
Proposal of a Cannibalism Bug-Based Search Strategy Using Genetic Algorithms

(C-BUGS) and Its Application to Multiobjective Optimization Problems

KEIICHIRO YASUDA, OSAMU YAMAZAKI, and TAKAO WATANABE
Tokyo Metropolitan University, Japan

SUMMARY

For decision support under a multiobjective environ-

ment, it is effective to offer a Pareto optimal solution set

with uniform distribution to the decision-maker. In this

paper, a new optimization method for obtaining a Pareto

optimal solution set with such uniform distribution is pro-

posed. In order to overcome the difficulty of realizing this

goal, the concept of cannibalism is introduced in BUGS (a

bug-based search strategy using genetic algorithms). Intro-

ducing the concept of cannibalism achieves the uniform

distribution of Pareto optimal solutions. A numerical ex-

periment using typical continuous and discrete multiobjec-

tive optimization problems clarifies the usefulness of the

proposed method. © 2002 Scripta Technica, Electr Eng Jpn,

139(1): 51�64, 2002; DOI 10.1002/eej.1146

Key words: Multiobjective optimization, genetic al-

gorithm, bug-based search algorithm, knapsack problem.

1. Introduction

The diversified requirements of modern society are

increasing the importance of solving multiobjective optimi-

zation problems in which multiple objects must be opti-

mized simultaneously. In a multiobjective optimization

problem, there rarely exists a complete optimal solution that

optimizes all objective functions. In most cases, the solution

is obtained as a set of �Pareto optimal solutions,� which are

defined as solutions that are at least not inferior to any other

solutions. The final decision in the multiobjective optimi-

zation problem is made subjectively by the decision-maker,

who selects a solution from the Pareto optimal solution set.

This is a powerful form of decision-making support that

provides the decision-maker with a well-balanced set con-

sisting of an adequate number of Pareto optimal solutions

[1].

In the genetic algorithm (GA), which is a mathemati-

cal model for optimization that simulates the biological

evolutionary process, one of the features is set-based mul-

tipoint simultaneous search [2, 7]. There has been an effort

to utilize the multipoint simultaneous search to determine

well-balanced Pareto optimal solutions directly as a set for

the multiobjective optimization problem. Some difficulties

have been pointed out, for example, that the balance of the

Pareto optimal solutions is adversely affected by the genetic

fluctuation of the GA, and that the introduction of the

sharing process to avoid such an effect increases the com-

putational complexity [3�5].

BUGS (a bug-based search strategy using genetic

algorithms) proposed by Iniwa and Sato [6, 7], on the other

hand, is a mathematical optimization model based on the

genetic algorithm and a model of the predatory behavior of

insects (bugs). The method is based on the correspondence

between the objective function to be optimized and the

concentration of the bacteria that are the food of the bug. In

the evolution of bugs, they have tended to concentrate at the

points of maximum concentration of the food bacteria, that

is, the maximum of the objective function, in the search for

the optimal value. The method can be considered as a

combination of adaptive search and hill-climbing. Two of

its advantages are that the lack of a local search function in

the conventional genetic algorithm is remedied, and that the

biological concepts of resource competition and partition-

ing are introduced in a natural form. In other words, BUGS

as an algorithm has the feature that a well-balanced solution

distribution can be easily realized.

This paper notes such features of BUGS, and exam-

ines the possibility of applying the method to the multiob-

jective optimization problem, which has not been

investigated. It is shown that the algorithm must be im-

proved in order to be applied to the multiobjective optimi-

zation problem. In order to achieve a better balance of the

solution distribution, it is proposed to introduce a new

�concept of cannibalism� in which bugs within a certain

neighborhood try to eat each other. Introducing this concept

© 2002 Scripta Technica

Electrical Engineering in Japan, Vol. 139, No. 1, 2002
Translated from Denki Gakkai Ronbunshi, Vol. 120-C, No. 6, June 2000, pp. 831�842

51

makes it possible to determine a set of well-balanced Pareto

optimal solutions that is adequate in number, while limiting

the increase of computational complexity.

In the following, Section 2 outlines BUGS. BUGS is

applied to the maximization problem and the region search

problem. The behavior of the algorithm is investigated from

the viewpoint of the region search. In Section 3, BUGS is

applied to the continuous and discrete multiobjective opti-

mization problem, and difficulties when BUGS is applied

to the multiobjective optimization problem are pointed out.

Based on the discussion up to Section 3, Section 4 proposes

C-BUGS, in which the concept of cannibalism is intro-

duced. Section 5 applies C-BUGS to typical continuous and

discrete multiobjective optimization problems, and the use-

fulness of the method is demonstrated.

2. The Bug Search System and Its Behavior

This section outlines the BUGS algorithm proposed

by Iniwa and Sato [6, 7]. The algorithm is applied to a

maximization problem and a region search problem, and

the behavior of the algorithm is investigated from the view-

point of region search. By region search is meant the search

of a region defined by an equality/inequality constraint. We

attempt to derive a well-balanced solution set composed of

a finite number of search points.

