distance of 
the computed Pareto set to the theoretical Pareto set; (2) 
the uniform spread of solutions over the Pareto front; (3) 
the ratio of the Pareto solutions obtained using one 
algorithm to those obtained using another algorithm for 
relative performance between two algorithms. 

The distance measurement can be formulated as 
follows: let Z  be the computed Pareto set and Z  be the 
theoretical Pareto set in the objective space, the average 
distance of the computed Pareto set to the real Pareto set 
can defined as: 

{ }1
: min ,

z Z

D z z z Z
Z ∈
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where ⋅  defines the 2-norm of a vector, and ⋅  represents 

the cardinality of a set.  

The performance measure of the MOEA itself has 
multiple criteria: how close the computed Pareto front is to 
the real Pareto front; how well the Pareto solutions are 
evenly distributed along the Pareto front. The overall 
purpose of MOEA is to obtain a set of discrete solutions 
(individuals in the population of MOEA) to best represent 

the real Pareto front. The distribution measure proposed by 
Zitzler, et al (2000) basically considers the proportion of 
the computed Pareto solutions that have smaller distance 
metric than a pre-defined distance metric σ . However, 
this measure cannot capture the situations when solutions 
are too far from each other resulting in information loss 
(loss of large potions of tradeoff solutions of the problem). 
In this research, we have used the distance criterion to 
evaluate the performance of a MODE.  

We use the quantitative measure (the distance metric) 
as the first criterion to evaluate the performance of the 
algorithm. The second and the third criteria are visually 
evaluated by looking at the plotting of the computed 
Pareto front compared to the real Pareto font. The 
comparison with the results obtained by SPEA is based on 
both of the distance metric and the visual plotting.  

6. Experimental Results 

The proposed MODE is applied to solving a suite of 
benchmark functions proposed in Zitzler et al. (2000). 
These benchmark functions are carefully designed to 
represent different families of difficulties to multi-
objective evolutionary algorithms. This suite of functions 
consists of six functions, one of which is discrete and 
represents a deceptive problem. The other 5 continuous 
functions are chosen as the test bed for the MODE and the 
computed results are compared to those obtain by SPEA 
(Zitzler et al., 2000). These test functions are briefly 
described in below following Zitzler et al. (2000).  

For all the test function, the objective 2f h g= ⋅ , and 

function h  and g  are defined in each test function. The 

dimension of decision space is 30m = , and the interval 

for each dimension is [ ]0,1 , 1ix i m∈ = �  for all of the test 

functions except function 4T , where 10m =  and 

[ ] [ ]1 0,1 , 5,5 , 2ix x i m∈ ∈ − = � . These test functions are 

list as in Table 1.  

Test function 1T  has a convex Pareto-optimal front, 
while 2T  has the non-convex counterpart of the function 

1T . Test function 3T  represents the discreteness 
features, whose Pareto-optimal front consists of several 
disjointed continuous convex parts. The test function 4T

contains 921  local Pareto-optimal fronts. This function is 
very hard for MOEA to find the global Pareto-optimal 
front. The test function 5T  includes two difficulties 
caused by the non-uniformity of the search space: firstly, 
the Pareto-optimal solutions are non-uniformly distributed 
along the global Pareto-optimal front (the front is biased 
for solutions for which 1f  is near to 1); secondly, the 

density of the solutions is least near the global Pareto-
optimal and highest away from the front.  
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Table 1: Formulation of the five test functions 

For these test evaluation tests, the MODE is 
performed with a population size N = 100, mutation 
probability 0.3mp = , maximal generations max 250G = ,

crowd distance 0.001crowdσ = , number of perturbation 

vectors 2K = , greediness 0.7γ =  and perturbation factor 

0.5F = . The population size and the maximal generations 
are set the same as that used in Zitzler’s (2000) 
experiments for valid comparisons. We run 30 
independent trials with random seeds for each of these five 
test functions. The distance of the computed Pareto-
optimal front to the real Pareto-optimal front is calculated 
for each run. The mean distance and the variance of the 30 
runs for each function are summarized in Table 2. Also, 
the mean and variance of distances to real Pareto front 
obtained using SPEA (results of 30 runs, obtained from 
http://www.tik.ee.ethz.ch/~zitzler/testdata.html) are also 
summarized in the same table.  

SPEA MODE  
Function 

Mean Variance Mean Variance 

1T 0.04 2.41E-05 0.0058 2.7907E-07

2T 0.07 2.6E-04 0.0055 3.1446E-07

3T 0.03 7.3E-06 0.02156 4.3944E-07

4T 4.28 3.62 0.63895 0.5002 

5T 0.48 0.02 0.02623 8.6126E-04

Table 2: Mean distance and the variance for each of the 
five test functions obtained using SPEA and MODE 

The experimental results show that there is a 
consistent improvement for all of the five test functions 
with the comparable setting, i.e., same population size and 
generations, between MODE and SPEA. MODE obtained 
smaller distance metric with very small variance than 
those obtained using SPEA. As described in the extensive 
comparative study conducted by Zitzler et al. (2000), test 
function 4T  is the most difficult one to a variety of multi-
objective methodologies. This is also true to the proposed 
MODE. However, there is an even larger improvement by 
using the proposed MODE than SPEA. In order to 
evaluate the performance of the proposed MODE in the 
Pareto dominance sense compared with the SPEA, the 
results obtained from a typical single run of MODE and 
SPEA are plotted in the same graph along the theoretical 
Pareto front for each of the five test functions (Figure 4). It 
is visually shown that the results obtained using MODE 
clearly dominate those obtained using SPEA. In addition, 
the results obtained by MODE provide better 
representation of the real Pareto front for each of the test 
functions.  

In all of the experiments, the maximal generation and 
population size are set the same as those in the 
experiments in Zitzler et al.(2000). Thus the number of 
objective function evaluation is roughly the same, which 
indicates that the experiments conducted in this paper are 
based on comparable computational resources. 

7. Conclusions

Multi-objective optimization is of increasing 
importance in various fields and has very broad 
applications. Powerful and efficient multi-objective 
algorithms can advance both scientific research and 
engineering applications in different areas. In this paper, 
the differential evolution approach in single-objective 
problem domain is extended to the multi-objective domain 
by incorporating the Pareto optimal concept into the 
mutation operator. This proposed multi-objective 
differential evolution (MODE) approach is tested using a 
set of benchmark functions from the literature. The 
obtained experimental results are compared to those 
obtained by a recent multi-objective evolutionary 
approach, strength Pareto evolutionary algorithm (SPEA). 
Three evaluation criteria, including both quantitative and 
qualitative ones, are used to evaluate the performance of 
the proposed evolutionary approach. For these test 
examples, it has been found that the proposed MODE 
outperforms the SPEA in all of these criteria with 
comparable computational efficiency.  
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Figure 4: Typical computed Pareto front obtained from a single run of MODE and SPEA for each of the five test functions 
versus the real Pareto front in objective space. The curve in each plot (part of the curve for test function 3T ) is the real 
Pareto front, whilst the diamonds are those obtained using MODE and the stars are those obtained using SPEA.  
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