2.1 The BUGS algorithm

In BUGS, an individual performing the search is

called a �bug,� and the search is realized by a set of bugs.

The number of individuals Nt in the set of bugs in each

generation changes in the course of the search, with the

maximum number of individuals NMAX as the upper limit.

The bug in BUGS is described by three parameters, the

position, the direction, and the energy:

Here t represents the number of generations and xi is the

value of the i-th element in the search space. DX
→

i is the

information used to control the movement of the bug. The

position of the bug�the search point�is updated as fol-

lows:

where G is a function that maps the direction control vector

DX
→

i to the n-dimensional direction vector. The energy of the

i-th bug at generation t is determined by the cumulative

value of the degree-of-match function and the energy decay

with growth. The gene of the bug is the real vector DX
→

, and

the solution (search point) is represented by X. The detailed

algorithm of BUGS is given in the Appendix.

2.2 Examination of behavior of BUGS by numerical

experiment

In this section, BUGS is applied to the maximization

problem and the inequality region search problem for a

continuous function, and the behavior of the search process

is investigated. In applying BUGS, it is necessary to set the

coding, movement, degree-of-match function, parameters,

initial generation, and auxiliary (exchange) operator. In this

paper, when BUGS is also applied to other continuous

problems, the following basic set is defined and used, other

than the degree-of-match function.

2.2.1 Basic set of continuous BUGS

In this paper, the following setting is defined as the

basic set of continuous BUGS. The auxiliary operator of

Eq. (7) in the following basic set is the operator, which is

newly introduced in this paper. It performs the action of

exchanging the parent and child, and is called the �ex-

change operator.� The effect of this operator is discussed in

the region search problem in the next section.

[Basic set of continuous BUGS]

(1) Coding

The position of the bug can be used directly as a

solution. In other words,

(2) Move

The search point is moved by the following formula:

In other words, G(DX
→

i(t)) = DX
→

i(t). The direction control

vector DX
→

i of the bug is given as

(3) Degree-of-match function

The degree of match function is defined as

where f(x1
i (t), . . . , xn

i (t)) is the objective function to be

maximized. It is possible to define the degree-of-match

function to take negative values.

(4) Parameters

The parameters are set as in Table A.1 of the Appen-

dix.

(1)

(2)

(3)

52

(5) Composition of initial generation

The initial generation is composed as follows:

set at random in the range Xi(t) = (x1
i (t),

. . . , xn
i (t)): x0 ≤ xj

i(t) ≤ x0, j = 1, . . . , n.

set at random in the range DX
→

i(t) = (dx1
i (t), . . . ,

dxn
i (t)): −x0 /100 ≤ xj

i(t) ≤ x0 /100, j = 1, . . . , n.

ei(t): set as 1.

(6) Crossover and mutation

The crossover is specified as uniform. In the two-di-

mensional case, for example, when the direction control

vectors of parent bugs 1 and 2 are DX
→

1 = (dx1
1(t), dx2

1(t)) and

DX
→

2 = (dx1
2(t), dx2

2(t)) and the mask pattern is (1,0), the

direction control vectors DX
→

1
g and DX

→
2
g of the child bugs 1

and 2 are given by

Mutation is applied for each gene. The value is modi-

fied in mutation as follows. When dx1
1(t) is to be modified

by mutation, the value is set at random in the range

−x0 /100 ≤ dxj
i(t) ≤ x0 /100, j = 1, . . . , n.

(7) Exchange operator

In Eq. (4), the radius of reproduction RR is set as

infinity. Consequently, bugs proliferate very rapidly, and

the number of individuals soon reaches the upper limit

NMAX. Thus, a child cannot join the set when it is born, and

a new individual is seldom generated. In order to prevent

such a situation, when the number of individuals reaches

the maximum and a new child is not added, a parent is

deleted from the set and the child is added to the set.

2.2.2 Application of BUGS to continuous

function maximization problem

BUGS is now applied to a two-variable nonlinear

optimization problem, which is formulated as follows. The

optimal solution for this problem is (x1, x2) = (0, 0). The

parameters are set as in the basic set of continuous BUGS

above:

Figure 1 shows an example of the result when BUGS

is applied. It is seen that a large number of bugs exist in the

area where the degree-of-match function is large, namely,

the area where the objective function takes large values,

with few bugs in the area with small values. Since the bugs

are distributed not only in the neighborhood of the maxi-

mum point, but also in a circular form with the origin as the

center, it is seen that the search point is easily scattered,

which is a basic property of BUGS.

Thus, it is judged that BUGS is suited to the region

search problem, in which a region is searched with good

balance by multiple search points, rather than searching the

region by a single point. In the following, we attempt to

demonstrate this property by a numerical experiment.

BUGS is applied to an inequality region search problem,

and the condition for well-balanced region search is dis-

cussed.

2.2.3 Application of BUGS to inequality region

search problem

BUGS is applied to a region search problem in which

the region satisfying the following constraint is sought:

The previous basic set of continuous BUGS is used

to set the parameters. The degree-of-match function, the

exchange operator, and the reproduction radius are set as

follows.

(1) Definition of degree-of-match function

In order to perform region search, a situation must be

created in which bugs exist in the region, but not out of the

region. The simplest method of doing so is to define the

degree-of-match function in a step form, so that the bacteria

can be obtained in the region but not out of the region. In

this paper, however, the degree-of-match function is de-

fined to take a negative value outside the permissible region

of the problem (executable region), based on the results of

several trial simulations:

(4)

(5)

Fig. 1. Application result of BUGS for max-problem.

(6)

53

By defining the degree-of-match function in this way,

not only are the bacteria unavailable, but energy is lost

outside the permissible region. This makes the bug less

likely to survive, which is a desirable situation in the region

search.

(2) Exchange operator

In order to see the effect of exchanging the parent and

the child, two cases are examined, in which the operator is

introduced or not introduced.

(3) Other items

In order to see the dependence of the behavior of

BUGS on the reproduction radius RR, the cases of

RR = ∞, 1.0, and 0.1 are examined. The other settings are

the same as in the basic set of continuous BUGS. Figure 2

is the result of the conventional BUGS application in which

the parent�child exchange operator is not introduced. Fig-

ures 3 to 5 are the results in which the parent�child ex-

change operator is introduced and RR is varied.

Comparing Figs. 2 and 3, it is seen that the parent�

child exchange operator is useful in maintaining the balance

of the solution distribution. Comparing Figs. 3 to 5, the

distribution is more uniform when RR is larger. When RR

= ∞, the effect of the reproduction radius need not be

considered, which helps to improve the computation speed.

Thus, by considering both the uniformity of the dis-

tribution and the reduction of computational complexity, it

seems adequate in the region search to set RR = ∞ and to

introduce the parent�child operator.

2.2.4 Consideration in application to region

search problem

By the numerical experiments up to this stage, it has

been shown that BUGS has basic properties which are

suited to region search by a set of bugs. Since the bacterial

concentration corresponds to the value of the objective

Fig. 2. BUGS without exchange operator (RR = ∞).

Fig. 3. BUGS with exchange operator (RR = ∞).

Fig. 4. BUGS with exchange operator (RR = 1.0).

Fig. 5. BUGS with exchange operator (RR = 0.1).

54

function, it is judged that the above property is the effect of

the bugs living in different regions.

It is also seen that, in order to achieve a better-bal-

anced region search, the reproduction radius and the de-

gree-of-match function must be adequately defined. This

suggests that a subset of the Pareto optimal solution set for

the multiobjective optimization problem can be derived

with a good balance.

3. Application of BUGS to Multiobjective

Optimization Problem and Discussion

It was suggested in the previous section that a subset

of the Pareto optimal solution set for the multiobjective

optimization problem can be derived with good balance by

using BUGS. In this section it is shown that BUGS can be

applied to the multiobjective optimization problem by ade-

quately defining the degree-of-match function. Then, the

method is applied to a typical two-objective continuous

function optimization problem and a two-objective combi-

natorial optimization problem. Problems in the approach

are pointed out.

3.1 Application of BUGS to 2-objective

continuous function optimization problem

BUGS is next applied to the following multiobjective

optimization problem:

The Pareto optimal solution for this problem is the segment,

which connects (x1, x2) = (0, 0) and (x1, x2) = (1, 1), the op-

timal solutions of the two objective functions f1 and f2,

respectively.

3.1.1 Application procedure

The procedure for application of BUGS to the two-

objective optimization problem is described below.

(1) Degree-of-match function

The degree-of-match function is defined as follows,

with fi(x1, x2), i = 1, 2 as the evaluation functions:

By a Pareto optimal individual is meant an individual which

is not inferior to any other individual in the individual set.

The above definition of the degree-of-match function is

called the Pareto bug preservation strategy.

(2) Other items

The maximum number NMAX of bugs is set as 200,

and x0 is set as 3. For case 1, the mutation is defined as

−x0 /100 ≤ dxj
i(t) ≤ x0 /100, j = 1, . . . , n, as in the basic set

of continuous BUGS. For case 2, the mutation is applied by

setting −4|dx| ≤ dx ≤ 4|dx|. Other items are set as in the basic

set of continuous BUGS.

3.1.2 Result of application

Figures 6 and 7 show the results of application of

BUGS to the two-objective continuous function optimiza-

tion problem in cases 1 and 2, respectively. It is seen in Fig.

6 that the bugs concentrate less near the optimal point of

the respective objective functions than in the central area of

the segment. This seems due to the fact that the probability

that the Pareto optimality is lost by the movement of the

bug is higher near the optimal point of the respective

objective function than in the central area of the segment.

The Pareto optimal solutions form a segment, while

bugs concentrate in an expanding area in the central area of

the segment. This seems due to the fact that the bugs

concentrate in the central area in which the Pareto optimal-

ity is less likely to be lost, since there is no penalty for

concentration of bugs.

In order to resolve these two points and to distribute

bugs with a good balance on the segment providing Pareto

optimality, it is necessary to limit the movement of a bug

once it reaches the Pareto optimal solution, so that the bug

stays at the Pareto optimal solution as long as possible, and

to provide a certain penalty for the concentration of bugs.

Figure 7 shows the result when movement is re-

stricted. It is seen that although the distribution of the bugs

is not made uniform, bugs stay on the segment providing

the Pareto optimal solutions. This is because the number of

(7)

(8)

Fig. 6. Application result of BUGS to two-objective

problem for case 1 (x-plane).

55

bugs soon reaches the maximum. In addition, the move-

ment dx is decreased with the progress of the search, which

restricts the movement of the bugs as a result. Thus, the bugs

congregate in the central area where it is easier to survive,

reducing movement and arriving at a situation in which the

bugs concentrate in the central area.

Based on this reasoning, the concept of cannibalism

is introduced into BUGS in the next section in order to

restrict the movement of the bugs and to resolve the prob-

lem of concentration of bugs.

3.2 Two-objective combinatorial optimization

problem

The knapsack problem is a problem of determining

the combination of goods so that the total value is maxi-

mized, when goods with various values and weights are put

into a knapsack with a constraint on the total weight. In the

case of the two-objective knapsack problem, there are two

kind of evaluations, with value 1 and value 2, for the same

kind of goods.

The problem is formulated as follows. Suppose that

there exist n goods. Let the weight of good j be aj, and let

value 1 be c1j and value 2 be c2j. Let the maximum weight

that can be contained in the knapsack be b. Let xj be the 0-1

variable, which takes the value 1 when good j is selected,

and 0 when not. Then, the two-objective knapsack problem

consists of determining the combination of goods so that

the total value of the contained goods ∑j=1
n cijxj(i = 1, 2) is

maximized, under the constraint that the total weight of the

contained goods ∑j=1
n ajxj does not exceed the maximum

weight b of the knapsack.

The problem is formulated as follows:

This paper considers a 20-variable two-objective

knapsack problem as expressed by Eq. (9) with the numeri-

cal values shown in Table 1. For this problem, there exist

10 Pareto optimal solutions as shown in Table 2.

3.2.1 Application procedure and basic set of

combinatorial BUGS

The following application procedure forms the basis

for the application of BUGS to the combinatorial problem

in this paper. Consequently, it is called the basic set of

combinatorial BUGS. Other settings are the same as in the

basic set of continuous BUGS.

[Basic set of combinatorial BUGS]

(1) Degree-of-match function

The Pareto bug preservation strategy is used. The

evaluation function is defined as

(2) Coding

X is set the same as the solution xj of Eq. (9). The

outline of the move is defined as follows. Let the number

of goods be n. G reverses stochastically the value of xi + 1,

according to the value of dxi of the input DX
→

. When i = n,

inversion is not applied. The above procedure is iterated

twice, provided that different values are used for dxi in the

Fig. 7. Application result of BUGS to two-objective

problem for case 2 (x-plane).

Table 1. Twenty-variable two-objective knapsack

problem

(9)

(10)

56

first and second processes. (n+1) values of dxi are needed

in a single operation, and DX
→

 is a 2(n+1)-dimensional

variable.

In this case, the number of goods is n = 20, and DX
→

is a 42-dimensional variable. The element takes an integer

value of 1, . . . , 9. Thus,

(3) Movement

Let the number of goods be n. G in Eq. (1) realizes

the mechanism given by the following algorithm.

Step 1: The bug is moved by BUGS-MOVE.

Step 2: The values of the objective functions before

and after the movement are compared.

Step 3: If the value of the objective function after the

movement is superior to the value before the movement,

movement ends.

Step 4: If the value of the objective function after the

movement is not inferior to the value before the movement,

movement ends with probability Pp. If movement does not

end, go to step 6.

Step 5: If the value of the objective function after the

movement is inferior to the value before the movement,

movement ends with probability Pi. If movement does not

end, go to Step 6.

Step 6: The position of the bug is returned to the

position before the movement. Movement ends.

�BUGS-MOVE�

Step 1: Let the moving bug be Buga. If xk is reversed

in the previous move, we set Nmove
a = k. At the first move, k

is determined at random in the range from 0 to n. Then, the

number i is determined in the range from 0 to n. The

determination is by roulette selection. More precisely, the

probability pi that the number i is selected is given by

e2dx
i /∑j=0

n e2dx
j.

Step 2: If i = n is selected, go to step 3. Otherwise, let

Nmove
a = (Nmove

a + i)%n, where %n implies that the remain-

der after dividing by n should be used. Then, the value of

xN
move

a is reversed.

Step 3: A number from 0 to n is selected as in step 1.

The selection is made with the probability pi that the num-

ber i is selected is e2dx
i + 21 /∑j=0

n e2dx
j+21.

Step 4: As in step 2, if i = n is selected, go to step 5.

If otherwise, the value of Nmove
a is updated and the value of

xN
move

a is reversed, as in step 2.

Step 5: BUGS-MOVE ends.

(4) Other items

Mutation is performed for each chromosome. The

value is changed by selecting an integer from 1 to 9 at

random. The parameters are set as Pp = 0.5, Pl = 0.2, and

NMAX = 200.

(5) Composition of initial generation

0 or 1 is selected at random for xi, i = 1, . . . , n, and

an integer from 1 to 9 is selected at random for

dxi, i = 1, . . . , n.

3.2.2 Result of application

Figure 8 shows the number of Pareto optimal solu-

tions obtained up to the 2000th generation. Among 10

Pareto optimal solutions, only 2 to 3 are obtained on aver-

age. This is because the bugs concentrate at a particular

Pareto optimal solution, from which the search does not

progress further.

Thus, in order to derive a larger number of Pareto

optimal solutions, a provision must be made so that bugs,

Table 2. Pareto optimal solution set of knapsack

problem

(11)

(12)

Fig. 8. Application result of BUGS for knapsack

problem.

57

as the search points, do not concentrate at a particular

solution, as in the case of the two-objective continuous

function optimization problem considered in Section 3.1.

For this purpose, in the next section we consider the intro-

duction of the concept of cannibalism.

4. C-BUGS with cannibalism

Cannibalism is the phenomenon in which a bug ob-

tains energy by eating another bug, instead of bacteria. By

introducing this concept, the solution distribution is made

more uniform in the continuous multiobjective optimiza-

tion problem, and the concentration of bugs at a particular

solution is eliminated. Thus, it is expected that a larger

number of Pareto optimal solutions will be derived. In the

following, the C-BUGS algorithm with cannibalism is de-

scribed, and the behavior of this algorithm is examined by

applying it to a simple region search problem. The method

is applied in the next section to the multiobjective optimi-

zation problem.

4.1 C-BUGS algorithm

In order to introduce the concept of cannibalism into

BUGS, BUGS-GA in the BUGS algorithm shown in the

Appendix must be modified. More precisely, sexual repro-

duction is controlled by probability Pmsex. When sexual

reproduction does not occur, the bugs engage in cannibal-

ism. When bugs come into a certain cannibalism radius

(CR), they try to eat each other. A bug obtains a certain

energy by eating another bug. The energy which is obtained

is controlled by a constant α.

BUGS-GA after modification is called C-BUGS-GA

in this paper. The algorithm is as follows.

[C-BUGS-GA]

Step 1: For two bugs Buga and Bugb, sexual repro-

duction occurs with probability Pmsex. If it occurs, go to step

2. If not, go to step 5.

Step 2: If the reproducibility condition is satis-

fied by Buga and Bugb, sexual reproduction occurs. If

they are capable of reproduction, go to step 3. If not,

go to step 7. By the reproducibility condition is meant

the situation in which each of the two bugs has an

energy above a certain threshold (reproducibility en-

ergy, RE), and the distance between the two bugs is

within a certain reproduction radius (reproducibility

radius, RR).

Step 3: From two parent bugs Buga and Bugb, child

bugs Bugc and Bugd are generated.

Crossover with probability Pc and mutation with

probability Pm are applied to the direction control vector

DX
→

 of the parent bug, as in the GA, to obtain that of the

child bug. The position vector X of the child bug is set near

the parent bug. The energies Ea and Eb of the parent bugs

are halved, Ea /2 and Eb /2, respectively. The energies of the

child bugs are set as (Ea + Eb) /2, respectively.

Step 4: Go to step 7.

Step 5: For Buga and Bugb, if they are at a distance

within a certain CR, they try to eat each other. If they do

not, go to step 7.

Step 6: Bugb is deleted from the set. Buga obtains the

energy αEb, where α is a positive constant.

Step 7: If the above procedure has been performed

for all pairs of bugs, go to step 8. If not, go back to step 1.

Step 8: If the energy of Buga exceeds a certain thresh-

old value (producibility energy, PE), autoreproduction oc-

curs with probability Pasex. If autoreproduction occurs, go

to step 9. If not, go to step 10.

Step 9: Parent bug Buga disappears, being replaced

by two child bugs. The direction control vector DX
→

 of the

child bug is obtained by applying mutation to the direction

control vector DX
→

 of the parent bug with probability Pm.

The position vector X of the child bug is placed near the

parent bug. The energy of the child bug is set as half the

energy of the parent bug.

Step 10: If the above procedure has been performed

for all bugs, end. If not, go to step 8.

4.2 Behavior of C-BUGS with cannibalism

In order to examine the behavior of C-BUGS with

introduced cannibalism, the algorithm is applied to the

region search problem considered in Section 2.2. It is a

problem of determining the region satisfying the constraint

of Eq. (5).

(1) Application procedure

The cannibalism parameters are newly set as

Pmsex = 0.9, α = 0.25, and CR is set in two ways, as 0.1 and

0.05. The same degree-of-match function as in the region

search problem of Section 2.2.2 is used. The other items are

set the same as in the basic set of continuous BUGS,

provided that the range of −4|dx| ≤ dx ≤ 4|dx| is used in the

mutation.

(2) Result of application

Figures 9 and 10 show the results of application.

Comparing these to Fig. 3, it is seen that the density of

bugs near the region boundary was low before introduc-

ing cannibalism, while the bugs are distributed with

constant density in almost all areas in the region after

introducing the cannibalism. It is also seen that the dis-

tance between bugs differs between Figs. 9 and 10. In

other words, the density of bugs, that is, the density of

the solution distribution, can be controlled by the canni-

balism radius CR.

58

5. Application of C-BUGS to Multiobjective

Optimization Problem

This section presents the results when C-BUGS with

the proposed concept of cannibalism is applied to typical

continuous and discrete multiobjective optimization prob-

lems. The results are shown and compared to the results

given by RSGA (rank sharing genetic algorithm) [5].

RSGA is a method of multiobjective GA which is obtained

by introducing the sharing concept into multiobjective GA.

5.1 Two-objective continuous function

optimization problem

In the following, the result obtained when C-BUGS

is applied to the two-objective continuous function optimi-

zation problem is presented and is compared to the result

when RSGA is applied. The Pareto optimal solutions for

this problem form the segment connecting

(x1, x2) = (0, 0) and (x1, x2) = (1, 1), which are the optimal

solutions of objective functions f1 and f2, respectively. The

parameters of RSGA are set as in Table 3. Gray code is used

for the coding. The selection is the tournament selection.

The crossover is two-point crossover. The mutation is ap-

plied to each gene.

5.1.1 Application procedure of BUGS

(1) Degree-of-match function

The Pareto bug preservation strategy is used.

(2) Parameters

The cannibalism radius is set as CR = 0.05. We set

Pmsex = 0.9 and α = 0.25.

(3) Mutation

The variables are set at random in the range of

−x0 /100 ≤ dxj
i(t) ≤ x0 /100, j = 1, . . . , n for case 1, and

−4|dx| ≤ dx ≤ 4|dx| for case 2. The other settings are the

same as in the basic set of continuous BUGS.

5.1.2 Result of application

Figures 11 to 13 show the results of C-BUGS appli-

cation. Figures 14 and 15 show the result of RSGA appli-

cation. It is seen that the density of the bug distribution can

be controlled by introducing cannibalism, resulting in a

better-balanced solution set than that given by RSGA.

Comparing the results given by the two mutation

procedures in cases 1 and 2, it is seen that the bugs as the

search points are distributed with better balance and with a

certain distance on the segment representing the Pareto

optimal solutions in case 2, where the variables are selected

in the range −4|dx| ≤ dx ≤ 4|dx|. This is because the move of

the bug, that is, the value of dx, is reduced with the progress

of the search in the conventional method, finally resulting

in a stationary state. But by introducing the concept of

cannibalism, the distribution of bugs settles at a final sta-

Fig. 9. Application result of C-BUGS to region search

problem (CR = 0.05).

Fig. 10. Application result of C-BUGS to region search

problem (CR = 0.10).

Table 3. Parameters of RSGA

Parameter

Continuous-

type

problem

Discrete-

type problem

Size of set of individuals 200 200

Code string length 24 20

Crossover ratio 0.4 0.6

Mutation ratio 0.1 0.1

End generation no. 100 100

59

tionary state with a spacing such that the bugs do not eat

each other.

By the above mechanism, the bugs as search points

are distributed with a good balance on the segment repre-

senting the Pareto optimal solutions, while maintaining the

distance determined by the cannibalism radius. It is ex-

pected that a subset of the Pareto optimal solution set with

a good balance will be obtained.

5.2 Three-objective continuous function

optimization problem

In this section, the proposed method is applied to the

following problem. The Pareto optimal solutions for this

problem are the triangular region connecting

Fig. 12. Application result of C-BUGS to two-objective

problem for case 2 (x-plane).

Fig. 13. Application result of C-BUGS to two-objective

problem for case 2 (f-plane).

Fig. 14. Application result of RSGA to two-objective

problem (x-plane).

Fig. 15. Application result of RSGA to two-objective

problem (f-plane).

Fig. 11. Application result of C-BUGS to two-objective

problem for case 1 (x-plane).

60

(x1, x2) = (0, 0), (x1, x2) = (1, 1), and (x1, x2) = (1, 0), which

are the optimal solutions of f1, f2, and f3, respectively. The

parameters for RSGA are set the same as in the previous

section:

5.2.1 Application procedure of BUGS

(1) Degree-of-match function

The Pareto bug preservation strategy is used.

(2) Parameters

We set

(3) Mutation

The variable is set at random in the range of

−4|dx| ≤ dx ≤ 4|dx|.
The other settings are the same as in the basic set of

continuous BUGS.

5.2.2 Results of application

Figure 16 shows the results given by the proposed

C-BUGS, and Fig. 17 the results given by RSGA. It is seen

that the proposed C-BUGS determines a better-balanced

subset of the Pareto optimal solution set than RSGA.

5.3 Two-objective combinatorial optimization

problem

C-BUGS and RSGA are next applied to the 20-vari-

able two-objective knapsack problem considered in Section

3.2.

5.3.1 Application procedure

The parameters in the knapsack problem are shown

in Table 2. The parameters of RSGA are shown in Table 3.

The selection type is tournament selection. The crossover

is uniform crossover. Mutation is applied to each gene. The

Pareto preservation strategy is used.

(1) Degree-of-match function

The Pareto bug preservation strategy is used.

(2) Parameters

We set CR = 0, Pmsex = 0.9, and α = 0.25, provided

that the Hamming distance is used. The other items are the

same as in the basic set of combinatorial BUGS.

5.3.2 Result of application

Figure 18 shows the numbers of Pareto optimal solu-

tions obtained by RSGA and C-BUGS. The value shown in

the figure is the average of 20 trials. Figure 19 shows the

distribution of the number of Pareto optimal solutions ob-

tained by 20 trials at the 500th, 1000th, and 2000th genera-

tions.

The following observations are made from the results

of simulation. In RSGA, a larger number of Pareto optimal

solutions can be derived in the early generation, but the

probability is low that all Pareto optimal solutions are

derived. In C-BUGS, the speed of search is lower than in

RSGA, but the probability is high that all Pareto optimal

solutions are derived.

5.4 Discussion of simulation results

A simulation was performed using C-BUGS with

cannibalism as proposed in this paper, and the result was

Fig. 16. Application result of C-BUGS to

three-objective problem (x-plane).

Fig. 17. Application result of RSGA to three-objective

problem (x-plane).

(13)

61

compared to RSGA. Table 4 compares the computation

time and the number of generations until the process is

completed for the two methods and for each problem.

It is seen from the simulation results that the intro-

duction of cannibalism has the same effect as sharing in the

genetic algorithm, and is very effective in making the

solution distribution more uniform. It is also seen that the

density of the solution distribution can be controlled by

adjusting the cannibalism radius.

C-BUGS, which is the proposed method, realizes a

more uniform distribution of solutions in the continuous

multiobjective optimization problem than RSGA. In the

discrete multiobjective optimization problem (20-variable

knapsack problem), the number of Pareto optimal solutions

derived is approximately 10% greater than with RSGA.

For the two-objective continuous optimization prob-

lem, the computation time of BUGS is 127 s (for 2000

generations).

Table 4. Comparison of computation times (s)

Problem C-BUGS RSGA Computer

2-objective

continuous

121 (2000

generations)

41 (100

generations)

RS/6000

3-objective

continuous

227 (2000

generations)

67 (100

generations)

RS/6000

2-objective

discrete

(knapsack)

1.7 (500

generations)

6 (500

generations)
Windows

machine

Pentium II

350 MHz

5.8 (1000

generations)

11 (1000

generations)

16 (2000

generations)

23 (2000

generations)

Fig. 18. Application results of C-BUGS and RSGA.

Fig. 19. The number of obtained Pareto optimal

solutions (500th generation).

Fig. 20. The number of obtained Pareto optimal

solutions (1000th generation).

Fig. 21. The number of obtained Pareto optimal

solutions (2000th generation).

62

6. Conclusions

This paper has examined the behavior of the BUGS

algorithm proposed by Iniwa and Sato by numerical experi-

ment. An algorithm has been proposed in which the Pareto

optimal solutions for the multiobjective optimization prob-

lem are derived with good balance by introducing the

concept of cannibalism.

As a result of applying the method to typical continu-

ous and discrete multiobjective optimization problems, the

following properties were revealed.

(1) BUGS contains the concept of separated lift in its

algorithm itself, and thus is suited to the region search

problem and the multiobjective optimization problem. In

order to realize a more uniform distribution of the derived

solutions, however, improvement by introducing a new

concept is needed.

(2) The introduction of the cannibalism concept has

an effect which corresponds to the sharing in the genetic

algorithm, and has a marked effect of making the distribu-

tion of the derived solutions more uniform. By adjusting

the cannibalism radius, the density of the solution distribu-

tion can be controlled.

(3) The proposed C-BUGS achieves a more uniform

distribution of the derived solutions than RSGA in the

continuous-type multiobjective optimization problem. In

the discrete multiobjective optimization problem (20-vari-

able knapsack problem), the number of Pareto optimal

solutions derived is approximately 10% larger than with

RSGA.

The following problems are noted for the future.

(1) In application to the continuous multiobjective

optimization problem, there must be a quantitative measure

of the balance (diversity) of the derived Pareto optimal

solutions. Using such a measure, each procedure must be

evaluated quantitatively.

(2) In application to the discrete multiobjective opti-

mization problem, the application to a larger-scale problem

should be attempted and the computation efficiency should

be improved.

Iniwa and Sato investigated the use of BUGS in the

higher-dimensional optimization problem, and reported

that the performance of BUGS is equal to or better than that

of GA. It is consequently expected, in the application to the

multiobjective optimization problem, that BUGS will be-

come better than the GA when applied to higher-dimen-

sional problems. This paper has discussed problems of

order up to the two-dimensional three-objective problem as

basic investigations, but it is left as an important issue for

the future to apply the proposed method to higher-dimen-

sional problems, and to examine the performance by using

a statistical approach or other means of analysis.

REFERENCES

1. Ichikawa (editor). Theory and methods of multiob-

jective decision. Society of Instrument and Control

Engineers; 1980.

2. Goldberg DE. Genetic algorithms in search, optimi-

zation, and machine learning. Addison�Wesley;

1989.

3. Fonseca CM, Fleming PJ. Genetic algorithms for

multiobjective optimization: formulation, discussion

and generalization. Proc Fifth Int Conference on

Genetic Algorithms. Morgan Kaufmann; 1993. p

416�423.

4. Tamaoki, Mori, Araki. Generation of Pareto optimal

solution set by genetic algorithm. Trans Soc Instrum

Control Eng 1995; 31:1185�1192.

5. Kondo, Watanabe, Yasuda, Yokoyama. Composition

of genetic algorithm designed to maintain the diver-

sity of Pareto optimal solutions. Proc 35th Conv Soc

Instrum Control Eng 309 A-2, p 883�884, 1996.

6. Iniwa, Sato. A bug type search system involving an

extension of the genetic algorithm. J Soc Artif Intell

1993;8:797�809.

7. Iniwa. Fundamentals of genetic algorithms: Deci-

phering GAs. Ohm Press; 1994.

APPENDIX

[The BUGS algorithm]

Step 1. The set of bugs of the initial generation (set

size N0) is created at random and a constant energy is

assigned. The generation number is initialized.

Step 2. The bug is moved according to Eq. (1).

Step 3. Based on the information given by Xi, the

degree of match of each bug F(Xi) is calculated and the

energy of each bug is determined as follows:

where Cage is the decay factor of the energy with growth.

Step 4. If the energy of a bug reaches 0, the bug dies.

Dead bugs are removed from the list of bugs. If, as a result

of the death of a bug, the number of individuals in the set

of bugs becomes less than Xf, a new bug is added to the set.

The parameters of the newly added bug are determined by

the same procedure as in the creation of the initial genera-

tion of bugs.

Step 5. BUGS-GA is called.

Step 6. The generation number is incremented by

1. Go to step 2.

[Genetic algorithm BUGS-GA]

Step 1. For two bugs Buga and Bugb, if the prolif-

eration condition is satisfied, sexual reproduction occurs. If

63

it is possible, go to step 2. If not, go to step 3. The

proliferation condition is that the energies of the two bugs

both exceed a certain threshold (the reproducibility energy,

RE) and the distance between the two bugs is within a

certain reproduction radius RR.

Step 2. Child bugs Bugc and Bugd are generated

from the two parent bugs Buga and Bugb. Crossover with

probability Pc and mutation with probability Pm are applied

to the direction control vector DX
→

 of the parent bug to obtain

that of the child bug, as in the GA. The position vector X of

the child bug is set near that of the parent bug. The energies

Ea and Eb of the parent bugs are halved, Ea /2 and Eb /2,

respectively. The energies of the child bugs are set as

(Ea + Eb)/2 respectively.

Step 3. If the above procedure has been performed

for all pairs of bugs, go to step 4. If not, go to step 1.

Step 4. If the energy of bug Buga exceeds some

threshold value (the producibility energy PE), autorepro-

duction occurs with probability Pasex. If autoreproduction

occurs, go to step 5. Otherwise go to step 6.

Step 5. The parent bug Buga disappears and is re-

placed by two child bugs. The direction control vector DX
→

of the child bug is obtained by applying mutation to the

direction vector of the parent bug with probability Pm. The

position vector X of the child bug is placed near the parent

bug. The energy of the child bug is set as half that of the

parent bug.

Step 6. If the above procedure has been performed

for all bugs, end. Otherwise go to step 4.

AUTHORS (from left to right)

Keiichiro Yasuda (member) completed the doctoral program in electrical engineering at Hokkaido University in 1989.

He became a research associate in 1989 and an associate professor in 1991 in the Faculty of Engineering, Tokyo Metropolitan

University. He is now an associate professor in the Graduate School of Engineering. His research interests include system

optimization and electrical power system engineering. He holds a D.Eng. degree, and is a member of the Society of

Instrumentation and Control Engineers and the Electrical Installation Society.

Osamu Yamazaki (nonmember) graduated from the Department of Electrical Engineering of Tokyo Metropolitan

University in 1999 and then joined Hitachi Systems Technology Corporation. His graduate research dealt with genetic

algorithms.

Takao Watanabe (member) completed the M.E. program in electrical engineering at Tokyo Metropolitan University in

1994. He then became a research associate on the Faculty of Engineering, and is now a research associate in the Graduate School

of Engineering. His research interests include robust control. He holds a D.Eng. degree, and is a member of IEE and the Society

of Instrumentation and Control Engineers.

Table A.1. Parameters of BUGS

64

